Sample records for ray beryllium isotope

  1. Review and interpretation of recent cosmic ray beryllium isotope measurements

    Buffington, A.


    Be/sup 10/ has long been of interest for cosmic ray propagation, because its radioactive decay half-life is well matched to the expected cosmic ray age. Recent beryllium isotope measurements from satellites and balloons have covered an energy range from about 30 to 300 MeV/nucleon/sup 1-3/. At the lowest energies, most of the Be/sup 10/ is absent, indicating a cosmic ray lifetime of order 2 x 10/sup 7/ years and the rather low average density of 0.2 atoms/cc traversed by the cosmic rays. At higher energies, a greater proportion of Be/sup 10/ is observed, indicating a somewhat shorter lifetime. These experiments will be reviewed and then compared with a new experiment covering from 100 to 1000 Mev/nucleon/sup 4/. Although improved experiments will be necessary to realize the full potential of cosmic ray beryllium isotope measurements, these first results are already disclosing interesting and unexpected facts about cosmic ray acceleration and propagation.

  2. A Study Of Cosmic Ray Beryllium With The Isotope Magnet Experiment (isomax)

    Geier, S


    Secondary nuclei in the cosmic radiation, which are produced in the process of propagation and nuclear fragmentation of primary particles through the interstellar medium, can be used to gain information on the propagation mechanism, and the details of the cosmic ray diffusion and the gas distribution in the galaxy. The Goddard ISOMAX experiment is a state-of-the-art mass spectrometer constructed for the purpose of measuring the abundance ratios of the isotopes of Beryllium, especially [10]Be which has a half life of 1.51 Myrs, at energies around 1 GeV per nucleon. This will enable the balloon borne instrument, which was launched for the first time in summer 1998, to put constraints on the typical travel times of cosmic rays and the density of the propagated medium—hence on the question how much time cosmic rays spend traveling outside the galactic disk. Construction and calibration of the instrument are presented and the first results are reported.

  3. Deuterium/hydrogen isotope exchange on beryllium and beryllium nitride; Deuterium/Wasserstoff-Isotopenaustausch an Beryllium und Berylliumnitrid

    Dollase, Petra; Eichler, Michael; Koeppen, Martin; Dittmar, Timo; Linsmeier, Christian [Forschungszentrum Juelich GmbH, Institut fuer Energie- und Klimaforschung - Plasmaphysik (Germany)


    In the fusion experiments JET and ITER, the first wall is made up of beryllium. The use of nitrogen is discussed for radiative cooling in the divertor. This can react with the surface of the first wall to form beryllium nitride (Be{sub 3}N{sub 2}). The hydrogen isotopes deuterium and tritium, which react in the fusion reaction to helium and a neutron, are used as fuel. Since the magnetic confinement of the plasma is not perfect, deuterium and tritium ions are also found on the beryllium wall and can accumulate there. This should be avoided due to the radioactivity of tritium. Therefore the isotope exchange with deuterium is investigated to regenerate the first wall. We investigate the isotopic exchange of deuterium and protium in order to have not to work with radioactive tritium. The ion bombardment is simulated with an ion source. With voltages up to a maximum of 5 kV, deuterium and protic hydrogen ions are implanted in polycrystalline Be and Be{sub 3}N{sub 2}. The samples are then analyzed in situ using X-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS). Subsequently, samples prepared under the same conditions are characterized ex-situ by means of nuclear reaction analysis (NRA). [German] In den Fusionsexperimenten JET und ITER besteht die erste Wand im Hauptraum aus Beryllium (Be). Zur Strahlungskuehlung im Divertor wird der Einsatz von Stickstoff diskutiert. Dieser kann mit der Oberflaeche der ersten Wand zu Berylliumnitrid (Be{sub 3}N{sub 2}) reagieren. Als Brennstoff werden die Wasserstoffisotope Deuterium und Tritium eingesetzt, die in der Fusionsreaktion zu Helium und einem Neutron reagieren. Da der magnetische Einschluss des Plasmas nicht perfekt ist, treffen auch Deuterium- und Tritiumionen auf die Berylliumwand auf und koennen sich dort anreichern. Das soll aufgrund der Radioaktivitaet von Tritium unbedingt vermieden werden. Daher wird zur Regenerierung der ersten Wand der Isotopenaustausch mit Deuterium untersucht. Wir

  4. On-line separation of short-lived beryllium isotopes

    Köster, U; Catherall, R; Fedosseev, V; Georg, U; Huber, G; Jading, Y; Jonsson, O; Koizumi, M; Kratz, K L; Kugler, E; Lettry, Jacques; Mishin, V I; Ravn, H L; Sebastian, V; Tamburella, C; Wöhr, A


    With the development of a new laser ionization scheme, it became possible to ionize beryllium efficiently in the hot cavity of the ISOLDE laser ion source. The high target and ion source temperatures enable the release of short-lived beryllium isotopes. Thus all particle-stable beryllium isotopes could be extracted from a standard uranium carbide/graphite target. For the first time the short-lived isotopes /sup 12/Be and /sup 14/Be could be identified at an ISOL facility, /sup 14/Be being among the most short-lived isotopes separated so far at ISOLDE. The release time from the UC/graphite target was studied with several beryllium isotopes. Profiting from the element selectivity of laser ionization, the strong and isotopically pure beam of /sup 12/Be allowed to determine the half- life to T/sub 1/2 /=21.34(23) ms and the probability of beta-delayed neutron emission to P/sub n/=0.48/sub -0.10//sup +0.12/(23 refs).

  5. Experimental studies and modeling of processes of hydrogen isotopes interaction with beryllium

    Tazhibaeva, I.L.; Chikhray, Y.V.; Romanenko, O.G.; Klepikov, A.Kh.; Shestakov, V.P.; Kulsartov, T.V. [Science Research Inst. of Experimental and Theoretical Physics of Kazakh State Univ., Almaty (Kazakhstan); Kenzhin, E.A.


    The objective of this work was to clarify the surface beryllium oxide influence on hydrogen-beryllium interaction characteristics. Analysis of experimental data and modeling of processes of hydrogen isotopes accumulation, diffusion and release from neutron irradiated beryllium was used to achieve this purpose as well as the investigations of the changes of beryllium surface element composition being treated by H{sup +} and Ar{sup +} plasma glowing discharge. (author)

  6. Nuclear charge radius measurements of radioactive beryllium isotopes


    We propose to measure the nuclear charge radii of the beryllium isotopes $^{7,9,10}$Be and the one-neutron halo isotope $^{11}$Be using laser spectroscopy of trapped ions. Ions produced at ISOLDE and ionized with the laser ion source will be cooled and bunched in the radio-frequency buncher of the ISOLTRAP experiment and then transferred into a specially designed Paul trap. Here, they will be cooled to temperatures in the mK range employing sympathetic and direct laser cooling. Precision laser spectroscopy of the isotope shift on the cooled ensemble in combination with accurate atomic structure calculations will provide nuclear charge radii with a precision of better than 3%. This will be the first model-independent determination of a one-neutron halo nuclear charge radius.

  7. Determination of beryllium by using X-ray fluorescence spectrometry.

    Zawisza, Beata


    X-ray fluorescence spectrometry method is subject to certain difficulties and inconveniences for the elements having the atomic number 9 or less. These difficulties become progressively more severe as the atomic number decreases, and are quite serious for beryllium, which is practically indeterminable directly by XRF. Therefore, an indirect determination of beryllium that is based on the evaluation of cobalt in the precipitate is taken into consideration. In the thesis below, there is a description of a new, simple, and precise method by selective precipitation using hexamminecobalt(III) chloride and ammonium carbonate-EDTA solution as a complexing agent for the determining of a trace amount of beryllium using X-ray fluorescence spectrometry. The optimum conditions for [Co(NH(3))(6)][Be(2)(OH)(3)(CO(3))(2)(H(2)O)(2)].(3)H(2)O complex formation were studied. The complex was collected on the membrane filter, and the Co Kalpha line was measured by XRF. The method presents the advantages of the sample preparation and the elimination of the matrix effects due to the thin film obtained. The detection limit of the proposed method is 0.2 mg of beryllium. The method was successfully applied to beryllium determination in copper/ beryllium/cobalt alloys.

  8. Fabricating thin beryllium windows for X-ray applications

    Truhan, John J.; Wagner, Lawrence M.


    X-ray windows for diagnostics into vacuum chambers are commonly made of beryllium, which must be as thin as possible to minimize attenuation of the X rays. The windows must be bonded to mounting flanges, and the bond must be leak-tight and able to withstand a pressure differential of one atmosphere. A solid-state bonding process can be used to attach windows of thickness from 0.025 down to 0.015 mm. The process bonds the beryllium window, a silver intermediate layer, and the mounting flange together using compression and heat. The process is not sensitive to the bonding parameters; usual ranges are: pressures of 83-172 MPa, temperatures of 750-950 K, and holding times of 5-60 min. Unsuccessful bonds can often be repaired, or parts can be salvaged for re-use. A variety of window geometries can be accommodated.

  9. Design of the beryllium window for Brookhaven Linac Isotope Producer

    Nayak, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Mapes, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Raparia, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)


    In the Brookhaven Linac Isotope Producer (BLIP) beam line, there were two Beryllium (Be) windows with an air gap to separate the high vacuum upstream side from low vacuum downstream side. There had been frequent window failures in the past which affected the machine productivity and increased the radiation dose received by workers due to unplanned maintenance. To improve the window life, design of Be window is reexamined. Detailed structural and thermal simulations are carried out on Be window for different design parameters and loading conditions to come up with better design to improve the window life. The new design removed the air gap and connect the both beam lines with a Be window in-between. The new design has multiple advantages such as 1) reduces the beam energy loss (because of one window with no air gap), 2) reduces air activation due to nuclear radiation and 3) increased the machine reliability as there is no direct pressure load during operation. For quick replacement of this window, an aluminum bellow coupled with load binder was designed. There hasn’t been a single window failure since the new design was implemented in 2012.

  10. Structure of beryllium isotopes in fermionic molecular dynamics

    Torabi, Bahram Ramin


    Modern theoretical nuclear physics faces two major challenges. The first is finding a suitable interaction, which describes the forces between nucleons. The second challenge is the solution of the nuclear many-body problem for a given nucleus while applying a realistic potential. The potential used in the framework of this thesis is based on the Argonne AV18 potential. It was transformed by means of the Unitary Correlation Operator Method (UCOM) to optimize convergence. The usual phenomenological corrections were applied to improve the potential for the Hilbert space used in Fermionic Molecular Dynamics (FMD). FMD is an approach to solve the nuclear many-body problem. It uses a single-particle basis which is a superposition of Gaussian distributions in phase-space. The most simple many-body state is the antisymmetric product of the singleparticle states: a Slater determinant, the so called intrinsic state. This intrinsic state is projected on parity, total angular momentum and a center of mass momentum zero. The Hilbert space is spanned by several of these projected states. The states are obtained by minimizing their energy while demanding certain constraints. The expectation values of Slater determinants, parity projected and additionally total angular momentum projected Slater determinants are used. The states that are relevant in the low energy regime are obtained by diagonalization. The lowest moments of the mass-, proton- or neutron-distribution and the excitation in proton- and neutron-shells of a harmonic oscillator are some of the used constraints. The low energy regime of the Beryllium isotopes with masses 7 to 14 is calculated by using these states. Energies, radii, electromagnetic transitions, magnetic moments and point density distributions of the low lying states are calculated and are presented in this thesis. (orig.)

  11. Beryllium detection in human lung tissue using electron probe X-ray microanalysis.

    Butnor, Kelly J; Sporn, Thomas A; Ingram, Peter; Gunasegaram, Sue; Pinto, John F; Roggli, Victor L


    Chronic berylliosis is an uncommon disease that is caused by the inhalation of beryllium particles, dust, or fumes. The distinction between chronic berylliosis and sarcoidosis can be difficult both clinically and histologically, as both entities can have similar presentations and exhibit nonnecrotizing granulomatous inflammation of the lungs. The diagnosis of chronic berylliosis relies on a history of exposure to beryllium, roentgenographic evidence of diffuse nodular disease, and demonstration of beryllium hypersensitivity by ancillary studies, such as lymphocyte proliferation testing. Additional support may be gained by the demonstration of beryllium in lung tissue. Unlike other exogenous particulates, such as asbestos, detection of beryllium in human lung tissue is problematic. The low atomic number of beryllium usually makes it unsuitable for conventional microprobe analysis. We describe a case of chronic berylliosis in which beryllium was detected in lung tissue using atmospheric thin-window energy-dispersive X-ray analysis (ATW EDXA). A woman with a history of occupational exposure to beryllium at a nuclear weapons testing facility presented with progressive cough and dyspnea and a nodular pattern on chest roentgenograph. Open lung biopsy showed nonnecrotizing granulomatous inflammation that was histologically indistinguishable from sarcoidosis. Scanning electron microscopy and ATW EDXA demonstrated particulates containing beryllium within the granulomas. This application of EDXA offers significant advantages over existing methods of beryllium detection in that it is nondestructive, more widely available, and can be performed using routine paraffin sections.

  12. X-ray drive of beryllium capsule implosions at the National Ignition Facility

    Wilson, D. C.; Yi, S. A.; Simakov, A. N.; Kline, J. L.; Kyrala, G. A.; Dewald, E. L.; Tommasini, R.; Ralph, J. E.; Olson, R. E.; Strozzi, D. J.; Celliers, P. M.; Schneider, M. B.; MacPhee, A. G.; Zylstra, A. B.; Callahan, D. A.; Hurricane, O. A.; Milovich, J. L.; Hinkel, D. E.; Rygg, J. R.; Rinderknecht, H. G.; Sio, H.; Perry, T. S.; Batha, S.


    National Ignition Facility experiments with beryllium capsules have followed a path begun with “high-foot” plastic capsule implosions. Three shock timing keyhole targets, one symmetry capsule, a streaked backlit capsule, and a 2D backlit capsule were fielded before the DT layered shot. After backscatter subtraction, laser drive degradation is needed to match observed X-ray drives. VISAR measurements determined drive degradation for the picket, trough, and second pulse. Time dependence of the total Dante flux reflects degradation of the of the third laser pulse. The same drive degradation that matches Dante data for three beryllium shots matches Dante and bangtimes for plastic shots N130501 and N130812. In the picket of both Be and CH hohlraums, calculations over-estimate the x-ray flux > 1.8 keV by ∼100X, while calculating the total flux correctly. In beryllium calculations these X-rays cause an early expansion of the beryllium/fuel interface at ∼3 km/s. VISAR measurements gave only ∼0.3 km/s. The X-ray drive on the Be DT capsule was further degraded by an unplanned decrease of 9% in the total picket flux. This small change caused the fuel adiabat to rise from 1.8 to 2.3. The first NIF beryllium DT implosion achieved 29% of calculated yield, compared to CH capsules with 68% and 21%.

  13. Isotope shifts in beryllium-, boron-, carbon-, and nitrogen-like ions from relativistic configuration interaction calculations

    Nazé, C.; Verdebout, S. [Service de Chimie Quantique et Photophysique, CP160/09, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, B 1050 Brussels (Belgium); Rynkun, P.; Gaigalas, G. [Vilnius University, Institute of Theoretical Physics and Astronomy, LT-01108 Vilnius (Lithuania); Godefroid, M., E-mail: [Service de Chimie Quantique et Photophysique, CP160/09, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, B 1050 Brussels (Belgium); Jönsson, P. [Group for Materials Science and Applied Mathematics, Malmö University, 205-06 Malmö (Sweden)


    Energy levels, normal and specific mass shift parameters as well as electronic densities at the nucleus are reported for numerous states along the beryllium, boron, carbon, and nitrogen isoelectronic sequences. Combined with nuclear data, these electronic parameters can be used to determine values of level and transition isotope shifts. The calculation of the electronic parameters is done using first-order perturbation theory with relativistic configuration interaction wavefunctions that account for valence, core–valence, and core–core correlation effects as zero-order functions. Results are compared with experimental and other theoretical values, when available.

  14. Improved vacuum evaporation unit for beryllium coating for biological X-ray microanalysis.

    Marshall, A T; Carde, D; Kent, M


    An improved vacuum evaporator is described for coating frozen-hydrated biological samples with beryllium for X-ray microanalysis. The evaporator permits repeated coatings without bringing the main chamber to atmospheric pressure and ambient temperature. The use of a glass sleeve in the evaporation chamber facilitates cleaning.

  15. Early Solar System irradiation quantified by linked vanadium and beryllium isotope variations in meteorites

    Sossi, Paolo A.; Moynier, Frédéric; Chaussidon, Marc; Villeneuve, Johan; Kato, Chizu; Gounelle, Matthieu


    X-ray emission in young stellar objects (YSOs) is orders of magnitude more intense than in main sequence stars1,2, suggestive of cosmic ray irradiation of surrounding accretion disks. Protoplanetary disk irradiation has been detected around YSOs by the Herschel Space Observatory3. In our Solar System, short-lived 10Be (with a half-life of 1.39 Myr)4, which cannot be produced by stellar nucleosynthesis, was discovered in the oldest Solar System solids, the calcium-aluminium-rich inclusions (CAIs)5. The high 10Be abundance, as well as the detection of other tracers6,7, suggest 10Be likely originates from cosmic ray irradiation caused by solar flares8-10. Nevertheless, the nature of these flares (gradual or impulsive), the target (gas or dust), and the duration and location of irradiation remain unknown. Here we use the vanadium isotopic composition, together with the initial 10Be abundance to quantify irradiation conditions in the early Solar System11. For the initial 10Be abundances recorded in most CAIs, 50V excesses of a few per mil (‰) relative to chondrites have been predicted8,9. We report 50V excesses in CAIs up to 4.4‰ that co-vary with 10Be abundance. Their co-variation dictates that excess 50V and 10Be were synthesized through irradiation of refractory dust. Modelling of the production rate of 50V and 10Be demonstrates that the dust was exposed to solar cosmic rays produced by gradual flares for less than 300 years at ≈0.1 au from the protosun.

  16. Beryllium Desorption from Sediments

    Boschi, V.; Willenbring, J. K.


    Beryllium isotopes have provided a useful tool in the field of geochronology and geomorphology over the last 25 years. The amount of cosmogenic meteoric 10Be and native 9Be absorbed to soils often scales with the residence time and chemical weathering of sediments in a landscape, respectively. Thus, the concentrations in river sediment may be used to quantify the denudation of specific watersheds. When deposited in ocean sediment, these concentrations are thought to record the history of denudation on Earth over the last ~10 Ma. The use of both isotopes often relies on the premise of beryllium retention to sediment surfaces in order to preserve a landscape's erosion and weathering signature. Changes in setting, en route from the soil to fluvial system to the ocean, can cause beryllium desorption and may preclude some applications of the 10Be/9Be system. Four mechanisms were tested to determine the desorption potential of beryllium including a reduction in pH, an increase in ionic strength and complexation with soluble organic and inorganic species. These processes have the potential to mobilize beryllium into solution. For example, by both reducing the pH and increasing the ionic strength, competition for adsorption sites increases, potentially liberating beryllium from the sediment surface. In addition, organic and inorganic ligands can complex beryllium causing it to become mobilized. To determine which of these alterations influence beryllium desorption and to quantify the effect, we prepared separate solutions of beryllium bound to minerals and organic compounds and measured beryllium concentrations in solution before and after adjusting the pH, ionic strength, and changing inorganic and organic ligand concentrations. We conclude from our observations that overall, beryllium sorbed to organic compounds was more resistant to desorption relative to mineral-associated beryllium. Among the methods tested, a reduction in pH resulted in the greatest amount of

  17. Mathematical simulation of pressing X-ray lenses from nanocrystalline beryllium

    Mishin, V. V.; Shishov, I. A.; Glukhov, P. A.; Zabrodin, A. V.; Semenov, A. A.; Brylev, D. A.; Anikin, A. S.


    A computer model is developed to describe the pressing of a beryllium lens using the Deform software package. This model takes into account the rheological properties of beryllium and the deforming tool. The state of stress of a workpiece is determined at various stages of pressing, and the probability of fracture of nanocrystalline beryllium is estimated using the normalized Cockcroft-Latham criterion. The temperature dependence of the limiting values of the fracture criterion is found and used to choose the pressing conditions that exclude fracture of lenses.

  18. Assessment of Personal Airborne Exposures and Surface Contamination from X-ray Vaporization of Beryllium Targets at the National Ignition Facility.

    Paik, Samuel Y; Epperson, Patrick M; Kasper, Kenneth M


    This study presents air and surface sampling data collected over the first two years since beryllium was introduced as a target material at the National Ignition Facility. Over this time, 101 experiments with beryllium-containing targets were executed. The data provides an assessment of current conditions in the facility and a baseline for future impacts as new, reduced regulatory limits for beryllium are being proposed by both the Occupational Safety and Health Administration and Department of Energy. This study also investigates how beryllium deposits onto exposed surfaces as a result of x-ray vaporization and the effectiveness of simple decontamination measures in reducing the amount of removable beryllium from a surface. Based on 1,961 surface wipe samples collected from entrant components (equipment directly exposed to target debris) and their surrounding work areas during routine reconfiguration activities, only one result was above the beryllium release limit of 0.2 μg/100 cm(2) and 27 results were above the analytical reporting limit of 0.01 μg/100 cm(2), for a beryllium detection rate of 1.4%. Surface wipe samples collected from the internal walls of the NIF target chamber, however, showed higher levels of beryllium, with beryllium detected on 73% and 87% of the samples during the first and second target chamber entries (performed annually), respectively, with 23% of the samples above the beryllium release limit during the second target chamber entry. The analysis of a target chamber wall panel exposed during the first 30 beryllium-containing experiments (cumulatively) indicated that 87% of the beryllium contamination remains fixed onto the surface after wet wiping the surface and 92% of the non-fixed contamination was removed by decontaminating the surface using a dry wipe followed by a wet wipe. Personal airborne exposures assessed during access to entrant components and during target chamber entry indicated that airborne beryllium was not present

  19. Characterization of beryllium deformation using in-situ x-ray diffraction

    Magnuson, Eric Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Donald William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clausen, Bjorn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sisneros, Thomas A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Park, Jun-Sang [Argonne National Lab. (ANL), Argonne, IL (United States)


    Beryllium’s unique mechanical properties are extremely important in a number of high performance applications. Consequently, accurate models for the mechanical behavior of beryllium are required. However, current models are not sufficiently microstructure aware to accurately predict the performance of beryllium under a range of processing and loading conditions. Previous experiments conducted using the SMARTS and HIPPO instruments at the Lujan Center(LANL), have studied the relationship between strain rate and texture development, but due to the limitations of neutron diffraction studies, it was not possible to measure the response of the material in real-time. In-situ diffraction experiments conducted at the Advanced Photon Source have allowed the real time measurement of the mechanical response of compressed beryllium. Samples of pre-strained beryllium were reloaded orthogonal to their original load path to show the reorientation of already twinned grains. Additionally, the in-situ experiments allowed the real time tracking of twin evolution in beryllium strained at high rates. The data gathered during these experiments will be used in the development and validation of a new, microstructure aware model of the constitutive behavior of beryllium.

  20. Beryllium 1989


    The Roskill report on beryllium gives information on the occurrence and reserves, production technology, geographic distribution, consumption and end-uses, stocks, prices and beryllium and health. There is an appendix on international trade statistics. (author).

  1. Beryllium window and acoustic delay line design for x-ray lithography beam lines at the University of Wisconsin Center for X-ray Lithography

    Brodsky, E. L.; Hamilton, W.; Wells, G.; Cerrina, F.; Corradini, M.


    X-ray lithography systems require sample chambers that can perform exposures in helium gas at atmospheric pressure. The interface between the experimental chamber and the beamline is critical for x-ray lithography and the storage ring. It must allow a high x-ray flux throughput while providing a vacuum barrier so that helium gas does not leak into the beam line and the storage ring. The beam line must also be designed to have protection in the case that a window does fail in order to minimize adverse effects to the ring and other systems. The details of the design for the vacuum system used on beam lines for the Center for X-ray Lithography at the University of Wisconsin Synchrotron Radiation Center 1-GeV electron storage ring are reported. Curved beryllium windows with a 1×5-cm2 aperture and 13 μm thick that have a leak rate less than 10-10 Torr l/s have been successfully used at the experimental chamber beam-line interface. This thin flat beryllium foil is mounted in a curved housing with a wire seal to minimize helium leakage. The window assembly is designed and has been tested to withstand substantial overpressure before failure. If the beryllium window does fail, the beamline has an acoustic delay line that is designed to delay the incoming shock wave of helium gas so that a fast valve at the end of the beam line will close and minimize leakage of helium into the storage ring. The acoustic delay line is designed with baffles to slow the shock front and a secondary thin window to protect against molecular diffusion into the storage ring. The acoustic delay line has been tested to determine the effect of baffle design on delay of the shock wave. A theoretical model that provides a good description of the acoustic delay has also been developed.

  2. Isotopic Composition of Cosmic Rays:. Results from the Cosmic Ray Isotope Spectrometer on the Ace Spacecraft

    Israel, M. H.

    Over the past seven years the Cosmic Ray Isotope Spectrometer (CRIS) on the ACE spacecraft has returned data with an unprecedented combination of excellent mass resolution and high statistics, describing the isotopic composition of elements from lithium through nickel in the energy interval ~ 50 to 500 MeV/nucleon. These data have demonstrated: * The time between nucleosynthesis and acceleration of the cosmic-ray nuclei is at least 105 years. The supernova in which nucleosynthesis takes place is thus not the same supernova that accelerates a heavy nucleus to cosmic-ray energy. * The mean confinement time of cosmic rays in the Galaxy is 15 Myr. * The isotopic composition of the cosmic-ray source is remarkably similar to that of solar system. The deviations that are observed, particularly at 22Ne and 58Fe, are consistent with a model in which the cosmic-ray source is OB associations in which the interstellar medium has solar-system composition enriched by roughly 20% admixture of ejecta from Wolf-Rayet stars and supernovae. * Cosmic-ray secondaries that decay only by electron capture provide direct evidence for energy loss of cosmic rays as they penetrate the solar system. This invited overview paper at ECRS 19 was largely the same as an invited paper presented a month earlier at the 8th Nuclei in the Cosmos Conference in Vancouver. The proceedings of that conference will be published shortly by Elsevier as a special edition of Nuclear Physics A. For further summary of results from CRIS, the reader is referred to URL and links on that page to CRIS and to Science News.

  3. Mineral resource of the month: beryllium



    The article discusses information about Beryllium. It notes that Beryllium is a light metal that has a gray color. The metal is used in the production of parts and devices including bearings, computer-chip heat sinks, and output windows of X-ray tubes. The article mentions Beryllium's discovery in 1798 by French chemist, Louis-Nicolas Vanquelin. It cites that bertrandite and beryl are the principal mineral components for the commercial production of beryllium.

  4. Beryllium Toxicity

    ... aerospace, aircraft manufacture and maintenance, computer, dental laboratories, telecommunications, and foundries and metal reclamation. How Can I ... if exposure stops. Beryllium usually affects the respiratory system, although it can affect other parts of the ...

  5. Chronic Beryllium Disease

    ... Science Education & Training Home Conditions Chronic Beryllium Disease Chronic Beryllium Disease Make an Appointment Find a Doctor ... MD, MSPH, FCCP (February 01, 2016) What is chronic beryllium disease (CBD)? Chronic beryllium disease (CBD) is ...

  6. Using beryllium-10 to test the validity of past accumulation rate reconstruction from water isotope records in East Antarctic ice cores

    A. Cauquoin


    Full Text Available Ice cores are exceptional archives which allow us to reconstruct a wealth of climatic parameters as well as past atmospheric composition over the last 800 ka in Antarctica. Inferring the variations of past accumulation rate in polar regions is essential both for documenting past climate and for ice core chronology. On the East Antarctic plateau, the accumulation rate is so small that annual layers cannot be identified and accumulation rate is mainly deduced from the water isotopic composition assuming constant temporal relationships between temperature, water isotopic composition and accumulation rate. Such assumption leads to large uncertainties on the reconstructed past accumulation rate. Here, we use high resolution beryllium-10 (10Be as an alternative tool for inferring past accumulation rate for the EPICA Dome C ice core, in East Antarctica. We present a high resolution 10Be record covering a full climatic cycle over the period 269 to 355 kyr BP from MIS 9 to MIS 10 (Marine Isotope Stages. After correcting 10Be for the estimated effect of the paleomagnetic field, we deduce that the classical estimation of accumulation rate variations from records of water isotopes agrees, with a possible underestimation of 16%, with the uncertainty on the temperature reconstruction from water isotopes in Antarctic ice cores. This is within their uncertainty of −10 to +30%. Finally, we show that the relationship between temperature and accumulation rate is comparable when using ice core data and results from several AGCM simulations run on glacial–interglacial conditions despite a larger spread in model outputs. These results indicate that the thermodynamic law linking moisture content in the air and temperature, as implemented in the different models, leads to realistic results even in polar regions, at the end of the water distillation trajectory.

  7. Pair potentials for warm dense matter and their application to x-ray Thomson scattering in aluminum and beryllium

    Harbour, L.; Dharma-wardana, M. W. C.; Klug, D. D.; Lewis, L. J.


    Ultrafast laser experiments yield increasingly reliable data on warm dense matter, but their interpretation requires theoretical models. We employ an efficient density functional neutral-pseudoatom hypernetted-chain (NPA-HNC) model with accuracy comparable to ab initio simulations and which provides first-principles pseudopotentials and pair potentials for warm-dense matter. It avoids the use of (i) ad hoc core-repulsion models and (ii) "Yukawa screening" and (iii) need not assume ion-electron thermal equilibrium. Computations of the x-ray Thomson scattering (XRTS) spectra of aluminum and beryllium are compared with recent experiments and with density-functional-theory molecular-dynamics (DFT-MD) simulations. The NPA-HNC structure factors, compressibilities, phonons, and conductivities agree closely with DFT-MD results, while Yukawa screening gives misleading results. The analysis of the XRTS data for two of the experiments, using two-temperature quasi-equilibrium models, is supported by calculations of their temperature relaxation times.

  8. The Be K-edge in beryllium oxide and chalcogenides: soft x-ray absorption spectra from first-principles theory and experiment.

    Olovsson, W; Weinhardt, L; Fuchs, O; Tanaka, I; Puschnig, P; Umbach, E; Heske, C; Draxl, C


    We have carried out a theoretical and experimental investigation of the beryllium K-edge soft x-ray absorption fine structure of beryllium compounds in the oxygen group, considering BeO, BeS, BeSe, and BeTe. Theoretical spectra are obtained ab initio, through many-body perturbation theory, by solving the Bethe-Salpeter equation (BSE), and by supercell calculations using the core-hole approximation. All calculations are performed with the full-potential linearized augmented plane-wave method. It is found that the two different theoretical approaches produce a similar fine structure, in good agreement with the experimental data. Using the BSE results, we interpret the spectra, distinguishing between bound core-excitons and higher energy excitations.

  9. The isotopes of neon in the galactic cosmic rays

    Garcia-Munoz, M.; Simpson, J. A.; Wefel, J. P.


    The paper examines the results obtained by the University of Chicago instrument on board the IMP 7 satellite used to measure the abundances of Ne-20 and Ne-22 in the galactic cosmic rays during 1973-1977, over the general energy range of 60-230 MeV per nucleon. It is reported that the instrument shows a mass resolution of 0.7 amu(sigma) which was confirmed by calibrating a backup instrument at the LBL Bevalac with separated beams of neon isotopes. Through the use of standard solar modulation and cosmic-ray propagation models, the cosmic-ray source ratio inferred is Ne-22/Ne-20 = 0.38 = or -0.07 which is significantly greater than the present solar system ratio. It is concluded that propagation effects or cross-section uncertainties cannot account for such a large abundance of Ne-22, and thus this measurement provides evidence that the cosmic rays come from a source region where the Ne-22 abundance is substantially greater than in solar system material.

  10. Beryllium chemistry and processing

    Walsh, Kenneth A


    This book introduces beryllium; its history, its chemical, mechanical, and physical properties including nuclear properties. The 29 chapters include the mineralogy of beryllium and the preferred global sources of ore bodies. The identification and specifics of the industrial metallurgical processes used to form oxide from the ore and then metal from the oxide are thoroughly described. The special features of beryllium chemistry are introduced, including analytical chemical practices. Beryllium compounds of industrial interest are identified and discussed. Alloying, casting, powder processing, forming, metal removal, joining and other manufacturing processes are covered. The effect of composition and process on the mechanical and physical properties of beryllium alloys assists the reader in material selection. The physical metallurgy chapter brings conformity between chemical and physical metallurgical processing of beryllium, metal, alloys, and compounds. The environmental degradation of beryllium and its all...

  11. An industrial risk: Beryllium

    Emrah Çaylak


    Full Text Available Beryllium is a vocational disease factor and berylliumexposure can potentially lead to Chronic Beryllium Disease(CBD in 2-6 % of workers. While acute lymphocyticpneumonia occurred in individuals who were exposedto high doses of beryllium, low dose exposure to berylliumfollowed by a long subclinical period can cause CBDcharacterized with chronic granulomatosis. It has beenobserved that varying amounts of beryllium exposureare necessary to produce symptoms of CBD or berylliumsensitization (BeS. Genetic differences between patientsmay be the underlying cause of these dose-effects andfurther study of the differences in patients exposed to berylliummay lead to earlier diagnosis and the identificationof biomarkers of CBD. In this review, it is summarizedthe general properties of beryllium exposure, the immunopathogenesisand genetic differences of beryllium-induceddiseases, genotoxicity and the carcinogenic effectsof beryllium. J Clin Exp Invest 2012; 3(1: 141-148

  12. (Beryllium). Internal Report No. 137, Jan. 15, 1958; Le beryllium

    Mouret, P.; Rigaud, A


    After a brief summary of the physical and chemical properties of beryllium, the various chemical treatments which can be applied to beryllium minerals either directly or after a physical enrichment are discussed. These various treatments give either the hydroxide or beryllium salts, from which either beryllium oxide or metallic beryllium can easily be obtained. The purification, analysis and uses of beryllium are also briefly discussed. (author)

  13. Non-destructive investigations of a copper and argon doped sputtered beryllium capsule using x-rays in 3d

    Patterson, Brian M [Los Alamos National Laboratory; Defriend, Kimberly A [Los Alamos National Laboratory; Havrilla, George J [Los Alamos National Laboratory; Nikroo, Abbas [GENERAL ATOMICS


    The combination of 3D computed micro x-ray tomography (micro CT) and 3D confocal micro x-ray fluorescence (confocal MXRF) are very useful nondestructive metrology techniques for determining the unique compositional and morphological information of fusion targets and target materials.

  14. Beryllium: genotoxicity and carcinogenicity.

    Gordon, Terry; Bowser, Darlene


    Beryllium (Be) has physical-chemical properties, including low density and high tensile strength, which make it useful in the manufacture of products ranging from space shuttles to golf clubs. Despite its utility, a number of standard setting agencies have determined that beryllium is a carcinogen. Only a limited number of studies, however, have addressed the underlying mechanisms of the carcinogenicity and mutagenicity of beryllium. Importantly, mutation and chromosomal aberration assays have yielded somewhat contradictory results for beryllium compounds and whereas bacterial tests were largely negative, mammalian test systems showed evidence of beryllium-induced mutations, chromosomal aberrations, and cell transformation. Although inter-laboratory differences may play a role in the variability observed in genotoxicity assays, it is more likely that the different chemical forms of beryllium have a significant effect on mutagenicity and carcinogenicity. Because workers are predominantly exposed to airborne particles which are generated during the machining of beryllium metal, ceramics, or alloys, testing of the mechanisms of the mutagenic and carcinogenic activity of beryllium should be performed with relevant chemical forms of beryllium.

  15. Mineral resource of the month: beryllium

    Shedd, Kim B.


    Beryllium metal is lighter than aluminum and stiffer than steel. These and other properties, including its strength, dimensional stability, thermal properties and reflectivity, make it useful for aerospace and defense applications, such as satellite and space-vehicle structural components. Beryllium’s nuclear properties, combined with its low density, make it useful as a neutron reflector and moderator in nuclear reactors. Because it is transparent to most X rays, beryllium is used as X-ray windows in medical, industrial and analytical equipment.

  16. Isotopes of cosmic ray elements from neon to nickel

    Waddington, C. J.; Freier, P. S.; Fickle, R. K.; Brewster, N. R.


    Results obtained from a balloon exposure of a cosmic ray detector flown in 1977 are reported. The charge resolution ranged from 0.19 to 0.21 charge units between neon and nickel and the mass resolution for nuclei stopped in the emulsions ranged from 0.40 to 0.70 amu for A between 20 and 60 amu. This was enough to correctly identify almost all nuclei, but not to uniquely resolve neighboring mass peaks. Both Ne and Mg show evidence for neutron enrichment relative to the solar system abundance. Si and S are consistent with solar abundances, while Ar has no significant source abundances. P, Cl and K have essentially no primary component and the isotopic distribution observed is quite consistent with that expected from propagation. An excess of Ca-44 at the source is shown, indicating high metallicity in the source. The abundance of Fe-58 is nine percent or less, and Ni shows a one-to-one ratio for Ni-58 to 60, implying intermediate metallicity.

  17. A test device for isotopic γ-ray imaging with CdZnTe detector


    A test device for isotopic γ-ray imaging, which consists of an isotope γ-ray source, a CdZnTe γ-ray spectrometer and other auxiliary equipment, is studied here. Compared with the conventional X-ray, the isotope γ-ray,which is utilized in this project, has its own advantages in imaging. Furthermore, with a room-temperature high-energy-resolution CdZnTe detector and a modern imaging processing technique, this device is capable of effectively suppressing the background and gaining more information, thus it can obtain a better image than conventional X-ray devices. In the experiment of PCB imaging, all soldered points and chip components are sharply demonstrated.

  18. Sustainability of gamma-ray isotopics evaluation codes

    Vo, Duc [Los Alamos National Laboratory; Koskelo, Markku [AQUILA TECHNOLOGIES; Mcginnis, Brent [ORNL; Wang, Tzu - Feng [LLNL; Peerani, Paolo [IPSC, ISPRA, ITALY; Renha, Geraldo [ABACC, BRAZIL; Dias, Fabio C [NECB, BRAZIL


    In November 2005, the international workshop 'Gamma Evaluation Codes for Plutonium and Uranium Isotope Abundance Measurements by High-Resolution Gamma Spectrometry: Current Status and Future Challenges' was held in Karlsruhe, Germany. Some of the main issues discussed during the November 2005 meeting were related to concerns voiced by international inspectorate authorities such as the International Atomic Energy Agency (IAEA), the European Atomic Energy Community (EURATOM), and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) about the standardization and sustainability of gamma-ray isotopic analysis codes that are commonly used during safeguards inspections. A follow-up international workshop was conducted in Oak Ridge, TN in 2008. This workshop was in response to needs expressed by the international safeguards community during the Karlsruhe meeting and recommendations made under Action Sheet 14; a cooperative effort between the U. S. Department of Energy and ABACC. The purpose of the Oak Ridge workshop was to bring code developers and end users together to better understand the capabilities and limitations of the codes; to discuss mechanisms to ensure these codes are sustained and quality tested; and to ensure updates or revisions are performed in a controlled manner. During an Action Sheet 14 meeting held in Rio de Janeiro, Brazil in which the IAEA and EURATOM participated as observers, and in subsequent meetings of the European Safeguards Research and Development Association (ESARDA), all parties agreed that the regional working group initially established under the DOE/ABACC cooperation should be expanded to an international working group. The purpose of the international working group is to provide a forum to exchange information, discuss technical developments, and validate and test the various codes. However, progress to formally establish the working has been slowed by a lack of dedicated funding and

  19. 微型X射线管出射谱特征研究及Be窗厚度确定%Research on Spectral Characteristic of Miniature X-Ray Tube and Determination of Beryllium Window Thickness

    谷懿; 熊盛青; 葛良全; 范正国; 张庆贤; 朱振亚


    Applying Monte Carlo method ,the present paper simulates the emitted X-ray spectrum of miniature X-ray tube with thirteen thickness of beryllium window in the range from 50 to 500μm .By analyzing the characteristic of the spectrums ,the rea-sonable choice of thickness of beryllium window relies on the application and for the beryllium window it is not the thinner the better .Taking in-situ EDXRF as an example ,though the emission X-ray intensity is higher as the thickness of the beryllium window becomes thinner ,the proportion of useless low-energy X-ray (20% ) .The accuracy of in-situ EDXRF will be reduced when the high-throughput low-energy X-ray enters the detec-tor .Therefore ,this paper puts forward several parameters as judgment index for beryllium window thickness ,which is de-scribed as follows :①The intensity ratios of the K-series X-ray to middle-energy (5~25 keV) bremsstrahlung and middle-high-energy (5~50 keV) bremsstrahlung (F1 and F3 );②The intensity ratios of useless low-energy X-ray (<5 keV) to middle-ener-gy (5~25 keV) X-ray and middle-high-energy (5~50 keV) X-ray (F2 and F4 ) ,it can reflect the relative intensity of useless low-energy X-ray .The simulation results demonstrate that with the increase in the beryllium window thickness ,the value of F1 (F3 ) improves slowly ,and the value of F2 (F4 ) decreases rapidly .In addition to the judgment index discussed above ,and con-sidering the X-ray shielded by beryllium window ,the beryllium window of miniature X-ray tube can be determined .Based on simulation analysis ,the thickness of around 250μm is appropriate to miniature X-ray tube applied in the in-situ EDXRF .Compa-ring the emitted spectrum with 50 μm-thick beryllium window ,71.66% of low-energy X-rays are shielded ,only 21.31% of X-rays with energy from 5 to 50 keV is shielded ,the intensity ratio of low-energy X-ray to total energy X-ray is less than 10% , and the intensity proportion of K-series X-ray to middle-high energy X-ray

  20. Cooperativity in beryllium bonds.

    Alkorta, Ibon; Elguero, José; Yáñez, Manuel; Mó, Otilia


    A theoretical study of the beryllium bonded clusters of the (iminomethyl)beryllium hydride and (iminomethyl)beryllium fluoride [HC(BeX)=NH, X = H, F] molecules has been carried out at the B3LYP/6-311++G(3df,2p) level of theory. Linear and cyclic clusters have been characterized up to the decamer. The geometric, energetic, electronic and NMR properties of the clusters clearly indicate positive cooperativity. The evolution of the molecular properties, as the size of the cluster increases, is similar to those reported in polymers held together by hydrogen bonds.

  1. Beryllium Manufacturing Processes

    Goldberg, A


    This report is one of a number of reports that will be combined into a handbook on beryllium. Each report covers a specific topic. To-date, the following reports have been published: (1) Consolidation and Grades of Beryllium; (2) Mechanical Properties of Beryllium and the Factors Affecting these Properties; (3) Corrosion and Corrosion Protection of Beryllium; (4) Joining of Beryllium; (5) Atomic, Crystal, Elastic, Thermal, Nuclear, and other Properties of Beryllium; and (6) Beryllium Coating (Deposition) Processes and the Influence of Processing Parameters on Properties and Microstructure. The conventional method of using ingot-cast material is unsuitable for manufacturing a beryllium product. Beryllium is a highly reactive metal with a high melting point, making it susceptible to react with mold-wall materials forming beryllium compounds (BeO, etc.) that become entrapped in the solidified metal. In addition, the grain size is excessively large, being 50 to 100 {micro}m in diameter, while grain sizes of 15 {micro}m or less are required to meet acceptable strength and ductility requirements. Attempts at refining the as-cast-grain size have been unsuccessful. Because of the large grain size and limited slip systems, the casting will invariably crack during a hot-working step, which is an important step in the microstructural-refining process. The high reactivity of beryllium together with its high viscosity (even with substantial superheat) also makes it an unsuitable candidate for precision casting. In order to overcome these problems, alternative methods have been developed for the manufacturing of beryllium. The vast majority of these methods involve the use of beryllium powders. The powders are consolidated under pressure in vacuum at an elevated temperature to produce vacuum hot-pressed (VHP) blocks and vacuum hot-isostatic-pressed (HIP) forms and billets. The blocks (typically cylindrical), which are produced over a wide range of sizes (up to 183 cm dia. by 61

  2. Isotope-specific detection of low density materials with mono-energetic (gamma)-rays

    Albert, F; Anderson, S G; Gibson, D J; Hagmann, C A; Johnson, M S; Messerly, M J; Semenov, V A; Shverdin, M Y; Tremaine, A M; Hartemann, F V; Siders, C W; McNabb, D P; Barty, C J


    The first demonstration of isotope-specific detection of a low-Z, low density object, shielded by a high-Z and high density material using mono-energetic gamma-rays is reported. Isotope-specific detection of LiH shielded by Pb and Al is accomplished using the nuclear resonance fluorescence line of {sup 7}Li at 0.478 MeV. Resonant photons are produced via laser-based Compton scattering. The detection techniques are general and the confidence level obtained is shown to be superior to that yielded by conventional x-ray/{gamma}-ray techniques in these situations.

  3. Dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources

    Barty, Christopher P.J.


    A dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources includes a detector arrangement consists of three detectors downstream from the object under observation. The latter detector, which operates as a beam monitor, is an integrating detector that monitors the total beam power arriving at its surface. The first detector and the middle detector each include an integrating detector surrounding a foil. The foils of these two detectors are made of the same atomic material, but each foil is a different isotope, e.g., the first foil may comprise U235 and second foil may comprise U238. The integrating detectors surrounding these pieces of foil measure the total power scattered from the foil and can be similar in composition to the final beam monitor. Non-resonant photons will, after calibration, scatter equally from both foils.

  4. Comparison between beryllium and diamond-backing plates in diamond-anvil cells: Application to single-crystal X-ray diffraction high-pressure data

    Periotto, Benedetta; Nestola, Fabrizio; Balic Zunic, Tonci;


    A direct comparison between two complete intensity datasets, collected on the same sample loaded in two identical diamond-anvil pressure cells equipped, respectively, with beryllium and diamond backing plates was performed. The results clearly demonstrate that the use of diamond-backing plates...

  5. Beryllium and copper-beryllium alloys; Beryllium und Kupfer-Beryllium-Legierungen

    Nagel, Nikolaus [Materion Brush GmbH, Stuttgart (Germany). Operation and Quality/EH and S


    The light metal beryllium is a comparatively rare element, which today is primarily derived from bertrandite. It is mainly used as pure metal or in the form of copper-beryllium alloys, e.g., in automotive industry, aerospace, and electrical components. The wide range of applications is mainly attributed to the extremely high rigidity/density ratio. An overview of the history of the metal, its production, and recycling as well as the properties of CuBe alloys are given.

  6. High Resolution Gamma Ray Analysis of Medical Isotopes

    Chillery, Thomas


    Compton-suppressed high-purity Germanium detectors at the University of Massachusetts Lowell have been used to study medical radioisotopes produced at Brookhaven Linac Isotope Producer (BLIP), in particular isotopes such as Pt-191 used for cancer therapy in patients. The ability to precisely analyze the concentrations of such radio-isotopes is essential for both production facilities such as Brookhaven and consumer hospitals across the U.S. Without accurate knowledge of the quantities and strengths of these isotopes, it is possible for doctors to administer incorrect dosages to patients, thus leading to undesired results. Samples have been produced at Brookhaven and shipped to UML, and the advanced electronics and data acquisition capabilities at UML have been used to extract peak areas in the gamma decay spectra. Levels of Pt isotopes in diluted samples have been quantified, and reaction cross-sections deduced from the irradiation parameters. These provide both cross checks with published work, as well as a rigorous quantitative framework with high quality state-of-the-art detection apparatus in use in the experimental nuclear physics community.


    Adriani, O.; Bongi, M. [University of Florence, Department of Physics, I-50019 Sesto Fiorentino, Florence (Italy); Barbarino, G. C. [University of Naples “Federico II,” Department of Physics, I-80126 Naples (Italy); Bazilevskaya, G. A. [Lebedev Physical Institute, RU-119991, Moscow (Russian Federation); Bellotti, R.; Bruno, A. [University of Bari, Department of Physics, I-70126 Bari (Italy); Boezio, M.; Bonvicini, V.; Formato, V. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Bogomolov, E. A. [Ioffe Physical Technical Institute, RU-194021 St. Petersburg (Russian Federation); Bottai, S. [INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence (Italy); Cafagna, F. [INFN, Sezione di Bari, I-70126 Bari (Italy); Campana, D. [INFN, Sezione di Naples, I-80126 Naples (Italy); Carlson, P. [KTH, Department of Physics, and the Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, SE-10691 Stockholm (Sweden); Casolino, M.; Santis, C. De [University of Rome “Tor Vergata,” Department of Physics, I-00133 Rome (Italy); Castellini, G. [IFAC, I-50019 Sesto Fiorentino, Florence (Italy); Donato, C. De; Simone, N. De; Felice, V. Di [INFN, Sezione di Rome “Tor Vergata,” I-00133 Rome (Italy); and others


    The cosmic-ray hydrogen and helium ({sup 1}H, {sup 2}H, {sup 3}He, {sup 4}He) isotopic composition has been measured with the satellite-borne experiment PAMELA, which was launched into low-Earth orbit on board the Resurs-DK1 satellite on 2006 June 15. The rare isotopes {sup 2}H and {sup 3}He in cosmic rays are believed to originate mainly from the interaction of high-energy protons and helium with the galactic interstellar medium. The isotopic composition was measured between 100 and 1100 MeV/n for hydrogen and between 100 and 1400 MeV/n for helium isotopes using two different detector systems over the 23rd solar minimum from 2006 July to 2007 December.

  8. Isotope separation of the Yb-168 stable isotope for low energy gamma ray sources

    Park, Hyun Min; Kwon, Duck Hee; Cha, Yong Ho; Lee, Ki Tae; Nam, Sung Mo; Yoo, Jaek Won; Han, Jae Min; Rhee, Yong Joo [Lab. of Quantum Optics, Korea Atomic Energy Research Institute, Taejeon (Korea, Republic of)


    We developed laser isotope separation technology of stable isotope of low melting point metals. Yb-168 can be effectively used in non-destructive testing (NDT) after it is transformed to Yb-168 by neutron irradiation in a nuclear reactor. For this application of Yb-168, the isotope purity of it should be enhanced to more than 15% from the natural abundance of 0.135%. Our isotope separation system consist of laser system, Yb vapor generating system, and photoionized particle extraction system. For the system, we developed a diode-pumped slid-state laser of high-repetition rate and 3-color dye lasers. Yb vapor was generated by heating solid Yb sample resistively. The photo-ion produced by resonance ionization were extracted by a devised extractor. We produced enriched Yb metal more than 20 mg with the abundance of 25.8% of Yb-168 in the Yb (NO{sub 3}){sub 3}.

  9. High-precision gamma-ray spectroscopy for enhancing production and application of medical isotopes

    McCutchan, E. A.; Sonzogni, A. A.; Smith, S. V.; Muench, L.; Nino, M.; Greene, J. P.; Carpenter, M. P.; Zhu, S.; Chillery, T.; Chowdhury, P.; Harding, R.; Lister, C. J.


    Nuclear medicine is a field which requires precise decay data for use in planning radionuclide production and in imaging and therapeutic applications. To address deficiencies in decay data, sources of medical isotopes were produced and purified at the Brookhaven Linear Isotope Producer (BLIP) then shipped to Argonne National Laboratory where high-precision, gamma-ray measurements were performed using Gammasphere. New decay schemes for a number of PET isotopes and the impact on dose calculations will be presented. To investigate the production of next-generation theranostic or radiotherapeutic isotopes, cross section measurements with high energy protons have also been explored at BLIP. The 100-200 MeV proton energy regime is relatively unexplored for isotope production, thus offering high discovery potential but at the same time a challenging analysis due to the large number of open channels at these energies. Results of cross sections deduced from Compton-suppressed, coincidence gamma-ray spectroscopy performed at Lowell will be presented, focusing on the production of platinum isotopes by irradiating natural platinum foils with 100 to 200 MeV protons. DOE Isotope Program is acknowledged for funding ST5001030. Work supported by the US DOE under Grant DE-FG02-94ER40848 and Contracts DE-AC02-98CH10946 and DE-AC02-06CH11357.

  10. Isotope selective photodissociation of N2 by the interstellar radiation field and cosmic rays

    Heays, Alan N; Gredel, Roland; Ubachs, Wim; Lewis, Brenton R; Gibson, Stephen T; van Dishoeck, Ewine F


    Photodissociation of 14N2 and 14N15N occurs in interstellar clouds, circumstellar envelopes, protoplanetary discs, and other environments due to UV radiation from stellar sources and the presence of cosmic rays. This source of N atoms initiates the formation of complex N-bearing species and influences their isotopic composition. To study the photodissociation rates of 14N15N by UV continuum radiation and both isotopologues in a field of cosmic ray induced photons. To determine the effect of these on the isotopic composition of more complex molecules. High-resolution photodissociation cross sections of N2 are used from an accurate and comprehensive quantum- mechanical model of the molecule based on laboratory experiments. A similarly high-resolution spectrum of H2 emission following interactions with cosmic rays has been constructed. The spectroscopic data are used to calculate dissociation rates which are input into isotopically differentiated chemical models, describing an interstellar cloud and a protoplane...

  11. Isotopic Composition of Light Nuclei in Cosmic Rays: Results from AMS-01

    Aguilar, M.; Alcaraz, J.; Allaby, J.; Alpat, B.; Ambrosi, G.; Anderhub, H.; Ao, L.; Arefiev, A.; Arruda, L.; Azzarello, P.; Basile, M.; Barao, F.; Barreira, G.; Bartoloni, A.; Battiston, R.; Becker, R.; Becker, U.; Bellagamba, L.; Berdugo, J.; Berges, P.; Bertucci, B.; Biland, A.; Bindi, V.; Boella, G.; Boschini, M.; Bourquin, M.; Bruni, G.; Buénerd, M.; Burger, J. D.; Burger, W. J.; Cai, X. D.; Cannarsa, P.; Capell, M.; Casadei, D.; Casaus, J.; Castellini, G.; Cernuda, I.; Chang, Y. H.; Chen, H. F.; Chen, H. S.; Chen, Z. G.; Chernoplekov, N. A.; Chiueh, T. H.; Choi, Y. Y.; Cindolo, F.; Commichau, V.; Contin, A.; Cortina-Gil, E.; Crespo, D.; Cristinziani, M.; Dai, T. S.; dela Guia, C.; Delgado, C.; Di Falco, S.; Djambazov, L.; D'Antone, I.; Dong, Z. R.; Duranti, M.; Engelberg, J.; Eppling, F. J.; Eronen, T.; Extermann, P.; Favier, J.; Fiandrini, E.; Fisher, P. H.; Flügge, G.; Fouque, N.; Galaktionov, Y.; Gervasi, M.; Giovacchini, F.; Giusti, P.; Grandi, D.; Grimm, O.; Gu, W. Q.; Haino, S.; Hangarter, K.; Hasan, A.; Hermel, V.; Hofer, H.; Hungerford, W.; Ionica, M.; Jongmanns, M.; Karlamaa, K.; Karpinski, W.; Kenney, G.; Kim, D. H.; Kim, G. N.; Kim, K. S.; Kirn, T.; Klimentov, A.; Kossakowski, R.; Kounine, A.; Koutsenko, V.; Kraeber, M.; Laborie, G.; Laitinen, T.; Lamanna, G.; Laurenti, G.; Lebedev, A.; Lechanoine-Leluc, C.; Lee, M. W.; Lee, S. C.; Levi, G.; Lin, C. H.; Liu, H. T.; Lu, G.; Lu, Y. S.; Lübelsmeyer, K.; Luckey, D.; Lustermann, W.; Maña, C.; Margotti, A.; Mayet, F.; McNeil, R. R.; Menichelli, M.; Mihul, A.; Mujunen, A.; Natale, S.; Oliva, A.; Palmonari, F.; Paniccia, M.; Park, H. B.; Park, W. H.; Pauluzzi, M.; Pauss, F.; Pereira, R.; Perrin, E.; Pevsner, A.; Pilo, F.; Pimenta, M.; Plyaskin, V.; Pojidaev, V.; Pohl, M.; Produit, N.; Quadrani, L.; Rancoita, P. G.; Rapin, D.; Ren, D.; Ren, Z.; Ribordy, M.; Riihonen, E.; Ritakari, J.; Ro, S.; Roeser, U.; Sagdeev, R.; Santos, D.; Sartorelli, G.; Saouter, P.; Sbarra, C.; Schael, S.; Schultz von Dratzig, A.; Schwering, G.; Seo, E. S.; Shin, J. W.; Shoumilov, E.; Shoutko, V.; Siedenburg, T.; Siedling, R.; Son, D.; Song, T.; Spada, F. R.; Spinella, F.; Steuer, M.; Sun, G. S.; Suter, H.; Tang, X. W.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Tornikoski, M.; Torsti, J.; Trümper, J.; Ulbricht, J.; Urpo, S.; Valtonen, E.; Vandenhirtz, J.; Velikhov, E.; Verlaat, B.; Vetlitsky, I.; Vezzu, F.; Vialle, J. P.; Viertel, G.; Vité, D.; Von Gunten, H.; Waldmeier Wicki, S.; Wallraff, W.; Wang, J. Z.; Wiik, K.; Williams, C.; Wu, S. X.; Xia, P. C.; Xu, S.; Xu, Z. Z.; Yan, J. L.; Yan, L. G.; Yang, C. G.; Yang, J.; Yang, M.; Ye, S. W.; Zhang, H. Y.; Zhang, Z. P.; Zhao, D. X.; Zhou, F.; Zhou, Y.; Zhu, G. Y.; Zhu, W. Z.; Zhuang, H. L.; Zichichi, A.; Zimmermann, B.; Zuccon, P.


    The variety of isotopes in cosmic rays allows us to study different aspects of the processes that cosmic rays undergo between the time they are produced and the time of their arrival in the heliosphere. In this paper, we present measurements of the isotopic ratios 2H/4He, 3He/4He, 6Li/7Li, 7Be/(9Be+10Be), and 10B/11B in the range 0.2-1.4 GeV of kinetic energy per nucleon. The measurements are based on the data collected by the Alpha Magnetic Spectrometer, AMS-01, during the STS-91 flight in 1998 June.

  12. Isotopic Composition of Light Nuclei in Cosmic Rays: Results from AMS-01

    Aguilar, M; Wiik, K; Grimm, O; Sartorelli, G; Zhou, Y; Pauss, F; Alpat, B; Capell, M; Djambazov, L; Yang, M; Yang, J; Extermann, P; Arefiev, A; Zhuang, H L; Hermel, V; Mihul, A; Galaktionov, Y; Park, H B; Von Gunten, H; Vetlitsky, I; Zhou, F; Vandenhirtz, J; Ambrosi, G; Suter, H; Becker, U; Zhang, H Y; Alcaraz, J; Casaus, J; Ren, Z; Fiandrini, E; Hungerford, W; Ren, D; Wicki, S W; Eppling, F J; Flugge, G; Karlamaa, K; Boella, G; Levi, G; Choi, Y Y; Laborie, G; Lubelsmeyer, K; Gervasi, M; Kirn, T; Azzarello, P; Kounine, A; Barreira, G; Yan, L G; Burger, W J; Koutsenko, V; Grandi, D; Ribordy, M; Gu, W Q; Bindi, V; Favier, J; Haino, S; Shin, J W; Mana, C; Seo, E S; Plyaskin, V; Shoumilov, E; Cannarsa, P; Xia, P C; Ionica, M; Jongmanns, M; Shoutko, V; Wallraff, W; Margotti, A; Lee, S C; Giovacchini, F; Schael, S; Bourquin, M; Roeser, U; Lu, Y S; Torsti, J; Kossakowski, R; Chang, Y H; Menichelli, M; Verlaat, B; Paniccia, M; Steuer, M; Fouque, N; Boschini, M; Zimmermann, B; Song, T; Zuccon, P; Contin, A; Produit, N; Laitinen, T; Kim, K S; Viertel, G; Lin, C H; Lechanoine-Leluc, C; Delgado, C; Lu, G; Pohl, M; Yang, C G; Tornikoski, M; Duranti, M; Cindolo, F; Xu, S; Lebedev, A; Xu, Z Z; Crespo, D; Cristinziani, M; Tomassetti, N; Kim, D H; Biland, A; Bertucci, B; Trumper, J; Buenerd, M; Hangarter, K; Kenney, G; Quadrani, L; Hofer, H; Berdugo, J; Siedenburg, T; Chen, Z G; Ting, S M; Vezzu, F; Cortina-Gil, E; Dai, T S; Barao, F; Commichau, V; Zhang, Z P; Sun, G S; Zhu, W Z; Laurenti, G; Chen, H S; Kim, G N; Sagdeev, R; Wu, S X; Urpo, S; Lee, M W; Rapin, D; Kraeber, M; Chen, H F; Engelberg, J; Ritakari, J; Di Falco, S; Zhu, G Y; Vite, D; Ulbricht, J; Bruni, G; Bellagamba, L; Williams, C; Fisher, P H; D'Antone, I; Pevsner, A; Castellini, G; Chernoplekov, N A; Ao, L; Giusti, P; McNeil, R R; Allaby, J; Yan, J L; Son, D; Santos, D; Cai, X D; Rancoita, P G; Becker, R; Wang, J Z; Oliva, A; Karpinski, W; Cernuda, I; Saouter, P; Ro, S; Anderhub, H; Dela Guia, C; Schwering, G; Ting, S C C; Lamanna, G; Pauluzzi, M; Berges, P; Riihonen, E; Pojidaev, V; Chiueh, T H; Valtonen, E; Pereira, R; Spinella, F; Perrin, E; Park, W H; Dong, Z R; Zichichi, A; Battiston, R; von Dratzig, A S; Vialle, J P; Klimentov, A; Liu, H T; Bartoloni, A; Arruda, L; Tang, X W; Mujunen, A; Pimenta, M; Casadei, D; Spada, F R; Eronen, T; Mayet, F; Palmonari, F; Lustermann, W; Velikhov, E; Pilo, F; Zhao, D X; Luckey, D; Basile, M; Sbarra, C; Natale, S; Siedling, R; Ye, S W; Burger, J D


    The variety of isotopes in cosmic rays allows us to study different aspects of the processes that cosmic rays undergo between the time they are produced and the time of their arrival in the heliosphere. In this paper, we present measurements of the isotopic ratios (2)H/(4)He, (3)He/(4)He, (6)Li/(7)Li, (7)Be/((9)Be+(10)Be), and (10)B/(11)B in the range 0.2-1.4 GeV of kinetic energy per nucleon. The measurements are based on the data collected by the Alpha Magnetic Spectrometer, AMS-01, during the STS-91 flight in 1998 June.

  13. Isotopic Composition of Light Nuclei in Cosmic Rays: Results from AMS-01

    Aguilar, M.; Alcaraz, J.; Allaby, J.; Alpat, B.; Ambrosi, G.; Anderhub, H.; Ao, L.; Arefiev, A.; Arruda, L.; P. Azzarello(c); Basile, M.; Barao, F.; G. Barreira(LIP Lisboa); Bartoloni, A; Battiston, R.


    The variety of isotopes in cosmic rays allows us to study different aspects of the processes that cosmic rays undergo between the time they are produced and the time of their arrival in the heliosphere. In this paper, we present measurements of the isotopic ratios 2H/4He, 3He/4He, 6Li/7Li, 7Be/(9Be+10Be), and 10B/11B in the range 0.2–1.4 GeV of kinetic energy per nucleon. The measurements are based on the data collected by the Alpha Magnetic Spectrometer, AMS-01, during the STS-91...

  14. Be{sub 2}C formation in beryllium-carbon binary system by vacuum heating

    Ashida, Kan; Watanabe, Kuniaki [Toyama Univ. (Japan). Hydrogen Isotope Research Center


    The surface chemical states of beryllium and carbon binary systems at elevated temperature were investigated by means of x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). The XPS measurements revealed that the mixed subsurface layers containing Be and C readily yield Be{sub 2}C layers by vacuum heating and ion bombardment. The SIMS measurements showed that hydrogen isotope atoms are trapped by three distinct sites; namely Be, C, and O-sites on the sample surface. The SIMS measurements also showed that carbon atoms lose its ability to bind with hydrogen isotope atoms on forming Be{sub 2}C. It would be a key to control hydrogen inventory when Be and C are used together as PFM. (author)

  15. TPASS: a gamma-ray spectrum analysis and isotope identification computer code

    Dickens, J.K.


    The gamma-ray spectral data-reduction and analysis computer code TPASS is described. This computer code is used to analyze complex Ge(Li) gamma-ray spectra to obtain peak areas corrected for detector efficiencies, from which are determined gamma-ray yields. These yields are compared with an isotope gamma-ray data file to determine the contributions to the observed spectrum from decay of specific radionuclides. A complete FORTRAN listing of the code and a complex test case are given.

  16. Cosmic Ray Helium Isotopes From 0.2 to 3.6 GeV/nucleon

    Reimer, O.; Hof, M.; Menn, W.


    The abundances of cosmic ray helium isotopes were measured by the IMAX balloon-borne magnet spectrometer during a flight in July, 1992. A high-resolution time-of-flight system and two silica aerogel Cherenkov counters were used in conjunction with a drift-chamber/MWPC-tracking system to determine...... mass by means of the velocity vs. magnetic rigidity technique. A model of the instrument response was developed in order to unfold the species and rigidity-dependent effects. Measurements and astrophysical interpretation of the ^3He/^4He isotope ratio from 0.2 to 3.6 GeV/nucleon will be presented...

  17. The effect of the changing solar system environment on galactic cosmic ray propagation through the heliosphere: Consequences for cosmogenic isotope production in the Earth's atmosphere.

    Axford, W. I.; Florinski, V.; Zank, G. P.


    The solar system is traveling through highly inhomogeneous interstellar medium. Our galactic environment (the Local Bubble) is a vast region formed by supernova explosions filled with extremely tenuous fully ionized gas at a temperature of over a million K. Embedded in the Local Bubble are interstellar clouds ranging from cold (Twarm (T ˜ 104 K) and relatively tenuous (n ˜ 0.3 cm-1) partially ionized clouds, such as the Local Cloud where the Sun is currently located. The properties of the cloud control the size and shape of the heliosphere and, consequently, affect the propagation of galactic cosmic rays (GCRs) between the boundary of the modulation region (the heliopause) and Earth. GCRs with energies above several hundred MeV initiate nuclear reactions in the Earth's upper atmosphere producing radioactive isotopes of Beryllium and Carbon that are precipitated on the surface and eventually incorporated into sediments. It is then quite plausible that the history of the variability of the solar environment may be preserved in cosmogenic isotope records available from ice and sea sediment cores dating back more than 100,000 years. Previously, we showed that increasing the density of the cloud surrounding the solar system by a factor of 30 leads to an increase in 1 AU GCR fluxes by a factor of 1.5--3, and that cloud encounters may have been responsible for the observed peaks in 10Be records 35 and 60 thousand years ago. Extending our early model, we now calculate GCR distribution from the solution of the 2D Parker equation using the global model-calculated plasma and magnetic field parameters as a background to determine the diffusion coefficients. Initial results from a more comprehensive investigation of the global structure of the heliosphere embedded in clouds of varying density, from the present conditions in the Local Cloud to the extreme case of dense molecular clouds, are discussed.

  18. Reprocessing technology development for irradiated beryllium

    Kawamura, H.; Sakamoto, N. [Oarai Research Establishment, Ibaraki-ken (Japan); Tatenuma, K. [KAKEN Co., Ibaraki-ken (Japan)] [and others


    At present, beryllium is under consideration as a main candidate material for neutron multiplier and plasma facing material in a fusion reactor. Therefore, it is necessary to develop the beryllium reprocessing technology for effective resource use. And, we have proposed reprocessing technology development on irradiated beryllium used in a fusion reactor. The preliminary reprocessing tests were performed using un-irradiated and irradiated beryllium. At first, we performed beryllium separation tests using un-irradiated beryllium specimens. Un-irradiated beryllium with beryllium oxide which is a main impurity and some other impurities were heat-treated under chlorine gas flow diluted with Ar gas. As the results high purity beryllium chloride was obtained in high yield. And it appeared that beryllium oxide and some other impurities were removed as the unreactive matter, and the other chloride impurities were separated by the difference of sublimation temperature on beryllium chloride. Next, we performed some kinds of beryllium purification tests from beryllium chloride. And, metallic beryllium could be recovered from beryllium chloride by the reduction with dry process. In addition, as the results of separation and purification tests using irradiated beryllium specimens, it appeared that separation efficiency of Co-60 from beryllium was above 96%. It is considered that about 4% Co-60 was carried from irradiated beryllium specimen in the form of cobalt chloride. And removal efficiency of tritium from irradiated beryllium was above 95%.

  19. Aerosols generated during beryllium machining.

    Martyny, J W; Hoover, M D; Mroz, M M; Ellis, K; Maier, L A; Sheff, K L; Newman, L S


    Some beryllium processes, especially machining, are associated with an increased risk of beryllium sensitization and disease. Little is known about exposure characteristics contributing to risk, such as particle size. This study examined the characteristics of beryllium machining exposures under actual working conditions. Stationary samples, using eight-stage Lovelace Multijet Cascade Impactors, were taken at the process point of operation and at the closest point that the worker would routinely approach. Paired samples were collected at the operator's breathing zone by using a Marple Personal Cascade Impactor and a 35-mm closed-faced cassette. More than 50% of the beryllium machining particles in the breathing zone were less than 10 microns in aerodynamic diameter. This small particle size may result in beryllium deposition into the deepest portion of the lung and may explain elevated rates of sensitization among beryllium machinists.

