WorldWideScience

Sample records for ray neutron albedo

  1. Neutron Albedo

    CERN Document Server

    Ignatovich, V K

    2005-01-01

    A new, algebraic, method is applied to calculation of neutron albedo from substance to check the claim that use of ultradispersive fuel and moderator of an active core can help to gain in size and mass of the reactor. In a model of isotropic distribution of incident and reflected neutrons it is shown that coherent scattering on separate grains in the case of thermal neutrons increases transport cross section negligibly, however it decreases albedo from a wall of finite thickness because of decrease of substance density. A visible increase of albedo takes place only for neutrons with wave length of the order of the size of a single grain.

  2. Measuring planetary neutron albedo fluxes by remote gamma-ray sensing

    International Nuclear Information System (INIS)

    Haines, E.L.; Metzger, A.E.

    1984-01-01

    A remote-sensing γ-ray spectrometer (GRS) is capable of measuring planetary surface composition through the detection of characteristic gamma rays. In addition, the planetary neutron leakage flux may be detected by means of a thin neutron absorber surrounding the γ-ray detector which converts the neutron flux into a γ-ray flux having a unique energy signature. The γ rays representing the neutron flux are observed against interference consisting of cosmic γ rays, planetary continuum and line emission, and a variety of gamma rays arising from cosmic-ray particle interactions with the γ-ray spectrometer and spacecraft (SC). In this paper the amplitudes of planetary and non-planetary neutron fluxes are assessed and their impact on the sensitivity of measurement is calculated for a lunar orbiter mission and a comet nucleus rendezvous mission. For a 100 h observation period from an altitude of 100 km, a GRS on a lunar orbiter can detect a thermal neutron albedo flux as low as 0.002 cm -2 s -1 and measure the expected flux of approx.=0.6 cm -2 s -1 with an uncertainty of 0.001 cm -2 s -1 . A GRS rendezvousing with a comet at a distance equal to the radius of the comet's nucleus, again for a 100 h observation time, should detect a thermal neutron albedo flux at a level of 0.006 cm -2 s -1 and measure the expected flux of approx.=0.4 cm -2 s -1 with an uncertainty of 0.004 cm -2 s -1 . Mapping the planetary neutron flux jointly with the direct detection of H will not only provide a more accurate model for translating observed γ-ray fluxes into concentrations but will also extend the effective sampling depth and should provide a capability for simple stratigraphic modeling of hydrogen. (orig.)

  3. Use of an albedo neutron personnel dosimeter for X- and γ-ray monitoring

    International Nuclear Information System (INIS)

    Gorbics, S.G.; Nash, A.E.; Johnson, T.L.

    1981-01-01

    With a judicious choice of cadmium filter size and thickness, it is possible to use the information from the 7 LiF detectors used in an albedo neutron personnel dosimeter to determine an individual's X-and γ-ray exposure, thus eliminating the need for a separate dosimeter for this purpose. A filter area of 400 mm 2 and a thickness of 0.51 mm is shown to be optimum for a simple, plastic, dosimeter design using detectors held in dental-film size cards. (author)

  4. Thermoluminescence albedo-neutron dosimetry

    International Nuclear Information System (INIS)

    Strand, T.; Storruste, A.

    1986-10-01

    The report discusses neutron detection with respect to dosimetry and compares different thermoluminescent dosimetry materials for neutron dosimetry. Construction and calibration of a thermoluminescence albedo neutron dosemeter, developed by the authors, is described

  5. Use of wrist albedo neutron dosimeters

    International Nuclear Information System (INIS)

    Hankins, D.E.

    1983-01-01

    We are developing a wrist dosimeter that can be used to measure the exposure at the wrist to x-rays, gamma rays, beta-particles, thermal neutrons and fast neutrons. It consists of a modified Hankins Type albedo neutron dosimeter and also contains three pieces of CR-39 plastic. ABS plastic in the form of an elongated hemisphere provides the beta and low energy x-ray shielding necessary to meet the requirement of depth dose measurements at 1 cm. The dosimeter has a beta window located in the side of the hemisphere oriented towards an object being held in the hands. A TLD 600 is positioned under the 1 cm thick ABS plastic and is used to measure the thermal neutron dose. At present we are using Velcro straps to hold the dosimeter on the inside of the wrist. 9 figures

  6. Neutron albedo effects of underground nuclear explosion

    International Nuclear Information System (INIS)

    Yang Bo; Ying Yangjun; Li Jinhong; Bai Yun

    2013-01-01

    The neutron field distribution is affected by the surrounding medium in the underground nuclear explosion. It will influence the radiation chemical diagnosis. By Monte Carlo simulation, the fuel burnup induced by device and neutron albedo was calculated. The analysis method of albedo effect on radiation chemical diagnosis result under special environment was proposed. Neutron albedo should be considered when capture reaction burnup fraction is used, and then correct analysis can be carried out on the nuclear device.The neutron field distribution is affected by the surrounding medium in the underground nuclear explosion. It will influence the radiation chemical diagnosis. By Monte Carlo simulation, the fuel burnup induced by device and neutron albedo was calculated. The analysis method of albedo effect on radiation chemical diagnosis result under special environment was proposed. Neutron albedo should be considered when capture reaction burnup fraction is used, and then correct analysis can be carried out on the nuclear device. (authors)

  7. Airborne Detection of Cosmic-Ray Albedo Neutrons for Regional-Scale Surveys of Root-Zone Soil Water on Earth

    Science.gov (United States)

    Schrön, M.; Bannehr, L.; Köhli, M.; Zreda, M. G.; Weimar, J.; Zacharias, S.; Oswald, S. E.; Bumberger, J.; Samaniego, L. E.; Schmidt, U.; Zieger, P.; Dietrich, P.

    2017-12-01

    While the detection of albedo neutrons from cosmic rays became a standard method in planetary space science, airborne neutron sensing has never been conceived for hydrological research on Earth. We assessed the applicability of atmospheric neutrons to sense root-zone soil moisture averaged over tens of hectares using neutron detectors on an airborne vehicle. Large-scale quantification of near-surface water content is an urgent challenge in hydrology. Information about soil and plant water is crucial to accurately assess the risks for floods and droughts, to adjust regional weather forecasts, and to calibrate and validate the corresponding models. However, there is a lack of data at scales relevant for these applications. Most conventional ground-based geophysical instruments provide root-zone soil moisture only within a few tens of m2, while electromagnetic signals from conventional remote-sensing instruments can only penetrate the first few centimeters below surface, though at larger spatial areas.In the last couple of years, stationary and roving neutron detectors have been used to sense the albedo component of cosmic-ray neutrons, which represents the average water content within 10—15 hectares and 10—50 cm depth. However, the application of these instruments is limited by inaccessible terrain and interfering local effects from roads. To overcome these limitations, we have pioneered first simulations and experiments of such sensors in the field of airborne geophysics. Theoretical investigations have shown that the footprint increases substantially with height above ground, while local effects smooth out throughout the whole area. Campaigns with neutron detectors mounted on a lightweight gyrocopter have been conducted over areas of various landuse types including agricultural fields, urban areas, forests, flood plains, and lakes. The neutron signal showed influence of soil moisture patterns in heights of up to 180 m above ground. We found correlation with

  8. Thermal neutron albedo measurements for multilithic reflectors

    International Nuclear Information System (INIS)

    Mehboob, Khurram; Ahmed, Raheel; Ali, Majid; Tabassam, Uzma

    2013-01-01

    Highlights: • Measurement of thermal neuron albedo for multilithic reflectors. • Modeling of experiments in MATLAB. • Comparison of numerical calculated and experimental values. • Study of thermal neutron albedo in different multilayered shielding. - Abstract: An experimental measurement of the thermal neutron (0.025 eV) albedo (αth) has been carried out for multilithic shielding by using Am–Be neutron source and BF 3 detector. The measured saturation value for the thermal albedo of paraffin wax has been found to be 0.734 ± 0.020, which is in close agreement to the corresponding value 0.83 quoted in the literature. The thermal neutron albedo has been measured for the multilayered shielding in copper–wood, copper–aluminum, wood–paraffin and paraffin–iron combinations in horizontal geometric configurations. Modeling and numerical simulation have been carried out by developing a MATLAB code which solves the diffusion equation in order to calculate the experimental results. Good agreement has been found between the numerical calculated and experimental results. The uncertainties in the measurements have also been calculated based on error propagation of the underlying Poisson distribution

  9. Intercomparison measurements with albedo neutron dosimeters

    International Nuclear Information System (INIS)

    Alberts, W.G.; Kluge, H.

    1994-01-01

    Since the introduction of the albedo dosimeter as the official personal neutron dosimeter the dosimetry services concerned have participated in intercomparison measurements at the PTB. Their albedo dosimeters were irradiated in reference fields produced by unmoderated and D 2 O-moderated 252 Cf neutron sources in the standard irradiation facility of the PTB. Six fields with fluences different in energy and angle distribution could be realised in order to determine the response of the albedo dosimeter. The dose equivalent values evaluated by the services were compared with the reference values of the PTB for the directional dose equivalent H'(10). The results turned out to be essentially dependent on the evaluation method and the choice of the calibration factors. (orig.) [de

  10. Albedo's determination by the method of neutron impulse

    International Nuclear Information System (INIS)

    Flores Calderon, J.E.

    1982-01-01

    Experiments with non-stationary neutron transport in large cavity moderators (l>>Σsub(tr) -1 ) (where l is the characteristic cavity length and Σsub(tr) -1 the macroscopic transport section of the moderator) led to the method reported in this study which, based on neutron impulses for determining albedo of thermal neutrons, gave a precision greater by an order of magnitude over previous methods. A sufficient time interval after introduction of the neutron flux into the moderator chamber decreased exponentially the decay constant L, which was itself related to albedo by a function called f. Numerical calculations of albedo were assisted. (author)

  11. Albedo neutron dosimetry in Germany: regulations and performance

    International Nuclear Information System (INIS)

    Luszik-Bhadra, M.; Zimbal, A.; Busch, F.; Jordan, M.; Eichelberger, A.; Engelhardt, J.; Martini, E.; Figel, M.; Haninger, T.; Frasch, G.; Guenther, K.; Seifert, R.; Rimpler, A.

    2014-01-01

    Personal neutron dosimetry has been performed in Germany using albedo dosemeters for >20 y. This paper describes the main principles, the national standards, regulations and recommendations, the quality management and the overall performance, giving some examples. (authors)

  12. Brazilian two-component TLD albedo neutron individual monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Martins, M.M., E-mail: marcelo@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD), Av. Salvador Allende, s/n, CEP: 22780-160, Rio de Janeiro, RJ (Brazil); Mauricio, C.L.P., E-mail: claudia@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD), Av. Salvador Allende, s/n, CEP: 22780-160, Rio de Janeiro, RJ (Brazil); Fonseca, E.S. da, E-mail: evaldo@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD), Av. Salvador Allende, s/n, CEP: 22780-160, Rio de Janeiro, RJ (Brazil); Silva, A.X. da, E-mail: ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao em Engenharia, COPPE/PEN Caixa Postal 68509, CEP: 21941-972, Rio de Janeiro, RJ (Brazil)

    2010-12-15

    Since 1983, Instituto de Radioprotecao e Dosimetria, Brazil, uses a TLD one-component albedo neutron monitor, which has a single different calibration factor specifically for each installation type. In order to improve its energy response, a two-component albedo monitor was developed, which measure the thermal neutron component besides the albedo one. The two-component monitor has been calibrated in reference neutron fields: thermal, five accelerator-produced monoenergetic beams (70, 144, 565, 1200 and 5000 keV) and five radionuclide sources ({sup 252}Cf, {sup 252}Cf(D{sub 2}O), {sup 241}Am-Be, {sup 241}Am-B and {sup 238}Pu-Be) at several distances. Since January 2008, mainly Brazilian workers who handle neutron sources at different distances and moderation, such as in well logging and calibration facilities are using it routinely.

  13. Calculation of neutron albedo from laminated semiinfinite media

    International Nuclear Information System (INIS)

    Dobrynin, Yu.L.; Mikaehlyan, L.A.; Skorokhvatov, M.D.

    1978-01-01

    A version of a laminated neutron detector with increased efficiency for recording external neutron fluxes by gamma-quanta from neutron capture is considered. The detector comprises two zones. The first zone constitutes an absorbent layer (europium oxide) 0.5 cm thick, and the second one is a moderator (water with gadolinium salt at the concentration of 0.8 g/l). Mono-energetic neutrons fall normally onto the detector surface. Neutron energy varied from 0.1 eV to MeV. The results of calculations of the integral numerical current albedo (INCA) of neutrons by the Monte Carlo method are presented. The INCA dependences on neutron energy are obtained for one moderator with different gadolinium contents; for the absorbent with the moderator containing and lacking the gadolinium. The resultant dependences are indicative of preferential capture of neutrons by the gadolinium in the moderator, this being more desirable for recording neutrons in the (n, γ) reaction

  14. Three-group albedo method applied to the diffusion phenomenon with up-scattering of neutrons

    International Nuclear Information System (INIS)

    Terra, Andre M. Barge Pontes Torres; Silva, Jorge A. Valle da; Cabral, Ronaldo G.

    2007-01-01

    The main objective of this research is to develop a three-group neutron Albedo algorithm considering the up-scattering of neutrons in order to analyse the diffusion phenomenon in nonmultiplying media. The neutron Albedo method is an analytical method that does not try to solve describing explicit equations for the neutron fluxes. Thus the neutron Albedo methodology is very different from the conventional methodology, as the neutron diffusion theory model. Graphite is analyzed as a model case. One major application is in the determination of the nonleakage probabilities with more understandable results in physical terms than conventional radiation transport method calculations. (author)

  15. Personal neutron monitoring using TLD albedo combined with etched tracks detector

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, N.; Momose, T. [Japan Nuclear Cycle Development Institute, Ibarakiken (Japan)

    2002-07-01

    The albedo dosimetry has been carried out in personal neutron monitoring in the MOX fuel plant of JNC Tokai Works, however, it has shortcomings mainly due to the inherently poor energy response. This paper describes our efforts to overcome these difficulties in practical use of albedo dosemeters. The following four subjects are presented: (1) the neutron energy response functions of albedo TLD obtained from the mono-energetic neutron irradiation experiments and the Monte-Carlo calculations, (2) the location- dependent correction factors calculated from the response functions and neutron energy spectra measured in the workplaces, (3) the results of the international personal neutron dosimetry intercomparison program, and (4) the operational comparison program of TLD albedo and etched tracks detector worn by workers engaged in the fabrication process of the MOX fuel plant. Finally, the characteristics of the combination neutron dosemeter using TLD albedo and solid state etched track detector are summarized.

  16. FLUKA Calculation of the Neutron Albedo Encountered at Low Earth Orbits

    CERN Document Server

    Claret, Arnaud; Combier, Natacha; Ferrari, Alfredo; Laurent, Philippe

    2014-01-01

    This paper presents Monte-Carlo simulations based on the Fluka code aiming to calculate the contribution of the neutron albedo at a given date and altitude above the Earth chosen by the user. The main input parameters of our model are the solar modulation affecting the spectra of cosmic rays, and the date of the Earth’s geomagnetic fi eld. The results consist in a two-parameter distribution, the neutron energy and the angle to the tangent plane of the sphere containing the orbi t of interest, and are provided by geographical position above the E arth at the chosen altitude. This model can be used to predict the te mporal variation of the neutron fl ux encountered along the orbit, and thus constrain the determination of the instrumental backg round noise of space experiments in low earth orbit.

  17. Observed diurnal variations in Mars Science Laboratory Dynamic Albedo of Neutrons passive mode data

    Science.gov (United States)

    Tate, C. G.; Moersch, J.; Jun, I.; Mitrofanov, I.; Litvak, M.; Boynton, W. V.; Drake, D.; Fedosov, F.; Golovin, D.; Hardgrove, C.; Harshman, K.; Kozyrev, A. S.; Kuzmin, R.; Lisov, D.; Maclennan, E.; Malakhov, A.; Mischna, M.; Mokrousov, M.; Nikiforov, S.; Sanin, A. B.; Starr, R.; Vostrukhin, A.

    2018-06-01

    The Mars Science Laboratory Dynamic Albedo of Neutrons (DAN) experiment measures the martian neutron leakage flux in order to estimate the amount of water equivalent hydrogen present in the shallow regolith. When DAN is operating in passive mode, it is sensitive to neutrons produced through the interactions of galactic cosmic rays (GCR) with the regolith and atmosphere and neutrons produced by the rover's Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). During the mission, DAN passive mode data were collected over the full diurnal cycle at the locations known as Rocknest (sols 60-100) and John Klein (sols 166-272). A weak, but unexpected, diurnal variation was observed in the neutron count rates reported at these locations. We investigate different hypotheses that could be causing these observed variations. These hypotheses are variations in subsurface temperature, atmospheric pressure, the exchange of water vapor between the atmosphere and regolith, and instrumental effects on the neutron count rates. Our investigation suggests the most likely factors contributing to the observed diurnal variations in DAN passive data are instrumental effects and time-variable preferential shielding of alpha particles, with other environmental effects only having small contributions.

  18. Albedo Neutron Dosimetry in a Deep Geological Disposal Repository for High-Level Nuclear Waste.

    Science.gov (United States)

    Pang, Bo; Becker, Frank

    2017-04-28

    Albedo neutron dosemeter is the German official personal neutron dosemeter in mixed radiation fields where neutrons contribute to personal dose. In deep geological repositories for high-level nuclear waste, where neutrons can dominate the radiation field, it is of interest to investigate the performance of albedo neutron dosemeter in such facilities. In this study, the deep geological repository is represented by a shielding cask loaded with spent nuclear fuel placed inside a rock salt emplacement drift. Due to the backscattering of neutrons in the drift, issues concerning calibration of the dosemeter arise. Field-specific calibration of the albedo neutron dosemeter was hence performed with Monte Carlo simulations. In order to assess the applicability of the albedo neutron dosemeter in a deep geological repository over a long time scale, spent nuclear fuel with different ages of 50, 100 and 500 years were investigated. It was found out, that the neutron radiation field in a deep geological repository can be assigned to the application area 'N1' of the albedo neutron dosemeter, which is typical in reactors and accelerators with heavy shielding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Field calibration of a TLD albedo dosemeter in the high-energy neutron field of CERF

    International Nuclear Information System (INIS)

    Haninger, T.; Kleinau, P.; Haninger, S.

    2017-01-01

    The new albedo dosemeter-type AWST-TL-GD 04 has been calibrated in the CERF neutron field (CERN-EU high-energy Reference Field). This type of albedo dosemeter is based on thermoluminescent detectors (TLDs) and used by the individual monitoring service of the Helmholtz Zentrum Muenchen (AWST) since 2015 for monitoring persons, who are exposed occupationally against photon and neutron radiation. The motivation for this experiment was to gain a field specific neutron correction factor N n for workplaces at high-energy particle accelerators. N n is a dimensionless factor relative to a basic detector calibration with 137 Cs and is used to calculate the personal neutron dose in terms of H p (10) from the neutron albedo signal. The results show that the sensitivity of the albedo dosemeter for this specific neutron field is not significantly lower as for fast neutrons of a radionuclide source like 252 Cf. The neutron correction factor varies between 0.73 and 1.16 with a midrange value of 0.94. The albedo dosemeter is therefore appropriate to monitor persons, which are exposed at high-energy particle accelerators. (authors)

  20. Albedo-adjusted fast-neutron diffusion coefficients in reactor reflectors

    International Nuclear Information System (INIS)

    Terney, W.B.

    1975-01-01

    In the newer, larger pressurized-water reactor cores, the calculated power distributions are fairly sensitive to the number of neutron groups used and to the treatment of the reflector cross sections. Comparisons between transport and diffusion calculations show that the latter substantially underpredict the reflector albedos in the fast (top) group and that the power distribution is shifted toward the core center when compared to 4-group transport theory results. When the fast-neutron diffusion coefficients are altered to make the transport- and diffusion-theory albedos agree, the power distributions are also brought into agreement. An expression for the fast-neutron diffusion coefficients in reflector regions has been derived such that the diffusion calculation reproduces the albedo obtained from a transport solution. In addition, a correction factor for mesh effects applicable to coarse mesh problems is presented. The use of the formalism gives the correct albedos and improved power distributions. (U.S.)

  1. Calculation of double energy angle differential neutron albedos for radiation shielding applications

    International Nuclear Information System (INIS)

    Litaize, O.; Diop, C.M.; Nimal, J.C.

    2000-01-01

    Void radiation shielding problems can be dealt with albedo concept which is an alternative to the complex bringing into operation of the 'exact' transport method calculations (SN, Monte Carlo). Up to here, differential albedos are used for single reflections from walls in the NARCISSE-3 propagation albedo code developed at CEA and used for project calculations. For taking into account the neutron multiple reflections on lacunar medium walls, double energy-angle differential albedos are needed. TRIPOLI-4 neutral particle transport Monte Carlo code in three dimensional geometries, has been chosen to implement a double differential albedo calculus routine and therefore to generate albedo data for different kinds of medium. The surfacic estimator, which could be used, is not enough efficient because all neutrons do not contribute to the result. A new estimator is carried out. At each collision site, during the neutron history simulation, it allows to compute the probability of the neutron to go through the medium and to come through the reflection surface in the direction and at the energy considered. This estimator is about hundred times more efficient than the surfacic estimator. (author)

  2. Analysis of coupled neutron-gamma radiations, applied to shieldings in multigroup albedo method

    International Nuclear Information System (INIS)

    Dunley, Leonardo Souza

    2002-01-01

    The principal mathematical tools frequently available for calculations in Nuclear Engineering, including coupled neutron-gamma radiations shielding problems, involve the full Transport Theory or the Monte Carlo techniques. The Multigroup Albedo Method applied to shieldings is characterized by following the radiations through distinct layers of materials, allowing the determination of the neutron and gamma fractions reflected from, transmitted through and absorbed in the irradiated media when a neutronic stream hits the first layer of material, independently of flux calculations. Then, the method is a complementary tool of great didactic value due to its clarity and simplicity in solving neutron and/or gamma shielding problems. The outstanding results achieved in previous works motivated the elaboration and the development of this study that is presented in this dissertation. The radiation balance resulting from the incidence of a neutronic stream into a shielding composed by 'm' non-multiplying slab layers for neutrons was determined by the Albedo method, considering 'n' energy groups for neutrons and 'g' energy groups for gammas. It was taken into account there is no upscattering of neutrons and gammas. However, it was considered that neutrons from any energy groups are able to produce gammas of all energy groups. The ANISN code, for an angular quadrature order S 2 , was used as a standard for comparison of the results obtained by the Albedo method. So, it was necessary to choose an identical system configuration, both for ANISN and Albedo methods. This configuration was six neutron energy groups and eight gamma energy groups, using three slab layers (iron aluminum - manganese). The excellent results expressed in comparative tables show great agreement between the values determined by the deterministic code adopted as standard and, the values determined by the computational program created using the Albedo method and the algorithm developed for coupled neutron

  3. Criticality analysis of thermal reactors for two energy groups applying Monte Carlo and neutron Albedo method

    International Nuclear Information System (INIS)

    Terra, Andre Miguel Barge Pontes Torres

    2005-01-01

    The Albedo method applied to criticality calculations to nuclear reactors is characterized by following the neutron currents, allowing to make detailed analyses of the physics phenomena about interactions of the neutrons with the core-reflector set, by the determination of the probabilities of reflection, absorption, and transmission. Then, allowing to make detailed appreciations of the variation of the effective neutron multiplication factor, keff. In the present work, motivated for excellent results presented in dissertations applied to thermal reactors and shieldings, was described the methodology to Albedo method for the analysis criticality of thermal reactors by using two energy groups admitting variable core coefficients to each re-entrant current. By using the Monte Carlo KENO IV code was analyzed relation between the total fraction of neutrons absorbed in the core reactor and the fraction of neutrons that never have stayed into the reflector but were absorbed into the core. As parameters of comparison and analysis of the results obtained by the Albedo method were used one dimensional deterministic code ANISN (ANIsotropic SN transport code) and Diffusion method. The keff results determined by the Albedo method, to the type of analyzed reactor, showed excellent agreement. Thus were obtained relative errors of keff values smaller than 0,78% between the Albedo method and code ANISN. In relation to the Diffusion method were obtained errors smaller than 0,35%, showing the effectiveness of the Albedo method applied to criticality analysis. The easiness of application, simplicity and clarity of the Albedo method constitute a valuable instrument to neutronic calculations applied to nonmultiplying and multiplying media. (author)

  4. Direct detection of albedo neutron decay electrons at the inner edge of the radiation belt and experimental determination of neutron density in near-Earth space

    Science.gov (United States)

    Li, X.; Selesnick, R.; Schiller, Q. A.; Zhang, K.; Zhao, H.; Baker, D. N.; Temerin, M. A.

    2017-12-01

    The galaxy is filled with cosmic ray particles, mostly protons with kinetic energy above hundreds of mega-electron volts (MeV). Soon after the discovery of Earth's Van Allen radiation belts almost six decades ago, it was recognized that the main source of inner belt protons, with kinetic energies of tens to hundreds of MeV, is Cosmic Ray Albedo Neutron Decay (CRAND). In this process, cosmic rays reaching the upper atmosphere from throughout the galaxy interact with neutral atoms to produce albedo neutrons which, being unstable to 𝛽 decay, are a potential source of geomagnetically trapped protons and electrons. Protons retain most of the neutrons' kinetic energy while the electrons have lower energies, mostly below 1 MeV. The viability of the electron source was, however, uncertain because measurements showed that electron intensity can vary greatly while the neutron decay rate should be almost constant. Recent measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) onboard the Colorado Student Space Weather Experiment (CSSWE) CubeSat now show that CRAND is the main electron source for the radiation belt near its inner edge, and also contributes to the inner belt elsewhere. Furthermore, measurement of the CRAND electron intensity provides the first experimental determination of the neutron density in near-Earth space, 2x10-9/cm3, confirming earlier theoretical estimates.

  5. Measurement of the North-South asymmetry in the solar proton albedo neutron flux

    International Nuclear Information System (INIS)

    Ifedili, S.O.

    1979-01-01

    The solar proton albedo neutron flux in the range 10 -2 --10 7 eV measured by a neutron detector on board the Ogo 6 satellite was examined for north-south asymmetry. For the solar proton event of December 19, 1969, the S/N ratio of the solar proton albedo neutron rate at geomagnetic latitude lambda>70 0 was 1.61 +- 0.27 during the event, while for the November 2, 1969, event at 40 0 0 and altitudes ranging from 700 km to 800 km the solar proton albedo neutron rate was 0.40 +- 0.10 count/s in the north and 0.00 +- 0.10 count/s in the south. During the solar proton event of December 18, 1969, the N/S ratio of the solar proton albedo neutron rate at lambda>70 0 was 1.00 +- 0.26. The results are consistent with the expected N-S asymmetry in the solar proton flux. An interplanetary proton anisotropy with the interplanetary magnetic field polarity away from the sun corresponded to larger fluxes of solar proton albedo neutrons at the north polar cap than at the south, while an interplanetary proton anisotropy with the interplanetary magnetic field polarity toward the sun corresponded to larger fluxes of solar proton albedo neutrons at the south polar cap than at the north. This evidence favors the direct access of solar protons to the earth's polar caps via the merged interplanetary and geomagnetic field lines

  6. Design characteristics of a three-component AEOI Neutriran Albedo Neutron Personnel Dosimeter

    International Nuclear Information System (INIS)

    Sohrabi, M.; Katouzi, M.

    1991-01-01

    In establishing a national personnel neutron dosimetry service in Iran, different parameters of the AEOI Neutriran Albedo Neutron Personnel Dosimeter (NANPD) have been optimized. A NANPD was designed with three dosimetry components to measure (a) direct thermal neutrons, (b) direct fast neutrons and (C) direct neutrons by the detection of the albedo neutrons reflected from the body. The dosimeter consists of one or more Lexan polycarbonate and/or CR-39 foils and two 10 B (n,α) 7 Li converters in a cadmium cover so arranged as to efficiently measure the three neutron dose components separately. The boron converter thickness, its position relative to the beam direction and its distance from the PC foil were studied and the results were incorporated into the design. The dose response of the dosimeter, its lower detection limit as well as the correction factors related to the field neutrons and albedo neutrons were also determined for a 238 Pu-Be, an 241 Am-Be and a 252 Cf sources. In this paper, the dosimeter design and its dosimetric characteristics are presented and discussed. (author)

  7. ZZ CAD, 51 Neutron-Group, 25 Gamma-Group Albedo Data for 4 Materials from DOT Flux

    International Nuclear Information System (INIS)

    1992-01-01

    A - Description of problem or function: Format: BREESE tape-writing program, MORSE; Number of groups: 51 neutron, 25 gamma-ray group albedo data. Nuclides: 1) 12 inches of water. 2) 12 inches of ordinary concrete. 3) 9 inches of carbon steel (SA508). 4) 1/2 inches of steel over 12 inches of concrete. (O, Ca, Al, C, Si, H, K, Mg, Fe, Na, Mn); Origin: DOT angular flux tape. CAD is a set of 51 neutron, 25 gamma-ray group albedo data for the following four materials: 1) 12 inches of water. 2) 12 inches of ordinary concrete. 3) 9 inches of carbon steel (SA508). 4) 1/2 inches of steel over 12 inches of concrete. The differential angular albedos are a function of the five incident polar directions and 30 reflected directions. B - Method of solution: The data has been generated from a DOT angular flux tape using the code CARP (abstract PSR-0131). C - Restrictions on the complexity of the problem: Since the amount of data is so large, it is necessary to run CARP, using the group reduction option, in order to run a problem on most computers

  8. DUST, Albedo Monte-Carlo Simulation of Neutron Streaming in Multi-legged Square Concrete Ducts

    International Nuclear Information System (INIS)

    1993-01-01

    1 - Description of program or function: DUST simulates the thermal neutron streaming through multi-legged square concrete ducts. 2 - Method of solution: DUST uses the albedo Monte Carlo method. The albedo data used are in the form of empirical formulae based on the measured doubly differential albedo data. Sampling of the reflected polar and azimuthal angles is done by the rejection method. Variance reduction devices such as Russian Roulette are used. 3 - Restrictions on the complexity of the problem: - The albedo data and the subroutines for sampling the reflected polar and azimuthal angles are specific for concrete ducts. The maximum number of legs (as specified by dimension statements) is 5 and the maximum number of dose points is 50. The dose points considered are only in the last leg of the multi-legged duct

  9. The role of phantom parameters on the response of the AEOI Neutriran Albedo Neutron Personnel Dosemeter

    International Nuclear Information System (INIS)

    Sohrabi, M.; Katouzi, M.

    1992-01-01

    The response of the AEOI Neutriran Albedo Neutron Personnel Dosemeter (NANPD) which can also be used for other albedo dosemeter types was determined on 18 different phantom configurations. The effects of type, geometry, material, thickness, dosemeter-to-phantom angle in particular with the presence of legs were investigated using a Pu-Be neutron source. It was concluded that the slab phantoms (single or double) and circular and elliptical cylinder phantoms seemed to provide a better response, whereas the ICRU sphere geometry does not seem to be appropriate for the calibration of albedo dosemeters. It is interesting to note that the presence of legs maintains the constancy of the response in a situation when a radiation worker bends down during work. (author)

  10. Response of combined albedo-track neutron personnel dosimeters behind IHEP proton synchrotron shielding

    International Nuclear Information System (INIS)

    Sannikov, A.V.; Korshunova, E.P.

    1989-01-01

    The method of readings interpretation of combined albedo-track neutron personnel dosemeters based on calculationsl analysis of the detector responses in various neutron spectra is described. The measurements of dose equivalent responses have been performed in various points behind IHEP proton synchrotron shielding. It is shown that CDs with fission track detectors have a small dose equivalent response dispersion behind IHEP proton synchrotron shielding, that shows the promise of their using for neutron personnel monitoring, that shows the promise of their using for neutron personnel monitoring at high energy accelerators. 16 refs.; 7 figs.; 3 tabs

  11. A neutron Albedo system with time rejection for landmine and IED detection

    Science.gov (United States)

    Kovaltchouk, V. D.; Andrews, H. R.; Clifford, E. T. H.; Faust, A. A.; Ing, H.; McFee, J. E.

    2011-10-01

    A neutron Albedo system has been developed for imaging of buried landmines and improvised explosive devices (IEDs). It involves irradiating the ground with fast neutrons and subsequently detecting the thermalized neutrons that return. A scintillating 6Li loaded ZnS(Ag) screen with a sensitive area of 40 cm×40 cm is used as a thermal neutron detector. Scintillation light is captured by orthogonal arrays of wavelength-shifting fibers placed on either side of the scintillator surface and then transferred to X and Y multi-pixel PMTs. A timing circuit, used with pulsed neutron sources, records the time when a neutron detection takes place relative to an external synchronization pulse from the pulsed source. Experimental tests of the Albedo system performance have been done in a sand box with a 252Cf neutron source (no time gating) and with pulsed D-D (2.6 MeV) neutrons from the Defense R&D Ottawa Van de Graaff accelerator (with time gating). Information contained in the time evolution of the thermal neutron field provided improved detection capability and image reconstruction. The detector design is described and experimental results are discussed.

  12. Albedo analytical method for multi-scattered neutron flux calculation in cavity

    International Nuclear Information System (INIS)

    Shin, Kazuo; Selvi, S.; Hyodo, Tomonori

    1986-01-01

    A simple formula which describes multi-scattered neutron flux in a spherical cavity was derived based on the albedo concept. The formura treats a neutron source which has an arbitrary energy-angle distribution and is placed at any point in the cavity. The derived formula was applied to the estimation of neutron fluxes in two cavities, i.e. a spherical concrete cell with a 14-MeV neutron source at the center and the ''YAYOI'' reactor cavity with a pencil beam of reactor neutrons. The results of the analytical formula agreed very well with the reference data in the both problems. It was concluded that the formula is applicable to estimate the neutron fluxes in a spherical cell except for special cases that tangential source neutrons are incident to the cavity wall. (author)

  13. Test of an albedo neutron dosimetry system: TLD calibration and readout procedure, neutron calibration, dosimetry properties, routine application

    International Nuclear Information System (INIS)

    Piesch, E.; Burgkhardt, B.

    1988-03-01

    The two-component albedo dosemeter in use consists of an universal boron-loaded plastic encapsulation, the beta and albedo neutron windows of which are adopted to the corresponding TLD system of the manufacturers Alnor, Harshaw, Panasonic and Vinten. Beside the TLD detectors the capsule may contain also track etch detectors. Within a BMU project the system was investigated by four governmental measurement services in the FRG with respect to its qualification for personnel monitoring with emphasis in the readout and calibration procedures for the TLD system, the evaluation technique for the estimation of the photon and neutron dose equivalent in routine monitoring and the calibration of the personnel dosemeter in stray neutron fields. The test has shown the readiness of the system to act in the application areas of nuclear power reactors and linacs behind heavy shieldings, in the fuel element cycle, use of fissile materials, criticality, use of radionuclide sources, high energy particle accelerators. The uncertainty due to energy dependence was found to be within a factor of 2 for a single application area. In the case of irradiations from the front half space the dose equivalent H'(10) is indicated sufficiently independent of the direction of the radiation incidence. After completion of the test the albedo dosemeter became the official neutron personnel dosemeter in the FRG. It allows the separate estimation of the dose equivalent of hard beta radiation, photon radiation and neutrons. (orig./HP) [de

  14. Ground Albedo Neutron Sensing (GANS) for Measurement of Integral Soil Water Content at the Small Catchment Scale

    Science.gov (United States)

    Rivera Villarreyes, C.; Baroni, G.; Oswald, S. E.

    2012-12-01

    Soil water content at the plot or hill-slope scale is an important link between local vadose zone hydrology and catchment hydrology. One largest initiative to cover the measuring gap of soil moisture between point scale and remote sensing observations is the COSMOS network (Zreda et al., 2012). Here, cosmic-ray neutron sensing, which may be more precisely named ground albedo neutron sensing (GANS), is applied. The measuring principle is based on the crucial role of hydrogen as neutron moderator compared to others landscape materials. Soil water content contained in a footprint of ca. 600 m diameter and a depth ranging down to a few decimeters is inversely correlated to the neutron flux at the air-ground interface. This approach is now implemented, e.g. in USA (Zreda et al., 2012) and Germany (Rivera Villarreyes et al., 2011), based on its simple installation and integral measurement of soil moisture at the small catchment scale. The present study performed Ground Albedo Neutron Sensing on farmland at two locations in Germany under different vegetative situations (cropped and bare field) and different seasonal conditions (summer, autumn and winter). Ground albedo neutrons were measured at (i) a farmland close to Potsdam and Berlin cropped with corn in 2010, sunflower in 2011 and winter rye in 2012, and (ii) a mountainous farmland catchment (Schaefertal, Harz Mountains) since middle 2011. In order to test this methodology, classical soil moisture devices and meteorological data were used for comparison. Moreover, several calibration approaches, role of vegetation cover and transferability of calibration parameters to different times and locations were also evaluated. Observations suggest that GANS can overcome the lack of data for hydrological processes at the intermediate scale. Soil moisture from GANS compared quantitatively with mean values derived from a network of classical devices under vegetated and non- vegetated conditions. The GANS approach responded well

  15. Cosmic ray induced charged particle albedos in the upper atmosphere

    International Nuclear Information System (INIS)

    Bhatnagar, S.P.; Verma, S.D.

    1982-01-01

    There are several observations made in balloon and satellite experiments of relativistic albedo electrons in 50 to 10,000 MeV energy region. The spectrum of these electrons is a power law with negative exponent. At lower energies, 1 to 50 MeV region theoretical evaluations indicate that their energy spectrum will have a similar shape, thus the flux at low energies will be much higher. The only spectrum measurements available below 20 MeV were taken at Ft. Churchill by Hovestadt and Meyer (1969). The flux and energy spectrum of the Re-entrant albedos electrons have been calculated in the energy range 3-50 MeV for Ft. Churchill, Canada, Palestein, Texas and Hyderabad, India, and are presented. The angular distribution of re-entrant electrons in the upper atmosphere is not yet observed, however Kurnosova et. al. (1979) have measured the Vertical and Horizontal integral flux at Hyderabad, India

  16. Effects of geochemical composition on neutron die-away measurements: Implications for Mars Science Laboratory's Dynamic Albedo of Neutrons experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hardgrove, C., E-mail: craig.hardgrove@stonybrook.edu [Department of Earth and Planetary Science, University of Tennessee, Knoxville, TN (United States); Moersch, J.; Drake, D. [Techsource, Santa Fe, NM (United States)

    2011-12-11

    The Dynamic Albedo of Neutrons (DAN) experiment, part of the scientific payload of the Mars Science Laboratory (MSL) rover mission, will have the ability to assess both the abundance and the burial depth of subsurface hydrogen as the rover traverses the Martian surface. DAN will employ a method of measuring neutron fluxes called 'neutron die-away' that has not been used in previous planetary exploration missions. This method requires the use of a pulsed neutron generator that supplements neutrons produced via spallation in the subsurface by the cosmic ray background. It is well established in neutron remote sensing that low-energy (thermal) neutrons are sensitive not only to hydrogen content, but also to the macroscopic absorption cross-section of near-surface materials. To better understand the results that will be forthcoming from DAN, we model the effects of varying abundances of high absorption cross-section elements that are likely to be found on the Martian surface (Cl, Fe) on neutron die-away measurements made from a rover platform. Previously, the Mars Exploration Rovers (MER) Spirit and Opportunity found that elevated abundances of these two elements are commonly associated with locales that have experienced some form of aqueous activity in the past, even though hydrogen-rich materials are not necessarily still present. By modeling a suite of H and Cl compositions, we demonstrate that (for abundance ranges reasonable for Mars) both the elements will significantly affect DAN thermal neutron count rates. Additionally, we show that the timing of thermal neutron arrivals at the detector can be used together with the thermal neutron count rates to independently determine the abundances of hydrogen and high neutron absorption cross-section elements (the most important being Cl). Epithermal neutron die-away curves may also be used to separate these two components. We model neutron scattering in actual Martian compositions that were determined by the MER

  17. Investigation of the response characteristics of OSL albedo neutron dosimeters in a 241AmBe reference neutron field

    Science.gov (United States)

    Liamsuwan, T.; Wonglee, S.; Channuie, J.; Esoa, J.; Monthonwattana, S.

    2017-06-01

    The objective of this work was to systematically investigate the response characteristics of optically stimulated luminescence Albedo neutron (OSLN) dosimeters to ensure reliable personal dosimetry service provided by Thailand Institute of Nuclear Technology (TINT). Several batches of InLight® OSLN dosimeters were irradiated in a reference neutron field generated by the in-house 241AmBe neutron irradiator. The OSL signals were typically measured 24 hours after irradiation using the InLight® Auto 200 Reader. Based on known values of delivered neutron dose equivalent, the reading correction factor to be used by the reader was evaluated. Subsequently, batch homogeneity, dose linearity, lower limit of detection and fading of the OSLN dosimeters were examined. Batch homogeneity was evaluated to be 0.12 ± 0.05. The neutron dose response exhibited a linear relationship (R2=0.9974) within the detectable neutron dose equivalent range under test (0.4-3 mSv). For this neutron field, the lower limit of detection was between 0.2 and 0.4 mSv. Over different post-irradiation storage times of up to 180 days, the readings fluctuated within ±5%. Personal dosimetry based on the investigated OSLN dosimeter is considered to be reliable under similar neutron exposure conditions, i.e. similar neutron energy spectra and dose equivalent values.

  18. Angular dependence of dose equivalent response of an albedo neutron dosimeter

    International Nuclear Information System (INIS)

    Torres, B.A.; Boswell, E.; Schwartz, R.B.

    1994-01-01

    The ANSI provides procedures for testing the performance of dosimetry services. Although neutron dose equivalent angular response studies are not now mandated, future standards may well require that such studies be performed. Current studies with an albedo dosimeter will yield information regarding the angular dependence of dose equivalent response for this type of personnel dosimeter. Preliminary data for bare 252 Cf fluences show a marked decrease in dosimeter reading with increasing angle. The response decreased by an approximate factor of four. For the horizontal orientation, the same response was noted from both positive and negative angles. However, for the vertical orientation, the response was unexplainably assymetric. We are also examining the response of the personnel badge in moderated 252 Cf fluences. Responses from the moderated and unmoderated 252 Cf fields and theoretical calculations of the neutron angular response will be compared. This information will assist in building a data base for future comparisons of neutron angular responses with other neutron albedo dosimeters and phantoms

  19. The effect of albedo neutrons on the neutron multiplication of small plutonium oxide samples in a PNCC chamber

    CERN Document Server

    Bourva, L C A; Weaver, D R

    2002-01-01

    This paper describes how to evaluate the effect of neutrons reflected from parts of a passive neutron coincidence chamber on the neutron leakage self-multiplication, M sub L , of a fissile sample. It is shown that albedo neutrons contribute, in the case of small plutonium bearing samples, to a significant part of M sub L , and that their effect has to be taken into account in the relationship between the measured coincidence count rates and the sup 2 sup 4 sup 0 Pu effective mass of the sample. A simple one-interaction model has been used to write the balance of neutron gains and losses in the material when exposed to the re-entrant neutron flux. The energy and intensity profiles of the re-entrant flux have been parameterised using Monte Carlo MCNP sup T sup M calculations. This technique has been implemented for the On Site Laboratory neutron/gamma counter within the existing MEPL 1.0 code for the determination of the neutron leakage self-multiplication. Benchmark tests of the resulting MEPL 2.0 code with MC...

  20. Contribution to the determination of the double angular and energy differential neutron albedo. Application to the propagation in lacunar medium

    International Nuclear Information System (INIS)

    Litaize, O.

    2000-01-01

    The goal of this thesis is to study the neutron propagation by reflection from lacunar medium interfaces. The most efficient method to calculate this type of propagation is to use the concept of albedo. Actual version of NARCISSE code uses a simple formulation of angular differential albedos and so, can only treat single reflections. Multiple reflections treatment needs the knowledge of neutron spectrum after reflection. This energetic information is contained in double angular and energy differential albedos. The first step of this study consists to generate these albedos for various materials. Several methods have been tested and the Monte Carlo method was retained. A new estimator has been developed and validated in the Mote Carlo transport code TRIPOLI-4. It computes, during the simulation of the neutron history, the angular and energy reflection probability at each collision site. The second step consists to generate an interpolation scheme and albedo libraries for various materials. A new version of NARCISSE was developed to use these libraries and the interpolation module. Spectrum and dose rates comparisons were made between codes to validate these albedos. The neutron propagation by multiple reflections can be studied now, by using this new version of Narcisse. (author)

  1. Comparison of neutron dose measured by Albedo TLD and etched tracks detector at PNC plutonium fuel facilities

    International Nuclear Information System (INIS)

    Tsujimura, N.; Momose, T.; Shinohara, K.; Ishiguro, H.

    1996-01-01

    Power Reactor and Nuclear Fuel Development Corporation (PNC) has fabricated Plutonium and Uranium Mixed OXide (MOX) fuel for FBR MONJU at Tokai works. In this site, PNC/Panasonic albedo TLDs/1/ are used for personnel neutron monitoring. And a part of workers wore Etched Tracks Detector (ETD) combined with TLD in order to check the accuracy of the neutron dose estimated by albedo TLD. In this paper, the neutron dose measured by TLD and ETD in the routine monitoring is compared at PNC plutonium fuel facilities. (author)

  2. Calibration of neutrons monitors with moderators and application in the calibration factors of albedo dosemeters

    International Nuclear Information System (INIS)

    Schuch, L.A.

    1978-11-01

    The calibration factors and the reproducibility of an Albedo Dosimeter designed for personal neutron monitoring were determined. These factor were obtained simulating the dosimeter reading and the equivalent dose in the locality by a convenient combination of responses of the Bonner Sphere Spectrometer. The results obtained in the simulation were verified experimentally for different spectra employing the Am-Be, bare 252 Cf source and 253 Cf source with graphite sields of varying thickness. Different standards were used in the procedures necessary for the determination of the calibration factors. An Am-Be neutron source, standardized by the activation of a manganese sulphate bath was used as a primary standard. As a secondary standard, for the measurement of the neutron fluence, a De Pangher Long Counter was used and the scattering effects were determined using the shadow cone method. The other monitors such as the Rem-Counter and the Bonner Sphere Spectrometer were also calibrated with reference to the secondary standard with a view to comparing the results obtained with those furnished by the Albedo Dosimeter. (Author) [pt

  3. A MATHEMATICAL APPROACH TO ECONOMY OF EXPERIMENT IN DETERMINATIONS OF THE DIFFERENTIAL DOSE ALBEDO OF GAMMA RAYS

    Energy Technology Data Exchange (ETDEWEB)

    Shoemaker, N. F.; Huddleston, C. M.

    1962-12-10

    Treatments of the differential dose albedo of gamma rays on concrete have supposed that the albedo value is a function of: the energy of the incident gamma radiation, the polar angle of incidence, the polar angle of reflection (or scatter), and the azimuthal angle of reflection. It is demonstrated that, if certain reasonable assumptions are made regarding the mechanism of reflection, it is not necessary to investigate variations in albedo with azimuthal angle of refiection. Once differential dose albedo has been determined for a complete set of incident and reflected polar angles with zero azimuth, albedo at any azimuth can be derived by a suitable transformation. (auth)

  4. Application of the Laplace transform method for the albedo boundary conditions in multigroup neutron diffusion eigenvalue problems in slab geometry

    International Nuclear Information System (INIS)

    Petersen, Claudio Zen; Vilhena, Marco T.; Barros, Ricardo C.

    2009-01-01

    In this paper the application of the Laplace transform method is described in order to determine the energy-dependent albedo matrix that is used in the boundary conditions multigroup neutron diffusion eigenvalue problems in slab geometry for nuclear reactor global calculations. In slab geometry, the diffusion albedo substitutes without approximation the baffle-reflector system around the active domain. Numerical results to typical test problems are shown to illustrate the accuracy and the efficiency of the Chebysheff acceleration scheme. (orig.)

  5. Development and characterization of two-component albedo based neutron individual monitoring system using thermoluminescent detectors

    International Nuclear Information System (INIS)

    Martins, Marcelo Marques

    2008-01-01

    A TLD-albedo based two-component neutron individual monitoring system was developed and characterized in this work. The monitor consists of a black plastic holder, an incident neutron boron loaded shield, a moderator polyethylene body (to increase its response), two pairs of TLD-600 and TLD-700 (one pair to each component) and an adjustable belt. This monitoring system was calibrated in thermal neutron fields and in 70 keV, 144 keV, 565 keV, 1.2 MeV and 5 MeV monoenergetic neutron fields. In addition, it was calibrated in 252C f(D 2 O), 252 Cf, 241 Am-B, 241 Am-Be and 238 Pu-Be source fields. For the latter, the lower detection levels are, respectively, 0.009 mSv, 0.06 mSv, 0.12 mSv, 0.09 mSv and 0.08 mSv. The participation in an international intercomparison sponsored by IAEA with simulated workplace fields validated the system. The monitoring system was successfully characterized in the ISO 21909 standard and in an IRD - the Brazilian Institute for Radioprotection and Dosimetry - technical regulation draft. Nowadays, the neutron individual system is in use by IRD for whole body individual monitoring of five institutions, which comprehend several activities. (author)

  6. Albedo of X-ray through the region of rarefaction wave

    International Nuclear Information System (INIS)

    Zhang Jun

    2001-01-01

    In the process of implosion indirectly driven by laser, the high temperature and low density plasma produced by X-ray ablation is in the state of non-local thermodynamic equilibrium. And the propagation of X-ray needs to be treated by transportation method. X-ray energy flow reflected by plasma depends on the density, temperature of radiation and electrons, and their space profiles if the plasma produced by ablation is fully ionized. In addition, the plasma parameters in the region of rarefaction wave is determined by means of a simplified model. The approach to compute X-ray albedo is presented and the analytical formulae of the albedo are given

  7. Study for correction of neutron scattering in the calibration of the albedo individual monitor from the Neutron Laboratory (LN), IRD/CNEN-RJ, Brazil

    International Nuclear Information System (INIS)

    Freitas, B.M.; Silva, A.X. da

    2014-01-01

    The Instituto de Radioprotecao e Dosimetria (IRD) runs a neutron individual monitoring service with albedo type monitor and thermoluminescent detectors (TLD). Moreover the largest number of workers exposed to neutrons in Brazil is exposed to 241 Am-Be fields. Therefore a study of the response of albedo dosemeter due to neutron scattering from 241 Am-Be source is important for a proper calibration. In this work, it has been evaluated the influence of the scattering correction in two distances at the Low Scattering Laboratory of the Neutron Laboratory of the Brazilian National Laboratory (Lab. Nacional de Metrologia Brasileira de Radiacoes Ionizantes) in the calibration of that albedo dosemeter for a 241 Am-Be source. (author)

  8. Results from the dynamic albedo of neutrons (DAN) passive mode experiment: Yellowknife Bay to Amargosa Valley (Sols 201-753)

    Science.gov (United States)

    Tate, C. G.; Moersch, J.; Mitrofanov, I.; Litvak, M.; Bellutta, P.; Boynton, W. V.; Drake, D.; Ehresmann, B.; Fedosov, F.; Golovin, D.; Hardgrove, C.; Harshman, K.; Hassler, D. M.; Jun, I.; Kozyrev, A. S.; Lisov, D.; Malakhov, A.; Ming, D. W.; Mischna, M.; Mokrousov, M.; Nikiforov, S.; Sanin, A. B.; Starr, R.; Vostrukhin, A.; Zeitlin, C.

    2018-01-01

    The Mars Science Laboratory (Curiosity rover) Dynamic Albedo of Neutrons (DAN) experiment detects neutrons for the purpose of searching for hydrogen in the shallow subsurface of Mars. DAN has two modes of operation, active and passive. In passive mode, the instrument detects neutrons produced by Galactic Cosmic Ray interactions in the atmosphere and regolith and by the rover's Multi-Mission Radioisotope Thermoelectric Generator. DAN passive data from Yellowknife Bay to Amargosa Valley (sols 201 through 753) are presented and analyzed here. Water equivalent hydrogen (WEH) estimates from this portion of Curiosity's traverse range from 0.0 wt. % up to 15.3 wt. %. Typical uncertainties on these WEH estimates are ∼0.5 wt. % but in some cases can be as high as ∼4.0 wt. % depending on the specific circumstances of a given measurement. Here we also present a new way of reporting results from the passive mode of the experiment, the DAN passive geochemical index (DPGI). This index is sensitive to some key geochemical variations, but it does not require assumptions about the abundances of high thermal neutron absorption cross section elements, which are needed to estimate WEH. DPGI variations in this section of the traverse indicate that the shallow regolith composition is changing on both the local (∼meters) and regional (∼100 s of meters) scales. This variability is thought to be representative of the diverse composition of source regions for sediments within the crater floor. Kolmogorov-Smirnov Tests on the populations of WEH estimates and DPGI values demonstrate there are statistically significant differences between nearly all of the geologic units investigated along the rover's traverse. We also present updated previous DAN passive results from Bradbury Landing to John Klein that make use of revised DAN active mode results for calibration, however, no qualitative changes in the interpretations made in Tate et al. (2015b) are incurred.

  9. Spent fuel measurements. passive neutron albedo reactivity (PNAR) and photon signatures

    Energy Technology Data Exchange (ETDEWEB)

    Eigenbrodt, Julia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Menlove, Howard Olsen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-29

    The International Atomic Energy Agency’s (IAEA) safeguards technical objective is the timely detection of a diversion of a significant quantity of nuclear material from peaceful activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection. An important IAEA task towards meeting this objective is the ability to accurately and reliably measure spent nuclear fuel (SNF) to verify reactor operating parameters and verify that the fuel has not been removed from reactors or SNF storage facilities. This dissertation analyzes a method to improve the state-of-the-art of nuclear material safeguards measurements using two combined measurement techniques: passive neutron albedo reactivity (PNAR) and passive spectral photon measurements.

  10. Ground Albedo Neutron Sensing (GANS) method for measurements of soil moisture in cropped fields

    Science.gov (United States)

    Andres Rivera Villarreyes, Carlos; Baroni, Gabriele; Oswald, Sascha E.

    2013-04-01

    Measurement of soil moisture at the plot or hill-slope scale is an important link between local vadose zone hydrology and catchment hydrology. However, so far only few methods are on the way to close this gap between point measurements and remote sensing. This study evaluates the applicability of the Ground Albedo Neutron Sensing (GANS) for integral quantification of seasonal soil moisture in the root zone at the scale of a field or small watershed, making use of the crucial role of hydrogen as neutron moderator relative to other landscape materials. GANS measurements were performed at two locations in Germany under different vegetative situations and seasonal conditions. Ground albedo neutrons were measured at (i) a lowland Bornim farmland (Brandenburg) cropped with sunflower in 2011 and winter rye in 2012, and (ii) a mountainous farmland catchment (Schaefertal, Harz Mountains) since middle 2011. At both sites depth profiles of soil moisture were measured at several locations in parallel by frequency domain reflectometry (FDR) for comparison and calibration. Initially, calibration parameters derived from a previous study with corn cover were tested under sunflower and winter rye periods at the same farmland. GANS soil moisture based on these parameters showed a large discrepancy compared to classical soil moisture measurements. Therefore, two new calibration approaches and four different ways of integration the soil moisture profile to an integral value for GANS were evaluated in this study. This included different sets of calibration parameters based on different growing periods of sunflower. New calibration parameters showed a good agreement with FDR network during sunflower period (RMSE = 0.023 m3 m-3), but they underestimated soil moisture in the winter rye period. The GANS approach resulted to be highly affected by temporal changes of biomass and crop types which suggest the need of neutron corrections for long-term observations with crop rotation. Finally

  11. Application of Laplace transform for determination of albedo type boundary conditions for neutronic calculations; Aplicacao da transformada de Laplace para determinacao de condicoes de contorno tipo albedo para calculos neutronicos

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Claudio Zen

    2008-07-01

    In this dissertation we use the Laplace transform to derive expressions for nonstandard albedo boundary conditions for one and two non-multiplying regions at the ends of one dimensional domains. In practice, the fuel regions of reactor cores are surrounded by reflector regions that reduce neutron leakage. In order to exclude the reflector regions from the calculations, we introduce a reflection coefficient or albedo. We use the present albedo boundary conditions to solve numerically slab-geometry monoenergetic and multigroup diffusion equations using the conventional finite difference method. Numerical results are generated for fixed source and eigenvalue diffusion problems in slab geometry(author)

  12. Computational response study of personal and albedo neutron dosemeters composed of solid state track detectors based on (n,α) reaction

    International Nuclear Information System (INIS)

    Palfalvi, J.

    1984-03-01

    The combined effect of incident and albedo neutrons on the response of several fission and (n,α) track detectors was investigated by calculations for monoenergetic neutrons and for neutrons from different energetic sources. The response functions are presented in tables and plots. (author)

  13. Differential dose albedo for high-energy X-rays on concrete slab

    International Nuclear Information System (INIS)

    Kato, Hideki

    2006-01-01

    We computed the differential dose albedo (α D ) for high-energy X-rays on a concrete slab when the incident angle, reflection angle, and azimuth angle were changed, by means of Monte Carlo simulation. We found that α D changed with incident, reflection, and azimuth angles to the concrete slab. On the whole, the larger the incident angle, the larger α D tended to become. If the incident angle and reflection angle were the same, the larger the azimuth angle, the smaller α D tended to become. When the incident, reflection, and azimuth angles were the same, the smaller the X-ray energy was, the larger α D became, in the order of 10 MV, 6 MV, and 4 MV X-rays. (author)

  14. Neutron detection gamma ray sensitivity criteria

    International Nuclear Information System (INIS)

    Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Mace, Emily K.; Stephens, Daniel L.; Woodring, Mitchell L.

    2011-01-01

    The shortage of 3 He has triggered the search for effective alternative neutron detection technologies for national security and safeguards applications. Any new detection technology must satisfy two basic criteria: (1) it must meet a neutron detection efficiency requirement, and (2) it must be insensitive to gamma-ray interference at a prescribed level, while still meeting the neutron detection requirement. It is the purpose of this paper to define measureable gamma ray sensitivity criteria for neutron detectors. Quantitative requirements are specified for: intrinsic gamma ray detection efficiency and gamma ray absolute rejection. The gamma absolute rejection ratio for neutrons (GARRn) is defined, and it is proposed that the requirement for neutron detection be 0.9 3 He based neutron detector is provided showing that this technology can meet the stated requirements. Results from tests of some alternative technologies are also reported.

  15. Determination of the double angular and energy differential gamma-ray albedo by using the Monte Carlo method

    International Nuclear Information System (INIS)

    Miss, J.

    1998-06-01

    The goal of this thesis was to study comprehensively photons energy and angular distributions of backscattered radiations. In general, this relation is described by the concept to the backscattered factor or doubly differential albedo. This concept is useful to study the particle propagation into the air space by simple or multiple reflections on materials There are two principal treatments to solve numerically this problem: the deterministic and probabilistic methods. We showed that deterministic methods furnish unsatisfactory results: that's why we choice to develop a new gamma ray albedo estimator in the code TRIPOLI14 (three dimensional Monte Carlo code). So, we have been able to compute an important data base of doubly differential albedos. A physical analysis of these data showed that albedos can be simply described by parameter functions. These parameters were obtained by fitting the albedos of the data base over a complete range of incident and reflected energy and direction. So, we produced a very smaller data base of functions coefficients, instead of storing all the values of the doubly differential spectrum. It is so easy to make every albedo by linear interpolations on the coefficient of the new library. (author)

  16. Development and characterization of two-component albedo based neutron individual monitoring system using thermoluminescent detectors; Desenvolvimento e caracterizacao de um sistema de monitoracao individual de neutrons tipo albedo de duas componentes usando detectores termoluminescentes

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Marcelo Marques

    2008-07-01

    A TLD-albedo based two-component neutron individual monitoring system was developed and characterized in this work. The monitor consists of a black plastic holder, an incident neutron boron loaded shield, a moderator polyethylene body (to increase its response), two pairs of TLD-600 and TLD-700 (one pair to each component) and an adjustable belt. This monitoring system was calibrated in thermal neutron fields and in 70 keV, 144 keV, 565 keV, 1.2 MeV and 5 MeV monoenergetic neutron fields. In addition, it was calibrated in {sup 252C}f(D{sub 2}O), {sup 252}Cf, {sup 241}Am-B, {sup 241}Am-Be and {sup 238}Pu-Be source fields. For the latter, the lower detection levels are, respectively, 0.009 mSv, 0.06 mSv, 0.12 mSv, 0.09 mSv and 0.08 mSv. The participation in an international intercomparison sponsored by IAEA with simulated workplace fields validated the system. The monitoring system was successfully characterized in the ISO 21909 standard and in an IRD - the Brazilian Institute for Radioprotection and Dosimetry - technical regulation draft. Nowadays, the neutron individual system is in use by IRD for whole body individual monitoring of five institutions, which comprehend several activities. (author)

  17. X-rays from neutron stars

    International Nuclear Information System (INIS)

    Boerner, G.

    1979-08-01

    The basic theoretical in the models of regularly pulsating X-ray sources are discussed, and put in relation to the observations. The topics covered include physics of the magnetosphere of an accreting neutron star, hydrodynamics of the accretion column, physical processes close to the surface of the neutron star such as proton-electron collisions, photon-electron interactions. (orig.)

  18. Neutron-induced 2.2 MeV background in gamma ray telescopes

    International Nuclear Information System (INIS)

    Zanrosso, E.M.; Long, J.L.; Zych, A.D.; White, R.S.; Hughes Aircraft Co., Los Angeles, CA)

    1985-01-01

    Neutron-induced gamma ray production is an important source of background in Compton scatter gamma ray telescopes where organic scintillator material is used. Most important is deuteron formation when atmospheric albedo and locally produced neutrons are thermalized and subsequently absorbed in the hydrogenous material. The resulting 2.2 MeV gamma line essentially represents a continuous isotropic source within the scintillator itself. Interestingly, using a scintillator material with a high hydrogen-to-carbon ratio to minimize the neutron-induced 4.4 MeV carbon line favors the np reaction. The full problem of neutron-induced background in Compton scatter telescopes has been previously discussed. Results are presented of observations with the University of California balloon-borne Compton scatter telescope where the 2.2 MeV induced line emission is prominently seen

  19. A gamma-ray discriminating neutron scintillator

    International Nuclear Information System (INIS)

    Eschbach, P.A.; Miller, S.D.; Cole, M.C.

