WorldWideScience

Sample records for rats received diets

  1. Zinc deficient diet consequences for pregnancy andoffsprings of Wistar rats

    OpenAIRE

    Solé, Dirceu; Rieckmann, Brigitte; Lippelt, Raquel Mattos Costa; Lippelt, Ronaldo Tadeu Tucci; Amâncio, Olga Maria Silverio; Queiroz, Suzana de Souza; Naspitz, Charles Kirov

    1995-01-01

    Adult female Wistar rats (90 days old; weight 180 to 220 grams) were submitted to different zinc deficient diets (Zn; severe = 2.6 ppm; mild = 9.0 ppm and normal diet = 81.6 ppm), during 6 weeks. After this time they were coupled with normal male Wistar rats. No differences regarding fecundity and sterility were observed between the groups. During pregnancy, part of the animals from severe and mild Zn deficient groups received the same diet and the others received normal diet. The animals fro...

  2. [Hematologic indices in different age wistar rats, receiving a balanced semi-synthetic vivary diet].

    Science.gov (United States)

    Mustafina, O K; Trushina, É N; Shumakova, E A; Arianova, E A; Tyshko, N V; Pashorina, V A

    2013-01-01

    This paper presents the results of research of hematologic parameters of male Wistar rats 1, 2, 3, 4 and 6 months age, which received a balanced semisynthetic diet. Studies were carried out at the Hematology analyzer Coulter AC TTM 5 diff OV (Beckman Coulter, USA) with the program, specially developed for the study of rats' blood. According to the results of research, was found a statistically significant increased of the number of red blood cells; the concentration of hemoglobin and hematocrit in animals 2-6 months compared with rats, 1 month age. With age, there is a decrease of the mean corpuscular volume and the mean corpuscular hemoglobin. The number of white blood cells in rats of 2-4 months age are significantly higher than in rats of 1 and 6 months age. The number of neutrophils and eosinophils in rats of to the 2 month are of is lover than once in rats of 1 month age, and increases values in animals of 6 months age. The number of lymphocytes has the highest value in the rat of 2-3 months age and the minimum value is that in animals of 6 months age. With increasing of the age of the animals the reduction of contents of monocytes was noted. The content of platelets and the platelet crit in the blood of rats 6 months age is statistically greater than those in 1-month age animals. The average volume of platelet is the stable index, with age does not change.

  3. Response of irradiated diet fed rats to whole body X irradiation

    International Nuclear Information System (INIS)

    Hasan, S.S.; Kushwaha, A.K.S.

    1985-01-01

    The response to whole body X irradiation has been studied in the brain of rats fed both on a normal diet (consisting of equal parts of wheat and gram flour) and on a low protein irradiated diet (consisting of a part of normal diet and three parts of wheat). The activity of enzymes related to the glucose metabolism (glucose 6-phosphate dehydrogenase and fructose diphosphate aldolase) is reduced, while that of peroxidant enzymes (catalase and lipid peroxidase) increased in the brain of rats that received a diet poor in proteins and irradiated diets (normal or hypoproteic). DNA and RNA levels and protein content show a significant reduction in the brain of rats with hypoproteic and irradiated diets. The total body irradiation causes serious alterations in the brain in animals with a hypoproteic malnutritions due both to a low protein and an irradiated diet. The brain of rats fed on a low protein and irradiated diet exhibits after whole body irradiation damages more severe than those in rats fed on a normal irradiated diet

  4. Fructo-oligosaccharides reduce energy intake but do not affect adiposity in rats fed a low-fat diet but increase energy intake and reduce fat mass in rats fed a high-fat diet.

    Science.gov (United States)

    Hadri, Zouheyr; Rasoamanana, Rojo; Fromentin, Gilles; Azzout-Marniche, Dalila; Even, Patrick C; Gaudichon, Claire; Darcel, Nicolas; Bouras, Abdelkader Dilmi; Tomé, Daniel; Chaumontet, Catherine

    2017-12-01

    The ingestion of low or high lipid diets enriched with fructo-oligosaccharide (FOS) affects energy homeostasis. Ingesting protein diets also induces a depression of energy intake and decreases body weight. The goal of this study was to investigate the ability of FOS, combined or not with a high level of protein (P), to affect energy intake and body composition when included in diets containing different levels of lipids (L). We performed two studies of similar design over a period of 5weeks. During the first experiment (exp1), after a 3-week period of adaptation to a normal protein-low fat diet, the rats received one of the following four diets for 5weeks (6 rats per group): (i) normal protein (14% P/E (Energy) low fat (10% L/E) diet, (ii) normal protein, low fat diet supplemented with 10% FOS, (iii) high protein (55%P/E) low fat diet, and (iv) high protein, low fat diet supplemented with 10% FOS. In a second experiment (exp2) after the 3-week period of adaptation to a normal protein-high fat diet, the rats received one of the following 4 diets for 5weeks (6 rats per group): (i) normal protein, high fat diet (35% of fat), (ii) normal protein, high fat diet supplemented with 10% FOS, (iii) high protein high fat diet and (iv) high protein high fat diet supplemented with 10% FOS. In low-fat fed rats, FOS did not affect lean body mass (LBM) and fat mass but the protein level reduced fat mass and tended to reduce adiposity. In high-fat fed rats, FOS did not affect LBM but reduced fat mass and adiposity. No additive or antagonistic effects between FOS and the protein level were observed. FOS reduced energy intake in low-fat fed rats, did not affect energy intake in normal-protein high-fat fed rats but surprisingly, and significantly, increased energy intake in high-protein high-fat fed rats. The results thus showed that FOS added to a high-fat diet reduced body fat and body adiposity. Published by Elsevier Inc.

  5. Apoptosis induced by a low-carbohydrate and high-protein diet in rat livers.

    Science.gov (United States)

    Monteiro, Maria Emília L; Xavier, Analucia R; Oliveira, Felipe L; Filho, Porphirio Js; Azeredo, Vilma B

    2016-06-14

    To determine whether high-protein, high-fat, and low-carbohydrate diets can cause lesions in rat livers. We randomly divided 20 female Wistar rats into a control diet group and an experimental diet group. Animals in the control group received an AIN-93M diet, and animals in the experimental group received an Atkins-based diet (59.46% protein, 31.77% fat, and 8.77% carbohydrate). After 8 wk, the rats were anesthetized and exsanguinated for transaminases analysis, and their livers were removed for flow cytometry, immunohistochemistry, and light microscopy studies. We expressed the data as mean ± standard deviation (SD) assuming unpaired and parametric data; we analyzed differences using the Student's t-test. Statistical significance was set at P diet group and 3.73% ± 0.50% for early apoptosis, 5.67% ± 0.72% for late apoptosis, and 3.82% ± 0.28% for non-apoptotic death in the control diet group. The mean percentage of early apoptosis was higher in the experimental diet group than in the control diet group. Immunohistochemistry for autophagy was negative in both groups. Sinusoidal dilation around the central vein and small hepatocytes was only observed in the experimental diet group, and fibrosis was not identified by hematoxylin-eosin or Trichrome Masson staining in either group. Eight weeks of an experimental diet resulted in cellular and histopathological lesions in rat livers. Apoptosis was our principal finding; elevated plasma transaminases demonstrate hepatic lesions.

  6. Effect of a Brazilian regional basic diet on the prevalence of caries in rats

    OpenAIRE

    Pinheiro, J.T.; Couto, G.B.L.; Vasconcelos, M.M.V.B.; Melo, M.M.D.C.; Guedes, R.C.A.; Cordeiro, M.A.C.

    2002-01-01

    The aim of the present study was to determine the effect of a regional basic diet (RBD) on the prevalence of caries in the molar teeth of rats of both sexes aged 23 days. The animals were divided into six groups of 10 rats each receiving the following diets for 30 and 60 days after weaning: RBD, a cariogenic diet, and a commercial diet. The prevalence and penetration of caries in the molar teeth of the rats was then analyzed. The RBD produced caries in 37.5% of the teeth of animals fed 30 day...

  7. Essential fatty acid supplemented diet increases renal excretion of prostaglandin E and water in essential fatty acid deficient rats

    DEFF Research Database (Denmark)

    Hansen, Harald S.

    1981-01-01

    Weanling male rats were fed an essential fatty acid (EFA)-deficient diet for 25 weeks and then switched to an EFA-supplemented diet for 3 weeks. Control rats received the EFA-supplemented diet for 25 weeks and then the EFA-deficient diet for 3 weeks. Throughout the last 19 weeks, the rats were...

  8. Cytokine profile of rats fed a diet containing shrimp

    Directory of Open Access Journals (Sweden)

    Elizabeth Lage Borges

    2013-02-01

    Full Text Available OBJECTIVE: Studies have shown that shrimps reduced the tensile strength of scars in rat skin. The aim of the present study was to assess the cytokine profile of rats fed shrimp. METHODS: Group 1 (control received a regular diet and Group 2 (experimental received a diet containing 33% shrimp for nine days. The two diets contained the same amounts of proteins, fats and carbohydrates. Serum cytokine levels were determined by ELISA and a segment of the jejunum was taken to investigate its histological morphology and eosinophil infiltrate. RESULTS: The experimental group had lower serum levels of interleukin-4 (IL-4 (14.4±1.9 versus 18.11±2.6pg/mL; p<0.05 and IL-10 (5.0±0.98 versus 7.5±1.2pg/mL; p<0.05 and higher levels of IL-6 (17.8±2.3 versus 3.2±0.4pg/mL, p<0.001 than controls. Morphologically, the shrimp-based diet caused an architectural disorganization of the intestinal mucosa and a greater amount of eosinophils in the jejunal villus. CONCLUSION: Our data suggests that shrimp consumption leads to a significant increase in the cytokine IL-6, a decrease in the immunomodulatory cytokine IL-10 in the serum of rats, and high eosinophil infiltration in the jejunum. The cytokine profile typical of inflammation and the histological aspect of the jejunum are compatible with food allergy.

  9. Effects of leucine supplemented diet on intestinal absorption in tumor bearing pregnant rats

    Directory of Open Access Journals (Sweden)

    de Mello Maria

    2002-04-01

    Full Text Available Abstract Background It is known that amino acid oxidation is increased in tumor-bearing rat muscles and that leucine is an important ketogenic amino acid that provides energy to the skeletal muscle. Methods To evaluate the effects of a leucine supplemented diet on the intestinal absorption alterations produced by Walker 256, growing pregnant rats were distributed into six groups. Three pregnant groups received a normal protein diet (18% protein: pregnant (N, tumor-bearing (WN, pair-fed rats (Np. Three other pregnant groups were fed a diet supplemented with 3% leucine (15% protein plus 3% leucine: leucine (L, tumor-bearing (WL and pair-fed with leucine (Lp. Non pregnant rats (C, which received a normal protein diet, were used as a control group. After 20 days, the animals were submitted to intestinal perfusion to measure leucine, methionine and glucose absorption. Results Tumor-bearing pregnant rats showed impairment in food intake, body weight gain and muscle protein content, which were less accentuated in WL than in WN rats. These metabolic changes led to reduction in both fetal and tumor development. Leucine absorption slightly increased in WN group. In spite of having a significant decrease in leucine and methionine absorption compared to L, the WL group has shown a higher absorption rate of methionine than WN group, probably due to the ingestion of the leucine supplemented diet inducing this amino acid uptake. Glucose absorption was reduced in both tumor-bearing groups. Conclusions Leucine supplementation during pregnancy in tumor-bearing rats promoted high leucine absorption, increasing the availability of the amino acid for neoplasic cells and, mainly, for fetus and host utilization. This may have contributed to the better preservation of body weight gain, food intake and muscle protein observed in the supplemented rats in relation to the non-supplemented ones.

  10. Effects of leucine supplemented diet on intestinal absorption in tumor bearing pregnant rats

    International Nuclear Information System (INIS)

    Ventrucci, Gislaine; Mello, Maria Alice Roston de; Gomes-Marcondes, Maria Cristina Cintra

    2002-01-01

    It is known that amino acid oxidation is increased in tumor-bearing rat muscles and that leucine is an important ketogenic amino acid that provides energy to the skeletal muscle. To evaluate the effects of a leucine supplemented diet on the intestinal absorption alterations produced by Walker 256, growing pregnant rats were distributed into six groups. Three pregnant groups received a normal protein diet (18% protein): pregnant (N), tumor-bearing (WN), pair-fed rats (Np). Three other pregnant groups were fed a diet supplemented with 3% leucine (15% protein plus 3% leucine): leucine (L), tumor-bearing (WL) and pair-fed with leucine (Lp). Non pregnant rats (C), which received a normal protein diet, were used as a control group. After 20 days, the animals were submitted to intestinal perfusion to measure leucine, methionine and glucose absorption. Tumor-bearing pregnant rats showed impairment in food intake, body weight gain and muscle protein content, which were less accentuated in WL than in WN rats. These metabolic changes led to reduction in both fetal and tumor development. Leucine absorption slightly increased in WN group. In spite of having a significant decrease in leucine and methionine absorption compared to L, the WL group has shown a higher absorption rate of methionine than WN group, probably due to the ingestion of the leucine supplemented diet inducing this amino acid uptake. Glucose absorption was reduced in both tumor-bearing groups. Leucine supplementation during pregnancy in tumor-bearing rats promoted high leucine absorption, increasing the availability of the amino acid for neoplasic cells and, mainly, for fetus and host utilization. This may have contributed to the better preservation of body weight gain, food intake and muscle protein observed in the supplemented rats in relation to the non-supplemented ones

  11. Energy intake of rats fed a cafeteria diet.

    Science.gov (United States)

    Prats, E; Monfar, M; Castellà, J; Iglesias, R; Alemany, M

    1989-02-01

    The proportion of lipid, carbohydrate and protein energy self-selected by male and female rats from a cafeteria diet has been studied for a 48-day period (36-day in female rats). The diet consisted in 12 different items and was offered daily, in excess and under otherwise standard conditions, to rats--caged in groups of three--from weaning to adulthood. Groups of control animals were studied in parallel and compared with the cafeteria groups. Cafeteria diet fed groups of rats ingested more energy and lowered their metabolic efficiency with age. Male rats ate more than females and increased their body weight even after female practically stopped growing. There was a wide variation in the aliments consumed each day by the cafeteria-fed rats. However, the proportion of lipid, protein and carbohydrate the rats ate remained constant. Male rats ingested more lipid than females. Carbohydrate consumption was constant in control and cafeteria fed groups of rats independently of sex. Protein consumption was higher in cafeteria rats than in controls, but the differences were not so important as with liquid. Fiber content of the cafeteria diet was lower than that of the control diet. The cafeteria diet selected by the rats was, thus, hypercaloric and hyperlipidic, with practically the same amount of carbohydrate than the control diet, slightly hyperproteic and, nevertheless, remarkably constant in its composition with respect to time. Cafeteria rats had a higher water intake than controls. All these trends were maintained despite the observed changes in the animals' tastes and their differential consumption of the ailments of the diet.