  20. T cell recognition of beryllium.

    Dai, Shaodong; Falta, Michael T; Bowerman, Natalie A; McKee, Amy S; Fontenot, Andrew P


    Chronic beryllium disease (CBD) is a granulomatous lung disorder caused by a hypersensitivity to beryllium and characterized by the accumulation of beryllium-specific CD4(+) T cells in the lung. Genetic susceptibility to beryllium-induced disease is strongly associated with HLA-DP alleles possessing a glutamic acid at the 69th position of the β-chain (βGlu69). The structure of HLA-DP2, the most prevalent βGlu69-containing molecule, revealed a unique solvent-exposed acidic pocket that includes βGlu69 and represents the putative beryllium-binding site. The delineation of mimotopes and endogenous self-peptides that complete the αβTCR ligand for beryllium-specific CD4(+) T cells suggests a unique role of these peptides in metal ion coordination and the generation of altered self-peptides, blurring the distinction between hypersensitivity and autoimmunity.

  1. Isotopic composition analysis and age dating of uranium samples by high resolution gamma ray spectrometry

    Apostol, A. I.; Pantelica, A.; Sima, O.; Fugaru, V.


    Non-destructive methods were applied to determine the isotopic composition and the time elapsed since last chemical purification of nine uranium samples. The applied methods are based on measuring gamma and X radiations of uranium samples by high resolution low energy gamma spectrometric system with planar high purity germanium detector and low background gamma spectrometric system with coaxial high purity germanium detector. The "Multigroup γ-ray Analysis Method for Uranium" (MGAU) code was used for the precise determination of samples' isotopic composition. The age of the samples was determined from the isotopic ratio 214Bi/234U. This ratio was calculated from the analyzed spectra of each uranium sample, using relative detection efficiency. Special attention is paid to the coincidence summing corrections that have to be taken into account when performing this type of analysis. In addition, an alternative approach for the age determination using full energy peak efficiencies obtained by Monte Carlo simulations with the GESPECOR code is described.

  2. Characterization of shocked beryllium

    Papin P.A.


    Full Text Available While numerous studies have investigated the low-strain-rate constitutive response of beryllium, the combined influence of high strain rate and temperature on the mechanical behavior and microstructure of beryllium has received limited attention over the last 40 years. In the current work, high strain rate tests were conducted using both explosive drive and a gas gun to accelerate the material. Prior studies have focused on tensile loading behavior, or limited conditions of dynamic strain rate and/or temperature. Two constitutive strength (plasticity models, the Preston-Tonks-Wallace (PTW and Mechanical Threshold Stress (MTS models, were calibrated using common quasi-static and Hopkinson bar data. However, simulations with the two models give noticeably different results when compared with the measured experimental wave profiles. The experimental results indicate that, even if fractured by the initial shock loading, the Be remains sufficiently intact to support a shear stress following partial release and subsequent shock re-loading. Additional “arrested” drive shots were designed and tested to minimize the reflected tensile pulse in the sample. These tests were done to both validate the model and to put large shock induced compressive loads into the beryllium sample.

  3. Plasma cleaning of beryllium coated mirrors

    Moser, L.; Marot, L.; Steiner, R.; Newman, M.; Widdowson, A.; Ivanova, D.; Likonen, J.; Petersson, P.; Pintsuk, G.; Rubel, M.; Meyer, E.; Contributors, JET


    Cleaning systems of metallic first mirrors are needed in more than 20 optical diagnostic systems from ITER to avoid reflectivity losses. Currently, plasma sputtering is considered as one of the most promising techniques to remove deposits coming from the main wall (mainly beryllium and tungsten). This work presents the results of plasma cleaning of rhodium and molybdenum mirrors exposed in JET-ILW and contaminated with typical tokamak elements (including beryllium and tungsten). Using radio frequency (13.56 MHz) argon or helium plasma, the removal of mixed layers was demonstrated and mirror reflectivity improved towards initial values. The cleaning was evaluated by performing reflectivity measurements, scanning electron microscopy, x-ray photoelectron spectroscopy and ion beam analysis.

  4. PIGE analysis of magnesium and beryllium

    Fonseca, M.; Jesus, A. P.; Luís, H.; Mateus, R.; Cruz, J.; Gasques, L.; Galaviz, D.; Ribeiro, J. P.


    In this work, we present an alternative method for PIGE analysis of magnesium and beryllium in thick samples. This method is based on the ERYA - Emitted Radiation Yield Analysis - code, which integrates the nuclear reaction excitation function along the depth of the sample. For this purpose, the excitations functions of the 25Mg(p,p'γ) 25Mg ( Eγ = 585 keV) and 9Be(p,γ) 10B ( Eγ = 718 keV) reactions were employed. Calculated gamma-ray yields were compared, at several proton energy values, with experimental yields for thick samples made of inorganic compounds containing magnesium or beryllium. The agreement is better than 5%. Taking into consideration the experimental uncertainty of the measured yields and the errors related to the stopping power values, this agreement shows that effects as the beam energy straggling, ignored in the calculation, seem to play a minor role.

  5. Isotope selective photodissociation of N-2 by the interstellar radiation field and cosmic rays

    Heays, Alan N.; Visser, Ruud; Gredel, Roland; Ubachs, Wim; Lewis, Brenton R.; Gibson, Stephen T.; van Dishoeck, Ewine F.


    Photodissociation of 14N2 and 14N15N occurs in interstellar clouds, circumstellar envelopes, protoplanetary discs, and other environments due to UV radiation from stellar sources and the presence of cosmic rays. This source of N atoms initiates the formation of complex N-bearing species and influences their isotopic composition. To study the photodissociation rates of 14N15N by UV continuum radiation and both isotopologues in a field of cosmic ray induced photons. To determine the effect of t...

  6. Nuclear level densities and gamma-ray strength functions of 145,149,151Nd isotopes

    Ay, K. O.; Ozgur, M.; Algin, E.; Guttormsen, M.; Bello Garrote, F. L.; Crespo Campo, L.; Görgen, A.; Hagen, T. W.; Ingeberg, V. W.; Kheswa, B. V.; Klintefjord, M.; Larsen, A. C.; Midtbo, J. E.; Modamio, V.; Renstrom, T.; Rose, S. J.; Sahin, E.; Siem, S.; Tveten, G. M.; Zeiser, F.


    The nuclear level densities and gamma-ray strength functions are the key elements for Hauser-Feshbach statistical model calculations to predict reaction cross sections which have many applications including astrophysics. The nuclear level densities and y-ray strength functions have been determined for 145,149,151Nd isotopes below the neutron separation energies using the Oslo method with the 144,148,150Nd(d,p) reactions. The results from the first measurements as well as planned experiments at OCL will be presented.

  7. Characterization of Shocked Beryllium

    Cady, Carl M [Los Alamos National Laboratory; Adams, Chris D [Los Alamos National Laboratory; Hull, Lawrence M [Los Alamos National Laboratory; Gray III, George T [Los Alamos National Laboratory; Prime, Michael B [Los Alamos National Laboratory; Addessio, Francis L [Los Alamos National Laboratory; Wynn, Thomas A [Los Alamos National Laboratory; Brown, Eric N [Los Alamos National Laboratory


    Beryllium metal has many excellent structural properties in addition to its unique radiation characteristics, including: high elastic modulus, low Poisson's ratio, low density, and high melting point. However, it suffers from several major mechanical drawbacks: 1) high anisotropy - due to its hexagonal lattice structure and its susceptibility to crystallographic texturing; 2) susceptibility to impurity-induced fracture - due to grain boundary segregation; and 3) low intrinsic ductility at ambient temperatures thereby limiting fabricability. While large ductility results from deformation under the conditions of compression, the material can exhibit a brittle behavior under tension. Furthermore, there is a brittle to ductile transition at approximately 200 C under tensile conditions. While numerous studies have investigated the low-strain-rate constitutive response of beryllium, the combined influence of high strain rate and temperature on the mechanical behavior and microstructure of beryllium has received limited attention over the last 40 years. Prior studies have focused on tensile loading behavior, or limited conditions of dynamic strain rate and/or temperature. The beryllium used in this study was Grade S200-F (Brush Wellman, Inc., Elmore, OH) material. The work focused on high strain rate deformation and examine the validity of constitutive models in deformation rate regimes, including shock, the experiments were modeled using a Lagrangian hydrocode. Two constitutive strength (plasticity) models, the Preston-Tonks-Wallace (PTW) and Mechanical Threshold Stress (MTS) models, were calibrated using the same set of quasi-static and Hopkinson bar data taken at temperatures from 77K to 873K and strain rates from 0.001/sec to 4300/sec. In spite of being calibrated on the same data, the two models give noticeably different results when compared with the measured wave profiles. These high strain rate tests were conducted using both explosive drive and a gas gun to

  8. Joining of Beryllium

    Goldberg, A


    A handbook dealing with the many aspects of beryllium that would be important for the users of this metal is currently being prepared. With an introduction on the applications, advantages and limitations in the use of this metal the following topics will be discussed in this handbook: physical, thermal, and nuclear properties; extraction from the ores; purification and casting of ingots; production and types of beryllium powders; consolidation methods, grades, and properties; mechanical properties with emphasis on the various factors affecting these properties; forming and mechanical working; welding, brazing, bonding, and fastening; machining; powder deposition; corrosion; health aspects; and examples of production of components. This report consists of ''Section X--Joining'' from the handbook. The prefix X is maintained here for the figures, tables and references. In this section the different methods used for joining beryllium and the advantages, disadvantages and limitations of each are presented. The methods discussed are fusion welding, brazing, solid state bonding (diffusion bonding and deformation bonding), soldering, and mechanical fastening. Since beryllium has a high affinity for oxygen and nitrogen with the formation of oxides and nitrides, considerable care must be taken on heating the metal, to protect it from the ambient atmosphere. In addition, mating surfaces must be cleaned and joints must be designed to minimize residual stresses as well as locations for stress concentration (notch effects). In joining any two metals the danger exists of having galvanic corrosion if the part is subjected to moisture or to any type of corroding environment. This becomes a problem if the less noble (anodic) metal has a significantly smaller area than the more noble (cathodic) metal since the ions (positive charges) from the anodic (corroding) metal must correspond to the number of electrons (negative charges) involved at the cathode. Beryllium

  9. Stable Isotope and Signature Fatty Acid Analyses Suggest Reef Manta Rays Feed on Demersal Zooplankton: e77152

    Lydie I E Couturier; Christoph A Rohner; Anthony J Richardson; Andrea D Marshall; Fabrice R A Jaine; Michael B Bennett; Kathy A Townsend; Scarla J Weeks; Peter D Nichols


    .... Stable isotope and signature fatty acid analyses of muscle tissue were used for the first time to examine assimilated diet of the reef manta ray Manta alfredi, and were compared with different...

  10. Isotopic Variations Within the Carbo Iron Meteorite: A Case Study of the Effects from Galactic Cosmic Rays

    Cook, D. L.; Hunt, A. C.; Ek, M. E.; Leya, I.; Schönbächler, M.


    Four aliquots of the Carbo (IID) iron meteorite were sampled representing different depths within the original meteoroid. These samples were used to investigate the effects of galactic cosmic rays on the isotopes of Pt, Pd, Fe, and Ni.

  11. Technical Basis for PNNL Beryllium Inventory

    Johnson, Michelle Lynn


    The Department of Energy (DOE) issued Title 10 of the Code of Federal Regulations Part 850, “Chronic Beryllium Disease Prevention Program” (the Beryllium Rule) in 1999 and required full compliance by no later than January 7, 2002. The Beryllium Rule requires the development of a baseline beryllium inventory of the locations of beryllium operations and other locations of potential beryllium contamination at DOE facilities. The baseline beryllium inventory is also required to identify workers exposed or potentially exposed to beryllium at those locations. Prior to DOE issuing 10 CFR 850, Pacific Northwest Nuclear Laboratory (PNNL) had documented the beryllium characterization and worker exposure potential for multiple facilities in compliance with DOE’s 1997 Notice 440.1, “Interim Chronic Beryllium Disease.” After DOE’s issuance of 10 CFR 850, PNNL developed an implementation plan to be compliant by 2002. In 2014, an internal self-assessment (ITS #E-00748) of PNNL’s Chronic Beryllium Disease Prevention Program (CBDPP) identified several deficiencies. One deficiency is that the technical basis for establishing the baseline beryllium inventory when the Beryllium Rule was implemented was either not documented or not retrievable. In addition, the beryllium inventory itself had not been adequately documented and maintained since PNNL established its own CBDPP, separate from Hanford Site’s program. This document reconstructs PNNL’s baseline beryllium inventory as it would have existed when it achieved compliance with the Beryllium Rule in 2001 and provides the technical basis for the baseline beryllium inventory.

  12. Summary of historical beryllium uses and airborne concentration levels at Los Alamos National Laboratory.

    Stefaniak, Aleksandr B; Weaver, Virginia M; Cadorette, Maureen; Puckett, Leslie G; Schwartz, Brian S; Wiggs, Laurie D; Jankowski, Mark D; Breysse, Patrick N


    Beryllium operations and accompanying medical surveillance of workers at Los Alamos National Laboratory began in the 1940s. In 1999 a Former Workers Medical Surveillance Program that includes screening for chronic beryllium disease was initiated. As part of this program, historical beryllium exposure conditions were reconstructed from archived paper and electronic industrial hygiene data sources to improve understanding of past beryllium uses and airborne concentration levels. Archived industrial hygiene sampling reports indicated beryllium was principally used in technical areas-01 and -03, primarily being machined. Beryllium was also used at 15 other technical areas in activities that ranged from explosives detonation to the manufacture of X-ray windows. A total of 4528 personal breathing zone and area air samples for beryllium, combined for purposes of calculating summary statistics, were identified during the records review phase. The geometric mean airborne beryllium concentration for the period 1949-1989 for all technical areas was 0.04 microg Be/m(3) with 97 percent of all sample below the 2.0 microg Be/m(3) occupational exposure limit (OEL). Average beryllium concentrations per decade were less than 1 microg Be/m(3) and annual geometric mean concentrations in technical area-03, the largest user of beryllium, were generally below 0.1 microg Be/m(3), indicating exposure was generally well-controlled, that is, below the OEL. Typical of many retrospective exposure assessments, not all archived data could be extracted and summarized. Despite this, we report a reasonable summary of potential beryllium uses and airborne concentration levels a worker may have encountered from 1949-1989. These data can be used to more effectively identify former worker populations at potential risk for chronic beryllium disease and to offer these workers screening as part of the Former Worker Medical Surveillance Program, and in the event that a case is diagnosed, help to understand

  13. Investigation of the single Particle Structure of the neutron-rich Sodium Isotopes $^{27-31}\\!$Na


    We propose to study the single particle structure of the neutron-rich isotopes $^{27-31}\\!$Na. These isotopes will be investigated via neutron pickup reactions in inverse kinematics on a deuterium and a beryllium target. Scattered beam particles and transfer products are detected in a position sensitive detector located around 0$^\\circ$. De-excitation $\\gamma$-rays emitted after an excited state has been populated will be registered by the MINIBALL Germanium array. The results will shed new light on the structure of the neutron-rich sodium isotopes and especially on the region of strong deformation around the N=20 nucleus $^{31}\\!$Na.

  14. Impact of beryllium reflector ageing on Safari–1 reactor core parameters / L.E. Moloko

    Moloko, Lesego Ernest


    The build–up of 6Li and 3He, that is, the strong thermal neutron absorbers or the so called "neutron poisons", in the beryllium reflector changes the physical characteristics of the reactor, such as reactivity, neutron spectra, neutron flux level, power distribution, etc.; furthermore,gaseous isotopes such as 3H and 4He induce swelling and embrittlement of the reflector. The SAFARI–1 research reactor, operated by Necsa at Pelindaba in South Africa, uses a beryllium reflector on...

  15. Thermal fatigue of beryllium

    Deksnis, E.; Ciric, D.; Falter, H. [JET Joint undertaking, Abingdon (United Kingdom)] [and others


    Thermal fatigue life of S65c beryllium castellated to a geometry 6 x 6 x (8-10)mm deep has been tested for steady heat fluxes of 3 MW/m{sup 2} to 5 MW/m{sup 2} and under pulsed heat fluxes (10-20 MW/m{sup 2}) for which the time averaged heat flux is 5 MW/m{sup 2}. These tests were carried out in the JET neutral beam test facility A test sequence with peak surface temperatures {le} 600{degrees}C produced no visible fatigue cracks. In the second series of tests, with T{sub max} {le} 750{degrees}C evidence for fatigue appeared after a minimum of 1350 stress cycles. These fatigue data are discussed in view of the observed lack of thermal fatigue in JET plasma operations with beryllium PFC. JET experience with S65b and S65c is reviewed; recent operations with {Phi} = 25 MW/m{sup 2} and sustained melting/resolidification are also presented. The need for a failure criterion for finite element analyses of Be PFC lifetimes is discussed.

  16. Proton irradiation effects on beryllium - A macroscopic assessment

    Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; Camino, Fernando


    Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting its lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This paper focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.

  17. Beryllium in the ITER blanket

    Billone, M.C.


    This paper consists of viewgraphs used in a presentation on the application of beryllium in breeding blankets for ITER and JET. The paper brings together data on the physical, thermal, mechanical, and chemical properties of beryllium and beryllium oxide for this type of application, as well as issues of compatibility with construction materials, and irradiation experience. It includes the results from testing programs carried out to arrive at some of the information, including fabrication work, irradiation experiments, and sample tests performed both in and out of the irradiation piles.

  18. Alteration of the Carbon and Nitrogen Isotopic Composition in the Martian Surface Rocks Due to Cosmic Ray Exposure

    Pavlov, A. A.; Pavlov, A. K.; Ostryakov, V. M.; Vasilyev, G. I.; Mahaffy, P.; Steele, A.


    C-13/C-12 and N-15/N-14 isotopic ratios are pivotal for our understanding of the Martian carbon cycle, history of the Martian atmospheric escape, and origin of the organic compounds on Mars. Here we demonstrate that the carbon and nitrogen isotopic composition of the surface rocks on Mars can be significantly altered by the continuous exposure of Martian surface to cosmic rays. Cosmic rays can effectively produce C-13 and N-15 isotopes via spallation nuclear reactions on oxygen atoms in various Martian rocks. We calculate that in the top meter of the Martian rocks, the rates of production of both C-13 and N-15 due to galactic cosmic rays (GCRs) exposure can vary within 1.5-6 atoms/cm3/s depending on rocks' depth and chemical composition. We also find that the average solar cosmic rays can produce carbon and nitrogen isotopes at a rate comparable to GCRs in the top 5-10 cm of the Martian rocks. We demonstrate that if the total carbon content in a surface Martian rock is rocks with relatively short exposure ages (e.g., 100 million years), cosmogenic changes in N-15/N-14 ratio are still very significant. We also show that a short exposure to cosmic rays of Allan Hills 84001 while on Mars can explain its high-temperature heavy nitrogen isotopic composition (N-15/N-14). Applications to Martian meteorites and the current Mars Science Laboratory mission are discussed.

  19. Isotopic anomalies in meteorites and cosmic rays and the heavy-neon puzzle

    Arnould, M. (Universite Libre de Bruxelles, Brussels, Belgium); Norgaard, H. (Copenhagen Univ., Denmark)


    Cosmogenic noble gases as isotopically anomalous matter produced in situ by cosmic ray bombardment of meteorites is studied as a possible lead to the origins of the solar system. Trapped gases are disregarded as being results of solar wind flare ions. It is proposed that planetary condensation from some primitive solar nebula may be accounted for by a synthesis of several current models. Key questions on the physics and chemistry of interstellar dust grains, on supernova shells in the interstellar medium, and on the interaction of supernova ejecta with dense clouds are considered, with a focus on Ne isotope anomalies in meteorites. It is noted that the presence of Ne-E (Ne-23), after a review of forward and backward radioactive decay chains, cannot be accounted for by gas trapping. Solar formation is thus unacceptable and stellar formation becomes plausible although Na-22 production is normally low in stellar events, carbon shells in supernova ejecta does account for Ne-E and Na-22 presence. It is concluded that a large enough sampling of meteorites does not yet exist, and that caution must be followed in interpretation of stellar interior behavior from components of galactic cosmic rays.

  20. Alteration of the carbon and nitrogen isotopic composition in the Martian surface rocks due to cosmic ray exposure

    Pavlov, A. A.; Pavlov, A. K.; Ostryakov, V. M.; Vasilyev, G. I.; Mahaffy, P.; Steele, A.


    13C/12C and 15N/14N isotopic ratios are pivotal for our understanding of the Martian carbon cycle, history of the Martian atmospheric escape, and origin of the organic compounds on Mars. Here we demonstrate that the carbon and nitrogen isotopic composition of the surface rocks on Mars can be significantly altered by the continuous exposure of Martian surface to cosmic rays. Cosmic rays can effectively produce 13C and 15N isotopes via spallation nuclear reactions on oxygen atoms in various Martian rocks. We calculate that in the top meter of the Martian rocks, the rates of production of both 13C and 15N due to galactic cosmic rays (GCRs) exposure can vary within 1.5-6 atoms/cm3/s depending on rocks' depth and chemical composition. We also find that the average solar cosmic rays can produce carbon and nitrogen isotopes at a rate comparable to GCRs in the top 5-10 cm of the Martian rocks. We demonstrate that if the total carbon content in a surface Martian rock is Mars can explain its high-temperature heavy nitrogen isotopic composition (15N/14N). Applications to Martian meteorites and the current Mars Science Laboratory mission are discussed.

  1. Impact of HFIR LEU Conversion on Beryllium Reflector Degradation Factors

    Ilas, Dan [ORNL


    An assessment of the impact of low enriched uranium (LEU) conversion on the factors that may cause the degradation of the beryllium reflector is performed for the High Flux Isotope Reactor (HFIR). The computational methods, models, and tools, comparisons with previous work, along with the results obtained are documented and discussed in this report. The report documents the results for the gas and neutronic poison production, and the heating in the beryllium reflector for both the highly enriched uranium (HEU) and LEU HFIR configurations, and discusses the impact that the conversion to LEU may have on these quantities. A time-averaging procedure was developed to calculate the isotopic (gas and poisons) production in reflector. The sensitivity of this approach to different approximations is gauged and documented. The results show that the gas is produced in the beryllium reflector at a total rate of 0.304 g/cycle for the HEU configuration; this rate increases by ~12% for the LEU case. The total tritium production rate in reflector is 0.098 g/cycle for the HEU core and approximately 11% higher for the LEU core. A significant increase (up to ~25%) in the neutronic poisons production in the reflector during the operation cycles is observed for the LEU core, compared to the HEU case, for regions close to the core s horizontal midplane. The poisoning level of the reflector may increase by more than two orders of magnitude during long periods of downtime. The heating rate in the reflector is estimated to be approximately 20% lower for the LEU core than for the HEU core. The decrease is due to a significantly lower contribution of the heating produced by the gamma radiation for the LEU core. Both the isotopic (gas and neutronic poisons) production and the heating rates are spatially non-uniform throughout the beryllium reflector volume. The maximum values typically occur in the removable reflector and close to the midplane.

  2. Beryllium Related Matter

    Gaylord, R F


    In recent months, LLNL has identified, commenced, and implemented a series of interim controls, compensatory measures, and initiatives to ensure worker safety, and improve safety processes with regards to potential worker exposure to beryllium. Many of these actions have been undertaken in response to the NNSA Independent Review (COR-TS-5/15/2008-8550) received by LLNL in November of 2008. Others are the result of recent discoveries, events or incidents, and lessons learned, or were scheduled corrective actions from earlier commitments. Many of these actions are very recent in nature, or are still in progress, and vary in the formality of implementation. Actions are being reviewed for effectiveness as they progress. The documentation of implementation, and review of effectiveness, when appropriate, of these actions will be addressed as part of the formal Corrective Action Plan addressing the Independent Review. The mitigating actions taken fall into the following categories: (1) Responses to specific events/concerns; (2) Development of interim controls; (3) Review of ongoing activities; and (4) Performance improvement measures.

  3. Be薄膜应力的X射线掠入射侧倾法分析*%Residual stress analysis by grazing-incidence X-ray diffraction on beryllium films∗


    Measurements of residual stress in beryllium thin film under standard Bragg-Brentano geometry are always problematic. In this article, a new experimental method using grazing-incidence X-ray diffraction is presented according to the convential sin2Ψ method, which effectively increases the signal-to-noise ratio. Analysis shows that the assumption (isotropic material) is logical, because the values of stress results from the three families of planes are camparable. The stress gradient can be measured at diffrenent grazing incidence angles. The results indicate the uniformity of the residual stress of the thin film along variousΦdirections.%  由于铍薄膜极易被X射线穿透,传统的几何模式下很难获得有效的X射线衍射应力分析结果。本文采用掠入射侧倾法分析SiO2基底上Be薄膜残余应力,相比其他衍射几何方法,提高了衍射的信噪比,获得的薄膜应力拟合曲线线形较好。对Be薄膜的不同晶面分析,残余应力结果相同,表明其力学性质各向同性;利用不同掠入射角下X射线的穿透深度不同,获得应力在深度方向上的分布;由薄膜面内不同方向的残余应力相同,确定薄膜处于等双轴应力状态。

  4. Beryllium--important for national defense

    Boland, M.A.


    Beryllium is one of the lightest and stiffest metals, but there was little industrial demand for it until the 1930s and 1940s when the aerospace, defense, and nuclear sectors began using beryllium and its compounds. Beryllium is now classified by the U.S. Department of Defense as a strategic and critical material because it is used in products that are vital to national security. The oxide form of beryllium was identified in 1797, and scientists first isolated metallic beryllium in 1828. The United States is the world's leading source of beryllium. A single mine at Spor Mountain, Utah, produced more than 85 percent of the beryllium mined worldwide in 2010. China produced most of the remainder, and less than 2 percent came from Mozambique and other countries. National stockpiles also provide significant amounts of beryllium for processing. To help predict where future beryllium supplies might be located, U.S.Geological Survey (USGS) scientists study how and where beryllium resources are concentrated in Earth's crust and use that knowledge to assess the likelihood that undiscovered beryllium resources may exist. Techniques to assess mineral resources have been developed by the USGS to support the stewardship of Federal lands and to better evaluate mineral resource availability in a global context. The USGS also compiles statistics and information on the worldwide supply of, demand for, and flow of beryllium. These data are used to inform U.S. national policymaking.

  5. 10 CFR 850.33 - Beryllium emergencies.


    ... 10 Energy 4 2010-01-01 2010-01-01 false Beryllium emergencies. 850.33 Section 850.33 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Specific Program Requirements § 850.33 Beryllium emergencies. (a) The responsible employer must comply with 29 CFR 1910.120(l) for...

  6. Pygmy resonance and low-energy enhancement in the $\\gamma$-ray strength functions of Pd~isotopes

    Eriksen, Tomas Kvalheim; Guttormsen, Magne; Görgen, Andreas; Larsen, Ann-Cecilie; Renstrøm, Therese; Ruud, Inger-Eli; Siem, Sunniva; Toft, Heidi Kristine; Tveten, Gry Merete; Wilson, Jonathan


    An unexpected enhancement in the $\\gamma$-ray strength function, as compared to the low energy tail of the Giant Dipole Resonance (GDR), has been observed for Sc, Ti, V, Fe and Mo isotopes for $E_\\gamma4$ MeV, which is interpreted as a PDR centered at $E_{\\gamma}\\approx8$ MeV. An enhanced $\\gamma$-ray strength at low energies is also observed for $^{105}$Pd, which is the lightest isotope measured in this work. Further, the results correspond and agree very well with the observations from the Cd isotopes, and support the suggested transitional region for the onset of low-energy enhancement with decreasing mass number. The neutron number dependency of the PDR strength is also evident.

  7. Neutron irradiation of beryllium pebbles

    Gelles, D.S.; Ermi, R.M. [Pacific Northwest National Lab., Richland, WA (United States); Tsai, H. [Argonne National Lab., IL (United States)


    Seven subcapsules from the FFTF/MOTA 2B irradiation experiment containing 97 or 100% dense sintered beryllium cylindrical specimens in depleted lithium have been opened and the specimens retrieved for postirradiation examination. Irradiation conditions included 370 C to 1.6 {times} 10{sup 22} n/cm{sup 2}, 425 C to 4.8 {times} 10{sup 22} n/cm{sup 2}, and 550 C to 5.0 {times} 10{sup 22} n/cm{sup 2}. TEM specimens contained in these capsules were also retrieved, but many were broken. Density measurements of the cylindrical specimens showed as much as 1.59% swelling following irradiation at 500 C in 100% dense beryllium. Beryllium at 97% density generally gave slightly lower swelling values.

  8. Beryllium strain under dynamic loading

    Pushkov Victor


    Full Text Available There are some data (not much on dynamic characteristics of beryllium that are important, for example, when estimating construction performance at NPP emergencies. A number of data on stress-strain curves, spall strength, shear strength, fracture and structure responses of shock loaded beryllium have obtained in US and Russian laboratories. For today the model description of this complex metal behavior does not have a reasonable agreement with the experimental data, thus a wider spectrum of experimental data is required. This work presents data on dynamic compression-test diagrams of Russian beryllium. Experiments are performed using Hopkinson bar method (SHPB. Strain rates were ε ∼ 103 s−1.

  9. Multiscale modelling of hydrogen behaviour on beryllium (0001 surface

    Ch. Stihl


    Full Text Available Beryllium is proposed to be a neutron multiplier and plasma facing material in future fusion devices. Therefore, it is crucial to acquire an understanding of the microscopic mechanisms of tritium accumulation and release as a result of transmutation processes that Be undergoes under neutron irradiation. A multiscale simulation of ad- and desorption of hydrogen isotopes on the beryllium (0001 surface is developed. It consists of ab initio calculations of certain H adsorption configurations, a suitable cluster expansion approximating the energies of arbitrary configurations, and a kinetic Monte Carlo method for dynamic simulations of adsorption and desorption. The processes implemented in the kinetic Monte Carlo simulation are deduced from further ab initio calculations comprising both, static relaxation as well as molecular dynamics runs. The simulation is used to reproduce experimental data and the results are compared and discussed. Based on the observed results, proposals for a refined model are made.

  10. Codeposition of deuterium ions with beryllium oxide at elevated temperatures

    Markin, A V; Gorodetsky, A E; Negodaev, M A; Rozhanskii, N V; Scaffidi-Argentina, F; Werle, H; Wu, C H; Zalavutdinov, R K; Zakharov, A P


    Deuterium-loaded BeO films were produced by sputtering the beryllium target with 10 keV Ne ions in D sub 2 gas at a pressure of approximately 1 Pa. The sputtered beryllium reacts - on the substrate surface - with the residual oxygen, thus forming a beryllium oxide layer. Biasing the substrate negatively with respect to the target provides the simultaneous bombardment of the growing film surface with D ions formed by Ne-D sub 2 collisions. Substrate potential governs the maximum energy of ions striking the growing film surface while its size governs the flux density. According to X-ray photoelectron spectroscopy (XPS), electron probe microanalysis (EPMA) and reflection high energy electron diffraction (RHEED) data, the beryllium is deposited in the form of polycrystalline hcp-BeO layers with negligible (about 1 at.%) carbon and neon retention. Thermal desorption spectroscopy (TDS) data shows a strong deuterium bonding, with a desorption peak at 950 K, in the films deposited at -50 and -400 V substrate potentia...

  11. TEM study of impurity segregations in beryllium pebbles

    Klimenkov, M.; Chakin, V.; Moeslang, A.; Rolli, R.


    Beryllium is planned to be used as a neutron multiplier in the Helium-cooled Pebble Bed European concept of a breeding blanket of demonstration power reactor DEMO. In order to evaluate the irradiation performance, individual pebbles and constrained pebble beds were neutron-irradiated at temperatures typical of fusion blankets. Beryllium pebbles 1 mm in diameter produced by the rotating electrode method were subjected to a TEM study before and after irradiation at High Flux Reactor, Petten, Netherlands at 861 K. The grain size varied in a wide range from sub-micron size up to several tens of micrometers, which indicated formation bimodal grain size distribution. Based on the application of combined electron energy loss spectroscopy and energy dispersive X-ray spectroscopy methods, we suggest that impurity precipitates play an important role in controlling the mechanical properties of beryllium. The impurity elements were present in beryllium at a sub-percent concentration form beryllide particles of a complex (Fe/Al/Mn/Cr)B composition. These particles are often ordered along dislocations lines, forming several micron-long chains. It can be suggested that fracture surfaces often extended along these chains in irradiated material.

  12. TEM study of impurity segregations in beryllium pebbles

    Klimenkov, M., E-mail: [Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Chakin, V.; Moeslang, A. [Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, R. [Institute for Applied Materials – Materials and Biomechanics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)


    Beryllium is planned to be used as a neutron multiplier in the Helium-cooled Pebble Bed European concept of a breeding blanket of demonstration power reactor DEMO. In order to evaluate the irradiation performance, individual pebbles and constrained pebble beds were neutron-irradiated at temperatures typical of fusion blankets. Beryllium pebbles 1 mm in diameter produced by the rotating electrode method were subjected to a TEM study before and after irradiation at High Flux Reactor, Petten, Netherlands at 861 K. The grain size varied in a wide range from sub-micron size up to several tens of micrometers, which indicated formation bimodal grain size distribution. Based on the application of combined electron energy loss spectroscopy and energy dispersive X-ray spectroscopy methods, we suggest that impurity precipitates play an important role in controlling the mechanical properties of beryllium. The impurity elements were present in beryllium at a sub-percent concentration form beryllide particles of a complex (Fe/Al/Mn/Cr)B composition. These particles are often ordered along dislocations lines, forming several micron-long chains. It can be suggested that fracture surfaces often extended along these chains in irradiated material.

  13. Reactivity test between beryllium and copper

    Kawamura, H. [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan); Kato, M. [NGK Insulators, Ltd., Aichi-ken (Japan)


    Beryllium has been expected for using as plasma facing material on ITER. And, copper alloy has been proposed as heat sink material behind plasma facing components. Therefore, both materials must be joined. However, the elementary process of reaction between beryllium and copper alloy does not clear in detail. For example, other authors reported that beryllium reacted with copper at high temperature, but it was not obvious about the generation of reaction products and increasing of the reaction layer. In the present work, from this point, for clarifying the elementary process of reaction between beryllium and copper, the out-of-pile compatibility tests were conducted with diffusion couples of beryllium and copper which were inserted in the capsule filled with high purity helium gas (6N). Annealing temperatures were 300, 400, 500, 600 and 700{degrees}C, and annealing periods were 100, 300 and 1000h. Beryllium specimens were hot pressed beryllium, and copper specimens were OFC (Oxygen Free Copper).

  14. The Status of Beryllium Research for Fusion in the United States

    Glen R. Longhurst


    Use of beryllium in fusion reactors has been considered for neutron multiplication in breeding blankets and as an oxygen getter for plasma-facing surfaces. Previous beryllium research for fusion in the United States included issues of interest to fission (swelling and changes in mechanical and thermal properties) as well as interactions with plasmas and hydrogen isotopes and methods of fabrication. When the United States formally withdrew its participation in the International Thermonuclear Experimental Reactor (ITER) program, much of this effort was terminated. The focus in the U.S. has been mainly on toxic effects of beryllium and on industrial hygiene and health-related issues. Work continued at the INEEL and elsewhere on beryllium-containing molten salts. This activity is part of the JUPITER II Agreement. Plasma spray of ITER first wall samples at Los Alamos National Laboratory has been performed under the European Fusion Development Agreement. Effects of irradiation on beryllium structure are being studied at Oak Ridge National Laboratory. Numerical and phenomenological models are being developed and applied to better understand important processes and to assist with design. Presently, studies are underway at the University of California Los Angeles to investigate thermo-mechanical characteristics of beryllium pebble beds, similar to research being carried out at Forschungszentrum Karlsruhe and elsewhere. Additional work, not funded by the fusion program, has dealt with issues of disposal, and recycling.

  15. Worker Environment Beryllium Characterization Study

    NSTec Environment, Safety, Health & Quality


    This report summarizes the conclusion of regular monitoring of occupied buildings at the Nevada Test Site and North Las Vegas facility to determine the extent of beryllium (Be) contamination in accordance with Judgment of Needs 6 of the August 14, 2003, “Minnema Report.”


    Brisson, M


    Because of its unique properties as a lightweight metal with high tensile strength, beryllium is widely used in applications including cell phones, golf clubs, aerospace, and nuclear weapons. Beryllium is also encountered in industries such as aluminium manufacturing, and in environmental remediation projects. Workplace exposure to beryllium particulates is a growing concern, as exposure to minute quantities of anthropogenic forms of beryllium may lead to sensitization and to chronic beryllium disease, which can be fatal and for which no cure is currently known. Furthermore, there is no known exposure-response relationship with which to establish a 'safe' maximum level of beryllium exposure. As a result, the current trend is toward ever lower occupational exposure limits, which in turn make exposure assessment, both in terms of sampling and analysis, more challenging. The problems are exacerbated by difficulties in sample preparation for refractory forms of beryllium, such as beryllium oxide, and by indications that some beryllium forms may be more toxic than others. This chapter provides an overview of sources and uses of beryllium, health risks, and occupational exposure limits. It also provides a general overview of sampling, analysis, and data evaluation issues that will be explored in greater depth in the remaining chapters. The goal of this book is to provide a comprehensive resource to aid personnel in a wide variety of disciplines in selecting sampling and analysis methods that will facilitate informed decision-making in workplace and environmental settings.

  17. Experimental study of muonic x-ray transitions in mercury isotopes. [Fermi distribution, B(E2)

    Hahn, A.A.; Miller, J.P.; Powers, R.J.; Zehnder, A.; Rushton, A.M.; Welsh, R.E.; Kunselman, A.R.; Roberson, P.; Walter, H.K.


    Muonic x-ray spectra were measured for /sup 198/ /sup 199/ /sup 200/ /sup 201/ /sup 202/ and /sup 204/Hg. These data were interpreted in terms of a two parameter Fermi distribution for the charge density. The spectroscopic quadrupole moments (Q/sub s/) of some of the 2/sup +/ nuclear states were inferred. For /sup 199/Hg the spectroscopic quadrupole moments of the first two excited states and the B(E2)'s connecting these states to the ground state were determined. For /sup 201/Hg the ground state quadrupole moment was obtained as well as several other E2 moments but the interpretation of the data was hampered by a possible incomplete knowledge of the nuclear scheme of this nucleus. The muonic isotope shifts were measured and interpreted in terms of deltaR/sub k/ and are compared to electronic x-ray and optical isotope shift measurements. 41 references

  18. Defense programs beryllium good practice guide

    Herr, M.


    Within the DOE, it has recently become apparent that some contractor employees who have worked (or are currently working) with and around beryllium have developed chronic beryllium disease (CBD), an occupational granulomatous lung disorder. Respiratory exposure to aerosolized beryllium, in susceptible individuals, causes an immunological reaction that can result in granulomatous scarring of the lung parenchyma, shortness of breath, cough, fatigue, weight loss, and, ultimately, respiratory failure. Beryllium disease was originally identified in the 1940s, largely in the fluorescent light industry. In 1950, the Atomic Energy Commission (AEC) introduced strict exposure standards that generally curtailed both the acute and chronic forms of the disease. Beginning in 1984, with the identification of a CBD case in a DOE contractor worker, there was increased scrutiny of both industrial hygiene practices and individuals in this workforce. To date, over 100 additional cases of beryllium-specific sensitization and/or CBD have been identified. Thus, a disease previously thought to be largely eliminated by the adoption of permissible exposure standards 45 years ago is still a health risk in certain workforces. This good practice guide forms the basis of an acceptable program for controlling workplace exposure to beryllium. It provides (1) Guidance for minimizing worker exposure to beryllium in Defense Programs facilities during all phases of beryllium-related work, including the decontamination and decommissioning (D&D) of facilities. (2) Recommended controls to be applied to the handling of metallic beryllium and beryllium alloys, beryllium oxide, and other beryllium compounds. (3) Recommendations for medical monitoring and surveillance of workers exposed (or potentially exposed) to beryllium, based on the best current understanding of beryllium disease and medical diagnostic tests available. (4) Site-specific safety procedures for all processes of beryllium that is likely to

  19. Beryllium Lymphocyte Proliferation Test Surveillance Identifies Clinically Significant Beryllium Disease

    Mroz, Margaret M.; Maier, Lisa A.; Strand, Matthew; Silviera, Lori; Newman, Lee S.


    Background Workplace surveillance identifies chronic beryllium disease (CBD) but it remains unknown over what time frame mild CBD will progress to a more severe form. Methods We examined physiology and treatment in 229 beryllium sensitization (BeS) and 171 CBD surveillance-identified cases diagnosed from 1982 to 2002. Never smoking CBD cases (81) were compared to never smoking BeS patients (83) to assess disease progression. We compared CBD machinists to non-machinists to examine effects of exposure. Results At baseline, CBD and BeS cases did not differ significantly in exposure time or physiology. CBD patients were more likely to have machined beryllium. Of CBD cases, 19.3% went on to require oral immunosuppressive therapy. At 30 years from first exposure, measures of gas exchange were significantly worse and total lung capacity was lower for CBD subjects. Machinists had faster disease progression as measured by pulmonary function testing and gas exchange. Conclusions Medical surveillance for CBD identifies individuals at significant risk of disease progression and impairment with sufficient time since first exposure. PMID:19681064

  20. Mutagenicity, carcinogenicity and teratogenicity of beryllium.

    Léonard, A; Lauwerys, R


    The carcinogenicity of a number of beryllium compounds has been confirmed in experiments on laboratory animals and this metal has to be treated as a possible carcinogenic threat to man. These carcinogenic properties are associated with mutagenic activity as shown by the results of short-term tests performed in vitro with beryllium chloride and beryllium sulfate. These soluble beryllium compounds can produce some infidelity of in vitro synthesis, forward gene mutations in microorganisms and in mammalian cells. They are also able to induce cell transformation. In addition to the positive results obtained in several short-term assays beryllium compounds have been found to bind to nucleoproteins, to inhibit certain enzymes needed for DNA synthesis, to bind nucleic acids to cell membranes and to inhibit microtubule polymerization. The teratogenicity of beryllium salts is relatively unknown and needs additional investigation.

  1. Advances in identifying beryllium sensitization and disease.

    Middleton, Dan; Kowalski, Peter


    Beryllium is a lightweight metal with unique qualities related to stiffness, corrosion resistance, and conductivity. While there are many useful applications, researchers in the 1930s and 1940s linked beryllium exposure to a progressive occupational lung disease. Acute beryllium disease is a pulmonary irritant response to high exposure levels, whereas chronic beryllium disease (CBD) typically results from a hypersensitivity response to lower exposure levels. A blood test, the beryllium lymphocyte proliferation test (BeLPT), was an important advance in identifying individuals who are sensitized to beryllium (BeS) and thus at risk for developing CBD. While there is no true "gold standard" for BeS, basic epidemiologic concepts have been used to advance our understanding of the different screening algorithms.

  2. Gamma ray heating rates due to chromium isotopes in stellar core during late stages of high mass stars (>10M⊙

    Nabi Jameel-Un


    Full Text Available Gamma ray heating rates are thought to play a crucial role during the pre-supernova stage of high mass stars. Gamma ray heating rates, due to β±-decay and electron (positron capture on chromium isotopes, are calculated using proton-neutron quasiparticle random phase approximation theory. The electron capture significantly affects the lepton fraction (Ye and accelerates the core contraction. The gamma rays emitted as a result of weak processes heat the core and tend to hinder the cooling and contraction due to electron capture and neutrino emission. The emitted gamma rays tend to produce enormous entropy and set the convection to play its role at this stage. The gamma heating rates, on 50-60Cr, are calculated for the density range 10 < ρ ( < 1011 and temperature range 107 < T (K < 3.0×1010.


    ZHAO,Y.; WANG,H.


    The electrical conductivity of beryllium at radio frequency (800 MHz) and liquid nitrogen temperature were investigated and measured. This summary addresses a collection of beryllium properties in the literature, an analysis of the anomalous skin effect, the test model, the experimental setup and improvements, MAFIA simulations, the measurement results and data analyses. The final results show that the conductivity of beryllium is not as good as indicated by the handbook, yet very close to copper at liquid nitrogen temperature.

  4. Inhibited solid propellant composition containing beryllium hydride

    Thompson, W. W. (Inventor)


    An object of this invention is to provide a composition of beryllium hydride and carboxy-terminated polybutadiene which is stable. Another object of this invention is to provide a method for inhibiting the reactivity of beryllium hydride toward carboxy-terminated polybutadiene. It was found that a small amount of lecithin inhibits the reaction of beryllium hydride with the acid groups in carboxy terminated polybutadiene.

  5. High-temperature beryllium embrittlement

    Pokrovsky, A.S. [Scientific Research Inst. of Atomic Reactors, Dimitrovgrad (Russian Federation); Fabritsiev, S.A. [D.V. Efremov Scientific Research Institute, 189631 St. Petersburg (Russian Federation); Bagautdinov, R.M. [Scientific Research Inst. of Atomic Reactors, Dimitrovgrad (Russian Federation); Goncharenko, Yu.D. [Scientific Research Inst. of Atomic Reactors, Dimitrovgrad (Russian Federation)


    The neutron irradiation effect on the mechanical properties, swelling and fracture surface structure of various beryllium grades was studied in the BOR-60 reactor at 340 to 350 C up to a fluence of 7.2 x 10{sup 21} n/cm{sup 2}. At a mechanical testing temperature of 400 C there was observed a strong anisotropy of plastic beryllium deformation depending on the direction of sample cutting relative to the pressing direction. An increase of the testing temperature up to 700 C resulted in an abrupt embrittlement of all irradiated samples. In the most part of the surface structure the intercrystallite fracture along the grain boundaries was covered entirely with large pores, 1 to 4 {mu}m in size. It was suggested that the increased rate of pore formation along the grain boundaries resulted from a high-temperature embrittlement under irradiation. (orig.).

  6. Beryllium thin films for resistor applications

    Fiet, O.


    Beryllium thin films have a protective oxidation resistant property at high temperature and high recrystallization temperature. However, the experimental film has very low temperature coefficient of resistance.

  7. Medical CT image reconstruction accuracy in the presence of metal objects using x-rays up to 1 MeV with x-ray targets of beryllium, carbon, aluminum, copper, and tungsten

    Clayton, James; Ganguly, Arundhuti; Virshup, Gary


    Flat panels imagers based on amorphous silicon technology (a-Si) for digital radiography have been accepted by the medical community as having several advantages over film-based systems. Radiotherapy treatment planning systems employ computed tomographic (CT) data sets and projection images to delineate tumor targets and normal structures that are to be spared from radiation treatment. The accuracy of CT numbers is crucial for radiotherapy dose calculations. Conventional CT scanners operating at kilovoltage X-ray energies typically exhibit significant image reconstruction artifacts in the presence of metal implants in human body. Megavoltage X-ray energies have problems maintaining contrast sensitivity for the same dose as kV X-ray systems. We intend to demonstrate significant improvement in metal artifact reductions and electron density measurements using an amorphous silicon a-Si imager obtained with an X-ray source that can operate at energies up to 1 MeV. We will investigate the ability to maintain contrast sensitivity at this higher X-ray energy by using targets with lower atomic numbers and appropriate amounts of Xray filtration than are typically used as X-ray production targets and filters.

  8. The performance of the γ-ray tracking array GRETINA for γ-ray spectroscopy with fast beams of rare isotopes

    Weisshaar, D.; Bazin, D.; Bender, P. C.; Campbell, C. M.; Recchia, F.; Bader, V.; Baugher, T.; Belarge, J.; Carpenter, M. P.; Crawford, H. L.; Cromaz, M.; Elman, B.; Fallon, P.; Forney, A.; Gade, A.; Harker, J.; Kobayashi, N.; Langer, C.; Lauritsen, T.; Lee, I. Y.; Lemasson, A.; Longfellow, B.; Lunderberg, E.; Macchiavelli, A. O.; Miki, K.; Momiyama, S.; Noji, S.; Radford, D. C.; Scott, M.; Sethi, J.; Stroberg, S. R.; Sullivan, C.; Titus, R.; Wiens, A.; Williams, S.; Wimmer, K.; Zhu, S.


    The γ-ray tracking array GRETINA was coupled to the S800 magnetic spectrometer for spectroscopy with fast beams of rare isotopes at the National Superconducting Cyclotron Laboratory on the campus of Michigan State University. We describe the technical details of this powerful setup and report on GRETINA's performance achieved with source and in-beam measurements. The γ-ray multiplicity encountered in experiments with fast beams is usually low, allowing for a simplified and efficient treatment of the data in the γ-ray analysis in terms of Doppler reconstruction and spectral quality. The results reported in this work were obtained from GRETINA consisting of 8 detector modules hosting four high-purity germanium crystals each. Currently, GRETINA consists of 10 detector modules.

  9. Evidence from Voyager and ISEE-3 spacecraft. Data for the decay of secondary K-electron capture isotopes during the propagation of cosmic rays in the Galaxy

    Soutoul, A.; Legrain, R.; Lukasiak, A.; McDonald, F. B.; Webber, W. R.


    New data from the cosmic ray experiment on the Voyager spacecraft confirms and extends earlier data from a similar experiment on the ISEE-3 spacecraft which indicates the possibility of the decay of certain K-capture isotopes during the interstellar propagation of galactic cosmic rays. These cosmic ray measurements, along with the cross section measurements, indicate that ~ 25% of the K-capture isotopes (51Cr and (49V produced as secondaries have decayed at interstellar energy of ~ 400 MeV/nuc. This suggests a possible interstellar energy gain ~ 100 MeV/nuc out of the current interstellar energy ~ 500 MeV/nuc. This measurement suggests that the study of the K-capture isotopes may now have reached a level that will soon provide definitive information on the amount of re-acceleration that may occur during cosmic-ray propagation after an initial acceleration in the cosmic ray sources.

  10. Beryllium particulate exposure and disease relations in a beryllium machining plant.

    Kelleher, P C; Martyny, J W; Mroz, M M; Maier, L A; Ruttenber, A J; Young, D A; Newman, L S


    We examined the relationship between exposure to beryllium and the presence of beryllium sensitization (BeS) and chronic beryllium disease (CBD) in a cohort of workers in a beryllium precision machining facility. Twenty workers with BeS or CBD (cases) were compared with 206 worker-controls in a case-control study. Exposure for each job title was measured using cascade impactors placed in the workers' breathing zone to measure total beryllium exposure and exposure to particles 0.20. In conclusion, increased cumulative and LTW exposure to total and respirable beryllium was observed in workers with CBD or BeS compared with the controls. These results support efforts to control beryllium exposure in the workplace.

  11. Study the effect of beryllium reflector poisoning on the Syrian MNSR.

    Omar, H; Ghazi, N; Haddad, Kh; Ezzuddin, H


    Neutron interactions with beryllium lead to formation of (3)H and strong neutron absorbers (3)He and (6)Li in the reflector (so called beryllium poisoning). After the reactor shutdown, the concentration of (3)He increases in time due to tritium decay. This paper illustrates the impact of poisoning accumulation in the beryllium reflectors on reactivity for the Syrian MNSR research reactor. The prediction of (6)Li and (3)He poison concentrations, initiated by the 9Be(n,α) reaction, in the beryllium reflectors of the MNSR was also presented. The results were based on MCNP Monte Carlo calculations and solutions to the differential equations which describe the time dependent poison concentrations as a function of reactor operation time and shutdown periods. The whole reactor history was taken into account to predict reliable values of parasitic isotope concentrations. It was found that the (3)He and (6)Li accumulations in the beryllium reflectors during the actual working history decreased the excess reactivity by about 28%. While, the effect became more significant at the reactor life's end and the reactor became subcritical after 25,000 h operation. The results contained in this paper could be used in assess the safety analysis of the MNSR reactor.

  12. Investigations of the ternary system beryllium-carbon-tungsten and analyses of beryllium on carbon surfaces; Untersuchung des ternaeren Systems Beryllium-Kohlenstoff-Wolfram und Betrachtungen von Beryllium auf Kohlenstoffoberflaechen

    Kost, Florian


    Beryllium, carbon and tungsten are planned to be used as first wall materials in the future fusion reactor ITER. The aim of this work is a characterization of mixed material formation induced by thermal load. To this end, model systems (layers) were prepared and investigated, which give insight into the basic physical and chemical concepts. Before investigating ternary systems, the first step was to analyze the binary systems Be/C and Be/W (bottom-up approach), where the differences between the substrates PG (pyrolytic graphite) and HOPG (highly oriented pyrolytic graphite) were of special interest. Particularly X-ray photoelectron spectroscopy (XPS), low energy ion scattering (ISS) and Rutherford backscattering spectroscopy (RBS) were used as analysis methods. Beryllium evaporated on carbon shows an island growth mode, whereas a closed layer can be assumed for layer thicknesses above 0.7 nm. Annealing of the Be/C system induces Be{sub 2}C island formation for T{>=}770 K. At high temperatures (T{>=}1170 K), beryllium carbide dissociates, resulting in (metallic) beryllium desorption. For HOPG, carbide formation starts at higher temperatures compared to PG. Activation energies for the diffusion processes were determined by analyzing the decreasing beryllium amount versus annealing time. Surface morphologies were characterized using angle-resolved XPS (ARXPS) and atomic force microscopy (AFM). Experiments were performed to study processes in the Be/W system in the temperature range from 570 to 1270 K. Be{sub 2}W formation starts at 670 K, a complete loss of Be{sub 2}W is observed at 1170 K due to dissociation (and subsequent beryllium desorption). Regarding ternary systems, particularly Be/C/W and C/Be/W were investigated, attaching importance to layer thickness (reservoir) variations. At room temperature, Be{sub 2}C, W{sub 2}C, WC and Be{sub 2}W formation at the respective interfaces was observed. Further Be{sub 2}C is forming with increasing annealing temperatures

  13. Investigation of beryllium/steam interaction

    Chekhonadskikh, A.M.; Vurim, A.D.; Vasilyev, Yu.S.; Pivovarov, O.S. [Inst. of Atomic Energy National Nuclear Center of the Republic of Kazakstan Semipalatinsk (Kazakhstan); Shestakov, V.P.; Tazhibayeva, I.L.


    In this report program on investigations of beryllium emissivity and transient processes on overheated beryllium surface attacked by water steam to be carried out in IAE NNC RK within Task S81 TT 2096-07-16 FR. The experimental facility design is elaborated in this Report. (author)

  14. Modeling of hydrogen interactions with beryllium

    Longhurst, G.R. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States)


    In this paper, improved mathematical models are developed for hydrogen interactions with beryllium. This includes the saturation effect observed for high-flux implantation of ions from plasmas and retention of tritium produced from neutronic transmutations in beryllium. Use of the models developed is justified by showing how they can replicated experimental data using the TMAP4 tritium transport code. (author)

  15. Benchmark Experiment for Beryllium Slab Samples

    NIE; Yang-bo; BAO; Jie; HAN; Rui; RUAN; Xi-chao; REN; Jie; HUANG; Han-xiong; ZHOU; Zu-ying


    In order to validate the evaluated nuclear data on beryllium,a benchmark experiment has been performed at China Institution of Atomic Energy(CIAE).Neutron leakage spectra from pure beryllium slab samples(10cm×10cm×11cm)were measured at 61°and 121°using timeof-

  16. Diffusion-bonded beryllium aluminum optical structures

    Grapes, Thomas F.


    Beryllium aluminum material can present significant advantages for optical support structures. A likely advantage of beryllium aluminum compared to aluminum or titanium for such structures is its higher specific stiffness. However, beryllium aluminum material is significantly more expensive than most competing materials. The cost problem with beryllium aluminum is exacerbated if fabrication methods that result in near net shape parts are not used. Near net shape methods result in the least amount of material "thrown away" in the fabrication process. Casting is a primary example of near net shape manufacturing that is appropriate for some optical support structures. Casting aluminum, and other materials as well, is common. Casting of beryllium aluminum is very difficult, however, and has not had significant success. Diffusion bonding - a different approach for achieving near net shape beryllium aluminum optical support structures, was pursued and accomplished. Diffusion bonding is a term used to describe the joining of solid metal pieces under high temperature and pressure, but without melting. Three different optical support structures were designed and built of beryllium aluminum using diffusion bonding. Relatively small solid beryllium aluminum pieces were arranged together and then joined under hot isostatic pressure conditions. The resulting relatively large pressure bonded part was then machined to achieve the final product. Significant cost savings as compared to machining the part from a solid block were realized. Difficulties achieving diffusion bonds in complex joints were experienced and addressed.


    Youmans-Mcdonald, L.


    Analysis for beryllium by fluorescence is now an established method which is used in many government-run laboratories and commercial facilities. This study investigates the use of this technique using commercially available wet wipes. The fluorescence method is widely documented and has been approved as a standard test method by ASTM International and the National Institute for Occupational Safety and Health (NIOSH). The procedure involves dissolution of samples in aqueous ammonium bifluoride solution and then adding a small aliquot to a basic hydroxybenzoquinoline sulfonate fluorescent dye (Berylliant{trademark} Inc. Detection Solution Part No. CH-2) , and measuring the fluorescence. This method is specific to beryllium. This work explores the use of three different commercial wipes spiked with beryllium, as beryllium acetate or as beryllium oxide and subsequent analysis by optical fluorescence. The effect of possible interfering metals such as Fe, Ti and Pu in the wipe medium is also examined.

  18. Some characteristics of fine beryllium particle combustion

    Davydov, D. A.; Kholopova, O. V.; Kolbasov, B. N.


    Beryllium dust will be produced under plasma interaction with beryllium armor of the first wall in ITER. Exothermal reaction of this dust with water steam or air, which can leak into the reactor vacuum chamber in some accidents, gives concern in respect to reactor safety. Results of studies devoted to combustion of fine beryllium particles are reviewed in the paper. A chemically active medium and elevated temperature are prerequisite to the combustion of beryllium particles. Their ignition is hampered by oxide films, which form a diffusion barrier on the particle surface as a result of pre-flame oxidation. The temperature to initiate combustion of particles depends on flame temperature, particle size, composition of combustible mixture, heating rate and other factors. In mixtures enriched with combustible, the flame temperature necessary to ignite individual particles approaches the beryllium boiling temperature.

  19. A diethylhydroxylaminate based mixed lithium/beryllium aggregate

    Berger, Raphael J.F. [Paris-Lodron Universitaet Salzburg (Austria). Fachbereich fuer Materialwissenschaften und Physik; Jana, Surajit [Asansol Girls College, West-Bengal (India). Dept. of Chemistry; Froehlich, Roland [Muenster Univ. (Germany). Organisch-Chemisches Inst.; Mitzel, Norbert W. [Bielefeld Univ. (Germany). Anorganische Chemie und Strukturchemie


    A mixed lithium/beryllium diethylhydroxylaminate compound containing {sup n}butyl beryllium units of total molecular composition {sup n}Be(ONEt{sub 2}){sub 2} [(LiONEt{sub 2}){sup 2} {sup n}BuBeONEt{sub 2}]{sub 2} (1) was isolated from a reaction mixture of {sup n}butyl lithium, N,N-diethylhydroxylamine and BeCl{sub 2} in diethylether/thf. The crystal structure of 1 has been determined by X-ray diffraction. The aggregate is composed of two ladder-type subunits connected in a beryllium-centered distorted tetrahedron of four oxygen atoms. Only the lithium atoms are engaged in coordination with the nitrogen donor atoms. The DFT calculations support the positional occupation determined for Li and Be in the crystal structure. The DFT and the solid-state structure are in excellent agreement, indicating only weak intermolecular interactions in the solid state. Structural details of metal atom coordination are discussed.

  20. Beryllium coating on Inconel tiles

    Bailescu, V.; Burcea, G.; Lungu, C.P.; Mustata, I.; Lungu, A.M. [Association EURATOM-MEC Romania, National Institute of Laser, Plasma and Radiation Physics, Bucharest (Romania); Rubel, M. [Alfven Laboratory, Royal Institute of Technology, Stockholm (Sweden); Coad, J.P. [Culham Science Centre, EURATOM-UKAEA Fusion Association, Abingdon, OX, Oxon (United Kingdom); Matthews, G.; Pedrick, L.; Handley, R. [UKAEA Fusion, Association Euratom-UKAEA, Culham Science and Engineering Centre, OX 3DB ABINGDON, Oxon (United Kingdom)


    Full text of publication follows: The Joint European Torus (JET) is a large experimental nuclear fusion device. Its aim is to confine and study the behaviour of plasma in conditions and dimensions approaching those required for a fusion reactor. The plasma is created in the toroidal shaped vacuum vessel of the machine in which it is confined by magnetic fields. In preparation for ITER a new ITER-like Wall (ILW) will be installed on Joint European Torus (JET), a wall not having any carbon facing the plasma [1]. In places Inconel tiles are to be installed, these tiles shall be coated with Beryllium. MEdC represented by the National Institute for Laser, Plasma and Radiation Physics, Magurele, Bucharest and in direct cooperation with Nuclear Fuel Plant Pitesti started to coat Inconel tiles with 8 {mu}m of Beryllium in accordance with the requirements of technical specification and fit for installation in the JET machine. This contribution provides an overview of the principles of manufacturing processes using thermal evaporation method in vacuum and the properties of the prepared coatings. The optimization of the manufacturing process (layer thickness, structure and purity) has been carried out on Inconel substrates (polished and sand blasted) The results of the optimization process and analysis (SEM, TEM, XRD, Auger, RBS, AFM) of the coatings will be presented. Reference [1] Takeshi Hirai, H. Maier, M. Rubel, Ph. Mertens, R. Neu, O. Neubauer, E. Gauthier, J. Likonen, C. Lungu, G. Maddaluno, G. F. Matthews, R. Mitteau, G. Piazza, V. Philipps, B. Riccardi, C. Ruset, I. Uytdenhouwen, R and D on full tungsten divertor and beryllium wall for JET TIER-like Wall Project, 24. Symposium on Fusion Technology - 11-15 September 2006 -Warsaw, Poland. (authors)

  1. 40 CFR 421.150 - Applicability: Description of the primary beryllium subcategory.


    ... primary beryllium subcategory. 421.150 Section 421.150 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Primary Beryllium Subcategory § 421.150 Applicability: Description of the primary beryllium... beryllium by primary beryllium facilities processing beryllium ore concentrates or beryllium hydroxide...

  2. Postirradiation examination of beryllium pebbles

    Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States)


    Postirradiation examinations of COBRA-1A beryllium pebbles irradiated in the EBR-II fast reactor at neutron fluences which generated 2700--3700 appm helium have been performed. Measurements included density change, optical microscopy, scanning electron microscopy, and transmission electron microscopy. The major change in microstructure is development of unusually shaped helium bubbles forming as highly non-equiaxed thin platelet-like cavities on the basal plane. Measurement of the swelling due to cavity formation was in good agreement with density change measurements.

  3. MGA: A gamma-ray spectrum analysis code for determining plutonium isotopic abundances. Volume 3, FORTRAN listing of the GA code

    Gunnink, R


    Nondestructive measurements of x-ray and gamma-ray emissions can be used to determine the abundances of various actinides in a sample. Volume 1 of this report describes the methods and algorithms we have developed to determine the relative isotopic abundances of actinides in a sample, by analyzing gamma-ray spectra obtained using germanium detector systems. Volume 2 is a guide to using the MGA (Multiple Group Analysis) computer program we have written to perform plutonium isotopic analyses. This report contains a listing of the FORTRAN instructions of the code.

  4. Technical issues for beryllium use in fusion blanket applications

    McCarville, T.J.; Berwald, D.H.; Wolfer, W.; Fulton, F.J.; Lee, J.D.; Maninger, R.C.; Moir, R.W.; Beeston, J.M.; Miller, L.G.


    Beryllium is an excellent non-fissioning neutron multiplier for fusion breeder and fusion electric blanket applications. This report is a compilation of information related to the use of beryllium with primary emphasis on the fusion breeder application. Beryllium resources, production, fabrication, properties, radiation damage and activation are discussed. A new theoretical model for beryllium swelling is presented.

  5. Exposure-response analysis for beryllium sensitization and chronic beryllium disease among workers in a beryllium metal machining plant.

    Madl, Amy K; Unice, Ken; Brown, Jay L; Kolanz, Marc E; Kent, Michael S


    The current occupational exposure limit (OEL) for beryllium has been in place for more than 50 years and was believed to be protective against chronic beryllium disease (CBD) until studies in the 1990s identified beryllium sensitization (BeS) and subclinical CBD in the absence of physical symptoms. Inconsistent sampling and exposure assessment methodologies have often prevented the characterization of a clear exposure-response relationship for BeS and CBD. Industrial hygiene (3831 personal lapel and 616 general area samples) and health surveillance data from a beryllium machining facility provided an opportunity to reconstruct worker exposures prior to the ascertainment of BeS or the diagnosis of CBD. Airborne beryllium concentrations for different job titles were evaluated, historical trends of beryllium levels were compared for pre- and postengineering control measures, and mean and upper bound exposure estimates were developed for workers identified as beryllium sensitized or diagnosed with subclinical or clinical CBD. Five approaches were used to reconstruct historical exposures of each worker: industrial hygiene data were pooled by year, job title, era of engineering controls, and the complete work history (lifetime weighted average) prior to diagnosis. Results showed that exposure metrics based on shorter averaging times (i.e., year vs. complete work history) better represented the upper bound worker exposures that could have contributed to the development of BeS or CBD. Results showed that beryllium-sensitized and CBD workers were exposed to beryllium concentrations greater than 0.2 microg/m3 (95th percentile), and 90% were exposed to concentrations greater than 0.4 microg/m3 (95th percentile) within a given year of their work history. Based on this analysis, BeS and CBD generally occurred as a result of exposures greater than 0.4 microg/m3 and maintaining exposures below 0.2 microg/m3 95% of the time may prevent BeS and CBD in the workplace.

  6. Activities of \\gamma-ray emitting isotopes in rainwater from Greater Sudbury, Canada following the Fukushima incident

    Cleveland, B T; Lawson, I T; Smith, N J T; Vazquez-Jauregui, E


    We report the activity measured in rainwater samples collected in the Greater Sudbury area of eastern Canada on 3, 16, 20, and 26 April 2011. The samples were gamma-ray counted in a germanium detector and the isotopes 131I and 137Cs, produced by the fission of 235U, and 134Cs, produced by neutron capture on 133Cs, were observed at elevated levels compared to a reference sample of ice-water. These elevated activities are ascribed to the accident at the Fukushima Dai-ichi nuclear reactor complex in Japan that followed the 11 March earthquake and tsunami. The activity levels observed at no time presented health concerns.

  7. Using natural isotopes as tracers of Saharan dust dispersion: a case study in the Azores - Portugal

    Charles Holmes


    Full Text Available After mineral aerosol transport from Sahara Desert, through the North Atlantic, analysis on beryllium 7 and lead 210 were carried out on Azorean aerosol samples. Knowing about the isotope activity of beryllium 7 and lead 210 on aerosol, will permit to study stratospheric intrusions and others physical characteristics of the North Atlantic atmospheric transport. Based on beryllium 7/lead 210 ratios it is possible to differentiate insular and marine aerosol from continental aerosol.

  8. Measurement and analysis of thermal conductivity of isotopically controlled silicon layers by time-resolved X-ray scattering

    Eon, S.; Frieling, R.; Bracht, H. [Institute for Materials Physics, University of Muenster, 48149 Muenster (Germany); Plech, A. [Institute for Photon Science and Synchrotron Radiation (IPS), 76344 Eggenstein-Leopoldshafen (Germany)


    Nanostructuring is considered to be an efficient way to tailor phonon scattering and to reduce the thermal conductivity while keeping good electronic properties. This can be ideally realized by mass modulation of chemical identical elements. In this work, we report measurements of the crossplane thermal conductivity of isotopically modulated {sup 28}Si/{sup 30}Si multilayer structures and of isotopically pure {sup 28}Si layers by means of time-resolved X-ray scattering. Compared to earlier investigations, an improved measurement technique has been applied to determine the cooling behavior of a top gold metal layer after laser excitation with picosecond time resolution until thermal equilibration is established. Detailed analysis of the cooling behavior not only confirms a reduced thermal conductivity of {sup 28}Si/{sup 30}Si multilayer structures compared to natural and isotopically enriched {sup 28}Si layers but also provides evidence of direct laser heating of the Si layer. This and extrinsic effects affecting the cooling behavior of the gold layer are taken into account to determine the thermal conductivity by means of the pump-and-probe measurement technique. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Recommended design correlations for S-65 beryllium

    Billone, M.C. [Argonne National Lab., IL (United States)


    The properties of tritium and helium behavior in irradiated beryllium are reviewed, along with the thermal-mechanical properties needed for ITER design analysis. Correlations are developed to describe the performance of beryllium in a fusion reactor environment. While this paper focuses on the use of beryllium as a plasma-facing component (PFC) material, the correlations presented here can also be used to describe the performance of beryllium as a neutron multiplier for a tritium breeding blanket. The performance properties for beryllium are subdivided into two categories: properties which do not change with irradiation damage to the bulk of the material; and properties which are degraded by neutron irradiation. The irradiation-independent properties described within are: thermal conductivity, specific heat capacity, thermal expansion, and elastic constants. Irradiation-dependent properties include: yield strength, ultimate tensile strength, plastic tangent modulus, uniform and total tensile elongation, thermal and irradiation-induced creep strength, He-induced swelling and tritium retention/release. The approach taken in developing properties correlations is to describe the behavior of dense, pressed S-65 beryllium -- the material chosen for ITER PFC application -- as a function of temperature. As there are essentially no data on the performance of porous and/or irradiated S-65 beryllium, the degradation of properties with as-fabricated porosity and irradiation are determined from the broad data base on S-200F, as well as other types and grades, and applied to S-65 beryllium by scaling factors. The resulting correlations can be used for Be produced by vacuum hot pressing (VHP) and cold-pressing (CP)/sintering(S)/hot-isostatic-pressing (HIP). The performance of plasma-sprayed beryllium is discussed but not quantified.