    1994-01-01

    A neutron scintillator has been developed at Pacific Northwest Laboratory which responds directly to as little as 10 mrem/hour dose equivalent rate fast neutron fields. The scintillator is composed of CaF 2 :Eu or of NaI grains within a silicone rubber or polystyrene matrix, respectively. Neutrons colliding with the plastic matrix provide knockon protons, which in turn deposit energy within the grains of phosphor to produce pulses of light. Neutron interactions are discriminated from gamma-ray events on the basis of pulse height. Unlike NE-213 liquid scintillators, this solid scintillator requires no pulseshape discrimination and therefore requires less hardware. Neutron events are anywhere from two to three times larger than the gamma-ray exposures are compared to 0.7 MeV gamma-ray exposures. The CaF 2 :Eu/silicone rubber scintillator is nearly optically transparent, and can be made into a very sizable detector (4 cm x 1.5 cm) without degrading pulse height. This CaF 2 :Eu scintillator has been observed to have an absolute efficiency of 0.1% when exposed to 5-MeV accelerator-generated neutrons (where the absolute efficiency is the ratio of observed neutron events divided by the number of fast neutrons striking the detector)

  20. Contribution to the determination of the double angular and energy differential neutron albedo. Application to the propagation in lacunar medium; Contribution a la determination de l'albedo doublement differentiel en angle et en energie des neutrons. Application a la propagation dans les milieux lacunaires

    Energy Technology Data Exchange (ETDEWEB)

    Litaize, O

    2000-07-01

    The goal of this thesis is to study the neutron propagation by reflection from lacunar medium interfaces. The most efficient method to calculate this type of propagation is to use the concept of albedo. Actual version of NARCISSE code uses a simple formulation of angular differential albedos and so, can only treat single reflections. Multiple reflections treatment needs the knowledge of neutron spectrum after reflection. This energetic information is contained in double angular and energy differential albedos. The first step of this study consists to generate these albedos for various materials. Several methods have been tested and the Monte Carlo method was retained. A new estimator has been developed and validated in the Mote Carlo transport code TRIPOLI-4. It computes, during the simulation of the neutron history, the angular and energy reflection probability at each collision site. The second step consists to generate an interpolation scheme and albedo libraries for various materials. A new version of NARCISSE was developed to use these libraries and the interpolation module. Spectrum and dose rates comparisons were made between codes to validate these albedos. The neutron propagation by multiple reflections can be studied now, by using this new version of Narcisse. (author)

  1. Contribution to the determination of the double angular and energy differential neutron albedo. Application to the propagation in lacunar medium; Contribution a la determination de l'albedo doublement differentiel en angle et en energie des neutrons. Application a la propagation dans les milieux lacunaires

    Energy Technology Data Exchange (ETDEWEB)

    Litaize, O

    2000-07-01

    The goal of this thesis is to study the neutron propagation by reflection from lacunar medium interfaces. The most efficient method to calculate this type of propagation is to use the concept of albedo. Actual version of NARCISSE code uses a simple formulation of angular differential albedos and so, can only treat single reflections. Multiple reflections treatment needs the knowledge of neutron spectrum after reflection. This energetic information is contained in double angular and energy differential albedos. The first step of this study consists to generate these albedos for various materials. Several methods have been tested and the Monte Carlo method was retained. A new estimator has been developed and validated in the Mote Carlo transport code TRIPOLI-4. It computes, during the simulation of the neutron history, the angular and energy reflection probability at each collision site. The second step consists to generate an interpolation scheme and albedo libraries for various materials. A new version of NARCISSE was developed to use these libraries and the interpolation module. Spectrum and dose rates comparisons were made between codes to validate these albedos. The neutron propagation by multiple reflections can be studied now, by using this new version of Narcisse. (author)

  2. Neutron and X-ray Spectroscopy

    CERN Document Server

    Hippert, Françoise; Hodeau, Jean Louis; Lelièvre-Berna, Eddy; Regnard, Jean-René

    2006-01-01

    Neutron and X-Ray Spectroscopy delivers an up-to-date account of the principles and practice of inelastic and spectroscopic methods available at neutron and synchrotron sources, including recent developments. The chapters are based on a course of lectures and practicals (the HERCULES course) delivered to young scientists who require these methods in their professional careers. Each chapter, written by a leading specialist in the field, introduces the basic concepts of the technique and provides an overview of recent work. This volume, which focuses on spectroscopic techniques in synchrotron radiation and inelastic neutron scattering, will be a primary source of information for physicists, chemists and materials scientists who wish to acquire a basic understanding of these techniques and to discover the possibilities offered by them. Emphasizing the complementarity of the neutron and X-ray methods, this tutorial will also be invaluable to scientists already working in neighboring fields who seek to extend thei...

  3. Proposal of requirements for performance in Brazil for systems of external individual monitoring for neutrons applying the TLD-albedo technique

    International Nuclear Information System (INIS)

    Martins, Marcelo M.; Mauricio, Claudia L.P.; Pereira, Walsan W.; Fonseca, Evaldo S. da; Silva, Ademir X.

    2009-01-01

    This work presents a criteria and conditions proposal for the regulations in Brazil of individual monitoring systems for neutrons applying the albedo technique with thermoluminescent detectors. Tests are proposed for the characterization performance of the system based on the Regulation ISO 21909 and on the experience of the authors

  4. Predicting fissile content of spent nuclear fuel assemblies with the Passive Neutron Albedo Reactivity technique and Monte Carlo code emulation

    International Nuclear Information System (INIS)

    Conlin, Jeremy Lloyd; Tobin, Stephen J.

    2011-01-01

    There is a great need in the safeguards community to be able to nondestructively quantify the mass of plutonium of a spent nuclear fuel assembly. As part of the Next Generation of Safeguards Initiative, we are investigating several techniques, or detector systems, which, when integrated, will be capable of quantifying the plutonium mass of a spent fuel assembly without dismantling the assembly. This paper reports on the simulation of one of these techniques, the Passive Neutron Albedo Reactivity with Fission Chambers (PNAR-FC) system. The response of this system over a wide range of spent fuel assemblies with different burnup, initial enrichment, and cooling time characteristics is shown. A Monte Carlo method of using these modeled results to estimate the fissile content of a spent fuel assembly has been developed. A few numerical simulations of using this method are shown. Finally, additional developments still needed and being worked on are discussed. (author)

  5. Neutron beam design for low intensity neutron and gamma-ray radioscopy using small neutron sources

    CERN Document Server

    Matsumoto, T

    2003-01-01

    Two small neutron sources of sup 2 sup 5 sup 2 Cf and sup 2 sup 4 sup 1 Am-Be radioisotopes were used for design of neutron beams applicable to low intensity neutron and gamma ray radioscopy (LINGR). In the design, Monte Carlo code (MCNP) was employed to generate neutron and gamma ray beams suited to LINGR. With a view to variable neutron spectrum and neutron intensity, various arrangements were first examined, and neutron-filter, gamma-ray shield and beam collimator were verified. Monte Carlo calculations indicated that with a suitable filter-shield-collimator arrangement, thermal neutron beam of 3,900 ncm sup - sup 2 s sup - sup 1 with neutron/gamma ratio of 7x10 sup 7 , and 25 ncm sup - sup 2 s sup - sup 1 with very large neutron/gamma ratio, respectively, could be produced by using sup 2 sup 5 sup 2 Cf(122 mu g) and a sup 2 sup 4 sup 1 Am-Be(37GBq)radioisotopes at the irradiation port of 35 cm from the neutron sources.

  6. Determination of the double angular and energy differential gamma-ray albedo by using the Monte Carlo method; Contribution a la determination de l`albedo doublement differentiel en angle et en energie des rayonnements gamma

    Energy Technology Data Exchange (ETDEWEB)

    Miss, J

    1998-06-01

    The goal of this thesis was to study comprehensively photons energy and angular distributions of backscattered radiations. In general, this relation is described by the concept to the backscattered factor or doubly differential albedo. This concept is useful to study the particle propagation into the air space by simple or multiple reflections on materials There are two principal treatments to solve numerically this problem: the deterministic and probabilistic methods. We showed that deterministic methods furnish unsatisfactory results: that`s why we choice to develop a new gamma ray albedo estimator in the code TRIPOLI14 (three dimensional Monte Carlo code). So, we have been able to compute an important data base of doubly differential albedos. A physical analysis of these data showed that albedos can be simply described by parameter functions. These parameters were obtained by fitting the albedos of the data base over a complete range of incident and reflected energy and direction. So, we produced a very smaller data base of functions coefficients, instead of storing all the values of the doubly differential spectrum. It is so easy to make every albedo by linear interpolations on the coefficient of the new library. (author) 63 refs.

  7. Neutron and X-ray optics

    CERN Document Server

    Cremer, Jay Theodore

    2013-01-01

    Covering a wide range of topics related to neutron and x-ray optics, this book explores the aspects of neutron and x-ray optics and their associated background and applications in a manner accessible to both lower-level students while retaining the detail necessary to advanced students and researchers. It is a self-contained book with detailed mathematical derivations, background, and physical concepts presented in a linear fashion. A wide variety of sources were consulted and condensed to provide detailed derivations and coverage of the topics of neutron and x-ray optics as well as the background material needed to understand the physical and mathematical reasoning directly related or indirectly related to the theory and practice of neutron and x-ray optics. The book is written in a clear and detailed manner, making it easy to follow for a range of readers from undergraduate and graduate science, engineering, and medicine. It will prove beneficial as a standalone reference or as a complement to textbooks. Su...

  8. Hard X ray lines from neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Polcaro, V.F.; Bazzano, A.; La Padula, C.; Ubertini, P.

    1982-01-01

    Experimental evidence is presented and evaluated concerning the features of the hard X-ray spectra detected in a number of cosmic X-ray sources which contain a neutron star. The strong emission line at cyclotron resonance detected in the spectrum of Her XI at an energy of 58 keV is evaluated and the implications of this finding are discussed. Also examined is the presence of spectral features in the energy range 20-80 keV found in the spectra of gamma-ray bursts, which have been interpreted as cyclotron resonance from interstellar-gas-accreting neutron stars. The less understood finding of a variable emission line at approximately 70 keV in the spectrum of the Crab Pulsar is considered. It is determined that several features varying with time are present in the spectra of cosmic X-ray sources associated with neutron stars. If these features are due to cyclotron resonance, it is suggested that they provide a direct measurement of neutron star magnetic fields on the order of 10 to the 11th-10 to the 13th Gauss. However, the physical condition of the emitting region and its geometry are still quite obscure.

  9. Nondestructive determination of plutonium mass in spent fuel: preliminary modeling results using the passive neutron Albedo reactivity technique

    International Nuclear Information System (INIS)

    Evans, Louise G.; Tobin, Stephen J.; Schear, Melissa A.; Menlove, Howard O.; Lee, Sang Y.; Swinhoe, Martyn T.

    2009-01-01

    There are a variety of motivations for quantifying plutonium (Pu) in spent fuel assemblies by means of nondestructive assay (NDA) including the following: strengthening the capability of the International Atomic Energy Agency (LAEA) to safeguard nuclear facilities, quantifying shipper/receiver difference, determining the input accountability value at pyrochemical processing facilities, providing quantitative input to burnup credit and final safeguards measurements at a long-term repository. In order to determine Pu mass in spent fuel assemblies, thirteen NDA techniques were identified that provide information about the composition of an assembly. A key motivation of the present research is the realization that none of these techniques, in isolation, is capable of both (1) quantifying the Pu mass of an assembly and (2) detecting the diversion of a significant number of rods. It is therefore anticipated that a combination of techniques will be required. A 5 year effort funded by the Next Generation Safeguards Initiative (NGSI) of the U.S. DOE was recently started in pursuit of these goals. The first two years involves researching all thirteen techniques using Monte Carlo modeling while the final three years involves fabricating hardware and measuring spent fuel. Here, we present the work in two main parts: (1) an overview of this NGSI effort describing the motivations and approach being taken; (2) The preliminary results for one of the NDA techniques - Passive Neutron Albedo Reactivity (PNAR). The PNAR technique functions by using the intrinsic neutron emission of the fuel (primarily from the spontaneous fission of curium) to self-interrogate any fissile material present. Two separate measurements of the spent fuel are made, both with and without cadmium (Cd) present. The ratios of the Singles, Doubles and Triples count rates obtained in each case are analyzed; known as the Cd ratio. The primary differences between the two measurements are the neutron energy spectrum

  10. Neutron and X-ray Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Carini, Gabriella [SLAC National Accelerator Lab., Menlo Park, CA (United States); Denes, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gruener, Sol [Cornell Univ., Ithaca, NY (United States); Lessner, Elianne [Dept. of Energy (DOE), Washington DC (United States). Office of Science Office of Basic Energy Sciences

    2012-08-01

    The Basic Energy Sciences (BES) X-ray and neutron user facilities attract more than 12,000 researchers each year to perform cutting-edge science at these state-of-the-art sources. While impressive breakthroughs in X-ray and neutron sources give us the powerful illumination needed to peer into the nano- to mesoscale world, a stumbling block continues to be the distinct lag in detector development, which is slowing progress toward data collection and analysis. Urgently needed detector improvements would reveal chemical composition and bonding in 3-D and in real time, allow researchers to watch “movies” of essential life processes as they happen, and make much more efficient use of every X-ray and neutron produced by the source The immense scientific potential that will come from better detectors has triggered worldwide activity in this area. Europe in particular has made impressive strides, outpacing the United States on several fronts. Maintaining a vital U.S. leadership in this key research endeavor will require targeted investments in detector R&D and infrastructure. To clarify the gap between detector development and source advances, and to identify opportunities to maximize the scientific impact of BES user facilities, a workshop on Neutron and X-ray Detectors was held August 1-3, 2012, in Gaithersburg, Maryland. Participants from universities, national laboratories, and commercial organizations from the United States and around the globe participated in plenary sessions, breakout groups, and joint open-discussion summary sessions. Sources have become immensely more powerful and are now brighter (more particles focused onto the sample per second) and more precise (higher spatial, spectral, and temporal resolution). To fully utilize these source advances, detectors must become faster, more efficient, and more discriminating. In supporting the mission of today’s cutting-edge neutron and X-ray sources, the workshop identified six detector research challenges

  11. Thermal neutron capture gamma-rays

    International Nuclear Information System (INIS)

    Tuli, J.K.

    1983-01-01

    The energy and intensity of gamma rays as seen in thermal neutron capture are presented. Only those (n,α), E = thermal, reactions for which the residual nucleus mass number is greater than or equal to 45 are included. These correspond to evaluations published in Nuclear Data Sheets. The publication source data are contained in the Evaluated Nuclear Structure Data File (ENSDF). The data presented here do not involve any additional evaluation. Appendix I lists all the residual nuclides for which the data are included here. Appendix II gives a cumulated index to A-chain evaluations including the year of publication. The capture gamma ray data are given in two tables - the Table 1 is the list of all gamma rays seen in (n,#betta#) reaction given in the order of increasing energy; the Table II lists the gamma rays according to the nuclide

  12. Proposal of requirements for performance in Brazil for systems of external individual monitoring for neutrons applying the TLD-albedo technique; Proposta de requisitos de desempenho no Brasil para sistemas de monitoracao individual externa para neutrons empregando a tecnica TLD-albedo

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Marcelo M.; Mauricio, Claudia L.P.; Pereira, Walsan W.; Fonseca, Evaldo S. da, E-mail: marcelo@ird.gov.b, E-mail: claudia@ird.gov.b, E-mail: walsan@ird.gov.b, E-mail: evaldo@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Silva, Ademir X., E-mail: ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil).

    2009-07-01

    This work presents a criteria and conditions proposal for the regulations in Brazil of individual monitoring systems for neutrons applying the albedo technique with thermoluminescent detectors. Tests are proposed for the characterization performance of the system based on the Regulation ISO 21909 and on the experience of the authors

  13. Simulated Performance of the Integrated Passive Neutron Albedo Reactivity and Self-Interrogation Neutron Resonance Densitometry Detector Designed for Spent Fuel Measurement at the Fugen Reactor in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich, Timothy J. II [Los Alamos National Laboratory; Lafleur, Adrienne M. [Los Alamos National Laboratory; Menlove, Howard O. [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory; Tobin, Stephen J. [Los Alamos National Laboratory; Seya, Michio [Los Alamos National Laboratory; Bolind, Alan M. [Los Alamos National Laboratory

    2012-07-16

    An integrated nondestructive assay instrument, which combined the Passive Neutron Albedo Reactivity (PNAR) and the Self-Interrogation Neutron Resonance Densitometry (SINRD) techniques, is the research focus for a collaborative effort between Los Alamos National Laboratory (LANL) and the Japanese Atomic Energy Agency as part of the Next Generation Safeguard Initiative. We will quantify the anticipated performance of this experimental system in two physical environments: (1) At LANL we will measure fresh Low Enriched Uranium (LEU) assemblies for which the average enrichment can be varied from 0.2% to 3.2% and for which Gd laced rods will be included. (2) At Fugen we will measure spent Mixed Oxide (MOX-B) and LEU spent fuel assemblies from the heavy water moderated Fugen reactor. The MOX-B assemblies will vary in burnup from {approx}3 GWd/tHM to {approx}20 GWd/tHM while the LEU assemblies ({approx}1.9% initial enrichment) will vary from {approx}2 GWd/tHM to {approx}7 GWd/tHM. The estimated count rates will be calculated using MCNPX. These preliminary results will help the finalization of the hardware design and also serve a guide for the experiment. The hardware of the detector is expected to be fabricated in 2012 with measurements expected to take place in 2012 and 2013. This work is supported by the Next Generation Safeguards Initiative, Office of Nuclear Safeguards and Security, National Nuclear Security Administration.

  14. Altitude variation of cosmic-ray neutrons

    International Nuclear Information System (INIS)

    Nakamura, T.; Uwamino, Y.; Ohkubo, T.; Hara, A.

    1987-01-01

    The altitude variation of the cosmic-ray neutron energy spectrum and the dose equivalent rate was measured at an average geomagnetic latitude of 24 degrees N by using the high-efficiency multi-sphere neutron spectrometer and neutron dose-equivalent counter developed by the authors. The data were obtained from a 2-h flight over Japan on 27 February 1985. The neutron energy spectra measured at sea level and at altitudes of 4880 m and at 11,280 m were compared with the calculated spectra of O'Brien and with other experimental spectra, and they are in moderately good agreement with them. The dose equivalent rate increases according to a quadratic curve up to about 6000 m and then increases linearly between 6000 m and 11,280 m. The dependence of dose equivalent rates at sea level and at an altitude of 12,500 m on geomagnetic latitude also is given by referring to other experimental results

  15. MCNP SIMULATION OF THE HP(10) ENERGY RESPONSE OF A BRAZILIAN TLD ALBEDO NEUTRON INDIVIDUAL DOSEMETER, FROM THERMAL TO 20 MeV.

    Science.gov (United States)

    Freitas, B M; Martins, M M; Pereira, W W; da Silva, A X; Mauricio, C L P

    2016-09-01

    The Brazilian Instituto de Radioproteção e Dosimetria (IRD) runs a neutron individual monitoring system with a home-made TLD albedo dosemeter. It has already been characterised and calibrated in some reference fields. However, the complete energy response of this dosemeter is not known, and the calibration factors for all monitored workplace neutron fields are difficult to be obtained experimentally. Therefore, to overcome such difficulties, Monte Carlo simulations have been used. This paper describes the simulation of the HP(10) neutron response of the IRD TLD albedo dosemeter using the MCNPX transport code, for energies from thermal to 20 MeV. The validation of the MCNPX modelling is done comparing the simulated results with the experimental measurements for ISO standard neutron fields of (241)Am-Be, (252)Cf, (241)Am-B and (252)Cf(D2O) and also for (241)Am-Be source moderated with paraffin and silicone. Bare (252)Cf are used for normalisation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Earth formation pulsed neutron porosity logging system utilizing epithermal neutron and inelastic scattering gamma ray detectors

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Smith, M.P.; Schultz, W.E.

    1978-01-01

    An improved pulsed neutron porosity logging system is provided in the present invention. A logging tool provided with a 14 MeV pulsed neutron source, an epithermal neutron detector and an inelastic scattering gamma ray detector is moved through a borehole. The detection of inelastic gamma rays provides a measure of the fast neutron population in the vicinity of the detector. repetitive bursts of neutrons irradiate the earth formation and, during the busts, inelastic gamma rays representative of the fast neutron population is sampled. During the interval between bursts the epithermal neutron population is sampled along with background gamma radiation due to lingering thermal neutrons. the fast and epithermal neutron population measurements are combined to provide a measurement of formation porosity

  17. Cosmic-ray neutron transport at a forest field site

    DEFF Research Database (Denmark)

    Andreasen, Mie; Jensen, Karsten Høgh; Desilets, Darin

    2017-01-01

    -ray neutron intensity is essential (e.g., the effect of vegetation, litter layer and soil type). In this study the environmental effect is examined by performing a sensitivity analysis using neutron transport modeling. We use a neutron transport model with various representations of the forest and different...

  18. Cosmic-ray neutron simulations and measurements in Taiwan

    International Nuclear Information System (INIS)

    Chen, Wei-Lin; Jiang, Shiang-Huei; Sheu, Rong-Jiun

    2014-01-01

    This study used simulations of galactic cosmic ray in the atmosphere to investigate the neutron background environment in Taiwan, emphasising its altitude dependence and spectrum variation near interfaces. The calculated results were analysed and compared with two measurements. The first measurement was a mobile neutron survey from sea level up to 3275 m in altitude conducted using a car-mounted high-sensitivity neutron detector. The second was a previous measured result focusing on the changes in neutron spectra near air/ground and air/water interfaces. The attenuation length of cosmic-ray neutrons in the lower atmosphere was estimated to be 163 g cm -2 in Taiwan. Cosmic-ray neutron spectra vary with altitude and especially near interfaces. The determined spectra near the air/ground and air/water interfaces agree well with measurements for neutrons below 10 MeV. However, the high-energy portion of spectra was observed to be much higher than our previous estimation. Because high-energy neutrons contribute substantially to a dose evaluation, revising the annual sea-level effective dose from cosmic-ray neutrons at ground level in Taiwan to 35 μSv, which corresponds to a neutron flux of 5.30 x 10 -3 n cm -2 s -1 , was suggested. The cosmic-ray neutron background in Taiwan was studied using the FLUKA simulations and field measurements. A new measurement was performed using a car-mounted high-efficiency neutron detector, re-coding real-time neutron counting rates from sea level up to 3275 m. The attenuation of cosmic-ray neutrons in the lower atmosphere exhibited an effective attenuation length of 163 g cm -2 . The calculated neutron counting rates over predicted the measurements by ∼32 %, which leaded to a correction factor for the FLUKA-calculated cosmic-ray neutrons in the lower atmosphere in Taiwan. In addition, a previous measurement regarding neutron spectrum variation near the air/ground and air/water interfaces was re-evaluated. The results showed that the

  19. ICF ignition capsule neutron, gamma ray, and high energy x-ray images

    Science.gov (United States)

    Bradley, P. A.; Wilson, D. C.; Swenson, F. J.; Morgan, G. L.

    2003-03-01

    Post-processed total neutron, RIF neutron, gamma-ray, and x-ray images from 2D LASNEX calculations of burning ignition capsules are presented. The capsules have yields ranging from tens of kilojoules (failures) to over 16 MJ (ignition), and their implosion symmetry ranges from prolate (flattest at the hohlraum equator) to oblate (flattest towards the laser entrance hole). The simulated total neutron images emphasize regions of high DT density and temperature; the reaction-in-flight neutrons emphasize regions of high DT density; the gamma rays emphasize regions of high shell density; and the high energy x rays (>10 keV) emphasize regions of high temperature.

  20. MODEL ATMOSPHERES FOR X-RAY BURSTING NEUTRON STARS

    International Nuclear Information System (INIS)

    Medin, Zach; Fontes, Christopher J.; Fryer, Chris L.; Hungerford, Aimee L.; Steinkirch, Marina von; Calder, Alan C.

    2016-01-01

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts (XRBs) are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where XRBs occur. Observations from X-ray telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.

  1. MODEL ATMOSPHERES FOR X-RAY BURSTING NEUTRON STARS

    Energy Technology Data Exchange (ETDEWEB)

    Medin, Zach; Fontes, Christopher J.; Fryer, Chris L.; Hungerford, Aimee L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Steinkirch, Marina von; Calder, Alan C. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)

    2016-12-01

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts (XRBs) are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where XRBs occur. Observations from X-ray telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.

  2. Analytical applications of neutron capture gamma-rays

    International Nuclear Information System (INIS)

    Lindstrom, R.M.; Paul, R.L.; Anderson, D.L.; Paul, R.L.

    1997-01-01

    Field and industrial applications of neutron capture gamma-ray spectrometry with isotopic sources or neutron generators are economically important. Geochemical exploration in boreholes is done routinely with neutron probes. Coal and ores are assayed with analyzers adjacent to a conveyor belt in dozens of industrial facilities. The use of capture gamma rays for explosives detection has been described in the literature, both for scanning airline baggage and for characterizing obsolete munitions; a packaged system for the latter is available commercially. Generalizations are drawn from the history of the field, and predictions are made about the future usefulness of capture gamma rays. (author)

  3. Model Atmospheres for X-ray Bursting Neutron Stars

    OpenAIRE

    Medin, Zach; von Steinkirch, Marina; Calder, Alan C.; Fontes, Christopher J.; Fryer, Chris L.; Hungerford, Aimee L.

    2016-01-01

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of t...

  4. Cosmic Ray Neutron Sensing in Complex Systems

    Science.gov (United States)

    Piussi, L. M.; Tomelleri, E.; Tonon, G.; Bertoldi, G.; Mejia Aguilar, A.; Monsorno, R.; Zebisch, M.

    2017-12-01

    Soil moisture is a key variable in environmental monitoring and modelling: being located at the soil-atmosphere boundary, it is a driving force for water, energy and carbon fluxes. Nevertheless its importance, soil moisture observations lack of long time-series at high acquisition frequency in spatial meso-scale resolutions: traditional measurements deliver either long time series with high measurement frequency at spatial point scale or large scale and low frequency acquisitions. The Cosmic Ray Neutron Sensing (CRNS) technique fills this gap because it supplies information from a footprint of 240m of diameter and 15 to 83 cm of depth at a temporal resolution varying between 15 minutes and 24 hours. In addition, being a passive sensing technique, it is non-invasive. For these reasons, CRNS is gaining more and more attention from the scientific community. Nevertheless, the application of this technique in complex systems is still an open issue: where different Hydrogen pools are present and where their distributions vary appreciably with space and time, the traditional calibration method shows some limits. In order to obtain a better understanding of the data and to compare them with remote sensing products and spatially distributed traditional measurements (i.e. Wireless Sensors Network), the complexity of the surrounding environment has to be taken into account. In the current work we assessed the effects of spatial-temporal variability of soil moisture within the footprint, in a steep, heterogeneous mountain grassland area. Measurement were performed with a Cosmic Ray Neutron Probe (CRNP) and a mobile Wireless Sensors Network. We performed an in-deep sensitivity analysis of the effects of varying distributions of soil moisture on the calibration of the CRNP and our preliminary results show how the footprint shape varies depending on these dynamics. The results are then compared with remote sensing data (Sentinel 1 and 2). The current work is an assessment of

  5. Comparing neutron and X-ray images from NIF implosions

    Directory of Open Access Journals (Sweden)

    Wilson D.C.

    2013-11-01

    Full Text Available Directly laser driven and X-radiation driven DT filled capsules differ in the relationship between neutron and X-ray images. Shot N110217, a directly driven DT-filled glass micro-balloon provided the first neutron images at the National Ignition Facility. As seen in implosions on the Omega laser, the neutron image can be enclosed inside time integrated X-ray images. HYDRA simulations show the X-ray image is dominated by emission from the hot glass shell while the neutron image arises from the DT fuel it encloses. In the absence of mix or jetting, X-ray images of a cryogenically layered THD fuel capsule should be dominated by emission from the hydrogen rather than the cooler plastic shell that is separated from the hot core by cold DT fuel. This cool, dense DT, invisible in X-ray emission, shows itself by scattering hot core neutrons. Germanium X-ray emission spectra and Ross pair filtered X-ray energy resolved images suggest that germanium doped plastic emits in the torus shaped hot spot, probably reducing the neutron yield.

  6. Neutron capture prompt gamma-ray activation analysis at the NIST cold neutron research facility

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrom, R M; Zeisler, R; Vincent, D H; Greenberg, R R; Stone, C A; Mackey, E A [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Anderson, D L [Food and Drug Administration, Washington, DC (United States); Clark, D D [Cornell Univ., Ithaca, NY (United States)

    1993-01-01

    An instrument for neutron capture prompt gamma-ray activation analysis (PGAA) has been constructed as part of the Cold Neutron Research Facility at the 20 MW National Institute of Standards and Technology Research Reactor. The neutron fluence rate (thermal equivalent) is 1.5*10[sup 8] n*cm[sup -2]*s[sup -] [sup 1], with negligible fast neutrons and gamma-rays. With compact geometry and hydrogen-free construction, the sensitivity is sevenfold better than an existing thermal instrument. Hydrogen background is thirtyfold lower. (author) 17 refs.; 2 figs.

  7. Self-powered neutron and gamma-ray flux detector

    International Nuclear Information System (INIS)

    Allan, C.J.; Shields, R.B.; Lynch, G.F.; Cuttler, J.M.

    1980-01-01

    A new type of self-powered neutron detector was developed which is sensitive to both the neutron and gamma-ray fluxes. The emitter comprises two parts. The central emitter core is made of materials that generate high-energy electrons on exposure to neutrons. The outer layer acts as a gamma-ray/electron converter, and since it has a higher atomic number and higher back-scattering coefficient than the collector, increases the net outflow or emmission of electrons. The collector, which is around the emitter outer layer, is insulated from the outer layer electrically with dielectric insulation formed from compressed metal-oxide powder. The fraction of electrons given off by the emitter that is reflected back by the collector is less than the fraction of electrons emitted by the collector that is reflected back by the emitter. The thickness of the outer layer needed to achieve this result is very small. A detector of this design responds to external reactor gamma-rays as well as to neutron capture gamma-rays from the collector. The emitter core is either nickel, iron or titanium, or alloys based on these metals. The outer layer is made of platinum, tantalum, osmium, molybdenum or cerium. The detector is particularly useful for monitoring neutron and gamma ray flux intensities in nuclear reactor cores in which the neutron and gamma ray flux intensities are closely proportional, are unltimately related to the fission rate, and are used as measurements of nuclear reactor power. (DN)

  8. Virtual Gamma Ray Radiation Sources through Neutron Radiative Capture

    Energy Technology Data Exchange (ETDEWEB)

    Scott Wilde, Raymond Keegan

    2008-07-01

    The countrate response of a gamma spectrometry system from a neutron radiation source behind a plane of moderating material doped with a nuclide of a large radiative neutron capture cross-section exhibits a countrate response analogous to a gamma radiation source at the same position from the detector. Using a planar, surface area of the neutron moderating material exposed to the neutron radiation produces a larger area under the prompt gamma ray peak in the detector than a smaller area of dimensions relative to the active volume of the gamma detection system.

  9. Integrated neutron/gamma-ray portal monitors for nuclear safeguards

    International Nuclear Information System (INIS)

    Fehlau, P.E.

    1994-01-01

    Radiation monitoring is one nuclear-safeguards measure used to protect against the theft of special nuclear materials (SNM) by pedestrians departing from SNM access areas. The integrated neutron/gamma-ray portal monitor is an ideal radiation monitor for the task when the SNM is plutonium. It achieves high sensitivity for detecting both bare and shielded plutonium by combining two types of radiation detector. One type is a neutron-chamber detector, comprising a large, hollow, neutron moderator that contains a single thermal-neutron proportional counter. The entrance wall of each chamber is thin to admit slow neutrons from plutonium contained in a moderating shield, while the other walls are thick to moderate fast neutrons from bare or lead-shielded plutonium so that they can be detected. The other type of detector is a plastic scintillator that is primarily for detecting gamma rays from small amounts of unshielded plutonium. The two types of detector are easily integrated by making scintillators part of the thick back wall of each neutron chamber or by inserting them into each chamber void. The authors compared the influence of the two methods of integration on detecting neutrons and gamma rays, and they examined the effectiveness of other design factors and the methods for signal detection as well

  10. Factors affecting polyamide prototypes design of Albedo dosemeters

    International Nuclear Information System (INIS)

    Martins, M.M.; Mauricio, C.L.P.; Fonseca, E.S.

    1996-01-01

    This work studies the most important factors which affect the response of albedo neutron dosemeters containing LiF TLDs with the aim to improve their sensitivity. It includes tests of thickness and shape of the polyamide moderator body prototypes, albedo window diameter and TLD position inside the moderator. Analyzing the results, an albedo neutron dosemeter prototype, B 4 C covered, was developed. The prototype has a response three times higher than the albedo dosemeter now in use in Brazil. (author)

  11. Neutron Capture Gamma-Ray Libraries for Nuclear Applications

    International Nuclear Information System (INIS)

    Sleaford, B. W.; Summers, N.; Escher, J.; Firestone, R. B.; Basunia, S.; Hurst, A.; Krticka, M.; Molnar, G.; Belgya, T.; Revay, Z.; Choi, H. D.

    2011-01-01

    The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. This can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research Project. EGAF is being used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90% of all the decay energy and is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. We are investigating the capture spectra from higher energy neutrons experimentally using surrogate reactions and modeling this with Hauser-Feshbach codes. This can then be used to benchmark CASINO, a version of DICEBOX modified for neutron capture at higher energy. This can be used to simulate spectra from neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modeling of unknown assemblies.

  12. Neutron Capture Gamma-Ray Libraries for Nuclear Applications

    International Nuclear Information System (INIS)

    Sleaford, B.W.; Firestone, R.B.; Summers, N.; Escher, J.; Hurst, A.; Krticka, M.; Basunia, S.; Molnar, G.; Belgya, T.; Revay, Z.; Choi, H.D.

    2010-01-01

    The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. this can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research project. EGAF is being used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90% of all the decay energy and is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. They are investigating the capture spectra from higher energy neutrons experimentally using surrogate reactions and modeling this with Hauser-Feshbach codes. This can then be used to benchmark CASINO, a version of DICEBOX modified for neutron capture at higher energy. This can be used to simulate spectra from neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modeling of unknown assemblies.

  13. Neutron and gamma-ray toxicity studies

    International Nuclear Information System (INIS)

    Ainsworth, E.J.

    1975-01-01

    The focus of the program is on late effects of neutron and gamma radiation and assessment of risk. Principal research activities are in two complementary areas: life-span experiments with large populations of laboratory mice to compare the effectiveness of single or protracted doses of neutron or gamma radiation for life shortening due to cancer and other debilitating noncancerous diseases; and basic research on cellular injury and recovery for the evaluation of potential contributions of latent injury in the mouse circulatory, immune, and hematopoietic systems to life shortening, and for the comparison of late radiation effects in proliferating tissues. The data are used to test existing models and to formulate new models for prediction of radiation hazards and the relative biological effectiveness (RBE) of fission neutrons, particularly at low radiation doses. The neutron dose-response curve is nonlinear, with the life shortening effect decreasing from 3-4 day/rad to 1 day/rad with increasing dose over the range of 20-240 rad. Clearly, linear extrapolations from high neutron doses to estimate life shortening at low doses would underestimate risk; the underestimation is even greater when the enhancement of life shortening produced by fractionated neutron exposure, described previously by us, is also considered. These results from single neutron doses deviate from predictions of total dose dependency based on the predictive model of Kellerer and Rossi. The shape of the gamma radiation dose-response curve is linear over the range of 90 to 788 rad; linear dose-response curves for gamma radiation have been described previously by others, but a quadratic function has been considered by some to be most applicable

  14. Random pulsing of neutron source for inelastic neutron scattering gamma ray spectroscopy

    International Nuclear Information System (INIS)

    Hertzog, R.C.

    1981-01-01

    Method and apparatus are described for use in the detection of inelastic neutron scattering gamma ray spectroscopy. Data acquisition efficiency is enhanced by operating a neutron generator such that a resulting output burst of fast neutrons is maintained for as long as practicably possible until a gamma ray is detected. Upon the detection of a gamma ray the generator burst output is terminated. Pulsing of the generator may be accomplished either by controlling the burst period relative to the burst interval to achieve a constant duty cycle for the operation of the generator or by maintaining the burst period constant and controlling the burst interval such that the resulting mean burst interval corresponds to a burst time interval which reduces contributions to the detected radiation of radiation occasioned by other than the fast neutrons

  15. Gamma ray and neutron shielding properties of some concrete materials

    International Nuclear Information System (INIS)

    Yilmaz, E.; Baltas, H.; Kiris, E.; Ustabas, I.; Cevik, U.; El-Khayatt, A.M.

    2011-01-01

    Highlights: → This study sheds light on the shielding properties of gamma-rays and neutrons for some concrete samples. → The experimental mass attenuation coefficients values were compared with theoretical values obtained using WinXCom. → Moreover, neutron shielding has been treated in terms of macroscopic removal cross-section (Σ R , cm -1 ) concept. → The NXcom program was employed to calculate the attenuation coefficients values of neutrons. → These values showed a change with energy and composition of the concrete samples. - Abstract: Shielding of gamma-rays and neutrons by 12 concrete samples with and without mineral additives has been studied. The total mass attenuation and linear attenuation coefficients, half-value thicknesses, effective atomic numbers, effective electron densities and atomic cross-sections at photons energies of 59.5 and 661 keV have been measured and calculated. The measured and calculated values were compared and a reasonable agreement has been observed. Also the recorded values showed a change with energy and composition of the concrete samples. In addition, neutron shielding has been treated in terms of macroscopic removal cross-section (Σ R , cm -1 ) concept. The WinXCom and NXcom programs were employed to calculate the attenuation coefficients of gamma-rays and neutrons, respectively.

  16. Pulsed neutron gama ray logging for minerals associated with uranium

    International Nuclear Information System (INIS)

    Jensen, D.H.; Humphreys, D.R.; Stephenson, W.A.; Weinlein, J.H.; Bivens, H.M.

    1980-01-01

    The tool uses a pulsed neutron generator to irradiate the nuclei in the formation surrounding the borehole, and N type, high purity, germanium detector to observe the returning gamma rays. The presence or absence of particular elements, in conjunction with information gained from other logs, is expected to predict the location of uranium deposits away from the borehole. The Proof of Principle probe has been assembled. Tests have been run using an external power supply with a resolution better than 2.6 keV. Experiments in a simulated borehole configuration with a pulsed neutron generator have established an output level of 1 x 10 5 neutrons/pulse for the detection of inelastic, capture, and activation gamma rays. Gating of the ADC was shown to improve the signal-to-noise ratio for specific gamma ray lines

  17. Gamma ray attenuation coefficient measurement for neutron-absorbent materials

    International Nuclear Information System (INIS)

    Jalali, Majid; Mohammadi, Ali

    2008-01-01

    The compounds Na 2 B 4 O 7 , H 3 BO 3 , CdCl 2 and NaCl and their solutions attenuate gamma rays in addition to neutron absorption. These compounds are widely used in the shielding of neutron sources, reactor control and neutron converters. Mass attenuation coefficients of gamma related to the four compounds aforementioned, in energies 662, 778.9, 867.38, 964.1, 1085.9, 1173, 1212.9, 1299.1,1332 and 1408 keV, have been determined by the γ rays transmission method in a good geometry setup; also, these coefficients were calculated by MCNP code. A comparison between experiments, simulations and Xcom code has shown that the study has potential application for determining the attenuation coefficient of various compound materials. Experiment and computation show that H 3 BO 3 with the lowest average Z has the highest gamma ray attenuation coefficient among the aforementioned compounds

  18. Neutron and X-ray facilities in new Purnima extension building

    International Nuclear Information System (INIS)

    Sarkar, P.S.; Patel, Tarun; Gadkari, S.C.

    2017-01-01

    Neutron and X-ray Physics Section of Technical Physics Division has laboratories involving X-ray, gamma ray and neutrons in the New Purnima Extension Building (NPEB), behind Purnima Laboratories, BARC. Research activities related to X-ray, Gamma and neutron based detection and imaging for societal, departmental and security applications are being carried out in these laboratories

  19. Deduction of solar neutron fluences from large gamma-ray flares

    International Nuclear Information System (INIS)

    Yoshimori, Masato; Watanabe, Hiroyuki; Takahashi, Kazuyoshi.

    1986-01-01

    Solar neutron fluences from large gamma-ray flares are deduced from accelerated proton spectra and numbers derived from the gamma-ray observations. The deduced solar neutron fluences range from 1 to 200 neutrons cm -2 . The present result indicates a possibility that high sensitivity ground-based neutron monitors can detect solar neutron events, just as detected by the Jungfraujoch and Rome neutron monitors. (author)

  20. Simulations Of Neutron Beam Optic For Neutron Radiography Collimator Using Ray Tracing Methodology

    International Nuclear Information System (INIS)

    Norfarizan Mohd Said; Muhammad Rawi Mohamed Zin

    2014-01-01

    Ray- tracing is a technique for simulating the performance of neutron instruments. McStas, the open-source software package based on a meta-language, is a tool for carrying out ray-tracing simulations. The program has been successfully applied in investigating neutron guide design, flux optimization and other related areas with high complexity and precision. The aim of this paper is to discuss the implementation of ray-tracing technique with McStas for simulating the performance of neutron collimation system developed for imaging system of TRIGA RTP reactor. The code for the simulation was developed and the results are presented. The analysis of the performance is reported and discussed. (author)

  1. Neutron and gamma-ray transport experiments in liquid air

    International Nuclear Information System (INIS)

    Farley, W.E.

    1976-01-01

    Accurate estimates of neutron and gamma radiations from a nuclear explosion and their subsequent transport through the atmosphere are vital to nuclear-weapon employment studies: i.e., for determining safety radii for aircraft crews, casualty and collateral-damage risk radii for tactical weapons, and the kill range from a high-yield defensive burst for a maneuvering reentry vehicle. Radiation transport codes, such as the Laboratory's TARTNP, are used to calculate neutron and gamma fluences. Experiments have been performed to check and update these codes. Recently, a 1.3-m-radius liquid-air (21 percent oxygen) sphere, with a pulsed source of 14-MeV neutrons at its center, was used to measure the fluence and spectra of emerging neutrons and secondary gamma rays. Comparison of measured radiation dose with TARTNP showed agreement within 10 percent

  2. Gamma-Ray Bursts from Neutron Star Kicks

    Science.gov (United States)

    Huang, Y. F.; Dai, Z. G.; Lu, T.; Cheng, K. S.; Wu, X. F.

    2003-09-01

    The idea that gamma-ray bursts might be a phenomenon associated with neutron star kicks was first proposed by Dar & Plaga. Here we study this mechanism in more detail and point out that the neutron star should be a high-speed one (with proper motion larger than ~1000 km s-1). It is shown that the model agrees well with observations in many aspects, such as the energetics, the event rate, the collimation, the bimodal distribution of durations, the narrowly clustered intrinsic energy, and the association of gamma-ray bursts with supernovae and star-forming regions. We also discuss the implications of this model on the neutron star kick mechanism and suggest that the high kick speed was probably acquired as the result of the electromagnetic rocket effect of a millisecond magnetar with an off-centered magnetic dipole.

  3. Diffuse scattering of neutrons and X-rays

    International Nuclear Information System (INIS)

    Novion, C.H. de

    1978-01-01

    Diffuse scattering is used to study defect concentrations of about 10 -4 in the case of X-rays and 10 -3 in the case of neutrons. The foundations of diffuse scattering formalism are given, some experimental devices described and a few applications discussed: study by diffraction on powders of defects in CeOsub(2-x); short-range order study by X-rays on Cusub(0.75) Ausub(0.25); short-range order study by neutrons on Cusub(0.435)Nisub(0.565); short-range order study by electrons TiOx; study of irradiation-induced self-interstitials in Al; study of holes created by neutrons in Al [fr

  4. X-ray and neutron techniques for nanomaterials characterization

    CERN Document Server

    2016-01-01

    Fifth volume of a 40 volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about X-ray and Neutron Techniques for Nanomaterials Characterization. Modern applications and state-of-the-art techniques are covered and make this volume an essential reading for research scientists in academia and industry.

  5. Two-axis Neutron and X-ray Reflectivity

    DEFF Research Database (Denmark)

    Bouwman, W.G.; Vigild, M.E.; Findeisen, E.

    1997-01-01

    Sample alignment for neutron (and in some cases x-ray) reflectometry can be complicated due to a coupling between angle and position which occurs when slits are used to define the path of the beam. Misalignments in sample position or sample rotation angle give rise to systematic errors in the exp...

  6. Cosmic Ray induced Neutron and Gamma-Ray bursts in a Lead Pile

    International Nuclear Information System (INIS)

    Chapline, G; Hagmann, C; Kerr, P; Snyderman, N J; Wurtz, R

    2007-01-01

    The neutron background is created primarily by cosmic rays interactions. Of particular interest for SNM detection is an understanding of burst events that resemble fission chains. We have been studying the interaction of cosmic rays with a lead pile that is efficient at creating neutron bursts from cosmic ray interactions. The neutron burst size depends on the configuration of the lead. We have found that the largest bursts appear to have been created by primaries of energy over 100 GeV that have had a diffractive interaction with the atmosphere. The large events trigger muon coincidence paddles with very high efficiency, and the resulting interactions with the lead pile can create over 10, 000 neutrons in a burst

  7. Modern Developments in X-Ray and Neutron Optics

    CERN Document Server

    Erko, Alexei; Krist, Thomas; Michette, Alan G

    2008-01-01

    This volume describes modern developments in reflective, refractive and diffractive optics for short wavelength radiation as well as recent theoretical approaches to modelling and ray-tracing the X-ray and neutron optical systems. It is based on the joint research activities of specialists in X-ray and neutron optics from 11 countries, working together under the framework of the European Programme for Cooperation in Science and Technology (COST, Action P7) in the period 2002--2006. The chapters are written by leading specialists from European laboratories, universities and large facilities. In addition to new ideas and concepts, the contents provide a large amount of practical information about recently implemented devices and methods.

  8. Neutron and gamma-ray toxicity studies

    International Nuclear Information System (INIS)

    Ainsworth, E.J.

    1975-01-01

    Results are reported from studies on the late effects of irradiation on large populations of mice. The effectiveness of neutron and gamma radiation for production of neoplastic and non-neoplastic diseases and life shortening is compared. Basic studies of cellular and functional indices of radiation injury, which provide the opportunity for fundamental new contributions to the understanding of late radiation effects in the vascular, immune, and hematopoietic systems are also reported. Both structural and functional changes in the vasculature have been observed during the second year after irradiation. The structural changes in the pinna include collapse of arteries, arterioles, and some veins along with alterations in the smooth musculature and accumulation of significant fibrosis. Late ultrastructural changes observed in myofibrils involve the endoplasmic reticulum and mitochondria. Cardiac muscle also showed alteration in the size and number of mitochondria, and fibrosis development within 7 days of irradiation. (U.S.)

  9. Neutron and X-ray diffraction from modulated structures

    International Nuclear Information System (INIS)

    Harris, P.

    1994-07-01

    This thesis describes X-ray and neutron scattering experiments performed on two examples of modulated structures. After an introduction to the subject of modulated structures, the thesis is divided in three parts. A single crystal elastic neutron scattering experiment between 4.2 and 115 Κ has been performed and four-circle X-ray data have been collected at 8 Κ for the monoclinic low-temperature phase of the layered perovskite PAMC. The results from the neutron scattering experiment indicate that magnetoelastic effects influence the ordering of the crystal. The X-ray experiments have made it possible to determine the crystal structure in the low-temperature phase. The superspace group is P2 1 /b(β-30)Os, with β = 1/3. A small-angle neutron scattering experiment has been performed on the magnetic structure of manganese silicide. When a magnetic field is applied, the modulation vectors turn towards the field direction, showing domain growth and diverging peak widths as they approach the field direction. Phase 'A' is established to have the modulation vectors directed perpendicular to the field direction. Cooling in zero field shows increasing peak widths at low temperatures, indicating a lock-in transition below the lowest reached temperature. To be able to analyse the data of the magnetic order in MnSi, and analytical calculation of the three dimensional resolution function for a small-angle neutron scattering spectrometer has been performed. The calculation is done by application of a combination of phase space analysis and Gaussian approximations for the neutron distribution as well as for the transmission functions of the different apertures. A finite mosaic spread of the crystal and finite correlation widths of the Bragg reflections have been included in the cross section. (au) (3 tabs., 48 ills., 100 refs.)

  10. Gamma rays from fast neutron capture in silicon and sulphur

    International Nuclear Information System (INIS)

    Lindholm, A.; Nilsson, L.; Bergqvist, I.

    1975-01-01

    Gamma-ray spectra from neutron capture in natural samples of silicon and sulphur have been recorded at eight neutron energies between 4 and 15 MeV. Time-of-flight techniques were used to improve the signal-to-background ratio and the gamma radiation was detected by a large NaI(Tl) scintillator. Cross sections have been determined for transitions to individual (or groups of) levels in the final nucleus. Calculations based on the direct-semidirect model show that this model gives a reasonable description of the shapes of the gamma-ray spectra, but fails to account for observed excitation functions. The inclusion of the compound-nucleus capture process gives a conclusive improvement in the description of the excitation functions, in particular at low neutron energies. The ability of the compound-nucleus model to account for the shapes of the gamma-ray spectra is as good as that of the direct-semidirect model. At higher neutron energies, an improvement is obtained for transitions to the region of weakly bound levels, where the single-particle structure is poorly known. (Auth.)

  11. Focussing X-rays, gamma rays and neutrons

    International Nuclear Information System (INIS)

    Smither, R.K.

    1982-01-01

    A diffraction crystal or grating has a face for receiving a beam of photons or neutrons and diffraction planar spacing or grating spacing along that face with the spacing increasing progressively along the face to provide a decreasing Bragg diffraction angle for a monochromatic radiation and thereby increasing the usable area and acceptance angle. The increased planar spacing for a diffraction crystal is provided by the use of a temperature differential across the crystalline structure, by assembling a plurality of crystalline structures with different compositions, by an individual crystalline structure with a varying composition and thereby a changing planar spacing along its face, and by combinations of these techniques. (author)

  12. Optimum filter-based discrimination of neutrons and gamma rays

    International Nuclear Information System (INIS)

    Amiri, Moslem; Prenosil, Vaclav; Cvachovec, Frantisek

    2015-01-01

    An optimum filter-based method for discrimination of neutrons and gamma-rays in a mixed radiation field is presented. The existing filter-based implementations of discriminators require sample pulse responses in advance of the experiment run to build the filter coefficients, which makes them less practical. Our novel technique creates the coefficients during the experiment and improves their quality gradually. Applied to several sets of mixed neutron and photon signals obtained through different digitizers using stilbene scintillator, this approach is analyzed and its discrimination quality is measured. (authors)

  13. A large-area, position-sensitive neutron detector with neutron/γ-ray discrimination capabilities

    International Nuclear Information System (INIS)

    Zecher, P.D.; Galonsky, A.; Kruse, J.J.; Gaff, S.J.; Ottarson, J.; Wang, J.; Seres, Z.; Ieki, K.; Iwata, Y.; Schelin, H.

    1997-01-01

    To further study neutron-rich halo nuclei, we have constructed a neutron detector array. The array consists of two separate banks of detectors, each of area 2 x 2 m 2 and containing 250 l of liquid scintillator. Each bank is position-sensitive to better than 10 cm. For neutron time-of-flight measurements, the time resolution of the detector has been demonstrated to be about 1 ns. By using the scintillator NE-213, we are able to distinguish between neutron and γ-ray signals above 1 MeV electron equivalent energy. Although the detector array was constructed for a particular experiment it has also been used in a number of other experiments. (orig.)

  14. From x-ray telescopes to neutron scattering: Using axisymmetric mirrors to focus a neutron beam

    International Nuclear Information System (INIS)

    Khaykovich, B.; Gubarev, M.V.; Bagdasarova, Y.; Ramsey, B.D.; Moncton, D.E.

    2011-01-01

    We demonstrate neutron beam focusing by axisymmetric mirror systems based on a pair of mirrors consisting of a confocal ellipsoid and hyperboloid. Such a system, known as a Wolter mirror configuration, is commonly used in X-ray telescopes. The axisymmetric Wolter geometry allows nesting of several mirror pairs to increase collection efficiency. We implemented a system containing four nested Ni mirror pairs, which was tested by the focusing of a polychromatic neutron beam at the MIT Reactor. In addition, we have carried out extensive ray-tracing simulations of the mirrors and their performance in different situations. The major advantages of the Wolter mirrors are nesting for large angular collection and aberration-free performance. We discuss how these advantages can be utilized to benefit various neutron scattering methods, such as imaging, SANS, and time-of-flight spectroscopy.

  15. High-altitude cosmic ray neutrons: probable source for the high-energy protons of the earth's radiation belts

    International Nuclear Information System (INIS)

    Hajnal, F.; Wilson, J.

    1992-01-01

    'Full Text:' Several High-altitude cosmic-ray neutron measurements were performed by the NASA Ames Laboratory in the mid-to late-1970s using airplanes flying at about 13km altitude along constant geomagnetic latitudes of 20, 44 and 51 degrees north. Bonner spheres and manganese, gold and aluminium foils were used in the measurements. In addition, large moderated BF-3 counters served as normalizing instruments. Data analyses performed at that time did not provide complete and unambiguous spectral information and field intensities. Recently, using our new unfolding methods and codes, and Bonner-sphere response function extensions for higher energies, 'new' neutron spectral intensities were obtained, which show progressive hardening of neutron spectra as a function of increasing geomagnetic latitude, with substantial increases in the energy region iron, 1 0 MeV to 10 GeV. For example, we found that the total neutron fluences at 20 and 51 degrees magnetic north are in the ratio of 1 to 5.2 and the 10 MeV to 10 GeV fluence ratio is 1 to 18. The magnitude of these ratios is quite remarkable. From the new results, the derived absolute neutron energy distribution is of the correct strength and shape for the albedo neutrons to be the main source of the high-energy protons trapped in the Earth's inner radiation belt. In addition, the results, depending on the extrapolation scheme used, indicate that the neutron dose equivalent rate may be as high as 0.1 mSv/h near the geomagnetic north pole and thus a significant contributor to the radiation exposures of pilots, flight attendants and the general public. (author)

  16. Gamma-ray measurements at the WNR white neutron source

    International Nuclear Information System (INIS)

    Nelson, R.O.; Wender, S.A.; Mayo, D.R.

    1994-01-01

    Photon production data have been acquired in the incident neutron energy range, 1 n γ 56 Fe, and 207,208 Pb. These data are useful both for testing nuclear reaction models at intermediate energies and for numerous applied purposes. BGO detectors do not have the good energy resolution of Ge detectors, but have much greater detection efficiency for gamma rays with energies greater than a few MeV. We have used an array of 5 BGO detectors to measure cross sections and angular distributions for photon production from C and N. A large, well-shielded BGO detector has been used to measure fast neutron capture in the giant resonance region with a maximum gamma-ray energy of 52 MeV. We present results of our study of the isovector giant quadrupole resonance in 41 Ca via these capture measurements. Recent measurements of inclusive photon spectra from our neutron proton Bremsstrahlung experiment have been made using a gamma-ray telescope to detect gamma-rays in the energy range, 40 γ < 300 MeV. This detector is briefly described. The advantages and disadvantages of these detector systems are discussed using examples from our measurements. The status of current measurements is presented

  17. Designing a new type of neutron detector for neutron and gamma-ray discrimination via GEANT4

    International Nuclear Information System (INIS)

    Shan, Qing; Chu, Shengnan; Ling, Yongsheng; Cai, Pingkun; Jia, Wenbao

    2016-01-01

    Design of a new type of neutron detector, consisting of a fast neutron converter, plastic scintillator, and Cherenkov detector, to discriminate 14-MeV fast neutrons and gamma rays in a pulsed n–γ mixed field and monitor their neutron fluxes is reported in this study. Both neutrons and gamma rays can produce fluorescence in the scintillator when they are incident on the detector. However, only the secondary charged particles of the gamma rays can produce Cherenkov light in the Cherenkov detector. The neutron and gamma-ray fluxes can be calculated by measuring the fluorescence and Cherenkov light. The GEANT4 Monte Carlo simulation toolkit is used to simulate the whole process occurring in the detector, whose optimum parameters are known. Analysis of the simulation results leads to a calculation method of neutron flux. This method is verified by calculating the neutron fluxes using pulsed n–γ mixed fields with different n/γ ratios, and the results show that the relative errors of all calculations are <5%. - Highlights: • A neutron detector is developed to discriminate 14-MeV fast neutrons and gamma rays. • The GEANT4 is used to optimize the parameters of the detector. • A calculation method of neutron flux is established through the simulation. • Several n/γ mixture fields are simulated to validate of the calculation method.

  18. Design of a versatile detector for the detection of charged particles, neutrons and gamma rays. Neutron interaction with the matter

    International Nuclear Information System (INIS)

    Perez P, J.J.

    1991-01-01

    The Fostron detector detects charged particles, neutrons and gamma rays with a reasonable discrimination power. Because the typical detectors for neutrons present a great uncertainty in the detection, this work was focused mainly to the neutron detection in presence of gamma radiation. Also there are mentioned the advantages and disadvantages of the Fostron detector

  19. Micro-array collimators for X-rays and neutrons

    International Nuclear Information System (INIS)

    Cimmino, A.; Allman, B.E.; Klein, A.G.; Bastie, P.

    1998-08-01

    The authors describe the fabrication techniques of novel, compact optical elements for collimating and/or focusing beams of X-rays or thermal neutrons. These optical elements are solid composite arrays consisting of regular stacks of alternating micro-foils, analogous in action to Soller slit collimators, but up to three orders of magnitude smaller. The arrays are made of alternating metals with suitable refractive indices for reflection and/or absorption of the specific radiation. In one implementation, the arrays are made of stacked micro-foils of transmissive elements (Al, Cu) coated and/or electroplated with absorbing elements (Gd, Cd), which are repeatedly rolled or drawn and restacked to achieve the required collimation parameters. The authors present results of these collimators using both X-rays and neutrons. The performance of the collimating element is limited only by the choice of micro-foil materials and the uniformity of their interfaces

  20. Chemical crystallography with pulsed neutrons and synchrotron x-rays

    International Nuclear Information System (INIS)

    Carrondo, M.A.; Jeffrey, G.A.

    1988-01-01

    Solid-state chemists and physicists, crystallographers and molecular biologists who are using or who plan to use the special properties of pulsed neutron spallation and synchrotron X-ray sources will find this book invaluable. Those scientists who have not yet gained experience in working with such sources will find the basic physics of the radiations, their production and their scattering properties explained, together with descriptions of the different types of diffraction experiments which use them

  1. Resonant production of $\\gamma$ rays in jolted cold neutron stars

    CERN Document Server

    Kusenko, A

    1998-01-01

    Acoustic shock waves passing through colliding cold neutron stars can cause repetitive superconducting phase transitions in which the proton condensate relaxes to its equilibrium value via coherent oscillations. As a result, a resonant non-thermal production of gamma rays in the MeV energy range with power up to 10^(52) erg/s can take place during the short period of time before the nuclear matter is heated by the shock waves.

  2. Gamma ray attenuation coefficient measurement for neutron-absorbent materials

    Energy Technology Data Exchange (ETDEWEB)

    Jalali, Majid [Isfahan Nuclear Science and Technology Research Institute (NSTRT), Reactor and Accelerators Research and Development School, Atomic Energy Organization (Iran, Islamic Republic of)], E-mail: m_jalali@entc.org.ir; Mohammadi, Ali [Faculty of Science, Department of Physics, University of Kashan, Km. 6, Ravand Road, Kashan (Iran, Islamic Republic of)

    2008-05-15

    The compounds Na{sub 2}B{sub 4}O{sub 7}, H{sub 3}BO{sub 3}, CdCl{sub 2} and NaCl and their solutions attenuate gamma rays in addition to neutron absorption. These compounds are widely used in the shielding of neutron sources, reactor control and neutron converters. Mass attenuation coefficients of gamma related to the four compounds aforementioned, in energies 662, 778.9, 867.38, 964.1, 1085.9, 1173, 1212.9, 1299.1,1332 and 1408 keV, have been determined by the {gamma} rays transmission method in a good geometry setup; also, these coefficients were calculated by MCNP code. A comparison between experiments, simulations and Xcom code has shown that the study has potential application for determining the attenuation coefficient of various compound materials. Experiment and computation show that H{sub 3}BO{sub 3} with the lowest average Z has the highest gamma ray attenuation coefficient among the aforementioned compounds.

  3. Synergistic effects of neutron and gamma ray irradiation of a commercial CHMOS microcontroller

    International Nuclear Information System (INIS)

    Xiao-Ming, Jin; Ru-Yu, Fan; Wei, Chen; Dong-Sheng, Lin; Shan-Chao, Yang; Xiao-Yan, Bai; Yan, Liu; Xiao-Qiang, Guo; Gui-Zhen, Wang

    2010-01-01

    This paper presents the experimental results of a combined irradiation environment of neutron and gamma rays on 80C196KC20, which is a 16-bit high performance member of the MCS96 microcontroller family. The electrical and functional tests were made in three irradiation environments: neutron, gamma rays, combined irradiation of neutron and gamma rays. The experimental results show that the neutron irradiation can affect the total ionizing dose behaviour. Compared with the single radiation environment, the microcontroller exhibits considerably more severe degradation in neutron and gamma ray synergistic irradiation. This phenomenon may cause a significant hardness assurance problem. (condensed matter: structure, thermal and mechanical properties)

  4. Investigation of propagation algorithms for ray-tracing simulation of polarized neutrons

    DEFF Research Database (Denmark)

    Bergbäck Knudsen, Erik; Tranum-Rømer, A.; Willendrup, Peter Kjær

    2014-01-01

    Ray-tracing of polarized neutrons faces a challenge when the neutron propagates through an inhomogeneous magnetic field. This affects simulations of novel instruments using encoding of energy or angle into the neutron spin. We here present a new implementation of propagation of polarized neutrons...

  5. Neutron Capture Gamma-Ray Spectroscopy. Proceedings of the International Symposium on Neutron Capture Gamma-Ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1969-11-15

    Experimental capabilities in the field of neutron capture gamma-ray spectroscopy have expanded greatly in the last few years; this has been due in large part to the advent of high-quality Ge(Li) detectors, improvements in electronic data processing, and improvements in bent-crystal spectrometers. Previously unsuspected phenomena, such as the '5. 5-MeV1 anomaly, have appeared and new research tools, such as neutron guide tubes, have been brought into use. Equally exciting developments have occurred in the theory of neutron capture. Complex spectra have yielded to analysis after account had been taken of such effects as vibration, rotation and Coriolis forces, and the theoretical prediction of capture spectra seems to be a future possibility. In view of the International Atomic Energy Agency's close interest in this subject and the need for an international exchange of ideas to analyse and study the latest developments, the organizers of the Symposium felt that work on neutron capture gamma-ray spectroscopy had achieved such valuable and significant results that the time had come for this information to be presented, examined and discussed internationally.

  6. Neutron Capture Gamma-Ray Spectroscopy. Proceedings of the International Symposium on Neutron Capture Gamma-Ray Spectroscopy

    International Nuclear Information System (INIS)

    1969-01-01

    Experimental capabilities in the field of neutron capture gamma-ray spectroscopy have expanded greatly in the last few years; this has been due in large part to the advent of high-quality Ge(Li) detectors, improvements in electronic data processing, and improvements in bent-crystal spectrometers. Previously unsuspected phenomena, such as the '5. 5-MeV1 anomaly, have appeared and new research tools, such as neutron guide tubes, have been brought into use. Equally exciting developments have occurred in the theory of neutron capture. Complex spectra have yielded to analysis after account had been taken of such effects as vibration, rotation and Coriolis forces, and the theoretical prediction of capture spectra seems to be a future possibility. In view of the International Atomic Energy Agency's close interest in this subject and the need for an international exchange of ideas to analyse and study the latest developments, the organizers of the Symposium felt that work on neutron capture gamma-ray spectroscopy had achieved such valuable and significant results that the time had come for this information to be presented, examined and discussed internationally

  7. Study of SMM flares in gamma-rays and neutrons

    Science.gov (United States)

    Dunphy, Philip P.; Chupp, Edward L.

    1992-01-01

    This report summarizes the results of the research supported by NASA grant NAGW-2755 and lists the papers and publications produced through the grant. The objective of the work was to study solar flares that produced observable signals from high-energy (greater than 10 MeV) gamma-rays and neutrons in the Solar Maximum Mission (SMM) Gamma-Ray Spectrometer (GRS). In 3 of 4 flares that had been studied previously, most of the neutrons and neutral pions appear to have been produced after the 'main' impulsive phase as determined from hard x-rays and gamma-rays. We, therefore, proposed to analyze the timing of the high-energy radiation, and its implications for the acceleration, trapping, and transport of flare particles. It was equally important to characterize the spectral shapes of the interacting energetic electrons and protons - another key factor in constraining possible particle acceleration mechanisms. In section 2.0, we discuss the goals of the research. In section 3.0, we summarize the results of the research. In section 4.0, we list the papers and publications produced under the grant. Preprints or reprints of the publications are attached as appendices.

  8. On hard X-ray spectra of accreting neutron stars

    International Nuclear Information System (INIS)

    Zheleznyakov, V.V.

