WorldWideScience

Sample records for rats significantly increased

  1. St. John's wort significantly increased the systemic exposure and toxicity of methotrexate in rats

    International Nuclear Information System (INIS)

    Yang, Shih-Ying; Juang, Shin-Hun; Tsai, Shang-Yuan; Chao, Pei-Dawn Lee; Hou, Yu-Chi

    2012-01-01

    St. John's wort (SJW, Hypericum perforatum) is one of the popular nutraceuticals for treating depression. Methotrexate (MTX) is an immunosuppressant with narrow therapeutic window. This study investigated the effect of SJW on MTX pharmacokinetics in rats. Rats were orally given MTX alone and coadministered with 300 and 150 mg/kg of SJW, and 25 mg/kg of diclofenac, respectively. Blood was withdrawn at specific time points and serum MTX concentrations were assayed by a specific monoclonal fluorescence polarization immunoassay method. The results showed that 300 mg/kg of SJW significantly increased the AUC 0−t and C max of MTX by 163% and 60%, respectively, and 150 mg/kg of SJW significantly increased the AUC 0−t of MTX by 55%. In addition, diclofenac enhanced the C max of MTX by 110%. The mortality of rats treated with SJW was higher than that of controls. In conclusion, coadministration of SJW significantly increased the systemic exposure and toxicity of MTX. The combined use of MTX with SJW would need to be with caution. -- Highlights: ► St. John's wort significantly increased the AUC 0−t and C max of methotrexate. ► Coadministration of St. John's wort increased the exposure and toxicity of methotrexate. ► The combined use of methotrexate with St. John's wort will need to be with caution.

  2. St. John's wort significantly increased the systemic exposure and toxicity of methotrexate in rats

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shih-Ying [Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan (China); Juang, Shin-Hun [Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan (China); Department of Medical Research, China Medical University Hospital, Taichung, Taiwan (China); Tsai, Shang-Yuan; Chao, Pei-Dawn Lee [School of Pharmacy, China Medical University, Taichung, Taiwan (China); Hou, Yu-Chi, E-mail: hou5133@gmail.com [School of Pharmacy, China Medical University, Taichung, Taiwan (China); Department of Medical Research, China Medical University Hospital, Taichung, Taiwan (China)

    2012-08-15

    St. John's wort (SJW, Hypericum perforatum) is one of the popular nutraceuticals for treating depression. Methotrexate (MTX) is an immunosuppressant with narrow therapeutic window. This study investigated the effect of SJW on MTX pharmacokinetics in rats. Rats were orally given MTX alone and coadministered with 300 and 150 mg/kg of SJW, and 25 mg/kg of diclofenac, respectively. Blood was withdrawn at specific time points and serum MTX concentrations were assayed by a specific monoclonal fluorescence polarization immunoassay method. The results showed that 300 mg/kg of SJW significantly increased the AUC{sub 0−t} and C{sub max} of MTX by 163% and 60%, respectively, and 150 mg/kg of SJW significantly increased the AUC{sub 0−t} of MTX by 55%. In addition, diclofenac enhanced the C{sub max} of MTX by 110%. The mortality of rats treated with SJW was higher than that of controls. In conclusion, coadministration of SJW significantly increased the systemic exposure and toxicity of MTX. The combined use of MTX with SJW would need to be with caution. -- Highlights: ► St. John's wort significantly increased the AUC{sub 0−t} and C{sub max} of methotrexate. ► Coadministration of St. John's wort increased the exposure and toxicity of methotrexate. ► The combined use of methotrexate with St. John's wort will need to be with caution.

  3. Prenatal prochloraz treatment significantly increases pregnancy length and reduces offspring weight but does not affect social-olfactory memory in rats

    DEFF Research Database (Denmark)

    Dmytriyeva, Oksana; Klementiev, Boris; Berezin, Vladimir

    2013-01-01

    Metabolites of the commonly used imidazole fungicide prochloraz are androgen receptor antagonists. They have been shown to block androgen-driven development and compromise reproductive function. We tested the effect of prochloraz on cognitive behavior following exposure to this fungicide during...... the perinatal period. Pregnant Wistar rats were administered a 200mg/kg dose of prochloraz on gestational day (GD) 7, GD11, and GD15. The social recognition test (SRT) was performed on 7-week-old male rat offspring. We found an increase in pregnancy length and a significantly reduced pup weight on PND15 and PND...

  4. Increased gluconeogenesis in rats exposed to hyper-G stress

    International Nuclear Information System (INIS)

    Daligcon, B.C.; Oyama, J.; Hannak, K.

    1985-01-01

    The role of gluconeogenesis on the increase in plasma glucose and liver glycogen of rats exposed to hyper-G (radial acceleration) stress was determined. Overnight-fasted, male Sprague-Dawley rats (250-300 g) were injected i.p. with uniformly labeled 14 C lactate, alanine, or glycerol (5 μCi/rat) and immediately exposed to 3.1 G for 0.25, 0.50, and 1.0 hr. 14 C incorporation of the labeled substrates into plasma glucose and liver glycogen was measured and compared to noncentrifuged control rats injected in a similar manner. Significant increases in 14 C incorporation of all three labeled substrates into plasma glucose were observed in centrifuged rats at all exposure periods; 14 C incorporation into liver glycogen was significantly increased only at 0.50 and 1.0 hr. The i.p. administration (5 mg/100-g body wt) of 5-methoxyindole-2-carboxylic acid, a potent gluconeogenesis inhibitor, prior to centrifugation blocked the increase in plasma glucose and liver glycogen during the first hour of centrifugation. The increase in plasma glucose and liver glycogen was also abolished in adrenodemedullated rats exposed to centrifugation for 1.0 hr. Propranolol, a beta-adrenergic blocker, suppressed the increase in plasma glucose of rats exposed to centrifugation for 0.25 hr. From the results of this study, it is concluded that the initial, rapid rise in plasma glucose as well as the increase in liver glycogen of rats exposed to hyper-G stress can be attributed to an increased rate of gluconeogenesis, and that epinephrine plays a dominant role during the early stages of exposure to centrifugation. 11 references, 3 tables

  5. Isoflurane increases cardiorespiratory coordination in rats

    Science.gov (United States)

    Kabir, Muammar M.; Beig, Mirza I.; Nalivaiko, Eugene; Abbott, Derek; Baumert, Mathias

    2008-12-01

    Anesthetics such as isoflurane adversely affect heart rate. In this study we analysed the interaction between heart rhythm and respiration at different concentrations of isoflurane and ventilation rates. In two rats, the electrocardiogram (ECG) and respiratory signals were recorded under the influence of isoflurane. For the assessment of cardiorespiratory coordination, we analysed the phase locking between heart rate, computed from the R-R intervals of body surface ECG, and respiratory rate, computed from impedance changes, using Hilbert transform. The changes in heart rate, percentage of synchronization and duration of synchronized epochs at different isoflurane concentrations and ventilation rates were assessed using linear regression model. From this study it appears that the amount of phase locking between cardiac and respiratory rates increases with the increase in concentration of isoflurane. Heart rate and duration of synchronized epochs increased significantly with the increase in the level of isoflurane concentration while respiratory rate was not significantly affected. Cardiorespiratory coordination also showed a considerable increase at the ventilation rates of 50- 55 cpm in both the rats, suggesting that the phase-locking between the cardiac and respiratory oscillators can be increased by breathing at a particular respiratory frequency.

  6. Increased parathyroid expression of klotho in uremic rats

    DEFF Research Database (Denmark)

    Hofman-Bang, J.; Martuseviciene, G.; Santini, M.A.

    2010-01-01

    /6 nephrectomy rat model of secondary hyperparathyroidism. Parathyroid klotho gene expression and protein were significantly increased in severely uremic hyperphosphatemic rats, but not affected by moderate uremia and normal serum phosphorus. Calcitriol suppressed klotho gene and protein expression in severe...... secondary hyperparathyroidism, despite a further increase in plasma phosphate. Both FGFR1 IIIC and Na+/K+-ATPase gene expression were significantly elevated in severe secondary hyperparathyroidism. Parathyroid gland klotho expression and the plasma calcium ion concentration were inversely correlated. Thus......, our study suggests that klotho may act as a positive regulator of PTH expression and secretion in secondary hyperparathyroidism....

  7. Prenatal prochloraz treatment significantly increases pregnancy length and reduces offspring weight but does not affect social-olfactory memory in rats.

    Science.gov (United States)

    Dmytriyeva, Oksana; Klementiev, Boris; Berezin, Vladimir; Bock, Elisabeth

    2013-07-01

    Metabolites of the commonly used imidazole fungicide prochloraz are androgen receptor antagonists. They have been shown to block androgen-driven development and compromise reproductive function. We tested the effect of prochloraz on cognitive behavior following exposure to this fungicide during the perinatal period. Pregnant Wistar rats were administered a 200 mg/kg dose of prochloraz on gestational day (GD) 7, GD11, and GD15. The social recognition test (SRT) was performed on 7-week-old male rat offspring. We found an increase in pregnancy length and a significantly reduced pup weight on PND15 and PND40 but no effect of prenatal prochloraz exposure on social investigation or acquisition of social-olfactory memory. Copyright © 2012 Elsevier GmbH. All rights reserved.

  8. Increased glucose dependence in resting, iron-deficient rats

    International Nuclear Information System (INIS)

    Brooks, G.A.; Henderson, S.A.; Dallman, P.R.

    1987-01-01

    Rates of blood glucose and lactate turnover were assessed in resting iron-deficient and iron-sufficient (control) rats to test the hypothesis that dependence on glucose metabolism is increased in iron deficiency. Male Sprague-Dawley rats, 21 days old, were fed a diet containing either 6 mg iron/kg feed (iron-deficient group) or 50 mg iron/kg feed (iron-sufficient group) for 3-4 wk. The iron-deficient group became anemic, with hemoglobin levels of 6.4 ± 0.2 compared with 13.8 ± 0.3 g/dl for controls. Rats received a 90-min primed continuous infusion of D-[6- 3 H]glucose and sodium L-[U- 14 C]lactate via a jugular catheter. Serial samples were taken from a carotid catheter for concentration and specific activity determinations. Iron-deficient rats had significantly higher blood glucose and lactate concentrations than controls. The iron-deficient group had a significantly higher glucose turnover rate than the control group. Significantly more metabolite recycling in iron-deficient rats was indicated by greater incorporation of 14 C into blood glucose. Assuming a carbon crossover correction factor of 2, half of blood glucose arose from lactate in deficient animals. By comparison, only 25% of glucose arose from lactate in controls. Lack of a difference in lactate turnover rates between deficient rats and controls was attributed to 14 C recycling. The results indicate a greater dependence on glucose metabolism in iron-deficient rats

  9. Repeated administration of fresh garlic increases memory retention in rats.

    Science.gov (United States)

    Haider, Saida; Naz, Nosheen; Khaliq, Saima; Perveen, Tahira; Haleem, Darakhshan J

    2008-12-01

    Garlic (Allium sativum) is regarded as both a food and a medicinal herb. Increasing attention has focused on the biological functions and health benefits of garlic as a potentially major dietary component. Chronic garlic administration has been shown to enhance memory function. Evidence also shows that garlic administration in rats affects brain serotonin (5-hydroxytryptamine [5-HT]) levels. 5-HT, a neurotransmitter involved in a number of physiological functions, is also known to enhance cognitive performance. The present study was designed to investigate the probable neurochemical mechanism responsible for the enhancement of memory following garlic administration. Sixteen adult locally bred male albino Wistar rats were divided into control (n = 8) and test (n = 8) groups. The test group was orally administered 250 mg/kg fresh garlic homogenate (FGH), while control animals received an equal amount of water daily for 21 days. Estimation of plasma free and total tryptophan (TRP) and whole brain TRP, 5-HT, and 5-hydroxyindole acetic acid (5-HIAA) was determined by high-performance liquid chromatography with electrochemical detection. For assessment of memory, a step-through passive avoidance paradigm (electric shock avoidance) was used. The results showed that the levels of plasma free TRP significantly increased (P < .01) and plasma total TRP significantly decreased (P < .01) in garlic-treated rats. Brain TRP, 5-HT, and 5-HIAA levels were also significantly increased following garlic administration. A significant improvement in memory function was exhibited by garlic-treated rats in the passive avoidance test. Increased brain 5-HT levels were associated with improved cognitive performance. The present results, therefore, demonstrate that the memory-enhancing effect of garlic may be associated with increased brain 5-HT metabolism in rats. The results further support the use of garlic as a food supplement for the enhancement of memory.

  10. Moderate high fat diet increases sucrose self-administration in young rats.

    Science.gov (United States)

    Figlewicz, Dianne P; Jay, Jennifer L; Acheson, Molly A; Magrisso, Irwin J; West, Constance H; Zavosh, Aryana; Benoit, Stephen C; Davis, Jon F

    2013-02-01

    We have previously reported that a moderately high fat diet increases motivation for sucrose in adult rats. In this study, we tested the motivational, neurochemical, and metabolic effects of the high fat diet in male rats transitioning through puberty, during 5-8 weeks of age. We observed that the high fat diet increased motivated responding for sucrose, which was independent of either metabolic changes or changes in catecholamine neurotransmitter metabolites in the nucleus accumbens. However, AGRP mRNA levels in the hypothalamus were significantly elevated. We demonstrated that increased activation of AGRP neurons is associated with motivated behavior, and that exogenous (third cerebroventricular) AGRP administration resulted in significantly increased motivation for sucrose. These observations suggest that increased expression and activity of AGRP in the medial hypothalamus may underlie the increased responding for sucrose caused by the high fat diet intervention. Finally, we compared motivation for sucrose in pubertal vs. adult rats and observed increased motivation for sucrose in the pubertal rats, which is consistent with previous reports that young animals and humans have an increased preference for sweet taste, compared with adults. Together, our studies suggest that background diet plays a strong modulatory role in motivation for sweet taste in adolescent animals. Published by Elsevier Ltd.

  11. Increased oral AUC of baicalin in streptozotocin-induced diabetic rats due to the increased activity of intestinal beta-glucuronidase.

    Science.gov (United States)

    Liu, Li; Deng, Yuan-Xiong; Liang, Yan; Pang, Xiao-Yan; Liu, Xiao-Dong; Liu, Yao-Wu; Yang, Jian-Song; Xie, Lin; Wang, Guang-Ji

    2010-01-01

    The purpose of the study was to investigate the pharmacokinetics of baicalin, a major bioactive component of Scutellariae radix, in diabetic conditions. The 4-week diabetic rats were induced by intraperitoneal administration of streptozotocin. Plasma concentrations of baicalin were measured following oral (200 mg/kg) or intravenous (12 mg/kg) administration. Everted intestinal transport, intestinal mucosal metabolism of baicalin and intestinal beta-glucuronidase activity were also investigated. It was found that the diabetic condition significantly increased the exposure of baicalin following oral doses (AUC 100.77 +/- 4.16 microg x h/mL in diabetic rats vs. 48.48 +/- 7.94 microg x h/mL in normal rats). In contrast, the diabetic condition significantly decreased the exposure of baicalin following intravenous doses (AUC 11.20 +/- 2.28 microg x h/mL in diabetic rats vs. 18.02 +/- 3.45 microg x h/mL in normal rats). We also found lower apparent permeability coefficients of baicalin in the ileum of diabetic rats (8.43 x 10 (-6) +/- 2.40 x 10 (-6) cm/s in diabetic rats vs. 5.21 x 10 (-5) +/- 1.55 x 10 (-5) cm/s in normal rats). Further studies showed that the diabetic condition enhanced the hydrolysis of baicalin to baicalein in intestinal mucosal, accompanied by an increase of beta-glucuronidase activity. All these results suggested that the higher oral exposure of baicalin in diabetic rats did not result from the decreased hepatic metabolism or increased intestinal absorption of baicalin. The enhancement of intestinal beta-glucuronidase activity may partly account for the higher exposure of baicalin in diabetic rats after oral administration. Copyright Georg Thieme Verlag KG Stuttgart . New York.

  12. Long-term oral feeding of lutein-fortified milk increases voluntary running distance in rats.

    Directory of Open Access Journals (Sweden)

    Megumi Matsumoto

    Full Text Available To evaluate the effects of lutein-fortified milk administration on running exercise, a voluntary wheel-running model was performed in rats. Four-week-old F344 rats were administered test milk (10 mL/kg daily following a 4-h fasting period, and their running distances were measured each day for a 9-week period. Total weekly running distance significantly increased from the sixth week until the end of the test period in lutein-supplemented rats (lutein-fortified milk administered compared with control rats (vehicle administered. This increase was not apparent in rats administered lutein alone. In the lutein-fortified-milk exercise group compared with the sedentary control group, carnitine palitroyltransferase 1 (CPT-1, total AMP-activated protein kinase (tAMPK, and phosphorylated AMP-activated protein kinase (pAMPK contents were significantly increased in the gastrocnemius muscle, with a concomitant decrease in triglyceride and total cholesterol levels in the blood and liver. Furthermore, the lutein level in blood of lutein-administered rats significantly decreased with exercise. These results suggest that lutein-fortified milk may enhance the effect of exercise by effective utilization of lipids when combined with voluntary running.

  13. Long-term oral feeding of lutein-fortified milk increases voluntary running distance in rats.

    Science.gov (United States)

    Matsumoto, Megumi; Hagio, Masahito; Inoue, Ryo; Mitani, Tomohiro; Yajima, Masako; Hara, Hiroshi; Yajima, Takaji

    2014-01-01

    To evaluate the effects of lutein-fortified milk administration on running exercise, a voluntary wheel-running model was performed in rats. Four-week-old F344 rats were administered test milk (10 mL/kg) daily following a 4-h fasting period, and their running distances were measured each day for a 9-week period. Total weekly running distance significantly increased from the sixth week until the end of the test period in lutein-supplemented rats (lutein-fortified milk administered) compared with control rats (vehicle administered). This increase was not apparent in rats administered lutein alone. In the lutein-fortified-milk exercise group compared with the sedentary control group, carnitine palitroyltransferase 1 (CPT-1), total AMP-activated protein kinase (tAMPK), and phosphorylated AMP-activated protein kinase (pAMPK) contents were significantly increased in the gastrocnemius muscle, with a concomitant decrease in triglyceride and total cholesterol levels in the blood and liver. Furthermore, the lutein level in blood of lutein-administered rats significantly decreased with exercise. These results suggest that lutein-fortified milk may enhance the effect of exercise by effective utilization of lipids when combined with voluntary running.

  14. Both hypothyroidism and hyperthyroidism increase atrial fibrillation inducibility in rats.

    Science.gov (United States)

    Zhang, Youhua; Dedkov, Eduard I; Teplitsky, Diana; Weltman, Nathan Y; Pol, Christine J; Rajagopalan, Viswanathan; Lee, Bianca; Gerdes, A Martin

    2013-10-01

    Evidence indicates that cardiac hypothyroidism may contribute to heart failure progression. It is also known that heart failure is associated with an increased risk of atrial fibrillation (AF). Although it is established that hyperthyroidism increases AF incidence, the effect of hypothyroidism on AF is unclear. This study investigated the effects of different thyroid hormone levels, ranging from hypothyroidism to hyperthyroidism on AF inducibility in thyroidectomized rats. Thyroidectomized rats with serum-confirmed hypothyroidism 1 month after surgery were randomized into hypothyroid (N=9), euthyroid (N=9), and hyperthyroid (N=9) groups. Rats received placebo, 3.3-mg l-thyroxine (T4), or 20-mg T4 pellets (60-day release form) for 2 months, respectively. At the end of treatment, hypothyroid, euthyroid, and hyperthyroid status was confirmed. Hypothyroid animals showed cardiac atrophy and reduced cardiac systolic and diastolic functions, whereas hyperthyroid rats exhibited cardiac hypertrophy and increased cardiac function. Hypothyroidism and hyperthyroidism produced opposite electrophysiological changes in heart rates and atrial effective refractory period, but both significantly increased AF susceptibility. AF incidence was 78% in hypothyroid, 67% in hyperthyroid, and the duration of induced AF was also longer, compared with 11% in the euthyroid group (all Phyperthyroidism lead to increased AF vulnerability in a rat thyroidectomy model. Our results stress that normal thyroid hormone levels are required to maintain normal cardiac electrophysiology and to prevent cardiac arrhythmias and AF.

  15. Both Hypothyroidism and Hyperthyroidism Increase Atrial Fibrillation Inducibility in Rats

    Science.gov (United States)

    Zhang, Youhua; Dedkov, Eduard I.; Teplitsky, Diana; Weltman, Nathan Y.; Pol, Christine J.; Rajagopalan, Viswanathan; Lee, Bianca; Gerdes, A. Martin

    2014-01-01

    Background Evidence indicates that cardiac hypothyroidism may contribute to heart failure (HF) progression. It is also known that HF is associated with an increased risk of atrial fibrillation (AF). While it is established that hyperthyroidism increases AF incidence, the effect of hypothyroidism on AF is unclear. This study investigated the effects of different thyroid hormone levels, ranging from hypothyroidism to hyperthyroidism on AF inducibility in thyroidectomized rats. Methods and Results Thyroidectomized rats with serum confirmed hypothyroidism 1 month after surgery were randomized into hypothyroid (n=9), euthyroid (n=9) and hyperthyroid (n=9) groups. Rats received placebo, 3.3mg L-thyroxine (T4), or 20 mg T4 pellets (60 day release form) for 2 months, respectively. At the end of treatment, hypothyroid, euthyroid and hyperthyroid status was confirmed. Hypothyroid animals showed cardiac atrophy and reduced cardiac systolic and diastolic function, while hyperthyroid rats exhibited cardiac hypertrophy and increased cardiac function. Hypothyroidism and hyperthyroidism produced opposite electrophysiological changes in heart rates and atrial effective refractory period, but both significantly increased AF susceptibility. AF incidence was 78% in hypothyroid, 67% in hyperthyroid, and the duration of induced AF was also longer, compared with 11% in the euthyroid group (all phyperthyroidism lead to increased AF vulnerability in a rat thyroidectomy model. Our results stress that normal thyroid hormone levels are required to maintain normal cardiac electrophysiology and prevent cardiac arrhythmias and AF. PMID:24036190

  16. Increased GABA(A) inhibition of the RVLM after hindlimb unloading in rats

    Science.gov (United States)

    Moffitt, Julia A.; Heesch, Cheryl M.; Hasser, Eileen M.

    2002-01-01

    Attenuated baroreflex-mediated increases in renal sympathetic nerve activity (RSNA) in hindlimb unloaded (HU) rats apparently are due to changes within the central nervous system. We hypothesized that GABA(A) receptor-mediated inhibition of the rostral ventrolateral medulla (RVLM) is increased after hindlimb unloading. Responses to bilateral microinjection of the GABA(A) antagonist (-)-bicuculline methiodide (BIC) into the RVLM were examined before and during caudal ventrolateral medulla (CVLM) inhibition in Inactin-anesthetized control and HU rats. Increases in mean arterial pressure (MAP), heart rate (HR), and RSNA in response to BIC in the RVLM were significantly enhanced in HU rats. Responses to bilateral CVLM blockade were not different. When remaining GABA(A) inhibition in the RVLM was blocked by BIC during CVLM inhibition, the additional increases in MAP and RSNA were significantly greater in HU rats. These data indicate that GABA(A) receptor-mediated inhibition of RVLM neurons is augmented after hindlimb unloading. Effects of input from the CVLM were unaltered. Thus, after cardiovascular deconditioning in rodents, the attenuated increase in sympathetic nerve activity in response to hypotension is associated with greater GABA(A) receptor-mediated inhibition of RVLM neurons originating at least in part from sources other than the CVLM.

  17. Effect of increased magnesium intake on plasma cholesterol, triglyceride and oxidative stress in alloxan-diabetic rats.

    Science.gov (United States)

    Olatunji, L A; Soladoye, A O

    2007-06-01

    Cardiovascular disorders are the primary causes of morbidity and mortality in patients with diabetes mellitus (DM). Agents that improve lipid profile and reduce oxidative stress have been shown to reduce the ensuing risk factors. In the present study, we investigated whether increased magnesium intake could improve hyperglycaemia, dyslipidaemia, and reduce oxidative stress in alloxan-induced diabetic rats. Male Wistar rats were divided into non-diabetic (ND), diabetic (DM) and diabetic fed on a high magnesium diet (DM-Mg) groups. Plasma concentrations of thiobarbituric acid reactive substances (TBARS) were used as markers of oxidative stress. Plasma levels of ascorbic acid, magnesium and calcium were also determined. Diabetes was induced by injecting alloxan (100 mg/kg B.W). The fasting blood glucose levels were significantly lower in the DM-Mg rats than in the DM rats. Plasma total cholesterol, triglyceride, TBARS levels were significantly higher while plasma HDL-cholesterol, HDL-cholesterol/total cholesterol ratio, ascorbic acid levels were significantly lowered in DM rats compared with the ND rats. Increased intake of magnesium significantly abrogated these alterations. There were no significant differences in the plasma levels of magnesium and calcium between the DM and ND groups. However, plasma levels of magnesium but not calcium were significantly elevated in DM-Mg rats when compared with other groups. In conclusion, these results suggest that diet rich in magnesium could exert cardioprotective effect through reduced plasma total cholesterol, triglyceride, oxidative stress and ameliorated HDL-cholesterol/total cholesterol ratio as well as increased plasma ascorbic acid and magnesium in diabetic rats.

  18. Increased hepatic nicotine elimination after phenobarbital induction in the conscious rat

    International Nuclear Information System (INIS)

    Foth, H.; Walther, U.I.; Kahl, G.F.

    1990-01-01

    Elimination parameters of [14C]nicotine in conscious rats receiving nicotine (0.3 mg/kg) either intravenously or orally were studied. The oral availability of unchanged nicotine, derived by comparison of the respective areas under the concentration vs time curves (AUC), was 89%, indicating low hepatic extraction ratios of about 10%. Pretreatment of rats with phenobarbital (PB) markedly increased hepatic first-pass extraction of nicotine. The oral availability of unchanged nicotine in plasma dropped to 1.4% of the corresponding values obtained from PB-treated rats receiving nicotine iv. After PB pretreatment, the clearance of iv nicotine was increased approximately twofold over controls, much less than the observed more than ninefold increase of hepatic first-pass extraction. It is assumed that extrahepatic metabolism contributed significantly to the rapid removal of nicotine from the plasma. The elimination of cotinine, originating from nicotine administered either po or iv, was significantly increased by PB pretreatment, as determined by the ratio of corresponding AUCs. The pattern of nicotine metabolites in urine also indicated an increase in the rate of cotinine metabolic turnover. The amount of norcotinine in the organic extract of urine paralleled PB microsomal enzyme induction. The ratio between urinary concentrations of the normetabolite and cotinine correlated strongly with the PB-induced state of rat liver. This may be a suitable indicator of PB-inducible hepatic cytochrome P450 isoenzyme(s). Since smoking habits in man are feedback-regulated by nicotine plasma concentrations, a similar increase of nicotine elimination by microsomal enzyme induction in man may be of relevance for tobacco consumption

  19. Characteristics and significance of D-tagatose-induced liver enlargement in rats: An interpretative review.

    Science.gov (United States)

    Bär, A

    1999-04-01

    This review addresses the issue of asymptomatic liver enlargement in rats. It was necessitated by the observation of significantly increased liver weights in rats fed diets with 10 to 20% D-tagatose, a potential new bulk sweetener, for between 28 and 90 days. Increases of liver size without accompanying histopathological changes or impairment of organ function have been observed in rats in response to the ingestion of various xenobiotic compounds (including some food additives), changes of dietary composition (e.g. , high doses of fructose and sucrose), metabolic aberrations (e.g., diabetes), as well as normal pregnancy and lactation. The underlying mechanism(s) are not yet understood in detail but peroxisome proliferation, microsomal enzyme induction, increased storage of glycogen or lipids, and hyperfunction due to an excessive workload are well-established causes of hepatomegaly in rats. In D-tagatose- and fructose-fed rats, a treatment-related increase of hepatic glycogen storage was identified as a likely cause of the liver enlargement. Dietary levels of 5% and about 15-20% were determined as no-effect levels (NOEL) for D-tagatose- and fructose-induced liver enlargement, respectively. At doses above the NOEL, D-tagatose is about four times more efficient than fructose in inducing liver enlargement. On the other hand, the estimated intake of D-tagatose from its intended uses in food is about four times lower than the actual fructose intake. Consequently, a similar safety margin would apply for both sugars. Considering the similarity of the liver effects in rats of fructose, a safe food ingredient, and D-tagatose, the absence of histopathological changes in rats fed a diet with 20% D-tagatose for 90 days, and the absence of adverse long-term consequences of glycogen-induced liver enlargement in rats, it is concluded that the observed liver enlargement in D-tagatose-fed rats has no relevance for the assessment of human safety of this substance. Copyright 1999

  20. Cyclosporin A significantly improves preeclampsia signs and suppresses inflammation in a rat model.

    Science.gov (United States)

    Hu, Bihui; Yang, Jinying; Huang, Qian; Bao, Junjie; Brennecke, Shaun Patrick; Liu, Huishu

    2016-05-01

    Preeclampsia is associated with an increased inflammatory response. Immune suppression might be an effective treatment. The aim of this study was to examine whether Cyclosporin A (CsA), an immunosuppressant, improves clinical characteristics of preeclampsia and suppresses inflammation in a lipopolysaccharide (LPS) induced preeclampsia rat model. Pregnant rats were randomly divided into 4 groups: group 1 (PE) rats each received LPS via tail vein on gestational day (GD) 14; group 2 (PE+CsA5) rats were pretreated with LPS (1.0 μg/kg) on GD 14 and were then treated with CsA (5mg/kg, ip) on GDs 16, 17 and 18; group 3 (PE+CsA10) rats were pretreated with LPS (1.0 μg/kg) on GD 14 and were then treated with CsA (10mg/kg, ip) on GDs 16, 17 and 18; group 4 (pregnant control, PC) rats were treated with the vehicle (saline) used for groups 1, 2 and 3. Systolic blood pressure, urinary albumin, biometric parameters and the levels of serum cytokines were measured on day 20. CsA treatment significantly reduced LPS-induced systolic blood pressure and the mean 24-h urinary albumin excretion. Pro-inflammatory cytokines IL-6, IL-17, IFN-γ and TNF-α were increased in the LPS treatment group but were reduced in (LPS+CsA) group (Ppreeclampsia signs and attenuated inflammatory responses in the LPS induced preeclampsia rat model which suggests that immunosuppressant might be an alternative management option for preeclampsia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Contractions but not AICAR increase FABPpm content in rat muscle sarcolemma

    DEFF Research Database (Denmark)

    Jeppesen, Jacob; Albers, Peter; Luiken, Joost J.

    2009-01-01

    FAT/CD36 and FABPpm protein expression, measured in lysates with western blotting, by either stimulus. AMPK thr172 and ERK1/2 thr202/204 phosphorylation were significantly increased with muscle contractions (P ...In the present study, it was investigated whether acute muscle contractions in rat skeletal muscle increased the protein content of FABPpm in the plasma membrane. Furthermore, the effect of AICAR stimulation on FAT/CD36 and FABPpm protein content in sarcolemma of rat skeletal muscle was evaluated....... METHODS: Male wistar rats (150 g) were anesthetized and either subjected to in situ electrically induced contractions (hindlimb muscles: 20 min, 10-20 V, 200 ms trains, 100 Hz) or stimulated with the pharmacological activator of AMPK, AICAR. To investigate changes in the content of FABPpm and FAT/CD36...

  2. Increased Arousal Levels and Decreased Sleep by Brain Music in Rats

    Institute of Scientific and Technical Information of China (English)

    Guang-Zhan Fang; Chun-Peng Zhang; Dan Wu; Yang Xia; Yong-Xiu Lai; De-Zhong Yao

    2009-01-01

    More and more studies have been reported on whether music and other types of auditory stimulation would improve the quality of sleep.Many of these studies have found significant results,but others argue that music is not significantly better than the tones or control conditions in improving sleep.For further understanding the relationship between music and sleep or music and arousal,the present study therefore examines the effects of brain music on sleep and arousal by means of biofeedback.The music is from the transformation of rapid eye movement (REM) sleep electroencephalogram (EEG) of rats using an algorithm in the Chengdu Brain Music (CBM) system.When the brain music was played back to rats,EEG data were recorded to assess the efficacy of music to induce or improve sleep,or increase arousal levels by sleep staging,etc.Our results demonstrate that exposure to the brain music increases arousal levels and decreases sleep in rats,and the underlying mechanism of decreased non-rapid eye movement (NREM) and REM sleep may be different.

  3. Benzyl alcohol increases voluntary ethanol drinking in rats.

    Science.gov (United States)

    Etelälahti, T J; Eriksson, C J P

    2014-09-01

    The anabolic steroid nandrolone decanoate has been reported to increase voluntary ethanol intake in Wistar rats. In recent experiments we received opposite results, with decreased voluntary ethanol intake in both high drinking AA and low drinking Wistar rats after nandrolone treatment. The difference between the two studies was that we used pure nandrolone decanoate in oil, whereas in the previous study the nandrolone product Deca-Durabolin containing benzyl alcohol (BA) was used. The aims of the present study were to clarify whether the BA treatment could promote ethanol drinking and to assess the role of the hypothalamic-pituitary-adrenal-gonadal axes (HPAGA) in the potential BA effect. Male AA and Wistar rats received subcutaneously BA or vehicle oil for 14 days. Hereafter followed a 1-week washout and consecutively a 3-week voluntary alcohol consumption period. The median (± median absolute deviation) voluntary ethanol consumption during the drinking period was higher in BA-treated than in control rats (4.94 ± 1.31 g/kg/day vs. 4.17 ± 0.31 g/kg/day, p = 0.07 and 1.01 ± 0.26 g/kg/day vs. 0.38 ± 0.27 g/kg/day, p = 0.05, for AA and Wistar rats, respectively; combined effect p < 0.01). The present results can explain the previous discrepancy between the two nandrolone studies. No significant BA effects on basal and ethanol-mediated serum testosterone and corticosterone levels were observed in blood samples taken at days 1, 8 and 22. However, 2h after ethanol administration significantly (p = 0.02) higher frequency of testosterone elevations was detected in high drinking AA rats compared to low drinking Wistars, which supports our previous hypotheses of a role of testosterone elevation in promoting ethanol drinking. Skin irritation and dermatitis were shown exclusively in the BA-treated animals. Altogether, the present results indicate that earlier findings obtained with Deca-Durabolin containing BA need to be re-evaluated. Copyright © 2014 Elsevier Inc. All

  4. Food restriction prevents an age-associated increase in rat liver beta-adrenergic receptors

    Energy Technology Data Exchange (ETDEWEB)

    Dax, E.M.; Ingram, D.K.; Partilla, J.S.; Gregerman, R.I.

    1989-05-01

    In male Wistar rats fed ad libitum (24% protein, 4.5 Kcal/gm), the (/sup 125/I)iodopindolol binding capacity of the beta-adrenergic receptors in liver of 24-month-old animals is 3-4 times greater than that of 6-month-old counterparts. In rats fed the same diet, on alternate days from weaning, the receptor capacity did not increase significantly between 6 and 24 months (10.20 +/- 0.55 vs 9.20 +/- 0.72 fmol/mg) or between 24 and 30 months. This was not due to acute dietary deprivation, as rats food-restricted for only 2 weeks, at 23.5 months of age, also showed elevated receptor capacities compared to 6-month-old ad libitum fed animals. Moreover, intermittent feeding produced no significant effects among 6-month-old animals, whether restricted since weaning or for two weeks prior to sacrifice. Many biochemical parameters that decrease with aging in rats fed ad libitum are prevented by dietary restriction. Our results demonstrate that a reproducible biochemical process that increases with aging is also prevented with dietary restriction. The age-related, liver beta-receptor increase may be a potentially reliable marker for studying biochemical perturbations that modify life span.

  5. Food restriction prevents an age-associated increase in rat liver beta-adrenergic receptors

    International Nuclear Information System (INIS)

    Dax, E.M.; Ingram, D.K.; Partilla, J.S.; Gregerman, R.I.

    1989-01-01

    In male Wistar rats fed ad libitum (24% protein, 4.5 Kcal/gm), the [ 125 I]iodopindolol binding capacity of the beta-adrenergic receptors in liver of 24-month-old animals is 3-4 times greater than that of 6-month-old counterparts. In rats fed the same diet, on alternate days from weaning, the receptor capacity did not increase significantly between 6 and 24 months (10.20 +/- 0.55 vs 9.20 +/- 0.72 fmol/mg) or between 24 and 30 months. This was not due to acute dietary deprivation, as rats food-restricted for only 2 weeks, at 23.5 months of age, also showed elevated receptor capacities compared to 6-month-old ad libitum fed animals. Moreover, intermittent feeding produced no significant effects among 6-month-old animals, whether restricted since weaning or for two weeks prior to sacrifice. Many biochemical parameters that decrease with aging in rats fed ad libitum are prevented by dietary restriction. Our results demonstrate that a reproducible biochemical process that increases with aging is also prevented with dietary restriction. The age-related, liver beta-receptor increase may be a potentially reliable marker for studying biochemical perturbations that modify life span

  6. Osteoinductive potential of demineralized rat bone increases with increasing donor age from birth to adulthood

    DEFF Research Database (Denmark)

    Pinholt, E M; Solheim, E

    1998-01-01

    Demineralized allogenic bone implanted in the subcutis or muscle of rodents causes formation of heterotopic bone by osteoinduction. The osteoinductive response may be weaker in primates than in rodents. It was suggested that the osteoinductive response of demineralized bone for clinical use could...... be enhanced by using young donors, because studies have indicated that the osteoinductive response is reduced in demineralized bone of old versus young donors. However, these findings may not represent a gradual decline in the osteoinductive property of bone matrix throughout the life span. We evaluated...... quantitatively, by uptake of strontium 85, the osteoinductive effect of demineralized bone matrix from newborn, 8-week-old (adolescent), and 8-month-old (adult) male Wistar rats implanted in the abdominal muscles of 8-week-old male Wistar rats. The osteoinductive response increased significantly with increasing...

  7. Fluvastatin increases insulin-like growth factor-1 gene expression in rat model of metabolic syndrome

    International Nuclear Information System (INIS)

    Mansy, Wael H.; Sourour, Doaa A.; Shaker, Olfat G.; Mahfouz, Mahmoud M.

    2008-01-01

    Insulin-like growth factor-1 (IGF-1) was found to have a role in both glucose homeostasis and cardiovascular diseases. The present study was designed to compare the effects of fluvastatin and metformin on IGF-1 mRNA expression within the liver and other individual components of the metabolic syndrome induced in rats by high fructose feeding. Rats fed 60% fructose in diet for 6 weeks were treated daily with fluvastatin (3.75 mg/kg/day) during the last two weeks and were compared with untreated fructose fed group. Fasting levels of plasma cholesterol, triglyceride, glucose, insulin, nitric oxide products, IGF-1 mRNA within the liver as well as systolic blood pressure and body weight were determined. Compared to control rats, the fructose fed group developed hypertension, hyperlipidemia, hyperinsulinemia, hyperglycemia and endothelial dysfunction as well as decreased levels of plasma IGF-1 and its mRNA within the liver. Fructose fed rats treated with fluvastatin or metformin for 2 weeks showed significant decrease in plasma cholesterol, triglyceride, insulin and glucose levels compared to untreated fructose fed group. Also, both drugs increased significantly plasma levels of nitric oxide products and IGF-1 together with significant increase in IGF-1 mRNA within the liver. However, only metformin treated rats showed significant decrease in systolic blood pressure compared to fructose fed group. This study showed that in a rat model of insulin resistance, fluvastatin improves the metabolic profile and increases plasma level of IGF-1 and its gene expression as effective as metformin. (author)

  8. Increased methylglyoxal formation with upregulation of renin angiotensin system in fructose fed Sprague Dawley rats.

    Directory of Open Access Journals (Sweden)

    Indu Dhar

    Full Text Available The current epidemic of obesity and type 2 diabetes is attributed to a high carbohydrate diet, containing mainly high fructose corn syrup and sucrose. More than two thirds of diabetic patients have hypertension. Methylglyoxal is a highly reactive dicarbonyl generated during glucose and fructose metabolism, and a major precursor of advanced glycation end products (AGEs. Plasma methylglyoxal levels are increased in hypertensive rats and diabetic patients. Our aim was to examine the levels of methylglyoxal, mediators of the renin angiotensin system and blood pressure in male Sprague-Dawley rats treated with a high fructose diet (60% of total calories for 4 months. The thoracic aorta and kidney were used for molecular studies, along with cultured vascular smooth muscle cells (VSMCs. HPLC, Western blotting and Q-PCR were used to measure methylglyoxal and reduced glutathione (GSH, proteins and mRNA, respectively. Fructose treated rats developed a significant increase in blood pressure. Methylglyoxal level and protein and mRNA for angiotensin II, AT1 receptor, adrenergic α1D receptor and renin were significantly increased, whereas GSH levels were decreased, in the aorta and/or kidney of fructose fed rats. The protein expression of the receptor for AGEs (RAGE and NF-κB were also significantly increased in the aorta of fructose fed rats. MG treated VSMCs showed increased protein for angiotensin II, AT1 receptor, and α1D receptor. The effects of methylglyoxal were attenuated by metformin, a methylglyoxal scavenger and AGEs inhibitor. In conclusion, we report a strong association between elevated levels of methylglyoxal, RAGE, NF-κB, mediators of the renin angiotensin system and blood pressure in high fructose diet fed rats.

  9. Increased methylglyoxal formation with upregulation of renin angiotensin system in fructose fed Sprague Dawley rats.

    Science.gov (United States)

    Dhar, Indu; Dhar, Arti; Wu, Lingyun; Desai, Kaushik M

    2013-01-01

    The current epidemic of obesity and type 2 diabetes is attributed to a high carbohydrate diet, containing mainly high fructose corn syrup and sucrose. More than two thirds of diabetic patients have hypertension. Methylglyoxal is a highly reactive dicarbonyl generated during glucose and fructose metabolism, and a major precursor of advanced glycation end products (AGEs). Plasma methylglyoxal levels are increased in hypertensive rats and diabetic patients. Our aim was to examine the levels of methylglyoxal, mediators of the renin angiotensin system and blood pressure in male Sprague-Dawley rats treated with a high fructose diet (60% of total calories) for 4 months. The thoracic aorta and kidney were used for molecular studies, along with cultured vascular smooth muscle cells (VSMCs). HPLC, Western blotting and Q-PCR were used to measure methylglyoxal and reduced glutathione (GSH), proteins and mRNA, respectively. Fructose treated rats developed a significant increase in blood pressure. Methylglyoxal level and protein and mRNA for angiotensin II, AT1 receptor, adrenergic α1D receptor and renin were significantly increased, whereas GSH levels were decreased, in the aorta and/or kidney of fructose fed rats. The protein expression of the receptor for AGEs (RAGE) and NF-κB were also significantly increased in the aorta of fructose fed rats. MG treated VSMCs showed increased protein for angiotensin II, AT1 receptor, and α1D receptor. The effects of methylglyoxal were attenuated by metformin, a methylglyoxal scavenger and AGEs inhibitor. In conclusion, we report a strong association between elevated levels of methylglyoxal, RAGE, NF-κB, mediators of the renin angiotensin system and blood pressure in high fructose diet fed rats.

  10. 17β Estradiol increases resilience and improves hippocampal synaptic function in helpless ovariectomized rats

    Science.gov (United States)

    Bredemann, Teruko M.; McMahon, Lori L.

    2014-01-01

    Summary Memory impairment is the most commonly reported cognitive symptom associated with major depressive disorder. Decreased hippocampal volume and neurogenesis in depression link hippocampal dysfunction with deficits in memory. Stress decreases hippocampal dendritic spine density and long-term potentiation (LTP) at glutamate synapses, a cellular correlate of learning and memory. However, elevated plasma levels of 17β estradiol (E2) during proestrus increase hippocampal structure and function, directly opposing the negative consequences of stress. In women, significant fluctuations in ovarian hormones likely increase vulnerability of hippocampal circuits to stress, potentially contributing to the greater incidence of depression compared to men. Using the learned helplessness model of depression and ovariectomized female rats, we investigated whether acquisition of helplessness and hippocampal synaptic dysfunction is differentially impacted by the presence or absence of plasma E2. We find that inescapable shock induces a greater incidence of helplessness in vehicle- versus E2-treated OVX rats. In the vehicle-treated group, LTP was absent at CA3-CA1 synapses in slices only from helpless rats, and CA1 spine density was decreased compared to resilient rats. In contrast, significant LTP was observed in slices from E2-treated helpless rats; importantly, spine density was not different between E2-treated helpless and resilient rats, dissociating spine density from the LTP magnitude. We also find that E2 replacement can reverse previously established helpless behavior. Thus, our results show that E2 replacement in OVX rats increases resilience and improves hippocampal plasticity, suggesting that E2 therapy may increase resilience to stress and preserve hippocampal function in women experiencing large fluctuations in plasma estrogen levels. PMID:24636504

  11. Wheat aleurone polyphenols increase plasma eicosapentaenoic acid in rats

    Directory of Open Access Journals (Sweden)

    Fayçal Ounnas

    2014-08-01

    Full Text Available Methods: These studies were designed to assess whether wheat polyphenols (mainly ferulic acid [FA] increased the very-long-chain omega-3 fatty acids (VLC n-3 [eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA] in rats. Wheat aleurone (WA was used as a dietary source of wheat polyphenols. Two experiments were performed; in the first one, the rats were fed WA or control pellets (CP in presence of linseed oil (LO to provide alpha-linolenic acid (ALA, the precursor of VLC n-3. In the second one, the rats were fed WA or CP in presence of control oil (CO without ALA. The concentrations of phenolic acid metabolites in urine were also investigated. Results: The urinary concentration of conjugated FA increased with WA ingestion (p<0.05. Plasma EPA increased by 25% (p<0.05 with WA in the CO group but not in the LO group. In contrast, there was no effect of WA on plasma DHA and omega-6 fatty acids (n-6. Finally, both n-3 and n-6 in the liver remained unchanged by the WA. Conclusion: These results suggest that WA consumption has a significant effect on EPA in plasma without affecting n-6. Subsequent studies are required to examine whether these effects may explain partly the health benefits associated with whole wheat consumption.

  12. Cinnabar-Induced Subchronic Renal Injury Is Associated with Increased Apoptosis in Rats

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2015-01-01

    Full Text Available The aim of this study was to explore the role of apoptosis in cinnabar-induced renal injury in rats. To test this role, rats were dosed orally with cinnabar (1 g/kg/day for 8 weeks or 12 weeks, and the control rats were treated with 5% carboxymethylcellulose solution. Levels of urinary mercury (UHg, renal mercury (RHg, serum creatinine (SCr, and urine kidney injury molecule 1 (KIM-1 were assessed, and renal pathology was analyzed. Apoptotic cells were identified and the apoptotic index was calculated. A rat antibody array was used to analyze expression of cytokines associated with apoptosis. Results from these analyses showed that UHg, RHg, and urine KIM-1, but not SCr, levels were significantly increased in cinnabar-treated rats. Renal pathological changes in cinnabar-treated rats included vacuolization of tubular cells, formation of protein casts, infiltration of inflammatory cells, and increase in the number of apoptotic tubular cells. In comparison to the control group, expression of FasL, Fas, TNF-α, TRAIL, activin A, and adiponectin was upregulated in the cinnabar-treated group. Collectively, our results suggest that prolonged use of cinnabar results in kidney damage due to accumulation of mercury and that the underlying mechanism involves apoptosis of tubular cells via a death receptor-mediated pathway.

  13. Significance of glucagon for insulin secretion and hepatic glycogenolysis during exercise in rats

    DEFF Research Database (Denmark)

    Richter, Erik; Galbo, H; Holst, J J

    1981-01-01

    The significance of glucagon and of the sympatho-adrenal system for insulin secretion and hepatic glycogen depletion during exercise was studied. Male rats were either adrenodemedullated and chemically sympathectomized with 6-hydroxydopamine (SX) or sham-treated (C). During light ether anesthesia......, cardiac blood for glucose analysis and a biopsy of the liver were obtained, and either antigen-stripped glucagon antibodies (A) or control gamma globulins (N) in saline were injected through the cardiac cannula. Subsequently, the rats swam in tepid water (33-34 degree C) for 100 minutes with a tail weight...... attached (2% of body weight). Then cardiac blood was drawn for analysis of glucose, insulin and glucagon, and a sample of the liver was collected. In both CA and CN rats, the blood glucose concentration tended to increase (p less than 0.1) during exercise, whereas hepatic glycogen depletion and the plasma...

  14. Treatment with acarbose, an alpha-glucosidase inhibitor, reduces increased albumin excretion in streptozotocin-diabetic rats.

    Science.gov (United States)

    Cohen, M P; Vasselli, J R; Neuman, R G; Witt, J

    1995-10-01

    1. We examined the effect of the alpha-glucosidase inhibitor acarbose on urinary albumin excretion (UAE) in streptozotocin diabetic rats. 2. Treatment with acarbose for 8 weeks after induction of diabetes prevented the significant increase in UAE observed in untreated diabetic rats relative to nondiabetic controls. 3. Acarbose significantly reduced integrated glycemia, which correlated with albumin excretion rates, and exerts a salutary effect on diabetic renal dysfunction.

  15. Genomic and metabolic disposition of non-obese type 2 diabetic rats to increased myocardial fatty acid metabolism.

    Directory of Open Access Journals (Sweden)

    Sriram Devanathan

    Full Text Available Lipotoxicity of the heart has been implicated as a leading cause of morbidity in Type 2 Diabetes Mellitus (T2DM. While numerous reports have demonstrated increased myocardial fatty acid (FA utilization in obese T2DM animal models, this diabetic phenotype has yet to be demonstrated in non-obese animal models of T2DM. Therefore, the present study investigates functional, metabolic, and genomic differences in myocardial FA metabolism in non-obese type 2 diabetic rats. The study utilized Goto-Kakizaki (GK rats at the age of 24 weeks. Each rat was imaged with small animal positron emission tomography (PET to estimate myocardial blood flow (MBF and myocardial FA metabolism. Echocardiograms (ECHOs were performed to assess cardiac function. Levels of triglycerides (TG and non-esterified fatty acids (NEFA were measured in both plasma and cardiac tissues. Finally, expression profiles for 168 genes that have been implicated in diabetes and FA metabolism were measured using quantitative PCR (qPCR arrays. GK rats exhibited increased NEFA and TG in both plasma and cardiac tissue. Quantitative PET imaging suggests that GK rats have increased FA metabolism. ECHO data indicates that GK rats have a significant increase in left ventricle mass index (LVMI and decrease in peak early diastolic mitral annular velocity (E' compared to Wistar rats, suggesting structural remodeling and impaired diastolic function. Of the 84 genes in each the diabetes and FA metabolism arrays, 17 genes in the diabetes array and 41 genes in the FA metabolism array were significantly up-regulated in GK rats. Our data suggest that GK rats' exhibit increased genomic disposition to FA and TG metabolism independent of obesity.

  16. Long-Term Oral Feeding of Lutein-Fortified Milk Increases Voluntary Running Distance in Rats

    OpenAIRE

    Matsumoto, Megumi; Hagio, Masahito; Inoue, Ryo; Mitani, Tomohiro; Yajima, Masako; Hara, Hiroshi; Yajima, Takaji

    2014-01-01

    To evaluate the effects of lutein-fortified milk administration on running exercise, a voluntary wheel-running model was performed in rats. Four-week-old F344 rats were administered test milk (10 mL/kg) daily following a 4-h fasting period, and their running distances were measured each day for a 9-week period. Total weekly running distance significantly increased from the sixth week until the end of the test period in lutein-supplemented rats (lutein-fortified milk administered) compared wit...

  17. Hyperthyroidism results in increased glycolytic capacity in the rat heart. A 31P-NMR study.

    Science.gov (United States)

    Seymour, A M; Eldar, H; Radda, G K

    1990-11-12

    We have investigated the metabolic adaptations that occur in the thyroxine-treated rat heart. Rats were made hyperthyroid by daily intra-peritoneal injections of thyroxine (35 micrograms/100 g body weight) over seven days. 31P-NMR investigations of isolated glucose-perfused isometric hearts showed that thyroxine treatment caused an increase in Pi (from 4.9 mumols.(g dry wt.)-1 in control hearts to 11.7 mumols.(g dry wt.)-1 in hyperthyroid hearts), a decrease in phosphocreatine (from 36.5 mumols.(g dry wt.)-1 to 21.8 mumols.(g dry wt.)-1) with no change in ATP or ADP concentrations under the same conditions of cardiac work. The unidirectional exchange flux Pi----ATP was measured by saturation transfer NMR in hyperthyroid rat hearts. This exchange (which has been shown to contain a significant glycolytic component) increased by 2.2-fold in thyroxine-treated hearts in comparison to control hearts (to 3.6 mumols.(g dry wt.)-1.s-1, from 1.6 mumols.(g dry wt.)-1.s-1). In parallel experiments, NMR analysis of extracts from hyperthyroid rat hearts showed significantly elevated levels of glucose 6-phosphate, and fructose 6-phosphate. Measurements of enzyme activities isolated from hyperthyroid and control tissue showed a 40% increase in phosphofructokinase activity. These data together with the increased concentration of Pi show that both glycolytic and glycogenolytic fluxes are increased in the hyperthyroid rat heart. This metabolic adaptation may be necessary to cope with the increased number and activity of Na+/K(+)-ATPase pumps that occur in response to thyroxine treatment.

  18. Blockage of High-Affinity Choline Transporter Increases Visceral Hypersensitivity in Rats with Chronic Stress

    Science.gov (United States)

    2018-01-01

    Background Visceral hypersensitivity is a common feature of irritable bowel syndrome. Cholinergic system involves in the development of visceral hypersensitivity, and high-affinity choline transporter (CHT1) is of crucial importance in choline uptake system. However, involvement of CHT1 in visceral hypersensitivity remains unknown. The research aimed to study the CHT1 expression in dorsal root ganglions (DRGs) and the role of CHT1 in visceral hypersensitivity. Methods Repetitive water avoidance stress (WAS) was used to induce visceral hypersensitivity in rats. Colorectal distension (CRD) was determined, and the abdominal withdrawal reflex (AWR) and threshold intensity data were recorded to measure the visceral sensitivity. After intraperitoneal injection of hemicholinium-3 (HC-3), the specific inhibitor of CHT1, CRD data were also recorded. The CHT1 expression of DRGs was investigated by Western blotting, immunohistochemistry, and quantitative RT-PCR. Acetylcholine levels in the DRGs were detected by the assay kit. Results Repetitive WAS increased the AWR score of CRD at high distension pressure and decreased the mean threshold of rats. The CHT1 expression and acetylcholine concentration of DRG were significantly increased in WAS rats. After the administration of HC-3, the AWR score in WAS group was significantly increased at higher distension pressure while the threshold intensity was significantly reduced compared to the normal saline group. Acetylcholine concentration was significantly lower than the normal saline rats. Conclusion Our research firstly reports that CHT1 is overexpressed in noninflammatory visceral hypersensitivity, and blockage of CHT1 can enhance the visceral hypersensitivity. CHT1 may play an inhibitory role in visceral hypersensitivity. PMID:29849603

  19. Apelin-13 increased food intake with serum ghrelin and leptin levels in male rats.

    Science.gov (United States)

    Saral, S; Alkanat, M; Sumer, A; Canpolat, S

    2018-01-01

    In this study, we aimed to explain the role of apelin-13 on body weight, food and water intake with serum leptin, ghrelin, neuropeptid Y (NPY) and peptid YY (PYY) levels in male rat. Thirty-two Sprague-Dawley male rats were used for the study. The rats were injected SP (0.9 %) intraperitoneally (i.p) in the control group and 30 (AP30), 100 (AP100) and 300 (AP300) µg/kg apelin-13 in the study groups, respectively, 10 min before the transition to dark period, for 10 days. During the experimental period, with light and dark periods of food and water intake, body weights were recorded in rats. Rats were euthanized and serum samples were obtained. In serum samples leptin, ghrelin, NPY and PYY levels were measured with specific ELISA kit. Apelin-13 was increased body weights in all three (AP30, AP100 and AP300) groups compared with the control group. AP100 and AP300 groups had increased food intake in the dark and the cumulative period, but in the light period food intake values were not significantly increased (p > 0.05). As for the value of water intake, compared with the control group, all dose of apelin-13 increased water intake during the dark and the cumulative period. There was no significant change in water intake in the light period. On the other hand, compared with the control group, serum leptin levels were found to increase in the groups administered 100 and 300 µg/kg of apelin-13 (p Ghrelin levels were found high in all groups treated with apelin-13. Serum levels of NPY decreased only in the 300 µg/kg apelin-13 treated group (p 0.05). Apelin-13 increases body weight in rats as well as food and water intake (dark and cumulative period). Additionally, ghrelin can mediate the orexigenic effect of apelin-13 in the regulation of food intake (Fig. 4, Ref. 37).

  20. Perineuronal nets increase inhibitory GABAergic currents during the critical period in rats

    Directory of Open Access Journals (Sweden)

    Zheng-Qin Yin

    2013-04-01

    Full Text Available AIM: To investigate inhibitory γ-aminobutyric acid (GABA ergic postsynaptic currents (IPSCs and postsynaptic currents (PSCs in layer IV of the rat visual cortex during the critical period and when plasticity was extended through dissolution of the perineuronal nets (PNNs.METHODS:We employed 24 normal Long-Evans rats to study GABAA-PSC characteristics of neurons within layer IV of the visual cortex during development. The animals were divided into six groups of four rats according to ages at recording:PW3 (P21-23d, PW4 (P28-30d, PW5 (P35-37d, PW6 (P42-44d, PW7 (P49-51d, and PW8 (56-58d. An additional 24 chondroitin sulfate proteoglycan (CSPG degradation rats (also Long-Evans were generated by making a pattern of injections of chondroitinase ABC (chABC into the visual cortex 1 week prior to recording at PW3, PW4, PW5, PW6, PW7, and PW8. Immunohistochemistry was used to identify the effect of chABC injection on CSPGs. PSCswere detected with whole-cell patch recordings, and GABAA receptor-mediated IPSCs were pharmacologically isolated.RESULTS:IPSC peak current showed a strong rise in the age-matched control group, peaked at PW5 and were maintained at a roughly constant value thereafter. Although there was a small increase in peak current for the chABC group with age, the peak currents continued to decrease with the delayed highest value at PW6, resulting in significantly different week-by-week comparison with normal development. IPSC decay time continued to increase until PW7 in the control group, while those in the chABC group were maintained at a stable level after an initial increase at PW4. Compared with normal rats, the decay times recorded in the chABC rats were always shorter, which differed significantly at each age. We did not observe any differences in IPSC properties between the age-matched control and penicillinase (P-ase group.However, the change in IPSCs after chABC treatment was not reflected in the total PSCs or in basic membrane

  1. Increased albumin permeation in eyes, aorta, and kidney of hypertensive rats fed galactose

    International Nuclear Information System (INIS)

    Tilton, R.G.; LaRose, L.; Chang, K.; Weigel, C.J.; Williamson, J.R.

    1986-01-01

    These experiments were undertaken to determine whether ingestion of galactose increases albumin permeation in the vasculature of hypertensive rats. 50% dextrin (control) or 50% galactose diets were fed to unilaterally nephrectomized, male Sprague-Dawley rats weighing 200 g. Hypertension (systolic pressure >175 mmHg) was induced by weekly IM injections of 25 mg/kg DOCA and 1% saline drinking water; 3 months later 125 I-albumin permeation was assessed in whole eyes, aorta and kidneys. 125 I-albumin permeation was significantly increased in all 3 tissues of hypertensive rats (n = 9) vs controls (n = 9): aorta (3.30 +/- 0.19 (SD) vs 2.87 +/- 0.14), eye (3.15 +/- 0.14 vs 2.59 +/- 0.11), and kidney (6.58 +/- 0.63 vs 3.85 +/- 0.50). Albumin permeation was increased still further in hypertensive rats fed the galactose diet (n = 8): aorta (3.75 +/- 0.38), eye (3.82 +/- 0.17), and kidney (10.74 +/- 3.13). Hypertension +/- galactose feeding had no effect on albumin permeation in lung, skin, or brain. These findings indicate that: (1) hypertension increases albumin permeation in vessels affected by diabetic vascular diseases, and 2) hypertension-induced increases in albumin permeation are increased still further by galactose ingestion, presumably mediated by imbalances in polyol/insitol metabolism (analogous to those induced by diabetes) independent of hyperglycemia and/or insulinopenia

  2. Genistein induces estrogen-like effects in ovariectomized rats but fails to increase cardiac GLUT4 and oxidative stress.

    Science.gov (United States)

    Al-Nakkash, Layla; Markus, Brandon; Batia, Lyn; Prozialeck, Walter C; Broderick, Tom L

    2010-12-01

    This study aimed to determine whether a 2-week genistein treatment induced estrogen-like effects in ovariectomized (OVX) Sprague-Dawley rats, after 2 weeks of subcutaneous genistein injections (250 mg/kg of body weight/day). Uterine weight, uterine-to-body weight ratio, femur weight, and femur-to-body weight ratio were all significantly increased with genistein in OVX rats. Body weight was significantly decreased with genistein in OVX rats. Genistein had no effect on the weights of heart, heart-to-body ratio, and fat pad but significantly decreased heart rate and pulse pressure. Genistein had no effect on cardiac GLUT4 protein, oxidative stress, plasma glucose, nonesterified fatty acids, or low-density lipoprotein levels; however, plasma insulin levels were significantly increased. Our results show that a 2-week genistein treatment produced favorable estrogen-like effects on some physical and physiological characteristics in OVX rats. However, based on our experimental conditions, the effects of genistein were not associated with changes in cardiac GLUT4 or oxidative stress.

  3. Blockage of High-Affinity Choline Transporter Increases Visceral Hypersensitivity in Rats with Chronic Stress

    Directory of Open Access Journals (Sweden)

    Chen Zhao

    2018-01-01

    Full Text Available Background. Visceral hypersensitivity is a common feature of irritable bowel syndrome. Cholinergic system involves in the development of visceral hypersensitivity, and high-affinity choline transporter (CHT1 is of crucial importance in choline uptake system. However, involvement of CHT1 in visceral hypersensitivity remains unknown. The research aimed to study the CHT1 expression in dorsal root ganglions (DRGs and the role of CHT1 in visceral hypersensitivity. Methods. Repetitive water avoidance stress (WAS was used to induce visceral hypersensitivity in rats. Colorectal distension (CRD was determined, and the abdominal withdrawal reflex (AWR and threshold intensity data were recorded to measure the visceral sensitivity. After intraperitoneal injection of hemicholinium-3 (HC-3, the specific inhibitor of CHT1, CRD data were also recorded. The CHT1 expression of DRGs was investigated by Western blotting, immunohistochemistry, and quantitative RT-PCR. Acetylcholine levels in the DRGs were detected by the assay kit. Results. Repetitive WAS increased the AWR score of CRD at high distension pressure and decreased the mean threshold of rats. The CHT1 expression and acetylcholine concentration of DRG were significantly increased in WAS rats. After the administration of HC-3, the AWR score in WAS group was significantly increased at higher distension pressure while the threshold intensity was significantly reduced compared to the normal saline group. Acetylcholine concentration was significantly lower than the normal saline rats. Conclusion. Our research firstly reports that CHT1 is overexpressed in noninflammatory visceral hypersensitivity, and blockage of CHT1 can enhance the visceral hypersensitivity. CHT1 may play an inhibitory role in visceral hypersensitivity.

  4. Vildagliptin increases butyrate-producing bacteria in the gut of diabetic rats.

    Science.gov (United States)

    Zhang, Qian; Xiao, Xinhua; Li, Ming; Yu, Miao; Ping, Fan; Zheng, Jia; Wang, Tong; Wang, Xiaojing

    2017-01-01

    Emerging evidence supports a key role for the gut microbiota in metabolic diseases, including type 2 diabetes (T2D) and obesity. The dipeptidyl peptidase-4 inhibitor vildagliptin is highly efficacious in treating T2D. However, whether vildagliptin can alter the gut microbiome is still unclear. This study aimed to identify whether vildagliptin modifies the gut microbiota structure during T2D treatment. Diabetic Sprague-Dawley (SD) rats were induced by a high-fat diet and streptozotocin injection (HFD/STZ). Diabetic rats were orally administered a low dose of vildagliptin (LV, 0.01 g/kg/d vildagliptin), high dose of vildagliptin (HV, 0.02 g/kg/d vildagliptin), or normal saline for 12 weeks. Fasting blood glucose, blood glucose after glucose loading, and serum insulin levels were significantly reduced in the LV and HV groups compared with those in the T2D group. The serum GLP-1 level increased more in the vildagliptin-treated group than in the T2D group. Pyrosequencing of the V3-V4 regions of 16S rRNA genes revealed that vildagliptin significantly altered the gut microbiota. The operational taxonomic units (OTUs) and community richness (Chao1) index were significantly reduced in the vildagliptin and diabetic groups compared with those in the control group. At the phylum level, a higher relative abundance of Bacteroidetes, lower abundance of Firmicutes, and reduced ratio of Fimicutes/Bacteroidetes were observed in the vildagliptin-treated group. Moreover, vildagliptin treatment increased butyrate-producing bacteria, including Baceroides and Erysipelotrichaeae, in the diabetic rats. Moreover, Lachnospira abundance was significantly negatively correlated with fasting blood glucose levels. In conclusion, vildagliptin treatment could benefit the communities of the gut microbiota.

  5. Increased Dietary Leucine Reduces Doxorubicin-Associated Cardiac Dysfunction in Rats

    Directory of Open Access Journals (Sweden)

    Thiago M. Fidale

    2018-01-01

    Full Text Available Cardiotoxicity is one of the most significant adverse effects of the oncologic treatment with doxorubicin, which is responsible for a substantial morbid and mortality. The occurrence of heart failure with ventricular dysfunction may lead to severe cardiomyopathy and ultimately to death. Studies have focused on the effects of leucine supplementation as a strategy to minimize or revert the clinical condition of induced proteolysis by several clinical onsets. However, the impact of leucine supplementation in heart failure induced by doxorubicin is unknown. Therefore, the objective of this work is to evaluate the effects of leucine supplementation on the cardiotoxicity in the heart of rats treated with doxorubicin. Rats treated with a 7.5 mg/kg cumulative dose of doxorubicin for 14 days presented a dilatation of the left ventricle (LV, and a reduction of the ejection fraction (FE. The 5% supplementation of leucine in the rats' food prevented the malfunctioning of the LV when administered with doxorubicin. Some alterations in the extracellular matrix remodeling were confirmed by the increase of collagen fibers in the doxorubicin group, which did not increase when the treatment was associated with leucine supplementation. Leucine attenuates heart failure in this experimental model with doxorubicin. Such protection is followed by the maintenance of interstitial collagen fibers.

  6. Glucose intolerance develops prior to increased adiposity and accelerated cessation of estrous cyclicity in female growth-restricted rats

    Science.gov (United States)

    Intapad, Suttira; Dasinger, John Henry; Brown, Andrew D.; Fahling, Joel M.; Esters, Joyee; Alexander, Barbara T.

    2015-01-01

    Background The incidence of metabolic disease increases in early menopause. Low birth weight influences the age at menopause. Thus, this study tested the hypothesis that intrauterine growth restriction programs early reproductive aging and impaired glucose homeostasis in female rats. Methods Estrous cyclicity, body composition, and glucose homeostasis were determined in female control and growth-restricted rats at 6 and 12 months of age; sex steroids at 12 months. Results Glucose intolerance was present at 6 months of age prior to cessation of estrous cyclicity and increased adiposity in female growth-restricted rats. However, female growth-restricted rats exhibited persistent estrus and a significant increase in adiposity, fasting glucose and testosterone at 12 months of age (Pgrowth-restricted rats (Pgrowth programmed glucose intolerance that developed prior to early estrous acyclicity; yet, fasting glucose levels were elevated in conjunction with increased adiposity, accelerated cessation of estrous cyclicity and a shift towards testosterone excess at 12 months of age in female growth-restricted rats. PMID:26854801

  7. Vildagliptin increases butyrate-producing bacteria in the gut of diabetic rats.

    Directory of Open Access Journals (Sweden)

    Qian Zhang

    Full Text Available Emerging evidence supports a key role for the gut microbiota in metabolic diseases, including type 2 diabetes (T2D and obesity. The dipeptidyl peptidase-4 inhibitor vildagliptin is highly efficacious in treating T2D. However, whether vildagliptin can alter the gut microbiome is still unclear. This study aimed to identify whether vildagliptin modifies the gut microbiota structure during T2D treatment. Diabetic Sprague-Dawley (SD rats were induced by a high-fat diet and streptozotocin injection (HFD/STZ. Diabetic rats were orally administered a low dose of vildagliptin (LV, 0.01 g/kg/d vildagliptin, high dose of vildagliptin (HV, 0.02 g/kg/d vildagliptin, or normal saline for 12 weeks. Fasting blood glucose, blood glucose after glucose loading, and serum insulin levels were significantly reduced in the LV and HV groups compared with those in the T2D group. The serum GLP-1 level increased more in the vildagliptin-treated group than in the T2D group. Pyrosequencing of the V3-V4 regions of 16S rRNA genes revealed that vildagliptin significantly altered the gut microbiota. The operational taxonomic units (OTUs and community richness (Chao1 index were significantly reduced in the vildagliptin and diabetic groups compared with those in the control group. At the phylum level, a higher relative abundance of Bacteroidetes, lower abundance of Firmicutes, and reduced ratio of Fimicutes/Bacteroidetes were observed in the vildagliptin-treated group. Moreover, vildagliptin treatment increased butyrate-producing bacteria, including Baceroides and Erysipelotrichaeae, in the diabetic rats. Moreover, Lachnospira abundance was significantly negatively correlated with fasting blood glucose levels. In conclusion, vildagliptin treatment could benefit the communities of the gut microbiota.

  8. Ingestion of guar gum hydrolysate, a soluble fiber, increases calcium absorption in totally gastrectomized rats.

    Science.gov (United States)

    Hara, H; Suzuki, T; Kasai, T; Aoyama, Y; Ohta, A

    1999-01-01

    Gastrectomy induces osteopenia. We examined the effects of feeding a diet containing soluble dietary fiber, guar gum hydrolysate (GGH, 50 g/kg diet), on intestinal calcium absorption and bone mineralization in totally gastrectomized (Roux-en-Y esophagojejunostomy) rats by comparing them with those in two control groups (laparotomized and bypassed rats). In the bypassed rats, chyme bypassed the duodenum and upper jejunum without gastrectomy. In a second separate experiment, we compared calcium absorption and bone mineralization in the gastrectomized rats fed diets containing soluble and insoluble calcium salts and in bypassed rats fed insoluble calcium. In Experiment 1, apparent absorption of calcium supplied as a water-insoluble salt was more than 50% lower in gastrectomized rats than in the intact (laparotomized) or bypassed rats 3 wk after the start of feeding the test diets (P Calcium absorption was higher (P Experiment 2, absorption of soluble calcium in the gastrectomized rats did not differ from the absorption of calcium from calcium carbonate by bypassed rats. The soluble calcium pool in the cecal contents was significantly lower in gastrectomized rats (Experiment 1) than in intact or bypassed control rats, and was higher (P calcium absorption correlated most closely (r = 0.787, P calcium content was significantly lower in gastrectomized rats fed insoluble calcium than in bypassed rats fed the same diet, but was partially restored in the rats fed soluble calcium (Experiment 2). Bone calcium was not increased by feeding GGH in gastrectomized rats (Experiment 1). We conclude that the severely diminished calcium absorption following total gastrectomy is totally due to a decrease in calcium solubilization, and feeding GGH partially restores calcium absorption. The decrease in bone calcium that occurs as a result of gastrectomy is mainly due to diminished intestinal calcium absorption.

  9. Maternal Deprivation of Lewis Rat Pups Increases the Severity of Experi-mental Periodontitis in Adulthood.

    Science.gov (United States)

    Breivik, Torbjørn; Gundersen, Yngvar; Murison, Robert; Turner, Jonathan D; Muller, Claude P; Gjermo, Per; Opstad, Kristian

    2015-01-01

    Early life adverse events may influence susceptibility/resistance to chronic inflammatory diseases later in life by permanently dysregulating brain-controlled immune-regulatory systems. We have investigated the impact of infant-mother separation during early postnatal life on the severity of experimental periodontitis, as well as systemic stress and immune responses, in adulthood. Pups of periodontitis resistant Lewis rats were separated from their mothers for 3 h daily during postnatal days 2-14 (termed maternal deprivation; MD), separated for 15 min daily during the same time period (termed handling; HD), or left undisturbed. As adults, their behaviour was tested in a novel stressful situation, and ligature-induced periodontitis applied for 21 days. Two h before sacrifice all rats were exposed to a gram-negative bacterial lipopolysaccharide (LPS) challenge to induce a robust immune and stress response. Compared to undisturbed controls, MD rats developed significantly more periodontal bone loss as adults, whereas HD rats showed a tendency to less disease. MD and HD rats exhibited depression-like behaviour in a novel open field test, while MD rats showed higher glucocorticoid receptor (Gr) expression in the hippocampus, and HD rats had altered methylation of genes involved in the expression of hippocampal Gr. LPS provoked a significantly lower increase in circulating levels of the cytokine TGF-1β in MD and HD rats, but there were no significant differences in levels of the stress hormone corticosterone. Stressful environmental exposures in very early life may alter immune responses in a manner that influences susceptibility/resistance to periodontitis.

  10. Photic induction of Fos in the suprachiasmatic nucleus of African mole-rats: responses to increasing irradiance.

    Science.gov (United States)

    Oosthuizen, Maria K; Bennett, Nigel C; Cooper, Howard M

    2010-09-01

    African mole-rats (family Bathyergidae) are strictly subterranean rodent species that are rarely exposed to environmental light. Morphological and physiological adaptations to the underground environment include a severely reduced eye size and regressed visual system. Responses of the circadian system to light, however, appear to be intact, since mole-rats are able to entrain their circadian activity rhythms to the light-dark cycle and light induces Fos expression in the suprachiasmatic nucleus (SCN). Social organization varies from solitary species to highly elaborated eusocial structures, characterized by a distinct division of labor and in which one reproductive female regulates the behavior and reproductive physiology of other individuals in the colony. The authors studied light-induced Fos expression in the SCN to increasing light intensities in four mole-rat species, ranging from strictly solitary to highly social. In the solitary Cape mole-rat, light induces significant Fos expression in the SCN, and the number of Fos-immunopositive cells increases with increasing light intensity. In contrast, Fos induction in the SCN of social species was slightly greater than, but not statistically different from, the dark-control animals as is typical of most rodents. One species showed a trend for an increase in expression with increased light, whereas a second species showed no trend in expression. In the naked mole-rat, Fos expression appeared higher in the dark-controls than in the animals exposed to light, although the differences in Fos expression were not significant. These results suggest a gradient in the sensitivity of the circadian system to light in mole-rats, with a higher percentage of individuals that are unresponsive to light in correlation with the degree of sociality. In highly social species, such as the naked mole-rat that live in a relatively stable subterranean milieu in terms of food availability, temperature, constant darkness, and devoid of 24-h

  11. Increased periodontal bone loss in temporarily B lymphocyte-deficient rats

    DEFF Research Database (Denmark)

    Klausen, B; Hougen, H P; Fiehn, N E

    1989-01-01

    In order to study the role of T lymphocytes and B lymphocytes in the development of marginal periodontitis, experiments were performed on specific-pathogen-free (SPF) rats with various immunologic profiles. The study comprised nude (congenitally T lymphocyte-deficient), thymus-grafted nude (T-lym......-lymphocyte deficiency did not interfere with the development of periodontal disease in this model, whereas a temporary and moderate reduction in B-lymphocyte numbers seemed to predispose for aggravation of periodontal bone loss.......In order to study the role of T lymphocytes and B lymphocytes in the development of marginal periodontitis, experiments were performed on specific-pathogen-free (SPF) rats with various immunologic profiles. The study comprised nude (congenitally T lymphocyte-deficient), thymus-grafted nude (T...... had significantly less periodontal bone support than controls. Anti-mu treated inoculated rats had significantly less periodontal bone support than nude and normal rats, whereas no difference was found between normal, nude, and thymus-grafted rats. It is concluded that permanent T...

  12. Fermented soymilk increases voluntary wheel running activity and sexual behavior in male rats.

    Science.gov (United States)

    Sato, Takuya; Shinohara, Yasutomo; Kaneko, Daisuke; Nishimura, Ikuko; Matsuyama, Asahi

    2010-12-01

    Wheel running by rodents is thought to reflect voluntary exercise in humans. The present study examined the effect of fermented soymilk (FSM) on voluntary wheel running in rats. FSM was prepared from soymilk (SM) using the bacteria Leuconostoc pseudomesenteroides. The rats were fed a normal diet for 3 weeks followed by a 3-week administration of diet containing FSM or SM (5% w/w), and then the diets were switched back to a normal diet for 3 weeks. The voluntary wheel running activity was increased by FSM administration, although no changes were observed by SM administration. This effect was observed 2 weeks after FSM administration and lasted 1 week after deprivation of FSM. Then we evaluated the effect of FSM on sexual behavior in male rats. FSM administration for 10 days significantly increased the number of mounts. The protein expression of tyrosine hydroxylase (TH) increased in the hippocampus by FSM administration and it is suggested that FSM may change norepinephrine or dopamine signaling in the brain. Our study provides the first evidence that FSM increases voluntary wheel running activity and sexual behavior and suggests that TH may be involved in these effects.

  13. Effects of increased occlusal vertical dimension on the jaw-opening reflex in adult rats.

    Science.gov (United States)

    Makiguchi, Mio; Funaki, Yukiha; Kato, Chiho; Okihara, Hidemasa; Ishida, Takayoshi; Yabushita, Tadachika; Kokai, Satoshi; Ono, Takashi

    2016-12-01

    Malocclusion with deep overbite and facial esthetics improve when facial height is intentionally increased during orthodontic extrusion of the posterior teeth. Thus, a better understanding of post-treatment stability of increased occlusal vertical dimension (iOVD) in adult patients is important. We focused on the jaw-opening reflex (JOR), which plays an important role in the control of jaw movements during mastication, and investigated the effects of iOVD on the JOR in rats with an electrophysiological technique. One hundred and twenty 13-week-old male Wistar rats were randomly divided into control and experimental groups. Rats in the experimental group received a 2-mm buildup of composite resin on the maxillary molars at 13 weeks of age. The JOR was induced by low-intensity electrical stimulation of the left inferior alveolar nerve. The electromyographic responses were recorded from the digastric muscle at 13, 14, 15, 17, 19, and 23 weeks of age. JOR properties including latency, duration, and peak-to-peak amplitude were measured and compared between the groups. The latency of the JOR was significantly longer and the peak-to-peak amplitude was significantly smaller in the experimental group than in the control group from 14 to 19 weeks of age, while the reflex duration was not significantly different. Intra-group comparisons of the latency and peak-to-peak amplitudes among rats 14-19 weeks of age were significantly different between the experimental group and the control group. iOVD affected the latency and amplitude of the JOR but not the duration. The JOR adapted after 10 weeks of iOVD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Anxiolytic-Like Effects and Increase in Locomotor Activity Induced by Infusions of NMDA into the Ventral Hippocampus in Rat: Interaction with GABAergic System.

    Science.gov (United States)

    Bina, Payvand; Rezvanfard, Mehrnaz; Ahmadi, Shamseddin; Zarrindast, Mohammad Reza

    2014-10-01

    In this study, we investigated the role of N-Methyl-D-Aspartate (NMDA) receptors in the ventral hippocampus (VH) and their possible interactions with GABAA system on anxiety-like behaviors. We used an elevated-plus maze test (EPM) to assess anxiety-like behaviors and locomotor activity in male Wistar rats. The results showed that intra-VH infusions of different doses of NMDA (0.25 and 0.5 μg/rat) increased locomotor activity, and also induced anxiolytic-like behaviors, as revealed by a tendency to increase percentage of open arm time (%OAT), and a significant increase in percentage of open arm entries (%OAE). The results also showed that intra-VH infusions of muscimol (0.5 and 1 μg/rat) or bicuculline (0.5 and 1 μg/rat) did not significantly affect anxiety-like behaviors, but bicuculline at dose of 1 μg/rat increased locomotor activity. Intra-VH co-infusions of muscimol (0.5 μg/rat) along with low doses of NMDA (0.0625 and 0.125 μg/rat) showed a tendency to increase %OAT, %OAE and locomotor activity; however, no interaction was observed between the drugs. Interestingly, intra-VH co-infusions of bicuculline (0.5 μg/rat) along with effective doses of NMDA (0.25 and 0.5 μg/rat) decreased %OAT, %OAE and locomotor activity, and a significant interaction between two drugs was observed. It can be concluded that GABAergic system may mediate the anxiolytic-like effects and increase in locomotor activity induced by NMDA in the VH.

  15. Increased expression of heat shock protein 105 in rat uterus of early pregnancy and its significance in embryo implantation

    Directory of Open Access Journals (Sweden)

    Hu Zhao-Yuan

    2009-03-01

    Full Text Available Abstract Background Heat shock proteins (Hsps are a set of highly conserved proteins, Hsp105, has been suggested to play a role in reproduction. Methods Spatio-temporal expression of Hsp105 in rat uterus during peri-implantation period was examined by immunohistochemistry and Western blot, pseudopregnant uterus was used as control. Injection of antisense oligodeoxynucleotides to Hsp105 into pregnant rat uteri was carried out to look at effect of Hsp105 on embryo implantation. Results Expression of Hsp105 was mainly in the luminal epithelium on day 1 of pregnancy, and reached a peak level on day 5, whereas in stroma cells, adjacent to the implanting embryo, the strongest expression of Hsp105 was observed on day 6. The immunostaining profile in the uterus was consistent with that obtained by Western blot in the early pregnancy. In contrast, no obvious peak level of Hsp105 was observed in the uterus of pseudopregnant rat on day 5 or day 6. Furthermore, injection of antisense oligodeoxynucleotides to Hsp105 into the rat uterine horn on day 3 of pregnancy obviously suppressed the protein expression as expected and reduced number of the implanted embryos as compared with the control. Conclusion Temporal and spatial changes in Hsp105 expression in pregnant rat uterus may play a physiological role in regulating embryo implantation.

  16. Acupuncture attenuates cognitive deficits and increases pyramidal neuron number in hippocampal CA1 area of vascular dementia rats.

    Science.gov (United States)

    Li, Fang; Yan, Chao-Qun; Lin, Li-Ting; Li, Hui; Zeng, Xiang-Hong; Liu, Yi; Du, Si-Qi; Zhu, Wen; Liu, Cun-Zhi

    2015-04-28

    Decreased cognition is recognized as one of the most severe and consistent behavioral impairments in dementia. Experimental studies have reported that acupuncture may improve cognitive deficits, relieve vascular dementia (VD) symptoms, and increase cerebral perfusion and electrical activity. Multi-infarction dementia was modeled in rats with 3% microemboli saline suspension. Two weeks after acupuncture at Zusanli (ST36), all rats were subjected to a hidden platform trial to test their 3-day spatial memory using the Morris water maze test. To estimate the numbers of pyramidal neuron, astrocytes, and synaptic boutons in hippocampal CA1 area, we adopted an unbiased stereology method to accurately sample and measure the size of cells. We found that acupuncture at ST36 significantly decreased the escape latency of VD rats. In addition, acupuncture significantly increased the pyramidal neuron number in hippocampal CA1 area (P area in any of the groups (P > 0.05). These findings suggest that acupuncture may improve cognitive deficits and increase pyramidal neuron number of hippocampal CA1 area in VD rats.

  17. Local injection of high-molecular hyaluronan promotes wound healing in old rats by increasing angiogenesis.

    Science.gov (United States)

    Huang, Luying; Wang, Yi; Liu, Hua; Huang, Jianhua

    2018-02-02

    Impaired angiogenesis contributes to delayed wound healing in aging. Hyaluronan (HA) has a close relationship with angiogenesis and wound healing. However, HA content decreases with age. In this study, we used high molecular weight HA (HMW-HA) (1650 kDa), and investigated its effects on wound healing in old rats by local injection. We found that HMW-HA significantly increases proliferation, migration and tube formation in endothelial cells, and protects endothelial cells against apoptosis. Local injection of HMW-HA promotes wound healing by increasing angiogenesis in old rats. HMW-HA increases the phosphorylation of Src, ERK and AKT, leading to increased angiogenesis, suggesting that local injection of HMW-HA promotes wound healing in elderly patients.

  18. Increased anxiety-like behavior is associated with the metabolic syndrome in non-stressed rats

    Science.gov (United States)

    Díaz, Daniel; Rico-Rosillo, Guadalupe; Vega-Robledo, Gloria Bertha; Zambrano, Elena

    2017-01-01

    Metabolic syndrome (MS) is a cluster of signs that increases the risk to develop diabetes mellitus type 2 and cardiovascular disease. In the last years, a growing interest to study the relationship between MS and psychiatric disorders, such as depression and anxiety, has emerged obtaining conflicting results. Diet-induced MS rat models have only examined the effects of high-fat or mixed cafeteria diets to a limited extent. We explored whether an anxiety-like behavior was associated with MS in non-stressed rats chronically submitted to a high-sucrose diet (20% sucrose in drinking water) using three different anxiety paradigms: the shock-probe/burying test (SPBT), the elevated plus-maze (EPM) and the open-field test (OFT). Behaviorally, the high-sucrose diet group showed an increase in burying behavior in the SPBT. Also, these animals displayed both avoidance to explore the central part of the arena and a significant increase in freezing behavior in the OFT and lack of effects in the EPM. Also, high-sucrose diet group showed signs of an MS-like condition: significant increases in body weight and body mass index, abdominal obesity, hypertension, hyperglycemia, hyperinsulinemia, and dyslipidemia. Plasma leptin and resistin levels were also increased. No changes in plasma corticosterone levels were found. These results indicate that rats under a 24-weeks high-sucrose diet develop an MS associated with an anxiety-like behavior. Although the mechanisms underlying this behavioral outcome remain to be investigated, the role of leptin is emphasized. PMID:28463967

  19. iNOS-dependent increase in colonic mucus thickness in DSS-colitic rats.

    Directory of Open Access Journals (Sweden)

    Olof Schreiber

    Full Text Available AIM: To investigate colonic mucus thickness in vivo in health and during experimental inflammatory bowel disease. METHODS: Colitis was induced with 5% DSS in drinking water for 8 days prior to experiment, when the descending colonic mucosa of anesthetized rats was studied using intravital microscopy. Mucus thickness was measured with micropipettes attached to a micromanipulator. To assess the contributions of NOS and prostaglandins in the regulation of colonic mucus thickness, the non-selective NOS-inhibitor L-NNA (10 mg/kg bolus followed by 3 mg/kg/h, the selective iNOS-inhibitor L-NIL (10 mg/kg bolus followed by 3 mg/kg/h and the non-selective COX-inhibitor diclofenac (5 mg/kg were administered intravenously prior to experiment. To further investigate the role of iNOS in the regulation of colonic mucus thickness, iNOS -/- mice were used. RESULTS: Colitic rats had a thicker firmly adherent mucus layer following 8 days of DSS treatment than untreated rats (88±2 µm vs 76±1 µm. During induction of colitis, the thickness of the colonic mucus layer initially decreased but was from day 3 significantly thicker than in untreated rats. Diclofenac reduced the mucus thickness similarly in colitic and untreated rats (-16±5 µm vs -14±2 µm. While L-NNA had no effect on colonic mucus thickness in DSS or untreated controls (+3±2 µm vs +3±1 µm, L-NIL reduced the mucus thickness significantly more in colitic rats than in controls (-33±4 µm vs -10±3 µm. The importance of iNOS in regulating the colonic mucus thickness was confirmed in iNOS-/- mice, which had thinner colonic mucus than wild-type mice (35±3 µm vs 50±2 µm, respectively. Furthermore, immunohistochemistry revealed increased levels of iNOS in the colonic surface epithelium following DSS treatment. CONCLUSION: Both prostaglandins and nitric oxide regulate basal colonic mucus thickness. During onset of colitis, the thickness of the mucus layer is initially reduced followed by an i

  20. The oleic acid esterification of policosanol increases its bioavailability and hypocholesterolemic action in rats

    Energy Technology Data Exchange (ETDEWEB)

    Hain, D.; Valenzuela, A.; Branes, M. C.; Fuenzalida, M.; Videla, L. A.

    2012-07-01

    Policosanol comprises a mixture of long-chain aliphatic alcohols from sugarcane wax. More than 50 studies indicate that policosanol decreases serum cholesterol, while others failed to reproduce this effect. The objective of this investigation was to assess the bioavailability of esterified policosanol and non-esterified policosanol (NEP), in relation to their hypocholesterolemic effects. Sprague Dawley rats were given a daily oral dose of 100 mg/kg of NEP, 117 mg kg1 of butyric acid esterified policosanol (BAEP), or 164 mg kg1 of oleic acid esterified policosanol (OAEP). Policosanol absorption was evaluated in plasma between 0 and 3 hours after ingestion. To assess changes in total cholesterol, LDL-cholesterol, HDLcholesterol and triacylglycerols in plasma and liver 3-hydroxy- 3-methylglutaryl coenzyme A reductase (HMG- CoA red) phosphorylation, the rats were supplemented with nonesterified or esterified policosanol for 5 weeks. The results indicate that policosanol absorption was significantly greater in OAEP-treated rats than in those subjected to NEP or BAEP administration. OAEP significantly reduced plasma total and LDL-cholesterol in rats, in addition to a 5.6-fold increase (P < 0.05) in the hepatic content of phosphorylated HMG-CoA red over the control values. In conclusion, esterification of policosanol with oleic acid enhances policosanol bioavailability, and significantly improves the serum lipid profile in normocholesterolemic rats in association with the inactivation of HMG-CoA red controlling cholesterogenesis. (Author) 49 refs.

  1. Escitalopram reduces increased hippocampal cytogenesis in a genetic rat depression model

    DEFF Research Database (Denmark)

    Petersén, Asa; Wörtwein, Gitta; Gruber, Susanne H M

    2008-01-01

    to stressors, but, so far, not in models of depression. Here we report that the number of BrdU positive cells in hippocampus was (1) significantly higher in a rat model of depression, the Flinders Sensitive Line (FSL) compared to control FRL, (2) increased in both FSL and FRL following maternal separation, (3......) reduced by escitalopram treatment in maternally separated animals to the level found in non-separated animals. These results argue against the prevailing hypothesis that adult cytogenesis is reduced in depression and that the common mechanism underlying antidepressant treatments is to increase adult...

  2. Regulation of renal Na+-K-ATPase in the rat: role of increased potassium transport

    International Nuclear Information System (INIS)

    Mujais, S.K.; Chekal, M.A.; Hayslett, J.P.; Katz, A.I.

    1986-01-01

    The purpose of this study was to characterize the alterations in collecting tubule Na + -K + -ATPase activity produced by sustained increments in dietary potassium in the rat and to evaluate the role of aldosterone in their generation. In adrenal-intact animals, feeding a high-potassium diet or administration of a high physiological dose of aldosterone, which simulates the delivery rate of this hormone during potassium loading, caused marked increments in Na + -K + -ATPase activity in the cortical collecting tubule (CCT) but had no effect on the enzyme in the inner stripe of the medullary collecting tubule (MCT). A significant increase in enzyme activity was also observed after smaller dietary potassium increments and after 4 days of dietary potassium load. In adrenalectomized rats provided with physiological replacement doses of corticosterone and aldosterone, Na + -K + -ATPase activity in both CCT and MCT was similar to that of adrenal-intact controls but remained unchanged after 7 days on the potassium-enriched (10-fold) diet. In contrast, adrenalectomized animals receiving the high physiological dose of aldosterone displayed an increase in Na + -K + -ATPase activity of CCT comparable with that of adrenal-intact animals, whereas the enzyme activity in the MCT was unaffected. In conclusion, 1) following chronic potassium loading Na + -K + -ATPase activity increases significantly in the CCT with no change in its activity in the inner stripe of the MCT; 2) this increase in enzyme activity occurs in a time-dependent fashion and in proportion to the potassium load; and 3) the stimulation of Na + -K + -ATPase activity in adrenal-replaced rats is facilitated by augmented levels of aldosterone, such as those actually observed in adrenal-intact rats subjected to chronic potassium loading

  3. Regulation of renal Na -K-ATPase in the rat: role of increased potassium transport

    Energy Technology Data Exchange (ETDEWEB)

    Mujais, S.K.; Chekal, M.A.; Hayslett, J.P.; Katz, A.I.

    1986-08-01

    The purpose of this study was to characterize the alterations in collecting tubule Na -K -ATPase activity produced by sustained increments in dietary potassium in the rat and to evaluate the role of aldosterone in their generation. In adrenal-intact animals, feeding a high-potassium diet or administration of a high physiological dose of aldosterone, which simulates the delivery rate of this hormone during potassium loading, caused marked increments in Na -K -ATPase activity in the cortical collecting tubule (CCT) but had no effect on the enzyme in the inner stripe of the medullary collecting tubule (MCT). A significant increase in enzyme activity was also observed after smaller dietary potassium increments and after 4 days of dietary potassium load. In adrenalectomized rats provided with physiological replacement doses of corticosterone and aldosterone, Na -K -ATPase activity in both CCT and MCT was similar to that of adrenal-intact controls but remained unchanged after 7 days on the potassium-enriched (10-fold) diet. In contrast, adrenalectomized animals receiving the high physiological dose of aldosterone displayed an increase in Na -K -ATPase activity of CCT comparable with that of adrenal-intact animals, whereas the enzyme activity in the MCT was unaffected. In conclusion, 1) following chronic potassium loading Na -K -ATPase activity increases significantly in the CCT with no change in its activity in the inner stripe of the MCT; 2) this increase in enzyme activity occurs in a time-dependent fashion and in proportion to the potassium load; and 3) the stimulation of Na -K -ATPase activity in adrenal-replaced rats is facilitated by augmented levels of aldosterone, such as those actually observed in adrenal-intact rats subjected to chronic potassium loading.

  4. Blood in the gastric lumen increases splanchnic blood flow and portal pressure in portal-hypertensive rats.

    Science.gov (United States)

    Chen, L; Groszmann, R J

    1996-10-01

    In portal-hypertensive humans, portal blood flow and pressure increase after a meal. These hemodynamic changes may increase variceal rupture risk. The aim of this study was to determine whether blood in the stomach lumen increases splanchnic flow and portal pressure (PP) in portal-hypertensive rats. superior mesenteric artery flow and PP were measured in conscious, unrestrained, fasted partial portal vein-ligated rats with chronically implanted Doppler flow probes or portal vein catheters before and after gavage with heparinized, warmed blood from donor rats, air, standard meal, or empty tube. Percentage of changes in flow and pressure from baseline were significantly greater after gavage with blood (an increase of 22.6% +/- 3.5% and an increase of 16.4% +/- 3.1%, respectively) than empty tube (an increase of 3.4% +/- 0.6% and a decrease of 5.4% +/- 3.5%, respectively) (P empty tube (P calories probably contributes to these hemodynamic changes. In patients with variceal hemorrhage, blood in the stomach may increase the risk of persistent variceal bleeding or rebleeding.

  5. Roux-en-Y gastric bypass increases intravenous ethanol self-administration in dietary obese rats.

    Directory of Open Access Journals (Sweden)

    James E Polston

    Full Text Available Roux-en-Y gastric bypass surgery (RYGB is an effective treatment for severe obesity. Clinical studies however have reported susceptibility to increased alcohol use after RYGB, and preclinical studies have shown increased alcohol intake in obese rats after RYGB. This could reflect a direct enhancement of alcohol's rewarding effects in the brain or an indirect effect due to increased alcohol absorption after RGYB. To rule out the contribution that changes in alcohol absorption have on its rewarding effects, here we assessed the effects of RYGB on intravenously (IV administered ethanol (1%. For this purpose, high fat (60% kcal from fat diet-induced obese male Sprague Dawley rats were tested ~2 months after RYGB or sham surgery (SHAM using both fixed and progressive ratio schedules of reinforcement to evaluate if RGYB modified the reinforcing effects of IV ethanol. Compared to SHAM, RYGB rats made significantly more active spout responses to earn IV ethanol during the fixed ratio schedule, and achieved higher breakpoints during the progressive ratio schedule. Although additional studies are needed, our results provide preliminary evidence that RYGB increases the rewarding effects of alcohol independent of its effects on alcohol absorption.