  10. Measuring the Cosmic Ray Muon-Induced Fast Neutron Spectrum by (n,p) Isotope Production Reactions in Underground Detectors

    Galbiati, C; Galbiati, Cristiano; Beacom, John. F.


    While cosmic ray muons themselves are relatively easy to veto in underground detectors, their interactions with nuclei create more insidious backgrounds via: (i) the decays of long-lived isotopes produced by muon-induced spallation reactions inside the detector, (ii) spallation reactions initiated by fast muon-induced neutrons entering from outside the detector, and (iii) nuclear recoils initiated by fast muon-induced neutrons entering from outside the detector. These backgrounds, which are difficult to veto or shield against, are very important for solar, reactor, dark matter, and other underground experiments, especially as increased sensitivity is pursued. We used fluka to calculate the production rates and spectra of all prominent secondaries produced by cosmic ray muons, in particular focusing on secondary neutrons, due to their importance. Since the neutron spectrum is steeply falling, the total neutron production rate is sensitive just to the relatively soft neutrons, and not to the fast-neutron compon...

  11. A Cerenkov - Delta E/Delta X experiment for measuring cosmic-ray isotopes from neon through iron

    Buffington, A.; Lau, K.; Schindler, S. M.; Stone, E. C.; Laursen, S.; Rasmussen, I. L.


    Cosmic-ray isotope masses are measured in a balloon-borne cosmic-ray experiment. Two Cerenkov counters and an NaI scintillator stack are used to determine changes in energy and in the Lorentz factor for a traversing or stopping particle. The mass is defined at the ratio of the change in energy to the change in the Lorentz factor. For incident elements from neon through iron, mass resolution better than 0.3 a.m.u. is expected, with incident Lorentz gammas ranging from 2.4 to 3.1, depending on the element. The mass resolution is approximately 0.2 a.m.u., measured for Mn-55 ions having an incident Lorentz factor of 2.75.

  12. Experimental bremsstrahlung yields for MeV proton bombardment of beryllium and carbon

    Cohen, David D. [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Private Mail Bag 1, Menai, NSW 2234 (Australia)], E-mail:; Stelcer, Eduard; Siegele, Rainer; Ionescu, Mihail; Prior, Michael [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Private Mail Bag 1, Menai, NSW 2234 (Australia)


    Experimental bremsstrahlung yields for 2, 3 and 4 MeV protons on thin beryllium and carbon targets have been measured. The yields have been corrected for detector efficiency, self-absorption in the target and fitted to 9th order polynomials over the X-ray energy range 1-10 keV for easy comparison with theoretical calculations.


    Glen R. Longhurst


    A Beryllium Technology Update meeting was held at the Idaho National Laboratory on July 18, 2007. Participants came from the U.S., Japan, and Russia. There were two main objectives of this meeting. One was a discussion of current technologies for beryllium in fission reactors, particularly the Advanced Test Reactor and the Japan Materials Test Reactor, and prospects for material availability in the coming years. The second objective of the meeting was a discussion of a project of the International Science and Technology Center regarding treatment of irradiated beryllium for disposal. This paper highlights discussions held during that meeting and major conclusions reached

  14. Metallurgical viewpoints on the brittleness of beryllium

    Lagerberg, G.


    At present the development and use of beryllium metal for structural applications is severely hampered by its brittleness. Reasons for this lack of ductility are reviewed in discussing the deformation behaviour of beryllium in relation to other hexagonal metals. The ease of fracturing in beryllium is assumed to be a consequence of a limited number of deformation modes in combination with high deformation resistance. Models for the nucleation of fracture are suggested. The relation of ductility to elastic constants as well as to grain size, texture and alloying additions is discussed.

  15. Efficacy of serial medical surveillance for chronic beryllium disease in a beryllium machining plant.

    Newman, L S; Mroz, M M; Maier, L A; Daniloff, E M; Balkissoon, R


    There is limited information on the use of the blood beryllium lymphocyte proliferation test (BeLPT) at regular intervals in medical surveillance. Employees of a beryllium machining plant were screened with the BeLPT biennially, and new employees were screened within 3 months of hire. Of 235 employees screened from 1995 to 1997, a total of 15 (6.4%) had confirmed abnormal BeLPT results indicating beryllium sensitization; nine of these employees were diagnosed with chronic beryllium disease. Four of the 15 cases were diagnosed within 3 months of first exposure. When 187 of the 235 employees participated in biennial screening in 1997 to 1999, seven more had developed beryllium sensitization or chronic beryllium disease, increasing the overall rate to 9.4% (22 of 235). The blood BeLPT should be used serially in beryllium disease surveillance to capture new or missed cases of sensitization and disease. Beryllium sensitization and chronic beryllium disease can occur within 50 days of first exposure in modern industry.

  16. Cosmic Ray Helium Isotopes From 0.2 to 3.6 GeV/nucleon

    Reimer, O.; Hof, M.; Menn, W.


    mass by means of the velocity vs. magnetic rigidity technique. A model of the instrument response was developed in order to unfold the species and rigidity-dependent effects. Measurements and astrophysical interpretation of the ^3He/^4He isotope ratio from 0.2 to 3.6 GeV/nucleon will be presented...

  17. Irradiated Beryllium Disposal Workshop, Idaho Falls, ID, May 29-30, 2002

    Longhurst, Glen Reed; Anderson, Gail; Mullen, Carlan K; West, William Howard


    In 2001, while performing routine radioactive decay heat rate calculations for beryllium reflector blocks for the Advanced Test Reactor (ATR), it became evident that there may be sufficient concentrations of transuranic isotopes to require classification of this irradiated beryllium as transuranic waste. Measurements on samples from ATR reflector blocks and further calculations confirmed that for reflector blocks and outer shim control cylinders now in the ATR canal, transuranic activities are about five times the threshold for classification. That situation implies that there is no apparent disposal pathway for this material. The problem is not unique to the ATR. The High Flux Isotope Reactor at Oak Ridge National Laboratory, the Missouri University Research Reactor at Columbia, Missouri and other reactors abroad must also deal with this issue. A workshop was held in Idaho Falls Idaho on May 29-30, 2002 to acquaint stakeholders with these findings and consider a path forward in resolving the issues attendant to disposition of irradiated material. Among the findings from this workshop were (1) there is a real potential for the US to be dependent on foreign sources for metallic beryllium within about a decade; (2) there is a need for a national policy on beryllium utilization and disposition and for a beryllium coordinating committee to be assembled to provide guidance on that policy; (3) it appears it will be difficult to dispose of this material at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico due to issues of Defense classification, facility radioactivity inventory limits, and transportation to WIPP; (4) there is a need for a funded DOE program to seek resolution of these issues including research on processing techniques that may make this waste acceptable in an existing disposal pathway or allow for its recycle.

  18. Chronic Beryllium Disease Prevention Program Report

    Lee, S


    This document describes how Lawrence Livermore National Laboratory (LLNL) meets the requirements and management practices of federal regulation 10 CFR 850, 'Chronic Beryllium Disease Prevention Program (CBDPP).' This revision of the LLNL CBDPP incorporates clarification and editorial changes based on lessons learned from employee discussions, observations and reviews of Department of Energy (DOE) Complex and commercial industry beryllium (Be) safety programs. The information is used to strengthen beryllium safety practices at LLNL, particularly in the areas of: (1) Management of small parts and components; and (2) Communication of program status to employees. Future changes to LLNL beryllium activities and on-going operating experience will be incorporated into the program as described in Section S, 'Performance Feedback.'

  19. Hydrogen release from reactor-irradiated beryllium

    Klepikov, A.Kh. [Kazakh State Univ., Alma-Ata (Kazakstan); Tazhibaeva, I.L. [Kazakh State Univ., Alma-Ata (Kazakstan); Shestakov, V.P. [Kazakh State Univ., Alma-Ata (Kazakstan); Romanenko, O.G. [Kazakh State Univ., Alma-Ata (Kazakstan); Chikhray, Y.V. [Kazakh State Univ., Alma-Ata (Kazakstan); Kenzhin, E.A. [IAE NNC RK, Semipalatinsk-21 (Russian Federation); Cherepnin, Yu.S. [IAE NNC RK, Semipalatinsk-21 (Russian Federation); Tikhomirov, L.N. [IAE NNC RK, Semipalatinsk-21 (Russian Federation)


    Experiments on gas release of reactor-irradiated beryllium samples were carried out and compared to control samples. The simultaneous influence of reactor irradiation and exposure to hydrogen results in more hydrogen retention in beryllium, than if beryllium is initially irradiated and then exposed to hydrogen. Appearance of low temperature peaks at 460 K and 540 K with 0.71 eV/atom and 0.84 eV/atom desorption activation energies, respectively, assessed in a frame of a second order desorption model, is mainly responsible for the increase in hydrogen content. These peaks can be attributed to chemical hydrogen bonds with surface oxide. The simultaneous influence of hydrogen and nuclear reactor irradiation at a temperature of 1150 K was assumed to increase significantly microcrack formation near the surface of beryllium samples, resulting in an increase in low temperature peak intensities. (orig.).

  20. Synthesis and ceramization of polycarbosilane containing beryllium

    黄小忠; 周珊; 程勇; 杜作娟; 段曦东; 王超英


    Polycarbosilane containing beryllium (BPCS) precursors was prepared by the reaction of polycarbosilane (PCS) with beryllium acetylacetone (Be (acac)2). The analysis of structures and components of BPCS demonstrates that their main structures are basically the same as PCS. Ceramization of BPCS precursors shows that BPCS precursors are organic below 600 °C and inorganic at 800 °C. At 1400 °C, BPCS precursors convert into silicon carbide ceramics. The ceramization of different beryllium content precursors were studied, which show that beryllium plays an important role in the inhibition of crystalline grain growth ofβ-SiC at high temperature and it can adjust the dielectric constant of silicon carbide ceramics.

  1. Isotope effects in liquid water probed by transmission mode x-ray absorption spectroscopy at the oxygen K-edge

    Schreck, Simon; Wernet, Philippe


    The effects of isotope substitution in liquid water are probed by x-ray absorption spectroscopy at the O K-edge as measured in transmission mode. Confirming earlier x-ray Raman scattering experiments, the D2O spectrum is found to be blue shifted with respect to H2O, and the D2O spectrum to be less broadened. Following the earlier interpretations of UV and x-ray Raman spectra, the shift is related to the difference in ground-state zero-point energies between D2O and H2O, while the difference in broadening is related to the difference in ground-state vibrational zero-point distributions. We demonstrate that the transmission-mode measurements allow for determining the spectral shapes with unprecedented accuracy. Owing in addition to the increased spectral resolution and signal to noise ratio compared to the earlier measurements, the new data enable the stringent determination of blue shift and broadening in the O K-edge x-ray absorption spectrum of liquid water upon isotope substitution. The results are compared to UV absorption data, and it is discussed to which extent they reflect the differences in zero-point energies and vibrational zero-point distributions in the ground-states of the liquids. The influence of the shape of the final-state potential, inclusion of the Franck-Condon structure, and differences between liquid H2O and D2O resulting from different hydrogen-bond environments in the liquids are addressed. The differences between the O K-edge absorption spectra of water from our transmission-mode measurements and from the state-of-the-art x-ray Raman scattering experiments are discussed in addition. The experimentally extracted values of blue shift and broadening are proposed to serve as a test for calculations of ground-state zero-point energies and vibrational zero-point distributions in liquid H2O and D2O. This clearly motivates the need for new calculations of the O K-edge x-ray absorption spectrum of liquid water.

  2. Detection of beryllium treatment of natural sapphires by NRA

    Gutierrez, P.C., E-mail: carolina.gutierrez@uam.e [Centro de Micro-Analisis de Materiales (CMAM), Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Ynsa, M.-D.; Climent-Font, A. [Centro de Micro-Analisis de Materiales (CMAM), Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Dpto. Fisica Aplicada C-12, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Calligaro, T. [Centre de Recherche et de Restauration des musees de France C2RMF, CNRS-UMR171, 14 quai Francois Mitterrand, 75001 Paris (France)


    Since the 1990's, artificial treatment of natural sapphires (Al{sub 2}O{sub 3} crystals coloured by impurities) by diffusion of beryllium at high temperature has become a growing practice. This process permits to enhance the colour of these gemstones, and thus to increase their value. Detection of such a treatment - diffusion of tens of {mu}g/g of beryllium in Al{sub 2}O{sub 3} crystals - is usually achieved using high sensitivity techniques like laser-ablation inductively coupled plasma mass spectrometry (LA-ICP/MS) or laser-induced breakdown spectrometry (LIBS) which are unfortunately micro-destructive (leaving 50-100-{mu}m diameter craters on the gems). The simple and non-destructive alternative method proposed in this work is based on the nuclear reaction {sup 9}Be({alpha}, n{gamma}){sup 12}C with an external helium ion beam impinging on the gem directly placed in air. The 4439 keV prompt {gamma}-ray tagging Be atoms are detected with a high efficiency bismuth germanate scintillator. Beam dose is monitored using the 2235 keV prompt {gamma}-ray produced during irradiation by the aluminium of the sapphire matrix through the {sup 27}Al({alpha}, p{gamma}){sup 30}Si nuclear reaction. The method is tested on a series of Be-treated sapphires previously analyzed by LA-ICP/MS to determine the optimal conditions to obtain a peak to background appropriate to reach the required {mu}g/g sensitivity. Using a 2.8-MeV external He beam and a beam dose of 200 {mu}C, beryllium concentrations from 5 to 16 {mu}g/g have been measured in the samples, with a detection limit of 1 {mu}g/g.

  3. Detection of beryllium treatment of natural sapphires by NRA

    Gutiérrez, P. C.; Ynsa, M.-D.; Climent-Font, A.; Calligaro, T.


    Since the 1990's, artificial treatment of natural sapphires (Al 2O 3 crystals coloured by impurities) by diffusion of beryllium at high temperature has become a growing practice. This process permits to enhance the colour of these gemstones, and thus to increase their value. Detection of such a treatment - diffusion of tens of μg/g of beryllium in Al 2O 3 crystals - is usually achieved using high sensitivity techniques like laser-ablation inductively coupled plasma mass spectrometry (LA-ICP/MS) or laser-induced breakdown spectrometry (LIBS) which are unfortunately micro-destructive (leaving 50-100-μm diameter craters on the gems). The simple and non-destructive alternative method proposed in this work is based on the nuclear reaction 9Be(α, nγ) 12C with an external helium ion beam impinging on the gem directly placed in air. The 4439 keV prompt γ-ray tagging Be atoms are detected with a high efficiency bismuth germanate scintillator. Beam dose is monitored using the 2235 keV prompt γ-ray produced during irradiation by the aluminium of the sapphire matrix through the 27Al(α, pγ) 30Si nuclear reaction. The method is tested on a series of Be-treated sapphires previously analyzed by LA-ICP/MS to determine the optimal conditions to obtain a peak to background appropriate to reach the required μg/g sensitivity. Using a 2.8-MeV external He beam and a beam dose of 200 μC, beryllium concentrations from 5 to 16 μg/g have been measured in the samples, with a detection limit of 1 μg/g.

  4. Beryllium concentration in pharyngeal tonsils in children

    Ewa Nogaj


    Full Text Available Power plant dust is believed to be the main source of the increased presence of the element beryllium in the environment which has been detected in the atmospheric air, surface waters, groundwater, soil, food, and cigarette smoke. In humans, beryllium absorption occurs mainly via the respiratory system. The pharyngeal tonsils are located on the roof of the nasopharynx and are in direct contact with dust particles in inhaled air. As a result, the concentration levels of beryllium in the pharyngeal tonsils are likely to be a good indicator of concentration levels in the air. The presented study had two primary aims: to investigate the beryllium concentration in pharyngeal tonsils in children living in southern Poland, and the appropriate reference range for this element in children’s pharyngeal tonsils. Pharyngeal tonsils were extracted from a total of 379 children (age 2–17 years, mean 6.2 ± 2.7 years living in southern Poland. Tonsil samples were mineralized in a closed cycle in a pressure mineralizer PDS 6, using 65% spectrally pure nitric acid. Beryllium concentration was determined using the ICP-AES method with a Perkin Elmer Optima 5300DVTM. The software Statistica v. 9 was used for the statistical analysis. It was found that girls had a significantly greater beryllium concentration in their pharyngeal tonsils than boys. Beryllium concentration varies greatly, mostly according to the place of residence. Based on the study results, the reference value for beryllium in pharyngeal tonsils of children is recommended to be determined at 0.02–0.04 µg/g.

  5. Benchmark Experiment for Beryllium Slab Samples

    NIE; Yang-bo; BAO; Jie; HAN; Rui; RUAN; Xi-chao; REN; Jie; HUANG; Han-xiong; ZHOU; Zu-ying


    The neutron leakage spectra were measured at 60°from pure beryllium slab samples(10 cm×10 cm×5 cm and 10 cm×10 cm×11 cm)by TOF method.The experimental results were compared with the calculated ones by MCNP5 simulation,using the evaluated data of beryllium from CENDL3.1,

  6. Beryllium concentration in pharyngeal tonsils in children.

    Nogaj, Ewa; Kwapulinski, Jerzy; Misiołek, Maciej; Golusiński, Wojciech; Kowol, Jolanta; Wiechuła, Danuta


    Power plant dust is believed to be the main source of the increased presence of the element beryllium in the environment which has been detected in the atmospheric air, surface waters, groundwater, soil, food, and cigarette smoke. In humans, beryllium absorption occurs mainly via the respiratory system. The pharyngeal tonsils are located on the roof of the nasopharynx and are in direct contact with dust particles in inhaled air. As a result, the concentration levels of beryllium in the pharyngeal tonsils are likely to be a good indicator of concentration levels in the air. The presented study had two primary aims: to investigate the beryllium concentration in pharyngeal tonsils in children living in southern Poland, and the appropriate reference range for this element in children's pharyngeal tonsils. Pharyngeal tonsils were extracted from a total of 379 children (age 2-17 years, mean 6.2 ± 2.7 years) living in southern Poland. Tonsil samples were mineralized in a closed cycle in a pressure mineralizer PDS 6, using 65% spectrally pure nitric acid. Beryllium concentration was determined using the ICP-AES method with a Perkin Elmer Optima 5300DVTM. The software Statistica v. 9 was used for the statistical analysis. It was found that girls had a significantly greater beryllium concentration in their pharyngeal tonsils than boys. Beryllium concentration varies greatly, mostly according to the place of residence. Based on the study results, the reference value for beryllium in pharyngeal tonsils of children is recommended to be determined at 0.02-0.04 µg/g.

  7. Tritium release from neutron irradiated beryllium pebbles

    Scaffidi-Argentina, F.; Werle, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reactortechnik


    One of the most important open issues related to beryllium for fusion applications refers to the kinetics of the tritium release as a function of neutron fluence and temperature. The EXOTIC-7 as well as the `Beryllium` experiments carried out in the HFR reactor in Petten are considered as the most detailed and significant tests for investigating the beryllium response under neutron irradiation. This paper reviews the present status of beryllium post-irradiation examinations performed at the Forschungszentrum Karlsruhe with samples from the above mentioned irradiation experiments, trying to elucidate the tritium release controlling processes. In agreement with previous studies it has been found that release starts at about 500-550degC and achieves a maximum at about 700-750degC. The observed release at about 500-550degC is probably due to tritium escaping from chemical traps, while the maximum release at about 700-750degC is due to tritium escaping from physical traps. The consequences of a direct contact between beryllium and ceramics during irradiation, causing tritium implanting in a surface layer of beryllium up to a depth of about 40 mm and leading to an additional inventory which is usually several times larger than the neutron-produced one, are also presented and the effects on the tritium release are discussed. (author)

  8. Hydrogen release from deposited beryllium layers

    Shestakov, V.P.; Klepikov, A.Kh.; Chikhray, Y.V.; Tazhibaeva, I.L. [NIIETF of Al Farabi Kazakh State Univ., Almaty (Kazakhstan)


    The analysis of hydrogen retained in deposited beryllium layers deposited by magnetron sputtering was carried out by means of thermodesorption (TDS) technique. Two hydrogen release peaks were clearly seen on the thermodesorption curves at the temperatures 760-800 K and 920-970 K. Hydrogen concentrations in the deposited beryllium layers were calculated from the gas release curves corresponding to the number of Be atoms in the beryllium layer of 100% theoretical density. Average hydrogen concentration in the beryllium samples loaded in the process of magnetron sputtering was equal to 3800{+-}200 appm. The experiments with beryllium layers, enriched with carbon, revealed the increase of retained hydrogen concentration up to 9600{+-}200 appm. Assuming that gas release can be described within the framework of model of diffusion from layer system BeO-Be-BeO, hydrogen diffusion coefficient in BeO and the trapping and detrapping constants for the traps appearing in beryllium in the process of deposition were evaluated. (orig.)

  9. Characteristics of beryllium bonds; a QTAIM study.

    Eskandari, K


    The nature of beryllium bonds formed between BeX2 (X is H, F and Cl) and some Lewis bases have been investigated. The distribution of the Laplacian of electron density shows that there is a region of charge depletion around the Be atom, which, according to Laplacian complementary principal, can interact with a region of charge concentration of an atom in the base and form a beryllium bond. The molecular graphs of the investigated complexes indicate that beryllium in BeH2 and BeF2 can form “beryllium bonds” with O, N and P atoms but not with halogens. In addition, eight criteria based on QTAIM properties, including the values of electron density and its Laplacian at the BCP, penetration of beryllium and acceptor atom, charge, energy, volume and first atomic moment of beryllium atom, have been considered and compared with the corresponding ones in conventional hydrogen bonds. These bonds share many common features with very strong hydrogen bonds, however,some differences have also been observed.

  10. Occupational Exposure to Beryllium. Final rule.


    The Occupational Safety and Health Administration (OSHA) is amending its existing standards for occupational exposure to beryllium and beryllium compounds. OSHA has determined that employees exposed to beryllium at the previous permissible exposure limits face a significant risk of material impairment to their health. The evidence in the record for this rulemaking indicates that workers exposed to beryllium are at increased risk of developing chronic beryllium disease and lung cancer. This final rule establishes new permissible exposure limits of 0.2 micrograms of beryllium per cubic meter of air (0.2 [mu]g/m\\3\\) as an 8-hour time-weighted average and 2.0 [mu]g/m\\3\\ as a short-term exposure limit determined over a sampling period of 15 minutes. It also includes other provisions to protect employees, such as requirements for exposure assessment, methods for controlling exposure, respiratory protection, personal protective clothing and equipment, housekeeping, medical surveillance, hazard communication, and recordkeeping. OSHA is issuing three separate standards--for general industry, for shipyards, and for construction--in order to tailor requirements to the circumstances found in these sectors.

  11. Sanitary-hygienic and ecological aspects of beryllium production

    Dvinskykh, E.M.; Savchuk, V.V.; Sidorov, V.L.; Slobodin, D.B.; Tuzov, Y.V. [Ulba Metallurgical Plant, Ust-Kamenogorsk (Kazakhstan)


    The Report describes An organization of sanitary-hygienic and ecological control of beryllium production at Ulba metallurgical plant. It involves: (1) the consideration of main methods for protection of beryllium production personnel from unhealthy effect of beryllium, (2) main kinds of filters, used in gas purification systems at different process areas, (3) data on beryllium monitoring in water, soil, on equipment. This Report also outlines problems connected with designing devices for a rapid analysis of beryllium in air as well as problems of beryllium production on ecological situation in the town. (author)

  12. Manta birostris, predator of the deep? Insight into the diet of the giant manta ray through stable isotope analysis

    Couturier, Lydie I. E.; Marshall, Andrea D.; Richardson, Anthony J.; Weeks, Scarla J.; Bennett, Michael B.


    The characterization of diet for the giant manta ray Manta birostris has been problematic given their large-scale movement patterns and the difficulty in obtaining stomach contents from this species. The large majority of existing information is based on observational data limited to feeding events at the sea surface during daylight. Recently discovered aggregation sites for the giant manta ray off mainland Ecuador are some of the most accessible to date and provide a unique opportunity for researchers to gather much needed information on this elusive species. To assess how important surface zooplankton is to giant manta ray diet, we conducted stable isotope analysis (15N and 13C) on M. birostris muscle and surface zooplankton. Trophic position estimates placed M. birostris overall at a secondary consumer level of approximately 3.4 but there was large variation in δ15N and δ13C values among individuals. Manta birostris muscle tissue δ13C values were also not consistent with this species feeding predominantly on surface zooplankton and suggest that the majority of dietary intake is of mesopelagic origin. Given the conservative life history and fisheries pressure on large planktivores, knowledge of their trophic role and foraging strategies is essential to better understand their ecology and develop effective conservation measures. PMID:28018660

  13. First measurement of radioactive isotope production through cosmic-ray muon spallation in Super-Kamiokande IV



    Cosmic-ray-muon spallation-induced radioactive isotopes with $\\beta$ decays are one of the major backgrounds for solar, reactor, and supernova relic neutrino experiments. Unlike in scintillator, production yields for cosmogenic backgrounds in water have not been exclusively measured before, yet they are becoming more and more important in next generation neutrino experiments designed to search for rare signals. We have analyzed the low-energy trigger data collected at Super-Kamiokande-IV in order to determine the production rates of $^{12}$B, $^{12}$N, $^{16}$N, $^{11}$Be, $^9$Li, $^8$He, $^9$C, $^8$Li, $^8$B and $^{15}$C. These rates were extracted from fits to time differences between parent muons and subsequent daughter $\\beta$'s by fixing the known isotope lifetimes. Since $^9$Li can fake an inverse-beta-decay reaction chain via a $\\beta + n$ cascade decay, producing an irreducible background with detected energy up to a dozen MeV, a dedicated study is needed for evaluating its impact on future measuremen...

  14. Oxide segregation and melting behavior of transient heat load exposed beryllium

    Spilker, B.; Linke, J.; Pintsuk, G.; Wirtz, M.


    In the experimental fusion reactor ITER, beryllium will be applied as first wall armor material. However, the ITER-like wall project at JET already experienced that the relatively low melting temperature of beryllium can easily be exceeded during plasma operation. Therefore, a detailed study was carried out on S-65 beryllium under various transient, ITER-relevant heat loads that were simulated in the electron beam facility JUDITH 1. Hereby, the absorbed power densities were in the range of 0.15-1.0 GW m-2 in combination with pulse durations of 1-10 ms and pulse numbers of 1-1000. In metallographic cross sections, the emergence of a transition region in a depth of ~70-120 µm was revealed. This transition region was characterized by a strong segregation of oxygen at the grain boundaries, determined with energy dispersive x-ray spectroscopy element mappings. The oxide segregation strongly depended on the maximum temperature reached at the end of the transient heat pulse in combination with the pulse duration. A threshold for this process was found at 936 °C for a pulse duration of 10 ms. Further transient heat pulses applied to specimens that had already formed this transition region resulted in the overheating and melting of the material. The latter occurred between the surface and the transition region and was associated with a strong decrease of the thermal conductivity due to the weakly bound grains across the transition region. Additionally, the transition region caused a partial separation of the melt layer from the bulk material, which could ultimately result in a full detachment of the solidified beryllium layers from the bulk armor. Furthermore, solidified beryllium filaments evolved in several locations of the loaded area and are related to the thermally induced crack formation. However, these filaments are not expected to account for an increase of the beryllium net erosion.

  15. Polishing technique for beryllium mirror

    Froechtenigt, J. F.


    Performance tests, accomplished by inserting entire X ray telescope and polished mirror into vacuum line 67 m long and taking photographs of an X ray resolution source, indicate that polishing increases mirror efficiency from 0.06 percent for X rays at 0.8 nm and increases resolution from 15 to 3.75 arc-seconds.

  16. Mechanical performance of irradiated beryllium pebbles

    Scaffidi-Argentina, F.; Dalle-Donne, M.; Werle, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reaktortechnik


    For the Helium Cooled Pebble Bed (HCPB) Blanket, which is one of the two reference concepts studied within the European Fusion Technology Programme, the neutron multiplier consists of a mixed bed of about 2 and 0.1-0.2 mm diameter beryllium pebbles. Beryllium has no structural function in the blanket, however microstructural and mechanical properties are important, as they might influence the material behavior under neutron irradiation. The EXOTIC-7 as well as the `Beryllium` experiments carried out in the HFR reactor in Petten are considered as the most detailed and significant tests for investigating it. This paper reviews the present status of beryllium post-irradiation examinations performed at the Forschungszentrum Karlsruhe with samples from these irradiation experiments, emphasizing the effects of irradiation of essential material properties and trying to elucidate the processes controlling the property changes. The microstructure, the porosity distribution, the impurity content, the behavior under compression loads and the compatibility of the beryllium pebbles with lithium orthosilicate (Li{sub 4}SiO{sub 4}) during the in-pile irradiation are presented and critically discussed. Qualitative information on ductility and creep obtained by hardness-type measurements are also supplied. (author)

  17. Illness Absences Among Beryllium Sensitized Workers

    Watkins, Janice P.; Ellis, Elizabeth D.; Girardi, David J.; Cragle, Donna L.


    Objectives. This study examined absence rates among US Department of Energy workers who had beryllium sensitization (BeS) or were diagnosed with chronic beryllium disease (CBD) compared with those of other workers. Methods. We used the lymphocyte proliferation test to determine beryllium sensitivity. In addition, we applied multivariable logistic regression to compare absences from 2002 to 2011 between workers with BeS or CBD to those without, and survival analysis to compare time to first absence by beryllium sensitization status. Finally, we examined beryllium status by occupational group. Results. Fewer than 3% of the 19 305 workers were BeS, and workers with BeS or CBD had more total absences (odds ratio [OR] = 1.31; 95% confidence interval [CI] = 1.18, 1.46) and respiratory absences (OR = 1.51; 95% CI = 1.24, 1.84) than did other workers. Time to first absence for all causes and for respiratory conditions occurred earlier for workers with BeS or CBD than for other workers. Line operators and crafts personnel were at increased risk for BeS or CBD. Conclusions. Although not considered “diseased,” workers with BeS have higher absenteeism compared with nonsensitized workers. PMID:25211750

  18. An investigation of X-ray and radio isotope energy absorption of heavyweight concretes containing barite

    Yüksel Esen; Berivan Yilmazer


    This study investigated the X-ray and radioisotope energy absorption capacity of heavyweight concrete containing barite aggregate. Concrete plates were prepared using differing amounts of barite aggregate instead of normal aggregate. Density–thickness–energy variations of these concretes for 85 keV, 118 keV, 164 keV, 662 keV and 1250 keV ray energies were recorded. It was observed that the concretes with greater barite content had a higher density and energy absorption capacity.

  19. An official American Thoracic Society statement: diagnosis and management of beryllium sensitivity and chronic beryllium disease.

    Balmes, John R; Abraham, Jerrold L; Dweik, Raed A; Fireman, Elizabeth; Fontenot, Andrew P; Maier, Lisa A; Muller-Quernheim, Joachim; Ostiguy, Gaston; Pepper, Lewis D; Saltini, Cesare; Schuler, Christine R; Takaro, Tim K; Wambach, Paul F


    Beryllium continues to have a wide range of industrial applications. Exposure to beryllium can lead to sensitization (BeS) and chronic beryllium disease (CBD). The purpose of this statement is to increase awareness and knowledge about beryllium exposure, BeS, and CBD. Evidence was identified by a search of MEDLINE. The committee then summarized the evidence, drew conclusions, and described their approach to diagnosis and management. The beryllium lymphocyte proliferation test is the cornerstone of both medical surveillance and the diagnosis of BeS and CBD. A confirmed abnormal beryllium lymphocyte proliferation test without evidence of lung disease is diagnostic of BeS. BeS with evidence of a granulomatous inflammatory response in the lung is diagnostic of CBD. The determinants of progression from BeS to CBD are uncertain, but higher exposures and the presence of a genetic variant in the HLA-DP β chain appear to increase the risk. Periodic evaluation of affected individuals can detect disease progression (from BeS to CBD, or from mild CBD to more severe CBD). Corticosteroid therapy is typically administered when a patient with CBD exhibits evidence of significant lung function abnormality or decline. Medical surveillance in workplaces that use beryllium-containing materials can identify individuals with BeS and at-risk groups of workers, which can help prioritize efforts to reduce inhalational and dermal exposures.

  20. Hydrogen isotopes transport parameters in fusion reactor materials

    Serra, E. [Politecnico di Torino (Italy). Dipartimento di Energetica; Benamati, G. [ENEA Fusion Division, CR Brasimone, 40032 Camungnano, Bologna (Italy); Ogorodnikova, O.V. [Moscow State Engineering Physics Institute, Moscow 115409 (Russian Federation)


    This work presents a review of hydrogen isotopes-materials interactions in various materials of interest for fusion reactors. The relevant parameters cover mainly diffusivity, solubility, trap concentration and energy difference between trap and solution sites. The list of materials includes the martensitic steels (MANET, Batman and F82H-mod.), beryllium, aluminium, beryllium oxide, aluminium oxide, copper, tungsten and molybdenum. Some experimental work on the parameters that describe the surface effects is also mentioned. (orig.) 62 refs.

  1. Occupational and non-occupational allergic contact dermatitis from beryllium.

    Vilaplana, J; Romaguera, C; Grimalt, F


    There are various references to sensitization to beryllium in the literature. Since introducing a patch testing series for patients with suspected sensitization to metals, we have found 3 cases of sensitization to beryllium. Of these 3 cases, we regard the first 2 as having relevant sensitization. Beryllium chloride (1% pet.) was positive in 3 patients and negative in 150 controls.

  2. 20 CFR 30.508 - What is beryllium sensitivity monitoring?


    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false What is beryllium sensitivity monitoring? 30... and Offsets; Overpayments Payment of Claims and Offset for Certain Payments § 30.508 What is beryllium sensitivity monitoring? Beryllium sensitivity monitoring shall consist of medical examinations to confirm...

  3. Characteristics of beryllium exposure to small particles at a beryllium production facility.

    Virji, M Abbas; Stefaniak, Aleksandr B; Day, Gregory A; Stanton, Marcia L; Kent, Michael S; Kreiss, Kathleen; Schuler, Christine R


    Epidemiological studies have reported process-specific elevated prevalence of beryllium sensitization (BeS) and chronic beryllium disease (CBD) among workers. However, exposure-response relationships have been inconsistent, possibly due to incomplete characterization of many biologically relevant aspects of exposure, including particle size. In 1999, two surveys were conducted 3-5 months apart at a beryllium metal, oxide, and alloy production facility during which personal impactor samples (n = 198) and personal 37-mm closed-face cassette (CFC) 'total' samples (n = 4026) were collected. Among process areas, median particle mass median aerodynamic diameter ranged from 5 to 14 μm. A large fraction of the beryllium aerosol was in the nonrespirable size range. Respirable beryllium concentrations were among the highest for oxide production [geometric mean (GM) = 2.02 μg m⁻³, geometric standard deviation (GSD) = 1.3] and pebbles plant (GM = 1.05 μg m⁻³, GSD = 2.9), areas historically associated with high risk of BeS and CBD. The relationship between GM 'CFC total' and GM respirable beryllium for jobs varied by process areas; the rank order of the jobs showed high overall consistency (Spearman r = 0.84), but the overall correlation was moderate (Pearson r = 0.43). Total beryllium concentrations varied greatly within and between workers among process areas; within-worker variance was larger than between-worker variance for most processes. A review of exposure characteristics among process areas revealed variation in chemical forms and solubility. Process areas with high risk of BeS and CBD had exposure to both soluble and insoluble forms of beryllium. Consideration of biologically relevant aspects of exposure such as beryllium particle size distribution, chemical form, and solubility will likely improve exposure assessment.

  4. Beryllium-10 in the Taylor Dome ice core: Applications to Antarctic glaciology and paleoclimatology

    Steig, E.J.


    An ice core was drilled at Taylor dome, East Antarctica, reaching to bedrock at 554 meters. Oxygen-isotope measurements reveal climatic fluctuations through the last interglacial period. To facilitate comparison of the Taylor Dome paleoclimate record with geologic data and results from other deep ice cores, several glaciological issues need to be addressed. In particular, accumulation data are necessary as input for numerical ice-flow-models, for determining the flux of chemical constituents from measured concentrations, and for calculation of the offset in age between ice and trapped air in the core. The analysis of cosmogenic beryllium-10 provides a geochemical method for constraining the accumulation-rate history at Taylor Dome. High-resolution measurements were made in shallow firn cores and snow pits to determine the relationship among beryllium-10 concentrations, wet and dry deposition mechanisms, and snow-accumulation rates. Comparison between theoretical and measured variations in deposition over the last 75 years constrains the relationship between beryllium-10 deposition and global average production rates. The results indicate that variations in geomagnetically-modulated production-rate do not strongly influence beryllium-10 deposition at Taylor Dome. Although solar modulation of production rate is important for time scales of years to centuries, snow-accumulation rate is the dominant control on ice-core beryllium-10 concentrations for longer periods. Results show that the Taylor Dome core can be used to provide new constraints on regional climate over the last 130,000 years, complementing the terrestrial and marine geological record from the Dry Valley, Transantarctic Mountains and western Ross Sea.

  5. Development of particle induced gamma-ray emission methods for nondestructive determination of isotopic composition of boron and its total concentration in natural and enriched samples.

    Chhillar, Sumit; Acharya, Raghunath; Sodaye, Suparna; Pujari, Pradeep K


    We report simple particle induced gamma-ray emission (PIGE) methods using a 4 MeV proton beam for simultaneous and nondestructive determination of the isotopic composition of boron ((10)B/(11)B atom ratio) and total boron concentrations in various solid samples with natural isotopic composition and enriched with (10)B. It involves measurement of prompt gamma-rays at 429, 718, and 2125 keV from (10)B(p,αγ)(7)Be, (10)B(p, p'γ)(10)B, and (11)B(p, p'γ)(11)B reactions, respectively. The isotopic composition of boron in natural and enriched samples was determined by comparing peak area ratios corresponding to (10)B and (11)B of samples to natural boric acid standard. An in situ current normalized PIGE method, using F or Al, was standardized for total B concentration determination. The methods were validated by analyzing stoichiometric boron compounds and applied to samples such as boron carbide, boric acid, carborane, and borosilicate glass. Isotopic compositions of boron in the range of 0.247-2.0 corresponding to (10)B in the range of 19.8-67.0 atom % and total B concentrations in the range of 5-78 wt % were determined. It has been demonstrated that PIGE offers a simple and alternate method for total boron as well as isotopic composition determination in boron based solid samples, including neutron absorbers that are important in nuclear technology.

  6. [Effects of beryllium chloride on cultured cells].

    Sakaguchi, T; Sakaguchi, S; Nakamura, I; Kagami, M


    The effects of beryllium on cultured cells were investigated. Three cell-lines (HeLa-S3, Vero, HEL-R66) were used in these experiments and they were cultured in Eagle's MEM plus 5 or 10% FBS (Fetal Bovine Serum) containing beryllium in various concentrations. HeLa cells or Vero cells were able to grow in the medium with 10 micrograms Be/ml (1.1 mM). On the other hand, the growth of HEL cells were strongly inhibited, even when cultured in the medium with 1 microgram Be/ml (1.1 X 10(-1) mM) and the number of living cells showed markedly low level as compared to that of the control samples cultured in the medium without beryllium. The cytotoxic effects of beryllium on these cells, which were cultured for three days in the medium with beryllium, were observed. None of cytotoxic effects were found on HeLa cells cultured with 0.5 micrograms/ml (5.5 X 10(-2) mM) and on Vero cells cultured with 0.05 micrograms Be/ml (5.5 X 10(-3) mM), while HEL cells received cytotoxic effects even when cultured in the medium containing 0.05 micrograms Be/ml (5.5 X 10(-3) mM), and these effects on the cells appeared strong when cultured in the medium without FBS. It was revealed from these experiments that HEL cells are very sensitive in terms of toxic effects of beryllium. Therefore, there cells can be used for the toxicological study on low level concentrations of the metal.

  7. High-precision gamma-ray spectroscopy of 82Rb and 72As, two important medical isotopes used in positron emission tomography

    Nino, Michael; McCutchan, E.; Smith, S.; Sonzogni, A.; Muench, L.; Greene, J.; Carpenter, M.; Zhu, S.; Lister, C.


    Both 82Rb and 72As are very important medical isotopes used in imaging procedures, yet their full decay schemes were last studied decades ago using low-sensitivity detection systems; high quality decay data is necessary to determine the total dose received by the patient, the background in imaging technologies, and shielding requirements in production facilities. To improve the decay data of these two isotopes, sources were produced at the Brookhaven Linac Isotope Producer (BLIP) and then the Gammasphere array, consisting of 89 Compton-suppressed HPGe detectors, at Argonne National Laboratory was used to analyze the gamma-ray emissions from the daughter nuclei 82 Kr and 72 Ge. Gamma-ray singles and coincidence information were recorded and analyzed using Radware Gf3m software. Significant revisions were made to the level schemes including the observation of many new transitions and levels as well as a reduction in uncertainty on measured γ-ray intensities and deduced β-feedings. The new decay schemes as well as their impact on dose calculations will be presented. DOE Isotope Program is acknowledged for funding ST5001030. Work supported by the U.S. DOE under Grant No. DE-FG02-94ER40848 and Contract Nos. DE-AC02-98CH10946 and DE-AC02-06CH11357 and by the Science Undergraduate Laboratory Internships Program (SULI).

  8. Level densities and γ-ray strength functions in Sn isotopes

    Toft, H. K.; Larsen, A. C.; Agvaanluvsan, U.; Bürger, A.; Guttormsen, M.; Mitchell, G. E.; Nyhus, H. T.; Schiller, A.; Siem, S.; Syed, N. U. H.; Voinov, A.


    The nuclear level densities of Sn118,119 and the γ-ray strength functions of Sn116,118,119 below the neutron separation energy are extracted with the Oslo method using the (He3,αγ) and (He3,He3'γ) reactions. The level-density function of Sn119 displays steplike structures. The microcanonical entropies are deduced from the level densities, and the single neutron entropy of Sn119 is determined to be 1.7 ± 0.2 kB. Results from a combinatorial model support the interpretation that some of the low-energy steps in the level density function are caused by neutron pair breaking. An enhancement in all the γ-ray strength functions of Sn116-119, compared to standard models for radiative strength, is observed for the γ-ray energy region of ≃4-11 MeV. These small resonances all have a centroid energy of 8.0(1) MeV and an integrated strength corresponding to 1.7(9)% of the classical Thomas-Reiche-Kuhn sum rule. The Sn resonances may be due to electric dipole neutron skin oscillations or to an enhancement of the giant magnetic dipole resonance.

  9. Preliminary results for explosion bonding of beryllium to copper

    Butler, D.J. [Northwest Technical Industries, Inc., Sequim, WA (United States); Dombrowski, D.E. [Brush Wellman, Inc., Cleveland, OH (United States)


    This program was undertaken to determine if explosive bonding is a viable technique for joining beryllium to copper substrates. The effort was a cursory attempt at trying to solve some of the problems associated with explosive bonding beryllium and should not be considered a comprehensive research effort. There are two issues that this program addressed. Can beryllium be explosive bonded to copper substrates and can the bonding take place without shattering the beryllium? Thirteen different explosive bonding iterations were completed using various thicknesses of beryllium that were manufactured with three different techniques.

  10. Production of the cosmogenic isotopes 3H, 7Be, 10Be, and 36Cl in the Earth's atmosphere by solar and galactic cosmic rays

    Webber, W. R.; Higbie, P. R.; McCracken, K. G.


    In a follow-up study to the earlier work of Webber and Higbie (2003) on 10Be production in the Earth's atmosphere by cosmic rays, we have calculated the atmospheric production of the cosmogenic isotopes 3H, 7Be, 10Be, and 36Cl using the FLUKA Monte Carlo code. This new calculation of atmospheric yields of these isotopes is based on 107 vertically incident protons at each of 24 logarithmically spaced energies from 10 MeV to 10 GeV, 102 times the number used in the earlier calculation, along with the latest cross sections. This permits a study of the production due to solar cosmic rays as well as galactic cosmic rays at lower energies where isotope production is a very sensitive function of energy. Solar cosmic ray spectra are reevaluated for all of the major events occurring since 1956. In terms of yearly production of 10Be, only the February 1956 solar event makes a major contribution. For 36Cl these yearly SCR production contributions are 2-5 times larger depending on the solar cosmic ray energy spectra. We have determined the yearly production of 10Be, 36Cl, and other cosmogenic isotopes above 65° geomagnetic latitude for the time period 1940-2006 covering six solar 11-year (a) cycles. The average peak-to-peak 11-a amplitude of this yearly production is 1.77. The effects of latitudinal mixing alter these direct polar production values considerably, giving an average peak-to-peak 11-a amplitude of 1.48 for the global average production.

  11. In-beam gamma-ray spectroscopy and shell-model description of {sup 85,86}Y isotopes

    Rusu, C. [Horia Hulubei National Institute of Physics and Nuclear Engineering, R-76900 Bucharest (Romania)], E-mail:; Ur, C.A. [Horia Hulubei National Institute of Physics and Nuclear Engineering, R-76900 Bucharest (Romania); Istituto Nazionale di Fisica Nucleare, Sezione di Padova, 35131 Padova (Italy); Bucurescu, D.; Iordachescu, A.; Marginean, N.; Cata-Danil, G.; Cata-Danil, I.; Ionescu-Bujor, M.; Ivascu, M. [Horia Hulubei National Institute of Physics and Nuclear Engineering, R-76900 Bucharest (Romania); Bazzacco, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, 35131 Padova (Italy); Kroell, T. [Physik-Department E12, Technische Universitaet Muenchen, 80333 Muenchen (Germany); Lenzi, S.; Lunardi, S. [Dipartimento di Fisica dell' Universita degli Studi di Padova, 35131 Padova (Italy); Menegazzo, R.; Rossi Alvarez, C. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, 35131 Padova (Italy); De Angelis, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, 35130 Legnaro (Italy); Gadea, A. [Instituto de Fisica Corpuscular, Centro Mixto CSIC-Universidad de Valencia, E-46071 Valencia (Spain); Napoli, D. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, 35130 Legnaro (Italy)


    The nuclei {sup 85}Y and {sup 86}Y were studied in two series of experiments conducted by using the heavy-ion reactions {sup 76}Ge({sup 14}N, 4n){sup 86}Y and {sup 52}Cr({sup 37}Cl, 2pxn){sup 85,86}Y. The analysis of double and triple coincidences of {gamma} rays along with the investigation of angular distributions led to the extension of the level schemes of the {sup 85}Y and {sup 86}Y nuclei to spins and excitation energies higher than observed in previous experiments. In addition, a few new levels with low spins and excitation energies were identified in both nuclei. In order to better understand the nuclear structure of these isotopes, shell-model calculations were carried out considering a valence space formed by the proton and neutron orbitals f{sub 5/2}, p{sub 3/2}, p{sub 1/2}, and g{sub 9/2}.

  12. Optical properties and structure of beryllium lead silicate glasses

    Zhidkov, I. S., E-mail: [Ural Federal University, Mira Str. 19, Yekaterinburg, 620002, Russia and Institute of Metal Physics, Russian Academy of Sciences-Ural Division, S. Kovalevskoi Str. 18, 620990 Yekaterinburg (Russian Federation); Zatsepin, A. F.; Cholakh, S. O.; Kuznetsova, Yu. A. [Ural Federal University, Mira Str. 19, Yekaterinburg, 620002 (Russian Federation)


    Luminescence and optical properties and structural features of (BeO){sub x}(PbO⋅SiO{sub 2}){sub 1−x} glasses (x = 0 ÷ 0.3) are investigated by means of optical absorption and photoluminescence spectroscopy and X-ray diffraction. The regularities of the formation of the optical absorption edge and static disorder are studied. It is shown that the optical absorption and luminescence are determined by transitions between localized states of lead ions. The impact of beryllium oxide on optical and luminescence properties and electronic structure of bands tails is discussed. The presence of two different concentration ranges with various short-range order structure and band tails nature has been established.

  13. Optical properties and structure of beryllium lead silicate glasses

    Zhidkov, I. S.; Zatsepin, A. F.; Cholakh, S. O.; Kuznetsova, Yu. A.


    Luminescence and optical properties and structural features of (BeO)x(PbOṡSiO2)1-x glasses (x = 0 ÷ 0.3) are investigated by means of optical absorption and photoluminescence spectroscopy and X-ray diffraction. The regularities of the formation of the optical absorption edge and static disorder are studied. It is shown that the optical absorption and luminescence are determined by transitions between localized states of lead ions. The impact of beryllium oxide on optical and luminescence properties and electronic structure of bands tails is discussed. The presence of two different concentration ranges with various short-range order structure and band tails nature has been established.

  14. Historical analysis of airborne beryllium concentrations at a copper beryllium machining facility (1964-2000).

    McAtee, B L; Donovan, E P; Gaffney, S H; Frede, W; Knutsen, J S; Paustenbach, D J


    Copper beryllium alloys are the most commonly used form of beryllium; however, there have been few studies assessing occupational exposure in facilities that worked exclusively with this alloy versus those where pure metal or beryllium oxide may also have been present. In this paper, we evaluated the airborne beryllium concentrations at a machining plant using historical industrial hygiene samples collected between 1964 and 2000. With the exception of a few projects conducted in the 1960s, it is believed that >95% of the operations used copper beryllium alloy exclusively. Long-term (>120 min) and short-term (machining of copper beryllium-containing parts, as well as finishing operations (e.g., deburring and polishing) and decontamination of machinery. A total of 580 beryllium air samples were analyzed (311 personal and 269 area samples). The average concentration based on area samples (1964-2000) was 0.021 microg m(-3) (SD 0.17 microg m(-3); range 0.00012-2.5 microg m(-3)); 68.8% were below the analytical limit of detection (LOD). The average airborne beryllium concentration, based on all personal samples available from 1964 through the end of 2000 (n = 311), was 0.026 microg m(-3) (SD 0.059 microg m(-3); range 0.019-0.8 microg m(-3)); 97.4% were below the LOD. Personal samples collected from machinists (n = 78) had an average airborne concentration of 0.021 microg m(-3) (SD 0.014 microg m(-3); range 0.019-0.14 microg m(-3)); 97.4% were below the LOD. Airborne concentrations were consistently below the Occupational Safety and Health Administration permissible exposure limit for beryllium (2 microg m(-3)). Overall, the data indicate that for machining operations involving copper beryllium, the airborne concentrations for >95% of the samples were below the contemporaneous occupational exposure limits or the 1999 Department of Energy action level of 0.2 microg m(-3) and, in most cases, were below the LOD.

  15. Wolf-Rayet star nucleosynthesis and the isotopic composition of the Galactic Cosmic Rays

    Meynet, Georges; Arnould, Marcel; Paulus, Guy; Maeder, André


    There is now strong observational evidence that the composition of the Galactic Cosmic Rays (GCRs) exhibits some significant deviations with respect to the abundances measured in the local (solar neighbourhood) interstellar medium (ISM). Two main scenarios have been proposed in order to account for these differences (`anomalies'). The first one, referred to as the `two-component scenario', invokes two distinct components to be accelerated to GCR energies by supernova blast waves. One of these components is just made of ISM material of `normal' solar composition, while the other one emerges from the wind of massive mass-losing stars of the Wolf-Rayet (WR) type. The second model, referred to as the `metallicity-gradient scenario', envisions the acceleration of ISM material whose bulk composition is different from the local one as a result of the fact that it originates from inner regions of the Galaxy, where the metallicity has not the local value. In both scenarios, massive stars, particularly of the WR type, play an important role in shaping the GCR composition. After briefly reviewing some basic observations and predictions concerning WR stars (including s-process yields), this paper revisits the two proposed scenarios in the light of recent non-rotating or rotating WR models.

  16. In-beam γ -ray spectroscopy of the neutron-rich platinum isotope 200Pt toward the N =126 shell gap

    John, P. R.; Valiente-Dobón, J. J.; Mengoni, D.; Modamio, V.; Lunardi, S.; Bazzacco, D.; Gadea, A.; Wheldon, C.; Rodríguez, T. R.; Alexander, T.; de Angelis, G.; Ashwood, N.; Barr, M.; Benzoni, G.; Birkenbach, B.; Bizzeti, P. G.; Bizzeti-Sona, A. M.; Bottoni, S.; Bowry, M.; Bracco, A.; Browne, F.; Bunce, M.; Camera, F.; Corradi, L.; Crespi, F. C. L.; Melon, B.; Farnea, E.; Fioretto, E.; Gottardo, A.; Grente, L.; Hess, H.; Kokalova, Tz.; Korten, W.; Kuşoǧlu, A.; Lenzi, S.; Leoni, S.; Ljungvall, J.; Menegazzo, R.; Michelagnoli, C.; Mijatović, T.; Montagnoli, G.; Montanari, D.; Napoli, D. R.; Podolyák, Zs.; Pollarolo, G.; Recchia, F.; Reiter, P.; Roberts, O. J.; Şahin, E.; Salsac, M.-D.; Scarlassara, F.; Sferrazza, M.; Söderström, P.-A.; Stefanini, A. M.; Szilner, S.; Ur, C. A.; Vogt, A.; Walshe, J.


    The neutron-rich nucleus 200Pt is investigated via in-beam γ -ray spectroscopy to study the shape evolution in the neutron-rich platinum isotopes towards the N =126 shell closure. The two-neutron transfer reaction 198Pt(82Se, 80Se)200Pt is used to populate excited states of 200Pt. The Advanced Gamma Ray Tracking Array (AGATA) demonstrator coupled with the PRISMA spectrometer detects γ rays coincident with the 80Se recoils, the binary partner of 200Pt. The binary partner method is applied to extract the γ -ray transitions and build the level scheme of 200Pt. The level at 1884 keV reported by Yates et al. [S. W. Yates, E. M. Baum, E. A. Henry, L. G. Mann, N. Roy, A. Aprahamian, R. A. Meyer, and R. Estep, Phys. Rev. C 37, 1889 (1988)] was confirmed to be at 1882.1 keV and assigned as the (61+) state. An additional γ ray was found and it presumably deexcites the (81+) state. The results are compared with state-of-the-art beyond mean-field calculations, performed for the even-even 190 -204Pt isotopes, revealing that 200Pt marks the transition from the γ -unstable behavior of lighter Pt nuclei towards a more spherical one when approaching the N =126 shell closure.

  17. The analysis of beryllium-copper diffusion joint after HHF test

    Guiniatouline, R.N.; Mazul, I.V. [Efremov Research Institute, St. Petersburg (Russian Federation); Rubkin, S.Y. [Institute of Physical Chemistry, Moscow (Russian Federation)] [and others


    The development of beryllium-copper joints which can withstand to relevant ITER divertor conditions is one of the important tasks at present time. One of the main problem for beryllium-copperjoints, is the inter-metallic layers, the strength and life time of joints significantly depends from the width and contents of the intermetallic layers. The objective of this work is to study the diffusion joint of TGP-56 beryllium to OFHC copper after thermal response and thermocyclic tests with beryllium-copper mockup. The BEY test were performed at e-beam facility (EBTS, SNLA). The following methods were used for analyses: the roentgenographic analysis; X-ray spectrum analysis; the fracture graphic analysis. During the investigation the followed studies were done: the analysis of diffusion boundary Be-Cu, which was obtained at the crossection of one of the tiles, the analysis of the debonded surfaces of a few beryllium tiles and corresponding copper parts; the analysis of upper surface of one of the tiles after HHF tests. The results of this work have showed that: the joint roentgenographic and elements analyses indicated the following phases in the diffusion zone: Cu{sub 2}Be ({approximately}170 {mu}m), CuBe ({approximately}30{mu}m), CuBe{sub 2} ({approximately}1 {mu}m) and solid solution of copper in beryllium. The phases Cu{sub 2}Be, CuBe and solid solution of copper in beryllium were indicated using quantitative microanalysis and phases CuBe, CuBe{sub 2}, Cu, Be - by roentgenographic analysis; the source of fracture (initial crack) is located in the central part of the tiles, the crack caused by the influence of residual stresses during cooling of a mock-up after fabrication and developed under the conditions of slow elastic-plastic growing during the process of thermal fatigue testing. The analysis gives the important data about joint`s quality and also may be used for any type of joints and its comparison for ITER applications.

  18. Effect of deposited tungsten on deuterium accumulation in beryllium in contact with atomic deuterium

    Sharapov, V.M.; Gavrilov, L.E. [Institute of Physical Chemistry, Russian Academy of Sciences, Moscow (Russian Federation); Kulikauskas, V.S.


    Usually ion or plasma beam is used for the experiment with beryllium which simulates the interaction of plasma with first wall in fusion devices. However, the use of thermal or subthermal atoms of hydrogen isotopes seems to be useful for that purpose. Recently, the authors have studied the deuterium accumulation in beryllium in contact with atomic deuterium. The experimental setup is shown, and is explained. By means of elastic recoil detection (ERD) technique, it was shown that in the exposure to D atoms at 740 K, deuterium is distributed deeply into the bulk, and is accumulated up to higher concentration than the case of the exposure to molecular deuterium. The depth and concentration of deuterium distribution depend on the exposure time, and those data are shown. During the exposure to atomic deuterium, oxide film grew on the side of a sample facing plasma. In order to understand the mechanism of deuterium trapping, the experiment was performed using secondary ion mass spectrometry (SIMS) and residual gas analysis (RGA). The influence that the tungsten deposit from the heated cathode exerted to the deuterium accumulation in beryllium in contact with atomic deuterium was investigated. These results are reported. (K.I.)

  19. Characterization of plasma sprayed beryllium ITER first wall mockups

    Castro, R.G.; Vaidya, R.U.; Hollis, K.J. [Los Alamos National Lab., NM (United States). Material Science and Technology Div.


    ITER first wall beryllium mockups, which were fabricated by vacuum plasma spraying the beryllium armor, have survived 3000 thermal fatigue cycles at 1 MW/m{sup 2} without damage during high heat flux testing at the Plasma Materials Test Facility at Sandia National Laboratory in New Mexico. The thermal and mechanical properties of the plasma sprayed beryllium armor have been characterized. Results are reported on the chemical composition of the beryllium armor in the as-deposited condition, the through thickness and normal to the through thickness thermal conductivity and thermal expansion, the four-point bend flexure strength and edge-notch fracture toughness of the beryllium armor, the bond strength between the beryllium armor and the underlying heat sink material, and ultrasonic C-scans of the Be/heat sink interface. (author)

  20. Mechanisms of hydrogen retention in metallic beryllium and beryllium oxide and properties of ion-induced beryllium nitride; Rueckhaltemechanismen fuer Wasserstoff in metallischem Beryllium und Berylliumoxid sowie Eigenschaften von ioneninduziertem Berylliumnitrid

    Oberkofler, Martin


    In the framework of this thesis laboratory experiments on atomically clean beryllium surfaces were performed. They aim at a basic understanding of the mechanisms occurring upon interaction of a fusion plasma with a beryllium first wall. The retention and the temperature dependent release of implanted deuterium ions are investigated. An atomistic description is developed through simulations and through the comparison with calculations based on density functional theory. The results of these investigations are compared to the behaviour of hydrogen upon implantation into thermally grown beryllium oxide layers. Furthermore, beryllium nitride is produced by implantation of nitrogen into metallic beryllium and its properties are investigated. The results are interpreted with regard to the use of beryllium in a fusion reactor. (orig.)

  1. Quantitative method of determining beryllium or a compound thereof in a sample

    McCleskey, T. Mark; Ehler, Deborah S.; John, Kevin D.; Burrell, Anthony K.; Collis, Gavin E.; Minogue, Edel M.; Warner, Benjamin P.


    A method of determining beryllium or a beryllium compound thereof in a sample, includes providing a sample suspected of comprising beryllium or a compound thereof, extracting beryllium or a compound thereof from the sample by dissolving in a solution, adding a fluorescent indicator to the solution to thereby bind any beryllium or a compound thereof to the fluorescent indicator, and determining the presence or amount of any beryllium or a compound thereof in the sample by measuring fluorescence.

  2. Quantitative method of determining beryllium or a compound thereof in a sample

    McCleskey, T. Mark (Los Alamos, NM); Ehler, Deborah S. (Los Alamos, NM); John, Kevin D. (Santa Fe, NM); Burrell, Anthony K. (Los Alamos, NM); Collis, Gavin E. (Los Alamos, NM); Minogue, Edel M. (Los Alamos, NM); Warner, Benjamin P. (Los Alamos, NM)


    A method of determining beryllium or a beryllium compound thereof in a sample, includes providing a sample suspected of comprising beryllium or a compound thereof, extracting beryllium or a compound thereof from the sample by dissolving in a solution, adding a fluorescent indicator to the solution to thereby bind any beryllium or a compound thereof to the fluorescent indicator, and determining the presence or amount of any beryllium or a compound thereof in the sample by measuring fluorescence.

  3. Quantitative method of determining beryllium or a compound thereof in a sample

    McCleskey, T. Mark; Ehler, Deborah S.; John, Kevin D.; Burrell, Anthony K.; Collis, Gavin E.; Minogue, Edel M.; Warner, Benjamin P.


    A method of determining beryllium or a beryllium compound thereof in a sample, includes providing a sample suspected of comprising beryllium or a compound thereof, extracting beryllium or a compound thereof from the sample by dissolving in a solution, adding a fluorescent indicator to the solution to thereby bind any beryllium or a compound thereof to the fluorescent indicator, and determining the presence or amount of any beryllium or a compound thereof in the sample by measuring fluorescence.

  4. Electronic bistability in linear beryllium chains.

    Helal, Wissam; Monari, Antonio; Evangelisti, Stefano; Leininger, Thierry


    A theoretical investigation on the mixed-valence behavior (bistability) of a series of cationic linear chains composed of beryllium atoms, Be(N)(+) (with N = 6,..., 12), is presented. The calculations were performed at CAS-SCF and MR-CI levels by using an ANO basis set containing 6s4p3d2f orbitals for each atom. Our results show a consistent gradual shift between different classes of mixed-valence compounds as the number of beryllium atoms increases, from class III strong coupling toward class II valence trapped. Indeed, in the largest cases (N > 10), the cationic chains were found to be closer to class I, where the coupling vanishes. The intramolecular electron transfer parameters V(ab), E(a), and E(opt) were calculated for each atomic chain. It is shown that the decrease of V(ab) with increasing N follows an exponential pattern.

  5. Photoluminescence enhancement from GaN by beryllium doping

    García-Gutiérrez, R.; Ramos-Carrazco, A.; Berman-Mendoza, D.; Hirata, G. A.; Contreras, O. E.; Barboza-Flores, M.


    High quality Be-doped (Be = 0.19 at.%) GaN powder has been grown by reacting high purity Ga diluted alloys (Be-Ga) with ultra high purity ammonia in a horizontal quartz tube reactor at 1200 °C. An initial low-temperature treatment to dissolve ammonia into the Ga melt produced GaN powders with 100% reaction efficiency. Doping was achieved by dissolving beryllium into the gallium metal. The powders synthesized by this method regularly consist of two particle size distributions: large hollow columns with lengths between 5 and 10 μm and small platelets in a range of diameters among 1 and 3 μm. The GaN:Be powders present a high quality polycrystalline profile with preferential growth on the [10 1 bar 1] plane, observed by means of X-ray diffraction. The three characteristics growth planes of the GaN crystalline phase were found by using high resolution TEM microscopy. The optical enhancing of the emission in the GaN powder is attributed to defects created with the beryllium doping. The room temperature photoluminescence emission spectra of GaN:Be powders, revealed the presence of beryllium on a shoulder peak at 3.39 eV and an unusual Y6 emission at 3.32eV related to surface donor-acceptor pairs. Also, a donor-acceptor-pair transition at 3.17 eV and a phonon replica transition at 3.1 eV were observed at low temperature (10 K). The well-known yellow luminescence band coming from defects was observed in both spectra at room and low temperature. Cathodoluminescence emission from GaN:Be powders presents two main peaks associated with an ultraviolet band emission and the yellow emission known from defects. To study the trapping levels related with the defects formed in the GaN:Be, thermoluminescence glow curves were obtained using UV and β radiation in the range of 50 and 150 °C.

  6. Neutron counter based on beryllium activation

    Bienkowska, B.; Prokopowicz, R.; Kaczmarczyk, J.; Paducha, M. [Institute of Plasma Physics and Laser Microfusion (IPPLM), Hery 23, 01-497 Warsaw (Poland); Scholz, M.; Igielski, A. [Institute of Nuclear Physics PAS (IFJPAN), Radzikowskiego 152, 31-342 Krakow (Poland); Karpinski, L. [Faculty of Electrical Engineering, Rzeszow University of Technology, Pola 2, 35-959 Rzeszow (Poland); Pytel, K. [National Centre for Nuclear Research (NCBJ), Soltana 7, 05-400 Otwock - Swierk (Poland)


    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction {sup 9}Be(n, α){sup 6}He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, {sup 6}He, decays with half-life T{sub 1/2} = 0.807 s emitting β{sup −} particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of β–particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β–source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5–the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β{sup −} particles emitted from radioactive {sup 6}He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  7. Neutron counter based on beryllium activation

    Bienkowska, B.; Prokopowicz, R.; Scholz, M.; Kaczmarczyk, J.; Igielski, A.; Karpinski, L.; Paducha, M.; Pytel, K.


    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction 9Be(n, α)6He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, 6He, decays with half-life T1/2 = 0.807 s emitting β- particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of β-particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β-source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5-the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β- particles emitted from radioactive 6He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  8. Beryllium induces premature senescence in human fibroblasts.

    Coates, Shannon S A; Lehnert, Bruce E; Sharma, Sunil; Kindell, Susan M; Gary, Ronald K


    After cells have completed a sufficient number of cell divisions, they exit the cell cycle and enter replicative senescence. Here, we report that beryllium causes proliferation arrest with premature expression of the principal markers of senescence. After young presenescent human fibroblasts were treated with 3 microM BeSO(4) for 24 h, p21 cyclin-dependent kinase inhibitor mRNA increased by >200%. Longer periods of exposure caused mRNA and protein levels to increase for both p21 and p16(Ink4a), a senescence regulator that prevents pRb-mediated cell cycle progression. BeSO(4) also caused dose-dependent induction of senescence-associated beta-galactosidase activity (SA-beta-gal). Untreated cells had 48 relative fluorescence units (RFU)/microg/h of SA-beta-gal, whereas 3 microM BeSO(4) caused activity to increase to 84 RFU/microg/h. In chromatin immunoprecipitation experiments, BeSO(4) caused p53 protein to associate with its DNA binding site in the promoter region of the p21 gene, indicating that p53 transcriptional activity is responsible for the large increase in p21 mRNA elicited by beryllium. Forced expression of human telomerase reverse transcriptase (hTERT) rendered HFL-1 cells incapable of normal replicative senescence. However, there was no difference in the responsiveness of normal HFL-1 fibroblasts (IC(50) = 1.9 microM) and hTERT-immortalized cells (IC(50) = 1.7 microM) to BeSO(4) in a 9-day proliferation assay. The effects of beryllium resemble those of histone deacetylase-inhibiting drugs, which also cause large increases in p21. However, beryllium produced no changes in histone acetylation, suggesting that Be(2+) acts as a novel and potent pharmacological inducer of premature senescence.

  9. Computer simulation of electronic excitations in beryllium

    Popov, A V


    An effective method for the quantitative description of the electronic excited states of polyatomic systems is developed by using computer technology. The proposed method allows calculating various properties of matter at the atomic level within the uniform scheme. A special attention is paid to the description of beryllium atoms interactions with the external fields, comparable by power to the fields in atoms, molecules and clusters.

  10. Erosion behaviour of ultrathin carbon layers and hydrogen retention in beryllium; Untersuchungen zur Erosion ultraduenner Kohlenstoffschichten und Wasserstoffrueckhaltung in Beryllium

    Reinelt, Matthias


    Plasma-wall-interaction plays an important role on the way to technical feasibility of thermonuclear fusion. In this context, the erosion behavior of few nanometer thin amorphous carbon layers on different metallic substrates by energetic deuterium and helium ions is investigated. Several aspects of the interaction are distinguishable by XPS. Ion induced carbide formation is governed by kinematic intermixing of carbon and metal substrate. Several methods of quantification of XPS measurements are developed and discussed. Comparison of results from these methods with NRA measurements show that surface roughness and implantation of particles into the carbon layer and intermixing zone influence the XPS measurements, which are sensitive to parameters such as material density. The retention of 1 keV deuterium ions implanted into single crystalline and cleaned beryllium at room temperature is investigated by temperature programmed desorption (TPD). The residual BeO coverage was 0.2 ML. The retention is 78% at low fluences and saturates above a bombardment with a fluence of 2.10{sup 17} cm{sup -2}. The retained maximum areal density is 2.10{sup 17} cm{sup -2}. Above 900 K, no deuterium is retained in the sample. An onset of self diffusion is observed at this temperature and metallic beryllium from the bulk segregates though thin BeO layers on the surface. From deuterium desorption traces, retention mechanisms are obtained. The measured TPDspectra are modeled by TMAP7 and rate equations to obtain activation energies for the release processes. From these, binding energies for the system Be-D are derived. Up to a implantation fluence of 1.10{sup 17} cm{sup -2}, deuterium is trapped in ion induced defects in the beryllium lattice with binding energies of 1.69 eV and 1.86 eV and release temperatures of 770 K and 840 K, respectively. The occupation of these states shows a different isotope behavior for {sup 1}H and {sup 2}H. The states are filled by diffusion of deuterium at the

  11. The bioinorganic chemistry and associated immunology of chronic beryllium disease.

    Scott, Brian L; McCleskey, T Mark; Chaudhary, Anu; Hong-Geller, Elizabeth; Gnanakaran, S


    Chronic beryllium disease (CBD) is a debilitating, incurable, and often fatal disease that is caused by the inhalation of beryllium particulates. The growing use of beryllium in the modern world, in products ranging from computers to dental prosthetics (390 tons of beryllium in the US in the year 2000) necessitates a molecular based understanding of the disease in order to prevent and cure CBD. We have investigated the molecular basis of CBD at Los Alamos National Laboratory during the past six years, employing a multidisciplinary approach of bioinorganic chemistry and immunology. The results of this work, including speciation, inhalation and dissolution, and immunology will be discussed.