    1982-01-01

    Formation of the spectra of X-ray pulsars and gamma bursters is investigated. Interpretation of a hard X-ray spectrum of pulsars containing cyclotron lines is feasible on the basis of an isothermal model of a polar spot heated due to acccretion to a neutron star. It has been ascertained that in the regions responsible for the formation of continuum radiation and lines the mode polarization is determined by a magnetized vacuum rather than by a plasma. Bearing this in mind, the influence of the magnetic field of a star on the wide wings of the cyclotron line and on its depth is discussed. The part played by the accreting column in the case of strong accretion (approx. equal to 10 19 el cm -3 ) needed for long sustaining of the high level of X-rays from a neutron star-pulsar is studied. There occur the gaps in spectrum at frequencies close to the electron gyro-frequency and its harmonics due to the screening of the hot spot by the opaque gyro-resonant layer located within the accreting column. These gaps ensure the formation of cyclotron lines in absorption irrespective of the presence of such lines in the X-ray spectrum of a polar hot spot. (orig./WL)

  9. Measurement of secondary gamma-ray skyshine and groundshine from intense 14 MeV neutron source facility

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shigeo; Morotomi, Ryutaro; Kondo, Tetsuo; Murata, Isao; Takahashi, Akito [Osaka Univ., Suita (Japan). Dept. of Nuclear Engineering

    2000-03-01

    Secondary gamma-ray skyshine and groundshine, including the direct contribution from the facility building, have been measured with an Hp-Ge detector and an NaI(Tl) detector at the Intense 14 MeV Neutron Source Facility OKTAVIAN of Osaka University, Japan. The mechanism of secondary gamma-rays propagation were analyzed with the measured spectrum with the Hp-Ge detector. The contribution of the skyshine was shown to be a continuum spectrum that was composed of mainly Compton scattered high energy secondary gamma-rays generated in the facility building created by (n, {gamma}) reaction. The contribution of the groundshine considerably contained secondary gamma-rays generated by {sup nat}Si (n, {gamma}) reaction in soil, including the albedo contribution from the ground. And the total contribution contained capture gamma-rays from iron (Fe) and other nuclides. The measurements with the NaI(Tl) detector as well as the Hp-Ge detector were carried out to investigate the dependence of gamma-ray dose as a function of distance from the neutron source up to hundreds meters. Consequently, it was found that the dependence could be fitted with the function of const.{center_dot}exp(-r/{lambda})/r{sup n}, where n values were around 2 except for the skyshine (n {approx} 1). It was thus indicated that the contribution of the skyshine could be propagated farther downfield than the direct contribution from the facility. The measured ratios of the three contributions (skyshine, groundshine, and direct contributions) and the distance dependence in each path were shown to be in good agreement with calculated results by the Monte Carlo transport code MCNP-4A. And the total contributions for the two detectors of NaI(Tl) and Hp-Ge agree excellently with each other. (author)

  10. A study of the cosmic-ray neutron field near interfaces

    CERN Document Server

    Sheu, R J; Jiang, S H

    2002-01-01

    This study investigated the characteristics of the cosmic-ray neutron field near air/ground and air/water interfaces with an emphasis on the angular distribution. Two sets of high-efficiency neutron detecting systems were used. The first one, called the Bonner Cylinders, was used for measurements of the energy information. The other one, referred to as the eight-channel neutron detector (8CND), was used to characterize the angular information of the neutron field. The measured results were used to normalize and confirm one-dimensional transport calculations for cosmic-ray neutrons below 20 MeV in the air/ground and air/water media. Annual sea level cosmic-ray neutron doses were then determined based on the obtained characteristics of low-energy cosmic-ray neutrons near interfaces and estimated contribution from high-energy neutrons.

  11. Neutron and gamma-ray spectra of 239PuBe and 241AmBe

    International Nuclear Information System (INIS)

    Vega-Carrillo, H.R.; Manzanares-Acuna, Eduardo; Becerra-Ferreiro, A.M.; Carrillo-Nunez, Aureliano

    2002-01-01

    Neutron and gamma-ray spectra of 239 PuBe and 241 AmBe were measured and their dosimetric features were calculated. Neutron spectra were measured using a multisphere neutron spectrometer with a 6 LiI(Eu) scintillator. The 239 PuBe neutron spectrum was measured in an open environment, while the 241 AmBe neutron spectrum was measured in a closed environment. Gamma-ray spectra were measured using a NaI(Tl) scintillator using the same experimental conditions for both sources. The effect of measuring conditions for the 241 AmBe neutron spectrum indicates the presence of epithermal and thermal neutrons. The low-resolution neutron spectra obtained with the multisphere spectrometer allows one to calculate the dosimetric features of neutron sources. At 100 cm both sources produce approximately the same count rate as that of the 4.4 MeV gamma-ray per unit of alpha emitter activity

  12. Neutron production by cosmic-ray muons in various materials

    Science.gov (United States)

    Manukovsky, K. V.; Ryazhskaya, O. G.; Sobolevsky, N. M.; Yudin, A. V.

    2016-07-01

    The results obtained by studying the background of neutrons produced by cosmic-raymuons in underground experimental facilities intended for rare-event searches and in surrounding rock are presented. The types of this rock may include granite, sedimentary rock, gypsum, and rock salt. Neutron production and transfer were simulated using the Geant4 and SHIELD transport codes. These codes were tuned via a comparison of the results of calculations with experimental data—in particular, with data of the Artemovsk research station of the Institute for Nuclear Research (INR, Moscow, Russia)—as well as via an intercomparison of results of calculations with the Geant4 and SHIELD codes. It turns out that the atomic-number dependence of the production and yield of neutrons has an irregular character and does not allow a description in terms of a universal function of the atomic number. The parameters of this dependence are different for two groups of nuclei—nuclei consisting of alpha particles and all of the remaining nuclei. Moreover, there are manifest exceptions from a power-law dependence—for example, argon. This may entail important consequences both for the existing underground experimental facilities and for those under construction. Investigation of cosmic-ray-induced neutron production in various materials is of paramount importance for the interpretation of experiments conducted at large depths under the Earth's surface.

  13. A novel detector assembly for detecting thermal neutrons, fast neutrons and gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Cester, D., E-mail: davide.cester@gmail.com [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Lunardon, M.; Moretto, S. [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Nebbia, G. [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Pino, F. [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Sajo-Bohus, L. [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Laboratorio de Fisica Nuclear, Universidad Simon Bolivar, Apartado 89000, 1080 A Caracas (Venezuela, Bolivarian Republic of); Stevanato, L.; Bonesso, I.; Turato, F. [Dipartimento di Fisica ed Astronomia dell' Università di Padova, Via Marzolo 8, I-35131 Padova (Italy)

    2016-09-11

    A new composite detector has been developed by combining two different commercial scintillators. The device has the capability to detect gamma rays as well as thermal and fast neutrons; the signal discrimination between the three types is performed on-line by means of waveform digitizers and PSD algorithms. This work describes the assembled detector and its discrimination performance to be employed in the applied field.

  14. A novel detector assembly for detecting thermal neutrons, fast neutrons and gamma rays

    International Nuclear Information System (INIS)

    Cester, D.; Lunardon, M.; Moretto, S.; Nebbia, G.; Pino, F.; Sajo-Bohus, L.; Stevanato, L.; Bonesso, I.; Turato, F.

    2016-01-01

    A new composite detector has been developed by combining two different commercial scintillators. The device has the capability to detect gamma rays as well as thermal and fast neutrons; the signal discrimination between the three types is performed on-line by means of waveform digitizers and PSD algorithms. This work describes the assembled detector and its discrimination performance to be employed in the applied field.

  15. Mortality and sterility induced in Piophila casei by x-ray and neutron irradiation

    International Nuclear Information System (INIS)

    Sacchi, L.; Gasperi, G.; Grigolo, A.; Caprotti, M.; Pinelli, T.; Altieri, S.

    1977-01-01

    Different doses of neutrons and X-rays were given to 5-day-old pupae of Piophila casei L. (Diptera, Piophilidae), just before their emergence. The mortality and sterility induced by the different types of radiation were measured. Neutrons are more effective than X-rays in provoking lethal lesions in somatic cells. Females are more resistant than males to the sterilizing action of neutrons, the relative biological efficiency of neutrons being 6 and 3.5, respectively

  16. Mortality and sterility induced in Piophila casei by x-ray and neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sacchi, L; Gasperi, G [Pavia Univ. (Italy). Ist. di Zoologia; Grigolo, A [Bari Univ. (Italy). Ist. di Zoologia e Anatomia Comparata; Caprotti, M [Pavia Univ. (Italy). Fondazio Clinica del Lavoro. Reparto di Radiologia; Pinelli, T; Altieri, S [Pavia Univ. (Italy). Istituto di Fisica Nucleare

    1977-01-01

    Different doses of neutrons and X-rays were given to 5-day-old pupae of Piophila casei L. (Diptera, Piophilidae), just before their emergence. The mortality and sterility induced by the different types of radiation were measured. Neutrons are more effective than X-rays in provoking lethal lesions in somatic cells. Females are more resistant than males to the sterilizing action of neutrons, the relative biological efficiency of neutrons being 6 and 3.5, respectively.

  17. Application of the alanine detector to gamma-ray, X-ray and fast neutron dosimetry

    International Nuclear Information System (INIS)

    Waligorski, M.P.R.; Hansen, J.W.; Byrski, E.

    1987-01-01

    A dosimeter based on alanine has been developed at the INP in Krakow and at Risoe National Laboratory. Due to its near tissue-equivalence and stability of signal, measured using ESR spectrometry at room temperature, this free-radical amino-acid dosimetric system is particularly suitable for measuring X-ray, gamma-ray and fast neutron doses in the range 10-10 5 Gy. The relative effectiveness (with respect to 60 Co γ-rays) of the alanine dosimeter to 250 kVp X-rays and to cyclotron-produced fast neutrons (mean neutron energy 5.6 MeV) is measured to be 0.76± 0.06 and 0.60±0.05, respectively. The suitability of the alanine dosimeter for intercomparison gamma-ray dosimetry is also shown. The estimated absolute difference between 60 Co dosimetry at Risoe National Laboratory and at the Centre of Oncology in Krakow is about 5%, somewhat more than the experimental uncertainty. These results are based on ESR measurements performed in Krakow on about 25% of the exposed detectors. 28 refs., 2 figs., 3 tabs. (author)

  18. The application of X-ray, γ-ray and neutron diffraction to the characterization of single crystal perfection

    International Nuclear Information System (INIS)

    Freund, A.; Schneider, J.R.

    1976-01-01

    The work is divided into the following three chapters: 1) diffraction by perfect and imperfect crystals, 2) experimental apparatus (describing gamma ray, X-ray and neutron diffractometers), 3) application of diffraction methods to the development of neutron monochromators. (WBU) [de

  19. Development of advanced sensing system for antipersonnel mines with neutron capture gamma-ray analysis

    International Nuclear Information System (INIS)

    Iguchi, Tetsuo

    2006-01-01

    Neutron induced prompt gamma-ray analysis (NPGA) for survey of antipersonnel landmines is developed. A concept of sensor system with compact strong accelerator neutron source, simulation of detection and simulation results by trial examinations are stated. The measurement principles, objects, system construction, development of compact accelerator neutron source and high performance neutron capture gamma-ray detector, simulation of detection of landmine are reported. It can detect 10.8 MeV gamma-rays and estimate the incident angle of gamma-ray. Schematic layouts of the compact accelerator neutron resource, the compact Compton gamma camera and sensor unit, the estimation principle of incident angle of gamma-ray, experiments and comparison between the experimental results and the estimation results, a preliminary trial experiment system for sensing antipersonnel mines with neutron capture gamma-ray analysis are illustrated. (S.Y.)

  20. The measurement of gamma ray induced heating in a mixed neutron and gamma ray environment

    International Nuclear Information System (INIS)

    Chiu, H.K.

    1991-10-01

    The problem of measuring the gamma heating in a mixed DT neutron and gamma ray environment was explored. A new detector technique was developed to make this measurement. Gamma heating measurements were made in a low-Z assembly irradiated with 14-Mev neutrons and (n, n') gammas produced by a Texas Nuclear Model 9400 neutron generator. Heating measurements were made in the mid-line of the lattice using a proportional counter operating in the Continuously-varied Bias-voltage Acquisition mode. The neutron-induced signal was separated from the gamma-induced signal by exploiting the signal rise-time differences inherent to radiations of different linear energy transfer coefficient, which are observable in a proportional counter. The operating limits of this measurement technique were explored by varying the counter position in the low-Z lattice, hence changing the irradiation spectrum observed. The experiment was modelled numerically to help interpret the measured results. The transport of neutrons and gamma rays in the assembly was modelled using the one- dimensional radiation transport code ANISN/PC. The cross-section set used for these calculations was derived from the ENDF/B-V library using the code MC 2 -2 for the case of DT neutrons slowing down in a low-Z material. The calculated neutron and gamma spectra in the slab and the relevant mass-stopping powers were used to construct weighting factors which relate the energy deposition in the counter fill-gas to that in the counter wall and in the surrounding material. The gamma energy deposition at various positions in the lattice is estimated by applying these weighting factors to the measured gamma energy deposition in the counter at those locations

  1. Development of criticality accident detector measuring neutrons and gamma-rays

    International Nuclear Information System (INIS)

    Tsujimura, Norio; Yoshida, Tadayoshi; Ishii, Masato

    2005-01-01

    The authors developed a new criticality accident detector measuring neutrons and gamma-rays. The detector is a cylindrical plastic scintillator coupled to a current-mode operated photomultiplier, and is covered by an inner cadmium shell, acting as a neutron to gamma-ray converter, and a 5cm thick outer polyethylene moderator in order to respond to the same threshold triggering dose regardless of whether it was exposed to neutrons, gamma-rays or a mixture of the two radiations. (author)

  2. Neutron and x-ray scattering studies of premartensitic phenomena

    International Nuclear Information System (INIS)

    Shapiro, S.M.

    1987-01-01

    This paper discusses neutron and x-ray investigations of some metallic alloys which are known to exhibit martensitic transformations. It is shown that precursor effects are usually present in the diffuse scattering and in the phonon dispersion curves, but the transition cannot be described in terms of the soft mode picture used in the Landau and Devonshire theory to describe structural phase transitions. In addition, it is noted that it is inappropriate to look at these microstructures as incommensurate systems, but more correctly as a coherent coexistence of two phases

  3. Forward to all-around survey of environmental neutrons from cosmic ray secondary neutron measurements. History and prospects

    International Nuclear Information System (INIS)

    Aratani, M.

    2000-01-01

    At the present stage of our civilization, environmental neutrons come from not only cosmic ray but also the various kinds of nuclear facilities where uranium, plutonium, californium-252, and other transuranium elements are treated in a large scale. To be regret, those neutron-emitting elements have already been released into the environment by experiments with the military purpose, and been distributed among atmosphere, hydrosphere and geosphere in further larger scale than the peaceful use of nuclear energy. Now environmental neutrons should be surveyed against the horizontal component from the nuclear facilities, upward component from soil, and downward component as secondary neutron from cosmic ray, which is to be regarded as background neutron in the environment. The third category of neutrons have long been surveyed by Y. Nishina and his group of the Institute of Physical and Chemical Research (IPCR) since 1970 at the Itabashi Branch (Itabashi, Tokyo) of IPCR. The BF 3 gas-filled monitors (20 cm in diameter x 200 cm) of 28 (36 at maximum) vessels were used for neutrons till Sept. of 1998, and were transferred to Yanpahchin, Tibet, China for the primary neutrons that might be preferred to secondary ones by researchers of the cosmic ray. A critical accident happened at the Tokai facilities of JCO (Japan Conversion Organization) on Sept. 30 1999, and was discussed in various contexts at home and in a severe tone abroad. A background survey of the environmental neutrons has not been made at any nuclear site or facilities concerning fission in this country. The neutron monitor which detected and recorded the neutrons from the JCO critical accidents was what had been equipped for the fusion research, but not for fission application. Radiation education on neutron has not been made in both school and social education. Basic scientists also may be responsible for the critical accident through making light of these fundamental aspects of nuclear technology. In this

  4. Materials testing by computerized tomography with neutrons and gamma-rays

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghobary, A M; Bakkoush, F A; Megahid, R M [Reactor and Neutron Physics Department, Nuclear Research Center, A.E.A., Cairo (Egypt)

    1997-12-31

    The method of computerized tomography by fast neutrons and gamma-rays are used for inspecting and testing of materials by non-destructive technique. The transmission technique was applied using narrow collimated beams of reactor neutrons and gamma-ray. The neutron and gamma-rays transmitted through the object inspection were measured by means of a neutron gamma detector with Ne - 213 liquid organic scintillator. The undesired pulses of neutrons or gamma-rays are rejected from the transmitted beam by a discrimination technique based on the difference in the decay part of light pulse produced by recoil electrons or recoil protons. The transmitted neutrons or gamma-rays for different projections used to get the image of the section through the object investigated using the method of filtered back projection (FBP) algorithm. 8 figs.

  5. ZZ SAIL, Albedo Scattering Data Library for 3-D Monte-Carlo Radiation Transport in LWR Pressure Vessel

    International Nuclear Information System (INIS)

    1982-01-01

    1 - Description of problem or function: Format: SAIL format; Number of groups: 23 neutron / 17 gamma-ray; Nuclides: Type 04 Concrete and Low Carbon Steel (A533B). Origin: Science Applications, Inc (SAI); Weighting spectrum: yes. SAIL is a library of albedo scattering data to be used in three-dimensional Monte Carlo codes to solve radiation transport problems specific to the reactor pressure vessel cavity region of a LWR. The library contains data for Type 04 Concrete and Low Carbon Steel (A533B). 2 - Method of solution: The calculation of the albedo data was perform- ed with a version of the discrete ordinates transport code DOT which treats the transport of neutrons, secondary gamma-rays and gamma- rays in one dimension, while maintaining the complete two-dimension- al treatment of the angular dependence

  6. Neutron and gamma ray streaming experiments at the fast neutron source reactor 'YAYOI'

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; Yanagisawa, Ichiro; Akiyama, Masatsugu; An, Shigehiro

    1979-07-01

    Neutron and gamma ray streaming experiments were performed in the ducts and cavities that were located in the heavy concrete shields of the fast neutron source reactor YAYOI of University of Tokyo. The configurations have the feature that the streaming through the ducts are occurred following the scattering in the cavity. The axes of the ducts are perpendicular to the source radiation from the core. The spectrum of the source was modified by putting a plug in the beam hole of the core. An aluminum plug and the plug which contains paraffin were used. The decay in the ducts, however, hardly depends on the source spectrum. The decay in the ducts is nearly exponential. (author)

  7. Stereographic images acquired with gamma rays and thermal neutron radiography

    International Nuclear Information System (INIS)

    Souza, Maria Ines Silvani; Almeida, Gevaldo L. de; Furieri, Rosanne C.; Lopes, Ricardo T.

    2011-01-01

    Full text: The inner structure of an object, which should not be submitted to an invasive assay, can only be perceived by using a suitable technique in order to render it transparent. A widely employed technique for this purpose involves the using of a radiation capable to pass through the object, collecting the transmitted radiation by a proper device, which furnishes a radiographic attenuation map of the object. This map, however, does not display the spatial distribution of the inner components of the object, but a convoluted view for each specific attitude of the object with regard to the set beam-detector. A 3D tomographic approach would show that distribution but it would demand a large number of projections requiring special equipment and software, not always available or affordable. In some circumstances however, a 3D tomography can be replaced by a stereographic view of the object under inspection, as done in this work, where instead of tens of radiographic projections, only two of them taken at suitable object attitudes are employed. Once acquired, these projections are properly processed and observed through a red and green eyeglass. For monochromatic images, this methodology requires the transformation of the black and white radiographs into red and white and green and white ones, which are afterwards merged to yield a single image. All the process is carried out with the software Image J . In this work, the Argonauta reactor at the Instituto de Engenharia Nuclear in Rio de Janeiro has been used as a source of thermal neutrons to acquire the neutron radiographic images, as well as to produce 198 Au sources employed in the acquisition of gamma-ray radiographic ones. X-ray or neutron-sensitive imaging plates have been used as detector, which after exposure were developed by a reader using a 0.5μm-diameter laser beam. (author)

  8. X-Ray Measurements Of A Thermo Scientific P385 DD Neutron Generator

    International Nuclear Information System (INIS)

    Wharton, C. J.; Seabury, E. H.; Chichester, D. L.; Caffrey, A. J.; Simpson, J.; Lemchak, M.

    2011-01-01

    Idaho National Laboratory is experimenting with electrical neutron generators, as potential replacements for californium-252 radioisotopic neutron sources in its PINS prompt gamma-ray neutron activation analysis (PGNAA) system for the identification of military chemical warfare agents and explosives. In addition to neutron output, we have recently measured the x-ray output of the Thermo Scientific P385 deuterium-deuterium neutron generator. X rays are a normal byproduct from neutron generators, but depending on their intensity and energy, x rays can interfere with gamma rays from the object under test, increase gamma-spectrometer dead time, and reduce PGNAA system throughput. The P385 x-ray energy spectrum was measured with a high-purity germanium (HPGe) detector, and a broad peak is evident at about 70 keV. To identify the source of the x rays within the neutron generator assembly, it was scanned by collimated scintillation detectors along its long axis. At the strongest x-ray emission points, the generator also was rotated 60 deg. between measurements. The scans show the primary source of x-ray emission from the P385 neutron generator is an area 60 mm from the neutron production target, in the vicinity of the ion source. Rotation of the neutron generator did not significantly alter the x-ray count rate, and its x-ray emission appears to be axially symmetric. A thin lead shield, 3.2 mm (1/8 inch) thick, reduced the 70-keV generator x rays to negligible levels.

  9. Three-dimensional reconstruction of neutron, gamma-ray, and x-ray sources using spherical harmonic decomposition

    Science.gov (United States)

    Volegov, P. L.; Danly, C. R.; Fittinghoff, D.; Geppert-Kleinrath, V.; Grim, G.; Merrill, F. E.; Wilde, C. H.

    2017-11-01

    Neutron, gamma-ray, and x-ray imaging are important diagnostic tools at the National Ignition Facility (NIF) for measuring the two-dimensional (2D) size and shape of the neutron producing region, for probing the remaining ablator and measuring the extent of the DT plasmas during the stagnation phase of Inertial Confinement Fusion implosions. Due to the difficulty and expense of building these imagers, at most only a few two-dimensional projections images will be available to reconstruct the three-dimensional (3D) sources. In this paper, we present a technique that has been developed for the 3D reconstruction of neutron, gamma-ray, and x-ray sources from a minimal number of 2D projections using spherical harmonics decomposition. We present the detailed algorithms used for this characterization and the results of reconstructed sources from experimental neutron and x-ray data collected at OMEGA and NIF.

  10. Neutron interrogation system using high gamma ray signature to detect contraband special nuclear materials in cargo

    Science.gov (United States)

    Slaughter, Dennis R [Oakland, CA; Pohl, Bertram A [Berkeley, CA; Dougan, Arden D [San Ramon, CA; Bernstein, Adam [Palo Alto, CA; Prussin, Stanley G [Kensington, CA; Norman, Eric B [Oakland, CA

    2008-04-15

    A system for inspecting cargo for the presence of special nuclear material. The cargo is irradiated with neutrons. The neutrons produce fission products in the special nuclear material which generate gamma rays. The gamma rays are detecting indicating the presence of the special nuclear material.

  11. Deficiency in Monte Carlo simulations of coupled neutron-gamma-ray fields

    NARCIS (Netherlands)

    Maleka, Peane P.; Maucec, Marko; de Meijer, Robert J.

    2011-01-01

    The deficiency in Monte Carlo simulations of coupled neutron-gamma-ray field was investigated by benchmarking two simulation codes with experimental data. Simulations showed better correspondence with the experimental data for gamma-ray transport only. In simulations, the neutron interactions with

  12. The uses of neutron capture γ-rays in environmental pollution measurements

    International Nuclear Information System (INIS)

    Abdel-Haleem, A.S.; Abdel-Samad, M.A.; Zaghloul, R.A.; Hassan, A.M.

    1996-01-01

    A neutron capture γ-ray spectroscopy facility using an isotopic neutron source, 252 Cf, has been installed and used for investigation of some environmental samples. The facility is designed and calibrated for measurement of the prompt γ-ray spectra due to thermal neutron capture. Qualitative analysis studies of some local environmental samples have been carried out using some developed analytical programs. The experimental results of the environmental pollutant analysis are discussed. (author)

  13. The transport of neutrons and gamma-rays in the air

    International Nuclear Information System (INIS)

    Adamski, J.

    1980-01-01

    The transport of neutrons and gamma rays in the infinite homogeneous air has been investigated. For the calculations has been used the Multigroup One Dimensional Discrete Ordinates Transport Code ANISN-W. The calculations have been performed for three types of neutron sources. The neutrons and gamma ray doses in the air have been analyzed, and comparison to the other authors' results has been given. (author)

  14. GEANT4 simulation study of a gamma-ray detector for neutron resonance densitometry

    International Nuclear Information System (INIS)

    Tsuchiya, Harufumi; Harada, Hideo; Koizumi, Mitsuo; Kitatani, Fumito; Takamine, Jun; Kureta, Masatoshi; Iimura, Hideki

    2013-01-01

    A design study of a gamma-ray detector for neutron resonance densitometry was made with GEANT4. The neutron resonance densitometry, combining neutron resonance transmission analysis and neutron resonance capture analysis, is a non-destructive technique to measure amounts of nuclear materials in melted fuels of the Fukushima Daiichi nuclear power plants. In order to effectively quantify impurities in the melted fuels via prompt gamma-ray measurements, a gamma-ray detector for the neutron resonance densitometry consists of cylindrical and well type LaBr 3 scintillators. The present simulation showed that the proposed gamma-ray detector suffices to clearly detect the gamma rays emitted by 10 B(n, αγ) reaction in a high environmental background due to 137 Cs radioactivity with its Compton edge suppressed at a considerably small level. (author)

  15. Extinction correction in white X-ray and neutron diffraction

    International Nuclear Information System (INIS)

    Tomiyoshi, S.; Yamada, M.; Watanabe, H.

    1980-01-01

    Extinction effects in white-beam X-ray and neutron diffraction are considered. In white-beam diffraction, a small deviation of the wavelength from the Bragg condition Δlambda is a variable which represents the line profile of the diffraction peaks, so that by using the new parameter Δlambda the theory is converted to one in white-beam diffraction. It is shown that for a convex crystal, primary extinction agrees with the results calculated already for monochromatic diffraction. The same relation is shown to hold in secondary extinction. It is concluded that extinction theory derived for monochromatic diffraction is applicable without any modification in white-beam diffraction. (Auth.)

  16. Measurement of TLD Albedo response on various calibration phantoms

    International Nuclear Information System (INIS)

    Momose, T.; Tsujimura, N.; Shinohara, K.; Ishiguro, H.; Nakamura, T.

    1996-01-01

    The International Commission on Radiation Units and Measurements (ICRU) has recommended that individual dosemeter should be calibrated on a suitable phantom and has pointed out that the calibration factor of a neutron dosemeter is strongly influenced by the the exact size and shape of the body and the phantom to which the dosemeter is attached. As the principle of an albedo type thermoluminescent personal dosemeter (albedo TLD) is essentially based on a detection of scattered and moderated neutron from a human body, the sensitivity of albedo TLD is strongly influenced by the incident neutron energy and the calibration phantom. (1) Therefore for albedo type thermoluminescent personal dosemeter (albedo TLD), the information of neutron albedo response on the calibration phantom is important for appropriate dose estimation. In order to investigate the effect of phantom type on the reading of the albedo TLD, measurement of the TLD energy response and angular response on some typical calibration phantoms was performed using dynamitron accelerator and 252 Cf neutron source. (author)

  17. Gamma-ray bursts from fast, galactic neutron stars

    International Nuclear Information System (INIS)

    Colgate, S.A.; Leonard, P.J.

    1996-01-01

    What makes a Galactic model of gamma-ray bursts (GBs) feasible is the observation of a new population of objects, fast neutron stars, that are isotropic with respect to the galaxy following a finite period, ∼30 My, after their formation (1). Our Galactic model for the isotropic component of GBs is based upon high-velocity neutron stars (NSs) that have accretion disks. These fast NSs are formed in tidally locked binaries, producing a unique population of high velocity (approx-gt 10 3 kms -1 ) and slowly rotating (8 s) NSs. Tidal locking occurs due to the meridional circulation caused by the conservation of angular momentum of the tidal lobes. Following the collapse to a NS and the explosion, these lobes initially perturb the NS in the direction of the companion. Subsequent accretion (1 to 2 s) occurs on the rear side of the initial motion, resulting in a runaway acceleration of the NS by neutrino emission from the hot accreted matter. The recoil momentum of the relativistic neutrino emission from the localized, down flowing matter far exceeds the momentum drag of the accreted matter. The recoil of the NS is oriented towards the companion, but the NS misses because of the pre-explosion orbital motion. The near miss captures matter from the companion and forms a disk around the NS. Accretion onto the NS from this initially gaseous disk due to the ''alpha'' viscosity results in a soft gamma-ray repeater phase, which lasts ∼10 4 yr. Later, after the neutron star has moved ∼30 kpc from its birthplace, solid bodies form in the disk, and accrete to planetoid size bodies after ∼3x10 7 years. Some of these planetoid bodies, with a mass of ∼10 21 endash 10 22 g, are perturbed into an orbit inside the tidal distortion radius of approx-gt 10 5 km. Of these ∼1% are captured by the magnetic field of the NS at R 3 km to create GBs

  18. Effect of Gamma Rays on Fast Neutron Registration in CR-39

    CERN Document Server

    Kobzev, A P; El-Halem, A A; Abdul-Ghaphar, U S; Salama, T A

    2002-01-01

    A set of CR-39 plastic detectors with front PE radiator was exposed to Am-Be neutron source, which has an emission rate of 0.86\\cdot 10^{7} sec^{-1}, and the neutron dose equivalent rate 1 m apart from the source is equal to 11 mrem/hr. Another set of samples was irradiated by a neutron dose of 4 rem, then exposed to different gamma-ray doses using ^{60}Co source. It was found that the track density grows with the increase of neutron dose and etching time. It was also found that the bulk etching rate V_{B}, the track diameter and the sensitivity of the CR-39 plastic detector with respect to the neutron irradiation increased with increasing gamma-ray dose in the range 1?10 Mrad. These results show that CR-39 can be considered as a promising fast neutron dosimeter and gamma-ray dosimeter.

  19. Evaluation of the Neutron Detector Response for Cosmic Ray Energy Spectrum by Monte Carlo Transport Simulation

    International Nuclear Information System (INIS)

    Pazianotto, Mauricio T.; Carlson, Brett V.; Federico, Claudio A.; Gonzalez, Odair L.

    2011-01-01

    Neutrons generated by the interaction of cosmic rays with the atmosphere make an important contribution to the dose accumulated in electronic circuits and aircraft crew members at flight altitude. High-energy neutrons are produced in spallation reactions and intranuclear cascade processes by primary cosmic-ray particle interactions with atoms in the atmosphere. These neutrons can produce secondary neutrons and also undergo a moderation process due to atmosphere interactions, resulting in a wider energy spectrum, ranging from thermal energies (0.025 eV) to energies of several hundreds of MeV. The Long-Counter (LC) detector is a widely used neutron detector designed to measure the directional flux of neutrons with about constant response over a wide energy range (thermal to 20 MeV). ). Its calibration process and the determination of its energy response for the wide-energy of cosmic ray induced neutron spectrum is a very difficult process due to the lack of installations with these capabilities. The goal of this study is to assess the behavior of the response of a Long Counter using the Monte Carlo (MC) computational code MCNPX (Monte Carlo N-Particle eXtended). The dependence of the Long Counter response on the angle of incidence, as well as on the neutron energy, will be carefully investigated, compared with the experimental data previously obtained with 241 Am-Be and 252 Cf neutron sources and extended to the neutron spectrum produced by cosmic rays. (Author)

  20. High-energy X-ray production in a boundary layer of an accreting neutron star

    International Nuclear Information System (INIS)

    Hanawa, Tomoyuki

    1991-01-01

    It is shown by Monte Carlo simulation that high-energy X-rays are produced through Compton scattering in a boundary layer of an accreting neutron star. The following is the mechanism for the high-energy X-ray production. An accreting neutron star has a boundary layer rotating rapidly on the surface. X-rays radiated from the star's surface are scattered in part in the boundary layer. Since the boundary layer rotates at a semirelativistic speed, the scattered X-ray energy is changed by the Compton effect. Some X-rays are scattered repeatedly between the neutron star and the boundary layer and become high-energy X-rays. This mechanism is a photon analog of the second-order Fermi acceleration of cosmic rays. When the boundary layer is semitransparent, high-energy X-rays are produced efficiently. 17 refs

  1. R -process Element Cosmic Rays from Neutron Star Mergers

    Energy Technology Data Exchange (ETDEWEB)

    Komiya, Yutaka; Shigeyama, Toshikazu [Research Center for the Early Universe, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, 113-0033, Tokyo (Japan)

    2017-09-10

    Neutron star mergers (NSMs) are one of the most plausible sources of r -process elements in the universe. Therefore, NSMs can also be a major source of ultra-heavy elements in cosmic rays. In this paper, we first estimate the contribution of r -process elements synthesized in NSMs to the ultra-heavy element cosmic rays (UHCRs) by calculating transport equations that take into account energy loss processes and spallations. We show that the flux of UHCRs accelerated by the NSMs themselves fluctuates by many orders of magnitude on a timescale of several million years and can overwhelm UHCRs accelerated by supernova remnants (SNRs) after an NSM takes place within a few kiloparsec from the solar system. Experiments with very long exposure times using meteorites as UHCR detectors can detect this fluctuation. As a consequence, we show that if NSMs are the primary source of UHCRs, future experiments using meteorites may be able to reveal the event history of NSMs in the solar vicinity. We also describe a possible difference in the abundance pattern and energy spectrum of UHCRs between NSM and SNR accelerations.

  2. Oxygen enhancement ratio (OER) to Neutron and Co-60 γ ray

    International Nuclear Information System (INIS)

    Kim, Mi Sook; Ji, Young Hoon; Lee, Yong Min; Kim Kyeoung Jung

    1997-01-01

    Experiments in vitro, using human cell lines was carried out in order to establish whether or not there was a difference between oxygen enhancement ratio (OER) of neutron and Co-60 γ-ray and to determine OER dependence on radiation dose. MG-63 cell line and H-460 cell line were defined as the most sensitive cell line to neutron among our laboratory holding cell lines through preliminary study. Anoxia as was produced in glove box. The box was flushed for one hour with a mixture of 5 % CO 2 in ultrapure N 2 (total oxygen concentration < 10 ppm) and irradiated with neutron and Co-60 γ-ray. Oxic condition was same as anoxic condition except being irradiated in general air condition. The lower OER was observed in neutron than in Co-60 γ-ray. The dose dependence of OER was observed in neutron and Co-60 γ-ray all. But the dose dependence of the OER is somewhat larger for Co-60 γ-ray than for neutron. In the range of 1 to 8 Gy, the OER for photon and neutron range from 1.54 to 1.94 and 1.23 to 1.26 in MG-63 cell line. In case of H-460 the OER for Co-60 γ-ray and neutron range from 1.24 to 1.60 and 1.06 to 1.07 respectively. (author). 19 refs., 5 tabs., 5 figs

  3. Polarized X-Ray Emission from Magnetized Neutron Stars: Signature of Strong-Field Vacuum Polarization

    Science.gov (United States)

    Lai, Dong; Ho, Wynn C.

    2003-08-01

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  4. Measurements of neutron and gamma ray streaming through a duct, (2), (3)

    International Nuclear Information System (INIS)

    Hashikura, Hiroyuki; Fukumoto, Hideshi; Akiyama, Masatsugu; Oka, Yoshiaki; An, Shigehiro

    1982-03-01

    Measurements of neutron and gamma ray streaming through a duct measurements of and a cavity in concrete shields were measured in the fast neutron source reactor YAYOI of the University of Tokyo. The neutron spectra measured by a NE213 scintillator and proton recoil counters were compared with the calculations using Monte Carlo code, MORSE-CG. The agreements between the experiments and the calculations were generally satisfactory. The attenuations of neutron and gamma ray in the cavity and the duct were studied in the three experimental configurations. (author)

  5. Polarized x-ray emission from magnetized neutron stars: signature of strong-field vacuum polarization.

    Science.gov (United States)

    Lai, Dong; Ho, Wynn C G

    2003-08-15

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  6. Time-of-flight discrimination between gamma-rays and neutrons by using artificial neural networks

    International Nuclear Information System (INIS)

    Akkoyun, S.

    2013-01-01

    Highlights: ► Time-of-flight (tof) is an obvious method for separation between gamma and neutron particles. ► tof distributions are obtained by neural networks. ► Neural network method is consistent with the experimental results. ► Neural networks can classify different events for discrimination. - Abstract: In gamma-ray spectroscopy, a number of neutrons are emitted from the nuclei together with the gamma-rays. These neutrons influence gamma-ray spectra. An obvious method for discrimination between neutrons and gamma-rays is based on the time-of-flight (tof) technique. In this work, the tof distributions of gamma-rays and neutrons were obtained both experimentally and by using artificial neural networks (ANNs). It was shown that, ANN can correctly classify gamma-ray and neutron events. Also, for highly nonlinear detector response for tof, we have constructed consistent empirical physical formulas (EPFs) by appropriate ANNs. These ANN–EPFs can be used to derive further physical functions which could be relevant to discrimination between gamma-rays and neutrons

  7. Oscillations During Thermonuclear X-ray Bursts: A New Probe of Neutron Stars

    Science.gov (United States)

    Strohmayer, Tod E.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    Observations of thermonuclear (also called Type 1) X-ray bursts from neutron stars in low mass X-ray binaries (LMXB) with the Rossi X-ray Timing Explorer (RXTE) have revealed large amplitude, high coherence X-ray brightness oscillations with frequencies in the 300 - 600 Hz range. Substantial spectral and timing evidence point to rotational modulation of the X-ray burst flux as the cause of these oscillations, and it is likely that they reveal the spin frequencies of neutron stars in LMXB from which they are detected. Here we review the status of our knowledge of these oscillations and describe how they can be used to constrain the masses and radii of neutron stars as well as the physics of thermonuclear burning on accreting neutron stars.

  8. Analysis of the propagation of neutrons and gamma-rays from the fast neutron source reactor YAYOI

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shigeo, E-mail: neutron@keyaki.cc.u-tokai.ac.jp [Department of Energy Science and Engineering, School of Engineering, Tokai University, Hiratsuka, Kanagawa 259-1292 (Japan); Murata, Isao [Division of Electrical, Electronic and Information Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); Nakagawa, Tsutomu; Saito, Isao [Nuclear Professional School, School of Engineering, The University of Tokyo, Tokai-mura, Naka-gun, Ibaraki 319-1188 (Japan)

    2011-10-01

    The skyshine effect is crucial for designing appropriate shielding. To investigate the skyshine effect, the propagation of neutrons was measured and analyzed at the fast neutron source reactor YAYOI. Pulse height spectra and dose distributions of neutron and secondary gamma-ray were measured outside YAYOI, and analyzed with MCNP-5 and JENDL-3.3. Comparison with the experimental results showed good agreement. Also, a semi-empirical formula was successfully derived to describe the dose distribution. The formulae can be used to predict the skyshine effect at YAYOI, and will be useful for estimating the skyshine effect and designing the shield structure for fusion facilities.

  9. Method and apparatus for neutron induced gamma ray logging for lithology identification

    International Nuclear Information System (INIS)

    Oliver, D.W.; Culver, R.B.

    1981-01-01

    The patent describes a neutron-gamma well logging technique which can distinguish between sandstone and limestone formations irrespective of water salinity in the formation. The formation surrounding a borehole is irradiated by fast neutrons and the resulting gamma rays are counted. The gamma rays are converted to electrical signals in three distinct steps; the first two signals result from gamma rays associated with calcium content of the formation and the third signal from gamma rays associated with silicon content. Gamma rays resulting from irradiation of calcium are counted at two non-contiguous energy bands. (O.T.)

  10. Measurements of keV-neutron capture {gamma} rays of fission products. 3

    Energy Technology Data Exchange (ETDEWEB)

    Igashira, Masayuki [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors

    1997-03-01

    {gamma} rays from the keV-neutron capture reactions by {sup 143,145}Nd and {sup 153}Eu have been measured in a neutron energy region of 10 to 80 keV, using a large anti-Compton NaI(Tl) {gamma}-ray spectrometer and the {sup 7}Li(p,n){sup 7}Be pulsed neutron source with a 3-MV Pelletron accelerator. The preliminary results for the capture cross sections and {gamma}-ray spectra of those nuclei are presented and discussed. (author)

  11. X-ray and neutron interrogation of air cargo for mobile applications

    Energy Technology Data Exchange (ETDEWEB)

    Van Liew, Seth

    2015-06-01

    A system for scanning break-bulk cargo for mobile applications is presented. This combines a 140 kV multi-view, multi-energy X-ray system with 2.5 MeV neutrons. The system uses dual energy X-ray radiography with neutron radiography. The X-ray and neutron systems were designed to be collocated in a mobile environment. Various materials were interrogated with the intent of distinguishing threat materials such as explosives from similar benign materials. In particular, the identification of threats and bengins with nearly identical effective atomic numbers has been demonstrated.

  12. X-ray and neutron interrogation of air cargo for mobile applications

    International Nuclear Information System (INIS)

    Van Liew, Seth

    2015-01-01

    A system for scanning break-bulk cargo for mobile applications is presented. This combines a 140 kV multi-view, multi-energy X-ray system with 2.5 MeV neutrons. The system uses dual energy X-ray radiography with neutron radiography. The X-ray and neutron systems were designed to be collocated in a mobile environment. Various materials were interrogated with the intent of distinguishing threat materials such as explosives from similar benign materials. In particular, the identification of threats and bengins with nearly identical effective atomic numbers has been demonstrated

  13. X-ray, neutron, and electron scattering. Report of a materials sciences workshop

    International Nuclear Information System (INIS)

    1977-08-01

    The ERDA Workshop on X-ray, Neutron, and Electron Scattering to assess needs and establish priorities for energy-related basic research on materials. The general goals of the Workshop were: (1) to review various energy technologies where x-ray, neutron, and electron scattering techniques might make significant contributions, (2) to identify present and future materials problems in the energy technologies and translate these problems into requirements for basic research by x-ray, neutron, and electron scattering techniques, (3) to recommend research areas utilizing these three scattering techniques that should be supported by the DPR Materials Sciences Program, and (4) to assign priorities to these research areas

  14. Measurements of keV-neutron capture γ rays of fission products. 2

    International Nuclear Information System (INIS)

    Igashira, Masayuki

    1996-01-01

    γ rays from the keV-neutron capture reactions by 140 Ce, 141 Pr, and 147,148,149,150 Sm have been measured in a neutron energy region of 10 to 550 keV, using a large anti-Compton NaI(Tl) γ-ray spectrometer and the 7 Li(p,n) 7 Be pulsed neutron source with a 3-MV Pelletron accelerator. The preliminary results for the capture cross sections and γ-ray spectra of those nuclei are presented and discussed. (author)

  15. Neutron and X-ray Tomography (NeXT) system for simultaneous, dual modality tomography

    Science.gov (United States)

    LaManna, J. M.; Hussey, D. S.; Baltic, E.; Jacobson, D. L.

    2017-11-01

    Dual mode tomography using neutrons and X-rays offers the potential of improved estimation of the composition of a sample from the complementary interaction of the two probes with the sample. We have developed a simultaneous neutron and 90 keV X-ray tomography system that is well suited to the study of porous media systems such as fuel cells, concrete, unconventional reservoir geologies, limestones, and other geological media. We present the characteristic performance of both the neutron and X-ray modalities. We illustrate the use of the simultaneous acquisition through improved phase identification in a concrete core.

  16. Time Evolving Fission Chain Theory and Fast Neutron and Gamma-Ray Counting Distributions

    International Nuclear Information System (INIS)

    Kim, K. S.; Nakae, L. F.; Prasad, M. K.; Snyderman, N. J.; Verbeke, J. M.

    2015-01-01

    Here, we solve a simple theoretical model of time evolving fission chains due to Feynman that generalizes and asymptotically approaches the point model theory. The point model theory has been used to analyze thermal neutron counting data. This extension of the theory underlies fast counting data for both neutrons and gamma rays from metal systems. Fast neutron and gamma-ray counting is now possible using liquid scintillator arrays with nanosecond time resolution. For individual fission chains, the differential equations describing three correlated probability distributions are solved: the time-dependent internal neutron population, accumulation of fissions in time, and accumulation of leaked neutrons in time. Explicit analytic formulas are given for correlated moments of the time evolving chain populations. The equations for random time gate fast neutron and gamma-ray counting distributions, due to randomly initiated chains, are presented. Correlated moment equations are given for both random time gate and triggered time gate counting. There are explicit formulas for all correlated moments are given up to triple order, for all combinations of correlated fast neutrons and gamma rays. The nonlinear differential equations for probabilities for time dependent fission chain populations have a remarkably simple Monte Carlo realization. A Monte Carlo code was developed for this theory and is shown to statistically realize the solutions to the fission chain theory probability distributions. Combined with random initiation of chains and detection of external quanta, the Monte Carlo code generates time tagged data for neutron and gamma-ray counting and from these data the counting distributions.

  17. Micronuclei induced by fast neutrons versus 60Co gamma-rays in human peripheral blood lymphocytes.

    Science.gov (United States)

    Vral, A; Verhaegen, F; Thierens, H; De Ridder, L

    1994-03-01

    Here we compared the effectiveness of neutrons ( = 5.5 MeV) versus 60Co gamma-rays in producing micronuclei (MN) in human lymphocytes. To obtain dose-response data, blood samples of six donors were irradiated with doses ranging from 0.1 to 5 Gy for gamma-rays and 0.1-3 Gy for neutrons. A linear dependence of MN yield with dose was found for fast neutrons while for gamma-rays a nonlinear dependence existed. For both radiation qualities no significant interindividual differences were found. Derived relative biological effectiveness values decreased with increasing dose. The MN frequency distributions were overdispersed with respect to the Poisson distribution, with neutrons showing higher dispersion values than with gamma-rays. To compare the repair kinetics of both radiation qualities split-dose experiments were performed. A dose of 4 Gy gamma-rays (3 Gy neutrons) was delivered either as a single exposure or in two equal fractions separated by time intervals ranging from 30 min to 10 h (30 min to 7 h for neutrons). The data showed for gamma-rays a significant decline (30% +/- 10%) in MN yield with interfraction time due to repair of DNA damage. This repair is a continuous process starting almost immediately after the first of the two doses and lasting 3-5 h. For fast neutrons no decline was observed indicating irreparable damage.

  18. Measurements of prompt gamma-rays from fast-neutron induced fission with the LICORNE directional neutron source

    CERN Document Server

    Wilson, J N; Halipre, P; Oberstedt, S; Oberstedt, A

    2014-01-01

    At the IPN Orsay we have developed a unique, directional, fast neutron source called LICORNE, intended initially to facilitate prompt fission gamma measurements. The ability of the IPN Orsay tandem accelerator to produce intense beams of $^7$Li is exploited to produce quasi-monoenergetic neutrons between 0.5 - 4 MeV using the p($^7$Li,$^7$Be)n inverse reaction. The available fluxes of up to 7 × 10$^7$ neutrons/second/steradian for the thickest hydrogen-rich targets are comparable to similar installations, but with two added advantages: (i) The kinematic focusing produces a natural neutron beam collimation which allows placement of gamma detectors adjacent to the irradiated sample unimpeded by source neutrons. (ii) The background of scattered neutrons in the experimental hall is drastically reduced. The dedicated neutron converter was commissioned in June 2013. Some preliminary results from the first experiment using the LICORNE neutron source at the IPN Orsay are presented. Prompt fission gamma rays from fas...

  19. Laboratory tests on neutron shields for gamma-ray detectors in space

    CERN Document Server

    Hong, J; Hailey, C J

    2000-01-01

    Shields capable of suppressing neutron-induced background in new classes of gamma-ray detectors such as CdZnTe are becoming important for a variety of reasons. These include a high cross section for neutron interactions in new classes of detector materials as well as the inefficient vetoing of neutron-induced background in conventional active shields. We have previously demonstrated through Monte-Carlo simulations how our new approach, supershields, is superior to the monolithic, bi-atomic neutron shields which have been developed in the past. We report here on the first prototype models for supershields based on boron and hydrogen. We verify the performance of these supershields through laboratory experiments. These experimental results, as well as measurements of conventional monolithic neutron shields, are shown to be consistent with Monte-Carlo simulations. We discuss the implications of this experiment for designs of supershields in general and their application to future hard X-ray/gamma-ray experiments...

  20. Individual neutron dosimetry

    International Nuclear Information System (INIS)

    Mauricio, C.L.P.

    1987-01-01

    The most important concepts and development in individual neutron dosimetry are presented, especially the dosimetric properties of the albedo technique. The main problem in albedo dosimetry is to calibrate the dosemeter in the environs of each neutron source. Some of the most used calibration techniques are discussed. The IRD albedo dosemeter used in the routine neutron individual monitoring is described in detail. Its dosimetric properties and calibration methods are discussed. (Author) [pt

  1. Neutron activation analysis of lipsticks using gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Mirsa, G.; Mittal, V.K.

    2004-01-01

    Neutron activation analysis with gamma-ray spectrometry was used to measure the concentrations of various elements in lipsticks of popular Indian and foreign brands. The aim of the present work was to study the possibility of existence of trace elements in samples of lipsticks (the ingredients of which are mostly organic in nature) and to see whether trace elements could distinguish lipsticks of different Indian and foreign brands from the forensic point of view apart from their inter-se differentiation. In the different samples of lipsticks that were analysed the following elements were detected: Au, Ba, Br, Ca, Cs, Fe, Na, Ru, Sb, Sc, Ta, Yb, Zn, Rb and Se. It was found that inter-se differentiation of lipsticks was possible on the basis of concentrations of trace elements and their profile. Concentration of bromine in samples of lipsticks identified lipsticks of different Indian brands. Samples of lipsticks of Indian and foreign brands could be differentiated on the basis of concentrations of cesium, antimony and scandium which were found to be higher in foreign brands as compared to those in Indian brands. (authors)

  2. Cosmic Rays and Clouds, 1. Formation of Lead Mesoatoms In Neutron Monitor By Soft Negative Muons and Expected Atmospheric Electric Field Effect In The Cosmic Ray Neutron Component

    Science.gov (United States)

    Dorman, L. I.; Dorman, I. V.

    We extend our model (Dorman and Dorman, 1995) of cosmic ray atmospheric electric field effect on the case of neutron monitor. We take into account that about 0.07 of neu- tron monitor counting rate caused by negative soft muons captured by lead nucleons and formed mesoatoms with generation of several MeV energy neutrons from lead. In this case the neutron monitor or neutron supermonitor works as analyzer which de- tects muons of only one, negative sign. It is very important because the atmospheric electric field effect have opposite signs for positive and negative muons that main part of this effect in the muon telescope or in ionization chamber is compensated and we can observe only small part of total effect of one sign muons. On the basis of our gen- eral theory of cosmic ray meteorological effects with taking into account of negative soft muon acceleration and deceleration in the Earth atmosphere (in dependence of di- rection and intensity of electric field) we discuss the possibility of existing this effect in cosmic ray neutron component and made some rough estimations. REFERENCES: Dorman L.I. and Dorman I.V., 1995. "Cosmic-ray atmospheric electric field effects". Canadian J. of Physics, Vol. 73, pp. 440-443.

  3. Observations of Surfzone Albedo

    Science.gov (United States)

    Sinnett, G.; Feddersen, F.

    2014-12-01

    The surfzone environment (where waves break) contains several unique and previously unconsidered processes that affect the heat budget. Entering short-wave radiation is a dominant term in both shelf and surfzone heat budgets. In contrast to the shelf, however, depth limited wave breaking in the surfzone generates spray, whitewater and suspended sediments, elevating the surface albedo (ratio of reflected to incident short-wave radiation). Elevated albedo reduces the level of solar short-wave radiation entering the water, potentially resulting in less heating. Additionally, surfzone water quality is often impacted by fecal bacteria contamination. As bacteria mortality is related to short-wave solar radiation, elevated surfzone albedo could reduce pathogen mortality, impacting human health. Albedo in the open ocean has been frequently studied and parameterizations often consider solar zenith angle, wind speed and ocean chlorophyll concentration, producing albedo values typically near 0.06. However, surfzone albedo observations have been extremely sparse, yet show depth limited wave breaking may increase the albedo by nearly a factor of 10 up to 0.5. Here, we present findings from a field study at the Scripps Institution of Oceanography pier to observe the affect of waves on surfzone albedo. Concurrent measurements were taken with a four-way radiometer (to measure both downwelling and upwelling short-wave and long wave radiation) mounted above the surfzone. A co-located GoPro camera was used to relate visual aspects of the surfzone to measured reflectance, and wave height and period were observed with a bottom mounted pressure sensor in 5 m water depth just outside the surfzone. Wind speed and direction were observed on the pier 10 m above the water surface. Here, we will examine the surfzone albedo dependence on surfzone parameters, such as wave height.

  4. Ames collaborative study of cosmic-ray neutrons. II. Low- and mid-latitude flights

    International Nuclear Information System (INIS)

    Stephens, L.D.; McCaslin, J.B.; Smith, A.R.; Thomas, R.H.; Hewitt, J.E.; Hughes, L.

    1978-01-01

    The continuing progress of the Ames Collaborative Study of Cosmic Ray Neutrons is described. Data obtained aboard flights from Hawaii at altitudes of 41,000 and 45,000 feet, and in the range of geomagnetic latitude 17 0 N less than or equal to lambda less than or equal to 21 0 N are reported. Preliminary estimates of neutron spectra were made

  5. Scanning of Cargo Containers by Gamma-Ray and Fast Neutron Radiography

    International Nuclear Information System (INIS)

    Yousri, A.M.; Bashter, I.I.; Megahid, M.R.; Osman, A.M.; Kansouh, W.A.; Reda, A.M.

    2011-01-01

    This paper describes the combined systems which were installed and tested to detect contraband smuggled in cargo containers. These combined systems are based on radiographers work by gamma-rays emitted from point source 60 Co with 0.5 Ci activity and neutrons emitted from point isotopic sources of Pu-α-Be as well as 14 MeV neutrons emitted from sealed tube neutron generator. The transmitted gamma ray through the inspected object was measured by gamma detection system with NaI(Tl) detector while the transmitted fast neutron beam was measured by a neutron gamma detection system with stilbene organic scintillator. The later possess the capability of discrimination between between gamma and neutron pulses using a discrimination system based on pulse shape discrimination method. The measured intensities of primary incident and transmitted beams of gamma-rays and fast neutrons were used to construct 2D cross-sectional images of the inspected objects hidden directly within benign materials of the container and for object screened by high dense material to stop object detection by gamma or X-rays. The constructed images for the inspected objects show the good capability and effectiveness of the installed gamma and neutron radiographers to detect illicit materials hidden in air cargo containers and sea containers of med size. They have also indicated that the developed scanning systems possess the ease of mobility and low cost of scanning

  6. Single-crystal filters for attenuating epithermal neutrons and gamma rays in reactor beams

    DEFF Research Database (Denmark)

    Rustad, B.M.; Als-Nielsen, Jens Aage; Bahnsen, A.

    1965-01-01

    Cross section of representative samples of bismuth and quartz were measured at room and liquid nitrogen temperatures over neutron energy range of 0.0007 to 2.0 ev to obtain data for design of single-crystal 32-cm bismuth filters for attenuating fast neutrons and γ-rays in reactor beams; filters may...

  7. Study on the identification method of chemical warfare agents with spectroscopy of neutron induced γ rays

    International Nuclear Information System (INIS)

    Liu Boxue; Li Yun; Li Xiangbao

    1996-01-01

    The paper briefly describes some non-destructive verification technologies of chemical warfare agents in-site, and some application of neutron induced gamma ray analysis, such as multi-elements analysis of coal, hidden explosive detection and identification of chemical agents. It also describes some problems in developing the portable isotopic neutron spectroscopy for non-destructive evaluation of chemical warfare agents

  8. Active neutron and gamma-ray imaging of highly enriched uranium for treaty verification.

    Science.gov (United States)

    Hamel, Michael C; Polack, J Kyle; Ruch, Marc L; Marcath, Matthew J; Clarke, Shaun D; Pozzi, Sara A

    2017-08-11

    The detection and characterization of highly enriched uranium (HEU) presents a large challenge in the non-proliferation field. HEU has a low neutron emission rate and most gamma rays are low energy and easily shielded. To address this challenge, an instrument known as the dual-particle imager (DPI) was used with a portable deuterium-tritium (DT) neutron generator to detect neutrons and gamma rays from induced fission in HEU. We evaluated system response using a 13.7-kg HEU sphere in several configurations with no moderation, high-density polyethylene (HDPE) moderation, and tungsten moderation. A hollow tungsten sphere was interrogated to evaluate the response to a possible hoax item. First, localization capabilities were demonstrated by reconstructing neutron and gamma-ray images. Once localized, additional properties such as fast neutron energy spectra and time-dependent neutron count rates were attributed to the items. For the interrogated configurations containing HEU, the reconstructed neutron spectra resembled Watt spectra, which gave confidence that the interrogated items were undergoing induced fission. The time-dependent neutron count rate was also compared for each configuration and shown to be dependent on the neutron multiplication of the item. This result showed that the DPI is a viable tool for localizing and confirming fissile mass and multiplication.

  9. Comparing of γ-ray, proton and neutron radiation effects on optoelectronics for space

    International Nuclear Information System (INIS)

    Yu Qingkui; Tang Min; Meng Meng; Li Pengwei; Wen Ping; Li Haian; Tang Jiesen; Wang Sixin; Song Yamei

    2014-01-01

    We performed irradiation test on optoelectronics with γ-rays, proton and neutron. The electrical measurements were performed pre and after irradiation. The degradations induced by each radiation source was compared. (authors)

  10. Bone structure investigation using X-ray and neutron radiography techniques

    International Nuclear Information System (INIS)

    Kamali Moghaddam, K.; Taheri, T.; Ayubian, M.

    2008-01-01

    In this paper we report a study of the periodic variation of bone tissue humidity immediately after death using both neutron and X-ray radiography techniques. After death, bone tissue experiences sequential change over time. This change consists of organic and inorganic phase variations of the bone structure, as well as gradual reduction of the bone's water content. These variations are investigated by periodically imaging dead bone using X-ray and neutron radiography. Chemical separation techniques such as calcification and decalcification were used to separate the organic and inorganic phases of the bone. Comparison between X-ray and neutron radiographs of bone following phase separation can be potentially used to investigate the bone disease or to determine a cause of death. In our experiments, we use adult rat femur bones, and the interpretations of these results are presented based on our understanding of bone structure and images produced by neutron and X-ray photon interactions

  11. Bone structure investigation using X-ray and neutron radiography techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kamali Moghaddam, K. [Nuclear Research Center (NRC), Atomic Energy Organization of Iran (AEOI), P.O. Box 11365-8486, Tehran (Iran, Islamic Republic of)], E-mail: kkamali@aeoi.org.ir; Taheri, T.; Ayubian, M. [Nuclear Research Center (NRC), Atomic Energy Organization of Iran (AEOI), P.O. Box 11365-8486, Tehran (Iran, Islamic Republic of)

    2008-01-15

    In this paper we report a study of the periodic variation of bone tissue humidity immediately after death using both neutron and X-ray radiography techniques. After death, bone tissue experiences sequential change over time. This change consists of organic and inorganic phase variations of the bone structure, as well as gradual reduction of the bone's water content. These variations are investigated by periodically imaging dead bone using X-ray and neutron radiography. Chemical separation techniques such as calcification and decalcification were used to separate the organic and inorganic phases of the bone. Comparison between X-ray and neutron radiographs of bone following phase separation can be potentially used to investigate the bone disease or to determine a cause of death. In our experiments, we use adult rat femur bones, and the interpretations of these results are presented based on our understanding of bone structure and images produced by neutron and X-ray photon interactions.

  12. Simultaneous parameter optimization of x-ray and neutron reflectivity data using genetic algorithms

    International Nuclear Information System (INIS)

    Singh, Surendra; Basu, Saibal

    2016-01-01

    X-ray and neutron reflectivity are two non destructive techniques which provide a wealth of information on thickness, structure and interracial properties in nanometer length scale. Combination of X-ray and neutron reflectivity is well suited for obtaining physical parameters of nanostructured thin films and superlattices. Neutrons provide a different contrast between the elements than X-rays and are also sensitive to the magnetization depth profile in thin films and superlattices. The real space information is extracted by fitting a model for the structure of the thin film sample in reflectometry experiments. We have applied a Genetic Algorithms technique to extract depth dependent structure and magnetic in thin film and multilayer systems by simultaneously fitting X-ray and neutron reflectivity data.

  13. Simultaneous parameter optimization of x-ray and neutron reflectivity data using genetic algorithms

    Science.gov (United States)

    Singh, Surendra; Basu, Saibal

    2016-05-01

    X-ray and neutron reflectivity are two non destructive techniques which provide a wealth of information on thickness, structure and interracial properties in nanometer length scale. Combination of X-ray and neutron reflectivity is well suited for obtaining physical parameters of nanostructured thin films and superlattices. Neutrons provide a different contrast between the elements than X-rays and are also sensitive to the magnetization depth profile in thin films and superlattices. The real space information is extracted by fitting a model for the structure of the thin film sample in reflectometry experiments. We have applied a Genetic Algorithms technique to extract depth dependent structure and magnetic in thin film and multilayer systems by simultaneously fitting X-ray and neutron reflectivity data.

  14. Gravitational radiation and gamma-ray bursts from accreting neutron stars

    International Nuclear Information System (INIS)

    Mosquera Cuesta, H.J.; Araujo, J.C.N. de; Aguiar, O.D.; Horvath, J.E.

    2000-01-01

    It is well known that hydrodynamic instabilities can be induced in rapidly rotating low magnetic field neutron stars, which accrete mass from a companion in both high and low mass X-ray binaries. (author)

  15. Simultaneous parameter optimization of x-ray and neutron reflectivity data using genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Surendra, E-mail: surendra@barc.gov.in; Basu, Saibal [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 India (India)

    2016-05-23

    X-ray and neutron reflectivity are two non destructive techniques which provide a wealth of information on thickness, structure and interracial properties in nanometer length scale. Combination of X-ray and neutron reflectivity is well suited for obtaining physical parameters of nanostructured thin films and superlattices. Neutrons provide a different contrast between the elements than X-rays and are also sensitive to the magnetization depth profile in thin films and superlattices. The real space information is extracted by fitting a model for the structure of the thin film sample in reflectometry experiments. We have applied a Genetic Algorithms technique to extract depth dependent structure and magnetic in thin film and multilayer systems by simultaneously fitting X-ray and neutron reflectivity data.

  16. Cosmic-ray-induced ship-effect neutron measurements and implications for cargo scanning at borders

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T. [Pacific Northwest National Laboratory, MS K7-36, P.O. Box 999, Richland, WA 99352 (United States)], E-mail: richard.kouzes@pnl.gov; Ely, James H.; Seifert, Allen; Siciliano, Edward R.; Weier, Dennis R.; Windsor, Lindsay K.; Woodring, Mitchell L. [Pacific Northwest National Laboratory, MS K7-36, P.O. Box 999, Richland, WA 99352 (United States); Borgardt, James; Buckley, Elise; Flumerfelt, Eric; Oliveri, Anna; Salvitti, Matt [Juniata College Physics Department, 1700 Moore St., Huntingdon, PA 16652 (United States)

    2008-03-11

    Neutron measurements are used as part of the interdiction process for illicit nuclear materials at border crossings. Even though the natural neutron background is small, its variation can impact the sensitivity of detection systems. The natural background of neutrons that is observed in monitoring instruments arises almost entirely from cosmic-ray-induced cascades in the atmosphere and the surrounding environment. One significant source of variation in the observed neutron background is produced by the 'ship effect' in large quantities of cargo that transit past detection instruments. This paper reports on results from measurements with typical monitoring equipment of ship effect neutrons in various materials. One new result is the 'neutron shadow shielding' effect seen with some low neutron density materials.

  17. Inhomogeneity of neutron and gamma-ray attenuation in biological shields

    Energy Technology Data Exchange (ETDEWEB)

    El-bakkoush, F A; El-Ghobary, A M; Megahid, R M [Reactor and Neutron physics Department, Nuclear Research Center, A.E.A., Cairo (Egypt)

    1997-12-31

    Measurements have been carried-out to investigate the attenuation properties of some materials which are used as biological shields around nuclear radiation sources. Investigation was performed by measuring the transmitted fast neutron and gamma-spectra through cylindrical samples of magnetite- limonite, steel and cellulose shields. The neutron and gamma spectra were measured by a neutron-gamma spectrometer with stilbene scintillator. Discrimination between neutron and gamma pulses was achieved by a discrimination method. The obtained results are displayed in the form of neutron and gamma spectra and attenuation relations which are used to derive the total macroscopic cross-sections for neutrons and total linear attenuation coefficients for gamma-rays. The values of neutron and gamma relaxation lengths are also derived for the investigated materials. 10 figs., 1 tabs.