  12. Calcium bioavailability of vegetarian diets in rats: potential application in a bioregenerative life-support system

    Science.gov (United States)

    Nickel, K. P.; Nielsen, S. S.; Smart, D. J.; Mitchell, C. A.; Belury, M. A.

    1997-01-01

    Calcium bioavailability of vegetarian diets containing various proportions of candidate crops for a controlled ecological life-support system (CELSS) was determined by femur 45Ca uptake. Three vegetarian diets and a control diet were labeled extrinsically with 45Ca and fed to 5-wk old male rats. A fifth group of rats fed an unlabeled control diet received an intraperitoneal (IP) injection of 45Ca. There was no significant difference in mean calcium absorption of vegetarian diets (90.80 +/- 5.23%) and control diet (87.85 +/- 5.25%) when calculated as the percent of an IP dose. The amounts of phytate, oxalate, and dietary fiber in the diets did not affect calcium absorption.

  13. Effect of low carbohydrate high protein (LCHP) diet on lipid metabolism, liver and kidney function in rats.

    Science.gov (United States)

    Kostogrys, Renata B; Franczyk-Żarów, Magdalena; Maślak, Edyta; Topolska, Kinga

    2015-03-01

    The objective of this study was to compare effects of Western diet (WD) with low carbohydrate high protein (LCHP) diet on lipid metabolism, liver and kidney function in rats. Eighteen rats were randomly assigned to three experimental groups and fed for the next 2 months. The experimental diets were: Control (7% of soybean oil, 20% protein), WD (21% of butter, 20% protein), and LCHP (21% of butter and 52.4% protein) diet. The LCHP diet significantly decreased the body weight of the rats. Diet consumption was differentiated among groups, however significant changes were observed since third week of the experiment duration. Rats fed LCHP diet ate significantly less (25.2g/animal/day) than those from Control (30.2g/animal/day) and WD (27.8 g/animal/day) groups. Additionally, food efficiency ratio (FER) tended to decrease in LCHP fed rats. Serum homocysteine concentration significantly decreased in rats fed WD and LCHP diets. Liver weights were significantly higher in rats fed WD and LCHP diets. At the end of the experiment (2 months) the triacylglycerol (TAG) was significantly decreased in animals fed LCHP compared to WD. qRT-PCR showed that SCD-1 and FAS were decreased in LCHP fed rats, but WD diet increased expression of lipid metabolism genes. Rats receiving LCHP diet had two fold higher kidney weight and 54.5% higher creatinin level compared to Control and WD diets. In conclusion, LCHP diet decreased animal's body weight and decreased TAG in rat's serum. However, kidney damage in LCHP rats was observed. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Effect of a Brazilian regional basic diet on the prevalence of caries in rats.

    Science.gov (United States)

    Pinheiro, J T; Couto, G B L; Vasconcelos, M M V B; Melo, M M D C; Guedes, R C A; Cordeiro, M A C

    2002-07-01

    The aim of the present study was to determine the effect of a regional basic diet (RBD) on the prevalence of caries in the molar teeth of rats of both sexes aged 23 days. The animals were divided into six groups of 10 rats each receiving the following diets for 30 and 60 days after weaning: RBD, a cariogenic diet, and a commercial diet. The prevalence and penetration of caries in the molar teeth of the rats was then analyzed. The RBD produced caries in 37.5% of the teeth of animals fed 30 days, and in 83.4% of animals fed 60 days, while the cariogenic diet produced caries in 72.5% and 77.5% of the teeth of animals fed 30 and 60 days, respectively. Rats fed the RBD for 30 days had caries in the enamel in 38% of their teeth, 48% had superficial dentin caries, and 7.5% moderate dentin caries. The effect of the RBD did not differ significantly from that of the cariogenic diet in terms of the presence of caries in rats fed 60 days. The penetration depth of the caries produced by the RBD was the same as that produced by the cariogenic diet. Our results show that the RBD has the same cariogenic potential as the cariogenic diet. Since the RBD is the only option for the low-income population, there should be a study of how to compensate for the cariogenicity of this diet.

  15. Effect of a Brazilian regional basic diet on the prevalence of caries in rats

    Directory of Open Access Journals (Sweden)

    J.T. Pinheiro

    2002-07-01

    Full Text Available The aim of the present study was to determine the effect of a regional basic diet (RBD on the prevalence of caries in the molar teeth of rats of both sexes aged 23 days. The animals were divided into six groups of 10 rats each receiving the following diets for 30 and 60 days after weaning: RBD, a cariogenic diet, and a commercial diet. The prevalence and penetration of caries in the molar teeth of the rats was then analyzed. The RBD produced caries in 37.5% of the teeth of animals fed 30 days, and in 83.4% of animals fed 60 days, while the cariogenic diet produced caries in 72.5% and 77.5% of the teeth of animals fed 30 and 60 days, respectively. Rats fed the RBD for 30 days had caries in the enamel in 38% of their teeth, 48% had superficial dentin caries, and 7.5% moderate dentin caries. The effect of the RBD did not differ significantly from that of the cariogenic diet in terms of the presence of caries in rats fed 60 days. The penetration depth of the caries produced by the RBD was the same as that produced by the cariogenic diet. Our results show that the RBD has the same cariogenic potential as the cariogenic diet. Since the RBD is the only option for the low-income population, there should be a study of how to compensate for the cariogenicity of this diet.

  16. Influence of integral and decaffeinated coffee brews on metabolic parameters of rats fed with hiperlipidemic diets

    Directory of Open Access Journals (Sweden)

    Júlia Ariana de Souza Gomes

    2013-10-01

    Full Text Available The objective of this study was to evaluate the influence of integral and decaffeinated coffee brews (Coffea arabica L and C. canephora Pierre on the metabolic parameters of rats fed with hyperlipidemic diet. Thirty male Wistar rats (initial weight of 270 g ± 20 g were used in the study, which were divided into six groups five each. The treatments were normal diet, hyperlipidemic diet, hyperlipidemic diet associated with integral coffee arabica or canephora brews (7.2 mL/kg/day and hyperlipidemic diet associated to decaffeinated arabica, or canephora brews, using the same dosage. After 41 days, performance analyses were conducted.The rats were then euthanized and the carcasses were used for the analysis of dried ether extract and crude protein. Fractions of adipose tissue were processed for histological analysis. There was a reduction in weight gain and accumulation of lipids in the carcasses, lower diameter of adipocytes and a lower relative weight of the liver and kidneys of rats fed with hyperlipidemic diet associated with integral coffee brew. Integral coffee brew reduced the obesity in the rats receiving hyperlipidemic diet, but the same effect did not occur with the decaffeinated types.

  17. Soybean diet breast tumor incidence in irradiated rats

    International Nuclear Information System (INIS)

    Troll, W.; Wiesner, R.

    1980-01-01

    The relationship between feeding a diet rich in protease inhibitors and the reduction of mammary cancer induced by x-irradiation in Sprague-Dawley rats was examined. Of a total of 145 irradiated animals, 44% of the 45 rats fed a raw soybean diet containing a high concentration of protease inhibitor developed mammary tumors as compared to 74% of 50 rats fed a casein diet containing no protease inhibitor. Animals fed Purina rat chow which contained low levels of protease inhibitor exhibited a 70% mammary tumor incidence. No spontaneous neoplasms were found in any of the non-irradiated animals on the raw soybean diet whereas about 10% of the animals on the protease-free diet developed tumors. Thus, soybeans which are rich in protease inhibitors reduced the induction of mammary cancer in x-irradiated rats. This suggested that diets rich in protease inhibitors may contribute to reducing cancer incidence in man. (author)

  18. Efficacy of phytosterols and fish-oil supplemented high-oleic-sunflower oil rich diets in hypercholesterolemic growing rats.

    Science.gov (United States)

    Alsina, Estefania; Macri, Elisa V; Lifshitz, Fima; Bozzini, Clarisa; Rodriguez, Patricia N; Boyer, Patricia M; Friedman, Silvia M

    2016-06-01

    Phytosterols (P) and fish-oil (F) efficacy on high-oleic-sunflower oil (HOSO) diets were assessed in hypercholesterolemic growing rats. Controls (C) received a standard diet for 8 weeks; experimental rats were fed an atherogenic diet (AT) for 3 weeks, thereafter were divided into four groups fed for 5 weeks a monounsaturated fatty acid diet (MUFA) containing either: extra virgin olive oil (OO), HOSO or HOSO supplemented with P or F. The diets did not alter body weight or growth. HOSO-P and HOSO-F rats showed reduced total cholesterol (T-chol), non-high-density lipoprotein-cholesterol (non-HDL-chol) and triglycerides and increased HDL-chol levels, comparably to the OO rats. Total body fat (%) was similar among all rats; but HOSO-F showed the lowest intestinal, epididymal and perirenal fat. However, bone mineral content and density, and bone yield stress and modulus of elasticity were unchanged. Growing hypercholesterolemic rats fed HOSO with P or F improved serum lipids and fat distribution, but did not influence material bone quality.

  19. Impact of basal diet on dextran sodium sulphate (DSS)-induced colitis in rats.

    Science.gov (United States)

    Boussenna, Ahlem; Goncalves-Mendes, Nicolas; Joubert-Zakeyh, Juliette; Pereira, Bruno; Fraisse, Didier; Vasson, Marie-Paule; Texier, Odile; Felgines, Catherine

    2015-12-01

    Dextran sodium sulphate (DSS)-induced colitis is a widely used model for inflammatory bowel disease. However, various factors including nutrition may affect the development of this colitis. This study aimed to compare and characterize the impact of purified and non-purified basal diets on the development of DSS-induced colitis in the rat. Wistar rats were fed a non-purified or a semi-synthetic purified diet for 21 days. Colitis was then induced in half of the rats by administration of DSS in drinking water (4% w/v) during the last 7 days of experimentation. At the end of the experimental period, colon sections were taken for histopathological examination, determination of various markers of inflammation (myeloperoxidase: MPO, cytokines) and oxidative stress (superoxide dismutase: SOD, catalase: CAT, glutathione peroxidase: GPx and glutathione reductase: GRed activities), and evaluation of the expression of various genes implicated in this disorder. DSS ingestion induced a more marked colitis in animals receiving the purified diet, as reflected by higher histological score and increased MPO activity. A significant decrease in SOD and CAT activities was also observed in rats fed the purified diet. Also, in these animals, administration of DSS induced a significant increase in interleukin (IL)-1α, IL-1β and IL-6. In addition, various genes implicated in inflammation were over-expressed after ingestion of DSS by rats fed the purified diet. These results show that a purified diet promotes the onset of a more severe induced colitis than a non-purified one, highlighting the influence of basal diet in colitis development.

  20. Comparison of hydrogenated vegetable shortening and nutritionally complete high fat diet on limited access-binge behavior in rats

    OpenAIRE

    Davis, Jon F.; Melhorn, Susan J.; Heiman, Justin U.; Tschöp, Matthias H.; Clegg, Deborah J.; Benoit, Stephen C.

    2007-01-01

    Previous studies have suggested that intermittent exposure to hydrogenated vegetable shortening yields a binge/compensate pattern of feeding in rats. The present study was designed to assess whether rats would exhibit similar patterns of intake when given intermittent access to a nutritionally complete high-fat diet. Four groups of rats received varying exposure to either hydrogenated vegetable shortening or high-fat diet for 8 consecutive weeks. Animals were given daily and intermittent acce...

  1. Specific multi-nutrient enriched diet enhances hippocampal cholinergic transmission in aged rats.

    Science.gov (United States)

    Cansev, Mehmet; van Wijk, Nick; Turkyilmaz, Mesut; Orhan, Fulya; Sijben, John W C; Broersen, Laus M

    2015-01-01

    Fortasyn Connect (FC) is a specific nutrient combination designed to target synaptic dysfunction in Alzheimer's disease by providing neuronal membrane precursors and other supportive nutrients. The aim of the present study was to investigate the effects of FC on hippocampal cholinergic neurotransmission in association with its effects on synaptic membrane formation in aged rats. Eighteen-month-old male Wistar rats were randomized to receive a control diet for 4 weeks or an FC-enriched diet for 4 or 6 weeks. At the end of the dietary treatments, acetylcholine (ACh) release was investigated by in vivo microdialysis in the right hippocampi. On completion of microdialysis studies, the rats were sacrificed, and the left hippocampi were obtained to determine the levels of choline, ACh, membrane phospholipids, synaptic proteins, and choline acetyltransferase. Our results revealed that supplementation with FC diet for 4 or 6 weeks, significantly enhanced basal and stimulated hippocampal ACh release and ACh tissue levels, along with levels of phospholipids. Feeding rats the FC diet for 6 weeks significantly increased the levels of choline acetyltransferase, the presynaptic marker Synapsin-1, and the postsynaptic marker PSD-95, but decreased levels of Nogo-A, a neurite outgrowth inhibitor. These data show that the FC diet enhances hippocampal cholinergic neurotransmission in aged rats and suggest that this effect is mediated by enhanced synaptic membrane formation. These data provide further insight into cellular and molecular mechanisms by which FC may support memory processes in Alzheimer's disease. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. The effect of different milk diets upon strontium-85 absorption in young rats

    International Nuclear Information System (INIS)

    Gruden, N.; Mataushicj, S.