  12. The bioinorganic chemistry and associated immunology of chronic beryllium disease†

    McCleskey, T. Mark; Chaudhary, Anu; Hong-Geller, Elizabeth; Gnanakaran, S.


    Chronic beryllium disease (CBD) is a debilitating, incurable, and often fatal disease that is caused by the inhalation of beryllium particulates. The growing use of beryllium in the modern world, in products ranging from computers to dental prosthetics (390 tons of beryllium in the US in the year 2000) necessitates a molecular based understanding of the disease in order to prevent and cure CBD. We have investigated the molecular basis of CBD at Los Alamos National Laboratory during the past six years, employing a multidisciplinary approach of bioinorganic chemistry and immunology. The results of this work, including speciation, inhalation and dissolution, and immunology will be discussed. PMID:18566702

  13. Possible health risks from low level exposure to beryllium.

    Stange, A W; Hilmas, D E; Furman, F J


    The first case of chronic beryllium disease (CBD) at the Rocky Flats Environmental Technology Site (Rocky Flats) was diagnosed in a machinist in 1984. Rocky Flats, located 16 miles northwest of Denver, Colorado, is part of the United States Department of Energy (DOE) nuclear weapons complex. Research and development operations using beryllium began at Rocky Flats in 1953, and beryllium production operations began in 1957. Exposures could have occurred during foundry operations, casting, shearing, rolling, cutting, welding, machining, sanding, polishing, assembly, and chemical analysis operations. The Beryllium Health Surveillance Program (BHSP) was established in June 1991 at Rocky Flats to provide health surveillance for beryllium exposed employees using the Lymphocyte Proliferation Test (LPT) to identify sensitized individuals. Of the 29 cases of CBD and 76 cases of beryllium sensitization identified since 1991, several cases appear to have had only minimal opportunistic exposures to beryllium, since they were employed in administrative functions rather than primary beryllium operations. In conjunction with other health surveillance programs, a questionnaire and interview are administered to obtain detailed work and health histories. These histories, along with other data, are utilized to estimate the extent of an individual's exposure. Additional surveillance is in progress to attempt to characterize the possible risks from intermittent or brief exposures to beryllium in the workplace.

  14. Disposal of beryllium and cadmium from research reactors; Entsorgung von Beryllium und Cadmium aus Forschungsreaktoren

    Lierse von Gostomski, C.; Remmert, A.; Stoewer, W. [Inst. fuer Radiochemie, Technische Univ. Muenchen, Garching (Germany); Bach, F.W.; Wilk, P.; Kutlu, I. [Inst. fuer Werkstoffkunde, Univ. Hannover, Hannover (Germany); Blenski, H.J.; Berthold, M. [Gesellschaft fuer Nuklear-Service mbH, Essen (Germany); Nerlich, K.D.; Plank, W. [TUeV Sueddeutschland Bau und Betrieb GmbH, Muenchen (Germany)


    Beryllium and cadmium mostly occur in metal form as radioactive special materials during the deconstruction of research reactors. Beryllium is usually used in these reactors as a neutron reflector and moderator, while cadmium is used above all as a neutron absorber. Both metals together have a high chemotoxicity as well as an inventory of radionuclides which has not been more closely characterised up to now. A high tritium content is to be expected, particularly in the case of beryllium; this tritium is due to the reaction of the metal with thermal reactor neutrons in particular. However, other nuclides which may be formed by neutron capture from impurities also contribute to the activity inventory. Up to now there is no qualified process for proper treatment, conditioning and intermediate and final repository in Germany. (orig.)

  15. Behavior of beryllium pebbles under irradiation

    Dalle-Donne, M.; Scaffidi-Argentina, F. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reactortechnik; Baldwin, D.L.; Gelles, D.S.; Greenwood, L.R.; Kawamura, H.; Oliver, B.M.


    Beryllium pebbles are being considered in fusion reactor blanket designs as neutron multiplier. An example is the European `Helium Cooled Pebble Bed Blanket.` Several forms of beryllium pebbles are commercially available but little is known about these forms in response to fast neutron irradiation. Commercially available beryllium pebbles have been irradiated to approximately 1.3 x 10{sup 22} n/cm{sup 2} (E>1 MeV) at 390degC. Pebbles 1-mm in diameter manufactured by Brush Wellman, USA and by Nippon Gaishi Company, Japan, and 3-mm pebbles manufactured by Brush Wellman were included. All were irradiated in the below-core area of the Experimental Breeder Reactor-II in Idaho Falls, USA, in molybdenum alloy capsules containing helium. Post-irradiation results are presented on density change measurements, tritium release by assay, stepped-temperature anneal, and thermal ramp desorption tests, and helium release by assay and stepped-temperature anneal measurements, for Be pebbles from two manufacturing methods, and with two specimen diameters. The experimental results on density change and tritium and helium release are compared with the predictions of the code ANFIBE. (author)

  16. Functionally Graded Nanophase Beryllium/Carbon Composites

    Choi, Michael K.


    Beryllium, beryllium alloys, beryllium carbide, and carbon are the ingredients of a class of nanophase Be/Be2C/C composite materials that can be formulated and functionally graded to suit a variety of applications. In a typical case, such a composite consists of a first layer of either pure beryllium or a beryllium alloy, a second layer of B2C, and a third layer of nanophase sintered carbon derived from fullerenes and nanotubes. The three layers are interconnected through interpenetrating spongelike structures. These Be/Be2C/C composite materials are similar to Co/WC/diamond functionally graded composite materials, except that (1) W and Co are replaced by Be and alloys thereof and (2) diamond is replaced by sintered carbon derived from fullerenes and nanotubes. (Optionally, one could form a Be/Be2C/diamond composite.) Because Be is lighter than W and Co, the present Be/Be2C/C composites weigh less than do the corresponding Co/WC/diamond composites. The nanophase carbon is almost as hard as diamond. WC/Co is the toughest material. It is widely used for drilling, digging, and machining. However, the fact that W is a heavy element (that is, has high atomic mass and mass density) makes W unattractive for applications in which weight is a severe disadvantage. Be is the lightest tough element, but its toughness is less than that of WC/Co alloy. Be strengthened by nanophase carbon is much tougher than pure or alloy Be. The nanophase carbon has an unsurpassed strength-to-weight ratio. The Be/Be2C/C composite materials are especially attractive for terrestrial and aerospace applications in which there are requirements for light weight along with the high strength and toughness of the denser Co/WC/diamond materials. These materials could be incorporated into diverse components, including cutting tools, bearings, rocket nozzles, and shields. Moreover, because Be and C are effective as neutron moderators, Be/Be2C/C composites could be attractive for some nuclear applications.

  17. Beryllium metal II. a review of the available toxicity data.

    Strupp, Christian


    Beryllium metal was classified in Europe collectively with beryllium compounds, e.g. soluble salts. Toxicological equivalence was assumed despite greatly differing physicochemical properties. Following introduction of the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) regulation, beryllium metal was classified as individual substance and more investigational efforts to appropriately characterize beryllium metal as a specific substance apart from soluble beryllium compounds was required. A literature search on toxicity of beryllium metal was conducted, and the resulting literature compiled together with the results of a recently performed study package into a comprehensive data set. Testing performed under Organisation for Economic Co-Operation and Development guidelines and Good Laboratory Practice concluded that beryllium metal was neither a skin irritant, an eye irritant, a skin sensitizer nor evoked any clinical signs of acute oral toxicity; discrepancies between the current legal classification of beryllium metal in the European Union (EU) and the experimental results were identified. Furthermore, genotoxicity and carcinogenicity were discussed in the context of the literature data and the new experimental data. It was concluded that beryllium metal is unlikely to be a classical nonthreshold mutagen. Effects on DNA repair and morphological cell transformation were observed but need further investigation to evaluate their relevance in vivo. Animal carcinogenicity studies deliver evidence of carcinogenicity in the rat; however, lung overload may be a species-specific confounding factor in the existing studies, and studies in other species do not give convincing evidence of carcinogenicity. Epidemiology has been intensively discussed over the last years and has the problem that the studies base on the same US beryllium production population and do not distinguish between metal and soluble compounds. It is noted that the correlation

  18. Beryllium toxicity testing in the suspension culture of mouse fibroblasts.

    Rössner, P; Bencko, V


    Suspension culture of mouse fibroblast cell line L-A 115 was used to test beryllium toxicity in the presence of magnesium ions. Beryllium added to the MEM cultivation medium was bound in a complex with sulphosalicylic acid BeSSA complex, because the use of beryllium chloride turned out to yield ineffective beryllium phosphate that formed macroscopically detectable insoluble opacities. The BeSSA complex was used in the concentration range: 10(-3)--10(-9)M, magnesium was used in 3 concentrations: 10(-1)M, 5 x 10(-2)M and 10(-2)M. Growth curve analysis revealed pronounced beryllium toxicity at the concentration of 10(-3)M, magnesium-produced toxic changes were observed only at the concentration of 10(-1)M. No competition between the beryllium and magnesium ions was recorded. It is assumed that the possible beryllium-magnesium competition was significantly modified by the use of BeSSA complex-bound beryllium.

  19. Joining of beryllium by braze welding technique: preliminary results

    Banaim, P.; Abramov, E. [Ben-Gurion Univ. of the Negev, Beersheba (Israel); Zalkind, S.; Eden, S.


    Within the framework of some applications, there is a need to join beryllium parts to each other. Gas Tungsten Arc Braze Welds were made in beryllium using 0.3 mm commercially Aluminum (1100) shim preplaced at the joint. The welds exhibited a tendency to form microcracks in the Fusion Zone and Heat Affected Zone. All the microcracks were backfilled with Aluminum. (author)

  20. 10 CFR 850.20 - Baseline beryllium inventory.


    ... 10 Energy 4 2010-01-01 2010-01-01 false Baseline beryllium inventory. 850.20 Section 850.20 Energy... Baseline beryllium inventory. (a) The responsible employer must develop a baseline inventory of the... inventory, the responsible employer must: (1) Review current and historical records; (2) Interview...

  1. Ionization energies of beryllium in strong magnetic fields

    GUANXiao-xu; ZHANGYue-xia


    We have develop an effective frozen core approximation to calculate energy levels and ionization enegies of the beryllium atom in magnetic field strengths up to 2.35 × 105T. Systematic improvement over the Hartree-Fock results for the beryllium low-lying states has been accomplished.

  2. Ionization energies of beryllium in strong magnetic fields

    GUAN Xiao-xu; ZHANG Yue-xia


    We have develop an effective frozen core approximation to calculate energy levels and ionization enegies of the beryllium atom in magnetic field strengths up to 2.35×105T. Systematic improvement over the Hartree-Fock results for the beryllium low-lying states has been accomplished.

  3. Dissolution of beryllium in artificial lung alveolar macrophage phagolysosomal fluid.

    Stefaniak, Aleksandr B; Virji, M Abbas; Day, Gregory A


    Dissolution of a lung burden of poorly soluble beryllium particles is hypothesized to be necessary for development of chronic beryllium lung disease (CBD) in humans. As such, particle dissolution rate must be sufficient to activate the lung immune response and dissolution lifetime sufficient to maintain chronic inflammation for months to years to support development of disease. The purpose of this research was to investigate the hypothesis that poorly soluble beryllium compounds release ions via dissolution in lung fluid. Dissolution kinetics of 17 poorly soluble particulate beryllium materials that span extraction through ceramics machining (ores, hydroxide, metal, copper-beryllium [CuBe] fume, oxides) and three CuBe alloy reference materials (chips, solid block) were measured over 31 d using artificial lung alveolar macrophage phagolysosomal fluid (pH 4.5). Differences in beryllium-containing particle physicochemical properties translated into differences in dissolution rates and lifetimes in artificial phagolysosomal fluid. Among all materials, dissolution rate constant values ranged from 10(-5) to 10(-10)gcm(-2)d(-1) and half-times ranged from tens to thousands of days. The presence of magnesium trisilicate in some beryllium oxide materials may have slowed dissolution rates. Materials associated with elevated prevalence of CBD had faster beryllium dissolution rates [10(-7)-10(-8)gcm(-2)d(-1)] than materials not associated with elevated prevalence (p<0.05).


    EPA's assessment of the noncancer health effects and carcinogenic potential of Beryllium was added to the IRIS database in 1998. The IRIS program is updating the IRIS assessment for Beryllium. This update will incorporate health effects information published since the last assess...

  5. Toxicological effects of beryllium on platelets and vascular endothelium.

    Togna, G; Togna, A R; Russo, P; Caprino, L


    Although ample research has described the toxic effects of the metal beryllium on the respiratory apparatus, less is known about its effects on the vascular apparatus, including pulmonary blood vessels. We investigated the in vitro effects of beryllium on endothelial vascular adenosine diphosphatase activity and prostacyclin production in bovine aortic endothelium, and on nitric oxide release in isolated rabbit arteries. Rabbit and human platelet responsiveness was also evaluated. Beryllium inhibited vascular endothelial adenosine diphosphatase activity, prostacyclin production, and nitric oxide release, thus inducing functional alterations in vascular endothelial cells. It also induced platelet hyperreactivity to arachidonic acid, as shown by a lowering of the threshold of aggregating concentration and by concurrently increasing thromboxane production. In contrast, beryllium left the response to aggregating and nonaggregating concentrations of ADP and collagen unchanged. These findings show that beryllium may impair some vascular endothelial functions and alter the interaction between platelet and endothelial mediators.

  6. Protection of air in premises and environment against beryllium aerosols

    Bitkolov, N.Z.; Vishnevsky, E.P.; Krupkin, A.V. [Research Inst. of Industrial and Marine Medicine, St. Petersburg (Russian Federation)


    First and foremost, the danger of beryllium aerosols concerns a possibility of their inhalation. The situation is aggravated with high biological activity of the beryllium in a human lung. The small allowable beryllium aerosols` concentration in air poses a rather complex and expensive problem of the pollution prevention and clearing up of air. The delivery and transportation of beryllium aerosols from sites of their formation are defined by the circuit of ventilation, that forms aerodynamics of air flows in premises, and aerodynamic links between premises. The causes of aerosols release in air of premises from hoods, isolated and hermetically sealed vessels can be vibrations, as well as pulses of temperature and pressure. Furthermore, it is possible the redispersion of aerosols from dirty surfaces. The effective protection of air against beryllium aerosols at industrial plants is provided by a complex of hygienic measures: from individual means of breath protection up to collective means of the prevention of air pollution. (J.P.N.)

  7. Estimating occupational beryllium exposure from compliance monitoring data.

    Hamm, Michele P; Burstyn, Igor


    Occupational exposure to beryllium is widespread and is a health risk. The objectives of this study were to develop plausible models to estimate occupational airborne beryllium exposure. Compliance monitoring data were obtained from the Occupational Safety and Health Administration for 12,148 personal measurements of beryllium exposure from 1979 to 2005. Industry codes were maintained as reported or collapsed based on the number of measurements per cell of a job-exposure matrix (JEM). Probability of exposure was predicted based on year, industry, job, and sampling duration. In these models, probability of exposure decreased over time, was highest in full-shift personal samples, and varied with industry and job. The probability of exposure was calculated using 6 JEMs, each providing similar rankings of the likelihood of non-negligible exposure to beryllium. These statistical models, with expert appraisal, are suitable for the assessment of the probability of elevated occupational exposure to beryllium.

  8. Release of beryllium into artificial airway epithelial lining fluid.

    Stefaniak, Aleksandr B; Virji, M Abbas; Day, Gregory A


    Inhaled beryllium particles that deposit in the lung airway lining fluid may dissolve and interact with immune-competent cells resulting in sensitization. As such, solubilization of 17 beryllium-containing materials (ore, hydroxide, metal, oxide, alloys, and process intermediates) was investigated using artificial human airway epithelial lining fluid. The maximum beryllium release in 7 days was 11.78% (from a beryl ore melter dust), although release from most materials was beryllium ions may be released in the respiratory tract via dissolution in airway lining fluid. Beryllium-containing particles that deposit in the respiratory tract dissolve in artificial lung epithelial lining fluid, thereby providing ions for absorption in the lung and interaction with immune-competent cells in the respiratory tract.

  9. [Effect of beryllium on the morphology and chemical elements of cell membrane of Porphyromonas gingivalis].

    Li, Wei-hong; Huang, Rui; Lin, Hua; Li, Qing-yan; Zheng, Xin-ying; Lv, Qiao; Gao, Ning


    To evaluate the effect of beryllium (Be²⁺) on the morphology and chemical elements on cell membrane of Porphyromonas gingivalis (P. gingivalis), thus to explore the microbiologic mechanisms of periodontal diseases. P. gingivalis was put into the culture with different Be²⁺ concentrations and anaerobically cultured for 24 hours. The morphologic change of P. gingivalis was observed under microscope and scanning electronic microscope (SEM), and chemical elements of cell membrane were observed by X-ray energy dispersion spectrum (EDS). The data was statistically analyzed with SPSS13.0 software package. The morphology of P.gingivalis altered obviously at the concentration greater than 2.5 mg/L, which was manifested by the sharpness of border and depression on the surface. With the increased concentration of beryllium, the Na and Ca peak descended on the surface of P. gingivalis. Beryllium can interfere with the morphology of P. gingivalis, and lead to the changes of chemical elements on cell membrane of P. gingivalis, which may result in a disturbance in the microecologic balance of subgingival microbes and eventually contribute to periodontal diseases.


    Gilliland, R.G.; Patriarca, P.; Slaughter, G.M.; Williams, L.C.


    A new and improved ternary alloy is described which is of particular utility in braze-bonding parts made of a refractory metal selected from Group IV, V, and VI of the periodic table and alloys containing said metal as a predominating alloying ingredient. The brazing alloy contains, by weight, 40 to 50 per cent zirconium, 40 to 50 per cent titanium, and the balance beryllium in amounts ranging from 1 to 20 per cent, said alloy having a melting point in the range 950 to 1400 deg C. (AEC)

  11. Plasma transferred arc deposition of beryllium

    Hollis, K.; Bartram, B.; Withers, J.; Storm, R.; Massarello, J.


    The exceptional properties of beryllium (Be), including low density and high elastic modulus, make it the material of choice in many defense and aerospace applications. However, health hazards associated with Be material handling limit the applications that are suited for its use. Innovative solutions that enable continued use of Be in critical applications while addressing worker health concerns are highly desirable. Plasma transferred arc solid free-form fabrication is being evaluated as a Be fabrication technique for civilian and military space-based components. Initial experiments producing Be deposits are reported here. Deposit shape, microstructure, and mechanical properties are reported.

  12. Neutron beams from protons on beryllium.

    Bewley, D K; Meulders, J P; Octave-Prignot, M; Page, B C


    Measurements of dose rate and penetration in water have been made for neutron beams produced by 30--75 MeV protons on beryllium. The effects of Polythene filters added on the target side of the collimator have also been studied. A neutron beam comparable with a photon beam from a 4--8 MeV linear accelerator can be produced with p/Be neutrons plus 5 cm Polythene filtrations, with protons in the range 50--75 MeV. This is a more economical method than use of the d/Be reaction.

  13. 40 CFR 63.11166 - What General Provisions apply to primary beryllium production facilities?


    ... primary beryllium production facilities? 63.11166 Section 63.11166 Protection of Environment ENVIRONMENTAL... Primary Nonferrous Metals Area Sources-Zinc, Cadmium, and Beryllium Primary Beryllium Production Facilities § 63.11166 What General Provisions apply to primary beryllium production facilities? (a) You...

  14. Fluorimetric method for determination of Beryllium; Determinazione fluorimetrica del berillio

    Sparacino, N.; Sabbioneda, S. [ENEA, Centro Ricerche Saluggia, Vercelli (Italy). Dip. Energia


    The old fluorimetric method for the determination of Beryllium, based essentially on the fluorescence of the Beryllium-Morine complex in a strongly alkaline solution, is still competitive and stands the comparison with more modern methods or at least three reasons: in the presence of solid or gaseous samples (powders), the times necessary to finalize an analytic determination are comparable since the stage of the process which lasts the longest is the mineralization of the solid particles containing Beryllium, the cost of a good fluorimeter is by far Inferior to the cost, e. g., of an Emission Spectrophotometer provided with ICP torch and magnets for exploiting the Zeeman effect and of an Atomic absorption Spectrophotometer provided with Graphite furnace; it is possible to determine, fluorimetrically, rather small Beryllium levels (about 30 ng of Beryllium/sample), this potentiality is more than sufficient to guarantee the respect of all the work safety and hygiene rules now in force. The study which is the subject of this publication is designed to the analysis procedure which allows one to reach good results in the determination of Beryllium, chiefly through the control and measurement of the interference effect due to the presence of some metals which might accompany the environmental samples of workshops and laboratories where Beryllium is handled, either at the pure state or in its alloys. The results obtained satisfactorily point out the merits and limits of this analytic procedure.

  15. Beryllium nitrate inhibits fibroblast migration to disrupt epimorphic regeneration.

    Cook, Adam B; Seifert, Ashley W


    Epimorphic regeneration proceeds with or without formation of a blastema, as observed for the limb and skin, respectively. Inhibition of epimorphic regeneration provides a means to interrogate the cellular and molecular mechanisms that regulate it. In this study, we show that exposing amputated limbs to beryllium nitrate disrupts blastema formation and causes severe patterning defects in limb regeneration. In contrast, exposing full-thickness skin wounds to beryllium only causes a delay in skin regeneration. By transplanting full-thickness skin from ubiquitous GFP-expressing axolotls to wild-type hosts, we demonstrate that beryllium inhibits fibroblast migration during limb and skin regeneration in vivo Moreover, we show that beryllium also inhibits cell migration in vitro using axolotl and human fibroblasts. Interestingly, beryllium did not act as an immunostimulatory agent as it does in Anurans and mammals, nor did it affect keratinocyte migration, proliferation or re-epithelialization, suggesting that the effect of beryllium is cell type-specific. While we did not detect an increase in cell death during regeneration in response to beryllium, it did disrupt cell proliferation in mesenchymal cells. Taken together, our data show that normal blastema organogenesis cannot occur without timely infiltration of local fibroblasts and highlights the importance of positional information to instruct pattern formation during regeneration. In contrast, non-blastemal-based skin regeneration can occur despite early inhibition of fibroblast migration and cell proliferation.

  16. Quantum molecular dynamics simulations of beryllium at high pressures

    Desjarlais, Michael; Knudson, Marcus


    The phase boundaries and high pressure melt properties of beryllium have been the subject of several recent experimental and theoretical studies. The interest is motivated in part by the use of beryllium as an ablator material in inertial confinement fusion capsule designs. In this work, the high pressure melt curve, Hugoniot crossings, sound speeds, and phase boundaries of beryllium are explored with DFT based quantum molecular dynamics calculations. The entropy differences between the various phases of beryllium are extracted in the vicinity of the melt curve and agree favorably with earlier theoretical work on normal melting. High velocity flyer plate experiments with beryllium targets on Sandia's Z machine have generated high quality data for the Hugoniot, bulk sound speeds, and longitudinal sound speeds. This data provides a tight constraint on the pressure for the onset of shock melting of beryllium and intriguing information on the solid phase prior to melt. The results of the QMD calculations and the experimental results will be compared, and implications for the HCP and BCC phase boundaries of beryllium will be presented.

  17. Sarcoidosis and chronic beryllium disease: similarities and differences.

    Mayer, Annyce S; Hamzeh, Nabeel; Maier, Lisa A


    Chronic beryllium disease (CBD) is a granulomatous lung disease that may be pathologically and clinically indistinguishable from pulmonary sarcoidosis, except through use of immunologic testing, such as the beryllium lymphocyte proliferation test (BeLPT). Similar to sarcoidosis, the pulmonary manifestations of CBD are variable and overlap with other respiratory diseases. Definitive diagnosis of CBD is established by evidence of immune sensitization to beryllium and diagnostic bronchoscopy with bronchoalveolar lavage and transbronchial biopsy. However, the diagnosis of CBD can also be established on a medically probable basis in beryllium-exposed patients with consistent radiographic imaging and clinical course. Beryllium workers exposed too much higher levels of beryllium in the past demonstrated a much more fulminant disease than is usually seen today. Some extrapulmonary manifestations similar to sarcoidosis were noted in these historic cohorts, although with a narrower spectrum. Extrapulmonary manifestations of CBD are rare today. Since lung-predominant sarcoidosis can very closely resemble CBD, CBD is still misdiagnosed as sarcoidosis when current or past exposure to beryllium is not recognized and no BeLPT is obtained. This article describes the similarities and differences between CBD and sarcoidosis, including clinical and diagnostic features that can help physicians consider CBD in patients with apparent lung-predominant sarcoidosis.

  18. CAESAR-A high-efficiency CsI(Na) scintillator array for in-beam {gamma}-ray spectroscopy with fast rare-isotope beams

    Weisshaar, D., E-mail: weisshaa@nscl.msu.ed [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Gade, A.; Glasmacher, T. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Grinyer, G.F.; Bazin, D.; Adrich, P. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Baugher, T.; Cook, J.M. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Diget, C.A. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); McDaniel, S.; Ratkiewicz, A.; Siwek, K.P.; Walsh, K.A. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)


    We report on the construction and commissioning of the high-efficiency CAESium-iodide scintillator ARray CAESAR, a device designed for in-beam {gamma}-ray spectroscopy experiments utilizing fast beams of rare isotopes at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU). CAESAR consists of 192 CsI(Na) crystals, totaling 290 kg of active scintillator material. For 1 MeV {gamma} rays, a full-energy-peak efficiency of 35% is achieved at an in-beam energy resolution of better than 10% FWHM after event-by-event Doppler reconstruction of the {gamma} rays emitted by nuclei moving with velocities of v/c{approx}0.3-0.4. The spectral quality of the array allows for the identification of {gamma}-ray transitions with intensities of several 10 counts in the full-energy peak and thus opens new avenues for the study of the most exotic nuclei available at the NSCL for in-beam spectroscopy.

  19. Angiotensin-1 converting enzyme polymorphisms in chronic beryllium disease.

    Maier, L A; Raynolds, M V; Young, D A; Barker, E A; Newman, L S


    To test the hypothesis that the angiotensin converting enzyme (ACE) genotype is associated with chronic beryllium disease (CBD) and disease severity, we studied 50 cases of CBD and compared their ACE genotype to that of two different control groups, consisting of: (1) 50 participants from a beryllium machining facility; and (2) 50 participants from a non-beryllium-associated workplace. We found no statistically significant difference in the frequency of the I or D allele or of the DD genotype among cases of CBD and either control group. The odds ratio (OR) for the CBD DD genotype as compared with the non-DD genotype was 1.58 (95% confidence interval [CI]: 0.68 to 3.66, p = 0.12) for the beryllium-exposed control group, and 1.09 (95% CI: 0.48 to 2.46, p = 0.56) for the non-beryllium-exposed controls. We found an association between serum ACE activity and the ACE genotype, with DD cases having the highest median serum ACE activity (p = 0.005). We evaluated the beryllium lymphocyte proliferation test (BeLPT), bronchoalveolar lavage (BAL) cell components, chest radiography, pulmonary function test results, and exercise physiology in our CBD cases. No statistically significant associations with these disease markers were found for the CBD cases with the DD genotype. Although the difference was not statistically significant, the DD cases had a shorter median duration of exposure to beryllium before diagnosis of CBD, and tended to have a weaker response in their blood and BAL BeLPT than did the non-DD cases. These findings may indicate that the ACE genotype is important in the immune response to beryllium and in progression to beryllium disease.

  20. Ação promotora do berílio em catalisadores da síntese do estireno Promotor action of beryllium in catalysts for styrene production

    Mário Nilo Mendes Barbosa


    Full Text Available The catalytic dehydrogenation of ethylbenzene in presence of steam is the main commercial route to produce styrene. The industrial catalysts are potassium- and chromia-doped hematite which show low surface areas leading to bad performance and short life. In order to develop catalysts with high areas, the effect of beryllium on the textural properties and on the catalytic performance of this iron oxide was studied. The influence of the amount of the dopant, the starting material and the calcination temperature were also studied. In sample preparations, iron and beryllium salts (nitrate or sulfate were hydrolyzed with ammonia and then calcinated. The experiments followed a factorial design with two variables in two levels (Fe/Be= 3 and 7; calcination temperature= 500 and 700ºC. Solids without any dopant were also prepared. Samples were characterized by elemental analysis, infrared spectroscopy, surface area and porosity measurements, X-ray diffraction, DSC and TG. The catalysts were tested in a microreactor at 524ºC and 1 atm, by using a mole ratio of steam/ ethylbenzene=10. The selectivity was measured by monitoring styrene, benzene and toluene formation. It was found that the effect of beryllium on the characteristics of hematite and on its catalytic performance depends on the starting material and on the amount of dopant. Surface areas increased due to the dopant as well as the nature of the precursor; samples produced by beryllium sulfate showed higher areas. Beryllium-doped solids showed a higher catalytic activity when compared to pure hematite, but no significant influence of the anion of starting material was noted. It can be concluded that beryllium acts as both textural and structural promoter. Samples with Fe/Be= 3, heated at 500ºC, lead to the highest conversion and were the most selective. However, catalysts prepared from beryllium sulfate are the most promising to ethylbenzene dehydrogenation due to their high surface area which

  1. Inhibitory effects of beryllium chloride on rat liver microsomal enzymes.

    Teixeira, C F; Yasaka, W J; Silva, L F; Oshiro, T T; Oga, S


    A single i.v. dose (0.1 mmol Be2+/kg) of beryllium chloride prolonged the duration of pentobarbital-induced sleep and zoxazolamine-induced paralysis, in rats. The effects are correlated with changes of the pharmacokinetic parameters and with the in vitro inhibition of both aliphatic and aromatic hydroxylation of pentobarbital and zoxazolamine. In vitro N-demethylation of meperidine and aminopyrine was partially inhibited while O-demethylation of quinidine was unaffected by liver microsomes of rats pretreated with beryllium salt. The findings give clues that beryllium chloride inhibits some forms of cytochrome P-450, especially those responsible for hydroxylation of substrates, like pentobarbital and zoxazolamine.

  2. Beryllium Health and Safety Committee Data Reporting Task Force

    MacQueen, D H


    On December 8, 1999, the Department of Energy (DOE) published Title 10 CFR 850 (hereafter referred to as the Rule) to establish a chronic beryllium disease prevention program (CBDPP) to: {sm_bullet} reduce the number of workers currently exposed to beryllium in the course of their work at DOE facilities managed by DOE or its contractors, {sm_bullet} minimize the levels of, and potential for, expos exposure to beryllium, and {sm_bullet} establish medical surveillance requirements to ensure early detection of the disease.

  3. Development of Beryllium Vacuum Chamber Technology for the LHC

    Veness, R; Dorn, C


    Beryllium is the material of choice for the beam vacuum chambers around collision points in particle colliders due to a combination of transparency to particles, high specific stiffness and compatibility with ultra-high vacuum. New requirements for these chambers in the LHC experiments have driven the development of new methods for the manufacture of beryllium chambers. This paper reviews the requirements for experimental vacuum chambers. It describes the new beryllium technology adopted for the LHC and experience gained in the manufacture and installation.

  4. Selection of I-220H beryllium for NIRCam optical bench

    Edinger, Derek J.; Nordt, Alison A.


    The Near Infrared Camera (NIRCam) for NASA's James Webb Space Telescope (JWST) is one of the four science instruments to be installed into the Integrated Science Instrument Module (ISIM) on JWST. I-220H beryllium was chosen as the optical bench material for NIRCam based on its high specific stiffness, relatively high thermal conductivity, low CTE at cryogenic temperatures, and overall thermal stability at cryogenic temperatures. Beryllium has cryogenic heritage, but development of a structural bonded joint that could survive cryogenic temperatures was required. This paper will describe the trade studies performed in which bonded, I-220H beryllium was selected.

  5. Simultaneous spectroscopy of $\\gamma$- rays and conversion electrons: Systematic study of EO transitions and intruder states in close vicinity of mid-shell point in odd-Au isotopes

    Venhart, M; Grant, A F; Petrik, K

    This proposal focuses on detailed systematic studies of the $\\beta$ /EC-decays of $^{179,181,183,185}$Hg leading to excited states in the neutron-deficient Au isotopes in the vicinity of the N=104 midshell. $\\gamma$-ray, X-ray and conversion electron de-excitations of odd-A Au isotopes will be studied simultaneously. These studies will address important structural questions such as the excitation energies of coexisting states, properties of multiple intruder states (i.e. intruder particles coupled to intruder cores) and mixing of coexisting structures. The unique combination of Hg beam purity and yields make ISOLDE a unique facility for these experiments.

  6. Measurement of Beryllium in Biological Samples by Accelerator Mass Spectrometry: Applications for Studying Chronic Beryllium Disease

    Chiarappa-Zucca, M L; Finkel, R C; Martinelli, R E; McAninch, J E; Nelson, D O; Turtletaub, K W


    A method using accelerator mass spectrometry (AMS) has been developed for quantifying attomoles of beryllium (Be) in biological samples. This method provides the sensitivity to trace Be in biological samples at very low doses with the purpose of identifying the molecular targets involved in chronic beryllium disease. Proof of the method was tested by administering 0.001, 0.05, 0.5 and 5.0 {micro}g {sup 9}Be and {sup 10}Be by intraperitoneal injection to male mice and removing spleen, liver, femurs, blood, lung, and kidneys after 24 h exposure. These samples were prepared for AMS analysis by tissue digestion in nitric acid, followed by further organic oxidation with hydrogen peroxide and ammonium persulfate and lastly, precipitation of Be with ammonium hydroxide, and conversion to beryllium oxide at 800 C. The {sup 10}Be/{sup 9}Be ratio of the extracted beryllium oxide was measured by AMS and Be in the original sample was calculated. Results indicate that Be levels were dose-dependent in all tissues and the highest levels were measured in the spleen and liver. The measured {sup 10}Be/{sup 9}Be ratios spanned 4 orders of magnitude, from 10{sup -10} to 10{sup -14}, with a detection limit of 3.0 x 10{sup -14}, which is equivalent to 0.8 attomoles of {sup 10}Be. These results show that routine quantification of nanogram levels of Be in tissues is possible and that AMS is a sensitive method that can be used in biological studies to understand the molecular dosimetry of Be and mechanisms of toxicity.

  7. Extraction of beryllium from refractory beryllium oxide with dilute ammonium bifluoride and determination by fluorescence: a multiparameter performance evaluation.

    Goldcamp, Michael J; Goldcamp, Diane M; Ashley, Kevin; Fernback, Joseph E; Agrawal, Anoop; Millson, Mark; Marlow, David; Harrison, Kenneth


    Beryllium exposure can cause a number of deleterious health effects, including beryllium sensitization and the potentially fatal chronic beryllium disease. Efficient methods for monitoring beryllium contamination in workplaces are valuable to help prevent dangerous exposures to this element. In this work, performance data on the extraction of beryllium from various size fractions of high-fired beryllium oxide (BeO) particles (from Beryllium concentrations were determined by fluorescence using a hydroxybenzoquinoline fluorophore. The effects of ABF concentration and volume, extraction temperature, sample tube types, and presence of filter or wipe media were examined. Three percent ABF extracts beryllium nearly twice as quickly as 1% ABF; extraction solution volume has minimal influence. Elevated temperatures increase the rate of extraction dramatically compared with room temperature extraction. Sample tubes with constricted tips yield poor extraction rates owing to the inability of the extraction medium to access the undissolved particles. The relative rates of extraction of Be from BeO of varying particle sizes were examined. Beryllium from BeO particles in fractions ranging from less than 32 microm up to 212 microm were subjected to various extraction schemes. The smallest BeO particles are extracted more quickly than the largest particles, although at 90 degrees C even the largest BeO particles reach nearly quantitative extraction within 4 hr in 3% ABF. Extraction from mixed cellulosic-ester filters, cellulosic surface-sampling filters, wetted cellulosic dust wipes, and cotton gloves yielded 90% or greater recoveries. Scanning electron microscopy of BeO particles, including partially dissolved particles, shows that dissolution in dilute ABF occurs not just on the exterior surface but also via accessing particles' interiors due to porosity of the BeO material. Comparison of dissolution kinetics data shows that as particle diameter approximately doubles, extraction

  8. First direct mass measurements of stored neutron-rich 129,130,131Cd isotopes with FRS-ESR

    Knöbel, R.; Diwisch, M.; Bosch, F.; Boutin, D.; Chen, L.; Dimopoulou, C.; Dolinskii, A.; Franczak, B.; Franzke, B.; Geissel, H.; Hausmann, M.; Kozhuharov, C.; Kurcewicz, J.; Litvinov, S. A.; Martinez-Pinedo, G.; Matoš, M.; Mazzocco, M.; Münzenberg, G.; Nakajima, S.; Nociforo, C.; Nolden, F.; Ohtsubo, T.; Ozawa, A.; Patyk, Z.; Plaß, W. R.; Scheidenberger, C.; Stadlmann, J.; Steck, M.; Sun, B.; Suzuki, T.; Walker, P. M.; Weick, H.; Wu, M.-R.; Winkler, M.; Yamaguchi, T.


    A 410 MeV/u 238U projectile beam was used to create cadmium isotopes via abrasion-fission in a beryllium target placed at the entrance of the in-flight separator FRS at GSI. The fission fragments were separated by the FRS and injected into the isochronous storage ring ESR for mass measurements. Isochronous Mass Spectrometry (IMS) was performed under two different experimental conditions, with and without Bρ-tagging at the high-resolution central focal plane of the FRS. In the experiment with Bρ-tagging the magnetic rigidity of the injected fragments was determined with an accuracy of 2 ṡ10-4. A new method of data analysis, which uses a correlation matrix for the combined data set from both experiments, has provided experimental mass values of 25 rare isotopes for the first time. The high sensitivity and selectivity of the method have given access to nuclides detected with a rate of a few atoms per week. In this letter we present for the 129,130,131Cd isotopes mass values directly measured for the first time. The experimental mass values of cadmium as well as for tellurium and tin isotopes show a pronounced shell effect towards and at N = 82. Shell quenching cannot be deduced from a single new mass value, nor by a better agreement with a theoretical model which explicitly takes into account a quenching feature. This is in agreement with the conclusion from γ-ray spectroscopy and confirms modern shell-model calculations.

  9. Primordial beryllium as a big bang calorimeter.

    Pospelov, Maxim; Pradler, Josef


    Many models of new physics including variants of supersymmetry predict metastable long-lived particles that can decay during or after primordial nucleosynthesis, releasing significant amounts of nonthermal energy. The hadronic energy injection in these decays leads to the formation of ⁹Be via the chain of nonequilibrium transformations: Energy(h)→T, ³He→⁶He, ⁶Li→⁹Be. We calculate the efficiency of this transformation and show that if the injection happens at cosmic times of a few hours the release of O(10 MeV) per baryon can be sufficient for obtaining a sizable ⁹Be abundance. The absence of a plateau structure in the ⁹Be/H abundance down to a O(10⁻¹⁴) level allows one to use beryllium as a robust constraint on new physics models with decaying or annihilating particles.

  10. Investigation of the ion beryllium surface interaction

    Guseva, M.I.; Birukov, A.Yu.; Gureev, V.M. [RRC Kurchatov Institute, Moscow (Russian Federation)] [and others


    The self -sputtering yield of the Be was measured. The energy dependence of the Be self-sputtering yield agrees well with that calculated by W. Eckstein et. al. Below 770 K the self-sputtering yield is temperature independent; at T{sub irr}.> 870 K it increases sharply. Hot-pressed samples at 370 K were implanted with monoenergetic 5 keV hydrogen ions and with a stationary plasma (flux power {approximately} 5 MW/m{sup 2}). The investigation of hydrogen behavior in beryllium shows that at low doses hydrogen is solved, but at doses {ge} 5x10{sup 22} m{sup -2} the bubbles and channels are formed. It results in hydrogen profile shift to the surface and decrease of its concentration. The sputtering results in further concentration decrease at doses > 10{sup 25}m{sup -2}.

  11. Photodesorption from copper, beryllium, and thin films

    Foerster, C. L.; Halama, H. J.; Korn, G.

    Ever increasing circulating currents in electron-positron colliders and light sources demand lower and lower photodesportion (PSD) from the surfaces of their vacuum chambers and their photon absorbers. This is particularly important in compact electron storage rings and B meson factories where photon power of several kw cm(exp -1) is deposited on the surfaces. Given the above factors, we have measured PSD from 1 m long bars of solid copper and solid beryllium, and TiN, Au and C thin films deposited on solid copper bars. Each sample was exposed to about 10(exp 23) photons/m with a critical energy of 500 eV at the VUV ring of the NSLS. PSD was recorded for two conditions: after a 200 C bake-out and after an Ar glow discharge cleaning. In addition, we also measured reflected photons, photoelectrons and desorption as functions of normal, 75 mrad, 100 mrad, and 125 mrad incident photons.

  12. New facility for post irradiation examination of neutron irradiated beryllium

    Ishitsuka, Etsuo; Kawamura, Hiroshi [Oarai Research Establishment, Ibaraki-Ken (Japan)


    Beryllium is expected as a neutron multiplier and plasma facing materials in the fusion reactor, and the neutron irradiation data on properties of beryllium up to 800{degrees}C need for the engineering design. The acquisition of data on the tritium behavior, swelling, thermal and mechanical properties are first priority in ITER design. Facility for the post irradiation examination of neutron irradiated beryllium was constructed in the hot laboratory of Japan Materials Testing Reactor to get the engineering design data mentioned above. This facility consist of the four glove boxes, dry air supplier, tritium monitoring and removal system, storage box of neutron irradiated samples. Beryllium handling are restricted by the amount of tritium;7.4 GBq/day and {sup 60}Co;7.4 MBq/day.

  13. The uses and adverse effects of beryllium on health

    Cooper, Ross G.; Harrison, Adrian Paul


    Context: This review describes the health effects of beryllium exposure in the workplace and the environment. Aim: To collate information on the consequences of occupational and environmental exposure to beryllium on physiological function and well being. Materials and Methods: The criteria used...... in the current review for selecting articles were adopted from proposed criteria in The International Classification of Functioning, Disability, and Health. Articles were classified based on acute and chronic exposure and toxicity of beryllium. Results: The proportions of utilized and nonutilized articles were...... published in sources unobtainable through requests at the British Library, and some had no impact factor and were excluded. Conclusion: Beryllium has some useful but undoubtedly harmful effects on health and well-being. Measures needed to be taken to prevent hazardous exposure to this element, making its...

  14. The beryllium production at Ulba metallurgical plant (Ust-Kamenogrsk, Kazakhstan)

    Dvinskykh, E.M.; Savchuk, V.V.; Tuzov, Y.V. [Ulba Metallurgical Plant (Zavod), Ust-Kamenogorsk, Abay prospect 102 (Kazakhstan)


    The Report includes data on beryllium production of Ulba metallurgical plant, located in Ust-Kamenogorsk (Kazakhstan). Beryllium production is showed to have extended technological opportunities in manufacturing semi-products (beryllium ingots, master alloys, metallic beryllium powders, beryllium oxide) and in production of structural beryllium and its parts. Ulba metallurgical plant owns a unique technology of beryllium vacuum distillation, which allows to produce reactor grades of beryllium with a low content of metallic impurities. At present Ulba plant does not depend on raw materials suppliers. The quantity of stored raw materials and semi-products will allow to provide a 25-years work of beryllium production at a full capacity. The plant has a satisfactory experience in solving ecological problems, which could be useful in ITER program. (author)

  15. Development of Biomarkers for Chronic Beryllium Disease in Mice

    Gordon, Terry


    Beryllium is a strategic metal, indispensable for national defense programs in aerospace, telecommunications, electronics, and weaponry. Exposure to beryllium is an extensively documented occupational hazard that causes irreversible, debilitating granulomatous lung disease in as much as 3 - 5% of exposed workers. Mechanistic research on beryllium exposure-disease relationships has been severely limited by a general lack of a sufficient CBD animal model. We have now developed and tested an animal model which can be used for dissecting dose-response relationships and pathogenic mechanisms and for testing new diagnostic and treatment paradigms. We have created 3 strains of transgenic mice in which the human antigen-presenting moiety, HLA-DP, was inserted into the mouse genome. Each mouse strain contains HLA-DPB1 alleles that confer different magnitude of risk for chronic beryllium disease (CBD): HLA-DPB1*0401 (odds ratio = 0.2), HLA-DPB1*0201 (odds ratio = 15), HLA-DPB1*1701 (odds ratio = 240). Our preliminary work has demonstrated that the *1701 allele, as predicted by human studies, results in the greatest degree of sensitization in a mouse ear swelling test. We have also completed dose-response experiments examining beryllium-induced lung granulomas and identified susceptible and resistant inbred strains of mice (without the human transgenes) as well as quantitative trait loci that may contain gene(s) that modify the immune response to beryllium. In this grant application, we propose to use the transgenic and normal inbred strains of mice to identify biomarkers for the progression of beryllium sensitization and CBD. To achieve this goal, we propose to compare the sensitivity and accuracy of the lymphocyte proliferation test (blood and bronchoalveolar lavage fluid) with the ELISPOT test in the three HLA-DP transgenic mice strains throughout a 6 month treatment with beryllium particles. Because of the availability of high-throughput proteomics, we will also identify

  16. The Study of Kinetics of Diffusion and Phase Formation in the Layered Iron-Beryllium System

    Kuterbekov, K. A.; Nurkenov, S. A.; Kislitsin, S. B.; Kuketayev, T. A.; Nurakhmetov, T. N.


    The methods of Mössbauer spectroscopy with X-ray phase analysis and Rutherford backscattering of protons were used to study the kinetics of diffusion and phase transformations in the layered iron-beryllium system. For the first time, the authors suggested and implemented a method for retardation of diffusion and phase formation processes in the layered iron-beryllium system using the barrier layer. It was established that the barrier layer limits the zone of beryllium dissolution in the area of implanted layer. The impact of the barrier layer on kinetics of thermally induced processes of diffusion and phase transformations in the layered Fe-Be system was determined using the example of Fe (10 μm): O+ - Be (0.7 μm) - 57Fe (0.1 μm). The authors suggested and implemented a method for recovery of the distribution function of the admixture atom concentration in the solid matrix-admixture solution on the basis of the X-ray diffraction data. The kinetics of mutual diffusion was determined for Fe and Be atoms in the α-Fe(Be) solution for both sides of the layered systems with a barrier layer and without it using the suggested method for recovery of the distribution function of the Be atom concentration. It was established that for the system without a barrier layer, the share of iron atoms ends at tann 5 h on the coating side and at tann 7.5 h on the iron side, while for the barrier layer case - at tann 20 h on the coating side and at tann 40 h on the iron side.

  17. Nanostructured Alloys as an Alternative to Copper-Beryllium


    bushing applications;  2) Nanometal/composite for high specific strength/stiffness components; and  3) Nanometal cobalt / copper enabled...performance of Integran’s Nanovate cobalt -based and nickel- cobalt metals is superior to copper beryllium (peak hardness); Mechanical Property Summary...Nanostructured Cobalt Alloy 285 ksi (1967 MPa) 225 ksi (1550 MPa) 290 ksi (2000 MPa) 18855 ksi (130 GPa) Copper Beryllium (C17200-TH04) 142 ksi

  18. Actinide/beryllium neutron sources with reduced dispersion characteristics

    Schulte, Louis D.


    Neutron source comprising a composite, said composite comprising crystals comprising BeO and AmBe.sub.13, and an excess of beryllium, wherein the crystals have an average size of less than 2 microns; the size distribution of the crystals is less than 2 microns; and the beryllium is present in a 7-fold to a 75-fold excess by weight of the amount of AmBe.sub.13; and methods of making thereof.

  19. Beryllium contamination and exposure monitoring in an inhalation laboratory setting.

    Muller, Caroline; Audusseau, Séverine; Salehi, Fariba; Truchon, Ginette; Chevalier, Gaston; Mazer, Bruce; Kennedy, Greg; Zayed, Joseph


    Beryllium (Be) is used in several forms: pure metal, beryllium oxide, and as an alloy with copper, aluminum, or nickel. Beryllium oxide, beryllium metal, and beryllium alloys are the main forms present in the workplace, with inhalation being the primary route of exposure. Cases of workers with sensitization or chronic beryllium disease challenge the scientific community for a better understanding of Be toxicity. Therefore, a toxicological inhalation study using a murine model was performed in our laboratory in order to identify the toxic effects related to different particle sizes and chemical forms of Be. This article attempts to provide information regarding the relative effectiveness of the environmental monitoring and exposure protection program that was enacted to protect staff (students and researchers) in this controlled animal beryllium inhalation exposure experiment. This includes specific attention to particle migration control through intensive housekeeping and systematic airborne and surface monitoring. Results show that the protective measures applied during this research have been effective. The highest airborne Be concentration in the laboratory was less than one-tenth of the Quebec OEL (occupational exposure limit) of 0.15 microg/m(3). Considering the protection factor of 10(3) of the powered air-purifying respirator used in this research, the average exposure level would be 0.03 x 10(- 4) microg/m(3), which is extremely low. Moreover, with the exception of one value, all average Be concentrations on surfaces were below the Quebec Standard guideline level of 3 microg/100 cm(2) for Be contamination. Finally, all beryllium lymphocyte proliferation tests for the staff were not higher than controls.

  20. Towards high precision measurements of nuclear g-factors for the Be isotopes

    Takamine, A., E-mail: [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Wada, M. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Okada, K. [Department of Physics, Sophia University, Chiyoda Ward, Tokyo (Japan); Ito, Y. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Schury, P.; Arai, F. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Institute of Physics, University of Tsukuba, Tsukuba City, Ibaraki (Japan); Katayama, I. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Imamura, K. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Department of Physics, Meiji University, Kawasaki City, Kanagawa (Japan); Ichikawa, Y.; Ueno, H. [RIKEN, Nishina Center for Accelerator Based Science, Wako City, Saitama (Japan); Wollnik, H. [Department of Chemistry and BioChemistry, New Mexico State University, Las Cruces, NM (United States); Schuessler, H.A. [Department of Physics, Texas A& M University, College Station, TX (United States)


    We describe the present status of future high-precision measurements of nuclear g-factors utilizing laser-microwave double and laser-microwave-rf triple resonance methods for online-trapped, laser-cooled radioactive beryllium isotope ions. These methods have applicability to other suitably chosen isotopes and for beryllium show promise in deducing the hyperfine anomaly of {sup 11}Be with a sufficiently high precision to study the nuclear magnetization distribution of this one-neutron halo nucleus in a nuclear-model-independent manner.

  1. Impurities effect on the swelling of neutron irradiated beryllium

    Donne, M.D.; Scaffidi-Argentina, F. [Institut fuer Neutronenphysik und Reaktortechnik, Karlsruhe (Germany)


    An important factor controlling the swelling behaviour of fast neutron irradiated beryllium is the impurity content which can strongly affect both the surface tension and the creep strength of this material. Being the volume swelling of the old beryllium (early sixties) systematically higher than that of the more modem one (end of the seventies), a sensitivity analysis with the aid of the computer code ANFIBE (ANalysis of Fusion Irradiated BEryllium) to investigate the effect of these material properties on the swelling behaviour of neutron irradiated beryllium has been performed. Two sets of experimental data have been selected: the first one named Western refers to quite recently produced Western beryllium, whilst the second one, named Russian refers to relatively old (early sixties) Russian beryllium containing a higher impurity rate than the Western one. The results obtained with the ANFIBE Code were assessed by comparison with experimental data and the used material properties were compared with the data available in the literature. Good agreement between calculated and measured values has been found.

  2. Comparison of the imaging performances for recently developed monolithic scintillators: CRY018 and CRY019 for dual isotope gamma ray imaging applications

    Polito, C.; Pani, R.; Trigila, C.; Cinti, M. N.; Fabbri, A.; Frantellizzi, V.; De Vincentis, G.; Pellegrini, R.; Pani, R.


    The growing interest for new scintillation crystals with outstanding imaging performances (i.e. resolution and efficiency) has suggested the study of recently discovered scintillators named CRY018 and CRY019. The crystals under investigation are monolithic and have shown enhanced characteristics both for gamma ray spectrometry and for Nuclear Medicine imaging applications such as the dual isotope imaging. Moreover, the non-hygroscopic nature and the absence of afterglow make these scintillators even more attractive for the potential improvement in a wide range of applications. These scintillation crystals show a high energy resolution in the energy range involved in Nuclear Medicine, allowing the discrimination between very close energy values. Moreover, in order to prove their suitability of being powerful imaging systems, the imaging performances like the position linearity and the intrinsic spatial resolution have been evaluated obtaining satisfactory results thanks to the implementation of an optimized algorithm for the images reconstruction.

  3. El Nino / Southern Oscillation and beryllium-7 (7Be Concentration in the Atmospheric Boundary Layer

    Gennady F. Batrakov


    Full Text Available The influence of El Nino / Southern Oscillation (ENSO on the atmospheric concentration of beryllium-7 (7Be in five points situated in South America: Guayaquil, Lima, Anafagasta, Puerto Montt and Punta Arens was investigated. By using correlation analysis it was found that significant statistical relationship between the variability of concentration of 7Be and variability of indices NINO 1+2 and NINO 3 take place in Guayaquil and Puerto Montt. In these cities during the period 1967–1998 yr. there was increased of statistical relationships between the variability of concentration of 7Be and variation of the indices. The results indicate that ENSO most significant effect on the atmospheric concentration of the isotope in the regions located in the subequatorial and subtropical climatic belts. Moreover, such an effect on the time interval 1967–1998 yr., the second half of which corresponds to the period of modern global warming, has increased significantly

  4. Beryllium processing technology review for applications in plasma-facing components

    Castro, R.G.; Jacobson, L.A.; Stanek, P.W.


    Materials research and development activities for the International Thermonuclear Experimental Reactor (ITER), i.e., the next generation fusion reactor, are investigating beryllium as the first-wall containment material for the reactor. Important in the selection of beryllium is the ability to process, fabricate and repair beryllium first-wall components using existing technologies. Two issues that will need to be addressed during the engineering design activity will be the bonding of beryllium tiles in high-heat-flux areas of the reactor, and the in situ repair of damaged beryllium tiles. The following review summarizes the current technology associated with welding and joining of beryllium to itself and other materials, and the state-of-the-art in plasma-spray technology as an in situ repair technique for damaged beryllium tiles. In addition, a review of the current status of beryllium technology in the former Soviet Union is also included.

  5. 40 CFR 468.20 - Applicability; description of the beryllium copper forming subcategory.


    ... of pollutants into publicly owned treatment works from the forming of beryllium copper alloys. ... beryllium copper forming subcategory. 468.20 Section 468.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS COPPER FORMING POINT SOURCE...

  6. Validation of cleaning method for various parts fabricated at a Beryllium facility

    Davis, Cynthia M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    This study evaluated and documented a cleaning process that is used to clean parts that are fabricated at a beryllium facility at Los Alamos National Laboratory. The purpose of evaluating this cleaning process was to validate and approve it for future use to assure beryllium surface levels are below the Department of Energy’s release limits without the need to sample all parts leaving the facility. Inhaling or coming in contact with beryllium can cause an immune response that can result in an individual becoming sensitized to beryllium, which can then lead to a disease of the lungs called chronic beryllium disease, and possibly lung cancer. Thirty aluminum and thirty stainless steel parts were fabricated on a lathe in the beryllium facility, as well as thirty-two beryllium parts, for the purpose of testing a parts cleaning method that involved the use of ultrasonic cleaners. A cleaning method was created, documented, validated, and approved, to reduce beryllium contamination.

  7. The structure, properties and performance of plasma-sprayed beryllium for fusion applications

    Castro, R.G.; Stanek, P.W.; Elliott, K.E. [and others


    Plasma-spray technology is under investigation as a method for producing high thermal conductivity beryllium coatings for use in magnetic fusion applications. Recent investigations have focused on optimizing the plasma-spray process for depositing beryllium coatings on damaged beryllium surfaces. Of particular interest has been optimizing the processing parameters to maximize the through-thickness thermal conductivity of the beryllium coatings. Experimental results will be reported on the use of secondary H{sub 2} gas additions to improve the melting of the beryllium powder and transferred-arc cleaning to improve the bonding between the beryllium coatings and the underlying surface. Information will also be presented on thermal fatigue tests which were done on beryllium coated ISX-B beryllium limiter tiles using 10 sec cycle times with 60 sec cooldowns and an International Thermonuclear Experimental Reactor (ITER) relevant divertor heat flux slightly in excess of 5 MW/m{sup 2}.

  8. Controlling Beryllium Contaminated Material And Equipment For The Building 9201-5 Legacy Material Disposition Project

    Reynolds, T. D.; Easterling, S. D.


    This position paper addresses the management of beryllium contamination on legacy waste. The goal of the beryllium management program is to protect human health and the environment by preventing the release of beryllium through controlling surface contamination. Studies have shown by controlling beryllium surface contamination, potential airborne contamination is reduced or eliminated. Although there are areas in Building 9201-5 that are contaminated with radioactive materials and mercury, only beryllium contamination is addressed in this management plan. The overall goal of this initiative is the compliant packaging and disposal of beryllium waste from the 9201-5 Legacy Material Removal (LMR) Project to ensure that beryllium surface contamination and any potential airborne release of beryllium is controlled to levels as low as practicable in accordance with 10 CFR 850.25.

  9. Beryllium abundances in stars hosting giant planets

    Santos, N C; Israelian, G; Mayor, M; Rebolo, R; García-Gíl, A; Pérez de Taoro, M R; Randich, S


    We have derived beryllium abundances in a wide sample of stars hosting planets, with spectral types in the range F7V-K0V, aimed at studying in detail the effects of the presence of planets on the structure and evolution of the associated stars. Predictions from current models are compared with the derived abundances and suggestions are provided to explain the observed inconsistencies. We show that while still not clear, the results suggest that theoretical models may have to be revised for stars with Teff<5500K. On the other hand, a comparison between planet host and non-planet host stars shows no clear difference between both populations. Although preliminary, this result favors a ``primordial'' origin for the metallicity ``excess'' observed for the planetary host stars. Under this assumption, i.e. that there would be no differences between stars with and without giant planets, the light element depletion pattern of our sample of stars may also be used to further investigate and constraint Li and Be deple...

  10. Steam-chemical reactivity for irradiated beryllium

    Anderl, R.A.; McCarthy, K.A.; Oates, M.A.; Petti, D.A.; Pawelko, R.J.; Smolik, G.R. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States)


    This paper reports the results of an experimental investigation to determine the influence of neutron irradiation effects and annealing on the chemical reactivity of beryllium exposed to steam. The work entailed measurements of the H{sub 2} generation rates for unirradiated and irradiated Be and for irradiated Be that had been previously annealed at different temperatures ranging from 450degC to 1200degC. H{sub 2} generation rates were similar for irradiated and unirradiated Be in steam-chemical reactivity experiments at temperatures between 450degC and 600degC. For irradiated Be exposed to steam at 700degC, the chemical reactivity accelerated rapidly and the specimen experienced a temperature excursion. Enhanced chemical reactivity at temperatures between 400degC and 600degC was observed for irradiated Be annealed at temperatures of 700degC and higher. This reactivity enhancement could be accounted for by the increased specific surface area resulting from development of a surface-connected porosity in the irradiated-annealed Be. (author)

  11. Report of a technical evaluation panel on the use of beryllium for ITER plasma facing material and blanket breeder material

    Ulrickson, M.A. [ed.] [Sandia National Labs., Albuquerque, NM (United States); Manly, W.D. [Oak Ridge National Lab., TN (United States); Dombrowski, D.E. [Brush Wellman, Inc., Cleveland, OH (United States)] [and others


    Beryllium because of its low atomic number and high thermal conductivity, is a candidate for both ITER first wall and divertor surfaces. This study addresses the following: why beryllium; design requirements for the ITER divertor; beryllium supply and unirradiated physical/mechanical property database; effects of irradiation on beryllium properties; tritium issues; beryllium health and safety; beryllium-coolant interactions and safety; thermal and mechanical tests; plasma erosion of beryllium; recommended beryllium grades for ITER plasma facing components; proposed manufacturing methods to produce beryllium parts for ITER; emerging beryllium materials; proposed inspection and maintenance techniques for beryllium components and coatings; time table and costs; and the importance of integrating materials and manufacturing personnel with designers.

  12. Erosion of beryllium under ITER – Relevant transient plasma loads

    Kupriyanov, I.B., E-mail: [A.A. Bochvar High Technology Research Institute of Inorganic Materials, Rogova St. 5a, 123060 Moscow (Russian Federation); Nikolaev, G.N.; Kurbatova, L.A.; Porezanov, N.P. [A.A. Bochvar High Technology Research Institute of Inorganic Materials, Rogova St. 5a, 123060 Moscow (Russian Federation); Podkovyrov, V.L.; Muzichenko, A.D.; Zhitlukhin, A.M. [TRINITI, Troitsk, Moscow reg. (Russian Federation); Gervash, A.A. [Efremov Research Institute, S-Peterburg (Russian Federation); Safronov, V.M. [Project Center of ITER, Moscow (Russian Federation)


    Highlights: • We study the erosion, mass loss/gain and surface structure evolution of Be/CuCrZr mock-ups, armored with beryllium of TGP-56FW grade after irradiation by deuterium plasma heat load of 0.5 MJ/m{sup 2} at 250 °C and 500 °C. • Beryllium mass loss/erosion under plasma heat load at 250 °C is rather small (no more than 0.2 g/m{sup 2} shot and 0.11 μm/shot, correspondingly, after 40 shots) and tends to decrease with increasing number of shots. • Beryllium mass loss/erosion under plasma heat load at 500 °C is much higher (∼2.3 g/m{sup 2} shot and 1.2 μm/shot, correspondingly, after 10 shot) and tends to decrease with increasing the number of shots (∼0.26 g/m{sup 2} pulse and 0.14 μm/shot, correspondingly, after 100 shot). • Beryllium erosion value derived from the measurements of profile of irradiated surface is much higher than erosion value derived from mass loss data. - Abstract: Beryllium will be used as a armor material for the ITER first wall. It is expected that erosion of beryllium under transient plasma loads such as the edge-localized modes (ELMs) and disruptions will mainly determine a lifetime of the ITER first wall. This paper presents the results of recent experiments with the Russian beryllium of TGP-56FW ITER grade on QSPA-Be plasma gun facility. The Be/CuCrZr mock-ups were exposed to up to 100 shots by deuterium plasma streams (5 cm in diameter) with pulse duration of 0.5 ms and heat loads range of 0.2–0.5 MJ/m{sup 2} at different temperature of beryllium tiles. The temperature of Be tiles has been maintained about 250 and 500 °C during the experiments. After 10, 40 and 100 shots, the beryllium mass loss/gain under erosion process were investigated as well as evolution of surface microstructure and cracks morphology.

  13. A Report on the Validation of Beryllium Strength Models

    Armstrong, Derek Elswick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    This report discusses work on validating beryllium strength models with flyer plate and Taylor rod experimental data. Strength models are calibrated with Hopkinson bar and quasi-static data. The Hopkinson bar data for beryllium provides strain rates up to about 4000 per second. A limitation of the Hopkinson bar data for beryllium is that it only provides information on strain up to about 0.15. The lack of high strain data at high strain rates makes it difficult to distinguish between various strength model settings. The PTW model has been calibrated many different times over the last 12 years. The lack of high strain data for high strain rates has resulted in these calibrated PTW models for beryllium exhibiting significantly different behavior when extrapolated to high strain. For beryllium, the α parameter of PTW has recently been calibrated to high precision shear modulus data. In the past the α value for beryllium was set based on expert judgment. The new α value for beryllium was used in a calibration of the beryllium PTW model by Sky Sjue. The calibration by Sjue used EOS table information to model the temperature dependence of the heat capacity. Also, the calibration by Sjue used EOS table information to model the density changes of the beryllium sample during the Hopkinson bar and quasi-static experiments. In this paper, the calibrated PTW model by Sjue is compared against experimental data and other strength models. The other strength models being considered are a PTW model calibrated by Shuh- Rong Chen and a Steinberg-Guinan type model by John Pedicini. The three strength models are used in a comparison against flyer plate and Taylor rod data. The results show that the Chen PTW model provides better agreement to this data. The Chen PTW model settings have been previously adjusted to provide a better fit to flyer plate data, whereas the Sjue PTW model has not been changed based on flyer plate data. However, the Sjue model provides a reasonable fit to

  14. Genetic determinants of sensitivity to beryllium in mice.

    Tarantino-Hutchison, Lauren M; Sorrentino, Claudio; Nadas, Arthur; Zhu, Yiwen; Rubin, Edward M; Tinkle, Sally S; Weston, Ainsley; Gordon, Terry


    Chronic beryllium disease (CBD), an irreversible, debilitating granulomatous lung disease is caused by exposure to beryllium. This occupational hazard occurs in primary production and machining of Be-metal, BeO, beryllium - containing alloys, and other beryllium products. CBD begins as an MHC Class II-restricted, T(H)1 hypersensitivity, and the Human Leukocyte Antigen, HLA-DPB1E(69), is associated with risk of developing CBD. Because inbred strains of mice have not provided good models of CBD to date, three strains of HLA-DPB1 transgenic mice in an FVB/N background were developed; each contains a single allele of HLA-DPB1 that confers a different magnitude of risk for chronic beryllium disease: HLA-DPB1*0401 (OR approximately 0.2), HLA-DPB1*0201 (OR approximately 3), and HLA-DPB1*1701 (OR approximately 46). The mouse ear swelling test (MEST) was employed to determine if these different alleles would support a hypersensitivity response to beryllium. Mice were first sensitized on the back and subsequently challenged on the ear. In separate experiments, mice were placed into one of three groups (sensitization/challenge): C/C, C/Be, and Be/Be. In the HLA-DPB1*1701 mice, the strain with the highest risk transgene, the Be/Be group was the only group that displayed significant maximum increased ear thickness of 19.6% +/- 3.0% over the baseline measurement (p beryllium in seven inbred strains were investigated through use of the MEST, these included: FVB/N, AKR, Balb/c, C3H/HeJ, C57/BL6, DBA/2, and SJL/J. The FVB/N strain was least responsive, while the SJL/J and C57/BL6 strains were the highest responders. Our results suggest that the HLA-DPB1*1701 transgene product is an important risk factor for induction of the beryllium-sensitive phenotype. This model should be a useful tool for investigating beryllium sensitization.

  15. Beryllium Chelation by Dicarboxylic Acids in Aqueous Solution.

    Schmidt, Michael; Bauer, Andreas; Schmidbaur, Hubert


    Maleic and phthalic acids are found to react with Be(OH)(2), generated in situ from BeSO(4)(aq) and Ba(OH)(2)(aq), in aqueous solution at pH 3.0 or 4.4, respectively (25 degrees C), to give solutions containing the complexes (H(2)O)(2)Be[(OOCCH)(2)] (1) and (H(2)O)(2)Be[(OOC)(2)C(6)H(4)] (3). The products can be isolated in high yield and identified by microanalytical data. With 2 equiv of the dicarboxylic acids and the pH adjusted to 5.5 and 5.9, respectively, by addition of ammonia, the bis-chelate complexes [(NH(4))(+)](2){[Be[(OOCCH)(2)](2)}(2)(-) (2) and [(NH(4))(+)](2){Be[(OOC)(2)C(6)H(4)](2)}(2)(-) (4) are obtained, which can also be isolated. The compounds show distinct (9)Be, (1)H, and (13)C resonances in their NMR spectra in aqueous solutions. Layering of an aqueous solution of compound 4 with acetone at ambient temperature leads to the precipitation of single crystals suitable for an X-ray structure determination. This salt (5) was found to contain the bis-chelated dianion {Be[(OOC)(2)C(6)H(4)](2)}(2)(-) with the beryllium atom in the spiro center of two seven-membered rings and an overall geometry approaching closely C(2) symmetry. These anions are associated with two crystallographically independent but structurally similar counterions [MeC(O)CH(2)CMe(2)NH(3)](+), which are the product of a condensation reaction of the ammonium cation with the acetone solvent. In the crystal the ammonium hydrogen atoms of the cations form N-H.O hydrogen bonds with the oxo functions of the dianion.