  18. Discrimination methods between neutron and gamma rays for boron loaded plastic scintillators

    CERN Document Server

    Normand, S; Haan, S; Louvel, M

    2002-01-01

    Boron loaded plastic scintillators exhibit interesting properties for neutron detection in nuclear waste management and especially in investigating the amount of fissile materials when enclosed in waste containers. Combining a high thermal neutron efficiency and a low mean neutron lifetime, they are suitable in neutron multiplicity counting. However, due to their high sensitivity to gamma rays, pulse shape discrimination methods need to be developed in order to optimize the passive neutron assay measurement. From the knowledge of their physical properties, it is possible to separate the three kinds of particles that have interacted in the boron loaded plastic scintillator (gamma, fast neutron and thermal neutron). For this purpose, we have developed and compared the two well known discrimination methods (zero crossing and charge comparison) applied for the first time to boron loaded plastic scintillator. The setup for the zero crossing discrimination method and the charge comparison methods is thoroughly expl...

  19. Energy–angle correlation of neutrons and gamma-rays emitted from an HEU source

    Energy Technology Data Exchange (ETDEWEB)

    Miloshevsky, G., E-mail: gennady@purdue.edu; Hassanein, A.

    2014-06-01

    Special Nuclear Materials (SNM) yield very unique fission signatures, namely correlated neutrons and gamma-rays. A major challenge is not only to detect, but also to rapidly identify and recognize SNM with certainty. Accounting for particle multiplicity and correlations is one of standard ways to detect SNM. However, many parameter data such as joint distributions of energy, angle, lifetime, and multiplicity of neutrons and gamma-rays can lead to better recognition of SNM signatures in the background radiation noise. These joint distributions are not well understood. The Monte Carlo simulations of the transport of neutrons and gamma-rays produced from spontaneous and interrogation-induced fission of SNM are carried out using the developed MONSOL computer code. The energy spectra of neutrons and gamma-rays from a bare Highly Enriched Uranium (HEU) source are investigated. The energy spectrum of gamma-rays shows spectral lines by which HEU isotopes can be identified, while those of neutrons do not show any characteristic lines. The joint probability density function (JPDF) of the energy–angle association of neutrons and gamma-rays is constructed. Marginal probability density functions (MPDFs) of energy and angle are derived from JPDF. A probabilistic model is developed for the analysis of JPDF and MPDFs. This probabilistic model is used to evaluate mean values, standard deviations, covariance and correlation between the energy and angle of neutrons and gamma-rays emitted from the HEU source. For both neutrons and gamma-rays, it is found that the energy–angle variables are only weakly correlated.

  20. Shape difference between scintillation pulses due to γ rays and to neutrons

    International Nuclear Information System (INIS)

    Cambou, Francis; Ambrosino, Georges

    1960-01-01

    A simple method is described which allows to clearly show the shape differences between γ ray- and neutron-induced pulses. In the neutrons case the intensity of the slow component is 2.4 times higher than in the γ ray case. Reprint of a paper published in Comptes rendus des seances de l'Academie des Sciences, t. 250, p. 1034-1036, sitting of 8 February 1960 [fr

  1. Sequential measurements of spectrum and dose for cosmic-ray neutrons on the ground

    International Nuclear Information System (INIS)

    Hirabayashi, N.; Nunomiya, T.; Suzuki, H.; Nakamura, T.

    2002-01-01

    The earth is continually bathed in high-energy particles that come from outside the solar system, known as galactic cosmic rays. When these particles penetrate the magnetic fields of the solar system and the Earth and reach the Earth's atmosphere, they collide with atomic nuclei in air and secondary cosmic rays of every kind. On the other hand, levels of accumulation of the semiconductor increase recently, and the soft error that the cosmic-ray neutrons cause has been regarded as questionable. There have been long-term measurements of cosmic-ray neutron fluence at several places in the world, but no systematic study on cosmic-ray neutron spectrum measurements. This study aimed to measure the cosmic-ray neutron spectrum and dose on the ground during the solar maximum period of 2000 to 2002. Measurements have been continuing in a cabin of Tohoku University Kawauchi campus, by using five multi-moderator spectrometers (Bonner sphere), 12.7 cm diam by 12.7 cm long NE213 scintillator, and rem counter. The Bonner sphere uses a 5.08 cm diam spherical 3 He gas proportional counter and the rem counter uses a 12.7 cm diam 3 He gas counter. The neutron spectra were obtained by unfolding from the count rates measured with the Bonner sphere using the SAND code and the pulse height spectra measured with the NE213 scintillator using the FORIST code . The cosmic- ray neutron spectrum and ambient dose rates have been measured sequentially from April 2001. Furthermore, the correlation between ambient dose rate and the atmospheric pressure was investigated with a barometer. We are also very much interested in the variation of neutron spectrum following big solar flares. From the sequential measurements, we found that the cosmic-ray neutron spectrum has two peaks at around 1 MeV and at around 100 MeV, and the higher energy peak increases with a big solar flare

  2. Measurement of neutron and gamma-ray production double differential cross section at KEK

    International Nuclear Information System (INIS)

    Ishibashi, Kenji

    1995-01-01

    High energy nuclear radiations were measured for 0.8-3.0 GeV proton induced reactions at KEK. The measurement was carried out to overcome the problems arising from the use of secondary beam line of a quite low incident beam intensity. Digital pulse shape discrimination method was applicable to separation between high energy neutrons and gamma-rays. By the use of a number of scintillators, cross sections were obtained for production of neutrons and gamma-rays. (author)

  3. A Study on the Neutron Dose Distribution in Case of 10 MV X-rays Radiotherapy

    International Nuclear Information System (INIS)

    Park, Cheol Soo; Shin, Seong Soo; Lim, Cheong Hwan; Jung, Hong Ryang

    2008-01-01

    This study is to measure the radiation dose of neutrons generated by the particle accelerator during X-ray (photon) treatment with a neutron detection method by using CR-39, and to research how the generation of neutrons may incur problems associated with radiation doses for patient treatment when using high energy photons for cancer treatment as a clinical application. The findings are summarized as follows : The results showed that average 0.35 mSv was measured with exposure of 1 Gy photon in case of fast neutron, 0.65 mSv with exposure of 2 Gy photon, 1.82 mSv exposure of 5 Gy, 0.26 mSv with exposure of 1 Gy photon in case of thermal neutron, 0.56 mSv with exposure of 2 Gy photon, and 1.23 mSv with exposure of 5 Gy of photon. By measuring the occurrence of neutron by using Wedge Filter, it has been confirmed that the occurrence of neutrons increased when using Wedge Filter. The results also showed that more neutrons were detected over the existing experiments when using an SRS Cone requiring high doses of radiation. Total 2.85 mSv neutrons were found on the average with exposure of 5 Gy photon in case of fast neutron and 1.37 mSv neutrons were found on the average with exposure of 5 Gy photon in case of thermal neutron. During the general treatment, about 1.6 times more neutrons over 5 Gy photon were found in case of fast neutron and about 1.12 time more neutrons over 5 Gy photon were found in case of thermal neutron.

  4. Neutron and X-ray emission studies in a low energy plasma focus

    Energy Technology Data Exchange (ETDEWEB)

    Zakaullah, M. [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Physics; Murtaza, G. [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Physics; Qamar, S. [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Physics; Ahmad, I. [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Physics; Beg, M.M. [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Physics

    1996-03-01

    In a low energy Mather-type plasma focus energized by a single 32 {mu}F capacitor, the X-ray and neutron emission is investigated using time-integrated and time-resolved detectors. The X-ray emission profile has a width (FWHM) of 40-50 ns. The neutron emission profile is broader compared to the X-ray emission profile and also delayed by 30-40 ns. To identify different regimes of X-ray emission, an X-ray pin-hole camera along with different absorption filters is employed. While the X-ray emission is high within a narrow pressure range of 2.0-2.5 mbar, the neutron emission is intense for a wider range of 1.0-4.5 mbar. The intense X-ray emission seems to originate from the axially moving shock wave. These results also indicate rather different production mechanisms for X-ray and neutron emission. Also on comparing the X-ray images with Al(2 {mu}m), Al(5 {mu}m), Al(9 {mu}m) filters, we find that the bulk of X-rays from the focus filament have energies less than 2 keV. (orig.).

  5. Improving material identification by combining x-ray and neutron tomography

    Science.gov (United States)

    LaManna, Jacob M.; Hussey, Daniel S.; Baltic, Eli; Jacobson, David L.

    2017-09-01

    X-rays and neutrons provide complementary non-destructive probes for the analysis of structure and chemical composition of materials. Contrast differences between the modes arise due to the differences in interaction with matter. Due to the high sensitivity to hydrogen, neutrons excel at separating liquid water or hydrogenous phases from the underlying structure while X-rays resolve the solid structure. Many samples of interest, such as fluid flow in porous materials or curing concrete, are stochastic or slowly changing with time which makes analysis of sequential imaging with X-rays and neutrons difficult as the sample may change between scans. To alleviate this issue, NIST has developed a system for simultaneous X-ray and neutron tomography by orienting a 90 keVpeak micro-focus X-ray tube orthogonally to a thermal neutron beam. This system allows for non-destructive, multimodal tomography of dynamic or stochastic samples while penetrating through sample environment equipment such as pressure and flow vessels. Current efforts are underway to develop methods for 2D histogram based segmentation of reconstructed volumes. By leveraging the contrast differences between X-rays and neutrons, greater histogram peak separation can occur in 2D vs 1D enabling improved material identification.

  6. The response of mouse skin to re-irradiation with x-rays or fast neutrons

    International Nuclear Information System (INIS)

    Tsukiyama, Iwao; Egawa, Sunao; Kumazawa, Akiyoshi; Iino, Yuu.

    1986-01-01

    Effects of neutrons and x-rays on mouse skin which had been previously irradiated with x-rays were investigated. Two tattoo marks were placed in the hairless legs of mice at intervals of 15 mm. The legs were exposed to various doses of x-ray and neutrons to determine the relative biological effectiveness (RBE) using the contraction of the skin as an index. The RBE was 0.93 - 1.73. The legs of the mice were preexposed to 25 Gy of x-ray, and exposed 4 months later. The contraction of the skin began earlier than after the first irradiation. RBE was 2.18 - 2.47. This RBE was higher than that in untreated mice. These results suggest that previously irradiated normal tissues are much more sensitive to neutrons than to x-rays. (author)

  7. Gamma-ray-spectroscopy following high-flux 14-MeV neutron activation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R.E.

    1981-10-12

    The Rotating Target Neutron Source (RTNS-I), a high-intensity source of 14-MeV neutrons at the Lawrence Livermore National Laboratory (LLNL), has been used for applications in activation analysis, inertial-confinement-fusion diagnostic development, and fission decay-heat studies. The fast-neutron flux from the RTNS-I is at least 50 times the maximum fluxes available from typical neutron generators, making these applications possible. Facilities and procedures necessary for gamma-ray spectroscopy of samples irradiated at the RTNS-I were developed.

  8. Gamma-ray-spectroscopy following high-flux 14-MeV neutron activation

    International Nuclear Information System (INIS)

    Williams, R.E.

    1981-01-01

    The Rotating Target Neutron Source (RTNS-I), a high-intensity source of 14-MeV neutrons at the Lawrence Livermore National Laboratory (LLNL), has been used for applications in activation analysis, inertial-confinement-fusion diagnostic development, and fission decay-heat studies. The fast-neutron flux from the RTNS-I is at least 50 times the maximum fluxes available from typical neutron generators, making these applications possible. Facilities and procedures necessary for gamma-ray spectroscopy of samples irradiated at the RTNS-I were developed

  9. Neutron, x-ray scattering and TEM studies of Ni-Ti multilayers

    International Nuclear Information System (INIS)

    Keem, J.E.; Wood, J.; Grupido, N.; Hart, K.; Nutt, S.; Reichel, D.G.; Yelon, W.B.

    1988-01-01

    The authors present an analysis of Ni-Ti multilayer neutron reflectors and supermirrors undertaken to identify the causes of the lower than expected observed scattering power and critical angle enhancement of Ni-Ti supermirrors. Results of these investigations focus attention on cusp formation in the Ni-Ti bilayers as probable cause for the reduced neutron scattering power. Grazing angle x-ray and neutron scattering, wide angle neutron diffraction and analytical cross sectional TEM have been used. The multilayers were produced by magnetron sputtering and ion-beam deposition on float glass substrates and silicon wafers

  10. Dosimeter incorporating radiophotoluminescent detectors for thermal neutrons and γ-rays in n-γ fields

    Energy Technology Data Exchange (ETDEWEB)

    Salem, Y.O. [Groupe RaMsEs, Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/IN2P3, 23 rue du Loess, BP 28, F-67037 Strasbourg Cedex 2 (France); Nachab, A., E-mail: a.nachab@uca.ma [Département de physique, Faculté Poly-disciplinaire, Université Cadi Ayyad, Route Sidi Bouzid BP 4162, 46000 Safi (Morocco); Roy, C.; Nourreddine, A. [Groupe RaMsEs, Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS/IN2P3, 23 rue du Loess, BP 28, F-67037 Strasbourg Cedex 2 (France)

    2016-10-15

    We have developed a dosimeter associating different neutron converters with two radiophotoluminescent detectors to measure thermal neutrons and γ-rays in a mixed n-γ field. Tests show that the H{sup ∗}(10) and H{sub p}(10) responses to thermal neutrons and γ-rays are linear with detection limits lower than 0.4 mSv. The angular dependence of the dosimeter response is satisfactory and the influence of a phantom on the results is examined.

  11. Effects of fission neutrons and X-rays on the epithelium of the mouse stomach

    International Nuclear Information System (INIS)

    Kingma-ter Haar, J.M.

    1982-07-01

    A quantitative study is presented of the effects of whole-body irradiation on the stomach of mice. Two types of ionizing radiation were compared - fast fission neutrons of 1.0 MeV mean energy and 300 kVp X-rays. The effects on the functional cell populations, on gastric secretion and on gastric stem cell populations were studied. These effects have been investigated a) for a neutron dose in the lethal dose-range of 4.0 Gy as a function of time and b) at a post-irradiation interval of 3 weeks as a function of neutron and X-ray dose. (Auth.)

  12. The 7th Japan-Taiwan joint meeting on neutron and X-ray scattering. Proceedings

    International Nuclear Information System (INIS)

    2016-03-01

    The 7th Japan-Taiwan joint meeting on neutron and X-ray scattering in Kumatori is held bilaterally in Japan and Taiwan. This meeting provides the recent outstanding results in the fields of fundamental polymer and biological sciences and their applications as well. In the fields of the X-ray and/or neutron scattering, the methodological progress expands the research fields and gives us new scientific insights. This meeting invites the researchers developing new methodologies, such as dynamics measurement utilizing nuclear Bragg resonance, subunit-kinetics measurement with deuteration-assisted small-angle neutron scattering and so on. (J.P.N.)

  13. Discriminated neutron and X-ray radiography using multi-color scintillation detector

    International Nuclear Information System (INIS)

    Nittoh, Koichi; Takahara, Takeshi; Yoshida, Tadashi; Tamura, Toshiyuki

    1999-01-01

    A new conversion screen Gd 2 O 2 S:Eu is developed, which emits red light on irradiation by thermal neutrons. By applying this in combination with the currently used Gd 2 O 2 S:Tb, a green-light scintillator, in the radiography under a neutron + X-ray coexisting field, we can easily separate the neutron image and the X-ray image by simple color-image processing. This technique enables a non-destructive and detailed inspection of industrial products composed both of light elements (water, plastics, etc.) and heavy elements (metals), widening the horizon of new applications

  14. Discriminated neutron and X-ray radiography using multi-color scintillation detector

    CERN Document Server

    Nittoh, K; Yoshida, T; Tamura, T

    1999-01-01

    A new conversion screen Gd sub 2 O sub 2 S:Eu is developed, which emits red light on irradiation by thermal neutrons. By applying this in combination with the currently used Gd sub 2 O sub 2 S:Tb, a green-light scintillator, in the radiography under a neutron + X-ray coexisting field, we can easily separate the neutron image and the X-ray image by simple color-image processing. This technique enables a non-destructive and detailed inspection of industrial products composed both of light elements (water, plastics, etc.) and heavy elements (metals), widening the horizon of new applications.

  15. A neutron survey of a 25 MV x-ray clinical linac treatment room

    International Nuclear Information System (INIS)

    Price, Kenneth W.; Holeman, George R.; Nath, Ravinder

    1978-01-01

    Neutron production in high energy x-ray radiotherapy machines results in unnecessary dose to patients and has been of recent interest to private and Federal agencies. An activation technique has been used to measure fast and thermal neutron fluxes in the high energy x-ray beam, and at radial distances of 1 and 2 meters from the beam axis of the 25 MV Sagittaire Linear Accelerator located at the Yale-New Haven Hospital's Cancer Therapy Center. Phosphorous pentoxide activation detectors were used to monitor the thermal flux and the fast neutron flux above 0.7 MeV neutron energy. Unlike other techniques for measuring neutrons, this detector has been shown to be insensitive to high energy photon interference at the photon dose rates present in the beam. Neutron spectra at various distances from the accelerator target were computed for the treatment room geometry using the Morse Monte Carlo Code (R.C. McCall, SLAC, Personal Communication). Normalization of these spectra provided the means by which the activation products measured in the phosphorous were converted to fast neutron fluxes. Dose equivalent conversion factors were applied to each energy of the calculated neutron spectra and integrated, resulting in fast neutron flux to dose equivalent conversion factors at various locations in the treatment room. Fast neutron dose equivalent was found to maximize in the photon beam, (0.005 - .007 neutron Rem/photon Rad) and decrease with distance thereafter. Thermal neutron dose equivalent was found to be essentially constant through- out the treatment room (∼ 3.35x10 -5 neutron Rem/ photon Rad). (author)

  16. The CLYC-6 and CLYC-7 response to γ-rays, fast and thermal neutrons

    International Nuclear Information System (INIS)

    Giaz, A.; Pellegri, L.; Camera, F.; Blasi, N.; Brambilla, S.; Ceruti, S.; Million, B.; Riboldi, S.; Cazzaniga, C.; Gorini, G.; Nocente, M.; Pietropaolo, A.; Pillon, M.; Rebai, M.; Tardocchi, M.

    2016-01-01

    The crystal Cs 2 LiYCl 6 :Ce (CLYC) is a very interesting scintillator material because of its good energy resolution and its capability to identify γ-rays and fast/thermal neutrons. The crystal Cs 2 LiYCl 6 :Ce contains 6 Li and 35 Cl isotopes, therefore, it is possible to detect thermal neutrons through the reaction 6 Li(n, α)t while 35 Cl ions allow to measure fast neutrons through the reactions 35 Cl(n, p) 35 S and 35 Cl(n, α) 32 P. In this work two CLYC 1″×1″ crystals were used: the first crystal, enriched with 6 Li at 95% (CLYC-6) is ideal for thermal neutron measurements while the second one, enriched with 7 Li at >99% (CLYC-7) is suitable for fast neutron measurements. The response of CLYC scintillators was measured with different PMT models: timing or spectroscopic, with borosilicate glass or quartz window. The energy resolution, the neutron-γ discrimination and the internal activity are discussed. The capability of CLYC scintillators to discriminate γ rays from neutrons was tested with both thermal and fast neutrons. The thermal neutrons were measured with both detectors, using an AmBe source. The measurements of fast neutrons were performed at the Frascati Neutron Generator facility (Italy) where a deuterium beam was accelerated on a deuterium or on a tritium target, providing neutrons of 2.5 MeV or 14.1 MeV, respectively. The different sensitivity to thermal and fast neutrons of a CLYC-6 and of a CLYC-7 was additionally studied.

  17. Neutron-induced gamma-ray spectroscopy: simulations for chemical mapping of planetary surfaces

    International Nuclear Information System (INIS)

    Brueckner, J.; Waenke, H.; Reedy, R.C.

    1986-01-01

    Cosmic rays interact with the surface of a planetary body and produce a cascade of secondary particles, such as neutrons. Neutron-induced scattering and capture reactions play an important role in the production of discrete gamma-ray lines that can be measured by a gamma-ray spectrometer on board of an orbiting spacecraft. These data can be used to determine the concentration of many elements in the surface of a planetary body, which provides clues to its bulk composition and in turn to its origin and evolution. To investigate the gamma rays made by neutron interactions, thin targets were irradiated with neutrons having energies from 14 MeV to 0.025 eV. By means of foil activation technique the ratio of epithermal to thermal neutrons was determined to be similar to that in the Moon. Gamma rays emitted by the targets and the surrounding material were detected by a high-resolution germanium detector in the energy range of 0.1 to 8 MeV. Most of the gamma-ray lines that are expected to be used for planetary gamma-ray spectroscopy were found in the recorded spectra and the principal lines in these spectra are presented. 58 refs., 7 figs., 9 tabs

  18. Prompt gamma-ray analysis using JRR-3M cold and thermal neutron guide beams

    International Nuclear Information System (INIS)

    Yonezawa, C.; Haji Wood, A.K.; Magara, M.; Hoshi, M.; Tachikawa, E.; Sawahata, H.; Ito, Y.

    1993-01-01

    A permanent and stand-alone neutron-induced prompt gamma-ray analysis (PGA) system, usable at both cold and thermal neutron beam guides of JRR-3M has been constructed. Neutron flux at the sample positions were 1.4x10 8 and 2.4x10 7 n cm -2 s -1 for the cold and thermal neutrons, respectively. The γ-ray spectrometer is equipped to acquire three modes of spectra simultaneously: single mode, Compton suppression mode and pair mode, in an energy range up to 12 MeV. Owing to the cold neutron guide beam and the low γ-ray background system, analytical sensitivities and detection limits better than those in other PGA systems have been achieved. Analytical sensitivity and detection limit for 73 elements were measured. Boron, Gd, Sm and Cd are the most sensitive elements with detection limits down to 1 to 10 ng. For some elements such as F, Al, V, Eu and Hf, decay γ-rays are more sensitive compared to their respective prompt γ-ray. Analytical sensitivity of several heavy elements through detection of characteristic X-rays was higher than that through the prompt γ-ray detection. Analytical applicability of some sensitive elements such as B, H, Gd and Sm were examined. Isotopic analysis of Ni and Si were also examined. (author)

  19. Self-powered neutron and γ-ray flux detector

    International Nuclear Information System (INIS)

    Allan, C.J.

    1983-01-01

    According to the invention there is provided a self-powered neutron and γ-ray flux detector, comprising: a) an emitter core wire; b) an emitter outer layer around the core wire and of different metal thereto; c) a metal collector around the emitter core wire and the emitter outer layer; and d) dielectric insulation electrically insulating the emitter core wire and the emitter outer layer from the metal collector. The improvement comprises: a) the overall diameter of the emitter core wire and the emitter outer layer is at least of the order of 0.4 mm in diameter; b) the emitter outer layer covers only of the order of l0 percent of the order of 90 percent of the emitter core wire surface area and comprises at least one band around the emitter core wire and is of a thickness in the range of the order 0.02 mm to of the order of 0.07 mm; and c) the metal of the emitter core wire, the metal of the emitter outer layer, the metal of the metal collector, the overall diameter of the emitter core wire and the emitter outer layer and the surface area of the emitter core wire that is covered by the emitter outer layer are selected so that the detector has a prompt fraction in the range of the order of 90 percent to of the order of 96 percent and has a dynamic response which substantially matches the dynamic response of the power in the fuel of the nuclear reactor in which the detector is to be used

  20. Footprint Characteristics of Cosmic-Ray Neutron Sensors for Soil Moisture Monitoring

    Science.gov (United States)

    Schrön, Martin; Köhli, Markus; Zreda, Marek; Dietrich, Peter; Zacharias, Steffen

    2015-04-01

    Cosmic-ray neutron sensing is a unique and an increasingly accepted method to monitor the effective soil water content at the field scale. The technology is famous for its low maintenance, non-invasiveness, continuous measurement, and most importantly, for its large footprint. Being more representative than point data and finer resolved than remote-sensing products, cosmic-ray neutron derived soil moisture products provide unrivaled advantage for mesoscale hydrologic and land surface models. The method takes advantage of neutrons induced by cosmic radiation which are extraordinarily sensitive to hydrogen and behave like a hot gas. Information about nearby water sources are quickly mixed in a domain of tens of hectares in air. Since experimental determination of the actual spatial extent is hardly possible, scientists have applied numerical models to address the footprint characteristics. We have revisited previous neutron transport simulations and present a modified conceptual design and refined physical assumptions. Our revised study reveals new insights into probing distance and water sensitivity of detected neutrons under various environmental conditions. These results sharpen the range of interpretation concerning the spatial extent of integral soil moisture products derived from cosmic-ray neutron counts. Our findings will have important impact on calibration strategies, on scales for data assimilation and on the interpolation of soil moisture data derived from mobile cosmic-ray neutron surveys.

  1. Exploring the potential of the cosmic-ray neutron method to measure interception storage dynamics

    Science.gov (United States)

    Jakobi, Jannis; Bogena, Heye; Huisman, Johan Alexander; Diekkrüger, Bernd; Vereecken, Harry

    2017-04-01

    Cosmic-ray neutron soil moisture probes are an emerging technology that relies on the negative correlation between near-surface fast neutron counts and soil moisture content. Hydrogen atoms in the soil, which are mainly present as water, moderate the secondary neutrons on the way back to the surface. Any application of this method needs to consider the sensitivity of the neutron counts to additional sources of hydrogen (e.g. above- and below-ground biomass, humidity of the lower atmosphere, lattice water of the soil minerals, organic matter and water in the litter layer, intercepted water in the canopy, and soil organic matter). In this study, we analyzed the effects of canopy-intercepted water on the cosmic-ray neutron counts. For this, an arable field cropped with sugar beet was instrumented with several cosmic-ray neutron probes and a wireless sensor network with more than 140 in-situ soil moisture sensors. Additionally rainfall interception was estimated using a new approach coupling throughfall measurements and leaf wetness sensors. The derived interception storage was used to correct for interception effects on cosmic ray neutrons to enhance soil water content prediction. Furthermore, the potential for a simultaneous prediction of above- and below-ground biomass, soil moisture and interception was tested.

  2. Neutron and synchrotorn x-ray small angle scattering instruments for applications in biology at the Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Schoenborn, B.P.; Wise, D.S.; Schneider, D.K.

    1983-01-01

    Facilities for small angle x-ray and neutron scattering are described, with emphasis on the characterization of the primary beam of the neutron instrument and the spectrometer control logic of the synchrotron instrument

  3. Non-destructive assay of mechanical components using gamma-rays and thermal neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Erica Silvani; Avelino, Mila R. [PPG-EM/UERJ, R. Sao Francisco Xavier, 524, Maracana - Rio de Janeiro - RJ (Brazil); Almeida, Gevaldo L. de; Souza, Maria Ines S. [IEN/CNEN, Rua Helio de Almeida, 75, Ilha do Fundao, Rio de Janeiro - RJ (Brazil)

    2013-05-06

    This work presents the results obtained in the inspection of several mechanical components through neutron and gamma-ray transmission radiography. The 4.46 Multiplication-Sign 10{sup 5} n.cm{sup -2}.s{sup -1} thermal neutron flux available at the main port of the Argonauta research reactor in Instituto de Engenharia Nuclear has been used as source for the neutron radiographic imaging. The 412 keV {gamma}-ray emitted by {sup 198}Au, also produced in that reactor, has been used as interrogation agent for the gamma radiography. Imaging Plates - IP specifically designed to operate with thermal neutrons or with X-rays have been employed as detectors and storage devices for each of these radiations.

  4. Development of the neutron filters for JET gamma-ray cameras

    International Nuclear Information System (INIS)

    Soare, S.; Curuia, M.; Anghel, M.; Constantin, M.; David, E.; Kiptily, V.; Prior, P.; Edlington, T.; Griph, S.; Krivchenkov, Y.; Popovichev, S.; Riccardo, V.; Syme, B; Thompson, V.; Murari, A.; Zoita, V.; Bonheure, G.; Le Guern

    2007-01-01

    The JET gamma-ray camera diagnostics have already provided valuable information on the gamma-ray imaging of fast ion evaluation in JET plasmas. The JET Gamma-Ray Cameras (GRC) upgrade project deals with the design of appropriate neutron/gamma-ray filters ('neutron attenuaters').The main design parameter was the neutron attenuation factor. The two design solutions, that have been finally chosen and developed at the level of scheme design, consist of: a) one quasi-crescent shaped neutron attenuator (for the horizontal camera) and b) two quasi-trapezoid shaped neutron attenuators (for the vertical one). Various neutron-attenuating materials have been considered (lithium hydride with natural isotopic composition and 6 Li enriched, light and heavy water, polyethylene). Pure light water was finally chosen as the attenuating material for the JET gamma-ray cameras. FEA methods used to evaluate the behaviour of the filter casings under the loadings (internal hydrostatic pressure, torques) have proven the stability of the structure. (authors)

  5. Hydrostatic pressure cells development for X-ray and neutron experiments

    International Nuclear Information System (INIS)

    Passamai Junior, Jose Luis

    2010-01-01

    It was developed and built two pressure cell original models in order to be applied in X-ray elastic scattering (X-ray diffraction), X-ray absorption and neutron scattering experiments (neutron diffraction) under hydrostatic pressure. For the first two experimental cases, where X-ray beam is used, the pressure cell built with two B 4 C anvil mounted in a CuBe body. The B 4 C anvil was prepared at CTA research center in order to present an enhanced X-ray transparence and hardness. The special detail and advantage of the CuBe cell with B 4 C anvil is that this cell can be also used to measure de AC magnetic susceptibility in situ. This special characteristic is highlight as new concept of labeled here as multipurpose pressure cell. A second type of cell pressure was developed in order to be used in neutron elastic scattering experiments, specific in neutron diffraction experiments. The neutron cell pressure was developed using carbon fibers composite to improve the mechanical resistance a cylindrical geometry. The B 4 C pressure cells were available to researches in LNLS. The neutron pressure cell was given to research staff of IPEN Nuclear Reactor. This work show details and draws of these two types of hydrostatic pressure cells. (author)

  6. Intercomparison of personnel dosimetry for thermal neutron dose equivalent in neutron and gamma-ray mixed fields

    International Nuclear Information System (INIS)

    Ogawa, Yoshihiro

    1985-01-01

    In order to consider the problems concerned with personnel dosimetry using film badges and TLDs, an intercomparison of personnel dosimetry, especially dose equivalent responses of personnel dosimeters to thermal neutron, was carried out in five different neutron and gamma-ray mixed fields at KUR and UTR-KINKI from the practical point of view. For the estimation of thermal neutron dose equivalent, it may be concluded that each personnel dosimeter has good performances in the precision, that is, the standard deviations in the measured values by individual dosimeter were within 24 %, and the dose equivalent responses to thermal neutron were almost independent on cadmium ratio and gamma-ray contamination. However, the relative thermal neutron dose equivalent of individual dosimeter normalized to the ICRP recommended value varied considerably and a difference of about 4 times was observed among the dosimeters. From the results obtained, it is suggested that the standardization of calibration factors and procedures is required from the practical point of radiation protection and safety. (author)

  7. Production of low energy gamma rays by neutron interactions with fluorine for incident neutron energies between 0.1 and 20 MeV

    International Nuclear Information System (INIS)

    Morgan, G.L.; Dickens, J.K.

    1975-06-01

    Differential cross sections for the production of low-energy gamma rays (less than 240 keV) by neutron interactions in fluorine have been measured for neutron energies between 0.1 and 20 MeV. The Oak Ridge Electron Linear Accelerator was used as the neutron source. Gamma rays were detected at 92 0 using an intrinsic germanium detector. Incident neutron energies were determined by time-of-flight techniques. Tables are presented for the production cross sections of three gamma rays having energies of 96, 110, and 197 keV. (14 figures, 3 tables) (U.S.)

  8. Slow neutrons and secondary gamma ray distributions in concrete shields followed by reflecting layers

    International Nuclear Information System (INIS)

    Makarious, A.S.; Swilem, Y.I.; Awwad, Z.; Bayomy, T.

    1993-01-01

    Slow neutrons and secondary gamma ray distributions in concrete shields with and without a reflecting layer behind layer behind the concrete shield have been investigated first in case of using a bare reactor beam and then on using a B-4 C filtered beam. The total and capture secondary gamma ray coefficient (B gamma and B gamma C ), the ratio of the reflected thermal neutron (gamma) the ratio of the secondary gamma rays caused by reflected neutrons to those caused transmitted neutrons (Th I gamma/F I gamma) and the effect of inserting a blocking layer (a B-4 C layer) between the concrete shield and the reflector on the suppression of the produced secondary gamma rays have been investigated. It was found that the presence of the reflector layer behind the concrete shield reflects some thermal neutrons back to the concrete shields and so it increases the number of thermal neutrons at the interface between the concrete shield and the reflector. Also the capture secondary gamma rays was increased at the interface between the two medii due to the capture of the reflected thermal neutrons in the concrete shields. It was shown that B-gamma is higher than and that B g amma B gamma C and I gamma T h/ I gamma i f for the different concrete types is higher in case of using the graphite reflector than that in using either water or paraffin reflectors. Putting a blocking layer (B 4 C layer) between the concrete shield and the reflector decreases the produced secondary gamma rays due to the absorption of the reflected thermal neutrons. 17 figs

  9. X-Ray and Neutron Scattering Study of the Magnetic Structure of Neodymium Metal

    DEFF Research Database (Denmark)

    Lebech, Bente; Als-Nielsen, Jens Aage; McEwen, K. A.

    1979-01-01

    A combined x-ray and neutron diffraction study has shown that the so-called "triple-q⃗" structure is not the correct model of the magnetic structure of neodymium. The x-ray data showed only the Bragg reflections originating from the double-hcp lattice. Hence, all additional reflections observed...

  10. Prompt γ-ray data evaluation of thermal-neutron capture for A = 1-25

    International Nuclear Information System (INIS)

    Zhou Chunmei

    1999-01-01

    The method of prompt γ-ray data evaluation for thermal-neutron capture has been briefly presented. The prompt capture γ-ray data of stable nuclei for A = 1 - 25 are evaluated. The evaluated data have been changed into the ENSDF format and the checks of physics and format have been made

  11. Calculation of neutron and gamma-ray energy spectra in liquid air and liquid nitrogen due to 14-MeV neutron and californium-252 sources

    International Nuclear Information System (INIS)

    Straker, E.A.; Gritzner, M.L.; Harris, L. Jr.

    1978-01-01

    Calculations of neutron and gamma-ray fluences from 14-MeV neutron and 252 Cf sources in liquid air and liquid nitrogen have been performed. These calculations were made specifically for comparison with experimental data measured at Stohl, Federal Republic of Germany. The discrete-ordinates method was utilized with neutron and gamma-ray cross sections from ENDF/B-IV. One-dimensional calculational models were developed for the sources and tank. Limited comparisons are made with experimental data

  12. Facility at CIRUS reactor for thermal neutron induced prompt γ-ray spectroscopic studies

    International Nuclear Information System (INIS)

    Biswas, D.C.; Danu, L.S.; Mukhopadhyay, S.; Kinage, L.A.; Prashanth, P.N.; Goswami, A.; Sahu, A.K.; Shaikh, A.M.; Chatterjee, A.; Choudhury, R.K.; Kailas, S.

    2013-01-01

    A facility for prompt γ-ray spectroscopic studies using thermal neutrons from a radial beam line of Canada India Research Utility Services (CIRUS) reactor, Bhabha Atomic Research Centre (BARC), has been developed. To carry out on-line spectroscopy experiments, two clover germanium detectors were used for the measurement of prompt γ rays. For the first time, the prompt γ–γ coincidence technique has been used to study the thermal neutron induced fission fragment spectroscopy (FFS) in 235 U(n th , f). Using this facility, experiments have also been carried out for on-line γ-ray spectroscopic studies in 113 Cd(n th , γ) reaction

  13. Aerial Neutron Detection of Cosmic-Ray Interactions with the Earth's Surface

    International Nuclear Information System (INIS)

    Richard Maurer

    2008-01-01

    We have demonstrated the ability to measure the neutron flux produced by the cosmic-ray interaction with nuclei in the ground surface using aerial neutron detection. High energy cosmic-rays (primarily muons with GeV energies) interact with the nuclei in the ground surface and produce energetic neutrons via spallation. At the air-surface interface, the neutrons produced by spallation will either scatter within the surface material, become thermalized and reabsorbed, or be emitted into the air. The mean free path of energetic neutrons in air can be hundreds of feet as opposed to a few feet in dense materials. As such, the flux of neutrons escaping into the air provides a measure of the surface nuclei composition. It has been demonstrated that this effect can be measured at long range using neutron detectors on low flying helicopters. Radiological survey measurements conducted at Government Wash in Las Vegas, Nevada, have shown that the neutron background from the cosmic-soil interactions is repeatable and directly correlated to the geological data. Government Wash has a very unique geology, spanning a wide variety of nuclide mixtures and formations. The results of the preliminary measurements are presented

  14. MCViNE – An object oriented Monte Carlo neutron ray tracing simulation package

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiao Y.Y., E-mail: linjiao@ornl.gov [Caltech Center for Advanced Computing Research, California Institute of Technology (United States); Department of Applied Physics and Materials Science, California Institute of Technology (United States); Neutron Data Analysis and Visualization Division, Oak Ridge National Laboratory (United States); Smith, Hillary L. [Department of Applied Physics and Materials Science, California Institute of Technology (United States); Granroth, Garrett E., E-mail: granrothge@ornl.gov [Neutron Data Analysis and Visualization Division, Oak Ridge National Laboratory (United States); Abernathy, Douglas L.; Lumsden, Mark D.; Winn, Barry; Aczel, Adam A. [Quantum Condensed Matter Division, Oak Ridge National Laboratory (United States); Aivazis, Michael [Caltech Center for Advanced Computing Research, California Institute of Technology (United States); Fultz, Brent, E-mail: btf@caltech.edu [Department of Applied Physics and Materials Science, California Institute of Technology (United States)

    2016-02-21

    MCViNE (Monte-Carlo VIrtual Neutron Experiment) is an open-source Monte Carlo (MC) neutron ray-tracing software for performing computer modeling and simulations that mirror real neutron scattering experiments. We exploited the close similarity between how instrument components are designed and operated and how such components can be modeled in software. For example we used object oriented programming concepts for representing neutron scatterers and detector systems, and recursive algorithms for implementing multiple scattering. Combining these features together in MCViNE allows one to handle sophisticated neutron scattering problems in modern instruments, including, for example, neutron detection by complex detector systems, and single and multiple scattering events in a variety of samples and sample environments. In addition, MCViNE can use simulation components from linear-chain-based MC ray tracing packages which facilitates porting instrument models from those codes. Furthermore it allows for components written solely in Python, which expedites prototyping of new components. These developments have enabled detailed simulations of neutron scattering experiments, with non-trivial samples, for time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. With simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.

  15. Structure of Insulin: Results of joint neutron and X-ray refinement

    Energy Technology Data Exchange (ETDEWEB)

    Wlodawer, A; Savage, H; Dodson, G

    1989-02-01

    Neutron diffraction data for porcine 2Zn insulin were collected to 2.2 A resolution from a single crystal deuterated by slow exchange of mother liquor. A joint neutron/X-ray restrained-least-squares refinement was undertaken using the neutron data, as well as the 1.5 A resolution X-ray data collected previously. The final R factors were 0.182 for the X-ray data and 0.191 for the neutron data. Resulting atomic coordinates were compared with the initial X-ray model, showing a total r.m.s. shift of 0.36 A for the protein and 0.6 A for the solvent. Protonation of a number of individual amino acids was investigated by analysis of the neutron maps. No D atoms were found between the carboxylates of Glu B13 which make an intermolecular contact, suggesting nonbonded interaction rather than the predicted hydrogen bond. Amide hydrogen exchange was investigated in a refinement of their atomic occupancies. Regions of unexchanged amide groups were found in the center of the B helices. The results of this study emphasize the limited amount of information available in neutron diffraction studies of proteins at resolution lower than 2 A.

  16. Repair in mouse lung of multifraction X rays and neutrons: extension to 40 fractions

    International Nuclear Information System (INIS)

    Parkins, C.S.; Fowler, J.F.

    1985-01-01

    Repair parameters were calculated from measurements of breathing rate and lethality at monthly intervals up to 17 months after irradiation with 1, 10, 20 or 40 equal fractions, down to 1.1 Gy of x-rays and 0.18 Gy of 3 MeV neutrons per fraction. Sparing of neutron damage was negligible when the neutron dose was divided into multiple fractions; progressively greater repair of lung damage was seen after increasing x-ray fractions. Significant increase in the iso-effect dose for 40 x-ray fractions was found compared with 20, even at two fractions per day at six hour intervals, as was the case in the 40 fraction experiment. Data were well fitted by the linear quadratic formula for response vs. dose per fraction and the ratio γ/β yielded values of approx. 3 Gy after x-rays and 30 to 40 Gy after neutron irradiation, not different from γ/β ratios found for up to 20 fractions. Single dose RBE was less than 2, increasing to about six at the lowest dose per fraction measured, agreeing with previous results. The ratio of the γ component for neutrons to that for x-rays was approx. 8, which is therefore the limiting RBE predicted for infinitely small fractional doses. (U.K.)

  17. Neutron and gamma ray attenuation of asphalt; Comparison with paraffin and water

    International Nuclear Information System (INIS)

    Abdul-Majid, S.; Kutbi, I.I.

    1996-01-01

    Asphalt is a low cost, readily available, easy-to-cast material which is rich in hydrogen and carbon, elements most effective for fast-neutron shielding. Unlike paraffin, the material can easily be mixed with boron containing compounds, an, element of high absorption cross-section for slow neutrons. The 241 Am-Be neutron and gamma attenuation characteristic of asphalt were studied. The source is having wide applications in industry and geophysics field work. Comparisons were made with paraffin and water. The source activity was 1.11 x 1,011 Bq (3 Ci) with a neutron emission rate of 6.6 x 106 n s -1 and a tolerance of +10%. The neutron dose-equivalent rate at 1 m was 66 mSv h -1 , while the associated gamma ray exposure was ∼1.9 mC kg -1 h -1 of the bare source. A neutron remmeter was used for the neutron dose-equivalent rate measurements, which produces an energy response that approximates human body dose equivalent over a wide range of neutron energy. An air filled ionization chamber was used for the exposure rate measurements. The slow neutrons were measured by a BF 3 gas filled detector. The shielding materials were confined in an aluminum cylinder of 1 mm wall thickness where the source was kept in the middle. The neutron dose rate, the gamma ray exposure rate, and the slow neutron count rate were measured at different shield radii and at different distances from its outer surface. The neutron doses of asphalt at the surface of cylindrical shields of 8, 12, 16, 20, and 24 cm radii in mSv h -1 were 0.85, 0.4, 0.25, 0.13, and 0.06, respectively, while the gamma ray exposure mC kg -1 h -1 were 7, 4.4 2.5, 1.3, and 0.88, respectively. The neutron dose rate attenuation of asphalt was very close to that of water, but slightly lower than that of paraffin, while the gamma ray attenuation was close to that of water but higher than that of paraffin

  18. Black hole and neutron star soft X-ray transients: a hard X-ray view of their outbursts

    International Nuclear Information System (INIS)

    Yu, W.

    2004-01-01

    The RXTE public observations of the outbursts of black hole soft X-ray transients XTE J1550-564, XTE J1859+226, 4U 1630-47, XTE J1118+480, XTE J1650-500, and the neutron star soft X-ray transients 4U 1608-52, Aquila X-1, including a variable 'persistent' neutron star low mass X-ray binary 4U 1705-44, are summarized in this paper. The hard X-ray view of those outbursts, which is quite different from that of the soft X-ray band, suggests that there are several types of outbursts which result in different hard X-ray outburst profile - the outburst profiles are energy dependent. One type is the low/hard state outbursts, the other type is the outburst showing transitions from the low/hard state to the high/soft state, or to the intermediate or to the very high state. The later has an initial low/hard state, introducing the phenomena that the hard X-ray precedes the soft X-ray in the outburst rise. Such outbursts in XTE J1550-564, Aql X-1 and 4U 1705-44 support a two-accretion-flow model which involves one Keplerian disk flow and one sub-Keplerian flow for the initial outburst rise

  19. Study of gamma ray multiplicity spectra for radiative capture of neutrons in 113,115In

    International Nuclear Information System (INIS)

    Georgiev, G.P.; Fajkov-Stanchik, Kh.; Grigor'ev, Yu.V.; Muradyan, G.V.; Yaneva, N.B.

    1997-08-01

    Neutron radiative capture measurements were performed for the enriched isotopes 113 In and 115 In on the neutron spectrometer at the Neutron Physics Laboratory of the Joint Institute for Nuclear Research employing the gamma ray multiplicity technique and using a ''Romashka'' multi-sectional 4p detector on the 500 m time base of the IBR-30 booster. The gamma multiplicity spectra of resolved resonances were obtained for the 20-500 eV energy range. The mean gamma ray multiplicity was determined for each resonance. The dependence of the ratio S of the low-energy coincidence multiplicity spectrum to the high-energy coincidence multiplicity spectrum on resonance energy exhibits a non-statistical structure. This structure was found to correlate with the local neutron strength function. (author). 10 refs, 6 figs, 2 tabs

  20. Uses of neutron capture gamma-rays in environmental pollution applications

    International Nuclear Information System (INIS)

    AbdAl-Samad, M.A.

    1998-01-01

    As a sensitive and accurate technique, the prompt gamma-rays neutron activation is used with success for elemental analysis. The advantages of this method over the other techniques are rapidity, usage of relatively large sample size and high reliability, beside the detection of the elements which have no gamma activity during the delayed neutron activation analysis or very short lived isotopes. Actually different techniques could be used for estimating the trace, minor and major elements of these environmental samples which are considered as complex samples. In the mean time the neutron activation analysis techniques have been improved and have become an excellent tool for elemental analysis of complex samples (Duffey et al., 1970; Senftle et al., 1971; Henkelmm and Born, 1973 ; Hassan et al., .; 1981, 1982, 1983; Clyton et al., 1983; Zaghloul et al., 1993) and the advantages of the prompt γ- ray neutron activation analysis over the other techniques put this technique in the fore front

  1. Digital discrimination of neutrons and γ-rays in liquid scintillators using pulse gradient analysis

    International Nuclear Information System (INIS)

    D'Mellow, B.; Aspinall, M.D.; Mackin, R.O.; Joyce, M.J.; Peyton, A.J.

    2007-01-01

    A method for the digital discrimination of neutrons and γ-rays in mixed radiation fields is described. Pulses in the time domain, arising from the interaction of photons and neutrons in a liquid scintillator, have been produced using an accepted empirical model and from experimental measurements with an americium-beryllium source. Neutrons and γ-rays have been successfully discriminated in both of these data sets in the digital domain. The digital discrimination method described in this paper is simple and exploits samples early in the life of the pulse. It is thus compatible with current embedded system technologies, offers a degree of immunity to pulse pile-up and heralds a real-time means for neutron/γ discrimination that is fundamental to many potential industrial applications

  2. Alteration of UV primary fluorescence of vital tumor cells following irradiation with neutrons and gamma rays

    International Nuclear Information System (INIS)

    Merkle, K.

    1980-01-01

    The change of UV primary fluorescence intensity of vital unstained cells of Ehrlich ascites carcinoma after 60 Co-gamma and neutron irradiation was investigated. The mean neutron energy was 6.2 MeV. Fluorescence intensity was detected using impulse cytophotometry. The UV intensity of single cells was measured in the spectral range from 300-400 nm. An monotonous increase of dose-effect curves and a maximum at 3.5 Gy (neutrons) and 30 Gy (γ-rays) was obtained. The first relevant increase of fluorescence intensity was detected at 0.4 Gy (neutrons) and 0.75 Gy (γ-rays). Factors influencing the increase and decrease of primary fluorescence behavior of vital cells are discussed. (author)

  3. Calculation of neutron and gamma ray energy spectra for fusion reactor shield design: comparison with experiment

    International Nuclear Information System (INIS)

    Santoro, R.T.; Alsmiller, R.G. Jr.; Barnes, J.M.; Chapman, G.T.

    1980-08-01

    Integral experiments that measure the transport of approx. 14 MeV D-T neutrons through laminated slabs of proposed fusion reactor shield materials have been carried out. Measured and calculated neutron and gamma ray energy spectra are compared as a function of the thickness and composition of stainless steel type 304, borated polyethylene, and Hevimet (a tungsten alloy), and as a function of detector position behind these materials. The measured data were obtained using a NE-213 liquid scintillator using pulse-shape discrimination methods to resolve neutron and gamma ray pulse height data and spectral unfolding methods to convert these data to energy spectra. The calculated data were obtained using two-dimensional discrete ordinates radiation transport methods in a complex calculational network that takes into account the energy-angle dependence of the D-T neutrons and the nonphysical anomalies of the S/sub n/ method

  4. Hydrostatic pressure cells development for X-ray and neutrons experiments

    International Nuclear Information System (INIS)

    Passamai Junior, Jose Luis; Pinheiro, Christiano J.G.; Orlando, Marcos Tadeu D.; Passos, Carlos A.C.; Rossi, Jesualdo L.; Mazzocchi, Vera L.; Parente, Carlos B.R.; Mestnik Filho, Jose; Martinez, Luis G.; Melo, Francisco C.L. de

    2011-01-01

    A set of hydrostatic pressure cells was specially developed in order to be applied in X-ray diffraction, X-ray absorption and neutron diffraction experiments. For the experiments where X-rays are used, the pressure cells are built in a CuBe alloy body with two B 4 C anvils in order to allow the low absorption of the radiation. The B 4 C anvils were specially prepared in CTA - Centro Tecnico Aeroespacial - Sao Jose dos Campos - Brazil, in order to present enhanced X-ray transparency and high hardness. One of the advantage of the CuBe-body cell with B 4 C anvil is that it can be also used under magnetic fields, for instance for measurements of AC magnetic susceptibility under high hydrostatic pressures. The X-ray cells work in transmission mode and present a 2 mm diameter hole for the beam path. The X-ray beam pass through the hole and outgoing to the detector positioned in front of the pressure cell. A second type of pressure cell was developed in order to be used in neutron elastic scattering experiments, especially in neutron diffraction experiments. The neutron cell pressure cell was constructed in Zirconium alloy reinforced with carbon fibers composite in order to improve the mechanical resistance of his cylindrical geometry. The B 4 C pressure cells are available to users of the techniques of X-ray diffraction and absorption in the Brazilian National Synchrotron Laboratory - LNLS, at Campinas City. The neutron pressure cell is available to users at the neutron powder diffraction facility installed at the Nuclear and Energy Research Institute - IPEN, Sao Paulo. In this work will be shown details and drawings of the two types of hydrostatic pressure cells. (author)

  5. A Unique Outside Neutron and Gamma Ray Instrumentation Development Test Facility at NASA's Goddard Space Flight Center

    Science.gov (United States)

    Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Parsons, A.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    An outside neutron and gamma ray instrumentation test facility has been constructed at NASA's Goddard Space Flight Center (GSFC) to evaluate conceptual designs of gamma ray and neutron systems that we intend to propose for future planetary lander and rover missions. We will describe this test facility and its current capabilities for operation of planetary in situ instrumentation, utilizing a l4 MeV pulsed neutron generator as the gamma ray excitation source with gamma ray and neutron detectors, in an open field with the ability to remotely monitor and operate experiments from a safe distance at an on-site building. The advantage of a permanent test facility with the ability to operate a neutron generator outside and the flexibility to modify testing configurations is essential for efficient testing of this type of technology. Until now, there have been no outdoor test facilities for realistically testing neutron and gamma ray instruments planned for solar system exploration

  6. Teratogenic and embryolethal effects in mice of fission-spectrum neutrons and γ-rays

    International Nuclear Information System (INIS)

    Cairnie, A.B.; Grahn, D.; Rayburn, H.B.; Williamson, F.S.; Brown, R.J.

    1974-01-01

    Fission-spectrum neutrons from the Janus reactor at Argonne National Laboratory were compared with γ-rays in terms of their relative biological effectiveness (RBE) for embryolethal and teratogenic effects in mice. No evidence was found of any processes that were abnormally sensitive to neutrons. The RBE for killing embryos and producing abnormal embryos or specific abnormalities was between 2 and 3. This is close to the values found in other systems for processes involving cell killing. (U.S.)

  7. Neutron activation analysis for sulphur in coal samples and moisture content by gamma-ray transmission

    International Nuclear Information System (INIS)

    Selvi, S.

    1993-01-01

    A neutron activation analysis method is described for the determination of sulphur in coal samples by analysing the beta spectrum emitted from 32 P and 33 P following the reactions 32 S(n, p) 32 P and 33 S(n, p) 33 P using 252 Cf as a source of neutrons. The transmission of the combined gamma-rays emitted from three 137 Cs and three 241 Am sources is used to measure the water content of the coal samples. (author)

  8. Thermal states of coldest and hottest neutron stars in soft X-ray transients

    OpenAIRE

    Yakovlev, D. G.; Levenfish, K. P.; Potekhin, A. Y.; Gnedin, O. Y.; Chabrier, G.

    2003-01-01

    We calculate the thermal structure and quiescent thermal luminosity of accreting neutron stars (warmed by deep crustal heating in accreted matter) in soft X-ray transients (SXTs). We consider neutron stars with nucleon and hyperon cores and with accreted envelopes. It is assumed that an envelope has an outer helium layer (of variable depth) and deeper layers of heavier elements, either with iron or with much heavier nuclei (of atomic weight A > 100) on the top (Haensel & Zdunik 1990, 2003, as...

  9. Searching for X-ray Pulsations from Neutron Stars Using NICER

    Science.gov (United States)

    Ray, Paul S.; Arzoumanian, Zaven; Gendreau, Keith C.; Bogdanov, Slavko; Bult, Peter; Chakrabarty, Deepto; Chakrabarty, Deepto; Guillot, Sebastien; Harding, Alice; Ho, Wynn C. G.; Lamb, Frederick; Mahmoodifar, Simin; Miller, Cole; Strohmayer, Tod; Wilson-Hodge, Colleen; Wolff, Michael T.; NICER Science Team Working Group on Pulsation Searches and Multiwavelength Coordination

    2018-01-01

    The Neutron Star Interior Composition Explorer (NICER) presents an exciting new capability for discovering new modulation properties of X-ray emitting neutron stars, including large area, low background, extremely precise absolute time stamps, superb low-energy response and flexible scheduling. The Pulsation Searches and Multiwavelength Coordination working group has designed a 2.5 Ms observing program to search for pulsations and characterize the modulation properties of about 30 known or suspected neutron star sources across a number of source categories. A key early goal will be to search for pulsations from millisecond pulsars that might exhibit thermal pulsations from the surface suitable for pulse profile modeling to constrain the neutron star equation of state. In addition, we will search for pulsations from transitional millisecond pulsars, isolated neutron stars, LMXBs, accretion-powered millisecond pulsars, central compact objects and other sources. We present our science plan and initial results from the first months of the NICER mission.

  10. Self-absorption of neutron capture gamma-rays in gold samples

    International Nuclear Information System (INIS)

    Wisshak, K.; Walter, G.; Kaeppeler, F.

    1983-06-01

    The self absorption of neutron capture gamma rays in gold samples has been determined experimentally for two standard setups used in measurements of neutron capture cross sections. One makes use of an artificially collimated neutron beam and two C 6 D 6 detectors, the other of kinematically collimated neutrons and three Moxon-Rae detectors. Correction factors for an actual measurement of a neutron capture cross section using a gold standard of 1 mm thickness up to 12% were found for the first setup while they are only 4% for the second setup. The present data allow to determine the correction in an actual measurement with an accuracy of 0.5-1%. (orig.) [de

  11. Development of neutron induced prompt γ-ray spectroscopy system using 252Cf

    International Nuclear Information System (INIS)

    Park, Yong-Joon; Song, Byung-Chul; Jee, Kwang-Yong

    2003-01-01

    For the design and set-up of neutron induced prompt γ-ray spectroscopy system using 252 Cf neutron source, the effects of shielding and moderator materials have been examined. The 252 Cf source being used for TLD badge calibration in Korea Atomic Energy Research Institute was utilized for this preliminary experiment. The γ-ray background and prompt γ-ray spectrum of the sample containing Cl were measured using HPGe (GMX 69% relative efficiency) located at the inside of the system connected to notebook PC at the outside of the system (about 20 meter distance). The background activities of neutron and γ-rays were measured with neutron survey meter as well as γ-ray survey meters, respectively and the system was designed to minimize the activities. Prompt γ-ray spectrum was measured using γ-γ coincident system for reduce the background and the continuum spectrum. The optimum system was designed and set up using the experimental data obtained

  12. Prenatal death and malformations after irradiation of mouse zygotes with neutrons or X-rays

    International Nuclear Information System (INIS)

    Pampfer, S.; Streffer, C.

    1988-01-01

    Female mice (strain: Heiligenberger Stamm) were irradiated with neutrons (7 MeV) or X-rays when embryos were at the early zygote stage; uterine contents were examined on gestation day 19 for prenatal mortality and malformed fetuses. For both radiation qualities, the dose-dependent survival curve fitted well to a simple exponential equation; the neutron relative biological efficiency (RBE) value was 2.3. The major fraction of deaths induced by exposure to neutrons or X-rays occurred before implantation. Aside from dead embryos, malformed fetuses were observed 19 days p.c. (postconception). The number of malformed fetuses increased with a linear-quadratic function of neutron or X-ray dose. Malformations were mainly gastroschisis, although omphaloceles and anencephalies were also observed. The neutron RBE value for the induction of malformations varied from 2.0 to 2.8 in the dose range tested. Except after 75-cGy neutrons, no significant increase in the proportion of stunted or skeletally malformed fetuses was noted. Our results indicated that the reaction of preimplantation embryos to irradiation could be more complex than the simple all-or-none response considered so far

  13. Characterization of γ-ray background at IMAT beamline of ISIS Spallation Neutron Source

    Science.gov (United States)

    Festa, G.; Andreani, C.; Arcidiacono, L.; Burca, G.; Kockelmann, W.; Minniti, T.; Senesi, R.

    2017-08-01

    The environmental γ -ray background on the IMAT beamline at ISIS Spallation Neutron Source, Target Station 2, is characterized via γ spectroscopy. The measurements include gamma exposure at the imaging detector position, along with the gamma background inside the beamline. Present results are discussed and compared with previous measurements recorded at INES and VESUVIO beamlines operating at Target Station 1. They provide new outcome for expanding and optimizing the PGAA experimental capability at the ISIS neutron source for the investigation of materials, engineering components and cultural heritage objects at the ISIS neutron source.

  14. Hidden explosives detector employing pulsed neutron and x-ray interrogation

    International Nuclear Information System (INIS)

    Schultz, F.J.; Caldwell, J.T.

    1993-01-01

    Methods and systems for the detection of small amounts of modern, highly-explosive nitrogen-based explosives, such as plastic explosives, hidden in airline baggage. Several techniques are employed either individually or combined in a hybrid system. One technique employed in combination is X-ray imaging. Another technique is interrogation with a pulsed neutron source in a two-phase mode of operation to image both nitrogen and oxygen densities. Another technique employed in combination is neutron interrogation to form a hydrogen density image or three-dimensional map. In addition, deliberately-placed neutron-absorbing materials can be detected

  15. Hidden explosives detector employing pulsed neutron and x-ray interrogation

    Science.gov (United States)

    Schultz, Frederick J.; Caldwell, John T.

    1993-01-01

    Methods and systems for the detection of small amounts of modern, highly-explosive nitrogen-based explosives, such as plastic explosives, hidden in airline baggage. Several techniques are employed either individually or combined in a hybrid system. One technique employed in combination is X-ray imaging. Another technique is interrogation with a pulsed neutron source in a two-phase mode of operation to image both nitrogen and oxygen densities. Another technique employed in combination is neutron interrogation to form a hydrogen density image or three-dimensional map. In addition, deliberately-placed neutron-absorbing materials can be detected.

  16. Characterization of γ-ray background at IMAT beamline of ISIS Spallation Neutron Source

    International Nuclear Information System (INIS)

    Festa, G.; Andreani, C.; Arcidiacono, L.; Senesi, R.; Burca, G.; Kockelmann, W.; Minniti, T.

    2017-01-01

    The environmental γ -ray background on the IMAT beamline at ISIS Spallation Neutron Source, Target Station 2, is characterized via γ  spectroscopy. The measurements include gamma exposure at the imaging detector position, along with the gamma background inside the beamline. Present results are discussed and compared with previous measurements recorded at INES and VESUVIO beamlines operating at Target Station 1. They provide new outcome for expanding and optimizing the PGAA experimental capability at the ISIS neutron source for the investigation of materials, engineering components and cultural heritage objects at the ISIS neutron source.

  17. X-ray and Neutron Diffraction in the Study of Organic Crystalline Hydrates

    Directory of Open Access Journals (Sweden)

    Katharina Fucke

    2010-07-01

    Full Text Available A review. Diffraction methods are a powerful tool to investigate the crystal structure of organic compounds in general and their hydrates in particular. The laboratory standard technique of single crystal X-ray diffraction gives information about the molecular conformation, packing and hydrogen bonding in the crystal structure, while powder X-ray diffraction on bulk material can trace hydration/dehydration processes and phase transitions under non-ambient conditions. Neutron diffraction is a valuable complementary technique to X-ray diffraction and gives highly accurate hydrogen atom positions due to the interaction of the radiation with the atomic nuclei. Although not yet often applied to organic hydrates, neutron single crystal and neutron powder diffraction give precise structural data on hydrogen bonding networks which will help explain why hydrates form in the first place.

  18. X-ray and neutron diffraction studies of crystallinity in hydroxyapatite coatings.

    Science.gov (United States)

    Girardin, E; Millet, P; Lodini, A

    2000-02-01

    To standardize industrial implant production and make comparisons between different experimental results, we have to be able to quantify the crystallinity of hydroxyapatite. Methods of measuring crystallinity ratio were developed for various HA samples before and after plasma spraying. The first series of methods uses X-ray diffraction. The advantage of these methods is that X-ray diffraction equipment is used widely in science and industry. In the second series, a neutron diffraction method is developed and the results recorded are similar to those obtained by the modified X-ray diffraction methods. The advantage of neutron diffraction is the ability to obtain measurements deep inside a component. It is a nondestructive method, owing to the very low absorption of neutrons in most materials. Copyright 2000 John Wiley & Sons, Inc.

  19. Neutron and gamma-ray dose-rates from the Little Boy replica

    International Nuclear Information System (INIS)

    Plassmann, E.A.; Pederson, R.A.

    1984-01-01

    We report dose-rate information obtained at many locations in the near vicinity of, and at distances out to 0.64 km from, the Little Boy replica while it was operated as a critical assembly. The measurements were made with modified conventional dosimetry instruments that used an Anderson-Braun detector for neutrons and a Geiger-Mueller tube for gamma rays with suitable electronic modules to count particle-induced pulses. Thermoluminescent dosimetry methods provide corroborative data. Our analysis gives estimates of both neutron and gamma-ray relaxation lengths in air for comparison with earlier calculations. We also show the neutron-to-gamma-ray dose ratio as a function of distance from the replica. Current experiments and further data analysis will refine these results. 7 references, 8 figures

  20. THE UNREASONABLE WEAKNESS OF R -PROCESS COSMIC RAYS IN THE NEUTRON-STAR-MERGER NUCLEOSYNTHESIS SCENARIO

    Energy Technology Data Exchange (ETDEWEB)

    Kyutoku, Koutarou [Interdisciplinary Theoretical Science (iTHES) Research Group, RIKEN, Wako, Saitama 351-0198 (Japan); Ioka, Kunihito, E-mail: koutarou.kyutoku@riken.jp [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8502 (Japan)

    2016-08-10

    We reach the robust conclusion that, by combining the observed cosmic rays of r -process elements with the fact that the velocity of the neutron-star-merger ejecta is much higher than that of the supernova ejecta, either (1) the reverse shock in the neutron-star-merger ejecta is a very inefficient accelerator that converts less than 0.003% of the ejecta kinetic energy to the cosmic-ray energy or (2) the neutron star merger is not the origin of the Galactic r -process elements. We also find that the acceleration efficiency should be less than 0.1% for the reverse shock of the supernova ejecta with observed cosmic rays lighter than the iron.