  6. Exhaustive physical exercise increases the number of colonic preneoplastic lesions in untrained rats treated with a chemical carcinogen.

    Science.gov (United States)

    Demarzo, Marcelo Marcos Piva; Garcia, Sérgio Britto

    2004-12-08

    Aberrant crypt foci (ACF) have been used for early detection of factors that influence colorectal carcinogenesis in rats. It has been observed that exhaustive exercise increases free radical DNA oxidative damage and depresses immune function, events also related to the increased risk for cancer development. Fifteen days after a single exhaustive swimming bout in untrained rats treated with a colon carcinogen, we observed a statistically significant increased number of ACF when compared to the non-exercised group. Thus, we concluded that exhaustive exercise increased the susceptibility for colon cancer in rats. From our finding and literature data, we hypothesize that, similarly to the suggested relationship between exercise and infections, exercise could be protective against cancer or it could increase the risk for this disease depending on its type, dose and duration.

  7. Increased radiosensitivity of cerebral capillaries in neonatal Gunn rats as compared to Sprague-Dawley rats

    International Nuclear Information System (INIS)

    Landolt, R.; Arn, D.

    1979-01-01

    The extent of petechial haemorrhages of the cerebral cortex examined between 14 hours and 4 days after X-irradiation to the head was compared in Sprague-Dawley and homozygous Gunn rats with congenital hyperbilirubinaemia. Animals 1 to 2 days old received single doses of either 250, 500 or 750 rad. By means of a special scoring scale the degree of the damage to the micro vasculature was semi-quantitatively estimated. In both strains a significant difference in effect was obtained between 250 and 500 rad, but not between 500 and 750 rad. The shape of the dose-effect curve in Gunn rats was similar to that of Sprague-Dawley rats, but displaced upwards. In Gunn rats the effect of 250 rad was greater that that of 750 rad in Sprague-Dawley rats. Possible radiosensitizing mechanisms are discussed with reference to the literature and these results. (author)

  8. Increased secretion of insulin and proliferation of islet β-cells in rats with mesenteric lymph duct ligation

    International Nuclear Information System (INIS)

    Nagino, Ko; Yokozawa, Junji; Sasaki, Yu; Matsuda, Akiko; Takeda, Hiroaki; Kawata, Sumio

    2012-01-01

    Highlights: ► Insulin secretion was increased during the OGTT or IVGTT in mesenteric lymph duct-ligated rats. ► Proliferation of islet β-cells was upregulated in lymph duct-ligated rats. ► Mesenteric lymph duct flow has a role in glucose metabolism. -- Abstract: Background and aims: It has been suggested that intestinal lymph flow plays an important role in insulin secretion and glucose metabolism after meals. In this study, we investigated the influence of ligation of the mesenteric lymph duct on glucose metabolism and islet β-cells in rats. Methods: Male Sprague–Dawley rats (10 weeks old) were divided into two groups: one underwent ligation of the mesenteric lymph duct above the cistern (ligation group), and the other underwent a sham operation (sham group). After 1 and 2 weeks, fasting plasma concentrations of glucose, insulin, triglyceride, glucose-dependent insulinotropic polypeptide (GIP), and the active form of glucagon-like peptide-1 (GLP-1) were measured. At 2 weeks after the operation, the oral glucose tolerance test (OGTT) and intravenous glucose tolerance test (IVGTT) were performed. After the rats had been sacrificed, the insulin content of the pancreas was measured and the proliferation of β-cells was assessed immunohistochemically using antibodies against insulin and Ki-67. Results: During the OGTT, the ligation group showed a significant decrease in the plasma glucose concentration at 120 min (p < 0.05) and a significant increase in the plasma insulin concentration by more than 2-fold at 15 min (p < 0.01). On the other hand, the plasma GIP concentration was significantly decreased at 60 min (p < 0.01) in the ligated group, while the active form of GLP-1 showed a significantly higher level at 90 min (1.7-fold; p < 0.05) and 120 min (2.5-fold; p < 0.01). During the IVGTT, the plasma insulin concentration in the ligation group was significantly higher at 2 min (more than 1.4-fold; p < 0.05). Immunohistochemistry showed that the ratios of

  9. Intrahippocampal administration of an androgen receptor antagonist, flutamide, can increase anxiety-like behavior in intact and DHT-replaced male rats.

    Science.gov (United States)

    Edinger, Kassandra L; Frye, Cheryl A

    2006-08-01

    Testosterone (T) and its 5alpha-reduced metabolite, dihydrotestosterone (DHT), can decrease anxiety-like behavior; however, the mechanisms underlying these effects have not been established. First, we hypothesized that if T reduces anxiety-like behavior through actions of its 5alpha-reduced metabolite, DHT, then gonadectomy (GDX) would increase anxiety-like behavior, an effect which would be reversed by systemic administration of DHT. Second, we hypothesized that if T and DHT reduce anxiety-like behavior in part through actions at intracellular androgen receptors in the hippocampus, then administration of an androgen receptor antagonist, flutamide, directly to the hippocampus should increase anxiety-like behavior of intact and DHT-replaced, but not GDX, male rats. Inserts that were empty or contained flutamide were applied directly to the dorsal hippocampus of intact, GDX, or GDX and DHT-replaced rats 2 h prior to testing in the open field, elevated plus maze, or defensive freezing tasks. GDX rats exhibited significantly more anxiety-like behaviors than intact or DHT-replaced rats. Intact and DHT-replaced rats administered flutamide to the hippocampus showed significantly more anxiety-like behavior than did intact and DHT-replaced controls. However, flutamide alone did not increase anxiety-like behavior of GDX rats. Together, these findings suggest that androgens can decrease anxiety-like behavior of male rats in part through DHT's actions at androgen receptors in the hippocampus.

  10. Ketamine coadministration attenuates morphine tolerance and leads to increased brain concentrations of both drugs in the rat

    Science.gov (United States)

    Lilius, T O; Jokinen, V; Neuvonen, M S; Niemi, M; Kalso, E A; Rauhala, P V

    2015-01-01

    Background and Purpose The effects of ketamine in attenuating morphine tolerance have been suggested to result from a pharmacodynamic interaction. We studied whether ketamine might increase brain morphine concentrations in acute coadministration, in morphine tolerance and morphine withdrawal. Experimental Approach Morphine minipumps (6 mg·day–1) induced tolerance during 5 days in Sprague–Dawley rats, after which s.c. ketamine (10 mg·kg–1) was administered. Tail flick, hot plate and rotarod tests were used for behavioural testing. Serum levels and whole tissue brain and liver concentrations of morphine, morphine-3-glucuronide, ketamine and norketamine were measured using HPLC-tandem mass spectrometry. Key Results In morphine-naïve rats, ketamine caused no antinociception whereas in morphine-tolerant rats there was significant antinociception (57% maximum possible effect in the tail flick test 90 min after administration) lasting up to 150 min. In the brain of morphine-tolerant ketamine-treated rats, the morphine, ketamine and norketamine concentrations were 2.1-, 1.4- and 3.4-fold, respectively, compared with the rats treated with morphine or ketamine only. In the liver of morphine-tolerant ketamine-treated rats, ketamine concentration was sixfold compared with morphine-naïve rats. After a 2 day morphine withdrawal period, smaller but parallel concentration changes were observed. In acute coadministration, ketamine increased the brain morphine concentration by 20%, but no increase in ketamine concentrations or increased antinociception was observed. Conclusions and Implications The ability of ketamine to induce antinociception in rats made tolerant to morphine may also be due to increased brain concentrations of morphine, ketamine and norketamine. The relevance of these findings needs to be assessed in humans. PMID:25297798

  11. Increased proteoglycan synthesis by the cardiovascular system of coarctation hypertensive rats

    International Nuclear Information System (INIS)

    Lipke, D.W.; Couchman, J.R.

    1991-01-01

    Proteoglycan (PG) synthesis in the cardiovascular system of coarctation hypertensive rats was examined by in vivo and in vitro labeling of glycosaminoglycans with 35SO4 in rats made hypertensive for short (4 days) and longer (14 days) durations. With in vivo labeling, only tissues directly exposed to elevated pressure (left ventricle, LV and aorta above the clip, AOR increases) exhibited elevated PG synthesis after 4 days of hypertension. By 14 days, tissues both exposed to (LV and AOR increases) and protected from elevated pressure (right ventricle and kidney) exhibited elevated PG synthetic rates. Slight elevations in the proportion of galactosaminoglycans were observed with a concurrent proportional decrease in heparan sulfate PGs. Using the in vitro labeling procedure, no significant increases in PG synthesis were observed in any tissue at either 4 days or 14 days of hypertension. These data indicate that: (1) coarctation hypertension stimulates PG production that is dependent initially on increased pressure and later, on additional non-pressure related factors, (2) these other factors are responsible for enhanced PG production in tissues not directly exposed to pressure overload, (3) pressure and/or these other factors are essential for enhanced PG production in coarctation hypertension, and (4) synthesis of all GAG types appears to be affected

  12. Administration of cyclosporine a (CyA) to rats from birth: increased mortality and NK activity

    International Nuclear Information System (INIS)

    Clancy, J. Jr.; Tseng, G.; Kodali, S.; Love, S.

    1986-01-01

    Neonatal DA and LEW rats received 15, 7.5, and 3.75 mg/Kg of CyA or saline subcutaneously 3x each week for 1-12 weeks. In animals receiving 15 and 7.5 mg/Kg a significant (p 51 Cr release from YAC-1 target cells. Also, SPL cells stained with propidium iodide from the 3.75 mg/Kg group demonstrated a 1.5-2x increase in cells within the S phase of their cell cycle by flow cytometry. Thus, prolonged administration of CyA may have selective enhancing effects on certain lymphoid compartments and subpopulations of neonatal rats as well as a selective toxic effects on neonatal rat development

  13. Risperidone treatment increases CB1 receptor binding in rat brain

    DEFF Research Database (Denmark)

    Secher, Anna; Husum, Henriette; Holst, Birgitte

    2010-01-01

    , the ghrelin receptor, neuropeptide Y, adiponectin and proopiomelanocortin. We investigated whether the expression of these factors was affected in rats chronically treated with the antipsychotic risperidone. METHODS: Male Sprague-Dawley rats were treated with risperidone (1.0 mg/kg/day) or vehicle (20...... showed that risperidone treatment altered CB(1) receptor binding in the rat brain. Risperidone-induced adiposity and metabolic dysfunction in the clinic may be explained by increased CB(1) receptor density in brain regions involved in appetite and regulation of metabolic function....

  14. Post-Weaning Protein Malnutrition Increases Blood Pressure and Induces Endothelial Dysfunctions in Rats

    Science.gov (United States)

    Siman, Fabiana D. M.; Silveira, Edna A.; Meira, Eduardo F.; da Costa, Carlos P.; Vassallo, Dalton V.; Padilha, Alessandra S.

    2012-01-01

    Malnutrition during critical periods in early life may increase the subsequent risk of hypertension and metabolic diseases in adulthood, but the underlying mechanisms are still unclear. We aimed to evaluate the effects of post-weaning protein malnutrition on blood pressure and vascular reactivity in aortic rings (conductance artery) and isolated-perfused tail arteries (resistance artery) from control (fed with Labina®) and post-weaning protein malnutrition rats (offspring that received a diet with low protein content for three months). Systolic and diastolic blood pressure and heart rate increased in the post-weaning protein malnutrition rats. In the aortic rings, reactivity to phenylephrine (10−10–3.10−4 M) was similar in both groups. Endothelium removal or L-NAME (10−4 M) incubation increased the response to phenylephrine, but the L-NAME effect was greater in the aortic rings from the post-weaning protein malnutrition rats. The protein expression of the endothelial nitric oxide isoform increased in the aortic rings from the post-weaning protein malnutrition rats. Incubation with apocynin (0.3 mM) reduced the response to phenylephrine in both groups, but this effect was higher in the post-weaning protein malnutrition rats, suggesting an increase of superoxide anion release. In the tail artery of the post-weaning protein malnutrition rats, the vascular reactivity to phenylephrine (0.001–300 µg) and the relaxation to acetylcholine (10−10–10−3 M) were increased. Post-weaning protein malnutrition increases blood pressure and induces vascular dysfunction. Although the vascular reactivity in the aortic rings did not change, an increase in superoxide anion and nitric oxide was observed in the post-weaning protein malnutrition rats. However, in the resistance arteries, the increased vascular reactivity may be a potential mechanism underlying the increased blood pressure observed in this model. PMID:22529948

  15. Gestational Protein Restriction Increases Cardiac Connexin 43 mRNA levels in male adult rat offspring

    Science.gov (United States)

    Rossini, Kamila Fernanda; de Oliveira, Camila Andrea; Rebelato, Hércules Jonas; Esquisatto, Marcelo Augusto Marreto; Catisti, Rosana

    2017-01-01

    Background The dietary limitation during pregnancy influences the growth and development of the fetus and offspring and their health into adult life. The mechanisms underlying the adverse effects of gestational protein restriction (GPR) in the development of the offspring hearts are not well understood. Objectives The aim of this study was to evaluate the effects of GPR on cardiac structure in male rat offspring at day 60 after birth (d60). Methods Pregnant Wistar rats were fed a normal-protein (NP, 17% casein) or low-protein (LP, 6% casein) diet. Blood pressure (BP) values from 60-day-old male offspring were measured by an indirect tail-cuff method using an electro sphygmomanometer. Hearts (d60) were collected for assessment of connexin 43 (Cx43) mRNA expression and morphological and morphometric analysis. Results LP offspring showed no difference in body weight, although they were born lighter than NP offspring. BP levels were significantly higher in the LP group. We observed a significant increase in the area occupied by collagen fibers, a decrease in the number of cardiomyocytes by 104 µm2, and an increase in cardiomyocyte area associated with an increased Cx43 expression. Conclusion GPR changes myocardial levels of Cx43 mRNA in male young adult rats, suggesting that this mechanism aims to compensate the fibrotic process by the accumulation of collagen fibers in the heart interstitium. PMID:28678925

  16. The expression and significance of tyrosine hydroxylase in the brain tissue of Parkinsons disease rats

    OpenAIRE

    Chen, Yuan; Lian, Yajun; Ma, Yunqing; Wu, Chuanjie; Zheng, Yake; Xie, Nanchang

    2017-01-01

    The expression and significance of tyrosine hydroxylase (TH) in brain tissue of rats with Parkinson's disease (PD) were explored and analyzed. A total of 120 clean-grade and healthy adult Wistar rats weighing 180–240 g were randomly divided equally into four groups according to the random number table method. Rats were sacrificed before and after the model establishment for 3, 6 or 8 weeks. The number of revolutions in rats was observed and the relative expression of TH mRNA in brain tissue w...

  17. Subchronic mild noise stress increases HRP permeability in rat small intestine in vitro.

    Science.gov (United States)

    Bijlsma, P B; van Raaij, M T; Dobbe, C J; Timmerman, A; Kiliaan, A J; Taminiau, J A; Groot, J A

    2001-05-01

    Recently we reported an increased trans- and paracellular protein permeability in rat small intestine after acute cold restraint stress. In the present study, we applied randomized 95- or 105-dB white noise pulses during 45 min/h, 12 h/day, duration 8 days, as a milder, but more chronic stressor to male rats. At 8 days before the noise experiments, 50% of the animals were cannulated in the vena cava for blood sampling during the experimental period. The other 50% of the animals were sacrificed at Day 9, segments of ileum were mounted in Ussing chambers and perfused at 37 degrees C. Horseradish peroxidase (HRP) was added mucosally, serosal appearance was detected enzymatically and tissues were fixed for electron microscopy. In the animals exposed to 95-dB noise, plasma corticosterone levels were enhanced twofold compared to controls, and ileal HRP flux was enhanced twofold. Electron micrographs of tissue from stressed or control animals showed no detectable paracellular staining of HRP. Quantification of HRP-containing endosomes in enterocytes revealed a twofold increase in endosome number in the animals exposed to 95-db noise indicating that the increased HRP permeability was primarily due to increased endocytosis. In contrast to the animals exposed to 95-dB noise, rats exposed to 105-dB noise showed no increase in corticosterone levels and ileal HRP fluxes were not significantly different from controls. We conclude that mild subchronic noise stress may cause a decrease in intestinal barrier function by increased transcytosis of luminal antigens.

  18. Increased secretion of insulin and proliferation of islet {beta}-cells in rats with mesenteric lymph duct ligation

    Energy Technology Data Exchange (ETDEWEB)

    Nagino, Ko; Yokozawa, Junji; Sasaki, Yu; Matsuda, Akiko; Takeda, Hiroaki [Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata 990-9585 (Japan); Kawata, Sumio, E-mail: Sumio_Kawata@pref.hyogo.lg.jp [Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata 990-9585 (Japan); Hyogo Prefectural Nishinomiya Hospital, 13-9 Rokutanji-cho, Nishinomiya 662-0918 (Japan)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Insulin secretion was increased during the OGTT or IVGTT in mesenteric lymph duct-ligated rats. Black-Right-Pointing-Pointer Proliferation of islet {beta}-cells was upregulated in lymph duct-ligated rats. Black-Right-Pointing-Pointer Mesenteric lymph duct flow has a role in glucose metabolism. -- Abstract: Background and aims: It has been suggested that intestinal lymph flow plays an important role in insulin secretion and glucose metabolism after meals. In this study, we investigated the influence of ligation of the mesenteric lymph duct on glucose metabolism and islet {beta}-cells in rats. Methods: Male Sprague-Dawley rats (10 weeks old) were divided into two groups: one underwent ligation of the mesenteric lymph duct above the cistern (ligation group), and the other underwent a sham operation (sham group). After 1 and 2 weeks, fasting plasma concentrations of glucose, insulin, triglyceride, glucose-dependent insulinotropic polypeptide (GIP), and the active form of glucagon-like peptide-1 (GLP-1) were measured. At 2 weeks after the operation, the oral glucose tolerance test (OGTT) and intravenous glucose tolerance test (IVGTT) were performed. After the rats had been sacrificed, the insulin content of the pancreas was measured and the proliferation of {beta}-cells was assessed immunohistochemically using antibodies against insulin and Ki-67. Results: During the OGTT, the ligation group showed a significant decrease in the plasma glucose concentration at 120 min (p < 0.05) and a significant increase in the plasma insulin concentration by more than 2-fold at 15 min (p < 0.01). On the other hand, the plasma GIP concentration was significantly decreased at 60 min (p < 0.01) in the ligated group, while the active form of GLP-1 showed a significantly higher level at 90 min (1.7-fold; p < 0.05) and 120 min (2.5-fold; p < 0.01). During the IVGTT, the plasma insulin concentration in the ligation group was significantly higher at 2

  19. Hippocampal low-frequency stimulation inhibits afterdischarge and increases GABA (A) receptor expression in amygdala-kindled pharmacoresistant epileptic rats.

    Science.gov (United States)

    Wu, Guofeng; Wang, Likun; Hong, Zhen; Ren, Siying; Zhou, Feng

    2017-08-01

    The purpose of the present study was to observe the effects of hippocampal low-frequency stimulation (Hip-LFS) on amygdala afterdischarge and GABA (A) receptor expression in pharmacoresistant epileptic (PRE) rats. A total of 110 healthy adult male Wistar rats were used to generate a model of epilepsy by chronic stimulation of the amygdala. Sixteen PRE rats were selected from 70 amygdala-kindled rats by testing their response to Phenytoin and Phenobarbital, and they were randomly assigned to a pharmacoresistant stimulation group (PRS group, 8 rats) or a pharmacoresistant control group (PRC group, 8 rats). A stimulation electrode was implanted into the hippocampus of all of the rats. Hip-LFS was administered twice per day in the PRS group for two weeks. Simultaneously, amygdala stimulus-induced seizures and afterdischarge were recorded. After the hippocampal stimulation was terminated, the brain tissues were obtained to determine the GABA (A) receptors by a method of immumohistochemistry and a real-time polymerase chain reaction. The stages and duration of the amygdala stimulus-induced epileptic seizures were decreased in the PRS group. The afterdischarge threshold was increased and the duration as well as the afterdischarge frequency was decreased. Simultaneously, the GABA (A) expression was significantly increased in the PRS group. Hip-LFS may inhibit amygdala stimulus-induced epileptic seizures and up-regulate GABA (A) receptor expression in PRE rats. The antiepileptic effects of hippocampal stimulation may be partly achieved by increasing the GABA (A) receptor.

  20. Dim light at night increases immune function in Nile grass rats, a diurnal rodent.

    Science.gov (United States)

    Fonken, Laura K; Haim, Achikam; Nelson, Randy J

    2012-02-01

    With the widespread adoption of electrical lighting during the 20th century, human and nonhuman animals became exposed to high levels of light at night for the first time in evolutionary history. This divergence from the natural environment may have significant implications for certain ecological niches because of the important influence light exerts on the circadian system. For example, circadian disruption and nighttime light exposure are linked to changes in immune function. The majority of studies investigating the effects of light exposure and circadian disruption on the immune system use nocturnal rodents. In diurnal species, many hormones and immune parameters vary with secretion patterns 180° out of phase to those of nocturnal rodents. Thus, the authors investigated the effects of nighttime light exposure on immunocompetence in diurnal Nile grass rats (Arvicanthis niloticus). Rats were housed in either standard 14-h light (L):10-h dark (D) cycles with L ∼150 lux and D 0 lux or dim light at night (dLAN) cycles of LD 14:10 with L ∼150 lux and D 5 lux for 3 wks, then tested for plasma bactericidal capacity, as well as humoral and cell-mediated immune responses. Rats exposed to dLAN showed increased delayed-type hypersensitivity pinna swelling, which is consistent with enhanced cell-mediated immune function. dLAN rats similarly showed increased antibody production following inoculation with keyhole lymphocyte hemocyanin (KLH) and increased bactericidal capacity. Daytime corticosterone concentrations were elevated in grass rats exposed to nighttime dim light, which may have influenced immunological measures. Overall, these results indicate nighttime light affects immune parameters in a diurnal rodent.

  1. Cordycepin Increases Nonrapid Eye Movement Sleep via Adenosine Receptors in Rats.

    Science.gov (United States)

    Hu, Zhenzhen; Lee, Chung-Il; Shah, Vikash Kumar; Oh, Eun-Hye; Han, Jin-Yi; Bae, Jae-Ryong; Lee, Kinam; Chong, Myong-Soo; Hong, Jin Tae; Oh, Ki-Wan

    2013-01-01

    Cordycepin (3'-deoxyadenosine) is a naturally occurring adenosine analogue and one of the bioactive constituents isolated from Cordyceps militaris/Cordyceps sinensis, species of the fungal genus Cordyceps. It has traditionally been a prized Chinese folk medicine for the human well-being. Because of similarity of chemical structure of adenosine, cordycepin has been focused on the diverse effects of the central nervous systems (CNSs), like sleep regulation. Therefore, this study was undertaken to know whether cordycepin increases the natural sleep in rats, and its effect is mediated by adenosine receptors (ARs). Sleep was recorded using electroencephalogram (EEG) for 4 hours after oral administration of cordycepin in rats. Sleep architecture and EEG power spectra were analyzed. Cordycepin reduced sleep-wake cycles and increased nonrapid eye movement (NREM) sleep. Interestingly, cordycepin increased θ (theta) waves power density during NREM sleep. In addition, the protein levels of AR subtypes (A1, A2A, and A2B) were increased after the administration of cordycepin, especially in the rat hypothalamus which plays an important role in sleep regulation. Therefore, we suggest that cordycepin increases theta waves power density during NREM sleep via nonspecific AR in rats. In addition, this experiment can provide basic evidence that cordycepin may be helpful for sleep-disturbed subjects.

  2. Cordycepin Increases Nonrapid Eye Movement Sleep via Adenosine Receptors in Rats

    Directory of Open Access Journals (Sweden)

    Zhenzhen Hu

    2013-01-01

    Full Text Available Cordycepin (3′-deoxyadenosine is a naturally occurring adenosine analogue and one of the bioactive constituents isolated from Cordyceps militaris/Cordyceps sinensis, species of the fungal genus Cordyceps. It has traditionally been a prized Chinese folk medicine for the human well-being. Because of similarity of chemical structure of adenosine, cordycepin has been focused on the diverse effects of the central nervous systems (CNSs, like sleep regulation. Therefore, this study was undertaken to know whether cordycepin increases the natural sleep in rats, and its effect is mediated by adenosine receptors (ARs. Sleep was recorded using electroencephalogram (EEG for 4 hours after oral administration of cordycepin in rats. Sleep architecture and EEG power spectra were analyzed. Cordycepin reduced sleep-wake cycles and increased nonrapid eye movement (NREM sleep. Interestingly, cordycepin increased θ (theta waves power density during NREM sleep. In addition, the protein levels of AR subtypes (A1, A2A, and A2B were increased after the administration of cordycepin, especially in the rat hypothalamus which plays an important role in sleep regulation. Therefore, we suggest that cordycepin increases theta waves power density during NREM sleep via nonspecific AR in rats. In addition, this experiment can provide basic evidence that cordycepin may be helpful for sleep-disturbed subjects.

  3. Plasma insulin levels are increased by sertraline in rats under oral glucose overload

    Directory of Open Access Journals (Sweden)

    Gomez R.

    2001-01-01

    Full Text Available Recognition and control of depression symptoms are important to increase patient compliance with treatment and to improve the quality of life of diabetic patients. Clinical studies indicate that selective serotonin reuptake inhibitors (SSRI are better antidepressants for diabetic patients than other drugs. However, preclinical trials have demonstrated that not all SSRI reduce plasma glucose levels. In fact, fluoxetine increases and sertraline decreases glycemia in diabetic and non-diabetic rats. In the present study we evaluated plasma insulin levels during fasting and after glucose overload after treatment with sertraline. Adult male Wistar rats were fasted and treated with saline or 30 mg/kg sertraline and submitted or not to glucose overload (N = 10. Blood was collected and plasma insulin was measured. The mean insulin levels were: fasting group: 25.9 ± 3.86, sertraline + fasting group: 31.10 ± 2.48, overload group: 34.1 ± 3.40, and overload + sertraline group: 43.73 ± 5.14 µU/ml. Insulinemia was significantly increased in the overload + sertraline group. There were no differences between the other groups. No difference in glucose/insulin ratios could be detected between groups. The overload + sertraline group was the only one in which a significant number of individuals exceeded the upper confidence limit of insulin levels. This study demonstrates that sertraline increases glucose-stimulated insulin secretion without any change in peripheral insulin sensitivity.

  4. Ethanol extract of Oenanthe javanica increases cell proliferation and neuroblast differentiation in the adolescent rat dentate gyrus

    Directory of Open Access Journals (Sweden)

    Bai Hui Chen

    2015-01-01

    Full Text Available Oenanthe javanica is an aquatic perennial herb that belongs to the Oenanthe genus in Apiaceae family, and it displays well-known medicinal properties such as protective effects against glutamate-induced neurotoxicity. However, few studies regarding effects of Oenanthe javanica on neurogenesis in the brain have been reported. In this study, we examined the effects of a normal diet and a diet containing ethanol extract of Oenanthe javanica on cell proliferation and neuroblast differentiation in the subgranular zone of the hippocampal dentate gyrus of adolescent rats using Ki-67 (an endogenous marker for cell proliferation and doublecortin (a marker for neuroblast. Our results showed that Oenanthe javanica extract significantly increased the number of Ki-67-immunoreactive cells and doublecortin-immunoreactive neuroblasts in the subgranular zone of the dentate gyrus in the adolescent rats. In addition, the immunoreactivity of brain-derived neurotrophic factor was significantly increased in the dentate gyrus of the Oenanthe javanica extract-treated group compared with the control group. However, we did not find that vascular endothelial growth factor expression was increased in the Oenanthe javanica extract-treated group compared with the control group. These results indicate that Oenanthe javanica extract improves cell proliferation and neuroblast differentiation by increasing brain-derived neurotrophic factor immunoreactivity in the rat dentate gyrus.

  5. Extract of mangosteen increases high density lipoprotein levels in rats fed high lipid

    Directory of Open Access Journals (Sweden)

    Dwi Laksono Adiputro

    2013-04-01

    Full Text Available Background In cardiovascular medicine, Garcinia mangostana has been used as an antioxidant to inhibit oxidation of low density lipoproteins and as an antiobesity agent. The effect of Garcinia mangostana on hyperlipidemia is unknown. The aim of this study was to evaluate the effect of an ethanolic extract of Garcinia mangostana pericarp on lipid profile in rats fed a high lipid diet. Methods A total of 40 rats were divided into five groups control, high lipid diet, and high lipid diet + ethanolic extract of Garcinia mangostana pericarp at dosages of 200, 400, and 800 mg/kg body weight. The control group received a standard diet for 60 days. The high lipid diet group received standard diet plus egg yolk, goat fat, cholic acid, and pig fat for 60 days with or without ethanolic extract of Garcinia mangostana pericarp by the oral route. After 60 days, rats were anesthesized with ether for collection of blood by cardiac puncture. Analysis of blood lipid profile comprised colorimetric determination of cholesterol, triglyceride, low density lipoprotein (LDL, and high density lipoprotein (HDL. Results From the results of one-way ANOVA it was concluded that there were significant between-group differences in cholesterol, trygliceride, LDL, and HDL levels (p=0.000. Ethanolic extract of Garcinia mangostana pericarp significantly decreased cholesterol, trygliceride, and LDL levels, starting at 400 mg/kg body weight (p=0.000. Ethanolic extract of Garcinia mangostana pericarp significantly increased HDL level starting at 200 mg/kg body weight (p=0.000. Conclusion Ethanolic extract of Garcinia mangostana pericarp has a beneficial effect on lipid profile in rats on a high lipid diet.

  6. Extract of mangosteen increases high density lipoprotein levels in rats fed high lipid

    Directory of Open Access Journals (Sweden)

    Dwi Laksono Adiputro

    2015-12-01

    Full Text Available BACKGROUND In cardiovascular medicine, Garcinia mangostana has been used as an antioxidant to inhibit oxidation of low density lipoproteins and as an antiobesity agent. The effect of Garcinia mangostana on hyperlipidemia is unknown. The aim of this study was to evaluate the effect of an ethanolic extract of Garcinia mangostana pericarp on lipid profile in rats fed a high lipid diet. METHODS A total of 40 rats were divided into five groups control, high lipid diet, and high lipid diet + ethanolic extract of Garcinia mangostana pericarp at dosages of 200, 400, and 800 mg/kg body weight. The control group received a standard diet for 60 days. The high lipid diet group received standard diet plus egg yolk, goat fat, cholic acid, and pig fat for 60 days with or without ethanolic extract of Garcinia mangostana pericarp by the oral route. After 60 days, rats were anesthesized with ether for collection of blood by cardiac puncture. Analysis of blood lipid profile comprised colorimetric determination of cholesterol, triglyceride, low density lipoprotein (LDL, and high density lipoprotein (HDL. RESULTS From the results of one-way ANOVA it was concluded that there were significant between-group differences in cholesterol, trygliceride, LDL, and HDL levels (p=0.000. Ethanolic extract of Garcinia mangostana pericarp significantly decreased cholesterol, trygliceride, and LDL levels, starting at 400 mg/kg body weight (p=0.000. Ethanolic extract of Garcinia mangostana pericarp significantly increased HDL level starting at 200 mg/kg body weight (p=0.000. CONCLUSION Ethanolic extract of Garcinia mangostana pericarp has a beneficial effect on lipid profile in rats on a high lipid diet.

  7. Tributyltin chloride disrupts aortic vascular reactivity and increases reactive oxygen species production in female rats.

    Science.gov (United States)

    Ximenes, Carolina Falcão; Rodrigues, Samya Mere Lima; Podratz, Priscila Lang; Merlo, Eduardo; de Araújo, Julia Fernandez Puñal; Rodrigues, Lívia Carla Melo; Coitinho, Juliana Barbosa; Vassallo, Dalton Valentim; Graceli, Jones Bernardes; Stefanon, Ivanita

    2017-11-01

    Organotin compounds, such as tributyltin (TBT), are environment contaminants that induce bioaccumulation and have potential toxic effects on marine species and mammals. TBT have been banned by the International Maritime Organization in 2003. However, the assessment of butyltin and metal contents in marine sediments has demonstrated high residual levels of TBT in some cases exceeding 7000 ng Sn g -1 . The acceptable daily intake (ADI) level for TBT established by the World Health Organization is 0.5 μg/kg bw/day is based on genotoxicity, reproduction, teratogenicity, immunotoxicity, and mainly neurotoxicity. However, their effect on the cardiovascular system is not well understood. In this study, female rats were exposed to 0.5 μg/kg/day of TBT for 15 days with the goal of understanding the effect of TBT on vascular function. Female Wistar rats were treated daily by gavage and divided into control (n = 10) and TBT (n = 10) groups. The aortic rings were incubated with phenylephrine in both the presence and absence of endothelium. The phenylephrine concentration-response curves were generated by exposing endothelium-intact samples to N G -nitro-L-arginine methyl ester (L-NAME), apocynin, superoxide dismutase (SOD), catalase, tiron, and allopurinol. Acetylcholine (ACh) and sodium nitroprusside (SNP) were used to evaluate the relaxation response. Exposure to TBT reduced serum 17β-estradiol E 2 levels and increased vascular reactivity. After incubation with L-NAME, the vascular reactivity to phenylephrine was significantly higher. Apocynin, SOD, catalase, and tiron decreased the vascular reactivity to phenylephrine to a significantly greater extent in TBT-treated rats than in the control rat. The relaxation induced by ACh and SNP was significantly reduced in TBT rats. Exposure to TBT induced aortic wall atrophy and increased superoxide anion production and collagen deposition. These results provide evidence that exposing rats to the current ADI for TBT (0.5

  8. DDT increases hepatic testosterone metabolism in rats

    Energy Technology Data Exchange (ETDEWEB)

    Sierra-Santoyo, Adolfo; Albores, Arnulfo; Cebrian, Mariano E. [Cinvestav-IPN, Seccion de Toxicologia, Mexico (Mexico); Hernandez, Manuel [Cinvestav-IPN, Departamento de Biologia Celular (Mexico)

    2005-01-01

    DDT and its metabolites are considered as endocrine disruptors able to promote hormone-dependent pathologies. We studied the effects of technical-grade DDT on hepatic testosterone metabolism and testosterone hydroxylase activity ratios in the rat. Male and female Wistar rats were treated by gavage with a single dose of technical-grade DDT (0, 0.1, 1, 10, and 100 mg/kg body weight) and killed 24 h later. Hepatic microsomes were incubated with [4-{sup 14}C]-testosterone and the metabolites were separated by thin-layer chromatography and quantified by radio scanning. DDT increased testosterone biotransformation and modified the profile of metabolites produced in a sex-dependent manner. Males treated with a representative dose (10 mg/kg) produced relatively less androstenedione (AD), 2{alpha}-hydroxytestosterone (OHT), and 16{alpha}-OHT but higher 6{beta}-OHT whereas treated females produced less 7{alpha}-OHT and AD but higher 6{beta}-OHT and 6{alpha}-OHT than their respective controls. In both sexes DDT decreased the relative proportion of AD and increased that of 6{beta}-OHT suggesting that the androgen-saving pathway was affected. The testosterone 6{alpha}-/15{alpha}-OHT ratio, a proposed indicator of demasculinization, was increased in treated males. This effect was in agreement with the demasculinizing ability proposed for DDT. The effects on 6{alpha}-/16{alpha}-OHT and 6-dehydrotestosterone/16{alpha}-OHT ratios followed a similar tendency, with the ratio 6{alpha}-/16{alpha}-OHT being the most sensitive marker. Interestingly, these ratios were reduced in treated females suggesting that technical-grade DDT shifted testosterone hydroxylations toward a more masculine pattern. Thus, technical-grade DDT altered the hepatic sexual dimorphism in testosterone metabolism and decreased the metabolic differences between male and female rats. (orig.)

  9. Increased Oxidative Stress and Mitochondrial Dysfunction in Zucker Diabetic Rat Liver and Brain

    Directory of Open Access Journals (Sweden)

    Haider Raza

    2015-02-01

    Full Text Available Background/Aims: The Zucker diabetic fatty (ZDF, FA/FA rat is a genetic model of type 2 diabetes, characterized by insulin resistance with progressive metabolic syndrome. We have previously demonstrated mitochondrial dysfunction and oxidative stress in the heart, kidneys and pancreas of ZDF rats. However, the precise molecular mechanism of disease progression is not clear. Our aim in the present study was to investigate oxidative stress and mitochondrial dysfunction in the liver and brain of ZDF rats. Methods: In this study, we have measured mitochondrial oxidative stress, bioenergetics and redox homeostasis in the liver and brain of ZDF rats. Results: Our results showed increased reactive oxygen species (ROS production in the ZDF rat brain compared to the liver, while nitric oxide (NO production was markedly increased both in the brain and liver. High levels of lipid and protein peroxidation were also observed in these tissues. Glutathione metabolism and mitochondrial respiratory functions were adversely affected in ZDF rats when compared to Zucker lean (ZL, +/FA control rats. Reduced ATP synthesis was also observed in the liver and brain of ZDF rats. Western blot analysis confirmed altered expression of cytochrome P450 2E1, iNOS, p-JNK, and IκB-a confirming an increase in oxidative and metabolic stress in ZDF rat tissues. Conclusions: Our data shows that, like other tissues, ZDF rat liver and brain develop complications associated with redox homeostasis and mitochondrial dysfunction. These results, thus, might have implications in understanding the etiology and pathophysiology of diabesity which in turn, would help in managing the disease associated complications.

  10. Alternate-Day High-Fat Diet Induces an Increase in Mitochondrial Enzyme Activities and Protein Content in Rat Skeletal Muscle.

    Science.gov (United States)

    Li, Xi; Higashida, Kazuhiko; Kawamura, Takuji; Higuchi, Mitsuru

    2016-04-06

    Long-term high-fat diet increases muscle mitochondrial enzyme activity and endurance performance. However, excessive calorie intake causes intra-abdominal fat accumulation and metabolic syndrome. The purpose of this study was to investigate the effect of an alternating day high-fat diet on muscle mitochondrial enzyme activities, protein content, and intra-abdominal fat mass in rats. Male Wistar rats were given a standard chow diet (CON), high-fat diet (HFD), or alternate-day high-fat diet (ALT) for 4 weeks. Rats in the ALT group were fed a high-fat diet and standard chow every other day for 4 weeks. After the dietary intervention, mitochondrial enzyme activities and protein content in skeletal muscle were measured. Although body weight did not differ among groups, the epididymal fat mass in the HFD group was higher than those of the CON and ALT groups. Citrate synthase and beta-hydroxyacyl CoA dehydrogenase activities in the plantaris muscle of rats in HFD and ALT were significantly higher than that in CON rats, whereas there was no difference between HFD and ALT groups. No significant difference was observed in muscle glycogen concentration or glucose transporter-4 protein content among the three groups. These results suggest that an alternate-day high-fat diet induces increases in mitochondrial enzyme activities and protein content in rat skeletal muscle without intra-abdominal fat accumulation.

  11. Dietary selenomethionine increases exon-specific DNA methylation of the p53 gene in rat liver and colon mucosa.

    Science.gov (United States)

    Zeng, Huawei; Yan, Lin; Cheng, Wen-Hsing; Uthus, Eric O

    2011-08-01

    The regulation of site-specific DNA methylation of tumor suppressor genes has been considered as a leading mechanism by which certain nutrients exert their anticancer property. This study was to investigate whether selenium (Se) affects the methylation of globe genomic DNA and the exon-specific p53 gene. Three groups of rats (n = 6-7/group) were fed the AIN-93G basal diet supplemented with 0 [Se deficient (D)], 0.15 [Se adequate (A)], or 4 mg [Se supranutritional (S)] (Se as l-selenomethionine)/kg diet for 104 d, respectively. Rats fed the A or S diet had greater plasma and liver glutathione peroxidase activity, liver thioredoxin reductase activity, and plasma homocysteine concentration than those fed the D diet. However, compared with the A diet, rats fed the S diet did not further increase these Se-dependent enzyme activities or homocysteine concentration. In contrast, Se concentrations in kidney, liver, gastrocnemius muscle, and plasma were increased in a Se-dose-dependent manner. Interestingly, rats fed the S diet had significantly less global liver genomic DNA methylation than those fed the D diet. However, the S diet significantly increased the methylation of the p53 gene (exons 5-8) but not the β-actin gene (exons 2-3) DNA in liver and colon mucosa compared with those fed the D diet. Taken together, long-term Se consumption not only affects selenoprotein enzyme activities, homocysteine, tissue Se concentrations, and global genomic DNA methylation but also increases exon-specific DNA methylation of the p53 gene in a Se-dose-dependent manner in rat liver and colon mucosa.

  12. Exposure of rat hippocampal astrocytes to Ziram increases oxidative stress.

    Science.gov (United States)

    Matei, Ann-Marie; Trombetta, Louis D

    2016-04-01

    Pesticides have been shown in several studies to be the leading candidates of environmental toxins and may contribute to the pathogenesis of several neurodegenerative diseases. Ziram (zinc-bis(dimethyldithiocarbamate)) is an agricultural dithiocarbamate fungicide that is used to treat a variety of plant diseases. In spite of their generally acknowledged low toxicity, dithiocarbamates are known to cause a wide range of neurobehavioral effects as well as neuropathological changes in the brain. Astrocytes play a key role in normal brain physiology and in the pathology of the nervous system. This investigation studied the effects of 1.0 µM Ziram on rat hippocampal astrocytes. The thiobarbituric acid reactive substance assay performed showed a significant increase in malondialdehyde, a product of lipid peroxidation, in the Ziram-treated cells. Biochemical analysis also revealed a significant increase in the induction of 70 kDa heat shock and heme oxygenase 1 stress proteins. In addition, an increase of glutathione peroxidase (GPx) and a significant increase in oxidized glutathione (GSSG) were observed in the Ziram-treated cells. The ratio GSH to GSSG calculated from the treated cells was also decreased. Light and transmission electron microscopy supported the biochemical findings in Ziram-treated astrocytes. This data suggest that the cytotoxic effects observed with Ziram treatments may be related to the increase of oxidative stress. © The Author(s) 2013.

  13. Ovariectomy increases the participation of hyperpolarizing mechanisms in the relaxation of rat aorta.

    Directory of Open Access Journals (Sweden)

    Ana Sagredo

    Full Text Available This study examines the downstream NO release pathway and the contribution of different vasodilator mediators in the acetylcholine-induced response in rat aorta 5-months after the loss of ovarian function. Aortic segments from ovariectomized and control female Sprague-Dawley rats were used to measure: the levels of superoxide anion, the superoxide dismutases (SODs activity, the cGMP formation, the cGMP-dependent protein kinase (PKG activity and the involvement of NO, cGMP, hydrogen peroxide and hyperpolarizing mechanisms in the ACh-induced relaxation. The results showed that ovariectomy did not alter ACh-induced relaxation; incubation with L-NAME, a NO synthase inhibitor, decreased the ACh-induced response to a lesser extent in aorta from ovariectomized than from control rats, while ODQ, a guanylate cyclase inhibitor, decreased that response to a similar extent; the blockade of hyperpolarizing mechanisms, by precontracting arteries with KCl, decreased the ACh-induced response to a greater extent in aortas from ovariectomized than those from control rats; catalase, that decomposes hydrogen peroxide, decreased the ACh-induced response only in aorta from ovariectomized rats. In addition, ovariectomy increased superoxide anion levels and SODs activity, decreased cGMP formation and increased PKG activity. Despite the increased superoxide anion and decreased cGMP in aorta from ovariectomized rats, ACh-induced relaxation is maintained by the existence of hyperpolarizing mechanisms in which hydrogen peroxide participates. The greater contribution of hydrogen peroxide in ACh-induced relaxation is due to increased SOD activity, in an attempt to compensate for increased superoxide anion formation. Increased PKG activity could represent a redundant mechanism to ensure vasodilator function in the aorta of ovariectomized rats.

  14. Increasing CNS norepinephrine levels by the precursor L-DOPS facilitates beam-walking recovery after sensorimotor cortex ablation in rats.

    Science.gov (United States)

    Kikuchi, K; Nishino, K; Ohyu, H

    2000-03-31

    The present investigation was conducted to document a role of L-threo-3,4-dihydroxyphenylserine (L-DOPS), precursor of L-norepinephrine (NE), in the functional recovery from beam-walking performance deficits in rats after unilateral sensorimotor cortex ablation. L-DOPS was administered simultaneously with benserazide (BSZ; a peripheral aromatic amino acid decarboxylase inhibitor), and the regional contents of NE in the cerebral cortex, hippocampus, and cerebellum were assayed. Behavioral recovery was demonstrated by the rats treated with L-DOPS and BSZ, and the rate of recovery was significantly different from that of either BSZ-treated or vehicle-treated control rats. The NE tissue levels in the three discrete regions of the rat brain were significantly elevated in the experimental rats receiving both L-DOPS and BSZ. The present studies indicate that increasing NE levels by the precursor L-DOPS may be responsible for facilitating behavioral recovery from beam-walking performance deficits in rats, and further suggest that L-DOPS may become one of the candidate compounds for further clinical human trials promoting functional recovery after injuries to the cerebral cortex.

  15. Exercise Increases Cystathionine-γ-lyase Expression and Decreases the Status of Oxidative Stress in Myocardium of Ovariectomized Rats.

    Science.gov (United States)

    Tang, Zhiping; Wang, Yujun; Zhu, Xiaoyan; Ni, Xin; Lu, Jianqiang

    2016-01-01

    Exercise could be a therapeutic approach for cardiovascular dysfunction induced by estrogen deficiency. Our previous study has shown that estrogen maintains cystathionine-γ-lyase (CSE) expression and inhibits oxidative stress in the myocardium of female rats. In the present study, we investigated whether exercise improves CSE expression and oxidative stress status and ameliorates isoproterenol (ISO)-induced cardiac damage in ovariectomized (OVX) rats. The results showed that treadmill training restored the ovariectomy-induced reduction of CSE and estrogen receptor (ER)α and decrease of total antioxidant capacity (T-AOC) and increase of malondialdehyde (MDA). The level of CSE was positively correlated to T-AOC and ERα while inversely correlated to MDA. OVX rats showed increases in the serum levels of creatine kinase (CK) and lactate dehydrogenase (LDH) and the percentage of TUNEL staining in myocardium upon ISO insult compared to sham rats. Exercise training significantly reduced the serum levels of LDH and CK and the percentage of TUNEL staining in myocardium upon ISO insult in OVX rats. In cultured cardiomyocytes, ISO treatment decreased cell viability and increased LDH release, while overexpression of CSE increased cell viability and decreased LDH release in the cells upon ISO insult. The results suggest that exercise training improves the oxidative stress status and ameliorates the cardiac damage induced by oxidative stress in OVX rats. The improvement of oxidative stress status by exercise might be at least partially due to upregulation of CSE/H2S signaling.

  16. Endurance training increases the efficiency of rat skeletal muscle mitochondria.

    Science.gov (United States)

    Zoladz, Jerzy A; Koziel, Agnieszka; Woyda-Ploszczyca, Andrzej; Celichowski, Jan; Jarmuszkiewicz, Wieslawa

    2016-10-01

    Endurance training enhances mitochondrial oxidative capacity, but its effect on mitochondria functioning is poorly understood. In the present study, the influence of an 8-week endurance training on the bioenergetic functioning of rat skeletal muscle mitochondria under different assay temperatures (25, 35, and 42 °C) was investigated. The study was performed on 24 adult 4-month-old male Wistar rats, which were randomly assigned to either a treadmill training group (n = 12) or a sedentary control group (n = 12). In skeletal muscles, endurance training stimulated mitochondrial biogenesis and oxidative capacity. In isolated mitochondria, endurance training increased the phosphorylation rate and elevated levels of coenzyme Q. Moreover, a decrease in mitochondrial uncoupling, including uncoupling protein-mediated proton leak, was observed after training, which could explain the increased reactive oxygen species production (in nonphosphorylating mitochondria) and enhanced oxidative phosphorylation efficiency. At all studied temperatures, endurance training significantly augmented H2O2 production (and coenzyme Q reduction level) in nonphosphorylating mitochondria and decreased H2O2 production (and coenzyme Q reduction level) in phosphorylating mitochondria. Endurance training magnified the hyperthermia-induced increase in oxidative capacity and attenuated the hyperthermia-induced decline in oxidative phosphorylation efficiency and reactive oxygen species formation of nonphosphorylating mitochondria via proton leak enhancement. Thus, endurance training induces both quantitative and qualitative changes in muscle mitochondria that are important for cell signaling as well as for maintaining muscle energy homeostasis, especially at high temperatures.

  17. Moderate High Fat Diet Increases Sucrose Self-Administration In Young Rats

    OpenAIRE

    Figlewicz, Dianne P.; Jay, Jennifer L.; Acheson, Molly A.; Magrisso, Irwin J.; West, Constance H.; Zavosh, Aryana; Benoit, Stephen C.; Davis, Jon F.

    2012-01-01

    We have previously reported that a moderately high fat diet increases motivation for sucrose in adult rats. In this study, we tested the motivational, neurochemical, and metabolic effects of the high fat diet in male rats transitioning through puberty, during 5-8 weeks of age. We observed that the high fat diet increased motivated responding for sucrose, which was independent of either metabolic changes or changes in catecholamine neurotransmitter metabolites in the nucleus accumbens. However...

  18. Dietary inulin intake and age can significantly affect intestinal absorption of calcium and magnesium in rats: a stable isotope approach

    Science.gov (United States)

    Coudray, Charles; Rambeau, Mathieu; Feillet-Coudray, Christine; Tressol, Jean Claude; Demigne, Christian; Gueux, Elyett; Mazur, Andrzej; Rayssiguier, Yves

    2005-01-01

    Background previous studies have shown that non-digestible inulin-type fructan intake can increase intestinal mineral absorption in both humans and animals. However, this stimulatory effect on intestinal absorption may depend on experimental conditions such as duration of fermentable fiber intake, mineral diet levels and animals' physiological status, in particular their age. Objectives the aim of this study was to determine the effect of inulin intake on Ca and Mg absorption in rats at different age stages. Methods eighty male Wistar rats of four different ages (2, 5, 10 and 20 months) were randomized into either a control group or a group receiving 3.75% inulin in their diet for 4 days and then 7.5% inulin for three weeks. The animals were fed fresh food and water ad libitum for the duration of the experiment. Intestinal absorption of Ca and Mg was determined by fecal monitoring using stable isotopic tracers. Ca and Mg status was also assessed. Results absorption of Ca and Mg was significantly lower in the aged rats (10 and 20 mo) than in the young and adult rat groups. As expected, inulin intake increased Ca and Mg absorption in all four rat groups. However, inulin had a numerically greater effect on Ca absorption in aged rats than in younger rats whereas its effect on Mg absorption remained similar across all four rat age groups. Conclusion the extent of the stimulatory effect of inulin on absorption of Ca may differ according to animal ages. Further studies are required to explore this effect over longer inulin intake periods, and to confirm these results in humans. PMID:16253138

  19. Increased Hypothalamic Inflammation Associated with the Susceptibility to Obesity in Rats Exposed to High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Xiaoke Wang

    2012-01-01

    Full Text Available Inflammation has been implicated in the hypothalamic leptin and insulin resistance resulting defective food intake during high fat diet period. To investigate hypothalamic inflammation in dietary induced obesity (DIO and obesity resistant (DIO-R rats, we established rat models of DIO and DIO-R by feeding high fat diet for 10 weeks. Then we switched half of DIO and DIO-R rats to chow food and the other half to high fat diet for the following 8 weeks to explore hypothalamic inflammation response to the low fat diet intervention. Body weight, caloric intake, HOMA-IR, as well as the mRNA expression of hypothalamic TLR4, NF-κB, TNF-α, IL-1β, and IL-6 in DIO/HF rats were significantly increased compared to DIO-R/HF and CF rats, whereas IL-10 mRNA expression was lower in both DIO/HF and DIO-R/HF rats compared with CF rats. Switching to chow food from high fat diet reduced the body weight and improved insulin sensitivity but not affecting the expressions of studied inflammatory genes in DIO rats. Take together, upregulated hypothalamic inflammation may contribute to the overeating and development of obesity susceptibility induced by high fat diet. Switching to chow food had limited role in correcting hypothalamic inflammation in DIO rats during the intervention period.

  20. Monoamines and sexual function in rats bred for increased catatonic reactivity.

    Science.gov (United States)

    Klochkov, D V; Alekhina, T A; Kuznetsova, E G; Barykina, N N

    2009-07-01

    Body weight, ovary and uterus weight, the nature of estral cycles, and hypothalamus dopamine and noradrenaline levels and plasma testosterone levels were studied in female GC rats, bred for increased catatonic reactivity, at different stages of the estral cycle (estrus, proestrus). The outbred Wistar strain served as controls. On the background of decreased body weight, GC females showed impairments to the morphological cyclical changes in the ovaries and uterus, with a reduction in ovary weight in diestrus (p rats showed higher levels of these monoamines in estrus and lower levels in diestrus. Plasma testosterone levels in female GC rats were higher in diestrus than in estrus and in Wistar rats.

  1. Combination of aerobic exercise and Hibiscus sabdariffa Linn. increased nitric oxide in rats

    Directory of Open Access Journals (Sweden)

    Donna Adriani Kusumadewi Muhammad

    2017-08-01

    Full Text Available Background Hypertension and myocardial infarction account for the high rate of mortality globally. Hibiscus sabdariffa (HS Linn. is rich in antioxidants and previous studies have demonstrated its anti-hypertensive effects. Several studies show that regular physical activity is an important component to reduce cardiovascular mortality. The objective of this study was to evaluate the effects of a combination of aerobic exercise and HS extract on nitric oxide (NO and endothelin-1 (ET-1 in rats.   Methods An experimental study was conducted on 36 male Wistar rats, aged 4 weeks and 60-70 g in weight. The interventions were aerobic exercises and HS at 400 mg/kg BW/day administered for 4, 8 and 12 weeks. The rats were randomized into 12 groups: 3 control groups (C4, C8, C12, 3 aerobic exercise groups (A4, A8, A12, 3 HS groups (H4, H8, H12, and 3 combination groups [aerobic exercise and HS] (HA4, HA8, HA12. After 4, 8, and 12 weeks, the rats were sacrificed and their abdominal aorta was collected for determination of nitric oxide and ET-1 concentrations. One way ANOVA was used to analyze the data.   Results There was a significant difference in NO levels between all groups, with the 4-week aerobic exercise group (A4 showing the highest NO levels compared to the other eleven groups (p<0.05. In contrast, the ET-1 levels were not significantly different between all groups.   Conclusions This study demonstrated that the combination of HS supplementation and aerobic exercise increases NO in rats, and provided further evidence to the traditional use of the plant as an antioxidants agent.

  2. Selective excretion of IgA in rat bronchial secretions: lack of significant contribution from plasma IgA

    International Nuclear Information System (INIS)

    Lemaitre-Coelho, I.; Yamakido, M.; Montgomery, P.C.; Langendries, A.E.; Vaerman, J.P.

    1982-01-01

    Concentrated rat bronchial washings (BW) were analyzed by gel-filtration and immunochemical methods. BW contained mainly albumin, transferrin and IgG. Free secretory component and secretory IgA were identified in BW; the BW-IgA had the same three sedimentation coefficients, i.e. +/- 11 S, 13 S, 15 S by sucrose density gradient ultracentrifugation, as rat milk and rat bile IgA; the three peaks were secretory IgA. Compared to serum, and relatively to albumin, BW were significantly enriched in IgA, although much less than rat bile. Purified polyclonal rat polymeric 125 I-IgA was injected intravenously into normal rats, and into rats with bile duct ligation or partial hepatectomy, which decrease the liver plasma-to-bile transfer of IgA. BW were then collected, one or four hours later, to assess the recovery of the 125 I-IgA in BW and to estimate the contribution of serum IgA to BW-IgA. Very little 125 I-IgA (less than 0.2%) was recovered in all BW. The specific activity, measured only in the rat with the highest recovery in BW, was 20 times lower in BW than in serum. The data demonstrate that rat serum IgA does not contribute significantly to IgA in BW

  3. Increased arterial smooth muscle Ca2+ signaling, vasoconstriction, and myogenic reactivity in Milan hypertensive rats

    Science.gov (United States)

    Linde, Cristina I.; Karashima, Eiji; Raina, Hema; Zulian, Alessandra; Wier, Withrow G.; Hamlyn, John M.; Ferrari, Patrizia; Blaustein, Mordecai P.

    2012-01-01

    The Milan hypertensive strain (MHS) rats are a genetic model of hypertension with adducin gene polymorphisms linked to enhanced renal tubular Na+ reabsorption. Recently we demonstrated that Ca2+ signaling is augmented in freshly isolated mesenteric artery myocytes from MHS rats. This is associated with greatly enhanced expression of Na+/Ca2+ exchanger-1 (NCX1), C-type transient receptor potential (TRPC6) protein, and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2) compared with arteries from Milan normotensive strain (MNS) rats. Here, we test the hypothesis that the enhanced Ca2+ signaling in MHS arterial smooth muscle is directly reflected in augmented vasoconstriction [myogenic and phenylephrine (PE)-evoked responses] in isolated mesenteric small arteries. Systolic blood pressure was higher in MHS (145 ± 1 mmHg) than in MNS (112 ± 1 mmHg; P arteries from MHS rats had significantly augmented myogenic tone and reactivity and enhanced constriction to low-dose (1–100 nM) PE. Isolated MHS arterial myocytes exhibited approximately twofold increased peak Ca2+ signals in response to 5 μM PE or ATP in the absence and presence of extracellular Ca2+. These augmented responses are consistent with increased vasoconstrictor-evoked sarcoplasmic reticulum (SR) Ca2+ release and increased Ca2+ entry, respectively. The increased SR Ca2+ release correlates with a doubling of inositol 1,4,5-trisphosphate receptor type 1 and tripling of SERCA2 expression. Pressurized MHS arteries also exhibited a ∼70% increase in 100 nM ouabain-induced vasoconstriction compared with MNS arteries. These functional alterations reveal that, in a genetic model of hypertension linked to renal dysfunction, multiple mechanisms within the arterial myocytes contribute to enhanced Ca2+ signaling and myogenic and vasoconstrictor-induced arterial constriction. MHS rats have elevated plasma levels of endogenous ouabain, which may initiate the protein upregulation and enhanced Ca2+ signaling. These

  4. Beer improves copper metabolism and increases longevity in Cu-deficient rats

    International Nuclear Information System (INIS)

    Moore, R.J.; Klevay, L.M.

    1989-01-01

    Moderate consumption of alcoholic beverages decreases risk of death from ischemic heart disease (IHD). Evidence suggests that Cu-deficiency is important in the etiology and pathophysiology of IHD. The effect of beer (25 ng Cu/ml) drinking on the severity of Cu-deficiency was examined in weanling, male Sprague-Dawley rats fed a low Cu diet (0.84 μg Cu/g). Beer drinking increased median longevity to 204 or 299 d from 62 or 42 d respectively in rats drinking water in two experiments (15 rats/group). In experiment 3, a single dose of 67 Cu (3.3 μCi as chloride) was added to 1 g of feed and given to 12-h fasted rats 30 d after the start of the experiment. Whole body counting over 13 d showed apparent Cu absorption and t 1/2 (biological) were greater in Cu-deficient rats drinking beer than in similar rats drinking water. Plasma cholesterol was lower but hematocrit and liver Cu were higher in surviving rats drinking beer than in rats drinking water. Body weight was not affected by beer in any experiment. In experiment 4, a 4% aqueous ethanol solution had no effect on longevity of copper deficient rats. A non-alcohol component of beer alters Cu metabolism and mitigates the severity of nutritional Cu-deficiency in rats

  5. Increased activities of mitochondrial enzymes in white adipose tissue in trained rats

    DEFF Research Database (Denmark)

    Stallknecht, B; Vinten, J; Ploug, T

    1991-01-01

    of 8-12 rats were swim trained for 10 wk or served as either sedentary, sham swim-trained, or cold-stressed controls. White adipose tissue was removed, and the activities of the respiratory chain enzyme cytochrome-c oxidase (CCO) and of the enzyme malate dehydrogenase (MDH), which participates...... 0.05). In female rats the CCO activity expressed per milligram protein was increased 4.5-fold in the trained compared with the sedentary control rats (P less than 0.01). Neither cold stress nor sham swim training increased CCO or MDH activities in white adipose tissue (P greater than 0...

  6. Increased concentration of vasopressin in plasma of essential fatty acid-deficient rats

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Jensen, B.; Warberg, J.

    1985-01-01

    The effect of essential fatty acid deficiency (EFA-D) on the plasma concentration of arginine-vasopressin (AVP) and the urinary AVP excretion was investigated. Weanling rats were fed a fat-free diet (FF-rats). Control rats received the same diet in which 6% by wt. of sucrose was replaced by arachis...... oil. After 4-6 weeks of feeding, urine and plasma were analysed for AVP, osmolality, sodium and potassium. When compared to control rats FF-rats had decreased urine volume (6.0 ± 1.6 ml/24 hr versus 11.7 ± 3.2 ml/24 hr), increased urine osmolality (2409 ± 691 mOsm/kg versus 1260 ± 434 m...

  7. Increased DNA damage in blood cells of rat treated with lead as assessed by comet assay

    Directory of Open Access Journals (Sweden)

    Mohammad Arif

    2008-06-01

    Full Text Available A growing body of evidence suggests that oxidative stress is the key player in the pathogenesis of lead-induced toxicity. The present study investigated lead induced oxidative DNA damage, if any in rat blood cells by alkaline comet assay. Lead was administered intraperitoneally to rats at doses of 25, 50 and 100 mg/kg body weight for 5 days consecutively. Blood collected on day six from sacrificed lead-treated rats was used to assess the extent of DNA damage by comet assay which entailed measurement of comet length, olive tail moment, tail DNA (% and tail length. The results showed that treatment with lead significantly increased DNA damage in a dose-dependent manner. Therefore, our data suggests that lead treatment is associated with oxidative stress-induced DNA damage in rat blood cells which could be used as an early bio-marker of lead-toxicity.

  8. Ghrelin treatment causes increased food intake and retention of lean body mass in a rat model of cancer cachexia.

    Science.gov (United States)

    DeBoer, Mark D; Zhu, Xin Xia; Levasseur, Peter; Meguid, Michael M; Suzuki, Susumu; Inui, Akio; Taylor, John E; Halem, Heather A; Dong, Jesse Z; Datta, Rakesh; Culler, Michael D; Marks, Daniel L

    2007-06-01

    Cancer cachexia is a debilitating syndrome of anorexia and loss of lean body mass that accompanies many malignancies. Ghrelin is an orexigenic hormone with a short half-life that has been shown to improve food intake and weight gain in human and animal subjects with cancer cachexia. We used a rat model of cancer cachexia and administered human ghrelin and a synthetic ghrelin analog BIM-28131 via continuous infusion using sc osmotic minipumps. Tumor-implanted rats receiving human ghrelin or BIM-28131 exhibited a significant increase in food consumption and weight gain vs. saline-treated animals. We used dual-energy x-ray absorptiometry scans to show that the increased weight was due to maintenance of lean mass vs. a loss of lean mass in saline-treated animals. Also, BIM-28131 significantly limited the loss of fat mass normally observed in tumor-implanted rats. We further performed real-time PCR analysis of the hypothalami and brainstems and found that ghrelin-treated animals exhibited a significant increase in expression of orexigenic peptides agouti-related peptide and neuropeptide Y in the hypothalamus and a significant decrease in the expression of IL-1 receptor-I transcript in the hypothalamus and brainstem. We conclude that ghrelin and a synthetic ghrelin receptor agonist improve weight gain and lean body mass retention via effects involving orexigenic neuropeptides and antiinflammatory changes.

  9. Lansoprazole increases testosterone metabolism and clearance in male Sprague-Dawley rats: implications for leydig cell carcinogenesis

    International Nuclear Information System (INIS)

    Coulson, Michelle; Gibson, G. Gordon; Plant, Nick; Hammond, Tim; Graham, Mark

    2003-01-01

    Leydig cell tumours (LCTs) are frequently observed during rodent carcinogenicity studies, however, the significance of this effect to humans remains a matter of debate. Many chemicals that produce LCTs also induce hepatic cytochromes P450 (CYPs), but it is unknown whether these two phenomena are causally related. Our aim was to investigate the existence of a liver-testis axis wherein microsomal enzyme inducers enhance testosterone metabolic clearance, resulting in a drop in circulating hormone levels and a consequent hypertrophic response from the hypothalamic-pituitary-testis axis. Lansoprazole was selected as the model compound as it induces hepatic CYPs and produces LCTs in rats. Male Sprague-Dawley rats were dosed with lansoprazole (150 mg/kg/day) or vehicle for 14 days. Lansoprazole treatment produced effects on the liver consistent with an enhanced metabolic capacity, including significant increases in relative liver weights, total microsomal CYP content, individual CYP protein levels, and enhanced CYP-dependent testosterone metabolism in vitro. Following intravenous administration of [ 14 C]testosterone, lansoprazole-treated rats exhibited a significantly smaller area under the curve and significantly higher plasma clearance. Significant reductions in plasma and testicular testosterone levels were observed, confirming the ability of this compound to perturb androgen homeostasis. No significant changes in plasma LH, FSH, or prolactin levels were detected under our experimental conditions. Lansoprazole treatment exerted no marked effects on testicular testosterone metabolism. In summary, lansoprazole treatment induced hepatic CYP-dependent testosterone metabolism in vitro and enhanced plasma clearance of radiolabelled testosterone in vivo. These effects may contribute to depletion of circulating testosterone levels and hence play a role in the mode of LCT induction in lansoprazole-treated rats

  10. Both hypothyroidism and hyperthyroidism increase plasma irisin levels in rats.

    Science.gov (United States)

    Atici, Emine; Mogulkoc, Rasim; Baltaci, Abdulkerim Kasim; Menevse, Esma

    2017-11-28

    Background A recently discovered hormone, irisin is accepted to be significantly involved in the regulation of body weight. Thyroid functions may be, directly or indirectly, associated with irisin. Aim The aim of the present study is to determine the effect of experimental thyroid dysfunction on irisin levels in rats. Methods The study registered 40 adult male Sprague-Dawley rats, which were allocated to groups as follows: 1. Control; 2. Hypothyroidism induced by injection of 10 mg/kg/day intraperitoneal propylthiouracil (PTU) for 3 weeks; 3. Hypothyroidism (PTU 2 weeks) + L-thyroxin (1.5 mg/kg/day for 1 week); 4. Hyperthyroidism induced in rats by 3-week thyroxin (0.3 mg/kg/day); 5. Hyperthyroidism + PTU. At the end of the study, blood samples were collected to quantify free triiodothyronine (FT3), free triiodothyronine (FT4) and irisin levels. Results FT3 and FT4 levels were reduced in hypothyroidism and were significantly elevated in hyperthyroidism (p hyperthyroidism groups (p hyperthyroidism, and that when hypothyroidism is corrected by thyroxin administration and hyperthyroidism by PTU injection, plasma irisin values go back to normal.

  11. In vivo blockade of acetylcholinesterase increases intraovarian acetylcholine and enhances follicular development and fertility in the rat.

    Science.gov (United States)

    Urra, Javier; Blohberger, Jan; Tiszavari, Michelle; Mayerhofer, Artur; Lara, Hernan E

    2016-07-21

    Growth and differentiation of ovarian follicles are regulated by systemic and local factors, which may include acetylcholine (ACh). Granulosa cells (GCs) of growing follicles and luteal cells produce ACh and in cultured GCs it exerts trophic actions via muscarinic receptors. However, such actions were not studied in vivo. After having established that rat ovarian GCs and luteal cells express the ACh-metabolizing enzyme ACh esterase (AChE), we examined the consequences of local application of an AChE inhibitor, huperzine A (HupA), by osmotic minipump delivery into the ovarian bursa of hemiovariectomized rats. Saline was used in the control group. Local delivery of HupA for 4 weeks increased ovarian ACh content. Estrus cyclicity was not changed indicating a locally restricted range of HupA action. The number of primordial and primary follicles was unaffected, but small secondary follicles significantly increased in the HupA group. Furthermore, a significant increase in the number of corpora lutea suggested increased ovulatory events. In support, as shown upon mating, HupA-treated females had significantly increased implantation sites and more pups. Thus the data are in support of a trophic role of ACh in follicular development and ovulation and point to an important role of ACh in female fertility.

  12. Increased serum erythropoietin activity in rats following intrarenal injection of nickel subsulfide

    International Nuclear Information System (INIS)

    Hopfer, S.M.; Sunderman, F.W. Jr.; Fredrickson, T.N.; Morse, E.E.

    1979-01-01

    To investigate the pathopysiologic mechanisms of nickel-induced erythocytosis, serum erythropoietin activities were measured in (a) pooled serum from rats at 2 wk after intrarenal injection of αNi 3 S 2 (5 mg/rat), and (b) pooled serum from control rats at 2 wk after intrarenal injection of sterile NaCl vehicle (0.4 ml/rat). A sensitive erythropoietin bioassay was employed, which entailed repetitive administration of test serums to post-hypoxic polycythemic mice in divided doses (12 s.c. injections of 0.5 ml of serum at 6 h intervals for 3 da; total dose = 6 ml of serum/mouse). The erythropoietin detection limit was approx. = 20 I.U./liter of serum. In mice which received pooled serum from αNi 3 S 2 -treated rats, erythrocyte 59 Fe-uptake averaged 28% (S.D. +- 5) (vs 3.7 +- 1.1% in control rats; P 3 S 2 -treated rats averaged 130 I.U./liter (S.D. +- 18) (vs 27 +- 6 I.U./liter in control rats; P 3 S 2 is mediated by increased serum erythropoietin activity

  13. Increased Autolysis of μ-Calpain in Skeletal Muscles of Chronic Alcohol-Fed Rats.

    Science.gov (United States)

    Gritsyna, Yulia V; Salmov, Nikolay N; Bobylev, Alexander G; Ulanova, Anna D; Kukushkin, Nikolay I; Podlubnaya, Zoya A; Vikhlyantsev, Ivan M

    2017-10-01

    Proteolysis can proceed via several distinct pathways such as the lysosomal, calcium-dependent, and ubiquitin-proteasome-dependent pathways. Calpains are the main proteases that cleave a large variety of proteins, including the giant sarcomeric proteins, titin and nebulin. Chronic ethanol feeding for 6 weeks did not affect the activities of μ-calpain and m-calpain in the m. gastrocnemius. In our research, changes in μ-calpain activity were studied in the m. gastrocnemius and m. soleus of chronically alcohol-fed rats after 6 months of alcohol intake. SDS-PAGE analysis was applied to detect changes in titin and nebulin contents. Titin phosphorylation analysis was performed using the fluorescent dye Pro-Q Diamond. Western blotting was used to determine μ-calpain autolysis as well as μ-calpain and calpastatin contents. The titin and nebulin mRNA levels were assessed by real-time PCR. The amounts of the autolysed isoform (78 kDa) of full-length μ-calpain (80 kDa) increased in the m. gastrocnemius and m. soleus of alcohol-fed rats. The calpastatin content increased in m. gastrocnemius. Decreased intact titin-1 (T1) and increased T2-proteolytic fragment contents were found in the m. gastrocnemius and m. soleus of the alcohol-fed rats. The nebulin content decreased in the rat gastrocnemius muscle of the alcohol-fed group. The phosphorylation levels of T1 and T2 were increased in the m. gastrocnemius and m. soleus, and decreased titin and nebulin mRNA levels were observed in the m. gastrocnemius. The nebulin mRNA level was increased in the soleus muscle of the alcohol-fed rats. In summary, our data suggest that prolonged chronic alcohol consumption for 6 months resulted in increased autolysis of μ-calpain in rat skeletal muscles. These changes were accompanied by reduced titin and nebulin contents, titin hyperphosphorylation, and development of hindlimb muscle atrophy in the alcohol-fed rats. Copyright © 2017 by the Research Society on Alcoholism.

  14. Maternal Docosahexaenoic Acid Increases Adiponectin and Normalizes IUGR-Induced Changes in Rat Adipose Deposition

    Directory of Open Access Journals (Sweden)

    Heidi N. Bagley

    2013-01-01

    Full Text Available Intrauterine growth restriction (IUGR predisposes to obesity and adipose dysfunction. We previously demonstrated IUGR-induced increased visceral adipose deposition and dysregulated expression of peroxisome proliferator activated receptor-γ2 (PPARγ2 in male adolescent rats, prior to the onset of obesity. In other studies, activation of PPARγ increases subcutaneous adiponectin expression and normalizes visceral adipose deposition. We hypothesized that maternal supplementation with docosahexaenoic acid (DHA, a PPARγ agonist, would normalize IUGR adipose deposition in association with increased PPARγ, adiponectin, and adiponectin receptor expression in subcutaneous adipose. To test these hypotheses, we used a well-characterized model of uteroplacental-insufficiency-(UPI- induced IUGR in the rat with maternal DHA supplementation. Our primary findings were that maternal DHA supplementation during rat pregnancy and lactation (1 normalizes IUGR-induced changes in adipose deposition and visceral PPARγ expression in male rats and (2 increases serum adiponectin, as well as adipose expression of adiponectin and adiponectin receptors in former IUGR rats. Our novel findings suggest that maternal DHA supplementation may normalize adipose dysfunction and promote adiponectin-induced improvements in metabolic function in IUGR.

  15. Maternal docosahexaenoic acid increases adiponectin and normalizes IUGR-induced changes in rat adipose deposition.

    Science.gov (United States)

    Bagley, Heidi N; Wang, Yan; Campbell, Michael S; Yu, Xing; Lane, Robert H; Joss-Moore, Lisa A

    2013-01-01

    Intrauterine growth restriction (IUGR) predisposes to obesity and adipose dysfunction. We previously demonstrated IUGR-induced increased visceral adipose deposition and dysregulated expression of peroxisome proliferator activated receptor- γ 2 (PPAR γ 2) in male adolescent rats, prior to the onset of obesity. In other studies, activation of PPAR γ increases subcutaneous adiponectin expression and normalizes visceral adipose deposition. We hypothesized that maternal supplementation with docosahexaenoic acid (DHA), a PPAR γ agonist, would normalize IUGR adipose deposition in association with increased PPAR γ , adiponectin, and adiponectin receptor expression in subcutaneous adipose. To test these hypotheses, we used a well-characterized model of uteroplacental-insufficiency-(UPI-) induced IUGR in the rat with maternal DHA supplementation. Our primary findings were that maternal DHA supplementation during rat pregnancy and lactation (1) normalizes IUGR-induced changes in adipose deposition and visceral PPAR γ expression in male rats and (2) increases serum adiponectin, as well as adipose expression of adiponectin and adiponectin receptors in former IUGR rats. Our novel findings suggest that maternal DHA supplementation may normalize adipose dysfunction and promote adiponectin-induced improvements in metabolic function in IUGR.

  16. Methylphenidate increases glucose uptake in the brain of young and adult rats.

    Science.gov (United States)

    Réus, Gislaine Z; Scaini, Giselli; Titus, Stephanie E; Furlanetto, Camila B; Wessler, Leticia B; Ferreira, Gabriela K; Gonçalves, Cinara L; Jeremias, Gabriela C; Quevedo, João; Streck, Emilio L

    2015-10-01

    Methylphenidate (MPH) is the drug of choice for pharmacological treatment of attention deficit hyperactivity disorder. Studies have pointed to the role of glucose and lactate as well as in the action mechanisms of drugs used to treat these neuropsychiatric diseases. Thus, this study aims to evaluate the effects of MPH administration on lactate release and glucose uptake in the brains of young and adult rats. MPH (1.0, 2.0 and 10.0mg/kg) or saline was injected in young and adult Wistar male rats either acutely (once) or chronically (once daily for 28 days). Then, the levels of lactate release and glucose uptake were assessed in the prefrontal cortex, hippocampus, striatum, cerebellum and cerebral cortex. Chronic MPH treatment increased glucose uptake at the dose of 10.0mg/kg in the prefrontal cortex and striatum, and at the dose of 2.0mg/kg in the cerebral cortex of young rats. In adult rats, an increase in glucose uptake was observed after acute administration of MPH at the dose of 10.0mg/kg in the prefrontal cortex. After chronic treatment, there was an increase in glucose uptake with MPH doses of 2.0 and 10.0mg/kg in the prefrontal cortex, and at an MPH dose of 2.0mg/kg in the striatum of adult rats. The lactate release did not change with either acute or chronic treatments in young or adult rats. These findings indicate that MPH increases glucose consumption in the brain, and that these changes are dependent on age and posology. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  17. Increased susceptibility of post-weaning rats on high-fat diet to metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Hong Sheng Cheng

    2017-11-01

    Full Text Available The present study aimed to examine the effects of the types of high-calorie diets (high-fat and high-fat-high-sucrose diets and two different developmental stages (post-weaning and young adult on the induction of metabolic syndrome. Male, post-weaning and adult (3- and 8-week old, respectively Sprague Dawley rats were given control, high-fat (60% kcal, and high-fat-high-sucrose (60% kcal fat + 30% sucrose water diets for eight weeks (n = 6 to 7 per group. Physical, biochemical, and transcriptional changes as well as liver histology were noted. Post-weaning rats had higher weight gain, abdominal fat mass, fasting glucose, high density lipoprotein cholesterol, faster hypertension onset, but lower circulating advanced glycation end products compared to adult rats. This is accompanied by upregulation of peroxisome proliferator-activated receptor (PPAR α and γ in the liver and receptor for advanced glycation end products (RAGE in the visceral adipose tissue. Post-weaning rats on high-fat diet manifested all phenotypes of metabolic syndrome and increased hepatic steatosis, which are linked to increased hepatic and adipocyte PPARγ expression. Adult rats on high-fat-high-sucrose diet merely became obese and hypertensive within the same treatment duration. Thus, it is more effective and less time-consuming to induce metabolic syndrome in male post-weaning rats with high-fat diet compared to young adult rats. As male rats were selectively included into the study, the results may not be generalisable to all post-weaning rats and further investigation on female rats is required.

  18. Increased intraretinal PO2 in short-term diabetic rats.

    Science.gov (United States)

    Lau, Jennifer C M; Linsenmeier, Robert A

    2014-12-01

    In diabetic retinopathy, neovascularization is hypothesized to develop due to hypoxia in the retina. However, evidence for retinal hypoxia is limited, and the progressive changes in oxygenation are unknown. The objective of this study was to determine if retinal hypoxia occurs early in the development of diabetes. Intraretinal oxygen (PO2) profiles were recorded with oxygen-sensitive microelectrodes in control and diabetic Long-Evans rats at 4 and 12 weeks after induction of diabetes. Diabetes did not affect oxygen consumption in the photoreceptors in either dark or light adaptation. Oxygenation of the inner retina was not affected after 4 weeks of diabetes, although vascular endothelial growth factor levels increased. At 12 weeks, average inner retinal PO2, normalized to choriocapillaris PO2, was higher in diabetic rats than in age-matched controls, which was opposite to what was expected. Thus retinal hypoxia is not a condition of early diabetes in rat retina. Increased inner retinal PO2 may occur because oxygen consumption decreases in the inner retina. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  19. Acute administration of ketamine in rats increases hippocampal BDNF and mTOR levels during forced swimming test.

    Science.gov (United States)

    Yang, Chun; Hu, Yi-Min; Zhou, Zhi-Qiang; Zhang, Guang-Fen; Yang, Jian-Jun

    2013-03-01

    Previous studies have shown that a single sub-anesthetic dose of ketamine exerts fast-acting antidepressant effects in patients and in animal models of depression. However, the underlying mechanisms are not totally understood. This study aims to investigate the effects of acute administration of different doses of ketamine on the immobility time of rats in the forced swimming test (FST) and to determine levels of hippocampal brain-derived neurotrophic factor (BDNF) and mammalian target of rapamycin (mTOR). Forty male Wistar rats weighing 180-220 g were randomly divided into four groups (n = 10 each): group saline and groups ketamine 5, 10, and 15 mg/kg. On the first day, all animals were forced to swim for 15 min. On the second day ketamine (5, 10, and 15 mg/kg, respectively) was given intraperitoneally, at 30 min before the second episode of the forced swimming test. Immobility times of the rats during the forced swimming test were recorded. The animals were then decapitated. The hippocampus was harvested for determination of BDNF and mTOR levels. Compared with group saline, administration of ketamine at a dose of 5, 10, and 15 mg/kg decreased the duration of immobility (P < 0.05 for all doses). Ketamine at doses of both 10 and 15 mg/kg showed a significant increase in the expression of hippocampal BDNF (P < 0.05 for both doses). Ketamine given at doses of 5, 10, and 15 mg/kg showed significant increases in relative levels of hippocampal p-mTOR (P < 0.05 for all doses) The antidepressant effect of ketamine might be related to the increased expression of BDNF and mTOR in the hippocampus of rats.

  20. High-NaCl Diet Aggravates Cardiac Injury in Rats with Adenine-Induced Chronic Renal Failure and Increases Serum Troponin T Levels

    DEFF Research Database (Denmark)

    Kashioulis, Pavlos; Hammarsten, Ola; Marcussen, Niels

    2016-01-01

    AIMS: To examine the effects of 2 weeks of high-NaCl diet on left ventricular (LV) morphology and serum levels of cardiac troponin T (cTnT) in rats with adenine-induced chronic renal failure (ACRF). METHODS: Male Sprague-Dawley rats either received chow containing adenine or were pair......-fed an identical diet without adenine [controls (C)]. Approximately 10 weeks after the beginning of the study, the rats were randomized to either remain on a normal NaCl diet (NNa; 0.6%) or to be switched to high-NaCl chow (HNa; 4%) for 2 weeks, after which acute experiments were performed. RESULTS: Rats with ACRF...... showed statistically significant increases (p rats (p

  1. Combinatorial gene therapy renders increased survival in cirrhotic rats

    Directory of Open Access Journals (Sweden)

    Armendáriz-Borunda Juan S

    2010-05-01

    Full Text Available Abstract Background Liver fibrosis ranks as the second cause of death in México's productive-age population. This pathology is characterized by acummulation of fibrillar proteins in hepatic parenchyma causing synthetic and metabolic disfunction. Remotion of excessive fibrous proteins might result in benefit for subjects increasing survival index. The goal of this work was to find whether the already known therapeutical effect of human urokinase Plasminogen Activator and human Matrix Metalloprotease 8 extends survival index in cirrhotic animals. Methods Wistar rats (80 g underwent chronic intoxication with CCl4: mineral oil for 8 weeks. Cirrhotic animals were injected with a combined dose of Ad-delta-huPA plus Ad-MMP8 (3 × 1011 and 1.5 × 1011 vp/Kg, respectively or with Ad-beta-Gal (4.5 × 1011 and were killed after 2, 4, 6, 8 and 10 days. Then, liver and serum were collected. An additional set of cirrhotic animals injected with combined gene therapy was also monitored for their probability of survival. Results Only the cirrhotic animals treated with therapeutical genes (Ad-delta-huPA+Ad-MMP-8 showed improvement in liver fibrosis. These results correlated with hydroxyproline determinations. A significant decrement in alpha-SMA and TGF-beta1 gene expression was also observed. Cirrhotic rats treated with Ad-delta-huPA plus Ad-MMP8 had a higher probability of survival at 60 days with respect to Ad-beta-Gal-injected animals. Conclusion A single administration of Ad-delta-huPA plus Ad-MMP-8 is efficient to induce fibrosis regression and increase survival in experimental liver fibrosis.

  2. Increased Muscular 5α-Dihydrotestosterone in Response to Resistance Training Relates to Skeletal Muscle Mass and Glucose Metabolism in Type 2 Diabetic Rats.

    Directory of Open Access Journals (Sweden)

    Naoki Horii

    Full Text Available Regular resistance exercise induces skeletal muscle hypertrophy and improvement of glycemic control in type 2 diabetes patients. Administration of dehydroepiandrosterone (DHEA, a sex steroid hormone precursor, increases 5α-dihydrotestosterone (DHT synthesis and is associated with improvements in fasting blood glucose level and skeletal muscle hypertrophy. Therefore, the aim of this study was to investigate whether increase in muscle DHT levels, induced by chronic resistance exercise, can contribute to skeletal muscle hypertrophy and concomitant improvement of muscular glucose metabolism in type 2 diabetic rats. Male 20-week-old type 2 diabetic rats (OLETF were randomly divided into 3 groups: sedentary control, resistance training (3 times a week on alternate days for 8 weeks, or resistance training with continuous infusion of a 5α-reductase inhibitor (n = 8 each group. Age-matched, healthy nondiabetic Long-Evans Tokushima Otsuka (LETO rats (n = 8 were used as controls. The results indicated that OLETF rats showed significant decrease in muscular DHEA, free testosterone, DHT levels, and protein expression of steroidogenic enzymes, with loss of skeletal muscle mass and hyperglycemia, compared to that of LETO rats. However, 8-week resistance training in OLETF rats significantly increased the levels of muscle sex steroid hormones and protein expression of steroidogenic enzymes with a concomitant increase in skeletal muscle mass, improved fasting glucose level, and insulin sensitivity index. Moreover, resistance training accelerated glucose transporter-4 (GLUT-4 translocation and protein kinase B and C-ζ/λ phosphorylation. Administering the 5α-reductase inhibitor in resistance-trained OLETF rats resulted in suppression of the exercise-induced effects on skeletal muscle mass, fasting glucose level, insulin sensitivity index, and GLUT-4 signaling, with a decline in muscular DHT levels. These findings suggest that resistance training

  3. Green Tea Increases the Concentration of Total Mercury in the Blood of Rats following an Oral Fish Tissue Bolus

    Directory of Open Access Journals (Sweden)

    Elsa M. Janle

    2015-01-01

    Full Text Available Fish has many health benefits but is also the most common source of methylmercury. The bioavailability of methylmercury in fish may be affected by other meal components. In this study, the effect of green tea on the bioavailability of methylmercury from an oral bolus of fish muscle tissue was studied in rats and compared to a water treated control group and a group treated with meso-2,3-dimercaptosuccinic acid (DMSA, a compound used medically to chelate mercury. Rats were given a single oral dose of fish tissue via gavage and one of the treatments. Rats were given access to food for 3 h at 12 h intervals. They were dosed with each of the treatments with each meal. Blood samples were collected for 95 hours. Green tea significantly increased the concentration of total mercury in blood relative to the control, whereas DMSA significantly decreased it. In addition, feeding caused a slight increase in blood mercury for several meals following the initial dose.

  4. Red palm oil supplementation does not increase blood glucose or serum lipids levels in Wistar rats with different thyroid status.

    Science.gov (United States)

    Rauchová, H; Vokurková, M; Pavelka, S; Vaněčková, I; Tribulová, N; Soukup, T

    2018-01-05

    Red palm oil (RPO) is a rich natural source of antioxidant vitamins, namely carotenes, tocopherols and tocotrienols. However, it contains approximately 50 % saturated fatty acids the regular consumption of which could negatively modify lipid profile. The aim of our study was to test whether 7 weeks of RPO supplementation (1 g/kg body weight/day) would affect blood glucose and lipid metabolism in adult male Wistar rats with altered thyroid status. We induced hypothyroidism and hyperthyroidism in rats by oral administration of either methimazole or mixture of thyroid hormones. Different thyroid status (EU - euthyroid, HY - hypothyroid and HT - hyperthyroid) was characterized by different serum thyroid hormones levels (total and free thyroxine and triiodothyronine), changes in the activity of a marker enzyme of thyroid status - liver mitochondrial glycerol-3-phosphate dehydrogenase, and altered absolute and relative heart weights. Fasting blood glucose levels were higher in HT rats in comparison with EU and HY rats, but the changes caused by RPO supplementation were not significant. The achievement of the HY status significantly increased serum levels of total cholesterol, as well as with high-density lipoprotein-cholesterol and low-density lipoprotein-cholesterol: 2.43+/-0.15, 1.48+/-0.09, 0.89+/-0.08 mmol/l, compared to EU: 1.14+/-0.06, 0.77+/-0.06, 0.34+/-0.05 mmol/l and HT: 1.01+/-0.06, 0.69+/-0.04, 0.20+/-0.03 mmol/l, respectively. RPO supplementation did not increase significantly levels of blood lipids but tended to increase glutathione levels in the liver. In conclusion, RPO supplementation did not induce the presumed deterioration of glucose and lipid metabolism in rats with three well-characterized alterations in thyroid status.

  5. Increased androgen levels in rats impair glucose-stimulated insulin secretion through disruption of pancreatic beta cell mitochondrial function.

    Science.gov (United States)

    Wang, Hongdong; Wang, Xiaping; Zhu, Yunxia; Chen, Fang; Sun, Yujie; Han, Xiao

    2015-11-01

    Although insulin resistance is recognized to contribute to the reproductive and metabolic phenotypes of polycystic ovary syndrome (PCOS), pancreatic beta cell dysfunction plays an essential role in the progression from PCOS to the development of type 2 diabetes. However, the role of insulin secretory abnormalities in PCOS has received little attention. In addition, the precise changes in beta cells and the underlying mechanisms remain unclear. In this study, we therefore attempted to elucidate potential mechanisms involved in beta cell alterations in a rat model of PCOS. Glucose-induced insulin secretion was measured in islets isolated from DHT-treated and control rats. Oxygen consumption rate (OCR), ATP production, and mitochondrial copy number were assayed to evaluate mitochondrial function. Glucose-stimulated insulin secretion is significantly decreased in islets from DHT-treated rats. On the other hand, significant reductions are observed in the expression levels of several key genes involved in mitochondrial biogenesis and in mitochondrial OCR and ATP production in DHT-treated rat islets. Meanwhile, we found that androgens can directly impair beta cell function by inducing mitochondrial dysfunction in vitro in an androgen receptor dependent manner. For the first time, our study demonstrates that increased androgens in female rats can impair glucose-stimulated insulin secretion partly through disruption of pancreatic beta cell mitochondrial function. This work has significance for hyperandrogenic women with PCOS: excess activation of the androgen receptor by androgens may provoke beta cell dysfunction via mitochondrial dysfunction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Rats with steroid-induced polycystic ovaries develop hypertension and increased sympathetic nervous system activity

    Directory of Open Access Journals (Sweden)

    Ploj Karolina

    2005-09-01

    Full Text Available Abstract Background Polycystic ovary syndrome (PCOS is a complex endocrine and metabolic disorder associated with ovulatory dysfunction, abdominal obesity, hyperandrogenism, hypertension, and insulin resistance. Methods Our objectives in this study were (1 to estimate sympathetic-adrenal medullary (SAM activity by measuring mean systolic blood pressure (MSAP in rats with estradiol valerate (EV-induced PCO; (2 to estimate alpha1a and alpha2a adrenoceptor expression in a brain area thought to mediate central effects on MSAP regulation and in the adrenal medulla; (3 to assess hypothalamic-pituitary-adrenal (HPA axis regulation by measuring adrenocorticotropic hormone (ACTH and corticosterone (CORT levels in response to novel-environment stress; and (4 to measure abdominal obesity, sex steroids, and insulin sensitivity. Results The PCO rats had significantly higher MSAP than controls, higher levels of alpha1a adrenoceptor mRNA in the hypothalamic paraventricular nucleus (PVN, and lower levels of alpha2a adrenoceptor mRNA in the PVN and adrenal medulla. After exposure to stress, PCO rats had higher ACTH and CORT levels. Plasma testosterone concentrations were lower in PCO rats, and no differences in insulin sensitivity or in the weight of intraabdominal fat depots were found. Conclusion Thus, rats with EV-induced PCO develop hypertension and increased sympathetic and HPA-axis activity without reduced insulin sensitivity, obesity, or hyperandrogenism. These findings may have implications for mechanisms underlying hypertension in PCOS.

  7. Sign-tracking predicts increased choice of cocaine over food in rats.

    Science.gov (United States)

    Tunstall, Brendan J; Kearns, David N

    2015-03-15

    The purpose of this study was to determine whether the tendency to sign-track to a food cue was predictive of rats' choice of cocaine over food. First, rats were trained on a procedure where insertion of a retractable lever was paired with food. A sub-group of rats - sign-trackers - primarily approached and contacted the lever, while another sub-group - goal-trackers - approached the site of food delivery. Rats were then trained on a choice task where they could choose between an infusion of cocaine (1.0 mg/kg) and a food pellet (45 mg). Sign-trackers chose cocaine over food significantly more often than did goal-trackers. These results support the incentive-salience theory of addiction and add to a growing number of studies which suggest that sign-trackers may model an addiction-prone phenotype. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Prenatal Alcohol Exposure Increases Histamine H3 Receptor-Mediated Inhibition of Glutamatergic Neurotransmission in Rat Dentate Gyrus.

    Science.gov (United States)

    Varaschin, Rafael K; Allen, Nyika A; Rosenberg, Martina J; Valenzuela, C Fernando; Savage, Daniel D

    2018-02-01

    We have reported that prenatal alcohol exposure (PAE)-induced deficits in dentate gyrus, long-term potentiation (LTP), and memory are ameliorated by the histamine H 3 receptor inverse agonist ABT-239. Curiously, ABT-239 did not enhance LTP or memory in control offspring. Here, we initiated an investigation of how PAE alters histaminergic neurotransmission in the dentate gyrus and other brain regions employing combined radiohistochemical and electrophysiological approaches in vitro to examine histamine H 3 receptor number and function. Long-Evans rat dams voluntarily consumed either a 0% or 5% ethanol solution 4 hours each day throughout gestation. This pattern of drinking, which produces a mean peak maternal serum ethanol concentration of 60.8 ± 5.8 mg/dl, did not affect maternal weight gain, litter size, or offspring birthweight. Radiohistochemical studies in adult offspring revealed that specific [ 3 H]-A349821 binding to histamine H 3 receptors was not different in PAE rats compared to controls. However, H 3 receptor-mediated G i /G o protein-effector coupling, as measured by methimepip-stimulated [ 35 S]-GTPγS binding, was significantly increased in cerebral cortex, cerebellum, and dentate gyrus of PAE rats compared to control. A LIGAND analysis of detailed methimepip concentration-response curves in dentate gyrus indicated that PAE significantly elevates receptor-effector coupling by a lower affinity H 3 receptor population without significantly altering the affinities of H 3 receptor subpopulations. In agreement with the [ 35 S]-GTPγS studies, a similar range of methimepip concentrations also inhibited electrically evoked field excitatory postsynaptic potential responses and increased paired-pulse ratio, a measure of decreased glutamate release, to a significantly greater extent in dentate gyrus slices from PAE rats than in controls. These results suggest that a PAE-induced elevation in H 3 receptor-mediated inhibition of glutamate release from

  9. Activation of calcium-sensing receptor increases TRPC3 expression in rat cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shan-Li [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Sun, Ming-Rui [Department of Pharmacology, Qiqihaer Medical College, Qiqihaer 160001 (China); Li, Ting-Ting; Yin, Xin [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Xu, Chang-Qing [Department of Pathophysiology, Harbin Medical University, Harbin 150086 (China); Sun, Yi-Hua, E-mail: syh200415@126.com [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China)

    2011-03-11

    Research highlights: {yields} Calcium-sensing receptor (CaR) activation stimulates TRP channels. {yields} CaR promoted transient receptor potential C3 (TRPC3) expression. {yields} Adult rat ventricular myocytes display capacitative calcium entry (CCE), which was operated by TRPCs. {yields} TRPC channels activation induced by CaR activator sustained the increased [Ca{sup 2+}]{sub i} to evoke cardiomyocytes apoptosis. -- Abstract: Transient receptor potential (TRP) channels are expressed in cardiomyocytes, which gate a type of influx of extracellular calcium, the capacitative calcium entry. TRP channels play a role in mediating Ca{sup 2+} overload in the heart. Calcium-sensing receptors (CaR) are also expressed in rat cardiac tissue and promote the apoptosis of cardiomyocytes by Ca{sup 2+} overload. However, data about the link between CaR and TRP channels in rat heart are few. In this study, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were used to examine the expression of the TRP canonical proteins TRPC1 and TRPC3 in adult and neonatal rat cardiomyocytes. Laser scan confocal microscopy was used to detect intracellular [Ca{sup 2+}]{sub i} levels in isolated adult rat ventricular myocytes. The results showed that, in adult rat cardiomyocytes, the depletion of Ca{sup 2+} stores in the endoplasmic/sarcoplasmic reticulum (ER/SR) by thapsigargin induced a transient increase in [Ca{sup 2+}]{sub i} in the absence of [Ca{sup 2+}]{sub o} and the subsequent restoration of [Ca{sup 2+}]{sub o} sustained the increased [Ca{sup 2+}]{sub i} for a few minutes, whereas, the persisting elevation of [Ca{sup 2+}]{sub i} was reduced in the presence of the TRPC inhibitor SKF96365. The stimulation of CaR by its activator gadolinium chloride (GdCl{sub 3}) or spermine also resulted in the same effect and the duration of [Ca{sup 2+}]{sub i} increase was also shortened in the absence of [Ca{sup 2+}]{sub o}. In adult and neonatal rat cardiomyocytes, GdCl{sub 3

  10. Exhaustive Training Increases Uncoupling Protein 2 Expression and Decreases Bcl-2/Bax Ratio in Rat Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    W. Y. Liu

    2013-01-01

    Full Text Available This work investigates the effects of oxidative stress due to exhaustive training on uncoupling protein 2 (UCP2 and Bcl-2/Bax in rat skeletal muscles. A total of 18 Sprague-Dawley female rats were randomly divided into three groups: the control group (CON, the trained control group (TC, and the exhaustive trained group (ET. Malondialdehyde (MDA, superoxide dismutase (SOD, xanthine oxidase (XOD, ATPase, UCP2, and Bcl-2/Bax ratio in red gastrocnemius muscles were measured. Exhaustive training induced ROS increase in red gastrocnemius muscles, which led to a decrease in the cell antiapoptotic ability (Bcl-2/Bax ratio. An increase in UCP2 expression can reduce ROS production and affect mitochondrial energy production. Thus, oxidative stress plays a significant role in overtraining.