  16. Identification of beryllium-dependent peptides recognized by CD4+ T cells in chronic beryllium disease.

    Falta, Michael T; Pinilla, Clemencia; Mack, Douglas G; Tinega, Alex N; Crawford, Frances; Giulianotti, Marc; Santos, Radleigh; Clayton, Gina M; Wang, Yuxiao; Zhang, Xuewu; Maier, Lisa A; Marrack, Philippa; Kappler, John W; Fontenot, Andrew P


    Chronic beryllium disease (CBD) is a granulomatous disorder characterized by an influx of beryllium (Be)-specific CD4⁺ T cells into the lung. The vast majority of these T cells recognize Be in an HLA-DP–restricted manner, and peptide is required for T cell recognition. However, the peptides that stimulate Be-specific T cells are unknown. Using positional scanning libraries and fibroblasts expressing HLA-DP2, the most prevalent HLA-DP molecule linked to disease, we identified mimotopes and endogenous self-peptides that bind to MHCII and Be, forming a complex recognized by pathogenic CD4⁺ T cells in CBD. These peptides possess aspartic and glutamic acid residues at p4 and p7, respectively, that surround the putative Be-binding site and cooperate with HLA-DP2 in Be coordination. Endogenous plexin A peptides and proteins, which share the core motif and are expressed in lung, also stimulate these TCRs. Be-loaded HLA-DP2–mimotope and HLA-DP2–plexin A4 tetramers detected high frequencies of CD4⁺ T cells specific for these ligands in all HLADP2+ CBD patients tested. Thus, our findings identify the first ligand for a CD4⁺ T cell involved in metal-induced hypersensitivity and suggest a unique role of these peptides in metal ion coordination and the generation of a common antigen specificity in CBD.

  17. Behavior of carboxylic acids upon complexation with beryllium compounds.

    Mykolayivna-Lemishko, Kateryna; Montero-Campillo, M Merced; Mó, Otilia; Yáñez, Manuel


    A significant acidity enhancement and changes on aromaticity were previously observed in squaric acid and its derivatives when beryllium bonds are present in those systems. In order to know if these changes on the chemical properties could be considered a general behavior of carboxylic acids upon complexation with beryllium compounds, complexes between a set of representative carboxylic acids RCOOH (formic acid, acetic acid, propanoic acid, benzoic acid, and oxalic acid) and beryllium compounds BeX2 (X = H, F, Cl) were studied by means of density functional theory calculations. Complexes that contain a dihydrogen bond or a OH···X interaction are the most stable in comparison with other possible BeX2 complexation patterns in which no other weak interactions are involved apart from the beryllium bond. Formic, acetic, propanoic, benzoic, and oxalic acid complexes with BeX2 are much stronger acids than their related free forms. The analysis of the topology of the electron density helps to clarify the reasons behind this acidity enhancement. Importantly, when the halogen atom is replaced by hydrogen in the beryllium compound, the dihydrogen bond complex spontaneously generates a new neutral complex [RCOO:BeH] in which a hydrogen molecule is lost. This seems to be a trend for carboxylic acids on complexing BeX2 compounds.

  18. Design and cooling of BESIII beryllium beam pipe

    Li, Xunfeng; Ji, Quan; Wang, Li; Zheng, Lifang


    The beryllium beam pipe was restructured according to the requirements of the upgraded BESIII (Beijing Spectrometer) experiment. SMO-1 (sparking machining oil no. 1) was selected as the coolant for the central beryllium beam pipe. The cooling gap width of the beryllium beam pipe was calculated, the influence of concentrated heat load on the wall temperature of the beryllium beam pipe was studied, and the optimal velocity of the SMO-1 in the gap was determined at the maximum heat load. A cooling system for the beam pipe was developed to control the outer wall temperature of the beam pipe. The cooling system is reported in this paper with regard to the following two aspects: the layouts and the automation. The performance of the cooling system was tested on the beam pipe model with trim size. The test results show that the design of the beryllium beam pipe is reasonable and that the cooling system achieves the BESIII experimental aim. The cooling system has already passed the acceptance test and has been installed in position. It will be put into practice for the BESIII experiment in 2008.

  19. Determination of rare-earth elements in rocks by isotope-excited X-ray fluorescence spectrometry

    Kunzendorf, Helmar; Wollenberg, H.A.


    by the least-squares method to yield the fractions of La, Ce, Pr, and Nd in the samples. A calibration was established between the fractions of Ce and Nd and their abundances determined by mass spectrometry. Statistical considerations indicated that detection limits are of the order of 10 ppm. An X......-ray spectrometric scan of a longitudinally sliced drill core showed a close correlation between rare-earth abundances and appropriate minerals....

  20. 10 CFR Appendix A to Part 850 - Chronic Beryllium Disease Prevention Program Informed Consent Form


    ... 10 Energy 4 2010-01-01 2010-01-01 false Chronic Beryllium Disease Prevention Program Informed Consent Form A Appendix A to Part 850 Energy DEPARTMENT OF ENERGY CHRONIC BERYLLIUM DISEASE PREVENTION PROGRAM Pt. 850, App. A Appendix A to Part 850—Chronic Beryllium Disease Prevention Program...

  1. Risk-based approach for controlling beryllium exposure in a manufacturing environment

    Gilmore, W. E. (Walter E.); Clawson, C. D. (Chris D.); Ellis, K. K. (Kimberly K.)


    There are many diverse uses for beryllium in both military and industrial applications. Unfortunately, there are certain worker health risks associated with the manufacture and production of beryllium products. Respiratory illnesses due to prolonged contact with beryllium particulate are of paramount concern. However, these health risks can be controlled provided that the appropriate protective measures to prevent worker exposure from beryllium are in place. But it is no1 always a straightforward process to identify exactly what the beryllium protective measures should be in order to realize a true risk savings. Without prudent attention to a systematic inquiry and suitable evaluative criteria, a program for controlling beryllium health risks can be lacking in completeness and overall effectiveness. One approach that took into account the necessary ingredients for risk-based determination of beryllium protective measures was developed for a beryllium operation at a Department of Energy (DOE) facility. The methodological framework that was applied at this facility, as well as a discussion of the final beryllium protective measures that were determined by this approach will be presented. Regulatory aspects for working with beryllium, as well as a risk-assessment strategy for ranking beryllium-handling activities with respect to exposure potential will also be discussed. The presentation will conclude with a synopsis of lessons-learned as gleaned from this case study, as well as providing the participants with a constructive blueprint that can be adapted to other processes involving beryllium.

  2. 10 CFR 71.23 - General license: Plutonium-beryllium special form material.


    ... 10 Energy 2 2010-01-01 2010-01-01 false General license: Plutonium-beryllium special form material... RADIOACTIVE MATERIAL General Licenses § 71.23 General license: Plutonium-beryllium special form material. (a... form of plutonium-beryllium (Pu-Be) special form sealed sources, or to deliver Pu-Be sealed sources...

  3. Monte Carlo uncertainty analyses for integral beryllium experiments

    Fischer, U; Tsige-Tamirat, H


    The novel Monte Carlo technique for calculating point detector sensitivities has been applied to two representative beryllium transmission experiments with the objective to investigate the sensitivity of important responses such as the neutron multiplication and to assess the related uncertainties due to the underlying cross-section data uncertainties. As an important result, it has been revealed that the neutron multiplication power of beryllium can be predicted with good accuracy using state-of-the-art nuclear data evaluations. Severe discrepancies do exist for the spectral neutron flux distribution that would transmit into significant uncertainties of the calculated neutron spectra and of the nuclear blanket performance in blanket design calculations. With regard to this, it is suggested to re-analyse the secondary energy and angle distribution data of beryllium by means of Monte Carlo based sensitivity and uncertainty calculations. Related code development work is underway.

  4. Estimation of beryllium ground state energy by Monte Carlo simulation

    Kabir, K. M. Ariful [Department of Physical Sciences, School of Engineering and Computer Science, Independent University, Bangladesh (IUB) Dhaka (Bangladesh); Halder, Amal [Department of Mathematics, University of Dhaka Dhaka (Bangladesh)


    Quantum Monte Carlo method represent a powerful and broadly applicable computational tool for finding very accurate solution of the stationary Schrödinger equation for atoms, molecules, solids and a variety of model systems. Using variational Monte Carlo method we have calculated the ground state energy of the Beryllium atom. Our calculation are based on using a modified four parameters trial wave function which leads to good result comparing with the few parameters trial wave functions presented before. Based on random Numbers we can generate a large sample of electron locations to estimate the ground state energy of Beryllium. Our calculation gives good estimation for the ground state energy of the Beryllium atom comparing with the corresponding exact data.

  5. Field-emission spectroscopy of beryllium atoms adsorbed on tungsten

    Czyzewski, J.J.; Grzesiak, W.; Krajniak, J. (Politechnika Wroclawska (Poland))


    Field emission energy distributions (FEED) have been measured for the beryllium-tungsten (023) adsorption system over the 78-450 K temperature range. A temperature dependence of the normalized half-width,, of FEED peaks changed significantly due to beryllium adsorption; and the curve, vs p, for the Be/W adsorption system was identical in character to the calculated curve based on the free electron model in contrast to the curve for the clean tungsten surface. In the last part of this paper Gadzuk's theory of the resonance-tunneling effect is applied to the beryllium atom on tungsten. Experimental and theoretical curves of the enhancement factor as a function of energy have been discussed.

  6. Color Enhancement by Diffusion of Beryllium in Dark Blue Sapphire

    Kyungj in Kim; Yongkil Ahn


    Diffusion of beryllium was performed on dark blue sapphire from China and Australia.The samples were heated with beryllium as a dopant in a furnace at 1 600 ℃ for 42 h in air.After beryllium diffusion,sam-ples were analyzed by UV-Vis,FTIR,and WD-XRF spectroscopy.After heat-treatment with Be as a catalyst, the irons of the ferrous state were changed to the ferric state.Therefore,reaction of Fe2+/Ti4+ IVCT was de-creased.The absorption peaks at 3 309 cm-1 attributed to OH radical were disappeared completely due to carry out heat treatment.Consequently,the intensity of absorption band was decreased in the visible region.Espe-cially,decreased absorption band in the vicinity of 570 nm was responsible for the lighter blue color.There-fore,we confirmed that the dark blue sapphires from China and Australia were changed to vivid blue.

  7. Neutron irradiation behavior of ITER candidate beryllium grades

    Kupriyanov, I.B.; Gorokhov, V.A.; Nikolaev, G.N. [A.A.Bochvar All-Russia Scientific Research Inst. of Inorganic Materials (VNIINM), Moscow (Russian Federation); Melder, R.R.; Ostrovsky, Z.E.


    Beryllium is one of the main candidate materials both for the neutron multiplier in a solid breeding blanket and for the plasma facing components. That is why its behaviour under the typical for fusion reactor loading, in particular, under the neutron irradiation is of a great importance. This paper presents mechanical properties, swelling and microstructure of six beryllium grades (DshG-200, TR-30, TshG-56, TRR, TE-30, TIP-30) fabricated by VNIINM, Russia and also one - (S-65) fabricated by Brush Wellman, USA. The average grain size of the beryllium grades varied from 8 to 25 {mu}m, beryllium oxide content was 0.8-3.2 wt. %, initial tensile strength was 250-680 MPa. All the samples were irradiated in active zone of SM-3 reactor up to the fast neutron fluence (5.5-6.2) {center_dot} 10{sup 21} cm{sup -2} (2.7-3.0 dpa, helium content up to 1150 appm), E > 0.1 MeV at two temperature ranges: T{sub 1} = 130-180degC and T{sub 2} = 650-700degC. After irradiation at 130-180degC no changes in samples dimensions were revealed. After irradiation at 650-700degC swelling of the materials was found to be in the range 0.1-2.1 %. Beryllium grades TR-30 and TRR, having the smallest grain size and highest beryllium oxide content, demonstrated minimal swelling, which was no more than 0.1 % at 650-700degC and fluence 5.5 {center_dot} 10{sup 21} cm{sup -2}. Tensile and compression test results and microstructure parameters measured before and after irradiation are also presented. (author)

  8. High-temperature annealing of proton irradiated beryllium - A dilatometry-based study

    Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; Ghose, Sanjit; Savkliyildiz, Ilyas


    Ssbnd 200 F grade beryllium has been irradiated with 160 MeV protons up to 1.2 1020 cm-2 peak fluence and irradiation temperatures in the range of 100-200 °C. To address the effect of proton irradiation on dimensional stability, an important parameter in its consideration in fusion reactor applications, and to simulate high temperature irradiation conditions, multi-stage annealing using high precision dilatometry to temperatures up to 740 °C were conducted in air. X-ray diffraction studies were also performed to compliment the macroscopic thermal study and offer a microscopic view of the irradiation effects on the crystal lattice. The primary objective was to qualify the competing dimensional change processes occurring at elevated temperatures namely manufacturing defect annealing, lattice parameter recovery, transmutation 4He and 3H diffusion and swelling and oxidation kinetics. Further, quantification of the effect of irradiation dose and annealing temperature and duration on dimensional changes is sought. The study revealed the presence of manufacturing porosity in the beryllium grade, the oxidation acceleration effect of irradiation including the discontinuous character of oxidation advancement, the effect of annealing duration on the recovery of lattice parameters recovery and the triggering temperature for transmutation gas diffusion leading to swelling.

  9. Method for removal of beryllium contamination from an article

    Simandl, Ronald F.; Hollenbeck, Scott M.


    A method of removal of beryllium contamination from an article is disclosed. The method typically involves dissolving polyisobutylene in a solvent such as hexane to form a tackifier solution, soaking the substrate in the tackifier to produce a preform, and then drying the preform to produce the cleaning medium. The cleaning media are typically used dry, without any liquid cleaning agent to rub the surface of the article and remove the beryllium contamination below a non-detect level. In some embodiments no detectible residue is transferred from the cleaning wipe to the article as a result of the cleaning process.

  10. Relativistic and QED corrections for the beryllium atom.

    Pachucki, Krzysztof; Komasa, Jacek


    Complete relativistic and quantum electrodynamics corrections of order alpha(2) Ry and alpha(3) Ry are calculated for the ground state of the beryllium atom and its positive ion. A basis set of correlated Gaussian functions is used, with exponents optimized against nonrelativistic binding energies. The results for Bethe logarithms ln(k(0)(Be)=5.750 34(3) and ln(k(0)(Be+)=5.751 67(3) demonstrate the availability of high precision theoretical predictions for energy levels of the beryllium atom and light ions. Our recommended value of the ionization potential 75 192.514(80) cm(-1) agrees with equally accurate available experimental values.


    Ekechukwu, A


    The most common method of analysis for beryllium is inductively coupled plasma atomic emission spectrometry (ICP-AES). This method, along with inductively coupled plasma mass spectrometry (ICP-MS), is discussed in Chapter 6. However, other methods exist and have been used for different applications. These methods include spectroscopic, chromatographic, colorimetric, and electrochemical. This chapter provides an overview of beryllium analysis methods other than plasma spectrometry (inductively coupled plasma atomic emission spectrometry or mass spectrometry). The basic methods, detection limits and interferences are described. Specific applications from the literature are also presented.

  12. 20 CFR 30.207 - How does a claimant prove a diagnosis of a beryllium disease covered under Part B?


    ... beryllium disease covered under Part B? 30.207 Section 30.207 Employees' Benefits OFFICE OF WORKERS... Beryllium Illness Under Part B of Eeoicpa § 30.207 How does a claimant prove a diagnosis of a beryllium... employee developed a covered beryllium illness. Proof that the employee developed a covered...

  13. Measurement of Balmer and Lyman X-rays in antiprotonic hydrogen isotopes at pressures below 300 hPa

    Bacher, R.; Bluem, P.; Gotta, D.; Heitlinger, K.; Rohmann, D.; Schneider, M.; Egger, J.; Simons, L.M.; Elsener, K.


    X-rays of Balmer and Lyman transitions in antiprotonic hydrogen and of Balmer transitions in antiprotonic deuterium were observed at pressures below 300 hPa using Si(Li) semiconductor detectors. The measurement was performed at the LEAR-facility at a beam momentum of 202 MeV/c. In order to stop antiprotons in a low pressure gaseous target with high efficiency, a novel technique, the cyclotron trap has been used. Absolute yields were determined and compared with cascade calculations. A distinct difference in the cascade of antiprotonic hydrogen and deuterium is found. The parameters of strong interaction in antiprotonic hydrogen are determined to be /epsilon//sub 1s/=-(620+-100) eV, /Gamma//sub 1s/=(1130+-170) eV and /Gamma//sub 2p/=(32+-10) meV. (orig.).

  14. Extraction of beryllium sulfate by a long chain amine; Extraction du sulfate de beryllium par une amine a longue chaine

    Etaix, E.S. [Commissariat a l' Energie Atomique, Fontenay-Aux-Roses (France). Centre d' Etudes Nucleaires


    The extraction of sulfuric acid in aqueous solution by a primary amine in benzene solution, 3-9 (diethyl) - 6-amino tri-decane (D.E.T. ) - i.e., with American nomenclature 1-3 (ethyl-pentyl) - 4-ethyl-octyl amine (E.P.O.) - has made it possible to calculate the formation constants of alkyl-ammonium sulfate and acid sulfate. The formula of the beryllium and alkyl-ammonium sulfate complex formed in benzene has next been determined, for various initial acidity of the aqueous solution. Lastly, evidence has been given of negatively charged complexes of beryllium and sulfate in aqueous solution, through the dependence of the aqueous sulfate ions concentration upon beryllium extraction. The formation constant of these anionic complexes has been evaluated. (author) [French] L'etude de l'extraction de l'acide sulfurique en solution aqueuse par une amine primaire en solution dans le benzene, le diethyl-3,9 amino-6 tridecane (D.E.T.) - autre nom americain 1-3 (ethylpentyl) - 4-ethyloctylamine (E.P.O.) a permis de calculer les constantes de formation du sulfate et de l'hydrogenosulfate d'alkyl-ammonium. La formule du complexe de sulfate de beryllium et d'alkyl-ammonium forme en solution benzenique a ete ensuite determinee pour diverses acidites initiales de la solution aqueuse. Enfin, l'influence de la concentration des ions sulfate de la phase aqueuse sur l'extraction du beryllium a mis en evidence la formation en solution aqueuse de complexes anioniques de sulfate et de beryllium dont la constante de formation a ete evaluee. (auteur)

  15. Beryllium solubility in occupational airborne particles: Sequential extraction procedure and workplace application.

    Rousset, Davy; Durand, Thibaut


    Modification of an existing sequential extraction procedure for inorganic beryllium species in the particulate matter of emissions and in working areas is described. The speciation protocol was adapted to carry out beryllium extraction in closed-face cassette sampler to take wall deposits into account. This four-step sequential extraction procedure aims to separate beryllium salts, metal, and oxides from airborne particles for individual quantification. Characterization of the beryllium species according to their solubility in air samples may provide information relative to toxicity, which is potentially related to the different beryllium chemical forms. Beryllium salts (BeF(2), BeSO(4)), metallic beryllium (Bemet), and beryllium oxide (BeO) were first individually tested, and then tested in mixtures. Cassettes were spiked with these species and recovery rates were calculated. Quantitative analyses with matched matrix were performed using inductively coupled plasma mass spectrometry (ICP-MS). Method Detection Limits (MDLs) were calculated for the four matrices used in the different extraction steps. In all cases, the MDL was below 4.2 ng/sample. This method is appropriate for assessing occupational exposure to beryllium as the lowest recommended threshold limit values are 0.01 µg.m(-3) in France([) (1) (]) and 0.05 µg.m(-3) in the USA.([ 2 ]) The protocol was then tested on samples from French factories where occupational beryllium exposure was suspected. Beryllium solubility was variable between factories and among the same workplace between different tasks.

  16. Thermal cycling tests of actively cooled beryllium copper joints

    Roedig, M.; Duwe, R.; Linke, J.; Schuster, A.; Wiechers, B. [Forschungszentrum Juelich GmbH (Germany)


    Screening tests (steady state heating) and thermal fatigue tests with several kinds of beryllium-copper joints have been performed in an electron beam facility. Joining techniques under investigation were brazing with silver containing and silver-free braze materials, hot isostatic pressing (HIP) and diffusion bonding (hot pressing). Best thermal fatigue performance was found for the brazed samples. (author)


    Spedding, F.H.; Wilhelm, H.A.; Keller, W.H.


    >The preparation is described of thorium-berylium alloys from halides of the metals by stmultaneously reducing thorium fluoride and beryllium fluoride with calcium at approximately 650 deg C and maintaining the temperature until the thorium-beryhltum alloy separates from the slag.

  18. Fluorometric determination of beryllium with 2-(o-hydroxylphenyl)benzoxazole

    Gladilovich, D.B.; Stolyarov, K.P.


    According to the authors, of great interest for the fluorometric determination of small quantities of beryllium is 2-(o-hydroxyphenyl)benzthiazole (HPBT). In this work, 2-(o-hydroxyphenyl)benzoaxzole (HPBO), which is an analog of HPBT and differs from it in that the sulfur atom in the heterocyclic portion of the molecule is replaced by an oxygen atom, is proposed as a reagent for the fluorometric determination of beryllium. The fluorescent reaction of HPBO with beryllium is studied in this paper, in addition to the selection of the optimum conditions for the determination and the development of a procedure for the analysis of complex objects on this basis. The reaction proceeds in aqueous ethanol medium at pH 7.2-7.5. The limit of detection is 0.6 ng/ml. Methods have been developed for the determination of 10/sup -2/% beryllium in alloys based on copper and 10/sup -3/-10/sup -4/% in standard samples of silicate rocks.

  19. 75 FR 80734 - Chronic Beryllium Disease Prevention Program


    ... a person's immune system becomes highly responsive (allergic) to the presence of beryllium in the.... Hardcopies (2 copies) sent by regular mailing should be addressed to: Jacqueline D. Rogers, Office of Worker... to . If you have additional information, such as studies or journal articles...

  20. The uses and adverse effects of beryllium on health

    Cooper Ross


    Full Text Available Context: This review describes the health effects of beryllium exposure in the workplace and the environment. Aim: To collate information on the consequences of occupational and environmental exposure to beryllium on physiological function and well being. Materials and Methods: The criteria used in the current review for selecting articles were adopted from proposed criteria in The International Classification of Functioning, Disability, and Health. Articles were classified based on acute and chronic exposure and toxicity of beryllium. Results: The proportions of utilized and nonutilized articles were tabulated. Years 2001-10 gave the greatest match (45.9% for methodological parameters, followed by 27.71% for 1991-2000. Years 1971-80 and 1981-90 were not significantly different in the information published and available whereas years 1951-1960 showed a lack of suitable articles. Some articles were published in sources unobtainable through requests at the British Library, and some had no impact factor and were excluded. Conclusion: Beryllium has some useful but undoubtedly harmful effects on health and well-being. Measures need to be taken to prevent hazardous exposure to this element, making its biological monitoring in the workplace essential.

  1. Biological exposure metrics of beryllium-exposed dental technicians.

    Stark, Moshe; Lerman, Yehuda; Kapel, Arik; Pardo, Asher; Schwarz, Yehuda; Newman, Lee; Maier, Lisa; Fireman, Elizabeth


    Beryllium is commonly used in the dental industry. This study investigates the association between particle size and shape in induced sputum (IS) with beryllium exposure and oxidative stress in 83 dental technicians. Particle size and shape were defined by laser and video, whereas beryllium exposure data came from self-reports and beryllium lymphocyte proliferation test (BeLPT) results. Heme oxygenase-1 (HO1) gene expression in IS was evaluated by quantitative polymerase chain reaction. A high content of particles (92%) in IS >5 μ in size is correlated to a positive BeLPT risk (odds ratio [OR] = 3.4, 95% confidence interval [CI]: 0.9-13). Use of masks, hoods, and type of exposure yielded differences in the transparency of IS particles (gray level) and modulate HO1 levels. These results indicate that parameters of size and shape of particles in IS are sensitive to workplace hygiene, affect the level of oxidative stress, and may be potential markers for monitoring hazardous dust exposures.

  2. A dual beam study with isotopic X- and gamma-rays for in vivo lymph pool assay

    Bolin, F. P.; Preuss, L. E.; Jedlenski, D. E.; Beninson, J.


    Dual beam absorptiometry utilizes differential absorption of X- and gamma rays of differing energy to determine an absorber's component ratio. This principle has been applied to diverse physical and biological problems. Our method, using the 22 and 88 keV emissions from 109Cd, resolves the lean and non-lean mammalian tissue fractions. Accuracy of 1%, and reproducibility of 1-2% is attainable in in vitro measurements. Techniques have been developed to apply this system to the more complicated applications involved in human studies. A scanning device capable of measuring limbs has been developed. Mathematical treatment provides an integrated value of lean fraction over the scanned area. Lymphedema is a painful malady in which blockage of lymph flow causes swelling and distension of the extremities. Compressive therapy is the preferred medical treatment. There has been no accurate quantitative index of the efficacy of this therapy. Our research program uses dual beam analysis as a unique quantitative measure of the lymph transport. Lymph pool change is equated to change in the lean. Five measurements are made on subjects undergoing a two week regimen of compressive therapy. These absorptiometric results are analyzed for correlation to other indices of treatment effect. Data shows a progressive decrease in the lean tissue component over the treatment period. Changes seen vary with the individual and the severity of involvement. This study showed that the largest transport rate occurs in the first treatment days. Absorptiometry accurately monitors total adipose mass, total non-adipose mass, extremely cross section, and change in lymph pooling.

  3. Determination of beryllium concentrations in UK ambient air

    Goddard, Sharon L.; Brown, Richard J. C.; Ghatora, Baljit K.


    Air quality monitoring of ambient air is essential to minimise the exposure of the general population to toxic substances such as heavy metals, and thus the health risks associated with them. In the UK, ambient air is already monitored under the UK Heavy Metals Monitoring Network for a number of heavy metals, including nickel (Ni), arsenic (As), cadmium (Cd) and lead (Pb) to ensure compliance with legislative limits. However, the UK Expert Panel on Air Quality Standards (EPAQS) has highlighted a need to limit concentrations of beryllium (Be) in air, which is not currently monitored, because of its toxicity. The aim of this work was to analyse airborne particulate matter (PM) sampled onto filter papers from the UK Heavy Metals Monitoring Network for quantitative, trace level beryllium determination and compare the results to the guideline concentration specified by EPAQS. Samples were prepared by microwave acid digestion in a matrix of 2% sulphuric acid and 14% nitric acid, verified by the use of Certified Reference Materials (CRMs). The digested samples were then analysed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The filters from the UK Heavy Metals Monitoring Network were tested using this procedure and the average beryllium concentration across the network for the duration of the study period was 7.87 pg m-3. The highest site average concentration was 32.0 pg m-3 at Scunthorpe Low Santon, which is significantly lower than levels that are thought to cause harm. However the highest levels were observed at sites monitoring industrial point sources, indicating that beryllium is being used and emitted, albeit at very low levels, from these point sources. Comparison with other metals concentrations and data from the UK National Atmospheric Emissions Inventory suggests that current emissions of beryllium may be significantly overestimated.

  4. Unsuspected exposure to beryllium: potential implications for sarcoidosis diagnoses.

    Laczniak, Andrew N; Gross, Nathan A; Fuortes, Laurence J; Field, R William


    Exposure to Beryllium (Be) can cause sensitization (BeS) and chronic beryllium disease (CBD) in some individuals.  Even relatively low exposures may be sufficient to generate an asymptomatic, or in some cases a symptomatic, immune response. Since the clinical presentation of CBD is similar to that of sarcoidosis, it is helpful to have information on exposure to beryllium in order to reduce misdiagnosis. The purpose of this pilot study is to explore the occurrence of Be surface deposits at worksites with little or no previous reported use of commercially available Be products.  The workplaces chosen for this study represent a convenience sample of businesses in eastern Iowa. One hundred thirty-six surface dust samples were collected from 27 businesses for analysis of Be. The results were then divided into categories by the amount of detected Be according to U.S. Department of Energy guidelines as described in 10 CFR 850.30 and 10 CFR 850.31. Overall, at least one of the samples at 78% of the work sites tested contained deposited Be above the analytical limit of quantitation (0.035 µg beryllium per sample).  Beryllium was detected in 46% of the samples collected. Twelve percent of the samples exceeded 0.2 µg/100 cm² and 4% of the samples exceeded a Be concentration of 3 µg/100 cm². The findings from this study suggest that there may be a wider range and greater number of work environments that have the potential for Be exposure than has been documented previously.  These findings could have implications for the accurate diagnosis of sarcoidosis.

  5. Evaluation of historical beryllium abundance in soils, airborne particulates and facilities at Lawrence Livermore National Laboratory.

    Sutton, Mark; Bibby, Richard K; Eppich, Gary R; Lee, Steven; Lindvall, Rachel E; Wilson, Kent; Esser, Bradley K


    Beryllium has been historically machined, handled and stored in facilities at Lawrence Livermore National Laboratory (LLNL) since the 1950s. Additionally, outdoor testing of beryllium-containing components has been performed at LLNL's Site 300 facility. Beryllium levels in local soils and atmospheric particulates have been measured over three decades and are comparable to those found elsewhere in the natural environment. While localized areas of beryllium contamination have been identified, laboratory operations do not appear to have increased the concentration of beryllium in local air or water. Variation in airborne beryllium correlates to local weather patterns, PM10 levels, normal sources (such as resuspension of soil and emissions from coal power stations) but not to LLNL activities. Regional and national atmospheric beryllium levels have decreased since the implementation of the EPA's 1990 Clean-Air-Act. Multi-element analysis of local soil and air samples allowed for the determination of comparative ratios for beryllium with over 50 other metals to distinguish between natural beryllium and process-induced contamination. Ten comparative elemental markers (Al, Cs, Eu, Gd, La, Nd, Pr, Sm, Th and Tl) that were selected to ensure background variations in other metals did not collectively interfere with the determination of beryllium sources in work-place samples at LLNL. Multi-element analysis and comparative evaluation are recommended for all workplace and environmental samples suspected of beryllium contamination. The multi-element analyses of soils and surface dusts were helpful in differentiating between beryllium of environmental origin and beryllium from laboratory operations. Some surfaces can act as "sinks" for particulate matter, including carpet, which retains entrained insoluble material even after liquid based cleaning. At LLNL, most facility carpets had beryllium concentrations at or below the upper tolerance limit determined by sampling facilities

  6. Three-coordinate beryllium β-diketiminates: synthesis and reduction chemistry.

    Arrowsmith, Merle; Hill, Michael S; Kociok-Köhn, Gabriele; MacDougall, Dugald J; Mahon, Mary F; Mallov, Ian


    A series of mononuclear, heteroleptic beryllium complexes supported by the monoanionic β-diketiminate ligand [HC{CMeNDipp}(2)](-) (L; Dipp = 2,6-diisopropylphenyl) have been synthesized. Halide complexes of the form [LBeX] (X = Cl, I) and a bis(trimethylsilyl)amide complex were produced via salt metathesis routes. Alkylberyllium β-diketiminate complexes of the form [LBeR] (R = Me, (n)Bu) were obtained by salt metathesis from the chloride precursor [LBeCl]. Controlled hydrolysis of [LBeMe] afforded an air-stable, monomeric β-diketiminatoberyllium hydroxide complex. [LBeMe] also underwent facile protonolysis with alcohols to form the corresponding β-diketiminatoberyllium alkoxides [LBeOR] (R = Me, (t)Bu, Ph). High temperatures and prolonged reaction times were required for protonolysis of [LBeMe] with primary amines to yield the β-diketiminatoberyllium amide complexes [LBeNHR] (R = (n)Bu, CH(2)Ph, Ph). No reactions were observed between [LBeMe] and silanes, terminal acetylenes, or secondary amines. All compounds were characterized by (1)H, (13)C, and (9)Be NMR spectroscopy and, in most cases, by X-ray crystallography. Reduction of the beryllium chloride complex with potassium metal resulted in apparent hydrogen-atom transfer between two β-diketiminate backbones, yielding two dimeric, potassium chloride bridged diamidoberyllium species. X-ray analysis of a cocrystallized mixture of the 18-crown-6 adducts of these species allowed unambiguous identification of the two reduced diketiminate ligands, one of which had been deprotonated at a backbone methyl substituent and the other reduced by hydride addition to the β-imine position. It is proposed that this process occurs by the formation of an unobserved radical anion species and intermolecular hydrogen-atom transfer by a radical-based hydrogen abstraction mechanism.

  7. Beryllium alters lipopolysaccharide-mediated intracellular phosphorylation and cytokine release in human peripheral blood mononuclear cells.

    Silva, Shannon; Ganguly, Kumkum; Fresquez, Theresa M; Gupta, Goutam; McCleskey, T Mark; Chaudhary, Anu


    Beryllium exposure in susceptible individuals leads to the development of chronic beryllium disease, a lung disorder marked by release of inflammatory cytokine and granuloma formation. We have previously reported that beryllium induces an immune response even in blood mononuclear cells from healthy individuals. In this study, we investigate the effects of beryllium on lipopolysaccharide-mediated cytokine release in blood mononuclear and dendritic cells from healthy individuals. We found that in vitro treatment of beryllium sulfate inhibits the secretion of lipopolysaccharide-mediated interleukin 10, while the release of interleukin 1beta is enhanced. In addition, not all lipopolysaccharide-mediated responses are altered, as interleukin 6 release in unaffected upon beryllium treatment. Beryllium sulfate-treated cells show altered phosphotyrosine levels upon lipopolysaccharide stimulation. Significantly, beryllium inhibits the phosphorylation of signal transducer and activator of transducer 3, induced by lipopolysaccharide. Finally, inhibitors of phosphoinositide-3 kinase mimic the effects of beryllium in inhibition of interleukin 10 release, while they have no effect on interleukin 1beta secretion. This study strongly suggests that prior exposures to beryllium could alter host immune responses to bacterial infections in healthy individuals, by altering intracellular signaling.

  8. 国内外铍及含铍材料的研究进展%Advances in beryllium and beryllium-containing materials

    许德美; 秦高梧; 李峰; 王战宏; 钟景明; 何季麟; 何力军


    The research progress of beryllium and beryllium-containing materials was reviewed in the past two decades in the world, and much effort in this work was focused on beryllium metallurgy, beryllium alloys, beryllium oxide, beryllium matrix composites and intermetallics. The advances of beryllium materials in both research and production techniques in China were summarized, especially in technique gap as compared to that in the developed countries. Finally, the new beryllium materials and their key techniques conforming to the requirements of industry were proposed in the next one decade in China.%综述近20年来国外铍及含铍材料的研究进展,主要包括铍的冶金制备、铍合金、铍和氧化铍金属基复合材料、铍金属间化合物等。概括我国在铍材料方面取得的研究与生产技术进展,以及与国外研发水平的差距。并展望未来10年我国铍及含铍材料需要重点发展的新材料以及突破的关键技术。

  9. Environmental radiation monitoring plan for depleted uranium and beryllium areas, Yuma Proving Ground

    Ebinger, M.H.; Hansen, W.R.


    This Environmental Radiation Monitoring Plan (ERM) discusses sampling soils, vegetation, and biota for depleted uranium (DU) and beryllium (Be) at Yuma Proving Ground (YPG). The existing ERM plan was used and modified to more adequately assess the potential of DU and Be migration through the YPG ecosystem. The potential pathways for DU and Be migration are discussed and include soil to vegetation, soil to animals, vegetation to animals, animals to animals, and animals to man. Sample collection will show DU deposition and will be used to estimate DU migration. The number of samples from each area varies and depends on if the firing range of interest is currently used for DU testing (GP 17A) or if the range is not used currently for DU testing (GP 20). Twenty to thirty-five individual mammals or lizards will be sampled from each transect. Air samples and samples of dust in the air fall will be collected in three locations in the active ranges. Thirty to forty-five sediment samples will be collected from different locations in the arroys near the impact areas. DU and Be sampling in the Hard Impact and Soft Impact areas changed only slightly from the existing ERM. The modifications are changes in sample locations, addition of two sediment transport locations, addition of vegetation samples, mammal samples, and air sampling from three to five positions on the impact areas. Analysis of samples for DU or total U by inductively-coupled mass spectroscopy (ICP/MS), cc spectroscopy, neutron activation analysis (NAA), and kinetic phosphorimetric analysis (KPA) are discussed, and analysis for Be by ICP/MS are recommended. Acquiring total U (no isotope data) from a large number of samples and analysis of those samples with relatively high total U concentrations results in fewer isotopic identifications but more information on U distribution. From previous studies, total U concentrations greater than about 3 times natural background are usually DU by isotopic confirmation.

  10. Low-temperature low-dose neutron irradiation effects on Brush Wellman S65-C and Kawechi Berylco P0 beryllium

    Snead, L.L. [Oak Ridge National Lab., TN (United States)


    The mechanical property results for two high quality beryllium materials subjected to low temperature, low dose neutron irradiation in water moderated reactors are presented. Materials chosen were the S65-C ITER candidate material produced by Brush Wellman, and Kawecki Berylco Industries P0 beryllium. Both materials were processed by vacuum hot pressing. Mini sheet tensile and thermal diffusivity specimens were irradiated in the temperature range of {approximately}100--275 C from a fast (E > 0.1 MeV) neutron dose of 0.05 to 1.0 {times} 10{sup 25} n/m{sup 2} in the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory and the High Flux Beam Reactor (HFBR) at the Brookhaven National Laboratory. As expected from earlier work on beryllium, both materials underwent significant embrittlement with corresponding reduction in ductility and increased strength. Both thermal diffusivity and volumetric expansion were measured and found to be negligible in this temperature and fluence range. Of significance from this work is that while both materials rapidly embrittle at these ITER relevant irradiation conditions, some ductility (>1--2%) remains, which contrasts with a body of earlier work including recent work on the Brush-Wellman S65-C material irradiated to slightly higher neutron fluence.

  11. JET-ISX-B beryllium limiter experiment safety analysis report and operational safety requirements

    Edmonds, P.H.


    An experiment to evaluate the suitability of beryllium as a limiter material has been completed on the ISX-B tokamak. The experiment consisted of two phases: (1) the initial operation and characterization in the ISX experiment, and a period of continued operation to the specified surface fluence (10/sup 22/ atoms/cm/sup 2/) of hydrogen ions; and (2) the disassembly, decontamination, or disposal of the ISX facility. During these two phases of the project, the possibility existed for beryllium and/or beryllium oxide powder to be produced inside the vacuum vessel. Beryllium dust is a highly toxic material, and extensive precautions are required to prevent the release of the beryllium into the experimental work area and to prevent the contamination of personnel working on the device. Details of the health hazards associated with beryllium and the appropriate precautions are presented. Also described in appendixes to this report are the various operational safety requirements for the project.

  12. Beryllium coating produced by evaporation-condensation method and some their properties

    Pepekin, G.I.; Anisimov, A.B.; Chernikov, A.S.; Mozherinn, S.I.; Pirogov, A.A. [SRI SIA Lutch., Podolsk (Russian Federation)


    The method of vacuum evaporation-condensation for deposition of beryllium coatings on metal substrates, considered in the paper, side by side with a plasma-spray method is attractive fon ITER application. In particular this technique may be useful for repair the surface of eroded tiles which is operated in a strong magnetic field. The possibility of deposition of beryllium coatings with the rate of layer growth 0.1-0.2 mm/h is shown. The compatibility of beryllium coating with copper or stainless steel substrate is provided due to intermediate barrier. The results of examination of microstructure, microhardness, porosity, thermal and physical properties and stability under thermal cycling of beryllium materials are presented. The value of thermal expansion coefficient and thermal conductivity of condensed beryllium are approximately the same as for industrial grade material produced by powder mettalurgy technique. However, the condensed beryllium has higher purity (up to 99.9-99.99 % wt.). (author)

  13. Beryllium Dust Generation in PISCES-B Due to Plasma-Material Interactions

    Doerner, R.; Mays, C.; Hirooka, Y.; Luckhardt, S. C.; Sze, C. F.; Won, J.; Conn, R. W.


    The PISCES-B device has started plasma-beryllium experiments in its new location at U.C. San Diego. An improved controlled atmosphere enclosure was constructed to assure safe operation with beryllium materials. In the previous experimental campaign we found that a total of 600 mg of beryllium had been eroded during materials tests. This provided us with a unique opportunity to investigate the lost beryllium. Swipe sampling and vacuum sampling of the PISCES-B vacuum chamber revealed that 3% of the eroded beryllium resided as uniformly distributed loose dust within the vacuum chamber. An additional 33% of the eroded beryllium was coated onto the chamber wall. Filtering through a series of decreasing pore size meshes revealed a uniform distribution of particle sizes in the respirable range (between 10mm - 0.1mm), fewer larger particles (>50mm) were observed. This work is supported by USDOE under grant DE-FG03-95ER-54301.

  14. The Beryllium-10 Abundance in an Unusual Hibonite-Perovskite Refractory Inclusion from Allende: Implications for the Origin of Be-10

    Liu, M-C.; Keller, L. P.


    Beryllium-10 (decays to B-10, t1/2 = t(sub 1/2) = 1.3 Myr) 1.3 Myr) is a radionuclide that exclusively requires a is a radionuclide that exclusively requires a spallation origin. Therefore, one could obtain important insights into the irradiation environment in the solar nebula by understanding the distribution and abundance of this radionuclide in meteoritic inclusions. Most previous data are derived from B isotopic analysis of coarse-grained CV3 Ca-Al-rich Inclusions (CAIs) that have AL-26.Al-27 Al close to the canonical level of 5 x 10 (exp -5) and inferred Be-10/Be-9 ratios between 4 x 10(exp -4) and 1 x 10 (exp -2=3) [1-5]. Al-26-depleted FUN (Fractionaed and Unknown Nuclear anomalies) CAIs are less studied due to their rarity. FUN CAIs are thought to have formed prior to homogenization of Al-26/Al-27 Al and stable isotope anomalies (e.g., Ti-50) in the solar nebula, and thus represent one of the oldest Solar System solids [6]. So far, only three FUN CAIs (Axtell 2771, KT-1 and HAL) from CV3 chondrites have been measured for Be-10. They are characterized by variable Be-10/Be-9 ratios between (2.7-4.4) × 10(exp -4) [4,7]. Another group of rare, Al-26-free and and isotopically more anomalous inclusions, namely platy hibonite crystals (PLACs) from CM2 chondrites, have well-defined Be-10/Be-9 = (5.3 +/- 1.0) x 10 (exp -4) [9]. Al-26-free CAIs appear to have lower Be-1-/Be-9 than Al-26-bearing CAIs, although large analytical errors associated with some data would allow for an apparent overlap. It has been argued that the observed Be-10 variation resulted from the in-situ production of this radionuclide in CAIs (or their precursors) by irradiation, and the ratio difference simply reflects the fluctuation in projectile fluences [e.g., 9]. Another observation in support of this explanation comes from these CAIs' initial B-10/B-11 ratios, most of which are higher than the chondritic value 0.2478 [10]. This has been interpreted as a result of mixing between spallogenic

  15. Medical Isotope Production Analyses In KIPT Neutron Source Facility

    Talamo, Alberto [Argonne National Lab. (ANL), Argonne, IL (United States); Gohar, Yousry [Argonne National Lab. (ANL), Argonne, IL (United States)


    Medical isotope production analyses in Kharkov Institute of Physics and Technology (KIPT) neutron source facility were performed to include the details of the irradiation cassette and the self-shielding effect. An updated detailed model of the facility was used for the analyses. The facility consists of an accelerator-driven system (ADS), which has a subcritical assembly using low-enriched uranium fuel elements with a beryllium-graphite reflector. The beryllium assemblies of the reflector have the same outer geometry as the fuel elements, which permits loading the subcritical assembly with different number of fuel elements without impacting the reflector performance. The subcritical assembly is driven by an external neutron source generated from the interaction of 100-kW electron beam with a tungsten target. The facility construction was completed at the end of 2015, and it is planned to start the operation during the year of 2016. It is the first ADS in the world, which has a coolant system for removing the generated fission power. Argonne National Laboratory has developed the design concept and performed extensive design analyses for the facility including its utilization for the production of different radioactive medical isotopes. 99Mo is the parent isotope of 99mTc, which is the most commonly used medical radioactive isotope. Detailed analyses were performed to define the optimal sample irradiation location and the generated activity, for several radioactive medical isotopes, as a function of the irradiation time.

  16. Studies on extraction of beryllium from thiocyanate solutions by quaternary ammonium halides.

    El-Yamani, I S; El-Messieh, E N

    A 0.4M tricaprylmethylammonium chloride solution in n-hexane was used for the quantitative extraction of beryllium from hydrochloric acid (pH 3) and 5M potassium thiocyanate. Beryllium was stripped from the organic phase with 1M sodium hydroxide, then determined volumetrically with bismuthyl perchlorate and bromocresol green indicator. Beryllium was extracted in presence of a large number of elements which are usually associated with it in beryl and in fission products of nuclear fuel.

  17. Quality management of dispersion-strengthened beryllium-based composite alloy

    Дмитро Миколайович Макаренко


    Full Text Available The article is devoted to investigation of the composition and properties of dispersion-strengthened beryllium-based composite alloy, used in various industries, including the aircraft manufacture aircraft. Analyzed the properties of these materials are analyzed to ensure their quality management. The mathematical relationship of dispersion strengthened beryllium-based composite alloy parameters from content of beryllium oxide and temperature are built

  18. Beryllium uptake and related biological effects studied in THP-1 differentiated macrophages.

    Ding, Jian; Lin, Lin; Hang, Wei; Yan, Xiaomei


    Investigation of cellular uptake of metal compounds is important in understanding metal-related toxicity and diseases. Inhalation of beryllium aerosols can cause chronic beryllium disease, a progressive, granulomatous fibrosis of the lung. Studies in laboratory animals and cultured animal cells indicate that alveolar macrophages take up beryllium compounds and participate in a hypersensitivity immune response to a beryllium-containing antigen. In the present work, human monocyte cell line THP-1 was induced with phorbol myristate acetate to differentiate into a macrophage. This cell with characteristics of human alveolar macrophages was employed to study cellular beryllium uptake and related biological effects. Morphological changes, phagocytosis of fluorescent latex beads, and cell surface CD14 expression were used to verify the successful differentiation of THP-1 monocytes into macrophages. An improved mass spectrometry method for quantitative analysis of intracellular beryllium as opposed to the traditional radioisotopic approach was developed using ICP-MS. The influence of the solubility of beryllium compounds, exposure duration, and beryllium concentration on the incorporation of beryllium was studied. Our data indicated that the uptake of particulate BeO was much more significant than that of soluble BeSO(4), suggesting the major cellular uptake pathway is phagocytosis. Nevertheless, subsequent DAPI nuclear staining and PARP cleavage study indicated that beryllium uptake had a negligible effect on the apoptosis of THP-1 macrophages compared to the unstimulated macrophage control. Meanwhile, no substantial variation of tumour necrosis factor-alpha production was observed for THP-1 macrophages upon beryllium exposure. These data imply alveolar macrophages could have some level of tolerance to beryllium and this may explain why most Be-exposed individuals remain healthy throughout life.

  19. Minority Carrier Lifetime in Beryllium-Doped InAs/InAsSb Strained Layer Superlattices


    SECURITY CLASSIFICATION OF: Minority carrier lifetimes in undoped and Beryllium -doped Type-2 Ga-free, InAs/InAsSb strained layer superlattices (SLS) unlimited. Minority Carrier Lifetime in Beryllium -Doped InAs/InAsSb Strained Layer Superlattices The views, opinions and/or findings contained in...Brook University W-5510 Melville Library West Sayville, NY 11796 -3362 1 ABSTRACT Minority Carrier Lifetime in Beryllium -Doped InAs/InAsSb Strained

  20. Beryllium dimer: a bond based on non-dynamical correlation.

    El Khatib, Muammar; Bendazzoli, Gian Luigi; Evangelisti, Stefano; Helal, Wissam; Leininger, Thierry; Tenti, Lorenzo; Angeli, Celestino


    The bond nature in beryllium dimer has been theoretically investigated using high-level ab initio methods. A series of ANO basis sets of increasing quality, going from sp to spdf ghi contractions, has been employed, combined with HF, CAS-SCF, CISD, and MRCI calculations with several different active spaces. The quality of these calculations has been checked by comparing the results with valence Full-CI calculations, performed with the same basis sets. It is shown that two quasi-degenerated partly occupied orbitals play a crucial role to give a qualitatively correct description of the bond. Their nature is similar to that of the edge orbitals that give rise to the quasi-degenerated singlet-triplet states in longer beryllium chains.

  1. Ultrasonic evaluation of beryllium-copper diffusion bonds

    Jamieson, E.E.


    A study was performed to compare the effectiveness of several advanced ultrasonic techniques when used to determine the strength of diffusion bonded beryllium-copper, which heretofore have each been applied to only a few material systems. The use of integrated backscatter calculations, frequency domain reflection coefficients, and time-of-flight variance was compared in their ability to characterize the bond strength in a series of beryllium-copper diffusion bond samples having a wide variation in bond quality. Correlation of integrated backscatter calculations and time-of-flight variance with bond strength was good. Some correlation of the slope of the frequency based reflection coefficient was shown for medium and high strength bonds, while its Y-intercept showed moderate correlation for all bond strengths.

  2. A joint fracture toughness evaluation of hot-pressed beryllium

    Conrad, H.; Sargent, G. A.; Brown, W. F., Jr.


    Fracture toughness tests at room temperature were made on three-point bend specimens cut from hot-pressed beryllium obtained from two suppliers. The test specimens had dimensions conforming to ASTM fracture toughness standard E399-72. A total of 42 specimens were machined from each batch of material. Six specimens from each batch were then distributed to seven independent laboratories for testing. The test data from the laboratories were collected and analyzed for differences between the laboratories and the two batches of material. It is concluded that ASTM 399-72 can be used as a valid test procedure for determining the fracture toughness of beryllium, providing that Kf(max) in fatigue cracking could be up to 80 percent of the K(0) value.

  3. Beryllium Drive Disc Characterization for Laboratory Astrophysics Experiments

    Ditmar, J. R.; Drake, R. P.; Kuranz, C. C.; Grosskopf, M. J.


    Laboratory Astrophysics scales large-scale phenomena, such as core-collapse supernovae shocks, down to the sub-millimeter scale for investigation in a laboratory setting. In some experiments, targets are constructed with a 20μm thick beryllium disc attached to a polyimide tube. A shockwave is created by irradiating the Be disc with ˜ 4kJ of energy from the Omega Laser. The Be material is rolled into a 20μm sheet and then machined to a 2.5mm diameter. Characterizing the roughness and knowing if there are any major features on the initial surface could affect interpretations of data taken during experiments. Structure in the Beryllium discs could become an important parameter in future high-fidelity computer simulations. Surfaces were characterized with a Scanning Electron Microscope and an Atomic Force Microscope.

  4. VLT beryllium secondary mirror no. 1: performance review

    Cayrel, Marc


    The four Very Large Telescope secondary mirrors are 1.2-m Beryllium lightweight convex mirrors. REOSC has been selected for the design and manufacturing of the optics and of their supporting system. The first mirror unit has been delivered in September, 1997. Operating from visible to near infrared, the mirror defines the telescope aperture stop and may be chopped during observation. The optical requirements are tight and a high stiffness, low weight and inertia are requested as well. Using beryllium is a technical challenge for such a large optic manufacturing, in particular regarding its stability. The requirements and design are presented, we review the mirror manufacturing steps: blank production, machining, grinding, Nickel plating, polishing, integration and testing. The optical quality control method, a problem for large convex mirrors control, is detailed. The results of acceptance testing of mirror No. 1 are summarized, we present conclusions about the mirror figure stability. The status of the three additional mirrors manufacturing is presented to conclude.

  5. Beryllium, Lithium and Oxygen Abundances in F-type Stars

    García-López, R J; Pérez de Taoro, M R; Casares, C; Rasilla, J L; Rebolo, R; Allende-Prieto, C


    Beryllium and oxygen abundances have been derived in a sample of F-type field stars for which lithium abundances had been measured previously, with the aim of obtaining observational constraints to discriminate between the different mixing mechanisms proposed. Mixing associated with the transport of angular momentum in the stellar interior and internal gravity waves within the framework of rotating evolutionary models, appear to be promising ways to explain the observations.

  6. Presence of Beryllium (Be) in urban soils: human health risk

    Pena, A.; Gonzalez, M. J.; Lobo, M. C.


    Berylium (Be) is, together with As, Cd, Hg, Pb and Ti, one of the trace elements more toxic for human being (Vaessen) and Szteke, 2000; Yaman and Avci, 2006), but in spite of the exponential increment of its applications during the last decades, surprisingly there isn't hardly information about its presence and environmental distribution. The aim of this work is to evaluate the presence of Beryllium in urban soils in Alcala de Henares, (Madrid Spain).

  7. The beryllium quandary: will the lower exposure limits spur new developments in sampling and analysis?

    Brisson, Michael


    At the time this article was written, new rulemakings were under consideration at OSHA and the U.S. Department of Energy (DOE) that would propose changes to occupational exposure limits for beryllium. Given these developments, it’s a good time to review the tools and methods available to IHs for assessing beryllium air and surface contamination in the workplace—what’s new and different, and what’s tried and true. The article discusses limit values and action levels for beryllium, problematic aspects of beryllium air sampling, sample preparation, sample analysis, and data evaluation.

  8. Vacuum Brazing of Beryllium Copper Components for the National Ignition Facility

    Tyhurst, C.C.; Cunningham, M.A.


    A process for vacuum brazing beryllium copper anode assemblies was required for the Plasma Electrode Pockels Cell System, or PEPC, a component for the National Ignition Facility (NIF). Initial problems with the joint design and wettability of the beryllium copper drove some minor design changes. Brazing was facilitated by plating the joint surface of the beryllium copper rod with silver 0.0006 inch thick. Individual air sampling during processing and swipe tests of the furnace interior after brazing revealed no traceable levels of beryllium.

  9. Proteomic analysis of beryllium-induced genotoxicity in an Escherichia coli mutant model system.

    Taylor-McCabe, Kirsten J; Wang, Zaolin; Sauer, Nancy N; Marrone, Babetta L


    Beryllium is the second lightest metal, has a high melting point and high strength-to-weight ratio, and is chemically stable. These unique chemical characteristics make beryllium metal an ideal choice as a component material for a wide variety of applications in aerospace, defense, nuclear weapons, and industry. However, inhalation of beryllium dust or fumes induces significant health effects, including chronic beryllium disease and lung cancer. In this study, the mutagenicity of beryllium sulfate (BeSO(4)) and the comutagenicity of beryllium with a known mutagen 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) were evaluated using a forward mutant detection system developed in Escherichia coli. In this system, BeSO(4) was shown to be weakly mutagenic alone and significantly enhanced the mutagenicity of MNNG up to 3.5-fold over MNNG alone. Based on these results a proteomic study was conducted to identify the proteins regulated by BeSO(4). Using the techniques of 2-DE and oMALDI-TOF MS, we successfully identified 32 proteins being differentially regulated by beryllium and/or MNNG in the E. coli test system. This is the first study to describe the proteins regulated by beryllium in vitro, and the results suggest several potential pathways for the focus of further research into the mechanisms underlying beryllium-induced genotoxicity.

  10. Chest wall shrapnel-induced beryllium-sensitization and associated pulmonary disease.

    Fireman, E; Shai, A Bar; Lerman, Y; Topilsky, M; Blanc, P D; Maier, L; Li, L; Chandra, S; Abraham, J M; Fomin, I; Aviram, G; Abraham, J L


    Chronic beryllium disease (CBD) is an exposure-related granulomatous disease mimicking sarcoidosis. Beryllium exposure-associated disease occurs mainly via inhalation, but skin may also be a source of sensitization. A 65-year-old male with a history of war-related shrapnel wounds was initially diagnosed with pulmonary sarcoidosis. Twenty years later, the possibility of a metal-related etiology for the lung disease was raised. A beryllium lymphocyte proliferation test, elemental analysis of removed shrapnel, and genetic studies were consistent with a diagnosis of CBD. This case demonstrates that retained beryllium-containing foreign bodies can be linked to a pathophysiologic response in the lung consistent with CBD.

  11. Calculations for electron-impact excitation and ionization of beryllium

    Zatsarinny, Oleg; Bartschat, Klaus; Fursa, Dmitry V.; Bray, Igor


    The B-spline R-matrix and the convergent close-coupling methods are used to study electron collisions with neutral beryllium over an energy range from threshold to 100 eV. Coupling to the target continuum significantly affects the results for transitions from the ground state, but to a lesser extent the strong transitions between excited states. Cross sections are presented for selected transitions between low-lying physical bound states of beryllium, as well as for elastic scattering, momentum transfer, and ionization. The present cross sections for transitions from the ground state from the two methods are in excellent agreement with each other, and also with other available results based on nonperturbative convergent pseudostate and time-dependent close-coupling models. The elastic cross section at low energies is dominated by a prominent shape resonance. The ionization from the {(2s2p)}3P and {(2s2p)}1P states strongly depends on the respective term. The current predictions represent an extensive set of electron scattering data for neutral beryllium, which should be sufficient for most modeling applications.

  12. Inelastic scattering of Ni and Zn isotopes off a proton target

    Cortes Sua, Martha Liliana


    Inelastic proton scattering of {sup 70,72,74}Ni and {sup 76,78,80}Zn was performed at the RIBF facility of the RIKEN Nishina Center, Japan, as part of the first SEASTAR campaign. Radioactive isotopes were produced by the in-flight fission of a beam of {sup 238}U ions incident on a 3 mm thick Beryllium target. After production, neutron-rich radioactive isotopes were selected and identified on an event-by-event basis using the BigRIPS separator. Selected isotopes of interest were focused onto the liquid hydrogen target of the MINOS device and γ-rays from inelastic (p,p{sup '}) reactions were detected with the DALI2 array, consisting of 186 NaI crystals. Outgoing beam-like particles were identified using the ZeroDegree spectrometer. γ-rays produced in the reaction were Doppler corrected and the first 2{sup +} and 4{sup +} states in all the isotopes were identified. Detailed data analysis was performed including the implementation of algorithms that discriminate events where more than one particle was present. Using detailed Geant4 simulations, exclusive cross-sections for inelastic proton scattering were obtained. Deformation lengths were deduced from the experimental cross-sections using the coupled-channel calculation code ECIS-97. The deformations lengths of {sup 72,74}Ni and {sup 76,80}Zn were found to be fairly constant at a value of 0.8(2) fm, suggesting similar vibrational amplitudes, while the isomeric presence in the secondary beams of {sup 70}Ni and {sup 78}Zn allowed only lower limits for those two isotopes. By combining the deformation lengths with the known B(E2;0{sup +}{sub gs}→2{sup +}{sub 1}) values, the neutron-to-proton matrix element ratios, M{sub n}/M{sub p}, were obtained. A clear indication of the closed proton shell in the {sup 72,74}Ni could be observed, as M{sub n}/M{sub p}>N/Z, indicating an increased contribution of the neutrons to the vibrational amplitude. For the case of {sup 76,80}Zn, M{sub n}/M{sub p}

  13. Introduction to beryllium: uses, regulatory history, and disease.

    Kolanz, M E


    Beryllium is an ubiquitous element in the environment, and it has many commercial applications. Because of its strength, electrical and thermal conductivity, corrosion resistance, and nuclear properties, beryllium products are used in the aerospace, automotive, energy, medical, and electronics industries. What eventually came to be known as chronic beryllium disease (CBD) was first identified in the 1940s, when a cluster of cases was observed in workers from the fluorescent light industry. The U.S. Atomic Energy Commission recommended the first 8-hour occupational exposure limit (OEL) for beryllium of 2.0 microg/m3 in 1949, which was later reviewed and accepted by the American Conference of Governmental Industrial Hygienists (ACGIH), the American Industrial Hygiene Association (AIHA), the American National Standards Institute (ANSI), the Occupational Safety and Health Administration (OSHA), and the vast majority of countries and standard-setting bodies worldwide. The 2.0 microg/m3 standard has been in use by the beryllium industry for more than 50 years and has been considered adequate to protect workers against clinical CBD. Recently, improved diagnostic techniques, including immunological testing and safer bronchoscopy, have enhanced our ability to identify subclinical CBD cases that would have formerly remained unidentified. Some recent epidemiological studies have suggested that some workers may develop CBD at exposures less than 2.0 microg/m3. ACGIH is currently reevaluating the adequacy of the current 2.0 microg/m3 guideline, and a plethora of research initiatives are under way to provide a better understanding of the cause of CBD. The research is focusing on the risk factors and exposure metrics that could be associated with CBD, as well as on efforts to better characterize the natural history of CBD. There is growing evidence that particle size and chemical form may be important factors that influence the risk of developing CBD. These research efforts are

  14. Isotopic characterization and thermal neutron flux determination of a PuBe neutron source.

    Purty, Ravi Ankit; Akanchha; Prasad, Shikha


    The Indian Institute of Technology Kanpur (IIT Kanpur) possesses a PuBe neutron source facility with an initial activity of 5 Ci, dated September 1966 (nearly 50 years ago). An understanding of the present activity and the rate of its change will allow implementation of proper radiological safety procedures and future radiological safety planning. Knowing the absolute neutron flux will help us in future neutron activation studies. These details are also important to ensure proper security precautions. In our work, we attempt to identify the isotopic composition to determine the rate of change of the source and the absolute thermal neutron flux of plutonium beryllium (PuBe) sample at IIT Kanpur. We have used gamma-ray spectroscopy for determining the isotopic composition of the PuBe neutron source. After utilizing gamma-ray spectroscopy it is found that the source is composed of (239)Pu and a small amount of (241)Am is present as an impurity. The mass ratio of (241)Am to (239)Pu is found to be approximately 18.1µg/g with an uncertainty of 1.39%. Delayed gamma neutron activation analysis (DGNAA) is used to determine the thermal neutron flux of the same PuBe neutron source using copper, cobalt, nickel and cadmium samples. The average thermal neutron flux as calculated from DGNAA is approximately 1.27×10(3)n/(cm(2)-s) at 1cm above the PuBe neutron source. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Beryllium geochemistry constraints on the hydraulic behavior of mud volcanoes: the Trinidad Island case

    Castrec-Rouelle, M.; Bourlès, D. L.; Boulègue, J.; Dia, A. N.


    To constrain Trinidad mud volcanoes hydraulic behavior, both cosmogenic 10Be ( t1/2=1.5 Myr) and 9Be concentrations have been measured in fluid and associated expelled mud. As previously evidenced [A.N. Dia, M. Castrec, J. Boulègue, P. Comeau, Trinidad Mud Volcanoes: where do the expelled fluids come from? Geochim. Cosmochim. Acta 63 (1999) 1023-1038] from δ 18O values and Cl concentrations, 9Be concentrations in the fluids mostly reflect the mixing of two deep components: REM I and REM II. REM I (δ 18O=10.5‰, Cl≈275 mM and 9Be≈0.05 nM) has characteristics of a continental fluid while REM II (δ 18O=3‰, Cl≈350 mM and 9Be≈1 nM) results from seawater-volcanogenic derived sediment interaction. Although 10Be concentrations in the fluid samples are close to the detection limit, the distribution of both beryllium isotopes between the hydroxylamine leachable and residual phases indicates exchange reaction with fluid younger than 15 Myr. Comparison between the lowest REM I 10Be/ 9Be ratio in fluid recorded by the hydroxylamine leachable phase (TD5 mud sample) and the 10Be/ 9Be ratio representative of meteoric contribution in the recharge area (TD8 fluid sample) yields a circulation rate of REM I fluid in the Trinidad mud volcanoes of several 10 -1 m/yr.

  16. Beryllium metal I. experimental results on acute oral toxicity, local skin and eye effects, and genotoxicity.

    Strupp, Christian


    The toxicity of soluble metal compounds is often different from that of the parent metal. Since no reliable data on acute toxicity, local effects, and mutagenicity of beryllium metal have ever been generated, beryllium metal powder was tested according to the respective Organisation for Economical Co-Operation and Development (OECD) guidelines. Acute oral toxicity of beryllium metal was investigated in rats and local effects on skin and eye in rabbits. Skin-sensitizing properties were investigated in guinea pigs (maximization method). Basic knowledge about systemic bioavailability is important for the design of genotoxicity tests on poorly soluble substances. Therefore, it was necessary to experimentally compare the capacities of beryllium chloride and beryllium metal to form ions under simulated human lung conditions. Solubility of beryllium metal in artificial lung fluid was low, while solubility in artificial lysosomal fluid was moderate. Beryllium chloride dissolution kinetics were largely different, and thus, metal extracts were used in the in vitro genotoxicity tests. Genotoxicity was investigated in vitro in a bacterial reverse mutagenicity assay, a mammalian cell gene mutation assay, a mammalian cell chromosome aberration assay, and an unscheduled DNA synthesis (UDS) assay. In addition, cell transformation was tested in a Syrian hamster embryo cell assay, and potential inhibition of DNA repair was tested by modification of the UDS assay. Beryllium metal was found not to be mutagenic or clastogenic based on the experimental in vitro results. Furthermore, treatment with beryllium metal extracts did not induce DNA repair synthesis, indicative of no DNA-damaging potential of beryllium metal. A cell-transforming potential and a tendency to inhibit DNA repair when the cell is severely damaged by an external stimulus were observed. Beryllium metal was also found not to be a skin or eye irritant, not to be a skin sensitizer, and not to have relevant acute oral

  17. Release of beryllium from mineral ores in artificial lung and skin surface fluids.

    Duling, Matthew G; Stefaniak, Aleksandr B; Lawrence, Robert B; Chipera, Steve J; Virji, M Abbas


    Exposure to some manufactured beryllium compounds via skin contact or inhalation can cause sensitization. A portion of sensitized persons who inhale beryllium may develop chronic beryllium disease (CBD). Little is understood about exposures to naturally occurring beryllium minerals. The purpose of this study was to assess the bioaccessibility of beryllium from bertrandite ore. Dissolution of bertrandite from two mine pits (Monitor and Blue Chalk) was evaluated for both the dermal and inhalation exposure pathways by determining bioaccessibility in artificial sweat (pH 5.3 and pH 6.5), airway lining fluid (SUF, pH 7.3), and alveolar macrophage phagolysosomal fluid (PSF, pH 4.5). Significantly more beryllium was released from Monitor pit ore than Blue Chalk pit ore in artificial sweat buffered to pH 5.3 (0.88 ± 0.01% vs. 0.36 ± 0.00%) and pH 6.5 (0.09 ± 0.00% vs. 0.03 ± 0.01%). Rates of beryllium released from the ores in artificial sweat were faster than previously measured for manufactured forms of beryllium (e.g., beryllium oxide), known to induce sensitization in mice. In SUF, levels of beryllium were below the analytical limit of detection. In PSF, beryllium dissolution was biphasic (initial rapid diffusion followed by latter slower surface reactions). During the latter phase, dissolution half-times were 1,400 to 2,000 days, and rate constants were ~7 × 10(-10) g/(cm(2)·day), indicating that bertrandite is persistent in the lung. These data indicate that it is prudent to control skin and inhalation exposures to bertrandite dusts.

  18. Geochemistry, geochronology, mineralogy, and geology suggest sources of and controls on mineral systems in the southern Toquima Range, Nye County, Nevada; with geochemistry maps of gold, silver, mercury, arsenic, antimony, zinc, copper, lead, molybdenum, bismuth, iron, titanium, vanadium, cobalt, beryllium, boron, fluorine, and sulfur; and with a section on lead associations, mineralogy and paragenesis, and isotopes

    Shawe, Daniel R.; Hoffman, James D.; Doe, Bruce R.; Foord, Eugene E.; Stein, Holly J.; Ayuso, Robert A.


    Geochemistry maps showing the distribution and abundance of 18 elements in about 1,400 rock samples, both mineralized and unmineralized, from the southern Toquima Range, Nev., indicate major structural and lithologic controls on mineralization, and suggest sources of the elements. Radiometric age data, lead mineralogy and paragenesis data, and lead-isotope data supplement the geochemical and geologic data, providing further insight into timing, sources, and controls on mineralization. Major zones of mineralization are centered on structural margins of calderas and principal northwest-striking fault zones, as at Round Mountain, Manhattan, and Jefferson mining districts, and on intersections of low-angle and steep structures, as at Belmont mining district. Paleozoic sedimentary rocks, mostly limestones (at Manhattan, Jefferson, and Belmont districts), and porous Oligocene ash-flow tuffs (at Round Mountain district) host the major deposits, although all rock types have been mineralized as evidenced by numerous prospects throughout the area. Principal mineral systems are gold-silver at Round Mountain where about 7 million ounces of gold and more than 4 million ounces of silver has been produced; gold at Gold Hill in the west part of the Manhattan district where about a half million ounces of gold has been produced; gold-mercury-arsenic-antimony in the east (White Caps) part of the Manhattan district where a few hundred thousand ounces of gold has been produced; and silver-lead-antimony at Belmont where more than 150,000 ounces of silver has been produced. Lesser amounts of gold and silver have been produced from the Jefferson district and from scattered mines elsewhere in the southern Toquima Range. A small amount of tungsten was produced from mines in the granite of the Round Mountain pluton exposed east of Round Mountain, and small amounts of arsenic, antimony, and mercury have been produced elsewhere in the southern Toquima Range. All elements show unique

  19. 20 CFR 30.615 - What type of tort suits filed against beryllium vendors or atomic weapons employers may...


    ... beryllium vendors or atomic weapons employers may disqualify certain claimants from receiving benefits under... Special Provisions Effect of Tort Suits Against Beryllium Vendors and Atomic Weapons Employers § 30.615 What type of tort suits filed against beryllium vendors or atomic weapons employers may disqualify...

  20. 20 CFR 30.507 - What compensation will be provided to covered Part B employees who only establish beryllium...


    ... Part B employees who only establish beryllium sensitivity under Part B of EEOICPA? 30.507 Section 30... Part B employees who only establish beryllium sensitivity under Part B of EEOICPA? The establishment of beryllium sensitivity does not entitle a covered Part B employee, or the eligible surviving beneficiary...

  1. 20 CFR 30.205 - What are the criteria for eligibility for benefits relating to beryllium illnesses covered under...


    ... benefits relating to beryllium illnesses covered under Part B of EEOICPA? 30.205 Section 30.205 Employees... Relating to Covered Beryllium Illness Under Part B of Eeoicpa § 30.205 What are the criteria for eligibility for benefits relating to beryllium illnesses covered under Part B of EEOICPA? To...