    1988-01-01

    Radiostrontium absorption and distribution in selected tissues was studied in young white rats which were fed, for one or four days, on plain cow's milk or on one of the following experimental diets: yogurt, sour milk, or acidophilus milk. The yogurt diet exhibited a slight, but statistically significant, decreasing effect upon radiostrontium deposition in the carcass and femur of neonatals and in the body, carcass, femur and brain of the weanling rats receiving the four day treatment. There was an inhibitory effect on strontium deposition in the weanling's brain to sour milk, and none to acidophilus milk. (author). 12 refs.; 1 tab

  3. The impact of a diphenyl diselenide-supplemented diet and aerobic exercise on memory of middle-aged rats.

    Science.gov (United States)

    Cechella, José L; Leite, Marlon R; Gai, Rafaela M; Zeni, Gilson

    2014-08-01

    Selenium is an essential trace element for human health and has received attention for its role as a nutrient. The combination of exercise and nutrients has been proposed to promote health. The aim of this study was to determine the effects of a diet supplemented with diphenyl diselenide (PhSe)2 and swimming exercise on memory of middle-aged rats. Male Wistar rats (12months) received standard diet chow supplemented with 1ppm of (PhSe)2 for 4weeks. Rats were submitted to swimming training (20min per day for 4weeks). After 4weeks, memory was evaluated in the object recognition test (ORT) and in the object location test (OLT). The hippocampal levels of phosphorylated cAMP-response element-binding protein (CREB) were determined. The results of the present study demonstrated that the association of (PhSe)2-supplemented diet and swimming exercise improved short-term memory, long-term memory and spatial learning, and this effect was not related to the increase in hippocampal p-CREB levels in middle-age rats. This study also revealed that middle-aged rats in the swimming exercise group had the best performance in short- and long-term memory. In conclusion, we demonstrated that swimming exercise, (PhSe)2-supplemented diet or the association of these factors improved learning and memory functioning. The hippocampal levels of CREB were not directly related to the benefits of swimming exercise and (PhSe)2-supplemented diet association in memory of middle-aged rats. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Glutamine-enriched enteral diet increases splanchnic blood flow in the rat

    NARCIS (Netherlands)

    Houdijk, A. P.; van Leeuwen, P. A.; Boermeester, M. A.; van Lambalgen, T.; Teerlink, T.; FLINKERBUSCH, E. L.; Sauerwein, H. P.; Wesdorp, R. I.

    1994-01-01

    The hemodynamic consequences of glutamine (Gln)-enriched nutrition have not been investigated. This study investigates the effects of a Gln-enriched enteral diet on organ blood flows and systemic hemodynamics. Male Fischer 344 rats (n = 24) were randomized to a group that received a 12.5% (wt/wt)

  5. Neuronal-glial interactions in rats fed a ketogenic diet.

    Science.gov (United States)

    Melø, Torun Margareta; Nehlig, Astrid; Sonnewald, Ursula

    2006-01-01

    Glucose is the preferred energy substrate for the adult brain. However, during periods of fasting and consumption of a high fat, low carbohydrate (ketogenic) diet, ketone bodies become major brain fuels. The present study was conducted to investigate how the ketogenic diet influences neuronal-glial interactions in amino acid neurotransmitter metabolism. Rats were kept on a standard or ketogenic diet. After 21 days all animals received an injection of [1-(13)C]glucose plus [1,2-(13)C]acetate, the preferential substrates of neurons and astrocytes, respectively. Extracts from cerebral cortex and plasma were analyzed by (13)C and (1)H nuclear magnetic resonance spectroscopy and HPLC. Increased amounts of valine, leucine and isoleucine and a decreased amount of glutamate were found in the brains of rats receiving the ketogenic diet. Glycolysis was decreased in ketotic rats compared with controls, evidenced by the reduced amounts of [3-(13)C]alanine and [3-(13)C]lactate. Additionally, neuronal oxidative metabolism of [1-(13)C]glucose was decreased in ketotic rats compared with controls, since amounts of [4-(13)C]glutamate and [4-(13)C]glutamine were lower than those of controls. Although the amount of glutamate from [1-(13)C]glucose was decreased, this was not the case for GABA, indicating that relatively more [4-(13)C]glutamate is converted to GABA. Astrocytic metabolism was increased in response to ketosis, shown by increased amounts of [4,5-(13)C]glutamine, [4,5-(13)C]glutamate, [1,2-(13)C]GABA and [3,4-(13)C]-/[1,2-(13)C]aspartate derived from [1,2-(13)C]acetate. The pyruvate carboxylation over dehydrogenation ratio for glutamine was increased in the ketotic animals compared to controls, giving further indication of increased astrocytic metabolism. Interestingly, pyruvate recycling was higher in glutamine than in glutamate in both groups of animals. An increase in this pathway was detected in glutamate in response to ketosis. The decreased glycolysis and oxidative

  6. The effects of irradiation on the mandibular bone of rats on the low calcium diet

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Eui Whan; Lee, Sang Rae [Dept. of Oral Radiology, College of Dentistry, Kyung Hee University, Seoul (Korea, Republic of)

    1992-08-15

    The purpose of this study was to investigate the changes of morphology and structure of bone tissue in the irradiated mandibular bone in rats which were fed a low calcium diet. In order to carry out this experiment, 64 seven-week old Sprague- Dawley strain rats weighing about 150gms were selected and equally divided into one experimental group of 32 rats and one control group with the remainder. The experimental group and the group were then subdivided into two groups when the rats reached ten-week old, 16 were assigned rats for each subdivided group, exposed to irradiation. The two irradiation groups received a single dose of 20Gy in the jaws area only and irradiated with a cobalt-60 teletherapy unit. The rats in the control and experimental groups were serially termination, both sides of the dead rats mandibular bodies were removed and fixed with 10% neutral formalin. One side of the mandibular body was radiographed with a soft X-ray apparatus. Thereafter, the obtained microradiographs were observed by a light microscope. The remaining side of the mandibular bone was further decalcified and embedded in paraffin as using the general method. The specimen ectioned and stained with hematoxylin and eosin, and Rabit Anti-Human Tumor Necrosis Factor-{alpha}, observed by a light microscope. The obtained results were as follows: 1. Microradiogram revealed that thinning of the cortex and a decrease in the trabecula of the interradicular bone and mandibular body were observed and noted from the start to finish throughout the experiment in the non-irradiated rats on the low calcium diet rather than in the non-irradiated rats on the normal diet.In microscopic observation, there were marked osteolytic changes in the center of the bone marrow. 2. Microradiogram revealed that thinning of the cortex and a decrease in the trabecula of interradicular bone and mandibular body were more marked after 7 days in the irradiated rats in the low calcium diet rather than in the non

  7. Leucine-rich diet alters the eukaryotic translation initiation factors expression in skeletal muscle of tumour-bearing rats

    Directory of Open Access Journals (Sweden)

    Mello Maria

    2007-03-01

    Full Text Available Abstract Background Cancer-cachexia induces a variety of metabolic disorders on protein turnorver, decreasing protein synthesis and increasing protein degradation. Controversly, insulin, other hormones, and branched-chain amino acids, especially leucine, stimulate protein synthesis and modulate the activity of translation initiation factors involved in protein synthesis. Since the tumour effects are more pronounced when associated with pregnancy, ehancing muscle-wasting proteolysis, in this study, the influence of a leucine-rich diet on the protein synthesis caused by cancer were investigated. Methods Pregnant rats with or without Walker 256 tumour were distributed into six groups. During 20 days of experiment, three groups were fed with a control diet: C – pregnant control, W – tumour-bearing, and P – pair-fed, which received the same amount of food as ingested by the W group; three other groups of pregnant rats were fed a leucine-rich diet: L – pregnant leucine, WL – tumour-bearing, and PL – pair-fed, which received the same amount of food as ingested by the WL group. Results The gastrocnemius muscle of WL rats showed increased incorporation of leucine in protein compared to W rats; the leucine-rich diet also prevented the decrease in plasma insulin normally seen in W. The expression of translation initiation factors increased when tumour-bearing rats fed leucine-rich diet, with increase of ~35% for eIF2α and eIF5, ~17% for eIF4E and 20% for eIF4G; the expression of protein kinase S6K1 and protein kinase C was also highly enhanced. Conclusion The results suggest that a leucine-rich diet increased the protein synthesis in skeletal muscle in tumour-bearing rats possibly through the activation of eIF factors and/or the S6kinase pathway.

  8. Leucine-rich diet alters the eukaryotic translation initiation factors expression in skeletal muscle of tumour-bearing rats

    International Nuclear Information System (INIS)

    Ventrucci, Gislaine; Mello, Maria Alice R; Gomes-Marcondes, Maria Cristina C

    2007-01-01

    Cancer-cachexia induces a variety of metabolic disorders on protein turnorver, decreasing protein synthesis and increasing protein degradation. Controversly, insulin, other hormones, and branched-chain amino acids, especially leucine, stimulate protein synthesis and modulate the activity of translation initiation factors involved in protein synthesis. Since the tumour effects are more pronounced when associated with pregnancy, ehancing muscle-wasting proteolysis, in this study, the influence of a leucine-rich diet on the protein synthesis caused by cancer were investigated. Pregnant rats with or without Walker 256 tumour were distributed into six groups. During 20 days of experiment, three groups were fed with a control diet: C – pregnant control, W – tumour-bearing, and P – pair-fed, which received the same amount of food as ingested by the W group; three other groups of pregnant rats were fed a leucine-rich diet: L – pregnant leucine, WL – tumour-bearing, and PL – pair-fed, which received the same amount of food as ingested by the WL group. The gastrocnemius muscle of WL rats showed increased incorporation of leucine in protein compared to W rats; the leucine-rich diet also prevented the decrease in plasma insulin normally seen in W. The expression of translation initiation factors increased when tumour-bearing rats fed leucine-rich diet, with increase of ~35% for eIF2α and eIF5, ~17% for eIF4E and 20% for eIF4G; the expression of protein kinase S6K1 and protein kinase C was also highly enhanced. The results suggest that a leucine-rich diet increased the protein synthesis in skeletal muscle in tumour-bearing rats possibly through the activation of eIF factors and/or the S6kinase pathway

  9. Leucine-rich diet alters the eukaryotic translation initiation factors expression in skeletal muscle of tumour-bearing rats

    Energy Technology Data Exchange (ETDEWEB)

    Ventrucci, Gislaine [Laboratório de Nutrição e Câncer, Departamento de Fisiologia e Biofísica, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, 13083-970, São Paulo (Brazil); Mello, Maria Alice R [Departamento de Fisiologia e Biofísica, Instituto Biociências, Universidade Estadual de São Paulo, UNESP, Rio Claro, 13506-900, São Paulo (Brazil); Gomes-Marcondes, Maria Cristina C [Laboratório de Nutrição e Câncer, Departamento de Fisiologia e Biofísica, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, 13083-970, São Paulo (Brazil)

    2007-03-06

    Cancer-cachexia induces a variety of metabolic disorders on protein turnorver, decreasing protein synthesis and increasing protein degradation. Controversly, insulin, other hormones, and branched-chain amino acids, especially leucine, stimulate protein synthesis and modulate the activity of translation initiation factors involved in protein synthesis. Since the tumour effects are more pronounced when associated with pregnancy, ehancing muscle-wasting proteolysis, in this study, the influence of a leucine-rich diet on the protein synthesis caused by cancer were investigated. Pregnant rats with or without Walker 256 tumour were distributed into six groups. During 20 days of experiment, three groups were fed with a control diet: C – pregnant control, W – tumour-bearing, and P – pair-fed, which received the same amount of food as ingested by the W group; three other groups of pregnant rats were fed a leucine-rich diet: L – pregnant leucine, WL – tumour-bearing, and PL – pair-fed, which received the same amount of food as ingested by the WL group. The gastrocnemius muscle of WL rats showed increased incorporation of leucine in protein compared to W rats; the leucine-rich diet also prevented the decrease in plasma insulin normally seen in W. The expression of translation initiation factors increased when tumour-bearing rats fed leucine-rich diet, with increase of ~35% for eIF2α and eIF5, ~17% for eIF4E and 20% for eIF4G; the expression of protein kinase S6K1 and protein kinase C was also highly enhanced. The results suggest that a leucine-rich diet increased the protein synthesis in skeletal muscle in tumour-bearing rats possibly through the activation of eIF factors and/or the S6kinase pathway.

  10. Bioavailability of lead in rats fed human diets

    International Nuclear Information System (INIS)

    Kostial, K.; Kello, D.

    1979-01-01

    The bioavailability of lead was studied in rats fed various baby foods (Babymix-turkey, Babymix-vegetables, Frutolino-fruit, Frutamix-bananas, Babyron-S-26, Truefood), cow's milk, bread, liver and standard rat diet. Lead absorption was determined by measuring the whole body retention of 203 Pb 6 days after a single oral application. Highest absorption values ranging from 17 to 20% were obtained in animals fed cow's milk and fruit foods. Rats on other human diets absorbed between 3 and 8% of the radioactive lead dose. Only in animals on rat diet lead absorption was below 1%. It is concluded that rats fed human diets show absorption values similar to those in humans. This might indicate that the bioavailability of lead is primarily dependent on dietary habits. This experimental model, if confirmed by further work, might be useful for obtaining preliminary data on the bioavailability of metals from various foods

  11. Effects of Simulated Hypogravity and Diet on Estrous Cycling in Rats

    Science.gov (United States)

    Tou, Janet C.; Grindeland, Richard E.; Baer, Lisa A.; Wade, Charles E.

    2003-01-01

    Environmental factors can disrupt ovulatory cycles. The study objective was to determine the effect of diet and simulated hypogravity on rat estrous cycles. Age 50 d Sprague-Dawley rats were randomly assigned to he fed either a purified or chow diet. Only normal cycling rats were used. Experimental rats (n=9-10/group) were kept as ambulatory controls (AC) or subjected to 40 d simulated hypogravity using a disuse atrophy hindlimb suspension (HLS) model. There was no effect on estrous cycles of AC fed either diet. At day 18, HLS rats fed either diet, had lengthened estrous cycles due to prolonged diestrus. HLS rats fed purified diet also had reduced time in estrus. Plasma estradiol was reduced in HLS rats fed purified diet but there was no effect on progesterone. This may have occurred because blood was collected from rats in estrus. Urinary progesterone collected during initial HLS was elevated in rats fed purified diet. In AC, corticosterone was elevated in chow vs purified diet fed rats. Differences were particularly striking following the application of a stressor with HLS/chow-fed rats displaying an enhanced stress response. Results emphasize the importance of diet selection when measuring endocrine-sensitive endpoints. HLS is a useful model for investigating the effects of environment on reproduction and providing insight about the impact extreme environment such as spaceflight on female reproductive health.