  11. The effects of honey (Apis dorsata) supplements on increased bone strength in ovariectomized rat as animal model of osteoporosis

    Science.gov (United States)

    Yudaniayanti, Ira Sari; Primarizky, Hardany; Nangoi, Lianny

    2018-04-01

    Osteoporosis is a chronic skeletal disease characterized by low bone mass and microarchitectural deterioration with a consequent increase in bone fragility and fracture risk. The aim of the study was to evaluate the effects of honey (Apis dorsata) supplements on increased bone strength in ovariectomized rat as animal models of osteoporosis. Twenty female rats at 3 months of age, weighing 150-200 g were used in the study. The rats were divided into five groups (n=4) : Sham operation group (SH); ovariectomy group no treatment(OVX); ovariectomy with treatment Apis dorsata 1g/Kg BW (AD-1); ovariectomy with treatment Apis dorsata 2g/Kg BW (AD-2); ovariectomy with treatment Apis dorsata 4g/Kg BW (AD-3). The treatment started to be given the next day after ovariectomy operation for 12 weeks. The Rats were sacrified within 12 weeks, and then the right femur were taken bone strength test. Based on the statistical analysis of the bone strength test, the greatest score belongs to the Sham operation group (SH) that have significant difference (p0,05). In conclusion, honey (Apis dorsata) supplements has the effect of increasing bone strength in ovariectomized rat as animal models of osteoporosis, so that honey (Apis dorsata) supplements has the potential to be used as an alternative treatment for osteoporosis.

  12. Chronic THC during adolescence increases the vulnerability to stress-induced relapse to heroin seeking in adult rats.

    Science.gov (United States)

    Stopponi, Serena; Soverchia, Laura; Ubaldi, Massimo; Cippitelli, Andrea; Serpelloni, Giovanni; Ciccocioppo, Roberto

    2014-07-01

    Cannabis derivatives are among the most widely used illicit substances among young people. The addictive potential of delta-9-tetrahydrocannabinol (THC), the major active ingredient of cannabis is well documented in scientific literature. However, the consequence of THC exposure during adolescence on occurrence of addiction for other drugs of abuse later in life is still controversial. To explore this aspect of THC pharmacology, in the present study, we treated adolescent rats from postnatal day (PND) 35 to PND-46 with increasing daily doses of THC (2.5-10mg/kg). One week after intoxication, the rats were tested for anxiety-like behavior in the elevated plus maze (EPM) test. One month later (starting from PND 75), rats were trained to operantly self-administer heroin intravenously. Finally, following extinction phase, reinstatement of lever pressing elicited by the pharmacological stressor, yohimbine (1.25mg/kg) was evaluated. Data revealed that in comparison to controls, animals treated with chronic THC during adolescence showed a higher level of anxiety-like behavior. When tested for heroin (20μg per infusion) self-administration, no significant differences were observed in both the acquisition of operant responding and heroin intake at baseline. Noteworthy, following the extinction phase, administration of yohimbine elicited a significantly higher level of heroin seeking in rats previously exposed to THC. Altogether these findings demonstrate that chronic exposure to THC during adolescence is responsible for heightened anxiety and increased vulnerability to drug relapse in adulthood. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.

  13. Ebselen increases cytosolic free Ca2+ concentration, stimulates glutamate release and increases GFAP content in rat hippocampal astrocytes

    International Nuclear Information System (INIS)

    Salazar, Miguel; Pariente, Jose Antonio; Salido, Gines Maria; Gonzalez, Antonio

    2008-01-01

    We have investigated the effect of the seleno-organic compound and radical scavenger ebselen on rat hippocampal astrocytes in culture. Throughout our study we carried out determinations of [Ca 2+ ] c in fura-2-loaded cells by single cell imaging, glutamate secretion employing an enzymatic-based assay and GFAP expression, which was monitorized by immunocytochemistry and confocal microscopy. Our results show that ebselen (1-20 μM) dose dependently increases [Ca 2+ ] c , stimulates glutamate release and increases GFAP content, a hallmark of astrocyte reactivity. Ebselen did not alter significantly cell viability as assayed by determination of LDH release into the extracellular medium. Ebselen-evoked glutamate release and increase in GFAP content were Ca 2+ -dependent, because incubation of astrocytes in the absence of extracellular Ca 2+ (medium containing 0.5 mM EGTA) and in the presence of the intracellular Ca 2+ chelator BAPTA (10 μM) significantly reduced ebselen-evoked changes in these parameters. The effects of ebselen we have observed may underline various signalling pathways which are important for cell proliferation, differentiation and function. However, aberrations in astroglial physiology could significantly compromise brain function, due to their role as modulators of neuron activity. Therefore, we consider that careful attention should be paid when employing ebselen as a prophylactic agent against brain damage

  14. Delayed wound healing in aged skin rat models after thermal injury is associated with an increased MMP-9, K6 and CD44 expression.

    Science.gov (United States)

    Simonetti, Oriana; Oriana, Simonetti; Lucarini, Guendalina; Guendalina, Lucarini; Cirioni, Oscar; Oscar, Cirioni; Zizzi, Antonio; Antonio, Zizzi; Orlando, Fiorenza; Fiorenza, Orlando; Provinciali, Mauro; Mauro, Provinciali; Di Primio, Roberto; Roberto, Di Primio; Giacometti, Andrea; Andrea, Giacometti; Offidani, Annamaria; Annamaria, Offidani

    2013-06-01

    Age-related differences in wound healing have been documented but little is known about the wound healing mechanism after burns. Our aim was to compare histological features and immunohistochemical expression of matrix metalloproteinase-9 (MMP-9), collagen IV, K6 and CD44 in the burn wound healing process in aged and young rats. Following burns the appearance of the wound bed in aged rats had progressed but slowly, resulting in a delayed healing process compared to the young rats. At 21 days after injury, epithelial K6, MMP-9 and CD44 expression was significantly increased in aged rats with respect to young rats; moreover, in the aged rat group we observed a not fully reconstituted basement membrane. K6, MMP-9 and CD44 expression was significantly increased in wounded skin compared to unwounded skin both in young and aged rats. We hypothesise that delayed burn skin wound healing process in the aged rats may represent an age dependent response to injury where K6, MMP-9 and CD44 play a key role. It is therefore possible to suggest that these factors contribute to the delayed wound healing in aged skin and that modulation could lead to a better and faster recovery of skin damage in elderly. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  15. High-fructose diet during periadolescent development increases depressive-like behavior and remodels the hypothalamic transcriptome in male rats

    Science.gov (United States)

    Harrell, Constance S.; Burgado, Jillybeth; Kelly, Sean D.; Johnson, Zachary P.; Neigh, Gretchen N.

    2015-01-01

    Fructose consumption, which promotes insulin resistance, hypertension, and dyslipidemia, has increased by over 25% since the 1970s. In addition to metabolic dysregulation, fructose ingestion stimulates the hypothalamic-pituitary-adrenal (HPA) axis leading to elevations in glucocorticoids. Adolescents are the greatest consumers of fructose, and adolescence is a critical period for maturation of the HPA axis. Repeated consumption of high levels of fructose during adolescence has the potential to promote long-term dysregulation of the stress response. Therefore, we determined the extent to which consumption of a diet high in fructose affected behavior, serum corticosterone, and hypothalamic gene expression using a whole-transcriptomics approach. In addition, we examined the potential of a high-fructose diet to interact with exposure to chronic adolescent stress. Male Wistar rats fed the periadolescent high-fructose diet showed increased anxiety-like behavior in the elevated plus maze and depressive-like behavior in the forced swim test in adulthood, irrespective of stress history. Periadolescent fructose-fed rats also exhibited elevated basal corticosterone concentrations relative to their chow-fed peers. These behavioral and hormonal responses to the high-fructose diet did not occur in rats fed fructose during adulthood only. Finally, rats fed the high-fructose diet throughout development underwent marked hypothalamic transcript expression remodeling, with 966 genes (5.6%) significantly altered and a pronounced enrichment of significantly altered transcripts in several pathways relating to regulation of the HPA axis. Collectively, the data presented herein indicate that diet, specifically one high in fructose, has the potential to alter behavior, HPA axis function, and the hypothalamic transcriptome in male rats. PMID:26356038

  16. Increased transient receptor potential canonical type 3 channels in vasculature from hypertensive rats

    DEFF Research Database (Denmark)

    Liu, Daoyan; Yang, Dachun; He, Hongbo

    2009-01-01

    We tested the hypothesis that transient receptor potential canonical type 3 (TRPC3) channels are increased in vascular smooth muscle cells and aortic tissue from spontaneously hypertensive rats (SHR) compared with normotensive Wistar Kyoto rats. Expression of TRPC3 was analyzed by immunohistochem...

  17. Intrauterine Growth Restriction Increases TNFα and Activates the Unfolded Protein Response in Male Rat Pups

    Directory of Open Access Journals (Sweden)

    Emily S. Riddle

    2014-01-01

    Full Text Available Intrauterine growth restriction (IUGR programs adult disease, including obesity and insulin resistance. Our group previously demonstrated that IUGR dysregulates adipose deposition in male, but not female, weanling rats. Dysregulated adipose deposition is often accompanied by the release of proinflammatory signaling molecules, such as tumor necrosis factor alpha (TNFα. TNFα contributes to adipocyte inflammation and impaired insulin signaling. TNFα has also been implicated in the activation of the unfolded protein response (UPR, which impairs insulin signaling. We hypothesized that, in male rat pups, IUGR would increase TNFα, TNFR1, and components of the UPR (Hspa5, ATF6, p-eIF2α, and Ddit3 prior to the onset of obesity. We further hypothesized that impaired glucose tolerance would occur after the onset of adipose dysfunction in male IUGR rats. To test this hypothesis, we used a well-characterized rat model of uteroplacental insufficiency-induced IUGR. Our primary findings are that, in male rats, IUGR (1 increased circulating and adipose TNFα, (2 increased mRNA levels of UPR components as well as p-eIF2a, and (3 impaired glucose tolerance after observed TNFα increased and after UPR activation. We speculate that programmed dysregulation of TNFα and UPR contributed to the development of glucose intolerance in male IUGR rats.

  18. Hypoxia-induced increases in serotonin-immunoreactive nerve fibers in the medulla oblongata of the rat.

    Science.gov (United States)

    Morinaga, Ryosuke; Nakamuta, Nobuaki; Yamamoto, Yoshio

    2016-10-01

    Hypoxia induces respiratory responses in mammals and serotonergic neurons in the medulla oblongata participate in respiratory control. However, the morphological changes in serotonergic neurons induced by hypoxia have not yet been examined and respiratory controls of serotonergic neurons have not been clarified. We herein investigated the distribution of immunoreactivity for serotonin (5-hydroxytryptamine; 5-HT) in the medulla oblongata of control rats and rats exposed to 1-6h of hypoxia (10% O 2 ). We also examined the medulla oblongata by multiple immunofluorescence labeling for 5-HT, neurokinin 1 receptors (NK1R), a marker for some respiratory neurons in the pre-Bötzinger complex (PBC), and dopamine β-hydroxylase (DBH), a marker for catecholaminergic neurons. The number of 5-HT-immunoreactive nerve cell bodies in the raphe nuclei was higher in rats exposed to hypoxia than in control rats. The number of 5-HT-immunoreactive nerve fibers significantly increased in the rostral ventrolateral medulla of rats exposed to 1-6h of hypoxia, caudal ventrolateral medulla of rats exposed to 2-6h of hypoxia, and lateral part of the nucleus of the solitary tract and dorsal motor nucleus of the vagus nerve of rats exposed to 1-2h of hypoxia. Multiple immunofluorescence labeling showed that 5-HT-immunoreactive nerve fibers were close to NK1R-immunoreactive neurons in ventrolateral medulla and to DBH-immunoreactive neurons in the medulla. These results suggest that serotonergic neurons partly regulate respiratory control under hypoxic conditions by modulating the activity of NK1R-expressing and catecholaminergic neurons. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Depression, anxiety-like behavior and memory impairment are associated with increased oxidative stress and inflammation in a rat model of social stress.

    Science.gov (United States)

    Patki, Gaurav; Solanki, Naimesh; Atrooz, Fatin; Allam, Farida; Salim, Samina

    2013-11-20

    In the present study, we have examined the behavioral and biochemical effect of induction of psychological stress using a modified version of the resident-intruder model for social stress (social defeat). At the end of the social defeat protocol, body weights, food and water intake were recorded, depression and anxiety-like behaviors as well as memory function was examined. Biochemical analysis including oxidative stress measurement, inflammatory markers and other molecular parameters, critical to behavioral effects were examined. We observed a significant decrease in the body weight in the socially defeated rats as compared to the controls. Furthermore, social defeat increased anxiety-like behavior and caused memory impairment in rats (PSocially defeated rats made significantly more errors in long term memory tests (Psocially defeated rats, when compared to control rats. We suggest that social defeat stress alters ERK1/2, IL-6, GLO1, GSR1, CAMKIV, CREB, and BDNF levels in specific brain areas, leading to oxidative stress-induced anxiety-depression-like behaviors and as well as memory impairment in rats. © 2013 Published by Elsevier B.V.

  20. Trans fatty acids increase nitric oxide levels and pancreatic beta-cell necrosis in rats

    Directory of Open Access Journals (Sweden)

    Kusmiyati Tjahjono DK

    2013-04-01

    Full Text Available Background The prevalence of diabetes in Indonesia is increasing due to various factors, including life style changes such as trans fatty acid (TFA intake. High TFA intake is known to be related to blood lipid profile changes resulting in cardiovascular disorders. This study was to identify the effect of TFA on nitric oxide (NO production and on necrosis of pancreatic beta cells. Methods A study of randomized pre-test post–test design with control group. Thirty Sprague Dawley rats were divided into 3 groups, i.e. group K (control, group P1 receiving a diet with 5% TFA, and P2 receiving 10% TFA. The intervention was performed for 8 weeks. NO level and pancreatic beta-cell necrosis were analyzed using Pearson’s chi square test. Results After 4 weeks of treatment there was no change in NO levels in group K, but increased NO in P2 (2.6-3.8 ìM. At 8 weeks after treatment, NO levels in groups P1 and P2 increased to 2.6-3.4 ìM and 4.2-14.3 ìM, respectively, while in group K only 2 rats had increased NO levels of 2.8-2.9 ìM. With Pearson’s chi-square test, there was a signifant difference in the proportions of necrotic pancreatic beta cells after 4 weeks and 8 weeks (p=0.000. No necrosis of beta cells was found in group K, mild necrosis in group P1 (1-25% and moderate necrosis in group P2 (26-50%. Conclusion TFA consumption significantly increases NO levels in Sprague Dawley rats and also results in moderate grades of necrosis of pancreatic beta cells.

  1. Trans fatty acids increase nitric oxide levels and pancreatic beta-cell necrosis in rats

    Directory of Open Access Journals (Sweden)

    Kusmiyati Tjahjono DK

    2015-12-01

    Full Text Available BACKGROUND The prevalence of diabetes in Indonesia is increasing due to various factors, including life style changes such as trans fatty acid (TFA intake. High TFA intake is known to be related to blood lipid profile changes resulting in cardiovascular disorders. This study was to identify the effect of TFA on nitric oxide (NO production and on necrosis of pancreatic beta cells. METHODS A study of randomized pre-test post–test design with control group. Thirty Sprague Dawley rats were divided into 3 groups, i.e. group K (control, group P1 receiving a diet with 5% TFA, and P2 receiving 10% TFA. The intervention was performed for 8 weeks. NO level and pancreatic beta-cell necrosis were analyzed using Pearson’s chi square test. RESULTS After 4 weeks of treatment there was no change in NO levels in group K, but increased NO in P2 (2.6-3.8 ìM. At 8 weeks after treatment, NO levels in groups P1 and P2 increased to 2.6-3.4 ìM and 4.2-14.3 ìM, respectively, while in group K only 2 rats had increased NO levels of 2.8-2.9 ìM. With Pearson’s chi-square test, there was a signifant difference in the proportions of necrotic pancreatic beta cells after 4 weeks and 8 weeks (p= 0.000. No necrosis of beta cells was found in group K, mild necrosis in group P1 (1-25% and moderate necrosis in group P2 (26-50%. CONCLUSION TFA consumption significantly increases NO levels in Sprague Dawley rats and also results in moderate grades of necrosis of pancreatic beta cells

  2. Resistance of essential fatty acid-deficient rats to endotoxin-induced increases in vascular permeability

    International Nuclear Information System (INIS)

    Li, E.J.; Cook, J.A.; Spicer, K.M.; Wise, W.C.; Rokach, J.; Halushka, P.V.

    1990-01-01

    Resistance to endotoxin in essential fatty acid-deficient (EFAD) rats is associated with reduced synthesis of certain arachidonic acid metabolites. It was hypothesized that EFAD rats would manifest decreased vascular permeability changes during endotoxemia as a consequence of reduced arachidonic acid metabolism. To test this hypothesis, changes in hematocrit (HCT) and mesenteric localization rate of technetium-labeled human serum albumin (99mTc-HSA) and red blood cells (99mTc-RBC) were assessed in EFAD and normal rats using gamma-camera imaging. Thirty minutes after Salmonella enteritidis endotoxin, EFAD rats exhibited less hemoconcentration as determined by % HCT than normal rats. Endotoxin caused a less severe change in permeability index in the splanchnic region in EFAD rats than in normal rats (1.2 +/- 0.6 x 10(-3)min-1 vs. 4.9 +/- 1.7 x 10(-3)min-1 respectively, P less than 0.05). In contrast to 99mTc-HSA, mesenteric localization of 99mTc-RBC was not changed by endotoxin in control or EFAD rats. Supplementation with ethyl-arachidonic acid did not enhance susceptibility of EFAD rats to endotoxin-induced splanchnic permeability to 99mTc-HSA. Leukotrienes have been implicated as mediators of increased vascular permeability in endotoxin shock. Since LTC3 formation has been reported to be increased in EFA deficiency, we hypothesized that LTC3 may be less potent than LTC4. Thus the effect of LTC3 on mean arterial pressure and permeability was compared to LTC4 in normal rats. LTC3-induced increases in peak mean arterial pressure were less than LTC4 at 10 micrograms/kg (39 +/- 5 mm Hg vs. 58 +/- 4 mm Hg respectively, P less than 0.05) and at 20 micrograms/kg (56 +/- 4 mm Hg vs. 75 +/- 2 mm Hg respectively, P less than 0.05). LY171883 (30 mg/kg), an LTD4/E4 receptor antagonist, attenuated the pressor effect of LTC4, LTD4, and LTC3

  3. High doses of garlic extract significantly attenuated the ratio of serum LDL to HDL level in rat-fed with hypercholesterolemia diet.

    Science.gov (United States)

    Ebrahimi, Tahereh; Behdad, Behnoosh; Abbasi, Maryam Agha; Rabati, Rahman Ghaffarzadegan; Fayyaz, Amir Farshid; Behnod, Vahid; Asgari, Ali

    2015-06-20

    Hypercholesterolemia is associated with an increased risk of heart disease. In this study, we investigated the antihyperlipidemic effects of garlic (Allium sativum L.) in rat models of hypercholesterolemic. Wistar male rats were randomly divided into 4 diet groups with garlic supplementation. Male Wistar rats were fed by standard pellet diet (group I), standard diet supplemented with 4% garlic (group II), lipogenic diet (containing sunflower oil, cholesterol and ethanol) equivalent to 200 mg raw garlic/kg body weight (raw) (group III) and lipogenic diet equivalent to 400 mg raw garlic/kg body weight (raw) (group IV). Rats fed 400 g/kg garlic extract(GE), had a significantly lower concentration of serum low-density lipoprotein cholesterol (LDL-C) cholesterol and elevated HDL -C cholesterol at day 28 (P garlic supplementation (P garlic in reducing lateral side effects of hyperlipidemia. Our data demonstrate that GE has protective effects on HDL in rats with high LDL intake. Therefore, it could be used to remedy hypercholesterolemia with help reduce risk of coronary heart disease The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1834155749171141.

  4. Replacing dietary glucose with fructose increases ChREBP activity and SREBP-1 protein in rat liver nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Hyun-Young [Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 S. Goodwin Avenue, Urbana, IL 61801 (United States); Miyashita, Michio [Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 S. Goodwin Avenue, Urbana, IL 61801 (United States); Department of Pediatrics, Nihon University School of Medicine, Itabashi, Tokyo (Japan); Simon Cho, B.H. [Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 S. Goodwin Avenue, Urbana, IL 61801 (United States); Harlan E. Moore Heart Research Foundation, 503 South Sixth Street, Champaign, IL 61820 (United States); Nakamura, Manabu T., E-mail: mtnakamu@illinois.edu [Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 S. Goodwin Avenue, Urbana, IL 61801 (United States)

    2009-12-11

    Diets high in fructose cause hypertriglyceridemia and insulin resistance in part due to simultaneous induction of gluconeogenic and lipogenic genes in liver. We investigated the mechanism underlying the unique pattern of gene induction by dietary fructose. Male Sprague-Dawley rats (n = 6 per group) were meal-fed (4 h/d) either 63% (w/w) glucose or 63% fructose diet. After two weeks, animals were killed at the end of the last meal. Nuclear SREBP-1 was 2.2 times higher in fructose-fed rats than glucose-fed rats. Nuclear FoxO1 was elevated 1.7 times in fructose group, but did not reach significance (P = 0.08). Unexpectedly, no difference was observed in nuclear ChREBP between two groups. However, ChREBP DNA binding was 3.9x higher in fructose-fed animals without an increase in xylulose-5-phospate, a proposed ChREBP activator. In conclusion, the gene induction by dietary fructose is likely to be mediated in part by simultaneously increased ChREBP activity, SREBP-1 and possibly FoxO1 protein in nucleus.

  5. Replacing dietary glucose with fructose increases ChREBP activity and SREBP-1 protein in rat liver nucleus

    International Nuclear Information System (INIS)

    Koo, Hyun-Young; Miyashita, Michio; Simon Cho, B.H.; Nakamura, Manabu T.

    2009-01-01

    Diets high in fructose cause hypertriglyceridemia and insulin resistance in part due to simultaneous induction of gluconeogenic and lipogenic genes in liver. We investigated the mechanism underlying the unique pattern of gene induction by dietary fructose. Male Sprague-Dawley rats (n = 6 per group) were meal-fed (4 h/d) either 63% (w/w) glucose or 63% fructose diet. After two weeks, animals were killed at the end of the last meal. Nuclear SREBP-1 was 2.2 times higher in fructose-fed rats than glucose-fed rats. Nuclear FoxO1 was elevated 1.7 times in fructose group, but did not reach significance (P = 0.08). Unexpectedly, no difference was observed in nuclear ChREBP between two groups. However, ChREBP DNA binding was 3.9x higher in fructose-fed animals without an increase in xylulose-5-phospate, a proposed ChREBP activator. In conclusion, the gene induction by dietary fructose is likely to be mediated in part by simultaneously increased ChREBP activity, SREBP-1 and possibly FoxO1 protein in nucleus.

  6. Estradiol increases choice of cocaine over food in male rats.

    Science.gov (United States)

    Bagley, Jared R; Adams, Julia; Bozadjian, Rachel V; Bubalo, Lana; Ploense, Kyle L; Kippin, Tod E

    2017-10-19

    Estradiol modulates the rewarding and reinforcing properties of cocaine in females, including an increase in selection of cocaine over alternative reinforcers. However, the effects of estradiol on male cocaine self-administration behavior are less studied despite equivalent levels of estradiol in the brains of adult males and females, estradiol effects on motivated behaviors in males that share underlying neural substrates with cocaine reinforcement as well as expression of estrogen receptors in the male brain. Therefore, we sought to characterize the effects of estradiol in males on choice between concurrently-available cocaine and food reinforcement as well as responding for cocaine or food in isolation. Male castrated rats (n=46) were treated daily with estradiol benzoate (EB) (5μg/0.1, S.C.) or vehicle (peanut oil) throughout operant acquisition of cocaine (1mg/kg, IV; FI20 sec) and food (3×45mg; FI20 sec) responding, choice during concurrent access and cocaine and food reinforcement under progressive ratio (PR) schedules. EB increased cocaine choice, both in terms of percent of trials on which cocaine was selected and the proportion of rats exhibiting a cocaine preference as well as increased cocaine, but not food, intake under PR. Additionally, within the EB treated group, cocaine-preferring rats exhibited enhanced acquisition of cocaine, but not food, reinforcement whereas no acquisition differences were observed across preferences in the vehicle treated group. These findings demonstrate that estradiol increases cocaine choice in males similarly to what is observed in females. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Increase in tartrate-resistant acid phosphatase of bone at the early stage of ascorbic acid deficiency in the ascorbate-requiring Osteogenic Disorder Shionogi (ODS) rat.

    Science.gov (United States)

    Goto, A; Tsukamoto, I

    2003-08-01

    The effect of ascorbic acid deficiency on bone metabolism was evaluated using the ascorbate-requiring Osteogenic Disorder Shionogi (ODS) rat model. Ascorbic acid (Asc)-deficient rats gained body weight in a manner similar to Asc-supplemented rats (control) during 3 weeks, but began to lose weight during the 4th week of Asc deficiency. The tartrate-resistant acid phosphatase (TRAP) activity in serum increased to about 2-fold the control value in the rats fed the Asc-free diet for 2, 3, and 4 weeks (AscD2, AscD3, and AscD4), while a decrease in the alkaline phosphatase (ALP) activity was observed only in AscD4 rats. The serum pyridinoline cross-linked carboxyterminal telopeptide of type I collagen (ICTP) level significantly increased to 1.3-, 1.4-, and 1.9-fold of that in the controls in AscD2, D3, and D4, respectively. The ALP activity in the distal femur was unchanged in AscD1, D2, and D3, but decreased to 50% of the control level in AscD4 rats. The TRAP activity in the distal femur increased to about 2-fold of that in the controls in the AscD2 and D3 and decreased to the control level in the AscD4 rats. The amount of hydroxyproline in the distal femur significantly decreased to about 80%, 70%, and 60% of the control in AscD2, D3, and D4 rats, respectively. These decreases were associated with a similar reduction in the calcium content of the distal femur. Histochemical analysis of the distal femur showed an increase in TRAP-positive cells in AscD2 and AscD3 rats and a decrease in the trabecular bone in AscD2, D3, and D4 rats. These results suggested that a deficiency of Asc stimulated bone resorption at an early stage, followed by a decrease in bone formation in mature ODS rats which already had a well-developed collagen matrix and fully differentiated osteoblasts.

  8. Increased Sensitivity to Binge Alcohol-Induced Gut Leakiness and Inflammatory Liver Disease in HIV Transgenic Rats.

    Directory of Open Access Journals (Sweden)

    Atrayee Banerjee

    Full Text Available The mechanisms of alcohol-mediated advanced liver injury in HIV-infected individuals are poorly understood. Thus, this study was aimed to investigate the effect of binge alcohol on the inflammatory liver disease in HIV transgenic rats as a model for simulating human conditions. Female wild-type (WT or HIV transgenic rats were treated with three consecutive doses of binge ethanol (EtOH (3.5 g/kg/dose oral gavages at 12-h intervals or dextrose (Control. Blood and liver tissues were collected at 1 or 6-h following the last dose of ethanol or dextrose for the measurements of serum endotoxin and liver pathology, respectively. Compared to the WT, the HIV rats showed increased sensitivity to alcohol-mediated gut leakiness, hepatic steatosis and inflammation, as evidenced with the significantly elevated levels of serum endotoxin, hepatic triglycerides, histological fat accumulation and F4/80 staining. Real-time PCR analysis revealed that hepatic levels of toll-like receptor-4 (TLR4, leptin and the downstream target monocyte chemoattractant protein-1 (MCP-1 were significantly up-regulated in the HIV-EtOH rats, compared to all other groups. Subsequent experiments with primary cultured cells showed that both hepatocytes and hepatic Kupffer cells were the sources of the elevated MCP-1 in HIV-EtOH rats. Further, TLR4 and MCP-1 were found to be upregulated by leptin. Collectively, these results show that HIV rats, similar to HIV-infected people being treated with the highly active anti-retroviral therapy (HAART, are more susceptible to binge alcohol-induced gut leakiness and inflammatory liver disease than the corresponding WT, possibly due to additive or synergistic interaction between binge alcohol exposure and HIV infection. Based on these results, HIV transgenic rats can be used as a surrogate model to study the molecular mechanisms of many disease states caused by heavy alcohol intake in HIV-infected people on HAART.

  9. DMAV in Drinking Water Activated NF-κB Signal Pathway and Increased TGF-β and IL-1β Expressions in Bladder Epithelial Cells of Rats

    Directory of Open Access Journals (Sweden)

    Siqi Cao

    2015-01-01

    Full Text Available Dimethylarsinic acid (DMAV is the main product of arsenic methylation metabolism in vivo and is rat bladder carcinogen and tumor promoting agent. In this study, we measured the expressions of mRNA and proteins of NF-κB pathway members, IKKα, IKKβ, p65, and p50 in rat bladder epithelium by qRT-PCR and immunohistochemical analysis after rats received drinking water containing 100 and 200 ppm DMAV for 10 weeks. Transforming growth factor-β (TGF-β immunoexpression in rat bladder epithelium and urine level of IL-1β also were determined. We found that DMAV dramatically increased the mRNA levels of NF-κB p50 and IKKα in the bladder epithelium of rats compared to the control group. Immunohistochemical examinations showed that DMAV increased immunoreactivities of IKKα, IKKβ, and phospho-NF-κB p50 in the cytoplasm and phospho-NF-κB p50 and p65 in nucleus of rat urothelial cells. In addition, DMAV treated rats exhibited significantly increased inflammatory factor TGF-β immunoreactivity in bladder epithelium and IL-1β secretion in urine. These data suggest that DMAV could activate NF-κB signal pathway and increase TGF-β and IL-1β expressions in bladder epithelial cells of rats.

  10. PPAR-alpha agonist treatment increases trefoil factor family-3 expression and attenuates apoptosis in the liver tissue of bile duct-ligated rats.

    Science.gov (United States)

    Karakan, Tarkan; Kerem, Mustafa; Cindoruk, Mehmet; Engin, Doruk; Alper, Murat; Akın, Okan

    2013-01-01

    Peroxisome proliferators-activated receptor alpha activation modulates cholesterol metabolism and suppresses bile acid synthesis. The trefoil factor family comprises mucin-associated proteins that increase the viscosity of mucins and help protect epithelial linings from insults. We evaluated the effect of short-term administration of fenofibrate, a peroxisome proliferators activated receptor alpha agonist, on trefoil factor family-3 expression, degree of apoptosis, generation of free radicals, and levels of proinflammatory cytokines in the liver tissue of bile duct-ligated rats. Forty male Wistar rats were randomly divided into four groups: 1 = sham operated, 2 = bile duct ligation, 3 = bile duct-ligated + vehicle (gum Arabic), and 4 = bile duct-ligated + fenofibrate (100 mg/kg/day). All rats were sacrificed on the 7 th day after obtaining blood samples and liver tissue. Liver function tests, tumor necrosis factor-alpha and interleukin 1 beta in serum, and trefoil factor family-3 mRNA expression, degree of apoptosis (TUNEL) and tissue malondialdehyde (malondialdehyde, end-product of lipid peroxidation by reactive oxygen species) in liver tissue were evaluated. Fenofibrate administration significantly reduced serum total bilirubin, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, gamma-glutamyl transferase, and tumor necrosis factor-alpha and interleukin-1β levels. Apoptosis and malondialdehyde were significantly reduced in the fenofibrate group. Trefoil factor family-3 expression increased with fenofibrate treatment in bile duct-ligated rats. The peroxisome proliferators-activated receptor alpha agonist fenofibrate significantly increased trefoil factor family-3 expression and decreased apoptosis and lipid peroxidation in the liver and attenuated serum levels of proinflammatory cytokines in bile duct-ligated rats. Further studies are needed to determine the protective role of fenofibrate in human cholestatic disorders.

  11. Isoproterenol attenuates high vascular pressure-induced permeability increases in isolated rat lungs.

    Science.gov (United States)

    Parker, J C; Ivey, C L

    1997-12-01

    To separate the contributions of cellular and basement membrane components of the alveolar capillary barrier to the increased microvascular permeability induced by high pulmonary venous pressures (Ppv), we subjected isolated rat lungs to increases in Ppv, which increased capillary filtration coefficient (Kfc) without significant hemorrhage (31 cmH2O) and with obvious extravasation of red blood cells (43 cmH2O). Isoproterenol (20 microM) was infused in one group (Iso) to identify a reversible cellular component of injury, and residual blood volumes were measured to assess extravasation of red blood cells through ruptured basement membranes. In untreated lungs (High Ppv group), Kfc increased 6.2 +/- 1.3 and 38.3 +/- 15.2 times baseline during the 31 and 43 cmH2O Ppv states. In Iso lungs, Kfc was 36.2% (P Kfc increases at moderate Ppv, possibly because of an endothelial effect, but it did not affect red cell extravasation at higher vascular pressures.

  12. Renal function in streptozotocin-diabetic rats

    DEFF Research Database (Denmark)

    Jensen, P K; Christiansen, J S; Steven, K

    1981-01-01

    to the rise in kidney glomerular filtration rate (diabetic rats: 37.0 nl/min; control rats: 27.9 nl/min). Likewise renal plasma flow was significantly higher in the diabetic rats (4.1 ml/min) than in the control group (3.0 ml/min). Glomerular capillary pressure was identical in both groups (56.0 and 56.0 mm......-1mmHg-1). Kidney weight was significantly higher in the diabetic rats (1.15 g; control rats: 0.96 g) while body weight was similar in both groups (diabetic rats: 232 g; control rats: 238 g). Calculations indicate that the increases in transglomerular hydraulic pressure, renal plasma flow......Renal function was examined with micropuncture methods in the insulin-treated streptozotocin-diabetic rat. Kidney glomerular filtration rate was significantly higher in the diabetic rats (1.21 ml/min) than in the control group (0.84 ml/min) Nephron glomerular filtration rate increased in proportion...

  13. Cold-increase in brown fat thyroxine 5'-monodeiodinase is attenuated in Zucker obese rat

    International Nuclear Information System (INIS)

    Wu, S.Y.; Stern, J.S.; Fisher, D.A.; Glick, Z.

    1987-01-01

    In this study the authors examined the possibility that the reduced brown adipose tissue (BAT) thermogenesis in the Zucker obese rat may result from a limited capacity for enzymic conversion of thyroxine (T 4 ) to triiodothyronine (T 3 ) in BAT. A total of 34 lean and obese rats, ∼4 mo old were divided into three treatment groups: group 1 (5 lean and 6 obese) was fed Purina rat chow for 21 days, and group two (5 lean and 6 obese) was fed a cafeteria diet for 21 days, and groups 3 (6 lean and 6 obese) was fed Purina rat chow and maintained in the cold (8 +/- 1 0 C) for 7 days. Activity of T 4 5'-deiodinase was determined as the rate of T 3 production from added T 4 under controlled in vitro conditions. Serum T 4 and T 3 were determined by radioimmunoassay. The rate of T 4 -to-T 3 conversion in BAT was similar in the lean and obese rats maintained at room temperature, whether fed rat chow or a cafeteria diet. However, expressed per scapular BAT depot, lean rats exposed to cold displayed about a fivefold increase in BAT T 3 production whereas only a small increase was observed in the cold-exposed obese rats. Serum T 3 levels tended to be reduced in the Zucker obese rats. The data indicate a reduced capacity for T 3 production of Zucker rat BAT exposed to cold. This defect may account for the reduced tolerance of the obese animals to cold, but it does not account for their reduced diet-induced BAT thermogenesis

  14. Developmental Toxicity Studies with Pregabalin in Rats: Significance of Alterations in Skull Bone Morphology.

    Science.gov (United States)

    Morse, Dennis C; Henck, Judith W; Bailey, Steven A

    2016-04-01

    Pregabalin was administered to pregnant Wistar rats during organogenesis to evaluate potential developmental toxicity. In an embryo-fetal development study, compared with controls, fetuses from pregabalin-treated rats exhibited increased incidence of jugal fused to maxilla (pregabalin 1250 and 2500 mg/kg) and fusion of the nasal sutures (pregabalin 2500 mg/kg). The alterations in skull development occurred in the presence of maternal toxicity (reduced body weight gain) and developmental toxicity (reduced fetal body weight and increased skeletal variations), and were initially classified as malformations. Subsequent investigative studies in pregnant rats treated with pregabalin during organogenesis confirmed the advanced jugal fused to maxilla, and fusion of the nasal sutures at cesarean section (gestation day/postmating day [PMD] 21) in pregabalin-treated groups. In a study designed to evaluate progression of skull development, advanced jugal fused to maxilla and fusion of the nasal sutures was observed on PMD 20-25 and PMD 21-23, respectively (birth occurs approximately on PMD 22). On postnatal day (PND) 21, complete jugal fused to maxilla was observed in the majority of control and 2500 mg/kg offspring. No treatment-related differences in the incidence of skull bone fusions occurred on PND 21, indicating no permanent adverse outcome. Based on the results of the investigative studies, and a review of historical data and scientific literature, the advanced skull bone fusions were reclassified as anatomic variations. Pregabalin was not teratogenic in rats under the conditions of these studies. © 2016 Wiley Periodicals, Inc.

  15. Flavonoid rutin increases thyroid iodide uptake in rats.

    Directory of Open Access Journals (Sweden)

    Carlos Frederico Lima Gonçalves

    Full Text Available Thyroid iodide uptake through the sodium-iodide symporter (NIS is not only an essential step for thyroid hormones biosynthesis, but also fundamental for the diagnosis and treatment of different thyroid diseases. However, part of patients with thyroid cancer is refractory to radioiodine therapy, due to reduced ability to uptake iodide, which greatly reduces the chances of survival. Therefore, compounds able to increase thyroid iodide uptake are of great interest. It has been shown that some flavonoids are able to increase iodide uptake and NIS expression in vitro, however, data in vivo are lacking. Flavonoids are polyhydroxyphenolic compounds, found in vegetables present in human diet, and have been shown not only to modulate NIS, but also thyroperoxidase (TPO, the key enzyme in thyroid hormones biosynthesis, besides having antiproliferative effect in thyroid cancer cell lines. Therefore, we aimed to evaluate the effect of some flavonoids on thyroid iodide uptake in Wistar rats in vivo. Among the flavonoids tested, rutin was the only one able to increase thyroid iodide uptake, so we decided to evaluate the effect of this flavonoid on some aspects of thyroid hormones synthesis and metabolism. Rutin led to a slight reduction of serum T4 and T3 without changes in serum thyrotropin (TSH, and significantly increased hypothalamic, pituitary and brown adipose tissue type 2 deiodinase and decreased liver type 1 deiodinase activities. Moreover, rutin treatment increased thyroid iodide uptake probably due to the increment of NIS expression, which might be secondary to increased response to TSH, since TSH receptor expression was increased. Thus, rutin might be useful as an adjuvant in radioiodine therapy, since this flavonoid increased thyroid iodide uptake without greatly affecting thyroid function.

  16. Increased paracellular permeability in intrahepatic cholestasis induced by carmustine (BCNU) in rats

    International Nuclear Information System (INIS)

    Krell, H.; Fromm, H.; Larson, R.E.

    1991-01-01

    Carmustine [i.e., 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU)] is a drug with cholestatic potency both in experimental animals and in humans. To study the mechanisms involved in the development of the hepatic lesions, early changes in liver function in rats pretreated with the drug were investigated. Dosages and sampling times that did not result in hepatocellular injury, as indicated by release of marker enzymes, were applied. In isolated perfused livers from pretreated rats, bile flow and maximal secretion rate of taurocholate were decreased. An increase in biliary 14 Csucrose clearance suggested enhanced permeability of the bile tract and was correlated with increased inorganic phosphate concentration in bile. To assess the contribution of paracellular and transcellular pathways of sucrose, 14 Csucrose access into bile was analyzed by biliary off-kinetics after omission of the radioactive marker from the perfusion medium. An improved method was developed to quantitate the permeability of the bile tract by applying the classical flow equation to the paracellular portion of biliary sucrose clearance. With this method it was shown that pretreatment of rats with BCNU resulted in an increase in both diffusion and convection of paracellular sucrose from perfusate into bile. Accordingly, the fast access of horseradish peroxidase from perfusate into bile was facilitated in isolated perfused livers of BCNU-treated rats. The results indicate that an increase in paracellular permeability is an early alteration that may contribute to the development of hepatotoxic lesions caused by BCNU. It is shown that inert solute clearance can be used to assess paracellular permeability if the paracellular fraction is determined

  17. Does exercise deprivation increase the tendency towards morphine dependence in rats?

    Science.gov (United States)

    Nakhaee, Mohammad Reza; Sheibani, Vahid; Ghahraman Tabrizi, Kourosh; Marefati, Hamid; Bahreinifar, Sareh; Nakhaee, Nouzar

    2010-01-01

    Exercise deprivation has been concluded to have some negative effectson psychological well-being. This study was conducted to find outwhether exercise deprivation may lead to morphine dependence in rats. Forty male Wistar rats weighing 162 ± 9 g were housed in clear plasticcages in groups of two under standard laboratory conditions. The studyhad two phases. In phase I, the animals were randomly divided intoexercised (E) and unexercised (UE) groups (n = 20 each) and treadmillrunning was performed based on a standard protocol for three weeks. Atthe end of the training period, plasma β-endorphin levels weredetermined in four rats from each group. In phase II, the animals wereprovided with two bottles, one containing tap water and the other 25mg/l morphine sulfate in tap water for a total of 12 weeks. At the end ofthis phase naloxone was injected intraperitoneally to precipitatemorphine withdrawal. THERE WAS NO SIGNIFICANT DIFFERENCE BETWEEN UE AND E GROUPS INMORPHINE CONSUMPTION (MG/KG/WK) [ F(1,14) = 0.2, P = 0.690; time:F(11,154) =18.72, P exercise does not increasethe tendency of morphine dependence in rats.

  18. Quercetin increases the bioavailability of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in rats

    NARCIS (Netherlands)

    Schutte, M.E.; Alink, G.M.; Freidig, A.P.; Spenkelink, B.; Vaessen, J.C.H.; Sandt, J.J.M. van de; Groten, J.P.; Rietjens, I.M.C.M.

    2008-01-01

    This study investigates whether the previous observation that quercetin increases the transport of PhIP through Caco-2 monolayers in vitro could be confirmed in an in vivo rat model. Co-administration of 1.45 μmol PhIP/kg bw and 30 μmol quercetin/kg bw significantly increased the blood AUC(0-8 h) of

  19. Association of contextual cues with morphine reward increases neural and synaptic plasticity in the ventral hippocampus of rats.

    Science.gov (United States)

    Alvandi, Mina Sadighi; Bourmpoula, Maria; Homberg, Judith R; Fathollahi, Yaghoub

    2017-11-01

    Drug addiction is associated with aberrant memory and permanent functional changes in neural circuits. It is known that exposure to drugs like morphine is associated with positive emotional states and reward-related memory. However, the underlying mechanisms in terms of neural plasticity in the ventral hippocampus, a region involved in associative memory and emotional behaviors, are not fully understood. Therefore, we measured adult neurogenesis, dendritic spine density and brain-derived neurotrophic factor (BDNF) and TrkB mRNA expression as parameters for synaptic plasticity in the ventral hippocampus. Male Sprague Dawley rats were subjected to the CPP (conditioned place preference) paradigm and received 10 mg/kg morphine. Half of the rats were used to evaluate neurogenesis by immunohistochemical markers Ki67 and doublecortin (DCX). The other half was used for Golgi staining to measure spine density and real-time quantitative reverse transcription-polymerase chain reaction to assess BDNF/TrkB expression levels. We found that morphine-treated rats exhibited more place conditioning as compared with saline-treated rats and animals that were exposed to the CPP without any injections. Locomotor activity did not change significantly. Morphine-induced CPP significantly increased the number of Ki67 and DCX-labeled cells in the ventral dentate gyrus. Additionally, we found increased dendritic spine density in both CA1 and dentate gyrus and an enhancement of BDNF/TrkB mRNA levels in the whole ventral hippocampus. Ki67, DCX and spine density were significantly correlated with CPP scores. In conclusion, we show that morphine-induced reward-related memory is associated with neural and synaptic plasticity changes in the ventral hippocampus. Such neural changes could underlie context-induced drug relapse. © 2017 Society for the Study of Addiction.

  20. Chronic exposure to zinc oxide nanoparticles increases ischemic-reperfusion injuries in isolated rat hearts

    Energy Technology Data Exchange (ETDEWEB)

    Milivojević, Tamara; Drobne, Damjana; Romih, Tea; Mali, Lilijana Bizjak [University of Ljubljana, Department of Biology, Biotechnical Faculty (Slovenia); Marin, Irena; Lunder, Mojca; Drevenšek, Gorazd, E-mail: gorazd.drevensek@mf.uni-lj.si [University of Ljubljana, Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine (Slovenia)

    2016-10-15

    The use of zinc oxide nanoparticles (ZnO NPs) in numerous products is increasing, although possible negative implications of their long-term consumption are not known yet. Our aim was to evaluate the chronic, 6-week oral exposure to two different concentrations of ZnO NPs on isolated rat hearts exposed to ischemic-reperfusion injury and on small intestine morphology. Wistar rats of both sexes (n = 18) were randomly divided into three groups: (1) 4 mg/kg ZnO NPs, (2) 40 mg/kg ZnO NPs, and (3) control. After 6 weeks of treatment, the hearts were isolated, the left ventricular pressure (LVP), the coronary flow (CF), the duration of arrhythmias and the lactate dehydrogenase release rate (LDH) were measured. A histological investigation of the small intestine was performed. Chronic exposure to ZnO NPs acted cardiotoxic dose-dependently. ZnO NPs in dosage 40 mg/kg maximally decreased LVP (3.3-fold) and CF (2.5-fold) and increased the duration of ventricular tachycardia (all P < 0.01) compared to control, whereas ZnO NPs in dosage 4 mg/kg acted less cardiotoxic. Goblet cells in the small intestine epithelium of rats, treated with 40 mg ZnO NPs/kg, were enlarged, swollen and numerous, the intestinal epithelium width was increased. Unexpectedly, ZnO NPs in both dosages significantly decreased LDH. A 6-week oral exposure to ZnO NPs dose-dependently increased heart injuries and caused irritation of the intestinal mucosa. A prolonged exposure to ZnO NPs might cause functional damage to the heart even with exposures to the recommended daily doses, which should be tested in future studies.

  1. Increased ANF secretion after volume expansion is preserved in rats with heart failure

    International Nuclear Information System (INIS)

    Chien, Young Wei; Barbee, R.W.; MacPhee, A.L.; Frohlich, E.D.; Trippodo, N.C.

    1988-01-01

    To examine whether the failing heart has reached a maximal capacity to increase plasma atrial natriuretic factor (ANF) concentration, the change in plasma immunoreactive ANF, measured by radioimmunoassay level due to acute blood volume expansion was determined in conscious rats with chronic heart failure. Varying degrees of myocardial infarction and thus heart failure were induced by coronary artery ligation 3 wk before study. Compared with controls, infarcted rats had decreases in mean arterial pressure cardiac index, renal blood flow, and peak left ventricle-developed pressure after aortic occlusion, and increases in central venous pressure, left ventricular end-diastolic pressure, total peripheral resistance, plasma ANF level. Plasma ANF was correlated with infarct size, cardiac filling pressures, and left ventricle pressure-generating ability. At 5 min after 25% blood volume expansion, plasma ANF in rats with heart failure increased by 2,281 ± 345 pg/ml; the magnitude of the changes in circulating ANF and hemodynamic measurements was similar in controls. The results suggest that plasma ANF level can be used as a reliable index of the severity of heart failure, and that the capacity to increase plasma ANF concentration after acute volume expansion is preserved in rats with heart failure. There was no evidence of a relative deficiency of circulating ANF in this model of heart failure

  2. Chronic Co-species Housing Mice and Rats Increased the Competitiveness of Male Mice.

    Science.gov (United States)

    Liu, Ying-Juan; Li, Lai-Fu; Zhang, Yao-Hua; Guo, Hui-Fen; Xia, Min; Zhang, Meng-Wei; Jing, Xiao-Yuan; Zhang, Jing-Hua; Zhang, Jian-Xu

    2017-03-01

    Rats are predators of mice in nature. Nevertheless, it is a common practice to house mice and rats in a same room in some laboratories. In this study, we investigated the behavioral and physiological responsively of mice in long-term co-species housing conditions. Twenty-four male mice were randomly assigned to their original raising room (control) or a rat room (co-species-housed) for more than 6 weeks. In the open-field and light-dark box tests, the behaviors of the co-species-housed mice and controls were not different. In a 2-choice test of paired urine odors [rabbit urine (as a novel odor) vs. rat urine, cat urine (as a natural predator-scent) vs. rabbit urine, and cat urine vs. rat urine], the co-species-housed mice were more ready to investigate the rat urine odor compared with the controls and may have adapted to it. In an encounter test, the rat-room-exposed mice exhibited increased aggression levels, and their urines were more attractive to females. Correspondingly, the levels of major urinary proteins were increased in the co-species-housed mouse urine, along with some volatile pheromones. The serum testosterone levels were also enhanced in the co-species-housed mice, whereas the corticosterone levels were not different. The norepinephrine, dopamine, and 5-HT levels in the right hippocampus and striatum were not different between the 2. Our findings indicate that chronic co-species housing results in adaptation in male mice; furthermore, it appears that long-term rat-odor stimuli enhance the competitiveness of mice, which suggests that appropriate predator-odor stimuli may be important to the fitness of prey animals. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Clofibric acid increases the formation of oleic acid in endoplasmic reticulum of the liver of rats.

    Science.gov (United States)

    Hirose, Akihiko; Yamazaki, Tohru; Sakamoto, Takeshi; Sunaga, Katsuyoshi; Tsuda, Tadashi; Mitsumoto, Atsushi; Kudo, Naomi; Kawashima, Yoichi

    2011-01-01

    The effects of 2-(4-chlorophenoxy)-2-methylpropionic acid (clofibric acid) on the formation of oleic acid (18:1) from stearic acid (18:0) and utilization of the 18:1 formed for phosphatidylcholine (PC) formation in endoplasmic reticulum in the liver of rats were studied in vivo. [¹⁴C]18:0 was intravenously injected into control Wistar male rats and rats that had been fed on a diet containing 0.5% (w/w) clofibric acid for 7 days; and the distribution of radiolabeled fatty acids among subcellular organelles, microsomes, peroxisomes, and mitochondria, was estimated on the basis of correction utilizing the yields from homogenates of marker enzymes for these organelles. The radioactivity was mostly localized in microsomes and the radiolabeled fatty acids present in microsomes were significantly increased by the treatment of rats with clofibric acid. The formation of radiolabeled 18:1 in microsomes markedly increased and incorporations of the formed [¹⁴C]18:1 into PC and phosphatidylethanolamine in microsomes were augmented in response to clofibric acid. The [¹⁴C]18:1 incorporated into PC was mostly located at the C-2 position, but not the C-1 position, of PC, and the radioactivity in 18:1 at the C-2 position of PC was strikingly increased by clofibric acid. These results obtained from the in vivo experiments directly link the findings that clofibric acid treatment induces microsomal stearoyl-CoA desaturase and 1-acylglycerophosphocholine acyltransferase in the liver and the findings that the treatment with the drug elevated absolute mass and mass proportion of 18:1 at the C-2 position, but not the C-1 position, of PC in the liver together.

  4. Increased Expression of Intercellular Adhesion Molecule-1, Vascular Cellular Adhesion Molecule-1 and Leukocyte Common Antigen in Diabetic Rat Retina

    Institute of Scientific and Technical Information of China (English)

    Ningyan Bai; Shibo Tang; Jing Ma; Yan Luo; Shaofeng Lin

    2003-01-01

    Purpose: To understand the expression and distribution of intercellular adhesion molecule- 1(ICAM- 1),vascular cellular adhesion molecule- 1 (VCAM- 1)and CD45 (Leukocyte Common Antigen) in the control nondiabetic and various courses of diabetic rats retina. To explore the role of adhesion molecules (Ams) and the adhesion of leukocytes to vascular endothelial cells via Ams in diabetic retinopathy(DR).Methods: Sixty healthy adult male Wistar rats were randomly divided into diabetic groups(induced by Streptozotocin, STZ) and normal control groups. Rats in these two groups were further randomly divided into 3, 7, 14, 30, 90 and 180 days-group,including 5 rats respectively. The immunohistochemical studies of ICAM-1, VCAM-1 and CD45 were carried out in the retinal digest preparations or retinal paraffin sections, and the results were analyzed qualitatively, semi-quantitatively.Results: No positive reaction of VCAM-1 was found, and weak reactions of ICAM-1,CD45 were found in nondiabetic rats retina. The difference of 6 control groups had no statistical significance(P > 0.05). The increased ICAM-1 and CD45 staining pattern were detectable 3 days after diabetes induction, and a few VCAM-1 positive cells were observed in the retinal blood capillaries. The difference of diabetes and control is significant( P < 0.05).Following the course, the expressions of ICAM-1, VCAM-1 and CD45 were increasingly enhanced, reaching a peak at the 14th day.Conclusion: Increased expression of ICAM-1, VCAM-1 and leukocytes adhering and stacking in retinal capillaries are the very early events in DR. Coherence of expression and distribution of the three further accounts for it is the key point for the onset of DR that Ams mediates leukocytes adhesion and endothelial cell injury.

  5. Haloperidol and Rimonabant Increase Delay Discounting in Rats Fed High-Fat and Standard-Chow Diets

    Science.gov (United States)

    Boomhower, Steven R.; Rasmussen, Erin B.

    2016-01-01

    The dopamine and endocannabinoid neurotransmitter systems have been implicated in delay discounting, a measure of impulsive choice, and obesity. The current study was designed to determine the extent to which haloperidol and rimonabant affected delay discounting in rats fed standard-chow and high-fat diets. Sprague-Dawley rats were allowed to free-feed under a high-fat diet (4.73 kcal/g) or a standard-chow diet (3.0 kcal/g) for three months. Then, operant sessions began in which rats (n = 9 standard chow; n = 10 high-fat) chose between one sucrose pellet delivered immediately vs. three sucrose pellets after a series of delays. In another condition, carrot-flavored pellets replaced sucrose pellets. After behavior stabilized, acute injections of rimonabant (0.3-10 mg/kg) and haloperidol (0.003-0.1 mg/kg) were administered i.p. before some choice sessions in both pellet conditions. Haloperidol and rimonabant increased discounting in both groups of rats by decreasing percent choice for the larger reinforcer and area-under-the-curve (AUC) values. Rats in the high-fat diet condition demonstrated increased sensitivity to haloperidol compared to chow-fed controls: haloperidol increased discounting in both dietary groups in the sucrose condition,, but only in the high-fat-fed rats in the carrot-pellet condition. These findings indicate that blocking D2 and CB1 receptors results in increased delay discounting, and that a high-fat diet may alter sensitivity to dopaminergic compounds using the delay-discounting task. PMID:25000488

  6. Naked mole-rat mortality rates defy Gompertzian laws by not increasing with age

    Science.gov (United States)

    Ruby, J Graham; Smith, Megan

    2018-01-01

    The longest-lived rodent, the naked mole-rat (Heterocephalus glaber), has a reported maximum lifespan of >30 years and exhibits delayed and/or attenuated age-associated physiological declines. We questioned whether these mouse-sized, eusocial rodents conform to Gompertzian mortality laws by experiencing an exponentially increasing risk of death as they get older. We compiled and analyzed a large compendium of historical naked mole-rat lifespan data with >3000 data points. Kaplan-Meier analyses revealed a substantial portion of the population to have survived at 30 years of age. Moreover, unlike all other mammals studied to date, and regardless of sex or breeding-status, the age-specific hazard of mortality did not increase with age, even at ages 25-fold past their time to reproductive maturity. This absence of hazard increase with age, in defiance of Gompertz’s law, uniquely identifies the naked mole-rat as a non-aging mammal, confirming its status as an exceptional model for biogerontology. PMID:29364116

  7. A grape-enriched diet increases bone calcium retention and cortical bone properties in ovariectomized rats.

    Science.gov (United States)

    Hohman, Emily E; Weaver, Connie M

    2015-02-01

    Grapes and their associated phytochemicals have been investigated for beneficial effects on cardiovascular health, cancer prevention, and other chronic diseases, but the effect of grape consumption on bone health has not been fully determined. We previously found short-term benefits of grape products on reducing bone turnover in ovariectomized rats. The objective of this study was to determine the long-term benefits of a grape-enriched diet on bone in ovariectomized rats. Rats were ovariectomized at 3 mo of age and were administered a single dose of (45)Ca to prelabel bones at 4 mo of age. After a 1-mo equilibration period, baseline urinary (45)Ca excretion was determined. Rats (n = 22/group) were then randomly assigned to a modified AIN93M diet containing 25% freeze-dried grape powder or to a control diet for 8 wk. Urinary (45)Ca excretion was monitored throughout the study to determine changes in bone (45)Ca retention. Calcium balance was assessed after 1 and 8 wk of consuming the experimental diets, and a calcium kinetic study was performed at 8 wk. After 8 wk, femurs were collected for micro-computed tomographic imaging, 3-point bending, and reference point indentation. Rats fed the grape-enriched diet had 44% greater net bone calcium retention than did rats fed the control diet. There were no differences in calcium balance due to diet at either week 1 or week 8, but there was a significant increase in net calcium absorption (10.6%) and retention (5.7%) from week 1 to week 8 in the grape-enriched diet group only. Grape-enriched diet-fed rats had 3% greater cortical thickness and 11% greater breaking strength. There were no differences in femur bone mineral density, trabecular microarchitecture, or reference point indentation variables due to diet. This study of ovariectomized rats indicates that the consumption of grape products may improve calcium utilization and suppress bone turnover, resulting in improvements in bone quality. © 2015 American Society for

  8. Significance of the expression of matrix metalloproteinase-9 (MMP-9) in brain tissue of rat models of experimental intracerebral haemorrhage (ICH)

    International Nuclear Information System (INIS)

    Wu Jiami; Liu Shengda

    2005-01-01

    Objective: To study the relationship between the brain tissue expression of MMP-9 and brain water content in rat models of experimental ICH. Methods: Rat models of ICH were prepared with intracerebral (caudate nuclei) injection of autologous noncoagulated blood (50 μl). Animals were sacrificed at 6h, 12h, 24h, 48h, 72h, 120h, lw, 2w and the MMP-9 expressions at the periphery of intracerebral hematoma were examined with immunohisto chemistry. The brain water content was also determined at the same time. Control models were prepared with intracerebral sham injection of normal saline. Results: (1) In the ICH models, the number of MMP-9 positive capillaries at the periphery of hematoma began to rise at 6h (vs that of sham group, P < 0.01 ) with peak at 48h, then gradually dropped. At lwk, the number was still significantly higher than that in the sham group (P <0.01 ). However, there were no expression at 2wk. (2) The brain water content in the ICH group was significantly increased at 12h (vs sham group, P < 0.05) with peak at 72h. At lwk, the brain water content was still significantly higher in the ICH group (P <0.01 ) but at 2wk, the brain water content was about the same in both groups. (3) Animals injected with different amounts of blood (30 μl, 50 μl, 100 μl) showed increased expression of MMP-9 along with the increase of dose (P<0.01). (4) The MMP-9 expression was positively correlated with the brain water content (r=0.8291, P<0.05). Conclusion: In the rat models, MMP-9 expression was activated after ICH. The increase paralleled that of the amount of haemorrhage and brain water content. It was postulated that MMP-9 enhanced development of brain edema through degrading of the blood brain barrier component substances. (authors)

  9. Tributyltin chloride increases phenylephrine-induced contraction and vascular stiffness in mesenteric resistance arteries from female rats

    International Nuclear Information System (INIS)

    Ribeiro Júnior, Rogério Faustino; Marques, Vinicius Bermond; Nunes, Dieli Oliveira; Ronconi, Karoline de Sousa; Araújo, Julia F.P. de; Rodrigues, Paula Lopes; Padilha, Alessandra Simão; Vassallo, Dalton Valentim; Graceli, Jones B.; Stefanon, Ivanita

    2016-01-01

    Tributyltin chloride (TBT) is an organotin compound that reduces estrogen levels in female rats. We aimed to investigate the effects of TBT exposure on vascular tonus and vascular remodelling in the resistance arteries of female rats. Rats were treated daily with TBT (500 ng/kg) for 15 days. TBT did not change arterial blood pressure but did modify some morpho-physiological parameters of third-order mesenteric resistance arteries in the following ways: (1) decreased lumen and external diameters; (2) increased wall/lm ratio and wall thickness; (3) decreased distensibility and increased stiffness; (4) increased collagen deposition; and (5) increased pulse wave velocity. TBT exposure increased the phenylephrine-induced contractile response in mesenteric resistance arteries. However, vasodilatation responses induced by acetylcholine and sodium nitroprusside were not modified by TBT. It is suggested that TBT exposure reduces vascular nitric oxide (NO) production, because:(1) L-NAME incubation did not cause a leftward shift in the concentration–response curve for phenylephrine; (2) both eNOS protein expression; (3) in situ NO production were reduced. Incubation with L-NAME; and (4) SOD shifted the phenylephrine response curve to the left in TBT rats. Tiron, catalase, ML-171 and VAS2870 decreased vascular reactivity to phenylephrine only in TBT rats. Moreover, increased superoxide anion production was observed in the mesenteric resistance arteries of TBT rats accompanied by an increase in gp91phox, catalase, AT 1 receptor and total ERK1/2 protein expression. In conclusion, these findings show that TBT induced alterations are most likely due to a reduction of NO production combined with increased O 2 − production derived from NADPH oxidase and ERK1/2 activation. These findings offer further evidence that TBT is an environmental risk factor for cardiovascular disease. - Highlights: • Tributyltin chloride reduces estrogen levels in female rats. • Treatment with TBT

  10. Tributyltin chloride increases phenylephrine-induced contraction and vascular stiffness in mesenteric resistance arteries from female rats

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro Júnior, Rogério Faustino, E-mail: rogeriofaustinoribeiro@hotmail.com [Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES (Brazil); Marques, Vinicius Bermond; Nunes, Dieli Oliveira; Ronconi, Karoline de Sousa [Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES (Brazil); Araújo, Julia F.P. de [Department of Morphology, Federal University of Espírito Santo (Brazil); Rodrigues, Paula Lopes; Padilha, Alessandra Simão; Vassallo, Dalton Valentim [Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES (Brazil); Graceli, Jones B. [Department of Morphology, Federal University of Espírito Santo (Brazil); Stefanon, Ivanita [Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES (Brazil)

    2016-03-15

    Tributyltin chloride (TBT) is an organotin compound that reduces estrogen levels in female rats. We aimed to investigate the effects of TBT exposure on vascular tonus and vascular remodelling in the resistance arteries of female rats. Rats were treated daily with TBT (500 ng/kg) for 15 days. TBT did not change arterial blood pressure but did modify some morpho-physiological parameters of third-order mesenteric resistance arteries in the following ways: (1) decreased lumen and external diameters; (2) increased wall/lm ratio and wall thickness; (3) decreased distensibility and increased stiffness; (4) increased collagen deposition; and (5) increased pulse wave velocity. TBT exposure increased the phenylephrine-induced contractile response in mesenteric resistance arteries. However, vasodilatation responses induced by acetylcholine and sodium nitroprusside were not modified by TBT. It is suggested that TBT exposure reduces vascular nitric oxide (NO) production, because:(1) L-NAME incubation did not cause a leftward shift in the concentration–response curve for phenylephrine; (2) both eNOS protein expression; (3) in situ NO production were reduced. Incubation with L-NAME; and (4) SOD shifted the phenylephrine response curve to the left in TBT rats. Tiron, catalase, ML-171 and VAS2870 decreased vascular reactivity to phenylephrine only in TBT rats. Moreover, increased superoxide anion production was observed in the mesenteric resistance arteries of TBT rats accompanied by an increase in gp91phox, catalase, AT{sub 1} receptor and total ERK1/2 protein expression. In conclusion, these findings show that TBT induced alterations are most likely due to a reduction of NO production combined with increased O{sub 2}{sup −} production derived from NADPH oxidase and ERK1/2 activation. These findings offer further evidence that TBT is an environmental risk factor for cardiovascular disease. - Highlights: • Tributyltin chloride reduces estrogen levels in female rats.

  11. Diabetes increases susceptibility of primary cultures of rat proximal tubular cells to chemically induced injury

    International Nuclear Information System (INIS)

    Zhong Qing; Terlecky, Stanley R.; Lash, Lawrence H.

    2009-01-01

    Diabetic nephropathy is characterized by increased oxidative stress and mitochondrial dysfunction. In the present study, we prepared primary cultures of proximal tubular (PT) cells from diabetic rats 30 days after an ip injection of streptozotocin and compared their susceptibility to oxidants (tert-butyl hydroperoxide, methyl vinyl ketone) and a mitochondrial toxicant (antimycin A) with that of PT cells isolated from age-matched control rats, to test the hypothesis that PT cells from diabetic rats exhibit more cellular and mitochondrial injury than those from control rats when exposed to these toxicants. PT cells from diabetic rats exhibited higher basal levels of reactive oxygen species (ROS) and higher mitochondrial membrane potential, demonstrating that the PT cells maintain the diabetic phenotype in primary culture. Incubation with either the oxidants or mitochondrial toxicant resulted in greater necrotic and apoptotic cell death, greater evidence of morphological damage, greater increases in ROS, and greater decreases in mitochondrial membrane potential in PT cells from diabetic rats than in those from control rats. Pretreatment with either the antioxidant N-acetyl-L-cysteine or a catalase mimetic provided equivalent protection of PT cells from both diabetic and control rats. Despite the greater susceptibility to oxidative and mitochondrial injury, both cytoplasmic and mitochondrial glutathione concentrations were markedly higher in PT cells from diabetic rats, suggesting an upregulation of antioxidant processes in diabetic kidney. These results support the hypothesis that primary cultures of PT cells from diabetic rats are a valid model in which to study renal cellular function in the diabetic state.

  12. Celecoxib does not significantly delay bone healing in a rat femoral osteotomy model: a bone histomorphometry study

    Directory of Open Access Journals (Sweden)

    Iwamoto J

    2011-12-01

    Full Text Available Jun Iwamoto1, Azusa Seki2, Yoshihiro Sato3, Hideo Matsumoto11Institute for Integrated Sports Medicine, Keio University School of Medicine, Tokyo, Japan; 2Hamri Co, Ltd, Tokyo, Japan; 3Department of Neurology, Mitate Hospital, Fukuoka, JapanBackground and objective: The objective of the present study was to determine whether celecoxib, a cyclo-oxygenase-2 inhibitor, would delay bone healing in a rat femoral osteotomy model by examining bone histomorphometry parameters.Methods: Twenty-one 6-week-old female Sprague-Dawley rats underwent a unilateral osteotomy of the femoral diaphysis followed by intramedullary wire fixation; the rats were then divided into three groups: the vehicle administration group (control, n = 8, the vitamin K2 administration (menatetrenone 30 mg/kg orally, five times a week group (positive control, n = 5, and the celecoxib administration (4 mg/kg orally, five times a week group (n = 8. After 6 weeks of treatment, the wires were removed, and a bone histomorphometric analysis was performed on the bone tissue inside the callus. The lamellar area relative to the bone area was significantly higher and the total area and woven area relative to the bone area were significantly lower in the vitamin K2 group than in the vehicle group. However, none of the structural parameters, such as the callus and bone area relative to the total area, lamellar and woven areas relative to the bone area, or the formative and resorptive parameters such as osteoclast surface, number of osteoclasts, osteoblast surface, osteoid surface, eroded surface, and bone formation rate per bone surface differed significantly between the vehicle and celecoxib groups.Conclusion: The present study implies that celecoxib may not significantly delay bone healing in a rat femoral osteotomy model based on the results of a bone histomorphometric analysis.Keywords: femoral osteotomy, bone healing, callus, rat, celecoxib

  13. Both experimental hypothyroidism and hyperthyroidism increase cardiac irisin levels in rats.

    Science.gov (United States)

    Atici, E; Menevse, E; Baltaci, A K; Mogulkoc, R

    2018-01-01

    Irisin is a newly discovered myokine and adipokine that increases total body energy expenditure. The aim of this study was to determine the effect of experimental hypothyroidism and hyperthyroidism on the levels of irisin in heart tissue in rats. The study was performed on the 40 male Sprague-Dawley rats. Experimental groups were designed as; Control, Hypothyroidism, Hypothyroidism+L-Thyroxine, Hyperthyroidism and Hyperthyroidism + PTU. Following 3 weeks experimental period, irisin levels were determined in heart tissues. Hypothyroidism group values of irisin were higher than in the control group, but lower than in the hyperthyroidism group. The hyperthyroidism group had the highest levels of cardiac irisin. The results of the study showed that the experimental hypothyroidism and hyperthyroidism increased the heart irisin levels, but the increase in the hyperthyroidism group was much higher than in the hypothyroidism group. However, treatment of hypothyroidism and hyperthyroidism corrected cardiac irisin levels (Fig. 1, Ref. 28).

  14. Ascorbic acid deficiency increases endotoxin influx to portal blood and liver inflammatory gene expressions in ODS rats.

    Science.gov (United States)

    Tokuda, Yuki; Miura, Natsuko; Kobayashi, Misato; Hoshinaga, Yukiko; Murai, Atsushi; Aoyama, Hiroaki; Ito, Hiroyuki; Morita, Tatsuya; Horio, Fumihiko

    2015-02-01

    The aim of this study was to determine whether ascorbic acid (AsA) deficiency-induced endotoxin influx into portal blood from the gastrointestinal tract contributes to the inflammatory changes in the liver. The mechanisms by which AsA deficiency provokes inflammatory changes in the liver were investigated in Osteogenic Disorder Shionogi (ODS) rats (which are unable to synthesize AsA). Male ODS rats (6-wk-old) were fed a diet containing sufficient (300 mg/kg) AsA (control group) or a diet without AsA (AsA-deficient group) for 14 or 18 d. On day 14, the hepatic mRNA levels of acute-phase proteins and inflammation-related genes were significantly higher in the AsA-deficient group than the control group, and these elevations by AsA deficiency were exacerbated on day 18. The serum concentrations of interleukin (IL)-1β and IL-6, which induce acute-phase proteins in the liver, were also significantly elevated on day 14 in the AsA-deficient group compared with the respective values in the control group. IL-1β mRNA levels in the liver, spleen, and lung were increased by AsA deficiency. Moreover, on both days 14 and 18, the portal blood endotoxin concentration was significantly higher in the AsA-deficient group than in the control group, and a significant correlation between serum IL-1β concentrations and portal endotoxin concentrations was found in AsA-deficient rats. In the histologic analysis of the ileum tissues, the number of goblet cells per villi was increased by AsA deficiency. These results suggest that AsA deficiency-induced endotoxin influx into portal blood from the gastrointestinal tract contributes to the inflammatory changes in the liver. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Mild prenatal protein malnutrition increases alpha 2C-adrenoceptor expression in the rat cerebral cortex during postnatal life.

    Science.gov (United States)

    Sierralta, Walter; Hernández, Alejandro; Valladares, Luis; Pérez, Hernán; Mondaca, Mauricio; Soto-Moyano, Rubén

    2006-05-15

    Mild reduction in the protein content in the diet of pregnant rats from 25 to 8% casein, calorically compensated by carbohydrates, does not alter body and brain weights of rat pups at birth, but results in significant changes of the concentration and release of cortical noradrenaline during postnatal life, together with impaired long-term potentiation and memory formation. Since some central noradrenergic receptors are critically involved in neuroplasticity, the present study evaluated, by utilizing immunohistochemical methods, the effect of mild prenatal protein malnutrition on the alpha 2C-adrenoceptor expression in the frontal and occipital cortices of 8- and 60-day-old rats. At day 8 of postnatal age, prenatally malnourished rats exhibited a three-fold increase of alpha 2C-adrenoceptor expression in both the frontal and the occipital cortices, as compared to well-nourished controls. At 60 days of age, prenatally malnourished rats showed normal expression levels scores of alpha 2C-adrenoceptor in the neocortex. Results suggest that overexpression of neocortical alpha 2C-adrenoceptors during early postnatal life, subsequent to mild prenatal protein malnutrition, could in part be responsible for neural and behavioral disturbances showing prenatally malnourished animals during the postnatal life.

  16. Helicobacter pylori filtrate impairs spatial learning and memory in rats and increases β-amyloid by enhancing expression of presenilin-2

    Directory of Open Access Journals (Sweden)

    Xiu-Lian eWang

    2014-04-01

    Full Text Available Helicobacter pylori (H.pylori infection is related with a high risk of Alzheimer’s Disease (AD, but the intrinsic link between H.pylori infection and AD development is still missing. In the present study, we explored the effect of H.pylori infection on cognitive function and β-amyloid production in rats. We found that intraperitoneal injection of H.pylori filtrate induced spatial learning and memory deficit in rats with a simultaneous retarded dendritic spine maturation in hippocampus. Injection of H.pylori filtrate significantly increased Aβ42 both in the hippocampus and cortex, together with an increased level of presenilin-2 (PS-2, one key component of γ-secretase involved in Aβ production. Incubation of H.pylori filtrate with N2a cells which over-express APP also resulted in increased PS-2 expression and Aβ42 overproduction. Injection of Escherichia coli (E.coli filtrate, another common intestinal bacterium, had no effect on cognitive function in rats and Aβ production in rats and cells. These data suggest a specific effect of H.pylori on cognition and Aβ production. We conclude that soluble surface fractions of H.pylori may promote Aβ42 formation by enhancing the activity of γ-secretase, thus induce cognitive impairment through interrupting the synaptic function.

  17. MRI and morphological observation in C6 glioma model rats and significance

    International Nuclear Information System (INIS)

    Zhou Ying; Yuan Bo; Wang Hao; Lu Jin; Yuan Changji; Ma Yue; Tong Dan; Zhang Kun; Gao Feng; Wu Xiaogang

    2013-01-01

    Objective: To establish stable and reliable rat C6 glioma model, and to perform MRI dynamic observation and pathomorphological observation in model animal brain, and to provide experimental basis for pharmaceutical research on anti-glioma drugs. Methods: The C6 glioma cells were cultured and 20 μL cultural fluid containing 1×10 6 C6 cells was sterotactically implanted into the left caudate nuclei in 10 male Wistar rats, respectively. The changes in the behavior of the rats after implantation were observed and recorded. MRI dynamic scanning was performed in 10 rats 2, 3 and 4 weeks after implantation and the brain tissues were taken for general and pathological examination when the 10 rats were naturally dead. The survival period of tumor-bearing rats was calculated. Results: 2 weeks after implantation the rats showed decreased activities and food intake, fur lackluster, and conjunctival congestion and so on; 3 weeks later, some rats appeared nerve symptoms such as body twitch, body hemiplegy, body distortion, rotation and so on. All the 10 rats died in 8-30 d. The median survival period of the tumor-bearing rats was 18 d, the average survival period was (18.3±7.3) d. The pathological examination showed that the tumor cells were arranged irregularly closely and karyokinesis was easy to see; tumor vascular tissue proliferation and tumor invasive growth into surrounding normal tissues were found. The expression of glial fibrillary acidic protein (GFAP) was positive in the tumors. Conclusion: A stable animal model of intracranial glioma is successfully established by stereotactic implantation of C6 cells into the rat caudate nucleus. The results of MRI dynamic observation and pathohistological observation on the model animal brain tissue. Can provide experimental basis for selecting the appropriate time window to perform the pharmaceutical research on anti-glioma drugs. (authors)

  18. Impaired barrier function by dietary fructo-oligosaccharides (FOS in rats is accompanied by increased colonic mitochondrial gene expression

    Directory of Open Access Journals (Sweden)

    Kramer Evelien

    2008-03-01

    Full Text Available Abstract Background Dietary non-digestible carbohydrates stimulate the gut microflora and are therefore presumed to improve host resistance to intestinal infections. However, several strictly controlled rat infection studies showed that non-digestible fructo-oligosaccharides (FOS increase, rather than decrease, translocation of Salmonella towards extra-intestinal sites. In addition, it was shown that FOS increases intestinal permeability already before infection. The mechanism responsible for this adverse effect of FOS is unclear. Possible explanations are altered mucosal integrity due to changes in tight junctions or changes in expression of defense molecules such as antimicrobials and mucins. To examine the mechanisms underlying weakening of the intestinal barrier by FOS, a controlled dietary intervention study was performed. Two groups of 12 rats were adapted to a diet with or without FOS. mRNA was collected from colonic mucosa and changes in gene expression were assessed for each individual rat using Agilent rat whole genome microarrays. Results Among the 997 FOS induced genes we observed less mucosal integrity related genes than expected with the clear permeability changes. FOS did not induce changes in tight junction genes and only 8 genes related to mucosal defense were induced by FOS. These small effects are unlikely the cause for the clear increase in intestinal permeability that is observed. FOS significantly increased expression of 177 mitochondria-related genes. More specifically, induced expression of genes involved in all five OXPHOS complexes and the TCA cycle was observed. These results indicate that dietary FOS influences intestinal mucosal energy metabolism. Furthermore, increased expression of 113 genes related to protein turnover, including proteasome genes, ribosomal genes and protein maturation related genes, was seen. FOS upregulated expression of the peptide hormone proglucagon gene, in agreement with previous studies, as

  19. Expression and significance of HIF-1α and VEGF in rats with diabetic retinopathy

    Institute of Scientific and Technical Information of China (English)

    Hong-Tao Yan; Guan-Fang Su

    2014-01-01

    Objective:To investigate the expression of hypoxia inducible factor-1α(HIF-1α) and vascular endothelial growth factor(VEGF) in diabetic retinopathy(DR) rats and its effect on theDR occurrence and development.Methods:A total of120SD rats were randomly divided into trial group and control group with60 in each.STZi.p. was used in the trial group to establish theDM model, citrate buffer salt of same amount was usedi.p. to the control group.1,3 and6 months after injection, respective20 rats were sacrificed in each group to observe expression ofHIF-1α andVEGF in the rat retina tissue at different time points.Results:Expression ofHIF-1α andVEGF were negative in the control group; expression ofHIF-1α andVEGF protein in retinal tissue were weak after1 month ofDR mold formation.It showed progressive enhancement along with the progression in different organizations, differences between groups were significant (P<0.05).Conclusions:Expressions ofHIF-1α andVEGF were correlated with disease progression in early diabetic retinopathy.Retinal oxygen can induce over-expression ofHIF-1α andVEGF.It shows thatHIF-1α andVEGF play an important role in the pathogenesis ofDR.

  20. Increased in vivo glucose utilization in 30-day-old obese Zucker rat: Role of white adipose tissue

    International Nuclear Information System (INIS)

    Krief, S.; Bazin, R.; Dupuy, F.; Lavau, M.

    1988-01-01

    In vivo whole-body glucose utilization and uptake in multiple individual tissues were investigated in conscious 30-day-old Zucker rats, which when obese are hyperphagic, hyperinsulinemic, and normoglycemic. Whole-body glucose metabolism (assessed by [3- 3 H]glucose) was 40% higher in obese (fa/fa) than in lean (Fa/fa) rats, suggesting that obese rats were quite responsive to their hyperinsulinemia. In obese compared with lean rats, tissue glucose uptake was increased by 15, 12, and 6 times in dorsal, inguinal, perigonadal white depots, respectively; multiplied by 2.5 in brown adipose tissue; increased by 50% in skin from inguinal region but not in that from cranial, thoracic, or dorsal area; and increased twofold in diaphragm but similar in heart in proximal intestine, and in total muscular mass of limbs. The data establish that in young obese rats the hypertrophied white adipose tissue was a major glucose-utilizing tissue whose capacity for glucose disposal compared with that of half the muscular mass. Adipose tissue could therefore play an important role in the homeostasis of glucose in obese rats in the face of their increased carbohydrate intake

  1. Tributyltin chloride increases phenylephrine-induced contraction and vascular stiffness in mesenteric resistance arteries from female rats.

    Science.gov (United States)

    Ribeiro Júnior, Rogério Faustino; Marques, Vinicius Bermond; Nunes, Dieli Oliveira; Ronconi, Karoline de Sousa; de Araújo, Julia F P; Rodrigues, Paula Lopes; Padilha, Alessandra Simão; Vassallo, Dalton Valentim; Graceli, Jones B; Stefanon, Ivanita

    2016-03-15

    Tributyltin chloride (TBT) is an organotin compound that reduces estrogen levels in female rats. We aimed to investigate the effects of TBT exposure on vascular tonus and vascular remodelling in the resistance arteries of female rats. Rats were treated daily with TBT (500 ng/kg) for 15 days. TBT did not change arterial blood pressure but did modify some morpho-physiological parameters of third-order mesenteric resistance arteries in the following ways: (1) decreased lumen and external diameters; (2) increased wall/lm ratio and wall thickness; (3) decreased distensibility and increased stiffness; (4) increased collagen deposition; and (5) increased pulse wave velocity. TBT exposure increased the phenylephrine-induced contractile response in mesenteric resistance arteries. However, vasodilatation responses induced by acetylcholine and sodium nitroprusside were not modified by TBT. It is suggested that TBT exposure reduces vascular nitric oxide (NO) production, because:(1) L-NAME incubation did not cause a leftward shift in the concentration-response curve for phenylephrine; (2) both eNOS protein expression; (3) in situ NO production were reduced. Incubation with L-NAME; and (4) SOD shifted the phenylephrine response curve to the left in TBT rats. Tiron, catalase, ML-171 and VAS2870 decreased vascular reactivity to phenylephrine only in TBT rats. Moreover, increased superoxide anion production was observed in the mesenteric resistance arteries of TBT rats accompanied by an increase in gp91phox, catalase, AT1 receptor and total ERK1/2 protein expression. In conclusion, these findings show that TBT induced alterations are most likely due to a reduction of NO production combined with increased O2(-) production derived from NADPH oxidase and ERK1/2 activation. These findings offer further evidence that TBT is an environmental risk factor for cardiovascular disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Increased sign-tracking behavior in adolescent rats.

    Science.gov (United States)

    DeAngeli, Nicole E; Miller, Sarah B; Meyer, Heidi C; Bucci, David J

    2017-11-01

    An autoshaping procedure was used to test the notion that conditioned stimuli (CSs) gain greater incentive salience during adolescence than young adulthood under conditions of social isolation rearing and food restriction. Rats were single-housed and placed on food restriction during 10 daily training sessions in which a lever (CS + ) was presented then followed immediately by a food unconditioned stimulus (US). A second lever (CS - ) was presented on intermixed trials and was not reinforced. Despite the fact that food delivery was not contingent on the rats' behavior, all rats exhibited behaviors directed towards the lever (i.e., sign-tracking). In the adolescent group, the rate of lever pressing and the percentage of trials with a lever press were higher than in young adults. Initially, group differences were observed when rats were retrained when the adolescents had reached young adulthood. These findings support the hypothesis that cues that come to predict reward become imbued with excessive motivational value in adolescents, perhaps contributing to the hyper-responsiveness to reward-related stimuli typically observed during this period of development. © 2017 Wiley Periodicals, Inc.

  3. Astragalin, a Flavonoid from Morus alba (Mulberry Increases Endogenous Estrogen and Progesterone by Inhibiting Ovarian Granulosa Cell Apoptosis in an Aged Rat Model of Menopause

    Directory of Open Access Journals (Sweden)

    Min Wei

    2016-05-01

    Full Text Available Background: To determine the mechanism by which the flavonoid glycoside astragalin (AST reduces ovarian failure in an aged rat model of menopause. Methods: The in vivo effect of AST on granulosa cell (GC apoptosis in aged female rats was determined using flow cytometry. In vitro, the effects of AST on cultured GCs were investigated using the MTT proliferation assay and western blot assays. Results: Aged rats had significantly higher GC apoptosis as compared with young female rats. Treatment of aged rats with AST (all three doses; p < 0.01 or Progynova (p < 0.01 significantly reduced GC apoptosis as compared with the aged controls. The proportions of total apoptotic GCs was 25.70%, 86.65%, 47.04%, 27.02%, 42.09% and 56.42% in the normal, aged, 17β-estradiol (E2, high dose AST, medium dose AST, and low dose AST-treated groups, respectively. Significant increases of serum E2 and P4 levels, as well as altered levels of serum follicle stimulating hormone (FSH and luteinizing hormone (LH levels. In cultured rat GCs, AST stimulated GC proliferation, E2 and progesterone (P4 secretion, reduced apoptosis, reduced the level of the pro-apoptotic protein Bcl-2 (p < 0.01, but had no effect on BAX. Conclusions: AST enhanced ovarian function in aged female rats by increasing E2 and P4 levels, and reducing ovarian GC apoptosis via a mechanism involving Bcl-2. These data demonstrate a new pharmacological activity for AST, as well as a novel mechanism of action, and further suggest that AST may be a new therapeutic agent for the management of menopausal symptoms.

  4. Dopamine depletion increases the power and coherence of high-voltage spindles in the globus pallidus and motor cortex of freely moving rats.

    Science.gov (United States)

    Ge, Shunnan; Yang, Chen; Li, Min; Li, Jiang; Chang, Xiaozan; Fu, Jian; Chen, Lei; Chang, Chongwang; Wang, Xuelian; Zhu, Junling; Gao, Guodong

    2012-07-17

    Studies on patients with Parkinson's disease and in animal models have observed enhanced synchronization of oscillations in several frequency bands within and between the cortical-basal ganglia (BG) structures. Recent research has also shown that synchronization of high-voltage spindles (HVSs) in the cortex, striatum and substantia nigra pars reticulate is increased by dopamine depletion. However, more evidence is needed to determine whether HVS activity in the whole cortex-BG network represents homologous alteration following dopamine depletion. As the globus pallidus (GP) is in a central position to propagate and synchronize oscillations in the cortical-BG circuits, we employed local-field potentials and electrocorticogram to simultaneously record oscillations in the GP and primary (M1) and secondary (M2) motor cortices on freely moving 6-hydroxydopamine (6-OHDA) lesioned and control rats. Results showed that HVS episodes recorded from GP, and M2 and M1 cortex areas were more numerous and longer in 6-OHDA lesioned rats compared to controls. Relative power associated with HVS activity in the GP, and M2 and M1 cortices of 6-OHDA lesioned rats was significantly greater than that for control rats. Coherence values for HVS activity between the GP, and M2 and M1 cortex areas were significantly increased by dopamine depletion. Time lag between the M1 cortex HVS and GP HVS was significantly shorter for dopamine depleted than normal rats. Findings indicate a crucial rule for dopamine in the regulation of HVS activity in the whole cortical-BG circuit, and suggest a close relationship between abnormally synchronized HVS oscillations in the cortex-BG network and Parkinson's disease. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Centella asiatica increases B-cell lymphoma 2 expression in rat prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Kuswati

    2015-04-01

    Full Text Available Background Stress is one of the factors that cause apoptosis in neuronal cells. Centella asiatica has a neuroprotective effect that can inhibit apoptosis. This study aimed to examine the effect of Centella asiatica ethanol extract on B-cell lymphoma 2 (Bcl-2 protein expression in the prefrontal cortex of rats. Methods An experimental study was conducted on 34 brain tissue samples from male Sprague Dawley rats exposed to chronic restraint stress for 21 days. The samples were taken from following groups: non-stress group K, negative control group P1 (stress + arabic gum powder, P2 (stress + C.asiatica at 150 mg/kgBW, P3 (stress + C.asiatica at 300 mg/kg BW, P4 (stress + C.asiatica at 600 mg/kg body weight and positive control group P5 (stress + fluoxetine at 10 mg/kgBW. The samples were made into sections that were stained immunohistochemically using Bcl-2 antibody to determine the percentage of cells expressing Bcl-2. Data were analyzed using one way ANOVA test followed by a post - hoc test. Results There were significant differences in mean Bcl-2 expression between the groups receiving Centella asiatica compared with the non-stress group and stress-only group (negative control group (p<0.05. The results were comparable to those of the fluoxetine treatment group. Conclusion The Centella asiatica ethanol extract was able to increase Bcl-2 expression in the prefrontal cortex of Sprague Dawley rats exposed to restraint stress. This study suggests that Centella asiatica may be useful in the treatment of cerebral stress.

  6. Increased NMDA receptor inhibition at an increased Sevoflurane MAC

    Directory of Open Access Journals (Sweden)

    Brosnan Robert J

    2012-06-01

    Full Text Available Abstract Background Sevoflurane potently enhances glycine receptor currents and more modestly decreases NMDA receptor currents, each of which may contribute to immobility. This modest NMDA receptor antagonism by sevoflurane at a minimum alveolar concentration (MAC could be reciprocally related to large potentiation of other inhibitory ion channels. If so, then reduced glycine receptor potency should increase NMDA receptor antagonism by sevoflurane at MAC. Methods Indwelling lumbar subarachnoid catheters were surgically placed in 14 anesthetized rats. Rats were anesthetized with sevoflurane the next day, and a pre-infusion sevoflurane MAC was measured in duplicate using a tail clamp method. Artificial CSF (aCSF containing either 0 or 4 mg/mL strychnine was then infused intrathecally at 4 μL/min, and the post-infusion baseline sevoflurane MAC was measured. Finally, aCSF containing strychnine (either 0 or 4 mg/mL plus 0.4 mg/mL dizocilpine (MK-801 was administered intrathecally at 4 μL/min, and the post-dizocilpine sevoflurane MAC was measured. Results Pre-infusion sevoflurane MAC was 2.26%. Intrathecal aCSF alone did not affect MAC, but intrathecal strychnine significantly increased sevoflurane requirement. Addition of dizocilpine significantly decreased MAC in all rats, but this decrease was two times larger in rats without intrathecal strychnine compared to rats with intrathecal strychnine, a statistically significant (P  Conclusions Glycine receptor antagonism increases NMDA receptor antagonism by sevoflurane at MAC. The magnitude of anesthetic effects on a given ion channel may therefore depend on the magnitude of its effects on other receptors that modulate neuronal excitability.

  7. Increase of long-term 'diabesity' risk, hyperphagia, and altered hypothalamic neuropeptide expression in neonatally overnourished 'small-for-gestational-age' (SGA rats.

    Directory of Open Access Journals (Sweden)

    Karen Schellong

    Full Text Available BACKGROUND: Epidemiological data have shown long-term health adversity in low birth weight subjects, especially concerning the metabolic syndrome and 'diabesity' risk. Alterations in adult food intake have been suggested to be causally involved. Responsible mechanisms remain unclear. METHODS AND FINDINGS: By rearing in normal (NL vs. small litters (SL, small-for-gestational-age (SGA rats were neonatally exposed to either normal (SGA-in-NL or over-feeding (SGA-in-SL, and followed up into late adult age as compared to normally reared appropriate-for-gestational-age control rats (AGA-in-NL. SGA-in-SL rats displayed rapid neonatal weight gain within one week after birth, while SGA-in-NL growth caught up only at juvenile age (day 60, as compared to AGA-in-NL controls. In adulthood, an increase in lipids, leptin, insulin, insulin/glucose-ratio (all p<0.05, and hyperphagia under normal chow as well as high-energy/high-fat diet, modelling modern 'westernized' lifestyle, were observed only in SGA-in-SL as compared to both SGA-in-NL and AGA-in-NL rats (p<0.05. Lasercapture microdissection (LMD-based neuropeptide expression analyses in single neuron pools of the arcuate hypothalamic nucleus (ARC revealed a significant shift towards down-regulation of the anorexigenic melanocortinergic system (proopiomelanocortin, Pomc in SGA-in-SL rats (p<0.05. Neuropeptide expression within the orexigenic system (neuropeptide Y (Npy, agouti-related-peptide (Agrp and galanin (Gal was not significantly altered. In essence, the 'orexigenic index', proposed here as a neuroendocrine 'net-indicator', was increased in SGA-in-SL regarding Npy/Pomc expression (p<0.01, correlated to food intake (p<0.05. CONCLUSION: Adult SGA rats developed increased 'diabesity' risk only if exposed to neonatal overfeeding. Hypothalamic malprogramming towards decreased anorexigenic activity was involved into the pathophysiology of this neonatally acquired adverse phenotype. Neonatal overfeeding

  8. Naked mole-rat has increased translational fidelity compared with the mouse, as well as a unique 28S ribosomal RNA cleavage.

    Science.gov (United States)

    Azpurua, Jorge; Ke, Zhonghe; Chen, Iris X; Zhang, Quanwei; Ermolenko, Dmitri N; Zhang, Zhengdong D; Gorbunova, Vera; Seluanov, Andrei

    2013-10-22

    The naked mole-rat (Heterocephalus glaber) is a subterranean eusocial rodent with a markedly long lifespan and resistance to tumorigenesis. Multiple data implicate modulation of protein translation in longevity. Here we report that 28S ribosomal RNA (rRNA) of the naked mole-rat is processed into two smaller fragments of unequal size. The two breakpoints are located in the 28S rRNA divergent region 6 and excise a fragment of 263 nt. The excised fragment is unique to the naked mole-rat rRNA and does not show homology to other genomic regions. Because this hidden break site could alter ribosome structure, we investigated whether translation rate and amino acid incorporation fidelity were altered. We report that naked mole-rat fibroblasts have significantly increased translational fidelity despite having comparable translation rates with mouse fibroblasts. Although we cannot directly test whether the unique 28S rRNA structure contributes to the increased fidelity of translation, we speculate that it may change the folding or dynamics of the large ribosomal subunit, altering the rate of GTP hydrolysis and/or interaction of the large subunit with tRNA during accommodation, thus affecting the fidelity of protein synthesis. In summary, our results show that naked mole-rat cells produce fewer aberrant proteins, supporting the hypothesis that the more stable proteome of the naked mole-rat contributes to its longevity.

  9. Chronic high-sodium diet increases aortic wall endothelin-1 expression in a blood pressure-independent fashion in rats.

    Science.gov (United States)

    Tsai, Yu-Hwai; Ohkita, Mamoru; Gariepy, Cheryl E

    2006-06-01

    Vascular endothelin (ET)-1 is upregulated in several forms of salt-induced hypertension. It is unclear to what extent these effects are primary or secondary to endothelial damage. We hypothesized that a high-sodium diet (HNa) increases vascular ET-1 production independent of arterial blood pressure changes. We investigated the effect of chronic HNa with and without ET(A) blockade on circulating and aortic ET-1 protein levels as well as aortic expression of ET-1 and ET(A) messenger RNA (mRNA) in inbred Wistar-Kyoto (WKY) and congenic ET(B)-deficient rats. Comparing WKY rats fed a low-sodium diet (LNa) with those fed HNa for 3 weeks, aortic wall ET-1 protein is significantly increased in response to HNa (331 +/- 43 pg/g tissue for LNa vs. 557 +/- 34 pg/gm tissue for HNa). HNa also increased aortic wall ET-1 mRNA levels by 40%, as determined by quantitative reverse transcriptase polymerase chain reaction. We then compared rats chronically treated with the ET(A)-selective antagonist, ABT-627, while receiving either LNa or HNa. There were no differences in arterial blood pressure (mean arterial pressure 89 +/- 1 mm Hg for WKY on LNa; 90 +/- 3 for WKY on HNa; 91 +/- 2 for ET(B)-deficient/ABT-627-treated on HNa) or heart rate. However, aortic wall ET-1 protein levels were 4-fold higher in the HNa group. Further, HNa increased aortic wall ET-1 mRNA (approximately 1.5- to 3-fold) and ET(A) mRNA (approximately 2- to 7-fold), independent of activation of ET(B). Therefore, the expression of ET-1 mRNA by the aortic wall is increased in response to chronic high dietary sodium in WKY rats in the absence of changes in arterial blood pressure.