  2. Proceedings of the third IEA international workshop on beryllium technology for fusion

    Kawamura, Hiroshi; Okamoto, Makoto [eds.


    This report is the Proceedings of the Third International Energy Agency International Workshop on Beryllium Technology for Fusion. The workshop was held on October 22-24, 1997, at the Sangyou Kaikan in Mito City with 68 participants who attended from the Europe, the Russian Federation, the Kazakstan, the United States and Japan. The topics for papers were arranged into 9 sessions; beryllium applications for ITER, production and characterization, chemical compatibility and corrosion, forming and joining, plasma/tritium interactions, beryllium coating, first wall applications, neutron irradiation effects, health and safety. To utilize beryllium in the pebble type blanket, a series of discussions were intensified in multiple view points such as the swelling, He/T release from beryllium pebble irradiated up to high He content, effective thermal conductivity, tritium permeation and coating, and fabrication cost, and so on. As the plasma facing material, life time of beryllium and coated beryllium, dust and particle production, joining, waste treatment, mechanical properties and deformation by swelling were discussed as important issues. Especially, it was recognized throughout the discussions that the comparative study by the different researchers should be carried out to establish the reliability of the data reported in the workshop and in others. To enhance the comparative study, the world wide collaboration for the relative evaluation of the beryllium was proposed by the International Organization Committee and the proposal was approved by all of the participants. The 45 of the presented papers are indexed individually. (J.P.N.)

  3. The development and advantages of beryllium capsules for the National Ignition Facility

    Wilson, D.C.; Bradley, P.A.; Hoffman, N.M. [Los Alamos National Lab., NM (United States)] [and others


    Capsules with beryllium ablators have long been considered as alternatives to plastic for the National Ignition Facility laser ; now the superior performance of beryllium is becoming well substantiated. Beryllium capsules have the advantages of relative insensitivity to instability growth, low opacity, high tensile strength, and high thermal conductivity. 3-D calculation with the HYDRA code NTIS Document No. DE-96004569 (M. M. Marinak in UCRL-LR-105821-95-3) confirm 2-D LASNEX U. B. Zimmerman and W. L. Kruer, Comments Plasmas Phys. Controlled Thermonucl. Fusion, 2, 51(2975) results that particular beryllium capsule designs are several times less sensitive than the CH point design to instability growth from DT ice roughness. These capsule designs contain more ablator mass and leave some beryllium unablated at ignition. By adjusting the level of copper dopant, the unablated mass can increase or decrease, with a corresponding decrease or increase in sensitivity to perturbations. A plastic capsule with the same ablator mass as the beryllium and leaving the same unablated mass also shows this reduced perturbation sensitivity. Beryllium`s low opacity permits the creation of 250 eV capsule designs. Its high tensile strength allows it to contain DT fuel at room temperature. Its high thermal conductivity simplifies cryogenic fielding.


    A direct graphite furnace atomic absorption spectroscopy method for the analysis of beryllium in drinking water has been derived from a method for determining beryllium in urine. Ammonium phosphomolybdate and ascorbic acid were employed as matrix modifiers. The matrix modifiers s...

  5. Simultaneous determination of aluminium and beryllium by first-derivative synchronous solid-phase spectrofluorimetry.

    Capitán, F; Manzano, E; Navalón, A; Luis Vilchez, J; Capitán-Vallvey, L F


    A method for the simultaneous determination of aluminium and beryllium in mixtures by first-deravative synchronous solid-phase spectrofluorimetry has been developed. Aluminium and beryllium reacted with morin to give fluorescent complexes, which were fixed on a dextran-type resin. The fluoresnce of the resin, packed in a 1-mm silica cell, was measured directly with a solid-surface attachment. The constant wavelength difference chosen to optimize the determination was Deltalambda = lambda(em) = 75 nm. Aluminium was measured at lambda(em)lambda = 445/520 nm and beryllium at lambda(em)lambda(em) = 430/505 nm. The range of application is between 0.5 and 5.0 ng/ml for both aluminium and beryllium. The accuracy and precision of the method are reported. The method has been successfully applied to the determination of aluminium and beryllium in synthetic mixtures and natural waters.

  6. Coolant choice for the central beryllium pipe of the BESIII beam pipe

    Zheng, Li-Fang; Wang, Li; Wu, Ping; Ji, Quan; Li, Xun-Feng; Liu, Jian-Ping


    In order to take away much more heat on the BESIII beam pipe to guarantee the normal particle detection, EDM-1 (oil No.1 for electric discharge machining), with good thermal and flow properties was selected as the candidate coolant for the central beryllium pipe of the BESIII beam pipe. Its cooling character was studied and dynamic corrosion experiment was undertaken to examine its corrosion on beryllium. The experiment results show that EDM-1 would corrode the beryllium 19.9 μm in the depth in 10 years, which is weak and can be neglected. Finite element simulation and experiment research were taken to check the cooling capacity of EDM-1. The results show that EDM-1 can meet the cooling requirement of the central beryllium pipe. Now EDM-1 is being used to cool the central beryllium pipe of the BESIII beam pipe.

  7. In situ x-ray diffraction study of crystal structure of Pd during hydrogen isotope loading by solid-state electrolysis at moderate temperatures 250−300 °C

    Fukada, Yoshiki, E-mail: [Toyota Motor Corporation, 1200 Mishuku, Susono-shi, Shizuoka-ken, 410-1193 (Japan); Hioki, Tatsumi; Motohiro, Tomoyoshi [Toyota Central R& D Labs.,Inc, 41-1, Yokomichi, Nagakute, Aichi, 480-1192 (Japan); Green Mobility Collaborative Research Center & Graduate School of Engineering Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603 (Japan); Ohshima, Shigeki [Toyota Central R& D Labs.,Inc, 41-1, Yokomichi, Nagakute, Aichi, 480-1192 (Japan)


    Hydrogen isotopes and metal interaction with respect to Pd under high hydrogen isotope potential at moderate temperature region around 300 °C was studied. A dry electrolysis technique using BaZr{sub 1−x} Y{sub x}O{sub 3} solid state electrolyte was developed to generate high hydrogen isotope potential. Hydrogen or deuterium was loaded into a 200 nm thick Pd cathode. The cathode is deposited on SiO{sub 2} substrate and covered with the solid state electrolyte and a Pd anode layer. Time resolved in situ monochromatic x-ray diffraction measurement was performed during the electrolysis. Two phase states of the Pd cathodes with large and small lattice parameters were observed during the electrolysis. Numerous sub-micron scale voids in the Pd cathode and dendrite-like Pd precipitates in the solid state electrolyte were found from the recovered samples. Hydrogen induced super-abundant-vacancy may take role in those phenomena. The observed two phase states may be attributed to phase separation into vacancy-rich and vacancy-poor states. The voids formed in the Pd cathodes seem to be products of vacancy coalescence. Isotope effects were also observed. The deuterium loaded samples showed more rapid phase changes and more formation of voids than the hydrogen doped samples. - Highlights: • High amount hydrogen loading into Pd by all solid-state electrolysis was performed. • Two phase states with large and small lattice parameters were observed. • Lattice contractions were observed suggesting formations of super-abundant-vacancy. • The absence of mechanical pressure might stimulate the formation of the vacancy. • Sub-micron void formations were found in the Pd from recovered samples.

  8. Model study in chemisorption: atomic hydrogen on beryllium clusters

    Bauschlicher, C.W. Jr.


    The interaction between atomic hydrogen and the (0001) surface of Be metal has been studied by ab initio electronic structure theory. Self-consistent-field (SCF) calculations have been performed using minimum, optimized minimum, double zeta and mixed basis sets for clusters as large as 22 Be atoms. The binding energy and equilibrium geometry (the distance to the surface) were determined for 4 sites. Both spatially restricted (the wavefunction was constrained to transform as one of the irreducible representations of the molecular point group) and unrestricted SCF calculations were performed. Using only the optimized minimum basis set, clusters containing as many as 22 beryllium atoms have been investigated. From a variety of considerations, this cluster is seen to be nearly converged within the model used, providing the most reliable results for chemisorption. The site dependence of the frequency is shown to be a geometrical effect depending on the number and angle of the bonds. The diffusion of atomic hydrogen through a perfect beryllium crystal is predicted to be energetically unfavorable. The cohesive energy, the ionization energy and the singlet-triplet separation were computed for the clusters without hydrogen. These quantities can be seen as a measure of the total amount of edge effects. The chemisorptive properties are not related to the total amount of edge effects, but rather the edge effects felt by the adsorbate bonding berylliums. This lack of correlation with the total edge effects illustrates the local nature of the bonding, further strengthening the cluster model for chemisorption. A detailed discussion of the bonding and electronic structure is included. The remaining edge effects for the Be/sub 22/ cluster are discussed.

  9. Beryllium, an adjuvant that promotes gamma interferon production.

    Lee, J Y; Atochina, O; King, B; Taylor, L; Elloso, M; Scott, P; Rossman, M D


    Beryllium is associated with a human pulmonary granulomatosis characterized by an accumulation of CD4(+) T cells in the lungs and a heightened specific lymphocyte proliferative response to beryllium (Be) with gamma interferon (IFN-gamma) release (i.e., a T helper 1 [Th1] response). While an animal model of Be sensitization is not currently available, Be has exhibited adjuvant effects in animals. The effects of Be on BALB/c mice immunized with soluble leishmanial antigens (SLA) were investigated to determine if Be had adjuvant activity for IFN-gamma production, an indicator of the Th1 response. In this strain of Leishmania-susceptible BALB/c mice, a Th2 response is normally observed after in vivo SLA sensitization and in vitro restimulation with SLA. If interleukin-12 (IL-12) is given during in vivo sensitization with SLA, markedly increased IFN-gamma production and decreased IL-4 production are detected. We show here that when beryllium sulfate (BeSO(4)) was added during in vivo sensitization of BALB/c mice with SLA and IL-12, significantly increased IFN-gamma production and decreased IL-4 production from lymph node and spleen cells were detected upon in vitro SLA restimulation. No specific responses were observed to Be alone. Lymph node and spleen cells from all mice proliferated strongly and comparably upon in vitro restimulation with SLA and with SLA plus Be; no differences were noted among groups of mice that received different immunization regimens. In vivo, when Be was added to SLA and IL-12 for sensitization of BALB/c mice, more effective control of Leishmania infection was achieved. This finding has implications for understanding not only the development of granulomatous reactions but also the potential for developing Be as a vaccine adjuvant.

  10. Beryllium-stimulated apoptosis in macrophage cell lines.

    Sawyer, R T; Fadok, V A; Kittle, L A; Maier, L A; Newman, L S


    In vitro stimulation of bronchoalveolar lavage cells from patients with chronic beryllium disease (CBD) induces the production of TNF-alpha. We tested the hypothesis that beryllium (Be)-stimulated TNF-alpha might induce apoptosis in mouse and human macrophage cell lines. These cell lines were selected because they produce a range of Be-stimulated TNF-alpha. The mouse macrophage cell line H36.12j produces high levels of Be-stimulated TNF-alpha. The mouse macrophage cell line P388D.1 produces low, constitutive, levels of TNF-alpha and does not up-regulate Be-stimulated TNF-alpha production. The DEOHS-1 human CBD macrophage cell line does not produce constitutive or Be-stimulated TNF-alpha. Apoptosis was determined by microscopic observation of propidium iodide stained fragmented nuclei in unstimulated and BeSO(4)-stimulated macrophage cell lines. BeSO(4) induced apoptosis in all macrophage cell lines tested. Beryllium-stimulated apoptosis was dose-responsive and maximal after 24 h of exposure to 100 microM BeSO(4). In contrast, unstimulated and Al(2)(SO(4))(3)-stimulated macrophage cell lines did not undergo apoptosis. The general caspase inhibitor BD-fmk inhibited Be-stimulated macrophage cell line apoptosis at concentrations above 50 microM. Our data show that Be-stimulated macrophage cell line apoptosis was caspase-dependent and not solely dependent on Be-stimulated TNF-alpha levels. We speculate that the release of Be-antigen from apoptotic macrophages may serve to re-introduce Be material back into the lung microenvironment, make it available for uptake by new macrophages, and thereby amplify Be-stimulated cytokine production, promoting ongoing inflammation and granuloma maintenance in CBD.

  11. [Effect of beryllium on chemical elements of cell membrane and H2O2 production of Streptococcus oralis].

    Liu, Jin-song; Fan, Zhen; Ma, Jian-feng; Gao, Ning


    To evaluate the effect of beryllium (Be(2+)) on chemical elements of cell membrane and H2O2 production of Streptococcus oralis (S.oralis), thus to explore the microbiologic mechanisms of periodontal diseases which may occur after prosthodontic treatment. S.oralis was put into artificial saliva with different Be(2+) concentration (5mg/L, 10mg/L, 20mg/L and 40mg/L) and anaerobic cultured for 24 hours. The amount of chemical elements in the membrane of S.oralis were tested with X-ray energy dispersive spectroscopy, and the H(2)O(2) produced by S.oralis was detected with ABTS-HRP. The data were analyzed with one-way ANOVA using SPSS 11.0 software package. The amount of calcium in the cell membrane of beryllium treated S. oralis decreased, while the amount of phosphorus increased. Natrium increased with the increase of Be(2+) in the culture, but changed contrarily when S. oralis was treated with 20mg/L Be(2+). H(2)O(2) produced by S. oralis reduced when the concentration of Be(2+) was at 40mg/L(Pchemical elements in cell membrane and H(2)O(2) production of S. oralis, which may result in a disturbance in the microecologic balance of subgingival microbes after proshodontic treatments and eventually contribute to periodontal diseases.

  12. Relative Composition and Energy Spectra of Light Nuclei in Cosmic Rays: Results from AMS-01

    Aguilar, M.; Alcaraz, J.; Allaby, J.; Alpat, B.; Ambrosi, G.; Anderhub, H.; Ao, L.; Arefiev, A.; Arruda, L.; Azzarello, P.; Basile, M.; Barao, F.; Barreira, G.; Bartoloni, A.; Battiston, R.; Becker, R.; Becker, U.; Bellagamba, L.; Béné, P.; Berdugo, J.; Berges, P.; Bertucci, B.; Biland, A.; Bindi, V.; Boella, G.; Boschini, M.; Bourquin, M.; Bruni, G.; Buénerd, M.; Burger, J. D.; Burger, W. J.; Cai, X. D.; Cannarsa, P.; Capell, M.; Casadei, D.; Casaus, J.; Castellini, G.; Cernuda, I.; Chang, Y. H.; Chen, H. F.; Chen, H. S.; Chen, Z. G.; Chernoplekov, N. A.; Chiueh, T. H.; Choi, Y. Y.; Cindolo, F.; Commichau, V.; Contin, A.; Cortina-Gil, E.; Crespo, D.; Cristinziani, M.; Dai, T. S.; dela Guia, C.; Delgado, C.; Di Falco, S.; Djambazov, L.; D'Antone, I.; Dong, Z. R.; Duranti, M.; Engelberg, J.; Eppling, F. J.; Eronen, T.; Extermann, P.; Favier, J.; Fiandrini, E.; Fisher, P. H.; Flügge, G.; Fouque, N.; Galaktionov, Y.; Gervasi, M.; Giovacchini, F.; Giusti, P.; Grandi, D.; Grimm, O.; Gu, W. Q.; Haino, S.; Hangarter, K.; Hasan, A.; Hermel, V.; Hofer, H.; Hungerford, W.; Ionica, M.; Jongmanns, M.; Karlamaa, K.; Karpinski, W.; Kenney, G.; Kim, D. H.; Kim, G. N.; Kim, K. S.; Kirn, T.; Klimentov, A.; Kossakowski, R.; Kounine, A.; Koutsenko, V.; Kraeber, M.; Laborie, G.; Laitinen, T.; Lamanna, G.; Laurenti, G.; Lebedev, A.; Lechanoine-Leluc, C.; Lee, M. W.; Lee, S. C.; Levi, G.; Lin, C. H.; Liu, H. T.; Lu, G.; Lu, Y. S.; Lübelsmeyer, K.; Luckey, D.; Lustermann, W.; Maña, C.; Margotti, A.; Mayet, F.; McNeil, R. R.; Menichelli, M.; Mihul, A.; Mujunen, A.; Oliva, A.; Palmonari, F.; Park, H. B.; Park, W. H.; Pauluzzi, M.; Pauss, F.; Pereira, R.; Perrin, E.; Pevsner, A.; Pilo, F.; Pimenta, M.; Plyaskin, V.; Pojidaev, V.; Pohl, M.; Produit, N.; Quadrani, L.; Rancoita, P. G.; Rapin, D.; Ren, D.; Ren, Z.; Ribordy, M.; Richeux, J. P.; Riihonen, E.; Ritakari, J.; Ro, S.; Roeser, U.; Sagdeev, R.; Santos, D.; Sartorelli, G.; Sbarra, C.; Schael, S.; Schultz von Dratzig, A.; Schwering, G.; Seo, E. S.; Shin, J. W.; Shoumilov, E.; Shoutko, V.; Siedenburg, T.; Siedling, R.; Son, D.; Song, T.; Spada, F. R.; Spinella, F.; Steuer, M.; Sun, G. S.; Suter, H.; Tang, X. W.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Tornikoski, M.; Torsti, J.; Trümper, J.; Ulbricht, J.; Urpo, S.; Valtonen, E.; Vandenhirtz, J.; Velikhov, E.; Verlaat, B.; Vetlitsky, I.; Vezzu, F.; Vialle, J. P.; Viertel, G.; Vité, D.; Von Gunten, H.; Waldmeier Wicki, S.; Wallraff, W.; Wang, J. Z.; Wiik, K.; Williams, C.; Wu, S. X.; Xia, P. C.; Xu, S.; Xu, Z. Z.; Yan, J. L.; Yan, L. G.; Yang, C. G.; Yang, J.; Yang, M.; Ye, S. W.; Zhang, H. Y.; Zhang, Z. P.; Zhao, D. X.; Zhou, F.; Zhou, Y.; Zhu, G. Y.; Zhu, W. Z.; Zhuang, H. L.; Zichichi, A.; Zimmermann, B.; Zuccon, P.


    Measurement of the chemical and isotopic composition of cosmic rays is essential for the precise understanding of their propagation in the galaxy. While the model parameters are mainly determined using the B/C ratio, the study of extended sets of ratios can provide stronger constraints on the propagation models. In this paper, the relative abundances of light-nuclei lithium, beryllium, boron, and carbon are presented. The secondary-to-primary ratios Li/C, Be/C, and B/C have been measured in the kinetic energy range 0.35-45 GeV nucleon-1. The isotopic ratio 7Li/6Li is also determined in the magnetic rigidity interval 2.5-6.3 GV. The secondary-to-secondary ratios Li/Be, Li/B, and Be/B are also reported. These measurements are based on the data collected by the Alpha Magnetic Spectrometer AMS-01 during the STS-91 space shuttle flight in 1998 June. Our experimental results are in substantial agreement with other measurements, where they exist. We describe our light-nuclei data with a diffusive-reacceleration model. A 10%-15% overproduction of Be is found in the model predictions and can be attributed to uncertainties in the production cross-section data.

  13. Relative Composition and Energy Spectra of Light Nuclei in Cosmic Rays. Results from AMS-01

    Aguilar, M; Allaby, J; Alpat, B; Ambrosi, G; Anderhub, H; Ao, L; Arefiev, A; Arruda, L; Azzarello, P; Basile, M; Barao, F; Barreira, G; Vartoloni, A; Battiston, R; Becker, R; Becker, U; Bellagamba, L; Bene, P; Berdugo, J; Berges, P; Bertucci, B; Biland, A; Bindi, V; Boella, G; Boschini, M; Bourquin, M; Bruni, G; Buenerd, M; Burger, J D; Burger, W J; Cai, X D; Cannarsa, P; Capell, M; Casadei, D; Casaus, J; Castellini, G; Cernuda, I; Chang, Y H; Chen, H F; Chen, H S; Chen, Z G; Chernoplekov, N A; Chiueh, T H; Choi, Y Y; Cindolo, F; Commichau, V; Contin, A; Cortina-Gil, E; Crespo, D; Cristinziani, M; Dai, T S; Dela Guia, C; Delgado, C; Di Falco, S; Djambazov, L; D'Antoine, I; Dong, Z R; Duranti, M; Engelberg, J; Eppling, F J; Eronen, T; Extermann, P; Favier, J; Fiandrini, E; Fisher, P H; Flugge, G; Fouque, N; Galaktionov, Y; Gervasi, M; Giovacchini, F; Giusti, P; Grandi, D; Grimm, O; Gu, W Q; Haino, S; Hangarter, K; Hasan, A; Hermel, V; Hofer, H; Hungerford, W; Ionica, M; Jongmanns, M; Karlamaa, K; Karpinski, W; Kenney, G; Kim, D H; Kim, G N; Kim, K S; Kirn, T; Klimentov, A; Kossakowski, R; Kounine, A; Koutsenko, V; Kraeber, M; Laborie, G; Laitinen, T; Lamanna, G; Laurenti, G; Lebedev, A; Lechanoine-Leluc, C; Lee, M W; Lee, S C; Levi, G; Lin, C H; Liu, H T; Lu, G; Lubelsmeyer, K; Luckey, D; Lustermann, W; Mana, C; Margotti, A; Mayet, F; McNeil, R R; Menichelli, M; Mihul, A; Mujunen, A; Oliva, A; Palmonari, F; Park, H B; Park, W H; Pauluzzi, M; Pauss, F; Pereira, R; Perrin, E; Pevsner, A; Pilo, F; Pimenta, M; Plyaskin, V; Pojidaev, V; Pohl, M; Produit, N; Quadrani, L; Rancoita, P G; Rapin, D; Ren, D; Ren, Z; Ribordy, M; Richeux, J P; Riihonen, E; Ritakari, J; Ro, S; Roeser, U; Sagdeev, R; Santos, D; Sartorelli, G; Sbarra, C; Schael, S; Schultz von Dratzig, A; Schwering, G; Seo, E S; Shin, J W; Shoumilov, E; Shoutko, V; Siedenburg, T; Siedling, R; Son, D; Song, T; Spada, F R; Spinella, F; Steuer, M; Sun, G S; Suter, H; Tang, X W; Ting, Samuel C C; Ting, S M; Tomassetti, N; Tornikoski, M; Torsti, J; Trumper, J; Ulbricht, J; Urpo, S; Valtonen, E; Vandenhirtz, J; Velikhov, E; Verlaat, B; Vetlitsky, I; Vezzu, F; Vialle, J P; Viertel, G; Vite, D; Von Gunten, H; Waldmeier Wicki, S; Wallraff, W; Wang, J Z; Wiik, K; Williams, C; Wu, S X; Xia, P C; Xu, S; Xu, Z Z; Yan, J L; Yan, L G; Yang, C G; Yang, J; Yang, M; Ye, S W; Zhang, H Y; Zhang, Z P; Zhao, D X; Zhou, F; Zhou, Y; Zhu, G Y; Zhu, W Z; Zhuang, H L; Zichichi, A; Zimmermann, B; Zuccon, P


    Measurement of the chemical and isotopic composition of cosmic rays is essential for the precise understanding of their propagation in the galaxy. While the model parameters are mainly determined using the B/C ratio, the study of extended sets of ratios can provide stronger constraints on the propagation models. In this paper the relative abundances of the light nuclei lithium, beryllium, boron and carbon are presented. The secondary to primary ratios Li/C, Be/C and B/C have been measured in the kinetic energy range 0.35-45 GeV/nucleon. The isotopic ratio 7Li/6Li is also determined in the magnetic rigidity interval 2.5-6.3 GV. The secondary to secondary ratios Li/Be, Li/B and Be/B are also reported. These measurements are based on the data collected by the Alpha Magnetic Spectrometer AMS-01 during the STS-91 space shuttle flight in 1998 June. Our experimental results are in substantial agreement with other measurements, where they exist. We describe our light-nuclei data with a diffusive-reacceleration model....

  14. β-decay studies of the neutron-rich 18,21N isotopes


    The β-decay studies of neutron-rich 18,21N isotopes have been performed using β-n, β-γ, and β-n-γ coincidence methods. The 18,21N ions were produced by the fragmentation of the 22Ne and 26Mg beams, respectively, on a thick beryllium target. The time of flight of the emitted neutrons following the β-decay of 18,21N was measured by a neutron detector system with wide energy detection range and low-energy detection threshold. In addition, several clover germanium detectors were used to detect the β-delayed γ-rays. The half-lives of the β-decays of 18N and 21N were determined to be (619±2) ms and (82.9±7.5) ms, respec tively. Several new β-delayed neutron groups were observed with a total branching ratio of (6.98±1.46)% and (90.5±4.2)% for 18N and 21N, respectively. The level schemes of 18O and 21O were deduced. The experimental Gamow-Teller β-decay strengths of 18N and 21N to these levels were compared with the shell model calculations.

  15. Physicochemical characteristics of aerosol particles generated during the milling of beryllium silicate ores: implications for risk assessment.

    Stefaniak, Aleksandr B; Chipera, Steve J; Day, Gregory A; Sabey, Phil; Dickerson, Robert M; Sbarra, Deborah C; Duling, Mathew G; Lawrence, Robert B; Stanton, Marcia L; Scripsick, Ronald C


    Inhalation of beryllium dusts generated during milling of ores and cutting of beryl-containing gemstones is associated with development of beryllium sensitization and low prevalence of chronic beryllium disease (CBD). Inhalation of beryllium aerosols generated during primary beryllium production and machining of the metal, alloys, and ceramics are associated with sensitization and high rates of CBD, despite similar airborne beryllium mass concentrations among these industries. Understanding the physicochemical properties of exposure aerosols may help to understand the differential immunopathologic mechanisms of sensitization and CBD and lead to more biologically relevant exposure standards. Properties of aerosols generated during the industrial milling of bertrandite and beryl ores were evaluated. Airborne beryllium mass concentrations among work areas ranged from 0.001 microg/m(3) (beryl ore grinding) to 2.1 microg/m(3) (beryl ore crushing). Respirable mass fractions of airborne beryllium-containing particles were 80% in high-energy input areas (beryl melting, beryl grinding). Particle specific surface area decreased with processing from feedstock ores to drumming final product beryllium hydroxide. Among work areas, beryllium was identified in three crystalline forms: beryl, poorly crystalline beryllium oxide, and beryllium hydroxide. In comparison to aerosols generated by high-CBD risk primary production processes, aerosol particles encountered during milling had similar mass concentrations, generally lower number concentrations and surface area, and contained no identifiable highly crystalline beryllium oxide. One possible explanation for the apparent low prevalence of CBD among workers exposed to beryllium mineral dusts may be that characteristics of the exposure material do not contribute to the development of lung burdens sufficient for progression from sensitization to CBD. In comparison to high-CBD risk exposures where the chemical nature of aerosol

  16. Cryogenic optical tests of a lightweight HIP beryllium mirror

    Melugin, Ramsey K.; Miller, Jacob H.; Young, J. A.; Howard, Steven D.; Pryor, G. Mark

    Five interferometric tests were conducted at cryogenic temperatures on a lightweight, 50 cm diameter, hot isostatic pressed (HIP) beryllium mirror in the Ames Research Center (ARC) Cryogenic Optics Test Facility. The purpose of the tests was to determine the stability of the mirror's figure when cooled to cryogenic temperatures. Test temperatures ranged from room ambient to 8 K. One cycle to 8 K and five cycles to 80 K were performed. Optical and thermal test methods are described. Data is presented to show the amount of cryogenic distortion and hysteresis present in the mirror when measured with an earlier, Shack interferometer, and with a newly-acquired, phase-measuring interferometer.

  17. Microstructure and mechanical properties of neutron irradiated beryllium

    Ishitsuka, E.; Kawamura, H. [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Terai, T.; Tanaka, S.


    Microstructure and mechanical properties of the neutron irradiated beryllium with total fast neutron fluences of 1.3 - 4.3 x 10{sup 21} n/cm{sup 2} (E>1 MeV) at 327 - 616degC were studied. Swelling increased by high irradiation temperature, high fluence, and by the small grain size and high impurity. Obvious decreasing of the fracture stress was observed in the bending test and in small grain specimens which had many helium bubbles on the grain boundary. Decreasing of the fracture stress for small grain specimens was presumably caused by crack propagation on the grain boundaries which weekend by helium bubbles. (author)

  18. Inorganic arrangement crystal beryllium, lithium, selenium and silicon

    Gobato, Ricardo; Fedrigo, Desire Francine Gobato


    The use of inorganic crystals technology has been widely date. Since quartz crystals for watches in the nineteenth century, and common way radio in the early twentieth century, to computer chips with new semiconductor materials. Chemical elements such as beryllium, lithium, selenium and silicon, are widely used in technology. The development of new crystals arising from that arrangement can bring technological advances in several areas of knowledge. The likely difficulty of finding such crystals in nature or synthesized, suggest an advanced study of the subject. A study using computer programs with ab initio method was applied. As a result of the likely molecular structure of the arrangement of a crystal was obtained.

  19. Atomic, Crystal, Elastic, Thermal, Nuclear, and Other Properties of Beryllium

    Goldberg, A


    This report is part of a series of documents that provide a background to those involved in the construction of beryllium components and their applications. This report is divided into five sub-sections: Atomic/Crystal Structure, Elastic Properties, Thermal Properties, Nuclear Properties, and Miscellaneous Properties. In searching through different sources for the various properties to be included in this report, inconsistencies were at times observed between these sources. In such cases, the values reported by the Handbook of Chemistry and Physics was usually used. In equations, except where indicated otherwise, temperature (T) is in degrees Kelvin.

  20. Tritium analyses of COBRA-1A2 beryllium pebbles

    Baldwin, D.L. [Pacific Northwest National Lab., Richland, WA (United States)


    Selected tritium measurements have been completed for the COBRA-1A2 experiment C03 and D03 beryllium pebbles. The completed results, shown in Tables 1, 2, and 3, include the tritium assay results for the 1-mm and 3-mm C03 pebbles, and the 1-mm D03 pebbles, stepped anneal test results for both types of 1-mm pebbles, and the residual analyses for the stepped-anneal specimens. All results have been reported with date-of-count and are not corrected for decay. Stepped-anneal tritium release response is provided in addenda.

  1. Use of notched beams to establish fracture criteria for beryllium

    Mayville, R.A.


    The fracture of an improved form of pure beryllium was studied under triaxial tensile stresses. This state of stress was produced by testing notched beams, which were thick enough to be in a state of plane strain at the center. A plane strain, elastic-incremental plasticity finite element program was then used to determine the stress and strain distributions at fracture. A four-point bend fixture was used to load the specimens. It was carefully designed and manufactured to eliminate virtually all of the shear stresses at the reduced section of the notched beams. The unixial properties were obtained.

  2. Beryllium ignition target design for indirect drive NIF experiments

    Simakov, A. N.; Wilson, D. C.; Yi, S. A.; Kline, J. L.; Salmonson, J. D.; Clark, D. S.; Milovich, J. L.; Marinak, M. M.


    Beryllium (Be) ablator offers multiple advantages over carbon based ablators for indirectly driven NIF ICF ignition targets. These are higher mass ablation rate, ablation pressure and ablation velocity, lower capsule albedo, and higher thermal conductivity at cryogenic temperatures. Such advantages can be used to improve the target robustness and performance. While previous NIF Be target designs exist, they were obtained a long time ago and do not incorporate the latest improved physical understanding and models based upon NIF experiments. Herein, we propose a new NIF Be ignition target design at 1.45 MJ, 430 TW that takes all this knowledge into account.

  3. GADRAS isotope ID users manual for analysis of gamma-ray measurements and API for Linux and Android .

    Mitchell, Dean J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Harding, Lee T.


    Isotope identification algorithms that are contained in the Gamma Detector Response and Analysis Software (GADRAS) can be used for real-time stationary measurement and search applications on platforms operating under Linux or Android operating sys-tems. Since the background radiation can vary considerably due to variations in natu-rally-occurring radioactive materials (NORM), spectral algorithms can be substantial-ly more sensitive to threat materials than search algorithms based strictly on count rate. Specific isotopes or interest can be designated for the search algorithm, which permits suppression of alarms for non-threatening sources, such as such as medical radionuclides. The same isotope identification algorithms that are used for search ap-plications can also be used to process static measurements. The isotope identification algorithms follow the same protocols as those used by the Windows version of GADRAS, so files that are created under the Windows interface can be copied direct-ly to processors on fielded sensors. The analysis algorithms contain provisions for gain adjustment and energy lineariza-tion, which enables direct processing of spectra as they are recorded by multichannel analyzers. Gain compensation is performed by utilizing photopeaks in background spectra. Incorporation of this energy calibration tasks into the analysis algorithm also eliminates one of the more difficult challenges associated with development of radia-tion detection equipment.

  4. Occurrence model for volcanogenic beryllium deposits: Chapter F in Mineral deposit models for resource assessment

    Foley, Nora K.; Hofstra, Albert H.; Lindsey, David A.; Seal, Robert R., II; Jaskula, Brian W.; Piatak, Nadine M.


    Current global and domestic mineral resources of beryllium (Be) for industrial uses are dominated by ores produced from deposits of the volcanogenic Be type. Beryllium deposits of this type can form where hydrothermal fluids interact with fluorine and lithophile-element (uranium, thorium, rubidium, lithium, beryllium, cesium, tantalum, rare earth elements, and tin) enriched volcanic rocks that contain a highly reactive lithic component, such as carbonate clasts. Volcanic and hypabyssal high-silica biotite-bearing topaz rhyolite constitutes the most well-recognized igneous suite associated with such Be deposits. The exemplar setting is an extensional tectonic environment, such as that characterized by the Basin and Range Province, where younger topaz-bearing igneous rock sequences overlie older dolomite, quartzite, shale, and limestone sequences. Mined deposits and related mineralized rocks at Spor Mountain, Utah, make up a unique economic deposit of volcanogenic Be having extensive production and proven and probable reserves. Proven reserves in Utah, as reported by the U.S. Geological Survey National Mineral Information Center, total about 15,900 tons of Be that are present in the mineral bertrandite (Be4Si2O7(OH)2). At the type locality for volcanogenic Be, Spor Mountain, the tuffaceous breccias and stratified tuffs that host the Be ore formed as a result of explosive volcanism that brought carbonate and other lithic fragments to the surface through vent structures that cut the underlying dolomitic Paleozoic sedimentary rock sequences. The tuffaceous sediments and lithic clasts are thought to make up phreatomagmatic base surge deposits. Hydrothermal fluids leached Be from volcanic glass in the tuff and redeposited the Be as bertrandite upon reaction of the hydrothermal fluid with carbonate clasts in lithic-rich sections of tuff. The localization of the deposits in tuff above fluorite-mineralized faults in carbonate rocks, together with isotopic evidence for the




    In response to the report ''Investigation of Beryllium Exposure Cases Discovered at the North Las Vegas Facility of the National Nuclear Security Administration'', published by the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) in August 2003, Bechtel Nevada (BN) President and General Manager Dr. F. A. Tarantino appointed the Beryllium Investigation & Assessment Team (BIAT) to identify both the source and pathway for the beryllium found in the North Las Vegas (NLV) B-Complex. From September 8 to December 18, 2003, the BIAT investigated the pathway for beryllium and determined that a number of locations existed at the Nevada Test Site (NTS) which could have contained sufficient quantities of beryllium to result in contamination if transported. Operations performed in the B-1 Building as a result of characterization activities at the Engine Maintenance, Assembly, and Disassembly (EMAD); Reactor Maintenance, Assembly, and Disassembly (RMAD); Test Cells A and C; and the Central Support Facility in Area 25 had the greatest opportunity for transport of beryllium. Investigative monitoring and sampling was performed at these sites with subsequent transport of sample materials, equipment, and personnel from the NTS to the B-1 Building. The timeline established by the BIAT for potential transport of the beryllium contamination into the B-1 Building was from September 1997 through November 2002. Based on results of recently completed swipe sampling, no evidence of transport of beryllium from test areas has been confirmed. Results less than the DOE beryllium action level of 0.2 ???g/100 cm2 were noted for work support facilities located in Area 25. All of the identified sites in Area 25 worked within the B-1 tenant's residency timeline have been remediated. Legacy contaminants have either been disposed of or capped with clean borrow material. As such, no current opportunity exists for release or spread of beryllium

  6. The mechanism for production of beryllium fluoride from the product of ammonium fluoride processing of beryllium- containing raw material

    Kraydenko, R. I.; Dyachenko, A. N.; Malyutin, L. N.; Petlin, I. V.


    The technique of fluorite-phenacite-bertrandite ores from Russian Ermakovskoe deposit processing by ammonium bifluoride is described. To determine the temperature mode and the thermal dissociation mechanism of ammonium tetrafluoroberyllate (the product of ammonium-fluoride leaching of the ore) the TG/DTA have been carried out. By IR spectroscopy and XRD the semi-products of ammonium tetrafluoroberyllate thermal dissociation have been identified. The hygroscopic low-temperature beryllium fluoride forms higher than 380°C. The less hydroscopic form of BeF2 have been produced at 600°C.

  7. Influence of neutron irradiation on the tritium retention in beryllium

    Rolli, R.; Ruebel, S.; Werle, H. [Forschungszentrum Karlsruhe, Inst. fuer Neutronenphysik und Reaktortechnik, Karlsruhe (Germany); Wu, C.H.


    Carbon-based materials and beryllium are the candidates for protective layers on the components of fusion reactors facing plasma. In contact with D-T plasma, these materials absorb tritium, and it is anticipated that tritium retention increases with the neutron damage due to neutron-induced traps. Because of the poor data base for beryllium, the work was concentrated on it. Tritium was loaded into the samples from stagnant T{sub 2}/H{sub 2} atmosphere, and afterwards, the quantity of the loaded tritium was determined by purged thermal annealing. The specification of the samples is shown. The samples were analyzed by SEM before and after irradiation. The loading and the annealing equipments are contained in two different glove boxes with N{sub 2} inert atmosphere. The methods of loading and annealing are explained. The separation of neutron-produced and loaded tritium and the determination of loaded tritium in irradiated samples are reported. Also the determination of loaded tritium in unirradiated samples is reported. It is evident that irradiated samples contained much more loaded tritium than unirradiated samples. The main results of this investigation are summarized in the table. (K.I.)

  8. Calculations for electron-impact excitation and ionization of beryllium

    Zatsarinny, Oleg; Fursa, Dmitry V; Bray, Igor


    The B-spline R-matrix and the convergent close-coupling methods are used to study electron collisions with neutral beryllium over an energy range from threshold to 100 eV. Coupling to the target continuum significantly affects the results for transitions from the ground state, but to a lesser extent the strong transitions between excited states. Cross sections are presented for selected transitions between low-lying physical bound states of beryllium, as well as for elastic scattering, momentum transfer, and ionization. The present cross sections for transitions from the ground state from the two methods are in excellent agreement with each other, and also with other available results based on nonperturbative convergent pseudo-state and time-dependent close-coupling models. The elastic cross section at low energies is dominated by a prominent shape resonance. The ionization from the $(2s2p)^3P$ and $(2s2p)^1P$ states strongly depends on the respective term. The current predictions represent an extensive set o...

  9. Microstructural Characterization of Beryllium Treated Al-Si Alloys

    M. F. Ibrahim


    Full Text Available The present study was carried out on B356 and B357 alloys using the thermal analysis technique. Metallographic samples prepared from these castings were examined using optical microscopy and FESEM. Results revealed that beryllium causes partial modification of the eutectic Si, similar to that reported for magnesium additions. Addition of 0.8 wt.% Mg reduces the eutectic temperature by ~10°C. During solidification of alloys containing high levels of Fe and Mg, but no Sr, formation of a Be-Fe phase was detected at 611°C, close to that of α-Al. The Be-Fe phase precipitates in script-like form at or close to the β-Al5SiFe platelets. A new reaction, composed of fine particles of Si and π-Fe phase, was observed to occur near the end of solidification in high Mg-, high Fe-, and Be-containing alloys. The amount of this reaction decreased with the addition of Sr. Occasionally, Be-containing phase particles were observed as part of the reaction. Addition of Be has a noticeable effect on decreasing the β-Al5FeSi platelet length; this effect may be enhanced by addition of Sr. Beryllium addition also results in precipitation of the β-Al5FeSi phase in nodular form, which lowers its harmful effects on the alloy mechanical properties.

  10. Remarkable Hydrogen Storage on Beryllium Oxide Clusters: First Principles Calculations

    Shinde, Ravindra


    Since the current transportation sector is the largest consumer of oil, and subsequently responsible for major air pollutants, it is inevitable to use alternative renewable sources of energies for vehicular applications. The hydrogen energy seems to be a promising candidate. To explore the possibility of achieving a solid-state high-capacity storage of hydrogen for onboard applications, we have performed first principles density functional theoretical calculations of hydrogen storage properties of beryllium oxide clusters (BeO)$_{n}$ (n=2 -- 8). We observed that polar BeO bond is responsible for H$_{2}$ adsorption. The problem of cohesion of beryllium atoms does not arise, as they are an integral part of BeO clusters. The (BeO)$_{n}$ (n=2 -- 8) adsorbs 8--12 H$_{2}$ molecules with an adsorption energy in the desirable range of reversible hydrogen storage. The gravimetric density of H$_{2}$ adsorbed on BeO clusters meets the ultimate 7.5 wt% limit, recommended for onboard practical applications. In conclusion,...

  11. Crystallization of Enantiomerically Pure Proteins from Quasi-Racemic Mixtures: Structure Determination by X-Ray Diffraction of Isotope-Labeled Ester Insulin and Human Insulin.

    Mandal, Kalyaneswar; Dhayalan, Balamurugan; Avital-Shmilovici, Michal; Tokmakoff, Andrei; Kent, Stephen B H


    As a part of a program aimed towards the study of the dynamics of human insulin-protein dimer formation using two-dimensional infrared spectroscopy, we used total chemical synthesis to prepare stable isotope labeled [(1-(13) C=(18) O)Phe(B24) )] human insulin, via [(1-(13) C=(18) O)Phe(B24) )] ester insulin as a key intermediate product that facilitates folding of the synthetic protein molecule (see preceding article). Here, we describe the crystal structure of the synthetic isotope-labeled ester insulin intermediate and the product synthetic human insulin. Additionally, we present our observations on hexamer formation with these two proteins in the absence of phenol derivatives and/or Zn metal ions. We also describe and discuss the fractional crystallization of quasi-racemic protein mixtures containing each of these two synthetic proteins.

  12. New and Emerging Technologies for Real-Time Air and Surface Beryllium Monitoring

    Phifer, B.E. Jr.; Churnetski, E.L.; Cooke, L.E.; Reed, J.J.; Howell, M.L.; Smith, V.D.


    In this study, five emerging technologies were identified for real-time monitoring of airborne beryllium: Microwave-Induced Plasma Spectroscopy (MIPS), Aerosol Beam-Focused Laser-Induced Plasma Spectroscopy (ABFLIPS), Laser-Induced Breakdown Spectroscopy (LIBS), Surfaced-Enhanced Raman Scattering (SERS) Spectroscopy, and Micro-Calorimetric Spectroscopy (CalSpec). Desired features of real-time air beryllium monitoring instrumentation were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies as well as their unique demonstrated capability to provide real-time monitoring of similar materials. However, best available technologies were considered, regardless of their ability to comply with the desired features. None of the five technologies have the capability to measure the particle size of airborne beryllium. Although reducing the total concentration of airborne beryllium is important, current literature suggests that reducing or eliminating the concentration of respirable beryllium is critical for worker health protection. Eight emerging technologies were identified for surface monitoring of beryllium. CalSpec, MIPS, SERS, LIBS, Laser Ablation, Absorptive Stripping Voltametry (ASV), Modified Inductively Coupled Plasma (ICP) Spectroscopy, and Gamma BeAST. Desired features of real-time surface beryllium monitoring were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies. However, the best available technologies were considered regardless of their ability to comply with the desired features.

  13. Development of radiation resistant grades of beryllium for nuclear and fusion facilities

    Kupriyanov, I.B.; Gorokhov, V.A.; Nikolaev, G.N. [Russia Research Institute of Inorganic Materials, Moscow (Russian Federation)


    R&D results on beryllium with high radiation resistance obtained recently are described in this report. The data are presented on nine different grades of isotropic beryllium manufactured by VNIINM and distinguished by both initial powder characteristics and properties of billets, made of these powders. The average grain size of the investigated beryllium grades varied from 8 to 26 {mu}m, the content of beryllium oxide was 0.9 - 3.9 wt.%, the dispersity of beryllium oxide - 0.04 - 0.5 {mu}m, tensile strength -- 250 - 650 MPa. All materials were irradiated in SM - 2 reactor over the temperature range 550 - 780{degrees}C. The results of the investigation showed, that HIP beryllium grades are less susceptible to swelling at higher temperatures in comparison with hot pressed and extruded grades. Beryllium samples, having the smallest grain size, demonstrated minimal swelling, which was less than 0.8 % at 750{degrees}C and Fs = 3.7 {center_dot}10{sup 21} cm{sup -2} (E>0.1 MeV). The mechanical properties, creep and microstructure parameters, measured before and after irradiation, are presented.

  14. Sampling and analysis plan for assessment of beryllium in soils surrounding TA-40 building 15

    Ruedig, Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Technical Area (TA) 40 Building 15 (40-15) is an active firing site at Los Alamos National Laboratory. The weapons facility operations (WFO) group plans to build an enclosure over the site in 2017, so that test shots may be conducted year-round. The enclosure project is described in PRID 16P-0209. 40-15 is listed on LANL OSH-ISH’s beryllium inventory, which reflects the potential for beryllium in/on soils and building surfaces at 40-15. Some areas in and around 40-15 have previously been sampled for beryllium, but past sampling efforts did not achieve complete spatial coverage of the area. This Sampling and Analysis Plan (SAP) investigates the area surrounding 40-15 via 9 deep (≥1-ft.) soil samples and 11 shallow (6-in.) soil samples. These samples will fill the spatial data gaps for beryllium at 40-15, and will be used to support OSH-ISH’s final determination of 40-15’s beryllium registry status. This SAP has been prepared by the Environmental Health Physics program in consultation with the Industrial Hygiene program. Industrial Hygiene is the owner of LANL’s beryllium program, and will make a final determination with regard to the regulatory status of beryllium at 40-15.

  15. Use of 41Ar production to measure ablator areal density in NIF beryllium implosions

    Wilson, D. C.; Cassata, W. B.; Sepke, S. M.; Velsko, C. A.; Huang, H.; Yeamans, C. B.; Kline, J. L.; Yi, A.; Simakov, A. N.; Haan, S. W.; Batha, S. H.; Dewald, E. L.; Rygg, J. R.; Tommasini, R.; Xu, H.; Kong, C.; Bae, J.; Rice, N.


    For the first time, 41Ar produced by the (n,ϒ) reaction from 40Ar in the beryllium shell of a DT filled Inertial Confinement Fusion capsule has been measured. Ar is co-deposited with beryllium in the sputter deposition of the capsule shell. Combined with a measurement of the neutron yield, the radioactive 41Ar then quantifies the areal density of beryllium during the DT neutron production. The measured 1.15 ± 0.17 × 10+8 atoms of 41Ar are 2.5 times that from the best post-shot calculation, suggesting that the Ar and Be areal densities are correspondingly higher than those calculated. Possible explanations are that (1) the beryllium shell is compressed more than calculated, (2) beryllium has mixed into the cold DT ice, or more likely (3) less beryllium is ablated than calculated. Since only one DT filled beryllium capsule has been fielded at NIF, these results can be confirmed and expanded in the future.

  16. On use of beryllium in fusion reactors: Resources, impurities and necessity of detritiation after irradiation

    Kolbasov, B.N., E-mail:; Khripunov, V.I., E-mail:; Biryukov, A.Yu.


    Highlights: • Potential needs in Be for fusion power engineering may exceed Be resources. • Be recycling after its operation in a fusion power plant (FPP) seems inevitable. • U impurity in Be seriously impairs environmental properties of fusion power plants. • Upon burial of irradiated Be the main problems are caused by U and {sup 3}H impurities. • Clearance of Be extracted from a FPP is impossible due to U impurity. - Abstract: Worldwide identified resources of beryllium somewhat exceed 80 000 t. Beryllium production in all the countries of the world in 2012 was about 230 t. At the same time, some conceptual designs of fusion power reactors envisage utilization of several hundred tons of this metal. Therefore return of beryllium into the production cycle (recycling) will be necessary. The beryllium ore from some main deposits has uranium content inadmissible for fusion reactors. This fact raises a question on the need to develop and apply an economically acceptable technology for beryllium purification from the uranium. Practically any technological procedure with beryllium used in fusion reactors requires its detritiation. A study of tritium and helium release from irradiated beryllium at different temperatures and rates of temperature increase was performed at Kurchatov Institute.

  17. Target organ localization of memory CD4(+) T cells in patients with chronic beryllium disease.

    Fontenot, Andrew P; Canavera, Scott J; Gharavi, Laia; Newman, Lee S; Kotzin, Brian L


    Chronic beryllium disease (CBD) is caused by exposure to beryllium in the workplace, and it remains an important public health concern. Evidence suggests that CD4(+) T cells play a critical role in the development of this disease. Using intracellular cytokine staining, we found that the frequency of beryllium-specific CD4(+) T cells in the lungs (bronchoalveolar lavage) of 12 CBD patients ranged from 1.4% to 29% (mean 17.8%), and these T cells expressed a Th1-type phenotype in response to beryllium sulfate (BeSO(4)). Few, if any, beryllium-specific CD8(+) T cells were identified. In contrast, the frequency of beryllium-responsive CD4(+) T cells in the blood of these subjects ranged from undetectable to 1 in 500. No correlation was observed between the frequency of beryllium-responsive bronchoalveolar lavage (BAL) CD4(+) T cells as detected by intracellular staining and lymphocyte proliferation in culture after BeSO(4) exposure. Staining for surface marker expression showed that nearly all BAL T cells exhibit an effector memory cell phenotype. These results demonstrate a dramatically high frequency and compartmentalization of antigen-specific effector memory CD4(+) cells in the lungs of CBD patients. These studies provide insight into the phenotypic and functional characteristics of antigen-specific T cells invading other inaccessible target organs in human disease.

  18. Machining risk of beryllium disease and sensitization with median exposures below 2 micrograms/m3.

    Kreiss, K; Mroz, M M; Newman, L S; Martyny, J; Zhen, B


    We examined the prevalence of beryllium sensitization in relation to work process and beryllium exposure measurements in a beryllia ceramics plant that had operated since 1980. We interviewed 136 employees (97.8% of the workforce), ascertained beryllium sensitization with the beryllium lymphocyte proliferation blood test, and reviewed historical industrial hygiene measurements. Of eight beryllium-sensitized employees (5.9%), six (4.4% of participating employees) had granulomatous disease on transbronchial lung biopsy. Machinists had a sensitization rate of 14.3% compared to a rate of 1.2% among other employees. Machining had significantly higher general area and breathing zone measurements than did other processes in the time period in which most beryllium-sensitized cases had started machining work. Daily weighted average (DWA) estimates of exposure for matching processes also exceeded estimates for other work processes in that time period, with a median DWA of 0.9 microgram/m3. Machining process DWAs accounted for the majority of DWAs exceeding the 2.0 micrograms/m3 OSHA standard, with 8.1% of machining DWAs above the standard. We conclude that lowering machining process-related exposures may be important to lowering risk of beryllium disease.

  19. Considerations for the development of health-based surface dust cleanup criteria for beryllium.

    Shay, Erin; De Gandiaga, Elise; Madl, Amy K


    The exposure-response patterns with beryllium sensitization (BeS), chronic beryllium disease (CBD) and lung cancer are influenced by a number of biological and physicochemical factors. Recent studies have suggested dermal exposure as a pathway for BeS. In light of the current non-health-based DOE Beryllium Rule surface criteria, the feasibility of deriving a human health-based surface dust cleanup criteria (SDCC) for beryllium was assessed based on toxicology and health risk factors via all potential routes of exposure. Beryllium-specific and general exposure factors were evaluated, including (1) beryllium physicochemical characteristics, bioavailability and influence on disease prevalence, and (2) chemical dissipation, resuspension and transfer. SDCC for non-cancer (SDCC) and cancer (SDCC) endpoints were derived from a combination of modern methods applied for occupational, residential and building reentry surface dust criteria. The most conservative SDCC estimates were derived for dermal exposure (5-379 μg/100 cm for 0.1-1% damaged skin and 17-3337 μg/100 cm for intact skin), whereas the SDCC for inhalation exposure ranged from 51 to 485 μg/100 cm. Considering this analysis, the lowest DOE surface criterion of 0.2 μg/100 cm is conservative for minimizing exposure and potential risks associated with beryllium-contaminated surfaces released for non-beryllium industrial or public sector use. Although methodological challenges exist with sampling and analysis procedures, data variability and interpretation of surface dust information in relation to anthropogenic and natural background concentrations, this evaluation should provide useful guidance with regard to cleanup of manufacturing equipment or remediation of property for transfer to the general public or non-beryllium industrial facilities.

  20. The structure and the Raman vibrational spectrum of the beryllium aquacation.

    Rozmanov, Dmitry A; Sizova, Olga V; Skripkin, Mikhail Yu; Burkov, Kim A


    The experimental Raman vibrational spectrum of the 5.94 m water solution of the beryllium(II) chloride has been acquired. Theoretical frequencies, infrared and Raman intensities of the vibrational spectrum of the beryllium cation tetrahydrate have been calculated by means of quantum chemical approach. The peaks of the experimental spectrum have been assigned on the basis of the results of the quantum-chemical calculations. It has been shown that the hydrating surrounding of the aquacation increases effectively the frequency of the beryllium-oxygen stretching vibration by 16% in comparison with the free complex.

  1. Study of beryllium redeposition under bombardment by high intensity -low energy- hydrogen ion beams

    Gureev, V.M.; Guseva, M.I.; Danelyan, L.S. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)] [and others


    The results of studying the erosion of beryllium under an effect of intense ion fluxes with the energy of 250 eV, at the fluences {approx}10{sup 2}1 cm{sup -2}, at the MAGRAS-stand are given. The operating conditions under which a practically-complete redeposition of the sputtered beryllium upon the target surface were experimentally-realized. A change in the microstructure of a beryllium target under sputtering and redeposition is analyzed. Some technological applications are considered. (author)

  2. Conditions for preparation of ultrapure beryllium by electrolytic refining in molten alkali-metal chlorides

    Wohlfarth, Hagen


    Electrolytic refining is regarded as the most suitable process for the production of beryllium with impurity contents below 1 at.-ppM. Several parameters are important for electrolytic refining of beryllium in a BeCl/sub 2/-containing LiCl-KCl melt: current density, BeCl/sub 2/ content, electrolyte temperature, composition of the unpurified beryllium and impurity-ion concentrations in the melt, as well as apparatus characteristics such as rotation speed of the cathode and condition of the crucible material. These factors were studied and optimized such that extensive removal of the maximum number of accompanying and alloying elements was achieved.

  3. Beryllium Exposure Control Program at the Cardiff Atomic Weapons Establishment in the United Kingdom.

    Johnson, J S; Foote, K; McClean, M; Cogbill, G


    The Cardiff Atomic Weapons Establishment (AWE) plant, located in Cardiff, Wales, United Kingdom, used metallic beryllium in their beryllium facility during the years of operation 1961-1997. The beryllium production processes included melting and casting, powder production, pressing, machining, and heat and surface treatments. As part of Cardiff's industrial hygiene program, extensive area measurements and personal lapel measurements of airborne beryllium concentrations were collected for Cardiff workers over the 36-year period of operation. In addition to extensive air monitoring, the beryllium control program also utilized surface contamination controls, building design, engineering controls, worker controls, material controls, and medical surveillance. The electronic database includes 367,757 area sampling records at 101 locations and 217,681 personal lapel sampling records collected from 194 employees over the period 1981-1997. Similar workplace samples were collected from 1961 to 1980, but they were not analyzed because they were not available electronically. Annual personal mean sampling concentrations for all workers ranged from 0.11 to 0.72 micrograms per cubic meter (microg/m3) with 95th percentiles ranging from 0.22 to 1.89 microg/m3; foundry workers worked in the highest concentration areas with a mean of 0.87 microg/m3 and a 95th percentile of 2.9 microg/m3. Area sampling concentrations, as expected, were lower than personal sampling concentrations. Mean annual area sample concentrations for all locations ranged from 0.02 to 0.32 microg/m3. The area sample 95th percentile concentrations for all years were below 0.5 microg/m3. For the overwhelming majority of samples, airborne beryllium concentrations were below the 2.0 microg/m3 standard. Although blood lymphocyte testing for beryllium sensitization has not been routinely conducted among these workers, this metal beryllium processing facility is the only large scale beryllium facility of its kind to have

  4. Neutron field produced by 25 MeV deuteron on thick beryllium for radiobiological study; energy spectrum.

    Takada, Masashi; Mihara, Erika; Sasaki, Michiya; Nakamura, Takashi; Honma, Toshihiko; Kono, Koji; Fujitaka, Kazunobu


    Biological data is necessary for estimation of protection from neutrons, but there is a lack of data on biological effects of neutrons for radiation protection. Radiological study on fast neutrons has been done at the National Institute of Radiological Sciences. An intense neutron source has been produced by 25 MeV deuterons on a thick beryllium target. The neutron energy spectrum, which is essential for neutron energy deposition calculation, was measured from thermal to maximum energy range by using an organic liquid scintillator and multi-sphere moderated 3He proportional counters. The spectrum of the gamma rays accompanying the neutron beam was measured simultaneously with the neutron spectrum using the organic liquid scintillator. The transmission by the shield of the spurious neutrons originating from the target was measured to be less than 1% by using the organic liquid scintillator placed behind the collimator. The measured neutron energy spectrum is useful in dose calculations for radiobiology studies.

  5. The Beryllium-10(meteoric)/ Beryllium-9 ratio as a new tracer of weathering and erosion rates

    von Blanckenburg, F.; Bouchez, J.; Wittmann, H.; Dannhaus, N.


    A perfect clock of the stability of the Earth surface is one that combines a first isotope the flux of which depends on the release rate during erosion, and a second isotope produced at constant rate. The ratio of the meteoric cosmogenic nuclide 10Be to stable 9Be, suggested to serve as proxy for weathering and erosion over the late Cenozoic [1], is such a system. We provide a quantitative framework for its use. In a weathering zone some of the 9Be, present typically in 2ppm concentrations in silicate minerals, is released and partitioned between a reactive phase (adsorbed to clay and hydroxide surfaces, given the high partition coefficients at intermediate pH), and into the dissolved phase. The combined mass flux of both phases is defined by the soil formation rate and a mineral dissolution rate - and is hence proportional to the chemical weathering rate and the denudation rate. At the same time, the surface of the weathering zone is continuously exposed to fallout of meteoric 10Be. This 10Be percolates into the weathering zone where it mixes with dissolved 9Be. Both isotopes may exchange with the adsorbed Be, given that equilibration rate of Be is fast relative to soil residence times. Hence a 10Be/9Be(reactive) ratio results from which the total denudation rate can be calculated. A prerequisite is that the flux of meteoric 10Be is known from field experiments or from global production models [2]. In rivers, when reactive Be and dissolved Be equilibrate, a catchment-wide denudation rate can be determined from both sediment and a sample of filtered river water. We have tested this approach in sediment-bound Be [3] and dissolved Be in water [4] of the Amazon and Orinoco basin. The reactive Be was extracted from sediment by combined hydroxylamine and HCl leaches. In the Amazon trunk stream, the Orinoco, Apure, and La Tigra river 10Be/9Be(dissolved) agrees well with 10Be/9Be(reactive), showing that in most rivers these two phases equilibrate. 10Be/9Be ratios range

  6. Synthesis and characterization of three new beryllium phosphate/phosphites with different structure-directing agents

    Pan, Jie; Xue, Zhen-Zhen; Li, Jin-Hua; Wei, Li; Wang, Guo-Ming


    Three new organically templated beryllium phosphate and phosphites, [C2H8N][Be2(PO4) (HPO4) (H2O)]·(H2O)0.5 (1), [C3H12N2][Be3(HPO3)4] (2) and [C6H18N2][Be3(HPO3)4] (3), have been synthesized and structurally characterized by single-crystal X-ray diffraction analyses. The structure of 1 consists of BeO4 and PO4 tetrahedra, displaying a double-layered structure with [Be4(PO4)2(HPO4)2(H2O)2] D4R-analogue as SBUs. Compound 2 presents a three-dimensional (3D) interrupted open-framework, constructed from two-dimensional layers pillared by phosphite nodes. Left- and right-handed helical channels occurred along the [010] direction in 2. For 3, adjacent sheets arrange in an -ABAB- staggered stacking mode to give a (3,4)-connected 3D structure with zigzag 12-ring channels. In 1-3, different protonated amine templates reside in the voids of structures and interact with the inorganic frameworks through hydrogen-bonds.

  7. Non destructive three dimensional analysis of the packing of a binary beryllium pebble bed

    Scaffidi-Argentina, F.; Piazza, G. E-mail:; Goraieb, A.; Boller, E.; Elmoutaouakkil, A.; Ferrero, C.; Baruchel, J


    In the Helium Cooled Pebble Bed (HCPB) Blanket, studied within the European Fusion Technology Programme, beryllium in form of pebbles is used as neutron multiplier. The thermal-mechanical behaviour of a pebble bed strongly depends on the packing factor of the bed. In a binary pebble bed, in particular, a homogeneous distribution of small pebbles between the larger ones (infiltrated bed) has to be ensured in order to obtain a behaving homogeneously bed. Thus, a detailed non-destructive control of the pebble bed configuration can provide an important help in interpreting the pebble bed thermal mechanical characterisation test results. A three-dimensional (3-D) computer aided microtomography (CMT) experimental setup developed at the European Synchrotron Radiation Facility (ESRF) allowed to reconstruct 3-D images of the attenuation coefficient of a X-ray synchrotron radiation beam within a pebble bed without physically damaging it. By post-processing the acquired data, very useful quantitative informations were obtained (local and average void fraction in the sample, impurities and micro-cracks in the pebbles). In the present work, the micrographic technique and the first results of the analysis are presented and critically discussed in view of a future application for a medium scale HCPB Blanket mock-up.

  8. Measuring SNM Isotopic Distributions using FRAM

    Geist, William H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    The first group of slides provides background information on the isotopic composition of plutonium. It is shown that 240Pu is the critical isotope in neutron coincidence/multiplicity counting. Next, response function analysis to determine isotopic composition is discussed. The isotopic composition can be determined by measuring the net peak counts from each isotope and then taking the ratio of the counts for each isotope relative to the total counts for the element. Then FRAM (Fixed energy Response function Analysis with Multiple efficiencies) is explained. FRAM can control data acquisition, automatically analyze newly acquired data, analyze previously acquired data, provide information on the quality of the analysis, and facilitate analysis in unusual situations (non-standard energy calibrations, gamma rays from non-SNM isotopes, poor spectra (within limits)).

  9. Leatherback Isotopes

    National Oceanic and Atmospheric Administration, Department of Commerce — SWFSC is currently working on a project identifying global marine isotopes using leatherback turtles (Dermochelys coriacea) as the indicator species. We currently...

  10. Beryllium Separation from Beryllium Containing Solution with Solvent Extraction Method%溶剂萃取法从含铍溶液中分离铍

    刘珍珍; 刘勇; 刘牡丹


    Beryllium was extracted from the sulphuric acid leaching solution of complex low grade beryllium ore with solvent extraction process. The effecting factors on beryllium single stage extraction rate were researched. The results show that the optimal conditions were pH in aqueous phase of 2?. 5, concentration of beryllium in leaching solution of 1. 5~2. 5 g/L, volume fraction of P204 of 30%, extraction time of 20 min, and W/O=l. In this conditions, more than 98. 50% beryllium is separated by four stage countercur-rent extraction.%采用溶剂萃取法从某复杂低品位铍矿的硫酸浸出液中进行铍的分离,研究了不同因素对铍的单级萃取效果的影响.结果表明,最佳条件为:水相pH=2~2.5、浸出液初始铍浓度1.5~2.5 g/L、P204体积分数30%、萃取时间20 min、相比为1.在此条件下四级逆流萃取后铍萃取率可达到98.50%.

  11. Modes of Occurrence and Geological Origin of Beryllium in Coals from the Pu'an Coalfield, Guizhou, Southwest China

    YANG Jianye


    The concentration, modes of occurrence and geological origin of beryllium in five workable coal beds from the Pu'an Coalfield of Guizbou were studied using the inductively coupled-plasma mass spectrometry (ICP-MS), floating and sinking experiments (FSE) and sequential chemical extraction procedures (SCEP). The results show that the average concentration of beryllium in coals from the Pu'an Coalfield is 1.54 μg/g, much lower than that in most Chinese and worldwide coals.Beryllium in the Pu'an coals was not significantly enriched. However, it should be noted that the No. 8 coal bed from the study area has a high concentration of beryllium, 6.89 μg/g, three times higher than the background value of beryllium in coal. Beryllium in coal mainly occurs as organic association and has predominantly originated from coal-forming plants when its concentration is relatively low. The concentration of beryllium occurring as organic association is close to that distributed in inorganic matter when beryllium concentration of coal is similar to its background value, and in addition to coal-forming plants, beryllium is mainly derived from detrital materials of terrigenous origin. When beryllium is anomalously enriched in coal, it mainly occurs as organic association and is derived from volcanic tonsteins leached for a long geological time and then adsorbed by organic matter in peat mire.

  12. Isotopic chirality

    Floss, H.G. [Univ. of Washington, Seattle, WA (United States)


    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  13. Isotopic Paleoclimatology

    Bowen, R.

    Paleotemperature scales were calculated by H. C. Urey and others in the 1950s to assess past temperatures, and later work using the stable isotopes of oxygen, hydrogen, and carbon employed standards such as Peedee belemnite (PDB) and Standard Mean Ocean Water (SMOW). Subsequently, subjects as diverse as ice volume and paleotemperatures, oceanic ice and sediment cores, Pleistocene/Holocene climatic changes, and isotope chronostratigraphy extending back to the Precambrian were investigated.

  14. Tensile and fracture toughness test results of neutron irradiated beryllium

    Chaouadi, R.; Moons, F.; Puzzolante, J.L. [Centre d`Etude de l`Energie Nucleaire, Mol (Belgium)


    Tensile and fracture toughness test results of four Beryllium grades are reported here. The flow and fracture properties are investigated by using small size tensile and round compact tension specimens. Irradiation was performed at the BR2 material testing reactor which allows various temperature and irradiation conditions. The fast neutron fluence (>1 MeV) ranges between 0.65 and 2.45 10{sup 21} n/cm{sup 2}. In the meantime, un-irradiated specimens were aged at the irradiation temperatures to separate if any the effect of temperature from irradiation damage. Test results are analyzed and discussed, in particular in terms of the effects of material grade, test temperature, thermal ageing and neutron irradiation. (author)

  15. Modelling of radiation impact on ITER Beryllium wall

    Landman, I. S.; Janeschitz, G.


    In the ITER H-Mode confinement regime, edge localized instabilities (ELMs) will perturb the discharge. Plasma lost after each ELM moves along magnetic field lines and impacts on divertor armour, causing plasma contamination by back propagating eroded carbon or tungsten. These impurities produce enhanced radiation flux distributed mainly over the beryllium main chamber wall. The simulation of the complicated processes involved are subject of the integrated tokamak code TOKES that is currently under development. This work describes the new TOKES model for radiation transport through confined plasma. Equations for level populations of the multi-fluid plasma species and the propagation of different kinds of radiation (resonance, recombination and bremsstrahlung photons) are implemented. First simulation results without account of resonance lines are presented.

  16. Near real-time fluorescence detection of beryllium

    McCleskey, T. M. (Thomas Mark); Ehler, D. S. (Deborah S.); Minogue, E. M. (Edel Mary); Collis, G. E. (Gavin E.); Keizer, T. S. (Timothy S.); Burrell, A. K. (Anthony K.); Sauer, N. N. (Nancy N.); John, K. D. (Kevin D.)


    We report on a fluorescent test for beryllium designed for analyzing swipes. The detection is rapid, quantitative and deployable in the field with $5,000 portable fluorimeter. Swipes are placed in a vial and a dilution solution is added. The vials are then rotated for 30 minutes and then syringe filtered. An aliquot of 100 pL is added to a detector solution and fluorescence measured with a portable ocean optics unit. We can readily detect down to 0.02 {micro}g on a filter paper. Interference studies have been carried out with various metals including Al, Fe, Pb, U, Ca, W, Ni, Co and Cu. The technique has proven to be successful under various conditions including a variety of surfaces both in the lab and in field. It is a user-friendly, cost effective method.

  17. Specification for nuclear-grade beryllium oxide powder

    American Society for Testing and Materials. Philadelphia


    1.1 This specification defines the physical and chemical requirements of nuclear-grade beryllium oxide (BeO) powder to be used in fabricating nuclear components. 1.2 This specification does not include requirements for health and safety. , , It recognizes the material as a Class B poison and suggests that producers and users become thoroughly familiar with and comply to applicable federal, state, and local regulations and handling guidelines. 1.3 Special tests and procedures are given in Annex A1 and Annex A2. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

  18. Notched strength of beryllium powder and ingot sheets.

    Moss, R. G.


    The effects of notches in thin beryllium sheets were studied as functions of material variables and notch severity. Double edge notched samples having stress concentration factors of 1.0 to 15.4 were prepared by milling to size, etching, and electrical discharge machining the notches. Strength was not reduced greatly by sharp notches, and duller notches were more deleterious than sharp notches. The trend was for reduced strength for dull notches, increased strength for sharper notches, and reduced strength for very sharp notches. Differences in material purity or source of the sheet had little affect on notch sensitivity. The most important factors appear to be oxide content and directionality of the sheet microstructure; high oxide content and highly directional microstructure tend to give more notch sensitivity than low oxide content, and more bidirectional microstructure. Postulated causes of the change in notched/unnotched strength are given.