  12. Influence of maternal diet during early pregnancy on the fatty acid profile in the fetus at late pregnancy in rats.

    Science.gov (United States)

    Fernandes, Flavia Spreafico; Tavares do Carmo, Maria das Graças; Herrera, Emilio

    2012-05-01

    The aim of the study was to determine the effects of different dietary fatty acids during the first half of pregnancy on the fatty acid composition of maternal adipose tissue and of maternal and fetal plasma at mid- and late-pregnancy. Pregnant rats received soybean-, olive-, fish-, linseed- or palm-oil diets from conception to day 12 of gestation. Virgin rats receiving the same treatments were studied in parallel. At day 12, some rats were sacrificed and others were returned to the standard diet and studied at day 20. At day 12, the concentrations of most fatty acids in plasma reflected the dietary composition and individual fatty acids in lumbar adipose tissue of pregnant rats correlated with those in the diet. At day 20, the plasma concentration of each fatty acid was higher in pregnant than in both virgin rats and day-12 pregnant rats. The composition in 20-day pregnant (but not in virgin) rats resembled the diet consumed during the first 12 days. Fatty acid concentration in fetal plasma was also influenced by the maternal diet during the first 12 days of pregnancy, and long-chain polyunsaturated fatty acid (LC-PUFA) concentrations correlated with those in the mothers. In conclusion, during the first half of pregnancy maternal adipose tissue stores dietary-derived fatty acids, which are released into blood during late pregnancy enabling LC-PUFA to become available to the fetus.

  13. Wheel running decreases palatable diet preference in Sprague-Dawley rats.

    Science.gov (United States)

    Moody, Laura; Liang, Joy; Choi, Pique P; Moran, Timothy H; Liang, Nu-Chu

    2015-10-15

    Physical activity has beneficial effects on not only improving some disease conditions but also by preventing the development of multiple disorders. Experiments in this study examined the effects of wheel running on intakes of chow and palatable diet e.g. high fat (HF) or high sucrose (HS) diet in male and female Sprague-Dawley rats. Experiment 1 demonstrated that acute wheel running results in robust HF or HS diet avoidance in male rats. Although female rats with running wheel access initially showed complete avoidance of the two palatable diets, the avoidance of the HS diet was transient. Experiment 2 demonstrated that male rats developed decreased HF diet preferences regardless of the order of diet and wheel running access presentation. Running associated changes in HF diet preference in females, on the other hand, depended on the testing schedule. In female rats, simultaneous presentation of the HF diet and running access resulted in transient complete HF diet avoidance whereas running experience prior to HF diet access did not affect the high preference for the HF diet. Ovariectomy in females resulted in HF diet preference patterns that were similar to those in male rats during simultaneous exposure of HF and wheel running access but similar to intact females when running occurred before HF exposure. Overall, the results demonstrated wheel running associated changes in palatable diet preferences that were in part sex dependent. Furthermore, ovarian hormones play a role in some of the sex differences. These data reveal complexity in the mechanisms underlying exercise associated changes in palatable diet preference. Published by Elsevier Inc.

  14. Wheel running decreases palatable diet preference in Sprague-Dawley rats

    Science.gov (United States)

    Moody, Laura; Liang, Joy; Choi, Pique P.; Moran, Timothy H.; Liang, Nu-Chu

    2015-01-01

    Physical activity has beneficial effects on not only improving some disease conditions but also by preventing the development of multiple disorders. Experiments in this study examined the effects of wheel running on intakes of chow and palatable diet e.g. high fat (HF) or high sucrose (HS) diet in male and female Sprague Dawley rats. Experiment 1 demonstrated that acute wheel running results in robust HF or HS diet avoidance in male rats. Although female rats with running wheel access initially showed complete avoidance of the two palatable diets, the avoidance of the HS diet was transient. Experiment 2 demonstrated that male rats developed decreased HF diet preferences regardless of the order of diet and wheel running access presentation. Running associated changes in HF diet preference in females, on the other hand, depended on the testing schedule. In female rats, simultaneous presentation of the HF diet and running access resulted in transient complete HF diet avoidance whereas running experience prior to HF diet access did not affect the high preference for the HF diet. Ovariectomy in females resulted in HF diet preference patterns that were similar to those in male rats during simultaneous exposure of HF and wheel running access but similar to intact females when running occurred before HF exposure. Overall, the results demonstrated wheel running associated changes in palatable diet preferences that were in part sex dependent. Furthermore, ovarian hormones play a role in some of the sex differences. These data reveal complexity in the mechanisms underlying exercise associated changes in palatable diet preference. PMID:25791204

  15. Long-term characterization of the diet-induced obese and diet-resistant rat model

    DEFF Research Database (Denmark)

    Madsen, Andreas Nygaard; Hansen, Gitte; Paulsen, Sarah Juel

    2010-01-01

    , namely the selectively bred diet-induced obese (DIO) and diet-resistant (DR) rat strains. We show that they constitute useful models of the human obesity syndrome. DIO and DR rats were fed either a high-energy (HE) or a standard chow (Chow) diet from weaning to 9 months of age. Metabolic characterization......, the results underscore the effectiveness of GLP-1 mimetics both as anti-diabetes and anti-obesity agents....

  16. Intestinal immune system of young rats influenced by cocoa-enriched diet.

    Science.gov (United States)

    Ramiro-Puig, Emma; Pérez-Cano, Francisco J; Ramos-Romero, Sara; Pérez-Berezo, Teresa; Castellote, Cristina; Permanyer, Joan; Franch, Angels; Izquierdo-Pulido, Maria; Castell, Margarida

    2008-08-01

    Gut-associated lymphoid tissue (GALT) maintains mucosal homeostasis by counteracting pathogens and inducing a state of nonresponsiveness when it receives signals from food antigens and commensal bacteria. We report for the first time the influence of continuous cocoa consumption on GALT function in rats postweaning. Weaned Wistar rats were fed cocoa-enriched diets (4% or 10% food intake) for 3 weeks. The function of the primary inductive sites of GALT, such as Peyer's patches (PP) and mesenteric lymph nodes (MLN), was evaluated through an analysis of IgA-secretory ability and lymphocyte composition (T, B and natural killer cells), activation (IL-2 secretion and IL-2 receptor alpha expression) and proliferation. T-helper effector cell balance was also established based on cytokine profile (interferon gamma, IL-4 and IL-10) after mitogen activation. A 10% cocoa intake induced significant changes in PP and MLN lymphocyte composition and function, whereas a 4% cocoa diet did not cause significant modifications in either tissues. Cocoa diet strongly reduced secretory IgA (S-IgA) in the intestinal lumen, although IgA's secretory ability was only slightly decreased in PP. In addition, the 10% cocoa diet increased T-cell-antigen receptor gammadelta cell proportion in both lymphoid tissues. Thus, cocoa intake modulates intestinal immune responses in young rats, influencing gammadelta T-cells and S-IgA production.

  17. Teucrium polium reversed the MCD diet-induced liver injury in rats.

    Science.gov (United States)

    Amini, Rahim; Yazdanparast, Razieh; Aghazadeh, Safiyeh; Ghaffari, Seyed H

    2011-09-01

    In the present study, we evaluated the ability of Teucrium polium ethyl acetate fraction, with high antioxidant activity, in the treatment of nonalcoholic steatohepatitis (NASH) in rats and its possible effect on factors involved in pathogenesis of the disease. To induce NASH, a methionine and choline deficient (MCD) diet was given to N-Mary rats for 8 weeks. After NASH development, MCD-fed rats were divided into 2 groups: NASH group that received MCD diet and NASH + T group which was fed MCD diet plus ethyl acetate fraction of T. polium orally for 3 weeks. Histopathological evaluations revealed that treatment with the extract has abated the severity of NASH among the MCD-fed rats. In addition, the fraction reduced the elevated levels of hepatic tumor necrosis factor-alpha (TNF-α) and transforming growth factor-beta (TGF-β) gene expression and also the elevated level of malondialdehyde (MDA). In addition, the extract increased the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) and enhanced the level of hepatic glutathione (GSH). Moreover, the fraction treatments lowered caspase-3 level and the phosphorylated form of C-Jun N-terminal kinase (JNK) and augmented the phosphorylated level of extracellular regulated kinase1/2 (ERK1/2). These results indicate that the ethyl acetate fraction of T. poium effectively reversed NASH, mainly due to its strong antioxidant and anti-inflammatory properties.

  18. Effects of diet supplementation with Camu-camu (Myrciaria dubia HBK McVaugh fruit in a rat model of diet-induced obesity

    Directory of Open Access Journals (Sweden)

    Ozanildo V Nascimento

    2013-03-01

    Full Text Available Amazonian Camu-camu fruit (Myrciaria dubia HBK Mc Vaugh has attracted interest from food and cosmetics industries because of its rich content of vitamin C, flavonoids and anthocyanins. The goal of this study was investigates the antiobesity action of the ingestion of the Camu-camu pulp in a rat model of diet-induced obesity. Wistar rats with obesity induced by subcutaneous injection of monosodium glutamate receiving diet ad libitum. The rats were divided in two groups: an experimental group that ingested 25 mL/day of Camu-camu pulp (CCG and a non treated group (CG. After 12 weeks, the animals were sacrificed. Blood, liver, heart, white adipose tissues were collected and weighted, biochemical and inflammatory profiles were determinate as well. Animals that received the pulp of Camu-camu reduced their weights of the fat in white adipose tissues, glucose, total cholesterol, triglycerides, LDL-c and insulin blood levels. There was an increase in HDL-c levels. No change was observed in inflammatory markers and liver enzymes. Camu-camu pulp was able to improve the biochemical profile of obesity in rats suggesting that this Amazonian fruit can be further used such a functional food ingredient in control of chronic diseases linked to obesity.

  19. Effects of diet supplementation with Camu-camu (Myrciaria dubia HBK McVaugh) fruit in a rat model of diet-induced obesity.

    Science.gov (United States)

    Nascimento, Ozanildo V; Boleti, Ana P A; Yuyama, Lucia K O; Lima, Emerson S

    2013-03-01

    Amazonian Camu-camu fruit (Myrciaria dubia HBK Mc Vaugh) has attracted interest from food and cosmetics industries because of its rich content of vitamin C, flavonoids and anthocyanins. The goal of this study was investigates the antiobesity action of the ingestion of the Camu-camu pulp in a rat model of diet-induced obesity. Wistar rats with obesity induced by subcutaneous injection of monosodium glutamate receiving diet ad libitum. The rats were divided in two groups: an experimental group that ingested 25 mL/day of Camu-camu pulp (CCG) and a non treated group (CG). After 12 weeks, the animals were sacrificed. Blood, liver, heart, white adipose tissues were collected and weighted, biochemical and inflammatory profiles were determinate as well. Animals that received the pulp of Camu-camu reduced their weights of the fat in white adipose tissues, glucose, total cholesterol, triglycerides, LDL-c and insulin blood levels. There was an increase in HDL-c levels. No change was observed in inflammatory markers and liver enzymes. Camu-camu pulp was able to improve the biochemical profile of obesity in rats suggesting that this Amazonian fruit can be further used such a functional food ingredient in control of chronic diseases linked to obesity.

  20. Ameliorative effects of l-carnitine on rats raised on a diet supplemented with lead acetate.

    Science.gov (United States)

    El-Sherbini, El-Said; El-Sayed, Gehad; El Shotory, Rehab; Gheith, Nervana; Abou-Alsoud, Mohamed; Harakeh, Steve Mustapha; Karrouf, Gamal I

    2017-09-01

    Lead intoxication has been a major health hazard in humans. It affects people at all ages. Its toxicity is associated with various organs of the body and affects different metabolic pathways. Based on histological data, l-carnitine reduced the severity of tissue damage produced as a result of exposure of rats to lead acetate. The main objective of this study was to evaluate the underlying mechanism of protection offered by l-carnitine against lead acetate intoxication using male Sprague-Dawley rats. Forty male Sprague-Dawley rats were randomly divided into four groups with ten rats in each. The first group (G1) served as the control group and animals received standard diet only. The second group (G2) received lead acetate in their diet. The third group (G3) was the l-carnitine treated group and received the normal standard diet supplemented with l-carnitine. While the fourth group (G4) had a diet supplemented with both lead acetate and l-carnitine. At the end of each experiment, blood (serum and whole blood) were collected from each animal and analyzed for the following parameters: serum testosterone levels, serum nitric oxide and serum malondialdehyde. This is in addition to looking at the enzymatic activities of two important enzymes (superoxide dismutase and catalase) and on (glutathione reductase) which are indicative of the antioxidant activities in the whole blood. The results indicated that l-carnitine will counteract the undesirable effects of lead intoxication. It exerted its antioxidant potential by reducing the production of ROS and scavenging free radicals by maintaining and protecting the level of the of antioxidant enzymes SOD, CAT and glutathione peroxidase. Conclusion: l-Carnitine may play an important role in reversing the undesirable effects of lead intoxication. Future studies should be conducted to see whether such an effect is applicable in humans exposed to lead poising.

  1. Effects of the antituberculous drug ethambutol on zinc absorption, turnover and distribution in rats fed diet marginal and adequate in zinc

    Energy Technology Data Exchange (ETDEWEB)

    King, A.B.; Schwartz, R.

    1987-04-01

    Ethambutol, (CH/sub 3/CH/sub 2/-CH(CH/sub 2/OH)-NH-CH/sub 2/)/sub 2/ (EMB), is an oral antituberculous agent that is administered therapeutically over extended time periods. It has chelating properties and may affect mineral metabolism. Male weanling Sprague-Dawley rats received 0, 400 or 600 mg EMB per kilogram body weight daily by gavage for 30 d. They were fed a casein-based diet with either adequate (49 ppm) or marginal (11 ppm) zinc. Both adequate-Zn (AZn) and marginal-Zn (MZn) rats receiving EMB showed alopecia and dose-dependent reductions in feed intake, weight gain and feed efficiency. None of these changes was seen in rats fed the MZn diet without EMB. Serum and tissue zinc levels were similar in rats not receiving EMB, regardless of the dietary zinc level. Serum zinc was consistently lower in AZn and MZn rats receiving EMB than in rats without EMB. Apparent zinc absorption, measured by /sup 65/Zn balance, was higher in AZn rats receiving EMB than in AZn rats without EMB. Thus, changes in absorption could not account for lower serum zinc levels in EMB-treated rats. However, /sup 65/Zn turnover was also higher in EMB groups. This suggests that EMB may have increased urinary zinc losses resulting in reduced circulating zinc and a consequent increase in zinc absorption.