  10. The Histamine H1 Receptor Participates in the Increased Dorsal Telencephalic Neurogenesis in Embryos from Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Karina H. Solís

    2017-12-01

    Full Text Available Increased neuron telencephalic differentiation during deep cortical layer formation has been reported in embryos from diabetic mice. Transitory histaminergic neurons within the mesencephalon/rhombencephalon are responsible for fetal histamine synthesis during development, fibers from this system arrives to the frontal and parietal cortex at embryo day (E 15. Histamine is a neurogenic factor for cortical neural stem cells in vitro through H1 receptor (H1R which is highly expressed during corticogenesis in rats and mice. Furthermore, in utero administration of an H1R antagonist, chlorpheniramine, decreases the neuron markers microtubuline associated protein 2 (MAP2 and forkhead box protein 2. Interestingly, in the diabetic mouse model of diabetes induced with streptozotocin, an increase in fetal neurogenesis in terms of MAP2 expression in the telencephalon is reported at E11.5. Because of the reported effects on cortical neuron differentiation of maternal diabetes in one hand and of histamine in the other, here the participation of histamine and H1R on the increased dorsal telencephalic neurogenesis was explored. First, the increased neurogenesis in the dorsal telencephalon at E14 in diabetic rats was corroborated by immunohistochemistry and Western blot. Then, changes during corticogenesis in the level of histamine was analyzed by ELISA and in H1R expression by qRT-PCR and Western blot and, finally, we tested H1R participation in the increased dorsal telencephalic neurogenesis by the systemic administration of chlorpheniramine. Our results showed a significant increase of histamine at E14 and in the expression of the receptor at E12. The administration of chlorpheniramine to diabetic rats at E12 prevented the increased expression of βIII-tubulin and MAP2 mRNAs (neuron markers and partially reverted the increased level of MAP2 protein at E14, concluding that H1R have an important role in the increased neurogenesis within the dorsal telencephalon

  11. Extensive Gustatory Cortex Lesions Significantly Impair Taste Sensitivity to KCl and Quinine but Not to Sucrose in Rats.

    Directory of Open Access Journals (Sweden)

    Michelle B Bales

    Full Text Available Recently, we reported that large bilateral gustatory cortex (GC lesions significantly impair taste sensitivity to salts in rats. Here we extended the tastants examined to include sucrose and quinine in rats with ibotenic acid-induced lesions in GC (GCX and in sham-operated controls (SHAM. Presurgically, immediately after drinking NaCl, rats received a LiCl or saline injection (i.p., but postsurgical tests indicated a weak conditioned taste aversion (CTA even in controls. The rats were then trained and tested in gustometers to discriminate a tastant from water in a two-response operant taste detection task. Psychometric functions were derived for sucrose, KCl, and quinine. Our mapping system was used to determine placement, size, and symmetry of the lesions (~91% GC damage on average. For KCl, there was a significant rightward shift (ΔEC50 = 0.57 log10 units; p<0.001 in the GCX psychometric function relative to SHAM, replicating our prior work. There was also a significant lesion-induced impairment (ΔEC50 = 0.41 log10 units; p = 0.006 in quinine sensitivity. Surprisingly, taste sensitivity to sucrose was unaffected by the extensive lesions and was comparable between GCX and SHAM rats. The fact that such large bilateral GC lesions did not shift sucrose psychometric functions relative to SHAM, but did significantly compromise quinine and KCl sensitivity suggests that the neural circuits responsible for the detection of specific taste stimuli are partially dissociable. Lesion-induced impairments were observed in expression of a postsurgical CTA to a maltodextrin solution as assessed in a taste-oriented brief-access test, but were not reflected in a longer term 46-h two-bottle test. Thus, deficits observed in rats after extensive damage to the GC are also dependent on the test used to assess taste function. In conclusion, the degree to which the GC is necessary for the maintenance of normal taste detectability apparently depends on the chemical and

  12. Proton Pump Inhibition Increases Rapid Eye Movement Sleep in the Rat

    Directory of Open Access Journals (Sweden)

    Munazah Fazal Qureshi

    2014-01-01

    Full Text Available Increased bodily CO2 concentration alters cellular pH as well as sleep. The proton pump, which plays an important role in the homeostatic regulation of cellular pH, therefore, may modulate sleep. We investigated the effects of the proton pump inhibitor “lansoprazole” on sleep-wakefulness. Male Wistar rats were surgically prepared for chronic polysomnographic recordings. Two different doses of lansoprazole (low: 1 mg/kg; high: 10 mg/kg were injected intraperitoneally in the same animal (n=7 and sleep-wakefulness was recorded for 6 hrs. The changes in sleep-wakefulness were compared statistically. Percent REM sleep amount in the vehicle and lansoprazole low dose groups was 9.26±1.03 and 9.09±0.54, respectively, which increased significantly in the lansoprazole high dose group by 31.75% (from vehicle and 34.21% (from low dose. Also, REM sleep episode numbers significantly increased in lansoprazole high dose group. Further, the sodium-hydrogen exchanger blocker “amiloride” (10 mg/kg; i.p. (n=5 did not alter sleep-wake architecture. Our results suggest that the proton pump plays an important role in REM sleep modulation and supports our view that REM sleep might act as a sentinel to help maintain normal CO2 level for unperturbed sleep.

  13. Irvingia gabonensis fat: nutritional properties and effect of increasing amounts on the growth and lipid metabolism of young rats wistar sp

    Directory of Open Access Journals (Sweden)

    Michel Linder

    2011-03-01

    Full Text Available Abstract Background Dietary saturated fatty acids (SFAs are generally considered to increase plasma cholesterol. It has also been claimed that they increase cardio-vascular disease, although the claim that some of SFAs can increase HDL-cholesterol is poorly documented. Irvingia gabonensis kernels after being dried and crushed they are generally used to prepare a sticky and aromatic soup very much consumed in Cameroun and West Africa countries. This study was therefore aimed at evaluating the effects of dika nut fat on the growing and lipids metabolism of young rats. Method For The nutritional evaluation related to the performances of growth and the analysis of increasing amounts of dika nut fat (0; 5.1; 7.34 and 13.48% in young rats of wistar sp. The animals were taken individually out of metabolic cage for each ration 5 repetitions per sex (males and females were carried out. Results The results obtained during the 3 weeks of treatment shows that the performances of consumption were positive. A highly significant increase (P Conclusion This study shows that the increasing amount of dika nut fat alter significantly cholesterol and triglyceride at high dose diet, but also increase HDL-cholesterol.

  14. Prenatal stress increases the obesogenic effects of a high-fat-sucrose diet in adult rats in a sex-specific manner.

    Science.gov (United States)

    Paternain, L; de la Garza, A L; Batlle, M A; Milagro, F I; Martínez, J A; Campión, J

    2013-03-01

    Stress during pregnancy can induce metabolic disorders in adult offspring. To analyze the possible differential response to a high-fat-sucrose (HFS) diet in offspring affected by prenatal stress (PNS) or not, pregnant Wistar rats (n = 11) were exposed to a chronic mild stress during the third week of gestation. The aim of this study was to model a chronic depressive-like state that develops over time in response to exposure of rats to a series of mild and unpredictable stressors. Control dams (n = 11) remained undisturbed. Adult offspring were fed chow or HFS diet (20% protein, 35% carbohydrate, 45% fat) for 10 weeks. Changes in adiposity, biochemical profile, and retroperitoneal adipose tissue gene expression by real-time polymerase chain reaction were analyzed. An interaction was observed between HFS and PNS concerning visceral adiposity, with higher fat mass in HFS-fed stressed rats, statistically significant only in females. HFS modified lipid profile and increased insulin resistance biomarkers, while PNS reduced insulin concentrations and the homeostasis model assessment index. HFS diet increased gene (mRNA) expression for leptin and apelin and decreased cyclin-dependent kinase inhibitor 1A and fatty acid synthase (Fasn), whereas PNS increased Fasn and stearoyl-CoA desaturase1. An interaction between diet and PNS was observed for adiponutrin (Adpn) and peroxisome proliferator-activated receptor-γ coactivator1-α (Ppargc1a) gene expression: Adpn was increased by the PNS only in HFS-fed rats, whereas Ppargc1a was increased by the PNS only in chow-fed rats. From these results, it can be concluded that experience of maternal stress during intrauterine development can enhance predisposition to obesity induced by a HFS diet intake.

  15. Acetaldehyde binding increases the catabolism of rat serum low-density lipoproteins

    International Nuclear Information System (INIS)

    Savolainen, M.J.; Baraona, E.; Lieber, C.S.

    1987-01-01

    Acetaldehyde was found to form adducts with rat serum lipoproteins. The binding of [ 14 C]acetaldehyde to lipoproteins was studied at low concentrations which are known to exist during ethanol oxidation. The amount of lipoprotein adducts was a linear function of acetaldehyde concentration up to 250 μM. Incubation of rat plasma low-density lipoproteins (LDL) with 200 μM acetaldehyde increased the disappearance rate of the 3 H-label from the cholesterol ester moiety of LDL injected into normal rats. The data show that even low concentrations of acetaldehyde are capable of affecting LDL metabolism. These findings may provide an explanation for the low concentrations of serum LDL in alcoholics. The alcohol-induced hyperlipidemia includes either a lack of increase or a decrease in the low-density lipoprotein (LDL) concentration, but the underlying mechanism is not known. It has been shown previously, that the acetylation of lysine residues of LDL apoprotein (apoB) by acetanhydride leads to rapid uptake of LDL particles by macrophages through a non-LDL receptor pathway. Since acetaldehyde, the first toxic metabolite of ethanol, is a chemically reactive compound capable of binding to proteins, they tested whether acetaldehyde forms adducts with serum lipoproteins and subsequently alters the catabolism of LDL. 19 references, 2 figures, 1 table

  16. Gas revenue increasingly significant

    International Nuclear Information System (INIS)

    Megill, R.E.

    1991-01-01

    This paper briefly describes the wellhead prices of natural gas compared to crude oil over the past 70 years. Although natural gas prices have never reached price parity with crude oil, the relative value of a gas BTU has been increasing. It is one of the reasons that the total amount of money coming from natural gas wells is becoming more significant. From 1920 to 1955 the revenue at the wellhead for natural gas was only about 10% of the money received by producers. Most of the money needed for exploration, development, and production came from crude oil. At present, however, over 40% of the money from the upstream portion of the petroleum industry is from natural gas. As a result, in a few short years natural gas may become 50% of the money revenues generated from wellhead production facilities

  17. Chronic high-fat diet-induced obesity decreased survival and increased hypertrophy of rats with experimental eccentric hypertrophy from chronic aortic regurgitation.

    Science.gov (United States)

    Dhahri, Wahiba; Drolet, Marie-Claude; Roussel, Elise; Couet, Jacques; Arsenault, Marie

    2014-09-24

    The composition of a diet can influence myocardial metabolism and development of left ventricular hypertrophy (LVH). The impact of a high-fat diet in chronic left ventricular volume overload (VO) causing eccentric LVH is unknown. This study examined the effects of chronic ingestion of a high-fat diet in rats with chronic VO caused by severe aortic valve regurgitation (AR) on LVH, function and on myocardial energetics and survival. Male Wistar rats were divided in four groups: Shams on control or high-fat (HF) diet (15 rats/group) and AR rats fed with the same diets (ARC (n = 56) and ARHF (n = 32)). HF diet was started one week before AR induction and the protocol was stopped 30 weeks later. As expected, AR caused significant LV dilation and hypertrophy and this was exacerbated in the ARHF group. Moreover, survival in the ARHF group was significantly decreased compared the ARC group. Although the sham animals on HF also developed significant obesity compared to those on control diet, this was not associated with heart hypertrophy. The HF diet in AR rats partially countered the expected shift in myocardial energy substrate preference usually observed in heart hypertrophy (from fatty acids towards glucose). Systolic function was decreased in AR rats but HF diet had no impact on this parameter. The response to HF diet of different fatty acid oxidation markers as well as the increase in glucose transporter-4 translocation to the plasma membrane compared to ARC was blunted in AR animals compared to those on control diet. HF diet for 30 weeks decreased survival of AR rats and worsened eccentric hypertrophy without affecting systolic function. The expected adaptation of myocardial energetics to volume-overload left ventricle hypertrophy in AR animals seemed to be impaired by the high-fat diet suggesting less metabolic flexibility.

  18. Sorbitol increases muscle glucose uptake ex vivo and inhibits intestinal glucose absorption ex vivo and in normal and type 2 diabetic rats.

    Science.gov (United States)

    Chukwuma, Chika Ifeanyi; Islam, Md Shahidul

    2017-04-01

    Previous studies have suggested that sorbitol, a known polyol sweetener, possesses glycemic control potentials. However, the effect of sorbitol on intestinal glucose absorption and muscle glucose uptake still remains elusive. The present study investigated the effects of sorbitol on intestinal glucose absorption and muscle glucose uptake as possible anti-hyperglycemic or glycemic control potentials using ex vivo and in vivo experimental models. Sorbitol (2.5% to 20%) inhibited glucose absorption in isolated rat jejuna (IC 50 = 14.6% ± 4.6%) and increased glucose uptake in isolated rat psoas muscle with (GU 50 = 3.5% ± 1.6%) or without insulin (GU 50 = 7.0% ± 0.5%) in a concentration-dependent manner. Furthermore, sorbitol significantly delayed gastric emptying, accelerated digesta transit, inhibited intestinal glucose absorption, and reduced blood glucose increase in both normoglycemic and type 2 diabetic rats after 1 h of coingestion with glucose. Data of this study suggest that sorbitol exhibited anti-hyperglycemic potentials, possibly via increasing muscle glucose uptake ex vivo and reducing intestinal glucose absorption in normal and type 2 diabetic rats. Hence, sorbitol may be further investigated as a possible anti-hyperglycemic sweetener.

  19. Chronic social instability increases anxiety-like behavior and ethanol preference in male Long Evans rats.

    Science.gov (United States)

    Roeckner, Alyssa R; Bowling, Alexandra; Butler, Tracy R

    2017-05-01

    Chronic stress during adolescence is related to increased prevalence of anxiety disorders and alcohol use disorders in humans. This phenotype has been consistently recapitulated in animal models with male subjects, but models using female subjects are fewer. The aim of these studies was to test the hypothesis that chronic social instability (CSI) during adolescence engenders increased anxiety-like behavior, increased corticosterone, and greater ethanol intake and/or preference than control groups in male and female rats. A chronic social instability (CSI) procedure was conducted in separate cohorts of female and male adolescent Long Evans rats. CSI included daily social isolation for 1h, and then pair housing with a novel cage mate for 23h until the next 1h isolation period from PND 30-46. Control groups included social stability (SS), chronic isolation (ISO), and acute social instability (aSI). At PND 49-50, anxiety-like behavior was assessed on the elevated plus maze, and on PND 51 tails bloods were obtained for determination of corticosterone (CORT) levels. This was followed by 4weeks of ethanol drinking in a home cage intermittent access ethanol drinking paradigm (PND 55-81 for males, PND 57-83 for females). Planned contrast testing showed that the male CSI group had greater anxiety-like behavior compared controls, but group differences were not apparent for CORT. CSI males had significantly higher levels of ethanol preference during drinking weeks 2-3 compared to all other groups and compared to SS and ISO groups in week 4. For the female cohort, we did not observe consistent group differences in anxiety-like behavior, CORT levels were unexpectedly lower in the ISO group only compared to the other groups, and group differences were not apparent for ethanol intake/preference. In conclusion, chronic stress during adolescence in the form of social instability increases anxiety-like behavior and ethanol preference in male rats, consistent with other models of

  20. Increased Hyperalgesia and Proinflammatory Cytokines in the Spinal Cord and Dorsal Root Ganglion After Surgery and/or Fentanyl Administration in Rats.

    Science.gov (United States)

    Chang, Lu; Ye, Fang; Luo, Quehua; Tao, Yuanxiang; Shu, Haihua

    2018-01-01

    Perioperative fentanyl has been reported to induce hyperalgesia and increase postoperative pain. In this study, we tried to investigate behavioral hyperalgesia, the expression of proinflammatory cytokines, such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and the activation of microglia in the spinal cord and dorsal root ganglion (DRG) in a rat model of surgical plantar incision with or without perioperative fentanyl. Four groups of rats (n = 32 for each group) were subcutaneously injected with fentanyl at 60 μg/kg or normal saline for 4 times with 15-minute intervals. Plantar incisions were made to rats in 2 groups after the second drug injection. Mechanical and thermal nociceptive thresholds were assessed by the tail pressure test and paw withdrawal test on the day before, at 1, 2, 3, 4 hours, and on the days 1-7 after drug injection. The lumbar spinal cord, bilateral DRG, and cerebrospinal fluid of 4 rats in each group were collected to measure IL-1β, IL-6, and TNF-α on the day before, at the fourth hour, and on the days 1, 3, 5, and 7 after drug injection. The lumbar spinal cord and bilateral DRG were removed to detect the ionized calcium-binding adapter molecule 1 on the day before and on the days 1 and 7 after drug injection. Rats injected with normal saline only demonstrated no significant mechanical or thermal hyperalgesia or any increases of IL-1β, IL-6, and TNF-α in the spinal cord or DRG. However, injection of fentanyl induced analgesia within as early as 4 hours and a significant delayed tail mechanical and bilateral plantar thermal hyperalgesia after injections lasting for 2 days, while surgical plantar incision induced a significant mechanical and thermal hyperalgesia lasting for 1-4 days. The combination of fentanyl and incision further aggravated the hyperalgesia and prolonged the duration of hyperalgesia. The fentanyl or surgical incision upregulated the expression of IL-1β, IL-6, and TNF-α in the

  1. Rapid eye movement sleep deprivation induces an increase in acetylcholinesterase activity in discrete rat brain regions

    Directory of Open Access Journals (Sweden)

    Benedito M.A.C.

    2001-01-01

    Full Text Available Some upper brainstem cholinergic neurons (pedunculopontine and laterodorsal tegmental nuclei are involved in the generation of rapid eye movement (REM sleep and project rostrally to the thalamus and caudally to the medulla oblongata. A previous report showed that 96 h of REM sleep deprivation in rats induced an increase in the activity of brainstem acetylcholinesterase (Achase, the enzyme which inactivates acetylcholine (Ach in the synaptic cleft. There was no change in the enzyme's activity in the whole brain and cerebrum. The components of the cholinergic synaptic endings (for example, Achase are not uniformly distributed throughout the discrete regions of the brain. In order to detect possible regional changes we measured Achase activity in several discrete rat brain regions (medulla oblongata, pons, thalamus, striatum, hippocampus and cerebral cortex after 96 h of REM sleep deprivation. Naive adult male Wistar rats were deprived of REM sleep using the flower-pot technique, while control rats were left in their home cages. Total, membrane-bound and soluble Achase activities (nmol of thiocholine formed min-1 mg protein-1 were assayed photometrically. The results (mean ± SD obtained showed a statistically significant (Student t-test increase in total Achase activity in the pons (control: 147.8 ± 12.8, REM sleep-deprived: 169.3 ± 17.4, N = 6 for both groups, P<0.025 and thalamus (control: 167.4 ± 29.0, REM sleep-deprived: 191.9 ± 15.4, N = 6 for both groups, P<0.05. Increases in membrane-bound Achase activity in the pons (control: 171.0 ± 14.7, REM sleep-deprived: 189.5 ± 19.5, N = 6 for both groups, P<0.05 and soluble enzyme activity in the medulla oblongata (control: 147.6 ± 16.3, REM sleep-deprived: 163.8 ± 8.3, N = 6 for both groups, P<0.05 were also observed. There were no statistically significant differences in the enzyme's activity in the other brain regions assayed. The present findings show that the increase in Achase activity

  2. Increased synaptophysin is involved in inflammation-induced heat hyperalgesia mediated by cyclin-dependent kinase 5 in rats.

    Directory of Open Access Journals (Sweden)

    Hong-Hai Zhang

    Full Text Available Mechanisms associated with cyclin-dependent kinase 5 (Cdk5-mediated heat hyperalgesia induced by inflammation remain undefined. This study was designed to examine whether Cdk5 mediates heat hyperalgesia resulting from peripheral injection of complete Freund's adjuvant (CFA in the spinal dorsal horns of rats by interacting with synaptophysin, a well known membrane protein mediating the endocytosis-exocytosis cycle of synaptic vesicles as a molecular marker associated with presynaptic vesicle membranes. The role of Cdk5 in mediating synaptophysin was examined through the combined use of behavioral approaches, imaging studies, and immunoprecipitation following CFA-induced inflammatory pain. Results showed that Cdk5 colocalized with both synaptophysin and soluble N-ethylmaleimide-sensitive factor (NSF attachment protein receptors (SNAREs consisting of VAMP-2, SNAP-25, and syntaxin 1A in spinal dorsal horn of rats. Increased synaptophysin expression of spinal cord horn neurons post intraplantar injection of CFA coincided with increased duration of heat hyperalgesia lasting from 6 h to 3 d. Intrathecal administration of roscovitine, a Cdk5 specific inhibitor, significantly depressed synaptophysin expression during peak heat hyperalgesia and heat hyperalgesia induced by peripheral injection of CFA. Data presented in this report indicated that calpain activity was transiently upregulated 6 h post CFA-treatment despite previous reports suggesting that calpain was capable of cleaving p35 into p25. Results from previous studies obtained by other laboratories demonstrated that significant changes in p35 expression levels within spinal cord horn neurons were not observed in the CFA-treated inflammatory pain model although significant upregulation of Cdk5 kinase was observed between 2 h to 7 d. Therefore, generation of p25 occurred in a calpain-independent fashion in a CFA-treated inflammatory pain model. Our results demonstrated that increased synaptophysin

  3. Chronic prostatitis/chronic pelvic pain syndrome impairs erectile function through increased endothelial dysfunction, oxidative stress, apoptosis, and corporal fibrosis in a rat model.

    Science.gov (United States)

    Hu, Y; Niu, X; Wang, G; Huang, J; Liu, M; Peng, B

    2016-11-01

    Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is an independent risk factor for the development of erectile dysfunction (ED). But the molecular mechanisms underlying the relationship between CP/CPPS and ED are still unclear. The aim of this study was to investigate the effect of CP/CPPS on erectile function in a rat model and the possible mechanisms. A rat model of experimental autoimmune prostatitis (EAP) was established to mimic human CP⁄CPPS. Then twenty 2-month-old male Sprague-Dawley rats were divided into EAP group and control group. Intracavernosal pressure (ICP) and mean arterial pressure (MAP) were measured during cavernous nerve electrostimulation, the ratio of max ICP/MAP was calculated. Blood was collected to measure the levels of serum C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and testosterone, respectively. The expression of endothelial nitric oxide synthase (eNOS), cyclic guanosine monophosphate (cGMP) levels, superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels in corpus cavernosum were detected. We also evaluated the smooth muscle/collagen ratio and apoptotic index (AI). The ratio of max ICP/MAP in EAP group were significantly lower than that in control group. The levels of serum CRP, TNF-α, IL-1β, and IL-6 in EAP group were all significantly higher than these in control group. The expression of eNOS and cGMP levels in corpus cavernosum of EAP rats were significantly downregulated. Furthermore, decreased SOD activity and smooth muscle/collagen ratio, increased MDA levels and AI were found in corpus cavernosum of EAP rats. In conclusion, CP/CPPS impaired penile erectile function in a rat model. The declines of eNOS expression and cGMP levels in corpus cavernosum may be an important mechanism of CP/CPPS-induced ED. CP/CPPS also increased oxidative stress, cell apoptosis and decreased smooth muscle/collagen ratio in corpus cavernosum of rats, which were

  4. Growth hormone increases and maturation decreases glutamine synthetase turnover rate in rat liver

    International Nuclear Information System (INIS)

    Lin, C.K.

    1985-01-01

    An investigation was made of the effect of hypophysectomy and growth hormone (GH) replacement regimen (1 mg/100 g twice daily for 30 days); and maturation (from 25 up to 90 days) on the liver and brain glutamine synthetase (GS) mass and turnover rates in rats. The first order decay rate of enzyme 14 C radioactivity was determined between 1 and 4 days to obtain the half-life (T/sub 1/2/) of GS. The hepatic GS mass was determined by immunoassay. GS turnover (GS/sub s/) was calculated from T/sub 1/2/ and the GS mass (i.e., K = 0.693/T/sub 1/2/; GS/sub s/ = K x GS mass). It was concluded that: (1) GS specific activity is not decreased by hypophysectomy or increased by GH. These results suggested that observed endocrine induced changes in GS are due to changes in GS mass. (2) The liver GS turnover rate is significantly reduced by hypophysectomy and increased by GH replacement. It was proposed that GH specifically enhances synthesis of GS in the liver. (3) Maturation (25, 40, 60, and 90 days) decreases GS turnover rate in both liver and brain of normal rats. This similar effect of maturation suggests that the observed age induced decline in GS turnover rate is not related to GH in all tissues

  5. Enduring increases in anxiety-like behavior and rapid nucleus accumbens dopamine signaling in socially isolated rats.

    Science.gov (United States)

    Yorgason, Jordan T; España, Rodrigo A; Konstantopoulos, Joanne K; Weiner, Jeffrey L; Jones, Sara R

    2013-03-01

    Social isolation (SI) rearing, a model of early life stress, results in profound behavioral alterations, including increased anxiety-like behavior, impaired sensorimotor gating and increased self-administration of addictive substances. These changes are accompanied by alterations in mesolimbic dopamine function, such as increased dopamine and metabolite tissue content, increased dopamine responses to cues and psychostimulants, and increased dopamine neuron burst firing. Using voltammetric techniques, we examined the effects of SI rearing on dopamine transporter activity, vesicular release and dopamine D2-type autoreceptor activity in the nucleus accumbens core. Long-Evans rats were housed in group (GH; 4/cage) or SI (1/cage) conditions from weaning into early adulthood [postnatal day (PD) 28-77]. After this initial housing period, rats were assessed on the elevated plus-maze for an anxiety-like phenotype, and then slice voltammetry experiments were performed. To study the enduring effects of SI rearing on anxiety-like behavior and dopamine terminal function, another cohort of similarly reared rats was isolated for an additional 4 months (until PD 174) and then tested. Our findings demonstrate that SI rearing results in lasting increases in anxiety-like behavior, dopamine release and dopamine transporter activity, but not D2 activity. Interestingly, GH-reared rats that were isolated as adults did not develop the anxiety-like behavior or dopamine changes seen in SI-reared rats. Together, our data suggest that early life stress results in an anxiety-like phenotype, with lasting increases in dopamine terminal function. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  6. β-lipotropin is the major opioid-like peptide of human pituitary and rat pars distalis: lack of significant β-endorphin

    International Nuclear Information System (INIS)

    Liotta, A.S.; Suda, T.; Krieger, D.T.

    1978-01-01

    β-Lipotropin is the predominant opioid peptide of the human pituitary and rat pars distalis and is present in concentrations essentially equimolar with corticotropin. When freshly obtained nonfrozen rat anterior pituitaries were homogenized with 0.2 M HCl, approximately 98% of the immunoreactivity detected utilizing an antiserum that crossreacts equally with β-lipotropin and β-endorphin coeluted with 125 I-labeled human β-lipotropin upon molecular sieve chromatography. The remainder of the activity eluted with synthetic human β-endorphin. Similar results were obtained for human pituitary. HCl homogenization of thawed tissue or homogenization of fresh tissue with acetic acid yielded substantially greater concentrations of β-endorphin and decreased concentrations of β-lipotropin. In human subjects, acute anterior pituitary stimulation using either insulin-induced hypoglycemia or vasopressin administration was associated with increased plasma β-lipotropin and corticotropin levels. At the time of peak concentrations, no significant levels of β-endorphin were detectable. These data indicate the lack of significant amounts of β-endorphin in human pituitary. Additionally, there appears to be no specific intrapituitary conversion of β-lipotropin to β-endorphin

  7. Selective central activation of somatostatin receptor 2 increases food intake, grooming behavior and rectal temperature in rats.

    Science.gov (United States)

    Stengel, A; Goebel, M; Wang, L; Rivier, J; Kobelt, P; Monnikes, H; Tache, Y

    2010-08-01

    The consequences of selective activation of brain somatostatin receptor-2 (sst2) were assessed using the sst2 agonist, des-AA(1,4-6,11-13)-[DPhe(2),Aph7(Cbm),DTrp(8)]-Cbm-SST-Thr-NH2. Food intake (FI) was monitored in ad libitum fed rats chronically implanted with an intracerebroventricular (i.c.v.) cannula. The sst(2) agonist injected i.c.v. at 0.1 and 1 microg/rat dose-dependently increased light phase FI from 2 to 6 hours post injection (2.3+/-0.5 and 7.5+/-1.2 respectively vs. vehicle: 0.2+/-0.2 g/300 g bw, P<0.001). Peptide action was reversed by i.c.v. injection of the sst2 antagonist, des-AA(1,4-6,11-13)-[pNO(2)-Phe(2),DCys(3),Tyr(7),DAph(Cbm)8]-SST-2Nal-NH(2) and not reproduced by intraperitoneal injection (30 microg/rat). The sst(2) antagonist alone i.c.v. significantly decreased the cumulative 14-hours dark phase FI by 29.5%. Other behaviors, namely grooming, drinking and locomotor activity were also increased by the sst(2) agonist (1 microg/rat, i.c.v.) as monitored during the 2(nd) hour post injection while gastric emptying of solid food was unaltered. Rectal temperature rose 1 hour after the sst(2) agonist (1 microg/rat, i.c.v.) with a maximal response maintained from 1 to 4 hours post injection. These data show that selective activation of the brain sst(2) receptor induces a feeding response in the light phase not associated with changes in gastric emptying. The food intake reduction following sst(2) receptor blockade suggests a role of this receptor in the orexigenic drive during the dark phase.

  8. Chronic ingestion of 2-deoxy-D-glucose induces cardiac vacuolization and increases mortality in rats

    International Nuclear Information System (INIS)

    Minor, Robin K.; Smith, Daniel L.; Sossong, Alex M.; Kaushik, Susmita; Poosala, Suresh; Spangler, Edward L.; Roth, George S.; Lane, Mark; Allison, David B.; Cabo, Rafael de; Ingram, Donald K.; Mattison, Julie A.

    2010-01-01

    Calorie restriction (CR), the purposeful reduction of energy intake with maintenance of adequate micronutrient intake, is well known to extend the lifespan of laboratory animals. Compounds like 2-deoxy-D-glucose (2DG) that can recapitulate the metabolic effects of CR are of great interest for their potential to extend lifespan. 2DG treatment has been shown to have potential therapeutic benefits for treating cancer and seizures. 2DG has also recapitulated some hallmarks of the CR phenotype including reduced body temperature and circulating insulin in short-term rodent trials, but one chronic feeding study in rats found toxic effects. The present studies were performed to further explore the long-term effects of 2DG in vivo. First we demonstrate that 2DG increases mortality of male Fischer-344 rats. Increased incidence of pheochromocytoma in the adrenal medulla was also noted in the 2DG treated rats. We reconfirm the cardiotoxicity of 2DG in a 6-week follow-up study evaluating male Brown Norway rats and a natural form of 2DG in addition to again examining effects in Fischer-344 rats and the original synthetic 2DG. High levels of both 2DG sources reduced weight gain secondary to reduced food intake in both strains. Histopathological analysis of the hearts revealed increasing vacuolarization of cardiac myocytes with dose, and tissue staining revealed the vacuoles were free of both glycogen and lipid. We did, however, observe higher expression of both cathepsin D and LC3 in the hearts of 2DG-treated rats which indicates an increase in autophagic flux. Although a remarkable CR-like phenotype can be reproduced with 2DG treatment, the ultimate toxicity of 2DG seriously challenges 2DG as a potential CR mimetic in mammals and also raises concerns about other therapeutic applications of the compound.

  9. Voluntary resistance running induces increased hippocampal neurogenesis in rats comparable to load-free running.

    Science.gov (United States)

    Lee, Min Chul; Inoue, Koshiro; Okamoto, Masahiro; Liu, Yu Fan; Matsui, Takashi; Yook, Jang Soo; Soya, Hideaki

    2013-03-14

    Recently, we reported that voluntary resistance wheel running with a resistance of 30% of body weight (RWR), which produces shorter distances but higher work levels, enhances spatial memory associated with hippocampal brain-derived neurotrophic factor (BDNF) signaling compared to wheel running without a load (WR) [17]. We thus hypothesized that RWR promotes adult hippocampal neurogenesis (AHN) as a neuronal substrate underlying this memory improvement. Here we used 10-week-old male Wistar rats divided randomly into sedentary (Sed), WR, and RWR groups. All rats were injected intraperitoneally with the thymidine analogue 5-Bromo-2'-deoxuridine (BrdU) for 3 consecutive days before wheel running. We found that even when the average running distance decreased by about half, the average work levels significantly increased in the RWR group, which caused muscular adaptation (oxidative capacity) for fast-twitch plantaris muscle without causing any negative stress effects. Additionally, immunohistochemistry revealed that the total BrdU-positive cells and newborn mature cells (BrdU/NeuN double-positive) in the dentate gyrus increased in both the WR and RWR groups. These results provide new evidence that RWR has beneficial effects on AHN comparable to WR, even with short running distances. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. GABA(A) receptor antagonism in the ventrocaudal periaqueductal gray increases anxiety in the anxiety-resistant postpartum rat.

    Science.gov (United States)

    Miller, Stephanie M; Piasecki, Christopher C; Peabody, Mitchell F; Lonstein, Joseph S

    2010-06-01

    Postpartum mammals show suppressed anxiety, which is necessary for their ability to appropriately care for offspring. It is parsimonious to suggest that the neurobiological basis of this reduced anxiety is similar to that of non-parturient animals, involving GABA(A) receptor activity in sites including the midbrain periaqueductal gray (PAG). In Experiment 1, postpartum and diestrous virgin female rats received an intraperitoneal injection of the GABA(A) receptor antagonist (+)-bicuculline (0, 2 and 4 mg/kg) and anxiety-related behavior was assessed with an elevated plus maze. The 4 mg/kg dose of (+)-bicuculline significantly increased anxiety-related behavior, particularly in the postpartum females. Experiment 2 revealed that bicuculline's action was within the central nervous system, because anxiety in neither dams nor virgins was significantly affected by intraperitoneal injection of bicuculline methiodide (0, 2 and 6 mg/kg), which does not readily cross the blood-brain-barrier. In Experiment 3, bicuculline methiodide (2.5 ng/side) was directly infused into the ventrocaudal PAG (cPAGv) and significantly increased dams' anxiety compared to saline-infused controls. These studies expand our knowledge of how GABA(A) receptor modulators affect anxiety behaviors in postpartum rats to the widely-used elevated plus maze, and indicate that the postpartum suppression of anxiety is in part a consequence of elevated GABAergic neurotransmission in the cPAGv. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Systemic blockade of dopamine D2-like receptors increases high-voltage spindles in the globus pallidus and motor cortex of freely moving rats.

    Directory of Open Access Journals (Sweden)

    Chen Yang

    Full Text Available High-voltage spindles (HVSs have been reported to appear spontaneously and widely in the cortical-basal ganglia networks of rats. Our previous study showed that dopamine depletion can significantly increase the power and coherence of HVSs in the globus pallidus (GP and motor cortex of freely moving rats. However, it is unclear whether dopamine regulates HVS activity by acting on dopamine D₁-like receptors or D₂-like receptors. We employed local-field potential and electrocorticogram methods to simultaneously record the oscillatory activities in the GP and primary motor cortex (M1 in freely moving rats following systemic administration of dopamine receptor antagonists or saline. The results showed that the dopamine D₂-like receptor antagonists, raclopride and haloperidol, significantly increased the number and duration of HVSs, and the relative power associated with HVS activity in the GP and M1 cortex. Coherence values for HVS activity between the GP and M1 cortex area were also significantly increased by dopamine D₂-like receptor antagonists. On the contrary, the selective dopamine D₁-like receptor antagonist, SCH23390, had no significant effect on the number, duration, or relative power of HVSs, or HVS-related coherence between M1 and GP. In conclusion, dopamine D₂-like receptors, but not D₁-like receptors, were involved in HVS regulation. This supports the important role of dopamine D₂-like receptors in the regulation of HVSs. An siRNA knock-down experiment on the striatum confirmed our conclusion.

  12. Systemic blockade of dopamine D2-like receptors increases high-voltage spindles in the globus pallidus and motor cortex of freely moving rats.

    Science.gov (United States)

    Yang, Chen; Ge, Shun-Nan; Zhang, Jia-Rui; Chen, Lei; Yan, Zhi-Qiang; Heng, Li-Jun; Zhao, Tian-Zhi; Li, Wei-Xin; Jia, Dong; Zhu, Jun-Ling; Gao, Guo-Dong

    2013-01-01

    High-voltage spindles (HVSs) have been reported to appear spontaneously and widely in the cortical-basal ganglia networks of rats. Our previous study showed that dopamine depletion can significantly increase the power and coherence of HVSs in the globus pallidus (GP) and motor cortex of freely moving rats. However, it is unclear whether dopamine regulates HVS activity by acting on dopamine D₁-like receptors or D₂-like receptors. We employed local-field potential and electrocorticogram methods to simultaneously record the oscillatory activities in the GP and primary motor cortex (M1) in freely moving rats following systemic administration of dopamine receptor antagonists or saline. The results showed that the dopamine D₂-like receptor antagonists, raclopride and haloperidol, significantly increased the number and duration of HVSs, and the relative power associated with HVS activity in the GP and M1 cortex. Coherence values for HVS activity between the GP and M1 cortex area were also significantly increased by dopamine D₂-like receptor antagonists. On the contrary, the selective dopamine D₁-like receptor antagonist, SCH23390, had no significant effect on the number, duration, or relative power of HVSs, or HVS-related coherence between M1 and GP. In conclusion, dopamine D₂-like receptors, but not D₁-like receptors, were involved in HVS regulation. This supports the important role of dopamine D₂-like receptors in the regulation of HVSs. An siRNA knock-down experiment on the striatum confirmed our conclusion.

  13. Parasympathetic denervation increases responses to VIP in isolated rat parotid acini

    International Nuclear Information System (INIS)

    McMillian, M.K.; Talamo, B.R.

    1989-01-01

    Vasoactive intestinal peptide (VIP) is a putative neurotransmitter found in the salivary glands of many species, including the rat parotid gland. Parasympathetic denervation has been reported to deplete VIP in the rat parotid gland and to lead to supersensitivity to this peptide in vivo. We have compared the effects of VIP on acini isolated from parasympathetically denervated and unoperated parotid glands to examine possible supersensitivity to the peptide in vitro. VIP normally produced responses similar to those obtained with a low concentration of the beta adrenergic agonist isoproterenol (ISO), but strikingly different from the effects obtained with the muscarinic agonist carbachol (CARB). In parotid membrane preparations, VIP stimulated adenylate cyclase activity. Dissociated acini treated with VIP showed increases in cAMP accumulation and amylase release which were potentiated by forskolin and also by inhibition of phosphodiesterase. After parasympathetic denervation, maximal effects of VIP on adenylate cyclase, cAMP accumulation and amylase release in intact cells were increased two- to five-fold over contralateral control (or unoperated) parotid responses. The increase in adenylate cyclase-mediated responses after denervation was specific to VIP; there was no increased response nor increased sensitivity of any of these responses to ISO. Specific [125I]VIP binding to parotid acini increased two-fold per gland and three-fold per mg of protein after denervation; this probably explains the observed increases in the response to VIP

  14. Rats exposed to 2.45GHz of non-ionizing radiation exhibit behavioral changes with increased brain expression of apoptotic caspase 3.

    Science.gov (United States)

    Varghese, Rini; Majumdar, Anuradha; Kumar, Girish; Shukla, Amit

    2018-03-01

    In recent years there has been a tremendous increase in use of Wi-Fi devices along with mobile phones, globally. Wi-Fi devices make use of 2.4GHz frequency. The present study evaluated the impact of 2.45GHz radiation exposure for 4h/day for 45days on behavioral and oxidative stress parameters in female Sprague Dawley rats. Behavioral tests of anxiety, learning and memory were started from day 38. Oxidative stress parameters were estimated in brain homogenates after sacrificing the rats on day 45. In morris water maze, elevated plus maze and light dark box test, the 2.45GHz radiation exposed rats elicited memory decline and anxiety behavior. Exposure decreased activities of super oxide dismutase, catalase and reduced glutathione levels whereas increased levels of brain lipid peroxidation was encountered in the radiation exposed rats, showing compromised anti-oxidant defense. Expression of caspase 3 gene in brain samples were quantified which unraveled notable increase in the apoptotic marker caspase 3 in 2.45GHz radiation exposed group as compared to sham exposed group. No significant changes were observed in histopathological examinations and brain levels of TNF-α. Analysis of dendritic arborization of neurons showcased reduction in number of dendritic branching and intersections which corresponds to alteration in dendritic structure of neurons, affecting neuronal signaling. The study clearly indicates that exposure of rats to microwave radiation of 2.45GHz leads to detrimental changes in brain leading to lowering of learning and memory and expression of anxiety behavior in rats along with fall in brain antioxidant enzyme systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Increased trabecular bone and improved biomechanics in an osteocalcin-null rat model created by CRISPR/Cas9 technology

    Directory of Open Access Journals (Sweden)

    Laura J. Lambert

    2016-10-01

    Full Text Available Osteocalcin, also known as bone γ-carboxyglutamate protein (Bglap, is expressed by osteoblasts and is commonly used as a clinical marker of bone turnover. A mouse model of osteocalcin deficiency has implicated osteocalcin as a mediator of changes to the skeleton, endocrine system, reproductive organs and central nervous system. However, differences between mouse and human osteocalcin at both the genome and protein levels have challenged the validity of extrapolating findings from the osteocalcin-deficient mouse model to human disease. The rat osteocalcin (Bglap gene locus shares greater synteny with that of humans. To further examine the role of osteocalcin in disease, we created a rat model with complete loss of osteocalcin using the CRISPR/Cas9 system. Rat osteocalcin was modified by injection of CRISPR/Cas9 mRNA into the pronuclei of fertilized single cell Sprague-Dawley embryos, and animals were bred to homozygosity and compound heterozygosity for the mutant alleles. Dual-energy X-ray absorptiometry (DXA, glucose tolerance testing (GTT, insulin tolerance testing (ITT, microcomputed tomography (µCT, and a three-point break biomechanical assay were performed on the excised femurs at 5 months of age. Complete loss of osteocalcin resulted in bones with significantly increased trabecular thickness, density and volume. Cortical bone volume and density were not increased in null animals. The bones had improved functional quality as evidenced by an increase in failure load during the biomechanical stress assay. Differences in glucose homeostasis were observed between groups, but there were no differences in body weight or composition. This rat model of complete loss of osteocalcin provides a platform for further understanding the role of osteocalcin in disease, and it is a novel model of increased bone formation with potential utility in osteoporosis and osteoarthritis research.

  16. Increased Oxidative Stress and Imbalance in Antioxidant Enzymes in the Brains of Alloxan-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Luciane B. Ceretta

    2012-01-01

    Full Text Available Diabetes Mellitus (DM is associated with pathological changes in the central nervous system (SNC as well as alterations in oxidative stress. Thus, the main objective of this study was to evaluate the effects of the animal model of diabetes induced by alloxan on memory and oxidative stress. Diabetes was induced in Wistar rats by using a single injection of alloxan (150 mg/kg, and fifteen days after induction, the rats memory was evaluated through the use of the object recognition task. The oxidative stress parameters and the activity of antioxidant enzymes, superoxide dismutase (SOD, and catalase (CAT were measured in the rat brain. The results showed that diabetic rats did not have alterations in their recognition memory. However, the results did show that diabetic rats had increases in the levels of superoxide in the prefrontal cortex, and in thiobarbituric acid reactive species (TBARS production in the prefrontal cortex and in the amygdala in submitochondrial particles. Also, there was an increase in protein oxidation in the hippocampus and striatum, and in TBARS oxidation in the striatum and amygdala. The SOD activity was decreased in diabetic rats in the striatum and amygdala. However, the CAT activity was increased in the hippocampus taken from diabetic rats. In conclusion, our findings illustrate that the animal model of diabetes induced by alloxan did not cause alterations in the animals’ recognition memory, but it produced oxidants and an imbalance between SOD and CAT activities, which could contribute to the pathophysiology of diabetes.

  17. Chronic ethanol exposure increases voluntary home cage intake in adult male, but not female, Long-Evans rats.

    Science.gov (United States)

    Morales, Melissa; McGinnis, Molly M; McCool, Brian A

    2015-12-01

    The current experiment examined the effects of 10 days of chronic intermittent ethanol (CIE) exposure on anxiety-like behavior and home cage ethanol intake using a 20% intermittent access (M, W, F) paradigm in male and female Long-Evans rats. Withdrawal from alcohol dependence contributes to relapse in humans and increases in anxiety-like behavior and voluntary ethanol consumption in preclinical models. Our laboratory has shown that 10 days of CIE exposure produces both behavioral and neurophysiological alterations associated with withdrawal in male rats; however, we have yet to examine the effects of this exposure regime on ethanol intake in females. During baseline, females consumed more ethanol than males but, unlike males, did not show escalations in intake. Rats were then exposed to CIE and were again given intermittent access to 20% ethanol. CIE males increased their intake compared to baseline, whereas air-exposed males did not. Ethanol intake in females was unaffected by CIE exposure. Notably, both sexes expressed significantly elevated withdrawal-associated anxiety-like behavior in the plus maze. Finally, rats were injected with the cannabinoid CB1 receptor antagonist, SR141716A (0, 1, 3, 10mg/kg, i.p.) which reduced ethanol intake in both sexes. However, females appear to be more sensitive to lower doses of this CB1 receptor antagonist. Our results show that females consume more ethanol than males; however, they did not escalate their intake using the intermittent access paradigm. Unlike males, CIE exposure had no effect on drinking in females. It is possible that females may be less sensitive than males to ethanol-induced increases in drinking after a short CIE exposure. Lastly, our results demonstrate that males and females may have different pharmacological sensitivities to CB1 receptor blockade on ethanol intake, at least under the current conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. The increased concentration of 2,3-diphosphoglycerate in red blood cells of spontaneously hypertensive rats.

    Science.gov (United States)

    Przybylski, J; Skotnicka-Fedorowicz, B; Lisiecka, A; Siński, M; Abramczyk, P

    1997-12-01

    It has been recognised that high haemoglobin oxygen capacity is essential for the development of high blood pressure in spontaneously hypertensive rats. In the present study we have found increased concentration of 2,3 diphosphoglycerate (2,3-DPG) in red blood cells of spontaneously hypertensive rats (SHR) of Okamoto-Aoki strain. As 2,3-DPG is the major factor decreasing haemoglobin affinity to oxygen, our finding suggests that at given value of pO2 oxygen delivery to the tissue of SHR would be increased. Therefore increased concentration of 2,3-DPG in red blood cells of SHR would be of the pathophysiological meaning by promoting autoregulatory increase in total vascular resistance in this strain of rats. The mechanism responsible for enhanced synthesis of 2,3-DPG in SHR remains unclear. Intracellular alkalosis due to either hypocapnia and/or an enhanced activity of Na+/H+ antiporter occurring in SHR are the most plausible explanations for the above finding.

  19. Acute administration of fenproporex increased acetylcholinesterase activity in brain of young rats.

    Science.gov (United States)

    Teodorak, Brena P; Ferreira, Gabriela K; Scaini, Giselli; Wessler, Letícia B; Heylmann, Alexandra S; Deroza, Pedro; Valvassori, Samira S; Zugno, Alexandra I; Quevedo, João; Streck, Emilio L

    2015-08-01

    Fenproporex is the second most commonly amphetamine-based anorectic consumed worldwide; this drug is rapidly converted into amphetamine, in vivo, and acts by increasing dopamine levels in the synaptic cleft. Considering that fenproporex effects on the central nervous system are still poorly known and that acetylcholinesterase is a regulatory enzyme which is involved in cholinergic synapses and may indirectly modulate the release of dopamine, the present study investigated the effects of acute administration of fenproporex on acetylcholinesterase activity in brain of young rats. Young male Wistar rats received a single injection of fenproporex (6.25, 12.5 or 25mg/kg i.p.) or vehicle (2% Tween 80). Two hours after the injection, the rats were killed by decapitation and the brain was removed for evaluation of acetylcholinesterase activity. Results showed that fenproporex administration increased acetylcholinesterase activity in the hippocampus and posterior cortex, whereas in the prefrontal cortex, striatum and cerebellum the enzyme activity was not altered. In conclusion, in the present study we demonstrated that acute administration of fenproporex exerts an effect in the cholinergic system causing an increase in the activity of acetylcholinesterase in a dose-dependent manner in the hippocampus and posterior cortex. Thus, we suggest that the imbalance in cholinergic homeostasis could be considered as an important pathophysiological mechanism underlying the brain damage observed in patients who use amphetamines such as fenproporex.

  20. Acute administration of fenproporex increased acetylcholinesterase activity in brain of young rats

    Directory of Open Access Journals (Sweden)

    BRENA P. TEODORAK

    2015-08-01

    Full Text Available Fenproporex is the second most commonly amphetamine-based anorectic consumed worldwide; this drug is rapidly converted into amphetamine, in vivo, and acts by increasing dopamine levels in the synaptic cleft. Considering that fenproporex effects on the central nervous system are still poorly known and that acetylcholinesterase is a regulatory enzyme which is involved in cholinergic synapses and may indirectly modulate the release of dopamine, the present study investigated the effects of acute administration of fenproporex on acetylcholinesterase activity in brain of young rats. Young male Wistar rats received a single injection of fenproporex (6.25, 12.5 or 25mg/kg i.p. or vehicle (2% Tween 80. Two hours after the injection, the rats were killed by decapitation and the brain was removed for evaluation of acetylcholinesterase activity. Results showed that fenproporex administration increased acetylcholinesterase activity in the hippocampus and posterior cortex, whereas in the prefrontal cortex, striatum and cerebellum the enzyme activity was not altered. In conclusion, in the present study we demonstrated that acute administration of fenproporex exerts an effect in the cholinergic system causing an increase in the activity of acetylcholinesterase in a dose-dependent manner in the hippocampus and posterior cortex. Thus, we suggest that the imbalance in cholinergic homeostasis could be considered as an important pathophysiological mechanism underlying the brain damage observed in patients who use amphetamines such as fenproporex.

  1. Acute renal failure in rats

    International Nuclear Information System (INIS)

    Cederholm, C.; Almen, T.; Bergquist, D.; Golman, K.; Takolander, R.; Malmoe Allmaenna Sjukhus

    1989-01-01

    It was demonstrated in rats that renal injury which follows transient renal hypoxia is potentiated by the contrast media metrizoate, ioxaglate, iopamidol and iohexol. Intravenous injection of 1 g I/kg of all four media alone to 82 rats caused no significant increase in serum urea 1, 3 and 7 days later. The percentage increase of serum urea is given in median values and interquartile range (in parentheses). Bilateral renal arterial occlusion alone for 40 minutes in 42 rats increased serum urea one day later by 40% (20-130). Intravenous injection of the media followed in one hour by bilateral renal arterial occlusion for 40 minutes in 104 rats caused serum urea to increase one day later by 130% (70-350) after metrizoate, by 220% (50-380) after ioxaglate, by 290 % (60-420) after iopamidol and by 160% (50-330) after iohexol. There were no significant differences between the potentiating effects of the various media on ischemic renal failure. (orig.)

  2. Isoenergetic feeding of low carbohydrate-high fat diets does not increase brown adipose tissue thermogenic capacity in rats.

    Science.gov (United States)

    Betz, Matthias J; Bielohuby, Maximilian; Mauracher, Brigitte; Abplanalp, William; Müller, Hans-Helge; Pieper, Korbinian; Ramisch, Juliane; Tschöp, Matthias H; Beuschlein, Felix; Bidlingmaier, Martin; Slawik, Marc

    2012-01-01

    Low-carbohydrate, high-fat (LC-HF) diets are popular for inducing weight loss in overweighed adults. Adaptive thermogenesis increased by specific effects of macronutrients on energy expenditure has been postulated to induce this weight loss. We studied brown adipose tissue (BAT) morphology and function following exposure to different LC-HF diets. Male Wistar rats were fed a standard control diet ad libitum or pair-fed isoenergetic amounts of three experimental diets for 4 weeks. The diets had the following macronutrient composition (% metabolizable energy: carbohydrates, fat, protein): control (64.3/16.7/19), LC-HF-low protein (LC-HF-LP, 1.7/92.8/5.5), LC-HF-normal-protein (LC-HF-NP, 2.2/78.7/19.1), and a high fat diet with carbohydrates ("high fat", 19.4/61.9/18.7). Body weight gain was reduced in all pair-fed experimental groups as compared to rats fed the control diet, with more pronounced effect in rats on LC-HF diets than on the high fat diet with carbohydrates. High fat diets increased expression of PGC1α and ADRB3 in BAT indicating higher SNS outflow. However, UCP1 mRNA expression and expression of UCP1 assessed by immunohistochemistry was not different between diet groups. In accordance, analysis of mitochondrial function in-vitro by extracellular flux analyser (Seahorse Bioscience) and measurement of inducible thermogenesis in vivo (primary endpoint), explored by indirect calorimetry following norepinephrine injection, did not show significant differences between groups. Histology of BAT revealed increased lipid droplet size in rats fed the high-fat diet and both LC-HF diets. All experimental diets upregulated expression of genes which are indicative for increased BAT activity. However, the functional measurements in vivo revealed no increase of inducible BAT thermogenesis. This indicates that lower body weight gain with LC-HF diets and a high fat diet in a pair-feeding setting is not caused by increased adaptive thermogenesis in BAT.

  3. Isoenergetic feeding of low carbohydrate-high fat diets does not increase brown adipose tissue thermogenic capacity in rats.

    Directory of Open Access Journals (Sweden)

    Matthias J Betz

    Full Text Available UNLABELLED: Low-carbohydrate, high-fat (LC-HF diets are popular for inducing weight loss in overweighed adults. Adaptive thermogenesis increased by specific effects of macronutrients on energy expenditure has been postulated to induce this weight loss. We studied brown adipose tissue (BAT morphology and function following exposure to different LC-HF diets. METHODS: Male Wistar rats were fed a standard control diet ad libitum or pair-fed isoenergetic amounts of three experimental diets for 4 weeks. The diets had the following macronutrient composition (% metabolizable energy: carbohydrates, fat, protein: control (64.3/16.7/19, LC-HF-low protein (LC-HF-LP, 1.7/92.8/5.5, LC-HF-normal-protein (LC-HF-NP, 2.2/78.7/19.1, and a high fat diet with carbohydrates ("high fat", 19.4/61.9/18.7. RESULTS: Body weight gain was reduced in all pair-fed experimental groups as compared to rats fed the control diet, with more pronounced effect in rats on LC-HF diets than on the high fat diet with carbohydrates. High fat diets increased expression of PGC1α and ADRB3 in BAT indicating higher SNS outflow. However, UCP1 mRNA expression and expression of UCP1 assessed by immunohistochemistry was not different between diet groups. In accordance, analysis of mitochondrial function in-vitro by extracellular flux analyser (Seahorse Bioscience and measurement of inducible thermogenesis in vivo (primary endpoint, explored by indirect calorimetry following norepinephrine injection, did not show significant differences between groups. Histology of BAT revealed increased lipid droplet size in rats fed the high-fat diet and both LC-HF diets. CONCLUSION: All experimental diets upregulated expression of genes which are indicative for increased BAT activity. However, the functional measurements in vivo revealed no increase of inducible BAT thermogenesis. This indicates that lower body weight gain with LC-HF diets and a high fat diet in a pair-feeding setting is not caused by

  4. Repeated mild traumatic brain injury in female rats increases lipid peroxidation in neurons.

    Science.gov (United States)

    Yates, Nathanael J; Lydiard, Stephen; Fehily, Brooke; Weir, Gillian; Chin, Aaron; Bartlett, Carole A; Alderson, Jacqueline; Fitzgerald, Melinda

    2017-07-01

    Negative outcomes of mild traumatic brain injury (mTBI) can be exacerbated by repeated insult. Animal models of repeated closed-head mTBI provide the opportunity to define acute pathological mechanisms as the number of mTBI increases. Furthermore, little is known about the effects of mTBI impact site, and how this may affect brain function. We use a closed head, weight drop model of mTBI that allows head movement following impact, in adult female rats to determine the role of the number and location of mTBI on brain pathology and behaviour. Biomechanical assessment of two anatomically well-defined mTBI impact sites were used, anterior (bregma) and posterior (lambda). Location of the impact had no significant effect on impact forces (450 N), and the weight impact locations were on average 5.4 mm from the desired impact site. No between location vertical linear head kinematic differences were observed immediately following impact, however, in the 300 ms post-impact, significantly higher mean vertical head displacement and velocity were observed in the mTBI lambda trials. Breaches of the blood brain barrier were observed with three mTBI over bregma, associated with immunohistochemical indicators of damage. However, an increased incidence of hairline fractures of the skull and macroscopic haemorrhaging made bregma an unsuitable impact location to model repeated mTBI. Repeated mTBI over lambda did not cause skull fractures and were examined more comprehensively, with outcomes following one, two or three mTBI or sham, delivered at 1 day intervals, assessed on days 1-4. We observe a mild behavioural phenotype, with subtle deficits in cognitive function, associated with no identifiable neuroanatomical or inflammatory changes. However, an increase in lipid peroxidation in a subset of cortical neurons following two mTBI indicates increasing oxidative damage with repeated injury in female rats, supported by increased amyloid precursor protein immunoreactivity with three m

  5. Alcohol drinking during adolescence increases consumptive responses to alcohol in adulthood in Wistar rats

    Science.gov (United States)

    Amodeo, Leslie R.; Kneiber, Diana; Wills, Derek N.; Ehlers, Cindy L.

    2017-01-01

    Binge drinking and the onset of alcohol use disorders usually peak during the transition between late adolescence and early adulthood, and early adolescent onset of alcohol consumption has been demonstrated to increase the risk for alcohol dependence in adulthood. In the present study we describe an animal model of early adolescent alcohol consumption where animals drink unsweetened and unflavored ethanol in high concentrations (20%). Using this model we investigated the influence of drinking on alcohol-related appetitive behavior and alcohol consumption levels in early adulthood. Further, we also sought to investigate whether differences in alcohol-related drinking behaviors were specific to exposure in adolescence versus exposure in adulthood. Male Wistar rats were given a 2-bottle choice between 20% ethanol and water in one group and between two water bottles in another group during their adolescence (Postnatal Day (PD) PD26-59) to model voluntary drinking in adolescent humans. As young adults (PD85), rats were trained in a paradigm that provided free access to 20% alcohol for 25 min after completing up to a fixed ratio (FR) 16-lever press response. A set of young adult male Wistar rats was exposed to the same paradigm using the same time course beginning at PD92. The results indicate that adolescent exposure to alcohol increased consumption of alcohol in adulthood. Furthermore, when investigating differences between adolescent high and low adolescent drinkers in adulthood, high consumers continued to drink more alcohol, had fewer FR failures, and had faster completion of FR schedules in adulthood whereas the low consumers were no different than controls. Rats exposed to ethanol in young adulthood also increased future intake but there were no differences in any other components of drinking behavior. Both adolescent- and adult-exposed rats did not exhibit an increase in lever pressing during the appetitive challenge session. These data indicate that adolescent

  6. High Autophagy in the Naked Mole Rat may Play a Significant Role in Maintaining Good Health

    Directory of Open Access Journals (Sweden)

    Shanmin Zhao

    2014-02-01

    Full Text Available Background/Aims: The maximum lifespan of the naked mole rat is over 28.3 years, which exceeds that of any other rodent species, suggesting that age-related changes in its body composition and functionality are either attenuated or delayed in this extraordinarily long-lived species. However, the mechanisms underlying the aging process in this species are poorly understood. In this study, we investigated whether long-lived naked mole rats display more autophagic activity than short-lived mice. Methods: Hepatic stellate cells isolated from naked mole rats were treated with 50 nM rapamycin or 20 mM 3-methyladenine (3-MA for 12 or 24 h. Expression of the autophagy marker proteins LC3-II and beclin 1 was measured with western blotting and immunohistochemistry. The induction of apoptosis was analyzed by flow cytometry. Results: Our results demonstrate that one-day-old naked mole rats have higher levels of autophagy than one-day-old short-lived C57BL/6 mice, and that both adult naked mole rats (eight months old and adult C57BL/6 mice (eight weeks old have high basal levels of autophagy, which may be an important mechanism inhibiting aging and reducing the risk of age-related diseases. Conclusion: Here, we report that autophagy facilitated the survival of hepatic stellate cells from the naked mole rat, and that treatment with 3-MA or rapamycin increased the ratio of apoptotic cells to normal hepatic stellate cells.

  7. Presynaptic Glycine Receptors Increase GABAergic Neurotransmission in Rat Periaqueductal Gray Neurons

    Directory of Open Access Journals (Sweden)

    Kwi-Hyung Choi

    2013-01-01

    Full Text Available The periaqueductal gray (PAG is involved in the central regulation of nociceptive transmission by affecting the descending inhibitory pathway. In the present study, we have addressed the functional role of presynaptic glycine receptors in spontaneous glutamatergic transmission. Spontaneous EPSCs (sEPSCs were recorded in mechanically dissociated rat PAG neurons using a conventional whole-cell patch recording technique under voltage-clamp conditions. The application of glycine (100 µM significantly increased the frequency of sEPSCs, without affecting the amplitude of sEPSCs. The glycine-induced increase in sEPSC frequency was blocked by 1 µM strychnine, a specific glycine receptor antagonist. The results suggest that glycine acts on presynaptic glycine receptors to increase the probability of glutamate release from excitatory nerve terminals. The glycine-induced increase in sEPSC frequency completely disappeared either in the presence of tetrodotoxin or Cd2+, voltage-gated Na+, or Ca2+ channel blockers, suggesting that the activation of presynaptic glycine receptors might depolarize excitatory nerve terminals. The present results suggest that presynaptic glycine receptors can regulate the excitability of PAG neurons by enhancing glutamatergic transmission and therefore play an important role in the regulation of various physiological functions mediated by the PAG.

  8. Monosodium iodoacetate-induced joint pain is associated with increased phosphorylation of mitogen activated protein kinases in the rat spinal cord

    Directory of Open Access Journals (Sweden)

    Jarvis Michael F

    2011-05-01

    Full Text Available Abstract Background Intra-articular injection of monosodium iodoacetate (MIA in the knee joint of rats disrupts chondrocyte metabolism resulting in cartilage degeneration and subsequent nociceptive behavior that has been described as a model of osteoarthritis (OA pain. Central sensitization through activation of mitogen activated protein kinases (MAPKs is recognized as a pathogenic mechanism in chronic pain. In the present studies, induction of central sensitization as indicated by spinal dorsal horn MAPK activation, specifically ERK and p38 phosphorylation, was assessed in the MIA-OA model. Results Behaviorally, MIA-injected rats displayed reduced hind limb grip force 1, 2, and 3 weeks post-MIA treatment. In the same animals, activation of phospho ERK1/2 was gradually increased, reaching a significant level at post injection week 3. Conversely, phosphorylation of p38 MAPK was enhanced maximally at post injection week 1 and decreased, but remained elevated, thereafter. Double labeling from 3-wk MIA rats demonstrated spinal pERK1/2 expression in neurons, but not glia. In contrast, p-p38 was expressed by microglia and a subpopulation of neurons, but not astrocytes. Additionally, there was increased ipsilateral expression of microglia, but not astrocytes, in 3-wk MIA-OA rats. Consistent with increased MAPK immunoreactivity in the contralateral dorsal horn, mechanical allodynia to the contralateral hind-limb was observed 3-wk following MIA. Finally, intrathecal injection of the MEK1 inhibitor PD98059 blocked both reduced hind-limb grip force and pERK1/2 induction in MIA-OA rats. Conclusion Results of these studies support the role of MAPK activation in the progression and maintenance of central sensitization in the MIA-OA experimental pain model.

  9. Altered feeding patterns in rats exposed to a palatable cafeteria diet: increased snacking and its implications for development of obesity.

    Directory of Open Access Journals (Sweden)

    Sarah I Martire

    Full Text Available BACKGROUND: Rats prefer energy-rich foods over chow and eat them to excess. The pattern of eating elicited by this diet is unknown. We used the behavioral satiety sequence to classify an eating bout as a meal or snack and compared the eating patterns of rats fed an energy rich cafeteria diet or chow. METHODS: Eight week old male Sprague Dawley rats were exposed to lab chow or an energy-rich cafeteria diet (plus chow for 16 weeks. After 5, 10 and 15 weeks, home-cage overnight feeding behavior was recorded. Eating followed by grooming then resting or sleeping was classified as a meal; whereas eating not followed by the full sequence was classified as a snack. Numbers of meals and snacks, their duration, and waiting times between feeding bouts were compared between the two conditions. RESULTS: Cafeteria-fed rats ate more protein, fat and carbohydrate, consistently ingesting double the energy of chow-fed rats, and were significantly heavier by week 4. Cafeteria-fed rats tended to take multiple snacks between meals and ate fewer meals than chow-fed rats. They also ate more snacks at 5 weeks, were less effective at compensating for snacking by reducing meals, and the number of snacks in the majority of the cafeteria-fed rats was positively related to terminal body weights. CONCLUSIONS: Exposure to a palatable diet had long-term effects on feeding patterns. Rats became overweight because they initially ate more frequently and ultimately ate more of foods with higher energy density. The early increased snacking in young cafeteria-fed rats may represent the establishment of eating habits that promote weight gain.

  10. Lamotrigine increases the number of BrdU-labeled cellsinthe rat hippocampus

    DEFF Research Database (Denmark)

    Kondziella, Daniel; Strandberg, Joakim; Lindquist, Catarina

    2010-01-01

    Antidepressant medication and electroconvulsive therapy stabilize mood symptoms and increase hippocampal neurogenesis. We examined whether lamotrigine, suggested to give rise to mood-stabilizing and antidepressant effects in addition to its antiepileptic properties, also increases the number of n...... in the granule cell layer of the dentate gyrus showed an increased number of newborn cells in rats receiving lamotrigine (42.6±3.5 cells/slice) compared with valproate (31.6±2.8) and controls (32.2±3.1; P...

  11. Diabetes increases the susceptibility to acute kidney injury after myocardial infarction through augmented activation of renal Toll-like receptors in rats.

    Science.gov (United States)

    Ohno, Kouhei; Kuno, Atsushi; Murase, Hiromichi; Muratsubaki, Shingo; Miki, Takayuki; Tanno, Masaya; Yano, Toshiyuki; Ishikawa, Satoko; Yamashita, Tomohisa; Miura, Tetsuji

    2017-12-01

    Acute kidney injury (AKI) after acute myocardial infarction (MI) worsens the prognosis of MI patients. Although type 2 diabetes mellitus (DM) is a major risk factor of AKI after MI, the underlying mechanism remains unclear. Here, we examined the roles of renal Toll-like receptors (TLRs) in the impact of DM on AKI after MI. MI was induced by coronary artery ligation in Otsuka-Long-Evans-Tokushima fatty (OLETF) rats, a rat DM model, and Long-Evans-Tokushima-Otsuka (LETO) rats, nondiabetic controls. Sham-operated rats served as no-MI controls. Renal mRNA levels of TLR2 and myeloid differentiation factor 88 (MyD88) were significantly higher in sham-operated OLETF rats than in sham-operated LETO rats, although levels of TLR1, TLR3, and TLR4 were similar. At 12 h after MI, protein levels of kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) in the kidney were elevated by 5.3- and 4.0-fold, respectively, and their mRNA levels were increased in OLETF but not LETO rats. The increased KIM-1 and NGAL expression levels after MI in the OLETF kidney were associated with upregulated expression of TLR1, TLR2, TLR4, MyD88, IL-6, TNF-α, chemokine (C-C motif) ligand 2, and transforming growth factor-β 1 and also with activation of p38 MAPK, JNK, and NF-κB. Cu-CPT22, a TLR1/TLR2 antagonist, administered before MI significantly suppressed MI-induced upregulation of KIM-1, TLR2, TLR4, MyD88, and chemokine (C-C motif) ligand 2 levels and activation of NF-κB, whereas NGAL levels and IL-6 and TNF-α expression levels were unchanged. The results suggest that DM increases the susceptibility to AKI after acute MI by augmented activation of renal TLRs and that TLR1/TLR2-mediated signaling mediates KIM-1 upregulation after MI. NEW & NOTEWORTHY This is the first report to demonstrate the involvement of Toll-like recpetors (TLRs) in diabetes-induced susceptibility to acute kidney injury after acute myocardial infarction. We propose that the TLR1/TLR2

  12. Increased binding of LDL and VLDL to apo B,E receptors of hepatic plasma membrane of rats treated with Fibernat.

    Science.gov (United States)

    Venkatesan, Nandini; Devaraj, S Niranjali; Devaraj, H

    2003-10-01

    Research has focussed on the hypocholesterolemic effects of certain types of dietary fiber such as enhancing conversion of hepatic cholesterol to bile acids or increase in catabolism of low density lipoprotein (LDL) via the apo B,E receptor. The effect of oral administration of a unique fibre cocktail of fenugreek seed powder, guar gum and wheat bran (Fibernat) and its varied effects on some aspects of lipid metabolism and cholesterol homeostasis in rats were examined. Rats were administered Fibernat along with the atherogenic diet containing 1.5 % cholesterol and 0.1 % cholic acid. Amounts of hepatic lipids, hepatic and fecal bile acids and activity of hepatic triglyceride lipase (HTGL) were determined. Transmission electron microscopic examination of the liver tissue and extent of uptake of (125)I-LDL and (125)I-VLDL by the hepatic apo B,E receptor was carried out. Food intake and body weight gain were similar between the 3 different dietary groups. Fibernat intake significantly increased apo B,E receptor expression in rat liver as reflected by an increase in the maximum binding capacity (B(max)) of the apo B,E receptor to (125)I-LDL and (125)I-VLDL. The activity of HTGL was increased by approximately 1.5-fold in Fibernat-fed rats as compared to those fed the atherogenic diet alone. A marked hypocholesterolemic effect was observed. Cholesterol homeostasis was achieved in Fibernat-fed rats. Two possible mechanisms are postulated to be responsible for the observed hypocholesterolemic effect a) an increase in conversion of cholesterol to bile acids and b) possibly by intra-luminal binding which resulted in increased fecal excretion of bile acids and neutral sterols. The resulting reduction in cholesterol content of liver cells coupled with upregulation of hepatic apo B,E receptors and increased clearance of circulating atherogenic lipoproteins-LDL and very low density lipoprotein (LDL and VLDL)-is the main mechanism involved in the hypocholesterolemic effect of

  13. Resveratrol Increases Nephrin and Podocin Expression and Alleviates Renal Damage in Rats Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Qing-Rong Pan

    2014-07-01

    Full Text Available Resveratrol is well known for its anti-inflammation and anti-oxidant properties, and has been shown to be effective in alleviating the development of obesity. The purpose of this investigation was to analyze the effect of resveratrol on renal damage in obese rats induced by a high-fat diet (HFD and its possible mechanisms. Male Sprague-Dawley rats were divided into three groups: control, HFD, and HFD plus resveratrol (treated with 100 mg/kg/day resveratrol. Body weight, serum and urine metabolic parameters, and kidney histology were measured. Meanwhile, the activities of nuclear factor-κB (NF-κB and superoxide dismutase (SOD, the content of malondialdehyde (MDA, and the protein levels of tumor necrosis factor (TNF-α, monocyte chemotactic protein-1 (MCP-1, nephrin and podocin in kidney were detected. Our work showed that resveratrol alleviated dyslipidemia and renal damage induced by HFD, decreased MDA level and increased SOD activity. Furthermore, the elevated NF-κB activity, increased TNF-α and MCP-1 levels, and reduced expressions of nephrin and podocin induced by HFD were significantly reversed by resveratrol. These results suggest resveratrol could ameliorate renal injury in rats fed a HFD, and the mechanisms are associated with suppressing oxidative stress and NF-κB signaling pathway that in turn up-regulate nephrin and podocin protein expression.

  14. Increased cerebral (R-[11C]PK11195 uptake and glutamate release in a rat model of traumatic brain injury: a longitudinal pilot study

    Directory of Open Access Journals (Sweden)

    Lammertsma Adriaan A

    2011-06-01

    Full Text Available Abstract Background The aim of the present study was to investigate microglia activation over time following traumatic brain injury (TBI and to relate these findings to glutamate release. Procedures Sequential dynamic (R-[11C]PK11195 PET scans were performed in rats 24 hours before (baseline, and one and ten days after TBI using controlled cortical impact, or a sham procedure. Extracellular fluid (ECF glutamate concentrations were measured using cerebral microdialysis. Brains were processed for histopathology and (immuno-histochemistry. Results Ten days after TBI, (R-[11C]PK11195 binding was significantly increased in TBI rats compared with both baseline values and sham controls (p -1 as compared with the sham procedure (6.4 ± 3.6 μmol·L-1. Significant differences were found between TBI and sham for ED-1, OX-6, GFAP, Perl's, and Fluoro-Jade B. Conclusions Increased cerebral uptake of (R-[11C]PK11195 ten days after TBI points to prolonged and ongoing activation of microglia. This activation followed a significant acute posttraumatic increase in ECF glutamate levels.

  15. Significant prolongation of hamster liver transplant survival in Lewis rats by total-lymphoid irradiation, cyclosporine, and splenectomy

    International Nuclear Information System (INIS)

    Yamaguchi, Y.; Halperin, E.C.; Harland, R.C.; Wyble, C.; Bollinger, R.R.

    1990-01-01

    The effects of total lymphoid irradiation, cyclosporine and splenectomy alone and in combination have been studied in liver transplants from the LVG hamster to the LEW rat. Neither CsA alone, splenectomy alone, nor TLI alone prolonged graft survival. CsA/splenectomy and TLI/CsA produced significant prolongation of graft survival. TLI/CsA/splenectomy prolonged graft survival by over sixfold compared with controls. While CsA alone was ineffective in reducing lymphocytotoxic antidonor antibody, splenectomy alone or CsA/splenectomy did significantly suppress production of antibody. Only very low levels of antibody could be detected in animals treated with TLI/CsA/splenectomy. TLI/CsA/splenectomy has an immunosuppressive effect sufficient to significantly prolong liver graft survival in the LVG hamster to LEW rat combination and may represent a promising treatment protocol in experimental cross-species transplantation

  16. Adolescent exposure to Bisphenol-A increases anxiety and sucrose preference but impairs spatial memory in rats independent of sex.

    Science.gov (United States)

    Diaz Weinstein, Samantha; Villafane, Joseph J; Juliano, Nicole; Bowman, Rachel E

    2013-09-05

    The endocrine disruptor Bisphenol-A (BPA) has been shown to modulate estrogenic, androgenic, and anti-androgenic effects. The effects of BPA exposure during early organizational periods of development have been well documented. The current study focuses on the effects of short term, low-dose BPA exposure on anxiety, spatial memory and sucrose preference in adolescent rats. Seven week old Sprague Dawley rats (n=18 male, n=18 female) received daily subcutaneous injections (40 µg/kg body weight) of BPA or vehicle for 12 days. Starting on day 6 of injections, subjects were tested on the elevated plus maze which provides a measure of anxiety, the open field test which provides a measure of anxiety and locomotor activity, and object placement, a measure of spatial memory. On the twelfth day of BPA administration, sucrose preference was tested using a standard two-bottle choice (tap versus sucrose solution). All rats gained weight during the study; there was a main effect of sex, but not BPA treatment on body weight. The results indicate that BPA exposure, regardless of sex, increased anxiety on both the elevated plus maze and open field. Spatial memory was impaired on the object recognition task with BPA animals spending significant less time with the object in the novel location than controls. Finally, a significant increase in sucrose consumption for both male and female subjects exposed to BPA was observed. The current data shows that short term BPA exposure, below the current reference safe daily limit of 50 µg/kg day set by the United States Environmental Protection Agency, during adolescent development increases anxiety, impairs spatial memory, and increases sucrose consumption independent of sex. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. THE CONSUMPTION OF RED PUPUNHA (BACTRIS GASIPAES KUNTH) INCREASES HDL CHOLESTEROL AND REDUCES WEIGHT GAIN OF LACTATING AND POST-LACTATING WISTAR RATS.

    Science.gov (United States)

    Carvalho, R Piccolotto; Lemos, J R Gonzaga; de Aquino Sales, R Souza; Martins, M Gassen; Nascimento, C H; Bayona, M; Marcon, J L; Monteiro, J Barros

    2013-09-01

    The lactating and post-lactating periods are marked by large metabolic change. Production of milk is 60% lipid dependent. We reported in a recent scientific meeting that Red pupunha palm tree fruit increases HDL cholesterol in lactating rats. This study evaluated if consumption of Red Pupunha by adult female rats has a beneficial impact on the lipid metabolism of lacting and post-lacting adult rats. Evaluate if consumption of red pupunha has a beneficial effect in the lipid metabolism of lacting and post-lacting adult Wistar rats. Four groups including two for control; (1) control adult lactating rats, (2) control adults post-lactating rats; and two experimental groups; (3) pupunha adults lactating rats and (4) pupunha adult post-lactating rats were evaluated and compared regarding: weight gain, food consumption, plasma total protein, glucose, total lipid, triglycerides, total cholesterol and HDL-cholesterol levels. The mean difference and its 95% confidence intervals were used for group comparisons. Group comparisons were evaluated by using analysis of variance (one-way ANOVA). The statistical significance of the pairwise differences among groups was assessed by using the two-sided Tukey test. There were no important differences in food consumption, plasma glucose, total lipids and triglycerides among groups. The red pupunha lactating group gain less weight showing lower body mass index (BMI) than controls (p < 0.05). Total cholesterol was lower in red pupunha lactating than in controls but not in the red pupunha post-lactating group as compared to controls. Triglycerides were lower in the post-lactating red pupunha group as compared to the control group (p = 0.039) but not for the lactating groups. Red pupunha lactating and post-lactating groups had higher HDL-cholesterol than their corresponding control groups (p ≤ 0.01). Original findings include the beneficial effect of red pupunha in post-lactating rats increasing the HDL-cholesterol and lowering the BMI

  18. Shikonin increases glucose uptake in skeletal muscle cells and improves plasma glucose levels in diabetic Goto-Kakizaki rats.

    Directory of Open Access Journals (Sweden)

    Anette I Öberg

    Full Text Available BACKGROUND: There is considerable interest in identifying compounds that can improve glucose homeostasis. Skeletal muscle, due to its large mass, is the principal organ for glucose disposal in the body and we have investigated here if shikonin, a naphthoquinone derived from the Chinese plant Lithospermum erythrorhizon, increases glucose uptake in skeletal muscle cells. METHODOLOGY/PRINCIPAL FINDINGS: Shikonin increases glucose uptake in L6 skeletal muscle myotubes, but does not phosphorylate Akt, indicating that in skeletal muscle cells its effect is medaited via a pathway distinct from that used for insulin-stimulated uptake. Furthermore we find no evidence for the involvement of AMP-activated protein kinase in shikonin induced glucose uptake. Shikonin increases the intracellular levels of calcium in these cells and this increase is necessary for shikonin-mediated glucose uptake. Furthermore, we found that shikonin stimulated the translocation of GLUT4 from intracellular vesicles to the cell surface in L6 myoblasts. The beneficial effect of shikonin on glucose uptake was investigated in vivo by measuring plasma glucose levels and insulin sensitivity in spontaneously diabetic Goto-Kakizaki rats. Treatment with shikonin (10 mg/kg intraperitoneally once daily for 4 days significantly decreased plasma glucose levels. In an insulin sensitivity test (s.c. injection of 0.5 U/kg insulin, plasma glucose levels were significantly lower in the shikonin-treated rats. In conclusion, shikonin increases glucose uptake in muscle cells via an insulin-independent pathway dependent on calcium. CONCLUSIONS/SIGNIFICANCE: Shikonin increases glucose uptake in skeletal muscle cells via an insulin-independent pathway dependent on calcium. The beneficial effects of shikonin on glucose metabolism, both in vitro and in vivo, show that the compound possesses properties that make it of considerable interest for developing novel treatment of type 2 diabetes.

  19. Onset of decreased heart work is correlated with increased heart rate and shortened QT interval in high-carbohydrate fed overweight rats.

    Science.gov (United States)

    Durak, Aysegul; Olgar, Yusuf; Tuncay, Erkan; Karaomerlioglu, Irem; Kayki Mutlu, Gizem; Arioglu Inan, Ebru; Altan, Vecdi Melih; Turan, Belma

    2017-11-01

    Mechanical activity of the heart is adversely affected in metabolic syndrome (MetS) characterized by increased body mass and marked insulin resistance. Herein, we examined the effects of high carbohydrate intake on cardiac function abnormalities by evaluating in situ heart work, heart rate, and electrocardiograms (ECGs) in rats. MetS was induced in male Wistar rats by adding 32% sucrose to drinking water for 22-24 weeks and was confirmed by insulin resistance, increased body weight, increased blood glucose and serum insulin, and increased systolic and diastolic blood pressures in addition to significant loss of left ventricular integrity and increased connective tissue around myofibrils. Analysis of in situ ECG recordings showed a markedly shortened QT interval and decreased QRS amplitude with increased heart rate. We also observed increased oxidative stress and decreased antioxidant defense characterized by decreases in serum total thiol level and attenuated paraoxonase and arylesterase activities. Our data indicate that increased heart rate and a shortened QT interval concomitant with higher left ventricular developed pressure in response to β-adrenoreceptor stimulation as a result of less cyclic AMP release could be regarded as a natural compensation mechanism in overweight rats with MetS. In addition to the persistent insulin resistance and obesity associated with MetS, one should consider the decreased heart work, increased heart rate, and shortened QT interval associated with high carbohydrate intake, which may have more deleterious effects on the mammalian heart.

  20. Arterial Retention of Remnant Lipoproteins Ex Vivo Is Increased in Insulin Resistance Because of Increased Arterial Biglycan and Production of Cholesterol-Rich Atherogenic Particles That Can Be Improved by Ezetimibe in the JCR:LA-cp Rat

    Science.gov (United States)

    Mangat, Rabban; Warnakula, Samantha; Borthwick, Faye; Hassanali, Zahra; Uwiera, Richard R.E.; Russell, James C.; Cheeseman, Christopher I.; Vine, Donna F.; Proctor, Spencer D

    2012-01-01

    Background Literature supports the “response-to-retention” hypothesis—that during insulin resistance, impaired metabolism of remnant lipoproteins can contribute to accelerated cardiovascular disease progression. We used the JCR:LA-cp rat model of metabolic syndrome (MetS) to determine the extent of arterial accumulation of intestinal-derived remnants ex vivo and potential mechanisms that contribute to exacerbated cholesterol deposition in insulin resistance. Methods and Results Arteries from control and MetS (insulin-resistant) JCR:LA-cp rats were perfused ex vivo with Cy5-labeled remnant lipoproteins, and their arterial retention was quantified by confocal microscopy. Arterial proteoglycans were isolated from control and MetS rats at 6, 12, and 32 weeks of age. There was a significant increase in the arterial retention of remnants and in associated cholesterol accumulation in MetS rats as compared to control rats. Mechanistic studies reveal that increased cholesterol deposition is a result of greater arterial biglycan content; longer glycosaminoglycans and increased production of cholesterol-rich intestinal-derived remnants, as compared to controls. Additionally, perfusion of vessels treated with ezetimibe, alone or in combination with simvastatin, with remnants isolated from the respective treatment group reduced ex vivo arterial retention of remnant-derived cholesterol ex vivo as compared to untreated controls. Conclusions Increased progression of atherosclerotic cardiovascular disease in MetS and type 2 diabetes mellitus might be explained in part by an increase in the arterial retention of cholesterol-rich remnants. Furthermore, ezetimibe alone or in combination treatment with simvastatin could be beneficial in ameliorating atherosclerotic cardiovascular disease in insulin resistance and MetS. PMID:23316299

  1. Social exclusion intensifies anxiety-like behavior in adolescent rats.

    Science.gov (United States)

    Lee, Hyunchan; Noh, Jihyun

    2015-05-01

    Social connection reduces the physiological reactivity to stressors, while social exclusion causes emotional distress. Stressful experiences in rats result in the facilitation of aversive memory and induction of anxiety. To determine the effect of social interaction, such as social connection, social exclusion and equality or inequality, on emotional change in adolescent distressed rats, the emotional alteration induced by restraint stress in individual rats following exposure to various social interaction circumstances was examined. Rats were assigned to one of the following groups: all freely moving rats, all rats restrained, rats restrained in the presence of freely moving rats and freely moving rats with a restrained rat. No significant difference in fear-memory and sucrose consumption between all groups was found. Change in body weight significantly increased in freely moving rats with a restrained rat, suggesting that those rats seems to share the stressful experience of the restrained rat. Interestingly, examination of the anxiety-like behavior revealed only rats restrained in the presence of freely moving rats to have a significant increase, suggesting that emotional distress intensifies in positions of social exclusion. These results demonstrate that unequally excluded social interaction circumstances could cause the amplification of distressed status and anxiety-related emotional alteration. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Effects of MK-801 upon local cerebral glucose utilization in conscious rats and in rats anaesthetised with halothane

    International Nuclear Information System (INIS)

    Kurumaji, A.; McCulloch, J.

    1989-01-01

    The effects of MK-801 (0.5 mg/kg i.v.), a non-competitive N-methyl-D-aspartate (NMDA) antagonist, upon local cerebral glucose utilization were examined in conscious, lightly restrained rats and in rats anaesthetised with halothane in nitrous oxide by means of the quantitative autoradiographic [14C]-2-deoxyglucose technique. In the conscious rats, MK-801 produced a heterogenous pattern of altered cerebral glucose utilization with significant increases being observed in 12 of the 28 regions of gray matter examined and significant decreases in 6 of the 28 regions. Pronounced increases in glucose use were observed after MK-801 in the olfactory areas and in a number of brain areas in the limbic system (e.g., hippocampus molecular layer, dentate gyrus, subicular complex, posterior cingulate cortex, and mammillary body). In the cerebral cortices, large reductions in glucose use were observed after administration of MK-801, whereas in the extrapyramidal and sensory-motor areas, glucose use remained unchanged after MK-801 administration in conscious rats. In the halothane-anaesthetised rats, the pattern of altered glucose use after MK-801 differed qualitatively and quantitatively from that observed in conscious rats. In anaesthetised rats, significant reductions in glucose use were noted after MK-801 in 10 of the 28 regions examined, with no area displaying significantly increased glucose use after administration of the drug. In halothane-anaesthetised rats, MK-801 failed to change the rates of glucose use in the olfactory areas, the hippocampus molecular layer, and the dentate gyrus

  3. Individually reared rats

    International Nuclear Information System (INIS)

    Kraeuchi, K.; Gentsch, C.; Feer, H.

    1981-01-01

    The influence of social isolation in rats on postsynaptic alpha 1 - and beta-adrenergic receptors, on the cAMP generating system and on the presynaptic uptake mechanism in the central noradrenergic system was examined in different brain regions. Rearing rats in isolation from the 19th day of life for 12 weeks leads in all regions to a general tendency for a reduction in 3 H-DHA binding, to an enhanced 3 H-WB4101 binding and to a decreased responsiveness of the noradrenaline sensitive cAMP generating system. These changes reach significance only in the pons-medulla-thallamusregion. Isolated rats showed an increased synaptosomal uptake of noradrenaline, most pronounced and significant in the hypothalamus. Our data provide further support for a disturbance in central noradrenergic function in isolated rats. (author)

  4. Cold exposure increases slow-type myosin heavy chain 1 (MyHC1) composition of soleus muscle in rats.

    Science.gov (United States)

    Mizunoya, Wataru; Iwamoto, Yohei; Sato, Yusuke; Tatsumi, Ryuichi; Ikeuchi, Yoshihide

    2014-03-01

    The aim of this study was to examine the effects of cold exposure on rat skeletal muscle fiber type, according to myosin heavy chain (MyHC) isoform and metabolism-related factors. Male Wistar rats (7 weeks old) were housed individually at 4 ± 2°C as a cold-exposed group or at room temperature (22 ± 2°C) as a control group for 4 weeks. We found that cold exposure significantly increased the slow-type MyHC1 content in the soleus muscle (a typical slow-type fiber), while the intermediate-type MyHC2A content was significantly decreased. In contrast to soleus, MyHC composition of extensor digitorum longus (EDL, a typical fast-type fiber) and gastrocnemius (a mix of slow-type and fast-type fibers) muscle did not change from cold exposure. Cold exposure increased mRNA expression of mitochondrial uncoupling protein 3 (UCP3) in both the soleus and EDL. Cold exposure also increased mRNA expression of myoglobin, peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α) and forkhead box O1 (FOXO1) in the soleus. Upregulation of UCP3 and PGC1α proteins were observed with Western blotting in the gastrocnemius. Thus, cold exposure increased metabolism-related factors in all muscle types that were tested, but MyHC isoforms changed only in the soleus. © 2013 Japanese Society of Animal Science.

  5. Lack of increased immediate early gene expression in rats reinstating cocaine-seeking behavior to discrete sensory cues.

    Directory of Open Access Journals (Sweden)

    Matthew D Riedy

    Full Text Available Drug-seeking behavior elicited by drug-associated cues contributes to relapse in addiction; however, whether relapse elicited by drug-associated conditioned reinforcers (CR versus discriminative stimuli (DS involves distinct or overlapping neuronal populations is unknown. To address this question, we developed a novel cocaine self-administration and cue-induced reinstatement paradigm that exposed the same rats to distinct cocaine-associated CR and DS. Rats were trained to self-administer cocaine in separate sessions. In one, a DS signaled cocaine availability; in the other, cocaine delivery was paired with a different CR. After extinction training and reinstatement testing, where both cues were presented in separate sessions, rats were sacrificed and processed for cellular analysis of temporal activity by fluorescent in situ hybridization (CatFISH for activity regulated cytoskeleton-associated protein (Arc mRNA and for radioactive in situ hybridization for Arc and zif268 mRNAs. CatFISH did not reveal significant changes in Arc mRNA expression. Similar results were obtained with radioactive in situ hybridization. We have shown that while rats reinstate drug seeking in response to temporally discrete presentations of distinct drug-associated cues, such reinstatement is not associated with increased transcriptional activation of Arc or zif268 mRNAs, suggesting that expression of these genes may not be necessary for cue-induced reinstatement of drug-seeking behavior.

  6. Euglycemia in Diabetic Rats Leads to Reduced Liver Weight via Increased Autophagy and Apoptosis through Increased AMPK and Caspase-3 and Decreased mTOR Activities

    Directory of Open Access Journals (Sweden)

    Jun-Ho Lee

    2015-01-01

    Full Text Available Euglycemia is the ultimate goal in diabetes care to prevent complications. However, the benefits of euglycemia in type 2 diabetes are controversial because near-euglycemic subjects show higher mortality than moderately hyperglycemic subjects. We previously reported that euglycemic-diabetic rats on calorie-control lose a critical liver weight (LW compared with hyperglycemic rats. Here, we elucidated the molecular mechanisms underlying the loss of LW in euglycemic-diabetic rats and identified a potential risk in achieving euglycemia by calorie-control. Sprague-Dawley diabetic rats generated by subtotal-pancreatectomy were fed a calorie-controlled diet for 7 weeks to achieve euglycemia using 19 kcal% (19R or 6 kcal% (6R protein-containing chow or fed ad libitum (19AL. The diet in both R groups was isocaloric/kg body weight to the sham-operated group (19S. Compared with 19S and hyperglycemic 19AL, both euglycemic R groups showed lower LWs, increased autophagy, and increased AMPK and caspase-3 and decreased mTOR activities. Though degree of insulin deficiency was similar among the diabetic rats, Akt activity was lower, and PTEN activity was higher in both R groups than in 19AL whose signaling patterns were similar to 19S. In conclusion, euglycemia achieved by calorie-control is deleterious in insulin deficiency due to increased autophagy and apoptosis in the liver via AMPK and caspase-3 activation.

  7. Eating high-fat chow increases the sensitivity of rats to quinpirole-induced discriminative stimulus effects and yawning.

    Science.gov (United States)

    Baladi, Michelle G; France, Charles P

    2010-10-01

    Discriminative stimulus effects of direct acting dopamine receptor agonists (e.g. quinpirole) appear to be mediated by D3 receptors in free-feeding rats. Free access to high-fat chow increases sensitivity to quinpirole-induced yawning, and this study examined whether eating high-fat chow increases sensitivity to the discriminative stimulus effects of quinpirole. Five rats discriminated between 0.032 mg/kg quinpirole and vehicle while responding under a continuous reinforcement schedule of stimulus shock termination. When rats had free access to high-fat chow (discrimination training was suspended), the quinpirole discrimination dose-response curve shifted leftward, possibly indicating enhanced sensitivity at D3 receptors. In the same rats, both the ascending (mediated by D3 receptors) and descending (mediated by D2 receptors) limbs of the dose-response curve for quinpirole-induced yawning shifted leftward. When rats had free access to a standard chow (discrimination training was suspended), the quinpirole discrimination and yawning dose-response curves did not change. Together with published data showing that the discriminative stimulus effects of quinpirole in free-feeding rats are mediated by D3 receptors and the insensitivity of this effect of quinpirole to food restriction (shown to increase sensitivity to D2 but not D3-mediated effects), these results suggest that the leftward shift of the discrimination dose-response curve when rats eat high-fat chow is likely because of enhanced sensitivity at D3 receptors. Thus, eating high-fat food enhances drug effects in a manner that might impact clinical effects of drugs or vulnerability to drug abuse.

  8. Eating high fat chow increases the sensitivity of rats to quinpirole-induced discriminative stimulus effects and yawning

    Science.gov (United States)

    Baladi, Michelle G; France, Charles P

    2010-01-01

    Discriminative stimulus effects of directly-acting dopamine receptor agonists (e.g. quinpirole) appear to be mediated by D3 receptors in free-feeding rats. Free access to high fat chow increases sensitivity to quinpirole-induced yawning and the current study examined whether eating high fat chow increases sensitivity to the discriminative stimulus effects of quinpirole. Five rats discriminated between 0.032 mg/kg quinpirole and vehicle while responding under a continuous reinforcement schedule of stimulus shock termination. When rats had free access to high fat chow (discrimination training was suspended), the quinpirole discrimination dose-response curve shifted leftward, possibly indicating enhanced sensitivity at D3 receptors. In the same rats, both the ascending (mediated by D3 receptors) and descending (mediated by D2 receptors) limbs of the dose- response curve for quinpirole-induced yawning shifted leftward. When rats had free access to a standard chow (discrimination training was suspended), the quinpirole discrimination and yawning dose-response curves did not change. Together with published data showing that the discriminative stimulus effects of quinpirole in free- feeding rats are mediated by D3 receptors and the insensitivity of this effect of quinpirole to food restriction (shown to increase sensitivity to D2 but not D3-mediated effects), these results suggest that the leftward shift of the discrimination dose-response curve when rats eat high fat chow is likely due to enhanced sensitivity at D3 receptors. Thus, eating high fat food enhances drug effects in a manner that might impact clinical effects of drugs or vulnerability to drug abuse. PMID:20729718

  9. Poly(lactic-co-glycolide) polymer constructs cross-linked with human BMP-6 and VEGF protein significantly enhance rat mandible defect repair.