  1. Compositional Determination of Shale with Simultaneous Neutron and X-ray Tomography

    Science.gov (United States)

    LaManna, J.; Hussey, D. S.; Baltic, E.; Jacobson, D. L.

    2017-12-01

    Understanding the distribution of organic material, mineral inclusions, and porosity are critical to properly model the flow of fluids through rock formations in applications ranging from hydraulic fracturing and gas extraction, CO2 sequestration, geothermal power, and aquifer management. Typically, this information is obtained on the pore scale using destructive techniques such as focused ion beam scanning electron microscopy. Neutrons and X-rays provide non-destructive, complementary probes to gain three-dimensional distributions of porosity, minerals, and organic content along with fluid interactions in fractures and pore networks on the core scale. By capturing both neutron and X-ray tomography simultaneously it is possible to capture slowly dynamic or stochastic processes with both imaging modes. To facilitate this, NIST offers a system for simultaneous neutron and X-ray tomography at the Center for Neutron Research. This instrument provides neutron and X-ray beams capable of penetrating through pressure vessels to image the specimen inside at relevant geological conditions at resolutions ranging from 15 micrometers to 100 micrometers. This talk will discuss current efforts at identifying mineral and organic content and fracture and wettability in shales relevant to gas extraction.

  2. STUDIES OF COSMIC-RAY MUONS AND NEUTRONS IN A FIVE-STORY CONCRETE BUILDING.

    Science.gov (United States)

    Chen, Wei-Lin; Sheu, Rong-Jiun

    2018-05-01

    This study thoroughly determined the flux and dose rate distributions of cosmic-ray muons and neutrons in a five-story concrete building by comparing measurements with Monte Carlo simulations of cosmic-ray showers. An angular-energy-dependent surface source comprising secondary muons and neutrons at a height of 200 m above ground level was established and verified, which was used to concatenate the shower development in the upper atmosphere with subsequent simulations of radiation transport down to ground level, including the effect of the terrain and studied building. A Berkeley Lab cosmic-ray detector and a highly sensitive Bonner cylinder were used to perform muon and neutron measurements on each building floor. After careful calibration and correction, the measured responses of the two detectors were discovered to be reasonably consistent with the theoretical predictions, thus confirming the validity of the two-step calculation model employed in this study. The annual effective doses from cosmic-ray muons and neutrons on the open roof of the building were estimated to be 115.2 and 35.2 μSv, respectively. Muons and neutrons were attenuated floor-by-floor with different attenuation factors of 0.97 and 0.78, and their resultant dose rates on the first floor of the building were 97.8 and 9.9 μSv, respectively.

  3. Design of a versatile detector for the detection of charged particles, neutrons and gamma rays. Neutron interaction with the matter; Diseno de un detector versatil para la deteccion de particulas cargadas, neutrones y rayos gamma. Interaccion neutronica con la materia

    Energy Technology Data Exchange (ETDEWEB)

    Perez P, J J [Comision Nacional de Seguridad Nuclear y Salvaguardias, Mexico, D.F. (Mexico)

    1991-07-01

    The Fostron detector detects charged particles, neutrons and gamma rays with a reasonable discrimination power. Because the typical detectors for neutrons present a great uncertainty in the detection, this work was focused mainly to the neutron detection in presence of gamma radiation. Also there are mentioned the advantages and disadvantages of the Fostron detector.

  4. Simulation of Neutron-Induced Prompt Gamma-ray Spectra Emitted from Fake Tungsten Gold Bar

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. M.; Sum, G. M. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Fake gold bars on the market cannot be identified easily without testing because they have the same appearance as a pure gold bar. A non-destructive monitoring method is needed to avoid the trading of fake gold bars on the market. The ultimate goal of this study is to find a fake gold bar detection method using a PGAA (Prompt Gamma Activation Analysis). Using existing data, the number of neutron capture for gold and tungsten in fake tungsten gold bar was calculated and a Monte Carlo simulation for the prompt neutron-induced gamma-ray spectra was conducted. A simulation for neutron-induced prompt gamma-rays spectra when a neutron beam is irradiated onto pure and fake gold bars was successfully conducted. Through a comparison between the prompt gamma-ray spectra of the pure gold bar and those of the fake gold bar, it was concluded that the observation of prompt high-energy gamma-rays from tungsten or a reduction of prompt gamma-rays from gold can be evidence of a fake gold bar. The possibility for detecting a fake gold bar using a PGAA facility was verified.

  5. Combined X-ray and neutron fibre diffraction studies of biological and synthetic polymers

    International Nuclear Information System (INIS)

    Parrot, I.M.; Urban, V.; Gardner, K.H.; Forsyth, V.T.

    2005-01-01

    The fibrous state is a natural one for polymer molecules which tend to assume regular helical conformations rather than the globular structures characteristic of many proteins. Fibre diffraction therefore has broad application to the study of a wide range of biological and synthetic polymers. The purpose of this paper is to illustrate the general scope of the method and in particular to demonstrate the impact of a combined approach involving both X-ray and neutron diffraction methods. While the flux of modern X-ray synchrotron radiation sources allows high quality datasets to be recorded with good resolution within a very short space of time, neutron studies can provide unique information through the ability to locate hydrogen or deuterium atoms that are often difficult or impossible to locate using X-ray methods. Furthermore, neutron fibre diffraction methods can, through the ability to selectively label specific parts of a structure, be used to highlight novel aspects of polymer structure that can not be studied using X-rays. Two examples are given. The first describes X-ray and neutron diffraction studies of conformational transitions in DNA. The second describes structural studies of the synthetic high-performance polymer poly(p-phenylene terephthalamide) (PPTA), known commercially as Kevlar[reg] or Twaron[reg

  6. Combined X-ray and neutron fibre diffraction studies of biological and synthetic polymers.

    Energy Technology Data Exchange (ETDEWEB)

    Parrot, I. M. [Institut Laue-Langevin (ILL); Urban, Volker S [ORNL; Gardner, K. H. [DuPont Experimental Station; Forsyth, V. T. [Institut Laue Langevin and Keele University

    2005-04-01

    The fibrous state is a natural one for polymer molecules which tend to assume regular helical conformations rather than the globular structures characteristic of many proteins. Fibre diffraction therefore has broad application to the study of a wide range of biological and synthetic polymers. The purpose of this paper is to illustrate the general scope of the method and in particular to demonstrate the impact of a combined approach involving both X-ray and neutron diffraction methods. While the flux of modern X-ray synchrotron radiation sources allows high quality datasets to be recorded with good resolution within a very short space of time, neutron studies can provide unique information through the ability to locate hydrogen or deuterium atoms that are often difficult or impossible to locate using X-ray methods. Furthermore, neutron fibre diffraction methods can, through the ability to selectively label specific parts of a structure, be used to highlight novel aspects of polymer structure that can not be studied using X-rays. Two examples are given. The first describes X-ray and neutron diffraction studies of conformational transitions in DNA. The second describes structural studies of the synthetic high-performance polymer poly(p-phenylene terephthalamide) (PPTA), known commercially as Kevlar{reg_sign} or Twaron{reg_sign}.

  7. Combined X-ray and neutron fibre diffraction studies of biological and synthetic polymers

    Science.gov (United States)

    Parrot, I. M.; Urban, V.; Gardner, K. H.; Forsyth, V. T.

    2005-08-01

    The fibrous state is a natural one for polymer molecules which tend to assume regular helical conformations rather than the globular structures characteristic of many proteins. Fibre diffraction therefore has broad application to the study of a wide range of biological and synthetic polymers. The purpose of this paper is to illustrate the general scope of the method and in particular to demonstrate the impact of a combined approach involving both X-ray and neutron diffraction methods. While the flux of modern X-ray synchrotron radiation sources allows high quality datasets to be recorded with good resolution within a very short space of time, neutron studies can provide unique information through the ability to locate hydrogen or deuterium atoms that are often difficult or impossible to locate using X-ray methods. Furthermore, neutron fibre diffraction methods can, through the ability to selectively label specific parts of a structure, be used to highlight novel aspects of polymer structure that can not be studied using X-rays. Two examples are given. The first describes X-ray and neutron diffraction studies of conformational transitions in DNA. The second describes structural studies of the synthetic high-performance polymer poly(p-phenylene terephthalamide) (PPTA), known commercially as Kevlar® or Twaron®.

  8. Combined X-ray and neutron fibre diffraction studies of biological and synthetic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Parrot, I.M. [Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Institute of Science and Technology in Medicine, Keele University Medical School, Staffordshire ST4 7QB (United Kingdom); Urban, V. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6100 (United States); Gardner, K.H. [Department of Materials Science and Engineering University of Delaware, Newark, DE 19719 (United States); Forsyth, V.T. [Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble Cedex 9 (France) and Institute of Science and Technology in Medicine, Keele University Medical School, Staffordshire ST4 7QB (United Kingdom)]. E-mail: tforsyth@ill.fr

    2005-08-15

    The fibrous state is a natural one for polymer molecules which tend to assume regular helical conformations rather than the globular structures characteristic of many proteins. Fibre diffraction therefore has broad application to the study of a wide range of biological and synthetic polymers. The purpose of this paper is to illustrate the general scope of the method and in particular to demonstrate the impact of a combined approach involving both X-ray and neutron diffraction methods. While the flux of modern X-ray synchrotron radiation sources allows high quality datasets to be recorded with good resolution within a very short space of time, neutron studies can provide unique information through the ability to locate hydrogen or deuterium atoms that are often difficult or impossible to locate using X-ray methods. Furthermore, neutron fibre diffraction methods can, through the ability to selectively label specific parts of a structure, be used to highlight novel aspects of polymer structure that can not be studied using X-rays. Two examples are given. The first describes X-ray and neutron diffraction studies of conformational transitions in DNA. The second describes structural studies of the synthetic high-performance polymer poly(p-phenylene terephthalamide) (PPTA), known commercially as Kevlar[reg] or Twaron[reg].

  9. Simulation of Neutron-Induced Prompt Gamma-ray Spectra Emitted from Fake Tungsten Gold Bar

    International Nuclear Information System (INIS)

    Lee, K. M.; Sum, G. M.

    2016-01-01

    Fake gold bars on the market cannot be identified easily without testing because they have the same appearance as a pure gold bar. A non-destructive monitoring method is needed to avoid the trading of fake gold bars on the market. The ultimate goal of this study is to find a fake gold bar detection method using a PGAA (Prompt Gamma Activation Analysis). Using existing data, the number of neutron capture for gold and tungsten in fake tungsten gold bar was calculated and a Monte Carlo simulation for the prompt neutron-induced gamma-ray spectra was conducted. A simulation for neutron-induced prompt gamma-rays spectra when a neutron beam is irradiated onto pure and fake gold bars was successfully conducted. Through a comparison between the prompt gamma-ray spectra of the pure gold bar and those of the fake gold bar, it was concluded that the observation of prompt high-energy gamma-rays from tungsten or a reduction of prompt gamma-rays from gold can be evidence of a fake gold bar. The possibility for detecting a fake gold bar using a PGAA facility was verified

  10. Elemental investigation of talcum baby powder by X-Ray florescence and fast neutron activation Techniques

    International Nuclear Information System (INIS)

    Hassan, M. F.; Abd El Wahab, M.; Nada, A.

    2008-01-01

    Different samples of Egyptian and Hungarian talcum powders were studied, using X-ray florescence (XRF) and Fast Neutron Activation Analysis (FNAA) techniques to ensure the safety of its use. The K (X-rays) and the gamma-rays were measured, using Si(Li) and high-purity germanium (HPGe) spectrometers to detect and determine qualitatively and quantitatively the constituents of the studied samples. The concentrations of the elements (Mg, Si, Al, Fe, Zn, and Ba) were measured and their presence was confirmed by X-ray, lifetime and/or XRF measurements. One of these samples was also studied, using the Environmental Scanning Electron Microscope (ESEM)

  11. Investigation of Lecturer's Chalk by x-ray Florescence and Fast Neutron Activation Techniques

    International Nuclear Information System (INIS)

    Hassan, M.F.

    2011-01-01

    Different samples of lecturer's chalk were studied, using X-ray florescence (XRF) and Fast Neutron Activation Analysis (FNAA) techniques to ensure the safety of its use. The K (X-rays) and the gamma-rays were measured, using Si(Li) and high-purity germanium (HPGe) spectrometers to detect and determine qualitatively and quantitatively the constituents of the studied samples. The concentrations of the elements (Ca and small traces of Al, Fe, Mg and Si) were measured and their presence was confirmed by gamma-ray, lifetime and/or XRF measurements.

  12. Neutron, gamma ray and post-irradiation thermal annealing effects on power semiconductor switches

    International Nuclear Information System (INIS)

    Schwarze, G.E.; Frasca, A.J.

    1994-01-01

    The effects of neutrons and gamma rays on the electrical and switching characteristics of power semiconductor switches must be known and understood by the designer of the power conditioning, control, and transmission subsystem of space nuclear power systems. The SP-100 radiation requirements at 25 m from the nuclear source are a neutron fluence of 10 13 n/cm 2 and a gamma dose of 0.5 Mrads. Experimental data showing the effects of neutrons and gamma rays on the performance characteristics of power-type NPN Bipolar Junction Transistors (BJTs), Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs), and Static Induction Transistors (SITs) are given in this paper. These three types of devices were tested at radiation levels which met or exceeded the SP-100 requirements. For the SP-100 radiation requirements, the BJTs were found to be most sensitive to neutrons, the MOSFETs were most sensitive to gamma rays, and the SITs were only slightly sensitive to neutrons. Post-irradiation thermal anneals at 300 K and up to 425 K were done on these devices and the effectiveness of these anneals are also discussed

  13. Neutron, gamma ray and post-irradiation thermal annealing effects on power semiconductor switches

    Science.gov (United States)

    Schwarze, G. E.; Frasca, A. J.

    1991-01-01

    The effects of neutron and gamma rays on the electrical and switching characteristics of power semiconductor switches must be known and understood by the designer of the power conditioning, control, and transmission subsystem of space nuclear power systems. The SP-100 radiation requirements at 25 m from the nuclear source are a neutron fluence of 10(exp 13) n/sq cm and a gamma dose of 0.5 Mrads. Experimental data showing the effects of neutrons and gamma rays on the performance characteristics of power-type NPN Bipolar Junction Transistors (BJTs), Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs), and Static Induction Transistors (SITs) are presented. These three types of devices were tested at radiation levels which met or exceeded the SP-100 requirements. For the SP-100 radiation requirements, the BJTs were found to be most sensitive to neutrons, the MOSFETs were most sensitive to gamma rays, and the SITs were only slightly sensitive to neutrons. Post-irradiation thermal anneals at 300 K and up to 425 K were done on these devices and the effectiveness of these anneals are also discussed.

  14. First examination of CASCADE-X-ray-detector and measurement of neutron-mirrorneutron-oscillation

    International Nuclear Information System (INIS)

    Boehm, B.

    2007-01-01

    The detection of X-radiation is of utmost importance for both fundamental physics and medical diagnostics. This work investigates whether or not the CASCADE detector working principle, first developed for the detection of neutrons, can be adapted for the detection of X-rays. This modular detector concept combines the use of a solid neutron or X-ray converter with the advantages of a counting gas detector. Thus, it gives the possibility to optimize efficiency, dynamics and spatial resolution independently. Firstly, it is necessary to find a suitable converter material that allows for the best possible detector efficiency. In order to do so, a mathematical model of the complete detector system was developed that yields the total efficiency for any given material. Respecting technical constraints, gold and gadolinium showed to be favorable choices. Based on these theoretical considerations a prototype of a CASCADE X-ray detector was built, and measurements for the determination of this detector's efficiency were conducted. In the second part of this work a CASCADE neutron detector was used to conduct the first measurement the neutron-mirrorneutron oscillation time. Mirrormatter was proposed in 1956 by Lee and Yang to allow for symmetry in the description of the universe despite the existence of parity violation. By using neutrons it was possible to determine a lower limit for the oscillation time in this work. (orig.)

  15. The Fermi Gamma-Ray Space Telescope, Exploding Stars, Neutron Stars, and Black Holes

    Science.gov (United States)

    Thompson, David J.

    2010-01-01

    Since August, 2008, the Fermi Gamma-ray Space Telescope has been scanning the sky, producing a full-sky image every three hours. These cosmic gamma-rays come from extreme astrophysical phenomena, many related to exploding stars (supernovae) or what these explosions leave behind: supernova remnants, neutron stars, and black holes. This talk uses sample Fermi results, plus simple demonstrations, to illustrate the exotic properties of these endpoints of stellar evolution.

  16. Detection of buried land mines using back scattered neutron induced γ-ray analysis

    International Nuclear Information System (INIS)

    Aziz, M.; Megahd, R.

    2003-01-01

    The application of nuclear technique to detection buried land mine is examined. MCNP code was used to design a computer model that calculate the back scattered neutron induced γ rays from buried simulate explosive materials. The characteristic γ rays for each isotopes were used to distinguish materials. The advantage of the nuclear technique was discussed. The results were compared with experimental measurements which show good agreement

  17. Physical methods for studying minerals and solid materials: X-ray, electron and neutron diffraction; scanning and transmission electron microscopy; X-ray, electron and ion spectrometry

    International Nuclear Information System (INIS)

    Eberhart, J.-P.

    1976-01-01

    The following topics are discussed: theoretical aspects of radiation-matter interactions; production and measurement of radiations (X rays, electrons, neutrons); applications of radiation interactions to the study of crystalline materials. The following techniques are presented: X-ray and neutron diffraction, electron microscopy, electron diffraction, X-ray fluorescence analysis, electron probe microanalysis, surface analysis by electron emission spectrometry (ESCA and Auger electrons), scanning electron microscopy, secondary ion emission analysis [fr

  18. On the use of bismuth as a neutron and gamma ray filter

    International Nuclear Information System (INIS)

    Adib, M.; Kilany, M.

    2003-01-01

    A formula is given which, for neutron energies in the range 10 -4 < E<10 eV, permits calculation of the nuclear capture, thermal diffuse and bragg scattering cross-sections as a function of bismuth temperature crystalline form. Computer programs have been developed which allow calculations for the Bi rhombohedral structure in its poly-crystalline form and its equivalent hexagonal close-packed structure. Calculated total neutron cross-sections for poly-crystalline Bi at different temperatures were compared with measured values. Overall agreement is indicated between the formula fits and experimental data. Agreement was also obtained for values of Bi-single crystals, at room and liquid nitrogen temperatures. A feasibility study for use of Bi in powdered form, as a spread temperature and cutting plane for efficient transmission of thermal-reactor neutrons, and also for rejection of accompanying fast neutrons and gamma rays

  19. Attenuation of neutrons and gamma-rays in homogeneous and multilayered shields

    International Nuclear Information System (INIS)

    Abdo, A.E.; Megahid, R.M.

    1997-01-01

    Measurements were carried-out to compare the attenuation properties of homogeneous shields and shields of two layers and three layers for fast neutrons and total gamma-rays. These were performed by measuring the fast neutron and total gamma-ray spectra behind homogeneous shields of magnetite-limonite, ilmenite-ilmenite and magnetite-magnetite concretes. The two layers assembly consists of iron and one of the above mentioned concretes, while the three layers shield consists of water, iron and one of the previously mentioned concretes. All measurements were carried-out using a neutron-gamma spectrometer with stilbene scintillator coupled to a fast photo multi player tube. Separation between pulses of recoil protons and recoil electrons was achieved by a pulse shape discrimination technique. 3 tabs., 10 figs., 13 refs

  20. Vessel wall damage by X-rays and 15 MeV neutrons

    International Nuclear Information System (INIS)

    Aarnoudse, M.W.

    1979-01-01

    In two simple mucopolysaccharide systems, synovial fluid and subcutaneous connective tissue membranes, the degrading effects of 200 kVp X-rays and 15 MeV neutrons is compared. Due to the depolymerization of the mucopolysaccharides the viscosity of synovial fluid decreases and the permeability of the connective tissue membranes for saline increases after irradiation. In both systems a RBE of 0.6 has been found for fast neutrons. The atheromatous changes in the wall of elastic arteries (lipid penetration into the vessel wall and the formation of plaques consisting of large, lipid-filled foam cells) are studied in the carotid arteries of hypercholesterolemic rabbits, two months after irradiating the arteries with different doses of X-rays or neutrons. (Auth.)

  1. The effect of pulse pile-up on discrimination between neutrons and gamma rays

    International Nuclear Information System (INIS)

    Whittlestone, S.

    1980-01-01

    Pulse pile-up lengthens the rise-time of pulses. With an organic scintillator such as NE 213, pile-up can cause a short rise-time pulse originating from gamma rays to be interpreted by a rise-time analyser as a neutron. The degradation of pulse shape analyser performance at high count rates is shown to be directly related to pulse pile-up. Using this relationship, the contribution of piled-up gamma rays and neutrons to count rate related errors is calculated for a time-dependent fast neutron energy spectrum measurement. Errors of a few per cent occur even when the probability of a count per burst is as low as 0.01. (orig.)

  2. Guideline of Monte Carlo calculation. Neutron/gamma ray transport simulation by Monte Carlo method

    CERN Document Server

    2002-01-01

    This report condenses basic theories and advanced applications of neutron/gamma ray transport calculations in many fields of nuclear energy research. Chapters 1 through 5 treat historical progress of Monte Carlo methods, general issues of variance reduction technique, cross section libraries used in continuous energy Monte Carlo codes. In chapter 6, the following issues are discussed: fusion benchmark experiments, design of ITER, experiment analyses of fast critical assembly, core analyses of JMTR, simulation of pulsed neutron experiment, core analyses of HTTR, duct streaming calculations, bulk shielding calculations, neutron/gamma ray transport calculations of the Hiroshima atomic bomb. Chapters 8 and 9 treat function enhancements of MCNP and MVP codes, and a parallel processing of Monte Carlo calculation, respectively. An important references are attached at the end of this report.

  3. Multi-fold correlations between 252Cf (sf) fragments and fission neutrons/γ-rays

    International Nuclear Information System (INIS)

    Duering, I.; Jahnke, U.

    1993-01-01

    Direction-sensitive spectroscopy of fission fragments (twin ionization chamber with Frisch grids) was combined with the measurement of neutron multiplicity distribution (P(ν), average total γ-ray energy (2x2 π Gd-loaded scintillator) as well as energy and angular distribution of neutrons and γ-rays. Based on the careful account for necessary corrections, scission configurations given by mass asymmetry, elongation (total kinetic energy of fragments), and shape asymmetry (ν 1 /ν 2 ) can be studied exclusively in correlation with differential distributions of emission products. The scheme for correcting the neutron multiplicity distribution including its separation into the contributions from the complementary fragments is presented in detail. The mass yield for extreme anti ν 1 / anti ν 2 ratios show fine structures indicating the cold shape-asymmetric fission. (orig.)

  4. Evaluation of neutron and gamma-ray-production cross-section data for lead

    International Nuclear Information System (INIS)

    Fu, C.Y.; Perey, F.G.

    1975-01-01

    A survey was made of the available information on neutron and gamma-ray-production cross-section measurements of lead. From these and from relevant nuclear-structure information on the Pb isotopes, recommended neutron cross-section data sets for lead covering the neutron energy range from 0.00001 eV to 20.0 MeV have been prepared. The cross sections are derived from experimental results available to February 1972 and from calculations based on optical-model, DWBA, and Hauser--Feshbach theories. Comparisons which show good agreement between theoretical and experimental values are displayed in a number of graphs. Also presented graphically are smoothed total cross sections, Legendre coefficients for angular distributions, and a representative energy distribution of gamma rays from resonance capture. 15 tables, 36 figures, 104 references

  5. Investigation of gamma-ray sensitivity of neutron detectors based on thin converter films

    Energy Technology Data Exchange (ETDEWEB)

    Khaplanov, A; Hall-Wilton, R [European Spallation Source, P.O Box 176, SE-22100 Lund (Sweden); Piscitelli, F; Buffet, J-C; Clergeau, J-F; Correa, J; Esch, P van; Ferraton, M; Guerard, B [Institute Laue Langevin, Rue Jules Horowitz, FR-38042 Grenoble (France)

    2013-10-15

    Currently, many detector technologies for thermal neutron detection are in development in order to lower the demand for the rare {sup 3}He gas. Gas detectors with solid thin film neutron converters readout by gas proportional counter method have been proposed as an appropriate choice for applications where large area coverage is necessary. In this paper, we investigate the probability for {gamma}-rays to generate a false count in a neutron measurement. Simulated results are compared to measurement with {sup 10}B thin film prototypes and a {sup 3}He detector. It is demonstrated that equal {gamma}-ray rejection to that of {sup 3}He tubes is achieved with the new technology. The arguments and results presented here are also applicable to gas detectors with converters other than solid {sup 10}B layers, such as {sup 6}Li layers and {sup 10}BF{sub 3} gas.

  6. A study on fast digital discrimination of neutron and gamma-ray for improvement neutron emission profile measurement

    International Nuclear Information System (INIS)

    Uchida, Y.; Takada, E.; Fujisaki, A.; Isobe, M.; Ogawa, K.; Shinohara, K.; Tomita, H.; Kawarabayashi, J.; Iguchi, T.

    2014-01-01

    Neutron and γ-ray (n-γ) discrimination with a digital signal processing system has been used to measure the neutron emission profile in magnetic confinement fusion devices. However, a sampling rate must be set low to extend the measurement time because the memory storage is limited. Time jitter decreases a discrimination quality due to a low sampling rate. As described in this paper, a new charge comparison method was developed. Furthermore, automatic n-γ discrimination method was examined using a probabilistic approach. Analysis results were investigated using the figure of merit. Results show that the discrimination quality was improved. Automatic discrimination was applied using the EM algorithm and k-means algorithm

  7. A study on fast digital discrimination of neutron and gamma-ray for improvement neutron emission profile measurement

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Y., E-mail: h1312101@mailg.nc-toyama.ac.jp; Takada, E.; Fujisaki, A. [National Institute of Technology, Toyama College, 13 Hongo-machi, Toyama 939-8630 (Japan); Isobe, M. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); The Graduate University for Advanced Studies (SOKENDAI), 322-6 Oroshi-cho, Toki 509-5292 (Japan); Ogawa, K. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Shinohara, K. [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka 311-0913 (Japan); Tomita, H.; Kawarabayashi, J.; Iguchi, T. [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2014-11-15

    Neutron and γ-ray (n-γ) discrimination with a digital signal processing system has been used to measure the neutron emission profile in magnetic confinement fusion devices. However, a sampling rate must be set low to extend the measurement time because the memory storage is limited. Time jitter decreases a discrimination quality due to a low sampling rate. As described in this paper, a new charge comparison method was developed. Furthermore, automatic n-γ discrimination method was examined using a probabilistic approach. Analysis results were investigated using the figure of merit. Results show that the discrimination quality was improved. Automatic discrimination was applied using the EM algorithm and k-means algorithm.

  8. Improvement of mungbean by X-ray and thermal neutron irradiation

    International Nuclear Information System (INIS)

    Kwon, S.H.; Oh, J.H.

    1983-01-01

    With the aim of improving yield, resistance to Cercospora leaf spot and pod shattering, mungbean varieties Kyunggi No. 5 and M-317 were irradiated with X-rays and thermal neutrons. High yielding mutant lines are generally characterized by a higher number of pods per plant. Better Cercospora resistance appears often associated with later maturity. Satisfactory shattering resistance was not yet obtained. (author)

  9. KSb(OH) samples previously treated with Co y - rays irradiated with neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Facetti, J F [Asuncion Nacional Univ. (Paraguay). Inst. de Ciencias

    1969-01-01

    When Ksb (OH) samples previously treated with Co y - rays or crushed are irradiated with neutrons, the yield of Sb and the annealing mechanism are apparently modified by the pretreatment. In addition it is shown that metastable species of Sb are formed under irradiation.

  10. Results on neutron and gamma-ray irradiation of electrolytic tiltmeters

    International Nuclear Information System (INIS)

    Calderon, A.; Calvo, E.; Figueroa, C.F.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Vila, I.; Virto, A.L.; Arce, P.; Barcala, J.M.; Ferrando, A.; Fuentes, J.; Josa, M.I.; Luque, J.M.; Molinero, A.; Navarrete, J.; Oller, J.C.; Valdivieso, P.; Fenyvesi, A.; Molnar, J.

    2004-01-01

    We report on irradiation studies done to a sample of high-precision electrolytic tiltmeters with gamma-rays, up to a maximum dose of 150 kGy, and neutrons, up to a maximum fluence of 1.5x10 14 cm -2 . The effect of the irradiation on their performance is discussed

  11. Analysis of microstress in neutron irradiated polyester fibre by X-ray ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Microstresses developed in the crystallites of polymeric material due to irradiation of high-energy particle causes peak broadening and shifting of X-ray diffraction lines to lower angle. Neutron irradiation significantly changes the material properties by displacement of lattice atoms and the generation of helium.

  12. Small angle neutron scattering and small angle X-ray scattering ...

    Indian Academy of Sciences (India)

    Abstract. The morphology of carbon nanofoam samples comprising platinum nanopar- ticles dispersed in the matrix was characterized by small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) techniques. Results show that the structure of pores of carbon matrix exhibits a mass (pore) fractal nature ...

  13. Composite structure of helicopter rotor blades studied by neutron- and X-ray radiography

    International Nuclear Information System (INIS)

    Balasko, M.; Veres, I.; Molnar, Gy.; Balasko, Zs.; Svab, E.

    2004-01-01

    In order to inspect the possible defects in the composite structure of helicopter rotor blades combined neutron- and X-ray radiography investigations were performed at the Budapest Research Reactor. Imperfections in the honeycomb structure, resin rich or starved areas at the core-honeycomb surfaces, inhomogeneities at the adhesive filling and water percolation at the sealing interfaces of the honeycomb sections were discovered

  14. Composite structure of helicopter rotor blades studied by neutron- and X-ray radiography

    Science.gov (United States)

    Balaskó, M.; Veres, I.; Molnár, Gy.; Balaskó, Zs.; Sváb, E.

    2004-07-01

    In order to inspect the possible defects in the composite structure of helicopter rotor blades combined neutron- and X-ray radiography investigations were performed at the Budapest Research Reactor. Imperfections in the honeycomb structure, resin rich or starved areas at the core-honeycomb surfaces, inhomogeneities at the adhesive filling and water percolation at the sealing interfaces of the honeycomb sections were discovered.

  15. X-ray luminosity by matter accretion on a neutron star

    Energy Technology Data Exchange (ETDEWEB)

    Baroni, L [Bologna Univ. (Italy). Ist. di Fisica; Fortini, P L [Instituto di Astronomia, Bologna (Italy); Gualdi, C; Callegari, G [Ferrara Univ. (Italy). Ist. di Fisica

    1980-11-20

    When the accretion rate on a non magnetic neutron star is determined by stellar wind and not by overflowing the Roche lobe, it is shown that X-ray luminosity cannot exceed 10sup(36)-10sup(37) erg/sec. This very low limit is essentially set by radiation pressure which causes an effective braking on the falling matter.

  16. An ultraluminous X-ray source powered by an accreting neutron star

    DEFF Research Database (Denmark)

    Bachetti, M.; Harrison, F. A.; Walton, D. J.

    2014-01-01

    the Eddington limit for a 1.4-solar-mass object, or more than ten times brighter than any known accreting pulsar. This implies that neutron stars may not be rare in the ultraluminous X-ray population, and it challenges physical models for the accretion of matter onto magnetized compact objects....

  17. Feasibility Study On Using Crystalline Lead As a Neutron and Gamma Ray Filter

    International Nuclear Information System (INIS)

    Adib, M.; Naguib, K.; Ashry, A.; Fathalla, M.

    2000-01-01

    A generalized formula is given which allows to calculate the contribution of the total neutron cross- section including the Bragg scattering from different (hkI) planes to the neutron transmission through a solid crystalline material. The formula takes into account the crystalline form of the material (poly- or mono- crystal ) and crystal parameters. A computer program ISCANF-II was developed to provide the required calculations. The calculated values of the neutron transmission through a lead single crystal cut along the (311) plane were compared with the previously measured ones in the wavelength range 0.03-0.52 nm. The measured and calculated values were found to be in reasonable agreement within the statistical accuracy. The feasibility study on using a poly crystalline lead as a cold neutron filter and monocrystalline as a thermal neutron one is given. The optimum crystal thickness, temperature and characteristics for efficiently transmitting the thermal reactor neutrons, while removing simultaneously fast neutrons and gamma rays accompanying the thermal ones for the both cases are given

  18. Radiation hardness of GaAs sensors against gamma-rays, neutrons and electrons

    Energy Technology Data Exchange (ETDEWEB)

    Šagátová, Andrea, E-mail: andrea.sagatova@stuba.sk [Institute of Nuclear and Physical Engineering, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovičova 3, 812 19 Bratislava (Slovakia); University Centre of Electron Accelerators, Slovak Medical University, Ku kyselke 497, 911 06 Trenčín (Slovakia); Zaťko, Bohumír; Dubecký, František [Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava (Slovakia); Ly Anh, Tu [Faculty of Applied Science, University of Technology VNU HCM, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City (Viet Nam); Nečas, Vladimír; Sedlačková, Katarína; Pavlovič, Márius [Institute of Nuclear and Physical Engineering, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovičova 3, 812 19 Bratislava (Slovakia); Fülöp, Marko [University Centre of Electron Accelerators, Slovak Medical University, Ku kyselke 497, 911 06 Trenčín (Slovakia)

    2017-02-15

    Highlights: • Radiation hardness of SI GaAs detectors against gamma-rays, neutrons and electrons was compared. • Good agreement was achieved between the experimental results and displacement damage factor of different types of radiation. • CCE and FWHM first slightly improved (by 1–8%) and just then degraded with the cumulative dose. • An increase of detection efficiency with cumulative dose was observed. - Abstract: Radiation hardness of semi-insulating GaAs detectors against {sup 60}Co gamma-rays, fast neutrons and 5 MeV electrons was compared. Slight improvements in charge collection efficiency (CCE) and energy resolution in FWHM (Full Width at Half Maximum) were observed at low doses with all kinds of radiation followed by their degradation. The effect occurred at a dose of about 10 Gy of neutrons (CCE improved by 1%, FWHM by 5% on average), at 1 kGy of electrons (FWHM decreased by 3% on average) and at 10 kGy of gamma-rays (CCE raised by 5% and FWHM dropped by 8% on average), which is in agreement with the relative displacement damage of the used types of radiation. Gamma-rays of MeV energies are 1000-times less damaging than similar neutrons and electrons about 10-times more damaging than photons. On irradiating the detectors with neutrons and electrons, we observed a global increase in their detection efficiency, which was caused probably by enlargement of the active detector area as a consequence of created radiation defects in the base material. Detectors were still functional after a dose of 1140 kGy of ∼1 MeV photons, 104 kGy of 5 MeV electrons but only up to 0.576 kGy of fast (∼2 to 30 MeV) neutrons.

  19. Neutron Radiation Shielding For The NIF Streaked X-Ray Detector (SXD) Diagnostic

    International Nuclear Information System (INIS)

    Song, P; Holder, J; Young, B; Kalantar, D; Eder, D; Kimbrough, J

    2006-01-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is preparing for the National Ignition Campaign (NIC) scheduled in 2010. The NIC is comprised of several ''tuning'' physics subcampaigns leading up to a demonstration of Inertial Confinement Fusion (ICF) ignition. In some of these experiments, time-resolved x-ray imaging of the imploding capsule may be required to measure capsule trajectory (shock timing) or x-ray ''bang-time''. A capsule fueled with pure tritium (T) instead of a deutriun-tritium (DT) mixture is thought to offer useful physics surrogacy, with reduced yields of up to 5e14 neutrons. These measurements will require the use of the NIF streak x-ray detector (SXD). The resulting prompt neutron fluence at the planned SXD location (∼1.7 m from the target) would be ∼1.4e9/cm 2 . Previous measurements suggest the onset of significant background at a neutron fluence of ∼ 1e8/cm 2 . The radiation damage and operational upsets which starts at ∼1e8 rad-Si/sec must be factored into an integrated experimental campaign plan. Monte Carlo analyses were performed to predict the neutron and gamma/x-ray fluences and radiation doses for the proposed diagnostic configuration. A possible shielding configuration is proposed to mitigate radiation effects. The primary component of this shielding is an 80 cm thickness of Polyethylene (PE) between target chamber center (TCC) and the SXD diagnostic. Additionally, 6-8 cm of PE around the detector provide from the large number of neutrons that scatter off the inside of the target chamber. This proposed shielding configuration reduces the high-energy neutron fluence at the SXD by approximately a factor ∼50

  20. Neutron Radiation Shielding For The NIF Streaked X-Ray Detector (SXD) Diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Song, P; Holder, J; Young, B; Kalantar, D; Eder, D; Kimbrough, J

    2006-11-02

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is preparing for the National Ignition Campaign (NIC) scheduled in 2010. The NIC is comprised of several ''tuning'' physics subcampaigns leading up to a demonstration of Inertial Confinement Fusion (ICF) ignition. In some of these experiments, time-resolved x-ray imaging of the imploding capsule may be required to measure capsule trajectory (shock timing) or x-ray ''bang-time''. A capsule fueled with pure tritium (T) instead of a deutriun-tritium (DT) mixture is thought to offer useful physics surrogacy, with reduced yields of up to 5e14 neutrons. These measurements will require the use of the NIF streak x-ray detector (SXD). The resulting prompt neutron fluence at the planned SXD location ({approx}1.7 m from the target) would be {approx}1.4e9/cm{sup 2}. Previous measurements suggest the onset of significant background at a neutron fluence of {approx} 1e8/cm{sup 2}. The radiation damage and operational upsets which starts at {approx}1e8 rad-Si/sec must be factored into an integrated experimental campaign plan. Monte Carlo analyses were performed to predict the neutron and gamma/x-ray fluences and radiation doses for the proposed diagnostic configuration. A possible shielding configuration is proposed to mitigate radiation effects. The primary component of this shielding is an 80 cm thickness of Polyethylene (PE) between target chamber center (TCC) and the SXD diagnostic. Additionally, 6-8 cm of PE around the detector provide from the large number of neutrons that scatter off the inside of the target chamber. This proposed shielding configuration reduces the high-energy neutron fluence at the SXD by approximately a factor {approx}50.

  1. Monte Carlo neutron and gamma-ray calculations

    International Nuclear Information System (INIS)

    Mendelsohn, Edgar

    1987-01-01

    Kerma in tissue and the activation produced in sulfur and cobalt due to prompt neutrons from the Hiroshima and Nagasaki bombs were calculated out to 2000 m from the hypocenter in 100 m increments. As neutron sources weapon output spectra calculated by investigators from the Los Alamos National Laboratory (LANL) were used. Other parameters, such as burst height and air and ground densities and compositions, were obtained from recent sources. The LLNL Monte Carlo transport code TART was used for these calculations. TART accesses the well-established 1985 ENDL cross-section library, which has built-in reaction cross sections. The zoning for this problem was a full two-dimensional geometry with a ceiling height of 1100 m and a ground thickness of 30 cm. For the Hiroshima calculations (including sulfur activation) and untilted source was used. However, a special sulfur activation problem using a source tilted 15 deg was run for which the ratios to the untilted case are reported. The TART code uses a technique for solving the transport equation that is different from that of the ORNL DOT code; it also draws on a specially evaluated cross-section library (ENDL) and uses a larger group structure than DOT. One of the purposes of this work was to instill confidence in the DOT calculations that will be used directly in the dose reassessment of A-bomb survivors. The TART results were compared with values calculated with the DOT code by investigators from ORNL and found to be in good agreement for the most part. However, the sulfur activation comparison is disappointing. Because the sulfur activation is caused by higher energy neutrons (which should have experienced fewer collisions than those causing cobalt activation, for example), better agreement than what is reported here would be expected

  2. Displacement damage caused by gamma-rays and neutrons on Au and Se.

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Barney Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-11-01

    This report documents theoretical calculations of displacement damage produced by gamma rays and neutrons on various materials. The average energy of the gamma rays was 1.24 MeV and 1.0 MeV for the neutrons. The fluence of the gamma rays was 1.2e14 γ/cm2 , for the neutrons it was 1.0e12 n/cm2. The initial materials of interest were Au and Se. The total doses of the gamma ray exposures were in the 100 kRad range for both elements. An equivalent electron fluence was approximated to be the same as the gamma ray fluence over one gamma ray attenuation length in both materials and at the same 1.24 MeV energy. The maximum recoil energy of the Au and Se for these electrons was calculated relativisticaly to be 29 and 72 eV respectively. The relativisitic McKinley and Feshbach theory for the atomic recoil cross sections produced by the electrons were in the 10s of mbarn range and an upper limit for the concentration of Frenkel pairs for the gamma ray exposures for both elements was in the ppb range. The Robinson Energy Partioning Theory for non-ionizing energy loss (NIEL) of ions in solids was used to calculate the concentration of Frenkel pairs produced by the 1 MeV neutrons, and this concentration was also in the ppb range for both Au and Se. Low damage levels like this can have effects on minority carrier recombination in semiconductors, but are not expected to have any effect on metals like Au, or metalloids such as Se.

  3. The potential of detecting intermediate-scale biomass and canopy interception in a coniferous forest using cosmic-ray neutron intensity measurements and neutron transport modeling

    Science.gov (United States)

    Andreasen, M.; Looms, M. C.; Bogena, H. R.; Desilets, D.; Zreda, M. G.; Sonnenborg, T. O.; Jensen, K. H.

    2014-12-01

    The water stored in the various compartments of the terrestrial ecosystem (in snow, canopy interception, soil and litter) controls the exchange of the water and energy between the land surface and the atmosphere. Therefore, measurements of the water stored within these pools are critical for the prediction of e.g. evapotranspiration and groundwater recharge. The detection of cosmic-ray neutron intensity is a novel non-invasive method for the quantification of continuous intermediate-scale soil moisture. The footprint of the cosmic-ray neutron probe is a hemisphere of a few hectometers and subsurface depths of 10-70 cm depending on wetness. The cosmic-ray neutron method offers measurements at a scale between the point-scale measurements and large-scale satellite retrievals. The cosmic-ray neutron intensity is inversely correlated to the hydrogen stored within the footprint. Overall soil moisture represents the largest pool of hydrogen and changes in the soil moisture clearly affect the cosmic-ray neutron signal. However, the neutron intensity is also sensitive to variations of hydrogen in snow, canopy interception and biomass offering the potential to determine water content in such pools from the signal. In this study we tested the potential of determining canopy interception and biomass using cosmic-ray neutron intensity measurements within the framework of the Danish Hydrologic Observatory (HOBE) and the Terrestrial Environmental Observatories (TERENO). Continuous measurements at the ground and the canopy level, along with profile measurements were conducted at towers at forest field sites. Field experiments, including shielding the cosmic-ray neutron probes with cadmium foil (to remove lower-energy neutrons) and measuring reference intensity rates at complete water saturated conditions (on the sea close to the HOBE site), were further conducted to obtain an increased understanding of the physics controlling the cosmic-ray neutron transport and the equipment used

  4. Comparison of neutron and high-energy X-ray dual-beam radiography for air cargo inspection

    International Nuclear Information System (INIS)

    Liu, Y.; Sowerby, B.D.; Tickner, J.R.

    2008-01-01

    Dual-beam radiography techniques utilising various combinations of high-energy X-rays and neutrons are attractive for screening bulk cargo for contraband such as narcotics and explosives. Dual-beam radiography is an important enhancement to conventional single-beam X-ray radiography systems in that it provides additional information on the composition of the object being imaged. By comparing the attenuations of transmitted dual high-energy beams, it is possible to build a 2D image, colour coded to indicate material. Only high-energy X-rays, gamma-rays and neutrons have the required penetration to screen cargo containers. This paper reviews recent developments and applications of dual-beam radiography for air cargo inspection. These developments include dual high-energy X-ray techniques as well as fast neutron and gamma-ray (or X-ray) radiography systems. High-energy X-ray systems have the advantage of generally better penetration than neutron systems, depending on the material being interrogated. However, neutron systems have the advantage of much better sensitivity to material composition compared to dual high-energy X-ray techniques. In particular, fast neutron radiography offers the potential to discriminate between various classes of organic material, unlike dual energy X-ray techniques that realistically only offer the ability to discriminate between organic and metal objects

  5. The peculiar galactic center neutron star X-ray binary XMM J174457-2850.3

    Energy Technology Data Exchange (ETDEWEB)

    Degenaar, N.; Reynolds, M. T.; Miller, J. M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Wijnands, R. [Anton Pannekoek Institute of Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Altamirano, D. [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Kennea, J. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Gehrels, N. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Haggard, D. [CIERA, Physics and Astronomy Department, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Ponti, G., E-mail: degenaar@umich.edu [Max Planck Institute fur Extraterrestriche Physik, D-85748 Garching (Germany)

    2014-09-10

    The recent discovery of a millisecond radio pulsar experiencing an accretion outburst similar to those seen in low mass X-ray binaries, has opened up a new opportunity to investigate the evolutionary link between these two different neutron star manifestations. The remarkable X-ray variability and hard X-ray spectrum of this object can potentially serve as a template to search for other X-ray binary/radio pulsar transitional objects. Here we demonstrate that the transient X-ray source XMM J174457-2850.3 near the Galactic center displays similar X-ray properties. We report on the detection of an energetic thermonuclear burst with an estimated duration of ≅2 hr and a radiated energy output of ≅ 5 × 10{sup 40} erg, which unambiguously demonstrates that the source harbors an accreting neutron star. It has a quiescent X-ray luminosity of L {sub X} ≅ 5 × 10{sup 32}(D/6.5 kpc){sup 2} erg s{sup –1} and exhibits occasional accretion outbursts during which it brightens to L {sub X} ≅ 10{sup 35}-10{sup 36}(D/6.5 kpc){sup 2} erg s{sup –1} for a few weeks (2-10 keV). However, the source often lingers in between outburst and quiescence at L {sub X} ≅ 10{sup 33}-10{sup 34}(D/6.5 kpc){sup 2} erg s{sup –1}. This peculiar X-ray flux behavior and its relatively hard X-ray spectrum, a power law with an index of Γ ≅ 1.4, could possibly be explained in terms of the interaction between the accretion flow and the magnetic field of the neutron star.

  6. Determination of protein content in grains by radioactive thermal neutron capture prompt gamma rays analysis

    International Nuclear Information System (INIS)

    Carbonari, A.W.

    1983-01-01

    The radioactive thermal neutron capture prompt gamma rays technique can be used to determinate the nitrogen content in grains without chemical destruction, with good precision and relative rapidity. This determination is based on the detection of prompt gamma rays emitted by the 14 N(n,γ) 15 N reaction product. The samples has been irradiated the tanGencial tube of the IEA-R1 research reator and a pair spectrometer has been used for the detection of the prompt gamma rays. The nitrogen content is determinated in several samples of soybean, commonbean, peas and rice, and the results is compared with typical nitrogen content for each grain. (Autor) [pt

  7. Formation properties from high resolution neutron activation gamma-ray spectra

    International Nuclear Information System (INIS)

    Mellor, D.W.; Underwood, M.C.

    1985-01-01

    A neutron activation logging tool has been developed comprising a Five Curie /sup 241/ Am-Be neutron source and a large n-type hyper-pure germanium gamma-ray detector. The tool maintains a constant temperature cryogenic environment for periods in excess of twenty hours. No liquid nitrogen or other consumable material is used in the operating or recharging stages. A large calibration tank in simulated well-bore geometry has been constructed with sand bodies saturated with oil and low salinity water (14,000 ppm NaCl). In the water zone prompt neutron capture gamma-rays from silicon, hydrogen and chlorine were prominent; gamma-rays from inelastic scattering on oxygen and silicon were detected. No gamma-rays arising from inelastic scattering on carbon were detected. These data have been interpreted to yield the porosity, fluid saturations, salinity and matrix composition. In the oil zone, gamma-rays arising from inelastic scattering on oxygen, silicon and carbon were detected. The intensity of the carbon line was very poor, and inadequate for quantitative purposes

  8. X-ray and neutron scattering studies of complex confined fluids

    International Nuclear Information System (INIS)

    Sinha, S. K.

    1999-01-01

    We review recent X-ray and neutron scattering studies of the structure and dynamics of confined complex fluids. This includes the study of polymer conformations and binary fluid phase transitions in porous media using Small Angle Neutron scattering, and the use of synchrotrons radiation to study ordering and fluctuation phenomena at solid/liquid and liquid/air interfaces. Ordering of liquids near a solid surface or in confinement will be discussed, and the study, via specular and off-specular X-ray reflectivity, of capillary wave fluctuations on liquid polymer films. Finally, we shall discuss the use of high-brilliance beams from X-ray synchrotrons to study via photon correlation spectroscopy the slow dynamics of soft condensed matter systems

  9. Gamma-ray emission spectra from spheres with 14 MeV neutron source

    International Nuclear Information System (INIS)

    Yamamoto, Junji; Kanaoka, Takeshi; Murata, Isao; Takahashi, Akito; Sumita, Kenji

    1989-01-01

    Energy spectra of neutron-induced gamma-rays emitted from spherical samples were measured using a 14 MeV neutron source. The samples in use were LiF, Teflon:(CF 2 ) n , Si, Cr, Mn, Co, Cu, Nb, Mo, W and Pb. A diameter of the sphere was either 40 or 60 cm. The gamma-ray energy in the emission spectra covered the range from 500 keV to 10 MeV. Measured spectra were compared with transport calculations using the nuclear data files of JENDL-3T and ENDF/B-IV. The agreements between the measurements and the JENDL-3T calculations were good in the emission spectra for the low energy gamma-rays from inelastic scattering. (author)

  10. Peculiarities of the Moon variations of the neutron and meson components of cosmic rays

    International Nuclear Information System (INIS)

    Naskidashvili, B.D.; Shatashvili, L.Kh.

    1979-01-01

    Lunar variations of the neutron component of cosmic rays have been investigated individually for groups of stations of the northern hemisphere of the Earth and for groups of stations of the southern hemisphere. A dependence has been found of the amplitude and phase of the first harmonic of lunar variations in the intensity of neutron and meson components of cosmic rays on the geocentric distance of the Moon and on the epoch of solar activity. The amplitudes and phases of lunar variations were determined by the Chapman-Miller method. According to the data on the meson component of cosmic rays obtained by the Nagoya station (Japan), the amplitudes of the first harmonic of lunar daily variations point to the fact that as the Moon approaches the Earth the tidal effects do not exceed the effects of lunar gravitational forces when the Moon is at apogee

  11. Thermal neutron detector and gamma-ray spectrometer utilizing a single material

    Science.gov (United States)

    Stowe, Ashley; Burger, Arnold; Lukosi, Eric

    2017-05-02

    A combined thermal neutron detector and gamma-ray spectrometer system, including: a detection medium including a lithium chalcopyrite crystal operable for detecting thermal neutrons in a semiconductor mode and gamma-rays in a scintillator mode; and a photodetector coupled to the detection medium also operable for detecting the gamma rays. Optionally, the detection medium includes a .sup.6LiInSe.sub.2 crystal. Optionally, the detection medium comprises a compound formed by the process of: melting a Group III element; adding a Group I element to the melted Group III element at a rate that allows the Group I and Group III elements to react thereby providing a single phase I-III compound; and adding a Group VI element to the single phase I-III compound and heating; wherein the Group I element includes lithium.

  12. Measurement of secondary neutrons and gamma rays produced by neutron interactions in aluminum over the incident energy range 1 to 20 MeV

    International Nuclear Information System (INIS)

    Morgan, G.L.

    1975-11-01

    The spectra of secondary neutrons and gamma rays produced by neutron interaction in a thin sample (approximately 1/6 mean free path) of aluminum have been measured as a function of the incident neutron energy over the range 1 to 20 MeV. Data were taken at an angle of 125 0 . A linac (ORELA) was used as a neutron source with a 47-m flight path. Incident energy was determined by time-of-flight, while secondary spectra were determined by pulse-height unfolding techniques. The results of the measurements are presented in forms suitable for comparison to calculations based on the evaluated data files. (6 tables, 4 figures)

  13. Preliminary neutron and X-ray crystallographic studies of equine cyanomethemoglobin

    International Nuclear Information System (INIS)

    Kovalevsky, A. Y.; Fisher, S. Zoe; Seaver, Sean; Mustyakimov, Marat; Sukumar, Narayanasami; Langan, Paul; Mueser, Timothy C.; Hanson, B. Leif

    2010-01-01

    Equine cyanomethemoglobin has been crystallized and X-ray and neutron diffraction data have been measured. Joint X-ray–neutron refinement is under way; the structural results should help to elucidate the differences between the hemoglobin R and T states. Room-temperature and 100 K X-ray and room-temperature neutron diffraction data have been measured from equine cyanomethemoglobin to 1.7 Å resolution using a home source, to 1.6 Å resolution on NE-CAT at the Advanced Photon Source and to 2.0 Å resolution on the PCS at Los Alamos Neutron Science Center, respectively. The cyanomethemoglobin is in the R state and preliminary room-temperature electron and neutron scattering density maps clearly show the protonation states of potential Bohr groups. Interestingly, a water molecule that is in the vicinity of the heme group and coordinated to the distal histidine appears to be expelled from this site in the low-temperature structure

  14. Neutron Stars in X-ray Binaries and their Environments

    Indian Academy of Sciences (India)

    Biswajit Paul

    2017-09-07

    Sep 7, 2017 ... Various recent studies of reprocessing of X-rays in the accretion disk surface .... accretion rate is considered to be the only variable fac- tor that determines ... stellar wind, and any intervening interstellar mate- rial. Reprocessed ...

  15. High performance X-ray and neutron microfocusing optics

    International Nuclear Information System (INIS)

    Gregory Hirsch

    2000-01-01

    The use of extremely small diameter x-ray beams at synchrotron radiation facilities has become an important experimental technique for investigators in many other scientific disciplines. While there have been several different optical elements developed for producing such microbeams, this SBIR project was concerned with one particular device: the tapered-monocapillary optic

  16. The effect of mixed fractionation with X rays and neutrons on tumour growth delay and skin reactions in mice

    International Nuclear Information System (INIS)

    Carl, U.M.

    1987-01-01

    The authors have compared the effects of mixed fractionation schedules with X rays and neutrons on growth delay of a murine tumour and skin reactions in mice. The schedules were five daily fractions of X rays, neutrons or mixtures (NNXXX, XXXNN or NXXXN). For clamped tumours or skin all three mixed schedules had the same effect. In contrast, for unclamped tumours giving the neutrons first (NNXXX) was more effective than the other two mixed schedules. This represented a true therapeutic gain and implies that if neutrons are used clinically as only part of a course of fractionated radiotherapy, they should be given at the beginning rather than at the end of treatment. (author)

  17. The γ-ray angular distribution in fast neutron inelastic scattering from iron

    Science.gov (United States)

    Beyer, Roland; Dietz, Mirco; Bemmerer, Daniel; Junghans, Arnd R.; Kögler, Toni; Massarczyk, Ralph; Müller, Stefan; Schmidt, Konrad; Schwengner, Ronald; Szücs, Tamás; Takács, Marcell P.; Wagner, Andreas

    2018-04-01

    The angular distribution of γ-rays emitted after inelastic scattering of fast neutrons from iron was determined at the n ELBE neutron time-of-flight facility. An iron sample of natural isotopic composition was irradiated by a continuous photo-neutron spectrum in the energy range from about 0.1 up to 10 MeV. The de-excitation γ-rays of the four lowest excited states of 56Fe and the first excited state of 54Fe were detected using a setup of five high-purity germanium (HPGe) detectors and five LaBr3 scintillation detectors positioned around the sample at 30°, 55°, 90°, 125° and 150° with respect to the incoming neutron beam. The resulting angular distributions were fitted by Legendre polynomials up to 4th order and the angular distribution coefficients a2 and a4 were extracted. The angular distribution coefficients of three transitions in 56Fe are reported here for the first time. The results are applied to a previous measurement of the inelastic scattering cross section determined using a single HPGe detector positioned at 125°. Using the updated γ-ray angular distribution, the previous cross section results are in good agreement with reference data.

  18. Tidal heating and mass loss in neutron star binaries - Implications for gamma-ray burst models

    Science.gov (United States)

    Meszaros, P.; Rees, M. J.

    1992-01-01

    A neutron star in a close binary orbit around another neutron star (or stellar-mass black hole) spirals inward owing to gravitational radiation. We discuss the effects of tidal dissipation during this process. Tidal energy dissipated in the neutron star's core escapes mainly as neutrinos, but heating of the crust, and outward diffusion of photons, blows off the outer layers of the star. This photon-driven mass loss precedes the final coalescence. The presence of this eject material impedes the escape of gamma-rays created via neutrino interactions. If an e(+) - e(-) fireball, created in the late stages of coalescence, were loaded with (or surrounded by) material with the mean column density of the ejecta, it could not be an efficient source of gamma-rays. Models for cosmologically distant gamma-rays burst that involve neutron stars must therefore be anisotropic, so that the fireball expands preferentially in directions where the column density of previously blown-off material is far below the spherically averaged value which we have calculated. Some possible 'scenarios' along these lines are briefly discussed.

  19. Effect of x rays and neutrons on repair and regeneration in the rat spinal cord

    International Nuclear Information System (INIS)

    van der Kogel, A.J.; Sissingh, H.A.; Zoetelief, J.

    1982-01-01

    Clinical and experimental results of neutron irradiation have shown higher RBE values for the central nervous system (CNS) than for most other normal tissues. This is because of a considerable impairment of a large capacity of the CNS to repair subeffective damage induced by low LET radiation. Decreasing the dose per fraction of X rays increases the CNS tolerance significantly; this has no effect for neutrons. In the cervical spinal cord and the brain, two types of delayed damage can be described, so-called early and late. Different target cells are assumed to be involved, oligodendroglial cells in the early, and vascular endothelim in the late type. In the lumbar cord, the main lesion is nerve root necrosis, with the Schwann cell as the most probable target. These target cells show differences in response to X rays and neutrons, resulting in different RBE values. The highest RBE is obtained for cervical white matter necrosis. In addition to cellular repair of subeffective damage, long-term tissue regeneration is observed in the spinal cord, beginning at different times for the various types of damage. With neutrons, the rate of long-term regeneration is at least similar, or even more pronounced than for X rays

  20. Effect of x rays and neutrons on repair and regeneration in the rat spinal cord

    International Nuclear Information System (INIS)

    Van der Kogel, A.J.; Sissingh, H.A.; Zoetelief, J.

    1982-01-01

    Clinical and experimental results of neutron irradiation have shown higher RBE values for the central nervous system (CNS) than for most other normal tissues. This is because of a considerable impairment of the large capacity of the CNS to repair subeffective damage induced by low LET radiation. Decreasing the dose per fraction of X rays increases the CNS tolerance significantly; this has no effect for neutrons. In the cervical spinal cord and the brain, two types of delayed damage can be described, so-called early and late. Different target cells are assumed to be involved, oligodendroglial cells in the early, and vascular endothelium in the late type. In the lumbar cord, the main lesion is nerve root necrosis, with the Schwann cell as the most probable target. These target cells show differences in response to X rays and neutrons, resulting in different RBE values. The highest RBE is obtained for cervical white matter necrosis. In addition to cellular repair of subeffective damage, long-term tissue regeneration is observed in the spinal cord, beginning at different times for the various types of damage. With neutrons, the rate of long-term regeneration is at least similar, or even more pronounced than for X rays

  1. Studying the shielding properties of lead glass composites using neutrons and gamma rays

    International Nuclear Information System (INIS)

    Osman, A.M.; El-Sarraf, M.A.; Abdel-Monem, A.M.; El-Sayed Abdo, A.

    2015-01-01

    Highlights: • Samples of sodalime silica glass loaded with different ratios of PbO were prepared. • Leaded glass composites were investigated for radiation shielding. • Experimental and theoretical attenuation parameters were studied. • Experimental and theoretical (MCNP5) results were in good agreement. - Abstract: The present work deals with the shielding properties of lead glass composites to find out its integrity for practical shielding applications and radiological safety. Composites of different lead oxide ratios (x = 0, 5, 10, 15 and 25 wt.%) have been prepared by the Nasser Glass and Crystal Company (Egypt). Attenuation measurements have been carried out using a collimated emitted beam from a fission 252 Cf (100 μg) neutron source, and the neutron–gamma spectrometer with stilbene scintillator. The pulse shape discriminating (P.S.D.) technique based on the zero cross-over method was used to discriminate between neutron and gamma-ray pulses. Thermal neutron fluxes were measured using the BF3 detector and thermal neutron detection system. The attenuation relations were used to evaluate fast neutron macroscopic effective removal cross-section Σ R-Meas (cm −1 ), gamma rays total attenuation coefficient μ (cm −1 ) and thermal neutron macroscopic cross-section Σ Meas (cm −1 ). Theoretical calculations have been achieved using MCNP5 code to calculate the same two parameters. Also, MERCSF-N program was used to calculate fast neutron macroscopic removal cross-section Σ R-MER (cm −1 ). Measured and MCNP5 calculated results have been compared and were found to be in reasonable agreement

  2. New constraints on neutron star models of gamma-ray bursts. II - X-ray observations of three gamma-ray burst error boxes

    Science.gov (United States)

    Boer, M.; Hurley, K.; Pizzichini, G.; Gottardi, M.

    1991-01-01

    Exosat observations are presented for 3 gamma-ray-burst error boxes, one of which may be associated with an optical flash. No point sources were detected at the 3-sigma level. A comparison with Einstein data (Pizzichini et al., 1986) is made for the March 5b, 1979 source. The data are interpreted in the framework of neutron star models and derive upper limits for the neutron star surface temperatures, accretion rates, and surface densities of an accretion disk. Apart from the March 5b, 1979 source, consistency is found with each model.

  3. Fast neutron activation analysis and radioisotope X-ray fluorescence study on KALEWA and NAMMA coal

    International Nuclear Information System (INIS)

    Naing-Win

    1981-07-01

    Kalewa coal was studied with Fast Neutron Activation Analysis (FNAA) technique, employing KAMAN A-710 neutron generator and HP(Ge) detector coupled to ''Canberra'' series 30 MCA. Sequential irradiation and dual aluminium foil monitoring method was employed. Simultaneous multielement analysis was carried out. Namma Coal was studied with radioisotope X-ray Fluorescence (XRF) technique, employing Co-57 exciter source and HP(Ge) detector coupled to ''Canberra'' series 40 MCA. In both FNAA and XRF study, the results obtained were compared to that obtained with Atomic Absorption Spectrophotometry (AAS) technique. Finally, the results were reviewed together with those obtained from similar work on coal with FNAA and XRF techniques. (author)

  4. Fast neutron activation analysis and radioisotope X-ray fluorescence study on KALEWA and NAMMA coal

    Energy Technology Data Exchange (ETDEWEB)

    Naing-Win, [Arts and Science University, Yangon (Myanmar)

    1981-07-01

    Kalewa coal was studied with Fast Neutron Activation Analysis (FNAA) technique, employing KAMAN A-710 neutron generator and HP(Ge) detector coupled to ``Canberra`` series 30 MCA. Sequential irradiation and dual aluminium foil monitoring method was employed. Simultaneous multielement analysis was carried out. Namma Coal was studied with radioisotope X-ray Fluorescence (XRF) technique, employing Co-57 exciter source and HP(Ge) detector coupled to ``Canberra`` series 40 MCA. In both FNAA and XRF study, the results obtained were compared to that obtained with Atomic Absorption Spectrophotometry (AAS) technique. Finally, the results were reviewed together with those obtained from similar work on coal with FNAA and XRF techniques. (author).