  2. Effects of the antituberculous drug ethambutol on zinc absorption, turnover and distribution in rats fed diet marginal and adequate in zinc

    International Nuclear Information System (INIS)

    King, A.B.; Schwartz, R.

    1987-01-01

    Ethambutol, [CH 3 CH 2 -CH(CH 2 OH)-NH-CH 2 ] 2 (EMB), is an oral antituberculous agent that is administered therapeutically over extended time periods. It has chelating properties and may affect mineral metabolism. Male weanling Sprague-Dawley rats received 0, 400 or 600 mg EMB per kilogram body weight daily by gavage for 30 d. They were fed a casein-based diet with either adequate (49 ppm) or marginal (11 ppm) zinc. Both adequate-Zn (AZn) and marginal-Zn (MZn) rats receiving EMB showed alopecia and dose-dependent reductions in feed intake, weight gain and feed efficiency. None of these changes was seen in rats fed the MZn diet without EMB. Serum and tissue zinc levels were similar in rats not receiving EMB, regardless of the dietary zinc level. Serum zinc was consistently lower in AZn and MZn rats receiving EMB than in rats without EMB. Apparent zinc absorption, measured by 65 Zn balance, was higher in AZn rats receiving EMB than in AZn rats without EMB. Thus, changes in absorption could not account for lower serum zinc levels in EMB-treated rats. However, 65 Zn turnover was also higher in EMB groups. This suggests that EMB may have increased urinary zinc losses resulting in reduced circulating zinc and a consequent increase in zinc absorption

  3. Critical differences between two low protein diet protocols in the programming of hypertension in the rat.

    Science.gov (United States)

    Langley-Evans, S C

    2000-01-01

    Maternal nutrition has been identified as a factor determining fetal growth and risk of adult disease. In rats, the feeding of a low protein diet during pregnancy retards fetal growth and induces hypertension in the resulting offspring. Rat models of low protein feeding have been extensively used to study the mechanisms that may link maternal nutrition with impaired fetal growth and later cardiovascular disease and diabetes. Low protein diets of differing composition used in different laboratories have yielded inconsistent data on the relationship between maternal protein intake and offsprings' blood pressure. Two separate low protein diet protocols were compared in terms of their ability to programme hypertension during fetal life. Pregnant rats were assigned to receive one of four diets. Two diets were obtained from a commercial supplier and provided casein at 22 or 9% by weight (H22, control; H9, low protein). The other two diets, manufactured in our own facility, provided 18% casein (S18, control) or 9% casein (S9, low protein) by weight. The diets differed principally in their overall fat content, fatty acid composition, methionine content and the source of carbohydrate. Feeding of the experimental diets commenced on the first day of pregnancy and continued until the rats delivered their litters. Following weaning all the offspring had blood pressure determined on a single occasion. Both low protein diets reduced maternal weight gain relative to their corresponding control diets. Despite this litter sizes were unaffected by the dietary protocols. Both low protein diets reduced birthweights of the pups. Systolic blood pressure was significantly elevated in the offspring of rats fed a low protein S9 diet relative to all other groups (P work that differing low protein diet manipulations in rat pregnancy elicit different programming effects upon the developing cardiovasculature. The balance of protein and other nutrients may be a critical determinant of the long

  4. High-NaCl Diet Aggravates Cardiac Injury in Rats with Adenine-Induced Chronic Renal Failure and Increases Serum Troponin T Levels

    DEFF Research Database (Denmark)

    Kashioulis, Pavlos; Hammarsten, Ola; Marcussen, Niels

    2016-01-01

    AIMS: To examine the effects of 2 weeks of high-NaCl diet on left ventricular (LV) morphology and serum levels of cardiac troponin T (cTnT) in rats with adenine-induced chronic renal failure (ACRF). METHODS: Male Sprague-Dawley rats either received chow containing adenine or were pair......-fed an identical diet without adenine [controls (C)]. Approximately 10 weeks after the beginning of the study, the rats were randomized to either remain on a normal NaCl diet (NNa; 0.6%) or to be switched to high-NaCl chow (HNa; 4%) for 2 weeks, after which acute experiments were performed. RESULTS: Rats with ACRF...... showed statistically significant increases (p rats (p

  5. A sucrose-rich diet induces mutations in the rat colon

    DEFF Research Database (Denmark)

    Dragsted, Lars O.; Daneshvar, Bahram; Vogel, Ulla

    2002-01-01

    A sucrose-rich diet has repeatedly been observed to have cocarcinogenic actions in the colon and liver of rats and to increase the number of aberrant crypt foci in rat colon. To investigate whether sucrose-rich diets might directly increase the genotoxic response in the rat colon or liver, we have...... added sucrose to the diet of Big Blue rats, a strain of Fischer rats carrying 40 copies of the lambda-phage on chromosome 4. Dietary sucrose was provided to the rats for 3 weeks at four dose levels including the background level in the purified diet [3.4% (control), 6.9%, 13.8%, or 34.5%] without...... of a sucrose-rich diet. No significant increase in mutations was observed in the liver. To seek an explanation for this finding, a variety of parameters were examined representing different mechanisms, including increased oxidative stress, changes in oxidative defense, effects on DNA repair, or changes...

  6. [Assessment of the impact of vitamin and dietary fiber content in the diet on the characteristics of protective colon microbiota populations of rats].

    Science.gov (United States)

    Markova, Yu M; Sheveleva, S A

    2015-01-01

    The content of lactobacilli and enterobacteria in the experiment in rats with varying levels of vitamins and dietary fiber was studied. The study was performed on 48 male weanling Wistar rats randomized into 8 groups, with the creation of vitamin deficiency (30 d.) and its further compensation (5 d.). Vitamin content in the semisynthetic diet in rats of the control group N 1 corresponded to 100% of a daily adequate intake. In the similar composition of the diet of the control group N 2 wheat bran was added in amount of 5% of the weight of the diet. In groups N 3–8 rats received a diet with the reduced amount of vitamin mixture by 5 times (20% of the adequate intake) and the total exclusion of tocopherol, thiamine and riboflavin from the mixture. The wheat bran (5% of diet mass) was added to the diets in Groups N 4, 6, 8. At the stage of compensation of deficiency rats were fed with the diets with increased content of vitamin mixture: Group 5–6 to 80% 7–8 to 200% (100 and 220% of the adequate intake, respectively), and the groups N 3–4 continued to receive deficient diet with or without wheat bran until the end of the experiment. After 35 days rats were anesthetized with ether, decapitated, necropsied and the cecum segments were selected for quantitative microbiological analysis of its contents. It has been shown that the addition of wheat bran to vitamin deficient diet lead to the reduction of the manifestation of physical sign of hypovitaminosis. It also eliminated the differences in the integrated index of growth and development of rats in comparison with the group without vitamin deficiency. It was found that the vitamin deficiency in the diet, regardless of the presence or absence of wheat bran, led to a significant reduction of the number of lactobacilli in the intestinal contents, but almost did not affect the number of normal and opportunistic pathogenic enterobacteria. The compensation of deficiency during 5 days lead to the increased number of

  7. Effects of a high protein diet on cognition and brain metabolism in cirrhotic rats.

    Science.gov (United States)

    Méndez-López, M; Méndez, M; Arias, J; Arias, J L

    2015-10-01

    Hepatic encephalopathy (HE) is a neurological complication observed in patients with liver disease. Patients who suffer from HE present neuropsychiatric, neuromuscular and behavioral symptoms. Animal models proposed to study HE resulting from cirrhosis mimic the clinical characteristics of cirrhosis and portal hypertension, and require the administration of hepatotoxins such as thioacetamide (TAA). The aim of this study was to assess the effects of a high protein diet on motor function, anxiety and memory processes in a model of cirrhosis induced by TAA administration. In addition, we used cytochrome c-oxidase (COx) histochemistry to assess the metabolic activity of the limbic system regions. Male rats were distributed into groups: control, animals with cirrhosis, Control rats receiving a high protein diet, and animals with cirrhosis receiving a high protein diet. Results showed preserved motor function and normal anxiety levels in all the groups. The animals with cirrhosis showed an impairment in active avoidance behavior and spatial memory, regardless of the diet they received. However, the animals with cirrhosis and a high protein diet showed longer escape latencies on the spatial memory task. The model of cirrhosis presented an under-activation of the dentate gyrus and CA3 hippocampal subfields and the medial part of the medial mammillary nucleus. The results suggest that a high protein intake worsens spatial memory deficits shown by the TAA-induced model of cirrhosis. However, high protein ingestion has no influence on the COx hypoactivity associated with the model. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. The effects of beta-adrenergic blockade on body composition in free-fed and diet-restricted rats.

    Science.gov (United States)

    Ji, L L; Doan, T D; Lennon, D L; Nagle, F J; Lardy, H A

    1987-04-01

    The effects of the non-selective beta-adrenergic blocking agent propranolol (known for its anti-lipolytic activity) on body composition were investigated in growing male rats on normal unrestricted diet (N = 7) and on diet restriction (N = 7, 95% of controls). Three animals in each group were injected i.p. with 30 mg propranolol per kg body weight (bw) dissolved in saline, 5 days/week. This dose attenuates exercising heart rate by 25% and exercise training-induced enzyme activity. The remaining animals received saline. Fat, glycogen, moisture and non-ether extractable residue were determined in the homogenized residue of the whole animal. After 9 weeks on the experimental regimen, bw gain was significantly lower in the diet restricted rats, whereas propranolol had no effect on the bw gain. The percentage of fat, moisture and non-ether extractable residue were unchanged by either propranolol or diet restriction. However, glycogen content was significantly lower in the beta-blocked rats either with or without diet restriction. These data indicated that neither beta-adrenergic blockade nor minimal diet restriction influences the percentage body fat, whereas body glycogen content is decreased under both conditions.

  9. Type of diet modulates the metabolic response to sleep deprivation in rats

    Directory of Open Access Journals (Sweden)

    Martins Paulo JF

    2011-12-01

    Full Text Available Abstract Background Evidence suggests that sleep loss is associated with an increased risk of obesity and diabetes; however, animal models have failed to produce weight gain under sleep deprivation (SD. Previous studies have suggested that this discrepancy could be due to more extreme SD conditions in experimental animals, their higher resting metabolic rate than that of humans, and the decreased opportunity for animals to ingest high-calorie foods. Thus, our objective was to determine whether diets with different textures/compositions could modify feeding behavior and affect the metabolic repercussions in SD in rats. Methods Three groups of male rats were used: one was designated as control, one was sleep deprived for 96 h by the platform technique (SD-96h and one was SD-96h followed by a 24-h recovery (rebound. In the first experiment, the animals were fed chow pellets (CPs; in the second, they received high-fat diet and in the third, they were fed a liquid diet (LD. Results We observed that SD induces energy deficits that were related to changes in feeding behavior and affected by the type of diet consumed. Regardless of the diet consumed, SD consistently increased animals' glucagon levels and decreased their leptin and triacylglycerol levels and liver glycogen stores. However, such changes were mostly avoided in the rats on the liquid diet. SD induces a wide range of metabolic and hormonal changes that are strongly linked to the severity of weight loss. Conclusions The LD, but not the CP or high-fat diets, favored energy intake, consequently lessening the energy deficit induced by SD.

  10. Tinospora crispa Ameliorates Insulin Resistance Induced by High Fat Diet in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Mohd Nazri Abu

    2015-01-01

    Full Text Available The antidiabetic properties of Tinospora crispa, a local herb that has been used in traditional Malay medicine and rich in antioxidant, were explored based on obesity-linked insulin resistance condition. Male Wistar rats were randomly divided into four groups, namely, the normal control (NC which received standard rodent diet, the high fat diet (HFD which received high fat diet only, the high fat diet treated with T. crispa (HFDTC, and the high fat diet treated with orlistat (HFDO. After sixteen weeks of treatment, blood and organs were harvested for analyses. Results showed that T. crispa significantly (p < 0.05 reduced the body weight (41.14 ± 1.40%, adiposity index serum levels (4.910 ± 0.80%, aspartate aminotransferase (AST: 161 ± 4.71 U/L, alanine aminotransferase (ALT: 100.95 ± 3.10 U/L, total cholesterol (TC: 18.55 ± 0.26 mmol/L, triglycerides (TG: 3.70 ± 0.11 mmol/L, blood glucose (8.50 ± 0.30 mmo/L, resistin (0.74 ± 0.20 ng/mL, and leptin (17.428 ± 1.50 ng/mL hormones in HFDTC group. The insulin (1.65 ± 0.07 pg/mL and C-peptide (136.48 pmol/L hormones were slightly decreased but within normal range. The histological results showed unharmed and intact liver tissues in HFDTC group. As a conclusion, T. crispa ameliorates insulin resistance-associated with obesity in Wistar rats fed with high fat diet.

  11. High-NaCl diet impairs dynamic renal blood flow autoregulation in rats with adenine-induced chronic renal failure

    DEFF Research Database (Denmark)

    Saeed, Aso; DiBona, Gerald F; Grimberg, Elisabeth

    2014-01-01

    This study examined the effects of 2 wk of high-NaCl diet on kidney function and dynamic renal blood flow autoregulation (RBFA) in rats with adenine-induced chronic renal failure (ACRF). Male Sprague-Dawley rats received either chow containing adenine or were pair-fed an identical diet without...... arterial pressure variability (SAPV), and heart rate variability were assessed by spectral analytical techniques. Rats with ACRF showed marked reductions in glomerular filtration rate and renal blood flow (RBF), whereas mean arterial pressure and SAPV were significantly elevated. In addition, spontaneous...... adenine (controls). After 10 wk, rats were randomized to either remain on the same diet (0.6% NaCl) or to be switched to high 4% NaCl chow. Two weeks after randomization, renal clearance experiments were performed under isoflurane anesthesia and dynamic RBFA, baroreflex sensitivity (BRS), systolic...

  12. Gene expression of insulin signal-transduction pathway intermediates is lower in rats fed a beef tallow diet than in rats fed a safflower oil diet.