    Science.gov (United States)

    Das, Anusuya; Fishero, Brian A; Christophel, J Jared; Li, Ching-Ju; Kohli, Nikita; Lin, Yong; Dighe, Abhijit S; Cui, Quanjun

    2016-04-01

    We have previously shown that the combined delivery of mesenchymal stem cells (MSCs), vascular endothelial growth factor (VEGF) and bone morphogenetic protein 6 (BMP-6) induces significantly more bone formation than that induced by the delivery of any single factor or a combination of any two factors. We now determine whether the exogenous addition of VEGF and BMP-6 is sufficient for bone healing when MSCs are not provided. Poly(lactic-co-glycolic acid) (PLAGA) microsphere-based three-dimensional scaffolds (P) were fabricated by thermal sintering of PLAGA microspheres. The scaffolds were chemically cross-linked with 200 ng recombinant human VEGF (P(VEGF)) or BMP-6 (P(BMP-6)) or both (P(VEGF+BMP-6)) by the EDC-NHS-MES method. Release of the proteins from the scaffolds was detected for 21 days in vitro which confirmed their comparable potential to supply the proteins in vivo. The scaffolds were delivered to a critical-sized mandibular defect created in 32 Sprague Dawley rats. Significant bone regeneration was observed only in rats with P(VEGF+BMP-6) scaffolds at weeks 2, 8 and 12 as revealed by micro-computer tomography. Vascular ingrowth was higher in the P(VEGF+BMP-6) group as seen by microfil imaging than in other groups. Trichrome staining revealed that a soft callus formed in P(VEGF), P(BMP-6) and P(VEGF+BMP-6) but not in P. MSCs isolated from rat femurs displayed expression of the bone-specific marker osteocalcin when cultured with P(VEGF), P(BMP-6), or P(VEGF+BMP-6) but not with P. Robust mineralization and increased alkaline phosphatase gene expression were seen in rat MSCs when cultured on P(VEGF+BMP-6) but not on P, P(VEGF), or P(BMP-6). Thus, unlike the delivery of VEGF or BMP-6 alone, the combined delivery of VEGF and BMP-6 to the bone defect significantly enhanced bone repair through the enhancement of angiogenesis and the differentiation of endogenously recruited MSCs into the bone repair site.

  10. [The expression and significance of VIP and its receptor in the cochlea of different degrees of chronic alcoholism rats].

    Science.gov (United States)

    Feng, Jing; Liu, Haibing

    2015-07-01

    To determine whether chronic alcoholism alters the expression levels of Vasoactive intestinal polypeptide (VIP) and its receptor (VIPR1) in the cochlea of chronic alcoholism rats. We measured their expression levels in 30 SD rats, in which we created models of different degrees of chronic alcoholism. We investigated the presence of the mRNA of VIP in the cochlea of chronic alcoholism rats and controls by reverse transcription-polymerase chain reaction (RT-PCR) method. We investigated the presence of proteins of VIPR1 in poisoned rats and controls by western blot. We also evaluated the local distribution of VIP cells by immunohistochemistry. We found that the levels of VIP and VIPR1 were downregulated in the chronic alcoholism groups compared to the controls group. The differences in some expression levels were significant different between chronic alcoholism rats and control rats. Moreover, at different degrees of alcohol poisoning in rats, the contents of VIP and VIPR1 differed. Decreased levels of VIP and VIPR1 were detected in the deep chronic alcoholism group compared to the group with low-degree poisoning (P 0.05). These results suggest that VIP and VIPR1 play an important role in the auditory function in rats with chronic alcoholism. Chronic alcoholism may cause a peptide hormone secretion imbalance in the auditory system, eventually leading to hearing loss.

  11. Adolescent social instability stress increases aggression in a food competition task in adult male Long-Evans rats.

    Science.gov (United States)

    Cumming, Mark J; Thompson, Madison A; McCormick, Cheryl M

    2014-11-01

    Adolescent social instability stress (SS; daily 1 hr isolation + new cage partners postnatal days 30-45; thereafter with original cage partner, also in the SS condition) and control (CTL) rats competed for access to a preferred food in five sessions against their cage partner. In the first session, SS pairs displayed more aggression (face whacks, p = .02; rear attacks, p = .03), were less likely to relinquish access to the food voluntarily (p = .03), spent more time at the feeder than CTL pairs (p = .06), but did not differ in latency to access the feeder (p = .41). Pairs were considered in dominant-submissive relationships (DSR) if one rat spent significantly more time at the feeder than the other; 8 of 12 SS and 8 of 12 CTL pairs displayed DSRs (remaining: no-DSR). Aggression increased from the 1st to 5th session (p food reward. These results add to evidence that SS in adolescence modifies the adult social repertoire of rats and highlight the importance of adolescent social experiences for adult behavior. © 2014 Wiley Periodicals, Inc.

  12. Maternal hypoxia increases the activity of MMPs and decreases the expression of TIMPs in the brain of neonatal rats.

    Science.gov (United States)

    Tong, Wenni; Chen, Wanqiu; Ostrowski, Robert P; Ma, Qingyi; Souvenir, Rhonda; Zhang, Lubo; Zhang, John H; Tang, Jiping

    2010-02-15

    A recent study has shown that increased activity of matrix metalloproteinases-2 and metalloproteinases-9 (MMP-2 and MMP-9) has detrimental effect on the brain after neonatal hypoxia. The present study determined the effect of maternal hypoxia on neuronal survivability and the activity of MMP-2 and MMP-9, as well as the expression of tissue inhibitors of metalloproteinase 1 and 2 (TIMP-1 and TIMP-2) in the brain of neonatal rats. Pregnant rats were exposed to 10.5% oxygen for 6 days from the gestation day 15 to day 21. Pups were sacrificed at day 0, 4, 7, 14, and 21 after birth. Body weight and brain weight of the pups were measured at each time point. The activity of MMP-2 and MMP-9 and the protein abundance of TIMP-1 and TIMP-2 were determined by zymography and Western blotting, respectively. The tissue distribution of MMPs was examined by immunofluorescence staining. The neuronal death was detected by Nissl staining. Maternal hypoxia caused significant decreases in body and brain size, increased activity of MMP-2 at day 0, and increased MMP-9 at day 0 and 4. The increased activity of the MMPs was accompanied by an overall tendency towards a reduced expression of TIMPs at all ages with the significance observed for TIMPs at day 0, 4, and 7. Immunofluorescence analysis showed an increased expression of MMP-2, MMP-9 in the hippocampus at day 0 and 4. Nissl staining revealed significant cell death in the hippocampus at day 0, 4, and 7. Functional tests showed worse neurobehavioral outcomes in the hypoxic animals.

  13. Intrahepatic upregulation of MRTF-A signaling contributes to increased hepatic vascular resistance in cirrhotic rats with portal hypertension.

    Science.gov (United States)

    Zheng, Lei; Qin, Jun; Sun, Longci; Gui, Liang; Zhang, Chihao; Huang, Yijun; Deng, Wensheng; Huang, An; Sun, Dong; Luo, Meng

    2017-06-01

    Portal hypertension in cirrhosis is mediated, in part, by increased intrahepatic resistance, reflecting massive structural changes associated with fibrosis and intrahepatic vasoconstriction. Activation of the Rho/MRTF/SRF signaling pathway is essential for the cellular regulatory network of fibrogenesis. The aim of this study was to investigate MRTF-A-mediated regulation of intrahepatic fibrogenesis in cirrhotic rats. Portal hypertension was induced in rats via an injection of CCl 4 oil. Hemodynamic measurements were obtained using a polyethylene PE-50 catheter and pressure transducers. Expression of hepatic fibrogenesis was measured using histological staining. Expression of protein was measured using western blotting. Upregulation of MRTF-A protein expression in the livers of rats with CCl 4 -induced cirrhosis was relevant to intrahepatic resistance and hepatic fibrogenesis in portal hypertensive rats with increased modeling time. Inhibition of MRTF-A by CCG-1423 decelerated hepatic fibrosis, decreased intrahepatic resistance and portal pressure, and alleviated portal hypertension. Increased intrahepatic resistance in rats with CCl 4 -induced portal hypertension is associated with an upregulation of MRTF-A signaling. Inhibition of this pathway in the liver can decrease hepatic fibrosis and intrahepatic resistance, as well as reduce portal pressure in cirrhotic rats with CCl 4 -induced portal hypertension. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Early deprivation increases high-leaning behavior, a novel anxiety-like behavior, in the open field test in rats.

    Science.gov (United States)

    Kuniishi, Hiroshi; Ichisaka, Satoshi; Yamamoto, Miki; Ikubo, Natsuko; Matsuda, Sae; Futora, Eri; Harada, Riho; Ishihara, Kohei; Hata, Yoshio

    2017-10-01

    The open field test is one of the most popular ethological tests to assess anxiety-like behavior in rodents. In the present study, we examined the effect of early deprivation (ED), a model of early life stress, on anxiety-like behavior in rats. In ED animals, we failed to find significant changes in the time spent in the center or thigmotaxis area of the open field, the common indexes of anxiety-like behavior. However, we found a significant increase in high-leaning behavior in which animals lean against the wall standing on their hindlimbs while touching the wall with their forepaws at a high position. The high-leaning behavior was decreased by treatment with an anxiolytic, diazepam, and it was increased under intense illumination as observed in the center activity. In addition, we compared the high-leaning behavior and center activity under various illumination intensities and found that the high-leaning behavior is more sensitive to illumination intensity than the center activity in the particular illumination range. These results suggest that the high-leaning behavior is a novel anxiety-like behavior in the open field test that can complement the center activity to assess the anxiety state of rats. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  15. Effects of Culling on Leptospira interrogans Carriage by Rats

    Science.gov (United States)

    Byers, Kaylee A.; Donovan, Christina M.; Bidulka, Julie J.; Stephen, Craig; Patrick, David M.; Himsworth, Chelsea G.

    2018-01-01

    We found that lethal, urban rat control is associated with a significant increase in the odds that surviving rats carry Leptospira interrogans. Our results suggest that human interventions have the potential to affect and even increase the prevalence of zoonotic pathogens within rat populations. PMID:29350160

  16. Acute and repeated ECS treatment increases CRF, POMC and PENK gene expression in selected regions of the rat hypothalamus.

    Science.gov (United States)

    Garcia-Garcia, L; Llewellyn-Jones, V; Fernandez Fernandez, I; Fuentes, J A; Manzanares, J

    1998-01-05

    The purpose of this study was to investigate the effects of acute and repeated electroconvulsive shock (ECS) on corticotropin releasing factor (CRF), proopiomelanocortin (POMC) and proenkephalin (PENK) gene expression in selected regions of the brain and pituitary of the rat. Acute ECS increased CRF gene expression in the paraventricular nucleus (PVN) by 20%, an effect that was further enhanced to 38% when rats received repeated ECS treatment. Acute and repeated ECS increased POMC gene expression in the arcuate nucleus (ARC) by 49-59% but failed to alter these mRNA levels in the anterior lobe (AL) of the pituitary gland. PENK gene expression was increased by 35% in the nucleus accumbens (NA) and by 180% the ventromedial nucleus (VMN) after acute or repeated ECS treatment but no significant changes were found in the PVN or striatum (ST). Taken together, these results indicate a differential CRF and opioid gene expression regulation after acute or repeated ECS treatment that may be relevant to their therapeutic or side effects in depression.

  17. Phytase supplementation increases bone mineral density, lean body mass and voluntary physical activity in rats fed a low-zinc diet.

    Science.gov (United States)

    Scrimgeour, Angus G; Marchitelli, Louis J; Whicker, Jered S; Song, Yang; Ho, Emily; Young, Andrew J

    2010-07-01

    Phytic acid forms insoluble complexes with nutritionally essential minerals, including zinc (Zn). Animal studies show that addition of microbial phytase (P) to low-Zn diets improves Zn status and bone strength. The present study determined the effects of phytase supplementation on bone mineral density (BMD), body composition and voluntary running activity of male rats fed a high phytic acid, low-Zn diet. In a factorial design, rats were assigned to ZnLO (5 mg/kg diet), ZnLO+P (ZnLO diet with 1500 U phytase/kg) or ZnAD (30 mg/kg diet) groups and were divided into voluntary exercise (EX) or sedentary (SED) groups, for 9 weeks. SED rats were significantly heavier from the second week, and no catch-up growth occurred in EX rats. Feed intakes were not different between groups throughout the study. ZnLO animals had decreased food efficiency ratios compared to both phytase-supplemented (ZnLO+P) and Zn-adequate (ZnAD) animals (Pbone mineral content (BMC), bone area (BA) and BMD than rats fed ZnLO diets; and in rats fed ZnAD diets these indices were the highest. The dietary effects on BMC, BA and BMD were independent of activity level. We conclude that consuming supplemental dietary phytase or dietary Zn additively enhances Zn status to increase BMD, LBM and voluntary physical activity in rats fed a low-Zn diet. While the findings confirm that bone health is vulnerable to disruption by moderate Zn deficiency in rats, this new data suggests that if dietary Zn is limiting, supplemental phytase may have beneficial effects on LBM and performance activity. (c) 2010 Elsevier Inc. All rights reserved.

  18. Increased Body Weight Reduces Voluntary Movement to Maintain Energy Expenditure of Rats Exposed to Increases in Gravity

    Science.gov (United States)

    Wade, C. E.; Moran, M. M.; Stein, T. P.; Sin, Sidney (Technical Monitor)

    2001-01-01

    With the increase in obesity related diseases there is heightened interest in mechanisms regulating body weight. To assess the influence of increases in body weight on energy expenditure and intake in rats we employed variable levels of gravity. Our approach afforded the means to measure interactions of energy expenditure and intake in response to increases in body weight (body mass x gravity level). We found a dose relationship between rapid elevation of body weight and reduction of voluntary movement, such that the energy requirements for activity are unchanged, and total energy expenditure and intake maintained. Reduction of movement appears to be a response to increased body weight, rather than a contributing factor, suggesting a new regulatory pathway.

  19. Obesity augments the age-induced increase in mitochondrial capacity for H(2) O(2) release in Zucker fatty rats

    DEFF Research Database (Denmark)

    Hey-Mogensen, Martin; Jeppesen, Jacob; Madsen, K

    2012-01-01

    determined and related to citrate synthase activity to determine intrinsic mitochondrial function. Mitochondrial-specific super-oxide dismuthase (MnSOD) protein content was determined in isolated mitochondria and muscle homogenate. Catalase protein content was determined in muscle homogenate. Results: Young...... was associated with increased mitochondrial hydrogenperoxide release. MnSOD tended to be higher in the obese strain in the isolated mitochondria. Regardless of age, catalase protein content was significantly lower in the obese rats. Conclusions: This study shows that the augmented increase in obesity and insulin...

  20. Increased serum bile acid concentration following low-dose chronic administration of thioacetamide in rats, as evidenced by metabolomic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Eun Sook; Kim, Gabin; Shin, Ho Jung [Department of Pharmacology and Pharmacogenomics Research Center, Inje University, College of Medicine, Bokjiro 75, Busanjin-Gu, Busan 614-735 (Korea, Republic of); Park, Se-Myo; Oh, Jung-Hwa; Kim, Yong-Bum; Moon, Kyoung-Sik [Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Choi, Hyung-Kyoon [College of Pharmacy, Chung-Ang University, Seoul (Korea, Republic of); Jeong, Jayoung [Ministry of Food and Drug Safety, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 361-951 (Korea, Republic of); Shin, Jae-Gook [Department of Pharmacology and Pharmacogenomics Research Center, Inje University, College of Medicine, Bokjiro 75, Busanjin-Gu, Busan 614-735 (Korea, Republic of); Kim, Dong Hyun, E-mail: dhkim@inje.ac.kr [Department of Pharmacology and Pharmacogenomics Research Center, Inje University, College of Medicine, Bokjiro 75, Busanjin-Gu, Busan 614-735 (Korea, Republic of)

    2015-10-15

    A liquid chromatography/time-of-flight mass spectrometry (LC/TOF-MS)-based metabolomics approach was employed to identify endogenous metabolites as potential biomarkers for thioacetamide (TAA)-induced liver injury. TAA (10 and 30 mg/kg), a well-known hepatotoxic agent, was administered daily to male Sprague–Dawley (SD) rats for 28 days. We then conducted untargeted analyses of endogenous serum and liver metabolites. Partial least squares discriminant analysis (PLS-DA) was performed on serum and liver samples to evaluate metabolites associated with TAA-induced perturbation. TAA administration resulted in altered levels of bile acids, acyl carnitines, and phospholipids in serum and in the liver. We subsequently demonstrated and confirmed the occurrence of compromised bile acid homeostasis. TAA treatment significantly increased serum levels of conjugated bile acids in a dose-dependent manner, which correlated well with toxicity. However, hepatic levels of these metabolites were not substantially changed. Gene expression profiling showed that the hepatic mRNA levels of Ntcp, Bsep, and Oatp1b2 were significantly suppressed, whereas those of basolateral Mrp3 and Mrp4 were increased. Decreased levels of Ntcp, Oatp1b2, and Ostα proteins in the liver were confirmed by western blot analysis. These results suggest that serum bile acids might be increased due to the inhibition of bile acid enterohepatic circulation rather than increased endogenous bile acid synthesis. Moreover, serum bile acids are a good indicator of TAA-induced hepatotoxicity. - Highlights: • Endogenous metabolic profiles were assessed in rat after treatment of thioacetamide. • It significantly increased the levels of bile acids in serum but not in the liver. • Expression of the genes related to bile acid secretion and reuptake was decreased. • Increased serum bile acids result from block of enterohepatic circulation of bile acids.

  1. Increased serum bile acid concentration following low-dose chronic administration of thioacetamide in rats, as evidenced by metabolomic analysis

    International Nuclear Information System (INIS)

    Jeong, Eun Sook; Kim, Gabin; Shin, Ho Jung; Park, Se-Myo; Oh, Jung-Hwa; Kim, Yong-Bum; Moon, Kyoung-Sik; Choi, Hyung-Kyoon; Jeong, Jayoung; Shin, Jae-Gook; Kim, Dong Hyun

    2015-01-01

    A liquid chromatography/time-of-flight mass spectrometry (LC/TOF-MS)-based metabolomics approach was employed to identify endogenous metabolites as potential biomarkers for thioacetamide (TAA)-induced liver injury. TAA (10 and 30 mg/kg), a well-known hepatotoxic agent, was administered daily to male Sprague–Dawley (SD) rats for 28 days. We then conducted untargeted analyses of endogenous serum and liver metabolites. Partial least squares discriminant analysis (PLS-DA) was performed on serum and liver samples to evaluate metabolites associated with TAA-induced perturbation. TAA administration resulted in altered levels of bile acids, acyl carnitines, and phospholipids in serum and in the liver. We subsequently demonstrated and confirmed the occurrence of compromised bile acid homeostasis. TAA treatment significantly increased serum levels of conjugated bile acids in a dose-dependent manner, which correlated well with toxicity. However, hepatic levels of these metabolites were not substantially changed. Gene expression profiling showed that the hepatic mRNA levels of Ntcp, Bsep, and Oatp1b2 were significantly suppressed, whereas those of basolateral Mrp3 and Mrp4 were increased. Decreased levels of Ntcp, Oatp1b2, and Ostα proteins in the liver were confirmed by western blot analysis. These results suggest that serum bile acids might be increased due to the inhibition of bile acid enterohepatic circulation rather than increased endogenous bile acid synthesis. Moreover, serum bile acids are a good indicator of TAA-induced hepatotoxicity. - Highlights: • Endogenous metabolic profiles were assessed in rat after treatment of thioacetamide. • It significantly increased the levels of bile acids in serum but not in the liver. • Expression of the genes related to bile acid secretion and reuptake was decreased. • Increased serum bile acids result from block of enterohepatic circulation of bile acids.

  2. Epinephrine as a metabolic regulatory hormone in irradiated rats

    International Nuclear Information System (INIS)

    Mohamed, M.A.; Saada, H.N.; Roushdy, H.M.; Awad, O.M.; El-Sayed, M.M.; Azab, Kh.Sh.

    1997-01-01

    The role of epinephrine as a regulatory hormone was examined in normal and irradiated rats. Epinephrine was intraperitoneally injected into rats at a concentration of 200 Mg/kg body weight. Epinephrine was injected either 15 minutes before or just after whole body gamma irradiation 6 Gy 9 single dose). The variations in serum epinephrine,norepinephrine, triglycerides,lipase activity, glucose and lactic acid were selected as biochemical markers in this study. Biochemical estimations were undertaken at 1 hr, 4 hrs. 1,3 and 7 days treatment (after irradiation). The data obtained revealed that the treatment of normal rats with epinephrine induced a significant increase in serum epinephrine level 1 hr after injection, while the level of norepinephrine significantly increased at 4 hrs. Lipase activity significantly increased on the 1 ST hr post treatment. A significant decrease in the level of triglycerides was recorded 1 and 4 hrs post treatment. Serum glucose significantly increased at 1 and 4 hrs post treatment, while no significant changes were recorded for lactic acid. In gamma irradiated rats, the level of serum epinephrine significantly decreased at 1 hr followed by significant increases recorded at 1,3, and 7 days after irradiation. Norepinephrine levels significantly decreased after irradiation during all the experimental time periods. The levels of triglycerides show significant increases accompanied by decrease in lipase activity

  3. Grape Polyphenols Increase the Activity of HDL Enzymes in Old and Obese Rats

    Directory of Open Access Journals (Sweden)

    Andriy L. Zagayko

    2013-01-01

    Full Text Available HDL particles are protein-rich particles that act as a vehicle for reverse cholesterol transport from tissues to the liver. The purpose of this study was to investigate age-dependent changes in the functional activity of HDL and the effect of high-energy diet on this index, as well as to correct it under the influence of grape polyphenols from “Enoant” obtained from Vitis vinifera grapes. We observed the age-dependent composition changes in HDL particle. It was shown that total lipids and triacylglycerol (TG levels were higher in 24-month-old animals. In obese rats, HDL total lipids and TG levels were higher in 24-month-old than in the 3-month-old and 12-month-old groups but did not differ from 24-month-old group. The plasma HDL paraoxonase (PON and lecithin:cholesterol acyltransferase (LCAT activity levels were decreased in old-aged rats, and cholesteryl ester transfer protein (CETP activity was higher in old rats. Keeping 12-month-old animals on high-fructose diet completely leveled the age differences in the data that have been measured between 12-month-old and 24-month-old rats. After “Enoant” administration, an increase of HDL PON and LCAT activity levels and a reduction of CETP activity were found in 24-month-old and obese rats.

  4. Maltitol inhibits small intestinal glucose absorption and increases insulin mediated muscle glucose uptake ex vivo but not in normal and type 2 diabetic rats.

    Science.gov (United States)

    Chukwuma, Chika Ifeanyi; Ibrahim, Mohammed Auwal; Islam, Md Shahidul

    2017-02-01

    This study investigated the effects of maltitol on intestinal glucose absorption and muscle glucose uptake using ex vivo and in vivo experimental models. The ex vivo experiment was conducted in isolated jejunum and psoas muscle from normal rats. The in vivo study investigated the effects of a single bolus dose of maltitol on gastric emptying, intestinal glucose absorption and digesta transit in normal and type 2 diabetic rats. Maltitol inhibited glucose absorption in isolated rat jejunum and increased glucose uptake in isolated rat psoas muscle in the presence of insulin but not in the absence of insulin. In contrast, maltitol did not significantly (p > 0.05) alter small intestinal glucose absorption or blood glucose levels as well as gastric emptying and digesta transit in normal or type 2 diabetic rats. The results suggest that maltitol may not be a suitable dietary supplement for anti-diabetic food and food products to improve glycemic control.

  5. The effects of prostaglandin E2 in growing rats - Increased metaphyseal hard tissue and cortico-endosteal bone formation

    Science.gov (United States)

    Jee, W. S. S.; Ueno, K.; Deng, Y. P.; Woodbury, D. M.

    1985-01-01

    The role of in vivo prostaglandin E2 (PGE2) in bone formation is investigated. Twenty-five male Sprague-Dawley rats weighing between 223-267 g were injected subcutaneously with 0.3, 1.0, 3.0, and 6.0 mg of PGE2-kg daily for 21 days. The processing of the tibiae for observation is described. Radiographs and histomorphometric analyses are also utilized to study bone formation. Body weight, weights of soft tissues and bones morphometry are evaluated. It is observed that PGE2 depressed longitudinal bone growth, increased growth cartilage thickness, decreased degenerative cartilage cell size and cartilage cell production, and significantly increased proximal tibial metaphyseal hard tissue mass. The data reveal that periosteal bone formation is slowed down at higher doses of PGE2 and endosteal bone formation is slightly depressed less than 10 days post injection; however, here is a late increase (10 days after post injection) in endosteal bone formation and in the formation of trabecular bone in the marrow cavity of the tibial shaft. It is noted that the effects of PGE2 on bone formation are similar to the responses of weaning rats to PGE2.

  6. Acute resistance exercise reduces increased gene expression in muscle atrophy of ovariectomised arthritic rats

    Directory of Open Access Journals (Sweden)

    Roberto Furlanetto Jr

    2017-02-01

    Full Text Available Objective: We studied the effect of resistance exercise (RE on mRNA levels of atrogin-1, MuRF-1, and myostatin in the gastrocnemius muscle of arthritic rats after loss of ovarian function (LOF. Material and methods : Thirty female Wistar rats (nine weeks old, 195.3 ±17.4 grams were randomly allocated into five groups: control group (CT-Sham; n = 6; group with rheumatoid arthritis (RA; n = 6; group with rheumatoid arthritis subjected to RE (RAEX; n = 6; ovariectomy group with rheumatoid arthritis (RAOV; n = 6; and an ovariectomy group with rheumatoid arthritis subjected to RE (RAOVEX; n = 6. After 15 days of intra-articular injections with Met-BSA the animals were subjected to RE and six hours after workout were euthanised. Results : The rheumatoid arthritis provoked reduction in the cross-sectional area (CSA of muscle fibres, but the CSA was lower in the RAOV when compared to the RA groups. Skeletal muscle atrogin-1 mRNA level was increased in arthritic rats (RA and RAOV, but the atrogin-1 level was higher in RAOV group when compared to other arthritic groups. The Muscle MuRF-1 mRNA level was also increased in the RAOV group. The increased atrogin-1 and MuRF-1 mRNA levels were lower in the RAOVEX group than in the RAOV group. The myostatin mRNA level was similar in all groups, except for the RAOVEX group, in which it was lower than the other groups. Conclusions : LOF results in increased loss of skeletal muscle-related ubiquitin ligases (atrogin-1 and MuRF-1. However, the RE reduces the atrogin-1, MuRF-1, and myostatin mRNA levels in muscle of arthritic rats affected by LOF.

  7. Novel distribution of calreticulin to cardiomyocyte mitochondria and its increase in a rat model of dilated cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ming [Department of Cardiology, Second Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi (China); Department of Respiratory Medicine, Second Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi (China); Wei, Jin, E-mail: weijindr@163.com [Department of Cardiology, Second Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi (China); Li, Yali [Department of Respiratory Medicine, Second Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi (China); Shan, Hu; Yan, Rui; Lin, Lin [Department of Cardiology, Second Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi (China); Zhang, Qiuhong [Department of Respiratory Medicine, Second Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi (China); Xue, Jiahong [Department of Cardiology, Second Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi (China)

    2014-06-20

    Highlights: • Calreticulin can also be found in cardiomyocyte mitochondria. • The mitochondrial content of calreticulin is increased in DCM hearts. • Increased expression of mitochondrial CRT may induce mitochondrial damage. • Mitochondrial CRT may inhibit the phosphorylation of mitochondrial STAT3. - Abstract: Background: Calreticulin (CRT), a Ca{sup 2+}-binding chaperone of the endoplasmic reticulum, can also be found in several other locations including the cytosol, nucleus, secretory granules, the outer side of the plasma membrane, and the extracellular matrix. Whether CRT is localized at mitochondria of cardiomyocytes and whether such localization is affected under DCM are still unclear. Methods and results: The DCM model was generated in rats by the daily oral administration of furazolidone for thirty weeks. Echocardiographic and hemodynamic studies demonstrated enlarged left ventricular dimensions and reduced systolic and diastolic function in DCM rats. Immuno-electron microscopy and Western blot showed that CRT was present in cardiomyocyte mitochondria and the mitochondrial content of CRT was increased in DCM hearts (P < 0.05). Morphometric analysis showed notable myocardial apoptosis and mitochondrial swelling with fractured or dissolved cristae in the DCM hearts. Compared with the control group, the mitochondrial membrane potential level of the freshly isolated cardiac mitochondria and the enzyme activities of cytochrome c oxidase and succinate dehydrogenase in the model group were significantly decreased (P < 0.05), and the myocardial apoptosis index and the caspase activities of caspase-9 and caspase-3 were significantly increased (P < 0.05). Pearson linear correlation analysis showed that the mitochondrial content of CRT had negative correlations with the mitochondrial function, and a positive correlation with myocardial apoptosis index (P < 0.001). The protein expression level of cytochrome c and the phosphorylation activity of STAT3 in the

  8. INAA for interelement correlations in rats after mercuric chloride exposure

    International Nuclear Information System (INIS)

    Tandon, L.; Kasarskis, E.J.; Ehmann, W.D.

    1991-01-01

    Motor neurons in rat spinal cord have been shown to have a selective affinity for Hg in a study by Moeller-Madsen and Dansher (1986). In a related animal model study the authors have exposed seventeen rats to mercuric chloride through drinking water continuously for eight months. A control group of rats was given regular water. Rat brain, spinal cord, and kidney were irradiated with thermal neutrons for determination of Hg and 16 other elements by INAA. As expected, Hg was increased in all tissues from treated rats. Cs was significantly elevated in spinal cord of Hg-dosed rats. Kidney had a significant decrease in As, Co, and K with a significant increase in Br and Se in Hg-dosed rats. These results in rats are contrasted with data (Khare, et al., 1990) from patients with amyotrophic lateral sclerosis (ALS) to determine if the elemental imbalances in this neurodegenerative disease are primary alterations, or merely secondary effects related to Hg levels

  9. Intracerebroventricular Injection of Lipopolysaccharide Increases Gene Expression of Connexin32 Gap Junction in Rat Hippocampus

    Directory of Open Access Journals (Sweden)

    Mohammad Abbasian

    2013-11-01

    Full Text Available Introduction: Gap junctions are intercellular membrane channels that provide direct cytoplasmic continuity between adjacent cells. This communication can be affected by changes in expression of gap junctional subunits called Connexins (Cx. Changes in the expression and function of connexins are associated with number of brain neurodegenerative diseases. Neuroinflammation is a hallmark of various central nervous system (CNS diseases, like multiple sclerosis, Alzheimer's disease and epilepsy. Neuroinflammation causes change in Connexins expression. Hippocampus, one of the main brain regions with a wide network of Gap junctions between different neural cell types, has particular vulnerability to damage and consequent inflammation. Cx32 – among Connexins– is expressed in hippocampal Olygodandrocytes and some neural subpopulations. Although multiple lines of evidence indicate that there is an association between neuroinflammation and the expression of connexin, the direct effect of neuroinflammation on the expression of connexins has not been well studied. In the present study, the effect of neuroinflammation induced by the Lipopolysaccharide (LPS on Cx32 gene and protein expressions in rat hippocampus is evaluated. Methods: LPS (2.5μg/rat was infused into the rat cerebral ventricles for 14 days. Cx32 mRNA and protein levels were measured by Real Time PCR and Western Blot after 1st, 7th and 14th injection of LPS in the hippocampus. Results: Significant increase in Cx32 mRNA expression was observed after 7th injection of LPS (P<0.001. However, no significant change was observed in Cx32 protein level. Conclusion: LPS seems to modify Cx32 GJ communication in the hippocampus at transcription level but not at translation or post-translation level. In order to have a full view concerning modification of Cx32 GJ communication, effect of LPS on Cx32 channel gating should also be determined.

  10. Betel Leaf Extract (Piper betle L. Antihyperuricemia Effect Decreases Oxidative Stress by Reducing the Level of MDA and Increase Blood SOD Levels of Hyperuricemia Wistar Rats (Rattus norvegicus

    Directory of Open Access Journals (Sweden)

    I Made Sumarya

    2016-06-01

    Full Text Available Background: Betel leaf extracts (Piper betle L. antioxidant activity and enzyme inhibitors of XO. Hyperuricemia cause oxidative stress by increasing the formation of reactive oxygen species (ROS cause lipid peroxidation and oxygenation of low-density lipoprotein cholesterol (LDLc. Objective: The aim of this research was to determine the betel leaf extract as an anti hyperuricemia that can lower the blood uric acid levels and oxidative stress by lowering the levels of MDA and increase the SOD of hyperuricemia of the rat’s blood. Method: Experimental research was conducted with the design of The Randomized Post Test Only Control Group Design, on normal Wistar rats (Rattus norvegicus, administered with oxonic potassium (hyperuricemia and the hyperuricemia rats either given betel leaf extract and allopurinol. After the experiment of uric acid levels, MDA and SOD in rat blood determined. Results: The results showed that the betel leaf extract significantly (p <0.05 lower uric acid levels, MDA and increase levels of SOD in rat blood. There is a positive correlation between the levels of uric acid with MDA levels and a negative correlation, although not significantly with SOD (p >0.05. Conclusion: It can be concluded that the betel leaf extract as an anti-hyperuricemia can lower the uric acid levels and decreases oxidative stress by lowering the levels of MDA and increasing the SOD.

  11. Rearing in enriched environment increases parvalbumin-positive small neurons in the amygdala and decreases anxiety-like behavior of male rats.

    Science.gov (United States)

    Urakawa, Susumu; Takamoto, Kouich; Hori, Etsuro; Sakai, Natsuko; Ono, Taketoshi; Nishijo, Hisao

    2013-01-25

    Early life experiences including physical exercise, sensory stimulation, and social interaction can modulate development of the inhibitory neuronal network and modify various behaviors. In particular, alteration of parvalbumin-expressing neurons, a gamma-aminobutyric acid (GABA)ergic neuronal subpopulation, has been suggested to be associated with psychiatric disorders. Here we investigated whether rearing in enriched environment could modify the expression of parvalbumin-positive neurons in the basolateral amygdala and anxiety-like behavior. Three-week-old male rats were divided into two groups: those reared in an enriched environment (EE rats) and those reared in standard cages (SE rats). After 5 weeks of rearing, the EE rats showed decreased anxiety-like behavior in an open field than the SE rats. Under another anxiogenic situation, in a beam walking test, the EE rats more quickly traversed an elevated narrow beam. Anxiety-like behavior in the open field was significantly and negatively correlated with walking time in the beam-walking test. Immunohistochemical tests revealed that the number of parvalbumin-positive neurons significantly increased in the basolateral amygdala of the EE rats than that of the SE rats, while the number of calbindin-D28k-positive neurons did not change. These parvalbumin-positive neurons had small, rounded soma and co-expressed the glutamate decarboxylase (GAD67). Furthermore, the number of parvalbumin-positive small cells in the basolateral amygdala tended to positively correlate with emergence in the center arena of the open field and negatively correlated with walking time in the beam walking test. Rearing in the enriched environment augmented the number of parvalbumin-containing specific inhibitory neuron in the basolateral amygdala, but not that of calbindin-containing neuronal phenotype. Furthermore, the number of parvalbumin-positive small neurons in the basolateral amygdala was negatively correlated with walking time in the

  12. Acute intermittent hypoxia induced phrenic long-term facilitation despite increased SOD1 expression in a rat model of ALS.

    Science.gov (United States)

    Nichols, Nicole L; Satriotomo, Irawan; Harrigan, Daniel J; Mitchell, Gordon S

    2015-11-01

    Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease characterized by motor neuron death. Since most ALS patients succumb to ventilatory failure from loss of respiratory motor neurons, any effective ALS treatment must preserve and/or restore breathing capacity. In rats over-expressing mutated super-oxide dismutase-1 (SOD1(G93A)), the capacity to increase phrenic motor output is decreased at disease end-stage, suggesting imminent ventilatory failure. Acute intermittent hypoxia (AIH) induces phrenic long-term facilitation (pLTF), a form of spinal respiratory motor plasticity with potential to restore phrenic motor output in clinical disorders that compromise breathing. Since pLTF requires NADPH oxidase activity and reactive oxygen species (ROS) formation, it is blocked by NADPH oxidase inhibition and SOD mimetics in normal rats. Thus, we hypothesized that SOD1(G93A) (mutant; MT) rats do not express AIH-induced pLTF due to over-expression of active mutant superoxide dismutase-1. AIH-induced pLTF and hypoglossal (XII) LTF were assessed in young, pre-symptomatic and end-stage anesthetized MT rats and age-matched wild-type littermates. Contrary to predictions, pLTF and XII LTF were observed in MT rats at all ages; at end-stage, pLTF was actually enhanced. SOD1 levels were elevated in young and pre-symptomatic MT rats, yet superoxide accumulation in putative phrenic motor neurons (assessed with dihydroethidium) was unchanged; however, superoxide accumulation significantly decreased at end-stage. Thus, compensatory mechanisms appear to maintain ROS homoeostasis until late in disease progression, preserving AIH-induced respiratory plasticity. Following intrathecal injections of an NADPH oxidase inhibitor (apocynin; 600 μM; 12 μL), pLTF was abolished in pre-symptomatic, but not end-stage MT rats, demonstrating that pLTF is NADPH oxidase dependent in pre-symptomatic, but NADPH oxidase independent in end-stage MT rats. Mechanisms

  13. Icariin protects rats against 5/6 nephrectomy-induced chronic kidney failure by increasing the number of renal stem cells.

    Science.gov (United States)

    Huang, Zhongdi; He, Liqun; Huang, Di; Lei, Shi; Gao, Jiandong

    2015-10-21

    Chronic kidney disease poses a serious health problem worldwide with increasing prevalence and lack of effective treatment. This study aimed to investigate the mechanism of icariin in alleviating chronic renal failure induced by 5/6 nephrectomy in rats. The chronic renal failure model was established by a two-phased 5/6 nephrectomy procedure. The model rats were given daily doses of water or icariin for 8 weeks. The kidney morphology was checked by HE staining. The levels of blood urea nitrogen, serum creatinine, and serum uric acid were measured by colometric methods. The expression of specified genes was analyzed by quantitative real-time PCR and immunohistochemical staining. The number of renal stem/progenitor cells was analyzed by CD133 and CD24 immunohistochemical staining. Icariin protected against CDK-caused damages to kidney histology and improved renal function, significantly reduced levels of BUN, creatinine, and uric acid. Icariin inhibited the expression level of TGF-β1 whereas upregulated HGF, BMP-7, WT-1, and Pax2 expression. Moreover, ccariin significantly increased the expression of CD24, CD133, Osr1, and Nanog in remnant kidney and the numbers of CD133(+)/CD24(+) renal stem/progenitor cells. These data demonstrated that icariin effectively alleviated 5/6 nephrectomy induced chronic renal failure through increasing renal stem/progenitor cells.

  14. Downregulation of natriuretic peptide system and increased steroidogenesis in rat polycystic ovary.

    Science.gov (United States)

    Pereira, Virginia M; Honorato-Sampaio, Kinulpe; Martins, Almir S; Reis, Fernando M; Reis, Adelina M

    2014-10-01

    Atrial natriuretic peptide (ANP) is known to regulate ovarian functions, such as follicular growth and steroid hormone production. The aim of the present study was to investigate the natriuretic peptide system in a rat model of chronic anovulation, the rat polycystic ovary. Adult female Wistar rats received a single subcutaneous injection of 2mg estradiol valerate to induce polycystic ovaries, while the control group received vehicle injection. Two months later, their ovaries were quickly removed and analyzed. Polycystic ovaries exhibited marked elevation of testosterone and estradiol levels compared to control ovaries. The levels of ANP and the expression of ANP mRNA were highly reduced in the polycystic ovaries compared to controls. By immunohistochemistry, polycystic ovaries showed weaker ANP staining in stroma, theca cells and oocytes compared to controls. Polycystic ovaries also had increased activity of neutral endopeptidase, the main proteolytic enzyme that degrades natriuretic peptides. ANP receptor C mRNA was reduced and ANP binding to this receptor was absent in polycystic ovaries. Collectively, these results indicate a downregulation of the natriuretic peptide system in rat polycystic ovary, an established experimental model of anovulation with high ovarian testosterone and estradiol levels. Together with previous evidence demonstrating that ANP inhibits ovarian steroidogenesis, these findings suggest that low ovarian ANP levels may contribute to the abnormal steroid hormone balance in polycystic ovaries. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Increased number of anaerobic bacteria in the infected root canal in type 2 diabetic rats.

    Science.gov (United States)

    Iwama, Akihiro; Morimoto, Taisuke; Tsuji, Masahito; Nakamura, Koki; Higuchi, Naoya; Imaizumi, Ichiro; Shibata, Naoki; Yamasaki, Masahiro; Nakamura, Hiroshi

    2006-05-01

    The purpose of this study was to investigate the relationship between type 2 diabetes mellitus and anaerobic bacteria detected in infected root canals. Normal Wistar rats (control) received a standard laboratory diet with water (group A), and GK rats (type 2 diabetes mellitus rats) a normal laboratory diet with water (group B) or a 30% sucrose solution (group C). Chemotaxis assay was conducted on polymorphonuclear leukocytes from the 3 groups, and the numbers of anaerobic bacteria in infected root canals were determined. In the chemotaxis assay on the polymorphonuclear leukocytes, the chemotactic response of cells in group C was lower than that for groups A and B (P obligate anaerobic bacteria which stained gram negative, were significantly more numerous in group C (P < .01) than in groups A and B. The metabolic condition produced by type 2 diabetes mellitus in rats might lower the general host resistance against bacterial infection.

  16. Epilepsy-induced electrocardiographic alterations following cardiac ischemia and reperfusion in rats

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, J.G.P. [Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Universidade Iguaçu, Campos V, Itaperuna, RJ (Brazil); Faculdade de Minas, Muriaé, MG (Brazil); Vasques, E.R. [Departamento de Gastroenterologia, LIM 37, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Arida, R.M. [Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Cavalheiro, E.A. [Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Cabral, F.R.; Torres, L.B. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Menezes-Rodrigues, F.S.; Jurkiewicz, A.; Caricati-Neto, A. [Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Godoy, C.M.G. [Departamento de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, SP (Brazil); Gomes da Silva, S. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Núcleo de Pesquisas Tecnológicas, Programa Integrado em Engenharia Biomédica, Universidade de Mogi das Cruzes, Mogi das Cruzes, SP (Brazil)

    2015-01-13

    The present study evaluated electrocardiographic alterations in rats with epilepsy submitted to an acute myocardial infarction (AMI) model induced by cardiac ischemia and reperfusion. Rats were randomly divided into two groups: control (n=12) and epilepsy (n=14). It was found that rats with epilepsy presented a significant reduction in atrioventricular block incidence following the ischemia and reperfusion procedure. In addition, significant alterations were observed in electrocardiogram intervals during the stabilization, ischemia, and reperfusion periods of rats with epilepsy compared to control rats. It was noted that rats with epilepsy presented a significant increase in the QRS interval during the stabilization period in relation to control rats (P<0.01). During the ischemia period, there was an increase in the QRS interval (P<0.05) and a reduction in the P wave and QT intervals (P<0.05 for both) in rats with epilepsy compared to control rats. During the reperfusion period, a significant reduction in the QT interval (P<0.01) was verified in the epilepsy group in relation to the control group. Our results indicate that rats submitted to an epilepsy model induced by pilocarpine presented electrical conductivity alterations of cardiac tissue, mainly during an AMI episode.

  17. Epilepsy-induced electrocardiographic alterations following cardiac ischemia and reperfusion in rats

    International Nuclear Information System (INIS)

    Tavares, J.G.P.; Vasques, E.R.; Arida, R.M.; Cavalheiro, E.A.; Cabral, F.R.; Torres, L.B.; Menezes-Rodrigues, F.S.; Jurkiewicz, A.; Caricati-Neto, A.; Godoy, C.M.G.; Gomes da Silva, S.

    2015-01-01

    The present study evaluated electrocardiographic alterations in rats with epilepsy submitted to an acute myocardial infarction (AMI) model induced by cardiac ischemia and reperfusion. Rats were randomly divided into two groups: control (n=12) and epilepsy (n=14). It was found that rats with epilepsy presented a significant reduction in atrioventricular block incidence following the ischemia and reperfusion procedure. In addition, significant alterations were observed in electrocardiogram intervals during the stabilization, ischemia, and reperfusion periods of rats with epilepsy compared to control rats. It was noted that rats with epilepsy presented a significant increase in the QRS interval during the stabilization period in relation to control rats (P<0.01). During the ischemia period, there was an increase in the QRS interval (P<0.05) and a reduction in the P wave and QT intervals (P<0.05 for both) in rats with epilepsy compared to control rats. During the reperfusion period, a significant reduction in the QT interval (P<0.01) was verified in the epilepsy group in relation to the control group. Our results indicate that rats submitted to an epilepsy model induced by pilocarpine presented electrical conductivity alterations of cardiac tissue, mainly during an AMI episode

  18. Niacin deficiency delays DNA excision repair and increases spontaneous and nitrosourea-induced chromosomal instability in rat bone marrow.

    Science.gov (United States)

    Kostecki, Lisa M; Thomas, Megan; Linford, Geordie; Lizotte, Matthew; Toxopeus, Lori; Bartleman, Anne-Pascale; Kirkland, James B

    2007-12-01

    We have shown that niacin deficiency impairs poly(ADP-ribose) formation and enhances sister chromatid exchanges and micronuclei formation in rat bone marrow. We designed the current study to investigate the effects of niacin deficiency on the kinetics of DNA repair following ethylation, and the accumulation of double strand breaks, micronuclei (MN) and chromosomal aberrations (CA). Weanling male Long-Evans rats were fed niacin deficient (ND), or pair fed (PF) control diets for 3 weeks. We examined repair kinetics by comet assay in the 36h following a single dose of ethylnitrosourea (ENU) (30mg/kg bw). There was no effect of ND on mean tail moment (MTM) before ENU treatment, or on the development of strand breaks between 0 and 8h after ENU. Repair kinetics between 12 and 30h were significantly delayed by ND, with a doubling of area under the MTM curve during this period. O(6)-ethylation of guanine peaked by 1.5h, was largely repaired by 15h, and was also delayed in bone marrow cells from ND rats. ND significantly enhanced double strand break accumulation at 24h after ENU. ND alone increased chromosome and chromatid breaks (four- and two-fold). ND alone caused a large increase in MN, and this was amplified by ENU treatment. While repair kinetics suggest that ND may be acting by creating catalytically inactive PARP molecules with a dominant-negative effect on repair processes, the effect of ND alone on O(6)-ethylation, MN and CA, in the absence of altered comet results, suggests additional mechanisms are also leading to chromosomal instability. These data support the idea that the bone marrow cells of niacin deficient cancer patients may be more sensitive to the side effects of genotoxic chemotherapy, resulting in acute bone marrow suppression and chronic development of secondary leukemias.

  19. Desipramine increases cardiac parasympathetic activity via α2-adrenergic mechanism in rats.

    Science.gov (United States)

    Kawada, Toru; Akiyama, Tsuyoshi; Shimizu, Shuji; Fukumitsu, Masafumi; Kamiya, Atsunori; Sugimachi, Masaru

    2017-07-01

    Desipramine (DMI) is a blocker of neuronal norepinephrine (NE) uptake transporter. Although intravenous DMI has been shown to cause centrally-mediated sympathoinhibition and peripheral NE accumulation, its parasympathetic effect remains to be elucidated. We hypothesized that intravenous DMI activates the cardiac vagal nerve via an α 2 -adrenergic mechanism. Using a cardiac microdialysis technique, changes in myocardial interstitial acetylcholine (ACh) levels in the left ventricular free wall in response to intravenous DMI (1mg·kg -1 ) were examined in anesthetized rats. In rats with intact vagi (n=7), intravenous DMI increased ACh from 1.67±0.43 to 2.48±0.66nM (Padrenergic stimulation in experimental settings in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Long-term treatment with peony glycosides reverses chronic unpredictable mild stress-induced depressive-like behavior via increasing expression of neurotrophins in rat brain.

    Science.gov (United States)

    Mao, Qing-Qiu; Xian, Yan-Fang; Ip, Siu-Po; Tsai, Sam-Hip; Che, Chun-Tao

    2010-07-11

    The root part of Paeonia lactiflora Pall., commonly known as peony, is a commonly used Chinese herb for the treatment of depression-like disorders. Previous studies in our laboratory have showed that total glycosides of peony (TGP) produced antidepressant-like action in various mouse models of behavioral despair. The present study aimed to investigate the mechanism(s) underlying the antidepressant-like action of TGP by measuring neurotrophins including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in non-stressed and chronic unpredictable mild stress (CUMS)-treated rats. TGP (80 or 160 mg/kg/day) was administered by oral gavage to the animals for 5 weeks. The results showed that CUMS caused depression-like behavior in rats, as indicated by the significant decreases in sucrose consumption and locomotor activity (assessed by open-field test). In addition, it was found that BDNF contents in the hippocampus and frontal cortex were significantly decreased in CUMS-treated rats. CUMS treatment also significantly decreased the level of NGF in the frontal cortex of the animals. Daily intragastric administration of TGP (80 or 160 mg/kg/day) during the five weeks of CUMS significantly suppressed behavioral and biochemical changes induced by CUMS. Treating non-stressed animals with TGP (160 mg/kg) for 5 weeks also significantly increased BDNF contents in the hippocampus and frontal cortex, and NGF contents in the frontal cortex. The results suggest that the antidepressant-like action of TGP is mediated, at least in part, by increasing the expression of BDNF and NGF in selective brain tissues. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Maternal omega-3 supplementation increases fat mass in male and female rat offspring

    Directory of Open Access Journals (Sweden)

    Beverly Sara Muhlhausler

    2011-07-01

    Full Text Available Adipogenesis and lipogenesis are highly sensitive to the nutritional environment in utero and in early postnatal life. Omega-3 long chain polyunsaturated fatty acids (LCPUFA inhibit adipogenesis and lipogenesis in adult rats, however it is not known whether supplementing the maternal diet with omega-3 LCPUFA results in reduced fat deposition in the offspring. Female Albino Wistar rats were fed either a standard chow (Control, n=10 or chow designed to provide ~15mg/kg/day of omega-3 LCPUFA, chiefly as docosahexaenoic acid (DHA, throughout pregnancy and lactation (Omega-3, n=11 and all pups were weaned onto a commercial rat chow. Blood and tissues were collected from pups at 3wks and 6wks of age and weights of visceral and subcutaneous fat depots recorded. The expression of adipogenic and lipogenic genes in the subcutaneous and visceral fat depots were determined using qRT-PCR. Birth weight and postnatal growth were not different between groups. At 6 weeks of age, total percentage body fat was significantly increased in both male (5.09 ± 0.32% vs 4.56 ± 0.2%, P<0.04 and female (5.15 ± 0.37% vs 3.89 ± 0.36%, P<0.04 offspring of omega-3 dams compared to controls. The omega-3 LCPUFA content of erythrocyte phospholipids (as a % of total fatty acids was higher in omega-3 offspring (6.7 ± 0.2 % vs 5.6 ± 0.2%, P<0.001. There was no effect of maternal omega-3 LCPUFA supplementation on the expression of adipogenic or lipogenic genes in the offspring in either the visceral or subcutaneous fat depots. We have therefore established that an omega-3 rich environment during pregnancy and lactation in a rodent model increases fat accumulation in both male and female offspring, particularly in subcutaneous depots, but that this effect is not mediated via upregulation adipogenic/lipogenic gene transcription. These data suggest that maternal n-3 LCPUFA supplementation during pregnancy/lactation may not be an effective strategy for reducing fat deposition in

  2. Does maternal exposure to artificial food coloring additives increase oxidative stress in the skin of rats?

    Science.gov (United States)

    Başak, K; Başak, P Y; Doğuç, D K; Aylak, F; Oğuztüzün, S; Bozer, B M; Gültekin, F

    2017-10-01

    Glutathione-S-transferase (GST) and cytochrome P450 family 1 subfamily A polypeptide 1 (CYP1A1) metabolize and detoxify carcinogens, drugs, environmental pollutants, and reactive oxygen species. Changes of GST expression in tissues and gene mutations have been reported in association with many neoplastic skin diseases and dermatoses. Widely used artificial food coloring additives (AFCAs) also reported to effect primarily behavioral and cognitive function and cause neoplastic diseases and several inflammatory skin diseases. We aimed to identify the changes in expression of GSTs, CYP1A1, and vascular endothelial growth factor (VEGF) in rat skin which were maternally exposed AFCAs. A rat model was designed to evaluate the effects of maternal exposure of AFCAs on skin in rats. "No observable adverse effect levels" of commonly used AFCAs as a mixture were given to female rats before and during gestation. Immunohistochemical expression of GSTs, CYP1A1, and VEGF was evaluated in their offspring. CYP1A1, glutathione S-transferase pi (GSTP), glutathione S-transferase alpha (GSTA), glutathione S-transferase mu (GSTM), glutathione S-transferase theta (GSTT), and VEGF were expressed by epidermal keratinocytes, dermal fibroblasts, sebaceous glands, hair follicle, and subcutaneous striated muscle in the normal skin. CYP1A1, GSTA, and GSTT were expressed at all microanatomical sites of skin in varying degrees. The expressions of CYP1A1, GSTA, GSTT, and VEGF were decreased significantly, while GSTM expression on sebaceous gland and hair follicle was increased. Maternal exposure of AFCAs apparently effects expression of the CYP1A1, GSTs, and VEGF in the skin. This prominent change of expressions might play role in neoplastic and nonneoplastic skin diseases.

  3. Dietary supplementation of soy germ phytoestrogens or estradiol improves spatial memory performance and increases gene expression of BDNF, TrkB receptor and synaptic factors in ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Li Zhuoneng

    2010-09-01

    Full Text Available Abstract Background Estrogen or phytoestrogens treatment has been suggested to improve cognitive function of the brain in postmenopausal women. However, there is lack of information on the mechanism of such treatment on the central nervous system. The present study aimed to determine the effects of estradiol and soy germ phytoestrogens on spatial memory performance in ovariectomized rats and to explore the underlying mechanisms affecting the central nervous system. Methods Ovariectomized Sprague-Dawley rats were fed a basic diet supplemented with soy germ phytoestrogens (0.4 g/kg or 1.6 g/kg or 17β-estradiol (0.15 g/kg for 12 weeks. At the end of the experiment, animals were evaluated for their spatial learning and memory performance by the Morris Water Maze task. The expressions of brain-derived neurotrophic factor (BDNF and synaptic formation proteins in the hippocampal tissue were estimated using RT-PCR and ELISA. Results It was found that rats supplemented with soy germ phytoestrogens or estradiol performed significantly better in spatial memory acquisition and retention when compared to the rats fed on the control diet. Estradiol or the high dose of phytoestrogens treatment significantly increased BDNF concentration and the mRNA levels for BDNF and its TrkB receptors as well as the synaptic formation proteins, synaptophysin, spinophilin, synapsin 1 and PSD-95, in the hippocampal tissue of the experimental animals. It was also found that phytoestrogens, in contrast to estradiol, did not show any significant effect on the vaginal and uteri. Conclusion Soy germ phytoestrogens, which may be a substitute of estradiol, improved spatial memory performance in ovariectomized rats without significant side-effects on the vaginal and uteri. The memory enhancement effect may relate to the increase in BDNF and the synaptic formation proteins expression in the hippocampus of the brain.

  4. Regional gray matter volume increases following 7days of voluntary wheel running exercise: a longitudinal VBM study in rats.

    Science.gov (United States)

    Sumiyoshi, Akira; Taki, Yasuyuki; Nonaka, Hiroi; Takeuchi, Hikaru; Kawashima, Ryuta

    2014-09-01

    The effects of physical exercise on brain morphology in rodents have been well documented in histological studies. However, to further understand when and where morphological changes occur in the whole brain, a noninvasive neuroimaging method allowing an unbiased, comprehensive, and longitudinal investigation of brain morphology should be used. In this study, we investigated the effects of 7days of voluntary wheel running exercise on regional gray matter volume (rGMV) using longitudinal voxel-based morphometry (VBM) in rats. Eighteen pairs of adult male naïve Wistar rats were randomized to the exercise or control condition (one rat for each condition from each pair). Each rat was scanned in a 7.0-T MRI scanner at three time points: before exercise, after 7days of exercise, and after 7days of follow-up. The T2-weighted MRI images were segmented using the rat brain tissue priors that were recently published by our laboratory, and the intra- and inter-subject template creation steps were followed. Longitudinal VBM analysis revealed significant increases in rGMV in the motor, somatosensory, association, and visual cortices in the exercise group. Among these brain regions, rGMV changes in the motor cortex were positively correlated with the total distance that was run during the 7days of exercise. In addition, the effects of 7days of exercise on rGMV persisted after 7days of follow-up. These results support the utility of a longitudinal VBM study in rats and provide new insights into experience-dependent structural brain plasticity in naïve adult animals. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes.

    Science.gov (United States)

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-11-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes.

  6. Food restriction increases acquisition, persistence and drug prime-induced expression of a cocaine-conditioned place preference in rats.

    Science.gov (United States)

    Zheng, Danielle; Cabeza de Vaca, Soledad; Carr, Kenneth D

    2012-01-01

    Cocaine conditioned place preference (CPP) is more persistent in food-restricted than ad libitum fed rats. This study assessed whether food restriction acts during conditioning and/or expression to increase persistence. In Experiment 1, rats were food-restricted during conditioning with a 7.0 mg/kg (i.p.) dose of cocaine. After the first CPP test, half of the rats were switched to ad libitum feeding for three weeks, half remained on food restriction, and this was followed by CPP testing. Rats tested under the ad libitum feeding condition displayed extinction by the fifth test. Their CPP did not reinstate in response to overnight food deprivation or a cocaine prime. Rats maintained on food restriction displayed a persistent CPP. In Experiment 2, rats were ad libitum fed during conditioning with the 7.0 mg/kg dose. In the first test only a trend toward CPP was displayed. Rats maintained under the ad libitum feeding condition did not display a CPP during subsequent testing and did not respond to a cocaine prime. Rats tested under food-restriction also did not display a CPP, but expressed a CPP following a cocaine prime. In Experiment 3, rats were ad libitum fed during conditioning with a 12.0 mg/kg dose. After the first test, half of the rats were switched to food restriction for three weeks. Rats that were maintained under the ad libitum condition displayed extinction by the fourth test. Their CPP was not reinstated by a cocaine prime. Rats tested under food-restriction displayed a persistent CPP. These results indicate that food restriction lowers the threshold dose for cocaine CPP and interacts with a previously acquired CPP to increase its persistence. In so far as CPP models Pavlovian conditioning that contributes to addiction, these results suggest the importance of diet and the physiology of energy balance as modulatory factors. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Hippocampal synapsin I, growth-associated protein-43, and microtubule-associated protein-2 immunoreactivity in learned helplessness rats and antidepressant-treated rats.

    Science.gov (United States)

    Iwata, M; Shirayama, Y; Ishida, H; Kawahara, R

    2006-09-01

    Learned helplessness rats are thought to be an animal model of depression. To study the role of synapse plasticity in depression, we examined the effects of learned helplessness and antidepressant treatments on synapsin I (a marker of presynaptic terminals), growth-associated protein-43 (GAP-43; a marker of growth cones), and microtubule-associated protein-2 (MAP-2; a marker of dendrites) in the hippocampus by immunolabeling. (1) Learned helplessness rats showed significant increases in the expression of synapsin I two days after the attainment of learned helplessness, and significant decreases in the protein expression eight days after the achievement of learned helplessness. Subchronic treatment of naïve rats with imipramine or fluvoxamine significantly decreased the expression of synapsin I. (2) Learned helplessness increased the expression of GAP-43 two days and eight days after learned helplessness training. Subchronic treatment of naïve rats with fluvoxamine but not imipramine showed a tendency to decrease the expression of synapsin I. (3) Learned helplessness rats showed increased expression of MAP-2 eight days after the attainment of learned helplessness. Naïve rats subchronically treated with imipramine showed a tendency toward increased expression of MAP-2, but those treated with fluvoxamine did not. These results indicate that the neuroplasticity-related proteins synapsin I, GAP-43, and MAP-2 may play a role in the pathophysiology of depression and the mechanisms of antidepressants.

  8. Fetal rat metabonome alteration by prenatal caffeine ingestion probably due to the increased circulatory glucocorticoid level and altered peripheral glucose and lipid metabolic pathways

    International Nuclear Information System (INIS)

    Liu, Yansong; Xu, Dan; Feng, Jianghua; Kou, Hao; Liang, Gai; Yu, Hong; He, Xiaohua; Zhang, Baifang; Chen, Liaobin; Magdalou, Jacques; Wang, Hui

    2012-01-01

    The aims of this study were to clarify the metabonome alteration in fetal rats after prenatal caffeine ingestion and to explore the underlying mechanism pertaining to the increased fetal circulatory glucocorticoid (GC). Pregnant Wistar rats were daily intragastrically administered with different doses of caffeine (0, 20, 60 and 180 mg/kg) from gestational days (GD) 11 to 20. Metabonome of fetal plasma and amniotic fluid on GD20 were analyzed by 1 H nuclear magnetic resonance-based metabonomics. Gene and protein expressions involved in the GC metabolism, glucose and lipid metabolic pathways in fetal liver and gastrocnemius were measured by real-time RT-PCR and immunohistochemistry. Fetal plasma metabonome were significantly altered by caffeine, which presents as the elevated α- and β‐glucose, reduced multiple lipid contents, varied apolipoprotein contents and increased levels of a number of amino acids. The metabonome of amniotic fluids showed a similar change as that in fetal plasma. Furthermore, the expressions of 11β-hydroxysteroid dehydrogenase 2 (11β-HSD-2) were decreased, while the level of blood GC and the expressions of 11β-HSD-1 and glucocorticoid receptor (GR) were increased in fetal liver and gastrocnemius. Meanwhile, the expressions of insulin-like growth factor 1 (IGF-1), IGF-1 receptor and insulin receptor were decreased, while the expressions of adiponectin receptor 2, leptin receptors and AMP-activated protein kinase α2 were increased after caffeine treatment. Prenatal caffeine ingestion characteristically change the fetal metabonome, which is probably attributed to the alterations of glucose and lipid metabolic pathways induced by increased circulatory GC, activated GC metabolism and enhanced GR expression in peripheral metabolic tissues. -- Highlights: ► Prenatal caffeine ingestion altered the metabonome of IUGR fetal rats. ► Caffeine altered the glucose and lipid metabolic pathways of IUGR fetal rats. ► Prenatal caffeine ingestion

  9. Urinary excretion of epidermal growth factor and Tamm-Horsfall protein in three rat models with increased renal excretion of urine

    DEFF Research Database (Denmark)

    Thulesen, J; Jørgensen, P E; Torffvit, O

    1997-01-01

    were examined in three groups of rats with increased renal excretion of urine: uninephrectomy, non-osmotic polyuria and diabetic osmotic polyuria. Twenty-four hour urine samples were obtained after 7, 14 and 21 days. The urinary volume per kidney was doubled in uninephrectomy when compared to controls....... There was a seven-fold increase in urinary volume in rats with non-osmotic polyuria and diabetic osmotic polyuria, as compared to controls. Uninephrectomy, non-osmotic polyuria and diabetes all affected the urinary excretion of EGF and THP differently. The EGF excretion in uninephrectomized rats was 60......-80% of that of the controls, whereas THP excretion was unchanged, indicating that EGF excretion varied with renal tissue mass. Non-osmotic polyuria caused a five-fold increase in THP excretion but no change in EGF excretion. THP excretion in the diabetic rats was increased three-fold after 21 days when compared to controls...

  10. Marked increase in rat red blood cell membrane protein glycosylation by one-month treatment with a cafeteria diet

    Directory of Open Access Journals (Sweden)

    Laia Oliva

    2015-07-01

    Full Text Available Background and Objectives. Glucose, an aldose, spontaneously reacts with protein amino acids yielding glycosylated proteins. The compounds may reorganize to produce advanced glycosylation products, which regulatory importance is increasingly being recognized. Protein glycosylation is produced without the direct intervention of enzymes and results in the loss of function. Glycosylated plasma albumin, and glycosylated haemoglobin are currently used as index of mean plasma glucose levels, since higher glucose availability results in higher glycosylation rates. In this study we intended to detect the early changes in blood protein glycosylation elicited by an obesogenic diet.Experimental Design. Since albumin is in constant direct contact with plasma glucose, as are the red blood cell (RBC membranes, we analyzed their degree or glycosylation in female and male rats, either fed a standard diet or subjected to a hyper-energetic self-selected cafeteria diet for 30 days. This model produces a small increase in basal glycaemia and a significant increase in body fat, leaving the animals in the initial stages of development of metabolic syndrome. We also measured the degree of glycosylation of hemoglobin, and the concentration of glucose in contact with this protein, that within the RBC. Glycosylation was measured by colorimetric estimation of the hydroxymethylfurfural liberated from glycosyl residues by incubation with oxalate.Results. Plasma glucose was higher in cafeteria diet and in male rats, both independent effects. However, there were no significant differences induced by sex or diet in either hemoglobin or plasma proteins. Purified RBC membranes showed a marked effect of diet: higher glycosylation in cafeteria rats, which was more marked in females (not in controls. In any case, the number of glycosyl residues per molecule were higher in hemoglobin than in plasma proteins (after correction for molecular weight. The detected levels of glucose in

  11. Relatedness decreases and reciprocity increases cooperation in Norway rats.

    Science.gov (United States)

    Schweinfurth, Manon K; Taborsky, Michael

    2018-03-14

    Kin selection and reciprocity are two mechanisms underlying the evolution of cooperation, but the relative importance of kinship and reciprocity for decisions to cooperate are yet unclear for most cases of cooperation. Here, we experimentally tested the relative importance of relatedness and received cooperation for decisions to help a conspecific in wild-type Norway rats ( Rattus norvegicus ). Test rats provided more food to non-kin than to siblings, and they generally donated more food to previously helpful social partners than to those that had refused help. The rats thus applied reciprocal cooperation rules irrespective of relatedness, highlighting the importance of reciprocal help for cooperative interactions among both related and unrelated conspecifics. © 2018 The Author(s).

  12. Changes in Ghrelin-Related Factors in Gastroesophageal Reflux Disease in Rats

    Directory of Open Access Journals (Sweden)

    Miwa Nahata

    2013-01-01

    Full Text Available To examine gastrointestinal hormone profiles and functional changes in gastroesophageal reflux disease (GERD, blood levels of the orexigenic hormone ghrelin were measured in rats with experimentally induced GERD. During the experiment, plasma acyl ghrelin levels in GERD rats were higher than those in sham-operated rats, although food intake was reduced in GERD rats. Although plasma levels of the appetite-suppressing hormone leptin were significantly decreased in GERD rats, no changes were observed in cholecystokinin levels. Repeated administration of rat ghrelin to GERD rats had no effect on the reduction in body weight or food intake. Therefore, these results suggest that aberrantly increased secretion of peripheral ghrelin and decreased ghrelin responsiveness may occur in GERD rats. Neuropeptide Y and agouti-related peptide mRNA expression in the hypothalamus of GERD rats was significantly increased, whereas proopiomelanocortin mRNA expression was significantly decreased compared to that in sham-operated rats. However, melanin-concentrating hormone (MCH and prepro-orexin mRNA expression in the hypothalamus of GERD rats was similar to that in sham-operated rats. These results suggest that although GERD rats have higher plasma ghrelin levels, ghrelin signaling in GERD rats may be suppressed due to reduced MCH and/or orexin synthesis in the hypothalamus.

  13. Increased risk of cataract development in WNIN-obese rats due to accumulation of intralenticular sorbitol.

    Science.gov (United States)

    Reddy, Paduru Yadagiri; Giridharan, Nappan Veettil; Balakrishna, Nagalla; Validandi, Vakdevi; Pullakhandam, Raghu; Reddy, Geereddy Bhanuprakash

    2013-05-01

    Epidemiological studies have reported an association between obesity and increased incidence of ocular complications including cataract, yet the underlying biochemical and molecular mechanisms remained unclear. Previously we had demonstrated accumulation of sorbitol in the lens of obese rats (WNIN/Ob) and more so in a related strain with impaired glucose tolerance (WNIN/GR-Ob). However, only a few (15-20%) WNIN/Ob and WNIN/GR-Ob rats develop cataracts spontaneously with age. To gain further insights, we investigated the susceptibility of eye lens proteins of these obese rat strains to heat- and UV-induced aggregation in vitro, lens opacification upon glucose-mediated sorbitol accumulation ex vivo, and onset and progression of cataract was followed by galactose feeding and streptozotocin (STZ) injection. The results indicated increased susceptibility toward heat- or UV-induced aggregation of lens proteins in obese animals compared to their littermate lean controls. Further, in organ culture studies glucose-induced sorbitol accumulation was found to be higher and thus the lens opacification was faster in obese animals compared to their lean littermates. Also, the onset and progression of galactose- or STZ-induced cataractogenesis was faster in obese animals compared to lean control. These results together with our previous observations suggest that obesity status could lead to hyperaccumulation of sorbitol in eye lens, predisposing them to cataract, primarily by increasing their susceptibility to environmental and/or physiological factors. Further, intralenticular sorbitol accumulation beyond a threshold level could lead to cataract in WNIN/Ob and WNIN/GR-Ob rats. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  14. The increase elimination rate of tritium after administration of furosemide in rats

    International Nuclear Information System (INIS)

    Chirovici, Maria; Jiquidi, Luminita; Reviu, Eugen

    2001-01-01

    It is well known that tritium has certain characteristics that present serious problems for dosimetry and health risk assessment. National Council on Radiation Protection recommends for persons contaminated with tritium oral intake of fluid (e.g. water, fruit juice, tea, coffee or beer), or instillation with 5 % glucose under a doctor's care, together with daily urinary monitoring. This paper tries to follow up the increase elimination rate of tritium in contaminated rats after administration of furosemide, a diuretic used in medical practice. The experiments has been realized on the Wistar rats divided into two groups. First, the control group was contaminated with 3 HHO by intraperitoneal (i.p.) inoculation. The second group was treated with 3 doses of 5.70 mg furosemide (i.p.) body weight at 2, 6 and 12 hours after i.p. inoculation with 3 HHO. Following exposure, the tritium elimination in excreta was monitored 18 days and blood, liver, muscle and kidney were extracted from rats at 1, 2, 4, 7, 11, 18 days after contamination. The excreta and tissues were analyzed with specific tritium radiochemical methods and the samples radioactivity was measured by liquid scintillation technique. Efficiency of treatment was about 30 %. (authors)

  15. Formoterol attenuates increased oxidative stress and myosin protein loss in respiratory and limb muscles of cancer cachectic rats

    Directory of Open Access Journals (Sweden)

    Anna Salazar-Degracia

    2017-12-01

    Full Text Available Muscle mass loss and wasting are characteristic features of patients with chronic conditions including cancer. Therapeutic options are still scarce. We hypothesized that cachexia-induced muscle oxidative stress may be attenuated in response to treatment with beta2-adrenoceptor-selective agonist formoterol in rats. In diaphragm and gastrocnemius of tumor-bearing rats (108 AH-130 Yoshida ascites hepatoma cells inoculated intraperitoneally with and without treatment with formoterol (0.3 mg/kg body weight/day for seven days, daily subcutaneous injection, redox balance (protein oxidation and nitration and antioxidants and muscle proteins (1-dimensional immunoblots, carbonylated proteins (2-dimensional immunoblots, inflammatory cells (immunohistochemistry, and mitochondrial respiratory chain (MRC complex activities were explored. In the gastrocnemius, but not the diaphragm, of cancer cachectic rats compared to the controls, protein oxidation and nitration levels were increased, several functional and structural proteins were carbonylated, and in both study muscles, myosin content was reduced, inflammatory cell counts were greater, while no significant differences were seen in MRC complex activities (I, II, and IV. Treatment of cachectic rats with formoterol attenuated all the events in both respiratory and limb muscles. In this in vivo model of cancer-cachectic rats, the diaphragm is more resistant to oxidative stress. Formoterol treatment attenuated the rise in oxidative stress in the limb muscles, inflammatory cell infiltration, and the loss of myosin content seen in both study muscles, whereas no effects were observed in the MRC complex activities. These findings have therapeutic implications as they demonstrate beneficial effects of the beta2 agonist through decreased protein oxidation and inflammation in cachectic muscles, especially the gastrocnemius.

  16. Lack of evidence for increased tolerance of rat spinal cord with decreasing fraction doses below 2 Gy

    International Nuclear Information System (INIS)

    Ang, K.K.; van der Kogel, A.J.; van der Schueren, E.

    1985-01-01

    The radiation tolerance of the spinal cord, both in man and in rats, has been shown to depend strongly on the size of the dose per fraction. With fraction doses down to about 2 Gy, the spinal cord tolerance can be predicted by a modified Ellis formula. More recently alternative isoeffect formulas were based on the linear-quadratic (LQ) model of cell survival where the effect of dose fractionation is characterized by the ratio α/β which varies from tissue to tissue. For the spinal cord, as well as for other late responding tissues, the ratio α/β is small, in contrast to most acutely responding tissues. Both the Ellis-type formula, and to a lesser extent the LQ-model, predict a continuously increasing tolerance dose with decreasing fraction size. From previous experiments on the rat cervical spinal cord with doses per fraction down to about 2 Gy, the ratio α/β was determined to be 1.7 Gy, and the LQ-model would predict a rise in tolerance with a reduction in fraction size to far below 2 Gy. Based on these predictions clinical studies have been initiated assuming a significantly increased tolerance by reduction of fraction size to about 1 Gy. However, in the present experiments no evidence was found for such an increase in tolerance with fraction sizes below 2 Gy

  17. Increased ghrelin but low ghrelin-reactive immunoglobulins in a rat model of methotrexate chemotherapy-induced anorexia

    Directory of Open Access Journals (Sweden)

    Marie François

    2016-07-01

    Full Text Available Background and aims: Cancer chemotherapy is commonly accompanied by mucositis, anorexia, weight loss and anxiety independently from cancer-induced anorexia-cachexia, further aggravating clinical outcome. Ghrelin is a peptide hormone produced in gastric mucosa that reaches the brain to stimulate appetite. In plasma, ghrelin is protected from degradation by ghrelin-reactive immunoglobulins (Ig. To analyze possible involvement of ghrelin in the chemotherapy-induced anorexia and anxiety, gastric ghrelin expression, plasma levels of ghrelin and ghrelin-reactive IgG were studied in rats treated with methotrexate (MTX.Methods: Rats received MTX (2.5 mg/kg, S.C. for three consecutive days and were killed 3 days later, at the peak of anorexia and weight loss. Control rats received phosphate-buffered saline. Preproghrelin mRNA expression in the stomach was analyzed by in situ hybridization. Plasma levels of ghrelin and ghrelin-reactive IgG were measured by immunoenzymatic assays and IgG affinity kinetics by surface plasmon resonance. Anxiety- and depression-like behaviors in MTX-treated anorectic and in control rats were evaluated in the elevated plus-maze and the forced-swim test, respectively.Results: In MTX-treated anorectic rats the number of preproghrelin mRNA-producing cells was found increased (by 51.3%, p<0.001 as well were plasma concentrations of both ghrelin and des-acyl-ghrelin (by 70.4%, p<0.05 and 98.3%, p<0.01, respectively. In contrast, plasma levels of total IgG reactive with ghrelin and des-acyl-ghrelin were drastically decreased (by 87.2% and 88.4%, respectively, both p<0.001, and affinity kinetics of these IgG were characterized by increased small and big Kd, respectively. MTX-treated rats displayed increased anxiety- but not depression-like behavior.Conclusion: MTX-induced anorexia, weight loss and anxiety are accompanied by increased ghrelin production and by a decrease of ghrelin-reactive IgG levels and affinity binding properties

  18. Fasting and exercise increase plasma cannabinoid levels in THC pre-treated rats: an examination of behavioural consequences.

    Science.gov (United States)

    Wong, Alexander; Keats, Kirily; Rooney, Kieron; Hicks, Callum; Allsop, David J; Arnold, Jonathon C; McGregor, Iain S

    2014-10-01

    Δ(9)-Tetrahydrocannabinol (THC), the main psychoactive constituent of cannabis, accumulates in fat tissue where it can remain for prolonged periods. Under conditions of increased fat utilisation, blood cannabinoid concentrations can increase. However, it is unclear whether this has behavioural consequences. Here, we examined whether rats pre-treated with multiple or single doses of THC followed by a washout would show elevated plasma cannabinoids and altered behaviour following fasting or exercise manipulations designed to increase fat utilisation. Behavioural impairment was measured as an inhibition of spontaneous locomotor activity or a failure to successfully complete a treadmill exercise session. Fat utilisation was indexed by plasma free fatty acid (FFA) levels with plasma concentrations of THC and its terminal metabolite (-)-11-nor-9-carboxy-∆(9)-tetrahydrocannabinol (THC-COOH) also measured. Rats given daily THC (10 mg/kg) for 5 days followed by a 4-day washout showed elevated plasma THC-COOH when fasted for 24 h relative to non-fasted controls. Fasted rats showed lower locomotor activity than controls suggesting a behavioural effect of fat-released THC. However, rats fasted for 20 h after a single 5-mg/kg THC injection did not show locomotor suppression, despite modestly elevated plasma THC-COOH. Rats pre-treated with THC (5 mg/kg) and exercised 20 h later also showed elevated plasma THC-COOH but did not differ from controls in their likelihood of completing 30 min of treadmill exercise. These results confirm that fasting and exercise can increase plasma cannabinoid levels. Behavioural consequences are more clearly observed with pre-treatment regimes involving repeated rather than single THC dosing.

  19. Esculetin Ameliorates Carbon Tetrachloride-Mediated Hepatic Apoptosis in Rats

    Directory of Open Access Journals (Sweden)

    Chuan-Sung Chiu

    2011-06-01

    Full Text Available Esculetin (ESC is a coumarin that is present in several plants such as Fraxinus rhynchophylla and Artemisia capillaris. Our previous study found that FR ethanol extract (FREtOH significantly ameliorated rats’ liver function. This study was intended to investigate the protective mechanism of ESC in hepatic apoptosis in rats induced by carbon tetrachloride. Rat hepatic apoptosis was induced by oral administration of CCl4. All rats were administered orally with CCl4 (20%, 0.5 mL/rat twice a week for 8 weeks. Rats in the ESC groups were treated daily with ESC, and silymarin group were treated daily with silymarin. Serum alanine aminotransferase (ALT, aspartate aminotransferase (AST as well as the activities of the anti-oxidative enzymes glutathione peroxidase (GPx, superoxide dismutase (SOD, and catalase in the liver were measured. In addition, expression of liver apoptosis proteins and anti-apoptotic proteins were detected. ESC (100, 500 mg/kg significantly reduced the elevated activities of serum ALT and AST caused by CCl4 and significantly increased the activities of catalase, GPx and SOD. Furthermore, ESC (100, 500 mg/kg significantly decreased the levels of the proapoptotic proteins (t-Bid, Bak and Bad and significantly increased the levels of the anti-apoptotic proteins (Bcl-2 and Bcl-xL. ESC inhibited the release of cytochrome c from mitochondria. In addition, the levels of activated caspase-9 and activated caspase-3 were significantly decreased in rats treated with ESC than those in rats treated with CCl4 alone. ESC significantly reduced CCl4-induced hepatic apoptosis in rats.

  20. Increase of ATP-sensitive potassium (KATP channels in the heart of type-1 diabetic rats

    Directory of Open Access Journals (Sweden)

    Chen Zhih-Cherng

    2012-01-01

    Full Text Available Abstract Background An impairment of cardiovascular function in streptozotocin (STZ-diabetic rats has been mentioned within 5 days-to-3 months of induction. ATP-sensitive potassium (KATP channels are expressed on cardiac sarcolemmal membranes. It is highly responsive to metabolic fluctuations and can have effects on cardiac contractility. The present study attempted to clarify the changes of cardiac KATP channels in diabetic disorders. Methods Streptozotocin-induced diabetic rats and neonatal rat cardiomyocytes treated with a high concentration of glucose (a D-glucose concentration of 30 mM was used and cells were cultured for 24 hr were used to examine the effect of hyperglycemia on cardiac function and the expression of KATP channels. KATP channels expression was found to be linked to cardiac tonic dysfunction, and we evaluated the expression levels of KATP channels by Western blot and Northern blot analysis. Results The result shows diazoxide produced a marked reduction of heart rate in control group. Furthermore, the methods of Northern blotting and Western blotting were employed to identify the gene expression of KATP channel. Two subunits of cardiac KATP channel (SUR2A and kir 6.2 were purchased as indicators and showed significantly decreased in both diabetic rats and high glucose treated rat cardiac myocytes. Correction of hyperglycemia by insulin or phlorizin restored the gene expression of cardiac KATP in these diabetic rats. Conclusions Both mRNA and protein expression of cardiac KATP channels are decreased in diabetic rats induced by STZ for 8 weeks. This phenomenon leads to result in desensitization of some KATP channel drugs.

  1. Borax counteracts genotoxicity of aluminum in rat liver.

    Science.gov (United States)

    Turkez, Hasan; Geyikoğlu, Fatime; Tatar, Abdulgani

    2013-10-01

    This study was carried out to evaluate the protective role of borax (BX) on genotoxicity induced by aluminum (Al) in rat liver, using liver micronucleus assay as an indicator of genotoxicity. Sprague-Dawley rats were randomly separated into six groups and each group had four animals. Aluminum chloride (AlCl₃; 5 mg/kg b.w.) and BX (3.25 and 13 mg/kg b.w.) were injected intraperitoneally to rats. Besides, animals were also treated with Al for 4 consecutive days followed by BX for 10 days. Rats were anesthetized after Al and BX injections and the hepatocytes were isolated for counting the number of micronucleated hepatocytes (MNHEPs). AlCl₃ was found to significantly (p < 0.05) increase the number of MNHEPs. Rats treated with BX, however, showed no increase in MNHEPs. Moreover, simultaneous treatments with BX significantly modulated the genotoxic effects of AlCl₃ in rats. It can be concluded that BX has beneficial influences and has the ability to antagonize Al toxicity.

  2. L-carnitine significantly decreased aging of rat adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Mobarak, Halimeh; Fathi, Ezzatollah; Farahzadi, Raheleh; Zarghami, Nosratollah; Javanmardi, Sara

    2017-03-01

    Mesenchymal stem cells are undifferentiated cells that have the ability to divide continuously and tissue regeneration potential during the transplantation. Aging and loss of cell survival, is one of the main problems in cell therapy. Since the production of free radicals in the aging process is effective, the use of antioxidant compounds can help in scavenging free radicals and prevent the aging of cells. The aim of this study is evaluate the effects of L-carnitine (LC) on proliferation and aging of rat adipose tissue-derived mesenchymal stem cells (rADSC). rADSCs were isolated from inguinal region of 5 male Rattus rats. Oil red-O, alizarin red-S and toluidine blue staining were performed to evaluate the adipogenic, osteogenic and chondrogenic differentiation of rADSCs, respectively. Flow cytometric analysis was done for investigating the cell surface markers. The methyl thiazol tetrazolium (MTT) method was used to determine the cell proliferation of rADSCs following exposure to different concentrations of LC. rADSCs aging was evaluated by beta-galactosidase staining. The results showed significant proliferation of rADSCs 48 h after treatment with concentrations of 0.2 mM LC. In addition, in the presence of 0.2 mM LC, rADSCs appeared to be growing faster than control group and 0.2 mM LC supplementation could significantly decrease the population doubling time and aging of rADSCs. It seems that LC would be a good antioxidant to improve lifespan of rADSCs due to the decrease in aging.

  3. Acute hyperammonemia and systemic inflammation is associated with increased extracellular brain adenosine in rats

    DEFF Research Database (Denmark)

    Bjerring, Peter Nissen; Dale, Nicholas; Larsen, Fin Stolze

    2015-01-01

    ) and cerebral blood flow (CBF). We measured the adenosine concentration with biosensors in rat brain slices exposed to ammonia and in a rat model with hyperammonemia and systemic inflammation. Exposure to ammonia in concentrations from 0.15-10 mM led to increases in the cortical adenosine concentration up to 18......Acute liver failure (ALF) can lead to brain edema, cerebral hyperperfusion and intracranial hypertension. These complications are thought to be mediated by hyperammonemia and inflammation leading to altered brain metabolism. As increased levels of adenosine degradation products have been found...... in brain tissue of patients with ALF we investigated whether hyperammonemia could induce adenosine release in brain tissue. Since adenosine is a potent vasodilator and modulator of cerebral metabolism we furthermore studied the effect of adenosine receptor ligands on intracranial pressure (ICP...

  4. Increased numbers of orexin/hypocretin neurons in a genetic rat depression model

    DEFF Research Database (Denmark)

    Mikrouli, Elli; Wörtwein, Gitta; Soylu, Rana

    2011-01-01

    The Flinders Sensitive Line (FSL) rat is a genetic animal model of depression that displays characteristics similar to those of depressed patients including lower body weight, decreased appetite and reduced REM sleep latency. Hypothalamic neuropeptides such as orexin/hypocretin, melanin......-concentrating hormone (MCH) and cocaine and amphetamine regulated transcript (CART), that are involved in the regulation of both energy metabolism and sleep, have recently been implicated also in depression. We therefore hypothesized that alterations in these neuropeptide systems may play a role in the development...... of the FSL phenotype with both depressive like behavior, metabolic abnormalities and sleep disturbances. In this study, we first confirmed that the FSL rats displayed increased immobility in the Porsolt forced swim test compared to their control strain, the Flinders Resistant Line (FRL), which is indicative...

  5. Regular nicotine intake increased tooth movement velocity, osteoclastogenesis and orthodontically induced dental root resorptions in a rat model

    Science.gov (United States)

    Kirschneck, Christian; Maurer, Michael; Wolf, Michael; Reicheneder, Claudia; Proff, Peter

    2017-01-01

    Orthodontic forces have been reported to significantly increase nicotine-induced periodontal bone loss. At present, however, it is unknown, which further (side) effects can be expected during orthodontic treatment at a nicotine exposure corresponding to that of an average European smoker. 63 male Fischer344 rats were randomized in three consecutive experiments of 21 animals each (A/B/C) to 3 experimental groups (7 rats, 1/2/3): (A) cone-beam-computed tomography (CBCT); (B) histology/serology; (C) reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR)/cotinine serology—(1) control; (2) orthodontic tooth movement (OTM) of the first and second upper left molar (NiTi closed coil spring, 0.25 N); (3) OTM with 1.89 mg·kg−1 per day s.c. of L(−)-nicotine. After 14 days of OTM, serum cotinine and IL-6 concentration as well as orthodontically induced inflammatory root resorption (OIIRR), osteoclast activity (histology), orthodontic tooth movement velocity (CBCT, within 14 and 28 days of OTM) and relative gene expression of known inflammatory and osteoclast markers were quantified in the dental-periodontal tissue (RT–qPCR). Animals exposed to nicotine showed significantly heightened serum cotinine and IL-6 levels corresponding to those of regular European smokers. Both the extent of root resorption, osteoclast activity, orthodontic tooth movement and gene expression of inflammatory and osteoclast markers were significantly increased compared to controls with and without OTM under the influence of nicotine. We conclude that apart from increased periodontal bone loss, a progression of dental root resorption and accelerated orthodontic tooth movement are to be anticipated during orthodontic therapy, if nicotine consumption is present. Thus patients should be informed about these risks and the necessity of nicotine abstinence during treatment. PMID:28960194

  6. Hesperetin Modifies the Composition of Fecal Microbiota and Increases Cecal Levels of Short-Chain Fatty Acids in Rats.

    Science.gov (United States)

    Unno, Tomonori; Hisada, Takayoshi; Takahashi, Shunsuke

    2015-09-16

    There has been particular interest in the prebiotic-like effects of commonly consumed polyphenols. This study aimed to evaluate the effects of hesperidin (HD) and its aglycone hesperetin (HT), major flavonoids in citrus fruits, on the structure and activity of gut microbiota in rats. Rats ingested an assigned diet (a control diet, a 0.5% HT diet, or a 1.0% HD diet) for 3 weeks. Terminal restriction fragment length polymorphism analysis revealed that the proportion of Clostridium subcluster XIVa in the feces collected at the third week of feeding was significantly reduced by the HT diet: 19.8 ± 4.3% for the control diet versus 5.3 ± 1.5% for the HT diet (P acids (SCFA), the sum of acetic, propionic, and butyric acids, between the control diet (212 ± 71 μmol) and the HT diet (310 ± 51 μmol) (P HD diet exhibited no effects (245 ± 51 μmol). Interestingly, dietary HT resulted in a significant increase in the excretion of starch in the feces. HT, but not HD, might reduce starch digestion, and parts of undigested starch were utilized to produce SCFA by microbial fermentation in the large intestine.

  7. Taurine in the osmoregulation of the Brattleboro rat

    International Nuclear Information System (INIS)

    Nieminen, M.J.; Tuomisto, L.; Solatunturi, E.; Eriksson, L.; Paasonen, M.K.

    1988-01-01

    The function of taurine in mammalian osmoregulation was studied in the Brattleboro rat with hereditary hypothalamic diabetes insipidus (DI). DI rats are chronically dehydrated because of their inability to synthesize vasopressin. One day of water deprivation did not affect the water balance in rats with normal vasopressin synthesis, whereas DI rats were markedly dehydrated and lost considerably body weight. Taurine content and 3 H-taurine accumulation by platelets were significantly higher in DI rats, with a further increase after one day of water deprivation. In DI rats, water deprivation also evoked a clear taurine increase in skeletal muscle and in the brain. These findings indicate that taurine has an osmoregulatory function in mammals

  8. Effects of Sex and Stress on Trigeminal Neuropathic Pain-Like Behavior in Rats.

    Science.gov (United States)

    Korczeniewska, Olga Anna; Khan, Junad; Tao, Yuanxiang; Eliav, Eli; Benoliel, Rafael

    2017-01-01

    To investigate the effects and interactions of sex and stress (provoked by chronic restraint [RS]) on pain-like behavior in a rat model of trigeminal neuropathic pain. The effects of sex and RS (carried out for 14 days as a model for stress) on somatosensory measures (reaction to pinprick, von Frey threshold) in a rat model of trigeminal neuropathic pain were examined. The study design was 2 × 4, with surgery (pain) and sham surgery (no pain) interacting with male restrained (RS) and unrestrained (nRS) rats and female RS and nRS rats. A total of 64 Sprague Dawley rats (32 males and 32 females) were used. Half of the animals in each sex group underwent RS, and the remaining half were left unstressed. Following the RS period, trigeminal neuropathic pain was induced by unilateral infraorbital nerve chronic constriction injury (IOCCI). Half of the animals in the RS group and half in the nRS group (both males and females) were exposed to IOCCI, and the remaining halves to sham surgery. Elevated plus maze (EPM) assessment and plasma interferon gamma (IFN-γ) levels were used to measure the effects of RS. Analysis of variance (ANOVA) was used to assess the effects of stress, sex, and their interactions on plasma IFN-γ levels, changes in body weight, EPM parameters, tactile allodynia, and mechanohyperalgesia. Pairwise comparisons were performed by using Tukey post hoc test corrected for multiple comparisons. Both male and female RS rats showed significantly altered exploratory behavior (as measured by EPM) and had significantly lower plasma IFN-γ levels than nRS rats. Rats exposed to RS gained weight significantly slower than the nRS rats, irrespective of sex. Following RS but before surgery, RS rats showed significant bilateral reductions in von Frey thresholds and significantly increased pinprick response difference scores compared to nRS rats, irrespective of sex. From 17 days postsurgery, RSIOCCI rats showed significantly reduced von Frey thresholds and

  9. Bromocriptine increased operant responding for high fat food but decreased chow intake in both obesity-prone and resistant rats

    Energy Technology Data Exchange (ETDEWEB)

    Thanos, P.K.; Wang, G.; Thanos, P.K.; Cho, J. Kim, R.; Michaelides, M.; Primeaux, S.; Bray, G.; Wang, G.-J.; Volkow, N.D.

    2010-10-27

    Dopamine (DA) and DAD{sub 2} receptors (D2R) have been implicated in obesity and are thought to be involved in the rewarding properties of food. Osborne-Mendel (OM) rats are susceptible to diet induced obesity (DIO) while S5B/P (S5B) rats are resistant when given a high-fat diet. Here we hypothesized that the two strains would differ in high-fat food self-administration (FSA) and that the D2R agonist bromocriptine (BC) would differently affect their behavior. Ad-libitum fed OM and S5B/P rats were tested in a FSA operant chamber and were trained to lever press for high-fat food pellets under a fixed-ratio (FR1) and a progressive ratio (PR) schedule. After sixteen days of PR sessions, rats were treated with three different doses of BC (1, 10 and 20 mg/kg). No significant differences were found between the two strains in the number of active lever presses. BC treatment (10 mg/kg and 20 mg/kg) increased the number of active lever presses (10 mg/kg having the strongest effect) whereas it decreased rat chow intake in the home cage with equivalent effects in both strains. These effects were not observed on the day of BC administration but on the day following its administration. Our results suggest that these two strains have similar motivation for procuring high fat food using this paradigm. BC increased operant responding for high-fat pellets but decreased chow intake in both strains, suggesting that D2R stimulation may have enhanced the motivational drive to procure the fatty food while correspondingly decreasing the intake of regular food. These findings suggest that susceptibility to dietary obesity (prior to the onset of obesity) may not affect operant motivation for a palatable high fat food and that differential susceptibility to obesity may be related to differential sensitivity to D2R stimulation.

  10. Metformin increases liver accumulation of vitamin B12 - An experimental study in rats

    DEFF Research Database (Denmark)

    Greibe, E; Miller, J W; Foutouhi, S H

    2013-01-01

    AIMS/HYPOTHESIS: Patients treated with metformin exhibit low levels of plasma vitamin B(12) (B(12)), and are considered at risk for developing B(12) deficiency. In this study, we investigated the effect of metformin treatment on B(12) uptake and distribution in rats. METHODS: Sprague Dawley rats (n...... that metformin has no decreasing effect on the B(12) absorption. CONCLUSIONS/INTERPRETATION: These results show that metformin treatment increases liver accumulation of B(12), thereby resulting in decreases in circulating B(12) and kidney accumulation of the vitamin. Our data questions whether the low plasma B......(12) observed in patients treated with metformin reflects impaired B(12) status, and rather suggests altered tissue distribution and metabolism of the vitamin....

  11. Lamotrigine increases the number of BrdU-labeled cells in the rat hippocampus

    DEFF Research Database (Denmark)

    Kondziella, Daniel; Strandberg, Joakim; Lindquist, Catarina

    2011-01-01

    Antidepressant medication and electroconvulsive therapy stabilize mood symptoms and increase hippocampal neurogenesis. We examined whether lamotrigine, suggested to give rise to mood-stabilizing and antidepressant effects in addition to its antiepileptic properties, also increases the number of n...... in the granule cell layer of the dentate gyrus showed an increased number of newborn cells in rats receiving lamotrigine (42.6 ± 3.5 cells/slice) compared with valproate (31.6 ± 2.8) and controls (32.2 ± 3.1; P...

  12. Food consumption and activity levels increase in rats following intranasal Hypocretin-1.

    Science.gov (United States)

    Dhuria, Shyeilla V; Fine, Jared M; Bingham, Deborah; Svitak, Aleta L; Burns, Rachel B; Baillargeon, Amanda M; Panter, Scott S; Kazi, Abdul N; Frey, William H; Hanson, Leah R

    2016-08-03

    Hypocretin-1 (HC, orexin-A) is a neuropeptide involved in regulating physiological functions of sleep, appetite and arousal, and it has been shown that intranasal (IN) administration can target HC to the brain. Recent clinical studies have shown that IN HC has functional effects in human clinical trials. In this study, we use rats to determine whether IN HC has an immediate effect on food consumption and locomotor activity, whether distribution in the brain after IN delivery is dose-dependent, and whether MAPK and PDK1 are affected after IN delivery. Food intake and wheel-running activity were quantified for 24h after IN delivery. Biodistribution was determined 30min after IN delivery of both a high and low dose of 125I-radiolabelled HC throughout the brain and other bodily tissues, while Western blots were used to quantify changes in cell signaling pathways (MAPK and PDK1) in the brain. Intranasal HC significantly increased food intake and wheel activity within 4h after delivery, but balanced out over the course of 24h. The distribution studies showed dose-dependent delivery in the CNS and peripheral tissues, while PDK1 was significantly increased in the brain 30min after IN delivery of HC. This study adds to the growing body of evidence that IN administration of HC is a promising strategy for treatment of HC related behaviors. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Antihypertensive Effect of Radix Paeoniae Alba in Spontaneously Hypertensive Rats and Excessive Alcohol Intake and High Fat Diet Induced Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Chen Su-Hong

    2015-01-01

    Full Text Available Radix Paeoniae Alba (Baishao, RPA has long been used in traditional Chinese medicine formulation to treat hypertension by repression the hyperfunction of liver. However, whether the RPA itself has the antihypertensive effect or not is seldom studied. This study was to evaluate the protective effect of RPA on hypertensive rats. Alcohol in conjunction with a high fat diet- (ACHFD- induced hypertensive rats and spontaneously hypertensive rats (SHR was constantly received either RPA extract (25 or 75 mg/kg or captopril (15 mg/kg all along the experiments. As a result, RPA extract (75 mg/kg could significantly reduce systolic blood pressure of both ACHFD-induced hypertensive rats and SHR after 9-week or 4-week treatment. In ACHFD-induced hypertensive rats, the blood pressure was significantly increased and the lipid profiles in serum including triglyceride, total cholesterol, LDL-cholesterol, and HDL-cholesterol were significantly deteriorated. Also, hepatic damage was manifested by a significant increase in alanine transaminase (ALT and aspartate transaminase (AST in serum. The RPA extract significantly reversed these parameters, which revealed that it could alleviate the liver damage of rats. In SHR, our result suggested that the antihypertensive active of RPA extract may be related to its effect on regulating serum nitric oxide (NO and endothelin (ET levels.