  5. A silicon photomultiplier readout for time of flight neutron spectroscopy with {gamma}-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pietropaolo, A.; Gorini, G. [Dipartimento di Fisica ' ' G. Occhialini' ' and CNISM, Universita Degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano (Italy); Festa, G.; Andreani, C.; De Pascale, M. P.; Reali, E. [Dipartimento di Fisica and Centro NAST, Universita degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133, Roma (Italy); Grazzi, F. [Istituto dei Sistemi Complessi-Consiglio Nazionale delle Ricerche, Via Madonna del Piano n.10, I-50019 Sesto Fiorentino, Firenze (Italy); Schooneveld, E. M. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX (United Kingdom)

    2009-09-15

    The silicon photomultiplier (SiPM) is a recently developed photosensor used in particle physics, e.g., for detection of minimum ionizing particles and/or Cherenkov radiation. Its performance is comparable to that of photomultiplier tubes, but with advantages in terms of reduced volume and magnetic field insensitivity. In the present study, the performance of a gamma ray detector made of an yttrium aluminum perovskite scintillation crystal and a SiPM-based readout is assessed for use in time of flight neutron spectroscopy. Measurements performed at the ISIS pulsed neutron source demonstrate the feasibility of {gamma}-detection based on the new device.

  6. Baseline distortion effect on gamma-ray pulse-height spectra in neutron capture experiments

    International Nuclear Information System (INIS)

    Laptev, A.; Harada, H.; Nakamura, S.; Hori, J.; Igashira, M.; Ohsaki, T.; Ohgama, K.

    2005-01-01

    A baseline distortion effect due to gamma-flash at neutron time-of-flight measurement using a pulse neutron source has been investigated. Pulses from C 6 D 6 detectors accumulated by flash-ADC were processed with both standard analog-to-digital converter (ADC) and flash-ADC operational modes. A correction factor of gamma-ray yields, due to baseline shift, was quantitatively obtained by comparing the pulse height spectra of the two data-taking modes. The magnitude of the correction factor depends on the time after gamma-flash and has complex time dependence with a changing sign

  7. X-ray and neutron scattering investigations of YCo sub 3 -H

    Energy Technology Data Exchange (ETDEWEB)

    Benham, M J; Bennington, S M; Ross, D K [Birmingham Univ. (UK). School of Physics and Space Research; Noreus, D [Stockholm Univ. (Sweden). Dept. of Structural Chemistry; Yamaguchi, M [Yokohoma National Univ. (Japan). Dept. of Electrical and Computer Engineering

    1989-01-01

    Various structural studies of YCo{sub 3}H(D){sub x} in the {beta}-phase (0ray diffraction measurements determined that the expansion of the lattice is localised to components of the structure which are related to the Laves phase, YCo{sub 2}. Neutron diffraction and inelastic neutron scattering were also used in tandem, and hydrogen occupation of a single (36i) tetrahedral site was inferred for the entire concentration range. (orig.).

  8. Can a large neutron excess help solve the baryon loading problem in gamma-Ray burst fireballs?

    Science.gov (United States)

    Fuller; Pruet; Abazajian

    2000-09-25

    We point out that the baryon loading problem in gamma-ray burst (GRB) models can be ameliorated if a significant fraction of the baryons which inertially confine the fireball is converted to neutrons. A high neutron fraction can result in a reduced transfer of energy from relativistic light particles in the fireball to baryons. The energy needed to produce the required relativistic flow in the GRB is consequently reduced, in some cases by orders of magnitude. A high neutron-to-proton ratio has been calculated in neutron star-merger fireball environments. Significant neutron excess also could occur near compact objects with high neutrino fluxes.

  9. PREFACE: Structure and dynamics determined by neutron and x-ray scattering Structure and dynamics determined by neutron and x-ray scattering

    Science.gov (United States)

    Müller-Buschbaum, Peter

    2011-06-01

    Neutron and x-ray scattering have emerged as powerful methods for the determination of structure and dynamics. Driven by emerging new, powerful neutron and synchrotron radiation sources, the continuous development of new instrumentation and novel scattering techniques gives rise to exciting possibilities. For example, in situ observations become possible via a high neutron or x-ray flux at the sample and, as a consequence, morphological transitions with small time constants can be detected. This special issue covers a broad range of different materials from soft to hard condensed matter. Hence, different material classes such as colloids, polymers, alloys, oxides and metals are addressed. The issue is dedicated to the 60th birthday of Professor Winfried Petry, scientific director of the Research Neutron Source Heinz Maier-Leibnitz (FRM-II), Germany, advisor at the physics department for the Bayerische Elite-Akademie, chair person of the Arbeitsgemeinschaft Metall- und Materialphysik of the German Physical Society (DPG) and a member of the professional council of the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG). We would like to acknowledge and thank all contributors for their submissions, which made this special issue possible in the first place. Moreover, we would like to thank the staff at IOP Publishing for helping us with the administrative aspects and for coordinating the refereeing process, and Valeria Lauter for the beautiful cover artwork. Finally, to the readers, we hope that you find this special issue a valuable resource that provides insights into the present possibilities of neutron and x-ray scattering as powerful tools for the investigation of structure and dynamics. Structure and dynamics determined by neutron and x-ray scattering contents In situ studies of mass transport in liquid alloys by means of neutron radiography F Kargl, M Engelhardt, F Yang, H Weis, P Schmakat, B Schillinger, A Griesche and A Meyer Magnetic spin

  10. Sample design and gamma-ray counting strategy of neutron activation system for triton burnup measurements in KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jungmin [Department of Energy System Engineering, Seoul National University, Seoul (Korea, Republic of); Cheon, Mun Seong [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of); Chung, Kyoung-Jae, E-mail: jkjlsh1@snu.ac.kr [Department of Energy System Engineering, Seoul National University, Seoul (Korea, Republic of); Hwang, Y.S. [Department of Energy System Engineering, Seoul National University, Seoul (Korea, Republic of)

    2016-11-01

    Highlights: • Sample design for triton burnup ratio measurement is carried out. • Samples for 14.1 MeV neutron measurements are selected for KSTAR. • Si and Cu are the most suitable materials for d-t neutron measurements. • Appropriate γ-ray counting strategies for each selected sample are established. - Abstract: On the purpose of triton burnup measurements in Korea Superconducting Tokamak Advanced Research (KSTAR) deuterium plasmas, appropriate neutron activation system (NAS) samples for 14.1 MeV d-t neutron measurements have been designed and gamma-ray counting strategy is established. Neutronics calculations are performed with the MCNP5 neutron transport code for the KSTAR neutral beam heated deuterium plasma discharges. Based on those calculations and the assumed d-t neutron yield, the activities induced by d-t neutrons are estimated with the inventory code FISPACT-2007 for candidate sample materials: Si, Cu, Al, Fe, Nb, Co, Ti, and Ni. It is found that Si, Cu, Al, and Fe are suitable for the KSATR NAS in terms of the minimum detectable activity (MDA) calculated based on the standard deviation of blank measurements. Considering background gamma-rays radiated from surrounding structures activated by thermalized fusion neutrons, appropriate gamma-ray counting strategy for each selected sample is established.

  11. Space-time structure of neutron and X-ray sources in a plasma focus

    International Nuclear Information System (INIS)

    Bostick, W.H.; Nardi, V.; Prior, W.

    1977-01-01

    Systematic measurements with paraffin collimators of the neutron emission intensity have been completed on a plasma focus with a 15-20 kV capacitor bank (hollow centre electrode; discharge period T approximately 8 μs; D 2 filling at 4-8 torr). The space resolution was 1 cm or better. These data indicate that at least 70% of the total neutron yield originates within hot-plasma regions where electron beams and high-energy D beams (approximately > 0.1-1 MeV) are produced. The neutron source is composed of several (approximately > 1-10) space-localized sources of different intensity, each with a duration approximately less than 5 ns (FWHM). Localized neutron sources and hard (approximately > 100 keV) X-ray sources have the same time multiplicity and are usually distributed in two groups over a time interval 40-400 ns long. By the mode of operation used by the authors one group of localized sources (Burst II) is observed 200-400 ns after the other group (Burst I) and its space distribution is broader than for Burst I. The maximum intensity of a localized source of neutrons in Burst I is much higher than the maximum intensity in Burst II. Secondary reactions T(D,n) 4 He (from the tritium produced only by primary reactions in the same discharge; no tritium was used in filling the discharge chamber) are observed in a time coincidence with the strongest D-D neutron pulse of Burst I. The neutron signal from a localized source with high intensity has a relatively long tail of small amplitude (area tail approximately less than 0.2 X area peak). This tail can be generated by the D-D reactions of the unconfined part of an ion beam in the cold plasma. Complete elimination of scattered neutrons on the detector was achieved in these measurements. (author)

  12. EJ-309 pulse shape discrimination performance with a high gamma-ray-to-neutron ratio and low threshold

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, A.C., E-mail: Alexis.C.Kaplan@gmail.com [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, MI 48104 (United States); Nuclear Engineering and Nonproliferation Division, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Flaska, M.; Enqvist, A.; Dolan, J.L.; Pozzi, S.A. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, MI 48104 (United States)

    2013-11-21

    Measuring neutrons in the presence of high gamma-ray fluence is a challenge with multi-particle detectors. Organic liquid scintillators such as the EJ-309 are capable of accurate pulse-shape discrimination (PSD) but the chance for particle misclassification is not negligible for some applications. By varying the distance from an EJ-309 scintillator to a strong-gamma-ray source and keeping a weak-neutron source at a fixed position, various gamma-to-neutron ratios can be measured and PSD performance can be quantified. Comparing neutron pulse-height distributions allows for pulse-height specific PSD evaluation, and quantification and visualization of deviation from {sup 252}Cf alone. Even with the addition of the misclassified gamma-rays, the PSD is effective in separating particles so that neutron count rate can be predicted with less than 10% error up to a gamma-to-neutron ratio of almost 650. For applications which can afford a reduction in neutron detection efficiency, PSD can be sufficiently effective in discriminating particles to measure a weak neutron source in a high gamma-ray background. -- Highlights: •We measure neutrons in a high photon background with EJ-309 liquid scintillators. •A low threshold is used to test the limits of particle discrimination. •A weak neutron signal is detectable with a gamma/neutron ratio as high as 770. •Photon pileup most commonly adds to error in classification of neutrons. •Neutron count rates are within 10% of expected rate under high gamma background.

  13. EJ-309 pulse shape discrimination performance with a high gamma-ray-to-neutron ratio and low threshold

    International Nuclear Information System (INIS)

    Kaplan, A.C.; Flaska, M.; Enqvist, A.; Dolan, J.L.; Pozzi, S.A.

    2013-01-01

    Measuring neutrons in the presence of high gamma-ray fluence is a challenge with multi-particle detectors. Organic liquid scintillators such as the EJ-309 are capable of accurate pulse-shape discrimination (PSD) but the chance for particle misclassification is not negligible for some applications. By varying the distance from an EJ-309 scintillator to a strong-gamma-ray source and keeping a weak-neutron source at a fixed position, various gamma-to-neutron ratios can be measured and PSD performance can be quantified. Comparing neutron pulse-height distributions allows for pulse-height specific PSD evaluation, and quantification and visualization of deviation from 252 Cf alone. Even with the addition of the misclassified gamma-rays, the PSD is effective in separating particles so that neutron count rate can be predicted with less than 10% error up to a gamma-to-neutron ratio of almost 650. For applications which can afford a reduction in neutron detection efficiency, PSD can be sufficiently effective in discriminating particles to measure a weak neutron source in a high gamma-ray background. -- Highlights: •We measure neutrons in a high photon background with EJ-309 liquid scintillators. •A low threshold is used to test the limits of particle discrimination. •A weak neutron signal is detectable with a gamma/neutron ratio as high as 770. •Photon pileup most commonly adds to error in classification of neutrons. •Neutron count rates are within 10% of expected rate under high gamma background

  14. Evaluation of the total gamma-ray production cross-sections for nonelastic interaction of fast neutrons with iron nuclei

    International Nuclear Information System (INIS)

    Savin, M.V.; Nefedov, Yu.Ya; Livke, A.V.; Zvenigorodskij, A.G.

    2001-01-01

    Experimental data on the total gamma-ray production cross-sections for inelastic interaction of fast neutrons with iron nuclei were analysed. The total gamma-ray production cross-sections, grouped according to E γ , were evaluated in the neutron energy range 0.5-19 MeV. The statistical spline approximation method was used to evaluate the experimental data. Evaluated data stored in the ENDF, JENDL, BROND, and other libraries on gamma-ray production spectra and cross-sections for inelastic interaction of fast neutrons with iron nuclei, were analysed. (author)

  15. Verification of Gamma-ray Sensitivity for BF3 Neutron Detection System

    International Nuclear Information System (INIS)

    Choi, Yu Sun; Cho, Jin Bok; Lyou, Seok Jean

    2016-01-01

    The BF3(Boron Tri-Fluorides) gas filled neutron detector(hereafter BF3 Detector) is commonly used for nuclear reactor’s startup channel due to its relatively high neutron efficiency and good discrimination against gamma-ray backgrounds. In order to measure how much this gamma-ray will affect on BF3 neutron detector performance in view of gamma noise discrimination, Multi-Channel Analyzer(MCA) is utilized for spectrum based signal analysis. The pre-test of BF3 Detector should be performed in an area where the ionization does not exceed 2.5 micro Gy/Hr(Ref.1). In this paper, the discrimination level (Voltage Unit) is verified by experimentally measurement if that discrimination level is acceptable within the criteria or not before installation. The maximum discrimination level, so called LLD, is determined by experimentally measurement. This BF3 Detector (LND20372) is insensitive under 540 micro Gy/Hr of gamma ray and 0.3V of LLD could cut off a background and gamma induced signal in a laboratory. MCA could be a convenient tool for spectrum analysis of signals that induced from gamma ray and a time saving tool rather than oscilloscope investigation due to its function to integrate all input signals at a sudden duration

  16. Gamma-ray production cross sections for MeV neutrons

    International Nuclear Information System (INIS)

    Kitazawa, Hideo; Harima, Yoshiko; Yamakoshi, Hisao; Sano, Yuji; Kobayashi, Tsuguyuki.

    1979-01-01

    Gamma-ray production cross section and spectra for 1- to 20-MeV neutrons were theoretically obtained, which were requested for heating calculations, for shielding design calculations, and for material damage estimates. Calculations were carried out for Al, Si, Ca, Fe, Ni, Cu, Nb, Ta, Au, and Pb, using a spin-dependent evaporation model without the parity conservation and including the dipole and quardupole gamma-ray transitions. The results were compared with the experimental data measured in ORNL to confirm the availability of this model in applications. In addition, the effects on the gamma-ray production cross section of the optical potential, level density, yrast level, and radiation width were investigated in detail. The conclusions are: 1) the use of the optical potential which gives the correct total reaction cross section is essential to gamma-ray production calculations, 2) the gamma-ray production cross section is not so sensitive to the choice of level density parameters, 3) the inclusion of yrast levels is necessary in dealing with the competition of the neutron and gamma-ray emissions from highly excited states, and 4) the Brink-Axel type's radiation width is unsuitable to be applied to radiative capture processes. (author)

  17. Hard state neutron star and black hole X-ray binaries in the radio:X-ray luminosity plane

    Science.gov (United States)

    Gallo, Elena; Degenaar, Nathalie; van den Eijnden, Jakob

    2018-05-01

    Motivated by the large body of literature around the phenomenological properties of accreting black hole (BH) and neutron star (NS) X-ray binaries in the radio:X-ray luminosity plane, we carry out a comparative regression analysis on 36 BHs and 41 NSs in hard X-ray states, with data over 7 dex in X-ray luminosity for both. The BHs follow a radio to X-ray (logarithmic) luminosity relation with slope β = 0.59 ± 0.02, consistent with the NSs' slope (β =0.44^{+0.05}_{-0.04}) within 2.5σ. The best-fitting intercept for the BHs significantly exceeds that for the NSs, cementing BHs as more radio loud, by a factor ˜22. This discrepancy can not be fully accounted for by the mass or bolometric correction gap, nor by the NS boundary layer contribution to the X-rays, and is likely to reflect physical differences in the accretion flow efficiency, or the jet powering mechanism. Once importance sampling is implemented to account for the different luminosity distributions, the slopes of the non-pulsating and pulsating NS subsamples are formally inconsistent (>3σ), unless the transitional millisecond pulsars (whose incoherent radio emission mechanism is not firmly established) are excluded from the analysis. We confirm the lack of a robust partitioning of the BH data set into separate luminosity tracks.

  18. A concept to collect neutron and x-ray images on the same line of sight at NIF

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, F. E., E-mail: fmerrill@lanl.gov; Danly, C. R.; Grim, G. P.; Volegov, P. L.; Wilde, C. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Izumi, N.; Jedlovec, D.; Fittinghoff, D. N.; Pak, A.; Park, H.-S. [Livermore National Laboratory, Livermore, California 94551 (United States)

    2014-11-15

    Neutron and x-ray images are collected at the National Ignition Facility (NIF) to measure the size and shape of inertial confinement fusion implosions. The x-ray images provide a measure of the size and shape of the hot region of the deuterium-tritium fuel while the neutron images provide a measure of the size and shape of the burning plasma. Although these two types of images are collected simultaneously, they are not collected along the same line of sight (LOS). One 14 MeV neutron image is collected on the NIF equator, and two x-ray images are collected along the polar axis and nearly perpendicular to the neutron imaging line of sight on the equator. Both measurements use pinhole apertures to form the images, but existing x-ray imaging provides time-resolved measurements while the neutron images are time-integrated. Detailed comparisons of the x-ray and neutron images can provide information on the fuel assembly, but these studies have been limited because the implosions are not azimuthally symmetric and the images are collected along different LOS. We have developed a conceptual design of a time-integrated x-ray imaging system that could be added to the existing neutron imaging LOS. This new system would allow these detailed studies, providing important information on the fuel assembly of future implosions. Here we present this conceptual design and the expected performance characteristics.

  19. A concept to collect neutron and x-ray images on the same line of sight at NIF.

    Science.gov (United States)

    Merrill, F E; Danly, C R; Izumi, N; Jedlovec, D; Fittinghoff, D N; Grim, G P; Pak, A; Park, H-S; Volegov, P L; Wilde, C H

    2014-11-01

    Neutron and x-ray images are collected at the National Ignition Facility (NIF) to measure the size and shape of inertial confinement fusion implosions. The x-ray images provide a measure of the size and shape of the hot region of the deuterium-tritium fuel while the neutron images provide a measure of the size and shape of the burning plasma. Although these two types of images are collected simultaneously, they are not collected along the same line of sight (LOS). One 14 MeV neutron image is collected on the NIF equator, and two x-ray images are collected along the polar axis and nearly perpendicular to the neutron imaging line of sight on the equator. Both measurements use pinhole apertures to form the images, but existing x-ray imaging provides time-resolved measurements while the neutron images are time-integrated. Detailed comparisons of the x-ray and neutron images can provide information on the fuel assembly, but these studies have been limited because the implosions are not azimuthally symmetric and the images are collected along different LOS. We have developed a conceptual design of a time-integrated x-ray imaging system that could be added to the existing neutron imaging LOS. This new system would allow these detailed studies, providing important information on the fuel assembly of future implosions. Here we present this conceptual design and the expected performance characteristics.

  20. Inter-pulse high-resolution gamma-ray spectra using a 14 MeV pulsed neutron generator

    Science.gov (United States)

    Evans, L.G.; Trombka, J.I.; Jensen, D.H.; Stephenson, W.A.; Hoover, R.A.; Mikesell, J.L.; Tanner, A.B.; Senftle, F.E.

    1984-01-01

    A neutron generator pulsed at 100 s-1 was suspended in an artificial borehole containing a 7.7 metric ton mixture of sand, aragonite, magnetite, sulfur, and salt. Two Ge(HP) gamma-ray detectors were used: one in a borehole sonde, and one at the outside wall of the sample tank opposite the neutron generator target. Gamma-ray spectra were collected by the outside detector during each of 10 discrete time windows during the 10 ms period following the onset of gamma-ray build-up after each neutron burst. The sample was measured first when dry and then when saturated with water. In the dry sample, gamma rays due to inelastic neutron scattering, neutron capture, and decay were counted during the first (150 ??s) time window. Subsequently only capture and decay gamma rays were observed. In the wet sample, only neutron capture and decay gamma rays were observed. Neutron capture gamma rays dominated the spectrum during the period from 150 to 400 ??s after the neutron burst in both samples, but decreased with time much more rapidly in the wet sample. A signal-to-noise-ratio (S/N) analysis indicates that optimum conditions for neutron capture analysis occurred in the 350-800 ??s window. A poor S/N in the first 100-150 ??s is due to a large background continuum during the first time interval. Time gating can be used to enhance gamma-ray spectra, depending on the nuclides in the target material and the reactions needed to produce them, and should improve the sensitivity of in situ well logging. ?? 1984.

  1. Neutron, gamma ray, and temperature effects on the electrical characteristics of thyristors

    Science.gov (United States)

    Frasca, A. J.; Schwarze, G. E.

    1992-01-01

    Experimental data showing the effects of neutrons, gamma rays, and temperature on the electrical and switching characteristics of phase-control and inverter-type SCR's are presented. The special test fixture built for mounting, heating, and instrumenting the test devices is described. Four SCR's were neutron irradiated at 300 K and four at 365 K for fluences up to 3.2 x 10 exp 13 pn/sq. cm, and eight were gamma irradiated at 300 K only for gamma doses up to 5.1 Mrads. The electrical measurements were made during irradiation and the switching measurements were made only before and after irradiation. Radiation induced crystal defects, resulting primarily from fast neutrons, caused the reduction of minority carrier lifetime through the generation of R-G centers. The reduction in lifetime caused increases in the on-state voltage drop and in the reverse and forward leakage currents, and decreases in the turn-off time.

  2. Neutron, gamma ray, and temperature effects on the electrical characteristics of thyristors

    International Nuclear Information System (INIS)

    Schwarze, G.E.; Frasca, A.J.

    1992-01-01

    In this paper, experimental data showing the effects of neutrons, gamma rays, and temperature on the electrical and switching characteristics of phase-control and inverter-type SCRs are presented. The special test fixture built for mounting, heating, and instrumenting the test devices is described. Four SCRs were neutron irradiated at 300 K and four at 365 K for fluences up to 3.2 x 10 13 n/cm 2 , and eight were gamma irradiated at 300 K only for gamma doses up to 5.1 Mrads. The electrical measurements were made during irradiation and the switching measurements were made only before and after irradiation. Radiation induced crystal defects, resulting primarily from fast neutrons, caused the reduction of minority carrier lifetime through the generation of R-G centers. The reduction in lifetime caused increases in the on-state voltage drop and in the reverse and forward leakage currents, and decreases in the turn-off time

  3. Modeling of neutron induced backgrounds in x-ray framing cameras

    Energy Technology Data Exchange (ETDEWEB)

    Hagmann, C.; Izumi, N.; Bell, P.; Bradley, D.; Conder, A.; Eckart, M.; Khater, H.; Koch, J.; Moody, J.; Stone, G. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2010-10-15

    Fast neutrons from inertial confinement fusion implosions pose a severe background to conventional multichannel plate (MCP)-based x-ray framing cameras for deuterium-tritium yields >10{sup 13}. Nuclear reactions of neutrons in photosensitive elements (charge coupled device or film) cause some of the image noise. In addition, inelastic neutron collisions in the detector and nearby components create a large gamma pulse. The background from the resulting secondary charged particles is twofold: (1) production of light through the Cherenkov effect in optical components and by excitation of the MCP phosphor and (2) direct excitation of the photosensitive elements. We give theoretical estimates of the various contributions to the overall noise and present mitigation strategies for operating in high yield environments.

  4. Bulk - Samples gamma-rays activation analysis (PGNAA) with Isotopic Neutron Sources

    International Nuclear Information System (INIS)

    HASSAN, A.M.

    2009-01-01

    An overview is given on research towards the Prompt Gamma-ray Neutron Activation Analysis (PGNAA) of bulk-samples. Some aspects in bulk-sample PGNAA are discussed, where irradiation by isotopic neutron sources is used mostly for in-situ or on-line analysis. The research was carried out in a comparative and/or qualitative way or by using a prior knowledge about the sample material. Sometimes we need to use the assumption that the mass fractions of all determined elements add up to 1. The sensitivity curves are also used for some elements in such complex samples, just to estimate the exact percentage concentration values. The uses of 252 Cf, 241 Arn/Be and 239 Pu/Be isotopic neutron sources for elemental investigation of: hematite, ilmenite, coal, petroleum, edible oils, phosphates and pollutant lake water samples have been mentioned.

  5. Neutron and gamma ray calculation for Hiroshima-type atomic bomb

    Energy Technology Data Exchange (ETDEWEB)

    Hoshi, Masaharu; Endo, Satoru; Takada, Jun [Hiroshima Univ. (Japan). Research Inst. for Radiation Biology and Medicine; Iwatani, Kazuo; Oka, Takamitsu; Shizuma, Kiyoshi; Fujita, Shoichiro; Hasai, Hiromi

    1998-03-01

    We looked at the radiation dose of Hiroshima and Nagasaki atomic bomb again in 1986. We gave it the name of ``Dosimetry System 1986`` (DS86). We and other groups have measured the expose dose since 1986. Now, the difference between data of {sup 152}Eu and the calculation result on the basis of DS86 was found. To investigate the reason, we carried out the calculations of neutron transport and neutron absorption gamma ray for Hiroshima atomic bomb by MCNP3A and MCNP4A code. The problems caused by fast neutron {sup 32}P from sulfur in insulator of pole. To correct the difference, we investigated many models and found agreement of all data within 1 km. (S.Y.)

  6. The generation, validation and testing of a coupled 219-group neutron 36-group gamma ray AMPX-II library

    International Nuclear Information System (INIS)

    Panini, G.C.; Siciliano, F.; Lioi, A.

    1987-01-01

    The main characteristics of a P 3 coupled 219-group neutron 36-group gamma-ray library in the AMPX-II Master Interface Format obtained processing ENDF/B-IV data by means of various AMPX-II System modules are presented in this note both for the more reprocessing aspects and features of the generated component files-neutrons, photon and secondary gamma-ray production cross sections. As far as the neutron data are concerned there is the avaibility of 186 data sets regarding most significant fission products. Results of the additional validation of the neutron data pertaining to eighteen benchmark experiments are also given. Some calculational tests on both neutron and coupled data emphasize the important role of the secondary gamma-ray data in nuclear criticality safety calculations

  7. Monte Carlo calculations of neutron and gamm-ray energy spectra for fusion-reactor shield design: comparison with experiment

    International Nuclear Information System (INIS)

    Santoro, R.T.; Barnes, J.M.

    1983-08-01

    Neutron and gamma-ray spectra resulting from the interactions of approx. 14-MeV neutrons in laminated slabs of stainless steel type-304 and borated polyethylene have been calculated using the Monte Carlo code MCNP. The calculated spectra are compared with measured data as a function of slab thickness and material composition and as a function of detector location behind the slabs. Comparisons of the differential energy spectra are made for neutrons with energies above 850 keV and for gamma rays with energies above 750 keV. The measured neutron spectra and those calculated using Monte Carlo methods agree within 5% to 50% depending on the slab thickness and composition and neutron energy. The agreement between the measured and calculated gamma-ray energy spectra is also within this range. The MCNP data are also in favorable agreement with attenuated data calculated previously by discrete ordinates transport methods and the Monte Carlo code SAM-CE

  8. Calibration and correction procedures for cosmic-ray neutron soil moisture probes located across Australia

    Science.gov (United States)

    Hawdon, Aaron; McJannet, David; Wallace, Jim

    2014-06-01

    The cosmic-ray probe (CRP) provides continuous estimates of soil moisture over an area of ˜30 ha by counting fast neutrons produced from cosmic rays which are predominantly moderated by water molecules in the soil. This paper describes the setup, measurement correction procedures, and field calibration of CRPs at nine locations across Australia with contrasting soil type, climate, and land cover. These probes form the inaugural Australian CRP network, which is known as CosmOz. CRP measurements require neutron count rates to be corrected for effects of atmospheric pressure, water vapor pressure changes, and variations in incoming neutron intensity. We assess the magnitude and importance of these corrections and present standardized approaches for network-wide analysis. In particular, we present a new approach to correct for incoming neutron intensity variations and test its performance against existing procedures used in other studies. Our field calibration results indicate that a generalized calibration function for relating neutron counts to soil moisture is suitable for all soil types, with the possible exception of very sandy soils with low water content. Using multiple calibration data sets, we demonstrate that the generalized calibration function only applies after accounting for persistent sources of hydrogen in the soil profile. Finally, we demonstrate that by following standardized correction procedures and scaling neutron counting rates of all CRPs to a single reference location, differences in calibrations between sites are related to site biomass. This observation provides a means for estimating biomass at a given location or for deriving coefficients for the calibration function in the absence of field calibration data.

  9. Effects of x-ray and neutron irradiation on spherical colonies

    International Nuclear Information System (INIS)

    Aramaki, Ryoji

    1980-01-01

    Responses of in vitro cultured mammalian cells in spherical colonies to 200 kVp x-rays and D-T neutrons were studied using reproductive capacity as a criterion for survival. Cell lines used were FM3A, L5 and Chinese hamster V79. The spherical colonies exposed to x-rays exhibited two-component survival curves. All cells used were more radio-resistant in spherical colonies than in single cell suspensions. It was suggested that this difference in response was attributable to the presence of hypoxic cells in spherical colonies. Dose-modifying Factor (DMF), the ratios of D 0 of the second slopes of the curves for spherical colonies to those for single cells, were 1.6 for FM3A, 1.8 for L5, and 1.7 for Chinese hamster V79. The hypoxic cell fractions in spherical colonies for FM3A, L5, and Chinese hamster V79, were 0.1, 0.6 and 0.4, respectively, resulting in variations in cell survival in spherical colonies following x-radiation. No significant difference was observed between responses of spherical colonies and single cell suspensions to D-T neutrons. FM3A and Chinese hamster V79 showed two-component survival curves when irradiated with neutrons at 37 0 C, but not at 25 0 C. The repair of potentially lethal and sub-lethal damage was also investigated using FM3A in spherical colonies. No detectable repair of potentially lethal damage was observed for x-rays and D-T neutrons. The effect of neutron fractionation was considerably smaller for spherical colonies as compared to single cells. (author)

  10. Simulating the X-ray luminosity of Be X-ray binaries: the case for black holes versus neutron stars

    Science.gov (United States)

    Brown, R. O.; Ho, W. C. G.; Coe, M. J.; Okazaki, A. T.

    2018-04-01

    There are over 100 Be stars that are known to have neutron star companions but only one such system with a black hole. Previous theoretical work suggests this is not due to their formation but due to differences in X-ray luminosity. It has also been proposed that the truncation of the Be star's circumstellar disc is dependent on the mass of the compact object. Hence, Be star discs in black hole binaries are smaller. Since accretion onto the compact object from the Be star's disc is what powers the X-ray luminosity, a smaller disc in black hole systems leads to a lower luminosity. In this paper, simulations are performed with a range of eccentricities and compact object mass. The disc's size and density are shown to be dependent on both quantities. Mass capture and, in turn, X-ray luminosity are heavily dependent on the size and density of the disc. Be/black hole binaries are expected to be up to ˜10 times fainter than Be/neutron star binaries when both systems have the same eccentricity and can be 100 times fainter when comparing systems with different eccentricity.

  11. Prompt and delay gamma ray measurements for 'in vivo' neutron activation analysis using a cyclic system

    International Nuclear Information System (INIS)

    Matthews, I.P.

    1979-09-01

    Early attempts at determining the elemental composition of the body by radioactive isotope dilution techniques are reviewed. The development and current status of in-vivo neutron activation analysis and the ways in which it supersedes or supplements certain of the former techniques are outlined. An irradiation facility is described which employs a 5 Ci neutron source and is capable of performing prompt and delay γ-ray measurements as well as cyclic activation. The uniformity of thermal neutron flux in a phantom is demonstrated and the neutron spectrum at a depth in the phantom has been obtained by means of threshold detectors. An examination is made of the possible applications of the Monte Carlo method to the design of irradiation and detection facilities and in yielding information about inaccessible areas. Detection limits for the bulk body elements and trace elements are presented. It is shown that the depth of a region of the body can be determined from a prompt gamma ray spectrum. This technique can be used to correct measurements when it is known that activation and detection is non-uniform. The feasibility of using a C.T. whole body scanner to measure bone demineralisation is explored. (author)

  12. Method and apparatus for neutron induced gamma ray logging for lithology identificaion

    International Nuclear Information System (INIS)

    Oliver, D.W.; Culver, R.B.

    1979-01-01

    A pulsed neutron generator in a well logging instrument is pulsed at a clock frequency of 20 KHz. Inelastic scatter gamma rays are detected during a first time interval coinciding with the neutron source being on and capture gamma rays are measured during a second interval subsequent to the end of each neutron burst. Only a single detected pulse, assuming detection occurs, is transmitted during each of the two detection intervals. Sync pulses are generated in the well logging instrument scaled down to a frequency of 200 Hz for transmission to the earth's surface. At the earth's surface, the scaled-down sync pulses are applied to a phase-locked loop system for regenerating the sync pulses to the same frequency as that of the clock frequency used to pulse the neutron source and to open the detection gates in the borehole instrument. The regenerated sync pulses are used in the surface instrumentation to route the pulses occurring in the inelastic interval into one section of a multichannel analyzer memory and the pulses occurring in the capture interval into another section of the multichannel analyzer. The use of memory address decoders, subtractors and ratio circuits enables both a carbon/oxygen ratio and a silicon/calcium ratio to be struck, substantially independent of the chlorine content of the borehole and formation

  13. Measurement result of the neutron monitor onboard the Space Environment Data Acquisition Equipment - Attached Payload (SEDA-AP)

    Science.gov (United States)

    Koga, K.; Muraki, Y.; Shibata, S.; Yamamoto, T.; Matsumoto, H.; Okudaira, O.; Kawano, H.; Yumoto, K.

    2013-12-01

    To support future space activities, it is crucial to acquire space environmental data related to the space-radiation degradation of space parts and materials, and spacecraft anomalies. Such data are useful for spacecraft design and manned space activity. SEDA-AP was mounted on 'Kibo' of the ISS (International Space Station) to measure the space environment at a 400-kilometer altitude. Neutrons are very harmful radiation, with electrical neutrality that makes them strongly permeable. SEDA-AP measures the energy of neutrons from thermal to 100 MeV in real time using a Bonner Ball Detector (BBND) and a Scintillation Fiber Detector (FIB). BBND detects neutrons using He-3 counters, which have high sensitivity to thermal neutrons. Neutron energy is derived using the relative response function of polyethylene moderators of 6 different thicknesses. FIB measures the tracks of recoil protons caused by neutrons within a cubic arrayed sensor of 512 scintillation fibers. The charged particles are excluded using an anti-scintillator which surrounds the cube sensor, and the neutron energy is obtained from the track length of a recoil proton. There are three sources of neutrons in space; 1. Albedo Neutrons Produced by reactions of galactic cosmic rays or radiation belt particles with the atmosphere 2. Local Neutrons Produced by the reactions of galactic cosmic rays or radiation belt particles with spacecraft 3. Solar Neutrons Produced by accelerated particles in solar flares An accurate energy spectrum of the solar neutrons includes important information on high-energy particle generation mechanism in a solar flare, because neutrons are unaffected by interplanetary magnetic fields. These data will become useful to forecast solar energetic particles in future. Some candidate events involving solar neutrons were found as a result of analyzing data of the solar flare of M>2 since September 2009. Moreover, it is important to measure albedo neutrons, since protons generated by neutron

  14. Low-angle polarized neutron and X-ray scattering from magnetic nanolayers and nanostructures

    CERN Document Server

    Paul, Amitesh

    2017-01-01

    This research monograph presents the latest results related to the characterization of low dimensional systems. Low-angle polarized neutron scattering and X-ray scattering at grazing incidence are used as the two main techniques to explore various physical phenomena of these systems. Special focus is put on systems like thin film transition metal and rare-earth layers, oxide heterostructures, hybrid systems, self-assembled nanostructures and self-diffusion.  Readers will gain in-depth knowledge about the usage of specular scattering and off-specular scattering techniques. Investigation of in-plane and out-of-plane structures and magnetism with vector magnetometric information is illustrated comprehensively. The book caters to a wide audience working in the field of nano-dimensional magnetic systems and the neutron and X-ray reflectometry community in particular.

  15. American National Standard: neutron and gamma-ray flux-to-dose rate factors

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This Standard presents data recommended for computing biological dose rates due to neutron and gamma-ray radiation fields. Neutron flux-to-dose-rate conversion factors for energies from 2.5 x 10 -8 to 20 MeV are given; the energy range for the gamma-ray conversion factors is 0.01 to 15 MeV. Specifically, this Standard is intended for use by shield designers to calculate wholebody dose rates to radiation workers and the general public. Establishing dose-rate limits is outside the scope of this Standard. Use of this Standard in cases where the dose equivalents are far in excess of occupational exposure guidelines is not recommended

  16. X-ray and neutron diffraction and molecular dynamics simulation of molten lithium and rubidium nitrates

    International Nuclear Information System (INIS)

    Yamaguchi, Toshio; Okada, Isao; Ohtaki, Hitoshi; Mikami, Masuhiro; Kawamura, Kazutaka

    1986-01-01

    Molecular dynamics simulations have been performed for lithium and rubidium nitrate melts at 550 and 600K, respectively, together with X-ray and neutron diffraction experiments. Simple Coulomb pair potentials with Born-type repulsions have been adopted in the simulations with a rigid body model for the nitrate ion. Structure functions derived from the X-ray and neutron experiments are well reproduced by the simulations, from which the three-dimensional cation distribution around the nitrate ion has been revealed. The self-diffusion coefficients, the velocity autocorrelation functions and the self-exchange velocities of lithium, rubidium and nitrate ions have been calculated. Anisotropic motion of nitrate ions has been found and is discussed on the basis of the structure of the melts. (author)

  17. Neutron stars as X-ray burst sources. II. Burst energy histograms and why they burst

    International Nuclear Information System (INIS)

    Baan, W.A.

    1979-01-01

    In this work we explore some of the implications of a model for X-ray burst sources where bursts are caused by Kruskal-Schwarzschild instabilities at the magnetopause of an accreting and rotating neutron star. A number of simplifying assumptions are made in order to test the model using observed burst-energy histograms for the rapid burster MXB 1730--335. The predicted histograms have a correct general shape, but it appears that other effects are important as well, and that mode competition, for instance, may suppress the histograms at high burst energies. An explanation is ventured for the enhancement in the histogram at the highest burst energies, which produces the bimodal shape in high accretion rate histograms. Quantitative criteria are given for deciding when accreting neutron stars are steady sources or burst sources, and these criteria are tested using the X-ray pulsars

  18. Ultra-High Field Magnets for X-Ray and Neutron Scattering using High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Winn, Barry L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Broholm, C. [Johns Hopkins Univ., Baltimore, MD (United States); Bird, M. [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab); Breneman, Bruce C. [General Atomics, San Diego, CA (United States); Coffey, Michael [Cryomagnetics, Oak Ridge, TN (United States); Cutler, Roy I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duckworth, Robert C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Erwin, R. [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Hahn, Seungyong [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab); Hernandez, Yamali [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Herwig, Kenneth W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holland, Leo D. [General Atomics, San Diego, CA (United States); Lonergan, Kevin M. [Oxford Instruments, Abingdon (United Kingdom); Melhem, Ziad [Oxford Instruments, Abingdon (United Kingdom); Minter, Stephen J. [Cryomagnetics, Oak Ridge, TN (United States); Nelson, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Paranthaman, M. Parans [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pierce, Josh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ruff, Jacob [Cornell Univ., Ithaca, NY (United States); Shen, Tengming [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sherline, Todd E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smeibidl, Peter G. [Helmholtz-Zentrum Berlin (HZB), (Germany); Tennant, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); van der Laan, Danko [Advanced Conductor Technologies, LLC, Boulder, CO (United States); Wahle, Robert J. [Helmholtz-Zentrum Berlin (HZB), (Germany); Zhang, Yifei [SuperPower, Inc., Schenectady, NY (United States)

    2017-01-01

    X-ray and neutron scattering techniques are capable of acquiring information about the structure and dynamics of quantum matter. However, the high-field magnet systems currently available at x-ray and neutron scattering facilities in the United States are limited to fields of 16 tesla (T) at maximum, which precludes applications that require and/or study ultra-high field states of matter. This gap in capability—and the need to address it—is a central conclusion of the 2005 National Academy of Sciences report by the Committee on Opportunities in High Magnetic Field Science. To address this gap, we propose a magnet development program that would more than double the field range accessible to scattering experiments. With the development and use of new ultra-high field–magnets, the program would bring into view new worlds of quantum matter with profound impacts on our understanding of advanced electronic materials.

  19. A comparison of mutagenic effects of common wheat by electron beam, fast neutron and 60Co gamma ray irradiation

    International Nuclear Information System (INIS)

    An Daochang; Wang Linqing

    1988-02-01

    After winter wheat was irradiated by electron beam, fast neutron and γ-rays, respectively, the RBE value of electron beam to both fast neutrons and γ-rays was less than one, the RBE value of fast neutron to γ-rays was largely more than one. This results indicated that biological effect of M 1 generation induced by electron beam was less than that of fast neutrons very much, and similar to γ-ray irradiation. With electron beam irradiation, the half-lethal doses of M 1 generation were from 185 to 370 Gy, closer to 370 Gy, the lethal doses from 740 to 925 Gy. M 2 mutation efficiency with electron beam treatment was larger as compared with that with both fast neutrons and γ-rays. A wider mutation spectrum and higher mutation efficiency compared with other physical mutagens can be obtained with electron beam irradiation, about 30% higher than that with γ-ray irradiation. The best doses of irradiation with electron beam were 370 to 555 Gy. Fast neutrons, a better dose of which was 25 Gy, could induce more mutants than that with γ-rays in M 2 generation. The dose in which biological injury reached to 50% was the best dose for M 2 mutants by electron beam irradiation

  20. A Michelson interferometer for X-rays and thermal neutrons

    International Nuclear Information System (INIS)

    Appel, A.

    1992-01-01

    The introduced interferometer consists of an LLL interferometer and a phase-displacing Bragg groove component. A part of the radiation path between the Lane mirrors in the Bragg grooves is replaced by a radiation path, whose wave number vector has a slightly different direction compared to the Lane case by the refraction correction. If the angles of incidence in the two grooves are different, then a difference in path is produced between the beams producing interference. This is the first X-ray interferometer which works like an optical Michelson interferometer. As there are no basic limits to resolution by absorption or dispersion, for example, it opens up the possibility of carrying out Fourier spectroscopy in the A wavelength range. (orig.) [de

  1. Micronucleus formation compared to the survival rate of human melanoma cells after X-ray and neutron irradiation and hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    van Beuningen, D.; Streffer, C.; Bertholdt, G.

    1981-09-01

    After neutron and X-ray irradiation and combined X-ray irradiation and hyperthermia (3 hours, 42/sup 0/C), the survival rate of human melanoma cells was measured by means of the colony formation test and compared to the formation of micronuclei. Neutrons had a stronger effect on the formation of micronuclei than the combination of X-rays and hyperthermia. X-rays had the lowest effect. The dose effect curve showed a break at that dose level at which a reduction of cells was observed in the cultures. A good relation between survival rate and formation of micronuclei was found for the X-ray irradiation, but not for the neutron irradiation and the combined treatment. These observations are discussed. At least for X-rays, the micronucleus test has turned out to be a good screening method for the radiosensitivity of a biologic system.

  2. X-ray and neutron small-angle scattering studies of human serum lipoproteins

    International Nuclear Information System (INIS)

    Luzzati, V.; Tardieu, A.; Mateu, L.; Sardet, C.; Stuhrmann, H.B.; Aggerbeck, L.; Scanu, A.M.

    1976-01-01

    The paper describes an extended x-ray study of two types of human serum lipoproteins and a neutron study of one of them. The results are similar and to some extent complementary. Serum lipoproteins provide an excellent illustration of the wealth of information that can be obtained by a small-angle scattering approach to the structure of particles with non-uniform density distribution, by using solvents of variable density

  3. Secondary extinction in cylindrical and spherical crystals for X-ray and neutron diffraction

    International Nuclear Information System (INIS)

    Hu Huachen; Li Zhaohuan; Yang Bin; Shen Caiwan

    2001-01-01

    The distribution of the reflection power ratio for a neutron or x-ray diffracted from a cylindrical crystal immersed in an homogenous incident beam is obtained by the numerical solution of the transfer equations for the first time. The profile well reflects all the physical properties of the absorption and extinction behaviour in the crystals. A systematic investigation of the secondary extinction for cylindrical and spherical crystals was carried out based on these results

  4. Study of humic acids by small-angle X-ray and neutron scattering

    International Nuclear Information System (INIS)

    Timchenko, A.; Trubetskaya, O.; Kihara, H.

    1999-01-01

    Humic acids are an important component of natural ecological system and represent a polydisperse complex of natural biopolymers with molecular masses from several to hundreds kilodaltons. They are both a source of organic compounds and a protector against anthropogenic pollutions of biosphere. The aim of the report is to underline some possibilities of small-angle X-ray and neutron scattering to study HA and their fractions. (author)

  5. Neutron and gamma-ray sources in LWR high-level nuclear waste

    International Nuclear Information System (INIS)

    Dupree, S.A.

    1977-06-01

    Predictions of the composition of high-level waste from U-fueled LWRs have been used to calculate the neutron and gamma-ray sources in such waste at cooling times of 3 and 10 years. The results are intended for interim application to studies of waste shipping and storage pending the availability of more exact knowledge of fuel recycling and of waste concentration and solidification

  6. Simultaneous transmission of neutrons and gamma rays (NEUGAT) to measure fat in meat

    International Nuclear Information System (INIS)

    Bartle, C.M.

    1991-01-01

    A new method has been established for the measurement of fat in boneless meat based on the simultaneous transmission through the mixture of neutrons and γ-rays (NEUGAT Technique). The method is insensitive to the manner in which the fat is distributed in the meat, and to the thickness of the mixture. The method has been applied in a meat packing plant to fat measurement in boxes of boneless meat for export. (author)

  7. Spermatogenesis in adult rhesus monkeys following irradiation with X-rays or fission neutrons

    International Nuclear Information System (INIS)

    Rooij, D.G. de; Sonneveld, P.; Bekkum, D.W. van

    A group of male rhesus monkeys was exposed to total body irradiation followed by autologous bone marrow transplantation. The animals were irradiated in the period between 1965 and 1976 and received a dose of 8.5 Gy of X-rays (300 KVP) or 3.6 Gy of 1 MeV fission neutrons. Of this group, a total of 11 male monkeys proved to be evaluable for studying the effects of irradiation on spermatogenesis. (Auth.)

  8. Application of instrumental neutron activation analysis and X-ray fluorescence analysis in art pieces investigation

    International Nuclear Information System (INIS)

    Panczyk, E.; Kierzek, J.; Walis, L.; Ligeza, M.

    1996-01-01

    The application of instrumental neutron activation analysis have been shown for the trace element identification in dyes of old painting and other art objects. The recognition of their composition is a important measure for attribution. Also the X-ray fluorescence analysis has been frequently used for examination of art objects. The age determination of the old chinese porcelain is a good example described in the paper. 20 refs, 4 figs

  9. Neutron/gamma-ray techniques for investigating the deterioration of historic buildings

    International Nuclear Information System (INIS)

    Evans, L.G.; Trombka, J.I.

    1986-01-01

    The degradation of building materials is a major problem for the preservation of historic structures. The presence of contaminants in the constituent materials is often a cause of the deterioration. Neutron-induced, prompt gamma-ray techniques for nondestructive elemental analysis are used to determine the distribution of contaminants in building walls. The application of these methods for the diagnosis of an 18th century historic building indicates that the distributions within the building walls of moisture, salt and bulk density can be obtained. The results of an analysis of the gamma-ray spectra are confirmed by independent measurements on two sample cores taken through one wall. (orig.)

  10. Neutron transport study based on assembly modular ray tracing MOC method

    International Nuclear Information System (INIS)

    Tian Chao; Zheng Youqi; Li Yunzhao; Li Shuo; Chai Xiaoming

    2015-01-01

    It is difficulty for the MOC method based on Cell Modular Ray Tracing to deal with the irregular geometry such as the water gap between the PWR lattices. Hence, the neutron transport code NECP-Medlar based on Assembly Modular Ray Tracing is developed. CMFD method is used to accelerate the transport calculation. The numerical results of the 2D C5G7 benchmark and typical PWR lattice prove that NECP-Medlar has an excellent performance in terms of accuracy and efficiency. Besides, NECP-Medlar can describe clearly the flux distribution of the lattice with water gap. (authors)

  11. Pulse-shape discrimination of high-energy neutrons and gamma rays in NaI(Tl)

    International Nuclear Information System (INIS)

    Share, G.H.; Kurfess, J.D.; Theus, R.B.

    1978-01-01

    Pulse-shape discrimination can be used to separate neutron and gamma-ray interactions depositing energies up to in excess of 50 MeV in NaI(Tl) crystals. The secondary alpha particles, deuterons and protons produced in the neutron interactions are also resolvable. (Auth.)

  12. Preferred orientation of a naturally and experimentally deformed pyrrhotite ore by X-ray and neutron diffraction texture analysis

    International Nuclear Information System (INIS)

    Niederschlag, E.; Brokmeier, H.G.; Siemes, H.

    1994-01-01

    Two samples of polycrystalline naturally deformed hexagonal Pyrrhotite were deformed experimentally in axial compression tests with different temperatures and strain. The texture of the naturally deformed ore was investigated both by X-ray and neutron texture analyses. Texture measurements on the experimentally deformed ore were carried out by neutron diffraction. (orig.)

  13. Neutron and gamma-ray spectra of {sup 239}PuBe and {sup 241}AmBe

    Energy Technology Data Exchange (ETDEWEB)

    Vega-Carrillo, H.R. E-mail: rvega@cantera.reduaz.mx; Manzanares-Acuna, Eduardo; Becerra-Ferreiro, A.M.; Carrillo-Nunez, Aureliano

    2002-08-01

    Neutron and gamma-ray spectra of {sup 239}PuBe and {sup 241}AmBe were measured and their dosimetric features were calculated. Neutron spectra were measured using a multisphere neutron spectrometer with a {sup 6}LiI(Eu) scintillator. The {sup 239}PuBe neutron spectrum was measured in an open environment, while the {sup 241}AmBe neutron spectrum was measured in a closed environment. Gamma-ray spectra were measured using a NaI(Tl) scintillator using the same experimental conditions for both sources. The effect of measuring conditions for the {sup 241}AmBe neutron spectrum indicates the presence of epithermal and thermal neutrons. The low-resolution neutron spectra obtained with the multisphere spectrometer allows one to calculate the dosimetric features of neutron sources. At 100 cm both sources produce approximately the same count rate as that of the 4.4 MeV gamma-ray per unit of alpha emitter activity.

  14. Non-invasive analysis of industrial products using the simultaneous transmission of neutrons and gamma rays (Neugat) method

    International Nuclear Information System (INIS)

    Bartle, C.M.

    1998-01-01

    This research programme is designed to develop industrial measurement systems utilising simultaneous transmission of neutrons and gamma rays (Neugat method). Descriptions of these systems have been given in reports and magazine articles, and industrial site trials have been undertaken. (author)

  15. Induction of micronuclei in the root tip cells of Haplopappus germinating seeds by fission neutrons and X rays

    International Nuclear Information System (INIS)

    Hanmoto, Hidehiro; Yonezawa, Yoshihiko; Itoh, Tetsuo; Kondo, Sohei.

    1992-01-01

    Seeds of Haplopappus gracilis (2n=4), an annual Compositae, were soaked in water for 24 hr and then irradiated with fission neutrons from the 1-wattage reactor, UTR-KINKI, or X rays. The root tip cells were inspected at 48 hr post-irradiation for evidence of chromosome damage using micronucleus as endpoint. The frequency of neutron-induced micronuclei increased almost linearly as the dose increased up to as much as 1.2 Gy. X-ray-induced micronuclei showed an exponential dose-response relation. From dose-response data, we estimated that the dose necessary to induce micronuclei at a frequency of 5 per 1,000 cells was 1.2 Gy for neutrons and 8.6 Gy for X rays. Thus, to induce chromosome damage in the somatic cells of germinating Haplopappus seeds, fission neutrons were much more effective than X rays. (author)

  16. Study of the elemental composition of Chenopodium Quinoa Willd by fast neutron activation analysis and X ray fluorescence analysis

    International Nuclear Information System (INIS)

    Soto Moran, R.L.; Szegedi, S.; Llopiz, J.L.

    1996-01-01

    By means of x-ray fluorescence and fast neutron activation analysis the nitrogen content has been determined in samples of roots, stems, leaf, flowers and grains from Quinua (Chenopodium Quinoa Willd), which was previously treated with fertilizer

  17. Measurement of prompt fission gamma-ray spectra in fast neutron-induced fission

    International Nuclear Information System (INIS)

    Laborie, J.M.; Belier, G.; Taieb, J.

    2012-01-01

    Knowledge of prompt fission gamma-ray emission has been of major interest in reactor physics for a few years. Since very few experimental spectra were ever published until now, new measurements would be also valuable to improve our understanding of the fission process. An experimental method is currently being developed to measure the prompt fission gamma-ray spectrum from some tens keV up to 10 MeV at least. The mean multiplicity and total energy could be deduced. In this method, the gamma-rays are measured with a bismuth germanate (BGO) detector which has the advantage to present a high P/T ratio and a high efficiency compared to other gamma-ray detectors. The prompt fission neutrons are rejected by the time of flight technique between the BGO detector and a fission trigger given by a fission chamber or a scintillating active target. Energy and efficiency calibration of the BGO detector were carried out up to 10.76 MeV by means of the Al-27(p, gamma) reaction. First prompt fission gamma-ray spectrum measurements performed for the spontaneous fission of Cf-252 and for 1.7 and 15.6 MeV neutron-induced fission of U-238 at the CEA, DAM, DIF Van de Graaff accelerator, will be presented. (authors)

  18. A neutron-X-ray, NMR and calorimetric study of glassy Probucol synthesized using containerless techniques

    International Nuclear Information System (INIS)

    Weber, J.K.R.; Benmore, C.J.; Tailor, A.N.; Tumber, S.K.; Neuefeind, J.; Cherry, B.; Yarger, J.L.; Mou, Q.; Weber, W.; Byrn, S.R.

    2013-01-01

    Highlights: • Acoustic levitation was used to make phase-pure glassy forms of pharmaceutical compounds. • Neutrons, X-rays and NMR were used to characterize the glasses. • The glass comprised of slightly distorted molecules packed in a random network. • Potential for new drug synthesis routes is discussed. - Abstract: Acoustic levitation was used to trap 1–3 mm diameter drops of Probucol and other pharmaceutical materials in containerless conditions. Samples were studied in situ using X-ray diffraction and ex situ using neutron diffraction, NMR and DSC techniques. The materials were brought into non-equilibrium states by supersaturating solutions or by supercooling melts. The glass transition and crystallization temperatures of glassy Probucol were 29 ± 1 and 71 ± 1 °C respectively. The glassy form was stable with a shelf life of at least 8 months. A neutron/X-ray difference function of the glass showed that while molecular sub-groups remain rigid, many of the hydrogen correlations observed in the crystal become smeared out in the disordered material. The glass is principally comprised of slightly distorted Form I Probucol molecules with disordered packing rather than large changes in the individual molecular structure. Avoiding surface contact-induced nucleation provided access to highly non-equilibrium phases and enabled synthesis of phase-pure glasses

  19. Calculation of neutron and gamma-ray flux-to-dose-rate conversion factors

    International Nuclear Information System (INIS)

    Kwon, S.G.; Lee, S.Y.; Yook, C.C.

    1981-01-01

    This paper presents flux-to-dose-rate conversion factors for neutrons and gamma rays based on the American National Standard Institute (ANSI) N666. These data are used to calculate the dose rate distribution of neutron and gamma ray in radiation fields. Neutron flux-to-dose-rate conversion factors for energies from 2.5 x 10 -8 to 20 MeV are presented; the corresponding energy range for gamma rays is 0.01 to 15 MeV. Flux-to-dose-rate conversion factors were calculated, under the assumption that radiation energy distribution has nonlinearity in the phantom, have different meaning from those values obtained by monoenergetic radiation. Especially, these values were determined with the cross section library. The flux-to-dose-rate conversion factors obtained in this work were in a good agreement to the values presented by ANSI. Those data will be useful for the radiation shielding analysis and the radiation dosimetry in the case of continuous energy distributions. (author)

  20. Imaging of heterogeneous materials by prompt gamma-ray neutron activation analysis

    International Nuclear Information System (INIS)

    Staples, Parrish; Prettyman, Tom; Lestone, John

    1999-01-01

    We have used a Tomographic Gamma Scanner (TGS) to produce tomographic Prompt Gamma-Ray Neutron Activation Imaging of heterogeneous matrices [T.H. Prettyman, R.J. Estep, G.A. Sheppard, Trans. Am. Nucl. Soc. 69 (1993) 183-184]. The TGS was modified by the addition of graphite reflectors that contain isotopic neutron sources for sample interrogation. We are in the process of developing the analysis methodology necessary for a quantitative assay of large containers of heterogeneous material. This nondestructive analysis technique can be used for material characterization and the determination of neutron assay correction factors. The most difficult question to be answered is the determination of the source to sample coupling term. To assist in the determination of the coupling term we have obtained images for a range of samples that are very well characterized; such as, homogenous pseudo one-dimensional samples to three-dimensional heterogeneous samples. We then compare the measurements to Monte Carlo N-particle calculations. For an accurate quantitative measurement it is also necessary to determine the sample gamma-ray self attenuation at higher gamma-ray energies, namely pair production should be incorporated into the analysis codes

  1. A neutron-X-ray, NMR and calorimetric study of glassy Probucol synthesized using containerless techniques

    Energy Technology Data Exchange (ETDEWEB)

    Weber, J.K.R., E-mail: rweber@anl.gov [Materials Development, Inc., Arlington Heights, IL 60004 (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); Benmore, C.J. [Argonne National Laboratory, Argonne, IL 60439 (United States); Department of Physics, Arizona State University, AZ 85287 (United States); Tailor, A.N.; Tumber, S.K. [Materials Development, Inc., Arlington Heights, IL 60004 (United States); Neuefeind, J. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Cherry, B. [Magnetic Resonance Research Center, Arizona State University, AZ 85287 (United States); Department of Chemistry and Biochemistry, Arizona State University, AZ 85287 (United States); Yarger, J.L. [Department of Physics, Arizona State University, AZ 85287 (United States); Magnetic Resonance Research Center, Arizona State University, AZ 85287 (United States); Department of Chemistry and Biochemistry, Arizona State University, AZ 85287 (United States); Mou, Q. [Magnetic Resonance Research Center, Arizona State University, AZ 85287 (United States); Department of Chemistry and Biochemistry, Arizona State University, AZ 85287 (United States); Weber, W. [Department of Physics, Arizona State University, AZ 85287 (United States); Department of Chemistry and Biochemistry, Arizona State University, AZ 85287 (United States); Byrn, S.R. [Department of Industrial and Physical Pharmacy, Purdue University, IN 47907 (United States)

    2013-10-16

    Highlights: • Acoustic levitation was used to make phase-pure glassy forms of pharmaceutical compounds. • Neutrons, X-rays and NMR were used to characterize the glasses. • The glass comprised of slightly distorted molecules packed in a random network. • Potential for new drug synthesis routes is discussed. - Abstract: Acoustic levitation was used to trap 1–3 mm diameter drops of Probucol and other pharmaceutical materials in containerless conditions. Samples were studied in situ using X-ray diffraction and ex situ using neutron diffraction, NMR and DSC techniques. The materials were brought into non-equilibrium states by supersaturating solutions or by supercooling melts. The glass transition and crystallization temperatures of glassy Probucol were 29 ± 1 and 71 ± 1 °C respectively. The glassy form was stable with a shelf life of at least 8 months. A neutron/X-ray difference function of the glass showed that while molecular sub-groups remain rigid, many of the hydrogen correlations observed in the crystal become smeared out in the disordered material. The glass is principally comprised of slightly distorted Form I Probucol molecules with disordered packing rather than large changes in the individual molecular structure. Avoiding surface contact-induced nucleation provided access to highly non-equilibrium phases and enabled synthesis of phase-pure glasses.

  2. Prospects for joint observations of gravitational waves and gamma rays from merging neutron star binaries

    Energy Technology Data Exchange (ETDEWEB)

    Patricelli, B.; Razzano, M.; Fidecaro, F. [Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo, 3, 56127 Pisa (Italy); Cella, G. [INFN—Sezione di Pisa, Largo B. Pontecorvo, 3, 56127 Pisa (Italy); Pian, E.; Stamerra, A. [Scuola Normale Superiore, Piazza dei Cavalieri, 7, 56126 Pisa (Italy); Branchesi, M., E-mail: barbara.patricelli@pi.infn.it, E-mail: massimiliano.razzano@unipi.it, E-mail: giancarlo.cella@pi.infn.it, E-mail: francesco.fidecaro@unipi.it, E-mail: elena.pian@sns.it, E-mail: marica.branchesi@uniurb.it, E-mail: stamerra@oato.inaf.it [Universit\\a di Urbino, Via Aurelio Saffi, 2, 61029 Urbino (Italy)

    2016-11-01

    The detection of the events GW150914 and GW151226, both consistent with the merger of a binary black hole system (BBH), opened the era of gravitational wave (GW) astronomy. Besides BBHs, the most promising GW sources are the coalescences of binary systems formed by two neutron stars or a neutron star and a black hole. These mergers are thought to be connected with short Gamma Ray Bursts (GRBs), therefore combined observations of GW and electromagnetic (EM) signals could definitively probe this association. We present a detailed study on the expectations for joint GW and high-energy EM observations of coalescences of binary systems of neutron stars with Advanced Virgo and LIGO and with the Fermi gamma-ray telescope. To this scope, we designed a dedicated Montecarlo simulation pipeline for the multimessenger emission and detection by GW and gamma-ray instruments, considering the evolution of the GW detector sensitivities. We show that the expected rate of joint detection is low during the Advanced Virgo and Advanced LIGO 2016–2017 run; however, as the interferometers approach their final design sensitivities, the rate will increase by ∼ a factor of ten. Future joint observations will help to constrain the association between short GRBs and binary systems and to solve the puzzle of the progenitors of GWs. Comparison of the joint detection rate with the ones predicted in this paper will help to constrain the geometry of the GRB jet.

  3. Imaging of heterogeneous materials by prompt gamma-ray neutron activation analysis

    International Nuclear Information System (INIS)

    Staples, P.; Prettyman, T.; Lestone, J.

    1998-01-01

    The authors have used a tomographic gamma scanner (TGS) to produce tomographic prompt gamma-ray neutron activation analysis imaging (PGNAA) of heterogeneous matrices. The TGS was modified by the addition of graphite reflectors that contain isotopic neutron sources for sample interrogation. The authors are in the process of developing the analysis methodology necessary for a quantitative assay of large containers of heterogeneous material. This nondestructive analysis (NDA) technique can be used for material characterization and the determination of neutron assay correction factors. The most difficult question to be answered is the determination of the source-to-sample coupling term. To assist in the determination of the coupling term, the authors have obtained images for a range of sample that are very well characterized, such as, homogenous pseudo one-dimensional samples to three-dimensional heterogeneous samples. They then compare the measurements to MCNP calculations. For an accurate quantitative measurement, it is also necessary to determine the sample gamma-ray self attenuation at higher gamma-ray energies, namely pair production should be incorporated into the analysis codes

  4. Radiography apparatus using gamma rays emitted by water activated by fusion neutrons

    Science.gov (United States)

    Smith, Donald L.; Ikeda, Yujiro; Uno, Yoshitomo

    1996-01-01

    Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the .sup.16 O(n,p).sup.16 N reaction using .sup.14 -MeV neutrons produced at the neutron source via the .sup.3 H(d,n).sup.4 He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second .sup.16 N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1-2 minutes.

  5. Non-destructive investigations of Swiss museums objects with neutron and x-ray imaging methods

    International Nuclear Information System (INIS)

    Lehmann, E.H.; Deschler, E.; Pernet, L.; Vontobel, P.