  19. Electromagnetic properties of the Beryllium-11 nucleus in Halo EFT

    Hammer H.-W.


    Full Text Available We compute electromagnetic properties of the Beryllium-11 nucleus using an effective field theory that exploits the separation of scales in this halo system. We fix the parameters of the EFT from measured data on levels and scattering lengths in the 10Be plus neutron system. We then obtain predictions for the B(E1 strength of the 1/2+ to 1/2− transition in the 11Be nucleus. We also compute the charge radius of the ground state of 11Be. Agreement with experiment within the expected accuracy of a leading-order computation in this EFT is obtained. We also indicate how higher-order corrections that affect both s-wave and p-wave 10 Be-neutron interactions will affect our results.

  20. Damage production in atomic displacement cascades in beryllium

    V.A. Borodin


    Full Text Available The paper presents the results of a molecular dynamics simulation of cascade damage production in beryllium caused by self-ion recoils in the energy range of 0.5–3keV. It is demonstrated that point defects are produced in Be preferentially in well-separated subcascades generated by secondary and higher order recoils. A linear dependence of the point defect number on the primary recoil energy is obtained with the slope that corresponds to formal atom displacement energy of ∼21eV. Most of the damage is created as single defects and the relatively high part of created point defects (∼50% survives the correlated recombination following the ballistic cascade stage and becomes freely-migrating.

  1. Retrospective beryllium exposure assessment at the Rocky Flats Environmental Technology site

    Barnard, A.E.; Torma-Krajewski, J. [Department of Energy, Rocky Flats Field Office, Golden, CO (United States); Viet, S.M. [M.H. Chew & Associates, Inc., Golden, CO (United States)


    Since the 1960`s, beryllium machining was performed to make nuclear weapon components at the Department of Energy (DOE) Rocky Flats Plant. Beryllium exposure was assessed via fixed airhead (FAH) sampling in which the filter cassette was affixed to the machine, generally within a few feet of the worker`s breathing zone. Approximately 500,000 FAH samples were collected for beryllium over three decades. From 1984 to 1987, personal breathing zone (PBZ) samples were also collected as part of the evaluation of a new high velocity/low volume local exhaust ventilation (HV/LV LEV) system. The purpose of this study was to determine how the two types of sampling data could be used for an exposure assessment in the beryllium shop.

  2. Solvent extraction of beryllium from malonate solutions with liquid anion exchangers

    Rao, R.R.; Khopkar, S.M.


    Beryllium was quantitatively extracted at pH 5.5-7.0 in microgram amounts with 0.06 M Aliquat 336S in xylene from 5 x 10/sup -3/ M malonic acid solution, stripped with 0.5 M hydrochloric acid, and determined spectrophotometrically at 523 nm as its complex with thorin. Those metals which could not form anionic complexes with malonic acid and were not extracted with beryllium at pH 6.5 were separated from it. Metals forming weak malonato complexes were scrubbed from the organic phase with water. The elements like bismuth, antimony, iron, uranium, gallium, and vanadium which form strong malonato complexes were separated by selective stripping with hydrochloric, sulfuric, or nitric acid. The method was extended for the analysis of beryllium in beryl and beryllium alloys. 1 figure, 6 tables.

  3. Cryogenic Fracture Toughness Evaluation of an Investment Cast Aluminum-Beryllium Alloy for Structural Applications

    Gamwell, Wayne; McGill, Preston


    This document is a viewgraph presentation that details the fracture toughness of Aluminum-Beryllium Alloy for use in structures at cryogenic temperatures. Graphs and charts are presented in the presentation

  4. Estimations of neutron yield from beryllium target irradiated by SPring-8 hard synchrotron radiation

    Gryaznykh, D A; Plokhoi, V V


    The possibility of creating a neutron source based on ''SPring-8'' synchrotron radiation interaction with beryllium targets is discussed. The possible neutron yield is estimated to be of order 10 sup 1 sup 2 s sup - sup 1 .

  5. Neutron activation analysis: Modelling studies to improve the neutron flux of Americium–Beryllium source

    Abdessamad Didi; Ahmed Dadouch; Otman Jaï; Jaouad Tajmouati; Hassane El Bekkouri


    Americium–beryllium (Am-Be; n, γ) is a neutron emitting source used in various research fields such as chemistry, physics, geology, archaeology, medicine, and environmental monitoring, as well as in the forensic sciences...


    The effectiveness of conventional drinking water treatment and lime softening was evaluated for beryllium removal from two drinking water sources. ar test studies were conducted to determine how common coagulants (aluminum sulfate and ferric chloride and lime softening performed ...

  7. The impact of particle size selective sampling methods on occupational assessment of airborne beryllium particulates.

    Sleeth, Darrah K


    In 2010, the American Conference of Governmental Industrial Hygienists (ACGIH) formally changed its Threshold Limit Value (TLV) for beryllium from a 'total' particulate sample to an inhalable particulate sample. This change may have important implications for workplace air sampling of beryllium. A history of particle size-selective sampling methods, with a special focus on beryllium, will be provided. The current state of the science on inhalable sampling will also be presented, including a look to the future at what new methods or technology may be on the horizon. This includes new sampling criteria focused on particle deposition in the lung, proposed changes to the existing inhalable convention, as well as how the issues facing beryllium sampling may help drive other changes in sampling technology.

  8. IRIS Toxicological Review of Beryllium and Compounds (2008 External Review Draft)

    EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of Beryllium that when finalized will appear on the Integrated Risk Information System (IRIS) database.

  9. First beryllium capsule implosions on the National Ignition Facility

    Kline, J. L.; Yi, S. A.; Simakov, A. N.; Olson, R. E.; Wilson, D. C.; Kyrala, G. A.; Perry, T. S.; Batha, S. H.; Zylstra, A. B.; Dewald, E. L.; Tommasini, R.; Ralph, J. E.; Strozzi, D. J.; MacPhee, A. G.; Callahan, D. A.; Hinkel, D. E.; Hurricane, O. A.; Milovich, J. L.; Rygg, J. R.; Khan, S. F.; Haan, S. W.; Celliers, P. M.; Clark, D. S.; Hammel, B. A.; Kozioziemski, B.; Schneider, M. B.; Marinak, M. M.; Rinderknecht, H. G.; Robey, H. F.; Salmonson, J. D.; Patel, P. K.; Ma, T.; Edwards, M. J.; Stadermann, M.; Baxamusa, S.; Alford, C.; Wang, M.; Nikroo, A.; Rice, N.; Hoover, D.; Youngblood, K. P.; Xu, H.; Huang, H.; Sio, H.


    The first indirect drive implosion experiments using Beryllium (Be) capsules at the National Ignition Facility confirm the superior ablation properties and elucidate possible Be-ablator issues such as hohlraum filling by ablator material. Since the 1990s, Be has been the preferred Inertial Confinement Fusion (ICF) ablator because of its higher mass ablation rate compared to that of carbon-based ablators. This enables ICF target designs with higher implosion velocities at lower radiation temperatures and improved hydrodynamic stability through greater ablative stabilization. Recent experiments to demonstrate the viability of Be ablator target designs measured the backscattered laser energy, capsule implosion velocity, core implosion shape from self-emission, and in-flight capsule shape from backlit imaging. The laser backscatter is similar to that from comparable plastic (CH) targets under the same hohlraum conditions. Implosion velocity measurements from backlit streaked radiography show that laser energy coupling to the hohlraum wall is comparable to plastic ablators. The measured implosion shape indicates no significant reduction of laser energy from the inner laser cone beams reaching the hohlraum wall as compared with plastic and high-density carbon ablators. These results indicate that the high mass ablation rate for beryllium capsules does not significantly alter hohlraum energetics. In addition, these data, together with data for low fill-density hohlraum performance, indicate that laser power multipliers, required to reconcile simulations with experimental observations, are likely due to our limited understanding of the hohlraum rather than the capsule physics since similar multipliers are needed for both Be and CH capsules as seen in experiments.

  10. First beryllium capsule implosions on the National Ignition Facility

    Kline, J. L.; Yi, S. A.; Simakov, A. N.; Olson, R. E.; Wilson, D. C.; Kyrala, G. A.; Perry, T. S.; Batha, S. H.; Zylstra, A. B.; Dewald, E. L.; Tommasini, R.; Ralph, J. E.; Strozzi, D. J.; MacPhee, A. G.; Callahan, D. A.; Hinkel, D. E.; Hurricane, O. A.; Milovich, J. L.; Rygg, J. R.; Khan, S. F.; Haan, S. W.; Celliers, P. M.; Clark, D. S.; Hammel, B. A.; Kozioziemski, B.; Schneider, M. B.; Marinak, M. M.; Rinderknecht, H. G.; Robey, H. F.; Salmonson, J. D.; Patel, P. K.; Ma, T.; Edwards, M. J.; Stadermann, M.; Baxamusa, S.; Alford, C.; Wang, M.; Nikroo, A.; Rice, N.; Hoover, D.; Youngblood, K. P.; Xu, H.; Huang, H.; Sio, H.


    The first indirect drive implosion experiments using Beryllium (Be) capsules at the National Ignition Facility confirm the superior ablation properties and elucidate possible Be-ablator issues such as hohlraum filling by ablator material. Since the 1990s, Be has been the preferred Inertial Confinement Fusion (ICF) ablator because of its higher mass ablation rate compared to that of carbon-based ablators. This enables ICF target designs with higher implosion velocities at lower radiation temperatures and improved hydrodynamic stability through greater ablative stabilization. Recent experiments to demonstrate the viability of Be ablator target designs measured the backscattered laser energy, capsule implosion velocity, core implosion shape from self-emission, and in-flight capsule shape from backlit imaging. The laser backscatter is similar to that from comparable plastic (CH) targets under the same hohlraum conditions. Implosion velocity measurements from backlit streaked radiography show that laser energy coupling to the hohlraum wall is comparable to plastic ablators. The measured implosion shape indicates no significant reduction of laser energy from the inner laser cone beams reaching the hohlraum wall as compared with plastic and high-density carbon ablators. These results indicate that the high mass ablation rate for beryllium capsules does not significantly alter hohlraum energetics. In addition, these data, together with data for low fill-density hohlraum performance, indicate that laser power multipliers, required to reconcile simulations with experimental observations, are likely due to our limited understanding of the hohlraum rather than the capsule physics since similar multipliers are needed for both Be and CH capsules as seen in experiments.

  11. Cost effective aluminum beryllium mirrors for critical optics applications

    Say, Carissa; Duich, Jack; Huskamp, Chris; White, Ray


    The unique performance of aluminum-beryllium frequently makes it an ideal material for manufacturing precision optical-grade metal mirrors. Traditional methods of manufacture utilize hot-pressed powder block in billet form which is subsequently machined to final dimensions. Complex component geometries such as lightweighted, non-plano mirrors require extensive tool path programming, fixturing, and CNC machining time and result in a high buy-to-fly ratio (the ratio of the mass of raw material purchased to the mass of the finished part). This increases the cost of the mirror structure as a significant percentage of the procurement cost is consumed in the form of machining, tooling, and scrap material that do not add value to the final part. Inrad Optics, Inc. and IBC Advanced Alloys Corp. undertook a joint study to evaluate the suitability of investment-cast Beralcast® 191 and 363 aluminum-beryllium as a precision mirror substrate material. Net shape investment castings of the desired geometry minimizes machining to just cleanup stock, thereby reducing the recurring procurement cost while still maintaining performance. The thermal stability of two mirrors, (one each of Beralcast® 191 and Beralcast® 363), was characterized from -40°F to +150°F. A representative pocketed mirror was developed, including the creation of a relevant geometry and production of a cast component to validate the approach. Information from the demonstration unit was used as a basis for a comparative cost study of the representative mirror produced in Beralcast® and one machined from a billet of AlBeMet® 162 (AlBeMet® is a registered trademark of Materion Corporation). The technical and financial results of these studies will be discussed in detail.

  12. Characterization of phagolysosomal simulant fluid for study of beryllium aerosol particle dissolution.

    Stefaniak, A B; Guilmette, R A; Day, G A; Hoover, M D; Breysse, P N; Scripsick, R C


    A simulant of phagolysosomal fluid is needed for beryllium particle dissolution research because intraphagolysosomal dissolution is believed to be a necessary step in the cellular immune response associated with development of chronic beryllium disease. Thus, we refined and characterized a potassium hydrogen phthalate (KHP) buffered solution with pH 4.55, termed phagolysosomal simulant fluid (PSF), for use in a static dissolution technique. To characterize the simulant, beryllium dissolution in PSF was compared to dissolution in the J774A.1 murine cell line. The effects of ionic composition, buffer strength, and the presence of the antifungal agent alkylbenzyldimethylammonium chloride (ABDC) on beryllium dissolution in PSF were evaluated. Beryllium dissolution in PSF was not different from dissolution in the J774A.1 murine cell line (p = 0.78) or from dissolution in another simulant having the same pH but different ionic composition (p = 0.73). A buffer concentration of 0.01-M KHP did not appear adequate to maintain pH under all conditions. There was no difference between dissolution in PSF with 0.01-M KHP and 0.02-M KHP (p = 0.12). At 0.04-M KHP, beryllium dissolution was increased relative to 0.02-M KHP (p = 0.02). Use of a 0.02-M KHP buffer concentration in the standard formulation for PSF provided stability in pH without alteration of the dissolution rate. The presence of ABDC did not influence beryllium dissolution in PSF (p = 0.35). PSF appears to be a useful and appropriate model of in vitro beryllium dissolution when using a static dissolution technique. In addition, the critical approach used to evaluate and adjust the composition of PSF may serve as a framework for characterizing PSF to study dissolution of other metal and oxide particles.

  13. Calculated power distribution of a thermionic, beryllium oxide reflected, fast-spectrum reactor

    Mayo, W.; Lantz, E.


    A procedure is developed and used to calculate the detailed power distribution in the fuel elements next to a beryllium oxide reflector of a fast-spectrum, thermionic reactor. The results of the calculations show that, although the average power density in these outer fuel elements is not far from the core average, the power density at the very edge of the fuel closest to the beryllium oxide is about 1.8 times the core avearge.

  14. Suivi médical de salariés exposés au beryllium


    International audience; Purpose of the study: determination of a systematised procedure for medical follow-up of beryllium-exposed workers. Method: a medical follow-up of workers from a factory machining beryllium (Be) either plain or as an alloy started in 2001. Be Lymphocyte Proliferation Tests (LPT) were performed for screening Be sensitisation and were calculated again according to 1142-2001 speciation of the American Department Of Energy. A working group included occupational physicians,...

  15. Optics for coherent X-ray applications


    Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method w...

  16. Thick beryllium target as an epithermal neutron source for neutron capture therapy.

    Wang, C K; Moore, B R


    Accelerator-based intense epithermal neutron sources for Neutron Capture Therapy (NCT) have been considered as an alternative to nuclear reactors. Lithium (Li) has generally received the widest attention for this application, since the threshold energy is low and neutron yield is high. Because of the poor thermal and chemical properties of Li and the need for heat removal in the target, the design of Li targets has been quite difficult. Beryllium (Be) has been thought of as an alternative target because of its good thermal and chemical properties and reasonable neutron yield. However, in order to have a neutron yield comparable to that of a thick Li target bombarded with 2.5 MeV protons, the proton energy required for a thick Be target must be approaching 4 MeV. Consequently, the neutrons emitted are more energetic. In addition, a significant amount of high-energy gamma rays, which is undesirable, will occur when Be is bombarded with low-energy protons. Regardless of the more energetic neutrons and additional gamma rays, in this paper it is shown that it is possible to develop a high-quality and high-intensity epithermal neutron beam based on a thick Be target for NCT treatment. For a fixed proton current, the optimal Be-target-based beam (with 4-MeV protons) can produce a neutron beam, with both quality and intensity slightly better than those produced by the optimal Li-target-based beam (with 2.5-MeV protons). The single-session NCT treatment time for the optimal Be-target-based beam is estimated to be 88 min for a proton current of 50 mA.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Sensitive detection of beryllium using a fiber optic liquid waveguide cell.

    Deng, Gang; Wei, Lily; Collins, Greg E


    The metallochromic chelating agent, Chromazurol S, has been utilized in conjunction with a fiber optic liquid waveguide capillary cell to enable the sensitive detection of beryllium in solution (30 ng l(-1) detection limit) and following extraction from a contaminated plexiglas surface (0.5 ng cm(-2) detection limit). The addition of a cationic surfactant, cetylpyridinium chloride, to Chromazurol S at pH 10 in Tris-HCl buffer results in the formation of two bathochromic peaks in the visible spectrum following metal chelation by beryllium. The first absorbance band, at 515 nm, is intermediate in nature, permitting maximal sensitivity for low beryllium concentrations, but diminishing in intensity at concentrations above 100 mug l(-1). The second absorbance band, centered at 610 nm, dominates for beryllium concentrations of 100 mug l(-1) and above. Experimental conditions including pH, buffer type, additive surfactants, masking agents, and dye concentration were investigated in order to optimize detection sensitivity and selectivity. A fiber optic spectrometer is used with both a liquid waveguide capillary cell and 1 cm cuvette cell, to give a sensitive and broad dynamic range for beryllium detection that capitalizes on both beryllium metal chelate absorbance bands formed under these conditions.

  18. Extraction and optical fluorescence method for the measurement of trace beryllium in soils.

    Agrawal, Anoop; Cronin, John P; Agrawal, Akshay; Tonazzi, Juan C L; Adams, Lori; Ashley, Kevin; Brisson, Michael J; Duran, Brandy; Whitney, Gary; Burrell, Anthony K; McCleskey, T Mark; Robbins, James; White, Kenneth T


    Beryllium metal and beryllium oxide are important industrial materials used in a variety of applications in the electronics, nuclear energy, and aerospace industries. These materials are highly toxic, they must be disposed of with care, and exposed workers need to be protected. Recently, a new analytical method was developed that uses dilute ammonium bifluoride for extraction of beryllium and a high quantum yield optical fluorescence reagent to determine trace amounts of beryllium in airborne and surface samples. The sample preparation and analysis procedure was published by both ASTM International and the National Institute for Occupational Safety and Health (NIOSH). The main advantages of this method are its sensitivity, simplicity, use of lower toxicity materials, and low capital costs. Use of the technique for analyzing soils has been initiated to help meet a need at several of the U.S. Department of Energy legacy sites. So far this work has mainly concentrated on developing a dissolution protocol for effectively extracting beryllium from a variety of soils and sediments so that these can be analyzed by optical fluorescence. Certified reference materials (CRM) of crushed rock and soils were analyzed for beryllium content using fluorescence, and results agree quantitatively with reference values.

  19. Combined effects of gallic acid and propolis on beryllium-induced hepatorenal toxicity.

    Nirala, Satendra K; Li, Peiqiang; Bhadauria, Monika; Guo, Guangqin


    The combined effect of gallic acid (3,4,5-trihydroxy benzoic acid; GA; 50 mg kg(-1) i.p.) and propolis (200 mg kg(-1) p.o.) was evaluated against beryllium-induced biochemical and morphological alterations in the liver and kidney. Female albino rats were exposed to beryllium nitrate (1 mg kg(-1) i.p.) daily for 28 days followed by treatment with the above mentioned therapeutic agents either individually or in combination for five consecutive days. Exposure to beryllium increased its concentration in the serum, liver and kidney and caused significant alterations in cytochrome P450 enzymes, microsomal lipid peroxidation and protein contents. Beryllium administration significantly altered the aspartate aminotransaminase, alanine aminotransaminase, lactate dehydrogenase, γ-grutamy1 transpeptidase, bilirubin, creatinine and urea in serum, and the activity of acid phosphatase, alkaline phosphatase, adenosine triphosphatase, glucose-6-phophatase and succinic dehydrogenase, triglycerides, cholesterol, protein contents, glycogen contents, lipid peroxidation and glutathione level in the liver and kidney. Beryllium exposure induced severe alterations in hepatorenal morphology, revealing its toxic consequences at a cellular level. Individual administration of GA and propolis reduced the effects on the studied parameters to a degree. Interestingly, GA in conjunction with propolis reversed the alterations in all of the variables examined, highlighting the beneficial effects of combined therapy over monotherapy in the alleviation of beryllium-induced systemic toxicity. © 2008 ISZS, Blackwell Publishing and IOZ/CAS.

  20. Synergistic effects of ferritin and propolis in modulation of beryllium induced toxicogenic alterations.

    Nirala, Satendra Kumar; Bhadauria, Monika


    Synergistic therapeutic potential of ferritin (5mg/kg, i.p.) and propolis (honeybee hive product; 200mg/kg, p.o.) was analyzed to encounter the beryllium induced biochemical and ultra morphological alterations. Female albino rats were exposed to beryllium nitrate (1mg/kg, i.p.) daily for 28 days followed by treatment of above mentioned therapeutic agents either individually or in combination for five consecutive days. Exposure to beryllium increased its concentration in serum, liver and kidney and significantly altered the activities of CYP2E1 and CYP1A2 enzymes, microsomal lipid peroxidation and microsomal proteins. Activities of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, lactate dehydrogenase, gamma-glutamyl transpeptidase, bilirubin, protein, creatinine and urea in serum as well as hemoglobin and blood glucose level; activity of acid phosphatase, alkaline phosphatase, adenosine triphosphatase, glucose-6-phosphatase and succinic dehydrogenase, total triglycerides, total cholesterol, total protein contents, glycogen contents, lipid peroxidation and glutathione level in liver and kidney were significantly altered after beryllium administration. Beryllium exposure severely altered ultramorphology of liver and kidney that proved its toxic consequences at cellular level. Ferritin in combination with propolis dramatically reversed the alterations of these variables towards control in a synergistic manner concluding its beneficial effects over monotherapy in attenuating beryllium induced systemic toxicity.

  1. Pharmacological intervention of tiferron and propolis to alleviate beryllium-induced hepatorenal toxicity.

    Nirala, Satendra Kumar; Bhadauria, Monika; Shukla, Sangeeta; Agrawal, Om Prakash; Mathur, Asha; Li, Pei Qiang; Mathur, Ramesh


    Intervention of chelating agent tiferron (sodium-4,5-dihydroxy-1,3-benzene disulfonate; 300 mg/kg, intraperitoneal) with propolis (honey beehive product; 200 mg/kg, p.o.) was evaluated to encounter the characteristic biochemical and ultra-morphological alterations following subchronic exposure to beryllium. Female albino rats were challenged with beryllium nitrate (1 mg/kg, i.p.) daily for 28 days followed by treatment of the above-mentioned therapeutic agents either individually or in combination for five consecutive days. Exposure to beryllium increased its concentration in the serum, liver and kidney, and caused significant alterations in cytochrome P450 activity, microsomal lipid peroxidation and proteins. Activities of alkaline phosphatase, lactate dehydrogenase, gamma-glutamyl transpeptidase, bilirubin, creatinine and urea in the serum and activity of acid phosphatase, alkaline phosphatase, adenosine triphosphatase, glucose-6-phophatase and succinic dehydrogenase in the liver and kidney were significantly altered after beryllium administration. Beryllium exposure also induced severe hepatorenal alterations at histopathological and ultra-morphological level. Tiferron along with propolis dramatically reversed the alterations in all the variables more towards control rather than their individual treatment. The study concludes that pharmacological intervention of tiferron and propolis is beneficial in attenuating beryllium-induced systemic toxicity.

  2. High Performance X-Ray Transmission Windows Based on Graphenic Carbon

    Huebner, Sebastian; Miyakawa, Natsuki; Kapser, Stefan; Pahlke, Andreas; Kreupl, Franz


    A novel x-ray transmission window based on graphenic carbon has been developed with superior performance compared to beryllium transmission windows that are currently used in the field. Graphenic carbon in combination with an integrated silicon frame allows for a window design which does not use a mechanical support grid or additional light blocking layers. Compared to beryllium, the novel x-ray transmission window exhibits an improved transmission in the low energy region ($0.1 hbox{keV}-3 h...

  3. Amino acid precursors from a simulated lower atmosphere of Titan, Experiments of cosmic ray energy source with 13C- and 18O-stable isotope probing mass spectrometry

    Taniuchi, Toshinori; Kobayashi, Kensei


    The organic haze of aerosols that shrouds the Saturnian moon Titan has previously been studied by both observations and laboratory simulation experiments. Here we report the abiotic formation of amino acid precursors in complex organic molecules during experimental simulation of the environment near Titan's surface with proton irradiation. Pyrolysis of the organic molecules formed in the simulated Titan atmosphere by proton irradiation at 600 degree-C yielded compounds that contained HCN and NH3. These experimental results are consistent with the molecular information obtained by pyrolysis gas chromatography-mass spectrometry (pyrolysis GC-MS) of samples collected by the Huygens probe to Titan. Scanning electron microscopy (SEM) and three-dimensional atomic force microscopy (AFM) images of the irradiation products reveal nanometer-scale filaments and globules in complex amorphous structures (approximately 1000 Da). Isotope probing experiments by matrix-assisted laser desorption ionization time-of-flight mass ...

  4. Negative transferred arc cleaning: a method for roughening and removing surface contamination from beryllium and other metallic surfaces

    Castro, R.G.; Hollis, K.J.; Maggiore, C.J.; Ayala, A.; Bartram, B.D. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.; Doerner, R.P. [California Univ., San Diego (United States). Fusion Energy Res.


    TA cleaning has been investigated for preparing the surface of beryllium plasma facing components (PFC's) inside of the international thermonuclear experimental reactor (ITER) prior to depositing beryllium by plasma spraying. Plasma spraying of beryllium was evaluated during the ITER engineering design activity (EDA) for in-situ repair and initial fabrication of the beryllium first wall armor. Results have shown that surface roughening of beryllium, during the TA cleaning process, can result in bond strengths greater than 100 MPa between beryllium surfaces and plasma sprayed beryllium. In addition, the TA cleaning process was shown to be an effective method for removing contaminate layers of carbon and tungsten from the surface of beryllium. Investigations have been performed to characterize the different arc-types that occur during the TA cleaning process (type I, I and III arcs) and the effectiveness of the TA cleaning process for potentially removing co-deposited layers of carbon and deuterium from the surface of beryllium, stainless steel and tungsten. (orig.)

  5. Adsorption of beryllium atoms and clusters both on graphene and in a bilayer of graphite investigated by DFT.

    Ferro, Yves; Fernandez, Nicolas; Allouche, Alain; Linsmeier, Christian


    We herein investigate the interaction of beryllium with a graphene sheet and in a bilayer of graphite by means of periodic DFT calculations. In all cases, we find the beryllium atoms to be more weakly bonded on graphene than in the bilayer. Be(2) forms both magnetic and non-magnetic structures on graphene depending on the geometrical configuration of adsorption. We find that the stability of the Be/bilayer system increases with the size of the beryllium clusters inserted into the bilayer of graphite. We also find a charge transfer from beryllium to the graphite layers. All these results are analysed in terms of electronic structure.

  6. Assessment of Lead and Beryllium deposition and adsorption to exposed stream channel sediments

    Pawlowski, E.; Karwan, D. L.


    The fallout radionuclides Beryllium-7 and Lead-210 have been shown to be effective sediment tracers that readily bind to particles. The adsorption capacity has primarily been assessed in marine and coastal environments with an important assumption being the radionuclides' uniform spatial distribution as fallout from the atmosphere. This neglects localized storm events that may mine stratospheric reserves creating variable distributions. To test this assumption atmospheric deposition is collected at the University of Minnesota St. Paul Campus weather station during individual storm events and subsequently analyzed for Beryllium-7 and Lead-210. This provides further insight into continental effects on radionuclide deposition. The study of Beryllium-7 and Lead-210 adsorption in marine and coastal environments has provided valuable insights into the processes that influence the element's binding to particles but research has been limited in freshwater river environments. These environments have greater variation in pH, iron oxide content, and dissolved organic carbon (DOC) levels which have been shown to influence the adsorption of Beryllium and Lead in marine settings. This research assesses the adsorption of Beryllium and Lead to river sediments collected from in-channel deposits by utilizing batch experiments that mimic the stream conditions from which the deposits were collected. Soils were collected from Difficult Run, VA, and the West Swan River, MN. Agitating the soils in a controlled solution of known background electrolyte and pH while varying the level of iron oxides and DOC in step provides a better understanding of the sorption of Lead and Beryllium under the conditions found within freshwater streams. Pairing the partitioning of Lead and Beryllium with their inputs to streams via depositional processes, from this study and others, allows for their assessment as possible sediment tracers and age-dating tools within the respective watersheds.

  7. In-pile thermocycling testing and post-test analysis of beryllium divertor mockups

    Giniatulin, R.; Mazul, I. [Efremov Inst., St. Petersburg (Russian Federation); Melder, R.; Pokrovsky, A.; Sandakov, V.; Shiuchkin, A.


    The main damaging factors which impact the ITER divertor components are neutron irradiation, cyclic surface heat loads and hydrogen environment. One of the important questions in divertor mockups development is the reliability of beryllium/copper joints and the beryllium resistance under neutron irradiation and thermal cycling. This work presents the experiment, where neutron irradiation and thermocyclic heat loads were applied simultaneously for two beryllium/copper divertor mockups in a nuclear reactor channel to simulate divertor operational conditions. Two mockups with different beryllium grades were mounted facing each other with the tantalum heater placed between them. This device was installed in the active zone of the nuclear reactor SM-2 (Dimitrovgrad, Russia) and the tantalum block was heated by neutron irradiation up to a high temperature. The main part of the heat flux from the tantalum surface was transported to the beryllium surface through hydrogen, as a result the heat flux loaded two mockups simultaneously. The mockups were cooled by reactor water. The device was lowered to the active zone so as to obtain the heating regime and to provide cooling lifted. This experiment was performed under the following conditions: tantalum heater temperature - 1950degC; hydrogen environment -1000 Pa; surface heat flux density -3.2 MW/m{sup 2}; number of thermal cycles (lowering and lifting) -101; load time in each cycle - 200-5000 s; dwell time (no heat flux, no neutrons) - 300-2000 s; cooling water parameters: v - 1 m/s, Tin - 50degC, Pin - 5 MPa; neutron fluence -2.5 x 10{sup 20} cm{sup -2} ({approx}8 years of ITER divertor operation from the start up). The metallographic analysis was performed after experiment to investigate the beryllium and beryllium/copper joint structures, the results are presented in the paper. (author)

  8. Monitoring beryllium during site cleanup and closure using a real-time analyzer

    Schlager, R.J.; Sappey, A.D.; French, P.D. [ADA Technologies, Inc., Englewood, CO (United States)


    Beryllium metal has a number of unique properties that have been exploited for use in commercial and government applications. Airborne beryllium particles can represent a significant human health hazard if deposited in the lungs. These particles can cause immunologically-mediated chronic granulomatous lung disease (chronic beryllium disease). Traditional methods of monitoring airborne beryllium involve collecting samples of air within the work area using a filter. The filter then undergoes chemical analysis to determine the amount of beryllium collected during the sampling period. These methods are time-consuming and results are known only after a potential exposure has occurred. The need for monitoring exposures in real time has prompted government and commercial companies to develop instrumentation that will allow for the real time assessment of short-term exposures so that adequate protection for workers in contaminated environments can be provided. Such an analyzer provides a tool that will allow government and commercial sites to be cleaned up in a more safe and effective manner since exposure assessments can be made instantaneously. This paper describes the development and initial testing of an analyzer for monitoring airborne beryllium using a technique known as Laser-Induced Breakdown Spectroscopy (LIBS). Energy from a focused, pulsed laser is used to vaporize a sample and create an intense plasma. The light emitted from the plasma is analyzed to determine the quantity of beryllium in the sampled air. A commercial prototype analyzer has been fabricated and tested in a program conducted by Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Lovelace Respiratory Research Institute, and ADA Technologies, Inc. Design features of the analyzer and preliminary test results are presented.

  9. Sub-micro level monitoring of beryllium ions with a novel beryllium sensor based on 2,6-diphenyl-4-benzo-9-crown-3-pyridine.

    Ganjali, Mohammad Reza; Rahimi-Nasrabadi, Mehdi; Maddah, Bozorgmehr; Moghimi, Abolghasem; Faal-Rastegar, Madjid; Borhany, Shahin; Namazian, Mansour


    The 2,6-diphenyl-4-benzo-9-crown-3-pyridine (DPCP) was used as an excellent ionophore in construction of a coated graphite poly(vinyl chloride) (PVC)-based membrane sensor. The best performance was obtained with a membrane composition of 30% poly(vinyl chloride), 60% o-nitrophenyloctyl ether (NPOE), 5% 2,6-diphenyl-4-benzo-9-crown-3-pyridine and 5% sodium tetraphenyl borate (TBP). This sensor shows very good selectivity and sensitivity towards beryllium ion over a wide variety of cations, including alkali, alkaline earth, transition and heavy metal ions. The sensor revealed a great enhancement in selectivity coefficients and sensitivity for beryllium, in comparison with the previously reported beryllium electrodes. The electrode exhibits a Nernstian behavior (with slope of 29.6mV per decade) over a very wide concentration range (1.0x10(-7) to 1.0x10(-1)) with a detection limit of 4.0x10(-8)M (360pgml(-1)). It shows relatively fast response time, in whole concentration range (beryllium in mineral ore.

  10. One-neutron knockout from Ne24-28 isotopes

    Rodriguez-Tajes, C; Caamano, M; Faestermann, T; Cortina-Gil, D; Zhukov, M; Simon, H; Nilsson, T; Borge, M J G; Alvarez-Pol, H; Winkler, M; Prochazka, A; Nociforo, C; Weick, H; Kanungo, R; Perez-Loureiro, D; Kurtukian, T; Suemmerer, K; Eppinger, K; Perea, A; Chatillon, A; Maierbeck, P; Benlliure, J; Pascual-Izarra, C; Gernhaeuser, R; Geissel, H; Aumann, T; Kruecken, R; Larsson, K; Tengblad, O; Benjamim, E; Jonson, B; Casarejos, E


    One-neutron knockout reactions of Ne24-28 in a beryllium target have been studied in the Fragment Separator (FRS), at GSI. The results include inclusive one-neutron knockout cross-sections as well as longitudinal-momentum distributions of the knockout fragments. The ground-state structure of the neutron-rich neon isotopes was obtained from an analysis of the measured momentum distributions. The results indicate that the two heaviest isotopes, Ne-27 and Ne-28, are dominated by a configuration in which a s(1/2) neutron is coupled to an excited state of the Ne-26 and Ne-27 core, respectively. (C) 2010 Elsevier B.V. All rights reserved.

  11. Dense plasma focus (DPF) accelerated non radio isotopic radiological source

    Rusnak, Brian; Tang, Vincent


    A non-radio-isotopic radiological source using a dense plasma focus (DPF) to produce an intense z-pinch plasma from a gas, such as helium, and which accelerates charged particles, such as generated from the gas or injected from an external source, into a target positioned along an acceleration axis and of a type known to emit ionizing radiation when impinged by the type of accelerated charged particles. In a preferred embodiment, helium gas is used to produce a DPF-accelerated He2+ ion beam to a beryllium target, to produce neutron emission having a similar energy spectrum as a radio-isotopic AmBe neutron source. Furthermore, multiple DPFs may be stacked to provide staged acceleration of charged particles for enhancing energy, tunability, and control of the source.

  12. Preparation of a sinterable beryllium oxide through decomposition of beryllium hydroxide (1963); Preparation d'un oxyde de beryllium frittable par decomposition de l'hydiloxyde (1963)

    Bernier, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires


    In the course of the present study, we have attempted to precise the factors which among the ones effective in the course of the preparation of the beryllium hydroxide and oxide and during the sintering have an influence on the final result: the density and homogeneity of the sintered body. Of the several varieties of hydroxides precipitated from a sulfate solution the {beta}-hydroxide only is always contaminated with beryllium sulfate and cannot be purified even by thorough washing. We noticed that those varieties of the hydroxide (gel, {alpha}, {beta}) have different decomposition rates; this behaviour is used to identify and even to dose the different species in ({alpha}, {beta}) mixtures. The various hydroxides transmit to the resulting oxides the shape they had when precipitated. Accordingly the history of the oxide is revealed by its behaviour during its fabrication and sintering. By comparing the results of the sintering operation with the various measurements performed on the oxide powders we are led to the conclusion that an oxide obtained from beryllium hydroxide is sinterable under vacuum if the following conditions are fulfilled: the particle size must lie between 0.1 and 0.2 {mu} and the BeSO{sub 4} content of the powder must be less than 0.25 per cent wt (expressed as SO{sub 3}/BeO). The best fitting is obtained with the oxide issued from an {alpha}-hydroxide precipitated as very small aggregates and with a low sulfur-content. We have observed that this is also the case for the oxide obtained by direct calcination of beryllium sulfate. (author) [French] Au cours de cette etude, nous avons cherche a preciser les facteurs qui, intervenant tout au long de la preparation de l'hydroxyde, puis de l'oxyde de beryllium et enfin du frittage, peuvent avoir une influence sur le resultat final: la densite et l'homogeneite du fritte. Parmi tous les hydroxydes precipites d'une solution de sulfate, seul l'hydroxyde {beta} est toujours

  13. Production of neutron-rich isotopes by cold fragmentation in the reaction {sup 197}Au + Be at 950 A MeV

    Benlliure, J.; Pereira, J. [Universidad de Santiago de Compostela (Spain)]|[Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Schmidt, K.H.; Cortina-Gil, D.; Enqvist, T.; Heinz, A.; Junghans, A.R. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Farget, F. [Institut de Physique Nucleaire, 91 - Orsay (France); Taieb, J. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Institut de Physique Nucleaire, 91 - Orsay (France)


    The production cross sections and longitudinal-momentum distributions of very neutron-rich isotopes have been investigated in the fragmentation of a 950 A MeV {sup 179}Au beam in a beryllium target. Seven new isotopes ({sup 193}Re, {sup 194}Re, {sup 191}W, {sup 192}W, {sup 189}Ta, {sup 187}Hf and {sup 188}Hf) and the five-proton-removal channel were observed for the first time. The reaction mechanism leading to the formation of these very neutron-rich isotopes is explained in terms of the cold-fragmentation process. An analytical model describing this reaction mechanism is presented. (orig.)

  14. Beryllium-induced immune response in C3H mice

    Benson, J.M.; Bice, D.E.; Nikula, K.J. [and others


    Studies conducted at ITRI over the past several years have investigated whether Beagle dogs, monkeys, and mice are suitable models for human chronic beryllium-induced lung disease (CBD). Recent studies have focused on the histopathological and immunopathological changes occurring in A/J and C3H/HeJ mice acutely exposed by inhalation to Be metal. Lung lesions in both strains of mice included focal lymphocyte aggregates comprised primarily of B lymphocytes and lesser amounts of T-helper lymphocytes and microgranulomas consisting chiefly of macrophages and T-helper lymphocytes. The distribution of proliferating cells within the microgranulomas was similar to the distribution of T-helper cells. These results strongly suggested that A/J and C3H/HeJ mice responded to inhaled Be metal in a fashion similar to humans in terms of pulmonary lesions and the apparent in situ proliferation of T-helper cells. Results of these studies confirm lymphocyte involvement in the pulmonary response to inhaled Be metal.

  15. Is there a sign of new physics in beryllium transitions?

    Fornal, Bartosz


    A 6.8 σ anomaly in the invariant mass distribution of e+e- pairs produced via internal pair creation in 8 Be nuclear transitions has been reported recently by Krasznahorkay et al. in Phys. Rev. Lett. 116 (2016) 042501. The data can be explained by a 17 MeV vector gauge boson X produced in the transition of an excited beryllium state to the ground state, 8Be* ->8 Be X , followed by the decay X ->e+e- . We find that the gauge boson X can be associated with a new ``protophobic'' fifth force (i.e.with a coupling to protons suppressed compared to its coupling to neutrons) with a characteristic range of 10 fm and milli-charged couplings to first generation quarks and electrons. We show that such a ``protophobic'' gauge boson is consistent with all available experimental constraints and we discuss several ways to embed this new particle into an anomaly-free extension of the Standard Model. One of the most appealing theories of this type is a model with gauged baryon number, in which the new gauge boson kinetically mixes with the photon, and provides a portal to the dark matter sector. Apart from the phenomenological richness of the model, it can also alleviate the current 3.6 σ discrepancy between the predicted and measured values of the muon's anomalous magnetic moment. B.F. acknowledges partial support from DOE Grant DE-SC0009919 and NSF Grant PHY-1316792.

  16. Spectroscopic Study on the Beryllium Abundances of Red Giant Stars

    Takeda, Yoichi


    An extensive spectroscopic study was carried out for the beryllium abundances of 200 red giants (mostly of late G and early K type), which were determined from the near-UV Be II 3131.066 line based on high-dispersion spectra obtained by Subaru/HDS, with an aim of investigating the nature of surface Be contents in these evolved giants; e.g., dependence upon stellar parameters, degree of peculiarity along with its origin and build-up timing. We found that Be is considerably deficient (to widely different degree from star to star) in the photosphere of these evolved giants by ~1-3 dex (or more) compared to the initial abundance. While the resulting Be abundances (A(Be)) appear to weakly depend upon T_eff, log g, [Fe/H], M, age, and v_sin i, this may be attributed to the metallicity dependence of A(Be) coupled with the mutual correlation between these stellar parameters, since such tendencies almost disappear in the metallicity-scaled Be abundance ([Be/Fe]). By comparing the Be abundances (as well as their correl...

  17. Beryllium abundance in turn-off stars of NGC 6752

    Pasquini, L; Randich, S; Galli, D; Gratton, R G; Wolff, B; Pasquini, Luca; Bonifacio, Piercarlo; Randich, Sofia; Galli, Daniele; Gratton, Raffaele G.


    Aims: To measure the beryllium abundance in two TO stars of the Globular Cluster NGC 6752, one oxygen rich and sodium poor, the other presumably oxygen poor and sodium rich. Be abundances in these stars are used to put on firmer grounds the hypothesis of Be as cosmochronometer and to investigate the formation of Globular Clusters. Method:We present near UV spectra with resolution R$\\sim 45000$ obtained with the UVES spectrograph on the 8.2m VLT Kueyen telescope, analysed with spectrum synthesis based on plane parallel LTE model atmospheres. Results:Be is detected in the O rich star with log(Be/H)=-12.04 $\\pm$0.15, while Be is not detected in the other star for which we obtain the upper limit log(Be/H)$<$-12.2. A large difference in nitrogen abundance (1.6 dex) is found between the two stars. Conclusions:The Be measurement is compatible with what found in field stars with the same [Fe/H] and [O/H]. The 'Be age' of the cluster is found to be 13.3 Gyrs, in excellent agreement with the results from main sequen...

  18. Inelastic Collisions of Positrons with Beryllium and Magnesium Ions

    El-Bakry, Salah-Yaseen

    The collision of positrons with beryllium and magnesium positive ions is treated for the first time as a three-channel problem with the assumption that the elastic, ground-positronium and excited-positronium formation channels are open. A one-valence-electron model for the targets, based on the Clementi-Roetti Slater basis functions, as well as an improved coupled-static approach allowing for the polarization of the excited positronium, are used for calculating the partial cross-sections of eight partial waves (corresponding to 0≤ℓ≤7, where ℓ is the total angular momentum of the scattering problem considered). The calculations are carried out, in each case, at 19 values of the incident energy lying above the excited positronium formation threshold (i.e. above 16.42 eV in e+-Be+ scattering and above 13.02 eV in e+-Mg+ scattering). The total elastic cross-sections of e+-Mg+ scattering show a peak around the ionization threshold of Mg+ (at 14.723 eV) but for e+-Be+ scattering, display a peak at 90 eV (remember that the ionization threshold of Be+ is 18.2 eV). Although the resulting total collisional positronium formation cross-sections are smaller than the elastic ones, their relatively large values should draw the attention of experimental and theoretical physicists to the field of positron-ion collisions.

  19. Beryllium-Induced Hypersensitivity: Genetic Susceptibility and Neoantigen Generation.

    Fontenot, Andrew P; Falta, Michael T; Kappler, John W; Dai, Shaodong; McKee, Amy S


    Chronic beryllium (Be) disease is a granulomatous lung disorder that results from Be exposure in a genetically susceptible host. The disease is characterized by the accumulation of Be-responsive CD4(+) T cells in the lung, and genetic susceptibility is primarily linked to HLA-DPB1 alleles possessing a glutamic acid at position 69 of the β-chain. Recent structural analysis of a Be-specific TCR interacting with a Be-loaded HLA-DP2-peptide complex revealed that Be is coordinated by amino acid residues derived from the HLA-DP2 β-chain and peptide and showed that the TCR does not directly interact with the Be(2+) cation. Rather, the TCR recognizes a modified HLA-DP2-peptide complex with charge and conformational changes. Collectively, these findings provide a structural basis for the development of this occupational lung disease through the ability of Be to induce posttranslational modifications in preexisting HLA-DP2-peptide complexes, resulting in the creation of neoantigens.

  20. Beryllium increases the CD14(dim)CD16+ subset in the lung of chronic beryllium disease.

    Li, Li; Hamzeh, Nabeel; Gillespie, May; Elliott, Jill; Wang, Jieru; Gottschall, Eva Brigitte; Mroz, Peggy M; Maier, Lisa A


    CD14dimCD16+ and CD14brightCD16+ cells, which compose a minor population of monocytes in human peripheral blood mononuclear cells (PBMC), have been implicated in several inflammatory diseases. The aim of this study was to investigate whether this phenotype was present as a subset of lung infiltrative alveolar macrophages (AMs) in the granulomatous lung disease, chronic beryllium disease (CBD). The monocytes subsets was determined from PBMC cells and bronchoalveolar lavage (BAL) cells from CBD, beryllium sensitized Non-smoker (BeS-NS) and healthy subjects (HS) using flow cytometry. The impact of smoking on the AMs cell phenotype was determined by using BAL cells from BeS smokers (BeS-S). In comparison with the other monocyte subpopulations, CD14dimCD16+ cells were at decreased frequency in PBMCs of both BeS-NS and CBD and showed higher HLA-DR expression, compared to HS. The AMs from CBD and BeS-NS demonstrated a CD14dimCD16+phenotype, while CD14brightCD16+ cells were found at increased frequency in AMs of BeS, compared to HS. Fresh AMs from BeS-NS and CBD demonstrated significantly greater CD16, CD40, CD86 and HLA-DR than HS and BeS-S. The expression of CD16 on AMs from both CBD and BeS-NS was downregulated significantly after 10μM BeSO4 stimulation. The phagocytic activity of AMs decreased after 10μM BeSO4 treatment in both BeS-NS and CBD, although was altered or reduced in HS and BeS-S. These results suggest that Be increases the CD14dimCD16+ subsets in the lung of CBD subjects. We speculate that Be-stimulates the compartmentalization of a more mature CD16+ macrophage phenotype and that in turn these macrophages are a source of Th1 cytokines and chemokines that perpetuate the Be immune response in CBD. The protective effect of cigarette smoking in BeS-S may be due to the low expression of co-stimulatory markers on AMs from smokers as well as the decreased phagocytic function.

  1. Beryllium increases the CD14(dimCD16+ subset in the lung of chronic beryllium disease.

    Li Li

    Full Text Available CD14dimCD16+ and CD14brightCD16+ cells, which compose a minor population of monocytes in human peripheral blood mononuclear cells (PBMC, have been implicated in several inflammatory diseases. The aim of this study was to investigate whether this phenotype was present as a subset of lung infiltrative alveolar macrophages (AMs in the granulomatous lung disease, chronic beryllium disease (CBD. The monocytes subsets was determined from PBMC cells and bronchoalveolar lavage (BAL cells from CBD, beryllium sensitized Non-smoker (BeS-NS and healthy subjects (HS using flow cytometry. The impact of smoking on the AMs cell phenotype was determined by using BAL cells from BeS smokers (BeS-S. In comparison with the other monocyte subpopulations, CD14dimCD16+ cells were at decreased frequency in PBMCs of both BeS-NS and CBD and showed higher HLA-DR expression, compared to HS. The AMs from CBD and BeS-NS demonstrated a CD14dimCD16+phenotype, while CD14brightCD16+ cells were found at increased frequency in AMs of BeS, compared to HS. Fresh AMs from BeS-NS and CBD demonstrated significantly greater CD16, CD40, CD86 and HLA-DR than HS and BeS-S. The expression of CD16 on AMs from both CBD and BeS-NS was downregulated significantly after 10μM BeSO4 stimulation. The phagocytic activity of AMs decreased after 10μM BeSO4 treatment in both BeS-NS and CBD, although was altered or reduced in HS and BeS-S. These results suggest that Be increases the CD14dimCD16+ subsets in the lung of CBD subjects. We speculate that Be-stimulates the compartmentalization of a more mature CD16+ macrophage phenotype and that in turn these macrophages are a source of Th1 cytokines and chemokines that perpetuate the Be immune response in CBD. The protective effect of cigarette smoking in BeS-S may be due to the low expression of co-stimulatory markers on AMs from smokers as well as the decreased phagocytic function.

  2. Pinpointing cosmic ray propagation with the AMS-02 experiment

    Pato, Miguel [Dipartimento di Fisica, Università degli Studi di Padova, via Marzolo 8, I-35131, Padova (Italy); Hooper, Dan [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Simet, Melanie, E-mail:, E-mail:, E-mail: [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States)


    The Alpha Magnetic Spectrometer (AMS-02), which is scheduled to be deployed onboard the International Space Station later this year, will be capable of measuring the composition and spectra of GeV-TeV cosmic rays with unprecedented precision. In this paper, we study how the projected measurements from AMS-02 of stable secondary-to-primary and unstable ratios (such as boron-to-carbon and beryllium-10-to-beryllium-9) can constrain the models used to describe the propagation of cosmic rays throughout the Milky Way. We find that within the context of fairly simple propagation models, all of the model parameters can be determined with high precision from the projected AMS-02 data. Such measurements are less constraining in more complex scenarios, however, which allow for departures from a power-law form for the diffusion coefficient, for example, or for inhomogeneity or stochasticity in the distribution and chemical abundances of cosmic ray sources.

  3. Accelerator mass spectrometry detection of beryllium ions in the antigen processing and presentation pathway.

    Tooker, Brian C; Brindley, Stephen M; Chiarappa-Zucca, Marina L; Turteltaub, Kenneth W; Newman, Lee S


    Exposure to small amounts of beryllium (Be) can result in beryllium sensitization and progression to Chronic Beryllium Disease (CBD). In CBD, beryllium is presented to Be-responsive T-cells by professional antigen-presenting cells (APC). This presentation drives T-cell proliferation and pro-inflammatory cytokine (IL-2, TNFα, and IFNγ) production and leads to granuloma formation. The mechanism by which beryllium enters an APC and is processed to become part of the beryllium antigen complex has not yet been elucidated. Developing techniques for beryllium detection with enough sensitivity has presented a barrier to further investigation. The objective of this study was to demonstrate that Accelerator Mass Spectrometry (AMS) is sensitive enough to quantify the amount of beryllium presented by APC to stimulate Be-responsive T-cells. To achieve this goal, APC - which may or may not stimulate Be-responsive T-cells - were cultured with Be-ferritin. Then, by utilizing AMS, the amount of beryllium processed for presentation was determined. Further, IFNγ intracellular cytokine assays were performed to demonstrate that Be-ferritin (at levels used in the experiments) could stimulate Be-responsive T-cells when presented by an APC of the correct HLA type (HLA-DP0201). The results indicated that Be-responsive T-cells expressed IFNγ only when APC with the correct HLA type were able to process Be for presentation. Utilizing AMS, it was determined that APC with HLA-DP0201 had membrane fractions containing 0.17-0.59 ng Be and APC with HLA-DP0401 had membrane fractions bearing 0.40-0.45 ng Be. However, HLA-DP0401 APC had 20-times more Be associated with the whole cells (57.68-61.12 ng) than HLA-DP0201 APC (0.90-3.49 ng). As these findings demonstrate, AMS detection of picogram levels of Be processed by APC is possible. Further, regardless of form, Be requires processing by APC to successfully stimulate Be-responsive T-cells to generate IFNγ.

  4. Migration of Beryllium via Multiple Exposure Pathways among Work Processes in Four Different Facilities.

    Armstrong, Jenna L; Day, Gregory A; Park, Ji Young; Stefaniak, Aleksandr B; Stanton, Marcia L; Deubner, David C; Kent, Michael S; Schuler, Christine R; Virji, M Abbas


    Inhalation of beryllium is associated with the development of sensitization; however, dermal exposure may also be important. The primary aim of this study was to elucidate relationships among exposure pathways in four different manufacturing and finishing facilities. Secondary aims were to identify jobs with increased levels of beryllium in air, on skin, and on surfaces; identify potential discrepancies in exposure pathways, and determine if these are related to jobs with previously identified risk. Beryllium was measured in air, on cotton gloves, and on work surfaces. Summary statistics were calculated and correlations among all three measurement types were examined at the facility and job level. Exposure ranking strategies were used to identify jobs with higher exposures. The highest air, glove, and surface measurements were observed in beryllium metal production and beryllium oxide ceramics manufacturing jobs that involved hot processes and handling powders. Two finishing and distribution facilities that handle solid alloy products had lower exposures than the primary production facilities, and there were differences observed among jobs. For all facilities combined, strong correlations were found between air-surface (rp ≥ 0.77), glove-surface (rp ≥ 0.76), and air-glove measurements (rp ≥ 0.69). In jobs where higher risk of beryllium sensitization or disease has been reported, exposure levels for all three measurement types were higher than in jobs with lower risk, though they were not the highest. Some jobs with low air concentrations had higher levels of beryllium on glove and surface wipe samples, suggesting a need to further evaluate the causes of the discrepant levels. Although such correlations provide insight on where beryllium is located throughout the workplace, they cannot identify the direction of the pathways between air, surface, or skin. Ranking strategies helped to identify jobs with the highest combined air, glove, and/or surface exposures

  5. Solid state bonding of beryllium-copper for an ITER first wall application

    Odegard, B.C. Jr.; Cadden, C.H. [Sandia National Labs., Livermore, CA (United States)


    Several different joint assemblies were evaluated in support of a manufacturing technology for diffusion bonding a beryllium armor tile to a copper alloy heat sink for fusion reactor applications. Because beryllium reacts with all but a few elements to form intermetallic compounds, this study considered several different surface treatments as a means of both inhibiting these reactions and promoting a good diffusion bond between the two substrates. All diffusion bonded assemblies used aluminum or an aluminum-beryllium composite (AlBeMet-150) as the interfacial material in contact with beryllium. In most cases, explosive bonding was utilized as a technique for joining the copper alloy heat sink to an aluminum or AlBeMet-150 substrate, which was subsequently diffusion bonded to an aluminum coated beryllium tile. In this approach, a 250 {mu}m thick titanium foil was used as a diffusion barrier between the copper and aluminum to prevent the formation of Cu-Al intermetallic phases. In all cases, a hot isostatic pressing (HIP) furnace was used in conjunction with canned assemblies in order to minimize oxidation and apply sufficient pressure on the assembly for excellent metal-to-metal contact and subsequent bonding. Several different processing schedules were evaluated during the course of this study; bonded assemblies were produced that failed outside the bond area indicating a 100% joint efficiency. (author)

  6. Inherent structure features of beryllium and their influence on the performance polycrystalline metal under different conditions

    Khomutov, A.M.; Mikhailov, V.S.; Pronin, V.N.; Pakhomov, Ya.D. [State Scientific Center of Russian Federation `A.A. Bochvar All-Russia Research Inst. of Inorganic Materials (VNIINM)`, Moscow (Russian Federation)


    The anisotropy of physical properties of beryllium single crystals resulting from covalent bonds in crystal lattice leads to significant residual thermal microstresses (RTM) in the polycrystalline metal. It is demonstrated experimentally that there is a simple linear dependence between the magnitude of RTM and the ultimate tensile strength. The factors controlling RTM are analysed and in the framework of powder metallurgy process the technological methods of producing beryllium with the needed properties are recommended. Primarily it is necessary to control the quantity and extent of dispersity of intergranular oxide inclusions and mean grain size in combination with the high degree of macro- and microhomogenity of the structure. The requirements to beryllium microstructure for different operating conditions including neutron fluxes and transient temperature fields are formulated. In the framework of the concept under development one can explain formerly not fully understandable effects, which are characteristic of polycrystalline beryllium such as unexpected Petch-Stro curve, the role of twinning etc., and predict new ones. In particular, it can be possible to expect the growth of ductility of high strength beryllium grades as neutron irradiated. (author)

  7. Manufacturing and thermomechanical testing of actively cooled all beryllium high heat flux test pieces

    Vasiliev, N.N.; Sokolov, Yu.A.; Shatalov, G.E. [and others


    One of the problems affiliated to ITER high heat flux elements development is a problem of interface of beryllium protection with heat sink routinely made of copper alloys. To get rid of this problem all beryllium elements could be used as heat receivers in places of enhanced thermal loads. In accordance with this objectives four beryllium test pieces of two types have been manufactured in {open_quotes}Institute of Beryllium{close_quotes} for succeeding thermomechanical testing. Two of them were manufactured in accordance with JET team design; they are round {open_quotes}hypervapotron type{close_quotes} test pieces. Another two ones are rectangular test sections with a twisted tape installed inside of the circular channel. Preliminary stress-strain analysis have been performed for both type of the test pieces. Hypervapotrons have been shipped to JET where they were tested on JET test bed. Thermomechanical testing of pieces of the type of {open_quotes}swirl tape inside of tube{close_quotes} have been performed on Kurchatov Institute test bed. Chosen beryllium grade properties, some details of manufacturing, results of preliminary stress-strain analysis and thermomechanical testing of the test pieces {open_quotes}swirl tape inside of tube{close_quotes} type are given in this report.

  8. Search for chronic beryllium disease among sarcoidosis patients in Ontario, Canada.

    Ribeiro, Marcos; Fritscher, Leandro G; Al-Musaed, Ahmed M; Balter, Meyer S; Hoffstein, Victor; Mazer, Bruce D; Maier, Lisa A; Liss, Gary M; Tarlo, Susan M


    Chronic beryllium disease (CBD) is clinically similar to other granulomatous diseases such as sarcoidosis. It is often misdiagnosed if a thorough occupational history is not taken. When appropriate, a beryllium lymphocyte proliferation tests (BeLPT) need to be performed. We aimed to search for CBD among currently diagnosed pulmonary sarcoidosis patients and to identify the occupations and exposures in Ontario leading to CBD. Questionnaire items included work history and details of possible exposure to beryllium. Participants who provided a history of previous work with metals underwent BeLPTs and an ELISPOT on the basis of having a higher pretest probability of CBD. Among 121 sarcoid patients enrolled, 87 (72%) reported no known previous metal dust or fume exposure, while 34 (28%) had metal exposure, including 17 (14%) with beryllium exposure at work or home. However, none of these 34 who underwent testing had positive test results. Self-reported exposure to beryllium or metals was relatively common in these patients with clinical sarcoidosis, but CBD was not confirmed using blood assays in this population.

  9. Occupational exposure to beryllium and cancer risk: a review of the epidemiologic evidence.

    Boffetta, Paolo; Fryzek, Jon P; Mandel, Jack S


    There is controversy on whether occupational exposure to beryllium causes lung cancer. We conducted a systematic review of epidemiologic studies on cancer among workers exposed to beryllium, including a study of seven U.S. production plants which has been recently updated, a study of patients with beryllium disease (largely overlapping with the former study) and several smaller studies. A small excess mortality from lung cancer was detected in the large cohort, which was partially explained by confounding by tobacco smoking and urban residence. Other potential confounders have not been addressed. The excess mortality was mainly among workers employed (often for a short duration) in the early phase of the manufacturing industry. There was no relation with duration of employment or cumulative exposure, whereas average and maximum exposure were associated with lung cancer risk. The use of lagged exposure variables resulted in associations with lung cancer risk; however, these associations were due to confounding by year of birth and year of hire. The studies of beryllium disease patients do not provide independent evidence and the results from other studies do not support the hypothesis of an increased risk of lung cancer or any other cancer. Overall, the available evidence does not support a conclusion that a causal association has been established between occupational exposure to beryllium and the risk of cancer.

  10. Long-term follow-up of beryllium sensitized workers from a single employer

    Curtis Anne M


    Full Text Available Abstract Background Up to 12% of beryllium-exposed American workers would test positive on beryllium lymphocyte proliferation test (BeLPT screening, but the implications of sensitization remain uncertain. Methods Seventy two current and former employees of a beryllium manufacturer, including 22 with pathologic changes of chronic beryllium disease (CBD, and 50 without, with a confirmed positive test were followed-up for 7.4 +/-3.1 years. Results Beyond predicted effects of aging, flow rates and lung volumes changed little from baseline, while DLCO dropped 17.4% of predicted on average. Despite this group decline, only 8 subjects (11.1% demonstrated physiologic or radiologic abnormalities typical of CBD. Other than baseline status, no clinical or laboratory feature distinguished those who clinically manifested CBD at follow-up from those who did not. Conclusions The clinical outlook remains favorable for beryllium-sensitized individuals over the first 5-12 years. However, declines in DLCO may presage further and more serious clinical manifestations in the future. These conclusions are tempered by the possibility of selection bias and other study limitations.

  11. In-beam gamma-ray spectroscopy of sup 1 sup 9 sup 0 Po: First observation of a low-lying prolate band in Po isotopes

    Van De Vel, K; Andreyev, A N; Page, R D; Kettunen, H; Greenlees, P T; Jones, P; Julin, R; Juutinen, S; Kankaanpaeae, H; Keenan, A; Kuusiniemi, P; Leino, M; Muikku, M; Nieminen, P; Rahkila, P; Uusitalo, J; Eskola, Kari J; Hürstel, A; Le Coz, Y L; Smith, M B; Van Duppen, P; Wyss, R


    Gamma rays from excited states of sup 1 sup 9 sup 0 Po have been observed using the Jurosphere Ge-detector array coupled to the RITU gas-filled separator. They were associated with a collective band which from spin 4 Planck constant onwards resembles the prolate rotational bands known in the isotones sup 1 sup 8 sup 8 Pb and sup 1 sup 8 sup 6 Hg. This indicates that in sup 1 sup 9 sup 0 Po the prolate configuration becomes yrast above I=2 Planck constant. The experimental results are interpreted in a two-band mixing calculation and are in agreement with alpha-decay data and potential energy surface calculations. (orig.)

  12. The PAMELA experiment: a decade of Cosmic Ray Physics in space

    Galper, A. M.; Sparvoli, R.; Adriani, O.; Barbarino, G.; Bazilevskaya, G. A.; Bellotti, R.; Boezio, M.; Bogomolov, E. A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; Castellini, G.; De Donato, C.; De Santis, C.; Di Felice, V.; Karelin, A. V.; Koldashov, S. V.; Koldobskiy, S. A.; Krutkov, S. Y.; Kvashnin, A. N.; Leonov, A. A.; Malakhov, V. V.; Marcelli, L.; Martucci, M.; Mayorov, A. G.; Menn, W.; Mergè, M.; Mikhailov, V. V.; Mocchiutti, E.; Mori, N.; Munini, R.; Osteria, G.; Palma, F.; Panico, B.; Papini, P.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Simon, M.; Spillantini, P.; Stozhkov, Y. I.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.


    The PAMELA detector was launched on June 15 th of 2006 on board the Russian Resurs-DK1 satellite and during ten years of continuous data-taking it has observed very interesting features in cosmic rays, especially in the fluxes of protons, helium and electrons. Moreover, PAMELA measurements of cosmic antiproton and positron fluxes and positron-to-all-electron ratio have set strong constraints to the nature of Dark Matter. Measurements of boron, carbon, lithium and beryllium (together with the isotopic fraction) have also shed new light on the elemental composition of the cosmic radiation. Search for signatures of more exotic processes (such as the ones involving Strange Quark Matter) has also been pursued. Furthermore, over the years the instrument has allowed a constant monitoring of the solar activity and a prolonged study of the solar modulation, improving the comprehension of the heliosphere mechanisms. PAMELA has also measured the radiation environment around the Earth, and detected for the first time the presence of an antiproton radiation belt surrounding our planet. In this highlight paper PAMELA main results will be reviewed.

  13. Post irradiation characterization of beryllium and beryllides after high temperature irradiation up to 3000 appm helium production in HIDOBE-01

    Fedorov, A.V., E-mail: [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, Petten, 1755 ZG (Netherlands); Til, S. van; Stijkel, M.P. [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, Petten, 1755 ZG (Netherlands); Nakamichi, M. [Japan Atomic Energy Agency, Rokkasho (Japan); Zmitko, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/ Josep Pla, n° 2, Torres Diagonal Litoral, Edificio B3, Barcelona 08019 (Spain)


    Titanium beryllides are considered as advanced candidate material for neutron multiplier for the helium cooled pebble bed (HCPB) and/or the water cooled ceramic breeder (WCCB) breeder blankets. In the HIDOBE-01 (HIgh DOse irradiation of BEryllium) experiment, beryllium and beryllide pellets with 5 at% and 7 at% Ti are irradiated at four different target temperatures (T{sub irr}): 425 °C, 525 °C, 650 °C and 750 °C up to the dose corresponding to 3000 appm He production in beryllium. The pellets were supplied by JAEA. During post irradiation examinations the critical properties of volumetric swelling and tritium retention were studied. Both titanium beryllide grades show significantly less swelling than the beryllium grade, with the difference increasing with the irradiation temperature. The irradiation induced swelling was studied by using direct dimensions. Both beryllide grades showed much less swelling as compare to the reference beryllium grade. Densities of the grades were studied by Archimedean immersion and by He-pycnometry, giving indications of porosity formation. While both beryllide grades show no significant reduction in density at all irradiation temperatures, the beryllium density falls steeply at higher T{sub irr}. Finally, the tritium release and retention were studied by temperature programmed desorption (TPD). Beryllium shows the same strong tritium retention as earlier observed in studies on beryllium pebbles, while the tritium inventory of the beryllides is significantly less, already at the lowest T{sub irr} of 425 °C.

  14. Beryllium chloride-induced oxidative DNA damage and alteration in the expression patterns of DNA repair-related genes.

    Attia, Sabry M; Harisa, Gamaleldin I; Hassan, Memy H; Bakheet, Saleh A


    Beryllium metal has physical properties that make its use essential for very specific applications, such as medical diagnostics, nuclear/fusion reactors and aerospace applications. Because of the widespread human exposure to beryllium metals and the discrepancy of the genotoxic results in the reported literature, detail assessments of the genetic damage of beryllium are warranted. Mice exposed to beryllium chloride at an oral dose of 23mg/kg for seven consecutive days exhibited a significant increase in the level of DNA-strand breaking and micronuclei formation as detected by a bone marrow standard comet assay and micronucleus test. Whereas slight beryllium chloride-induced oxidative DNA damage was detected following formamidopyrimidine DNA glycosylase digestion, digestion with endonuclease III resulted in considerable increases in oxidative DNA damage after the 11.5 and 23mg/kg/day treatment as detected by enzyme-modified comet assays. Increased 8-hydroxydeoxyguanosine was also directly correlated with increased bone marrow micronuclei formation and DNA strand breaks, which further confirm the involvement of oxidative stress in the induction of bone marrow genetic damage after exposure to beryllium chloride. Gene expression analysis on the bone marrow cells from beryllium chloride-exposed mice showed significant alterations in genes associated with DNA damage repair. Therefore, beryllium chloride may cause genetic damage to bone marrow cells due to the oxidative stress and the induced unrepaired DNA damage is probably due to the down-regulation in the expression of DNA repair genes, which may lead to genotoxicity and eventually cause carcinogenicity.

  15. Structures and formation mechanisms of aquo/hydroxo oligomeric beryllium in aqueous solution: a density functional theory study.

    Jin, Xiaoyan; Liao, Rongbao; Wu, Hai; Huang, Zhengjie; Zhang, Hong


    The structures and formation mechanisms of a wide variety of aquo/hydroxo oligomeric beryllium clusters were investigated using density functional theory. The structural parameters of beryllium clusters were found to vary regularly with the stepwise substitution of bound water molecules in the inner coordination sphere by hydroxyl groups. According to the Gibbs free energies deduced from SMD solvation model computations, unhydrolyzed oligomeric beryllium species are the most favorable products of polymerization, independent of the degrees of hydrolysis of the reactants. Simulation of the formation processes of oligomeric beryllium showed that polymerization, in essence, involves the nucleophilic attack of a terminal hydroxyl group in one BeO4 tetrahedron on the beryllium center in another BeO4 tetrahedron, leading to the bridging of two BeO4 tetrahedrons by a hydroxyl group.

  16. Examination of Beryllium Under Intense High Energy Proton Beam at CERN's HiRadMat Facility

    Ammigan, K; Hurh, P; Zwaska, R; Atherton, A; Caretta, O; Davenne, t; Densham, C; Fitton, M; Loveridge, P; O'Dell, J; Roberts, S; Kuksenko, v; Butcher, M; Calviani, M; Guinchard, M; Losito, R


    Beryllium is extensively used in various accelerator beam lines and target facilities as material for beam win- dows, and to a lesser extent, as secondary particle produc- tion targets. With increasing beam intensities of future ac- celerator facilities, it is critical to understand the response of beryllium under extreme conditions to avoid compro- mising particle production efficiency by limiting beam pa- rameters. As a result, the planned experiment at CERN’s HiRadMat facility will take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several grades of beryllium. The test matrix will consist of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. Online instrumentations will acquire real time temperature, strain, and vibration data of the cylinders, while Post-Irradiation-Examination (PIE) of the discs will exploit advanced microstructural characteri- zation and imagin...