  14. Thermoregulatory responses to acute heat loads in rats following spontaneous running.

    Science.gov (United States)

    Sugimoto, N; Shido, O; Sakurada, S; Nagasaka, T

    1999-02-01

    Earlier studies showed that spontaneous exercise training in rodents shifted their core temperature and thermoeffector thresholds to high levels. The present study investigated heat loss and heat production responses to acute heat loads of exercise-trained rats. The exercise-trained rats were allowed to run in a running wheel freely for 6 months, while the sedentary controls were denied access to the wheel during the same period. Then, they were loosely restrained and put in a direct calorimeter. After thermal equilibrium had been attained, they were warmed for 30 min with an intraperitoneal electric heater (internal heating). At least 2 h later, the rats were externally warmed for 90 min by raising the ambient temperature from 24 to 38C (external warming). Hypothalamic temperature (Thy), evaporative and nonevaporative heat loss (R+C+K) and heat production were measured. Internal and external heating significantly increased Thy. During internal heating, the magnitude of the increase in Thy was significantly smaller and the amount of increase in (R+C+K) was significantly greater in the exercise-trained rats than in the controls. The slope showing the relationship between Thy and (R+C+K) in the trained rats was significantly steeper than that in the controls. During external warming, the magnitude of increase in Thy of the exercise-trained rats was significantly greater than that of the controls. The slope showing the relationship between Thy and (R+C+K) in the trained rats was not different from that in the controls. Changes in evaporative heat loss and heat production during the two types of heat load did not differ between the two groups. The results suggest that, in rats, exercise training with voluntary running improves heat tolerance through enhancing nonevaporative heat loss response. However, this may be the case only when the rats are subjected to a direct internal heat load.

  15. Adolescent social isolation does not lead to persistent increases in anxiety- like behavior or ethanol intake in female long-evans rats.

    Science.gov (United States)

    Butler, Tracy R; Carter, Eugenia; Weiner, Jeffrey L

    2014-08-01

    Clinically, early life stress and anxiety disorders are associated with increased vulnerability for alcohol use disorders. In male rats, early life stress, imparted by adolescent social isolation, results in long-lasting increases in a number of behavioral risk factors for alcoholism, including greater anxiety-like behaviors and ethanol (EtOH) intake. Several recent studies have begun to use this model to gain insight into the relationships among anxiety measures, stress, EtOH intake, and neurobiological correlates driving these behaviors. As prior research has noted significant sex differences in the impact of adolescent stress on anxiety measures and EtOH drinking, the current study was conducted to determine if this same model produces an "addiction vulnerable" phenotype in female rodents. Female Long Evans rats were socially isolated (SI; 1/cage) or group housed (GH; 4/cage) for 6 weeks during adolescence. After this housing manipulation, behavioral assessment was conducted using the elevated plus maze, response to novelty in an open field environment, and the light/dark box. After behavioral testing, home cage EtOH drinking was assessed across an 8-week period. No group differences were detected in any of the behavioral measures of unconditioned anxiety-like behavior. Greater EtOH intake and preference were observed in SI females but these differences did not persist. The SI/GH model, which results in robust and enduring increases in anxiety measures and EtOH self-administration in male Long Evans rats, did not result in similar behavioral changes in female rats. These data, and that of others, suggest that adolescent social isolation is not a useful model with which to study neurobiological substrates linking antecedent anxiety and addiction vulnerability in female rats. Given the compelling epidemiological evidence that the relationship between chronic adolescent stress and alcohol addiction is particularly strong in women, there is clearly an urgent need

  16. Peony glycosides reverse the effects of corticosterone on behavior and brain BDNF expression in rats.

    Science.gov (United States)

    Mao, Qing-Qiu; Huang, Zhen; Ip, Siu-Po; Xian, Yan-Fang; Che, Chun-Tao

    2012-02-01

    Repeated injections of corticosterone (CORT) induce the dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, resulting in depressive-like behavior. This study aimed to examine the antidepressant-like effect and the possible mechanisms of total glycosides of peony (TGP) in the CORT-induced depression model in rats. The results showed that the 3-week CORT injections induced the significant increase in serum CORT levels in rats. Repeated CORT injections also caused depression-like behavior in rats, as indicated by the significant decrease in sucrose consumption and increase in immobility time in the forced swim test. Moreover, it was found that brain-derived neurotrophic factor (BDNF) protein levels in the hippocampus and frontal cortex were significantly decreased in CORT-treated rats. Treatment of the rats with TGP significantly suppressed the depression-like behavior and increased brain BDNF levels in CORT-treated rats. The results suggest that TGP produces an antidepressant-like effect in CORT-treated rats, which is possibly mediated by increasing BDNF expression in the hippocampus and frontal cortex. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Inhalation developmental toxicology studies: Acetonitrile in rats. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mast, T.J.; Weigel, R.J.; Westerberg, R.B.; Boyd, P.J.; Hayden, B.K.; Evanoff, J.J.; Rommereim, R.L.

    1994-02-01

    The potential for acetonitrile to cause developmental toxicity was assessed in Sprague-Dawley rats exposed to 0, 100, 400, or 1200 ppM acetonitrile, 6 hours/day, 7 days/week. Exposure of rats to these concentrations of acetonitrile resulted in mortality in the 1200 ppM group (2/33 pregnant females; 1/10 non-pregnant females). However, there were no treatment-related effects upon body weights or reproduction indices at any exposure level, nor was there a significant increase in the incidence of fetal malformations or variations. The only effect observed in the fetuses was a slight, but not statiscally significant, exposure-correlated increase in the incidence of supernumerary ribs. Determination of acetonitrile and cyanide concentrations in maternal rat blood showed that acetonitrile concentration in the blood increased with exposure concentration for all exposed maternal rats. Detectable amounts of cyanide in the blood were found only in the rats exposed to 1200 ppM acetonitrile ({approximately}2 {mu}g cyanide/g of blood).

  18. Magnesium absorption from mineral water decreases with increasing quantities of magnesium per serving in rats.

    Science.gov (United States)

    Nakamura, Eri; Tai, Hideyuki; Uozumi, Yoshinobu; Nakagawa, Koji; Matsui, Tohru

    2012-01-01

    It is hypothesized that magnesium (Mg) absorption from mineral water is affected by the concentration of Mg in the water, the consumption pattern, and the volume consumed per serving. The present study examined the effect of serving volume and consumption pattern of artificial mineral water (AMW) and Mg concentration on Mg absorption in rats. Magnesium in AMW was labeled with magnesium-25 as a tracer. Each group consisted of 6 or 7 rats. In experiment 1, the rats received 1 mL of AMW containing 200 mg Mg/L at 4 times, 400 mg Mg/L twice, or 800 mg Mg/L at 1 time. In experiment 2, the rats received 1 mL of AMW containing 200 mg Mg/L or 0.25 mL of AMW containing 800 mg Mg/L at 4 times or 1 mL of AMW containing 800 mg Mg/L at 1 time. The absorption of Mg decreased with increasing Mg concentrations in the same serving volume of AMW with different serving frequencies. When the AMW containing 800 mg Mg/L was portioned into 4 servings, Mg absorption increased to the level of absorption in the group exposed to AMW containing 200 mg Mg/L served at the same frequency. These results suggest that the Mg concentration and the volume of AMW do not affect Mg absorption per se, but Mg absorption from AMW decreases when the amount of Mg in each serving is increased. Thus, frequent consumption is preferable for mineral water rich in Mg when the total consumption of mineral water is the same. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Attenuation of arsenic neurotoxicity by curcumin in rats

    International Nuclear Information System (INIS)

    Yadav, Rajesh S.; Sankhwar, Madhu Lata; Shukla, Rajendra K.; Chandra, Ramesh; Pant, Aditya B.; Islam, Fakhrul; Khanna, Vinay K.

    2009-01-01

    In view of continued exposure to arsenic and associated human health risk including neurotoxicity, neuroprotective efficacy of curcumin, a polyphenolic antioxidant, has been investigated in rats. A significant decrease in locomotor activity, grip strength (26%) and rota-rod performance (82%) was observed in rats treated with arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) as compared to controls. The arsenic treated rats also exhibited a decrease in the binding of striatal dopamine receptors (32%) and tyrosine hydroxylase (TH) immunoreactivity (19%) in striatum. Increased arsenic levels in corpus striatum (6.5 fold), frontal cortex (6.3 fold) and hippocampus (7.0 fold) associated with enhanced oxidative stress in these brain regions, as evident by an increase in lipid perioxidation, protein carbonyl and a decrease in the levels of glutathione and activity of superoxide dismutase, catalase and glutathione peroxidase with differential effects were observed in arsenic treated rats compared to controls. Simultaneous treatment with arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) and curcumin (100 mg/kg body weight, p.o., 28 days) caused an increase in locomotor activity and grip strength and improved the rota-rod performance in comparison to arsenic treated rats. Binding of striatal dopamine receptors and TH expression increased while arsenic levels and oxidative stress decreased in these brain regions in co-treated rats as compared to those treated with arsenic alone. No significant effect on any of these parameters was observed in rats treated with curcumin (100 mg/kg body weight, p.o., 28 days) alone compared to controls. A significant protection in behavioral, neurochemical and immunohistochemical parameters in rats simultaneously treated with arsenic and curcumin suggest the neuroprotective efficacy of curcumin.

  20. Saw palmetto extract enhances erectile responses by inhibition of phosphodiesterase 5 activity and increase in inducible nitric oxide synthase messenger ribonucleic acid expression in rat and rabbit corpus cavernosum.

    Science.gov (United States)

    Yang, Surong; Chen, Changrui; Li, Yiying; Ren, Zhenghua; Zhang, Yungang; Wu, Gantong; Wang, Hao; Hu, Zhenzhen; Yao, Minghui

    2013-06-01

    To evaluate whether saw palmetto extract (SPE) relaxes corpus cavernosum and explore the underlying mechanisms. Forty Sprague-Dawley rats and 30 New Zealand rabbits were randomly allocated into 3 SPE-treated groups (low-, middle-, and high-dose) and 1 saline-treated control group. SPE was administered intragastrically for 7 consecutive days. Another 23 rats treated with sildenafil were used to appraise the erectile response to electrical stimulation of nerves in the corpus cavernosum. The erectile functions of rats and rabbits were evaluated 24 hours after the last SPE administration or 15 minutes after intragastric sildenafil. Outcome measures included corpus cavernosum electrical activity recording, phosphodiesterase 5 (PDE5) activity detected by the colorimetric quantitative method, and messenger ribonucleic acid (mRNA) expression level for PDE5 and inducible nitric oxide synthase (iNOS) determined using real-time polymerase chain reaction. In the SPE-treated animals, the relaxant response to electrical stimulation of nerves in the corpus cavernosum, reflected by the amplitude of the electrical activity within the cavernosum, was significantly and dose-dependently augmented. Similar effects were observed in the sildenafil-treated rats. PDE5 activity in rat and rabbit corpus cavernosum tissues was significantly and dose-dependently inhibited in SPE-treated animals, whereas the iNOS mRNA level increased compared with the saline group. PDE5 mRNA, however, was only significantly enhanced in the rats treated with the middle dose of SPE. The results suggest that SPE may have potential application value for the prevention or treatment of erectile dysfunction through an increase in iNOS mRNA expression and inhibition of PDE5 activity in corpus cavernosum smooth muscles. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Taurine reverses sodium fluoride-mediated increase in inflammation, caspase-3 activity, and oxidative damage along the brain-pituitary-gonadal axis in male rats.

    Science.gov (United States)

    Adedara, Isaac A; Olabiyi, Bolanle F; Ojuade, TeminiJesu D; Idris, Umar F; Onibiyo, Esther M; Farombi, Ebenezer O

    2017-09-01

    Excessive exposure to fluoride is associated with male reproductive dysfunction in humans and animals. Taurine (2-aminoethane sulfonic acid) is a free intracellular β-amino acid with antioxidant, anti-inflammatory, and neuroprotective properties. However, the effect of taurine on fluoride-induced reproductive toxicity has not been reported. The present study investigated the influence of taurine on sodium fluoride (NaF)-induced functional changes along the brain-pituitary-gonadal axis in male rats. NaF was administered singly in drinking water at 15 mg·L -1 alone or orally co-administered by gavage with taurine at 100 and 200 mg·(kg body mass) -1 for 45 consecutive days. Results showed that taurine significantly prevented NaF-induced increase in oxidative stress indices as well as augmented antioxidant enzymes activities and glutathione level in the brain, testes, and epididymis of the treated rats. Moreover, taurine reversed NaF-induced elevation in inflammatory biomarkers and caspase-3 activity as well as histological damage in the brain, testes, and epididymis of the treated rats. The significant reversal of NaF-induced decreases in testosterone level and testicular activities of acid phosphatase, alkaline phosphatase, and lactate dehydrogenase by taurine was accompanied by enhancement of sperm functional characteristics in the treated rats. Taurine may be a possible chemopreventive candidate against reproductive dysfunction resulting from fluoride exposure.

  2. Increased formic acid excretion and the development of kidney toxicity in rats following chronic dosing with trichloroethanol, a major metabolite of trichloroethylene

    International Nuclear Information System (INIS)

    Green, Trevor; Dow, Jacky; Foster, John

    2003-01-01

    The chronic toxicity of trichloroethanol, a major metabolite of trichloroethylene, has been assessed in male Fischer rats (60 per group) given trichloroethanol in drinking water at concentrations of 0, 0.5 and 1.0 g/l for 52 weeks. The rats excreted large amounts of formic acid in urine reaching a maximum after 12 weeks (∼65 mg/24 h at 1 g/l) and thereafter declining to reach an apparent steady state at 40 weeks (15-20 mg/24 h). Urine from treated rats was more acidic throughout the study and urinary methylmalonic acid and plasma N-methyltetrahydrofolate concentrations were increased, indicating an acidosis, vitamin B12 deficiency and impaired folate metabolism, respectively. The rats treated with trichloroethanol developed kidney damage over the duration of the study which was characterised by increased urinary NAG activity, protein excretion (from 4 weeks), increased basophilia, protein accumulation and tubular damage (from 12 to 40 weeks), increased cell replication (at week 28) and evidence in some rats of focal proliferation of abnormal tubules at 52 weeks. It was concluded that trichloroethanol, the major metabolite of trichloroethylene, induced nephrotoxicity in rats as a result of formic acid excretion and acidosis

  3. Maternal undernutrition significantly impacts ovarian follicle number and increases ovarian oxidative stress in adult rat offspring.

    Directory of Open Access Journals (Sweden)

    Angelica B Bernal

    Full Text Available BACKGROUND: We have shown recently that maternal undernutrition (UN advanced female pubertal onset in a manner that is dependent upon the timing of UN. The long-term consequence of this accelerated puberty on ovarian function is unknown. Recent findings suggest that oxidative stress may be one mechanism whereby early life events impact on later physiological functioning. Therefore, using an established rodent model of maternal UN at critical windows of development, we examined maternal UN-induced changes in offspring ovarian function and determined whether these changes were underpinned by ovarian oxidative stress. METHODOLOGY/PRINCIPAL FINDINGS: Our study is the first to show that maternal UN significantly reduced primordial and secondary follicle number in offspring in a manner that was dependent upon the timing of maternal UN. Specifically, a reduction in these early stage follicles was observed in offspring born to mothers undernourished throughout both pregnancy and lactation. Additionally, antral follicle number was reduced in offspring born to all mothers that were UN regardless of whether the period of UN was restricted to pregnancy or lactation or both. These reductions were associated with decreased mRNA levels of genes critical for follicle maturation and ovulation. Increased ovarian protein carbonyls were observed in offspring born to mothers UN during pregnancy and/or lactation and this was associated with peroxiredoxin 3 hyperoxidation and reduced mRNA levels; suggesting compromised antioxidant defence. This was not observed in offspring of mothers UN during lactation alone. CONCLUSIONS: We propose that maternal UN, particularly at a time-point that includes pregnancy, results in reduced offspring ovarian follicle numbers and mRNA levels of regulatory genes and may be mediated by increased ovarian oxidative stress coupled with a decreased ability to repair the resultant oxidative damage. Together these data are suggestive of

  4. Increasing intensity of TENS prevents analgesic tolerance in rats

    Science.gov (United States)

    Sato, Karina L.; Sanada, Luciana S.; Rakel, Barbara A.; Sluka, Kathleen A.

    2012-01-01

    Transcutaneous electrical nerve stimulation (TENS) reduces hyperalgesia and pain. Both low frequency (LF) and high frequency (HF) TENS, delivered at the same intensity (90% motor threshold (MT)) daily, result in analgesic tolerance with repeated use by the 5th day of treatment. Thecurrentstudytestedif 1) increasingintensityby 10% per daypreventsthedevelopmentoftolerance to repeated TENS, and 2) iflowerintensity TENS (50 % MT) produces an equivalentreduction in hyperalgesia when compared to 90% MT TENS. Sprague-Dawley rats with unilateral knee joint inflammation (3% carrageenan) were separated according to the intensity of TENS used: Sham, 50% LF, 50% HF, 90% LF, 90% HF, and increased intensity by 10% per day (LF and HF). The reduced mechanical withdrawal threshold following the induction of inflammation was reversed by application of TENS applied at 90% MT and increasing intensity for the first 4 days. On the 5th day, the groups that received 90% MT intensity showed tolerance. Nevertheless, the group that received an increased intensity on each day still showed a reversal of the mechanical withdrawal threshold with TENS. These results show that the development of tolerance can be delayed by increasing intensity of TENS. PMID:22858165

  5. Increase in Bcl2 expression of penile and prostate cells of Sprague Dawley male rats following treatment with buceng (combination of Pimpinella alpina molk with Eurycoma longifolia Jack

    Directory of Open Access Journals (Sweden)

    Taufiqurrachman Nasihun

    2015-04-01

    Full Text Available Background: Treatment with buceng combination of Eurycoma longifolia Jack and Pimpinella alpine Molk has been proven to increase testosterone level, decrease apoptosis and caspase3 expression. Bcl2 is an antiapoptotic protein found in cytoplasm which inhibits cells apoptosis. This study was aimed to investigate the effect of buceng on Bcl2 expression on penile and prostate tissues of the rats. Methods: In this experimental study, 24 male Sprague Dawley rats of 90 days old, weighing ± 300 grams, were randomly assigned into four groups. Group A, normal rats. Group B, castrated rats and treated with buceng 100 mg/day, per oral (Cast-Bcg; Group C, castrated rats and treated with 2 ml of water as placebo against buceng (Cast-Plac. Group D, castrated rats, treated with mesterolone 6.75 mg/day, per oral, as exogenous testosterone (Cast-Mest. All rats were treated for 30 days. Manova test was used to analyze the different expression of Bcl2 among groups with significance level at p ≤ 0.05. Results: Castration was associated with significant decrease of Bcl2 expression in the penile and prostate tissues (53.0 and 50.9%, respectively compared to normal rats (82.6 and 84.2%, respectively, p < 0.001. Treatment with mesterolone reversed Bcl2 expression (77.1 and 78.1% to a near normal level. The same level of Bcl2 expression was also observed with buceng treatment (73.8 and 78.2%.Conclusion: The treatment with buceng could enhance Bcl2 expression in penile and prostate tissues, comparable to normal rats and mesterolone treated rats.

  6. Global demethylation of rat chondrosarcoma cells after treatment with 5-aza-2'-deoxycytidine results in increased tumorigenicity.

    Directory of Open Access Journals (Sweden)

    Christopher A Hamm

    Full Text Available Abnormal patterns of DNA methylation are observed in several types of human cancer. While localized DNA methylation of CpG islands has been associated with gene silencing, the effect that genome-wide loss of methylation has on tumorigenesis is not completely known. To examine its effect on tumorigenesis, we induced DNA demethylation in a rat model of human chondrosarcoma using 5-aza-2-deoxycytidine. Rat specific pyrosequencing assays were utilized to assess the methylation levels in both LINEs and satellite DNA sequences following 5-aza-2-deoxycytidine treatment. Loss of DNA methylation was accompanied by an increase in invasiveness of the rat chondrosarcoma cells, in vitro, as well as by an increase in tumor growth in vivo. Subsequent microarray analysis provided insight into the gene expression changes that result from 5-aza-2-deoxycytidine induced DNA demethylation. In particular, two genes that may function in tumorigenesis, sox-2 and midkine, were expressed at low levels in control cells but upon 5-aza-2-deoxycytidine treatment these genes became overexpressed. Promoter region DNA analysis revealed that these genes were methylated in control cells but became demethylated following 5-aza-2-deoxycytidine treatment. Following withdrawal of 5-aza-2-deoxycytidine, the rat chondrosarcoma cells reestablished global DNA methylation levels that were comparable to that of control cells. Concurrently, invasiveness of the rat chondrosarcoma cells, in vitro, decreased to a level indistinguishable to that of control cells. Taken together these experiments demonstrate that global DNA hypomethylation induced by 5-aza-2-deoxycytidine may promote specific aspects of tumorigenesis in rat chondrosarcoma cells.

  7. Prenatal alcohol exposure increases postnatal acceptability of nicotine odor and taste in adolescent rats.

    Directory of Open Access Journals (Sweden)

    Nicole M Mantella

    Full Text Available Human studies indicate that alcohol exposure during gestation not only increases the chance for later alcohol abuse, but also nicotine dependence. The flavor attributes of both alcohol and nicotine can be important determinants of their initial acceptance and they both share the component chemosensory qualities of an aversive odor, bitter taste and oral irritation. There is a growing body of evidence demonstrating epigenetic chemosensory mechanisms through which fetal alcohol exposure increases adolescent alcohol acceptance, in part, by decreasing the aversion to alcohol's bitter and oral irritation qualities, as well as its odor. Given that alcohol and nicotine have noteworthy chemosensory qualities in common, we investigated whether fetal exposure to alcohol increased the acceptability of nicotine's odor and taste in adolescent rats. Study rats were alcohol-exposed during fetal development via the dams' liquid diet. Control animals received ad lib access to an iso-caloric, iso-nutritive diet throughout gestation. Odorant-induced innate behavioral responses to nicotine odor (Experiment 1 or orosensory-mediated responses to nicotine solutions (Experiment 2 were obtained, using whole-body plethysmography and brief access lick tests, respectively. Compared to controls, rats exposed to fetal alcohol showed an enhanced nicotine odor response that was paralleled by increased oral acceptability of nicotine. Given the common aversive component qualities imbued in the flavor profiles of both drugs, our findings demonstrate that like postnatal alcohol avidity, fetal alcohol exposure also influences nicotine acceptance, at a minimum, by decreasing the aversion of both its smell and taste. Moreover, they highlight potential chemosensory-based mechanism(s by which fetal alcohol exposure increases the later initial risk for nicotine use, thereby contributing to the co-morbid expression with enhanced alcohol avidity. Where common chemosensory mechanisms are

  8. Prenatal alcohol exposure increases postnatal acceptability of nicotine odor and taste in adolescent rats.

    Science.gov (United States)

    Mantella, Nicole M; Youngentob, Steven L

    2014-01-01

    Human studies indicate that alcohol exposure during gestation not only increases the chance for later alcohol abuse, but also nicotine dependence. The flavor attributes of both alcohol and nicotine can be important determinants of their initial acceptance and they both share the component chemosensory qualities of an aversive odor, bitter taste and oral irritation. There is a growing body of evidence demonstrating epigenetic chemosensory mechanisms through which fetal alcohol exposure increases adolescent alcohol acceptance, in part, by decreasing the aversion to alcohol's bitter and oral irritation qualities, as well as its odor. Given that alcohol and nicotine have noteworthy chemosensory qualities in common, we investigated whether fetal exposure to alcohol increased the acceptability of nicotine's odor and taste in adolescent rats. Study rats were alcohol-exposed during fetal development via the dams' liquid diet. Control animals received ad lib access to an iso-caloric, iso-nutritive diet throughout gestation. Odorant-induced innate behavioral responses to nicotine odor (Experiment 1) or orosensory-mediated responses to nicotine solutions (Experiment 2) were obtained, using whole-body plethysmography and brief access lick tests, respectively. Compared to controls, rats exposed to fetal alcohol showed an enhanced nicotine odor response that was paralleled by increased oral acceptability of nicotine. Given the common aversive component qualities imbued in the flavor profiles of both drugs, our findings demonstrate that like postnatal alcohol avidity, fetal alcohol exposure also influences nicotine acceptance, at a minimum, by decreasing the aversion of both its smell and taste. Moreover, they highlight potential chemosensory-based mechanism(s) by which fetal alcohol exposure increases the later initial risk for nicotine use, thereby contributing to the co-morbid expression with enhanced alcohol avidity. Where common chemosensory mechanisms are at play, our

  9. Low vagally-mediated heart rate variability and increased susceptibility to ventricular arrhythmias in rats bred for high anxiety.

    Science.gov (United States)

    Carnevali, Luca; Trombini, Mimosa; Graiani, Gallia; Madeddu, Denise; Quaini, Federico; Landgraf, Rainer; Neumann, Inga D; Nalivaiko, Eugene; Sgoifo, Andrea

    2014-04-10

    In humans, there is a documented association between anxiety disorders and cardiovascular disease. Putative underlying mechanisms may include an impairment of the autonomic nervous system control of cardiac function. The primary objective of the present study was to characterize cardiac autonomic modulation and susceptibility to arrhythmias in genetic lines of rats that differ largely in their anxiety level. To reach this goal, electrocardiographic recordings were performed in high-anxiety behavior (HAB, n=10) and low-anxiety behavior (LAB, n=10) rats at rest, during stressful stimuli and under autonomic pharmacological manipulations, and analyzed by means of time- and frequency-domain indexes of heart rate variability. During resting conditions, HAB rats displayed a reduced heart rate variability, mostly in terms of lower parasympathetic (vagal) modulation compared to LAB rats. In HAB rats, this relatively low cardiac vagal control was associated with smaller heart rate responsiveness to acute stressors compared to LAB counterparts. In addition, beta-adrenergic pharmacological stimulation induced a larger incidence of ventricular tachyarrhythmias in HABs compared to LABs. At sacrifice, a moderate increase in heart-body weight ratio was observed in HAB rats. We conclude that high levels of anxiety-related behavior in rats are associated with signs of i) impaired autonomic modulation of heart rate (low vagally-mediated heart rate variability), ii) poor adaptive heart rate responsiveness to stressful stimuli, iii) increased arrhythmia susceptibility, and iv) cardiac hypertrophy. These results highlight the utility of the HAB/LAB model for investigating the mechanistic basis of the comorbidity between anxiety disorders and cardiovascular disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Exendin-4 reduces tau hyperphosphorylation in type 2 diabetic rats via increasing brain insulin level.

    Science.gov (United States)

    Yang, Yan; Ma, Delin; Xu, Weijie; Chen, Fuqiong; Du, Tingting; Yue, Wenzhu; Shao, Shiying; Yuan, Gang

    2016-01-01

    Type 2 diabetes (T2D) is a high risk factor for Alzheimer's disease (AD). Our previous study identified that hyperphosphorylation of tau protein, which is one of the pathophysiologic hallmarks of AD, also occurred in T2D rats' brain; while glucagon-like peptide-1 (GLP-1) mimetics, a type of drug used in T2D, could decrease the phosphorylation of tau, probably via augmenting insulin signaling pathway. The purpose of this study was to further explore the mechanisms that underlie the effect of exendin-4 (ex-4, a GLP-1 receptor agonist) in reducing tau phosphorylation. We found that peripheral ex-4 injection in T2D rats reduced hyperphosphorylation of tau protein in rat hippocampus, probably via increasing hippocampal insulin which activated insulin signaling. Furthermore, we found that ex-4 could neither activate insulin signaling, nor reduce tau phosphorylation in HT22 neuronal cells in the absence of insulin. These results suggested that insulin is required in reduction of tau hyperphosphorylation by ex-4 in brain rats with T2D. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Melatonin attenuates prenatal dexamethasone-induced blood pressure increase in a rat model.

    Science.gov (United States)

    Tain, You-Lin; Chen, Chih-Cheng; Sheen, Jiunn-Ming; Yu, Hong-Ren; Tiao, Mao-Meng; Kuo, Ho-Chang; Huang, Li-Tung

    2014-04-01

    Although antenatal corticosteroid is recommended to accelerate fetal lung maturation, prenatal dexamethasone exposure results in hypertension in the adult offspring. Since melatonin is a potent antioxidant and has been known to regulate blood pressure, we examined the beneficial effects of melatonin therapy in preventing prenatal dexamethasone-induced programmed hypertension. Male offspring of Sprague-Dawley rats were assigned to four groups (n = 12/group): control, dexamethasone (DEX), control + melatonin, and DEX + melatonin. Pregnant rats received intraperitoneal dexamethasone (0.1 mg/kg) from gestational day 16 to 22. In the melatonin-treatment groups, rats received 0.01% melatonin in drinking water during their entire pregnancy and lactation. Blood pressure was measured by an indirect tail-cuff method. Gene expression and protein levels were analyzed by real-time quantitative polymerase chain reaction and Western blotting, respectively. At 16 weeks of age, the DEX group developed hypertension, which was partly reversed by maternal melatonin therapy. Reduced nephron numbers due to prenatal dexamethasone exposure were prevented by melatonin therapy. Renal superoxide and NO levels were similar in all groups. Prenatal dexamethasone exposure led to increased mRNA expression of renin and prorenin receptor and up-regulated histone deacetylase (HDAC)-1 expression in the kidneys of 4-month-old offspring. Maternal melatonin therapy augmented renal Mas protein levels in DEX + melatonin group, and increased renal mRNA expression of HDAC-1, HDAC-2, and HDAC-8 in control and DEX offspring. Melatonin attenuated prenatal DEX-induced hypertension by restoring nephron numbers, altering RAS components, and modulating HDACs. Copyright © 2014 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  12. Increased caries-incidence by oral inoculation of cariogenic bacteria in rats after dietary fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Clark, W.B.; Kreitzman, S.N.; Howell, T.H.

    1976-04-01

    The authors had previously observed that dietary NaF administered to rats during the formative and eruptive stages of tooth development does not significantly reduce the enamel solubility in acid buffer solution. They hypothesized that NaF reduces the cariogenicity of the bacterial flora. In order to test this hypothesis, rats from the same litter were divided into three groups all of which received a cariogenic diet. Group one received no fluoride. Groups two and three were supplemented with 50 ppm NaF, from day 1 to day 21. In the first study, one of the 21-day-old NaF-supplemented groups was inoculated by smears of fecal material from the control animals that did not receive NaF supplement. The second NaF group was not inoculated and served as control. In a second study, cariogenic Strep. mutans 6715 was used as the inoculum in place of the fecal smear. In both studies, the inoculation of a NaF group increased the caries to about 70% of the control group, while the mean scores on the non-inoculated NaF group were about 50% of the control group. These results indicate that alteration of the transmissible flora may be an important factor in the cariostatic action of dietary fluoride in experimental animals. This observation supports the suggestion that fluoride may alter the cariogenic flora.

  13. Dehydroepiandrosterone increases the number and dendrite maturation of doublecortin cells in the dentate gyrus of middle age male Wistar rats exposed to chronic mild stress.

    Science.gov (United States)

    Herrera-Pérez, J J; Martínez-Mota, L; Jiménez-Rubio, G; Ortiz-López, L; Cabrera-Muñoz, E A; Galindo-Sevilla, N; Zambrano, E; Hernández-Luis, F; Ramírez-Rodríguez, G B; Flores-Ramos, M

    2017-03-15

    Aging increases the vulnerability to stress and risk of developing depression. These changes have been related to a reduction of dehydroepiandrosterone (DHEA) levels, an adrenal steroid with anti-stress effects. Also, adult hippocampal neurogenesis decreases during aging and its alteration or impaired is related to the development of depression. Besides, it has been hypothesized that DHEA increases the formation of new neurons. However, it is unknown whether treatment with DHEA in aging may stimulate the dendrite maturation of newborn neurons and reversing depressive-like signs evoked by chronic stress exposure. Here aged male rats (14 months old) were subjected to a scheme of chronic mild stress (CMS) during six weeks, received a treatment with DHEA from the third week of CMS. Changes in body weight and sucrose preference (SP) were measured once a week. DHEA levels were measured in serum, identification of doublecortin-(DCX)-, BrdU- and BrdU/NeuN-labeled cells was done in the dentate gyrus of the hippocampus. CMS produced a gradual reduction in the body weight, but no changes in the SP were observed. Treatment enhanced levels of DHEA, but lack of recovery on body weight of stressed rats. Aging reduced the number of DCX-, BrdU- and BrdU/NeuN- cells but DHEA just significantly increased the number of DCX-cells in rats under CMS and controls, reaching levels of young non-stressed rats (used here as a reference of an optimal status of health). In rats under CMS, DHEA facilitated dendritic maturation of immature new neurons. Our results reveal that DHEA improves neural plasticity even in conditions of CMS in middle age rats. Thus, this hormone reverted the decrement of DCX-cells caused during normal aging. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Intake of Meat Proteins Substantially Increased the Relative Abundance of Genus Lactobacillus in Rat Feces

    Science.gov (United States)

    Zhu, Yingying; Lin, Xisha; Li, He; Li, Yingqiu; Shi, Xuebin; Zhao, Fan; Xu, Xinglian; Li, Chunbao; Zhou, Guanghong

    2016-01-01

    Diet has been shown to have a critical influence on gut bacteria and host health, and high levels of red meat in diet have been shown to increase colonic DNA damage and thus be harmful to gut health. However, previous studies focused more on the effects of meat than of meat proteins. In order to investigate whether intake of meat proteins affects the composition and metabolic activities of gut microbiota, feces were collected from growing rats that were fed with either meat proteins (from beef, pork or fish) or non-meat proteins (casein or soy) for 14 days. The resulting composition of gut microbiota was profiled by sequencing the V4-V5 region of the 16S ribosomal RNA genes and the short chain fatty acids (SCFAs) were analyzed using gas chromatography. The composition of gut microbiota and SCFA levels were significantly different between the five diet groups. At a recommended dose of 20% protein in the diet, meat protein-fed rats had a higher relative abundance of the beneficial genus Lactobacillus, but lower levels of SCFAs and SCFA-producing bacteria including Fusobacterium, Bacteroides and Prevotella, compared with the soy protein-fed group. Further work is needed on the regulatory pathways linking dietary protein intake to gut microbiota. PMID:27042829

  15. Intake of Meat Proteins Substantially Increased the Relative Abundance of Genus Lactobacillus in Rat Feces.

    Directory of Open Access Journals (Sweden)

    Yingying Zhu

    Full Text Available Diet has been shown to have a critical influence on gut bacteria and host health, and high levels of red meat in diet have been shown to increase colonic DNA damage and thus be harmful to gut health. However, previous studies focused more on the effects of meat than of meat proteins. In order to investigate whether intake of meat proteins affects the composition and metabolic activities of gut microbiota, feces were collected from growing rats that were fed with either meat proteins (from beef, pork or fish or non-meat proteins (casein or soy for 14 days. The resulting composition of gut microbiota was profiled by sequencing the V4-V5 region of the 16S ribosomal RNA genes and the short chain fatty acids (SCFAs were analyzed using gas chromatography. The composition of gut microbiota and SCFA levels were significantly different between the five diet groups. At a recommended dose of 20% protein in the diet, meat protein-fed rats had a higher relative abundance of the beneficial genus Lactobacillus, but lower levels of SCFAs and SCFA-producing bacteria including Fusobacterium, Bacteroides and Prevotella, compared with the soy protein-fed group. Further work is needed on the regulatory pathways linking dietary protein intake to gut microbiota.

  16. Intake of Meat Proteins Substantially Increased the Relative Abundance of Genus Lactobacillus in Rat Feces.

    Science.gov (United States)

    Zhu, Yingying; Lin, Xisha; Li, He; Li, Yingqiu; Shi, Xuebin; Zhao, Fan; Xu, Xinglian; Li, Chunbao; Zhou, Guanghong

    2016-01-01

    Diet has been shown to have a critical influence on gut bacteria and host health, and high levels of red meat in diet have been shown to increase colonic DNA damage and thus be harmful to gut health. However, previous studies focused more on the effects of meat than of meat proteins. In order to investigate whether intake of meat proteins affects the composition and metabolic activities of gut microbiota, feces were collected from growing rats that were fed with either meat proteins (from beef, pork or fish) or non-meat proteins (casein or soy) for 14 days. The resulting composition of gut microbiota was profiled by sequencing the V4-V5 region of the 16S ribosomal RNA genes and the short chain fatty acids (SCFAs) were analyzed using gas chromatography. The composition of gut microbiota and SCFA levels were significantly different between the five diet groups. At a recommended dose of 20% protein in the diet, meat protein-fed rats had a higher relative abundance of the beneficial genus Lactobacillus, but lower levels of SCFAs and SCFA-producing bacteria including Fusobacterium, Bacteroides and Prevotella, compared with the soy protein-fed group. Further work is needed on the regulatory pathways linking dietary protein intake to gut microbiota.

  17. Subchronic mild noise stress increases HRP permeability in rat small intestine in vitro

    NARCIS (Netherlands)

    Bijlsma, P. B.; van Raaij, M. T.; Dobbe, C. J.; Timmerman, A.; Kiliaan, A. J.; Taminiau, J. A.; Groot, J. A.

    2001-01-01

    Recently we reported an increased trans- and paracellular protein permeability in rat small intestine after acute cold restraint stress. In the present study, we applied randomized 95- or 105-dB white noise pulses during 45 min/h, 12 h/day, duration 8 days, as a milder, but more chronic stressor to

  18. Evolution from increased cardiac mechanical function towards cardiomyopathy in the obese rat due to unbalanced high fat and abundant equilibrated diets

    Directory of Open Access Journals (Sweden)

    Mourmoura Evangelia

    2015-07-01

    Full Text Available The aim of our study was to know whether high dietary energy intake (HDEI with equilibrated and unbalanced diets in term of lipid composition modify the fatty acid profile of cardiac phospholipids and function of various cardiac cells and to know if the changes in membrane lipid composition can explain the modifications of cellular activity. Wistar rats were fed either a control or high-fat (HF diet for 12 weeks and Zucker diabetic fatty (ZDF rats as well as their lean littermate (ZL a control diet between week 7 to 11 of their life. Energy intake and abdominal obesity was increased in HF-fed and ZDF rats. Circulating lipids were also augmented in both strains although hyperglycemia was noticed only in ZDF rats. HDEI induced a decrease in linoleate and increase in arachidonate in membrane phospholipids which was more pronounced in the ZDF rats compared to the HF-fed rats. In vivo cardiac function (CF was improved in HF-fed rats whereas ex vivo cardiac function was unchanged, suggesting that environmental factors such as catecholamines stimulated the in vivo CF. The unchanged ex vivo CF was associated with an increased cardiac mass which indicated development of fibrosis and/or hypertrophy. The increased in vivo CF was sustained by an augmented coronary reserve which was related to the cyclooxygenase pathway and accumulation of arachidonate in membrane phospholipids. In conclusion, before triggering a diabetic cardiomyopathy, HDEI stimulated the CF. The development of cardiomyopathy seems to result from fibrosis and/or hypertrophy which augments myocardial stiffness and decreases contractility.

  19. Increased bone calcium dissociation in lead-exposed rats

    Directory of Open Access Journals (Sweden)

    Eko Suhartono

    2012-12-01

    Full Text Available Background Lead is still a major environmental and occupational health hazard, since it is extensively used in the production of paints, gasoline and cosmetics. This causes the metal to be ubiquitous in the environment, being found in the air, soil, and water, from which it can enter the human body by inhalation or ingestion. Absorbed lead is capable of altering the calcium levels in bone. The aim of this study was to demonstrate the effect of lead on bone calcium levels by measuring the reaction constant, Gibbs free energy, and enthalpy. Methods This study was of pure experimental design using 100 male albino rats (Rattus norvegicus. The experimental animals were assigned by simple randomization to two groups, one group receiving lead acetate orally at a dosage of 100 mg/kgBW, while the other group did not receive lead acetate. The intervention was given for 4 weeks and the rats were observed weekly for measurement of bone calcium levels by the permanganometric method. Results This study found that k1 (hydroxyapatite dissociation rate constant was 0.90 x 10-3 dt-1, and that k2 (hydroxyapatite association rate constant was 6.16 x 10-3 dt-1 for the control group, whereas for the intervention group k1 = 26.20 x 10-3 dt-1 and k2 = 16.75 x 10-3 dt-1. Thermodynamically, the overall reaction was endergonic and endothermic (DG > 0 and DH > 0. ConclusionS Lead exposure results in increased dissociation rate of bone in comparison with its association rate. Overall, the reaction was endergonic and endothermic (DG > 0 and DH > 0.

  20. Increased bone calcium dissociation in lead-exposed rats

    Directory of Open Access Journals (Sweden)

    Eko Suhartono

    2015-12-01

    Full Text Available BACKGROUND Lead is still a major environmental and occupational health hazard, since it is extensively used in the production of paints, gasoline and cosmetics. This causes the metal to be ubiquitous in the environment, being found in the air, soil, and water, from which it can enter the human body by inhalation or ingestion. Absorbed lead is capable of altering the calcium levels in bone. The aim of this study was to demonstrate the effect of lead on bone calcium levels by measuring the reaction constant, Gibbs free energy, and enthalpy. METHODS This study was of pure experimental design using 100 male albino rats (Rattus norvegicus. The experimental animals were assigned by simple randomization to two groups, one group receiving lead acetate orally at a dosage of 100 mg/ kgBW, while the other group did not receive lead acetate. The intervention was given for 4 weeks and the rats were observed weekly for measurement of bone calcium levels by the permanganometric method. RESULTS This study found that k1 (hydroxyapatite dissociation rate constant was 0.90 x 10-3 dt-1, and that k2 (hydroxyapatite association rate constant was 6.16 x 10-3 dt-1 for the control group, whereas for the intervention group k1 = 26.20 x 10-3 dt-1 and k2 = 16.75 x 10-3 dt-1. Thermodynamically, the overall reaction was endergonic and endothermic (ΔG > 0 and ΔH > 0. CONCLUSIONS Lead exposure results in increased dissociation rate of bone in comparison with its association rate. Overall, the reaction was endergonic and endothermic (ΔG > 0 and ΔH > 0.

  1. ZINC-INDUCED HYPERLEPTINEMIA IN RATS RELATED TO THE AMELIORATION OF SUCROSE-INDUCED OBESITY WITH ZINC REPLETION

    International Nuclear Information System (INIS)

    HEIBASHY, M.I.; EL-NAHLA, A.M.; ASHOUR, I.; SALEH, SH.Y.A.

    2008-01-01

    Thirty adult albino rats (Rattus rattus) at 6 weeks of age were divided into three groups (ten for each). The first group was fed a standard laboratory diet for 8 weeks (control). The second group was made obese by giving them 32% sucrose solution in addition to the standard laboratory diet .The third group was received zinc supplementation (50 mg zinc acetate/ litre) with their sucrose solution. Body weight of all rats was measured weekly for 8 weeks. At 14 weeks of age, rats were killed and fasting blood samples were obtained. Serum glucose, insulin, cholesterol, triglyceride, leptin, tumour necrosis factor-α and zinc were measured.Results showed remarkable changes in body weights in sucrose fed rats only when compared to control and supplemented zinc rats group. Serum glucose, insulin, cholesterol and triglycerides were significantly increased in sucrose fed rats than both control and sucrose with zinc group. Serum leptin showed significant increase in sucrose fed rats than control and also showed higher significant value in sucrose fed rats supplemented with zinc comparing with sucrose fed rats and control ones. Tumour necrosis factor-? did not show any significant difference between all groups. Serum zinc concentration was decreased significantly in sucrose fed rats as compared to control. On the other hand, it was increased significantly in sucrose fed rats supplemented with zinc than other both groups. It could be concluded that zinc supplementation induced hyperleptinemia caused ameliorating effects in obese rats

  2. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes

    OpenAIRE

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-01-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-J...

  3. Fetal rat metabonome alteration by prenatal caffeine ingestion probably due to the increased circulatory glucocorticoid level and altered peripheral glucose and lipid metabolic pathways

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yansong [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Xu, Dan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan, 430071 (China); Feng, Jianghua, E-mail: jianghua.feng@xmu.edu.cn [Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071 (China); Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005 (China); Kou, Hao; Liang, Gai [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Yu, Hong; He, Xiaohua; Zhang, Baifang; Chen, Liaobin [Research Center of Food and Drug Evaluation, Wuhan University, Wuhan, 430071 (China); Magdalou, Jacques [UMR 7561 CNRS-Nancy Université, Faculté de Médicine, Vandoeuvre-lès-Nancy (France); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan, 430071 (China)

    2012-07-15

    The aims of this study were to clarify the metabonome alteration in fetal rats after prenatal caffeine ingestion and to explore the underlying mechanism pertaining to the increased fetal circulatory glucocorticoid (GC). Pregnant Wistar rats were daily intragastrically administered with different doses of caffeine (0, 20, 60 and 180 mg/kg) from gestational days (GD) 11 to 20. Metabonome of fetal plasma and amniotic fluid on GD20 were analyzed by {sup 1}H nuclear magnetic resonance-based metabonomics. Gene and protein expressions involved in the GC metabolism, glucose and lipid metabolic pathways in fetal liver and gastrocnemius were measured by real-time RT-PCR and immunohistochemistry. Fetal plasma metabonome were significantly altered by caffeine, which presents as the elevated α- and β‐glucose, reduced multiple lipid contents, varied apolipoprotein contents and increased levels of a number of amino acids. The metabonome of amniotic fluids showed a similar change as that in fetal plasma. Furthermore, the expressions of 11β-hydroxysteroid dehydrogenase 2 (11β-HSD-2) were decreased, while the level of blood GC and the expressions of 11β-HSD-1 and glucocorticoid receptor (GR) were increased in fetal liver and gastrocnemius. Meanwhile, the expressions of insulin-like growth factor 1 (IGF-1), IGF-1 receptor and insulin receptor were decreased, while the expressions of adiponectin receptor 2, leptin receptors and AMP-activated protein kinase α2 were increased after caffeine treatment. Prenatal caffeine ingestion characteristically change the fetal metabonome, which is probably attributed to the alterations of glucose and lipid metabolic pathways induced by increased circulatory GC, activated GC metabolism and enhanced GR expression in peripheral metabolic tissues. -- Highlights: ► Prenatal caffeine ingestion altered the metabonome of IUGR fetal rats. ► Caffeine altered the glucose and lipid metabolic pathways of IUGR fetal rats. ► Prenatal caffeine

  4. Influence of x irradiation and diet on pituitary/thyroid function in the rat

    International Nuclear Information System (INIS)

    Qassar, I.G.

    1979-01-01

    Rats were maintained on low iodine diet or treated with T 4 . A significant increase in thyroid weight was observed in rats on low iodine diet whereas among rats on normal diet with thyroxine injections, the thyroid was lower in weight than thyroids of control animals. Pituitary weight increased significantly in rats on low iodine diet or T 4 treatment. Labelling index was significantly higher in the group on low iodine diet. A significantly lower labelling index was observed after thyroxine treatment. Where PTU was administered to rats pretreated with either normal diet, normal diet plus T 4 , or maintained on low iodine diet and then exposed to radiation (100 to 400R) to the neck, it was not possible to distinguish the effect of such local radiation on body growth. The pre-radiation treatment did not have any effect on thyroid weight during two weeks post-radiation, suggesting that a four week post-radiation period is essential to elicit radiation effects on the thyroid. Contrary to low iodine treatment, administration of PTU did not result in any increase in pituitary weight in rats maintained on normal diet prior to radiation or in rats maintained on low iodine diet prior to radiation. There was, however, a significant increase in pituitary weight in rats injected with thyroxine prior to radiation (250R or 400R). A significant increase in serum TSH was observed two weeks after radiation and PTU treatment. A lower TSH level was observed, however, in the 250R sub-group (normal diet or T 4 injection) and in the 400R sub-group (low iodine diet). There was a significant difference among sham-irradiated and the three x-irradiated sub-groups maintained on low iodine diet. The results of these studies indicate that local x irradiation with 100 to 400R to the neck may influence thyroid/pituitary function in the rat

  5. Low-protein, high-carbohydrate diet increases glucose uptake and fatty acid synthesis in brown adipose tissue of rats.

    Science.gov (United States)

    Aparecida de França, Suélem; Pavani Dos Santos, Maísa; Nunes Queiroz da Costa, Roger Vinícius; Froelich, Mendalli; Buzelle, Samyra Lopes; Chaves, Valéria Ernestânia; Giordani, Morenna Alana; Pereira, Mayara Peron; Colodel, Edson Moleta; Marlise Balbinotti Andrade, Cláudia; Kawashita, Nair Honda

    2014-04-01

    The aim of this study was to evaluate glucose uptake and the contribution of glucose to fatty acid (FA) synthesis and the glycerol-3-phosphate (G3P) of triacylglycerol synthesis by interscapular brown adipose tissue (IBAT) of low-protein, high-carbohydrate (LPHC) diet-fed rats. LPHC (6% protein; 74% carbohydrate) or control (17% protein; 63% carbohydrate) diets were administered to rats (∼ 100 g) for 15 d. Total FA and G3P synthesis and the synthesis of FA and G3P from glucose were evaluated in vivo by (3)H2O and (14)C-glucose. Sympathetic neural contribution for FA synthesis was evaluated by comparing the synthesis in denervated (7 d before) IBAT with that of the contralateral innervated side. The insulin signaling and β3 adrenergic receptor (β3-AR) contents, as well as others, were determined by Western blot (Student's t test or analysis of variance; P ≤ 0.05). Total FA synthesis in IBAT was 133% higher in the LPHC group and was reduced 85% and 70% by denervation for the LPHC and control groups, respectively. Glucose uptake was 3.5-fold higher in the IBAT of LPHC rats than in that of the control rats, and the contribution of glucose to the total FA synthesis increased by 12% in control rats compared with 18% in LPHC rats. The LPHC diet increased the G3P generation from glucose by 270% and the insulin receptor content and the p-AKT insulin stimulation in IBAT by 120% and reduced the β3-AR content by 50%. The LPHC diet stimulated glucose uptake, both the total rates and the rates derived from glucose-dependent FA and G3P synthesis, by increasing the insulin sensitivity and the sympathetic flux, despite a reduction in the β3-AR content. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Plasma hormones facilitated the hypermotility of the colon in a chronic stress rat model.

    Directory of Open Access Journals (Sweden)

    Chengbai Liang

    Full Text Available OBJECTIVE: To study the relationship between brain-gut peptides, gastrointestinal hormones and altered motility in a rat model of repetitive water avoidance stress (WAS, which mimics the irritable bowel syndrome (IBS. METHODS: Male Wistar rats were submitted daily to 1-h of water avoidance stress (WAS or sham WAS (SWAS for 10 consecutive days. Plasma hormones were determined using Enzyme Immunoassay Kits. Proximal colonic smooth muscle (PCSM contractions were studied in an organ bath system. PCSM cells were isolated by enzymatic digestion and IKv and IBKca were recorded by the patch-clamp technique. RESULTS: The number of fecal pellets during 1 h of acute restraint stress and the plasma hormones levels of substance P (SP, thyrotropin-releasing hormone (TRH, motilin (MTL, and cholecystokinin (CCK in WAS rats were significantly increased compared with SWAS rats, whereas vasoactive intestinal peptide (VIP, calcitonin gene-related peptide (CGRP and corticotropin releasing hormone (CRH in WAS rats were not significantly changed and peptide YY (PYY in WAS rats was significantly decreased. Likewise, the amplitudes of spontaneous contractions of PCSM in WAS rats were significantly increased comparing with SWAS rats. The plasma of WAS rats (100 µl decreased the amplitude of spontaneous contractions of controls. The IKv and IBKCa of PCSMs were significantly decreased in WAS rats compared with SWAS rats and the plasma of WAS rats (100 µl increased the amplitude of IKv and IBKCa in normal rats. CONCLUSION: These results suggest that WAS leads to changes of plasma hormones levels and to disordered myogenic colonic motility in the short term, but that the colon rapidly establishes a new equilibrium to maintain the normal baseline functioning.

  7. Effects of adrenalectomy and constant light on the rat estrous cycle.

    Science.gov (United States)

    Hoffmann, J C

    1978-01-01

    Adult female ARS/Sprague-Dawley rats were allowed to acclimatize to a a lighting schedule of 12L:12D (LD) for 5 weeks. At that time, half the animals were adrenalectomized, and all rats remained in LD for an additional 4 to 5 weeks. Subsequently, half of the control and half of the adrenalectomized rats were exposed to constant light (LL) for an additional 8 weeks, at which time all animals were sacificed. Operated rats with regenerated adrenal tissue, determined either by macroscopic examination or serum corticosterone assay (about 50% of the rats), were excluded from all data calculations. Acute disturbances of estrous cycle length were minor. The long-term effects revealed a significant increase in 5-day cycles among the adrenalectomized rats, although the majority of cycles recorded (80%) were still 4 days in length. None of the rats in LD showed spontaneous persistent estrus. Adrenalectomy did not affect the number of ova shed. When placed in LL, the adrenalectomized rats continued to cycle longer than the unoperated controls, but all rats showed persistent estrus (5 or more consecutive days of vaginal cornification) within 7--8 weeks. Adrenalectomized rats had significantly higher body weights than controls. Relative uterine weight was decreased in these animals in both lighting regimens but only reached statistical significance in LD. Ovarian weight, by contrast, was significantly increased among adrenalectomized rats in LD but was identical in both groups in LL. Adrenal weight of intact rats was not altered by LL. Since estrous cycles can continue for at least 6 months in the absence of the adrenal gland, the persistent estrus that occurs in LL is not merely due to the loss of a diurnal rhythm of corticosteroids. Indeed, when adrenalectomized rats are placed in LL, they continue to show estrous cycles longer than do intact rats. Adrenalectomy does appear to increase the length of the cycle in some animals, and the hormonal basis for this warrants further

  8. Dietary creatine supplementation lowers hepatic triacylglycerol by increasing lipoprotein secretion in rats fed high-fat diet.

    Science.gov (United States)

    da Silva, Robin P; Leonard, Kelly-Ann; Jacobs, René L

    2017-12-01

    Recent studies have shown that dietary creatine supplementation can prevent lipid accumulation in the liver. Creatine is a small molecule that plays a large role in energy metabolism, but since the enzyme creatine kinase is not present in the liver, the classical role in energy metabolism does not hold in this tissue. Fat accumulation in the liver can lead to the development of nonalcoholic fatty liver disease (NAFLD), a progressive disease that is prevalent in humans. We have previously reported that creatine can directly influence lipid metabolism in cell culture to promote lipid secretion and oxidation. Our goal in the current study was to determine whether similar mechanisms that occur in cell culture were present in vivo. We also sought to determine whether dietary creatine supplementation could be effective in reversing steatosis. Sprague-Dawley rats were fed a high-fat diet or a high-fat diet supplemented with creatine for 5 weeks. We found that rats supplemented with creatine had significantly improved rates of lipoprotein secretion and alterations in mitochondrial function that were consistent with greater oxidative capacity. We also find that introducing creatine into a high-fat diet halted hepatic lipid accumulation in rats with fatty liver. Our results support our previous report that liver cells in culture with creatine secrete and oxidize more oleic acid, demonstrating that dietary creatine can effectively change hepatic lipid metabolism by increasing lipoprotein secretion and oxidation in vivo. Our data suggest that creatine might be an effective therapy for NAFLD. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Increased CD147 (EMMPRIN) expression in the rat brain following traumatic brain injury.

    Science.gov (United States)

    Wei, Ming; Li, Hong; Shang, Yanguo; Zhou, Ziwei; Zhang, Jianning

    2014-10-17

    The extracellular matrix metalloproteinase inducer (EMMPRIN), or CD147, has been known to play a key regulatory role in vascular permeability and leukocyte activation by inducing the expression of matrix metalloproteinases (MMPs). The effects of traumatic brain injury on the expression of EMMPRIN remain poorly understood. In this study, we investigated changes in EMMPRIN expression in a rat model of fluid percussion injury (FPI) and examined the potential association between EMMPRIN and MMP-9 expression. Adult male rats were subjected to FPI. EMMPRIN expression was markedly up-regulated in the brain tissue surrounding the injured region 6-48 h after TBI, as measured by immunoblot and immunohistochemistry. EMMPRIN expression was localized to inflammatory cells. The increase in EMMPRIN expression was temporally correlated with an increase in MMP-9 levels. These data demonstrate, for the first time, changes in CD147 and MMP-9 expression following TBI. These data also suggest that CD147 and MMP-9 may play a role in vascular injuries after TBI. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Gastric secretion elicited by conditioning in rats.

    Science.gov (United States)

    Caboclo, José Liberato Ferreira; Cury, Francico de Assis; Borin, Aldenis Albanese; Caboclo, Luís Otávio Sales Ferreira; Ribeiro, Maria Fernanda Sales Caboclo; de Freitas, Pedro José; Andersson, Sven

    2009-01-01

    To investigate whether interdigestive gastric acid secretion can be controlled by a possible memory-related cortical mechanism. To evaluate gastric secretion in rats, we used a methodology that allows gastric juice collection in rats in their habitual conditions (without any restraining) by pairing sound as the conditioning stimulus (CS) and food as the unconditioning stimulus (US). The levels of gastric acid secretion under basal conditions and under sound stimulation were recorded and the circulating gastrin levels determined. When the gastric juice was collected in the course of the conditioning procedure, the results showed that under noise stimulation a significant increase in gastric acid secretion occurred after 10 days of conditioning (p<0.01). The significance was definitively demonstrated after 13 days of conditioning (p<0.001). Basal secretions of the conditioned rats reached a significant level after 16 days of conditioning. The levels of noise-stimulated gastric acid secretion were the highest so far described in physiological experiments carried out in rats and there were no significant increases in the circulating gastrin levels. The results point to the important role played by cortical structures in the control of interdigestive gastric acid secretion in rats. If this mechanism is also present in humans, it may be involved in diseases caused by inappropriate gastric acid secretion during the interprandial periods.

  11. Urinary excretion of water-soluble vitamins increases in streptozotocin-induced diabetic rats without decreases in liver or blood vitamin content.

    Science.gov (United States)

    Imai, Eri; Sano, Mitsue; Fukuwatari, Tsutomu; Shibata, Katsumi

    2012-01-01

    It is thought that the contents of water-soluble vitamins in the body are generally low in diabetic patients because large amounts of vitamins are excreted into urine. However, this hypothesis has not been confirmed. To investigate this hypothesis, diabetes was induced in male Wistar rats (6 wk old) by streptozotocin treatment, and they were then given diets containing low, medium or sufficient vitamins for 70 d. The contents of 6 kinds of B-group vitamins, namely vitamin B₁, vitamin B₂, vitamin B₆, vitamin B₁₂, folate and biotin, were determined in the urine, blood and liver. No basic differences among the dietary vitamin contents were observed. The urinary excretion of vitamins was higher in diabetic rats than in control rats. The blood concentrations of vitamin B₁₂ and folate were lowered by diabetes, while, those of vitamin B₁, vitamin B₂, vitamin B₆, and biotin were not. All liver concentrations of vitamins were increased in diabetic rats above those in control rats. These results showed that streptozotocin-induced diabetes increased urinary excretion of water-soluble vitamins, though their blood and liver concentrations were essentially maintained in the rats.

  12. Sexual activity increases the number of newborn cells in the accessory olfactory bulb of male rats.

    Directory of Open Access Journals (Sweden)

    Wendy ePortillo

    2012-07-01

    Full Text Available In rodents, sexual behavior depends on the adequate detection of sexually relevant stimuli. The olfactory bulb (OB is a region of the adult mammalian brain undergoing constant cell renewal by continuous integration of new granular and periglomerular neurons in the accessory (AOB and main (MOB olfactory bulbs. The proliferation, migration, survival, maturation, and integration of these new cells to the OB depend on the stimulus that the subjects received. We have previously shown that 15 days after females control (paced the sexual interaction an increase in the number of cells is observed in the AOB. No changes are observed in the number of cells when females are not allowed to control the sexual interaction. In the present study we investigated if in male rats sexual behavior increases the number of new cells in the OB. Male rats were divided in five groups: 1 males that did not receive any sexual stimulation, 2 males that were exposed to female odors, 3 males that mated for 1 h and could not pace their sexual interaction, 4 males that paced their sexual interaction and ejaculated 1 time and 5 males that paced their sexual interaction and ejaculated 3 times. All males received three injections of the DNA synthesis marker bromodeoxyuridine at 1h intervals, starting 1h before the beginning of the behavioral test. Fifteen days later, males were sacrificed and the brains were processed to identify new cells and to evaluate if they differentiated into neurons. The number of newborn cells increased in the granular cell layer (also known as the internal cell layer of the AOB in males that ejaculated one or three times controlling (paced the rate of the sexual interaction. Some of these new cells were identified as neurons. In contrast, no significant differences were found in the mitral cell layer (also known as the external cell layer and glomerular cell layer of the AOB. In addition, no significant differences were found between groups in the MOB in

  13. Increased hepatic glycogen synthetase and decreased phosphorylase in trained rats

    DEFF Research Database (Denmark)

    Galbo, H; Saugmann, P; Richter, Erik

    1979-01-01

    Rats were either physically trained by a 12 wk swimming program or were freely eating or weight matched, sedentary controls. Trained rats had a higher relative liver weight and total hepatic glycogen synthetase (EC 2.4.1.11) activity and a lower phosphorylase (EC 2.4.1.1) activity than the other...

  14. Reduced epidermal thickness, nerve degeneration and increased pain-related behavior in rats with diabetes type 1 and 2.

    Science.gov (United States)

    Boric, Matija; Skopljanac, Ivan; Ferhatovic, Lejla; Jelicic Kadic, Antonia; Banozic, Adriana; Puljak, Livia

    2013-11-01

    To examine the mechanisms contributing to pain genesis in diabetic neuropathy, we investigated epidermal thickness and number of intraepidermal nerve fibers in rat foot pad of the animal model of diabetes type 1 and type 2 in relation to pain-related behavior. Male Sprague-Dawley rats were used. Diabetes type 1 was induced with intraperitoneal injection of streptozotocin (STZ) and diabetes type 2 was induced with a combination of STZ and high-fat diet. Control group for diabetes type 1 was fed with regular laboratory chow, while control group for diabetes type 2 received high-fat diet. Body weights and blood glucose levels were monitored to confirm induction of diabetes. Pain-related behavior was analyzed using thermal (hot, cold) and mechanical stimuli (von Frey fibers, number of hyperalgesic responses). Two months after induction of diabetes, glabrous skin samples from plantar surface of the both hind paws were collected. Epidermal thickness was evaluated with hematoxylin and eosin staining. Intraepidermal nerve fibers quantification was performed after staining skin with polyclonal antiserum against protein gene product 9.5. We found that induction of diabetes type 1 and type 2 causes significant epidermal thinning and loss of intraepidermal nerve fibers in a rat model, and both changes were more pronounced in diabetes type 1 model. Significant increase of pain-related behavior two months after induction of diabetes was observed only in a model of diabetes type 1. In conclusion, animal models of diabetes type 1 and diabetes type 2 could be used in pharmacological studies, where cutaneous changes could be used as outcome measures for predegenerative markers of neuropathies. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Increased transfer of 45Ca into brain and cerebrospinal fluid from plasma during chronic hypocalcemia in rats.

    Science.gov (United States)

    Murphy, V A; Rapoport, S I

    1988-06-28

    Recent studies have shown regulation of central nervous system [Ca] after chronic hypo- and hypercalcemia. To investigate the mechanism of this regulation, 3-week-old rats were fed diets for 8 weeks that contained low or normal levels of Ca. Plasma [Ca] was 40% less in rats fed the low Ca diet than in animals fed normal diet. Unidirectional transfer coefficients for Ca (KCa) and Cl (KCl) into cerebrospinal fluid (CSF) and brain were determined from the 10 min uptake of intravenously injected 45Ca and 36Cl in awake animals. KCa for CSF was 68% greater in low-Ca rats than in normal rats. Likewise, the values of KCa for brain regions with areas adjacent to the ventricles like the hippocampus and pons-medulla were 50% higher than in normal animals. On the other hand, KCas for parietal cortex, a brain region distant from the choroid plexus and not expected to be influenced by Ca entry into CSF, were similar between the groups. Comparison of the regional ratios of KCa/KCl revealed that a selective increase of Ca transport occurred into CSF and all brain regions except the parietal cortex in Ca-deficient rats. The results suggest that Ca homeostasis of CSF and brain [Ca] during chronic hypocalcemia is due to increased transfer of Ca from blood to brain, and that the regulation occurs via the CSF, possibly at the choroid plexus, but not via the cerebral capillaries.

  16. Neonatal Overnutrition Increases Testicular Size and Expression of Luteinizing Hormone β-Subunit in Peripubertal Male Rats

    Directory of Open Access Journals (Sweden)

    Pilar Argente-Arizón

    2018-04-01

    Full Text Available Proper nutrition is important for growth and development. Maturation of the reproductive axis and the timing of pubertal onset can be delayed when insufficient nutrition is available, or possibly advanced with nutritional abundance. The childhood obesity epidemic has been linked to a secular trend in advanced puberty in some populations. The increase in circulating leptin that occurs in association with obesity has been suggested to act as a signal that an adequate nutritional status exists for puberty to occur, allowing activation of central mechanisms. However, obesity-associated hyperleptinemia is linked to decreased leptin sensitivity, at least in adults. Here, we analyzed whether neonatal overnutrition modifies the response to an increase in leptin in peripubertal male rats, as previously demonstrated in females. Wistar rats were raised in litters of 4 (neonatal overnutrition or 12 pups (controls per dam. Leptin was administered sc (3 µg/g body weight at postnatal day 35 and the rats killed 45 min or 2 h later. Postnatal overfeeding resulted in increased body weight and circulating leptin levels; however, we found no overweight-related changes in the mRNA levels of neuropeptides involved in metabolism or reproduction. In contrast, pituitary expression of luteinizing hormone (LH beta-subunit was increased in overweight rats, as was testicular weight. There were no basal differences between L4 and L12 males or in their response to leptin administration in pSTAT3 levels in the hypothalamus at either 45 min or 2 h. In contrast, pJAK2 was found to be higher at 45 min in L4 compared to L12 males regardless of leptin treatment, while at 2 h it was higher in L4 leptin-treated males compared to L12 leptin-treated males, as well as L4 vehicle-treated rats. There were no changes in response to leptin administration in the expression of the neuropeptides analyzed. However, serum LH levels rose only in L4 males in response to leptin, but

  17. Neonatal Overnutrition Increases Testicular Size and Expression of Luteinizing Hormone β-Subunit in Peripubertal Male Rats

    Science.gov (United States)

    Argente-Arizón, Pilar; Castro-González, David; Díaz, Francisca; Fernández-Gómez, María J.; Sánchez-Garrido, Miguel A.; Tena-Sempere, Manuel; Argente, Jesús; Chowen, Julie A.

    2018-01-01

    Proper nutrition is important for growth and development. Maturation of the reproductive axis and the timing of pubertal onset can be delayed when insufficient nutrition is available, or possibly advanced with nutritional abundance. The childhood obesity epidemic has been linked to a secular trend in advanced puberty in some populations. The increase in circulating leptin that occurs in association with obesity has been suggested to act as a signal that an adequate nutritional status exists for puberty to occur, allowing activation of central mechanisms. However, obesity-associated hyperleptinemia is linked to decreased leptin sensitivity, at least in adults. Here, we analyzed whether neonatal overnutrition modifies the response to an increase in leptin in peripubertal male rats, as previously demonstrated in females. Wistar rats were raised in litters of 4 (neonatal overnutrition) or 12 pups (controls) per dam. Leptin was administered sc (3 µg/g body weight) at postnatal day 35 and the rats killed 45 min or 2 h later. Postnatal overfeeding resulted in increased body weight and circulating leptin levels; however, we found no overweight-related changes in the mRNA levels of neuropeptides involved in metabolism or reproduction. In contrast, pituitary expression of luteinizing hormone (LH) beta-subunit was increased in overweight rats, as was testicular weight. There were no basal differences between L4 and L12 males or in their response to leptin administration in pSTAT3 levels in the hypothalamus at either 45 min or 2 h. In contrast, pJAK2 was found to be higher at 45 min in L4 compared to L12 males regardless of leptin treatment, while at 2 h it was higher in L4 leptin-treated males compared to L12 leptin-treated males, as well as L4 vehicle-treated rats. There were no changes in response to leptin administration in the expression of the neuropeptides analyzed. However, serum LH levels rose only in L4 males in response to leptin, but with no change

  18. Altered Potassium Ion Channel Function as a Possible Mechanism of Increased Blood Pressure in Rats Fed Thermally Oxidized Palm Oil Diets.

    Science.gov (United States)

    Nkanu, Etah E; Owu, Daniel U; Osim, Eme E

    2017-12-27

    Intake of thermally oxidized palm oil leads to cytotoxicity and alteration of the potassium ion channel function. This study investigated the effects of fresh and thermally oxidized palm oil diets on blood pressure and potassium ion channel function in blood pressure regulation. Male Wistar rats were randomly divided into three groups of eight rats. Control group received normal feed; fresh palm oil (FPO) and thermally oxidized palm oil (TPO) groups were fed a diet mixed with 15% (weight/weight) fresh palm oil and five times heated palm oil, respectively, for 16 weeks. Blood pressure was measured; blood samples, hearts, and aortas were collected for biochemical and histological analyses. Thermally oxidized palm oil significantly elevated basal mean arterial pressure (MAP). Glibenclamide (10 -5 mmol/L) and tetraethylammonium (TEA; 10 -3 mmol/L) significantly raised blood pressure in TPO compared with FPO and control groups. Levcromakalim (10 -6 mmol/L) significantly (p palm oil increases MAP probably due to the attenuation of adenosine triphosphate-sensitive potassium (K ATP ) and large-conductance calcium-dependent potassium (BK Ca ) channels, tissue peroxidation, and altered histological structures of the heart and blood vessels.

  19. Peri-OVLT E-series prostaglandins and core temperature do not increase after intravenous IL-1beta in pregnant rats.

    Science.gov (United States)

    Fewell, James E; Eliason, Heather L; Auer, Roland N

    2002-08-01

    Rats have an attenuated febrile response to endogenous pyrogen near the term of pregnancy. Given the fundamental role of E-series prostaglandins (PGEs) in mediating the febrile response to blood-borne endogenous pyrogen, the present experiments were carried out to determine whether PGEs increase in the area surrounding the organum vasculosum laminae terminalis (peri-OVLT) of near-term pregnant (P) rats as in nonpregnant (NP) rats after intravenous (iv) administration of recombinant rat interleukin-1beta (rrIL-1beta). Core temperature was measured by telemetry and peri-OVLT interstitial fluid was sampled in 12 NP and 12 P chronically instrumented, Sprague-Dawley rats by microdialysis for determination of total PGEs by radioimmunoassay. Basal core temperatures were higher in NP compared with P rats (NP 37.9 degrees C +/- 0.5, P 36.9 degrees C +/- 0.4; P endogenous pyrogen near the term of pregnancy, warrants further investigation.

  20. Effects of thyroxine and dexamethasone on rat submandibular glands

    International Nuclear Information System (INIS)

    Sagulin, G.B.; Roomans, G.M.

    1989-01-01

    Glucocorticoids and thyroxine are known to have a marked effect on the flow rate and protein composition of rat parotid saliva in hormonally intact animals. In the present study, the effects of a one-week treatment of male rats with dexamethasone and thyroxine were studied by electron microscopy and x-ray micro-analysis, and by measurement of the flow rate and determination of the chemical composition of pilocarpine-induced submandibular saliva. Thyroxine had the most extensive effects on the submandibular gland. The acinar cells were enlarged and filled with mucus; the cellular calcium concentration was significantly increased. The flow rate of the submandibular saliva was significantly reduced compared with that in saline-injected control animals. Thyroxine caused an increase in the concentrations of protein, total calcium, and potassium in the saliva. Dexamethasone had no significant effects on gland ultrastructure or on the elemental composition of the acinar cells; flow rate was not affected, but the concentrations of protein, calcium, and potassium were significantly increased. The effects of dexamethasone and thyroxine on the flow rate and protein composition of pilocarpine-induced rat submandibular saliva differ from those reported earlier for rat parotid saliva after simultaneous stimulation with pilocarpine and isoproterenol

  1. Chemical structure and biochemical significance of lysolecithins from rat liver

    NARCIS (Netherlands)

    Bosch, H. van den; Deenen, L.L.M. van

    1965-01-01

    1. 1. Synthetic lecithins containing in 2-position a [14C]fatty acid constituent were found to be hydrolysed by rat-liver homogenates so as to form both 1-acyl-glycero-3-phosphorylcholine and 2-acyl-glycero-3-phosphorylcholine. 2. 2. A comparison of the fatty acid pattern of lysolecithin obtained

  2. Effects of increased low-level diode laser irradiation time on extraction socket healing in rats.

    Science.gov (United States)

    Park, Joon Bong; Ahn, Su-Jin; Kang, Yoon-Goo; Kim, Eun-Cheol; Heo, Jung Sun; Kang, Kyung Lhi

    2015-02-01

    In our previous studies, we confirmed that low-level laser therapy (LLLT) with a 980-nm gallium-aluminum-arsenide diode laser was beneficial for the healing of the alveolar bone in rats with systemic disease. However, many factors can affect the biostimulatory effects of LLLT. Thus, we attempted to investigate the effects of irradiation time on the healing of extraction sockets by evaluating the expressions of genes and proteins related to bone healing. The left and right first maxillary molars of 24 rats were extracted. Rats were randomly divided into four groups in which extraction sockets were irradiated for 0, 1, 2, or 5 min each day for 3 or 7 days. Specimens containing the sockets were examined using quantitative real-time reverse transcription polymerase chain reaction and western blotting. LLLT increased the expressions of all tested genes, Runx2, collagen type 1, osteocalcin, platelet-derived growth factor-B, and vascular endothelial growth factor, in a time-dependent manner. The highest levels of gene expressions were in the 5-min group after 7 days. Five minutes of irradiation caused prominent increases of the expression of all tested proteins after both 3 and 7 days. The expression level of each protein in group 4 was higher by almost twofold compared with group 1 after 7 days. Laser irradiation for 5 min caused the highest expressions of genes and proteins related to bone healing. In conclusion, LLLT had positive effects on the early stages of bone healing of extraction sockets in rats, which were irradiation time-dependent.

  3. The reversible P2Y12 antagonist ACT-246475 causes significantly less blood loss than ticagrelor at equivalent antithrombotic efficacy in rat.

    Science.gov (United States)

    Rey, Markus; Kramberg, Markus; Hess, Patrick; Morrison, Keith; Ernst, Roland; Haag, Franck; Weber, Edgar; Clozel, Martine; Baumann, Martine; Caroff, Eva; Hubler, Francis; Riederer, Markus A; Steiner, Beat

    2017-10-01

    The P2Y 12 receptor is a validated target for prevention of major adverse cardiovascular events in patients with acute coronary syndrome. The aim of this study was to compare two direct-acting, reversible P2Y 12 antagonists, ACT-246475 and ticagrelor, in a rat thrombosis model by simultaneous quantification of their antithrombotic efficacy and surgery-induced blood loss. Blood flow velocity was assessed in the carotid artery after FeCl 3 -induced thrombus formation using a Doppler flow probe. At the same time, blood loss after surgical wounding of the spleen was quantified. Continuous infusions of ACT-246475 and ticagrelor prevented the injury-induced reduction of blood flow in a dose-dependent manner. High doses of both antagonists normalized blood flow and completely abolished thrombus formation as confirmed by histology. Intermediate doses restored baseline blood flow to ≥65%. However, ACT-246475 caused significantly less increase of blood loss than ticagrelor; the difference in blood loss was 2.6-fold (P ACT-246475 and ticagrelor on vascular tone. At concentrations needed to achieve maximal antithrombotic efficacy, ticagrelor compared with ACT-246475 significantly increased carotid blood flow velocity in vivo (P = 0.003), induced vasorelaxation of precontracted rat femoral arteries, and inhibited contraction of femoral artery induced by electrical field stimulation or by phenylephrine. Overall, ACT-246475 showed a significantly wider therapeutic window than ticagrelor. The absence of vasodilatory effects due to high selectivity of ACT-246475 for P2Y 12 provides potential arguments for the observed safety advantage of ACT-246475 over ticagrelor. © 2017 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.

  4. Brain SERT Expression of Male Rats Is Reduced by Aging and Increased by Testosterone Restitution

    Directory of Open Access Journals (Sweden)

    José Jaime Herrera-Pérez

    2013-01-01

    Full Text Available In preclinical and clinical studies aging has been associated with a deteriorated response to antidepressant treatment. We hypothesize that such impairment is explained by an age-related decrease in brain serotonin transporter (SERT expression associated with low testosterone (T levels. The objectives of this study were to establish (1 if brain SERT expression is reduced by aging and (2 if the SERT expression in middle-aged rats is increased by T-restitution. Intact young rats (3–5 months and gonad-intact middle-aged rats with or without T-restitution were used. The identification of the brain SERT expression was done by immunofluorescence in prefrontal cortex, lateral septum, hippocampus, and raphe nuclei. An age-dependent reduction of SERT expression was observed in all brain regions examined, while T-restitution recovered the SERT expression only in the dorsal raphe of middle-aged rats. This last action seems relevant since dorsal raphe plays an important role in the antidepressant action of selective serotonin reuptake inhibitors. All data suggest that this mechanism accounts for the T-replacement usefulness to improve the response to antidepressants in the aged population.

  5. Increased intrinsic excitability of muscle vasoconstrictor preganglionic neurons may contribute to the elevated sympathetic activity in hypertensive rats.

    Science.gov (United States)

    Briant, Linford J B; Stalbovskiy, Alexey O; Nolan, Matthew F; Champneys, Alan R; Pickering, Anthony E

    2014-12-01

    Hypertension is associated with pathologically increased sympathetic drive to the vasculature. This has been attributed to increased excitatory drive to sympathetic preganglionic neurons (SPN) from brainstem cardiovascular control centers. However, there is also evidence supporting increased intrinsic excitability of SPN. To test this hypothesis, we made whole cell recordings of muscle vasoconstrictor-like (MVClike) SPN in the working-heart brainstem preparation of spontaneously hypertensive (SH) and normotensive Wistar-Kyoto (WKY) rats. The MVClike SPN have a higher spontaneous firing frequency in the SH rat (3.85 ± 0.4 vs. 2.44 ± 0.4 Hz in WKY; P = 0.011) with greater respiratory modulation of their activity. The action potentials of SH SPN had smaller, shorter afterhyperpolarizations (AHPs) and showed diminished transient rectification indicating suppression of an A-type potassium conductance (IA). We developed mathematical models of the SPN to establish if changes in their intrinsic properties in SH rats could account for their altered firing. Reduction of the maximal conductance density of IA by 15-30% changed the excitability and output of the model from the WKY to a SH profile, with increased firing frequency, amplified respiratory modulation, and smaller AHPs. This change in output is predominantly a consequence of altered synaptic integration. Consistent with these in silico predictions, we found that intrathecal 4-aminopyridine (4-AP) increased sympathetic nerve activity, elevated perfusion pressure, and augmented Traube-Hering waves. Our findings indicate that IA acts as a powerful filter on incoming synaptic drive to SPN and that its diminution in the SH rat is potentially sufficient to account for the increased sympathetic output underlying hypertension. Copyright © 2014 the American Physiological Society.

  6. Novel rat Alzheimer's disease models based on AAV-mediated gene transfer to selectively increase hippocampal Aβ levels

    Directory of Open Access Journals (Sweden)

    Dicker Bridget L

    2007-06-01

    Full Text Available Abstract Background Alzheimer's disease (AD is characterized by a decline in cognitive function and accumulation of amyloid-β peptide (Aβ in extracellular plaques. Mutations in amyloid precursor protein (APP and presenilins alter APP metabolism resulting in accumulation of Aβ42, a peptide essential for the formation of amyloid deposits and proposed to initiate the cascade leading to AD. However, the role of Aβ40, the more prevalent Aβ peptide secreted by cells and a major component of cerebral Aβ deposits, is less clear. In this study, virally-mediated gene transfer was used to selectively increase hippocampal levels of human Aβ42 and Aβ40 in adult Wistar rats, allowing examination of the contribution of each to the cognitive deficits and pathology seen in AD. Results Adeno-associated viral (AAV vectors encoding BRI-Aβ cDNAs were generated resulting in high-level hippocampal expression and secretion of the specific encoded Aβ peptide. As a comparison the effect of AAV-mediated overexpression of APPsw was also examined. Animals were tested for development of learning and memory deficits (open field, Morris water maze, passive avoidance, novel object recognition three months after infusion of AAV. A range of impairments was found, with the most pronounced deficits observed in animals co-injected with both AAV-BRI-Aβ40 and AAV-BRI-Aβ42. Brain tissue was analyzed by ELISA and immunohistochemistry to quantify levels of detergent soluble and insoluble Aβ peptides. BRI-Aβ42 and the combination of BRI-Aβ40+42 overexpression resulted in elevated levels of detergent-insoluble Aβ. No significant increase in detergent-insoluble Aβ was seen in the rats expressing APPsw or BRI-Aβ40. No pathological features were noted in any rats, except the AAV-BRI-Aβ42 rats which showed focal, amorphous, Thioflavin-negative Aβ42 deposits. Conclusion The results show that AAV-mediated gene transfer is a valuable tool to model aspects of AD pathology in

  7. Prenatal ethanol exposure programs an increased susceptibility of non-alcoholic fatty liver disease in female adult offspring rats

    International Nuclear Information System (INIS)

    Shen, Lang; Liu, Zhongfen; Gong, Jun; Zhang, Li; Wang, Linlong; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2014-01-01

    Prenatal ethanol exposure (PEE) induces dyslipidemia and hyperglycemia in fetus and adult offspring. However, whether PEE increases the susceptibility to non-alcoholic fatty liver disease (NAFLD) in offspring and its underlying mechanism remain unknown. This study aimed to demonstrate an increased susceptibility to high-fat diet (HFD)-induced NAFLD and its intrauterine programming mechanisms in female rat offspring with PEE. Rat model of intrauterine growth retardation (IUGR) was established by PEE, the female fetus and adult offspring that fed normal diet (ND) or HFD were sacrificed. The results showed that, in PEE + ND group, serum corticosterone (CORT) slightly decreased and insulin-like growth factor-1 (IGF-1) and glucose increased with partial catch-up growth; In PEE + HFD group, serum CORT decreased, while serum IGF-1, glucose and triglyceride (TG) increased, with notable catch-up growth, higher metabolic status and NAFLD formation. Enhanced liver expression of the IGF-1 pathway, gluconeogenesis, and lipid synthesis as well as reduced expression of lipid output were accompanied in PEE + HFD group. In PEE fetus, serum CORT increased while IGF-1 decreased, with low body weight, hyperglycemia, and hepatocyte ultrastructural changes. Hepatic IGF-1 expression as well as lipid output was down-regulated, while lipid synthesis significantly increased. Based on these findings, we propose a “two-programming” hypothesis for an increased susceptibility to HFD-induced NAFLD in female offspring of PEE. That is, the intrauterine programming of liver glucose and lipid metabolic function is “the first programming”, and postnatal adaptive catch-up growth triggered by intrauterine programming of GC-IGF1 axis acts as “the second programming”. - Highlights: • Prenatal ethanol exposure increase the susceptibility of NAFLD in female offspring. • Prenatal ethanol exposure reprograms fetal liver’s glucose and lipid metabolism . • Prenatal ethanol exposure cause

  8. Prenatal ethanol exposure programs an increased susceptibility of non-alcoholic fatty liver disease in female adult offspring rats

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Lang; Liu, Zhongfen; Gong, Jun; Zhang, Li [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Wang, Linlong [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Magdalou, Jacques [UMR 7561 CNRS-Nancy Université, Faculté de Médicine, Vandoeuvre-lès-Nancy (France); Chen, Liaobin [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Wang, Hui [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2014-01-15

    Prenatal ethanol exposure (PEE) induces dyslipidemia and hyperglycemia in fetus and adult offspring. However, whether PEE increases the susceptibility to non-alcoholic fatty liver disease (NAFLD) in offspring and its underlying mechanism remain unknown. This study aimed to demonstrate an increased susceptibility to high-fat diet (HFD)-induced NAFLD and its intrauterine programming mechanisms in female rat offspring with PEE. Rat model of intrauterine growth retardation (IUGR) was established by PEE, the female fetus and adult offspring that fed normal diet (ND) or HFD were sacrificed. The results showed that, in PEE + ND group, serum corticosterone (CORT) slightly decreased and insulin-like growth factor-1 (IGF-1) and glucose increased with partial catch-up growth; In PEE + HFD group, serum CORT decreased, while serum IGF-1, glucose and triglyceride (TG) increased, with notable catch-up growth, higher metabolic status and NAFLD formation. Enhanced liver expression of the IGF-1 pathway, gluconeogenesis, and lipid synthesis as well as reduced expression of lipid output were accompanied in PEE + HFD group. In PEE fetus, serum CORT increased while IGF-1 decreased, with low body weight, hyperglycemia, and hepatocyte ultrastructural changes. Hepatic IGF-1 expression as well as lipid output was down-regulated, while lipid synthesis significantly increased. Based on these findings, we propose a “two-programming” hypothesis for an increased susceptibility to HFD-induced NAFLD in female offspring of PEE. That is, the intrauterine programming of liver glucose and lipid metabolic function is “the first programming”, and postnatal adaptive catch-up growth triggered by intrauterine programming of GC-IGF1 axis acts as “the second programming”. - Highlights: • Prenatal ethanol exposure increase the susceptibility of NAFLD in female offspring. • Prenatal ethanol exposure reprograms fetal liver’s glucose and lipid metabolism . • Prenatal ethanol exposure cause

  9. Chronic lithium treatment increased intracellular S100ß levels in rat primary neuronal culture.

    Directory of Open Access Journals (Sweden)

    Masoumeh Emamghoreishi

    2015-02-01

    Full Text Available S100ß a neurotrophic factor mainly released by astrocytes, has been implicated in the pathogenesis of bipolar disorder. Thus, lithium may exert its neuroprotective effects to some extent through S100ß. Furthermore, the possible effects of lithium on astrocytes as well as on interactions between neurons and astrocytes as a part of its mechanisms of actions are unknown. This study was undertaken to determine the effect of lithium on S100β in neurons, astrocytes and a mixture of neurons and astrocytes. Rat primary astrocyte, neuronal and mixed neuro-astroglia cultures were prepared from cortices of 18-day's embryos. Cell cultures were exposed to lithium (1mM or vehicle for 1day (acute or 7 days (chronic. RT-PCR and ELISA determined S100β mRNA and intra- and extracellular protein levels. Chronic lithium treatment significantly increased intracellular S100β in neuronal and neuro-astroglia cultures in comparison to control cultures (P<0.05. Acute and chronic lithium treatments exerted no significant effects on intracellular S100β protein levels in astrocytes, and extracellular S100β protein levels in three studied cultures as compared to control cultures. Acute and chronic lithium treatments did not significantly alter S100β mRNA levels in three studied cultures, compared to control cultures. Chronic lithium treatment increased intracellular S100ß protein levels in a cell-type specific manner which may favor its neuroprotective action. The findings of this study suggest that lithium may exert its neuroprotective action, at least partly, by increasing neuronal S100ß level, with no effect on astrocytes or interaction between neurons and astrocytes.

  10. SALICYLATE INCREASES THE GAIN OF THE CENTRAL AUDITORY SYSTEM

    Science.gov (United States)

    Sun, W.; Lu, J.; Stolzberg, D.; Gray, L.; Deng, A.; Lobarinas, E.; Salvi, R. J.

    2009-01-01

    High doses of salicylate, the anti-inflammatory component of aspirin, induce transient tinnitus and hearing loss. Systemic injection of 250 mg/kg of salicylate, a dose that reliably induces tinnitus in rats, significantly reduced the sound evoked output of the rat cochlea. Paradoxically, salicylate significantly increased the amplitude of the sound-evoked field potential from the auditory cortex (AC) of conscious rats, but not the inferior colliculus (IC). When rats were anesthetized with isoflurane, which increases GABA-mediated inhibition, the salicylate-induced AC amplitude enhancement was abolished, whereas ketamine, which blocks N-methyl-d-aspartate receptors, further increased the salicylate-induced AC amplitude enhancement. Direct application of salicylate to the cochlea, however, reduced the response amplitude of the cochlea, IC and AC, suggesting the AC amplitude enhancement induced by systemic injection of salicylate does not originate from the cochlea. To identify a behavioral correlate of the salicylate-induced AC enhancement, the acoustic startle response was measured before and after salicylate treatment. Salicylate significantly increased the amplitude of the startle response. Collectively, these results suggest that high doses of salicylate increase the gain of the central auditory system, presumably by down-regulating GABA-mediated inhibition, leading to an exaggerated acoustic startle response. The enhanced startle response may be the behavioral correlate of hyperacusis that often accompanies tinnitus and hearing loss. Published by Elsevier Ltd on behalf of IBRO. PMID:19154777

  11. Arachidonate metabolism increases as rat alveolar type II cells differentiate in vitro

    International Nuclear Information System (INIS)

    Lipchik, R.J.; Chauncey, J.B.; Paine, R.; Simon, R.H.; Peters-Golden, M.

    1990-01-01

    Rat type II alveolar epithelial cells are known to undergo morphological and functional changes when maintained in culture for several days. Having previously demonstrated that these cells can deacylate free arachidonic acid (AA) and metabolize it to products of the cyclooxygenase pathway, the present study was undertaken to determine whether in vitro differentiation was accompanied by alterations in the availability and metabolism of AA. We assessed the constitutive and ionophore A23187-induced deacylation and metabolism of endogenous AA, as well as the metabolism of exogenously supplied AA, in primary cultures of rat type II cells at days 2, 4, and 7 after isolation. Levels of free endogenous AA were increased at day 4, whereas eicosanoid synthesis, predominantly prostaglandin E2 and prostacyclin, increased markedly only at day 7. A similar time course of augmentation of prostanoid release was seen in response to exogenous AA. Type II cells cultured on fibronectin, intended to hasten cell flattening and spreading, demonstrated accelerated increases in available free AA in response to A23187; cells cultured on basement membrane derived from Engelbreth-Holm-Swarm mouse sarcoma, known to maintain the type II phenotype, exhibited diminished levels of available free AA. From these findings, we conclude that alterations in arachidonate metabolism are linked to alterations in cellular phenotype. The potentiation of eicosanoid synthesis accompanying in vitro differentiation suggests a possible role for the alveolar epithelium in the modulation of inflammation and fibrosis in the distal lung

  12. Antioxidant Effects of Biochanin A in Streptozotocin Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Hamideh Sadri

    2017-08-01

    Full Text Available ABSTRACT Bioflavonoid-containing diets have been reported to be beneficial in diabetes. In the current study, the effect of Biochanin A (BCA on blood glucose, antioxidant enzyme activities and oxidative stress markers in diabetic rats were investigated. 30 male Wistar rats were divided into five groups. Two of them were selected as control; group1: control (receiving 0.5%DMSO, and group2: Control+BCA (receiving 10 mg/kg.bw BCA. Diabetes was induced in other rats with injection of (55 mg/kg.bw streptozotocin; group3: diabetic control (receiving 0.5%DMSO, groups 4 and 5 were treated with 10 and 15 mg/kg.bw BCA respectively. After 6 weeks the following results were obtained. Fasting blood glucose (FBG, Triglyceride (TG, total cholesterol (TC, low density lipoprotein cholesterol (LDL-C, very low density lipoprotein cholesterol (VLDL-C and malondialdehyde (MDA levels significantly increased and body weight, high density lipoprotein cholesterol (HDL-C, superoxide dismutase (SOD and catalase (CAT activity and total antioxidant status (TAS significantly decreased in diabetic rats as compared to control rats. Oral administration of BCA in 10 and 15 mg/kg.bw, FBG, TG, TC, LDL-C, VLDL-C were decreased significantly in all treated rats. MDA was decreased in all treated rats but it was significant just in 15 mg/kg.bw BCA. HDL, CAT, SOD, and TAS were significantly increased in treated group with 15 mg/kg.bw. The obtained results indicated hypoglycemic and hypolipidemic effect of BCA. Also BCA reduced oxidative stress in diabetic rats.

  13. Olive Oil effectively mitigates ovariectomy-induced osteoporosis in rats

    Directory of Open Access Journals (Sweden)

    Saleh Hanan A

    2011-02-01

    Full Text Available Abstract Background Osteoporosis, a reduction in bone mineral density, represents the most common metabolic bone disease. Postmenopausal women are particularly susceptible to osteoporosis when their production of estrogen declines. For these women, fracture is a leading cause of morbidity and mortality. This study was conducted to evaluate the protective effects of olive oil supplementation against osteoporosis in ovariectomized (OVX rats. Methods We studied adult female Wistar rats aged 12-14 months, divided into three groups: sham-operated control (SHAM, ovariectomized (OVX, and ovariectomized rats supplemented with extravirgin olive oil (Olive-OVX orally for 12 weeks; 4 weeks before ovariectomy and 8 weeks after. At the end of the experiment, blood samples were collected. Plasma levels of calcium, phosphorus, alkaline phosphatase (ALP, malondialdehyde (MDA, and nitrates were assayed. Specimens from both the tibia and the liver were processed for light microscopic examination. Histomorphometric analysis of the tibia was also performed. Results The OVX-rats showed a significant decrease in plasma calcium levels, and a significant increase in plasma ALP, MDA, and nitrates levels. These changes were attenuated by olive oil supplementation in the Olive-OVX rats. Light microscopic examination of the tibia of the OVX rats revealed a significant decrease in the cortical bone thickness (CBT and the trabecular bone thickness (TBT. In addition, there was a significant increase in the osteoclast number denoting bone resorption. In the Olive-OVX rats these parameters were markedly improved as compared to the OVX group. Examination of the liver specimens revealed mononuclear cellular infiltration in the portal areas in the OVX-rats which was not detected in the Olive-OVX rats. Conclusions Olive oil effectively mitigated ovariectomy-induced osteoporosis in rats, and is a promising candidate for the treatment of postmenopausal osteoporosis.

  14. Sulfur amino acids metabolism in magnesium deficient rats

    Energy Technology Data Exchange (ETDEWEB)

    Tojo, H.; Kosokawa, Y.; Yamaguchi, K.

    1984-01-01

    Effect of magnesium (Mg) deficiency on sulfur amino acid metabolism was investigated in rats. Young male rats were fed on the diet containing either 2.26 (deficient rats) or 63.18 mg Mg/100g diet (control and low protein rats) for 2 weeks. A remarkable decrease of body weight gain, serum Mg contents and a slight decreases in the hematological parameters such as Hb, Ht and RBC was observed, while the hepatic Mg and Ca was not significantly changed. Erythema and cramps were observed 5 days after feeding on the Mg-depleted diet. The hepatic glutathione and cysteine contents increased in Mg-deficient rats. However, no significant change of cysteine dioxygenase (CDO) activity and taurine content in Mg-deficient rat liver was observed. These results suggest that Mg deficiency affects the utilization and biosynthesis of hepatic glutathione but not the cysteine catabolism.

  15. A self-medication hypothesis for increased vulnerability to drug abuse in prenatally restraint stressed rats.

    Science.gov (United States)

    Reynaert, Marie-Line; Marrocco, Jordan; Gatta, Eleonora; Mairesse, Jérôme; Van Camp, Gilles; Fagioli, Francesca; Maccari, Stefania; Nicoletti, Ferdinando; Morley-Fletcher, Sara

    Stress-related events that occur in the perinatal period can permanently change brain and behavior of the developing individual and there is increasing evidence that early-life adversity is a contributing factor in the etiology of drug abuse and mood disorders. Neural adaptations resulting from early-life stress may mediate individual differences in novelty responsiveness and in turn contribute to drug abuse vulnerability. Prenatal restraint stress (PRS) in rats is a well-documented model of early stress known to induce long-lasting neurobiological and behavioral alterations including impaired feedback mechanisms of the HPA axis, enhanced novelty seeking, and increased sensitiveness to psychostimulants as well as anxiety/depression-like behavior. Together with the HPA axis, functional alterations of the mesolimbic dopamine system and of the metabotropic glutamate receptors system appear to be involved in the addiction-like profile of PRS rats.