    Science.gov (United States)

    Kim, Y B; Nakajima, R; Matsuo, T; Inoue, T; Sekine, T; Komuro, M; Tamura, T; Tokuyama, K; Suzuki, M

    1996-09-01

    To elucidate the effects of dietary fatty acid composition on the insulin signaling pathway, we measured the gene expression of the earliest steps in the insulin action pathway in skeletal muscle of rats fed a safflower oil diet or a beef tallow diet. Rats were meal-fed an isoenergetic diet based on either safflower oil or beef tallow for 8 weeks. Both diets provided 45%, 35%, and 20% of energy as fat, carbohydrate, and protein, respectively. Insulin resistance, assessed from the diurnal rhythm of plasma glucose and insulin and the oral glucose tolerance test (OGTT), developed in rats fed a beef tallow diet. Body fat content was greater in rats fed a beef tallow diet versus a safflower oil diet. The level of insulin receptor mRNA, relative expression of the insulin receptor mRNA isoforms, and receptor protein were not affected by the composition of dietary fatty acids. The abundance of insulin receptor substrate-1 (IRS-1) and phosphatidylinositol (PI) 3-kinase mRNA and protein was significantly lower in rats fed a beef tallow diet versus a safflower oil diet. We conclude that long-term feeding of a high-fat diet with saturated fatty acids induces decrease in IRS-1 and PI 3-kinase mRNA and protein levels, causing insulin resistance in skeletal muscle.

  13. Diet-Induced Ketosis Improves Cognitive Performance in Aged Rats

    Science.gov (United States)

    Xu, Kui; Sun, Xiaoyan; Eroku, Bernadette O.; Tsipis, Constantinos P.; Puchowicz, Michelle A.; LaManna, Joseph C.

    2010-01-01

    Aging is associated with increased susceptibility to hypoxic/ischemic insult and declines in behavioral function which may be due to attenuated adaptive/defense responses. We investigated if diet-induced ketosis would improve behavioral performance in the aged rats. Fischer 344 rats (3- and 22-month-old) were fed standard (STD) or ketogenic (KG) diet for 3 weeks and then exposed to hypobaric hypoxia. Cognitive function was measured using the T-maze and object recognition tests. Motor function was measured using the inclined-screen test. Results showed that KG diet significantly increased blood ketone levels in both young and old rats. In the aged rats, the KG diet improved cognitive performance under normoxic and hypoxic conditions; while motor performance remained unchanged. Capillary density and HIF-1α levels were elevated in the aged ketotic group independent of hypoxic challenge. These data suggest that diet-induced ketosis may be beneficial in the treatment of neurodegenerative conditions. PMID:20204773

  14. Insulin Resistance Induced by a High Fructose Diet in Rats Due to Hepatic Disturbance

    International Nuclear Information System (INIS)

    Heibashy, M.I.A.; Mazen, G.M.A.; Kelada, N.A.H.

    2013-01-01

    High consumption of dietary fructose is accused of being responsible for the development of the insulin resistance (IR) syndrome. Concern has arisen because of the realization that fructose, at elevated concentrations, can promote metabolic changes that are potentially deleterious. Among these changes is IR which manifests as a decreased biological response to normal levels of plasma insulin. Therefore, this experiment was designed to evaluate the role of high fructose diet on metabolic syndrome in rats. The experimental animals were divided into two batches. The control batch received a control diet; the second batch was given a high-fructose diet as the sole source of carbohydrate. The rats were continued on the dietary regimen for 1, 2 and 3 months. After the experimental periods, fructose fed rats groups showed significant elevations in the levels of glucose, insulin sensitivity, liver function tests, nitric oxide and tumor necrosis factor-α when compared to their corresponding values in the rats fed normal diet. Moreover, liver lipid peroxidation [thiobarbituric acid-reactive substance (TBARS) and lipid hydroperoxide concentrations were remarkably increased in high-fructose-fed rats according to the time of administration (1, 2 and 3 months). On the other hand, the activities of enzymatic antioxidants (glutathione reductase and glutathione peroxidase) and glyoxalase I and II were significantly declined in this group. In conclusion, high fructose feeding raises liver dysfunction and causes the features of metabolic syndrome (insulin resistance) in rats dependent on the time of administration due to different mechanisms which were discussed in this work according to available recent researches

  15. Effects of 3,5-diiodo-L-thyronine on the liver of high fat diet fed rats

    Directory of Open Access Journals (Sweden)

    Marco Giammanco

    2016-06-01

    Full Text Available Experimental studies have highlighted that the administration of 3,5-diiodo-L-thyronine (T2 to rats fed diets rich in lipids induces a decrease of cholesterol and triglycerides plasma levels and body weight (BW without inducing liver steatosis. On the basis of these observations we carried out some experimental in vivo studies to assess the effects of multiple high doses of T2 on the pituitary thyroid axis of rats fed diet rich in lipids. Fifteen male Wistar rats were divided into three groups of five animals each. The first group (N group received standard diet, the second group was fed with a high fat diet (HFD group, while the third group (HFDT2 group was additionally given T2 intraperitoneally at a dose level of 70 µg/100 g of BW three times a week up to four weeks. At the end of the treatment, blood sample from each animal was collected, centrifuged and the serum was stored at -20°C. The serum concentrations of thyroidstimulating hormone (TSH, triiodothyronine, thyroxine, adrenocorticotropic hormone, triglycerides, cholesterol, glucose, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase were then determined. In addition, liver of rats was examined by histology in order to assess the presence and degree of steatosis. The administration of T2 to rats fed with a high fat diet suppressed TSH secretion (P=0.013 while no steatosis was observed in the liver of these animals. Our data show that multiple administrations of high doses of T2 to rats fed diets rich in lipid inhibit TSH secretion and prevent the onset of liver steatosis in these animals.

  16. Influence of high glycine diets on the activity of glycine-catabolizing enzymes and on glycine catabolism in rats

    International Nuclear Information System (INIS)

    Petzke, K.J.; Albrecht, V.; Przybilski, H.

    1986-01-01

    Male albino rats were adapted to isocaloric purified diets that differed mainly in their glycine and casein contents. Controls received a 30% casein diet. In experimental diets gelatin or gelatin hydrolysate was substituted for half of the 30% casein. An additional group was fed a glycine-supplemented diet, which corresponded in glycine level to the gelatin diet but in which the protein level was nearly the same as that of the casein control diet. Another group received a 15% casein diet. Rat liver glycine cleavage system, serine hydroxymethyltransferase and serine dehydratase activities were measured. 14 CO 2 production from the catabolism of 14 C-labeled glycine was measured in vivo and in vitro (from isolated hepatocytes). Serine dehydratase and glycine cleavage system activities were higher in animals fed 30% casein diets than in those fed 15% casein diets. Serine hydroxymethyltransferase activity of the cytosolic and mitochondrial fractions was highest when a high glycine diet (glycine administered as pure, protein bound in gelatin or peptide bound in gelatin hydrolysate) was fed. 14 CO 2 formation from [1- 14 C]- and [2- 14 C]glycine both in vivo and in isolated hepatocytes was higher when a high glycine diet was fed than when a casein diet was fed. These results suggest that glycine catabolism is dependent on and adaptable to the glycine content of the diet. Serine hydroxymethyltransferase appears to play a major role in the regulation of glycine degradation via serine and pyruvate

  17. High-protein diets and renal status in rats

    OpenAIRE

    Aparicio, V. A.; Nebot, E.; García-del Moral, R.; Machado-Vílchez, M.; Porres, J. M.; Sánchez, C.; Aranda, P.

    2013-01-01

    Introduction: High-protein (HP) diets might affect renal status. We aimed to examine the effects of a HP diet on plasma, urinary and morphological renal parameters in rats. Material and methods: Twenty Wistar rats were randomly distributed in 2 experimental groups with HP or normal-protein (NP) diets over 12 weeks. Results and discussion: Final body weight was a 10% lower in the HP group (p < 0.05) whereas we have not observed differences on food intake, carcass weight and muscle ashes conten...

  18. Diet composition determines course of hyperphagia in developing Zucker obese rats.

    Science.gov (United States)

    Vasselli, J R; Maggio, C A

    1990-12-01

    Previous observations from this laboratory indicate that, during growth, the hyperphagia of the male genetically obese Zucker rat reaches a peak or "breakpoint" and then declines. To examine the effect of dietary macronutrient content on the course of hyperphagia, groups of male lean and obese rats were maintained from 5-28 weeks of age on powdered chow, or isocaloric diets (3.6 kcal/g) containing 72% of calories as corn oil, dextrose, or soy isolate protein (n = 5 lean and obese rats/diet). On chow, hyperphagia was maintained at a level of 7-8 g above lean control intake until a "breakpoint" was reached at 17 weeks, and obese intake declined to lean control level. On the fat diet, hyperphagia was increased to 10 g/day when a breakpoint was reached at 8 weeks. On the dextrose and protein diets, hyperphagia at a level of 3-4 g/day reached breakpoints at weeks 18 and 16, respectively. On all diets, the intakes of obese rats were precisely equal to the intakes of lean control rats by weeks 19-20. These data show that the magnitude and duration of hyperphagia in the developing obese rat are influenced by diet composition. Previously, we have proposed that the obese rat's hyperphagia arises from rapid adipocyte filling. Since high-fat diets facilitate adipocyte enlargement, the early "breakpoint" of hyperphagia seen with the high-fat diet may indicate that this feeding stimulation decreases as the fat cells of the obese rat approach maximal size.

  19. Anti-obesity and hypoglycemic effect of ethanolic extract of Murraya koenigii (L leaves in high fatty diet rats

    Directory of Open Access Journals (Sweden)

    Sachin V. Tembhurne

    2012-05-01

    Full Text Available Objective: To evaluate the hypoglycemic and anti-obesity activities of of Murraya koenigii leaves. Method: The study was performed in high fatty diet induced obesity rats. After 15 days baseline period the treatments animals were received ethanolic extract of Murraya koenigii leaves (300 and 500 mg/kg in high fatty diet rats. All the treatments were given for one month. On 30th day all the fasted animals received an intraperitoneal injection of glucose (1 g/kg for glucose tolerance test. At the end of study body weight, total cholesterol, triglycerides, and blood glucose level were measured. Results: The results demonstrate clearly that repeated oral administration of Murraya koenigii leaves evoked a potent anti-hyperglycaemic activity in high fat diet obese rats. Postprandial hyperglycaemic peaks were significantly lower in plant-treated experimental groups. In other hand, high fatty diet group increased the both total cholesterol and triglycerides levels as compared to control group. While administration of Murraya koenigii leaves significantly decreased in both cholesterol as well as triglycerides. Conclusions: We can conclude that Murraya koenigii leaves evokes potent anti-hyperglycaemic and anti-obesity effects. This fact could support their use by the diabetes patient for controlling body weight as well as maintains the glycemic level.

  20. Effect of Grape Seeds Oil Extracted from Radiation Processed Seeds on Lipid Metabolism and on Antioxidant Activity in Rats Fed Diets Containing Cholesterol

    International Nuclear Information System (INIS)

    El-Neily, H.F.G.; El-Shennawy, H.M.

    2011-01-01

    Grape seeds were separated from fresh grape pomace and dried at room temperature then packed in polyethylene bags and subjected to gamma rays at dose level of 10 kGy. The grape seeds oil was extracted from non and irradiated seeds. The oil quality, fatty acid composition and total phenolic compounds of oil extracted from non or irradiated seeds have been studied. The results indicated that there were significant increases in the acid value, saponification value and peroxide value of oil extracted from irradiated seeds at 10 kGy by 46.2%, 2.5% and 95.2%, respectively, and the total phenolic compounds and total radical trapping antioxidant potential (TRAP) were reduced by 22.13% and 10%, respectively, as compared to those of oil extracted from non-irradiated seeds. No degradation of the fatty acids; palmitic, linoleic, linolenic and arachidic acids, were observed for oil extracted from irradiated seeds at 10 kGy. However, significant decrease in oleic acid by 11.35% and increase in stearic acid by 26.22% were recorded corresponding to those for oil extracted from non-irradiated seeds. The effect of grape seeds oils extracted from non or irradiated seeds on lipid metabolism and antioxidant activity was investigated using 60 male Albino rats divided into six groups: (1) Control group: animals fed casein diet. (2) Ch group: animals received casein diet contains 10 g cholesterol per kg diet. (3) RGSO group: animals received diet contains grape seeds oil extracted from non-irradiated seeds (100 g oil per kg diet). (4) RGSO + Ch group: rats received diet contains grape seeds oil extracted from non-irradiated seeds (100 g oil per kg diet) + 100 g cholesterol per kg diet. (5) IGSO group: rats received diet contains grape seeds oil extracted from irradiated seeds at 10 kGy (100 g oil per kg diet). (6) IGSO + Ch group: rats received diet contains grape seeds oil extracted from irradiated seeds at 10 kGy (100 g oil per kg diet) + 10 g cholesterol per kg diet. Animals received

  1. Wheel running decreases palatable diet preference in Sprague-Dawley rats

    OpenAIRE

    Moody, Laura; Liang, Joy; Choi, Pique P.; Moran, Timothy H.; Liang, Nu-Chu

    2015-01-01

    Physical activity has beneficial effects on not only improving some disease conditions but also by preventing the development of multiple disorders. Experiments in this study examined the effects of wheel running on intakes of chow and palatable diet e.g. high fat (HF) or high sucrose (HS) diet in male and female Sprague Dawley rats. Experiment 1 demonstrated that acute wheel running results in robust HF or HS diet avoidance in male rats. Although female rats with running wheel...

  2. [Effect of indole-3-carbinol and rutin on rats' provision by vitamins' A and E with different fat content in its diet].

    Science.gov (United States)

    Beketova, N A; Kravchenko, L V; Kosheleva, O V; Vrzhesinskaia, O A; Kodentsova, V M

    2013-01-01

    Effect of indole-3-carbinol (I-3-C) and rutin (R) supplementation on vitamins A and E status of growing Wistar rats, receiving for 6 or 4 week semi-synthetic diets with different levels (1, 11 and 31%) of fat (lard and sunflower oil at a ratio of 1:1) has been studied. The content of vitamin E was 6, 9 and 15 IU, vitamin A - 400 IU in 100 g of ration. Against the various fat content during the last 7 or 14 days of the experiment rats received respectively I-3-C (20 mg per 1 kg of body weight per day) or R (0.4% of the feed weight). Rat tissues were analyzed for vitamins A (retinol and retinyol palmitate) and E (alpha-tocopherol) by HPLC. Reducing fat content in diet from 11 to 1% was associated with significant (pvitamin E in rats, regardless of the fat content in the diet. With excess fat content (31%) in the diet, supplementation of I-3-C and R lowered hepatic RP by 22-52% (pvitamin A concentration in blood plasma by 12% (p=0.024) and in liver by 37% (p=0.002).