    2004-01-01

    Many objects of archaeological relevance found in Switzerland are from the Celtic and Roman era. Because of their uniqueness in most cases it is demanded to perform any investigation with such samples non-destructively. Depending on the structure and size of the objects a transmission experiment performed either with X-ray or neutron can alight inner structures, composition, defects or the principles of the manufacturing procedures. Furthermore, the treatment by conservators and restaurateurs becomes visible in many cases. This report describes some examples of such investigations. In the case of neutron investigations, beside the transmission imaging as a radiograph the three-dimensional structure was observed with a tomography technique. For X-ray radiography, the images were obtained in the same digital format because the similar experimental method (imaging plates) was applied. It becomes evident in the described examples that the combination and complementary use of both methods (neutrons and X-ray) brings insights in different aspects of the samples properties and treatment. This approach to study museums objects stored and exhibit in Switzerland can be extrapolated to other countries where these techniques are also simultaneously available in order to investigate other objects of relevance. The European network COST-G8 entitled 'Non-destructive analysis and testing of museum objects' can help to support initiatives in this direction. (author)

  6. Monte Carlo simulation of the neutron-induced prompt γ ray spectroscopy of the CW abandoned by Japan

    International Nuclear Information System (INIS)

    Wang Bairong; Yang Zhongping; Zhang Wenzhong

    2005-01-01

    This paper introduced the principle of identifying the chemical weapon by neutron-induced prompt γ ray, simulated and analyzed the neutron-induced prompt γ ray spectroscopy of chemical weapon abandoned by Japan in the different condition, using the MCNP-4C Monte Carlo program, whereby supply important datum and reference for the aftertime deeper research and disposal of Japan-abandoned chemical weapon. (authors)

  7. The Monte Carlo simulation of the neutron-induced prompt gamma ray spectroscopy of the CW abandoned by Japan

    International Nuclear Information System (INIS)

    Wang Bairong; Yang Zhongping; Zhan Wenzhong

    2003-01-01

    This paper introduced the principle of identifying the chemical weapon abandoned by Japan by neutron-induced prompt gamma ray. Using the MCNP-4C Monte Carlo program, this paper simulated and analyzed the neutron-induced prompt gamma ray spectroscopy of chemical weapon abandoned by Japan, whereby supply important datum and reference for the aftertime deeper research and disposal of Japan-abandoned chemical weapon. (authors)

  8. Gamma-ray spectroscopy of the neutron-rich Ni region through heavy-ion deep-inelastic collisions

    International Nuclear Information System (INIS)

    Ishii, T.; Asai, M.; Matsuda, M.; Ichikawa, S.; Makishima, A.; Hossain, I.; Kleinheinz, P.; Ogawa, M.

    2002-01-01

    Nuclei in the neutron-rich Ni region have been studied by γ-ray spectroscopy. Gamma-rays emitted from isomers, with T 1/2 >1 ns, produced in heavy-ion deep-inelastic collisions were measured with an isomer-scope. The nuclear structure of the doubly magic 68 Ni and its neighbor 69,71 Cu is discussed on the basis of the shell model. Future experiments for more neutron-rich Ni nuclei are also viewed. (orig.)

  9. Gamma-ray spectroscopy of the neutron-rich Ni region through heavy-ion deep-inelastic collisions

    Science.gov (United States)

    Ishii, T.; Asai, M.; Makishima, A.; Hossain, I.; Kleinheinz, P.; Ogawa, M.; Matsuda, M.; Ichikawa, S.

    Nuclei in the neutron-rich Ni region have been studied by γ-ray spectroscopy. Gamma-rays emitted from isomers, with T1/2 > 1 ns, produced in heavy-ion deep-inelastic collisions were measured with an isomer-scope. The nuclear structure of the doubly magic 68Ni and its neighbor 69,71Cu is discussed on the basis of the shell model. Future experiments for more neutron-rich Ni nuclei are also viewed.

  10. Gamma-ray production cross sections for 0.9 to 20 MeV neutron interactions with 10B

    International Nuclear Information System (INIS)

    Bywater, R.L. Jr.

    1986-09-01

    Gamma-ray spectral data previously obtained at the 20-meter station of the Oak Ridge Electron Linear Accelerator flight-path 8 were studied to determine cross sections for 0.9- to 20-MeV neutron interactions with 10 B. Data reduction techniques, including those for determination of incident neutron fluences as well as those to compensate for Doppler-broadened gamma-ray-detection responses, are given in some detail in this report. 9 refs., 4 figs., 2 tabs

  11. Investigation of microporosity in die-cast AlSi12(Cu) alloys by neutron- and X-ray radiography

    International Nuclear Information System (INIS)

    Zsolt, S.; Marton, B.

    1999-01-01

    The porosity of the casting can dramatically reduce the solidity and reliability of the objects made from aluminum alloys. The X-ray radiography is able to find the placement of the porosity of the aluminum devices. After a special 'water saturation' process the dynamic neutron radiography is available to discover the 'dangerous' surface nearporosity in the aluminum samples. The X-ray and neutron radiography were used as complementary examination techniques to study the porosity of the aluminum castings.(author)

  12. Interaction effect of gamma rays and thermal neutrons on the inactivation of odontoglossum ringspot virus isolated from orchid

    International Nuclear Information System (INIS)

    Mori, Itsuhiko; Inouye, Narinobu.

    1977-01-01

    The effect of gamma rays or thermal neutrons and their interaction effects on the inactivation of the infectivity of Odontoglossum ringspot virus (ORSV) in buffered crude sap of the plant tissue were studied. The inactivation effect of gamma ray on ORSV varied in different ionic strength of the phosphate buffer solutions. Borax enhanced this effect. In interaction effect of gamma and neutron irradiation, irradiation orders, that is, n → γ and γ → n, gave different inactivation pattern. (author)

  13. Neutron detection in a high gamma-ray background with EJ-301 and EJ-309 liquid scintillators

    International Nuclear Information System (INIS)

    Stevanato, L.; Cester, D.; Nebbia, G.; Viesti, G.

    2012-01-01

    Using a fast digitizer, the neutron–gamma discrimination capability of the new liquid scintillator EJ-309 is compared with that obtained using standard EJ-301. Moreover the capability of both the scintillation detectors to identify a weak neutron source in a high gamma-ray background is demonstrated. The probability of neutron detection is PD=95% at 95% confidence level for a gamma-ray background corresponding to a dose rate of 100 μSv/h.

  14. Elemental analysis of human placenta by neutron irradiation and gamma-ray spectrometry (standard, prompt and fast-neutron)

    International Nuclear Information System (INIS)

    Ward, N.I.

    1987-01-01

    Human placental tissue from 100 hospitalized deliveries were analysed for Ag, Al, As, Au, B, Ba, Br, Ca, Cd, Cl, Co, Cr, Cs, Cu, F, Fe, I, Hg, K, La, Mg, Mn, Mo, Na, Ni, Rb, S, Sb, Sc, Se, Sn, Sr, Ti, V, W and Zn using a combination of pre-chemical separation of sodium with hydrated antimony pentoxide and INAA. Boron and Si values were determined using prompt gamma-ray and fast-neutron techniques, respectively. Analysis of NBS-SRM Bovine Liver 1577 and a 'pooled standard' placental tissue for 33 elements showed a good agreement with most coefficients. Only Cd(-) and Zn(+) showed statistically significant correlations with birth weight, gestational age and placental weight. (author) 54 refs.; 3 tables

  15. Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators

    Science.gov (United States)

    Brenner, C. M.; Mirfayzi, S. R.; Rusby, D. R.; Armstrong, C.; Alejo, A.; Wilson, L. A.; Clarke, R.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.

    2016-01-01

    Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ~2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using  >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification.

  16. Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators

    International Nuclear Information System (INIS)

    Brenner, C M; Rusby, D R; Armstrong, C; Wilson, L A; Clarke, R; Haddock, D; McClymont, A; Notley, M; Oliver, P; Allott, R; Hernandez-Gomez, C; Neely, D; Mirfayzi, S R; Alejo, A; Ahmed, H; Kar, S; Butler, N M H; Higginson, A; McKenna, P; Murphy, C

    2016-01-01

    Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ∼2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using  >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification. (paper)

  17. Improved streaming analysis technique: spherical harmonics expansion of albedo data

    International Nuclear Information System (INIS)

    Albert, T.E.; Simmons, G.L.

    1979-01-01

    An improved albedo scattering technique was implemented with a three-dimensional Monte Carlo transport code for use in analyzing radiation streaming problems. The improvement was based on a shifted spherical Harmonics expansion of the doubly differential albedo data base. The result of the improvement was a factor of 3 to 10 reduction in data storage requirements and approximately a factor of 3 to 6 increase in computational speed. Comparisons of results obtained using the technique with measurements are shown for neutron streaming in one- and two-legged square concrete ducts

  18. Validation of response simulation methodology of Albedo dosemeter

    International Nuclear Information System (INIS)

    Freitas, B.M.; Silva, A.X. da

    2016-01-01

    The Instituto de Radioprotecao e Dosimetria developed and runs a neutron TLD albedo individual monitoring service. To optimize the dose calculation algorithm and to infer new calibration factors, the response of this dosemeter was simulated. In order to validate this employed methodology, it was applied in the simulation of the problem of the QUADOS (Quality Assurance of Computational Tools for Dosimetry) intercomparison, aimed to evaluate dosimetric problems, one being to calculate the response of a generic albedo dosemeter. The obtained results were compared with those of other modeling and the reference one, with good agreements. (author)

  19. DNA Damage Induction and Repair Evaluated in Human Lymphocytes Irradiated with X-Rays an Neutrons

    International Nuclear Information System (INIS)

    Niedzwiedz, W.; Cebulska-Wasilewska, A.

    2000-12-01

    The objective of this study was to evaluate the kinetic of the DNA damage induction and their subsequent repair in human lymphocytes exposed to various types of radiation. PBLs cells were isolated from the whole blood of two young healthy male subjects and one skin cancer patient, and than exposed to various doses of low LET X-rays and high LET neutrons from 252 Cf source. To evaluate the DNA damage we have applied the single cell get electrophoresis technique (SCGE) also known as the comet assay. In order to estimate the repair efficiency, cells, which had been irradiated with a certain dose, were incubated at 37 o C for various periods of time (0 to 60 min). The kinetic of DNA damage recovery was investigated by an estimation of residual DNA damage persisted at cells after various times of post-irradiation incubation (5, 10, 15, 30 and 60 min). We observed an increase of the DNA damage (reported as a Tail DNA and Tail moment parameters) in linear and linear-quadratic manner, with increasing doses of X-rays and 252 Cf neutrons, respectively. Moreover, for skin cancer patient (Code 3) at whole studied dose ranges the higher level of the DNA damage was observed comparing to health subjects (Code 1 and 2), however statistically insignificant (for Tail DNA p=0.056; for Tail moment p=0.065). In case of the efficiency of the DNA damage repair it was observed that after 1 h of post-irradiation incubation the DNA damage induced with both, neutrons and X-rays had been significantly reduced (from 65% to 100 %). Furthermore, in case of skin cancer patient we observed lover repair efficiency of X-rays induced DNA damage. After irradiation with neutrons within first 30 min, the Tail DNA and Tail moment decreased of about 50%. One hour after irradiation, almost 70% of residual and new formed DNA damage was still observed. In this case, the level of unrepaired DNA damage may represent the fraction of the double strand breaks as well as more complex DNA damage (i.e.-DNA or DNA

  20. X-ray and neutron emission studies in a new Filippov type plasma focus

    Energy Technology Data Exchange (ETDEWEB)

    Babazadeh, A.R.; Banoushi, A. [Technical University of Amirkabir, Tehran (Iran, Islamic Republic of). Dept. of Physics; Roshan, M.V.; Habibi, H.; Nasiry, A.; Memarzadeh, M.; Lamehi, M.; Kiai, S.M. Sadat [Atomic Energy Organization of Iran (AEOI), Tehran (Iran, Islamic Republic of). Nuclear Fusion Research Center

    2002-03-01

    We have performed experimental comparative studies of the X-ray and neutron emission generated by the new Filippov-type plasma focus 'Dena', (90 kJ, 25 kV, 288{mu}F) in the pressure range of 0.6-1 torr. Time-integrated and time-resolved detectors, together with an X-ray pin-hole camera, along with a Be filter of 10{mu}m thickness have been used. For a working gas of neon and a at insert anode, the maximum soft and hard X-rays (SXR-HXR) yield obtained was 16 V and 1.5 V/shot over a 4{pi} solid angle, respectively, for a charging voltage range of 16-20 kV. As for the argon gas, the similar results such as 3.5 and 2 V/shot have been found, leading to a total conversion efficiency of X-ray emission of 0.09 % (for neon) and 0.03 % (for argon) of the stored energy. These efficiencies have been improved by the employment of a conic insert anode up to 0.4% and 0.1%. With deuterium puffing gas and a at insert anode, the maximum emission yield has been found to be 2.5 V for SXR and 1 V for HXR/shot which produce an ultimate emission profile width (FWHM) of 70-90 ns for X-rays and neutrons, giving rise to a maximum neutron yield of 1.2 x 10{sup 9}. Nevertheless, the maximum yield has been increased up to 5.5 times with the conic insert anode. In order to increase the neutron yield, we have introduced a krypton admixture to the deuterium filling gas and found that, for a krypton pressure of about 0.1 torr, the neutron yield increases by a factor of 3.5 for the flat insert and 1.5 for the conic insert anodes. (author)

  1. Measurement of the neutron and gamma-ray spectra originating from a 14-MeV neutron source in liquid nitrogen and liquid air

    International Nuclear Information System (INIS)

    Broecker, B.; Clausen, K.; Schneider-Kuehnle, P.; Weinert, M.

    1975-01-01

    An experiment to measure the radiation transport originating from a 14-MeV neutron source in liquid nitrogen and liquid air is presented. Neutron and gamma-ray spectra were measured with a proton-recoil NE 213 scintillator and with four spherical proportional counters in a tank filled with liquid nitrogen or liquid air. The neutron spectra cover the energy range of 20 keV to 18 MeV. The source-detector separation varies in the liquid medium between 60 and 240 cm. The experimental setup is briefly described and the errors are estimated. (2 tables, 9 figures) (auth)

  2. Non-Quiescent X-ray Emission from Neutron Stars and Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Tournear, Derek M

    2003-08-18

    X-ray astronomy began with the detection of the persistent source Scorpius X-1. Shortly afterwards, sources were detected that were variable. Centaurus X-2, was determined to be an X-ray transient, having a quiescent state, and a state that was much brighter. As X-ray astronomy progressed, classifications of transient sources developed. One class of sources, believed to be neutron stars, undergo extreme luminosity transitions lasting a few seconds. These outbursts are believed to be thermonuclear explosions occurring on the surface of neutron stars (type I X-ray bursts). Other sources undergo luminosity changes that cannot be explained by thermonuclear burning and last for days to months. These sources are soft X-ray transients (SXTs) and are believed to be the result of instabilities in the accretion of matter onto either a neutron star or black hole. Type I X-ray bursts provide a tool for probing the surfaces of neutron stars. Requiring a surface for the burning has led authors to use the presence of X-ray bursts to rule out the existence of a black hole (where an event horizon exists not a surface) for systems which exhibit type I X-ray bursts. Distinguishing between neutron stars and black holes has been a problem for decades. Narayan and Heyl have developed a theoretical framework to convert suitable upper limits on type I X-ray bursts from accreting black hole candidates (BHCs) into evidence for an event horizon. We survey 2101.2 ks of data from the USA X-ray timing experiment and 5142 ks of data from the Rossi X-ray Timing Explorer (RXTE) experiment to obtain the first formal constraint of this type. 1122 ks of neutron star data yield a population averaged mean burst rate of 1.7 {+-} 0.4 x 10{sup -5} bursts s{sup -1}, while 6081 ks of BHC data yield a 95% confidence level upper limit of 4.9 x 10{sup -7} bursts s{sup -1}. Applying the framework of Narayan and Heyl we calculate regions of luminosity where the neutron stars are expected to burst and the BHCs

  3. PREFACE: Buried Interface Sciences with X-rays and Neutrons 2010

    Science.gov (United States)

    Sakurai, Kenji

    2011-09-01

    The 2010 summer workshop on buried interface science with x-rays and neutrons was held at Nagoya University, Japan, on 25-27 July 2010. The workshop was organized by the Japan Applied Physics Society, which established a group to develop the research field of studying buried function interfaces with x-rays and neutrons. The workshop was the latest in a series held since 2001; Tsukuba (December 2001), Niigata (September 2002), Nagoya (July 2003), Tsukuba (July 2004), Saitama (March 2005), Yokohama (July 2006), Kusatsu (August 2006), Tokyo (December 2006), Sendai (July 2007), Sapporo (September 2007), Tokyo (December 2007), Tokyo-Akihabara (July 2009) and Hiratsuka (March 2010). The 2010 summer workshop had 64 participants and 34 presentations. Interfaces mark the boundaries of different material systems at which many interesting phenomena take place, thus making it extremely important to design, fabricate and analyse the structures of interfaces at both the atomic and macroscopic scale. For many applications, devices are prepared in the form of multi-layered thin films, with the result that interfaces are not exposed but buried under multiple layers. Because of such buried conditions, it is generally not easy to analyse such interfaces. In certain cases, for example, when the thin surface layer is not a solid but a liquid such as water, scientists can observe the atomic arrangement of the liquid-solid interface directly by using a scanning probe microscope, of which the tip is soaked in water. However, it has become clear that the use of a stylus tip positioned extremely close to the interface might change the structure of the water molecules. Therefore it is absolutely crucial to develop non-contact, non-destructive probes for buried interfaces. It is known that analysis using x-rays and neutrons is one of the most powerful tools for exploring near-surface structures including interfaces buried under several layers. In particular, x-ray analysis using 3rd

  4. Phase-dependent absorption features in X-ray spectra of X-ray Dim Isolated Neutron Stars

    Science.gov (United States)

    Borghese, A.; Rea, N.; Coti Zelati, F.; Turolla, R.; Tiengo, A.; Zane, S.

    2017-12-01

    A detailed phase-resolved spectroscopy of archival XMM-Newton observations of X-ray Dim Isolated Neutron Stars (XDINSs) led to the discovery of narrow and strongly phase-dependent absorption features in two of these sources. The first was discovered in the X-ray spectrum of RX J0720.4-3125, followed by a new possible candidate in RX J1308.6+2127. Both spectral lines have similar properties: they are detected for only ˜ 20% of the rotational cycle and appear to be stable over the timespan covered by the observations. We performed Monte Carlo simulations to test the significance of these phase-variable features and in both cases the outcome has confirmed the detection with a confidence level > 4.6σ. Because of the narrow width and the strong dependence on the pulsar rotational phase, the most likely interpretation for these spectral features is in terms of resonant proton cyclotron absorption scattering in a confined high-B structure close to the stellar surface. Within the framework of this interpretation, our results provide evidence for deviations from a pure dipole magnetic field on small scales for highly magnetized neutron stars and support the proposed scenario of XDINSs being aged magnetars, with a strong non-dipolar crustal B-field component.

  5. Nuclear data relevant to single event upsets in semiconductor memories induced by cosmic-ray neutrons and protons

    International Nuclear Information System (INIS)

    Watanabe, Yukinobu

    2008-01-01

    The role of nuclear data is examined in the study of single event upset (SEU) phenomena in semiconductor memories caused by cosmic-ray neutrons and protons. Neutron and proton SEU cross sections are calculated with a simplified semi-empirical model using experimental heavy-ion SEU cross-sections and a dedicated database of neutron and proton induced reactions on 28 Si. Some impacts of the nuclear reaction data on SEU simulation are analyzed by investigating relative contribution of secondary ions and neutron elastic scattering to SEU and influence of simultaneous multiple ions emission on SEU. (author)

  6. Comparison of MCNP4C and experimental results on neutron and gamma ray shielding effects for materials

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Kyoon Ho; Lee, Eun Ki [KEPRI, Taejon (Korea, Republic of)

    2004-07-01

    MCNP code is a general-purpose Monte Carlo radiation transport code that can numerically simulate neutron, photon, and electron transport. Increasing the speed of computing machine is making numerical transport simulation more attractive and has led to the widespread use of such code. This code can be used for general radiation shielding and criticality accident alarm system related dose calculations, so that the version 4C2 of this code was used to evaluate the shielding effect against neutron and gamma ray experiments. The Ueki experiments were used for neutron shielding effects for materials, and the Kansas State University (KSU) photon skyshine experiments of 1977 were tested for gamma ray shielding effects.

  7. X-ray and neutron scattering from amorphous diamondlike carbon and hydrocarbon films

    International Nuclear Information System (INIS)

    Findeisen, E.

    1994-10-01

    In this report amorphous, diamondlike, carbon and hydrocarbon films are investigated by two different methods, namely, X-ray scattering and a combination of X-ray and neutron reflectivity. As specular reflectivity probes the scattering length density profile of a sample perpendicular to its surface, the combination of X-ray and neutron reflectivity reveals the nuclei density of both carbon and hydrogen separately. This allows to calculate the concentration of hydrogen in the films, which varies in the presented experiments between 0 and 36 atomic %. This method is a new and nondestructive technique to determine the concentration of hydrogen within an error of about ±1 at. % in samples with sharp interfaces. It is well suited for thin diamondlike carbon films. X-ray scattering is used to obtain structural information on the atomic scale, especially the average carbon-carbon distance and the average coordination number of the carbon atoms. As grazing incidence diffraction experiments were not successful, free-standing films are used for the scattering experiments with synchrotron light. However, the scattered intensity for large scattering vectors is, in spite of the intense primary beam, very weak, and therefore the accuracy of the obtained structural parameter is not sufficient to prove the diamondlike properties also on the atomic scale. (au) (10 tabs., 76 ills., 102 refs.)

  8. Validation of response simulation methodology of Albedo dosemeter; Validacao da metodologia de simulacao de resposta de dosimetro de Albedo

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, B.M.; Silva, A.X. da, E-mail: bfreitas@nuclear.ufrj.br [Coordenacao do Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Mauricio, C.L.P. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2016-07-01

    The Instituto de Radioprotecao e Dosimetria developed and runs a neutron TLD albedo individual monitoring service. To optimize the dose calculation algorithm and to infer new calibration factors, the response of this dosemeter was simulated. In order to validate this employed methodology, it was applied in the simulation of the problem of the QUADOS (Quality Assurance of Computational Tools for Dosimetry) intercomparison, aimed to evaluate dosimetric problems, one being to calculate the response of a generic albedo dosemeter. The obtained results were compared with those of other modeling and the reference one, with good agreements. (author)

  9. Measurement of 235U content and flow of UF6 using delayed neutrons or gamma rays following induced fission

    International Nuclear Information System (INIS)

    Stromswold, D.C.; Peurrung, A.J.; Reeder, P.L.; Perkins, R.W.

    1996-06-01

    Feasibility experiments conducted at Pacific Northwest National Laboratory demonstrate that either delayed neutrons or energetic gamma rays from short-lived fission products can be used to monitor the blending of UF 6 gas streams. A 252 Cf neutron source was used to induce 235 U fission in a sample, and delayed neutrons and gamma rays were measured after the sample moved open-quotes down-stream.close quotes The experiments used a UO 2 powder that was transported down the pipe to simulate the flowing UF 6 gas. Computer modeling and analytic calculation extended the test results to a flowing UF 6 gas system. Neutron or gamma-ray measurements made at two downstream positions can be used to indicate both the 235 U content and UF 6 flow rate. Both the neutron and gamma-ray techniques have the benefits of simplicity and long-term reliability, combined with adequate sensitivity for low-intrusion monitoring of the blending process. Alternatively, measuring the neutron emission rate from (a, n) reactions in the UF 6 provides an approximate measure of the 235 U content without using a neutron source to induce fission

  10. Trace rare earth analysis by neutron activation and γ-ray/x-ray spectrometry

    International Nuclear Information System (INIS)

    Laul, J.C.; Nielson, K.K.; Wogman, N.A.

    1977-01-01

    A rare earth group separation scheme followed by photon energy analysis using Ge(Li) and intrinsic Ge detectors enhances significantly the detection of individual rare earth elements (REE) at or below the ppb level. Based on the x-ray and selected γ-ray energies, Ge(Li) γ-ray counting is favorable for 140 La, 141 Ce, 142 Pr, 153 Sm, 171 Er, and 177 Lu, whereas intrinsic Ge γ-ray counting is favorable for 143 Ce, 147 Nd, 160 Tb, and 166 Ho, and intrinsic Ge x-ray counting is favorable for 152 Eu and 175 Yb. Gamma-ray counting of 153 Gd and 170 Tm is equally sensitive with Ge(Li) or intrinsic Ge detectors. Precise measurements of the REE were made in the USGS geological samples BCR-1, W-1, AGV-1, G2, GSP-1 and PCC-1, the IAEA Soil-5, and the NBS orchard leaf and bovine liver standards. Their chondritic normalized REE patterns behave as a smooth function of the REE ionic radii. Interestingly, the REE patterns observed in orchard leaf and other plants are identical to the REE pattern in bovine liver. This comparison leads us to suggest that the plant REE patterns are probably not further fractionated by animals such as bovine during their dietary plant uptake

  11. Determinations of silicon and phosphorus in Pepperbush standard reference material by neutron activation and x-ray fluorescence methods

    International Nuclear Information System (INIS)

    Mizumoto, Yoshihiko; Nishio, Hirofumi; Hayashi, Takeshi; Kusakabe, Toshio; Iwata, Shiro.

    1987-01-01

    Silicon and phosphorus contents in Pepperbush standard reference material were determined by neutron activation and X-ray fluorescence methods. In neutron activation analysis, β-ray spectra of 32 P produced by 31 P(n,γ) 32 P reaction on Pepperbush and standard samples were measured by a low background β-ray spectrometer. In X-ray fluorescence analysis, the standard samples were prepared by mixing the Pepperbush powder with silicon dioxide and diammonium hydrogenphosphate. Characteristic X-rays from the samples were analyzed by a wavelength dispersive X-ray fluorescence spectrometer. From the β and X-ray intensities, silicon and phosphorus contents in Pepperbush were determined to be 1840 ± 80 and 1200 ± 50 μg g -1 , respectively. (author)

  12. Determinations of elements in pepperbush standard reference material by neutron activation and X-ray fluorescence analyses

    International Nuclear Information System (INIS)

    Mizumoto, Yoshihiko; Okada, Takayuki; Tatsumi, Toshiya; Kusakabe, Toshio; Katsurayama, Kousuke; Iwata, Shiro.

    1988-01-01

    Elemental contents in Pepperbush standard reference material have been determined by neutron activation and X-ray fluorescence analyses. The standard samples of orchard leaves, tomato leaves, pine needles and Kale are used for the experiment. In the neutron activation analysis, gamma-ray spectra of nuclei produced by (n,γ) reaction on Pepperbush and standard samples are measured with Ge detectors. In the X-ray fluorescence analysis, the samples are excited with X-rays from X-ray tube with rhodium anode, and the characteristic X-rays from samples are measured with a proportional counter or NaI(Tl) detector. From the gamma- and X-ray intensities, the elemental contents in Pepperbush are determined. As a result, the contents of seventeen elements, such as sodium, calcium, iron, etc., in Pepperbush are determined. (author)

  13. Neutron-capture gamma-ray analysis of coal for sulfur, iron, silicon and moisture

    International Nuclear Information System (INIS)

    Fay, D.A.

    1979-05-01

    Samples of coal weighing approximately 200 grams placed in a collimated beam of neutrons from the thermal column of the Ames Laboratory Research Reactor produced capture gamma-rays which could be used for the simultaneous determination of sulfur and iron. Spectra from NaI(Tl) and Ge(Li) detectors were used and interferences were located by examining spectra of the major elemental components of coal. In determining sulfur, iron is a potential source of interference when gamma-ray spectra are collected with a NaI(Tl) detector. Corrections for iron interference were made by use of a higher energy iron peak. The possibility of determining silicon in coal was investigated but this element determination was unsuccessful since capture gamma-ray spectrometry lacked the necessary sensitivity for silicon. A linear relation was found between the area of the hydrogen capture peak at 2.23 MeV and the amount of water added to coal

  14. Gamma-ray scanning of neutron activated geological sediments for studying elemental profile distributions

    International Nuclear Information System (INIS)

    Ellinger, M.; Janghorbani, M.; Starke, K.

    1976-01-01

    Gamma-ray scanning for application to elemental profile studies of geological samples was studied with a neutron activated Baltic Shield sediment. Profile distribution of seven elements were measured. The capabilities and limitations of gamma-ray scanning are discussed by comparing the results with profiles obtained after the mechanical subdivision of the sample and the activation of the appropriately sized separates. With respect to the merits and limitations of scanning gamma-ray spectrometry applied to activated complex matrices the following conclusions were drawn. Qualitatively, the scanning method yields the same information as the much more laborious method of mechanical sudbisubdivision. Quantitatively, it is significantly less accurate. The scanning method has the significant advantage of allowing preservation of the sample. This could be important for such speciments as lunar and archeological materials. The method reduces sample preparation time and the possibility of sample contamination. (T.G.)

  15. Neutron activation analysis, gamma ray spectrometry and radiation environment monitoring instrument concept: GEORAD

    International Nuclear Information System (INIS)

    Ambrosi, R.M.; Talboys, D.L.; Sims, M.R.; Bannister, N.P.; Makarewicz, M.; Stevenson, T.; Hutchinson, I.B.; Watterson, J.I.W.; Lanza, R.C.; Richter, L.; Mills, A.; Fraser, G.W.

    2005-01-01

    Geological processes on Earth can be related to those that may have occurred in past epochs on Mars, if analytical methods used on Earth can be operated remotely on the surface of the Red Planet. Nuclear analytical techniques commonly used in terrestrial geology are neutron activation analysis (NAA) and gamma-ray spectroscopy (GRS), which determine the elemental composition, elemental concentration and stratigraphical distribution of water in rocks and soils. We describe a detector concept called GEORAD (GEOlogical and RADiation environment package) for the proposed ExoMars rover within the ESA's Aurora Programme for the exploration of the Solar System. GEORAD consists of a compact neutron source for the NAA of rocks and soils and a GRS. The GRS has a dual role since it can be used for natural radioactivity studies and NAA. A fully depleted silicon detector coupled to neutron sensitive converters measures the solar particle and neutron flux interacting with the Martian surface. We describe how the GEORAD detector suite could contribute to the geological and biological characterisation of Mars both for the detection of extinct or extant life and to evaluate potential hazards facing future manned missions. We show how GEORAD measurements complement the astrobiological objectives of the Aurora programme

  16. Stem and stripe rust resistance in wheat induced by gamma rays and thermal neutrons

    International Nuclear Information System (INIS)

    Skorda, E.A.

    1977-01-01

    Attempts were made to produce rust-resistant mutants in wheat cultivars. Seeds of G-38290 and G-58383 (T. aestivum), Methoni and Ilectra (T. durum) varieties were irradiated with different doses of γ-rays (3.5, 5, 8, 11, 15 and 21 krad) and thermal neutrons (1.7, 4, 5.5, 7.5, 10.5 and 12.5x10 12 ) and the M 1 plants were grown under isolation in the field. The objective was mainly to induce stripe, leaf and stem rust resistance in G-38290, Methoni and Ilectra varieties and leaf rust resistance in G-58383. Mutations for rust resistance were detected by using the ''chimera method'' under natural and artificial field epiphytotic conditions in M 2 and successive generations. The mutants detected were tested for resistance to a broad spectrum of available races. Mutants resistant or moderately resistant to stripe and stem rusts but not to leaf rust, were selected from G-38290. From the other three varieties tested no rust-resistant mutants were detected. The frequency of resistant mutants obtained increased with increased γ-ray dose-rate, but not with increased thermal neutron doses. Some mutants proved to be resistant or moderately resistant to both rusts and others to one of them. Twenty of these mutants were evaluated for yield from M 5 to M 8 . Some of them have reached the final stage of regional yield trials and one, induced by thermal neutrons, was released this year. (author)

  17. Implementation of neutron-induced gamma-ray spectroscopy in industrial applications

    International Nuclear Information System (INIS)

    Abernethy, D. A.; Lim, C. S.

    2006-01-01

    Full text: Neutron based analytical techniques are commonly used in a wide variety of industrial applications, with new applications continually being found. As a result, despite popular concerns about the harmful health effects of radiation the number of these analysers is increasing. This is because neutron-induced gamma-ray techniques have the capability of combining elemental sensitivity with significant penetrating power, enabling non-intrusive and non-destructive bulk elemental measurements to be averaged over a large volume of material. Neutron induced gamma ray spectroscopy has been developed by several groups, including CSIRO Minerals, for on-line measurement of elemental composition in a range of industrial applications in vessels, pipes and on conveyor belts. Compared to those typically found in a scientific laboratory, conditions in industrial plants differ substantially in a number of ways, such as environmental variability, operator skill and training, and shielding requirements. As a result of these differences, equipment and techniques which are used as a matter of course in a laboratory often have to undergo major modification to render them suitable for use in an industrial context. This paper will discuss some of the factors that have to be considered when deciding such matters with particular emphasis on the implications of radiation safety requirements

  18. Calculation of gamma-rays and fast neutrons fluxes with the program Mercure-4

    International Nuclear Information System (INIS)

    Baur, A.; Dupont, C.; Totth, B.

    1978-01-01

    The program MERCURE-4 evaluates gamma ray or fast neutron attenuation, through laminated or bulky three-dimensionnal shields. The method used is that of line of sight point attenuation kernel, the scattered rays being taken into account by means of build-up factors for γ and removal cross sections for fast neutrons. The integration of the point kernel over the range of sources distributed in space and energy, is performed by the Monte-Carlo method, with an automatic adjustment of the importance functions. Since it is operationnal the program MERCURE-4 has been intensively used for many various problems, for example: - the calculation of gamma heating in reactor cores, control rods and shielding screens, as well as in experimental devices and irradiation loops; - the evaluation of fast neutron fluxes and corresponding damage in structural materials of reactors (vessel steels...); - the estimation of gamma dose rates on nuclear instrumentation in the reactors, around the reactor circuits and around spent fuel shipping casks

  19. Magnetic field strength of a neutron-star-powered ultraluminous X-ray source

    Science.gov (United States)

    Brightman, M.; Harrison, F. A.; Fürst, F.; Middleton, M. J.; Walton, D. J.; Stern, D.; Fabian, A. C.; Heida, M.; Barret, D.; Bachetti, M.

    2018-04-01

    Ultraluminous X-ray sources (ULXs) are bright X-ray sources in nearby galaxies not associated with the central supermassive black hole. Their luminosities imply they are powered by either an extreme accretion rate onto a compact stellar remnant, or an intermediate mass ( 100-105M⊙) black hole1. Recently detected coherent pulsations coming from three bright ULXs2-5 demonstrate that some of these sources are powered by accretion onto a neutron star, implying accretion rates significantly in excess of the Eddington limit, a high degree of geometric beaming, or both. The physical challenges associated with the high implied accretion rates can be mitigated if the neutron star surface field is very high (1014 G)6, since this suppresses the electron scattering cross-section, reducing the radiation pressure that chokes off accretion for high luminosities. Surface magnetic field strengths can be determined through cyclotron resonance scattering features7,8 produced by the transition of charged particles between quantized Landau levels. Here, we present the detection at a significance of 3.8σ of an absorption line at 4.5 keV in the Chandra spectrum of a ULX in M51. This feature is likely to be a cyclotron resonance scattering feature produced by the strong magnetic field of a neutron star. Assuming scattering off electrons, the magnetic field strength is implied to be 1011 G, while protons would imply a magnetic field of B 1015 G.

  20. Relative biological effectiveness measurements using murine lethality and survival of intestinal and hematopoietic stem cells after Fermilab neutrons compared to JANUS reactor neutrons and 60Co gamma rays

    International Nuclear Information System (INIS)

    Hanson, W.R.; Crouse, D.A.; Fry, R.J.M.; Ainsworth, E.J.

    1984-01-01

    The relative biological effectiveness (RBE) of the 25-MeV (average energy) neutron beam at the Fermi National Accelerator Laboratory was measured using murine bone marrow (LD/sub 50/30/) and gut (LD/sub 50/6/) lethality and killing of hematopoietic colony forming units (CFU-S) or intestinal clonogenic cells (ICC). The LD/sub 50/30/ and LD/sub 50/6/ for mice exposed to the Fermilab neutron beam were 6.6 and 8.7 Gy, respectively, intermediate between those of JANUS neutrons and 60 Co γ rays. The D 0 values for CFU-S and ICC were 47 cGy and 1.05 Gy, respectively, also intermediate between the lowest values found for JANUS neutrons and the highest values found after 60 Co γ rays. The split-dose survival ratios for CFU-S at intervals of 1-6 hr between doses were essentially 1.0 for both neutron sources. The 3-hr split-dose survival ratios for ICC were 1.0 for JANUS neutrons, 1.85 for Fermilab neutrons, and 6.5 for 60 Co γ rays. The RBE estimates for LD/sub 50/30/ were 1.5 and 2.3 for Fermilab and JANUS neutrons, respectively. Based on LD/sub 50/6/, the RBEs were 1.9 (Fermilab) and 3.0 (JANUS). The RBEs for CFU-S D 0 were 1.4 (Fermilab) and 1.9 (JANUS) and for jejunal microcolony D 0 1.4 (Fermilab) and 2.8 (JANUS)

  1. Instrument and method for focusing X-rays, gamma rays and neutrons

    International Nuclear Information System (INIS)

    1982-01-01

    A crystal diffraction instrument is described with an improved crystalline structure having a face for receiving a beam of photons or neutrons and diffraction planar spacing along that face with the spacing increasing progressively along the face to provide a decreasing Bragg angle and thereby increasing the usable area and acceptance angle. The increased planar spacing is provided by the use of a temperature differential across the crystalline structure, by assembling a plurality of crystalline structure with different compositions, by an individual crystalline structure with a varying composition and thereby a changing planar spacing along its face, and by combinations of these techniques. (Auth.)

  2. Sub-atomic resolution X-ray crystallography and neutron crystallography: promise, challenges and potential.

    Science.gov (United States)

    Blakeley, Matthew P; Hasnain, Samar S; Antonyuk, Svetlana V

    2015-07-01

    The International Year of Crystallography saw the number of macromolecular structures deposited in the Protein Data Bank cross the 100000 mark, with more than 90000 of these provided by X-ray crystallography. The number of X-ray structures determined to sub-atomic resolution (i.e. ≤1 Å) has passed 600 and this is likely to continue to grow rapidly with diffraction-limited synchrotron radiation sources such as MAX-IV (Sweden) and Sirius (Brazil) under construction. A dozen X-ray structures have been deposited to ultra-high resolution (i.e. ≤0.7 Å), for which precise electron density can be exploited to obtain charge density and provide information on the bonding character of catalytic or electron transfer sites. Although the development of neutron macromolecular crystallography over the years has been far less pronounced, and its application much less widespread, the availability of new and improved instrumentation, combined with dedicated deuteration facilities, are beginning to transform the field. Of the 83 macromolecular structures deposited with neutron diffraction data, more than half (49/83, 59%) were released since 2010. Sub-mm(3) crystals are now regularly being used for data collection, structures have been determined to atomic resolution for a few small proteins, and much larger unit-cell systems (cell edges >100 Å) are being successfully studied. While some details relating to H-atom positions are tractable with X-ray crystallography at sub-atomic resolution, the mobility of certain H atoms precludes them from being located. In addition, highly polarized H atoms and protons (H(+)) remain invisible with X-rays. Moreover, the majority of X-ray structures are determined from cryo-cooled crystals at 100 K, and, although radiation damage can be strongly controlled, especially since the advent of shutterless fast detectors, and by using limited doses and crystal translation at micro-focus beams, radiation damage can still take place. Neutron

  3. Sub-atomic resolution X-ray crystallography and neutron crystallography: promise, challenges and potential

    Directory of Open Access Journals (Sweden)

    Matthew P. Blakeley

    2015-07-01

    Full Text Available The International Year of Crystallography saw the number of macromolecular structures deposited in the Protein Data Bank cross the 100000 mark, with more than 90000 of these provided by X-ray crystallography. The number of X-ray structures determined to sub-atomic resolution (i.e. ≤1 Å has passed 600 and this is likely to continue to grow rapidly with diffraction-limited synchrotron radiation sources such as MAX-IV (Sweden and Sirius (Brazil under construction. A dozen X-ray structures have been deposited to ultra-high resolution (i.e. ≤0.7 Å, for which precise electron density can be exploited to obtain charge density and provide information on the bonding character of catalytic or electron transfer sites. Although the development of neutron macromolecular crystallography over the years has been far less pronounced, and its application much less widespread, the availability of new and improved instrumentation, combined with dedicated deuteration facilities, are beginning to transform the field. Of the 83 macromolecular structures deposited with neutron diffraction data, more than half (49/83, 59% were released since 2010. Sub-mm3 crystals are now regularly being used for data collection, structures have been determined to atomic resolution for a few small proteins, and much larger unit-cell systems (cell edges >100 Å are being successfully studied. While some details relating to H-atom positions are tractable with X-ray crystallography at sub-atomic resolution, the mobility of certain H atoms precludes them from being located. In addition, highly polarized H atoms and protons (H+ remain invisible with X-rays. Moreover, the majority of X-ray structures are determined from cryo-cooled crystals at 100 K, and, although radiation damage can be strongly controlled, especially since the advent of shutterless fast detectors, and by using limited doses and crystal translation at micro-focus beams, radiation damage can still take place

  4. Decadal trends in the diurnal variation of galactic cosmic rays observed using neutron monitor data

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Simon [Reading Univ. (United Kingdom). Dept. of Meteorology; Univ. College London, Dorking (United Kingdom). Mullard Space Science Lab.; Owens, Mathew; Lockwood, Mike [Reading Univ. (United Kingdom). Dept. of Meteorology; Owen, Chris [Univ. College London, Dorking (United Kingdom). Mullard Space Science Lab.

    2017-10-01

    The diurnal variation (DV) in galactic cosmic ray (GCR) flux is a widely observed phenomenon in neutron monitor data. The background variation considered primarily in this study is due to the balance between the convection of energetic particles away from the Sun and the inward diffusion of energetic particles along magnetic field lines. However, there are also times of enhanced DV following geomagnetic disturbances caused by coronal mass ejections or corotating interaction regions. In this study we investigate changes in the DV over four solar cycles using ground-based neutron monitors at different magnetic latitudes and longitudes at Earth. We divide all of the hourly neutron monitor data into magnetic polarity cycles to investigate cycle-to-cycle variations in the phase and amplitude of the DV. The results show, in general, a similarity between each of the A<0 cycles and A>0 cycles, but with a phase change between the two. To investigate this further, we split the neutron monitor data by solar magnetic polarity between times when the dominant polarity was either directed outward (positive) or inward (negative) at the northern solar pole. We find that the maxima and minima of the DV changes by, typically, 1-2 h between the two polarity states for all non-polar neutron monitors. This difference between cycles becomes even larger in amplitude and phase with the removal of periods with enhanced DV caused by solar wind transients. The time difference between polarity cycles is found to vary in a 22-year cycle for both the maximum and minimum times of the DV. The times of the maximum and minimum in the DV do not always vary in the same manner between A>0 and A<0 polarity cycles, suggesting a slight change in the anisotropy vector of GCRs arriving at Earth between polarity cycles. Polar neutron monitors show differences in phase between polarity cycles which have asymptotic directions at mid-to-high latitudes. All neutron monitors show changes in the amplitude of the

  5. Monte Carlo simulation of the scattered component of neutron capture prompt gamma-ray analyzer responses

    International Nuclear Information System (INIS)

    Jin, Y.; Verghese, K.; Gardner, R.P.

    1986-01-01

    This paper describes a major part of our efforts to simulate the entire spectral response of the neutron capture prompt gamma-ray analyzer for bulk media (or conveyor belt) samples by the Monte Carlo method. This would allow one to use such a model to augment or, in most cases, essentially replace experiments in the calibration and optimum design of these analyzers. In previous work, we simulated the unscattered gamma-ray intensities, but would like to simulate the entire spectral response as we did with the energy-dispersive x-ray fluorescence analyzers. To accomplish this, one must account for the scattered gamma rays as well as the unscattered and one must have available the detector response function to translate the incident gamma-ray spectrum calculated by the Monte Carlo simulation into the detected pulse-height spectrum. We recently completed our work on the germanium detector response function, and the present paper describes our efforts to simulate the entire spectral response by using it with Monte Carlo predicted unscattered and scattered gamma rays

  6. Constraining the physics of the r-mode instability in neutron stars with X-ray and ultraviolet observations

    NARCIS (Netherlands)

    Haskell, B.; Degenaar, N.; Ho, W.C.G.

    2012-01-01

    Rapidly rotating neutron stars in low-mass X-ray binaries may be an interesting source of gravitational waves (GWs). In particular, several modes of stellar oscillation may be driven unstable by GW emission, and this can lead to a detectable signal. Here we illustrate how current X-ray and

  7. The disc-jet coupling in the neutron star X-ray binary 4U 1728-34

    NARCIS (Netherlands)

    Tudose, Valeriu; Tzioumis, Anastasios; Belloni, Tomaso; Altamirano, Diego; Linares, Manuel; Mendez, Mariano; Hiemstra, Beike

    2010-01-01

    The present radio proposal is part of a multi-wavelength campaign focused on the study of the accretion/ejection process in the neutron star X-ray binary system 4U 1728-34. Our intention is to study the behaviour of the inner part of the accretion disc as inferred from the X-ray observations of the

  8. Magnetized hypermassive neutron-star collapse: a central engine for short gamma-ray bursts.

    Science.gov (United States)

    Shibata, Masaru; Duez, Matthew D; Liu, Yuk Tung; Shapiro, Stuart L; Stephens, Branson C

    2006-01-27

    A hypermassive neutron star (HMNS) is a possible transient formed after the merger of a neutron-star binary. In the latest axisymmetric magnetohydrodynamic simulations in full general relativity, we find that a magnetized HMNS undergoes "delayed" collapse to a rotating black hole (BH) as a result of angular momentum transport via magnetic braking and the magnetorotational instability. The outcome is a BH surrounded by a massive, hot torus with a collimated magnetic field. The torus accretes onto the BH at a quasisteady accretion rate [FORMULA: SEE TEXT]; the lifetime of the torus is approximately 10 ms. The torus has a temperature [FORMULA: SEE TEXT], leading to copious ([FORMULA: SEE TEXT]) thermal radiation that could trigger a fireball. Therefore, the collapse of a HMNS is a promising scenario for generating short-duration gamma-ray bursts and an accompanying burst of gravitational waves and neutrinos.

  9. On accelerator neutron/γ-ray incineration of long-lived fission products

    International Nuclear Information System (INIS)

    Nakamura, H.

    1995-01-01

    A methodology for evaluation and control of the incineration of Long-Lived Fission Products (LLFPs) by using the accelerator neutrons/γ-rays is presented. An arbitrary number of the auxiliary transmutation chains, each of which consists of a LLFP and its reaction precursors up to 144, are used for calculating the time-dependent depletion-production of the LLFP. In the energy range below 20 MeV, about 20 types of neutron reaction are energetically possible. The semi-empirical formulas and its parameter systematics are used for all the energy dependent reaction cross sections. A computer code TRANS-N.G based on the foregoing prescription for nuclear reactions could be applied to the LLFP incineration strategies under a large variety of situations. (author)

  10. Dehydration reactions of gypsum: A neutron and X-ray diffraction study

    Science.gov (United States)

    Abriel, W.; Reisdorf, K.; Pannetier, J.

    1990-03-01

    The kinetics of the dehydration of gypsum was investigated by powder diffraction methods. Using the incoherent scattering effect of H with the neutron beam, the background intensity as a measure of the water content was checked in the temperature range 295-623 K. The superposed Bragg peaks yielded four major phases: Gypsum, subhydratesCaSO 4(H 2O) x (1 > x > 0),AIII-CaSO 4, AII-CaSO 4. For the subhydrates a maximum water content of x > = 0.74was determined. A different kinetic was found using Guinier X-ray technique with the heated sample prepared on a thin foil. Only with high local H 2O steam pressure, produced in the comparable larger sample container of the neutron diffraction experiment, could this high H 2O occupation of the subhydrate tunnel structure be found. A topotactic mechanism can describe the phase transitions for this reaction.

  11. Isozymes variability in rice mutants induced by fast neutrons and gamma rays

    International Nuclear Information System (INIS)

    Fuentes, J.L.; Alvarez, A.; Gutierrez, L.; Deus, J.E.

    2001-01-01

    The isozyme variability of a group of rice mutants induced through gamma and fast neutron (14 MeV) irradiation was studied. Polymorphisms were detected using esterase, peroxidase, polyphenol oxidase and alcohol dehydrogenase systems. The mean value of genetic similarity among the different cultivars, which arose from isozymes, was 0.75. The dendrogram was constructed based on genetic similarity matrices, designed with isozyme data using the unweighed pair group method arithmetic average (UPGMA) method. The efficiency of the UPGMA model for the estimation of genetic relationship among cultivars was supported by cophenetic correlation coefficients. Such values indicate that the distortion degree for the estimated similarities was minimal. It was found that both gamma rays and fast neutrons generated a wide range of variability which can be detected by means of isozyme patterns, even in closely related cultivars. (author)

  12. Isozymes variability in rice mutants induced by fast neutrons and gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, J L; Alvarez, A [Centro de Estudios Aplicados al Desarrollo Nuclear (CEADEN), Miramar, Playa, Havana (Cuba); Gutierrez, L; Deus, J E [Instituto de Investigaciones del Arroz, Bauta, Havana (Cuba)

    2001-05-01

    The isozyme variability of a group of rice mutants induced through gamma and fast neutron (14 MeV) irradiation was studied. Polymorphisms were detected using esterase, peroxidase, polyphenol oxidase and alcohol dehydrogenase systems. The mean value of genetic similarity among the different cultivars, which arose from isozymes, was 0.75. The dendrogram was constructed based on genetic similarity matrices, designed with isozyme data using the unweighed pair group method arithmetic average (UPGMA) method. The efficiency of the UPGMA model for the estimation of genetic relationship among cultivars was supported by cophenetic correlation coefficients. Such values indicate that the distortion degree for the estimated similarities was minimal. It was found that both gamma rays and fast neutrons generated a wide range of variability which can be detected by means of isozyme patterns, even in closely related cultivars. (author)

  13. γ-Ray background sources in the VESUVIO spectrometer at ISIS spallation neutron source

    International Nuclear Information System (INIS)

    Pietropaolo, A.; Perelli Cippo, E.; Gorini, G.; Tardocchi, M.; Schooneveld, E.M.; Andreani, C.; Senesi, R.

    2009-01-01

    An investigation of the gamma background was carried out in the VESUVIO spectrometer at the ISIS spallation neutron source. This study, performed with a yttrium-aluminum-perovskite (YAP) scintillator, follows high resolution pulse height measurements of the gamma background carried out on the same instrument with the use of a high-purity germanium detector. In this experimental work, a mapping of the gamma background was attempted, trying to find the spatial distribution and degree of directionality of the different contributions identified in the previous study. It is found that the gamma background at low times is highly directional and mostly due to the gamma rays generated in the moderator-decoupler system. The other contributions, consistently to the findings of a previous experiment, are identified as a nearly isotropic one due to neutron absorption in the walls of the experimental hall, and a directional one coming from the beam dump.

  14. γ-Ray background sources in the VESUVIO spectrometer at ISIS spallation neutron source

    Science.gov (United States)

    Pietropaolo, A.; Perelli Cippo, E.; Gorini, G.; Tardocchi, M.; Schooneveld, E. M.; Andreani, C.; Senesi, R.

    2009-09-01

    An investigation of the gamma background was carried out in the VESUVIO spectrometer at the ISIS spallation neutron source. This study, performed with a yttrium-aluminum-perovskite (YAP) scintillator, follows high resolution pulse height measurements of the gamma background carried out on the same instrument with the use of a high-purity germanium detector. In this experimental work, a mapping of the gamma background was attempted, trying to find the spatial distribution and degree of directionality of the different contributions identified in the previous study. It is found that the gamma background at low times is highly directional and mostly due to the gamma rays generated in the moderator-decoupler system. The other contributions, consistently to the findings of a previous experiment, are identified as a nearly isotropic one due to neutron absorption in the walls of the experimental hall, and a directional one coming from the beam dump.

  15. {gamma}-Ray background sources in the VESUVIO spectrometer at ISIS spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Pietropaolo, A. [CNISM Milano-Bicocca, Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G. Occhialini' , Piazza della Scienza 3, 20126 Milano (Italy); NAST Center (Nanoscienze-Nanotecnologie-Strumentazione), Universita degli Studi di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma (Italy)], E-mail: antonino.pietropaolo@mib.infn.it; Perelli Cippo, E. [Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G. Occhialini' , Piazza della Scienza 3, 20126 Milano (Italy); Gorini, G. [CNISM Milano-Bicocca, Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G. Occhialini' , Piazza della Scienza 3, 20126 Milano (Italy); NAST Center (Nanoscienze-Nanotecnologie-Strumentazione), Universita degli Studi di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma (Italy); Tardocchi, M. [Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G. Occhialini' , Piazza della Scienza 3, 20126 Milano (Italy); Schooneveld, E.M. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire 0QX OX11 (United Kingdom); Andreani, C.; Senesi, R. [Universia degli Studi di Roma Tor Vergata, Dipartimento di Fisica and NAST Center (Nanoscienze-Nanotecnologie-Strumentazione), via della Ricerca Scientifica 1, 00133 Roma (Italy)

    2009-09-01

    An investigation of the gamma background was carried out in the VESUVIO spectrometer at the ISIS spallation neutron source. This study, performed with a yttrium-aluminum-perovskite (YAP) scintillator, follows high resolution pulse height measurements of the gamma background carried out on the same instrument with the use of a high-purity germanium detector. In this experimental work, a mapping of the gamma background was attempted, trying to find the spatial distribution and degree of directionality of the different contributions identified in the previous study. It is found that the gamma background at low times is highly directional and mostly due to the gamma rays generated in the moderator-decoupler system. The other contributions, consistently to the findings of a previous experiment, are identified as a nearly isotropic one due to neutron absorption in the walls of the experimental hall, and a directional one coming from the beam dump.

  16. X – ray and neutron diffraction of TiAl alloys

    International Nuclear Information System (INIS)

    Valkov, Stefan; Petrov, Peter; Neov, Dimitar; Beskrovny, Anatoly; Kozlenko, Denis

    2015-01-01

    TiAl alloys were prepared by electron beam hybrid method. Composite Ti-Al film, from composite target, was deposited on Ti substrate by electron beam evaporation, followed by electron beam treatment with scanning electron beam. Experiments were made using Leybold Heraus (EWS 300/ 15 - 60) with the following technological parameters : accelerating voltage U = 60kV; beam current I=40 mA, speed of movement of specimens V=5 cm/s, current of the focusing lens If =512mA, specimen distance D0 = 38cm. X- ray and neutron diffraction methods were used to determine the phase composition on the surface and at the volume, respectively. Time of flight neutron diffraction study of TiAl specimens was performed on DN-2 diffractometer at fast pulsed IBR-2 reactor in FLNP JINR (Dubna, Russia).We found that intermetallic TiAl phases were successfully obtained on the surface, as well as in the volume.

  17. Secondary gamma-ray skyshine from 14 MeV Neutron Source Facility (OKTAVIAN). Comparison of measurement with its simulation

    Energy Technology Data Exchange (ETDEWEB)

    Morotomi, Ryutaro; Kondo, Tetsuo; Murata, Isao; Yoshida, Shigeo; Takahashi, Akito [Osaka Univ., Department of Nuclear Engineering, Suita, Osaka (Japan); Yamamoto, Takayoshi [Osaka Univ., Radio Isotope Research Center, Suita, Osaka (Japan)

    2000-03-01

    Measurement of secondary gamma-ray skyshine was performed at the Intense 14 MeV Neutron Source Facility (OKTAVIAN) of Osaka University with NaI and Hp-Ge detectors. From the result of measurements, some mechanism of secondary gamma-ray skyshine from 14 MeV neutron source facility was found out. The analysis of the measured result were carried out with MCNP-4B for four nuclear data files of JENDL-3.2, JENDL-F.F., FENDL-2, and ENDF/B-VI. It was confirmed that all the nuclear data are fairly reliable for calculations of secondary gamma-ray skyshine. (author)

  18. First examination of CASCADE-X-ray-detector and measurement of neutron-mirrorneutron-oscillation; Erste Untersuchungen zum CASCADE-Roentgendetektor und Messung zur Neutron-Spiegelneutron-Oszillation

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, B.

    2007-02-07

    The detection of X-radiation is of utmost importance for both fundamental physics and medical diagnostics. This work investigates whether or not the CASCADE detector working principle, first developed for the detection of neutrons, can be adapted for the detection of X-rays. This modular detector concept combines the use of a solid neutron or X-ray converter with the advantages of a counting gas detector. Thus, it gives the possibility to optimize efficiency, dynamics and spatial resolution independently. Firstly, it is necessary to find a suitable converter material that allows for the best possible detector efficiency. In order to do so, a mathematical model of the complete detector system was developed that yields the total efficiency for any given material. Respecting technical constraints, gold and gadolinium showed to be favorable choices. Based on these theoretical considerations a prototype of a CASCADE X-ray detector was built, and measurements for the determination of this detector's efficiency were conducted. In the second part of this work a CASCADE neutron detector was used to conduct the first measurement the neutron-mirrorneutron oscillation time. Mirrormatter was proposed in 1956 by Lee and Yang to allow for symmetry in the description of the universe despite the existence of parity violation. By using neutrons it was possible to determine a lower limit for the oscillation time in this work. (orig.)

  19. Utilization of ilmenite/epoxy composite for neutrons and gamma rays attenuation

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed Abdo, A. E-mail: attiaabdo11@hotmail.com; El-Sarraf, M.A.; Gaber, F.A

    2003-01-01

    This work deals with the study of ilmenite/epoxy composite as an injecting mortar for cracks developed in biological concrete shields, as well as, neutrons and gamma rays attenuation. Effects of the particle size on the mechanical strengths have been studied for epoxy resin filled with crushed ilmenite with different maximum particle sizes ranging from 32 to 500 {mu}m. Thermal neutrons and gamma rays attenuation in ilmenite/epoxy composites with 75 and 80 wt.% of ilmenite concentration have been investigated. The total mass attenuation coefficients {mu}/{rho} (cm{sup 2} g{sup -1}) of gamma ray for five ilmenite/epoxy composites have been calculated using the XCOM program (version 3.1) at energies from 10 keV to 100 MeV. Also, the total mass attenuation coefficients ({mu}/{rho}) have estimated based on the measured total linear attenuation coefficients ({mu}) and compared with the calculated results where, a reasonable agreement was found.

  20. Comparative study of effects of neutron, γ-ray and UV irradiation on proteins

    International Nuclear Information System (INIS)

    Fujii, Noriko; Saito, Takeshi; Sakurai, Yoshinori; Shimada, Akihiko

    2005-01-01

    When α-crystalline was irradiated by γ-ray, isomerization of aspartic acid (Asp)-151 and oxidation of methionine(Met)-1 of αA-chain was introduced and the forth dimension structure of α-crystalline was changed. The chaperone-like activity decreased. By UV irradiation, the hydrophobic property of α-crystalline surface was decreased, isomerization of Asp-151 and oxidation of Met-1 of αA-chain introduced. The chaperon-like activity decreased, too. With irradiating neutron, oxidation of Trp and Met residue groups and cut of peptide bonds of α-crystalline was observed, but the chaperon-like activity was kept. The behaviors of charge particles produced by neutron, γ-ray and nuclear reactions were simulated. The effects of proton originated chlorine in the buffer solution on the behavior were very large. Metallothionein (Mt) was derived in the cell by treating γTN-1 with ZnCl 2 . The resistance of αTN4-1 to UV-A irradiation was increased by MT induced ZnCl 2 treatment. D-tryptophan was decomposed by tryptophanase irradiated with γ-ray. (S.Y.)

  1. Gamma-ray spectroscopy of neutron-rich products of heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, M.P.; Janssens, R.V.F.; Ahmad, I. [and others

    1995-08-01

    Thick-target {gamma}{gamma} coincidence techniques are being used to explore the spectroscopy of otherwise hard-to-reach neutron-rich products of deep-inelastic heavy ion reactions. Extensive {gamma}{gamma} coincidence measurements were performed at ATLAS using pulsed beams of {sup 80}Se, {sup 136}Xe, and {sup 238}U on lead-backed {sup 122,124}Sn targets with energies 10-15% above the Coulomb barrier. Gamma-ray coincidence intensities were used to map out yield distributions with A and Z for even-even product nuclei around the target and around the projectile. The main features of the yield patterns are understandable in terms of N/Z equilibration. We had the most success in studying the decays of yrast isomers. Thus far, more than thirty new {mu}s isomers in the Z = 50 region were found and characterized. Making isotopic assignments for previously unknown {gamma}-ray cascades proves to be one of the biggest problems. Our assignments were based (a) on rare overlaps with radioactivity data, (b) on the relative yields with different beams, and (c) on observed cross-coincidences between {gamma} rays from light and heavy reaction partners. However, the primary products of deep inelastic collisions often are sufficiently excited for subsequent neutron evaporation, so {gamma}{gamma} cross-coincidence results require careful interpretation.

  2. REFINED NEUTRON STAR MASS DETERMINATIONS FOR SIX ECLIPSING X-RAY PULSAR BINARIES

    International Nuclear Information System (INIS)

    Rawls, Meredith L.; Orosz, Jerome A.; McClintock, Jeffrey E.; Torres, Manuel A. P.; Bailyn, Charles D.; Buxton, Michelle M.

    2011-01-01

    We present an improved method for determining the mass of neutron stars in eclipsing X-ray pulsar binaries and apply the method to six systems, namely, Vela X-1, 4U 1538-52, SMC X-1, LMC X-4, Cen X-3, and Her X-1. In previous studies to determine neutron star mass, the X-ray eclipse duration has been approximated analytically by assuming that the companion star is spherical with an effective Roche lobe radius. We use a numerical code based on Roche geometry with various optimizers to analyze the published data for these systems, which we supplement with new spectroscopic and photometric data for 4U 1538-52. This allows us to model the eclipse duration more accurately and thus calculate an improved value for the neutron star mass. The derived neutron star mass also depends on the assumed Roche lobe filling factor β of the companion star, where β = 1 indicates a completely filled Roche lobe. In previous work a range of β between 0.9 and 1.0 was usually adopted. We use optical ellipsoidal light-curve data to constrain β. We find neutron star masses of 1.77 ± 0.08 M sun for Vela X-1, 0.87 ± 0.07 M sun for 4U 1538-52 (eccentric orbit), 1.00 ± 0.10 M sun for 4U 1538-52 (circular orbit), 1.04 ± 0.09 M sun for SMC X-1, 1.29 ± 0.05 M sun for LMC X-4, 1.49 ± 0.08 M sun for Cen X-3, and 1.07 ± 0.36 M sun for Her X-1. We discuss the limits of the approximations that were used to derive the earlier mass determinations, and we comment on the implications our new masses have for observationally refining the upper and lower bounds of the neutron star mass distribution.

  3. Fast neutron and gamma-ray spectra measurements with a NE-213 spectrometer in the FNG Copper Benchmark Experiment

    International Nuclear Information System (INIS)

    Klix, Axel; Angelone, Maurizio; Fischer, Ulrich; Pillon, Mario

    2016-01-01

    Highlights: • Fast neutron and gamma-ray spectra were measured in a copper assembly irradiated with DT neutrons. • The results were compared with MCNP calculations. • Primary aim was to provide experimental data for checking and validation of nuclear data evaluations of copper. - Abstract: A neutronics benchmark experiment on a pure Copper assembly was performed at the Frascati Neutron Generator. The work aimed at testing of recent nuclear data libraries. This paper focuses on the measurement of fast neutron and gamma-ray flux spectra in the Copper assembly under DT neutron irradiation in two selected positions with a spectrometer based on the organic liquid scintillator NE-213. The measurement results were compared with Monte Carlo radiation transport calculations using MCNP and nuclear data from the JEFF-3.1.1 library. Calculations have been done with Cu data from JEFF-3.1.1, JEFF-3.2, FENDL-3 and ENDF/B-7.0. Discrepancies appear in the intermediate neutron energy range between experiment and calculation. Large discrepancies were observed in the gamma-ray spectra calculated with JEFF-3.2.