  16. 3,5-Diiodo-l-Thyronine Increases Glucose Consumption in Cardiomyoblasts Without Affecting the Contractile Performance in Rat Heart

    Directory of Open Access Journals (Sweden)

    Ginevra Sacripanti

    2018-05-01

    Full Text Available 3,5-diiodo-l-thyronine (T2 is an endogenous derivative of thyroid hormone that has been suggested to regulate energy expenditure, resting metabolic rate and oxygen consumption with a mechanism that involves the activation of mitochondrial function. In this study, we focused on the cardiac effects of T2, which have been poorly investigated so far, by using both in vitro and ex vivo models. As a comparison, the response to T3 and T4 was also determined. Rat cardiomyoblasts (H9c2 cells were used to determine T2, T3, and T4 uptake by high-performance liquid chromatography–tandem mass spectrometry. In the same experimental model, MTT test, crystal violet staining, and glucose consumption were investigated, using T2 concentrations ranging from 0.1 to 10 µM. To assess cardiac functional effects, isolated working rat hearts were perfused with T2, T3, or T4 in Krebs-Ringer buffer, and the hemodynamic variables were recorded. T2 was taken up by cardiomyoblasts, and in cell lysate T2 levels increased slowly over time, reaching higher concentrations than in the incubation medium. T2 significantly decreased MTT staining at 0.5–10 µM concentration (P < 0.05. Crystal violet staining confirmed a reduction of cell viability only upon treatment with 10 µM T2, while equimolar T3 and T4 did not share this effect. Glucose consumption was also significantly affected as indicated by glucose uptake being increased by 24 or 35% in cells exposed to 0.1 or 1.0 µM T2 (P < 0.05 in both cases. On the contrary, T3 did not affect glucose consumption which, in turn, was significantly reduced by 1 and 10 µM T4 (−24 and −41% vs control, respectively, P < 0.05 and P < 0.01. In the isolated perfused rat heart, 10 µM T2 produced a slight and transient reduction in cardiac output, while T3 and T4 did not produce any hemodynamic effect. Our findings indicate that T2 is taken up by cardiomyoblasts, and at 0.1–1.0 µM concentration it can

  17. Chronic central administration of Ghrelin increases bone mass through a mechanism independent of appetite regulation.

    Directory of Open Access Journals (Sweden)

    Hyung Jin Choi

    Full Text Available Leptin plays a critical role in the central regulation of bone mass. Ghrelin counteracts leptin. In this study, we investigated the effect of chronic intracerebroventricular administration of ghrelin on bone mass in Sprague-Dawley rats (1.5 μg/day for 21 days. Rats were divided into control, ghrelin ad libitum-fed (ghrelin ad lib-fed, and ghrelin pair-fed groups. Ghrelin intracerebroventricular infusion significantly increased body weight in ghrelin ad lib-fed rats but not in ghrelin pair-fed rats, as compared with control rats. Chronic intracerebroventricular ghrelin infusion significantly increased bone mass in the ghrelin pair-fed group compared with control as indicated by increased bone volume percentage, trabecular thickness, trabecular number and volumetric bone mineral density in tibia trabecular bone. There was no significant difference in trabecular bone mass between the control group and the ghrelin ad-lib fed group. Chronic intracerebroventricular ghrelin infusion significantly increased the mineral apposition rate in the ghrelin pair-fed group as compared with control. In conclusion, chronic central administration of ghrelin increases bone mass through a mechanism that is independent of body weight, suggesting that ghrelin may have a bone anabolic effect through the central nervous system.

  18. Regulation of Taurine transporter activity in cultured rat retinal ganglion cells and rat retinal Muller Cells

    International Nuclear Information System (INIS)

    Eissa, Laila A.; Smith, Sylvia B.; El-sherbeny, Amira A.

    2006-01-01

    Diabetic retinopathy is one of the most common complications of diabetes. The amino acid taurine is believed to play an antioxidant protective role in diabetic retinopathy through the scavenging of the reactive species. It is not well established whether taurine uptake is altered in retina cells during diabetic conditions. Thus, the present study was designed to investigate the changes in taurine transport in cultures of rat retinal Muller cells and rat retinal ganglion cells under conditions associated with diabetes. Taurine was abundantly taken up by retinal Muller cells and rat retinal ganglion cells under normal glycemic condition. Taurine was actively transported to rat Muller cells and rat retinal ganglion cells in a Na and Cl dependant manner. Taurine uptake further significantly elevated in both type of cells after the incubation with high glucose concentration. This effect could be attributed to the increase in osmolarity. Because Nitric Oxide (NO) is a molecule implicated in the pathogenesis of diabetes, we also determined the activity of taurine transporter in cultured rat retinal Muller cells and rat retinal ganglion cells in the presence of the NO donors, SIN-1 and SNAP. Taurine uptake was elevated above control value after 24-h incubation with low concentration of NO donors. We finally investigated the ability of neurotoxic glutamate to change taurine transporter activity in both types of cells. Uptake of taurine was significantly increased in rat retinal ganglion cells when only incubated with high concentration of glutamate. Our data provide evidence that taurine transporter is present in cultured rat retinal ganglion and Muller cells and is regulated by hyperosmolarity. The data are relevant to disease such as diabetes and neuronal degeneration where retinal cell volume may dramatically change. (author)

  19. Fourth ventricular thyrotropin induces satiety and increases body temperature in rats.

    Science.gov (United States)

    Smedh, Ulrika; Scott, Karen A; Moran, Timothy H

    2018-05-01

    Besides its well-known action to stimulate thyroid hormone release, thyrotropin mRNA is expressed within the brain, and thyrotropin and its receptor have been shown to be present in brain areas that control feeding and gastrointestinal function. Here, the hypothesis that thyrotropin acts on receptors in the hindbrain to alter food intake and/or gastric function was tested. Fourth ventricular injections of thyrotropin (0.06, 0.60, and 6.00 µg) were given to rats with chronic intracerebroventricular cannulas aimed at the fourth ventricle. Thyrotropin produced an acute reduction of sucrose intake (30 min). The highest dose of thyrotropin caused inhibition of overnight solid food intake (22 h). In contrast, subcutaneous administration of corresponding thyrotropin doses had no effect on nutrient intake. The highest effective dose of fourth ventricular thyrotropin (6 µg) did not produce a conditioned flavor avoidance in a standardized two-bottle test, nor did it affect water intake or gastric emptying of glucose. Thyrotropin injected in the fourth ventricle produced a small but significant increase in rectal temperature and lowered plasma levels of tri-iodothyronin but did not affect plasma levels of thyroxine. In addition, there was a tendency toward a reduction in blood glucose 2 h after fourth ventricular thyrotropin injection ( P = 0.056). In conclusion, fourth ventricular thyrotropin specifically inhibits food intake, increases core temperature, and lowers plasma levels of tri-iodothyronin but does not affect gastromotor function.

  20. Cannabis exacerbates depressive symptoms in rat model induced by reserpine.

    Science.gov (United States)

    Khadrawy, Yasser A; Sawie, Hussein G; Abdel-Salam, Omar M E; Hosny, Eman N

    2017-05-01

    Cannabis sativa is one of the most widely recreational drugs and its use is more prevalent among depressed patients. Some studies reported that Cannabis has antidepressant effects while others showed increased depressive symptoms in Cannabis users. Therefore, the present study aims to investigate the effect of Cannabis extract on the depressive-like rats. Twenty four rats were divided into: control, rat model of depression induced by reserpine and depressive-like rats treated with Cannabis sativa extract (10mg/kg expressed as Δ9-tetrahydrocannabinol). The depressive-like rats showed a severe decrease in motor activity as assessed by open field test (OFT). This was accompanied by a decrease in monoamine levels and a significant increase in acetylcholinesterase activity in the cortex and hippocampus. Na + ,K + -ATPase activity increased in the cortex and decreased in the hippocampus of rat model. In addition, a state of oxidative stress was evident in the two brain regions. This was indicated from the significant increase in the levels of lipid peroxidation and nitric oxide. No signs of improvement were observed in the behavioral and neurochemical analyses in the depressive-like rats treated with Cannabis extract. Furthermore, Cannabis extract exacerbated the lipid peroxidation in the cortex and hippocampus. According to the present findings, it could be concluded that Cannabis sativa aggravates the motor deficits and neurochemical changes induced in the cortex and hippocampus of rat model of depression. Therefore, the obtained results could explain the reported increase in the depressive symptoms and memory impairment among Cannabis users. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Acrylamide neurotoxicity on the cerebrum of weaning rats

    Directory of Open Access Journals (Sweden)

    Su-min Tian

    2015-01-01

    Full Text Available The mechanism underlying acrylamide-induced neurotoxicity remains controversial. Previous studies have focused on acrylamide-induced toxicity in adult rodents, but neurotoxicity in weaning rats has not been investigated. To explore the neurotoxic effect of acrylamide on the developing brain, weaning rats were gavaged with 0, 5, 15, and 30 mg/kg acrylamide for 4 consecutive weeks. No obvious neurotoxicity was observed in weaning rats in the low-dose acrylamide group (5 mg/kg. However, rats from the moderate- and high-dose acrylamide groups (15 and 30 mg/kg had an abnormal gait. Furthermore, biochemical tests in these rats demonstrated that glutamate concentration was significantly reduced, and γ-aminobutyric acid content was significantly increased and was dependent on acrylamide dose. Immunohistochemical staining showed that in the cerebral cortex, γ-aminobutyric acid, glutamic acid decarboxylase and glial fibrillary acidic protein expression increased remarkably in the moderate- and high-dose acrylamide groups. These results indicate that in weaning rats, acrylamide is positively associated with neurotoxicity in a dose-dependent manner, which may correlate with upregulation of γ-aminobutyric acid and subsequent neuronal degeneration after the initial acrylamide exposure.

  2. Red Wine Inhibits Aggregation and Increases ATP-diphosphohydrolase (CD39) Activity of Rat Platelets in Vitro.

    Science.gov (United States)

    Caiazzo, Elisabetta; Tedesco, Idolo; Spagnuolo, Carmela; Russo, Gian Luigi; Ialenti, Armando; Cicala, Carla

    2016-06-01

    Moderate consumption of red wine has been shown to exert a peculiar cardioprotective effect compared with other alcoholic beverages; inhibition of platelet aggregation seems to be one of the mechanisms underlying this beneficial effect. CD39/ATP-diphosphohydrolase is an integral membrane glycoprotein metabolizing ATP and ADP to AMP; in concert with CD73/ecto-5'-nucleotidase, it contributes to extracellular adenosine accumulation. CD39 is considered a key modulator of thrombus formation; it inhibits platelet aggregation by promoting ADP hydrolysis. There is evidence that red wine consumption increases CD39 activity in platelets from streptozotocin-induced diabetic rats. Here we show that two kinds of Aglianico red wines inhibit aggregation and increase ATP--and ADPase activity in rat platelets.

  3. Fructo-oligosaccharides reduce energy intake but do not affect adiposity in rats fed a low-fat diet but increase energy intake and reduce fat mass in rats fed a high-fat diet.

    Science.gov (United States)

    Hadri, Zouheyr; Rasoamanana, Rojo; Fromentin, Gilles; Azzout-Marniche, Dalila; Even, Patrick C; Gaudichon, Claire; Darcel, Nicolas; Bouras, Abdelkader Dilmi; Tomé, Daniel; Chaumontet, Catherine

    2017-12-01

    The ingestion of low or high lipid diets enriched with fructo-oligosaccharide (FOS) affects energy homeostasis. Ingesting protein diets also induces a depression of energy intake and decreases body weight. The goal of this study was to investigate the ability of FOS, combined or not with a high level of protein (P), to affect energy intake and body composition when included in diets containing different levels of lipids (L). We performed two studies of similar design over a period of 5weeks. During the first experiment (exp1), after a 3-week period of adaptation to a normal protein-low fat diet, the rats received one of the following four diets for 5weeks (6 rats per group): (i) normal protein (14% P/E (Energy) low fat (10% L/E) diet, (ii) normal protein, low fat diet supplemented with 10% FOS, (iii) high protein (55%P/E) low fat diet, and (iv) high protein, low fat diet supplemented with 10% FOS. In a second experiment (exp2) after the 3-week period of adaptation to a normal protein-high fat diet, the rats received one of the following 4 diets for 5weeks (6 rats per group): (i) normal protein, high fat diet (35% of fat), (ii) normal protein, high fat diet supplemented with 10% FOS, (iii) high protein high fat diet and (iv) high protein high fat diet supplemented with 10% FOS. In low-fat fed rats, FOS did not affect lean body mass (LBM) and fat mass but the protein level reduced fat mass and tended to reduce adiposity. In high-fat fed rats, FOS did not affect LBM but reduced fat mass and adiposity. No additive or antagonistic effects between FOS and the protein level were observed. FOS reduced energy intake in low-fat fed rats, did not affect energy intake in normal-protein high-fat fed rats but surprisingly, and significantly, increased energy intake in high-protein high-fat fed rats. The results thus showed that FOS added to a high-fat diet reduced body fat and body adiposity. Published by Elsevier Inc.

  4. Carbon dioxide in carbonated beverages induces ghrelin release and increased food consumption in male rats: Implications on the onset of obesity.

    Science.gov (United States)

    Eweis, Dureen Samandar; Abed, Fida; Stiban, Johnny

    The dangerous health risks associated with obesity makes it a very serious public health issue. Numerous studies verified a correlation between the increase in obesity and the parallel increase in soft drink consumption among world populations. The effects of one main component in soft drinks namely the carbon dioxide gas has not been studied thoroughly in any previous research. Male rats were subjected to different categories of drinks and evaluated for over a year. Stomach ex vivo experiments were undertaken to evaluate the amount of ghrelin upon different beverage treatments. Moreover, 20 male students were tested for their ghrelin levels after ingestion of different beverages. Here, we show that rats consuming gaseous beverages over a period of around 1 year gain weight at a faster rate than controls on regular degassed carbonated beverage or tap water. This is due to elevated levels of the hunger hormone ghrelin and thus greater food intake in rats drinking carbonated drinks compared to control rats. Moreover, an increase in liver lipid accumulation of rats treated with gaseous drinks is shown opposed to control rats treated with degassed beverage or tap water. In a parallel study, the levels of ghrelin hormone were increased in 20 healthy human males upon drinking carbonated beverages compared to controls. These results implicate a major role for carbon dioxide gas in soft drinks in inducing weight gain and the onset of obesity via ghrelin release and stimulation of the hunger response in male mammals. Copyright © 2017 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  5. Effects of total glucosides of paeony on oxidative stress in the kidney from diabetic rats.

    Science.gov (United States)

    Su, Jing; Zhang, Pei; Zhang, Jing-Jing; Qi, Xiang-Ming; Wu, Yong-Gui; Shen, Ji-Jia

    2010-03-01

    TGP, extracted from the traditional Chinese herb root of Paeonia lactiflora pall, has been shown to have therapeutic effect in experimental diabetic nephropathy. However, its mechanism is not fully understood. In this study, the effects of TGP on oxidative stress were investigated in the kidney of diabetic rats induced by streptozotocin. TGP (50, 100, 200mg/kg) was orally administered once a day for 8 weeks. TGP treatment in all three doses significantly lowered 24 h urinary albumin excretion rate in diabetic rats and attenuated glomerular volume. TGP treatment with 100 and 200mg/kg significantly reduced indices for tubulointerstitial injury in diabetic rats. The level of MDA was significantly increased in the kidney of diabetic rats and attenuated by TGP treatment at the dose of 200mg/kg. TGP treatment in a dose-dependent manner decreased the level of 3-NT protein of the kidney which increased under diabetes. T-AOC was significantly reduced in diabetic rat kidney and remarkably increased by TGP treatment at the dose of 100 and 200mg/kg. Activity of antioxidant enzyme such as SOD, CAT was markedly elevated by TGP treatment with 200mg/kg. Western blot analysis showed that p-p38 MAPK and NF-kappaB p65 protein expression increased in diabetic rat kidney, which were significantly decreased by TGP treatment. It seems likely that oxidative stress is increased in the diabetic rat kidneys, while TGP can prevent diabetes-associated renal damage against oxidative stress.

  6. Chronic administration of ethanol leaf extract of Moringa oleifera Lam. (Moringaceae) may compromise glycaemic efficacy of Sitagliptin with no significant effect in retinopathy in a diabetic rat model.

    Science.gov (United States)

    Olurishe, Comfort; Kwanashie, Helen; Zezi, Abdulkadiri; Danjuma, Nuhu; Mohammed, Bisalla

    2016-12-24

    Moringa oleifera Lam. (Moringaceae) has gained awareness for its antidiabetic effect, and is used as alternative therapy or concurrently with orthodox medicines such as sitagliptin in diabetes mellitus. This is without ascertaining the possibility of drug-herb interactions, which could either lead to enhanced antidiabetic efficacy, increased toxicity, or compromised glycaemic control with negative consequence in diabetic retinopathy. To investigate the effect, of sitagliptin (50mg/kg), Moringa oleifera (300mg/kg) leaf extract, and a combination of both on glycaemic control parameters, lenticular opacity and changes in retinal microvasculature in alloxan (150mg/kg i.p) induced diabetic rat model. Seven groups of eight rats per group were used, with groups I, II and VII as normal (NC), diabetic (DC) and post-prandial controls (PPC). Groups III to VI were diabetic rats on sitagliptin (III), M. oleifera (IV), sitagliptin and M. oleifera (SM) (V), for 42 days with 2 weeks delayed treatment in a post-prandial hyperglycaemic group (PPSM) (VI). Glycaemic control parameters, insulin levels, body weights, and effects of retinal microvasculature on lenticular opacity/morphology were investigated. A significant decrease in fasting blood glucose (FBG) levels was displayed in SM group from day 14(60%) (p<0.01) to day 28 (38%) (p<0.01) of treatment, compared to day 1. Thereafter, a steady increase of up to 57% on day 42 compared to day 28 was observed. A significant decrease in random blood glucose (RBG) levels, were demonstrated on day 42 (24%) (p<0.001), compared to day 1. No significant difference was seen in mean serum levels of insulin across groups. No significant changes in body weights. Evidence of mild lenticular opacity was observed, with no significant effect in pathologic lesions in the retina. The chronic co-administration of sitagliptin and M. oleifera showed a progressive decrease in anti-hyperglycaemic effect of sitagliptin, and although it delayed the onset of

  7. Feeding hydroalcoholic extract powder of Lepidium meyenii (maca) increases serum testosterone concentration and enhances steroidogenic ability of Leydig cells in male rats.

    Science.gov (United States)

    Ohta, Y; Yoshida, K; Kamiya, S; Kawate, N; Takahashi, M; Inaba, T; Hatoya, S; Morii, H; Takahashi, K; Ito, M; Ogawa, H; Tamada, H

    2016-04-01

    Although Lepidium meyenii (maca), a plant growing in Peru's central Andes, has been traditionally used for enhancing fertility and reproductive performance in domestic animals and human beings, effects of maca on reproductive organs are still unclear. This study examined whether feeding the hydroalcoholic extract powder of maca for 6 weeks affects weight of the reproductive organs, serum concentrations of testosterone and luteinising hormone (LH), number and cytoplasmic area of immunohistochemically stained Leydig cells, and steroidogenesis of cultured Leydig cells in 8-week-old male rats. Feeding the extract powder increased weight of seminal vesicles, serum testosterone level and cytoplasmic area of Leydig cells when compared with controls. Weight of prostate gland, serum LH concentration and number of Leydig cells were not affected by the maca treatment. The testosterone production by Leydig cells significantly increased when cultured with 22R-hydroxycholesterol or pregnenolone and tended to increase when cultured with hCG by feeding the extract powder. The results show that feeding the hydroalcoholic extract powder of maca for 6 weeks increases serum testosterone concentration associated with seminal vesicle stimulation in male rats, and this increase in testosterone level may be related to the enhanced ability of testosterone production by Leydig cells especially in the metabolic process following cholesterol. © 2015 Blackwell Verlag GmbH.

  8. Alanine increases blood pressure during hypotension

    Science.gov (United States)

    Conlay, L. A.; Maher, T. J.; Wurtman, R. J.

    1990-01-01

    The effect of L-alanine administration on blood pressure (BP) during haemorrhagic shock was investigated using anesthetized rats whose left carotid arteries were cannulated for BP measurement, blood removal, and drug administration. It was found that L-alanine, in doses of 10, 25, 50, 100, and 200 mg/kg, increased the systolic BP of hypotensive rats by 38 to 80 percent (while 100 mg/kg pyruvate increased BP by only 9.4 mmhg, not significantly different from saline). The results suggest that L-alanine might influence cardiovascular function.

  9. Early Treatment of radiation-Induced Heart Damage in Rats by Caffeic acid phenethyl Ester

    International Nuclear Information System (INIS)

    Tawfik, S.S.; Mansour, H. H.

    2012-12-01

    The study designed to determine the therapeutic effect of caffeic acid phenethyl ester (CAPE) in minimising radiation-induced injuries in rats. Rats were exposed to 7 Gy γ-rays, 30 minutes later; rats were injected with CAPE (10μmol/ kg body, i.p.) for 7 consecutive days. Rats were sacrificed at 8 and 15 days after starting the experiment. Gamma-irradiation induced significant increase in malonaldehyde (MDA) level and xanthine oxidase (XO) and adenosine deaminase (ADA) activities, and significant decrease in total nitrate/nitrate (NO (x)) level and glutathione peroxidise (Gpx), superoxide dismutase (SOD)and catalase (CAT) activities in heart tissue and augmented activities of lactate dehydrogenase (LDH), creatine phosphokinase (CPK) and aspartate transaminase (AST) in serum. Irradiated rats early treated with CAPE showed significant decrease in MDA, XO and ADA and significant increase in group. Cardiac enzymes were restored. Conclusion, CAPE could exhibits curable effect on gamma irradiation-induced cardiac-oxidative impairment in rats. (Author)

  10. Varenicline increases in vivo striatal dopamine D2/3 receptor binding: an ultra-high-resolution pinhole [123I]IBZM SPECT study in rats

    International Nuclear Information System (INIS)

    Crunelle, Cleo L.; Wit, Tim C. de; Bruin, Kora de; Ramakers, Ruud M.; Have, Frans van der; Beekman, Freek J.; Brink, Wim van den; Booij, Jan

    2012-01-01

    Introduction: Ex vivo storage phosphor imaging rat studies reported increased brain dopamine D 2/3 receptor (DRD 2/3 ) availability following treatment with varenicline, a nicotinergic drug. However, ex vivo studies can only be performed using cross-sectional designs. Small-animal imaging offers the opportunity to perform serial assessments. We evaluated whether high-resolution pinhole single photon emission computed tomography (SPECT) imaging in rats was able to reproduce previous ex vivo findings. Methods: Rats were imaged for baseline striatal DRD 2/3 availability using ultra-high-resolution pinhole SPECT (U-SPECT-II) and [ 123 I]IBZM as a radiotracer, and randomized to varenicline (n=7; 2 mg/kg) or saline (n=7). Following 2 weeks of treatment, a second scan was acquired. Results: Significantly increased striatal DRD 2/3 availability was found following varenicline treatment compared to saline (time⁎treatment effect): posttreatment difference in binding potential between groups corrected for initial baseline differences was 2.039 (P=.022), indicating a large effect size (d=1.48). Conclusions: Ultra-high-resolution pinhole SPECT can be used to assess varenicline-induced changes in DRD 2/3 availability in small laboratory animals over time. Future small-animal studies should include imaging techniques to enable repeated within-subjects measurements and reduce the amount of animals.

  11. Increased expression of EMMPRIN and VEGF in the rat brain after gamma irradiation.

    Science.gov (United States)

    Wei, Ming; Li, Hong; Huang, Huiling; Xu, Desheng; Zhi, Dashi; Liu, Dong; Zhang, Yipei

    2012-03-01

    The extracellular matrix metalloproteinase inducer (EMMPRIN) has been known to play a key regulatory role in pathological angiogenesis. A elevated activation of vascular endothelial growth factor (VEGF) following radiation injury has been shown to mediate blood-brain barrier (BBB) breakdown. However, the roles of EMMPRIN and VEGF in radiation-induced brain injury after gamma knife surgery (GKS) are not clearly understood. In this study, we investigated EMMPRIN changes in a rat model of radiation injury following GKS and examined potential associations between EMMPRIN and VEGF expression. Adult male rats were subjected to cerebral radiation injury by GKS under anesthesia. We found that EMMPRIN and VEGF expression were markedly upregulated in the target area at 8-12 weeks after GKS compared with the control group by western blot, immunohistochemistry, and RT-PCR analysis. Immunofluorescent double staining demonstrated that EMMPRIN signals colocalized with caspase-3 and VEGF-positive cells. Our data also demonstrated that increased EMMPRIN expression was correlated with increased VEGF levels in a temporal manner. This is the first study to show that EMMPRIN and VEGF may play a role in radiation injuries of the central nervous system after GKS.

  12. Chronic intracerebroventricular infusion of nociceptin/orphanin FQ increases food and ethanol intake in alcohol-preferring rats.

    Science.gov (United States)

    Cifani, Carlo; Guerrini, Remo; Massi, Maurizio; Polidori, Carlo

    2006-11-01

    Central administration of low doses of nociceptin/orphanin FQ (N/OFQ), the endogenous ligand of the opioid-like orphan receptor NOP, have been shown to reduce ethanol consumption, ethanol-induced conditioned place preference and stress-induced reinstatement of alcohol-seeking behavior in alcohol preferring rats. The present study evaluated the effect of continuous (7 days) lateral brain ventricle infusions of N/OFQ (0, 0.25, 1, 4, and 8 microg/h), by means of osmotic mini-pumps, on 10% ethanol intake in Marchigian-Sardinian alcohol-preferring (msP) rats provided 2h or 24h access to it. N/OFQ dose-dependently increased food intake in msP rats. On the other hand, in contrast to previous studies with acute injections, continuous lateral brain ventricle infusion of high doses of N/OFQ increased ethanol consumption when the ethanol solution was available for 24h/day or 2h/day. The present study demonstrates that continuous activation of the opioidergic N/OFQ receptor does not blunt the reinforcing effects of ethanol. Moreover, the data suggest that continuous activation of the opioidergic N/OFQ receptor is not a suitable way to reduce alcohol abuse.

  13. Bioburden Increases Heterotopic Ossification Formation in an Established Rat Model.

    Science.gov (United States)

    Pavey, Gabriel J; Qureshi, Ammar T; Hope, Donald N; Pavlicek, Rebecca L; Potter, Benjamin K; Forsberg, Jonathan A; Davis, Thomas A

    2015-09-01

    Heterotopic ossification (HO) develops in a majority of combat-related amputations wherein early bacterial colonization has been considered a potential early risk factor. Our group has recently developed a small animal model of trauma-induced HO that incorporates many of the multifaceted injury patterns of combat trauma in the absence of bacterial contamination and subsequent wound colonization. We sought to determine if (1) the presence of bioburden (Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus [MRSA]) increases the magnitude of ectopic bone formation in traumatized muscle after amputation; and (2) what persistent effects bacterial contamination has on late microbial flora within the amputation site. Using a blast-related HO model, we exposed 48 rats to blast overpressure, femur fracture, crush injury, and subsequent immediate transfemoral amputation through the zone of injury. Control injured rats (n = 8) were inoculated beneath the myodesis with phosphate-buffered saline not containing bacteria (vehicle) and treatment rats were inoculated with 1 × 10(6) colony-forming units of A baumannii (n = 20) or MRSA (n = 20). All animals formed HO. Heterotopic ossification was determined by quantitative volumetric measurements of ectopic bone at 12-weeks postinjury using micro-CT and qualitative histomorphometry for assessment of new bone formation in the residual limb. Bone marrow and muscle tissue biopsies were collected from the residual limb at 12 weeks to quantitatively measure the bioburden load and to qualitatively determine the species-level identification of the bacterial flora. At 12 weeks, we observed a greater volume of HO in rats infected with MRSA (68.9 ± 8.6 mm(3); 95% confidence interval [CI], 50.52-85.55) when compared with A baumannii (20.9 ± 3.7 mm(3); 95% CI, 13.61-28.14; p infection but were positive for other strains of bacteria (1.33 × 10(2) ± 0.89 × 10(2); 95% CI, -0.42 × 10(2)-3.08 × 10(2) and 1.25 × 10(6) ± 0

  14. Apelin-APJ system is responsible for stress-induced increase in atrial natriuretic peptide expression in rat heart.

    Science.gov (United States)

    Izgut-Uysal, Vecihe Nimet; Acar, Nuray; Birsen, Ilknur; Ozcan, Filiz; Ozbey, Ozlem; Soylu, Hakan; Avci, Sema; Tepekoy, Filiz; Akkoyunlu, Gokhan; Yucel, Gultekin; Ustunel, Ismail

    2018-04-01

    The cardiovascular system is a primary target of stress and stress is the most important etiologic factor in cardiovascular diseases. Stressors increase expressions of atrial natriuretic peptide (ANP) and apelin in cardiac tissue. The aim of the present study was to investigate whether stress-induced apelin has an effect on the expression of ANP in the right atrium of rat heart. The rats were divided into the control, stress and F13A+stress groups. In the stress and F13A+stress groups, the rats were subjected to water immersion and restraint stress (WIRS) for 6h. In the F13A+stress group, apelin receptor antagonist F13A, was injected intravenously immediately before application of WIRS. The plasma samples were obtained for the measurement of corticosterone and atrial natriuretic peptide. The atrial samples were used for immunohistochemistry and western blot analysis. F13A administration prevented the rise of plasma corticosterone and ANP levels induced by WIRS. While WIRS application increased the expressions of apelin, HIF-1α and ANP in atrial tissue, while F13A prevented the stress-induced increase in the expression of HIF-1α and ANP. Stress-induced apelin induces ANP expression in atrial tissue and may play a role in cardiovascular homeostasis by increasing ANP expression under WIRS conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A sucrose-rich diet induces mutations in the rat colon

    DEFF Research Database (Denmark)

    Dragsted, Lars O.; Daneshvar, Bahram; Vogel, Ulla

    2002-01-01

    A sucrose-rich diet has repeatedly been observed to have cocarcinogenic actions in the colon and liver of rats and to increase the number of aberrant crypt foci in rat colon. To investigate whether sucrose-rich diets might directly increase the genotoxic response in the rat colon or liver, we have...... added sucrose to the diet of Big Blue rats, a strain of Fischer rats carrying 40 copies of the lambda-phage on chromosome 4. Dietary sucrose was provided to the rats for 3 weeks at four dose levels including the background level in the purified diet [3.4% (control), 6.9%, 13.8%, or 34.5%] without...... of a sucrose-rich diet. No significant increase in mutations was observed in the liver. To seek an explanation for this finding, a variety of parameters were examined representing different mechanisms, including increased oxidative stress, changes in oxidative defense, effects on DNA repair, or changes...

  16. Enhanced memory in Wistar rats by virgin coconut oil is associated with increased antioxidative, cholinergic activities and reduced oxidative stress.

    Science.gov (United States)

    Rahim, Nur Syafiqah; Lim, Siong Meng; Mani, Vasudevan; Abdul Majeed, Abu Bakar; Ramasamy, Kalavathy

    2017-12-01

    Virgin coconut oil (VCO) has been reported to possess antioxidative, anti-inflammatory and anti-stress properties. Capitalizing on these therapeutic effects, this study investigated for the first time the potential of VCO on memory improvement in vivo. Thirty male Wistar rats (7-8 weeks old) were randomly assigned to five groups (n = six per group). Treatment groups were administered with 1, 5 and 10 g/kg VCO for 31 days by oral gavages. The cognitive function of treated-rats were assessed using the Morris Water Maze Test. Brains were removed, homogenized and subjected to biochemical analyses of acetylcholine (ACh) and acetylcholinesterase (AChE), antioxidants [superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx) and glutathione reductase (GRx)], lipid peroxidase [malondialdehyde (MDA)] as well as nitric oxide (NO). α-Tocopherol (αT; 150 mg/kg) was also included for comparison purposes. VCO-fed Wistar rats exhibited significant (p  33%) and NO (≥ 34%). Overall, memory improvement by VCO was comparable to αT. VCO has the potential to be used as a memory enhancer, the effect of which was mediated, at least in part, through enhanced cholinergic activity, increased antioxidants level and reduced oxidative stress.

  17. The characterization of obese polycystic ovary syndrome rat model suitable for exercise intervention.

    Directory of Open Access Journals (Sweden)

    Chuyan Wu

    Full Text Available To develop a new polycystic ovary syndrome (PCOS rat model suitable for exercise intervention.Thirty six rats were randomly divided into three experimental groups: PCOS rats with high-fat diet (PF, n = 24, PCOS rats with ordinary diet (PO, n = 6, and control rats with ordinary diet (CO, n = 6. Two kinds of PCOS rat model were made by adjustment diet structure and testosterone injection for 28 days. After a successful animal model, PF model rats were randomly assigned to three groups: exercise with a continuation of high-fat diet (PF-EF, n = 6, sedentary with a continuation of high-fat diet (PF-SF, n = 6, exercise with an ordinary diet (PF-EO, n = 6. Fasting blood glucose (FBG and insulin (FINS, estrogen (E2, progesterone (P, and testosterone (T in serum were determined by RIA, and ovarian morphology was evaluated by Image-Pro plus 6.0.Body weight, Lee index, FINS increased significantly in PF rat model. Serum levels of E2 and T were significantly higher in PF and PO than in CO. Ovary organ index and ovarian areas were significant lower in PF than in CO. After intervention for 2 weeks, the levels of 1 h postprandial blood glucose (PBG1, 2 h postprandial blood glucose (PBG2, FINS and the serum levels of T decreased significantly in PF-EF rats and PF-EO rats. The ratio of FBG/FINS was significant higher in PF-EO rats than in PF-SF rats. Ovarian morphology showed that the numbers of preantral follicles and atretic follicles decreased significantly, and the numbers of antral follicles and corpora lutea increased significantly in the rats of PF-EF and PF-EO.By combination of high-fat diet and testosterone injection, the obese PCOS rat model is conformable with the lifestyle habits of fatty foods and insufficient exercise, and has metabolic and reproductive characteristics of human PCOS. This model can be applied to study exercise intervention.

  18. Effect of Carbonated Beverage Intake on Blood Gases and Some Biochemical Parameters in Male Albino Rats

    International Nuclear Information System (INIS)

    Taha, M.S.; Osman, H.F.

    2012-01-01

    The purpose of this study was to identify the effect of carbonated beverage (colourless or black coloured drinks) on arterial blood gases, kidney function, bone mineral density (BMD), glucose and insulin. The rats were divided into three groups; ten rats per each group. Group (I) used as control, group (II) rats supplemented with colourless carbonated beverage (10 ml /100 ml water) and group (III) rats supplemented with black coloured carbonated beverage (10 ml /100 ml water) for three months. The arterial blood gases were evaluated by measuring ph PO 2 , , PCO 2 , , H + a nd HCO 3 -. Rats receiving the coloured drinks showed high significant increase in ph while PO 2 showed very high significant decrease in both groups. PCO 2 showed high significant decrease in groups (II) and (III) while H + showed high significant decrease in group (III) only. HCO 3 - showed high significant increase in group III. All these changes were related to carbonic acid dissolved in water and the increased ph lead to alkalinity of the blood and it is inversely proportional to the number of hydrogen ions (H + ). Non-significant changes were observed in sodium ions while potassium ions showed significant increase in group (II) and high significant increase in group (III). The level of urea showed high and very high significant increase in groups (II) and (III), respectively. Creatinine level showed non-significant increase in group (III). The histopathology changes were observed in kidney tissues in rats of groups (II) and (III). From these results, it appears that black coloured beverage can increase the risk of kidney problems more than colourless beverages. Ca + and inorganic phosphorous levels showed non- significant change except Ca ions showed a significant decrease in rats of group (III). The acidity of carbonated beverage leads to weak bones by promoting the loss of calcium. The decrease of bone mineral density was more pronounced in some parts of femur of rats receiving black

  19. Role of some selected Bifidobacterium strains in modulating immunosenescence of aged albino rats

    Directory of Open Access Journals (Sweden)

    Hanan A. El-Bakry

    2013-10-01

    Full Text Available Probiotic administration has been associated with enhanced immune function in elderly subjects. However, approaches for selection of an “ideal” strain of bifidobacteria are still difficult. The aim of the present study is to investigate the possible modulatory effects of three strains of Bifidobacterium species (Bifidobacterium adolescentis ATCC 15704, Bifidobacterium breve ATCC 15700 and Bifidobacterium longum ATCC 15707 on haematological and immunological parameters of aged albino rats corresponding to normal adult ones. The animals were divided into six groups; three groups of aged rats were fed yoghurt inoculated with one of the Bifidobacterium strains; one group of aged rats was fed yoghurt alone (control aged; two groups of adult and aged rats were provided with normal diet and assigned as normal groups. The total leucocyte count was significantly increased in the three bifidobacteria-treated aged groups as compared with both normal and control aged rats. Serum IgA level was considerably increased in all treated rats. On the contrary, serum IgE level was significantly decreased in rats supplemented with yoghurt inoculated with B. adolescentis or B. breve. Both B. adolescentis and B. breve groups showed significant enhanced production of TNF-α. Furthermore, the production of cytokine IL-8 was significantly increased in the B. adolescentis group. Interestingly, it was apparent that only B. adolescentis had the most pronounced effect on aged rats to regain nearly normal values as measured in normal adult rats. Conclusively, the present work indicates that dietary consumption of selected bifidobacteria strains may have a particular application in the elderly especially in terms of immunomodulation.

  20. Spirulina vesicolor Improves Insulin Sensitivity and Attenuates Hyperglycemia-Mediated Oxidative Stress in Fructose-Fed Rats

    Directory of Open Access Journals (Sweden)

    Walaa Hozayen

    2016-03-01

    Full Text Available Aim: The current study aimed to investigate the anti-hyperglycemic, anti-hyperlipidemic and insulin sensitizing effects of the cyanobacterium Spirulina vesicolor extract in fructose-fed rats. Materials and Methods: Rats were fed 30% fructose solution in drinking water for 4 weeks. Animals exhibited hyperglycemia and hyperinsulinemia were selected for further investigations. Diabetic and control rats were orally supplemented with 50 mg/kg body weight S. vesicolor extract for 4 weeks. Results: At the end of 8 weeks, fructose-fed rats showed significant increase in serum glucose, insulin, cholesterol, triglycerides, cardiovascular risk indices and insulin resistance. Treatment of the fructose-fed rats with S. vesicolor extract improved this metabolic profile. Fructose feeding produced a significant increase in serum tumor necrosis factor alpha (TNF-α and a decrease in adiponectin levels. In addition, fructose-fed rats exhibited a significant increase in liver, kidney and heart lipid peroxidation levels, and declined antioxidant defenses. Supplementation of the fructose-fed rats with S. vesicolor extract reversed these alterations. Conclusion: S. vesicolor attenuates hyperglycemia-mediated oxidative stress and inflammation, and is thus effective in improving insulin sensitivity in fructose-fed rats. [J Complement Med Res 2016; 5(1.000: 57-64

  1. Effects of electroacupuncture on corticotropin-releasing hormone in rats with chronic visceral hypersensitivity.

    Science.gov (United States)

    Liu, Hui-Rong; Fang, Xiao-Yi; Wu, Huan-Gan; Wu, Lu-Yi; Li, Jing; Weng, Zhi-Jun; Guo, Xin-Xin; Li, Yu-Guang

    2015-06-21

    To investigate the effect of electroacupuncture on corticotropin-releasing hormone (CRH) in the colon, spinal cord, and hypothalamus of rats with chronic visceral hypersensitivity. A rat model of chronic visceral hypersensitivity was generated according to the internationally accepted method of colorectal balloon dilatation. In the 7(th) week after the procedure, rats were randomly divided into a model group (MG), electroacupuncture group (EA), and sham electroacupuncture group (S-EA). After treatment, the abdominal withdrawal reflex (AWR) score was used to assess the behavioral response of visceral hyperalgesia. Immunohistochemistry (EnVision method), ELISA, and fluorescence quantitative PCR methods were applied to detect the expression of CRH protein and mRNA in the colon, spinal cord, and hypothalamus. The sensitivity of the rats to the colorectal distension stimulus applied at different strengths (20-80 mmHg) increased with increasing stimulus strength, resulting in increasing AWR scores in each group. Compared with NG, the AWR score of MG was significantly increased (P 0.05) compared with normal rats (NG). However, the decrease in EA compared with MG rats was statistically significant (P 0.05). Electroacupuncture at the Shangjuxu acupoint was able to significantly reduce the visceral hypersensitivity in rats, and regulated the expression of CRH protein and mRNA in the colon, spinal cord and hypothalamus at different levels, playing a therapeutic role in this model of irritable bowel syndrome.

  2. The oleic acid esterification of policosanol increases its bioavailability and hypocholesterolemic action in rats

    Directory of Open Access Journals (Sweden)

    Haim, D.

    2012-10-01

    Full Text Available Policosanol comprises a mixture of long-chain aliphatic alcohols from sugarcane wax. More than 50 studies indicate that policosanol decreases serum cholesterol, while others failed to reproduce this effect. The objective of this investigation was to assess the bioavailability of esterified policosanol and non-esterified policosanol (NEP, in relation to their hypocholesterolemic effects. Sprague Dawley rats were given a daily oral dose of 100 mg/kg of NEP, 117 mg kg–1 of butyric acid esterified policosanol (BAEP, or 164 mg kg–1 of oleic acid esterified policosanol (OAEP. Policosanol absorption was evaluated in plasma between 0 and 3 hours after ingestion. To assess changes in total cholesterol, LDL-cholesterol, HDLcholesterol and triacylglycerols in plasma and liver 3-hydroxy- 3-methylglutaryl coenzyme A reductase (HMG- CoA red phosphorylation, the rats were supplemented with nonesterified or esterified policosanol for 5 weeks. The results indicate that policosanol absorption was significantly greater in OAEP-treated rats than in those subjected to NEP or BAEP administration. OAEP significantly reduced plasma total and LDL-cholesterol in rats, in addition to a 5.6-fold increase (P < 0.05 in the hepatic content of phosphorylated HMG-CoA red over the control values. In conclusion, esterification of policosanol with oleic acid enhances policosanol bioavailability, and significantly improves the serum lipid profile in normocholesterolemic rats in association with the inactivation of HMG-CoA red controlling cholesterogenesis.

    Los Policosanoles están formados por una mezcla de alcoholes alifáticos de cadena larga y se obtienen de las ceras de la caña de azúcar. Más de cincuenta estudios indican que los policosanoles reducen el colesterol sérico, mientras que otros no logran reproducir este efecto. El objetivo de esta investigación fue evaluar la biodisponibilidad de policosanoles esterificados y no esterificados

  3. Suppressed serum prolactin in sinoaortic-denervated rats

    International Nuclear Information System (INIS)

    Alexander, N.; Melmed, S.; Morris, M.

    1987-01-01

    The authors investigated the effect of arterial baroreceptor deafferentation on serum and pituitary prolactin (PRL) and on catecholamines in median eminence (ME) and anterior and posterior pituitaries. Male Wistar rats were sinoaortic denervated (SAD) or sham operated (SO). Three days after surgery serum prolactin, measured by radioimmunoassay, was suppressed in SAD rats, and dopamine (DA) and norepinephrine (NE) concentrations, measured by radioenzymatic or high-performance liquid chromatography electron capture methods, were significantly reduced in ME of SAD rats. Simultaneously, anterior pituitary of SAD rats had significant increases in both catecholamines, whereas posterior pituitary showed no changes. Four hours after surgery serum PRL was also reduced in SAD rats, but no changes in ME catecholamines were found. Mean arterial pressure (MAP) and heart rate were measured before and after injection of bromocriptine in SAD and SO rats 3 days after surgery. Bromocriptine markedly suppressed serum PRL in both groups and reduced MAP from 144 +/- 10 to 84 +/- 5 and from 116 +/- 2 to 99 +/- 3 in SAD and SO rats, respectively; heart rate was reduced in SAD rats. They conclude that the SAD rat is a model of hypertension with suppressed serum PRL and that interruption of arterial baroreceptor nerves suppresses PRL secretion probably by modulating tuberoinfundibular turnover of catecholamines

  4. Improved appetite of pregnant rats and increased birth weight and ...

    African Journals Online (AJOL)

    Deux espèces probiotiques, le lactobacillus rhamnosus GR-1 et le Lactobacillus fermentumRC 14 ont été administé séparément comme supplément dans l\\'eau potable aux rats étudiés pendant 30 jours. La ration et le poids à la naissance des chiots ont été mesuré. Une amélioration significative d\\'appetit des rats dont le ...

  5. Macrophage colony-stimulating factor induces prolactin expression in rat pituitary gland.

    Science.gov (United States)

    Hoshino, Satoya; Kurotani, Reiko; Miyano, Yuki; Sakahara, Satoshi; Koike, Kanako; Maruyama, Minoru; Ishikawa, Fumio; Sakatai, Ichiro; Abe, Hiroyuki; Sakai, Takafumi

    2014-06-01

    We investigated the role of macrophage colony-stimulating factor (M-CSF) in the pituitary gland to understand the effect of M-CSF on pituitary hormones and the relationship between the endocrine and immune systems. When we attempted to establish pituitary cell lines from a thyrotropic pituitary tumor (TtT), a macrophage cell line, TtT/M-87, was established. We evaluated M-CSF-like activity in conditioned media (CM) from seven pituitary cell lines using TtT/M-87 cells. TtT/M-87 proliferation significantly increased in the presence of CM from TtT/GF cells, a pituitary folliculostellate (FS) cell line. M-CSF mRNA was detected in TtT/GF and MtT/E cells by reverse transcriptase-polymerase chain reaction (RT-PCR), and its expression in TtT/GF cells was increased in a lipopolysaccharide (LPS) dose-dependent manner. M-CSF mRNA expression was also increased in rat anterior pituitary glands by LPS. M-CSF receptor (M-CSFR) mRNA was only detected in TtT/ M-87 cells and increased in the LPS-stimulated rat pituitary glands. In rat pituitary glands, M-CSF and M-CSFR were found to be localized in FS cells and prolactin (PRL)-secreting cells, respectively, by immunohistochemistry. The PRL concentration in rat sera was significantly increased at 24 h after M-CSF administration, and mRNA levels significantly increased in primary culture cells of rat anterior pituitary glands. In addition, TNF-α mRNA was increased in the primary culture cells by M-CSF. These results revealed that M-CSF was secreted from FS cells and M-CSF regulated PRL expression in rat pituitary glands.

  6. Glucagon-like peptide-1 acutely affects renal blood flow and urinary flow rate in spontaneously hypertensive rats despite significantly reduced renal expression of GLP-1 receptors

    DEFF Research Database (Denmark)

    Ronn, Jonas; Jensen, Elisa P; Wewer Albrechtsen, Nicolai J

    2017-01-01

    to increased mean arterial pressure (MAP) and increased renal blood flow (RBF). In hypertensive animal models, GLP-1 has been reported both to increase and decrease MAP. The aim of this study was to examine expression of renal GLP-1 receptors in spontaneously hypertensive rats (SHR) and to assess the effect......Glucagon-like peptide-1 (GLP-1) is an incretin hormone increasing postprandial insulin release. GLP-1 also induces diuresis and natriuresis in humans and rodents. The GLP-1 receptor is extensively expressed in the renal vascular tree in normotensive rats where acute GLP-1 treatment leads...... in the kidney from SHR. However, acute intrarenal infusion of GLP-1 increased MAP, RBF, dieresis, and natriuresis without affecting heart rate in both rat strains. These results suggest that the acute renal effects of GLP-1 in SHR are caused either by extrarenal GLP-1 receptors activating other mechanisms (e...

  7. S-glutathionylation of troponin I (fast) increases contractile apparatus Ca2+ sensitivity in fast-twitch muscle fibres of rats and humans.

    Science.gov (United States)

    Mollica, J P; Dutka, T L; Merry, T L; Lamboley, C R; McConell, G K; McKenna, M J; Murphy, R M; Lamb, G D

    2012-03-15

    Oxidation can decrease or increase the Ca2+ sensitivity of the contractile apparatus in rodent fast-twitch (type II) skeletal muscle fibres, but the reactions and molecular targets involved are unknown. This study examined whether increased Ca2+ sensitivity is due to S-glutathionylation of particular cysteine residues. Skinned muscle fibres were directly activated in heavily buffered Ca2+ solutions to assess contractile apparatus Ca2+ sensitivity. Rat type II fibres were subjected to S-glutathionylation by successive treatments with 2,2′-dithiodipyridine (DTDP) and glutathione (GSH), and displayed a maximal increase in pCa50 (−log10 [Ca2+] at half-maximal force) of ∼0.24 pCa units, with little or no effect on maximum force or Hill coefficient. Partial similar effect was produced by exposure to oxidized gluthathione (GSSG, 10 mM) for 10 min at pH 7.1, and near-maximal effect by GSSG treatment at pH 8.5. None of these treatments significantly altered Ca2+ sensitivity in rat type I fibres. Western blotting showed that both the DTDP–GSH and GSSG–pH 8.5 treatments caused marked S-glutathionylation of the fast troponin I isoform (TnI(f)) present in type II fibres, but not of troponin C (TnC) or myosin light chain 2. Both the increased Ca2+ sensitivity and glutathionylation of TnI(f) were blocked by N-ethylmaleimide (NEM). S-nitrosoglutathione (GSNO) also increased Ca2+ sensitivity, but only in conditions where it caused S-glutathionylation of TnI(f). In human type II fibres from vastus lateralis muscle, DTDP–GSH treatment also caused similar increased Ca2+ sensitivity and S-glutathionylation of TnI(f). When the slow isoform of TnI in type I fibres of rat was partially substituted (∼30%) with TnI(f), DTDP–GSH treatment caused a significant increase in Ca2+ sensitivity (∼0.08 pCa units). TnIf in type II fibres from toad and chicken muscle lack Cys133 present in mammalian TnIf, and such fibres showed no change in Ca2+ sensitivity with DTDP–GSH nor any S

  8. EFFECT OF FERMENTED CHUB MACKEREL EXTRACT ON LIPID METABOLISM OF DIABETIC RATS

    Directory of Open Access Journals (Sweden)

    U. Santoso

    2014-10-01

    Full Text Available The present study was conducted to evaluate the effect of fermented chub mackerel extract(FCME on lipid metabolism in diabetic rats. Four week-old male Wistar rats were divided into threegroups based on weight. All rats were induced with diabetes mellitus by single intraperitoneal injectionof streptozotocin at 45 mg/kg body weight. Thereafter, they were randomly distributed to threetreatments with 7 rats assigned to each treatment. One group was the control with no additive, and twotreatmentgroups were given the purified diets supplemented with 1% or 2% FCME. Experimentalresults showed that in comparison to the control, diabetic rats fed FCME increased feed intake (P<0.01and body weight gain (P<0.05. FCME inclusion significantly reduced the activities of acetyl-CoAcarboxylase (P<0.01 and fatty acid synthetase (P<0.05 in diabetic rats. FCME significantly increasedcholesterol 7 -hydroxylase with no effect on HMG-CoA reductase activity. FCME had no effect onhepatic triglyceride, free cholesterol and phospholipid. FCME inclusion at 1% level significantlyreduced serum triglyceride. FCME significantly increased HDL-cholesterol (P<0.05 with no effect onLDL + VLDL-cholesterol, and significantly reduced atherogenic index. FCME did not significantlyaffect serum insulin and glucose concentration. In conclusion, FCME supplementation altered lipidmetabolism in diabetic rats. FCME supplementation reduced the risk of atherosclerosis in diabetic rats.

  9. Increased expression of Apo-J and Omi/HtrA2 after Intracerebral Hemorrage in rats.

    Science.gov (United States)

    Li, Feng; Yang, Jing; Guo, Xiaoyan; Zheng, Xiaomei; Lv, Zhiyu; Shi, Chang Qing; Li, Xiaogang

    2018-03-23

    To investigate the changes of Apo-J and Omi/HtrA2 protein expression in rats with intracerebral hemorrage. 150 SD adult rats were randomly divided into 3 groups: (1) Normal Control (NC) group, (2) Sham group, (3) Intracerebral Hemorrage (ICH) group. The data were collected at 6h, 12h, 1d, 2d, 3d, 5d and 7d. Apoptosis was measured by Tunel staining. The distributions of the Apo-J and Omi/HtrA2 proteins were determined by immunohistochemical staining. The levels of Apo-J mRNA and Omi/HtrA2 mRNA expressions were examined by RT-PCR. Apoptosis in ICH group was higher than Sham and NC groups (p<0.05). Both the Apo-J and Omi/HtrA2 expression levels were increased in the peripheral region of hemorrhage, with a peak at 3d. The Apo-J mRNA level positively correlated with HtrA2 mRNA level in ICH group (r=0.883, p<0.001). The expressions of Apo-J and Omi/HtrA2 paralelly increased in peripheral region of rat cerebral hemorrhage. Local high expressed Apo-J in the peripheral regions might play a neuroprotective role by inhibiting apoptosis via Omi/HtrA2 pathway after hemorrhage. Copyright © 2018. Published by Elsevier Inc.

  10. Aging aggravates long-term renal ischemia-reperfusion injury in a rat model.

    Science.gov (United States)

    Xu, Xianlin; Fan, Min; He, Xiaozhou; Liu, Jipu; Qin, Jiandi; Ye, Jianan

    2014-03-01

    Ischemia-reperfusion injury (IRI) has been considered as the major cause of acute kidney injury and can result in poor long-term graft function. Functional recovery after IRI is impaired in the elderly. In the present study, we aimed to compare kidney morphology, function, oxidative stress, inflammation, and development of renal fibrosis in young and aged rats after renal IRI. Rat models of warm renal IRI were established by clamping left pedicles for 45 min after right nephrectomy, then the clamp was removed, and kidneys were reperfused for up to 12 wk. Biochemical and histologic renal damage were assessed at 12 wk after reperfusion. The immunohistochemical staining of monocyte macrophage antigen-1 (ED-1) and transforming growth factor beta 1 (TGF-β1) and messenger RNA level of TGF-β1 in the kidney were analyzed. Renal IRI caused significant increases of malondialdehyde and 8-hydroxydeoxyguanosine levels and a decrease of superoxide dismutase activity in young and aged IRI rats; however, these changes were more obvious in the aged rats. IRI resulted in severe inflammation and tubulointerstitial fibrosis with decreased creatinine (Cr) clearance and increased histologic damage in aged rats compared with young rats. Moreover, we measured the ratio of Cr clearance between young and aged IRI rats. It demonstrated that aged IRI rats did have poor Cr clearance compared with the young IRI rats. ED-1 and TGF-β1 expression levels in the kidney were significantly higher in aged rats than in young rats after IRI. Aged rats are more susceptible to IRI-induced renal failure, which may associate with the increased oxidative stress, increased histologic damage, and increased inflammation and tubulointerstitial fibrosis. Targeting oxidative stress and inflammatory response should improve the kidney recovery after IRI. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Soybean oil increases SERCA2a expression and left ventricular contractility in rats without change in arterial blood pressure

    Directory of Open Access Journals (Sweden)

    Vassallo Dalton

    2010-05-01

    Full Text Available Abstract Background Our aim was to evaluate the effects of soybean oil treatment for 15 days on arterial and ventricular pressure, myocardial mechanics and proteins involved in calcium handling. Methods Wistar rats were divided in two groups receiving 100 μL of soybean oil (SB or saline (CT i.m. for 15 days. Ventricular performance was analyzed in male 12-weeks old Wistar rats by measuring left ventricle diastolic and systolic pressure in isolated perfused hearts according to the Langendorff technique. Protein expression was measured by Western blot analysis. Results Systolic and diastolic arterial pressures did not differ between CT and SB rats. However, heart rate was reduced in the SB group. In the perfused hearts, left ventricular isovolumetric systolic pressure was higher in the SB hearts. The inotropic response to extracellular Ca2+ and isoproterenol was higher in the soybean-treated animals than in the control group. Myosin ATPase and Na+-K+ATPase activities, the expression of sarcoplasmic reticulum calcium pump (SERCA2a and sodium calcium exchanger (NCX were increased in the SB group. Although the phosfolamban (PLB expression did not change, its phosphorylation at Ser16 was reduced while the SERCA2a/PLB ratio was increased. Conclusions In summary, soybean treatment for 15 days in rats increases the left ventricular performance without affecting arterial blood pressure. These changes might be associated with an increase in the myosin ATPase activity and SERCA2a expression.

  12. Treatment with low-dose resveratrol reverses cardiac impairment in obese prone but not in obese resistant rats.

    Science.gov (United States)

    Louis, Xavier L; Thandapilly, Sijo J; MohanKumar, Suresh K; Yu, Liping; Taylor, Carla G; Zahradka, Peter; Netticadan, Thomas

    2012-09-01

    We hypothesized that a low-dose resveratrol will reverse cardiovascular abnormalities in rats fed a high-fat (HF) diet. Obese prone (OP) and obese resistant (OR) rats were fed an HF diet for 17 weeks; Sprague-Dawley rats fed laboratory chow served as control animals. During the last 5 weeks of study, treatment group received resveratrol daily by oral gavage at a dosage of 2.5 mg/kg body weight. Assessments included echocardiography, blood pressure, adiposity, glycemia, insulinemia, lipidemia, and inflammatory and oxidative stress markers. Body weight and adiposity were significantly higher in OP rats when compared to OR rats. Echocardiographic measurements showed prolonged isovolumic relaxation time in HF-fed OP and OR rats. Treatment with resveratrol significantly improved diastolic function in OP but not in OR rats without affecting adiposity. OP and OR rats had increased blood pressure which remained unchanged with treatment. OP rats had elevated fasting serum glucose and insulin, whereas OR rats had increased serum glucose and normal insulin concentrations. Resveratrol treatment significantly reduced serum glucose while increasing serum insulin in both OP and OR rats. Inflammatory and oxidative stress markers, serum triglycerides and low-density lipoprotein were higher in OP rats, which were significantly reduced with treatment. In conclusion, HF induced cardiac dysfunction in both OP and OR rats. Treatment reversed abnormalities in diastolic heart function associated with HF feeding in OP rats, but not in OR rats. The beneficial effects of resveratrol may be mediated through regression of hyperglycemia, oxidative stress and inflammation. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. LONG TERM EFFECT OF CHROMIUM ON LIPID PROFILE AND SOME HORMONES IN OBESE RATS

    International Nuclear Information System (INIS)

    GABR, S.A.; ABDEL-KHALEK, L.G.; GHAREIB, S.A.

    2008-01-01

    In the present study, the long term effect of chromium picolinate (intake 30 and 60 days) on lipid profile, testosterone, thyroid hormones, corticosterone and insulin was studied in obese male rats. A total of 48 male albino rats were arranged into four equal groups. The rats were distributed into four equal main groups: 1- Normal rats left without any treatment and served as a control group. 2- Normal rats treated with chromium picolinate at a dose of 40 μg/kg/day. 3-Obese rats (after the induction of obesity) using fed high fat diet. 4- Obese rats treated with chromium picolinate. The results obtained showed that normal rats treated with chromium picolinate for 30 or 60 days had no changes in total cholesterol, triglycerides, total lipids, LDL-cholesterol, HDL-cholesterol, triiodothyronine (T 3 ) and thyroxine (T 4 ) when compared with the control group. The testosterone and corticosterone levels were significantly decreased in rats treated with chromium picolinate for 60 days. Insulin level was significantly increased in treated rats for 60 days when compared with the control ones. In obese rats, the lipid profile and corticosterone were significantly increased at 30 and 60 days, while the insulin levels were increased in obese rats fed on high fat diet for 30 days as compared with the control rats. The administration of chromium picolinate to obese rats succeeded to decrease the lipid profile, corticosterone (at 60 days) and insuline (at 30 days) when compared with the obese rats. It could be concluded from this study that chromium picolinate possess beneficial effects in decreasing lipid profile in obese rats. Therefore, additional of chromium picolinate may be useful in obese rats to burn excess body fat and in treatment of hypercholesterolemia. Since it cause decrease in testosterone level, its use was advised to restrict to relatively old age

  14. Enriching the drinking water of rats with extracts of Salvia officinalis and Thymus vulgaris increases their resistance to oxidative stress.

    Science.gov (United States)

    Horváthová, Eva; Srančíková, Annamária; Regendová-Sedláčková, Eva; Melušová, Martina; Meluš, Vladimír; Netriová, Jana; Krajčovičová, Zdenka; Slameňová, Darina; Pastorek, Michal; Kozics, Katarína

    2016-01-01

    Nature is an attractive source of therapeutic compounds. In comparison to the artificial drugs, natural compounds cause less adverse side effects and are suitable for current molecularly oriented approaches to drug development and their mutual combining. Medicinal plants represent one of the most available remedy against various diseases. Proper examples are Salvia officinalis L. and Thymus vulgaris L. which are known aromatic medicinal plants. They are very popular and frequently used in many countries. The molecular mechanism of their biological activity has not yet been fully understood. The aim of this study was to ascertain if liver cells of experimental animals drinking extracts of sage or thyme will manifest increased resistance against oxidative stress. Adult Sprague-Dawley rats were divided into seven groups. They drank sage or thyme extracts for 2 weeks. At the end of the drinking period, blood samples were collected for determination of liver biochemical parameters and hepatocytes were isolated to analyze (i) oxidatively generated DNA damage (conventional and modified comet assay), (ii) activities of antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GPx)] and (iii) content of glutathione. Intake of sage and thyme had no effect either on the basal level of DNA damage or on the activity of SOD in rat hepatocytes and did not change the biochemical parameters of blood plasma. Simultaneously, the activity of GPx was significantly increased and the level of DNA damage induced by oxidants was decreased. Moreover, sage extract was able to start up the antioxidant protection expressed by increased content of glutathione. Our results indicate that the consumption of S.officinalis and T.vulgaris extracts positively affects resistency of rat liver cells against oxidative stress and may have hepatoprotective potential. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved

  15. Significant long-term, but not short-term, hippocampal-dependent memory impairment in adult rats exposed to alcohol in early postnatal life.

    Science.gov (United States)

    Goodfellow, Molly J; Lindquist, Derick H

    2014-09-01

    In rodents, ethanol exposure in early postnatal life is known to induce structural and functional impairments throughout the brain, including the hippocampus. Herein, rat pups were administered one of three ethanol doses over postnatal days (PD) 4-9, a period of brain development comparable to the third trimester of human pregnancy. As adults, control and ethanol rats were trained and tested in a variant of hippocampal-dependent one-trial context fear conditioning. In Experiment 1, subjects were placed into a novel context and presented with an immediate footshock (i.e., within ∼8 sec). When re-exposed to the same context 24 hr later low levels of conditioned freezing were observed. Context pre-exposure 24 hr prior to the immediate shock reversed the deficit in sham-intubated and unintubated control rats, enhancing freezing behavior during the context retention test. Even with context pre-exposure, however, significant dose-dependent reductions in contextual freezing were seen in ethanol rats. In Experiment 2, the interval between context pre-exposure and the immediate shock was shortened to 2 hr, in addition to the standard 24 hr. Ethanol rats trained with the 2 hr, but not 24 hr, interval displayed retention test freezing levels roughly equal to controls. Results suggest the ethanol rats can encode a short-term context memory and associate it with the aversive footshock 2 hr later. In the 24 hr ethanol rats the short-term context memory is poorly transferred or consolidated into long-term memory, we propose, impeding the memory's subsequent retrieval and association with shock. © 2014 Wiley Periodicals, Inc.

  16. Antidiabetic and Antioxidant Properties of Triticum aestivum in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Yogesha Mohan

    2013-01-01

    Full Text Available The antidiabetic and antioxidant potential of Triticum aestivum were evaluated by using in vivo methods in normal and streptozotocin-induced diabetic rats. Diabetes was induced in the Wistar strain albino rats by injecting streptozotocin at a dose of 55 mg/kg body weight. Ethanolic extracts of Triticum aestivum at doses of 100 mg/kg body weight were administered orally for 30 days. Various parameters were studied and the treatment group with the extract showed a significant increase in the liver glycogen and a significant decrease in fasting blood glucose, glycosylated hemoglobin levels, and serum marker enzyme levels. The total cholesterol and serum triglycerides levels, low density lipoprotein, and very low density lipoprotein were also significantly reduced and the high density lipoprotein level was significantly increased upon treatment with the Triticum aestivum ethanol extract. A significant decrease in the levels of lipid peroxides, superoxide dismutase, and glutathione peroxidise and increase in the levels of vitamin E, catalase, and reduced glutathione were observed in Triticum aestivum treated diabetic rats. Thus, from this study we conclude that ethanolic extract of Triticum aestivum exhibited significant antihyperglycemic, hypolipidemic, and antioxidant activities in streptozotocin-induced diabetic rats.

  17. Sphingosine-1-Phosphate (S1P) Lyase Inhibition Causes Increased Cardiac S1P Levels and Bradycardia in Rats.

    Science.gov (United States)

    Harris, Christopher M; Mittelstadt, Scott; Banfor, Patricia; Bousquet, Peter; Duignan, David B; Gintant, Gary; Hart, Michelle; Kim, Youngjae; Segreti, Jason

    2016-10-01

    Inhibition of the sphingosine-1-phosphate (S1P)-catabolizing enzyme S1P lyase (S1PL) elevates the native ligand of S1P receptors and provides an alternative mechanism for immune suppression to synthetic S1P receptor agonists. S1PL inhibition is reported to preferentially elevate S1P in lymphoid organs. Tissue selectivity could potentially differentiate S1PL inhibitors from S1P receptor agonists, the use of which also results in bradycardia, atrioventricular block, and hypertension. But it is unknown if S1PL inhibition would also modulate cardiac S1P levels or cardiovascular function. The S1PL inhibitor 6-[(2R)-4-(4-benzyl-7-chlorophthalazin-1-yl)-2-methylpiperazin-1-yl]pyridine-3-carbonitrile was used to determine the relationship in rats between drug concentration, S1P levels in select tissues, and circulating lymphocytes. Repeated oral doses of the S1PL inhibitor fully depleted circulating lymphocytes after 3 to 4 days of treatment in rats. Full lymphopenia corresponded to increased levels of S1P of 100- to 1000-fold in lymph nodes, 3-fold in blood (but with no change in plasma), and 9-fold in cardiac tissue. Repeated oral dosing of the S1PL inhibitor in telemeterized, conscious rats resulted in significant bradycardia within 48 hours of drug treatment, comparable in magnitude to the bradycardia induced by 3 mg/kg fingolimod. These results suggest that S1PL inhibition modulates cardiac function and does not provide immune suppression with an improved cardiovascular safety profile over fingolimod in rats. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  18. Piracetam and vinpocetine ameliorate rotenone-induced Parkinsonism in rats.

    Science.gov (United States)

    Zaitone, Sawsan A; Abo-Elmatty, Dina M; Elshazly, Shimaa M

    2012-01-01

    To evaluate the neuroprotective effect of the nootropic drugs, piracetam (PIR) and vinpocetine (VIN), in rotenone-induced Parkinsonism in rats. Sixty male rats were divided into 6 groups of 10 rats each. The groups were administered vehicle, control (rotenone, 1.5 mg/kg/48 h/6 doses, s.c.), PIR (100 and 200 mg/kg/day, p.o.) and VIN (3 and 6 mg/kg/day, p.o.). The motor performance of the rats was evaluated by the open field and pole test. Striatal dopamine level, malondialdehyde (MDA), reduced glutathione (GSH) and tumor necrosis factor-α (TNF-α) were assayed. Histopathological study of the substantia nigra was also done. Results showed that rotenone-treated rats exhibited bradykinesia and motor impairment in the open-field test. In addition, GSH level was decreased whereas MDA and TNF-α increased in striata of rotenone-treated rats as compared to vehicle-treated rats. Marked degeneration of the substantia nigra pars compacta (SNpc) neurons and depletion of striatal dopamine was also observed in the rotenone-treated rats. Treatment with PIR or VIN significantly reversed the locomotor deficits and increased striatal dopamine level. Treatment with VIN significantly (P<0.05) reduced the striatal level of MDA and GSH in comparison to rotenone group whereas TNF-α production was found to be significantly decreased in PIR group (P<0.05). VIN and PIR exhibit neuroprotective activity in rotenone-induced Parkinsonism. Hence, these nootropic agents may be considered as possible candidates in the treatment of Parkinson's disease.

  19. Intestinal absorption of calcium and magnesium in rats

    International Nuclear Information System (INIS)

    Erhart, J.

    1981-01-01

    Absorption of Ca and Mg was studied in isolated and perfused jejunum segments of rats using radioactive 45 Ca and 28 Mg. At ion concentrations of 1.5 and 10 mmol in the bath solution, the influence of uraemia, 1,25-(OH) 2 D 3 and the complementary ion was investigated. Absorption of Ca ++ was found to be slightly reduced by uraemia and renormalized by 1,25-(OH) 2 D 3 substitution. Transport of Ca ++ was significantly increased in the presence of Mg ++ , both in healthy rats and in animals with chronic uraemia. Mg ++ absorption, in contrast, was significantly reduced in rats with uraemia, and 1,25-(OH) 2 D 3 substitution was found to reduce it even further. In the presence of Ca ++ , transport of Mg ++ was lowered both in healthy rats and in rats with chronic uraemia. (MG) [de

  20. GARLIC AMELIORATES THE HEPATOTOXIC EFFECT INDUCED BY THIOACETAMIDE IN FEMALE RATS

    International Nuclear Information System (INIS)

    OSMAN, H.F.; TAHA, M.S.

    2008-01-01

    The purpose of this study was to investigate the pretreatment effect of garlic on hepatotoxicity and oxidative stress induced by thioacetamide (TAA) in female albino rats.Sixty female adult albino rats were assigned equally into four groups; control group: animals without treatment, group ?: rats given daily oral dose of 250 mg/ kg garlic for 28 days, group ??: rats injected intraperitonealy by thioacetamide 20 mg ? kg for two weeks and group III: rats given 250 mg / kg garlic orally for 28 day followed by intrapertoneal injection of 20 mg / kg thioacetamide for two weeks. Liver enzymes were evaluated by measurements of AST, ALT and alkaline phosphatase and also trace elements (Cu and Zn) were estimated. Superoxide dismutase, glutathione peroxidase, malondialdehyde and thyroid hormones (T3 and T4) were assessed. Also, histological studies on liver and stomach were carried out. The results indicated that treatment with garlic significantly decreased liver enzymes (AST, ALT and ALP). Cu showed high significant increase in groups treated with garlic and also garlic + TAA, while Zn was increased significantly in TAA group. Superoxide dismutase (SOD) was increased significantly in group I while TAA decreased it significantly. Glutathione peroxidase was decreased significantly in group II while its level in group IV reached near the control value. Similarly, malondialdehyde was decreased significantly in garlic group and garlic ameliorated the thioacetamide effect in garlic + TAA group. The treatment with TAA led to significant increase in T3 and significant decrease in T4 hormones. Garlic ameliorated T3 level to reach the control level. Histologically, pre-treatment with garlic induced a prophylactic activity against the thioacetamide in liver and stomach tissues.According to the obtained results, it could be conclude that garlic treatment may act as antioxidant or pro-oxidant in TAA treated animals besides decreasing the TAA toxic effects on liver enzymes, liver and

  1. Early life stress sensitizes the renal and systemic sympathetic system in rats.

    Science.gov (United States)

    Loria, Analia S; Brands, Michael W; Pollock, David M; Pollock, Jennifer S

    2013-08-01

    We hypothesized that maternal separation (MS), an early life stress model, induces a sensitization of the sympathetic system. To test this hypothesis, we evaluated the renal and systemic sympathetic system in 12- to 14-wk-old male control or MS rats with the following parameters: 1) effect of renal denervation on conscious renal filtration capacity, 2) norepinephrine (NE) content in key organs involved in blood pressure control, and 3) acute systemic pressor responses to adrenergic stimulation or ganglion blockade. MS was performed by separating pups from their mothers for 3 h/day from day 2 to 14; controls were nonhandled littermates. Glomerular filtration rate (GFR) was examined in renal denervated (DnX; within 2 wk) or sham rats using I¹²⁵-iothalamate plasma clearance. MS-DnX rats showed significantly increased GFR compared with MS-SHAM rats (3.8 ± 0.4 vs. 2.4 ± 0.2 ml/min, respectively, P renal nerves regulate GFR in MS rats. NE content was significantly increased in organ tissues from MS rats (P renal and systemic sympathetic system. Conscious MS rats displayed a significantly greater increase in mean arterial pressure (MAP) in response to NE (2 μg/kg ip) and a greater reduction in MAP in response to mecamylamine (2 mg/kg ip, P renal and systemic sympathetic system ultimately impairing blood pressure regulation.

  2. Impaired NaCl taste thresholds in Zn deprived rats

    International Nuclear Information System (INIS)

    Brosvic, G.M.; Slotnick, B.M.; Nelson, N.; Henkin, R.I.

    1986-01-01

    Zn deficiency is a relatively common cause of loss of taste acuity in humans. In some patients replacement with exogenous Zn results in rapid reversal of the loss whereas in others prolonged treatment is needed to restore normal taste function. To study this 300 gm outbred Sprague Dawley rats were given Zn deficient diet (< 1 ppm Zn) supplemented with Zn in drinking water (0.1 gm Zn/100 gm body weight). Rats were trained in an automated operant conditions procedure and NaCl taste thresholds determined. During an initial training period and over two replications mean thresholds were 0.006% and mean plasma Zn was 90 +/- 2 μg/dl (M +/- SEM) determined by flame atomic absorption spectrophotometry. Rats were then divided into two groups; in one (3 rats) Zn supplement was removed, in the other (4 rats), pair-fed with the former group, Zn supplement was continued. In 10 days NaCl thresholds in Zn deprived rats increased significantly (0.07%, p < 0.01) and in 17 days increased 13 fold (0.08%) but thresholds for pair fed, supplemented rats remained constant (0.006%). There was no overlap in response between any rat in the two groups. Plasma Zn at 17 days in Zn-deprived rats was significantly below pair-fed rats (52 +/- 13 vs 89 +/- 6 μg/dl, respectively, P < 0.01). At this time Zn-deprived rats were supplemented with Zn for 27 days without any reduction in taste thresholds. These preliminary results are consistent with previous observations in Zn deficient patients

  3. Modulation of Radiation Injury in Pregnant Rats by Bone Marrow Transplantation

    International Nuclear Information System (INIS)

    Hussein, E.M.; Abd Rabu, M.A.

    2011-01-01

    This Work aims to point out the influence of bone marrow transplantation (BMT) in protection of irradiated pregnant rats and suppression of oxidative stress. BMT was administered to rats, 1 h post gamma irradiation at the dose level of 2 Gy given at the 7th or 14th day of gestation. Rats were examined after 20 days from gestation to detect the physiological parameters of the mother and number of implantation sites and resorption as well as length of foetuses and tails. Pregnant rats irradiated at the 7th and 14th day of gestation showed reduction in live foetuses and length of foetuses and their tails and significant decrease in erythrocytes (RBCs), leucocytes (WBCs), haemoglobin content (Hb), and hematocrit percentage (Ht). Irradiation-induced an elevation in aldosterone and a drop in calcium (Ca). Glutathione levels showed significant decreases in blood while the content of serum thiobarbituric acid reactive substance (TBARS) showed significant increases. Lipid profile exhibited an increase in the concentrations of total cholesterol (TC), triglycerides (TG) and low lipoproteins cholesterol (LDL-C) with a significant decrease in high lipoproteins cholesterol (HDL-C) in both groups. BMT to irradiated pregnant rats induced significant amelioration in radiation- induced changes. BMT was shown to be effective in reducing physiological disorders and oxidative stress in pregnant rats reflected on minimizing embryonic injuries

  4. Effect of housing rats within a pyramid on stress parameters.

    Science.gov (United States)

    Bhat, Surekha; Rao, Guruprasad; Murthy, K Dilip; Bhat, P Gopalakrishna

    2003-11-01

    The Giza pyramids of Egypt have been the subject of much research. Pyramid models with the same base to height ratio as of the Great Pyramid of Giza, when aligned on a true north-south axis, are believed to generate, transform and transmit energy. Research done with such pyramid models has shown that they induced greater relaxation in human subjects, promoted better wound healing in rats and afforded protection against stress-induced neurodegnerative changes in mice. The present study was done to assess the effects of housing Wistar rats within the pyramid on the status of oxidative damage and antioxidant defense in their erythrocytes and cortisol levels in their plasma. Rats were housed in cages under standard laboratory conditions. Cages were left in the open (normal control), under a wooden pyramid model (experimental rats) or in a cubical box of comparable dimensions (6 hr/day for 14 days). Erythrocyte malondialdehyde and plasma cortisol levels were significantly decreased in rats kept within the pyramid as compared to the normal control and those within the square box. Erythrocyte reduced glutathione levels, erythrocyte glutathione peroxidase and superoxide dismutase activities were significantly increased in the rats kept in the pyramid as compared to the other two groups. There was no significant difference in any of the parameters between the normal control and rats kept in the square box. The results showed that exposure of adult female Wistar rats to pyramid environment reduces stress oxidative stress and increases antioxidant defense in them.

  5. Fenbendazole treatment may influence lipopolysaccharide effects in rat brain.

    Science.gov (United States)

    Hunter, Randy L; Choi, Dong-Young; Kincer, Jeanie F; Cass, Wayne A; Bing, Guoying; Gash, Don M

    2007-10-01

    In evaluating discrepant results between experiments in our laboratory, we collected data that challenge the notion that anthelminthic drugs like FBZ do not alter inflammatory responses. We found that FBZ significantly modulates inflammation in F344 rats intrastriatally injected with LPS. FBZ treatment of LPS-injected rats significantly increased weight loss, microglial activation, and dopamine loss; in addition, FBZ attenuated the LPS-induced loss of astrocytes. Therefore, FBZ treatment altered the effects of LPS injection. Caution should be used in interpreting data collected from rats treated with LPS and FBZ.

  6. Neurite outgrowth is significantly increased by the simultaneous presentation of Schwann cells and moderate exogenous electric fields

    Science.gov (United States)

    Koppes, Abigail N.; Seggio, Angela M.; Thompson, Deanna M.

    2011-08-01

    Axonal extension is influenced by a variety of external guidance cues; therefore, the development and optimization of a multi-faceted approach is probably necessary to address the intricacy of functional regeneration following nerve injury. In this study, primary dissociated neonatal rat dorsal root ganglia neurons and Schwann cells were examined in response to an 8 h dc electrical stimulation (0-100 mV mm-1). Stimulated samples were then fixed immediately, immunostained, imaged and analyzed to determine Schwann cell orientation and characterize neurite outgrowth relative to electric field strength and direction. Results indicate that Schwann cells are viable following electrical stimulation with 10-100 mV mm-1, and retain a normal morphology relative to unstimulated cells; however, no directional bias is observed. Neurite outgrowth was significantly enhanced by twofold following exposure to either a 50 mV mm-1 electric field (EF) or co-culture with unstimulated Schwann cells by comparison to neurons cultured alone. Neurite outgrowth was further increased in the presence of simultaneously applied cues (Schwann cells + 50 mV mm-1 dc EF), exhibiting a 3.2-fold increase over unstimulated control neurons, and a 1.2-fold increase over either neurons cultured with unstimulated Schwann cells or the electrical stimulus alone. These results indicate that dc electric stimulation in combination with Schwann cells may provide synergistic guidance cues for improved axonal growth relevant to nerve injuries in the peripheral nervous system.

  7. Cobalamin Deficiency Results in Increased Production of Formate Secondary to Decreased Mitochondrial Oxidation of One-Carbon Units in Rats.

    Science.gov (United States)

    MacMillan, Luke; Tingley, Garrett; Young, Sara K; Clow, Kathy A; Randell, Edward W; Brosnan, Margaret E; Brosnan, John T

    2018-03-01

    Formate is produced in mitochondria via the catabolism of serine, glycine, dimethylglycine, and sarcosine. Formate produced by mitochondria may be incorporated into the cytosolic folate pool where it can be used for important biosynthetic reactions. Previous studies from our lab have shown that cobalamin deficiency results in increased plasma formate concentrations. Our goal was to determine the basis for elevated formate in vitamin B-12 deficiency. Male Sprague Dawley rats were randomly assigned to consume either a cobalamin-replete (50 μg cobalamin/kg diet) or -deficient (no added cobalamin) diet for 6 wk. Formate production was measured in vivo and in isolated liver mitochondria from a variety of one-carbon precursors. We also measured the oxidation of [3-14C]-l-serine to 14CO2 in isolated rat liver mitochondria and the expression of hepatic genes involved in one-carbon unit and formate metabolism. Cobalamin-deficient rats produce formate at a rate 55% higher than that of replete rats. Formate production from serine was increased by 60% and from dimethylglycine and sarcosine by ∼200% in liver mitochondria isolated from cobalamin-deficient rats compared with cobalamin-replete rats. There was a 26% decrease in the 14CO2 produced by mitochondria from cobalamin-deficient rats. Gene expression analysis showed that 10-formyltetrahydrofolate dehydrogenase-cytosolic (Aldh1l1) and mitochondrial (Aldh1l2) expression were decreased by 40% and 60%, respectively, compared to control, while 10-formyltetrahydrofolate synthetase, mitochondrial, monofunctional (Mthfd1l) expression was unchanged. We propose that a bifurcation in mitochondrial one-carbon metabolism is a key control mechanism in determining the fate of one-carbon units, to formate or CO2. During cobalamin deficiency in rats the disposition of 10-formyl-tetrahydrofolate carbon is shifted in favor of formate production. This may represent a mechanism to generate more one-carbon units for the replenishment of the S

  8. Chlorpropamide action on renal concentrating mechanism in rats with hypothalamic diabetes insipidus.

    Science.gov (United States)

    Kusano, E; Braun-Werness, J L; Vick, D J; Keller, M J; Dousa, T P

    1983-10-01

    To determine vasopressin (VP)-potentiating effect of chlorpropamide (CPMD), we studied the effect of CPMD in vivo and in vitro in kidneys and in specific tubule segments of rats with hypothalamic diabetes insipidus, homozygotes of the Brattleboro strain (DI rats). Rats on ad lib. water intake were treated with CPMD (20 mg/100 g body wt s.c. daily) for 7 d. While on ad lib. water intake, the urine flow, urine osmolality, urinary excretion of Na +, K +, creatinine, or total solute excretion did not change. However, corticopapillary gradient of solutes was significantly increased in CPMD-treated rats. Higher tissue osmolality was due to significantly increased concentration of Na +, and to a lesser degree urea, in the medulla and papilla of CPMD-treated rats. Consequently, the osmotic gradient between urine and papillary tissue of CPMD-treated rats (delta = 385 +/- 47 mosM) was significantly (P less than 0.001) higher compared with controls (delta = 150 +/- 26 mosM). Minimum urine osmolality after water loading was higher in CPMD-treated DI rats than in controls. Oxidation of [14C]lactate to 14CO2 coupled to NaCl cotransport was measured in thick medullary ascending limb of Henle's loop (MAL) microdissected from control and CPMD-treated rats. The rate of 14CO2 production was higher (delta + 113% +/- 20; P less than 0.01) in CPMD-treated MAL compared with controls, but 14CO2 production in the presence of 10(-3) M furosemide did not differ between MAL from control and from CPMD-treated rats. These observations suggest that CPMD treatment enhances NaCl transport in MAL. Cyclic AMP metabolism was analyzed in microdissected MAL and in medullary collecting tubule (MCT). MCT from control and from CPMD-treated rats did not differ in the basal or VP-stimulated accumulated of cAMP. The increase in cAMP content elicited by 10(-6) M VP in MAL from CPMD-treated rats (delta + 12.0 +/- 1.8 fmol cAMP/mm) was significantly (P less than 0.02) higher compared with MAL from control rats

  9. Fear potentiated startle increases phospholipase D (PLD) expression/activity and PLD-linked metabotropic glutamate receptor mediated post-tetanic potentiation in rat amygdala.

    Science.gov (United States)

    Krishnan, Balaji; Scott, Michael T; Pollandt, Sebastian; Schroeder, Bradley; Kurosky, Alexander; Shinnick-Gallagher, Patricia

    2016-02-01

    Long-term memory (LTM) of fear stores activity dependent modifications that include changes in amygdala signaling. Previously, we identified an enhanced probability of release of glutamate mediated signaling to be important in rat fear potentiated startle (FPS), a well-established translational behavioral measure of fear. Here, we investigated short- and long-term synaptic plasticity in FPS involving metabotropic glutamate receptors (mGluRs) and associated downstream proteomic changes in the thalamic-lateral amygdala pathway (Th-LA). Aldolase A, an inhibitor of phospholipase D (PLD), expression was reduced, concurrent with significantly elevated PLD protein expression. Blocking the PLD-mGluR signaling significantly reduced PLD activity. While transmitter release probability increased in FPS, PLD-mGluR agonist and antagonist actions were occluded. In the unpaired group (UNP), blocking the PLD-mGluR increased while activating the receptor decreased transmitter release probability, consistent with decreased synaptic potentials during tetanic stimulation. FPS Post-tetanic potentiation (PTP) immediately following long-term potentiation (LTP) induction was significantly increased. Blocking PLD-mGluR signaling prevented PTP and reduced cumulative PTP probability but not LTP maintenance in both groups. These effects are similar to those mediated through mGluR7, which is co-immunoprecipitated with PLD in FPS. Lastly, blocking mGluR-PLD in the rat amygdala was sufficient to prevent behavioral expression of fear memory. Thus, our study in the Th-LA pathway provides the first evidence for PLD as an important target of mGluR signaling in amygdala fear-associated memory. Importantly, the PLD-mGluR provides a novel therapeutic target for treating maladaptive fear memories in posttraumatic stress and anxiety disorders. Published by Elsevier Inc.

  10. T-2 mycotoxin treatment of newborn rat pups does not significantly affect nervous system functions in adulthood.

    Science.gov (United States)

    Varró, Petra; Béldi, Melinda; Kovács, Melinda; Világi, Ildikó

    2018-03-01

    T-2 toxin is primarily produced by Fusarium sp. abundant under temperate climatic conditions. Its main harmful effect is the inhibition of protein synthesis. Causing oxidative stress, it also promotes lipid peroxidation and changes plasma membrane phospholipid composition; this may lead to nervous system alterations. The aim of the present study was to examine whether a single dose of T-2 toxin administered at newborn age has any long-lasting effects on nervous system functions. Rat pups were treated on the first postnatal day with a single intraperitoneal dose of T-2 toxin (0.2 mg/bwkg). Body weight of treated pups was lower during the second and third week of life, compared to littermates; later, weight gain was recovered. At young adulthood, behavior was tested in the open field, and no difference was observed between treated and control rats. Field potential recordings from somatosensory cortex and hippocampus slices did not reveal any significant difference in neuronal network functions. In case of neocortical field EPSP, the shape was slightly different in treated pups. Long-term synaptic plasticity was also comparable in both groups. Seizure susceptibility of the slices was not different, either. In conclusion, T-2 toxin did not significantly affect basic nervous system functions at this dose.

  11. Oxidized fish oil in rat pregnancy causes high newborn mortality and increases maternal insulin resistance.

    Science.gov (United States)

    Albert, Benjamin B; Vickers, Mark H; Gray, Clint; Reynolds, Clare M; Segovia, Stephanie A; Derraik, José G B; Lewandowski, Paul A; Garg, Manohar L; Cameron-Smith, David; Hofman, Paul L; Cutfield, Wayne S

    2016-09-01

    Fish oil is commonly taken by pregnant women, and supplements sold at retail are often oxidized. Using a rat model, we aimed to assess the effects of supplementation with oxidized fish oil during pregnancy in mothers and offspring, focusing on newborn viability and maternal insulin sensitivity. Female rats were allocated to a control or high-fat diet and then mated. These rats were subsequently randomized to receive a daily gavage treatment of 1 ml of unoxidized fish oil, a highly oxidized fish oil, or control (water) throughout pregnancy. At birth, the gavage treatment was stopped, but the same maternal diets were fed ad libitum throughout lactation. Supplementation with oxidized fish oil during pregnancy had a marked adverse effect on newborn survival at day 2, leading to much greater odds of mortality than in the control (odds ratio 8.26) and unoxidized fish oil (odds ratio 13.70) groups. In addition, maternal intake of oxidized fish oil during pregnancy led to increased insulin resistance at the time of weaning (3 wks after exposure) compared with control dams (HOMA-IR 2.64 vs. 1.42; P = 0.044). These data show that the consumption of oxidized fish oil is harmful in rat pregnancy, with deleterious effects in both mothers and offspring. Copyright © 2016 the American Physiological Society.

  12. Study on Application of Static Magnetic Field for Adjuvant Arthritis Rats

    Directory of Open Access Journals (Sweden)

    Norimasa Taniguchi

    2004-01-01

    Full Text Available In order to examine the effectiveness of the application of static magnetic field (SMF on pain relief, we performed a study on rats with adjuvant arthritis (AA. Sixty female Sprague–Dawley (SD rats (age: 6 weeks, body weight: approximately 160 g were divided into three groups [SMF-treated AA rats (Group I, non-SMF-treated AA rats (Group II and control rats (Group III]. The SD rats were injected in the left hind leg with 0.6 mg/0.05 ml Mycobacterium butyrium to induce AA. The rats were bred for 6 months as chronic pain model. Thereafter, the AA rats were or were not exposed to SMF for 12 weeks. We assessed the changes in the tail surface temperature, locomotor activity, serum inflammatory marker and bone mineral density (BMD using thermography, a metabolism measuring system and the dual-energy X-ray absorptiometry (DEXA method, respectively. The tail surface temperature, locomotor activity and femoral BMD of the SMF-exposed AA rats were significantly higher than those of the non-SMF-exposed AA rats, and the serum inflammatory marker was significantly lower. These findings suggest that the pain relief effects are primarily due to the increased blood circulation caused by the rise in the tail surface temperature. Moreover, the pain relief effects increased with activity and BMD of the AA rats.

  13. Gender-specific increase in susceptibility to metabolic syndrome of offspring rats after prenatal caffeine exposure with post-weaning high-fat diet

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Luo, Hanwen [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Wu, Yimeng; He, Zheng; Zhang, Li; Guo, Yu [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Ma, Lu [Department of Epidemiology & Health Statistics, Public Health School of Wuhan University, Wuhan 430071 (China); Magdalou, Jacques [UMR 7561 CNRS-NancyUniversité, Faculté de Médicine, Vandoeuvre-lès-Nancy (France); Chen, Liaobin [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071 (China); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071 (China)

    2015-05-01

    Prenatal caffeine exposure (PCE) alters the hypothalamic–pituitary–adrenocortical (HPA) axis-associated neuroendocrine metabolic programming and induces an increased susceptibility to metabolic syndrome (MS) in intrauterine growth retardation (IUGR) offspring rats. High-fat diet (HFD) is one of the main environmental factors accounting for the incidence of MS. In this study, we aimed to clarify the gender-specific increase in susceptibility to MS in offspring rats after PCE with post-weaning HFD. Maternal Wistar rats were administered with caffeine (120 mg/kg·d) from gestational day 11 until delivery. The offspring rats with normal diet or HFD were euthanized at postnatal week 24, and blood samples were collected. Results showed that PCE not only reduced serum adrenocorticotropic hormone (ACTH) and corticosterone levels, but also enhanced serum glucose, triglyceride and total cholesterol (TCH) concentrations in the offspring rats. Moreover, several interactions among PCE, HFD and gender were observed by a three-way ANOVA analysis. In PCE offspring, HFD could aggravate the degree of increased serum triglyceride level. Meanwhile, serum corticosterone levels of females were decreased more obviously than those of males in PCE offspring. The results also revealed interactions between HFD and gender in the levels of serum ACTH, triglyceride and TCH, which were changed more evidently in female HFD offspring. These results indicate that HFD could exacerbate the dysfunction of lipid metabolism and the susceptibility to MS induced by PCE, and the female offspring are more sensitive to HFD-induced neuroendocrine metabolic dysfunction than their male counterparts. - Highlights: • Caffeine induced HPA axis dysfunction in offspring rats fed by high-fat diet (HFD). • Caffeine induced an increased susceptibility to metabolic syndrome. • HFD aggravated susceptibility to metabolic syndrome induced by caffeine. • Female was more sensitive to HFD-induced neuroendocrine

  14. Gender-specific increase in susceptibility to metabolic syndrome of offspring rats after prenatal caffeine exposure with post-weaning high-fat diet

    International Nuclear Information System (INIS)

    Li, Jing; Luo, Hanwen; Wu, Yimeng; He, Zheng; Zhang, Li; Guo, Yu; Ma, Lu; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2015-01-01

    Prenatal caffeine exposure (PCE) alters the hypothalamic–pituitary–adrenocortical (HPA) axis-associated neuroendocrine metabolic programming and induces an increased susceptibility to metabolic syndrome (MS) in intrauterine growth retardation (IUGR) offspring rats. High-fat diet (HFD) is one of the main environmental factors accounting for the incidence of MS. In this study, we aimed to clarify the gender-specific increase in susceptibility to MS in offspring rats after PCE with post-weaning HFD. Maternal Wistar rats were administered with caffeine (120 mg/kg·d) from gestational day 11 until delivery. The offspring rats with normal diet or HFD were euthanized at postnatal week 24, and blood samples were collected. Results showed that PCE not only reduced serum adrenocorticotropic hormone (ACTH) and corticosterone levels, but also enhanced serum glucose, triglyceride and total cholesterol (TCH) concentrations in the offspring rats. Moreover, several interactions among PCE, HFD and gender were observed by a three-way ANOVA analysis. In PCE offspring, HFD could aggravate the degree of increased serum triglyceride level. Meanwhile, serum corticosterone levels of females were decreased more obviously than those of males in PCE offspring. The results also revealed interactions between HFD and gender in the levels of serum ACTH, triglyceride and TCH, which were changed more evidently in female HFD offspring. These results indicate that HFD could exacerbate the dysfunction of lipid metabolism and the susceptibility to MS induced by PCE, and the female offspring are more sensitive to HFD-induced neuroendocrine metabolic dysfunction than their male counterparts. - Highlights: • Caffeine induced HPA axis dysfunction in offspring rats fed by high-fat diet (HFD). • Caffeine induced an increased susceptibility to metabolic syndrome. • HFD aggravated susceptibility to metabolic syndrome induced by caffeine. • Female was more sensitive to HFD-induced neuroendocrine

  15. Sardine protein diet increases plasma glucagon-like peptide-1 levels and prevents tissue oxidative stress in rats fed a high-fructose diet.

    Science.gov (United States)

    Madani, Zohra; Sener, Abdullah; Malaisse, Willy J; Dalila, Ait Yahia

    2015-11-01

    The current study investigated whether sardine protein mitigates the adverse effects of fructose on plasma glucagon‑like peptide-1 (GLP-1) and oxidative stress in rats. Rats were fed casein (C) or sardine protein (S) with or without high‑fructose (HF) for 2 months. Plasma glucose, insulin, GLP‑1, lipid and protein oxidation and antioxidant enzymes were assayed. HF rats developed obesity, hyperglycemia, hyperinsulinemia, insulin resistance and oxidative stress despite reduced energy and food intakes. High plasma creatinine and uric acid levels, in addition to albuminuria were observed in the HF groups. The S‑HF diet reduced plasma glucose, insulin, creatinine, uric acid and homeostasis model assessment‑insulin resistance index levels, however increased GLP‑1 levels compared with the C‑HF diet. Hydroperoxides were reduced in the liver, kidney, heart and muscle of S‑HF fed rats compared with C‑HF fed rats. A reduction in liver, kidney and heart carbonyls was observed in S‑HF fed rats compared with C‑HF fed rats. Reduced levels of nitric oxide (NO) were detected in the liver, kidney and heart of the S‑HF fed rats compared with C‑HF fed rats. The S diet compared with the C diet reduced levels of liver hydroperoxides, heart carbonyls and kidney NO. The S‑HF diet compared with the C‑HF diet increased the levels of liver and kidney superoxide dismutase, liver and muscle catalase, liver, heart and muscle glutathione peroxidase and liver ascorbic acid. The S diet prevented and reversed insulin resistance and oxidative stress, and may have benefits in patients with metabolic syndrome.