  3. Effect of Diet on Metabolism of Laboratory Rats

    Science.gov (United States)

    Harrison, P. C.; Riskowski, G. L.; McKee, J. S.

    1996-01-01

    In previous studies when rats were fed a processed, semipurified, extruded rodent food bar (RFB) developed for space science research, we noted a difference in the appearance of gastrointestinal tissue (GI); therefore the following study evaluated GI characteristics and growth and metabolic rates of rats fed chow (C) or RFB. Two hundred and twenty-four rats (78 g mean body weight) were randomly assigned to 28 cages and provided C or RFB. Each cage was considered the experimental unit and a 95 percent level of significance, indicated by ANOVA, was used for inference. After each 30-, 60-, and 90-day period, eight cages were shifted from the C to RFB diet and housing density was reduced by two rats per cage. The two rats removed from each cage were sacrificed and used for GI evaluation. Metabolic rates of the rats in each cage were determined by indirect calorimetry. No differences in body weight were detected at 0, 30, 60 or 90 days between C and RFB. Heat production (kcal/hr/kg), CO2 production (L/hr/kg) and O2 consumption (L/hr/kg) were different by light:dark and age with no effect of diet. Respiratory quotient was different by age with no effect of light:dark or diet. Rats on the C diet ate less food and drank more water than those on RFB. C rats produced more fecal and waste materials than the RFB. GI lengths increased with age but were less in RFB than C. GI full and empty weights increased with age but weighed less in RFB than C. Gut-associated lymphoid tissue (GALT) numbers increased with age with no effect of diet. No differences in ileum-associated GALT area were detected between C and RFB. Switching C to RFB decreased GI length, GI full and empty weights, with no changes in GALT number or area. We concluded RFB decreased GI mass without affecting metabolic rate or general body growth.

  4. Ketoprofen and antinociception in hypo-oestrogenic Wistar rats fed on a high sucrose diet.

    Science.gov (United States)

    Jaramillo-Morales, Osmar Antonio; Espinosa-Juárez, Josué Vidal; García-Martínez, Betzabeth Anali; López-Muñoz, Francisco Javier

    2016-10-05

    Non-steroidal anti-inflammatory drugs such as ketoprofen are the most commonly used analgesics for the treatment of pain. However, no studies have evaluated the analgesic response to ketoprofen in conditions of obesity. The aim of this study was to analyse the time course of nociceptive pain in Wistar rats with and without hypo-oestrogenism on a high sucrose diet and to compare the antinociceptive response using ketoprofen. Hypo-oestrogenic and naïve rats received a hyper caloric diet (30% sucrose) or water ad libitum for 17 weeks, the thermal nociception ("plantar test" method) and body weight were tested during this period. A biphasic response was observed: thermal latency decreased in the 4th week (hyperalgesia), while from 12th to 17th week, thermal latency increased (hypoalgesia) in hypo-oestrogenic rats fed with high sucrose diet compared with the hypo-oestrogenic control group. At 4th and 17th weeks, different doses of ketoprofen (1.8-100mg/kg p.o.), were evaluated in all groups. The administration of ketoprofen at 4th and 17th weeks showed dose-dependent effects in the all groups; however, a greater pharmacological efficacy was observed in the 4th week in the hypo-oestrogenic animals that received sucrose. Nevertheless, in all the groups significantly diminish the antinociceptive effects in the 17th week. Our data showed that nociception was altered in the hypo-oestrogenic animals that were fed sucrose (hyperalgesia and hypoalgesia). Ketoprofen showed a dose-dependent antinociceptive effect at both time points. However, hypo-oestrogenism plus high-sucrose diet modifies the antinociceptive effect of ketoprofen. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. A blueberry-enriched diet attenuates nephropathy in a rat model of hypertension via reduction in oxidative stress.

    Directory of Open Access Journals (Sweden)

    Carrie M Elks

    Full Text Available To assess renoprotective effects of a blueberry-enriched diet in a rat model of hypertension. Oxidative stress (OS appears to be involved in the development of hypertension and related renal injury. Pharmacological antioxidants can attenuate hypertension and hypertension-induced renal injury; however, attention has shifted recently to the therapeutic potential of natural products as antioxidants. Blueberries (BB have among the highest antioxidant capacities of fruits and vegetables.Male spontaneously hypertensive rats received a BB-enriched diet (2% w/w or an isocaloric control diet for 6 or 12 weeks or 2 days. Compared to controls, rats fed BB-enriched diet for 6 or 12 weeks exhibited lower blood pressure, improved glomerular filtration rate, and decreased renovascular resistance. As measured by electron paramagnetic resonance spectroscopy, significant decreases in total reactive oxygen species (ROS, peroxynitrite, and superoxide production rates were observed in kidney tissues in rats on long-term dietary treatment, consistent with reduced pathology and improved function. Additionally, measures of antioxidant status improved; specifically, renal glutathione and catalase activities increased markedly. Contrasted to these observations indicating reduced OS in the BB group after long-term feeding, similar measurements made in rats fed the same diet for only 2 days yielded evidence of increased OS; specifically, significant increases in total ROS, peroxynitrite, and superoxide production rates in all tissues (kidney, brain, and liver assayed in BB-fed rats. These results were evidence of "hormesis" during brief exposure, which dissipated with time as indicated by enhanced levels of catalase in heart and liver of BB group.Long-term feeding of BB-enriched diet lowered blood pressure, preserved renal hemodynamics, and improved redox status in kidneys of hypertensive rats and concomitantly demonstrated the potential to delay or attenuate development

  6. [Study on feeding behavior patterns of rats on cariogenic diet].

    Science.gov (United States)

    Sasaki, Y

    1989-03-01

    The feeding behavior patterns of Jcl:Wistar rats fed on commercial stock diet and cariogenic diet (Diet #2000) were investigated with the newly developed autorecording system. They were caged separately under a regular light-dark cycle (L:D = 12:12). The results and conclusion were as follows. All rats have a circadian feeding rhythm, and 70-85% of feeding frequency were observed during the dark period. The group on the commercial stock diet showed a dual-peak pattern of feeding at 20:30 and 4:00. On the other hand, the cariogenic diet groups showed a more frequent feeding pattern during the dark period. The feeding frequency increased from 1:00 to 3:00 in the high sucrose diet group and more frequent feeding was observed. From these results, it was suggested that dental caries in the rats was caused by not only the local effect of sucrose in the mouth but also by the changing patterns of feeding behavior with cariogenic diet.

  7. Irradiated diets and its effect on testes and adrenal gland of rats

    International Nuclear Information System (INIS)

    Kushwaha, A.K.S.; Hasan, S.S.

    1988-01-01

    The present investigation was undertaken to study the feeding effects of irradiated normal diet (consisting of equal parts of gram and wheat) and irradiated low protein diet (consisting one part of normal diet and three parts of wheat) on male rats for various periods starting from weaning time. Rats maintained on irradiated low protein diets showed decrease in the activity of androgen sensitive enzymes i.e., alkaline and acid phosphatase while an increase in the cholesterol content of the testes compared with irradiated normal controls. Diminution in androgen sensitive enzymes and accumulation of cholesterol in the rat testes suggest non-conversion of cholesterol into steriod hormones after feeding of irradiated low protein. Besides, rats fed on irradiated low protein diet showed increased cellular activity in the adrenal cortex and medulla as compared to rats fed on the irradiated normal diet. (author). 12 refs., 4 tabs

  8. Antihyperglycemic and antidyslipidemic activity of Musa paradisiaca-based diet in alloxan-induced diabetic rats.

    Science.gov (United States)

    Ajiboye, Basiru O; Oloyede, Hussein O B; Salawu, Musa O

    2018-01-01

    This study was aimed at investigating the antihyperglycemic and antidyslipidemic activity of Musa paradisiaca -based diets in alloxan-induced diabetic mellitus rats. Diabetes was induced by a single intraperitoneal injection of alloxan (150 mg/kg b.w) in 48 randomly selected rats. The rats were randomly grouped into four as follows: normal rats fed Dioscorea rotundata -based diet, diabetic control rats fed D. rotundata -based diet, diabetic rats fed D. rotundata -based diet and administered metformin (14.2 mg/kg body weight) orally per day, and diabetic rats fed M. paradisiaca -based diet. Body weight and fasting blood glucose level were monitored, on 28th days the rats were sacrificed, liver was excised. Thereafter, the hyperglycemic and dyslipidemic statii of the induced diabetic animals were determined. The M. paradisiaca -based diet significantly ( p  paradisiaca -based diet demonstrated significant reduction ( p  paradisiaca -based diet significantly ( p  <   .05) reversed the activities of aspartate aminotransferase and alanine aminotransferase when compared with diabetic control animals. The consumption of this diet may be useful in ameliorating hyperglycemia and dyslipidemia in diabetes mellitus patients.

  9. Bioavailability of cadmium in rats fed various diets

    International Nuclear Information System (INIS)

    Rabar, I.; Kostial, K.

    1981-01-01

    Six-week-old female albino rats were fed rat diet or human foods 3 days before and 6 days after a single oral dose of 115 sup(m)Cd. All animals were killed 6 days after administration and the radioactivity in the whole body and in the gut-free carcass was determined in a double scintillation counter. Gut retentions were calculated as the difference: whole body minus carcass. All animals fed meat, bread or milk had much higher body retentions than animals fed rat diet. Our results point out the importance of nutritional factors in metal metabolism and toxicity. (orig./MG) [de

  10. Effect of Partial Sleep Deprivation on Lipid Profile in High Fat Diet-Fed Rats in the Presence and Absence of Vitamin C

    Directory of Open Access Journals (Sweden)

    Hossein Najafzadeh

    2013-07-01

    Full Text Available Background: The daily stress and shift working cause insomnia. In other hands, fatty food consumption increased this disorder. The aim of present study is evaluation additive effect of partial insomnia and high fatty diet with or without vitamin C on serum lipid profile in rats.Materials and Methods: Fifty six rats in 7 groups (8 rats each group were conducted for study during 26 days as: 1: normal diet+normal sleep, 2: high fatty diet+normal sleep, 3: normal diet+insomnia, 4: high fatty diet+insomnia, 5: high fatty diet+normal sleep+vitamin C, 6: high fatty diet+insomnia+vitamin C, 7: normal diet+insomnia+ vitamin C. The lipid profile was examined at end of study. Results: Results shown the high fatty diet+insomnia increased triglyceride, LDL, VLDL level and decreased HDL level with comparison to high fatty diet+normal sleep group. But only insomnia did not change serum lipid profile. High fatty diet increased level of cholesterol (p<0.05. The normal diet increased body weight but high fatty diet decreased it significantly. Liver weight ratio was elevated by high fatty diet+insomnia. The vitamin C decreased cholesterol and increased HDL level in group of rats which received high fatty diet+insomnia. Conclusion: In conclusion, the present study shown the only insomnia did not affect on serum lipid profile while insomnia along with high fatty diet increased lipid high risk factors in blood.

  11. Effect of a Carbohydrate-Rich Diet on Rat Detrusor Smooth Muscle Contractility: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Mustafa Suat Bolat

    2017-01-01

    Full Text Available Objectives. We aimed to investigate the effect of a carbohydrate-rich diet on detrusor contractility in rats. Materials and Methods. Sprague-Dawley rats were randomized into two groups. The control group received regular food and water. The study group received carbohydrate-rich diet for six weeks. The rats’ detrusor muscle was isolated for pharmacological and histopathological examinations. Results. In the control and study groups, mean body weights were 431.5 ± 27.6 g and 528.0 ± 36.2 g, respectively (p < 0.001. Electrical stimulation of the detrusor strips of the control group resulted in gradual contraction. A decreased contractile response was shown in the study group. Acetylcholine in 10-7-10-3 molar concentration produced a decreased contractile response in the study group, compared to the control group (p < 0.01. The study group showed marked subepithelial and intermuscular fibrosis in the bladder. Conclusion. Carbohydrate-rich diet causes marked subepithelial and extracellular fibrosis and changes in contractility in the detrusor within a six-week period. Changes have higher costs in therapeutic choices and correction of these changes remains difficult. Putting an end to carbohydrate-rich diet would seem to be more cost-effective than dealing with the effects of consuming it in high proportions which should be the national policy worldwide.

  12. Influence of x irradiation and diet on pituitary/thyroid function in the rat

    International Nuclear Information System (INIS)

    Qassar, I.G.

    1979-01-01

    Rats were maintained on low iodine diet or treated with T 4 . A significant increase in thyroid weight was observed in rats on low iodine diet whereas among rats on normal diet with thyroxine injections, the thyroid was lower in weight than thyroids of control animals. Pituitary weight increased significantly in rats on low iodine diet or T 4 treatment. Labelling index was significantly higher in the group on low iodine diet. A significantly lower labelling index was observed after thyroxine treatment. Where PTU was administered to rats pretreated with either normal diet, normal diet plus T 4 , or maintained on low iodine diet and then exposed to radiation (100 to 400R) to the neck, it was not possible to distinguish the effect of such local radiation on body growth. The pre-radiation treatment did not have any effect on thyroid weight during two weeks post-radiation, suggesting that a four week post-radiation period is essential to elicit radiation effects on the thyroid. Contrary to low iodine treatment, administration of PTU did not result in any increase in pituitary weight in rats maintained on normal diet prior to radiation or in rats maintained on low iodine diet prior to radiation. There was, however, a significant increase in pituitary weight in rats injected with thyroxine prior to radiation (250R or 400R). A significant increase in serum TSH was observed two weeks after radiation and PTU treatment. A lower TSH level was observed, however, in the 250R sub-group (normal diet or T 4 injection) and in the 400R sub-group (low iodine diet). There was a significant difference among sham-irradiated and the three x-irradiated sub-groups maintained on low iodine diet. The results of these studies indicate that local x irradiation with 100 to 400R to the neck may influence thyroid/pituitary function in the rat

  13. Diet-induced thermogenesis is lower in rats fed a lard diet than in those fed a high oleic acid safflower oil diet, a safflower oil diet or a linseed oil diet.