  4. Fast neutron and gamma-ray spectra measurements with a NE-213 spectrometer in the FNG Copper Benchmark Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Klix, Axel, E-mail: axel.klix@kit.edu [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Angelone, Maurizio [ENEA Dipartimento Fusione e Tecnologie per la Sicurezza Nucleare, C.R. Frascati, via E. Fermi 45, 00044 Frascati (Italy); Fischer, Ulrich [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Pillon, Mario [ENEA Dipartimento Fusione e Tecnologie per la Sicurezza Nucleare, C.R. Frascati, via E. Fermi 45, 00044 Frascati (Italy)

    2016-11-01

    Highlights: • Fast neutron and gamma-ray spectra were measured in a copper assembly irradiated with DT neutrons. • The results were compared with MCNP calculations. • Primary aim was to provide experimental data for checking and validation of nuclear data evaluations of copper. - Abstract: A neutronics benchmark experiment on a pure Copper assembly was performed at the Frascati Neutron Generator. The work aimed at testing of recent nuclear data libraries. This paper focuses on the measurement of fast neutron and gamma-ray flux spectra in the Copper assembly under DT neutron irradiation in two selected positions with a spectrometer based on the organic liquid scintillator NE-213. The measurement results were compared with Monte Carlo radiation transport calculations using MCNP and nuclear data from the JEFF-3.1.1 library. Calculations have been done with Cu data from JEFF-3.1.1, JEFF-3.2, FENDL-3 and ENDF/B-7.0. Discrepancies appear in the intermediate neutron energy range between experiment and calculation. Large discrepancies were observed in the gamma-ray spectra calculated with JEFF-3.2.

  5. Radiography studies with gamma rays produced by 14-MeV fusion neutrons

    International Nuclear Information System (INIS)

    Smith, D.L.; Ikeda, Yujiro; Uno, Yoshitomo

    1996-01-01

    Oxygen contained in pure water has been activated via the 16 O(n, p) 16 N reaction using 14-MeV neutrons produced at a neutron generator with the 3 H(d,n) 4 He source. Photons of 6.129 and 7.115 MeV, generated by the decay of 7.13-second 16 N, were then used to demonstrate the feasibility of employing highly penetrating, nearly monoenergetic gamma rays for radiography studies of thick, dense objects composed of elements with medium to relatively high atomic numbers. A simple radiography apparatus was constructed by circulating water continuously between a position near the target of the neutron generator and a remote location where photon transmission measurements were conducted. A sodium iodide scintillator was employed to detect the photons. Pulses equivalent to photon energies smaller than 2.506 MeV (corresponding to the cascade sum of 1.333- and 1.173-MeV gamma rays from the decay of 5.271-year 60 Co) were rejected by the electronics settings in order to reduce background and improve the signal-to-noise (S/N) ratio. Respectable S/N ratios on the order of 20-to-1 were achieved with this setup. Most of the background (N) could be attributed to ambient environmental radiation and cosmic-ray interactions with the lead shielding and detector. Four representative objects were examined by photon radiography in this study. This demonstrated how such - interesting features as hidden holes and discontinuities in atomic number could be easily identified from observed variations in the intensity of transmitted photons. Some advantages of this technique are described, and potential applications are suggested for a future scenario where fusion reactors are used to generate electric power and very intense sources of high-energy photons from 16 N decay are continuously available as a byproduct of the reactor cooling process

  6. Neutron and hard x-ray measurements during pellet deposition in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Heidbrink, W.W.; Milora, S.L.; Schmidt, G.L.; Schneider, W.; Ramsey, A.

    1986-06-01

    Measurements of neutrons and hard x rays are made with a pair of plastic scintillators during injection of deuterium pellets into deuterium TFTR plasmas. Three cases are investigated. During ohmic heating in plasmas with few runaway electrons, the neutron emission does not increase when a pellet is injected, indicating that strong acceleration of the pellet ions does not occur. In ohmic plasmas with low but detectable levels of runaway electrons, an x-ray burst is observed on a detector near the pellet injector as the pellet ablates, while a detector displaced 126/sup 0/ toroidally from the injector does not measure a synchronous burst. Reduced pellet penetration correlates with the presence of x-ray emission, suggesting that the origin of the burst is bremsstrahlung from runaway electrons that strike the solid pellet. In deuterium beam-heated discharges, an increase in the d-d neutron emission is observed when the pellet ablates. In this case, the increase is due to fusion reactions between beam ions and the high density neutral and plasma cloud produced by ablation of the pellet; this localized density perturbation equilibrates in about 700 ..mu..sec. Analysis of the data indicates that the density propagates without forming a sharp shock front with a rapid initial propagation velocity (greater than or equal to 2 x 10/sup 7/ cm/sec) that subsequently decreases to around 3 x 10/sup 6/ cm/sec. Modelling suggests that the electron heat flux into the pellet cloud is much less than the classical Spitzer value.

  7. Small angle neutron and x-ray scattering studies of self-assembled nano structured materials

    International Nuclear Information System (INIS)

    Choi, Sung Min

    2009-01-01

    Full text: Small angle neutron and x-ray scattering are very powerful techniques to investigate nano structured materials. In this presentation, examples of nano structured materials investigated by neutron and x-ray scattering will be presented. Part I: The unique anisotropic physical properties of columnar discotic liquid crystals (DLCs) have attracted considerable interest for their potential applications as electronic devices. For many practical applications, however, it is crucial to obtain uniaxially oriented and highly ordered columnar superstructures of DLC molecules covering macroscopic area. Here, we present a simple and straight-forward approach to fabricate uniaxially oriented and highly ordered columnar superstructures of cobalt octa(n-decylthio) porphyrazine (CoS 1 0), a discotic supra-molecule, in bulk and on substrates [1] over a macroscopic length scale, utilizing an applied magnetic field and the interaction of CoS 1 0 with an OTS-functionalized substrate. The details of the oriented and ordered columnar nano-structures are investigated by SANS and GISAXS. Part II: Self-assembly of one-dimensional (1D) nanoparticles with metallic or semiconducting properties into highly ordered superstructures using various interactions has been of great interest as a route towards materials with new functionalities. Here, we report a new phase diagram of negatively charged 1D nanoparticle (cROD) and cationic liposome (CL) complexes in water which exhibit three different highly ordered phases [2]. Small angle neutron and x-ray scattering measurements show that the cROD-CL complexes exhibit three different highly ordered phases, intercalated lamellar, doubly intercalated lamellar and centered rectangular phases, depending on particle curvature and electrostatic interactions. The new phase diagram can be used to understand and design new highly ordered self-assemblies of 1D nanoparticles in soft matter which provide new functionalities. (author)

  8. Nondestructive Inspection System for Special Nuclear Material Using Inertial Electrostatic Confinement Fusion Neutrons and Laser Compton Scattering Gamma-Rays

    Science.gov (United States)

    Ohgaki, H.; Daito, I.; Zen, H.; Kii, T.; Masuda, K.; Misawa, T.; Hajima, R.; Hayakawa, T.; Shizuma, T.; Kando, M.; Fujimoto, S.

    2017-07-01

    A Neutron/Gamma-ray combined inspection system for hidden special nuclear materials (SNMs) in cargo containers has been developed under a program of Japan Science and Technology Agency in Japan. This inspection system consists of an active neutron-detection system for fast screening and a laser Compton backscattering gamma-ray source in coupling with nuclear resonance fluorescence (NRF) method for precise inspection. The inertial electrostatic confinement fusion device has been adopted as a neutron source and two neutron-detection methods, delayed neutron noise analysis method and high-energy neutron-detection method, have been developed to realize the fast screening system. The prototype system has been constructed and tested in the Reactor Research Institute, Kyoto University. For the generation of the laser Compton backscattering gamma-ray beam, a race track microtron accelerator has been used to reduce the size of the system. For the NRF measurement, an array of LaBr3(Ce) scintillation detectors has been adopted to realize a low-cost detection system. The prototype of the gamma-ray system has been demonstrated in the Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology. By using numerical simulations based on the data taken from these prototype systems and the inspection-flow, the system designed by this program can detect 1 kg of highly enriched 235U (HEU) hidden in an empty 20-ft container within several minutes.

  9. Analysis of cosmic ray neutron-induced single-event phenomena

    International Nuclear Information System (INIS)

    Tukamoto, Yasuyuki; Watanabe, Yukinobu; Nakashima, Hideki

    2003-01-01

    We have developed a database of cross sections for the n+ 28 Si reaction in the energy range between 2 MeV and 3 GeV in order to analyze single-event upset (SEU) phenomena induced by cosmic-ray neutrons in semiconductor memory devices. The data are applied to calculations of SEU cross sections using the Burst Generation Rate (BGR) model including two parameters, critical charge and effective depth. The calculated results are compared with measured SEU cross-sections for energies up to 160 MeV, and the reaction products that provide important effects on SEU are mainly investigated. (author)

  10. Metal micro-arrays for collimating neutrons and X-rays

    International Nuclear Information System (INIS)

    Allman, B.E.; Cimmino, A.; Klein, A.G.; Hamilton, W.A.

    1998-08-01

    The authors describe the theory, fabrication and experimental results of novel, compact optical elements for collimating and/or focusing beams of X-rays or thermal neutrons. These optical elements are solid composites consisting of regular stacks of alternating micro-foils, analogous in action to Soller slits. They are made out of pairs of metals with suitable refractive indices for reflection and/or absorption of the radiation. The performance of these proof-in-principle collimating elements is limited only by the choice of micro-foil materials and the uniformity of their interfaces

  11. CASTHY, Statistical Model for Neutron Cross-Sections and Gamma-Ray Spectra

    International Nuclear Information System (INIS)

    Igarasi, Sin-iti; Fukahori, Tokio

    1998-01-01

    Description of program or function: CASTHY calculates neutron cross sections of total, shape elastic scattering and compound nucleus formation with the optical model, and compound elastic, inelastic and capture cross sections by the statistical model. The other cross sections, such as (n,2n), (n,p), (n,f) reactions are treated as cross sections of competing processes, and their sum is given through input data. Capture gamma-ray spectra can also be calculated. The branching ratio for primary transition can be treated in a particular way, if required

  12. Life shortening, tumor induction, and tissue dose for fission-neutron and gamma-ray irradiations

    International Nuclear Information System (INIS)

    Grahn, D.; Duggal, K.; Lombard, L.S.

    1985-01-01

    The primary focus of this program is to obtain information on the late effects of whole body exposure to low doses of a high linear-energy-transfer (LET) and a low-LET ionizing radiation in experimental animals to provide guidance for the prediction of radiation hazards to man. The information obtained takes the form of dose-response curves for life shortening and for the induction of numerous specific types of tumors. The animals are irradiated with fission neutrons from the Janus reactor and with 60 Co gamma rays, delivered as single, weekly, or duration-of-life exposures covering the range of doses and dose rates. 6 refs

  13. Real Structure and Resudal Stresses in Advanced Welds Determined by X-ray and Neutron Diffraction

    Czech Academy of Sciences Publication Activity Database

    Trojan, K.; Hervoches, Charles; Ganev, N.; Mikula, Pavol; Čapek, J.

    2017-01-01

    Roč. 9, SEP (2017), s. 32-38 E-ISSN 2336-5382 R&D Projects: GA MŠk LM2015056; GA ČR GB14-36566G Institutional support: RVO:61389005 Keywords : laser and MAG welding * residual stresses * X-ray diffraction * neutron diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) https://ojs.cvut.cz/ojs/index.php/APP/article/view/4401/4298

  14. Database of prompt gamma rays from slow neutron capture for elemental analysis

    International Nuclear Information System (INIS)

    Firestone, R.B.; Choi, H.D.; Lindstrom, R.M.; Molnar, G.L.; Mughabghab, S.F.; Paviotti-Corcuera, R.; Revay, Zs; Trkov, A.; Zhou, C.M.; Zerkin, V.

    2004-01-01

    The increasing importance of Prompt Gamma-ray Activation Analysis (PGAA) in a broad range of applications is evident, and has been emphasized at many meetings related to this topic (e.g., Technical Consultants' Meeting, Use of neutron beams for low- and medium-flux research reactors: radiography and materials characterizations, IAEA Vienna, 4-7 May 1993, IAEA-TECDOC-837, 1993). Furthermore, an Advisory Group Meeting (AGM) for the Coordination of the Nuclear Structure and Decay Data Evaluators Network has stated that there is a need for a complete and consistent library of cold- and thermal neutron capture gamma ray and cross-section data (AGM held at Budapest,14-18 October 1996, INDC(NDS)-363); this AGM also recommended the organization of an IAEA CRP on the subject. The International Nuclear Data Committee (INDC) is the primary advisory body to the IAEA Nuclear Data Section on their nuclear data programs. At a biennial meeting in 1997, the INDC strongly recommended that the Nuclear Data Section support new measurements and update the database on Neutron-induced Prompt Gamma-ray Activation Analysis (21st INDC meeting, INDC/P(97)-20). As a consequence of the various recommendations, a CRP on ''Development of a Database for Prompt Gamma-ray Neutron Activation Analysis (PGAA)'' was initiated in 1999. Prior to this project, several consultants had defined the scope, objectives and tasks, as approved subsequently by the IAEA. Each CRP participant assumed responsibility for the execution of specific tasks. The results of their and other research work were discussed and approved by the participants in research co-ordination meetings (see Summary reports: INDC(NDS)-411, 2000; INDC(NDS)-424, 2001; and INDC(NDS)-443, 200). PGAA is a non-destructive radioanalytical method, capable of rapid or simultaneous ''in-situ'' multi-element analyses across the entire Periodic Table, from hydrogen to uranium. However, inaccurate and incomplete data were a significant hindrance in the

  15. Food structure and dynamics - what are the opportunities for x-ray and neutron scattering?

    International Nuclear Information System (INIS)

    Gilbert, Elliot Paul

    2010-01-01

    In the latter part of the 20th century, it became evident that major advances in understanding could be achieved by gathering together scientists from unique, diverse but nonetheless complementary disciplines. To what extent can this be achieved in materials science, food science, food technology and nutrition? In Australia, we have developed a programme of research in which we seek to investigate fundamental and industrial problems of national significance in food science. This presentation will illustrate some of the opportunities now available through strategic alliances with materials scientists in the application of methods such as X-ray and neutron scattering to gain a critical understanding of food microstructure, nanostructure and dynamics

  16. Studies of amyotrophic lateral sclerosis by neutron activation analysis and x-ray microanalysis

    International Nuclear Information System (INIS)

    Iwata, Shiro; Sasajima, Kazuhisa; Yase, Yoshio; Uebayashi, Yushiro; Yoshida, Sohei.

    1976-01-01

    As a mean to elucidate the cause of ALS, the neutron activation method was employed in the analysis of metals contained in environmental samples obtained from areas of high incidence of the disease and in CNS tissue samples of the ALS cases. The X-ray microanalytical method was used to detect the distribution of certain elements including Ca, Al and Mn in spinal cord tissue samples of ALS and control autopsied cases. The results of these studies indicated a possible participation of these metal elements in the microscopic calcification occuring in the degenerated areas of the CNS, and this calcifying mechanism was discussed. (auth.)

  17. Multitaper spectral analysis of cosmic rays Sao Martinho da Serra's muon telescope and Newark's neutron monitor data

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marlos Rockenbach da; Alarcon, Walter Demetrio Gonzalez; Echer, Ezequiel; Lago, Alisson dal; Lucas, Aline de [National Institute for Space Research - INPE-MCT, Sao Jose dos Campos, SP (Brazil); Vieira, Luis Eduardo Antunes; Guarnieri, Fernando Luis [Universidade do Vale do Paraiba - UNIVAP, Sao Jose dos Campos, SP (Brazil); Schuch, Nelson Jorge [Southern Regional Space Research Center - CRSPE/INPE-MCT, Santa Maria, RS (Brazil); Munakata, Kazuoki, E-mail: marlos@dge.inpe.br, E-mail: gonzalez@dge.inpe.br, E-mail: eecher@dge.inpe.br, E-mail: dallago@dge.inpe.br, E-mail: delucas@dge.inpe.br, E-mail: levieira@univap.br, E-mail: guarnieri@univap.br, E-mail: njschuch@lacesm.ufsm.br, E-mail: kmuna00@gipac.shinshu-u.ac.jp [Physics Department, Shinshu University, Matsumoto (Japan)

    2007-07-01

    In this work we present an analysis on the correction efficiency of atmospheric effects on cosmic ray Sao Martinho da Serra's muon telescope and Newark's neutron monitor data. We use a Multitaper spectral analysis of cosmic rays time series to show the main periodicities present in the corrected and uncorrected data for the atmospheric effects. This kind of correction is very important when intends to study cosmic rays variations of extra-terrestrial origin. (author)

  18. Unsteady Plasma Ejections from Hollow Accretion Columns of Galactic Neutron Stars as a Trigger for Gamma-Ray Bursts

    Science.gov (United States)

    Gvaramadze, V. V.

    1995-09-01

    We propose a model of gamma-ray bursts (GRBs) based on close Galactic neutron stars with accretion disks. We outline a simple mechanism of unsteady plasma ejections during episodic accretion events. The relative kinetic energy of ejected blobs can be converted into gamma-rays by internal shocks. The beaming of gamma-ray emission can be responsible for the observed isotropic angular distribution of GRBs.

  19. Simultaneous neutron and x-ray imaging of inertial confinement fusion experiments along a single line of sight at Omega

    Energy Technology Data Exchange (ETDEWEB)

    Danly, C. R.; Day, T. H.; Herrmann, H.; Kim, Y. H.; Martinez, J. I.; Merrill, F. E.; Schmidt, D. W.; Simpson, R. A.; Volegov, P. L.; Wilde, C. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Fittinghoff, D. N.; Izumi, N. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-04-15

    Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstrated on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. The technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future.

  20. Photo neutron dose equivalent rate in 15 MV X-ray beam from a Siemens Primus Linac

    Directory of Open Access Journals (Sweden)

    A Ghasemi

    2015-01-01

    Full Text Available Fast and thermal neutron fluence rates from a 15 MV X-ray beams of a Siemens Primus Linac were measured using bare and moderated BF 3 proportional counter inside the treatment room at different locations. Fluence rate values were converted to dose equivalent rate (DER utilizing conversion factors of American Association of Physicist in Medicine′s (AAPM report number 19. For thermal neutrons, maximum and minimum DERs were 3.46 × 10 -6 (3 m from isocenter in +Y direction, 0 × 0 field size and 8.36 × 10 -8 Sv/min (in maze, 40 × 40 field size, respectively. For fast neutrons, maximum DERs using 9" and 3" moderators were 1.6 × 10 -5 and 1.74 × 10 -5 Sv/min (2 m from isocenter in +Y direction, 0 × 0 field size, respectively. By changing the field size, the variation in thermal neutron DER was more than the fast neutron DER and the changes in fast neutron DER were not significant in the bunker except inside the radiation field. This study showed that at all points and distances, by decreasing field size of the beam, thermal and fast neutron DER increases and the number of thermal neutrons is more than fast neutrons.

  1. Neutron monitor latitude survey of cosmic ray intensity during the 1986/1987 solar minimum

    International Nuclear Information System (INIS)

    Moraal, H.; Potgieter, M.S.; Stoker, P.H.; van der Walt, A.J.

    1989-01-01

    A latitude survey of the cosmic ray intensity at sea level was conducted during the 1986/1987 solar minimum period on commercial vessels of the South African Marine Corporation (SAFMARINE). The results show that the differential response function for the 1986/1987 solar minimum agrees well with that measured in 1965. Both these response functions are significantly lower than those for 1976 and 1954. This result supports the 22-year modulation cycle as predicted, for example, by models including drift effects of the charged cosmic ray particles in the large-scale interplanetary magnetic field. A crossover of the spectra at rigidities of about 7 GV was also observed. Such a crossover is necessary to explain both the stationary neutron monitor counting rates and the lower-energy balloon and space observations in consecutive solar cycles. copyright American Geophysical Union 1989

  2. X-ray and neutron tomography on the bony inner ear of baleen whales

    International Nuclear Information System (INIS)

    Arlt, Tobias; Wieder, Frank; Hampe, Oliver; Manke, Ingo; Ritsche, Indira; Fahlke, Julia M.

    2018-01-01

    During their evolution whales and dolphins developed a highly specialized hearing organ for orientation in their deep sea territory covering a broad acoustic spectrum. The internal anatomy of the periotic bone, especially the morphology of the cochlea, has a significant influence on the hearing capability of mammals. The bony and fossilized cochleae of several fossil representatives of extinct baleen whales (e.g., Cetotheriidae) and modern rorquals (Balaenopteridae) and right whales, as well as cochleae of an archaeocete and some land mammals are investigated by X-ray and neutron tomography in order to record morphological changes that may be responsible for the development of low frequency hearing. Differences in the cochlear morphology have been determined by means of morphometric parameters, such as the number of turns, the length of the cochlea, and the curvature of the cochlear canal. In particular, X-ray tomography enables a high resolution display of the bony inner ear.

  3. Multielement characterization of atmospheric pollutants by x-ray fluorescence analysis and instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Rancitelli, L.A.; Tanner, T.M.

    1976-01-01

    The simultaneous measurement of a wide spectrum of elements in aerosols collected on air filters and in rainwater can yield information on the origin, transport, and removal of atmospheric pollutants. In order to determine the elemental content of these aerosols, a pair of highly sensitive, precise and complementing instrumental techniques, x-ray fluorescence and neutron activation analysis, have been developed and employed. Data are presented on the results of combined x-ray fluorescence and activation analysis of aerosols collected in a number of urban areas of the USA and from the 80th median sampling network in March 1972. From a comparison of these ratios in granite and diabase with those of filters placed in urban areas, it is evident that Zn, Se, Sb, Hg, and Pb levels have been increased by as much as several orders of magnitude. Al, Co, La, Fe, Eu, Sm, Tb, Ta, Hf, and Th appear to exist at levels compatible with an earth's crust origin

  4. High resolution inelastic gamma-ray measurements with a white neutron source from 1 to 200 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, R.O.; Laymon, C.M.; Wender, S.A.

    1990-01-01

    Measurements of prompt gamma rays following neutron-induced reactions have recently been made at the spallation neutron source at the WNR target area of LAMPF using germanium detectors. These experiments provide extensive excitation function data for inelastic neutron scattering as well as for other reactions such as (n,{alpha}), (n,n{alpha}), (n,p), (n,np), (n,nnp) and (n,xn) for 1 {le} {times} {le} 11. The continuous energy coverage available from 1 MeV to over 200 MeV is ideal for excitation function measurements and greatly extends the energy range for such data. The results of these measurements will provide a database for interpretation of gamma-ray spectra from the planned Mars Observer mission, aid in radiation transport calculations, allow verification of nuclear reaction models, and improve the evaluated neutron reaction data base.

  5. High resolution inelastic gamma-ray measurements with a white neutron source from 1 to 200 MeV

    International Nuclear Information System (INIS)

    Nelson, R.O.; Laymon, C.M.; Wender, S.A.

    1990-01-01

    Measurements of prompt gamma rays following neutron-induced reactions have recently been made at the spallation neutron source at the WNR target area of LAMPF using germanium detectors. These experiments provide extensive excitation function data for inelastic neutron scattering as well as for other reactions such as (n,α), (n,nα), (n,p), (n,np), (n,nnp) and (n,xn) for 1 ≤ x ≤ 11. The continuous energy coverage available from 1 MeV to over 200 MeV is ideal for excitation function measurements and greatly extends the energy range for such data. The results of these measurements will provide a database for interpretation of gamma-ray spectra from the planned Mars Observer mission, aid in radiation transport calculations, allow verification of nuclear reaction models, and improve the evaluated neutron reaction data base

  6. Measuring neutron fluences and gamma/x-ray fluxes with CCD cameras

    International Nuclear Information System (INIS)

    Yates, G.J.; Smith, G.W.; Zagarino, P.; Thomas, M.C.

    1991-01-01

    The capability to measure bursts of neutron fluences and gamma/x-ray fluxes directly with charge coupled device (CCD) cameras while being able to distinguish between the video signals produced by these two types of radiation, even when they occur simultaneously, has been demonstrated. Volume and area measurements of transient radiation-induced pixel charge in English Electric Valve (EEV) Frame Transfer (FT) charge coupled devices (CCDs) from irradiation with pulsed neutrons (14 MeV) and Bremsstrahlung photons (4--12 MeV endpoint) are utilized to calibrate the devices as radiometric imaging sensors capable of distinguishing between the two types of ionizing radiation. Measurements indicate ∼.05 V/rad responsivity with ≥1 rad required for saturation from photon irradiation. Neutron-generated localized charge centers or ''peaks'' binned by area and amplitude as functions of fluence in the 10 5 to 10 7 n/cm 2 range indicate smearing over ∼1 to 10% of CCD array with charge per pixel ranging between noise and saturation levels

  7. Neutron and x-ray scattering studies of ferroelectric phase transitions

    International Nuclear Information System (INIS)

    Dolling, G.

    1982-08-01

    The subject of ferroelectric type phase transitions is introduced by means of examples of two main classes (a) displacive transitions, e.g. KNbO 3 , and (b) order-disorder transitions, e.g. NaNO 2 . The significance of crystal structure and crystal dynamics (i.e. the phonon dispersion relations) for ferroelectric behaviour is emphasized. The chief methods for structure determination are x-ray and neutron diffraction, while the most powerful of all techniques for studying phonon properties is that of coherent inelastic neutron scattering. The most useful type of neutron spectrometer for phase transition studies, the triple axis crystal spectrometer, is discussed in detail. The history of the soft mode theory of displacive phase transitions, and its application to the antiferroelectric and 'almost ferroelectric' transitions in SrTiO 3 , provides an introduction to more recent developments in this area, including over-damped soft modes, central peaks and critical scattering, incommensurate phase transitions (e.g. K 2 SeO 4 ), amplitudons, phasons and finally solitions. The treatment throughout is descriptive and introductory, designed for graduate students

  8. A technique for combining neutron and gamma-ray data into a single assay value

    International Nuclear Information System (INIS)

    Pickrell, M.M.; Mercer, D.; Sharpe, T.J.

    1998-01-01

    The authors explored the potentials of using both neutron and gamma-ray measurements on a single item and combining these data into a single assay value. The purpose was to improve assay capability for sample matrices that are difficult to measure. They chose an empirical approach because they wanted to address difficult-to-measure items for which the assay problem is complex. They used the tomographic gamma scanner; a passive, high-efficiency neutron counter with add-a-source and multiplicity; and an active neutron, californium shuffler to obtain measurements. Twenty-four 200-L drums were measured with various matrices using all three machines. The matrices were chosen specifically to spain the difficult-to-measure assay problems for some or all of the instruments. For example, the authors measured a drum filled with concrete and another filled with metal. The data from these measurements were analyzed using the alternating conditional expectation algorithm, which is one of a class of generalized additive models. Other data fusion algorithms are also possible and are being explored. The intent was to find ways to combine the data that would reduce the matrix-induced measurement error

  9. The Properties of Short Gamma-Ray Burst Jets Triggered by Neutron Star Mergers

    Energy Technology Data Exchange (ETDEWEB)

    Murguia-Berthier, Ariadna; Ramirez-Ruiz, Enrico; Montes, Gabriela [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); De Colle, Fabio [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A. P. 70-543 04510 D. F. (Mexico); Rezzolla, Luciano; Takami, Kentaro [Institute for Theoretical Physics, Goethe University, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Rosswog, Stephan [Astronomy and Oskar Klein Centre, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Perego, Albino [Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt (Germany); Lee, William H. [Instituto de Astronomía, Universidad Nacional Autónoma de México, A. P. 70-264 04510 D. F. (Mexico)

    2017-02-01

    The most popular model for short gamma-ray bursts (sGRBs) involves the coalescence of binary neutron stars. Because the progenitor is actually hidden from view, we must consider under which circumstances such merging systems are capable of producing a successful sGRB. Soon after coalescence, winds are launched from the merger remnant. In this paper, we use realistic wind profiles derived from global merger simulations in order to investigate the interaction of sGRB jets with these winds using numerical simulations. We analyze the conditions for which these axisymmetric winds permit relativistic jets to break out and produce an sGRB. We find that jets with luminosities comparable to those observed in sGRBs are only successful when their half-opening angles are below ≈20°. This jet collimation mechanism leads to a simple physical interpretation of the luminosities and opening angles inferred for sGRBs. If wide, low-luminosity jets are observed, they might be indicative of a different progenitor avenue such as the merger of a neutron star with a black hole. We also use the observed durations of sGRB to place constraints on the lifetime of the wind phase, which is determined by the time it takes the jet to break out. In all cases we find that the derived limits argue against completely stable remnants for binary neutron star mergers that produce sGRBs.

  10. Detection of explosive substances by tomographic inspection using neutron and gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Farahmand, M.; Boston, A.J.; Grint, A.N.; Nolan, P.J.; Joyce, M.J.; Mackin, R.O.; D'Mellow, B.; Aspinall, M.; Peyton, A.J.; Silfhout, R. van

    2007-01-01

    In recent years the detection and identification of hazardous materials has become increasingly important. This work discusses research and development of a technique which is capable of detecting and imaging hidden explosives. It is proposed to utilise neutron interrogation of the substances under investigation facilitating the detection of emitted gamma radiation and scattered neutrons. Pulsed fast neutron techniques are attractive because they can be used to determine the concentrations of the light elements (hydrogen, carbon, nitrogen, and oxygen) which can be the primary components of explosive materials. Using segmented High Purity Ge (HPGe) detectors and digital pulse processing [R.J. Cooper, G. Turk, A.J. Boston, H.C. Boston, J.R. Cresswell, A.R. Mather, P.J. Nolan, C.J. Hall, I. Lazarus, J. Simpson, A. Berry, T. Beveridge, J. Gillam, R.A. Lewis, in: Proceedings of the 7th International Conference on Position Sensitive Detectors, Nuclear Instruments and Methods A, in press; I. Lazarus, D.E. Appelbe, A. J. Boston, P.J. Coleman-Smith, J.R. Cresswell, M. Descovich, S.A.A. Gros, M. Lauer, J. Norman, C.J. Pearson, V.F.E. Pucknell, J.A. Sampson, G. Turk, J.J. Valiente-Dobon, IEEE Trans. Nucl. Sci., 51 (2004) 1353; R.J. Cooper, A.J. Boston, H.C. Boston, J.R. Cresswell, A.N. Grint, A.R. Mather, P.J. Nolan, D.P. Scraggs, G. Turk, C.J. Hall, I. Lazarus, A. Berry, T. Beveridge, J. Gillam, R.A. Lewis, in: Proceedings of the 11th International Symposium on Radiation Measurements and Application, 2006. ] the scatter path of incident photons can be reconstructed to determine the origin of the gamma-rays without the need for mechanical collimation by applying the Compton camera principle [V. Schonfelder, A. Hirner, K. Schneider, Nucl. Instr. and Meth. 107 (1973) 385; R.W. Todd, J.M. Nightingale, D.B. Everett, Nature 251 (1974) 132. ]. In addition, it is proposed to utilise the scattered neutrons which recoil from the materials being assayed, detecting them with a fast

  11. A point-kernel shielding code for calculations of neutron and secondary gamma-ray 1cm dose equivalents: PKN

    International Nuclear Information System (INIS)

    Kotegawa, Hiroshi; Tanaka, Shun-ichi

    1991-09-01

    A point-kernel integral technique code, PKN, and the related data library have been developed to calculate neutron and secondary gamma-ray dose equivalents in water, concrete and iron shields for neutron sources in 3-dimensional geometry. The comparison between calculational results of the present code and those of the 1-dimensional transport code ANISN = JR, and the 2-dimensional transport code DOT4.2 showed a sufficient accuracy, and the availability of the PKN code has been confirmed. (author)

  12. Body composition to climate change studies - the many facets of neutron induced prompt gamma-ray analysis

    International Nuclear Information System (INIS)

    Mitra, S.

    2008-01-01

    In-vivo body composition analysis of humans and animals and in-situ analysis of soil using fast neutron inelastic scattering and thermal neutron capture induced prompt-gamma rays have been described. By measuring carbon (C), nitrogen (N) and oxygen (O), protein, fat and water are determined. C determination in soil has become important for understanding below ground carbon sequestration process in the light of climate change studies. Various neutron sources ranging from radio isotopic to compact 14 MeV neutron generators employing the associated particle neutron time-of-flight technique or micro-second pulsing were implemented. Gamma spectroscopy using recently developed digital multi-channel analyzers has also been described

  13. Body composition to climate change studies - the many facets of neutron induced prompt gamma-ray analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mitra,S.

    2008-11-17

    In-vivo body composition analysis of humans and animals and in-situ analysis of soil using fast neutron inelastic scattering and thermal neutron capture induced prompt-gamma rays have been described. By measuring carbon (C), nitrogen (N) and oxygen (O), protein, fat and water are determined. C determination in soil has become important for understanding below ground carbon sequestration process in the light of climate change studies. Various neutron sources ranging from radio isotopic to compact 14 MeV neutron generators employing the associated particle neutron time-of-flight technique or micro-second pulsing were implemented. Gamma spectroscopy using recently developed digital multi-channel analyzers has also been described.

  14. A study of Venus surface elemental composition from 14 MeV neutron induced gamma ray spectroscopy: Activation analysis

    International Nuclear Information System (INIS)

    Jun, I.; Kim, W.; Smith, M.; Mitrofanov, I.; Litvak, M.

    2011-01-01

    The surface elemental composition of Venus can be determined using an artificially pulsed 14 MeV neutron generator (PNG) combined with a gamma ray spectrometer (GRS). The 14 MeV neutrons will interact with the surface materials and generate gamma rays, characteristic of specific elements, whose energy spectrum will be measured by GRS. These characteristic gamma rays are produced mainly through 3 different neutron interaction mechanisms: capture, inelastic, and activation reactions. Each reaction type has a different neutron energy dependency and different time scale for gamma ray production and transport. Certain elements are more easily identified through one reaction type over the others. Thus, careful analysis of the gamma ray spectra during and after the neutron pulse provides a comprehensive understanding of the surface elemental composition. In this paper, we use a well-tested neutron/gamma transport code, called Monte Carlo N-Particles (MCNP), to investigate the measurement capability of a PNG-GRS detection system through the neutron activation reactions. An activation analysis was performed for a representative soil composition of Venus with a notional operational scenario of PNG and GRS. The analysis shows that the proposed instrument concept can identify most of the modeled surface elements at Venus with sufficient accuracy through the activation mode. Specifically, U, Th, K, Si can be measured to within 1%, Fe within 2%, Al within 10%, Ca within 5%, Mg with 15%, Mn with 20%, and Cl within 6%. Although modeled in the analysis, it is shown that the activation mode alone cannot distinguish the S and Ti peaks.

  15. X-ray and neutron diffraction studies of the Peierls instability

    International Nuclear Information System (INIS)

    Renker, B.; Comes, R.

    1974-01-01

    The experimental techniques of X-ray and thermal neutron scattering provide a lot of information about the metal insulator transition in linear conductors. The enhanced Kohn anomaly which has been detected in KCP at room temperature proves 1d-metallic properties at higher temperatures. But additionally a very low frequency peak was found at the same wave vector which was explained by the assumption of critical fluctuations. Thus at room temperature one does not observe a real metallic state but the system already performs fluctuations around an equilibrum position which is the isolating state at lower temperatures. The fluctuations will cause the existence of a pseudo gap which is responsible for a reduced electron mobility and a hardening of the soft mode frequencies above 100 K. The temperature dependent intensity of the central component has been measured. The transition to the Peierls state where the fluctuations are frozen in, is caused by a 3d-ordering of the distortions impressed on the single chains. Finally it was found that this 3d-transition does not lead to a real long range ordered structure. It leads to domains which are fairly large in chain direction [xi > 170 A] but which are small perpendicular to that direction [xi = 33 A]. The X-ray experiments where performed at Orsay, and the neutron scattering experiments partly at the Karlsruhe FR2 reactor and the Grenoble ILL-high flux reactor. (orig./HK) [de

  16. Recent developments in X-ray and neutron small-angle scattering instrumentation and data analysis

    International Nuclear Information System (INIS)

    Schelten, J.

    1978-01-01

    The developments in instrumentation and data analysis that have occurred in the field of small-angle X-ray and neutron scattering since 1973 are reviewed. For X-rays, the cone camera collimation was invented, synchrotrons and storage rings were demonstrated to be intense sources of X-radiation, and one- and two-dimensional position-sensitive detectors were interfaced to cameras with both point and line collimation. For neutrons, the collimators and detectors on the Juelich and Grenoble machines were improved, new D11-type instruments were built or are under construction at several sites, double-crystal instruments were set up, and various new machines have been proposed. Significant progress in data analysis and evaluation has been made through application of mathematical techniques such as the use of spline functions, error minimization with constraints, and linear programming. Several special experiments, unusual in respect to the anisotropy of the scattering pattern, gravitational effects, moving scatterers, and dynamic fast time slicing, are discussed. (Auth.)

  17. Apoptosis in thymocytes and lymphoma cells induced by neutrons and X-rays

    International Nuclear Information System (INIS)

    Ohyama, Harumi; Koike, Sachiko; Ando, Kouichi

    1993-01-01

    Apoptosis is a distinctive mode of programmed cell death with characteristic morphological and biochemical features. The cells undergoing apoptosis display shrinkage, chromatin condensation and internucleosomal breakage of DNA. The cell death is a process through which organisms get rid of unwanted cells. Thymocytes are highly radiosensitive, and undergo typical apoptosis within a few hours after the exposure to X-ray. Also extremely radiosensitive thymic lymphoma cells have been found. The effect of 30 MeV NIRS fast neutrons on the induction of apoptosis in thymocytes and thymoma cells was examined in comparison with that of X-ray. Although apoptotic cells increased gradually with time, the apoptotic process proceeded rapidly in individual cells after the onset. By the measurement of cell size distribution, the appearance of a distinct apoptotic cell peak was observed. In the case of neutron irradiation on SCA1 thymic lymphoma cells, the method for counting apoptotic cells based on chromatin condensation was developed. The cell volume reduction of thymocytes, the dose survival curves and the induction of apoptosis in SCA1 are reported. (K.I.)

  18. Novel methods for measuring afterglow in developmental scintillators for X-ray and neutron detection

    Science.gov (United States)

    Bartle, C. M.; Edgar, A.; Dixie, L.; Varoy, C.; Piltz, R.; Buchanan, S.; Rutherford, K.

    2011-09-01

    In this paper we discuss two novel methods of measuring afterglow in scintillators. One method is designed for X-ray detection and the other for neutron detection applications. In the first method a commercial fan-beam scanner of basic design similar to those seen at airports is used to deliver a typically 12 ms long X-ray pulse to a scintillator by passing the test equipment through the scanner on the conveyor belt. In the second method the thermal neutron beam from a research reactor is incident on the scintillator. The beam is cut-off in about 1 ms using a 10B impregnated aluminum pneumatic shutter, and the afterglow is recorded on a dual range storage oscilloscope to capture both the steady state intensity and the weak decay. We describe these measurement methods and the results obtained for a range of developmental ceramic and glass scintillators, as well as some standard scintillators such as NaI(Tl), LiI(Eu) and the plastic scintillator NE102A. Preliminary modeling of the afterglow is presented.

  19. Novel methods for measuring afterglow in developmental scintillators for X-ray and neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Bartle, C.M., E-mail: m.bartle@gns.cri.nz [National Isotope Centre, GNS Science, PO Box 31312, Lower Hutt 5040 (New Zealand); Edgar, A.; Dixie, L.; Varoy, C. [School of Chemistry and Physics, Victoria University of Wellington, Wellington 6140 (New Zealand); Piltz, R. [Bragg Institute, ANSTO, PMB 1, Menai NSW 2234 (Australia); Buchanan, S.; Rutherford, K. [School of Chemistry and Physics, Victoria University of Wellington, Wellington 6140 (New Zealand)

    2011-09-21

    In this paper we discuss two novel methods of measuring afterglow in scintillators. One method is designed for X-ray detection and the other for neutron detection applications. In the first method a commercial fan-beam scanner of basic design similar to those seen at airports is used to deliver a typically 12 ms long X-ray pulse to a scintillator by passing the test equipment through the scanner on the conveyor belt. In the second method the thermal neutron beam from a research reactor is incident on the scintillator. The beam is cut-off in about 1 ms using a {sup 10}B impregnated aluminum pneumatic shutter, and the afterglow is recorded on a dual range storage oscilloscope to capture both the steady state intensity and the weak decay. We describe these measurement methods and the results obtained for a range of developmental ceramic and glass scintillators, as well as some standard scintillators such as NaI(Tl), LiI(Eu) and the plastic scintillator NE102A. Preliminary modeling of the afterglow is presented.

  20. Monte Carlo modeling of neutron and gamma-ray imaging systems

    International Nuclear Information System (INIS)

    Hall, J.

    1996-04-01

    Detailed numerical prototypes are essential to design of efficient and cost-effective neutron and gamma-ray imaging systems. We have exploited the unique capabilities of an LLNL-developed radiation transport code (COG) to develop code modules capable of simulating the performance of neutron and gamma-ray imaging systems over a wide range of source energies. COG allows us to simulate complex, energy-, angle-, and time-dependent radiation sources, model 3-dimensional system geometries with ''real world'' complexity, specify detailed elemental and isotopic distributions and predict the responses of various types of imaging detectors with full Monte Carlo accuray. COG references detailed, evaluated nuclear interaction databases allowingusers to account for multiple scattering, energy straggling, and secondary particle production phenomena which may significantly effect the performance of an imaging system by may be difficult or even impossible to estimate using simple analytical models. This work presents examples illustrating the use of these routines in the analysis of industrial radiographic systems for thick target inspection, nonintrusive luggage and cargoscanning systems, and international treaty verification

  1. Accretion dynamics and polarized x-ray emission of magnetized neutron stars

    International Nuclear Information System (INIS)

    Arons, J.

    1991-01-01

    The basic ideas of accretion onto magnetized neutron stars are outlined. These are applied to a simple model of the structure of the plasma mound sitting at the magnetic poles of such as star, in which upward diffusion of photons is balanced by their downward advection. This steady flow model of the plasma's dynamical state is used to compute the emission of polarized X-rays from the optically thick, birefringent medium. The linear polarization of the continuum radiation emerging from the quasi-static mound is found to be as much as 40% at some rotation phases, but is insensitive to the geometry of the accretion flow. The role of the accretion shock, whose detailed polarimetric and spectral characteristics have yet to be calculated, is emphasized as the final determinant of the properties of the emerging X-rays. Some results describing the fully time dependent dynamics of the flow are also presented. In particular, steady flow onto a neutron star is shown to exhibit formation of ''photon bubbles,'' regions of greatly reduced plasma density filled with radiation which form and rise on millisecond time scales. The possible role of these complex structures in the flow for the formation of the emergent spectrum is briefly outlined

  2. Enhanced resistance to both γ rays and neutrons in a Li-Fraumeni syndrome strain

    International Nuclear Information System (INIS)

    Gentner, N.E.; Smith, B.P.; Mirzayans, R.; Paterson, M.C.

    1985-01-01

    The authors have been investigating the radioresistance (RR) phenotype in a fibroblast strain derived from an affected member in a Li-Fraumeni syndrome family. The strain's D(10) value for acute exposure to Co-60 γ rays is 5.59+-0.42 Cy, compared to a composite value of 3.82+-0.09 Gy for normal controls. This difference is highly significant, giving a dose enhancement factor (DEF) of 1.46. The RR trait is independent of radiation quality in that the strain manifests the same degree of resistance (DEF=1.45) for high LET (14 MeV neutrons) radiation [D(10)=2.92 Gy, vs 2.01 Gy for ''normal'']. In contrast, the dose reduction factor for radiosensitive ataxia telangiectasia strains is diminished for 14 MeV neutrons (1.6) compared to γ rays (2.9), a finding consistent with a deficiency in DNA repair. In keeping with these combined data, the RR phenotype cannot be ascribed to a hyperactive repair process, since several conventional assays have yielded normal kinetics for the removal of radiogenic damage in the RR strain. Rather, its radioresistance may stem from a peculiar ability to ''buy more time'' for repair of non-coding lesions in DNA

  3. In vivo monitoring of toxic metals: assessment of neutron activation and x-ray fluorescence techniques

    International Nuclear Information System (INIS)

    Ellis, K.J.

    1986-01-01

    To date, cadmium, lead, aluminum, and mercury have been measured in vivo in humans. The possibilities of monitoring other toxic metals have also been demonstrated, but no human studies have been performed. Neutron activation analysis appears to be most suitable for Cd and Al measurements, while x-ray fluorescence is ideally suited for measurement of lead in superficial bone. Filtered neutron beams and polarized x-ray sources are being developed which will improve in vivo detection limits. Even so, several of the current facilities are already suitable for use in epidemiological studies of selected populations with suspected long-term low-level ''environmental'' exposures. Evaluation and diagnosis of patients presenting with general clinical symptoms attributable to possible toxic metal exposure may be assisted by in vivo examination. Continued in vivo monitoring of industrial workers, especially follow-up measurements, will provide the first direct assessment of changes in body burden and a direct measure of the biological life-times of these metals in humans. 50 refs., 4 figs., 2 tabs

  4. First steps of ion beam mixing: study by X-ray reflectometry and neutron diffraction

    International Nuclear Information System (INIS)

    Le Boite, M.G.

    1987-12-01

    There are several processes involved in ion beam mixing: ballistic processes, chemical driving forces and radiation enhanced diffusion. Experiments usually performed on bilayers irradiated with heavy elements and characterized by Rutherford backscattering (R.B.S.), have shown that the measured mixing rate is always higher than the calculated one, taking into account ballistic effects only. Besides classical R.B.S. experiments on NiAu and NiPt bilayers irradiated with Xe, we have used another technique of characterization: X-ray reflectometry and neutron diffraction, performed on multilayers irradiated with He. The systems are NiAu, NiPt, NiPd and NiAg, which behave similarly from the ballistic point of view, but have very different heats of mixing. In these experiments, the range of deposited energy density is very low, in contrast to heavy ions irradiation: this has allowed us to reach very low diffusion coefficient, never observed before. The dependence of the diffusion coefficient on the heat of mixing is in agreement with the one theoretically calculated. For the NiAg system, which has a positive heat of mixing, the measured diffusion coefficient is smaller than the ballistic one: a decrease of the ballistic mixing rate is seen for the first time. In this work, we have shown the interest of the reflectometry techniques (X-ray and neutrons); we have used a simple model to analyze the ion beam mixing, when elementary processes are involved

  5. Baseline drift effect on the performance of neutron and γ ray discrimination using frequency gradient analysis

    International Nuclear Information System (INIS)

    Liu Guofu; Luo Xiaoliang; Yang Jun; Lin Cunbao; Hu Qingqing; Peng Jinxian

    2013-01-01

    Frequency gradient analysis (FGA) effectively discriminates neutrons and γ rays by examining the frequency-domain features of the photomultiplier tube anode signal. This approach is insensitive to noise but is inevitably affected by the baseline drift similar to other pulse shape discrimination methods. The baseline drift effect is attributed to factors such as power line fluctuation, dark current, noise disturbances, hum, and pulse tail in front-end electronics. This effect needs to be elucidated and quantified before the baseline shift can be estimated and removed from the captured signal. Therefore, the effect of baseline shift on the discrimination performance of neutrons and γ rays with organic scintillation detectors using FGA is investigated in this paper. The relationship between the baseline shift and discrimination parameters of FGA is derived and verified by an experimental system consisting of an americium—beryllium source, a BC501A liquid scintillator detector, and a 5 GSample/s 8-bit oscilloscope. The theoretical and experimental results both show that the estimation of the baseline shift is necessary, and the removal of baseline drift from the pulse shapes can improve the discrimination performance of FGA. (authors)

  6. NATO Advanced Study Institute on Chemical Crystallography with Pulsed Neutrons and Synchrotron X-Rays

    CERN Document Server

    Jeffrey, George

    1988-01-01

    X-ray and neutron crystallography have played an increasingly impor­ tant role in the chemical and biochemical sciences over the past fifty years. The principal obstacles in this methodology, the phase problem and com­ puting, have been overcome. The former by the methods developed in the 1960's and just recognised by the 1985 Chemistry Nobel Prize award to Karle and Hauptman, the latter by the dramatic advances that have taken place in computer technology in the past twenty years. Within the last decade, two new radiation sources have been added to the crystallographer's tools. One is synchrotron X-rays and the other is spallation neutrons. Both have much more powerful fluxes than the pre­ vious sources and they are pulsed rather than continuos. New techniques are necessary to fully exploit the intense continuos radiation spectrum and its pulsed property. Both radiations are only available from particular National Laboratories on a guest-user basis for scientists outside these Na­ tional Laboratories. Hi...

  7. X-ray and neutron diffraction study of alums. Pt. 2 and 3

    International Nuclear Information System (INIS)

    Abdeen, A.M.; Will, G.; Schaefer, W.; Kirfel, A.; Bargouth, M.O.; Recker, K.; Weiss, A.

    1981-01-01

    The crystal structure of the alums, (NH 3 CH 3 )Al(SO 4 ) 2 x 12 H 2 0 and (NH 4 )AL(SO 4 ) 2 x 12 H 2 0, has been determined and refined from X-ray and neutron diffraction data. The compounds crystallize cubic in space group Pa3 (Z = 4). The positional and thermal parameters of all atoms including hydrogens have been refined by full matrix least-sqares analysis resulting in Rsub(w) values from the X-ray and neutron data of 0.030 and 0.029 respectively for the methylammonium alum and of 0.024 and 0.014 respectively for the ammonium alum. The atoms of the cation groups (NH 3 CH 3 ) + and (NH 4 ) + are distributed on 8(c) and 24(d) positions in two orientations of equal probability on and around the [111] direction related to each other by an inversion centre. The disorder in the cation groups is explained by a quantized rotation. Disorder in the sulfate groups has been determined to 4.2% for the methylammonium alum and to about 17% for the ammonium alum. The disordered sulfate tetrahedra are distorted and in a reversed orientation along the threefold axis. The system of the hydrogen bonds is discussed. (orig.)

  8. Neutrons and X-rays, comparative studies with Drosophila melanogaster. Pt. 2

    International Nuclear Information System (INIS)

    Leigh, B.; Veerkamp-van Baarle, A.M.A.; Sobels, F.H.; Broese, J.J.

    1981-01-01

    Losses and duplications of Bsup(S)Y γ + -chromosome markers werde induced by irradiation of spermatozoa with either 0.5-MeV neutrons or 100-kV X-rays. These 2 types of radiation are known to induce significantly different ratios of double:single strand breaks in DNA. Exceptional progeny were grouped into 3 categories; no Y marker, one Y marker, and Y marker duplications + mosaics. The last combination consisted of exceptions derived from only chromatid-type rearrangements. All other classes of exceptions may be derived from either chromatid- or chromosome-type rearrangements. Doses of 15 Gy neutrons and 27 Gy X-rays induced identical frequencies of exceptional progeny, giving an RBE of 1.8. The ratios of the 3 classes of exceptions were similar for both types of radiation. This observation can be interpreted as indicating that, under the conditions used here, chromosome and chromatid rearrangements are not derived directly from double and single DNA strand breaks, respectively. (orig.)

  9. Measurement of keV-neutron capture cross sections and capture gamma-ray spectra of Er isotopes

    International Nuclear Information System (INIS)

    Harun-Ar-Rashid, A.K.M.; Igashira, Masayuki; Ohsaki, Toshiro

    2000-01-01

    Neutron capture cross sections and capture γ-ray spectra of 166,167, 168 Er were measured in the energy region of 10 to 550 keV. The measurements were performed with a pulsed 7 Li(p,n) 7 Be neutron source and a large anti-Compton NaI(Tl) γ-ray spectrometer. A pulse-height weighting technique and the standard capture cross sections of gold were used to derive the capture cross sections. The errors of the derived cross sections were about 5%. The present results were compared with other measurements and evaluations. The observed capture γ-ray pulse-height spectra were unfolded to obtain the corresponding γ-ray spectra. An anomalous shoulder was observed around 3 MeV in each of the capture γ-ray spectra. (author)

  10. Testing T-odd, p-even interactions with gamma-rays from neutron p-wave resonances

    International Nuclear Information System (INIS)

    Barabanov, A.L.

    1992-01-01

    A new method for the study of time reversal violation is described. It consists of measurements of the forward-backward asymmetry in individual gamma-ray transitions resulting from unpolarized neutron capture in p-wave resonance. An experiment with a 113 Cd target performed at the Dubna pulsed neutron source has been analyzed and a limit on the time reversal odd, parity even interaction extracted. The possibilities of experiments using the powerful pulsed neutron source at Los Alamos are considered. 23 refs.; 2 figs

  11. Risk of mammary oncogenesis from exposure to neutrons or gamma rays: experimental methodology and early findings

    International Nuclear Information System (INIS)

    Clifton, K.H.; Sridharan, B.N.; Gould, M.N.

    1976-01-01

    A project has been initiated to define the risk of oncogenesis per rad of high or low linear energy transfer (LET) radiation per surviving mammary cell and its modification by hormones. This work was undertaken because: (a) mammary carcinoma is the principle neoplastic disease of American women; (b) rats have been demonstrated to be remarkably susceptible to mammary oncogenesis following neutron irradiation; (c) rats are similar to women in the importance of hormones to carcinoma induction and progression in their mammary glands; and (d) exposure to neutrons is likely to increase with increasing use of nuclear reactors and development of neutron radiotherapy sources. To measure mammary cell survival and, ultimately, postirradiation repair capacity, the authors are developing an in-vivo end-point dilution assay based on the formation of glandular structures after the transplantation of known numbers of monodispersed rat mammary epithelial cell suspensions. Such grafts initially give rise to alveolus-like spheres and, with time, to complete glands. Growth and secretion can be stimulated in them by hormonal manipulation. In the short-term assays and the longer-term carcinogenesis studies, elevated endogenous mammotropic hormone, prolactin (MtH) levels have been induced by grafting of anterior pituitary tissue or of MtT (MtH-secreting pituitary tumours). Steroid hormone levels have been manipulated by surgical ablation or injection. Irradiations have been performed with a modified neutron fission spectrum generated by a Triga reactor, or with 137 Cs γ rays. Results with two inbred rat strains indicate: (a) that the type (carcinoma or fibroadenoma), incidence and latency of mammary tumours is markedly influenced by the circulating levels of MtH: and (b) that adrenal deficiency markedly enhances the induction of mammary carcinomas in irradiated rats with high endogenous MtH levels. Further studies are in progress. (author)

  12. Use of neutron-capture prompt gamma-ray activation analysis in environmental and energy research

    International Nuclear Information System (INIS)

    Gordon, G.E.

    1980-01-01

    Reactor-based neutron-capture prompt γ-ray activation analysis (PGAA) can be used for several trace elements (e.g., B, Cd, Sm, Gd), but it is mainly a major and minor element method. Among the 15 to 20 elements that can be determined in a particular type of sample, the major elements C, H, N and S can usually be measured in coals and biological samples and the elements of geochemical interest, Na, Al, Si, K, Ca, Ti, Fe and others in rocks, coal and other crustal samples. When used along with instrumental neutron activation analysis (INAA), the combined techniques can be used to analyze for 40 to 50 elements in crustal samples. Suggestions for further development of reactor-based PGAA include: the need to reduce low-energy γ-ray backgrounds for observations of species having intense lines only at low energy, more development of biological and special materials applications, the use of beam choppers to look for very short-lived species, and demonstrations of analyses of samples too large, precious or hazardous to be irradiated inside reactors. The greatest potential for applications of PGAA may be in the use of systems detached from reactors, i.e., those using 252 Cf or other isotopic neutron sources. This may be the only method for elemental analyses of large, inhomogeneous process streams in various industries, power plants, etc. Fluxes comparable to those of external beams from reactors are feasible with the use of mg quantitites of 252 Cf. Practical systems for use on coal have been developed. Many other applications would be possible: field prospecting for valuable ore deposits, studies of nutrients in soil and plants, in situ measurements in remote locations such as planetary surfaces, mines, bore holes, etc

  13. Structure of zinc and niobium tellurite glasses by neutron and x-ray diffraction

    International Nuclear Information System (INIS)

    Hoppe, U; Yousef, E; Ruessel, C; Neuefeind, J; Hannon, A C

    2004-01-01

    Neutron and x-ray diffraction experiments of high resolving power with neutrons from a spallation source and high-energy photons from a synchrotron have been performed on compositional series of binary Zn, Nb and on mixed Zn/Nb tellurite glasses. The Te-O, Zn-O and Nb-O coordination numbers are determined by Gaussian fitting of the first-neighbour peaks in the neutron and x-ray data simultaneously. The transition of TeO 4 to TeO 3 units with increasing fraction of a second component is indicated by decreasing total Te-O coordination numbers. This transition appears different for glasses with ZnO or Nb 2 O 5 additions. Details of the Te-O peaks suggest there are two species of Te-O bonds with lengths of ∼ 0.19 and ∼ 0.21 nm. The change of their fractions shows excellent agreement with the existence of TeO 4 trigonal bipyramids and TeO 3 trigonal pyramids. All oxygen atoms from ZnO and Nb 2 O 5 are used for rupture of Te-O-Te bridges, which is accompanied with a change of nearly all participating TeO 4 to TeO 3 groups. The tendency for a TeO 4 → TeO 3 change decreases for glasses of higher second component content which is accompanied by the occurrence of TeO 4 groups with non-bridging oxygens. The Nb tellurite glasses show transition to network-forming behaviour with the formation of Nb-O-Nb bridges. The fractions of TeO 3 units of ternary Zn/Nb tellurite glasses agree with an additivity behaviour of the modifying effects of ZnO and Nb 2 O 5 additions

  14. Application of high resolution x-ray spectrometry preceded by neutron activation for elemental analysis of soil samples

    International Nuclear Information System (INIS)

    Hernandez Rivero, A.; Capote Rodriguez, G.; Padilla Alvarez, R.; Herrera Peraza, E.

    1997-01-01

    Utilization of High Resolution X-Ray Spectrometry preceded by activation of the samples by irradiation with neutron fluxes (NAA-RX) is a relatively modern trend in application of nuclear techniques. This method may complement advantageously the usual Neutron Activation Analysis by means of Gamma Spectrometry (NAA-G). In this work results obtained by the application of NAA-RX for non-destructive analysis of Cuban soil samples are discussed. The samples were irradiated with reactor neutron fluxes and the induced characteristic X-rays were measured by using Si(Li)-detector. Concentrations of Fe, Zn and Eu as determined by NAA-RX are compared with both NAA-G and XRF data. For the elaboration of X-Ray and Gamma Spectra the computer programs AXIL and ACTAN were used respectively. (author) [es

  15. Elemental analysis of water and soil environmental samples in Tabuk area by neutron capture gamma-ray spectroscopy techniques

    International Nuclear Information System (INIS)

    Al-Aseery, Sh.M.; Alamoudi, Z.; Hassan, A.M.

    2006-01-01

    The prompt and delayed gamma-rays due to neutron capture in the nuclei of the constituent elements of three soil samples and one drinking water sample have been measured. The 252 Cf and 226 Ra/Be isotopic neutron sources are used for neutron irradiation. Also, the hyper pure germanium detection system is used. The soil samples were from Astra, Tadco and El-Gammaz farms, while the water sample was taken from Tabuk city. In case of prompt gamma-ray analysis, a total of 16 elements were identified and the concentration percentage values by weight were calculated for: C, Na, Mg, Al, Si, S, Cl,, Ca, Ti, Cr, Mn, Fe, Co, Zn, Sr ad Pb elements. A comparative study between the results obtained in this work and the results obtained by ICP-MS and EDX-Ray techniques for the same samples is given

  16. APPLE-2: an improved version of APPLE code for plotting neutron and gamma ray spectra and reaction rates

    International Nuclear Information System (INIS)

    Kawasaki, Hiromitsu; Seki, Yasushi.

    1982-07-01

    A computer code APPLE-2 which plots the spatial distribution of energy spectra of multi-group neutron and/or gamma ray fluxes, and reaction rates has been developed. This code is an improved version of the previously developed APPLE code and has the following features: (1) It plots energy spectra of neutron and/or gamma ray fluxes calculated by ANISN, DOT and MORSE. (2) It calculates and plots the spatial distribution of neutron and gamma ray fluxes and various types of reaction rates such as nuclear heating rates, operational dose rates, displacement damage rates. (3) Input data specification is greatly simplified by the use of standard, response libraries and by close coupling with radiation transport calculation codes. (4) Plotting outputs are given in camera ready form. (author)

  17. Application of high resolution x-ray spectrometry preceded by neutron activation for elemental analysis of soil samples

    International Nuclear Information System (INIS)

    Hernandez Rivero, A.; Capote Rodriguez, G.; Herrera Peraza, E.

    1996-01-01

    Utilization of High Resolution X-Ray Spectrometry preceded by activation of the samples by irradiation with neutron fluxes (NAA R X) is a relatively modern trend in application of nuclear techniques. This method may complement advantageously the usual Neutron Activation Analysis by means of Gamma Spectrometry (NAA-G) In this work results obtained by the application of NAA-RX for non-destructive analysis of Cuban soil samples are discussed. The samples were irradiated with reactor neutron fluxes and the induced characteristic X-rays were measured by using Si(li)-detector. Concentrations of Fe, Zn and Eu as determined by NAA-RX are compared with both NAA-G and XRF data. For the elaboration of X-ray and Gamma Spectra the computer programs AXIL and ACTAN were used respectively

  18. Measurement of gamma-ray production cross sections in neutron-induced reactions for Al and Pb

    International Nuclear Information System (INIS)

    Pavlik, A.; Vonach, H.; Hitzenberger, H.

    1995-01-01

    The prompt gamma-radiation from the interaction of fast neutrons with aluminum and lead was measured using the white neutron beam of the WNR facility at the Los Alamos National Laboratory. The samples (Al and isotopically enriched 207 Pb and 208 Pb) were positioned at about 20 m or 41 m distance from the neutron production target. The spectra of the emitted gamma-rays were measured with a high-resolution HPGe detector. The incident neutron energy was determined by the time-of-flight method and the neutron fluence was measured with a U fission chamber. From the aluminum gamma-ray spectra excitation functions for prominent gamma-transitions in various residual nuclei (in the range from O to Al) were derived for neutron energies from 3 MeV to 400 MeV. For lead (n,xnγ) reactions were studied for neutron energies up to 200 MeV by analyzing prominent gamma-transitions in the residual nuclei 200,202,204,206,207,208 Pb. The experimental results were compared with nuclear model calculations using the code GNASH. A good overall agreement was obtained without special parameter adjustments

  19. Development of a new deuterium-deuterium (D-D) neutron generator for prompt gamma-ray neutron activation analysis.

    Science.gov (United States)

    Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A

    2014-12-01

    A new deuterium-deuterium (D-D) neutron generator has been developed by Adelphi Technology for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA), and fast neutron radiography. The generator makes an excellent fast, intermediate, and thermal neutron source for laboratories and industrial applications that require the safe production of neutrons, a small footprint, low cost, and small regulatory burden. The generator has three major components: a Radio Frequency Induction Ion Source, a Secondary Electron Shroud, and a Diode Accelerator Structure and Target. Monoenergetic neutrons (2.5MeV) are produced with a yield of 10(10)n/s using 25-50mA of deuterium ion beam current and 125kV of acceleration voltage. The present study characterizes the performance of the neutron generator with respect to neutron yield, neutron production efficiency, and the ionic current as a function of the acceleration voltage at various RF powers. In addition the Monte Carlo N-Particle Transport (MCNP) simulation code was used to optimize the setup with respect to thermal flux and radiation protection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Vertical distribution of elements in non-polluted estuarine sediments determined by neutron induced prompt gamma-ray and instrumental neutron activation analyses

    International Nuclear Information System (INIS)

    Kuno, A.; Sampei, K.; Matsuo, M.; Sawahata, H.

    1999-01-01

    Neutron induced prompt gamma-ray analysis (PGA) and instrumental neutron activation analysis (INAA) have been applied to the sediments collected from the Yasaka River estuary in Oita Prefecture, Japan. The vertical distribution of 33 elements in the sediments has been determined and compared with that in more polluted estuarine sediments. While the S content increased with increasing depth because of a sulphide accumulation under reducing condition, the increase in sulphide-forming elements such as Ag, Cd, Co and Zn was not observed in the deeper section of the Yasaka River estuarine sediments. (author)