  16. Levodopa-induced dyskinesia is associated with increased thyrotropin releasing hormone in the dorsal striatum of hemi-parkinsonian rats.

    Directory of Open Access Journals (Sweden)

    Ippolita Cantuti-Castelvetri

    2010-11-01

    Full Text Available Dyskinesias associated with involuntary movements and painful muscle contractions are a common and severe complication of standard levodopa (L-DOPA, L-3,4-dihydroxyphenylalanine therapy for Parkinson's disease. Pathologic neuroplasticity leading to hyper-responsive dopamine receptor signaling in the sensorimotor striatum is thought to underlie this currently untreatable condition.Quantitative real-time polymerase chain reaction (PCR was employed to evaluate the molecular changes associated with L-DOPA-induced dyskinesias in Parkinson's disease. With this technique, we determined that thyrotropin releasing hormone (TRH was greatly increased in the dopamine-depleted striatum of hemi-parkinsonian rats that developed abnormal movements in response to L-DOPA therapy, relative to the levels measured in the contralateral non-dopamine-depleted striatum, and in the striatum of non-dyskinetic control rats. ProTRH immunostaining suggested that TRH peptide levels were almost absent in the dopamine-depleted striatum of control rats that did not develop dyskinesias, but in the dyskinetic rats, proTRH immunostaining was dramatically up-regulated in the striatum, particularly in the sensorimotor striatum. This up-regulation of TRH peptide affected striatal medium spiny neurons of both the direct and indirect pathways, as well as neurons in striosomes.TRH is not known to be a key striatal neuromodulator, but intrastriatal injection of TRH in experimental animals can induce abnormal movements, apparently through increasing dopamine release. Our finding of a dramatic and selective up-regulation of TRH expression in the sensorimotor striatum of dyskinetic rat models suggests a TRH-mediated regulatory mechanism that may underlie the pathologic neuroplasticity driving dopamine hyper-responsivity in Parkinson's disease.

  17. Chronic intrathecal cannulation enhances nociceptive responses in rats

    Directory of Open Access Journals (Sweden)

    Almeida F.R.C.

    2000-01-01

    Full Text Available The influence of a chronically implanted spinal cannula on the nociceptive response induced by mechanical, chemical or thermal stimuli was evaluated. The hyperalgesia in response to mechanical stimulation induced by carrageenin or prostaglandin E2 (PGE2 was significantly increased in cannulated (Cn rats, compared with naive (Nv or sham-operated (Sh rats. Only Cn animals presented an enhanced nociceptive response in the first phase of the formalin test when low doses were used (0.3 and 1%. The withdrawal latency to thermal stimulation of a paw inflamed by carrageenin was significantly reduced in Cn rats but not in Nv or Sh rats. In contrast to Nv and Sh rats, injection in Cn animals of a standard non-steroid anti-inflammatory drug, indomethacin, either intraperitoneally or into the spinal cord via an implanted cannula or by direct puncture of the intrathecal space significantly blocked the intensity of the hyperalgesia induced by PGE2. Cannulated animals treated with indomethacin also showed a significant inhibition of second phase formalin-induced paw flinches. Histopathological analysis of the spinal cord showed an increased frequency of mononuclear inflammatory cells in the Cn groups. Thus, the presence of a chronically implanted cannula seems to cause nociceptive spinal sensitization to mechanical, chemical and thermal stimulation, which can be blocked by indomethacin, thus suggesting that it may result from the spinal release of prostaglandins due to an ongoing mild inflammation.

  18. Anticipation and consumption of food each increase the concentration of neuroactive steroids in rat brain and plasma.

    Science.gov (United States)

    Pisu, Maria Giuseppina; Floris, Ivan; Maciocco, Elisabetta; Serra, Mariangela; Biggio, Giovanni

    2006-09-01

    Stressful stimuli and anxiogenic drugs increase the plasma and brain concentrations of neuroactive steroids. Moreover, in rats trained to consume their daily meal during a fixed period, the anticipation of food is associated with changes in the function of various neurotransmitter systems. We have now evaluated the effects of anticipation and consumption of food in such trained rats on the plasma and brain concentrations of 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-TH PROG) and 3alpha,21-dihydroxy-5alpha-pregnan-20-one (3alpha,5alpha-TH DOC), two potent endogenous positive modulators of type A receptors for gamma-aminobutyric acid (GABA). The abundance of these neuroactive steroids was increased in both the cerebral cortex and plasma of the rats during both food anticipation and consumption. In contrast, the concentration of their precursor, progesterone, was increased in the brain only during food consumption, whereas it was increased in plasma only during food anticipation. Intraperitoneal administration of the selective agonist abecarnil (0.1 mg/kg) 40 min before food presentation prevented the increase in the brain levels of 3alpha,5alpha-TH PROG and 3alpha,5alpha-TH DOC during food anticipation but not that associated with consumption. The change in emotional state associated with food anticipation may thus result in an increase in the plasma and brain levels of 3alpha,5alpha-TH PROG and 3alpha,5alpha-TH DOC in a manner sensitive to the activation of GABA(A) receptor-mediated neurotransmission. A different mechanism, insensitive to activation of such transmission, may underlie the changes in the concentrations of these neuroactive steroids during food consumption.

  19. Olanzapine promotes fat accumulation in male rats by decreasing physical activity, repartitioning energy and increasing adipose tissue lipogenesis while impairing lipolysis.

    Science.gov (United States)

    Albaugh, V L; Judson, J G; She, P; Lang, C H; Maresca, K P; Joyal, J L; Lynch, C J

    2011-05-01

    Olanzapine and other atypical antipsychotics cause metabolic side effects leading to obesity and diabetes; although these continue to be an important public health concern, their underlying mechanisms remain elusive. Therefore, an animal model of these side effects was developed in male Sprague-Dawley rats. Chronic administration of olanzapine elevated fasting glucose, impaired glucose and insulin tolerance, increased fat mass but, in contrast to female rats, did not increase body weight or food intake. Acute studies were conducted to delineate the mechanisms responsible for these effects. Olanzapine markedly decreased physical activity without a compensatory decline in food intake. It also acutely elevated fasting glucose and worsened oral glucose and insulin tolerance, suggesting that these effects are adiposity independent. Hyperinsulinemic-euglycemic clamp studies measuring (14)C-2-deoxyglucose uptake revealed tissue-specific insulin resistance. Insulin sensitivity was impaired in skeletal muscle, but either unchanged or increased in adipose tissue depots. Consistent with the olanzapine-induced hyperglycemia, there was a tendency for increased (14)C-2-deoxyglucose uptake into fat depots of fed rats and, surprisingly, free fatty acid (FFA) uptake into fat depots was elevated approximately twofold. The increased glucose and FFA uptake into adipose tissue was coupled with increased adipose tissue lipogenesis. Finally, olanzapine lowered fasting plasma FFA, and as it had no effect on isoproterenol-stimulated rises in plasma glucose, it blunted isoproterenol-stimulated in vivo lipolysis in fed rats. Collectively, these results suggest that olanzapine exerts several metabolic effects that together favor increased accumulation of fuel into adipose tissue, thereby increasing adiposity.

  20. Toxicology and carcinogenesis studies of dipropylene glycol in rats and mice.

    Science.gov (United States)

    Hooth, Michelle J; Herbert, Ronald A; Haseman, Joseph K; Orzech, Denise P; Johnson, Jerry D; Bucher, John R

    2004-11-15

    Dipropylene glycol (DPG) is a component of many commercial products such as antifreeze, air fresheners, cosmetic products, solvents, and plastics. Male and female F344/N rats and B6C3F1 mice were exposed to DPG in the drinking water for 2 weeks, 3 months, or 2 years. In the 2-week and 3-month studies, rats and mice were exposed to 0, 5000, 10,000, 20,000, 40,000, or 80,000 ppm DPG. There was no mortality in the 2-week studies. In the 3-month rat study, all animals survived to the end of the study. Liver weights of rats exposed to 10,000 ppm or greater and kidney weights of rats exposed to 40,000 and 80,000 ppm were greater than those of the controls. The incidences of liver and kidney lesions were significantly increased in males exposed to 20,000 ppm or greater and females exposed to 80,000 ppm. Focal olfactory epithelial degeneration was present in all rats exposed to 80,000 ppm. In males, the incidences of testicular atrophy, epididymal hypospermia, and preputial gland atrophy were significantly increased in the 80,000 ppm group. In the 3-month mouse study, three males and one female exposed to 80,000 ppm died. Liver weights were increased, as was the incidence of centrilobular hypertrophy in males exposed to 40,000 ppm and males and females exposed to 80,000 ppm. In the 2-year studies, exposure groups were 0, 2500 (rats only), 10,000, 20,000 (mice only) or 40,000 ppm DPG. Survival of male rats exposed to 40,000 ppm and mean body weights of males and females exposed to 40,000 ppm were significantly less than controls. In male rats, exposure to DPG resulted in increased incidences and severities of nephropathy and secondary lesions in the parathyroid and forestomach. Increased incidences of focal histiocytic and focal granulomatous inflammation of the liver were also observed. In male and female rats, there were increased incidences of bile duct hyperplasia and changes in the olfactory epithelium of the nose. In mice, survival of males and females was similar to

  1. Rrol of Zinc Cystenine in the Regulation of Metallothionnein Induction in whole body gamma irradiation rats

    International Nuclear Information System (INIS)

    Azab, Kh. Sh.; Zaharn, A.M.; Noaman, E.

    2004-01-01

    The antioxidant competence of metallothionein (MT) in cellular injury lunched by free radicals released in view of ionizing radiation has been proposed. The present work was conducted to elucidate the role of Zinc cysteine in the regulation of metallothionein induction in whole body gamma irradiated rats. cysteine was delivered to rats via intraperitoneal (i.p) injection at a concentration of 25-mg/kg body weight/day for two successive 2 days. The second injection was 30- min. pre irradiation. Whole body γ- irradiation at dose level 6.5 Gy induced significant increase in the levels of metallothionein in all investigated tissues (serum, liver and kidney) accompanied with significant increase in the levels of Zn in the liver. Cu concentrations increased in serum and kidney and decreased significantly in liver tissues. Data of lipid peroxidation demonstrated significant increase in TBARS as compared with control valuws in serum, liver and kidney. Iron was decreased significantly in serum and liver but a significant increase was recorded in kidney at 7 days after irradiation. Ca increased significantly in the liver only as compared with control rats. In addition, K concentration increased significantly in serum, liver and kidney while, P increased in serum and liver when compared with control values. The administration of zinc cysteine pre-irradiation induces significant increases in liver metallothionin from irradiated rat's value. It is only serum show significant decrease in level of MT from the irradiated rat's value on the 1st day post irradiation. However, the changes observed in the levels of Zn, Cu, Iron and Ca, K and P are less manifested when compared with values of irradiated animals. The reduction in the levels of TBARS was obvious comparing with irradiated rat's data. The amelioration occurred in the levels of Zn, Cu, Fe, Ca, P and K when, zinc cysteine administrated before irradiation postulate the positive role zinc cysteine in the adjustment of

  2. Exercise increases the plasma membrane content of the Na+ -K+ pump and its mRNA in rat skeletal muscles.

    Science.gov (United States)

    Tsakiridis, T; Wong, P P; Liu, Z; Rodgers, C D; Vranic, M; Klip, A

    1996-02-01

    Muscle fibers adapt to ionic challenges of exercise by increasing the plasma membrane Na+-K+ pump activity. Chronic exercise training has been shown to increase the total amount of Na+-K+ pumps present in skeletal muscle. However, the mechanism of adaptation of the Na+-K+ pump to an acute bout of exercise has not been determined, and it is not known whether it involves alterations in the content of plasma membrane pump subunits. Here we examine the effect of 1 h of treadmill running (20 m/min, 10% grade) on the subcellular distribution and expression of Na+-K+ pump subunits in rat skeletal muscles. Red type I and IIa (red-I/IIa) and white type IIa and IIb (white-IIa/IIb) hindlimb muscles from resting and exercised female Sprague-Dawley rats were removed for subcellular fractionation. By homogenization and gradient centrifugation, crude membranes and purified plasma membranes were isolated and subjected to gel electrophoresis and immunoblotting by using pump subunit-specific antibodies. Furthermore, mRNA was isolated from specific red type I (red-I) and white type IIb (white-IIb) muscles and subjected to Northern blotting by using subunit-specific probes. In both red-I/IIa and white-IIa/IIb muscles, exercise significantly raised the plasma membrane content of the alpha1-subunit of the pump by 64 +/- 24 and 55 +/- 22%, respectively (P < 0.05), and elevated the alpha2-polypeptide by 43 +/- 22 and 94 +/- 39%, respectively (P < 0.05). No significant effect of exercise could be detected on the amount of these subunits in an internal membrane fraction or in total membranes. In addition, exercise significantly increased the alpha1-subunit mRNA in red-I muscle (by 50 +/- 7%; P < 0.05) and the beta2-subunit mRNA in white-IIb muscles (by 64 +/- 19%; P < 0.01), but the alpha2- and beta1-mRNA levels were unaffected in this time period. We conclude that increased presence of alpha1- and alpha2-polypeptides at the plasma membrane and subsequent elevation of the alpha1- and beta2

  3. Eucommia leaf extract (ELE) prevents OVX-induced osteoporosis and obesity in rats.

    Science.gov (United States)

    Zhang, Wenping; Fujikawa, Takahiko; Mizuno, Kaito; Ishida, Torao; Ooi, Kazuya; Hirata, Tetsuya; Wada, Atsunori

    2012-01-01

    The cortex of Eucommia ulmoides Oliver is widely used to treat kidney deficiency in traditional Chinese medicine. Its leaves have recently been reported to have anti-obesity properties in metabolic syndrome-like rat models. Due to a sharp decline in estrogen production, obesity, together with osteoporosis, are common problems in postmenopausal women. In this study, we examined the potential effect of Eucommia leaf extract (ELE) in preventing osteoporosis and obesity induced by ovariectomy (OVX). Forty-six female Wistar rats were divided into six groups: Sham-Cont, OVX-Cont, and four OVX groups administered estradiol and different concentrations of ELE 1.25%, ELE 2.5%, and ELE 5%. Treatments were administered after ovariectomy at six weeks of age and continued for 12 weeks. OVX induced a significant decrease in the bone mineral density (BMD) of the lumbar, femora, and tibiae, together with a marked increase in body mass index (BMI). The administration of 5% ELE led to a significant increase in tibial and femoral BMD, as well as significantly increased bone-strength parameters when compared with OVX-Cont rats. According to the suppressed Dpd and increased osteocalcin concentrations in ELE 5% rats, we suggest that varying proportions of bone formation and bone absorption contributed to the enhanced BMD in the femora and tibiae. In addition, significant decreases in body weight, BMI and fat tissue in 5% ELE rats were also observed. These results suggest that ELE may have curative properties for BMD and BMI in OVX rats, and could provide an alternative therapy for the prevention of both postmenopausal osteoporosis and obesity.

  4. 5,7-Dimethoxycoumarin prevents chronic mild stress induced depression in rats through increase in the expression of heat shock protein-70 and inhibition of monoamine oxidase-A levels

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2018-02-01

    Full Text Available The current study was aimed to investigate the role of 5,7-dimethoxycoumarin in the prevention of chronic mild stress induced depression in rats. The chronic mild stress rat model was prepared using the known protocols. The results from open-field test showed that rats in the chronic mild stress group scored very low in terms of crossings and rearings than those of the normal rats. However, pre-treatment of the rats with 10 mg/kg doses of 5,7-dimethoxycoumarin prevented decline in the locomotor activity by chronic mild stress. The level of monoamine oxidase-A in the chronic mild stress rat hippocampus was markedly higher. Chronic mild stress induced increase in the monoamine oxidase-A level was inhibited by pre-treatment with 10 mg/kg doses of 5,7-dimethoxycoumarin in the rats. Chronic mild stress caused a marked increase in the level of caspase-3 mRNA and proteins in rat hippocampus tissues. The increased level of caspase-3 mRNA and protein level was inhibited by treatment of rats with 5,7-dimethoxycoumarin (10 mg/kg. 5,7-Dimethoxycoumarin administration into the rats caused a marked increase in the levels of heat shock protein-70 mRNA and protein. The levels of heat shock protein-70 were markedly lower both in normal and chronic mild stress groups of rats compared to the 5,7-dimethoxycoumarin treated groups. Thus 5,7-dimethoxycoumarin prevented the chronic mild stress induced depression in rats through an increase in the expression of heat shock protein-70 and inhibition of monoamine oxidase-A levels.

  5. 5,7-Dimethoxycoumarin prevents chronic mild stress induced depression in rats through increase in the expression of heat shock protein-70 and inhibition of monoamine oxidase-A levels.

    Science.gov (United States)

    Yang, Wei; Wang, Huanlin

    2018-02-01

    The current study was aimed to investigate the role of 5,7-dimethoxycoumarin in the prevention of chronic mild stress induced depression in rats. The chronic mild stress rat model was prepared using the known protocols. The results from open-field test showed that rats in the chronic mild stress group scored very low in terms of crossings and rearings than those of the normal rats. However, pre-treatment of the rats with 10 mg/kg doses of 5,7-dimethoxycoumarin prevented decline in the locomotor activity by chronic mild stress. The level of monoamine oxidase-A in the chronic mild stress rat hippocampus was markedly higher. Chronic mild stress induced increase in the monoamine oxidase-A level was inhibited by pre-treatment with 10 mg/kg doses of 5,7-dimethoxycoumarin in the rats. Chronic mild stress caused a marked increase in the level of caspase-3 mRNA and proteins in rat hippocampus tissues. The increased level of caspase-3 mRNA and protein level was inhibited by treatment of rats with 5,7-dimethoxycoumarin (10 mg/kg). 5,7-Dimethoxycoumarin administration into the rats caused a marked increase in the levels of heat shock protein-70 mRNA and protein. The levels of heat shock protein-70 were markedly lower both in normal and chronic mild stress groups of rats compared to the 5,7-dimethoxycoumarin treated groups. Thus 5,7-dimethoxycoumarin prevented the chronic mild stress induced depression in rats through an increase in the expression of heat shock protein-70 and inhibition of monoamine oxidase-A levels.

  6. Cardioprotective effect of vitamin D2 on isoproterenol-induced myocardial infarction in diabetic rats.

    Science.gov (United States)

    El Agaty, Sahar M

    2018-03-08

    To assess the effect of vitamin D 2 and to elucidate the underlying mechanisms on acute myocardial injury induced by isoproterenol (ISO) in diabetic rats. Rats were divided into control rats, diabetic rats (DM), diabetic rats received ISO (DM-ISO), and diabetic rats pretreated with vitamin D 2 and received ISO (DM-D 2 -ISO). Vitamin D 2 pretreatment significantly decreased fasting glucose and myocardial malondialdehyde, associated with increased insulin, myocardial glutathione and superoxide dismutase in DM-D 2 -ISO versus DM-ISO. The serum triglycerides, total cholesterol, and LDL were significantly decreased, along with increased HDL and adiponectin. Poly-ADP ribose polymerase, cyclooxygenase-2, tumour necrosis factor alpha, interleukin-6, caspase-3, BAX, and p53 were significantly downregulated in myocardium of DM-D 2 -ISO versus DM-ISO. Histological studies showed diminished inflammatory cells infiltration in myocardium of DM-D 2 -ISO versus DM-ISO. Vitamin D 2 ameliorates hyperglycaemia, dyslipidaemia, redox imbalance, inflammatory and apoptotic processes, protecting the myocardium of diabetic rats against acute myocardial infarction.

  7. Housing in Pyramid Counteracts Neuroendocrine and Oxidative Stress Caused by Chronic Restraint in Rats

    Directory of Open Access Journals (Sweden)

    M. Surekha Bhat

    2007-01-01

    Full Text Available The space within the great pyramid and its smaller replicas is believed to have an antistress effect. Research has shown that the energy field within the pyramid can protect the hippocampal neurons of mice from stress-induced atrophy and also reduce neuroendocrine stress, oxidative stress and increase antioxidant defence in rats. In this study, we have, for the first time, attempted to study the antistress effects of pyramid exposure on the status of cortisol level, oxidative damage and antioxidant status in rats during chronic restraint stress. Adult female Wistar rats were divided into four groups as follows: normal controls (NC housed in home cage and left in the laboratory; restrained rats (with three subgroups subject to chronic restraint stress by placing in a wire mesh restrainer for 6 h per day for 14 days, the restrained controls (RC having their restrainers kept in the laboratory; restrained pyramid rats (RP being kept in the pyramid; and restrained square box rats (RS in the square box during the period of restraint stress everyday. Erythrocyte malondialdehyde (MDA and plasma cortisol levels were significantly increased and erythrocyte-reduced glutathione (GSH levels, erythrocyte glutathione peroxidase (GSH-Px and superoxide dismutase (SOD activities were significantly decreased in RC and RS rats as compared to NC. However, these parameters were maintained to near normal levels in RP rats which showed significantly decreased erythrocyte MDA and plasma cortisol and significantly increased erythrocyte GSH levels, erythrocyte GSH-Px and SOD activities when compared with RS rats. The results showed that housing in pyramid counteracts neuroendocrine and oxidative stress caused by chronic restraint in rats.

  8. REPEATED ACUTE STRESS INDUCED ALTERATIONS IN CARBOHYDRATE METABOLISM IN RAT

    Directory of Open Access Journals (Sweden)

    Nirupama R.

    2010-09-01

    Full Text Available Acute stress induced alterations in the activity levels of rate limiting enzymes and concentration of intermediates of different pathways of carbohydrate metabolism have been studied. Adult male Wistar rats were restrained (RS for 1 h and after an interval of 4 h they were subjected to forced swimming (FS exercise and appropriate controls were maintained. Five rats were killed before the commencement of the experiment (initial controls, 5 control and equal number of stressed rats were killed 2 h after RS and remaining 5 rats in each group were killed 4 h after FS. There was a significant increase in the adrenal 3β- hydroxy steroid dehydrogenase activity following RS, which showed further increase after FS compared to controls and thereby indicated stress response of rats. There was a significant increase in the blood glucose levels following RS which showed further increase and reached hyperglycemic condition after FS. The hyperglycemic condition due to stress was accompanied by significant increases in the activities of glutamate- pyruvate transaminase, glutamate- oxaloacetate transaminase, glucose -6- phosphatase and lactate dehydrogenase and significant decrease in the glucose -6- phosphate dehydrogenase and pyruvate dehydrogenase activities, whereas pyruvate kinase activity did not show any alteration compared to controls. Further, the glycogen and total protein contents of the liver were decreased whereas those of pyruvate and lactate showed significant increase compared to controls after RS as well as FS.The results put together indicate that acute stress induced hyperglycemia results due to increased gluconeogenesis and glycogenolysis without alteration in glycolysis. The study first time reveals that after first acute stress exposure, the subsequent stressful experience augments metabolic stress response leading to hyperglycemia. The results have relevance to human health as human beings are exposed to several stressors in a day and

  9. Increased dopaminergic activity in socially isolated rats: an electrophysiological study

    DEFF Research Database (Denmark)

    Fabricius, Katrine; Helboe, Lone; Fink-Jensen, Anders

    2010-01-01

    The development of animal models mimicking symptoms associated with schizophrenia has been a critical step in understanding the neurobiological mechanisms underlying the disease. Long-term social isolation from weaning in rodents, a model based on the neurodevelopmental hypothesis of schizophrenia......, has been suggested to mimic some of the deficits seen in schizophrenic patients. We confirm in the present study that socially isolated rats display an increase in both spontaneous and d-amphetamine-induced locomotor activity, as well as deficits in sensorimotor gating as assessed in a pre......, and a change of firing activity towards a more irregular and bursting firing pattern. Taken together, our findings suggest that the behavioral phenotype induced by social isolation may be driven by an overactive dopamine system....

  10. Arginine vasopressin stimulates phosphoinositide turnover in an enriched rat Leydig cell preparation

    DEFF Research Database (Denmark)

    Nielsen, J.R.; Hansen, Harald S.; Jensen, B.

    1989-01-01

    An enriched rat Leydig cell preparation was preincubated with [C]arachidonic acid. Stimulation of the cells with arginine vasopressin (AVP) (1 µM) for 2 min caused a significant increase in labelled phosphatidic acid and a significant fall in radioactivity in phosphatidylinositol and phosphatidyl......An enriched rat Leydig cell preparation was preincubated with [C]arachidonic acid. Stimulation of the cells with arginine vasopressin (AVP) (1 µM) for 2 min caused a significant increase in labelled phosphatidic acid and a significant fall in radioactivity in phosphatidylinositol...

  11. Post-stroke gaseous hypothermia increases vascular density but not neurogenesis in the ischemic penumbra of aged rats

    DEFF Research Database (Denmark)

    Sandu, Raluca Elena; Uzoni, Adriana; Ciobanu, Ovidiu

    2016-01-01

    of several genes involved in protein degradation, thereby leading to better preservation of infarcted tissue. Further, hypothermia increased the density of newly formed blood vessels in the peri-lesional cortex did not enhance neurogenesis in the infarcted area of aged rats. Likewise, there was improved......-PCR and immunofluorescence, we assessed infarct size, vascular density, neurogenesis and as well as the expression of genes coding for proteasomal proteins as well as in post-stroke aged Sprague-Dawley rats exposed to H2S- induced hypothermia. Results: Two days exposure to mild hypothermia diminishes the expression...

  12. Effects of alcohol feeding on androgen receptors in the rat pituitary gland

    International Nuclear Information System (INIS)

    Chung, K.W.

    1987-01-01

    Specific binding of testosterone-1β,2β- 3 H by cytosol from anterior pituitary gland of ethanol-fed, isocaloric control, and castrated control and ethanol-fed rats with or without testosterone treatment has been investigated by charcoal assay. The number of androgen binding sites was significantly reduced in alcohol-fed rats when compared to the isocaloric control value, with no significant change in Kd. Castration significantly increased the number of receptor sites in control rats and when castrated control animals were treated with testosterone the binding sites were decreased to the intact control level. In contrast, castration or testosterone given to castrated alcohol-fed rats did not alter alcohol-induced reduction of the receptor sites. The binding affinity (Kd) is identical in all groups. The concentration of serum luteinizing hormone (LH) was significantly lower in alcohol-fed rats when compared to that of normal controls. An increased serum LH level with a decreased testosterone level was noted in castrated control rats. However, castration of alcohol-fed rats had little or no effects on the concentrations of LH and testosterone. Administration of testosterone suppressed castration-induced high LH in control rats but alcohol induced reduction of LH level was not altered by this treatment. These findings indicate that alcohol exerts a suppressive effect on the content of androgen receptors and secretory functions of gonadotropins in the pituitary gland. 23 references, 1 figure, 1 table

  13. Protective effects of piperine on lead acetate induced-nephrotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Sri Agus Sudjarwo

    2017-11-01

    Full Text Available Objective(s: In this study, we investigated the protective effects of piperine on lead acetate-induced renal damage in rat kidney tissue. Materials and Methods: Forty male rats were divided into 5 groups: negative control (rats were given aquadest daily, positive control (rats were given lead acetate 30 mg/kg BW orally once a day for 60 days, and the treatment group (rats were given piperine 50 mg; 100 mg and 200 mg/kg BW orally once a day for 65 days, and on 5th day, were given lead acetate 30 mg/kg BW one hr after piperine administration for 60 days. On day 65 levels of blood urea nitrogen (BUN, creatinine, malondialdehyde (MDA, Superoxide Dismutase (SOD, and Glutathione Peroxidase (GPx were measured. Also, kidney samples were collected for histopathological studies. Results: The results revealed that lead acetate toxicity induced a significant increase in the levels of BUN, creatinine, and MDA; moreover, a significant decrease in SOD and GPx. Lead acetate also altered kidney histopathology (kidney damage, necrosis of tubules compared to the negative control. However, administration of piperine significantly improved the kidney histopathology, decreased the levels of BUN, creatinine, and MDA, and also significantly increased the SOD and GPx in the kidney of lead acetate-treated rats. Conclusion: From the results of this study it was concluded that piperine could be a potent natural herbal product exhibiting nephroprotective effect against lead acetate induced nephrotoxicity in rats.

  14. Isolation stress and chronic mild stress induced immobility in the defensive burying behavior and a transient increased ethanol intake in Wistar rats.

    Science.gov (United States)

    Vázquez-León, Priscila; Martínez-Mota, Lucía; Quevedo-Corona, Lucía; Miranda-Páez, Abraham

    2017-09-01

    Stress can be experienced with or without adverse effects, of which anxiety and depression are two of the most important due to the frequent comorbidity with alcohol abuse in humans. Historically, stress has been considered a cause of drug use, particularly alcohol abuse due to its anxiolytic effects. In the present work we exposed male Wistar rats to two different stress conditions: single housing (social isolation, SI), and chronic mild stress (CMS). We compared both stressed groups to group-housed rats and rats without CMS (GH) to allow the determination of a clear behavioral response profile related to their respective endocrine stress response and alcohol intake pattern. We found that SI and CMS, to a greater extent, induced short-lasting increased sucrose consumption, a transient increase in serum corticosterone level, high latency/immobility, and low burying behavior in the defensive burying behavior (DBB) test, and a transient increase in alcohol intake. Thus, the main conclusion was that stress caused by both SI and CMS induced immobility in the DBB test and, subsequently, induced a transient increased voluntary ethanol intake in Wistar rats with a free-choice home-cage drinking paradigm. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Characterization of renal hyperemia in portal hypertensive rats

    International Nuclear Information System (INIS)

    Premen, A.J.; Banchs, V.; Go, V.L.W.; Benoit, J.N.; Granger, D.N.

    1986-01-01

    In anesthetized sham-operated control (C) and portal vein stenosed (PVS) rats, renal blood flow (RBF) was measured with radioactive microspheres on days 2, 4, 6, 8, and 10 following surgery. On day 2, only a small increase in RBF (19%) was produced in PVS versus C rats. However, by day 4, a significant increase in RBF (35%) was observed in PVS versus C animals. By day 6, the renal hyperemia in PVS rats reached a maximal value that was 42% higher than in C rats. Thereafter (on days 8 and 10), the renal hyperemia remained at the maximal value. In a separate group of 10-day PVS rats, glucagon antiserum failed to attenuate the 44% increase in RBF observed in PVS versus C rats. Radioimmunoassay of C and PVS plasma (10-day samples) revealed that vasoactive intestinal polypeptide, substance P, cholecystokinin/gastrin, neurotensin, pancreatic polypeptide, beta-endorphin, and peptide histidine-isoleucine amide are not elevated in arterial plasma of PVS rats. These data indicate that the renal hyperemia induced by chronic portal hypertension is manifested within 4 days after the hypertensive insult. Our studies also suggest that at least 9 blood-borne gastrointestinal peptides are not directly involved in the renal response to portal vein stenosis

  16. Characterization of renal hyperemia in portal hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Premen, A.J.; Banchs, V.; Go, V.L.W.; Benoit, J.N.; Granger, D.N.

    1986-03-01

    In anesthetized sham-operated control (C) and portal vein stenosed (PVS) rats, renal blood flow (RBF) was measured with radioactive microspheres on days 2, 4, 6, 8, and 10 following surgery. On day 2, only a small increase in RBF (19%) was produced in PVS versus C rats. However, by day 4, a significant increase in RBF (35%) was observed in PVS versus C animals. By day 6, the renal hyperemia in PVS rats reached a maximal value that was 42% higher than in C rats. Thereafter (on days 8 and 10), the renal hyperemia remained at the maximal value. In a separate group of 10-day PVS rats, glucagon antiserum failed to attenuate the 44% increase in RBF observed in PVS versus C rats. Radioimmunoassay of C and PVS plasma (10-day samples) revealed that vasoactive intestinal polypeptide, substance P, cholecystokinin/gastrin, neurotensin, pancreatic polypeptide, beta-endorphin, and peptide histidine-isoleucine amide are not elevated in arterial plasma of PVS rats. These data indicate that the renal hyperemia induced by chronic portal hypertension is manifested within 4 days after the hypertensive insult. Our studies also suggest that at least 9 blood-borne gastrointestinal peptides are not directly involved in the renal response to portal vein stenosis.

  17. Effects of voluntary wheel running on satellite cells in the rat plantaris muscle.

    Science.gov (United States)

    Kurosaka, Mitsutoshi; Naito, Hisashi; Ogura, Yuji; Kojima, Atsushi; Goto, Katsumasa; Katamoto, Shizuo

    2009-01-01

    This study investigated the effects of voluntary wheel running on satellite cells in the rat plantaris muscle. Seventeen 5-week-old male Wistar rats were assigned to a control (n = 5) or training (n = 12) group. Each rat in the training group ran voluntarily in a running-wheel cage for 8 weeks. After the training period, the animals were anesthetized, and the plantaris muscles were removed, weighed, and analyzed immunohistochemically and biochemically. Although there were no significant differences in muscle weight or fiber area between the groups, the numbers of satellite cells and myonuclei per muscle fiber, percentage of satellite cells, and citrate synthase activity were significantly higher in the training group compared with the control group (p run in the training group (r = 0.61, p running can induce an increase in the number of satellite cells without changing the mean fiber area in the rat plantaris muscle; this increase in satellite cell content is a function of distance run. Key pointsThere is no study about the effect of voluntary running on satellite cells in the rat plantaris muscle.Voluntary running training causes an increase of citrate synthase activity in the rat plantaris muscle but does not affect muscle weight and mean fiber area in the rat plantaris muscle.Voluntary running can induce an increase in the number of satellite cells without hypertrophy of the rat plantaris muscle.

  18. Beneficial effects of enriched environment following status epilepticus in immature rats.

    Science.gov (United States)

    Faverjon, S; Silveira, D C; Fu, D D; Cha, B H; Akman, C; Hu, Y; Holmes, G L

    2002-11-12

    There is increasing evidence that enriching the environment can improve cognitive and motor deficits following a variety of brain injuries. Whether environmental enrichment can improve cognitive impairment following status epilepticus (SE) is not known. To determine whether the environment in which animals are raised influences cognitive function in normal rats and rats subjected to SE. Rats (n = 100) underwent lithium-pilocarpine-induced SE at postnatal (P) day 20 and were then placed in either an enriched environment consisting of a large play area with toys, climbing objects, and music, or in standard vivarium cages for 30 days. Control rats (n = 32) were handled similarly to the SE rats but received saline injections instead of lithium-pilocarpine. Rats were then tested in the water maze, a measure of visual-spatial memory. A subset of the rats were killed during exposure to the enriched or nonenriched environment and the brains examined for dentate granule cell neurogenesis using bromodeoxyuridine (BrdU) and phosphorylated cyclic AMP response element binding protein (pCREB) immunostaining, a brain transcription factor important in long-term memory. Both control and SE rats exposed to the enriched environment performed significantly better than the nonenriched group in the water maze. There was a significant increase in neurogenesis and pCREB immunostaining in the dentate gyrus in both control and SE animals exposed to the enriched environment compared to the nonenriched groups. Environmental enrichment resulted in no change in SE-induced histologic damage. Exposure to an enriched environment in weanling rats significantly improves visual-spatial learning. Even following SE, an enriched environment enhances cognitive function. An increase in neurogenesis and activation of transcription factors may contribute to this enhanced visual-spatial memory.

  19. Increased expression of SNARE proteins and synaptotagmin IV in islets from pregnant rats and in vitro prolactin-treated neonatal islets

    Directory of Open Access Journals (Sweden)

    DANIEL A CUNHA

    2006-01-01

    Full Text Available During pregnancy and the perinatal period of life, prolactin (PRL and other lactogenic substances induce adaptation and maturation of the stimulus-secretion coupling system in pancreatic β-cells. Since the SNARE molecules, SNAP-25, syntaxin 1, VAMP-2, and synaptotagmins participate in insulin secretion, we investigated whether the improved secretory response to glucose during these periods involves alteration in the expression of these proteins. mRNA was extracted from neonatal rat islets cultured for 5 days in the presence of PRL and from pregnant rats (17th-18th days of pregnancy and reverse transcribed. The expression of genes was analyzed by semi-quantitative RT-PCR assay. The expression of proteins was analyzed by Western blotting and confocal microscopy. Transcription and expression of all SNARE genes and proteins were increased in islets from pregnant and PRL-treated neonatal rats when compared with controls. The only exception was VAMP-2 production in islets from pregnant rats. Increased mRNA and protein expression of synaptotagmin IV, but not the isoform I, also was observed in islets from pregnant and PRL-treated rats. This effect was not inhibited by wortmannin or PD098059, inhibitors of the PI3-kinase and MAPK pathways, respectively. As revealed by confocal laser microscopy, both syntaxin 1A and synaptotagmin IV were immunolocated in islet cells, including the insulin-containing cells. These results indicate that PRL modulates the final steps of insulin secretion by increasing the expression of proteins involved in membrane fusion.

  20. Glucagon-like peptide-1 acutely affects renal blood flow and urinary flow rate in spontaneously hypertensive rats despite significantly reduced renal expression of GLP-1 receptors.

    Science.gov (United States)

    Ronn, Jonas; Jensen, Elisa P; Wewer Albrechtsen, Nicolai J; Holst, Jens Juul; Sorensen, Charlotte M

    2017-12-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone increasing postprandial insulin release. GLP-1 also induces diuresis and natriuresis in humans and rodents. The GLP-1 receptor is extensively expressed in the renal vascular tree in normotensive rats where acute GLP-1 treatment leads to increased mean arterial pressure (MAP) and increased renal blood flow (RBF). In hypertensive animal models, GLP-1 has been reported both to increase and decrease MAP. The aim of this study was to examine expression of renal GLP-1 receptors in spontaneously hypertensive rats (SHR) and to assess the effect of acute intrarenal infusion of GLP-1. We hypothesized that GLP-1 would increase diuresis and natriuresis and reduce MAP in SHR. Immunohistochemical staining and in situ hybridization for the GLP-1 receptor were used to localize GLP-1 receptors in the kidney. Sevoflurane-anesthetized normotensive Sprague-Dawley rats and SHR received a 20 min intrarenal infusion of GLP-1 and changes in MAP, RBF, heart rate, dieresis, and natriuresis were measured. The vasodilatory effect of GLP-1 was assessed in isolated interlobar arteries from normo- and hypertensive rats. We found no expression of GLP-1 receptors in the kidney from SHR. However, acute intrarenal infusion of GLP-1 increased MAP, RBF, dieresis, and natriuresis without affecting heart rate in both rat strains. These results suggest that the acute renal effects of GLP-1 in SHR are caused either by extrarenal GLP-1 receptors activating other mechanisms (e.g., insulin) to induce the renal changes observed or possibly by an alternative renal GLP-1 receptor. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  1. Effectiveness of grape seed extract on gamma radiation-induced hazards in albino rats

    International Nuclear Information System (INIS)

    Abd El Azime, A.S.

    2008-01-01

    The present study was designed to determine the possible protective effect of grape seed extract (GSE), rich in proanthocyanidins against gamma radiation-induced oxidative stress associated to serum metabolic disorders in the liver, heart and pancreas tissues of rats. Male albino rats received GSE (100 mg/day/Kg body weight), by gavages, for 14 successive days before whole body exposure to 5 Gy gamma radiation (shot dose). Animals were sacrificed 1, 14, and 28 days post radiation exposure. The results showed that in the irradiated group, tissues superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) activities were decreased significantly, while thiobarbituric acid reactive substances (TBARS) content was increased, which was in parallel with significant increases in the activity of serum lactate dehydrogenase (LDH), creatine phosphokinase (CPK), aspartate and alanine aminotransferase (AST and ALT). Hyperglycemia, hyperinsulinaemia, hyperlipidaemia, decreases in red blood cells count (RBCs) count and hemoglobin (Hb) content were also observed in irradiated rats. n the GSE-treated irradiated group, significant increases of SOD, CAT, and GSH-Px activities with significant reduction of TBARS levels were observed in cardiac, liver, and pancreas tissues, in parallel to significant decreases in the activity of serum LDH, CPK, AST, and ALT compared with their corresponding values in the irradiated group. Moreover, serum glucose and insulin contents, RBCs count and Hb content were significantly improved in the GSE-treated irradiated rats. Furthermore, the marked increase in serum triglycerides and total cholesterol observed in irradiated rats, along with elevated LDL-C and decreased HDL-C levels were significantly improved in GSE treated rats. In conclusion, the present data demonstrate that GSE through its free radical scavenging and antioxidant properties attenuates ionizing radiation-induced oxidative injury suggesting that it may be a potential

  2. Effectiveness of grape seed extract on gamma radiation-induced hazards in albino rats

    Energy Technology Data Exchange (ETDEWEB)

    Abd El Azime, A S [Radiation Biology Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt)

    2008-07-01

    The present study was designed to determine the possible protective effect of grape seed extract (GSE), rich in proanthocyanidins against gamma radiation-induced oxidative stress associated to serum metabolic disorders in the liver, heart and pancreas tissues of rats. Male albino rats received GSE (100 mg/day/Kg body weight), by gavages, for 14 successive days before whole body exposure to 5 Gy gamma radiation (shot dose). Animals were sacrificed 1, 14, and 28 days post radiation exposure. The results showed that in the irradiated group, tissues superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) activities were decreased significantly, while thiobarbituric acid reactive substances (TBARS) content was increased, which was in parallel with significant increases in the activity of serum lactate dehydrogenase (LDH), creatine phosphokinase (CPK), aspartate and alanine aminotransferase (AST and ALT). Hyperglycemia, hyperinsulinaemia, hyperlipidaemia, decreases in red blood cells count (RBCs) count and hemoglobin (Hb) content were also observed in irradiated rats. n the GSE-treated irradiated group, significant increases of SOD, CAT, and GSH-Px activities with significant reduction of TBARS levels were observed in cardiac, liver, and pancreas tissues, in parallel to significant decreases in the activity of serum LDH, CPK, AST, and ALT compared with their corresponding values in the irradiated group. Moreover, serum glucose and insulin contents, RBCs count and Hb content were significantly improved in the GSE-treated irradiated rats. Furthermore, the marked increase in serum triglycerides and total cholesterol observed in irradiated rats, along with elevated LDL-C and decreased HDL-C levels were significantly improved in GSE treated rats. In conclusion, the present data demonstrate that GSE through its free radical scavenging and antioxidant properties attenuates ionizing radiation-induced oxidative injury suggesting that it may be a potential

  3. The daidzein- and estradiol- induced anorectic action in CCK or leptin receptor deficiency rats.

    Science.gov (United States)

    Fujitani, Mina; Mizushige, Takafumi; Bhattarai, Keshab; Iwahara, Asami; Aida, Ryojiro; Kishida, Taro

    2015-01-01

    We investigated the effect of daidzein feeding and estradiol treatment on food intake in cholecystokinin-1 receptor (CCK1R) deficiency, leptin receptor (ObRb) deficiency rats and their wild-type rats. These rats underwent an ovariectomy or a sham operation. For the 5 week experiment, each rat was divided in three groups: control, daidzein (150 mg/kg diet), and estradiol (4.2 μg/rat/day) groups. In both CCK1R+ and CCK1R- rats, daidzein feeding and estradiol treatment significantly decreased food intake. Daidzein feeding significantly reduced food intake in ovariectomized ObRb- rats, although not in ObRb+ rats. Estradiol treatment significantly lowered food intake in ovariectomized ObRb+ and ObRb- rats. In the ovariectomized rats, estradiol treatment significantly increases uterine weight, while daidzein feeding did not change it, suggesting that daidzein might have no or weak estrogenic effect in our experiment. These results suggest that CCK1R and ObRb signalings were not essential for the daidzein- and estradiol-induced anorectic action.

  4. Insulin secretion enhancing activity of roselle calyx extract in normal and streptozotocin-induced diabetic rats

    Science.gov (United States)

    Wisetmuen, Eamruthai; Pannangpetch, Patchareewan; Kongyingyoes, Bunkerd; Kukongviriyapan, Upa; Yutanawiboonchai, Wiboonchai; Itharat, Arunporn

    2013-01-01

    Background and Objective: Our recent study revealed the antihyperglycemic activity of an ethanolic extract of roselle calyxes (Hibiscus sabdariffa) in diabetic rats. The present study had, therefore, an objective to investigate the mechanism underlying this activity. Materials and Methods: Male Sprague Dawley rats were induced to be diabetes by intraperitoneal injection of 45 mg/kg streptozotocin (STZ). Normal rats as well as diabetic rats were administered with the ethanolic extract of H. sabdariffa calyxes (HS-EE) at 0.1 and 1.0 g/kg/day, respectively, for 6 weeks. Then, blood glucose and insulin levels, at basal and glucose-stimulated secretions, were measured. The pancreas was dissected to examine histologically. Results: HS-EE 1.0 g/kg/day significantly decreased the blood glucose level by 38 ± 12% in diabetic rats but not in normal rats. In normal rats, treatment with 1.0 g/kg HS-EE increased the basal insulin level significantly as compared with control normal rats (1.28 ± 0.25 and 0.55 ± 0.05 ng/ml, respectively). Interestingly, diabetic rats treated with 1.0 g/kg HS-EE also showed a significant increase in basal insulin level as compared with the control diabetic rats (0.30 ± 0.05 and 0.15 ± 0.01 ng/ml, respectively). Concerning microscopic histological examination, HS-EE 1.0 g/kg significantly increased the number of islets of Langerhans in both normal rats (1.2 ± 0.1 and 2.0 ± 0.1 islet number/10 low-power fields (LPF) for control and HS-EE treated group, respectively) and diabetic rats (1.0 ± 0.3 and 3.9 ± 0.6 islet number/10 LPF for control and HS-EE treated group, respectively). Conclusion: The antidiabetic activity of HS-EE may be partially mediated via the stimulating effect on insulin secretion. PMID:23798879

  5. Dietary phytosterols and phytostanols decrease cholesterol levels but increase blood pressure in WKY inbred rats in the absence of salt-loading

    Directory of Open Access Journals (Sweden)

    Ratnayake Walisundera MN

    2010-02-01

    Full Text Available Abstract Background There are safety concerns regarding widespread consumption of phytosterol and phytostanol supplemented food products. The aim of this study was to determine, in the absence of excess dietary salt, the individual effects of excess accumulation of dietary phytosterols and phytostanols on blood pressure in Wistar Kyoto (WKY inbred rats that have a mutation in the Abcg5 gene and thus over absorb phytosterols and phytostanols. Methods Thirty 35-day old male WKY inbred rats (10/group were fed a control diet or a diet containing phytosterols or phytostanols (2.0 g/kg diet for 5 weeks. The sterol composition of the diets, plasma and tissues were analysed by gas chromatography. Blood pressure was measured by the tail cuff method. mRNA levels of several renal blood pressure regulatory genes were measured by real-time quantitative PCR. Results Compared to the control diet, the phytosterol diet resulted in 3- to 4-fold increases in the levels of phytosterols in plasma, red blood cells, liver, aorta and kidney of WKY inbred rats (P 9-fold the levels of phytostanols in plasma, red blood cells, liver, aorta and kidney of these rats (P P P P P angiotensinogen mRNA levels of these rats. Conclusion These data suggest that excessive accumulation of dietary phytosterols and phytostanols in plasma and tissues may contribute to the increased blood pressure in WKY inbred rats in the absence of excess dietary salt. Therefore, even though phytosterols and phytostanols lower cholesterol levels, prospective clinical studies testing the net beneficial effects of dietary phytosterols and phytostanols on cardiovascular events for subgroups of individuals that have an increased incorporation of these substances are needed.

  6. Opium can differently alter blood glucose, sodium and potassium in male and female rats.

    Science.gov (United States)

    Karam, Gholamreza Asadi; Rashidinejad, Hamid Reza; Aghaee, Mohammad Mehdi; Ahmadi, Jafar; Rahmani, Mohammad Reza; Mahmoodi, Mehdi; Azin, Hosein; Mirzaee, Mohammad Reza; Khaksari, Mohammad

    2008-04-01

    To determine the effects of opium on serum glucose, potassium and sodium in male and female Wistar rat, opium solution (60 mg/kg) injected intraperitoneally and the same volume of distilled water was used as control (7 rats in each group). Blood samples were collected at 0, 30, 60, 120, 240 and 360 minutes after injection from orbit cavity and the values of serum glucose, sodium (Na(+)) and potassium (K(+)) were measured. The data were then analyzed by the repeated measure ANOVA based on sex and case-control group. P opium solution injection, in female rats compared to a control group. However, the male rats had this rise at 30, 60 and 120 minutes after opium solution injection compared to control group. While serum glucose in male rats was significantly higher than females at 30, 60 and 120 minutes, this value was higher in the female rats at 360 minutes. Therefore, serum glucose alterations following opium injection was significantly different in groups and in the sexes at different times. Sodium (Na(+)) rose at 60, 240 and 360 minutes significantly in all rats compared to control group. However, sodium alteration following opium injection was significantly different only between treated and control groups but sex-independent at all times. Potassium (K(+)) increased significantly at 60, 120, 240 and 360 minutes in male rats, compared to a control group. In female rats K(+) significantly raised at 30, 120, 240 and 360 minutes. Therefore, the alteration of K(+) in male and female rats was found time dependent and sex independent. According to our results, opium increased serum glucose in male and female rats differently, and it interferes with metabolic pathways differently on a gender dependent basis. Opium raised serum Na(+) and K(+), thus it interfere with water regulation and blood pressure via different mechanism.

  7. Stress during adolescence increases novelty seeking and risk taking behavior in male and female rats

    Directory of Open Access Journals (Sweden)

    Maria eToledo

    2011-04-01

    Full Text Available Adolescence is a period of major physical, hormonal and psychological change. It is also characterized by a significant increase in the incidence of psychopathologies and this increase is gender-specific. Likewise, stress during adolescence is associated with the development of psychiatric disorders later in life. Previously, using a rat model of psychogenic stress (exposure to predator odor followed by placement on an elevated platform during the pre-pubertal period (postnatal days 28-30, we reported sex-specific effects on auditory and contextual fear conditioning. Here, we study the short-term impact of psychogenic stress before and during puberty (postnatal days 28-42 on behavior (novelty seeking, risk taking, anxiety and depression and hypothalamus-pituitary-adrenocortical (HPA axis activation during late adolescence (postnatal days 45-51. Peri-pubertal stress decreased anxiety-like behavior and increased risk taking and novelty seeking behaviors during late adolescence (measured with the elevated plus maze, open field and exposure to novel object tests and intake of chocopop pellets before or immediate after stress. Finally neither depressive-like behavior (measured at the forced swim test nor HPA response to stress (blood corticosterone and glucose were affected by peri-pubertal stress. Nevertheless, when controlling for the basal anxiety of the mothers, animals exposed to peri-pubertal stress showed a significant decrease in corticosterone levels immediate after an acute stressor. The results from this study suggest that exposure to mild stressors during the peri-pubertal period induces a broad spectrum of behavioral changes in late adolescence, which may exacerbate the independence-building behaviors naturally happening during this transitional period (increase in curiosity, sensation-seeking and risk taking behaviors.

  8. Effect of soy protein on obesity-linked renal and pancreatic disorders in female rats

    International Nuclear Information System (INIS)

    Osman, H.F.; El-Sherbiny, E.M.

    2006-01-01

    The purpose of this study was to identify the effect of soy protein based diet on renal and pancreatic disorders in female obese rats. Animals assigned into group I in which 30 rats fed on a balanced diet. Group II contained 30 rats fed on a diet containing 30% fats for 4 weeks. At the end of the 4 th week, one-half of each group was treated as group III which contain 15 rats (half of group I) fed on diet containing 25% soy protein for 3 weeks and represents soy protein group, and the other half served as control. Group IV contained 15 rats (half of group II) fed on a diet containing 25% soy protein for 3 weeks and served as obese + soy protein group, and the other half fed on a normal balanced diet for 3 weeks and represents the obese group. Body weights of rats were recorded every week during the experimental period. Renal and pancreatic functions were measured as urea, creatinine, glomerular filtration rate (creatinine clearance), ammonia, sodium and potassium ions, total protein, albumin, globulin, glucose, insulin and alpha-amylase activity. Feeding with soy protein led to a very high significant increase in urea while creatinine was significantly decreased and creatinine clearance was significantly increased in the groups fed on soy protein. Ammonia concentration was increased in all groups and there was non-significant alteration in sodium and potassium ion concentrations. In soy protein groups (groups III and IV), total protein, albumin and globulin levels were increased. Glucose level was increased in obese rats and significantly decreased in groups III and IV. In group IV, insulin level was decreased which implicated to insulin excess in obesity. Soy protein decreased alpha-amylase activity in groups III and IV as compared to control rats. From these results, soy protein have a direct and protective effect on glomerular disorders and pancreatic secretions. This may be due to isoflavone contents in soy which can modulate the disturbance in metabolism

  9. FAILURE OF PROGESTERONE TO PRODUCE HIGH BLOOD-PRESSURE IN RABBITS AND RATS

    NARCIS (Netherlands)

    Winter, M.; Veldhuyzen, B.; Dorhout Mees, E.J.

    1972-01-01

    Contrary to earlier claims, daily Summary administration of 50 mg. progesterone over ten days did not increase the blood-pressure of 6 rabbits. Daily injection of 10 mg. progesterone had no influence on the blood-pressure of rats. The weight-gain of female rats was significantly increased by this

  10. Comparison of the effects of NG-nitro-L-arginine and indomethacin on the hypercapnic cerebral blood flow increase in rats

    DEFF Research Database (Denmark)

    Wang, Qian; Pelligrino, D A; Paulson, O B

    1994-01-01

    The effects of NG-nitro-L-arginine (NOLAG), an inhibitor of nitric oxide synthase (NOS), and of indomethacin, an inhibitor of cyclooxygenase, on the rise in cerebral blood flow (CBF) accompanying increasing levels of hypercapnia (paCO2 = 40-135 mmHg) were studied in anesthetized rats. CBF...... with additional step increase in paCO2. Intracarotid infusion of 7.5 mg/kg NOLAG significantly attenuated the CO2-elicited CBF increase by about 45-65% at paCO2 values below 115 mmHg. Beyond this level, there was a lesser inhibition of about 27-35%. 30 mg/kg NOLAG had essentially the same effect as 7.5 mg....../kg NOLAG. 50 mg/kg NOLAG, given intraperitoneally (i.p.) twice daily for 4 days, also caused an attenuated CBF response to CO2, but the inhibitory effect was significantly less than with acute NOLAG administration in the paCO2 range of 61-90 mmHg. Infusion of L-arginine, 1 g/kg/h, prevented the effect of 7...

  11. Gallic acid improves the memory and pain in diabetic rats

    Directory of Open Access Journals (Sweden)

    maryam Rafieirad

    2013-08-01

    Full Text Available Background: Complications of diabetes can be caused by the production of free radicals, which lead to memory problems and increase the risk of dementia. Diabetics are at risk of nervous pains. Gallic acid has antioxidant properties and activity against free radicals. In this study the effect of oral administration of Gallic acid, were examined on passive‌ avoidance ‌memory and pain in diabetic rats. Materials and Methods: Rats were divided into control, diabetes with STZ (60mg/kg, 3-groups of control and 3‌groups of diabetic rats and received Gallic ‌‌acid (10, 50&100 mg/kg oral, for two weeks. Blood glucose levels were measured from tail. Results: Results showed a significant reduction in memory (delayed coming down from the podium in the diabetic group all days except day of learning (P≤0.01. Dose of 50 mg/kg Gallic‌ acid caused a significant increase in non-diabetic rats on the first day of memory (P≤0.01, third and seventh (P≤0.05 and dose of 10 mg/kg on the first day (P≤0.05. Compared with diabetic group a significant increase was observed in the first day (P≤0.01, third and seventh (P≤0.05 in diabetics receiving doses of 50 and 10mg/kg Gallic‌ acid. The reflex for tail pulling away from the center of pain was significantly lower (P≤0.01 in the diabetic group. And only the dose of 50 caused a significant increase in the diabetic group (P≤0.01. Conclusion: Probably Gallic‌ acid with strong antioxidant effect led to scavenge free radicals and reduced the complications of diabetes, including pain and may have effects on neural pathways in specific brain regions and has led to improved memory in normal rats and diabetic.

  12. Increased response to insulin of glucose metabolism in the 6-day unloaded rat soleus muscle

    Science.gov (United States)

    Henriksen, Erik J.; Tischler, Marc E.; Johnson, David G.

    1986-01-01

    Hind leg muscles of female rats were unloaded by tail cast suspension for 6 days. In the fresh-frozen unloaded soleus, the significantly greater concentration of glycogen correlated with a lower activity ratio of glycogen phosphorylase (p less than 0.02). The activity ratio of glycogen synthase also was lower (p less than 0.001), possibly due to the higher concentration of glycogen. In isolated unloaded soleus, insulin (0.1 milliunit/ml) increased the oxidation of D(U-C-14) glucose, release of lactate and pyruvate, incorporation of D-(U-C-14) glucose into glycogen, and the concentration of glucose 6-phosphate more (p less than 0.05) than in the weight-bearing soleus. At physiological doses of insulin, the percent of maximal uptake of 2-deoxy-D-(1,2-H-3) glucose/muscle also was greater in the unloaded soleus. Unloading of the soleus increased, by 50 percent the concentration of insuling receptors, due to no decrease in total receptor number during muscle atrophy. This increase may account for the greater response of glucose metabolism to insulin in this muscle. The extensor digitorum longus, which generally shows little response to unloading, displayed no differential response of glucose metabolism to insulin.

  13. Effect of nitrate poisoning on some biochemical parameters in rats

    Directory of Open Access Journals (Sweden)

    M. B. Mahmood

    2011-01-01

    Full Text Available The present study was conducted to investigate the toxicity of potassium nitrate on glucose, cholesterol, alanine aminotransferase (ALT, aspartate aminotransferase (AST, and the possible ameliorative effect of ascorbic acid (Vitamin C. Male Wister rats are used as experimental model divided into three groups (each of 6-8 rats and treated for six weeks as follows: Group 1: served as control; Group 2: received 2 % potassium nitrate added to the forage and Group 3: received 2 % potassium nitrate together with 1 % ascorbic acid added to rat's forage. Nitrate treatment in group 2 leads to high significant increase levels of glucose in 3rd, 4th, and 5th weeks, cholesterol level increased significantly in both 4th and 5th weeks, while ALT levels increased in the 4th, 5th and 6th weeks, and AST increased significantly in the 5th and 6th weeks. Addition of ascorbic acid with potassium nitrate, lead to reverse all the parameters nearly to normal. It was concluded that potassium nitrate causes significant toxic effect on some biochemical parameters which was ameliorated by ascorbic acid.

  14. Early remodeling of rat cardiac muscle induced by swimming training

    Directory of Open Access Journals (Sweden)

    Verzola R.M.M.

    2006-01-01

    Full Text Available The aim of the present investigation was to study the effect of acute swimming training with an anaerobic component on matrix metallopeptidase (MMP activity and myosin heavy chain gene expression in the rat myocardium. Animals (male Wistar rats, weighing approximately 180 g were trained for 6 h/day in 3 sessions of 2 h each for 1 to 5 consecutive days (N = 5 rats per group. Rats swam in basins 47 cm in diameter and 60 cm deep filled with water at 33 to 35ºC. After the training period a significant increase (P < 0.05 was observed in the heart weight normalized to body weight by about 22 and 35% in the groups that trained for 96 and 120 h, respectively. Blood lactate levels were significantly increased (P < 0.05 in all groups after all training sessions, confirming an anaerobic component. However, lactate levels decreased (P < 0.05 with days of training, suggesting that the animals became adapted to this protocol. Myosin heavy chain-ß gene expression, analyzed by real time PCR and normalized with GAPDH gene expression, showed a significant two-fold increase (P < 0.01 after 5 days of training. Zymography analysis of myocardium extracts indicated a single ~60-kDa activity band that was significantly increased (P < 0.05 after 72, 96, and 120 h, indicating an increased expression of MMP-2 and suggesting precocious remodeling. Furthermore, the presence of MMP-2 was confirmed by Western blot analysis, but not the presence of MMP-1 and MMP-3. Taken together, our results indicate that in these training conditions, the rat heart undergoes early biochemical and functional changes required for the adaptation to the new physiological condition by tissue remodeling.

  15. Binding of radiolabelled luteinizing hormone to intact and ovariectomised rat uterus

    International Nuclear Information System (INIS)

    Sen, S.; Bhattacharya, S.

    1992-01-01

    Binding of ovine LH to uterine tissue preparation from intact and ovariectomised rat clearly indicates that uterus possesses specific binding sites for LH. Binding characteristics of LH to uterine tissue preparation from intact rat showed saturability with high affinity and low capacity. Scatchard plot analysis showed dissociation constant of the specific binding site to be 0.12 x 10 -9 mol/l and the number of binding sites was 2.31±0.05 fmol/mg protein. Ovariectomy did not change the binding affinity but effected a decrease in the number of binding sites (1.7 ± 0.08 f mol/mg protein). LH treatment of ovariectomized (ovx) rat had no effect on binding affinity but significantly increased the number of binding sites (3.23 ± 0.1 f mol/mg protein). Reduction of uterine weight due to ovariectomy and marked increase of ovx rat uterine weight by LH administration indicate a source of estrogen in ovx rat. An in vitro uterine tissue slice (from intact and ovx rat) incubation showed depletion of 17 β-estradiol (E 2 ) content in ovx rat which significantly elevated on LH addition. Data suggest the LH binding to rat uterine tissue has biological relevance. (author). 16 refs., 4 figs. 1 tab

  16. Cholesterol biosynthesis in polychlorinated biphenyl-treated rats

    International Nuclear Information System (INIS)

    Kling, D.; Gamble, W.

    1982-01-01

    After administration of polychlorinated biphenly (PCB) at 0.055 (w/w) of the diet to Wistar rats for 30 days, followed by intraperitioneal injection of tritiated water, [ 14 C]mevalonate, and [ 14 C]acetate, there was a decrease in cholesterol biosynthesis in rat liver. No significant change in cholesterol formation was observed when PCB was administered at 0.01% (w/w) of the diet. In vitro inhibition of cholesterol synthesis by rat liver microsomes was observed with PCB. Squalene 2,3-oxidocyclase activity of rat liver microsomes was not significantly altered. Desmosterol delta 24 reductase activity was inhibited only at relatively high concentrations of PCB. There was increased incorporation of radioactivity into squalene and lanosterol, in vitro, in the presence of PCB. The primary inhibition of cholesterol biosynthesis appears to be at the demethylation and rearrangement reactions between lanosterol and cholesterol in the biosynthetic pathway

  17. Activation of peroxisome proliferator-activated receptor gamma by rosiglitazone increases sirt6 expression and ameliorates hepatic steatosis in rats.

    Directory of Open Access Journals (Sweden)

    Soo Jin Yang

    Full Text Available BACKGROUND: Sirt6 has been implicated in the regulation of hepatic lipid metabolism and the development of hepatic steatosis. The aim of this study was to address the potential role of Sirt6 in the protective effects of rosiglitazone (RGZ on hepatic steatosis. METHODS: To investigate the effect of RGZ on hepatic steatosis, rats were treated with RGZ (4 mg·kg⁻¹·day⁻¹ by stomach gavage for 6 weeks. The involvement of Sirt6 in the RGZ's regulation was evaluated by Sirt6 knockdown in AML12 mouse hepatocytes. RESULTS: RGZ treatment ameliorated hepatic lipid accumulation and increased expression of Sirt6, peroxisome proliferator-activated receptor gamma coactivtor-1-α (Ppargc1a/PGC1-α and Forkhead box O1 (Foxo1 in rat livers. AMP-activated protein kinase (AMPK phosphorylation was also increased by RGZ, accompanied by alterations in phosphorylation of LKB1. Interestingly, in free fatty acid-treated cells, Sirt6 knockdown increased hepatocyte lipid accumulation measured as increased triglyceride contents (p = 0.035, suggesting that Sirt6 may be beneficial in reducing hepatic fat accumulation. In addition, Sirt6 knockdown abolished the effects of RGZ on hepatocyte fat accumulation, mRNA and protein expression of Ppargc1a/PGC1-α and Foxo1, and phosphorylation levels of LKB1 and AMPK, suggesting that Sirt6 is involved in RGZ-mediated metabolic effects. CONCLUSION: Our results demonstrate that RGZ significantly decreased hepatic lipid accumulation, and that this process appeared to be mediated by the activation of the Sirt6-AMPK pathway. We propose Sirt6 as a possible therapeutic target for hepatic steatosis.

  18. Cyclic fatty acid monomers from dietary heated fats affect rat liver enzyme activity.

    Science.gov (United States)

    Lamboni, C; Sébédio, J L; Perkins, E G

    1998-07-01

    This study was conducted to investigate the effects of dietary cyclic fatty acid monomers (CFAM), contained in heated fat from a commercial deep-fat frying operation, on rat liver enzyme activity. A partially hydrogenated soybean oil (PHSBO) used 7 d (7-DH) for frying foodstuffs, or 0.15% methylated CFAM diets was fed to male weanling rats in comparison to a control group fed a nonheated PHSBO (NH) diet in a 10-wk experiment. All diets were isocaloric with 15% fat. Animals fed either CFAM or 7-DH diets showed increased hepatic content of cytochrome (cyt.) b5 and P450 and increased activity of (E.C. 1.6.2.4) NADPH-cyt. P450 reductase in comparison to the control rats. In addition, the activities of (E.C. 2.3.1.21) carnitine palmitoyltransferase-I and (E.C. 1.1.1.42) isocitrate dehydrogenase were significantly decreased when compared to that of rats fed the NH diet. A significantly depressed activity of (E.C. 1.1.1.49) glucose 6-phosphate dehydrogenase was also observed for these animals compared to the control rats fed NH diet. Moreover, liver and microsomal proteins were significantly increased when CFAM or 7-DH diets were fed to animals in comparison to controls while liver glycogen was decreased significantly in experimental groups of rats. The results obtained in this study indicate that the CFAM in the diet from either synthetic sources or used fats increase the activity of liver enzyme systems that detoxify them.

  19. Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants.

    Directory of Open Access Journals (Sweden)

    Laura Musazzi

    2010-01-01

    Full Text Available Behavioral stress is recognized as a main risk factor for neuropsychiatric diseases. Converging evidence suggested that acute stress is associated with increase of excitatory transmission in certain forebrain areas. Aim of this work was to investigate the mechanism whereby acute stress increases glutamate release, and if therapeutic drugs prevent the effect of stress on glutamate release.Rats were chronically treated with vehicle or drugs employed for therapy of mood/anxiety disorders (fluoxetine, desipramine, venlafaxine, agomelatine and then subjected to unpredictable footshock stress. Acute stress induced marked increase in depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex in superfusion, and the chronic drug treatments prevented the increase of glutamate release. Stress induced rapid increase in the circulating levels of corticosterone in all rats (both vehicle- and drug-treated, and glutamate release increase was blocked by previous administration of selective antagonist of glucocorticoid receptor (RU 486. On the molecular level, stress induced accumulation of presynaptic SNARE complexes in synaptic membranes (both in vehicle- and drug-treated rats. Patch-clamp recordings of pyramidal neurons in the prefrontal cortex revealed that stress increased glutamatergic transmission through both pre- and postsynaptic mechanisms, and that antidepressants may normalize it by reducing release probability.Acute footshock stress up-regulated depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex. Stress-induced increase of glutamate release was dependent on stimulation of glucocorticoid receptor by corticosterone. Because all drugs employed did not block either elevation of corticosterone or accumulation of SNARE complexes, the dampening action of the drugs on glutamate release must be downstream of these processes. This novel effect of antidepressants on the response to stress

  20. High Dietary Iron and Radiation Exposure Increase Biomarkers of Oxidative Stress in Blood and Liver of Rats

    Science.gov (United States)

    Morgan, Jennifer L. L.; Theriot, Corey A.; Wu, Honglu; Smith, Scott M.; Zwart, Sara R.

    2012-01-01

    Radiation exposure and increased iron (Fe) status independently cause oxidative damage that can result in protein, lipid, and DNA oxidation. During space flight astronauts are exposed to both increased radiation and increased Fe stores. Increased body Fe results from a decrease in red blood cell mass and the typically high Fe content of the food system. In this study we investigated the combined effects of radiation exposure (0.375 Gy of Cs-137 every other day for 16 days for a total of 3 Gy) and high dietary Fe (650 mg Fe/kg diet compared to 45 mg Fe/kg for controls) in Sprague-Dawley rats (n=8/group). Liver and serum Fe were significantly increased in the high dietary Fe groups. Likewise, radiation treatment increased serum ferritin and Fe concentrations. These data indicate that total body Fe stores increase with both radiation exposure and excess dietary Fe. Hematocrit decreased in the group exposed to radiation, providing a possible mechanism for the shift in Fe indices after radiation exposure. Markers of oxidative stress were also affected by both radiation and high dietary Fe, evidenced by increased liver glutathione peroxidase (GPX) and serum catalase as well as decreased serum GPX. We thus found preliminary indications of synergistic effects of radiation exposure and increased dietary Fe, warranting further study. This study was funded by the NASA Human Research Project.

  1. Spaceflight-induced vertebral bone loss in ovariectomized rats is associated with increased bone marrow adiposity and no change in bone formation

    Science.gov (United States)

    Keune, Jessica A; Philbrick, Kenneth A; Branscum, Adam J; Iwaniec, Urszula T; Turner, Russell T

    2016-01-01

    There is often a reciprocal relationship between bone marrow adipocytes and osteoblasts, suggesting that marrow adipose tissue (MAT) antagonizes osteoblast differentiation. MAT is increased in rodents during spaceflight but a causal relationship between MAT and bone loss remains unclear. In the present study, we evaluated the effects of a 14-day spaceflight on bone mass, bone resorption, bone formation, and MAT in lumbar vertebrae of ovariectomized (OVX) rats. Twelve-week-old OVX Fischer 344 rats were randomly assigned to a ground control or flight group. Following flight, histological sections of the second lumbar vertebrae (n=11/group) were stained using a technique that allowed simultaneous quantification of cells and preflight fluorochrome label. Compared with ground controls, rats flown in space had 32% lower cancellous bone area and 306% higher MAT. The increased adiposity was due to an increase in adipocyte number (224%) and size (26%). Mineral apposition rate and osteoblast turnover were unchanged during spaceflight. In contrast, resorption of a preflight fluorochrome and osteoclast-lined bone perimeter were increased (16% and 229%, respectively). The present findings indicate that cancellous bone loss in rat lumbar vertebrae during spaceflight is accompanied by increased bone resorption and MAT but no change in bone formation. These findings do not support the hypothesis that increased MAT during spaceflight reduces osteoblast activity or lifespan. However, in the context of ovarian hormone deficiency, bone formation during spaceflight was insufficient to balance increased resorption, indicating defective coupling. The results are therefore consistent with the hypothesis that during spaceflight mesenchymal stem cells are diverted to adipocytes at the expense of forming osteoblasts. PMID:28725730

  2. Enhancement of Spatial Learning-Memory in Developing Rats via Mozart Music

    Institute of Scientific and Technical Information of China (English)

    Jian-Gao Yao; Yang Xia; Sheng-Jun Dai; Guang-Zhan Fang; Hua Guo; De-Zhong Yao

    2009-01-01

    This paper studies the effect of musical stimulations on the capability of the spatial learning-memory in developing rats by behavioral and electro-physiological techniques.Rats,which are exposed to Mozart's Sonata for Two Pianos in D Major,complete learning tasks of the Moriss water maze with significantly shorter latencies,and the power spectrum of alpha band of electrohippocampogram (EHG) significantly increase,compared with the control rats and rats exposed to the horror music.The results indicate that if given the stimulation of Mozart music in the developmental period of the auditory cortex,the capability of the spatial learning-memory can be significantly changed.The enhancement of alpha band of EHG may be related to the change of this function mainly.

  3. Short-term isolation increases social interactions of male rats: A parametric analysis

    NARCIS (Netherlands)

    Niesink, R.J.M.; Ree, J.M. van

    1982-01-01

    Frequencies of social interactions were higher in pairs of short-term individually housed male Wistar rats as compared to group-housed animals. This was most pronounced when an individually housed rat and a group-housed conspecific were tested together in the morning under red light conditions.

  4. Insulin increases transcription of rat gene 33 through cis-acting elements in 5[prime]-flanking DNA

    Energy Technology Data Exchange (ETDEWEB)

    Cadilla, C.; Isham, K.R.; Lee, K.L.; Ch' ang, L.Y.; Kenney, F.T. (Oak Ridge National Lab., TN (United States)); Johnson, A.C. (National Cancer Institute, Bethesda, MD (United States). Lab. of Molecular Biology)

    1992-01-01

    Gene 33 is a multihormonally-regulated rat gene whose transcription is rapidly and markedly enhanced by insulin in liver and cultured hepatoma cells. To examine the mechanism by which insulin regulates transcription, the authors have constructed chimeric plasmids in which expression of the bacterial cat gene, encoding chloramphenicol acetyltransferase (CAT), is governed by gene 33 promoter elements and contiguous sequence in DNA flanking the transcription start point (tsp). When transfected into H4IIE hepatoma cells, these constructs gave rise to stably transformed cell lines producing the bacterial CAT enzyme. This expression was increased by insulin treatment in a fashion resembling the effect of this hormone on transcription of the native gene. In vitro transcription assays in nuclear extracts also revealed increased transcription of the chimeric plasmids when the extracts were prepared from insulin-treated rat hepatoma cells. The results demonstrate that induction by insulin is mediated by cis-acting nucleotide sequences located between bp [minus]480 to +27 relative to the tsp.

  5. Effect of docosahexaenoic acid and ascorbate on peroxidation of retinal membranes of ODS rats.

    Science.gov (United States)

    Wang, Jin-Ye; Sekine, Seiji; Saito, Morio

    2003-04-01

    Mutant male osteogenic disorder Shionogi (ODS) rats, unable to synthesize ascorbic acid, were fed diets containing a high content of docosahexaenoic acid (DHA) and different amounts of ascorbic acid, to study the effect of DHA on peroxidative susceptibility of the retina and possible antioxidant action of ascorbic acid. ODS rats were fed from 7 weeks of age with diets containing high DHA (6.4% of total energy). A control group received a diet high in linoleic acid. The diets also contained varying amounts of ascorbic acid. Fatty acid compositions and phospholipid hydroperoxides in rod outer segment (ROS) membranes, and retinal ascorbic acid were analyzed. DHA in ROS membranes was significantly increased in rats fed high DHA, compared with the linoleic acid diet. Levels of phospholipid hydroperoxides in the DHA-fed rats were significantly higher than the linoleic acid-fed rats. Ascorbic acid supplementation did not suppress the phospholipid hydroperoxide levels after a high DHA diet, even when the supplement increased the content of retinal ascorbic acid. In conclusion, high DHA feeding induced a marked increase of phospholipid hydroperoxides in ROS membranes of ODS rats. Supplementation of ascorbic acid did not reverse this increase.

  6. Hepatoprotective Effects of Betaine Against Oxidative Stress Induced by Levodopa and Benserazide in Rats

    Directory of Open Access Journals (Sweden)

    M Alirezaei

    2015-02-01

    Results: The study results indicated that the treatment of rats with levodopa and benserazide significantly increased total homocysteine (tHcy in plasma of the LD/Ben. group in comparison with the other groups (p <0.05. tHcy concentration was also significantly higher in LD group in comparison with control, betaine and LD/Bet. groups. Lipid peroxidation (TBARS amount of liver increased significantly in LD/Ben. group when compared to the control group which this index decreased by betaine treatment. In contrast, glutathione peroxidase and superoxide dismutase activities in liver were significantly higher in the LD-treated rats as compared to the LD/Ben. group. Serumic dopamine concentration decreased significantly in LD/Ben.-treated rats in comparison with LD and LD/Bet. groups. Conclusion: Taken together, it seems that betaine acts as an antioxidant agent regarding decrease of LD/Ben.-induced oxidative stress and is able to decrease their oxidative effects in liver of rats.

  7. Ubiquitin conjugation by the N-end rule pathway and mRNAs for its components increase in muscles of diabetic rats

    Science.gov (United States)

    Lecker, S. H.; Solomon, V.; Price, S. R.; Kwon, Y. T.; Mitch, W. E.; Goldberg, A. L.

    1999-01-01

    Insulin deficiency (e.g., in acute diabetes or fasting) is associated with enhanced protein breakdown in skeletal muscle leading to muscle wasting. Because recent studies have suggested that this increased proteolysis is due to activation of the ubiquitin-proteasome (Ub-proteasome) pathway, we investigated whether diabetes is associated with an increased rate of Ub conjugation to muscle protein. Muscle extracts from streptozotocin-induced insulin-deficient rats contained greater amounts of Ub-conjugated proteins than extracts from control animals and also 40-50% greater rates of conjugation of (125)I-Ub to endogenous muscle proteins. This enhanced Ub-conjugation occurred mainly through the N-end rule pathway that involves E2(14k) and E3alpha. A specific substrate of this pathway, alpha-lactalbumin, was ubiquitinated faster in the diabetic extracts, and a dominant negative form of E2(14k) inhibited this increase in ubiquitination rates. Both E2(14k) and E3alpha were shown to be rate-limiting for Ub conjugation because adding small amounts of either to extracts stimulated Ub conjugation. Furthermore, mRNA for E2(14k) and E3alpha (but not E1) were elevated 2-fold in muscles from diabetic rats, although no significant increase in E2(14k) and E3alpha content could be detected by immunoblot or activity assays. The simplest interpretation of these results is that small increases in both E2(14k) and E3alpha in muscles of insulin-deficient animals together accelerate Ub conjugation and protein degradation by the N-end rule pathway, the same pathway activated in cancer cachexia, sepsis, and hyperthyroidism.

  8. Effects of xylitol as a sugar substitute on diabetes-related parameters in nondiabetic rats.

    Science.gov (United States)

    Islam, Md Shahidul

    2011-05-01

    Abstract The present study was examined the effects of xylitol feeding on diabetes-associated parameters in nondiabetic rats. Seven-week-old male Sprague-Dawley rats were randomly divided into three groups: control (five rats), sucrose (six rats), and xylitol (six rats). Animal had free access to a commercial rat pellet diet, and ad libitum water, 10% sucrose solution, and 10% xylitol solution were supplied to the control, sucrose, and xylitol groups, respectively. After 3 weeks of feeding of experimental diets, food intakes were significantly (P<.05) lower in the sucrose and xylitol groups compared with the control group. Drink intake was significantly higher in the sucrose group but significantly lower in the xylitol group compared with the control group. Body weight gain was significantly lower in the xylitol group compared with the sucrose group. Weekly nonfasting blood glucose was significantly increased, but fasting blood glucose was significantly decreased, in the sucrose group compared with the control and xylitol groups. Significantly better glucose tolerance was observed in the xylitol group compared with the control and sucrose groups. Serum insulin and fructosamine concentrations were not significantly influenced by the feeding of xylitol or sucrose. Relative liver weight and liver glycogen were significantly increased in the xylitol group compared with the sucrose group, whereas no difference was observed between the xylitol and control groups. Serum total cholesterol and low-density lipoprotein-cholesterol were significantly decreased in the sucrose and xylitol groups, and serum triglyceride of the xylitol group, but not the sucrose group, was significantly increased compared with the control group. Data of this study suggest that xylitol can be a better sweetener than sucrose to maintain diabetes-related parameters at a physiologically safer and stable condition.

  9. Attenuated Increase in Maximal Force of Rat Medial Gastrocnemius Muscle after Concurrent Peak Power and Endurance Training

    Directory of Open Access Journals (Sweden)

    Regula Furrer

    2013-01-01

    Full Text Available Improvement of muscle peak power and oxidative capacity are generally presumed to be mutually exclusive. However, this may not be valid by using fibre type-specific recruitment. Since rat medial gastrocnemius muscle (GM is composed of high and low oxidative compartments which are recruited task specifically, we hypothesised that the adaptive responses to peak power training were unaffected by additional endurance training. Thirty rats were subjected to either no training (control, peak power training (PT, or both peak power and endurance training (PET, which was performed on a treadmill 5 days per week for 6 weeks. Maximal running velocity increased 13.5% throughout the training and was similar in both training groups. Only after PT, GM maximal force was 10% higher than that of the control group. In the low oxidative compartment, mRNA levels of myostatin and MuRF-1 were higher after PT as compared to those of control and PET groups, respectively. Phospho-S6 ribosomal protein levels remained unchanged, suggesting that the elevated myostatin levels after PT did not inhibit mTOR signalling. In conclusion, even by using task-specific recruitment of the compartmentalized rat GM, additional endurance training interfered with the adaptive response of peak power training and attenuated the increase in maximal force after power training.

  10. The major histocompatibility complex genes impact pain response in DA and DA.1U rats.

    Science.gov (United States)

    Guo, Yuan; Yao, Fan-Rong; Cao, Dong-Yuan; Li, Li; Wang, Hui-Sheng; Xie, Wen; Zhao, Yan

    2015-08-01

    Our recent studies have shown that the difference in basal pain sensitivity to mechanical and thermal stimulation between Dark-Agouti (DA) rats and a novel congenic DA.1U rats is major histocompatibility complex (MHC) genes dependent. In the present study, we further used DA and DA.1U rats to investigate the role of MHC genes in formalin-induced pain model by behavioral, electrophysiological and immunohistochemical methods. Behavioral results showed biphasic nociceptive behaviors increased significantly following the intraplantar injection of formalin in the hindpaw of DA and DA.1U rats. The main nociceptive behaviors were lifting and licking, especially in DA rats (PDA rats were significantly higher than those in DA.1U rats in both phases of the formalin test (PDA rats was significantly higher than that of DA.1U rats (PDA was greater than that in DA.1U rats (PDA rats was significantly higher than that in DA.1U rats in the respective experimental group (PDA and DA.1U rats exhibited nociceptive responses in formalin-induced pain model and DA rats were more sensitive to noxious chemical stimulus than DA.1U rats, indicating that MHC genes might contribute to the difference in pain sensitivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Vinpocetine and Vitamin E Modulates Some Biochemical Alterations Induced by Exposure to Ionizing Radiation and Chloropyrifos in Rats

    International Nuclear Information System (INIS)

    Kamal El-Dein, E.M.; Abd El-Azime, A.SH.

    2013-01-01

    Acapi-Cav is a well balanced and well tolerated formula containing vinpocetine and vitamin E. The objective of this study was to investigate the effect of vinpocetine and vitamin E on the oxidative stress, electrolytes and monoamines level in rats exposed to ionizing radiation (gamma rays), chloropyrifos (CPF) as well as rats exposed to a combination of gamma rays and CPF. Irradiation was performed by whole body exposure of rats to 8 Gy delivered at 1 Gy every 4 days. CPF was administered to rats by oral gavages at a dose of 3.6 mg/kg body weight ( 1/10 LD50 ) daily for 30 days. Vinpocetine and vitamin E were administered to rats by oral gavages at a dose of 20 mg/kg body weight daily during 7 days before starting the experiment and continued during the period of exposure to gamma rays and/or CPF. The results revealed significant increase of malondialdehyde (MDA) level associated with a significant decrease of glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) in the blood of rats exposed to gamma rays and/or CPF indicating oxidative stress. The levels of serum electrolytes (sodium Na + , potassium K + , calcium Ca ++ and magnesium Mg) showed significant decrease. Serum dopamine (DA) level was decreased and norepinephrine (NE) was increased while epinephrine (EPI) showed non-significant change. The level of serum monoamine oxidase (MAO) showed significant increase. The administration of vinpocetine and vitamin E to rats exposed to gamma rays and/or CPF significantly reduced the amount of MDA which associated with an increase in the level of antioxidants and significant improvement was recorded for electrolytes level. The results demonstrated that vinpocetine and vitamin E significantly attenuated the increase of MAO and induced significant amelioration in the level of monoamines. It could be concluded that vinpocetine and vitamin E might protect the body from oxidative damage and electrolytes and monoamines alterations in rats exposed to gamma rays

  12. Food restriction modulates β-adrenergic-sensitive adenylate cyclase in rat liver during aging

    International Nuclear Information System (INIS)

    Katz, M.S.

    1988-01-01

    Adenylate cyclase activities were studied in rat liver during postmaturational aging of male Fischer 344 rats fed ad libitum or restricted to 60% of the ad libitum intake. Catecholamine-stimulated adenylate cyclase activity increased by 200-300% between 6 and 24-27 mo of age in ad libitum-fed rats, whereas in food-restricted rats catecholamine response increased by only 58-84% between 6 and 30 mo. In ad libitum-fed rats, glucagon-stimulated enzyme activity also increased by 40% between 6 and 12 mo and in restricted rats a similar age-related increase was delayed until 18 mo. β-Adrenergic receptor density increased by 50% between 6 and 24 mo in livers from ad libitum-fed but not food-restricted rats and showed a highly significant correlation with maximal isoproterenol-stimulated adenylate cyclase activity over the postmaturational life span. Age-related increases in unstimulated (basal) adenylate cyclase activity and nonreceptor-mediated enzyme activation were retarded by food restriction. The results demonstrate that food restriction diminishes a marked age-related increase in β-adrenergic-sensitive adenylate cyclase activity of rat liver. Alterations of adrenergic-responsive adenylate cyclase with age and the modulatory effects of food restriction appear to be mediated by changes in both receptor and nonreceptor components of adenylate cyclase

  13. Neonatal infection produces significant changes in immune function with no associated learning deficits in juvenile rats.

    Science.gov (United States)

    Osborne, Brittany F; Caulfield, Jasmine I; Solomotis, Samantha A; Schwarz, Jaclyn M

    2017-10-01

    The current experiments examined the impact of early-life immune activation and a subsequent mild immune challenge with lipopolysaccharide (LPS; 25µg/kg) on hippocampal-dependent learning, proinflammatory cytokine expression in the brain, and peripheral immune function in juvenile male and female rats at P24, an age when hippocampal-dependent learning and memory first emerges. Our results indicate that neonatal infection did not produce learning deficits in the hippocampal-dependent context pre-exposure facilitation effect paradigm in juvenile males and females, contrary to what has been observed in adults. Neonatal infection produced an increase in baseline IL-1β expression in the hippocampus (HP) and medial prefrontal cortex (mPFC) of juvenile rats. Furthermore, neonatally infected rats showed exaggerated IL-1β expression in the HP following LPS treatment as juveniles; and juvenile females, but not males, showed exaggerated IL-1β expression in the mPFC following LPS treatment. Neonatal infection attenuated the production of IL-6 expression following LPS treatment in both the brain and the spleen, and neonatal infection decreased the numbers of circulating white blood cells in juvenile males and females, an effect that was further exacerbated by subsequent LPS treatment. Together, our data indicate that the consequences of neonatal infection are detectable even early in juvenile development, though we found no concomitant hippocampal-dependent learning deficits at this young age. These findings underscore the need to consider age and associated on-going neurodevelopmental processes as important factors contributing to the emergence of cognitive and behavioral disorders linked to early-life immune activation. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1221-1236, 2017. © 2017 Wiley Periodicals, Inc.

  14. Orally administered nicotine induces urothelial hyperplasia in rats and mice

    International Nuclear Information System (INIS)

    Dodmane, Puttappa R.; Arnold, Lora L.; Pennington, Karen L.; Cohen, Samuel M.

    2014-01-01

    Highlights: • Rats and mice orally administered with nicotine tartrate for total of 4 weeks. • No treatment-related death or whole body toxicity observed in any of the groups. • Urothelium showed simple hyperplasia in treated rats and mice. • No significant change in BrdU labeling index or SEM classification of urothelium. - Abstract: Tobacco smoking is a major risk factor for multiple human cancers including urinary bladder carcinoma. Tobacco smoke is a complex mixture containing chemicals that are known carcinogens in humans and/or animals. Aromatic amines a major class of DNA-reactive carcinogens in cigarette smoke, are not present at sufficiently high levels to fully explain the incidence of bladder cancer in cigarette smokers. Other agents in tobacco smoke could be excreted in urine and enhance the carcinogenic process by increasing urothelial cell proliferation. Nicotine is one such major component, as it has been shown to induce cell proliferation in multiple cell types in vitro. However, in vivo evidence specifically for the urothelium is lacking. We previously showed that cigarette smoke induces increased urothelial cell proliferation in mice. In the present study, urothelial proliferative and cytotoxic effects were examined after nicotine treatment in mice and rats. Nicotine hydrogen tartrate was administered in drinking water to rats (52 ppm nicotine) and mice (514 ppm nicotine) for 4 weeks and urothelial changes were evaluated. Histopathologically, 7/10 rats and 4/10 mice showed simple hyperplasia following nicotine treatment compared to none in the controls. Rats had an increased mean BrdU labeling index compared to controls, although it was not statistically significantly elevated in either species. Scanning electron microscopic visualization of the urothelium did not reveal significant cytotoxicity. These findings suggest that oral nicotine administration induced urothelial hyperplasia (increased cell proliferation), possibly due to a

  15. Efficacy of fish liver oil and propolis as neuroprotective agents in pilocarpine epileptic rats treated with valproate.

    Science.gov (United States)

    Mannaa, Fathia; El-Shamy, Karima A; El-Shaikh, Kamal A; El-Kassaby, Mahitab

    2011-09-01

    To evaluate the action of fish liver oil and propolis in pilocarpine epileptic rats treated with the anticonvulsant drug valproate. Seven groups of rats were treated daily for six months: control; fish liver oil (0.4ml/kg b.w); propolis (50mg/kg b.w); pilocarpine-treated rats (epileptic control); epileptic rats treated with valproate (400mg/kg b.w); groups 6 and 7, epileptic rats treated with valproate plus fish liver oil or propolis. Pilocarpine administration caused a significant increase in hippocampal dopamine and serotonin levels accompanied with a significant decrease in their levels in serum. Lipid peroxidation level and LDH activity in hippocampus were significantly increased after pilocarpine treatment whereas Na(+)/K(+)-ATPase activity and total antioxidant capacity were significantly decreased compared to the controls. Animals treated with the combined treatments showed a significant improvement in tested parameters towards the normal values of the control. Fish liver oil and propolis when given in combination with valproate, neuroprotected against the neurophysiological disorders induced by pilocarpine epilepsy in rats. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. The effect of increased ozone concentrations in the air on selected aspects of rat reproduction.

    Science.gov (United States)

    Jedlińska-Krakowska, M; Gizejewski, Z; Dietrich, G J; Jakubowski, K; Glogowski, J; Penkowski, A

    2006-01-01

    Five-month-old male rates were exposed to 0.5 ppm ozone for 50 days, 5 hours a day. A week before the completion of ozone exposure, a biological test was performed to determine the fertilization rate and the survival rate of newborns in both ozone-exposed and control animals. After 50 days, the rats were sacrificed with an overdose of halotane, and testes were collected to assess the morphology and motility of spermatozoa. Neither the morphology of spermatozoa nor motility parameters determined by the CASA (computer-assisted sperm analysis) system showed statistically significant differences between ozone-exposed and control males. The number of successful matings and the survival rate of newborns per litter within one year postpartum were also similar in both groups. However, sperm concentration was by 17% lower in ozone-exposed rats, compared with the control animals.

  17. The protective role of crocin in tartrazine induced nephrotoxicity in Wistar rats.

    Science.gov (United States)

    Erdemli, Mehmet Erman; Gul, Mehmet; Altinoz, Eyup; Zayman, Emrah; Aksungur, Zeynep; Bag, Harika Gozukara

    2017-12-01

    The present study was conducted to investigate the changes in rat kidney tissues after administration of tartrazine (T) and crocine (Cr). The latter was applied for its protective properties. The present study was conducted with the approval of Inonu University, Faculty of Medicine, Experimental Animals Ethics Committee. Forty rats were randomly divided into 4 equal groups (Control, T, Cr, T + Cr). At the end of the experiment, the rats were decapitated. Biochemical and histopathological studies were conducted on excised rat kidney tissues. It was determined that there was a significant increase in MDA, TOS, SOD, CAT, Bun, Creatinine levels in tartrazine administered rat kidney tissues for 21 days, while GSH and TAS levels decreased (P ≤ 0.05) when compared to all other groups. On the other hand, it was identified that Cr administration statistically significantly increased GSH and TAS levels in rat kidney tissues when compared to all other groups and decreased MDA and TOS levels to control group levels (P tartrazine toxicity agent. Copyright © 2017. Published by Elsevier Masson SAS.

  18. Effects of Tribulus terrestris saponins on exercise performance in overtraining rats and the underlying mechanisms.

    Science.gov (United States)

    Yin, Liang; Wang, Qian; Wang, Xiaohui; Song, Liang-Nian

    2016-06-22

    The objective of this study was to determine the effects of Tribulus terrestris L. (TT) saponins on exercise performance and the underlying mechanisms. A rat overtraining model was established and animals were treated with TT extracts (120 mg/kg body mass) 30 min before each training session. Serum levels of testosterone and corticosterone and levels of androgen receptor (AR) and insulin growth factor-1 receptor (IGF-1R) in the liver, gastrocnemius, and soleus were determined by ELISA and Western blot. Treatment of rats with TT saponins significantly improved the performance of the overtraining rats, reflected by the extension of time to exhaustion, with a concomitant increase in body mass, relative mass, and protein levels of gastrocnemius. Overtraining alone induced a significant decrease in the serum level of testosterone. In contrast, treatment with TT saponins dramatically increased the serum level of testosterone in overtraining rats to about 150% of control and 216% of overtraining groups, respectively. In addition, TT saponins resulted in a further significant increase in AR in gastrocnemius and significantly suppressed the overtraining-induced increase in IGF-1R in the liver. These results indicated that TT saponins increased performance, body mass, and gastrocnemius mass of rats undergoing overtraining, which might be attributed to the changes in androgen-AR axis and IGF-1R signaling.

  19. Hematological changes in opium addicted diabetic rats.

    Science.gov (United States)

    Asadikaram, Gholamreza; Sirati-Sabet, Majid; Asiabanha, Majid; Shahrokhi, Nader; Jafarzadeh, Abdollah; Khaksari, Mohammad

    2013-01-01

    Chronic opioid treatment in animal models has shown to alter hematological parameters. The aim of this study was to evaluate the biological effects of opium on the number of peripheral blood cells and red blood cells (RBCs) indices in diabetic rats. Peripheral blood samples were collected from diabetic, opium-addicted, diabetic opium-addicted and normal male and female rats and hematological parameters were measured. The mean number of white blood cells (WBCs) was significantly higher in diabetic opium-addict females compared to diabetic non-addict female group. In both male and female, the mean number of neutrophils was significantly higher and the mean number of lymphocytes was lower in diabetic opium-addicted rats than those observed in diabetic non-addicted group. In diabetic opium-addicted male group the mean counts of RBC significantly increased as compared with diabetic male group. However, in diabetic addicted female, the mean number of RBCs was significantly lower than diabetic non-addicted female group. In both males and females, the mean number of platelets was significantly lower in diabetic addict rats compared to diabetic non-addict group. Generally, the results indicated that opium addiction has different effects on male and female rats according to the number of WBC, RBC and RBC indices. It could also be concluded that in the opium-addicts the risk of infection is enhanced due to the weakness of immune system as a result of the imbalance effect of opium on the immune cells.

  20. Eating high fat chow increases the sensitivity of rats to 8-OH-DPAT-induced lower lip retraction.

    Science.gov (United States)

    Li, Jun-Xu; Ju, Shutian; Baladi, Michelle G; Koek, Wouter; France, Charles P

    2011-12-01

    Eating high fat food can alter sensitivity to drugs acting on dopamine systems; this study examined whether eating high fat food alters sensitivity to a drug acting on serotonin (5-HT) systems. Sensitivity to (+)-8-hydroxy-2-(dipropylamino) tetralin hydrobromide (8-OH-DPAT; 5-HT1A receptor agonist)-induced lower lip retraction was examined in separate groups (n=8-9) of rats with free access to standard (5.7% fat) or high fat (34.3% fat) chow; sensitivity to quinpirole (dopamine D3/D2 receptor agonist)-induced yawning was also examined. Rats eating high fat chow gained more body weight than rats eating standard chow and, after 6 weeks of eating high fat chow, they were more sensitive to 8-OH-DPAT (0.01-0.1 mg/kg)-induced lower lip retraction and quinpirole (0.0032-0.32 mg/kg)-induced yawning. These changes were not reversed when rats that previously ate high fat chow were switched to eating standard chow and sensitivity to 8-OH-DPAT and quinpirole increased when rats that previously ate standard chow ate high fat chow. These data extend previous results showing changes in sensitivity to drugs acting on dopamine systems in animals eating high fat chow to a drug acting at 5-HT1A receptors and they provide support for the notion that eating certain foods impacts sensitivity to drugs acting on monoamine systems.