  17. Time-lapse cinematographic analysis of beryllium--lung fibroblast interactions.

    Absher, M; Sylwester, D; Hart, B A


    The proliferative response to beryllium chloride of cells in a population of human lung fibroblasts was quantitatively assessed using time-lapse cinematography. A dose of 0.02 microgram Be/ml, known to decrease the growth rate of fibroblasts, affects an estimated 75% of the cells in the population, increasing their interdivision time (IDT) by approximately 5 hr. The differences in mean 1n(IDT) between treated and control cells were essentially constant for comparable culture sizes ranging from 25 to 250 cells. There was no correlation between mother and daughter cell IDTs in control or treated culture at any culture size. IDTs of sister pairs were highly correlated in control cultures at selected culture sizes while sister pair IDTs of treated cultures were not. The data suggest that while beryllium alters the IDT of fibroblasts, an effect not related to culture size, any given cell affected by beryllium does not impart effects of the mineral to its progeny.

  18. Examination of Beryllium Under Intense High Energy Proton Beam at CERN's HiRadMat Facility

    Ammigan, K.; Hurh, P.; Zwaska, R.; Atherton, A.; Caretta, O.; Davenne,T.; Densham, C.; Fitton, M.; Loveridge, P.; O'Dell, J.; Roberts, S.; Kuksenko, V.; Butcher, M.; Calviani, M.; Guinchard, M.; Losito, R.


    Beryllium is extensively used in various accelerator beam lines and target facilities as material for beam win- dows, and to a lesser extent, as secondary particle produc- tion targets. With increasing beam intensities of future ac- celerator facilities, it is critical to understand the response of beryllium under extreme conditions to avoid compro- mising particle production efficiency by limiting beam pa- rameters. As a result, the planned experiment at CERN’s HiRadMat facility will take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several grades of beryllium. The test matrix will consist of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. Online instrumentations will acquire real time temperature, strain, and vibration data of the cylinders, while Post-Irradiation-Examination (PIE) of the discs will exploit advanced microstructural characteri- zation and imagin...

  19. A role for cell adhesion in beryllium-mediated lung disease

    Hong-geller, Elizabeth [Los Alamos National Laboratory


    Chronic beryllium disease (CBD) is a debilitating lung disorder in which exposure to the lightweight metal beryllium (Be) causes the accumulation of beryllium-specific CD4+ T cells in the lung and formation of noncaseating pulmonary granulomas. Treatment for CBD patients who exhibit progressive pulmonary decline is limited to systemic corticosteroids, which suppress the severe host inflammatory response. Studies in the past several years have begun to highlight cell-cell adhesion interactions in the development of Be hypersensitivity and CBD. In particular, the high binding affinity between intercellular adhesion molecule 1 (I-CAM1) on lung epithelial cells and the {beta}{sub 2} integrin LFA-1 on migrating lymphocytes and macrophages regulates the concerted rolling of immune cells to sites of inflammation in the lung. In this review, we discuss the evidence that implicates cell adhesion processes in onset of Be disease and the potential of cell adhesion as an intervention point for development of novel therapies.

  20. Effect of beryllium nitrate on early and late pregnancy in rats

    Mathur, R.; Sharma, S.; Mathur, S.; Prakash, A.O.


    Beryllium is widely used in fatigue-resistant alloys, nuclear reactors, space device, missiles parts, electronics and other specialized purposes. Workers both in industries and mines are constantly exposed through inhalation or direct skin contact. A number of investigations have been made in different laboratories in relation to its toxicological effects in laboratory animals and humans. The lethal dose (LD/sub 50/) of beryllium nitrate through intravenous route in rats has been reported from our laboratory to be 3.16 mg/kg body weight. But not much is known about its effects on reproductive physiology. The present communication deals with the effect of beryllium nitrate on early and late pregnancy in the albino rats.

  1. Equation of State Determination from Quasi-Isentropic Compression of Solid Beryllium Liners on Z

    Martin, Matthew; Lemke, Raymond; McBride, Ryan; Knudson, Marcus; Davis, Jean-Paul


    We investigate the beryllium equation of state through constraining magneto-hydrodynamic and magneto-solid dynamic simulation with experimentally determined density profiles of a compressed beryllium cylindrical liner. Experiments utilizing pulse shaping techniques on Z have achieved quasi-isentropic compression of cylindrical beryllium liners to approximately 3 Megabars, and simulation results suggest that a large fraction of the liner remains in the solid phase through peak pressure for a 20 MA current pulse on Z. This opens up the possibility of extending the range of pressures we can explore with magnetic drive by utilizing cylindrical convergence. However, the cylindrical geometry limits the usefulness of diagnostics commonly applied to planar equation of state measurements on pulsed power machines and requires the development of new methods to unfold isentropes from the experimental data.

  2. A mortality study of workers exposed to insoluble forms of beryllium.

    Boffetta, Paolo; Fordyce, Tiffani; Mandel, Jack S


    This study investigated lung cancer and other diseases related to insoluble beryllium compounds. A cohort of 4950 workers from four US insoluble beryllium manufacturing facilities were followed through 2009. Expected deaths were calculated using local and national rates. On the basis of local rates, all-cause mortality was significantly reduced. Mortality from lung cancer (standardized mortality ratio 96.0; 95% confidence interval 80.0, 114.3) and from nonmalignant respiratory diseases was also reduced. There were no significant trends for either cause of death according to duration of employment or time since first employment. Uterine cancer among women was the only cause of death with a significantly increased standardized mortality ratio. Five of the seven women worked in office jobs. This study confirmed the lack of an increase in mortality from lung cancer and nonmalignant respiratory diseases related to insoluble beryllium compounds.

  3. A theoretical framework for evaluating analytical digestion methods for poorly soluble particulate beryllium.

    Stefaniak, Aleksandr B; Brink, Christopher A; Dickerson, Robert M; Day, Gregory A; Brisson, Michael J; Hoover, Mark D; Scripsick, Ronald C


    Complete digestion of all chemical forms and sizes of particulate analytes in environmental samples is usually necessary to obtain accurate results with atomic spectroscopy. In the current study, we investigate the physicochemical properties of beryllium particles likely to be encountered in samples collected from different occupational environments and present a hypothesis that a dissolution theory can be used as a conceptual framework to guide development of strategies for digestion procedures. For monodisperse single-chemical constituent primary particles, such as those encountered when handling some types of beryllium oxide (BeO) powder, theory predicts that a digestion procedure is sufficient when it completely dissolves all primary particles, independent of cluster size. For polydisperse single-chemical constituent particles, such as those encountered during the handling of some types of beryllium metal powder, theory predicts that a digestion procedure is sufficient only when it completely dissolves the largest particle in the sample. For samples with unknown or multi-chemical constituent particles and with particles having undefined sizes, e.g., fume emissions from a copper-beryllium alloy furnace operation or dust from a beryl ore crushing operation, a surface area-limited and single-constituent-dependent dissolution theory may not predict complete dissolution, thereby requiring non-routine robust treatment procedures with post-digestion filtration, followed by examination of residual particulate material. Additionally, for beryllium, and likely other poorly soluble materials, particulate reference materials of various chemical forms and size distributions are needed to better evaluate and harmonize analytical digestion procedures. Figure Generation of aerosol particles during machining of beryllium oxide.

  4. Retention behaviour of deuterium and helium in beryllium under single D{sup +} and dual He{sup +}/D{sup +} exposure

    Mateus, R., E-mail:; Franco, N.; Alves, E.


    Beryllium plates were irradiated with single deuterium and dual helium plus deuterium energetic ions with fluences of 1e17 ions/cm{sup 2} and 5e17 ions/cm{sup 2}, and annealed afterwards in vacuum at 523, 723 and 923 K for 10 min. The surfaces were analysed with electron microscopy, X-ray diffraction and ion beam techniques. The results are consistent with well-established outcomes arising from helium irradiation, evidencing that the degassing mechanisms depend of the microstructure evolution. They point to a supersaturation of the implanted zone by helium in the samples exposed to fluences of 5e17 He{sup +}/cm{sup 2}. In this case, it is observed a simultaneous release of helium and deuterium at lower temperatures, evidencing the formation of a porous microstructure from primary gas bubbles. In the absence of a porous structure, the helium degassing occurs at a higher temperature range, while it depends on the migration of helium-vacancy clusters. The supersaturation of beryllium was never reached under single deuterium irradiation, being the release of deuterium controlled by ion-induced trap sites.

  5. Retention and release mechanisms of deuterium implanted into beryllium

    Oberkofler, M.; Reinelt, M.; Linsmeier, Ch.


    The fraction of deuterium (D) that is retained upon irradiation of beryllium (Be) as well as the temperatures at which implanted D is released are of importance for the international fusion experiment ITER, where Be will be used as an armor material. The influence of single parameters on retention and release is investigated in laboratory experiments performed under well defined conditions with the aim to identify dominant underlying mechanisms and thus be able to predict the behavior of the Be wall in ITER. Recent progress in the quantification of retained fractions and release temperatures as well as in the understanding of the governing mechanisms is presented. The retained fraction upon implantation of D at 1 keV into Be(1 1 2¯ 0) to fluences far below the saturation threshold of 10 21 m -2 is almost 95%, the remaining 5% being attributed to reflection at the surface. At these low fluences, no dependence of the retained fractions on implantation energy is observed. At fluences of the order of 10 21 m -2 and higher, saturation of the irradiated material affects the retention, leading to lower retained fractions. Furthermore, at these fluences the retained fractions decrease with decreasing implantation energies. Differences in the retained fractions from implanted Be(1 1 2¯ 0) and polycrystalline Be are explained by anisotropic diffusion of interstitials during implantation, leading to an amount of surviving D-trap complexes that depends on surface-orientation. Temperature-programmed desorption (TPD) spectra are recorded after implantation of fluences of the order of 10 19 m -2 at various energies and simulated by means of a newly developed code based on coupled reaction-diffusion systems (CRDS). The asymmetric shape of the TPD peaks is reproduced by introducing a local D accumulation process into the model.

  6. Tritium and helium retention and release from irradiated beryllium

    Anderl, R.A.; Longhurst, G.R.; Oates, M.A.; Pawelko, R.J. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States)


    This paper reports the results of an experimental effort to anneal irradiated beryllium specimens and characterize them for steam-chemical reactivity experiments. Fully-dense, consolidated powder metallurgy Be cylinders, irradiated in the EBR-II to a fast neutron (>0.1 MeV) fluence of {approx}6 x 10{sup 22} n/cm{sup 2}, were annealed at temperatures from 450degC to 1200degC. The releases of tritium and helium were measured during the heat-up phase and during the high-temperature anneals. These experiments revealed that, at 600degC and below, there was insignificant gas release. Tritium release at 700degC exhibited a delayed increase in the release rate, while the specimen was at 700degC. For anneal temperatures of 800degC and higher, tritium and helium release was concurrent and the release behavior was characterized by gas-burst peaks. Essentially all of the tritium and helium was released at temperatures of 1000degC and higher, whereas about 1/10 of the tritium was released during the anneals at 700degC and 800degC. Measurements were made to determine the bulk density, porosity and specific surface area for each specimen before and after annealing. These measurements indicated that annealing caused the irradiated Be to swell, by as much as 14% at 700degC and 56% at 1200degC. Kr gas adsorption measurements for samples annealed at 1000degC and 1200degC determined specific surface areas between 0.04 m{sup 2}/g and 0.1 m{sup 2}/g for these annealed specimens. The tritium and helium gas release measurements and the specific surface area measurements indicated that annealing of irradiated Be caused a porosity network to evolve and become surface-connected to relieve internal gas pressure. (author)

  7. Fundamental hydrogen interactions with beryllium : a magnetic fusion perspective.

    Wampler, William R. (Sandia National Laboratories, Albuquerque, NM); Felter, Thomas E.; Whaley, Josh A.; Kolasinski, Robert D.; Bartelt, Norman Charles


    Increasingly, basic models such as density functional theory and molecular dynamics are being used to simulate different aspects of hydrogen recycling from plasma facing materials. These models provide valuable insight into hydrogen diffusion, trapping, and recombination from surfaces, but their validation relies on knowledge of the detailed behavior of hydrogen at an atomic scale. Despite being the first wall material for ITER, basic single crystal beryllium surfaces have been studied only sparsely from an experimental standpoint. In prior cases researchers used electron spectroscopy to examine surface reconstruction or adsorption kinetics during exposure to a hydrogen atmosphere. While valuable, these approaches lack the ability to directly detect the positioning of hydrogen on the surface. Ion beam techniques, such as low energy ion scattering (LEIS) and direct recoil spectroscopy (DRS), are two of the only experimental approaches capable of providing this information. In this study, we applied both LEIS and DRS to examine how hydrogen binds to the Be(0001) surface. Our measurements were performed using an angle-resolved ion energy spectrometer (ARIES) to probe the surface with low energy ions (500 eV - 3 keV He{sup +} and Ne{sup +}). We were able to obtain a 'scattering maps' of the crystal surface, providing insight on how low energy ions are focused along open surface channels. Once we completed a characterization of the clean surface, we dosed the sample with atomic hydrogen using a heated tungsten capillary. A distinct signal associated with adsorbed hydrogen emerged that was consistent with hydrogen residing between atom rows. To aid in the interpretation of the experimental results, we developed a computational model to simulate ion scattering at grazing incidence. For this purpose, we incorporated a simplified surface model into the Kalypso molecular dynamics code. This approach allowed us to understand how the incident ions interacted with the

  8. Inhibition of normal human lung fibroblast growth by beryllium.

    Lehnert, N M; Gary, R K; Marrone, B L; Lehnert, B E


    Inhalation of particulate beryllium (Be) and its compounds causes chronic Be disease (CBD) in a relatively small subset ( approximately 1-6%) of exposed individuals. Hallmarks of this pulmonary disease include increases in several cell types, including lung fibroblasts, that contribute to the fibrotic component of the disorder. In this regard, enhancements in cell proliferation appear to play a fundamental role in CBD development and progression. Paradoxically, however, some existing evidence suggests that Be actually has antiproliferative effects. In order to gain further information about the effects of Be on cell growth, we: (1) assessed cell proliferation and cell cycle effects of low concentrations of Be in normal human diploid fibroblasts, and (2) investigated the molecular pathway(s) by which the cell cycle disturbing effects of Be may be mediated. Treatment of human lung and skin fibroblasts with Be added in the soluble form of BeSO(4) (0.1-100 microM) caused inhibitions of their growth in culture in a concentration-dependent manner. Such growth inhibition was found to persist, even after cells were further cultured in Be(2+)-free medium. Flow cytometric analyses of cellular DNA labeled with the DNA-binding fluorochrome DAPI revealed that Be causes a G(0)-G(1)/pre-S phase arrest. Western blot analyses indicated that the Be-induced G(0)-G(1)/pre-S phase arrest involves elevations in TP53 (p53) and the cyclin-dependent kinase inhibitor CDKN1A (p21(Waf-1,Cip1)). That Be at low concentrations inhibits the growth of normal human fibroblasts suggests the possibility of the existence of abnormal cell cycle inhibitory responses to Be in individuals who are sensitive to the metal and ultimately develop CBD.

  9. Adaptation prevents the extinction of Chlamydomonas reinhardtii under toxic beryllium

    Beatriz Baselga-Cervera


    Full Text Available The current biodiversity crisis represents a historic challenge for natural communities: the environmental rate of change exceeds the population’s adaptation capability. Integrating both ecological and evolutionary responses is necessary to make reliable predictions regarding the loss of biodiversity. The race against extinction from an eco-evolutionary perspective is gaining importance in ecological risk assessment. Here, we performed a classical study of population dynamics—a fluctuation analysis—and evaluated the results from an adaption perspective. Fluctuation analysis, widely used with microorganisms, is an effective empirical procedure to study adaptation under strong selective pressure because it incorporates the factors that influence demographic, genetic and environmental changes. The adaptation of phytoplankton to beryllium (Be is of interest because human activities are increasing the concentration of Be in freshwater reserves; therefore, predicting the effects of human-induced pollutants is necessary for proper risk assessment. The fluctuation analysis was performed with phytoplankton, specifically, the freshwater microalgae Chlamydomonas reinhardtii, under acute Be exposure. High doses of Be led to massive microalgae death; however, by conducting a fluctuation analysis experiment, we found that C. reinhardtii was able to adapt to 33 mg/l of Be due to pre-existing genetic variability. The rescuing adapting genotype presented a mutation rate of 9.61 × 10−6 and a frequency of 10.42 resistant cells per million wild-type cells. The genetic adaptation pathway that was experimentally obtained agreed with the theoretical models of evolutionary rescue (ER. Furthermore, the rescuing genotype presented phenotypic and physiologic differences from the wild-type genotype, was 25% smaller than the Be-resistant genotype and presented a lower fitness and quantum yield performance. The abrupt distinctions between the wild-type and the Be

  10. Wavefunction and energy of the 1s22sns configuration in a beryllium atom

    Huang Shi-Zhong; Ma Kun; Yu Jia-Ming; Liu Fen


    A new set of trial functions for 1s22sns configurations in a beryllium atom is suggested.A Mathematica program baaed on the variational method is developed to calculate the wavefunctions and energies of 1s22sns (n=3-6)configurations in a beryllium atom.Non-relativistic energy,polarization correction and relativistic correction which include mass correction,one- and two-body Darwin corrections,spin-spin contact interaction and orbit-orbit interaction,are calculated respectively.The results are in good agreement with experimental data.

  11. Beryllium plasma-facing components for the ITER-like wall project at JET

    Rubel, M J; Sundelin, P [Alfven Laboratory, Royal Institute of Technology, Association Euratom-VR (Sweden); Bailescu, V [Nuclear Fuel Plant, Pitesti (Romania); Coad, J P; Matthews, G F; Pedrick, L; Riccardo, V; Villedieu, E [Culham Science Centre, Euratom-UKAEA Fusion Association, Abingdon (United Kingdom); Hirai, T; Linke, J [IEF-2, Forschungszentrum Juelich, Association Euratom-FZJ, Juelich (Germany); Likonen, J [VTT, Association Euratom-Tekes, 02044 VTT (Finland); Lungu, C P [NILPRP, Association Euratom-MEdC, Bucharest (Romania)], E-mail:


    ITER-Like Wall Project has been launched at the JET tokamak in order to study a tokamak operation with beryllium components on the main chamber wall and tungsten in the divertor. To perform this first comprehensive test of both materials in a thermonuclear fusion environment, a broad program has been undertaken to develop plasma-facing components and assess their performance under high power loads. The paper provides a concise report on scientific and technical issues in the development of a beryllium first wall at JET.

  12. Measurement of neutron yield by 62 MeV proton beam on a thick Beryllium target

    Alba, R; Boccaccio, P; Celentano, A; Colonna, N; Cosentino, G; Del Zoppo, A; Di Pietro, A; Esposito, J; Figuera, P; Finocchiaro, P; Kostyukov, A; Maiolino, C; Osipenko, M; Ricco, G; Ripani, M; Viberti, C M; Santonocito, D; Schillaci, M


    In the framework of research on IVth generation reactors and high intensity neutron sources a low-power prototype neutron amplifier was recently proposed by INFN. It is based on a low-energy, high current proton cyclotron, whose beam, impinging on a thick Beryllium converter, produces a fast neutron spectrum. The world database on the neutron yield from thick Beryllium target in the 70 MeV proton energy domain is rather scarce. The new measurement was performed at LNS, covering a wide angular range from 0 to 150 degrees and an almost complete neutron energy interval. In this contribution the preliminary data are discussed together with the proposed ADS facility.

  13. Second hyperpolarizability of delta shaped disubstituted acetylene complexes of beryllium, magnesium, and calcium.

    Hatua, Kaushik; Nandi, Prasanta K


    Present theoretical study involves the delta shape complexes of beryllium, magnesium, and calcium where the metal atom interacts perpendicularly with disubstituted acetylene. Most of the complexes are found to be fairly stable. The dependence of second-hyperpolarizability on the basis set with increasing polarization and diffuse functions has been examined which showed the importance of 'f-type' type polarization function for heavy metal (Mg, Ca) and 'd-type' polarization function for beryllium. Larger second hyperpolarizability has been predicted for complexes having significant ground state polarization and low lying excited states favoring strong electronic coupling. Transition energy plays the most significant role in modulating the second hyperpolarizability.

  14. Cold melting of beryllium: Atomistic view on Z-machine experiments

    Dremov, V. V.; Rykounov, A. A.; Sapozhnikov, F. A.; Karavaev, A. V.; Yakovlev, S. V.; Ionov, G. V.; Ryzhkov, M. V.


    Analysis of phase diagram of beryllium at high pressures and temperatures obtained as a result of ab initio calculations and large scale classical molecular dynamics simulations of beryllium shock loading have shown that the so called cold melting takes place when shock wave propagates through polycrystalline samples. Comparison of ab initio calculation results on sound speed along the Hugoniot with experimental data obtained on Z-machine also evidences for possible manifestation of the cold melting. The last may explain the discrepancy between atomistic simulations and experimental data on the onset of the melting on the Hugoniot.

  15. Power deposition modelling of the ITER-like wall beryllium tiles at JET

    Firdaouss, M.; Mitteau, R.; Villedieu, E.; Riccardo, V.; Lomas, P.; Vizvary, Z.; Portafaix, C.; Ferrand, L.; Thomas, P.; Nunes, I.; de Vries, P.; Chappuis, P.; Stephan, Y.


    A precise geometric method is used to calculate the power deposition on the future JET ITER-Like Wall beryllium tiles with particular emphasis on the internal edge loads. If over-heated surfaces are identified, these can be modified before the machining or failing that actively monitored during operations. This paper presents the methodology applied to the assessment of the main chamber beryllium limiters. The detailed analysis of one limiter is described. The conclusion of this study is that operation will not be limited by edges exposed to plasma convective loads.

  16. Efficacy of surface sampling methods for different types of beryllium compounds.

    Dufresne, A; Mocanu, T; Viau, S; Perrault, G; Dion, C


    The objective of the research work was to evaluate the efficiency of three different sampling methods (Ghost Wipe™, micro-vacuum, and ChemTest®) in the recovery of Be dust by assessing: (1) four Be compounds (beryllium acetate, beryllium chloride, beryllium oxide and beryllium aluminium), (2) three different surfaces (polystyrene, glass and aluminium) and (3) inter-operator variation. The three sampling methods were also tested on site in a laboratory of a dental school for validation purposes. The Ghost Wipe™ method showed recovery ranging from 43.3% to 85.8% for all four Be compounds and for all three quantities of Be spiked on Petri dishes, while recovery with the micro-vacuum method ranged from 0.1% to 12.4%. On polystyrene dishes with 0.4 µg Be, the recovery ranged from 48.3% to 81.7%, with an average recovery of 59.4% for Operator 1 and 68.4% for Operator 2. The ChemTest® wipe method with beryllium acetate, beryllium chloride, and AlBeMet® showed analogous results that are in line with the manufacturer's manual, but collection of beryllium oxide was negative. In the dental laboratory, Ghost Wipe™ samplings showed better recovery than the micro-vacuum method. The ratios between the recovered quantities of Be in each location where the Ghost Wipe™ was tested differed substantially, ranging from 1.45 to 64. In the dental laboratory, a faint blue color indicating the presence of Be was observed on the ChemTest® wipes used in two locations out of six. In summary, the Ghost Wipe™ method was more efficient than micro-vacuuming in collecting the Be dust from smooth, non-porous surfaces such as Petri dishes by a factor of approximately 18. The results obtained on site in a dental laboratory also showed better recovery with Ghost Wipes™. However, the ratio of Be recovered by Ghost Wipes™ versus micro-vacuuming was much lower for surfaces where a large amount of dust was present. Wet wiping is preferred over micro-vacuuming for beryllium forms, but


    D.T. Kendrick; Steven Saggese


    Science & Engineering Associates, Inc. (SEA), under contract No. DE-AC26-00NT40768, was tasked by the US Department of Energy--National Energy Technology Laboratory to develop and test a near real-time beryllium monitor for airborne and surface measurements. Recent public awareness of the health risks associated with exposure to beryllium has underscored the need for better, faster beryllium monitoring capabilities within the DOE. A near real-time beryllium monitor will offer significant improvements over the baseline monitoring technology currently in use. Whereas the baseline technology relies upon collecting an air sample on a filter and the subsequent analysis of the filter by an analytical laboratory, this effort developed a monitor that offers near real-time measurement results while work is in progress. Since the baseline typically only offers after-the-fact documentation of exposure levels, the near real-time capability provides a significant increase in worker protection. The beryllium monitor developed utilizes laser induced breakdown spectroscopy, or LIBS as the fundamental measurement technology. LIBS has been used in a variety of laboratory and field based instrumentation to provide real-time, and near-real-time elemental analysis capabilities. LIBS is an analytical technique where a pulsed high energy laser beam is focused to a point on the sample to be interrogated. The high energy density produces a small high temperature plasma plume, sometimes called a spark. The conditions within this plasma plume result in the constituent atoms becoming excited and emitting their characteristic optical emissions. The emission light is collected and routed to an optical spectrometer for quantitative spectral analysis. Each element has optical emissions, or lines, of a specific wavelength that can be used to uniquely identify that element. In this application, the intensity of the beryllium emission is used to provide a quantitative measure of the abundance of the

  18. Chronic Beryllium Disease: revealing the role of beryllium ion and small peptides binding to HLA-DP2.

    Petukh, Marharyta; Wu, Bohua; Stefl, Shannon; Smith, Nick; Hyde-Volpe, David; Wang, Li; Alexov, Emil


    Chronic Beryllium (Be) Disease (CBD) is a granulomatous disorder that predominantly affects the lung. The CBD is caused by Be exposure of individuals carrying the HLA-DP2 protein of the major histocompatibility complex class II (MHCII). While the involvement of Be in the development of CBD is obvious and the binding site and the sequence of Be and peptide binding were recently experimentally revealed [1], the interplay between induced conformational changes and the changes of the peptide binding affinity in presence of Be were not investigated. Here we carry out in silico modeling and predict the Be binding to be within the acidic pocket (Glu26, Glu68 and Glu69) present on the HLA-DP2 protein in accordance with the experimental work [1]. In addition, the modeling indicates that the Be ion binds to the HLA-DP2 before the corresponding peptide is able to bind to it. Further analysis of the MD generated trajectories reveals that in the presence of the Be ion in the binding pocket of HLA-DP2, all the different types of peptides induce very similar conformational changes, but their binding affinities are quite different. Since these conformational changes are distinctly different from the changes caused by peptides normally found in the cell in the absence of Be, it can be speculated that CBD can be caused by any peptide in presence of Be ion. However, the affinities of peptides for Be loaded HLA-DP2 were found to depend of their amino acid composition and the peptides carrying acidic group at positions 4 and 7 are among the strongest binders. Thus, it is proposed that CBD is caused by the exposure of Be of an individual carrying the HLA-DP2*0201 allele and that the binding of Be to HLA-DP2 protein alters the conformational and ionization properties of HLA-DP2 such that the binding of a peptide triggers a wrong signaling cascade.

  19. Fabrication and evaluation of variable focus X-ray lenses

    Khounsary, Ali; Dufresne, Eric M.; Kewish, Cameron M.; Qian, Jun; Assoufid, Lahsen; Conley, Ray


    We report on the fabrication, preliminary metrology, and X-ray transmission results of variable-focus cylindrical beryllium lenses. Each lens consists of a number of 1-mm-diameter lenslets made by precision computer numerical control (CNC) drilling into a beryllium substrate. The substrate is then cut into five parts, each having a different number of lenslets, ranging from 10 to 50. Each lens is then cut diagonally, using an electron discharge machine, to provide it with focusing ability. Unlike the traditional lenses having a fixed focal distance for a given energy, the present lenses provide for a wide range of photon energies and focal distances. Additionally, X-ray transmission through the lens is enhanced by reducing lenslet wall thickness to about 50 μm, the thinnest reported to date.


    Abdul A.J. Mohamed


    Full Text Available The occurrence of carcinogenic and heavy metals in groundwater sources in Urban-west region of Zanzibar Island is an issue that is not very well known. This could be also coupled with the absence of drinking water treatment plants. This study for the first time reports on the occurrence and the levels of three carcinogenic metals-Arsenic (As, Beryllium (Be and lead (Pb in thirty groundwater samples collected from Zanzibar’s Urban/West region. The levels of alkalinity, Magnesium (Mg and Thallium (Tl were also determined. The concentrations of As, Be, TI and Pb in the water samples were determined by the Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES. Palintest photometry procedures were used to determine the levels of total alkalinity and magnesium. Be, As, Tl and Pb were not detected (nd in some water samples. The ranges of concentrations of Be, As, TI and Pb in the samples were; nd to 6100 ng L-1, nd to 6600 ng L-1, nd to 11600 ng L-1 and nd to 31400 ng L-1 respectively. The levels of total alkalinity varied from 38 to 380 (mg L-1 as CaCO3. The proportions of water samples contaminated with Be, Tl, As and Pb were 43.3, 66.7, 70 and 96.7% respectively. About 23% of the water samples had Pb concentrations beyond WHO limits for safe drinking water, while 30 and 56.67% of the samples had Be and Tl concentrations beyond the US EPA’s maximum limits. The concentration of arsenic in each water sample was within WHO limits. The occurrence and the levels of carcinogenic metals in water sources could be a potential cause of cancer cases in Zanzibar. Therefore, prompt action is required to control the levels of these hazardous metals, and other possible contaminants in Zanzibar’s domestic water systems.

  1. The relationship between gross and net erosion of beryllium at elevated temperature

    Doerner, R.P., E-mail: [Center for Energy Research, University of California in San Diego, La Jolla, CA 92093-0417 (United States); Jepu, I. [National Institute for Lasers, Plasma and Radiation Physics, NILPRP, Magurele, Bucharest 077125 (Romania); Nishijima, D. [Center for Energy Research, University of California in San Diego, La Jolla, CA 92093-0417 (United States); Safi, E.; Bukonte, L.; Lasa, A.; Nordlund, K. [Association EURATOM-Tekes, University of Helsinki, PO Box 43, 00014 University of Helsinki (Finland); Schwarz-Selinger, T. [Max-Planck Institut für Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany)


    Surface temperature is a critical variable governing plasma–material interactions. PISCES-B injects controllable amounts of Be impurities into the plasma to balance, or exceed, the erosion rate of beryllium from samples in un-seeded plasma exposures. At low temperature, an order of magnitude more beryllium, than the beryllium mass loss measured in un-seeded discharges, needs to be seeded into the plasma to achieve no mass loss from a sample. At elevated temperature, no mass loss is achieved when the beryllium-seeding rate equals the mass loss rate in un-seeded discharges. Molecular dynamics simulations show that below 500 K, Be adatoms have difficulty surmounting the Ehrlich–Schwoebel barrier at the edge of a terrace. Above this temperature, an Arrhenius behavior is observed with an activation energy of 0.32 eV. Qualitatively, this indicates that at low surface temperature the deposited atoms may be more easily re-eroded, accounting for the increased seeding needed to balance the erosion.

  2. (n,p) emission channeling measurements on ion-implanted beryllium

    Jakubek, J; Uher, J


    We propose to perform emission-channeling measurements using thermal neutron induced proton emission from ion-implanted $^{7}$Be. The physics questions addressed concern the beryllium doping of III-V and II-VI semiconductors and the host dependence of the electron capture half-life of $^{7}$Be.

  3. Thermo-optical properties of beryllium containing oxide crystals as materials for high power laser systems

    Pestryakov, E. V.; Petrov, V. V.; Trunov, V. I.; Kirpichnikov, A. V.; Laptev, A. V.; Matrosov, V. N.


    The elastic and thermo-optical properties of chrysoberyl, beryllium hexaaluminate and beryllium-lanthanum hexaaluminate crystals have been experimentally studied. The velocities of elastic-wave propagation in the crystals are measured by acousto-optic interference method. The values of all the independent components of elastic-constant tensor are determined and used to calculate a number of important dynamic parameters of the crystals such as the Young's and shear moduli, the modulus of volume elasticity, Poisson's ratio, the Debye temperature. Also measurements of refractive indices in 25 - 75 C temperature range in VIS spectral region were performed. Using experimental data the dispersion of thermal optical coefficients (dn/dT) was calculated, these data were employed to evaluate the thermal lens in beryllium containing laser crystals. The experimental and calculated data are compared with similar parameters for well-known laser hosts. Some of beryllium containing oxide crystals was shown to be candidates for master oscillator and amplifying stages of high power femtosecond laser systems.

  4. Lifetime Measurements for Electric-Dipole △ n = 0 Transitions in the Beryllium-Like Sulfur

    DU Shu-Bin; YANG Zhi-Hu; CHANG Hong-Wei; SU Hong


    @@ We have measured lifetimes of △n = 0 allowed transitions in beryllium-like sulfur using beam foil spectroscopic techniques. The measured values, derived from analysis of arbitrarily normalized decay curves, are presented and compared with theoretical calculations and previous measurements. Accurate probabilities have been determined by the well-known relationship.

  5. Beryllium abundances in parent stars of extrasolar planets 16 Cyg A & B and $\\rho^{1}$ Cnc$^{*}$

    García-López, R J


    The Be II 3131 A doublet has been observed in the solar-type stars 16 Cyg A & B and in the late G-type star rho 1 Cnc, to derive their beryllium abundances. 16 Cyg A & B show similar (solar) beryllium abundances while 16 Cyg B, which has been proposed to have a planetary companion of ~2 M_Jup, is known to be depleted in lithium by a factor larger than 6 with respect to 16 Cyg A. Differences in their rotational histories which could induce different rates of internal mixing of material, and the ingestion of a similar planet by 16 Cyg A are discussed as potential explanations. The existence of two other solar-type stars which are candidates to harbour planetary-mass companions and which show lithium and beryllium abundances close to those of 16 Cyg A, requires a more detailed inspection of the peculiarities of the 16 Cyg system. For rho 1 Cnc, which is the coolest known object candidate to harbour a planetary-mass companion (M > 0.85 M_Jup), we establish a precise upper limit for its beryllium abundance...

  6. Beryllium assessment and recommendation for application in ITER plasma facing components

    Barabash, V.; Tanaka, S.; Matera, R. [ITER Joint Central Team, Muenchen (Germany)


    The design status of the ITER Plasma Facing Components (PFC) is presented. The operational conditions of the armour material for the different components are summarized. Beryllium is the reference armour material for the Primary Wall, Baffle and Limiter and the back-up material for the Divertor Dome. The activities on the selection of the Be grades and the joining technologies are reviewed. (author)

  7. Thermal ramp tritium release in COBRA-1A2 C03 beryllium pebbles

    Baldwin, D.L. [Pacific Northwest National Lab., Richland, WA (United States)


    Tritium release kinetics, using the method of thermal ramp heating at three linear ramp rates, were measured on the COBRA-1A2 C03 1-mm beryllium pebbles. This report includes a brief discussion of the test, and the test data in graph format.

  8. Deep layer-resolved core-level shifts in the beryllium surface

    Aldén, Magnus; Skriver, Hans Lomholt; Johansson, Börje


    Core-level energy shifts for the beryllium surface region are calculated by means of a Green’s function technique within the tight-binding linear muffin-tin orbitals method. Both initial- and final-state effects in the core-ionization process are fully accounted for. Anomalously large energy shifts...

  9. F-4 Beryllium Rudders; A Precis of the Design, Fabrication, Ground and Flight Test Demonstrations


    Stress concentration factor KIPS (1000 pounds) per square inch Applied moment (usually a Ending moment) Cycles to failure in fatigue; number...Beryllium rudder assembly. A- TEST 2- RUDDER ULTIMATE STATIC TEST WITH MAXIMUM AIRLOAD AT W„ THORn The objective of this test was to demonstrate

  10. Tritium release from advanced beryllium materials after loading by tritium/hydrogen gas mixture

    Chakin, Vladimir, E-mail: [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, Rolf; Moeslang, Anton; Kurinskiy, Petr; Vladimirov, Pavel [Karlsruhe Institute of Technology, Institute for Applied Materials, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Dorn, Christopher [Materion Beryllium & Composites, 6070 Parkland Boulevard, Mayfield Heights, OH 44124-4191 (United States); Kupriyanov, Igor [Bochvar Russian Scientific Research Institute of Inorganic Materials, Rogova str., 5, 123098 Moscow (Russian Federation)


    Highlights: • A major tritium release peak for beryllium samples occurs at temperatures higher than 1250 K. • A beryllium grade with comparatively smaller grain size has a comparatively higher tritium release compared to the grade with larger grain size. • The pebbles of irregular shape with the grain size of 10–30 μm produced by the crushing method demonstrate the highest tritium release rate. - Abstract: Comparison of different beryllium samples on tritium release and retention properties after high-temperature loading by tritium/hydrogen gas mixture and following temperature-programmed desorption (TPD) tests has been performed. The I-220-H grade produced by hot isostatic pressing (HIP) having the smallest grain size, the pebbles of irregular shape with the smallest grain size (10–30 μm) produced by the crushing method (CM), and the pebbles with 1 mm diameter produced by the fluoride reduction method (FRM) having a highly developed inherent porosity show the highest release rate. Grain size and porosity are considered as key structural parameters for comparison and ranking of different beryllium materials on tritium release and retention properties.

  11. Progress on a Cavity with Beryllium Walls for Muon Ionization Cooling Channel R&D.

    Bowring, D. L.; DeMello, A. J.; Lambert, A. R.; Li, D.; Virostek, S.; Zisman, M.; Kaplan, D.; Palmer, R. B.


    The Muon Accelerator Program (MAP) collaboration is working to develop an ionization cooling channel for muon beams. An ionization cooling channel requires the operation of high-gradient, normal-conducting RF cavities in multi-Tesla solenoidal magnetic fields. However, experiments conducted at Fermilab?s MuCool Test Area (MTA) show that increasing the solenoidal field strength reduces the maximum achievable cavity gradient. This gradient limit is characterized by an RF breakdown process that has caused significant damage to copper cavity interiors. The damage may be caused by field-emitted electrons, focused by the solenoidal magnetic field onto small areas of the inner cavity surface. Local heating may then induce material fatigue and surface damage. Fabricating a cavity with beryllium walls would mitigate this damage due to beryllium?s low density, low thermal expansion, and high electrical and thermal conductivity. We address the design and fabrication of a pillbox RF cavity with beryllium walls, in order to evaluate the performance of high-gradient cavities in strong magnetic fields.

  12. Lattice Dynamics of Beryllium from a First-Principles Nonlocal Pseudopotential Approach

    Walter, F. King; Cutler, P. H.


    The lattice dynamics of beryllium, a metal with hexagonal close-packed structure and two atoms per unit cell, is investigated within the framework of Harrison's first-principles pseudopotential theory, using (i) the Slater approximation for the conduction-band-core exchange, and (ii) a modified...

  13. Investigation of damages induced by ITER-relevant heat loads during massive gas injections on Beryllium

    B. Spilker


    Full Text Available Massive gas injections (MGIs will be used in ITER to mitigate the strong damaging effect of full performance plasma disruptions on the plasma facing components. The MGI method transforms the stored plasma energy to radiation that is spread across the vacuum vessel with poloidal and toroidal asymmetries. This work investigated the impact of MGI like heat loading on the first wall armor material beryllium. ITER-relevant power densities of 90-260MWm−2in combination with pulse durations of 5-10ms were exerted onto the S-65 grade beryllium specimens in the electron beam facility JUDITH 1. All tested loading conditions led to noticeable surface morphology changes and in the expected worst case scenario, a crater with thermally induced cracks with a depth of up to ∼340µm formed in the loaded area. The level of destruction in the loaded area was strongly dependent on the pulse number but also on the formation of beryllium oxide. The cyclic melting of beryllium could lead to an armor thinning mechanism under the presence of melt motion driving forces such as surface tension, magnetic forces, and plasma pressure.




    Requirements for collision data on helium, beryllium and boron are reviewed in the light of the directions of present and planned tokamak fusion experiments. The occurrence of the atoms and ions of these species and their roles in plasma behaviour and diagnostic measurements are described. Special e

  15. Tritium release from neutron irradiated beryllium: Kinetics, long-time annealing and effect or crack formation

    Scaffidi-Argentina, F.; Werle, H. [Forschungszentrum Karlsruhe, (Germany)


    Since beryllium is considered as one of the best neutron multiplier materials in the blanket of the next generation fusion reactors, several studies have been started to evaluate its behaviour under irradiation during both operating and accidental conditions. Based on safety considerations, tritium produced in beryllium during neutron irradiation represents one important issue, therefore it is necessary to investigate tritium transport processes by using a comprehensive mathematical model and comparing its predictions with well characterized experimental tests. Because of the difficulties in extrapolating the short-time tritium release tests to a longer time scale, also long-time annealing experiments with beryllium samples from the SIBELIUS irradiation. have been carried out at the Forschungszentrum Karlsruhe. Samples were annealed up to 12 months at temperatures up to 650{degrees}C. The inventory after annealing was determined by heating the samples up to 1050{degrees}C with a He+0.1 vo1% H{sub 2} purge gas. Furthermore, in order to investigate the likely effects of cracks formation eventually causing a faster tritium release from beryllium, the behaviour of samples irradiated at low temperature (40-50{degrees}C) but up to very high fast neutron fluences (0.8-3.9{center_dot}10{sup 22} cm{sup -2}, E{sub n}{ge}1 MeV) in the BR2 reactor has been investigated. Tritium was released by heating the beryllium samples up to 1050{degrees}C and purging them with He+0.1 vo1% H{sub 2}. Tritium release from high-irradiated beryllium samples showed a much faster kinetics than from the low-irradiated ones, probably because of crack formation caused by thermal stresses in the brittle material and/or by helium bubbles migration. The obtained experimental data have been compared with predictions of the code ANFIBE with the goal to better understand the physical mechanisms governing tritium behaviour in beryllium and to assess the prediction capabilities of the code.

  16. Physical properties of beryllium oxide - Irradiation effects; Proprietes physiques et caracteristiques mecaniques de l'oxyde de beryllium fritte - Effet de l'irradiation et guerison

    Elston, J.; Caillat, R. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires


    This work has been carried out in view of determining several physical properties of hot-pressed beryllium oxide under various conditions and the change of these properties after irradiation. Special attention has been paid on to the measurement of the thermal conductivity coefficient and thermal diffusivity coefficient. Several designs for the measurement of the thermal conductivity coefficient have been achieved. They permit its determination between 50 and 300 deg. C, between 400 and 800 deg. C. Some measurements have been made above 1000 deg. C. In order to measure the thermal diffusivity coefficient, we heat a perfectly flat surface of a sample in such a way that the heat flux is modulated (amplitude and frequency being adjustable). The thermal diffusivity coefficient is deduced from the variations of temperature observed on several spots. Tensile strength; compressive strength; expansion coefficient; sound velocity and crystal parameters have been also measured. Some of the measurements have been carried out after neutron irradiation. Some data have been obtained on the change of the properties of beryllium oxide depending on the integrated neutron flux. (author)Fren. [French] L'objet de cette etude est la determination de plusieurs proprietes physiques de l'oxyde de beryllium fritte sous charge dans differentes conditions et l'evolution de ces proprietes apres irradiation. Une attention particuliere a ete portee sur la mesure de la conductibilite et de la diffusivite thermiques. Differents montages ont ete realises pour mesurer la conductibilite thermique. Ils permettent la determination entre 50 et 300 deg. C, entre 400 et 800 deg. C; quelques mesures ont ete faites au-dessus de 1000 deg. C. Pour la mesure du coefficient de diffusivite thermique, on realise une attaque thermique, de frequence et d'amplitude reglables d'une face parfaitement plane d'un echantillon d'oxyde de beryllium. Les variations de temperature sont

  17. Helium analyses of 1-mm beryllium microspheres from COBRA-1A2

    Oliver, B.M. [Pacific Northwest National Lab., Richland, WA (United States)


    Multiple helium analyses on four beryllium microspheres irradiated in the Experimental Breeder Reactor-II (EBR-II) at Argonne National Laboratory-West (ANL-W), are reported. The purpose of the analyses was to determine the total helium content of the beryllium, and to determine the helium release characteristics of the beryllium as a function of time and temperature. For the helium release measurements, sequential helium analyses were conducted on two of the samples over a temperature range from 500 C to 1100 C in 100 C increments. Total helium measurements were conducted separately using the normal analysis method of vaporizing the material in a single analysis run. Observed helium release in the two beryllium samples was nonlinear with time at each temperature interval, with each step being characterized by a rather rapid initial release rate, followed by a gradual slowing of the rate over time. Sample Be-C03-1 released virtually all of its helium after approximately 30 minutes at 1000 C, reaching a final value of 2722 appm. Sample Be-D03-1, on the other hand, released only about 62% of its helium after about 1 hour at 1100 c, reaching a final value of 1519 appm. Combining these results with subsequent vaporization runs on the two samples, yielded total helium concentrations of 2724 and 2459 appm. Corresponding helium concentrations measured in the two other C03 and D03 samples, by vaporization alone, were 2941 and 2574 appm. Both sets of concentrations are in reasonable agreement with predicted values of 2723 and 2662 appm. Helium-3 levels measured during the latter two vaporization runs were 2.80 appm for Be-C03-2, and 2.62 appm for Be-D03-2. Calculated {sup 3}He values are slightly lower at 2.55 and 2.50 appm, respectively, suggesting somewhat higher tritium levels in the beryllium than predicted.

  18. Validation of a standardised method for determining beryllium in human urine at nanogram level.

    Devoy, Jérôme; Melczer, Mathieu; Antoine, Guillaume; Remy, Aurélie; Heilier, Jean-François


    The potential toxicity of beryllium at low levels of exposure means that a biological and/or air monitoring strategy may be required to monitor the exposure of subjects. The main objective of the work presented in this manuscript was to develop and validate a sensitive and reproducible method for determining levels of beryllium in human urine and to establish reference values in workers and in non-occupationally exposed people. A chelate of beryllium acetylacetonate formed from beryllium(II) in human urine was pre-concentrated on a SPE C18 cartridge and eluted with methanol. After drying the eluate, the residue was solubilised in nitric acid and analysed by atomic absorption spectrometry and/or inductively coupled plasma mass spectrometry. The proposed method is 4 to 100 times more sensitive than other methods currently in routine use. The new method was validated with the concordance correlation coefficient test for beryllium concentrations ranging from 10 to 100 ng/L. Creatinine concentration, urine pH, interfering compounds and freeze-thaw cycles were found to have only slight effects on the performance of the method (less than 6%). The effectiveness of the two analytical techniques was compared statistically with each other and to direct analysis techniques. Even with a detection limit of 0.6 ng/L (obtained with inductively coupled plasma mass spectrometry), the method is not sensitive enough to detect levels in non-occupationally exposed persons. The method performance does however appear to be suitable for monitoring worker exposure in some industrial settings and it could therefore be of use in biological monitoring strategies.

  19. Computational evaluation of unsaturated carbonitriles as neutral receptor model for beryllium(II) recognition.

    Rosli, Ahmad Nazmi; Ahmad, Mohd Rais; Alias, Yatimah; Zain, Sharifuddin Md; Lee, Vannajan Sanghiran; Woi, Pei Meng


    Design of neutral receptor molecules (ionophores) for beryllium(II) using unsaturated carbonitrile models has been carried out via density functional theory, G3, and G4 calculations. The first part of this work focuses on gas phase binding energies between beryllium(II) and 2-cyano butadiene (2-CN BD), 3-cyano propene (3-CN P), and simpler models with two separate fragments; acrylonitrile and ethylene. Interactions between beryllium(II) and cyano nitrogen and terminal olefin in the models have been examined in terms of geometrical changes, distribution of charge over the entire π-system, and rehybridization of vinyl carbon orbitals. NMR shieldings and vibrational frequencies probed charge centers and strength of interactions. The six-membered cyclic complexes have planar structures with the rehybridized carbon slightly out of plane (16° in 2-CN BD). G3 results show that in 2-CN BD complex participation of vinyl carbon further stabilizes the cyclic adduct by 16.3 kcal mol(-1), whereas, in simpler models, interaction between beryllium(II) and acetonitrile is favorable by 46.4 kcal mol(-1) compared with that of ethylene. The terminal vinyl carbon in 2-CN BD rehybridizes to sp (3) with an increase of 7 % of s character to allow interaction with beryllium(II). G4 calculations show that the Be(II) and 2-CN BD complex is more strongly bound than those with Mg(II) and Ca(II) by 98.5 and 139.2 kcal mol(-1) (-1), respectively. QST2 method shows that the cyclic and acyclic forms of Be(II)-2-CN BD complexes are separated by 12.3 kcal mol(-1) barrier height. Overlap population analysis reveals that Ca(II) can be discriminated based on its tendency to form ionic interaction with the receptor models.

  20. Growth, Antimony Incorporation Behaviour and Beryllium Doping of GaAs1-ySby Grown on GaAs by Molecular Beam Epitaxy

    GAO Han-Chao; WANG Wen-Xin; JIANG Zhong-Wei; LIU Jian; YANG Cheng-Liang; WU Dian-Zhong; ZHOU Jun-Ming; CHEN Hong


    @@ A series of GaAs1-ySby epilayers are grown on GaAs substrates under different growth conditions, Different antimony compositions of samples with beryllium doping are obtained.A non-equilibrium thermodynamics model is used to calibrate and fit the Sb composition.Activation energy of 0.37eV for the dissociation process of Sb4 molecules is obtained.Carrier mobility and concentration of samples are influenced by the Sb composition.Quasi-qualitative analysis of mobility is used to explain the relations among Sb composition, carrier mobility and concentration.High resolution x-ray diffraction (HRXRD) rocking curves and Hall effects measurements are used to determine the crystal quality, carrier mobility and concentration.

  1. Systematic Study on Triaxial Superdeformed Bands of Hf Isotopes

    ZHANG Da-Li; DING Bin-Gang


    Properties of the triaxial superdeformed (TSD) bands of Hf isotopes are investigated systematically within the supersymmetry scheme including many-body interactions and a perturbation possessing the SO(5) (or SU(5)) symmetry on the rotational symmetry. Quantitatively good results of the γ-ray energies, the dynamical moments of inertia,and the spin of the TSD bands in Hf isotopes are obtained. It shows that this approach is quite powerful in describing the properties of the triaxial superdeformation in Hf isotopes.

  2. Thermal neutron capture cross sections of tellurium isotopes

    Tomandl, I.; Honzátko, J.; von Egidy, T.; Wirth, H.-F.; Belgya, T.; Lakatos, M.; Szentmiklósi, L.; Révay, Zs.; Molnár, G. L.; Firestone, R. B.; Bondarenko, V.


    New values for thermal neutron capture cross sections of the tellurium isotopes 122 Te , 124 Te , 125 Te , 126 Te , 128 Te , and 130 Te are reported. These values are based on a combination of newly determined partial γ -ray cross sections obtained from experiments on targets contained natural Te and γ intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given.

  3. Thermal neutron capture cross sections of tellurium isotopes

    Tomandl, I.; Honzatko, J.; von Egidy, T.; Wirth, H.-F.; Belgya, T.; Lakatos, M.; Szentmiklosi, L.; Revay, Zs.; Molnar, G.L.; Firestone, R.B.; Bondarenko, V.


    New values for thermal neutron capture cross sections of the tellurium isotopes 122Te, 124Te, 125Te, 126Te, 128Te, and 130Te are reported. These values are based on a combination of newly determined partial g-ray cross sections obtained from experiments on targets contained natural Te and gamma intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given.

  4. Response of avalanche photo-diodes of the CMS Electromagnetic Calorimeter to neutrons from an Americium-Beryllium source.

    Deiters, Konrad; Renker, Dieter


    The response of avalanche photo-diodes (APDs) used in the CMS Electromagnetic Calorimeter to low energy neutrons from an Americium-Beryllium source is reported. Signals due to recoil protons from neutron interactions with the hydrogen nuclei in the protective epoxy layer, mainly close to the silicon surface of the APD, have been identified. These signals increase in size with the applied bias voltage more slowly than the nominal gain of the APDs, and appear to have a substantially lower effective gain at the operating voltage. The signals originating from interactions in the epoxy are mostly equivalent to signals of a few GeV in CMS, but range up to a few tens of GeV equivalent. There are also signals not attributed to reactions in the epoxy extending up to the end of the range of these measurements, a few hundreds of GeV equivalent. Signals from the x-rays from the source can also be in the GeV equivalent scale in CMS. Simulations used to describe events due to particle interactions in the APDs need to take ...

  5. Stable isotope studies

    Ishida, T.


    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs.

  6. Extremely low-outgassing material: 0.2% beryllium copper alloy

    Watanabe, Fumio


    Exploration for low-outgassing materials for use in ultrahigh vacuum and extreme high-vacuum systems is one of the most important topics of a vacuum researcher. We have found that a copper alloy containing 0.2% beryllium (0.2% BeCu) can attain an extremely low hydrogen outgassing rate of 10-14 Pa (H2) m/s order. Almost the entire surface of 0.2% BeCu is dominated by a BeO layer, after a 400 °C×72 h prebakeout treatment in an ultrahigh vacuum. This layer functions as a barrier to the processes of oxidization and permeation of hydrogen. In addition, this layer resists carbon contamination. Temperature-programmed desorption spectra show only a single peak for water at 150 °C and small quantities of any other desorption gases. Therefore, an in situ bakeout process in which the temperature simply ramps up to 150 °C and immediately ramps back down is enough for degassing; it does not require an ordinary sustained-temperature bakeout. Using an outgassing sample consisting of 0.2% BeCu disks housed in a 0.2% BeCu nipple chamber, a lowest outgassing rate of the 5.6×10-14 Pa (H2) m/s was measured by the pressure-rise method after pump cutoff. The pressure-rise versus time curve was completely nonlinear. It rises over time to a constant slope of 1/2 in a log-log plot, due to hydrogen diffusion from the bulk, but this requires over a week at room temperature. The hydrogen outgassing from the 0.2% BeCu bulk is completely dominated by a diffusion-limited mechanism. This article will describe why we obtain such low-outgassing rates with 0.2% BeCu. It is based on the observed surface changes with prebakeout treatment seen by x-ray photoelectron spectroscopy, and the improvement of hydrogen outgassing measurements by the pressure-rise method. A comparison is made to ordinary stainless steel. In addition, the concept of an outgassing reduction method will be discussed from a review of the published ultralow-outgassing data and reduction methods. .

  7. Compton polarimeter for 10-30 keV x rays

    Weber, S.; Beilmann, C.; Shah, C.; Tashenov, S.


    We present a simple and versatile polarimeter for x rays in the energy range of 10-30 keV. It uses Compton scattering in low-Z materials such as beryllium or boron carbide. The azimuthal distribution of the scattered x rays is sampled by an array of 12 silicon PIN diodes operated at room temperature. We evaluated the polarimetry performance using Monte-Carlo simulations and show experimental results.

  8. Compton polarimeter for 10–30 keV x rays

    Weber, S.; Beilmann, C.; Shah, C.; Tashenov, S. [Physics Institute, Heidelberg University, 69120 Heidelberg (Germany)


    We present a simple and versatile polarimeter for x rays in the energy range of 10–30 keV. It uses Compton scattering in low-Z materials such as beryllium or boron carbide. The azimuthal distribution of the scattered x rays is sampled by an array of 12 silicon PIN diodes operated at room temperature. We evaluated the polarimetry performance using Monte-Carlo simulations and show experimental results.

  9. Ultrahigh vacuum/high pressure chamber for surface x-ray diffraction experiments

    Bernard, P.; Peters, K.; Alvarez, J.; Ferrer, S.


    We describe an ultrahigh vacuum chamber that can be internally pressurized to several bars and that is designed to perform surface x-ray diffraction experiments on solid-gas interfaces. The chamber has a cylindrical beryllium window that serves as the entrance and exit for the x rays. The sample surface can be ion bombarded with an ancillary ion gun and annealed to 1200 K.

  10. Dissolution of FB-Line Residues Containing Beryllium Metal



    Scrap materials containing plutonium (Pu) metal were dissolved at the Savannah River Site (SRS) as part of a program to disposition nuclear materials during the deactivation of the FB-Line facility. Some of these items contained both Pu and beryllium (Be) metal as a composite material. The Pu and Be metals were physically separated to minimize the amount of Be associated with the Pu; however, a dissolution flowsheet was required to dissolve small amounts of Be combined with the Pu metal using a dissolving solution containing nitric acid (HNO{sub 3}) and potassium fluoride (KF). Since the dissolution of Pu metal in HNO{sub 3}/fluoride (F{sup -}) solutions was well understood, the primary focus of the flowsheet development was the dissolution of Be metal. Initially, small-scale experiments were used to measure the dissolution rate of Be metal foils using conditions effective for the dissolution of Pu metal. The experiments demonstrated that the dissolution rate was nearly independent of the HNO{sub 3} concentration over the limited range of investigation and only a moderate to weak function of the F{sup -} concentration. The effect of temperature was more pronounced, significantly increasing the dissolution rate between 40 and 105 C. The offgas analysis from three Be metal foil dissolutions demonstrated that the production of hydrogen (H{sub 2}) was sensitive to the HNO{sub 3} concentration, decreasing by a factor of approximately two when the concentration was increased from 4 to 8 M. In subsequent experiments, complete dissolution of Be samples from a Pu/Be composite material was achieved in a 4 M HNO{sub 3} solution containing 0.1-0.2 M KF. Gas samples collected during each experiment showed that the maximum H{sub 2} generation rate occurred at temperatures below 70-80 C. A Pu metal dissolution experiment was performed using a 4 M HNO{sub 3}/0.1 M KF solution at 80 C to demonstrate flowsheet conditions developed for the dissolution of Be metal. As the reaction

  11. Diffusion Bonding Beryllium to Reduced Activation Ferritic Martensitic Steel: Development of Processes and Techniques

    Hunt, Ryan Matthew

    Only a few materials are suitable to act as armor layers against the thermal and particle loads produced by magnetically confined fusion. These candidates include beryllium, tungsten, and carbon fiber composites. The armor layers must be joined to the plasma facing components with high strength bonds that can withstand the thermal stresses resulting from differential thermal expansion. While specific joints have been developed for use in ITER (an experimental reactor in France), including beryllium to CuCrZr as well as tungsten to stainless steel interfaces, joints specific to commercially relevant fusion reactors are not as well established. Commercial first wall components will likely be constructed front Reduced Activation Ferritic Martensitic (RAFM) steel, which will need to be coating with one of the three candidate materials. Of the candidates, beryllium is particularly difficult to bond, because it reacts during bonding with most elements to form brittle intermetallic compounds. This brittleness is unacceptable, as it can lead to interface crack propagation and delamination of the armor layer. I have attempted to overcome the brittle behavior of beryllium bonds by developing a diffusion bonding process of beryllium to RAFM steel that achieves a higher degree of ductility. This process utilized two bonding aids to achieve a robust bond: a. copper interlayer to add ductility to the joint, and a titanium interlayer to prevent beryllium from forming unwanted Be-Cu intermetallics. In addition, I conducted a series of numerical simulations to predict the effect of these bonding aids on the residual stress in the interface. Lastly, I fabricated and characterized beryllium to ferritic steel diffusion bonds using various bonding parameters and bonding aids. Through the above research, I developed a process to diffusion bond beryllium to ferritic steel with a 150 M Pa tensile strength and 168 M Pa shear strength. This strength was achieved using a Hot Isostatic

  12. 金属铍的应用进展%Progress in Application of Metallic Beryllium

    钟景明; 许德美; 李春光; 王战宏; 李峰; 王莉; 李志年


    This paper mainly reviews the up-to-date progress of metallic beryllium applications in nuclear reactors,iner-tial navigation system,optics,thermotics,structure parts,high-energy physics and typical commercial use in the recent 20 years,as well as gives brief introduction that excellent performances of metallic beryllium play an important role in pro-moting technology development of its application field and improving product performance and quality.Based on the range and effect of metallic beryllium application,the paper details that metallic beryllium as key strategic engineering material has given strong support to national defense,aerospace and strategic nuclear energy development.Moreover,the paper briefly introduces status of metallic beryllium applications in China,and points out that China should greatly improve the level of beryllium application in inertial navigation system and the infrared optical system,so as to enhance China′s space fighting and confrontations ability.Finally,the paper summarizes pattern of metallic beryllium market.It can be expected that metallic beryllium market is still defense,aerospace and strategic nuclear,and metallic beryllium will consistently play an important role in civil industry in future.%综述了近20年来金属Be在核能、惯性导航系统、红外光学系统、热学、结构件、高能物理学和商业等领域的最新应用进展,以及金属Be优异的性能在促进其应用领域技术进步和改进产品性能和质量中所起的重要作用。从金属Be的应用范围和效果,说明金属Be作为“战略性、关键性”工程材料,对一个国家国防、航空航天和战略核能发展所起的关键支撑作用。并简要介绍了我国金属Be的应用现状,指出我国必须大幅度提高Be在惯性导航系统和红外光学系统的应用水平,以增强我国空间争夺和对抗能力。最后,总结了世界范围内金属Be的应用市场格局,预

  13. All-solid-state continuous-wave laser systems for ionization, cooling and quantum state manipulation of beryllium ions

    Lo, H -Y; Kienzler, D; Keitch, B C; de Clercq, L E; Negnevitsky, V; Home, J P


    We describe laser systems for photoionization, Doppler cooling and quantum state manipulation of beryllium ions. For photoionization of neutral beryllium, we have developed a continuous-wave 235 nm source obtained by two stages of frequency doubling from a diode laser at 940 nm. The system delivers up to 400 mW at 470 nm and 28 mW at 235 nm. For control of the beryllium ion, three laser wavelengths at 313 nm are produced by sum-frequency generation and second-harmonic generation from four infrared fiber lasers. Up to 7.2 W at 626 nm and 1.9 W at 313 nm are obtained using two pump beams at 1051 and 1551 nm. Intensity fluctuations below 0.5 % per hour (during 8 hours of operation) have been measured at a 313 nm power of 1 W. These systems are used to load beryllium ions into a segmented ion trap.

  14. RF surface resistance of copper-on-beryllium at cryogenic temperatures measured by a 22-GHZ demountable cavity

    Liu, Jianfei; Krawczyk, F. L. (Frank L.); Kurennoy, S. (Sergey); Schrage, D. L. (Dale L.); Shapiro, A. H. (Alan H.); Tajima, T. (Tsuyoshi); Wood R. L. (Richard L.)


    A 22-GHz demountable cavity on the cold head of a compact refrigerator system was used to measure the RF performance of several coppt:r-plated Beryllium samples. The cavity inner surfce was treated by chemical polishing and heat treatment., as well as an OFE copper coupon to provide a baseline for comparison. The measured surhce resistance was reasonable and repeatable during either cooling or warming. Materials tested included four grades of Beryllium, OFE copper, alumina-dispersion strengthened copper (Glidcop), and Cu-plated versions of all of the above. Two coupons, Cuplated on Beryllium 0-30 and 1-70, offered comparable surface resistance to pure OFE copper or Cu-plated Glidcop. The RF surface resistance of Cu-on-Beryllium samples at cryogenic temperatures is reported together with that of other reference materials.

  15. Reproducibility and correctness of the procedure of photometric determination of beryllium with 2-(o-hydroxyphenyl)benzoxazole

    Tikhonova, N.B.; Charykov, A.K.; Gladilovich, D.B.


    This paper discusses two methods of evaluation of correctness on the example of the fluorometric determination of beryllium by 2-(o-hydroxyphenyl) benzoxazole (HPBO), as well as an evaluation of the reproducibility of this procedure for the level of beryllium concentration 10-36 ng/ml. The traditional method of detection and evaluation of systematic errors in chemical analysis is comparison of the average result of repeated analysis of a standard sample with specified content of the component to be determined. The second method discussed is based on an experimental estimation of the constant and proportional components of the systematic error by a combination of the methods of doubling and additives. It is shown that the fluorometric method of determining beryllium with HPBO at an absolute beryllium content of 0.25-1.0 micrograms is satisfactorily reproducible and does not contain systematic errors at the level of significance beta=0.05.

  16. Octupole strength in the neutron-rich calcium isotopes

    Riley, L A; Agiorgousis, M L; Baugher, T R; Bazin, D; Bowry, M; Cottle, P D; DeVone, F G; Gade, A; Glowacki, M T; Gregory, S D; Haldeman, E B; Kemper, K W; Lunderberg, E; Noji, S; Recchia, F; Sadler, B V; Scott, M; Weisshaar, D; Zegers, R G T


    Low-lying excited states of the neutron-rich calcium isotopes $^{48-52}$Ca have been studied via $\\gamma$-ray spectroscopy following inverse-kinematics proton scattering on a liquid hydrogen target using the GRETINA $\\gamma$-ray tracking array. The energies and strengths of the octupole states in these isotopes are remarkably constant, indicating that these states are dominated by proton excitations.

  17. The X-ray Polarimetry Explorer (XPE)

    Ramsey, Brian


    We present details of a Thomson scattering polarimeter suitable for a small-explorer- class mission. Termed XPE, for X-Ray Polarimetry Explorer, the instrument consists of a beryllium scattering cone surrounded by an annular multiwire proportional counter which registers the energy and position of scattered source photons. The polarimeter is sensitive over an energy range of 7-27 keV and will achieve 3% minimum detectable polarization of Her X-1 in a 1/2-day observation, and cover a 30-target core observation program, at the same sensitivity level, in approximately 8 months.

  18. Characteristics of microstructure and tritium release properties of different kinds of beryllium pebbles for application in tritium breeding modules

    Kurinskiy, P., E-mail: [Karlsruhe Institute of Technology, Institute for Applied Materials – Applied Materials Physics (IAM-AWP), P.O. Box 3640, Karlsruhe 76021 (Germany); Vladimirov, P.; Moeslang, A. [Karlsruhe Institute of Technology, Institute for Applied Materials – Applied Materials Physics (IAM-AWP), P.O. Box 3640, Karlsruhe 76021 (Germany); Rolli, R. [Karlsruhe Institute of Technology, Institute for Applied Materials – Materials and Biomechanics (IAM-WBM), P.O. Box 3640, Karlsruhe 76021 (Germany); Zmitko, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/Josep Pla, no. 2, Torres Diagonal Litoral, Edificio B3, Barcelona 08019 (Spain)


    Highlights: • Tritium release properties and characteristics of microstructure of beryllium pebbles having different sizes of grains were studied. • Fine-grained beryllium pebbles showed the best ability to release tritium compared to pebbles from another charges. • Be pebbles with the grain sizes exceeding 100 μm contain a great number of small pores and inclusions presumably referring to the history of material fabrication. • The sizes of grains are one of a key characteristic of microstructure which influences the parameters of tritium release. - Abstract: Beryllium pebbles with diameters of 1 mm are considered to be perspective material for the use as neutron multiplier in tritium breeding modules of fusion reactors. Up to now, the design of helium-cooled breeding blanket in ITER project foresees the use of 1 mm beryllium pebbles fabricated by NGK Insulators Ltd., Japan. It is notable that beryllium pebbles from Russian Federation and USA are also available and the possibility of their large-scale fabrication is under study. Presented work is dedicated to a study of characteristics of microstructure and parameters of tritium release of beryllium pebbles produced by Bochvar Institute, Russian Federation, and Materion Corporation, USA.

  19. Nuclear Astrophysics with rare isotopes at FRIB

    Schatz, Hendrik


    The Facility for Rare Isotope Beams (FRIB) currently under construction at Michigan State University will be one of the worlds’ most powerful accelerators to produce rare isotopes. These isotopes live only fractions of seconds, but their properties are imprinted onto the composition of the visible universe and the nature of stellar explosions. FRIB will produce for the first time many of the rare isotopes that are part of the rapid neutron capture process, responsible for the origin of heavy elements; it will measure reaction rates that govern stellar explosions such as supernovae, novae, and X-ray bursts; and it will produce the same exotic nuclei that form the crust of neutron stars. I will discuss how data from FRIB, together with new observational data, promise to address many open questions at the intersection of nuclear physics and astronomy, including the chemical evolution of our Galaxy, the nuclear energy sources of stellar explosions, and the nature of neutron stars.

  20. Seawater osmium isotope evidence for a middle Miocene flood basalt event in ferromanganese crust records

    Klemm, Veronika; Frank, Martin; Levasseur, Sylvain; Halliday, Alex N.; Hein, James R.


    Three ferromanganese crusts from the northeast, northwest and central Atlantic were re-dated using osmium (Os) isotope stratigraphy and yield ages from middle Miocene to the present. The three Os isotope records do not show evidence for growth hiatuses. The reconstructed Os isotope-based growth rates for the sections older than 10 Ma are higher than those determined previously by the combined beryllium isotope (10Be/9Be) and cobalt (Co) constant-flux methods, which results in a decrease in the maximum age of each crust. This re-dating does not lead to significant changes to the interpretation of previously determined radiogenic isotope neodymium, lead (Nd, Pb) time series because the variability of these isotopes was very small in the records of the three crusts prior to 10 Ma. The Os isotope record of the central Atlantic crust shows a pronounced minimum during the middle Miocene between 15 and 12 Ma, similar to a minimum previously observed in two ferromanganese crusts from the central Pacific. For the other two Atlantic crusts, the Os isotope records and their calibration to the global seawater curve for the middle Miocene are either more uncertain or too short and thus do not allow for a reliable identification of an isotopic minimum. Similar to pronounced minima reported previously for the Cretaceous/Tertiary and Eocene/Oligocene boundaries, possible interpretations for the newly identified middle Miocene Os isotope minimum include changes in weathering intensity and/or a meteorite impact coinciding with the formation of the Nördlinger Ries Crater. It is suggested that the eruption and weathering of the Columbia River flood basalts provided a significant amount of the unradiogenic Os required to produce the middle Miocene minimum.