    Science.gov (United States)

    Takeuchi, H; Matsuo, T; Tokuyama, K; Shimomura, Y; Suzuki, M

    1995-04-01

    The objectives of the present study were to examine the effects of dietary fats differing in fatty acid composition on diet-induced thermogenesis, sympathetic activity in brown adipose tissue and body fat accumulation in rats. Rats were meal-fed for 12 wk an isoenergetic diet based on lard, high oleic acid safflower oil, safflower oil or linseed oil, and norepinephrine turnover rates in brown adipose tissue were then estimated. Whole-body oxygen consumption after the meal indicated that diet-induced thermogenesis was significantly lower in rats fed the lard diet than in those fed the other diets. The norepinephrine turnover rate in the interscapular brown adipose tissue was also significantly lower in the lard diet group than in the other diet groups. The carcass fat content was significantly higher in the lard diet group than in the other diet groups, whereas the abdominal adipose tissue weights were the same in all diet groups. These results suggest that the intake of animal fats rich in saturated fatty acids, compared with the intake of vegetable oils rich in monounsaturated or polyunsaturated fatty acids, decreases diet-induced thermogenesis by a decline of sympathetic activity in brown adipose tissue, resulting in the promotion of body fat accumulation.

  14. Differential effects of hypercaloric choice diets on insulin sensitivity in rats

    NARCIS (Netherlands)

    Diepenbroek, Charlene; Eggels, Leslie; Ackermans, Mariëtte T.; Fliers, Eric; Kalsbeek, Andries; Serlie, Mireille J.; la Fleur, Susanne E.

    2017-01-01

    We showed previously that rats on a free-choice high-fat, high-sugar (fcHFHS) diet become rapidly obese and develop glucose intolerance within a week. Interestingly, neither rats on a free-choice high-fat diet (fcHF), although equally obese and hyperphagic, nor rats on a free-choice high-sugar

  15. Lean rats gained more body weight than obese ones from a high-fibre diet.

    Science.gov (United States)

    Li, Shaoting; Zhang, Cheng; Gu, Yingyi; Chen, Long; Ou, Shiyi; Wang, Yong; Peng, Xichun

    2015-10-28

    There is controversy over previous findings that a high ratio of Firmicutes to Bacteriodetes helps obese animals harvest energy from the diet. To further investigate the relationship between microbial composition and energy harvest, microbial adaptation to diet and time should be considered. In this study, lean and obese rats were successfully induced with low-fat and high-fat diets. An 8-week high soyabean fibre (HSF)-containing diet was then fed to investigate the interaction between the diet and the rats' gut microbiota, as well as their influence on rats' growth. Rats' body weight (BW) was recorded weekly; their plasma lipids and their gut microbiota at week 11, 15 and 19 were analysed. After the consumption of the HSF diet, BW of lean rats increased significantly (Pcontent of plasma cholesterol was lowered and that of TAG was upgraded in both the groups when fed the HSF diet. There was no significant difference observed at each period between lean and obese rats. In the group of lean rats, the diversity of gut microbiota was elevated strongly (Pbacterial diversity and composition in obese rats were less altered after the HSF diet control. In conclusion, the increased Firmicutes and Bacteriodetes might relate to lean rats' higher BW gain; 'obese microbiota' could not help the hosts harvest more energy from the HSF diet.

  16. Effects of NS lactobacillus strains on lipid metabolism of rats fed a high-cholesterol diet

    Science.gov (United States)

    2013-01-01

    Background Elevated serum cholesterol level is generally considered to be a risk factor for the development of cardiovascular diseases which seriously threaten human health. The cholesterol-lowering effects of lactic acid bacteria have recently become an area of great interest and controversy for many researchers. In this study, we investigated the effects of two NS lactobacillus strains, Lactobacillus plantarum NS5 and Lactobacillus delbrueckii subsp. bulgaricus NS12, on lipid metabolism of rats fed a high cholesterol diet. Methods Thirty-two SD rats were assigned to four groups and fed either a normal or a high-cholesterol diet. The NS lactobacillus treated groups received the high-cholesterol diet supplemented with Lactobacillus plantarum NS5 or Lactobacillus delbrueckii subsp. bulgaricus NS12 in drinking water. The rats were sacrificed after a 6-week feeding period. Body weights, visceral organ and fat weights, serum and liver cholesterol and lipid levels, intestinal microbiota and liver mRNA expression levels related to cholesterol metabolism were analyzed. Liver lipid deposition and adipocyte size were evaluated histologically. Results Compared with rats fed a high cholesterol diet, serum total cholesterol, low-density lipoprotein cholesterol, apolipoprotein B and free fatty acids levels were decreased and apolipoprotein A-I level was increased in NS5 or NS12 strain treated rats, and with no significant change in high-density lipoprotein cholesterol level. Liver cholesterol and triglyceride levels were also significantly decreased in NS lactobacillus strains treated groups. Meanwhile, the NS lactobacillus strains obviously alleviated hepatic injuries, decreased liver lipid deposition and reduced adipocyte size of high cholesterol diet fed rats. NS lactobacillus strains restored the changes in intestinal microbiota compositions, such as the increase in Bacteroides and the decrease in Clostridium. NS lactobacillus strains also regulated the mRNA expression

  17. Obesity And Laboratory Diets Affects Tissue Malondialdehyde (MDA) Levels In Obese Rats

    Science.gov (United States)

    Chowdhury, Parimal; Scott, Joseph; Holley, Andy; Hakkak, Reza

    2010-04-01

    This study was conducted to investigate the interaction of obesity and laboratory diets on tissue malondialdehyde levels in rats. Female Zucker obese and lean rats were maintained on either regular grain-based diet or purified casein diet for two weeks, orally gavaged at day 50 with 65 mg/kg DMBA and sacrificed 24 hrs later. Malondialdehyde (MDA) levels were measured in blood and harvested tissues. Data were recorded as mean ± SEM and analyzed statistically. Results show that the obese group on purified casein diet had reduction of MDA levels in the brain, duodenum, liver, lung and kidney tissues as compared to lean group, p <0.05. Obese group on grain-based diet showed significant increase in MDA levels only in the duodenum, p <0.05. We conclude that dietary intervention differentially affects the oxidative markers in obese rats. It appears that purified casein diets were more effective than grain-based diet in reduction of oxidative stress in obese rats.

  18. Centrally administered urocortin 2 decreases gorging on high-fat diet in in both diet induced obesity-prone and -resistant rats

    Science.gov (United States)

    Cottone, Pietro; Sabino, Valentina; Nagy, Tim R.; Coscina, Donald V.; Levin, Barry E.; Zorrilla, Eric P.

    2013-01-01

    Objective Obesity is a costly, deadly public health problem for which new treatments are needed. Individual differences in meal pattern have been proposed to play a role in obesity risk. The present study tested the hypothesis that i) the microstructure of chronic high-fat diet intake differs between genetically selected Diet-Induced Obesity (DIO) and Diet Resistant (DR) rats, and ii) central administration of urocortin 2 (Ucn 2), a corticotropin-releasing factor type 2 (CRF2) agonist, decreases high-fat diet intake not only in lean DR rats, but also in obese DIO rats. Design Male, selectively bred DIO and DR rats (n=10/genotype) were chronically fed a high-fat diet. Food and water intake as well as ingestion microstructure were then compared under baseline conditions and following third intracerebroventricular injection of Ucn 2 (0, 0.1, 0.3, 1, 3 µg). Results Irrespective of genotype, Ucn 2 reduced nocturnal food intake with a minimum effective dose of 0.3 µg, suppressing high-fat diet intake by ~40% at the 3 µg dose. Ucn 2 also made rats of both genotypes eat smaller and briefer meals, including at doses that did not reduce drinking. Obese DIO rats ate fewer but larger meals than DR rats, which they ate more quickly and consumed with 2/3rd less water. Conclusions Unlike leptin and insulin, Ucn 2 retains its full central anorectic efficacy to reduce high-fat diet intake even in obese, genetically-prone DIO rats, which otherwise show a “gorging” meal pattern. These results open new opportunities of investigation towards treating some forms of diet-induced obesity. PMID:23478425

  19. HEPATIC FATTY ACID PROFILE OF RATS FED A TRIHEPTANOIN-BASED KETOGENIC DIET.

    Science.gov (United States)

    Vieira de Melo, Ingrid Sofia; Da Rocha Ataide, Terezinha; Lima de Oliveira, Suzana; Bezerra Bueno, Nassib; Duarte de Freitas, Johnnatan; Goulart Sant'Ana, Antônio Euzébio

    2015-07-01

    the aim of this study was to evaluate the influence of consumption of a ketogenic diet supplemented with triheptanoin, a medium-chain anaplerotic triacylglycerol, on the liver fatty acid profile of Wistar rats. three groups of male Wistar rats (n = 10) were submitted to an AIN-93 control diet, a triheptanoin- based ketogenic diet, or a soybean oil-based ketogenic diet for 60 days. Excised livers were subjected to lipid extraction and methylation to obtain fatty acids methyl esters, which were subjected to gas chromatography- mass spectrometry. compared to the rats fed the control diet, those fed ketogenic diets showed a significant reduction in the concentrations of 9-hexadecenoic and 9-octadecenoic acids, whereas those fed triheptanoin showed increased levels of octadecanoic acid. changes in the liver fatty acid profiles of the rats fed a triheptanoin-based or a soybean oil-based ketogenic diet did not seem to be related to the dietary fat source, but rather to the characteristics of the ketogenic diets themselves. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  20. The hypolipidaemic effect of gum tragacanth in diet induced hyperlipidaemia in rats.

    Science.gov (United States)

    Amer, S; Kamil, R; Siddiqui, P Q

    1999-07-01

    Previous research indicated that fiber in the diet of men lowers plasma lipid and LDL cholesterol concentration. To further study the lipid lowering effect of fibre, we conducted an animal study using rats with diet induced hyperlipidaemia. Rats were randomly assigned to one of the three experimental diets. Two of the diets contained cholesterol and choice acid to induce hyperlipidaemia, the fiber source in the hyperlipidaemic diet was gum tragacanth (5%). The rats consumed one of the three diets ad libitum for 4 weeks before they were killed. Plasma LDL cholesterol and total cholesterol concentrations were significantly higher in the hyperlipidaemic group than in the non hyperlipidaemic control group. A marked improvement in the plasma LDL cholesterol and total cholesterol concentration was observed in the rats that were fed hyperlipidaemic diet containing grum tragacanth. No significant difference in the plasma triglyceride concentration was detected in the three groups. Plasma HDL concentration was significantly higher in the non-hyperlipidaemic group than in the hyperlipidaemic group than. Addition of gum tragacanth to the hyperlipidaemic diet significantly improved the plasma HDL concentration in the hyperlipidaemic rats. These results suggest that fiber from gum tragacanth lowers plasma cholesterol and LDL in hyperlipidaemia. Gum tragacanth could be useful adjunct to the dietary management of hyperlipidaemia.

  1. A diet containing grape powder ameliorates the cognitive decline in aged rats with a long-term high-fructose-high-fat dietary pattern.

    Science.gov (United States)

    Chou, Liang-Mao; Lin, Ching-I; Chen, Yue-Hwa; Liao, Hsiang; Lin, Shyh-Hsiang

    2016-08-01

    Research has suggested that the consumption of foods rich in polyphenols is beneficial to the cognitive functions of the elderly. We investigated the effects of grape consumption on spatial learning, memory performance and neurodegeneration-related protein expression in aged rats fed a high-fructose-high-fat (HFHF) diet. Six-week-old Wistar rats were fed an HFHF diet to 66 weeks of age to establish a model of an HFHF dietary pattern, before receiving intervention diets containing different amounts of grape powder for another 12 weeks in the second part of the experiment. Spatial learning, memory performance and cortical and hippocampal protein expression levels were assessed. After consuming the HFHF diet for a year, results showed that the rats fed a high grape powder-containing diet had significantly better spatial learning and memory performance, lower expression of β-amyloid and β-secretase and higher expression of α-secretase than the rats fed a low grape powder-containing diet. Therefore, long-term consumption of an HFHF diet caused a decline in cognitive functions and increased the risk factors for neurodegeneration, which could subsequently be ameliorated by the consumption of a polyphenol-rich diet. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Hyperproteic diet and pregnancy of rat.

    Science.gov (United States)

    Greco, A M; Sticchi, R; Gambardella, P; D'Aponte, D; Ferrante, P

    1986-01-01

    We have studied the effects of a purified diet enriched with animal protein (casein 40%, lactalbumin 20%) on different stages of rat pregnancy. We observed that hyperproteic diet, especially when administered from the first day of pregnancy, induces morphological alterations of liver, adrenal cortex, heart and kidney. Moreover, haematic dosages, carried out on 15th day of pregnancy, have shown moderate but significant increase of glucose and triglycerides and significant decrease of circulating aldosterone and corticosterone as well. Finally an early administration of hyperproteic diet causes less numerous litters and high mortality rate at birth.

  3. [Vitamin E and experimental caries in rats fed a cariogenic diet and zinc].

    Science.gov (United States)

    Rapisarda, E; Longo, A

    1981-01-01

    A cariogenic diet with zinc and vitamin E administered to rats for 90 days led to a reduction in caries of 21.87% by comparison with animals fed with the cariogenic diet only, and 3.12% by comparison with those that received the diet plus zinc. Although the details of the mechanism of action of vitamin E are not fully known, it is felt that its demonstrated cariostatic effect depends on its antioxidant activity and its protection of the sulphydryl groups of some enzyme system, together with its direct intervention in cell respiration. Since both vitamin E and zinc activate NAD-dependent LDH, their simultaneous administration enhances their individual cariostatic effects by bringing about a lower accumulation of lactic acid in the bacterial plaque.

  4. Dietary taurine alters ascorbic acid metabolism in rats fed diets containing polychlorinated biphenyls.

    Science.gov (United States)

    Mochizuki, H; Oda, H; Yokogoshi, H

    2000-04-01

    The effect of dietary taurine on ascorbic acid metabolism and hepatic drug-metabolizing enzymes was investigated in rats fed diets containing polychlorinated biphenyls (PCB) to determine whether taurine has an adaptive and protective function in xenobiotic-treated animals. Young male Wistar rats (60 g) were fed diets containing 0 or 0.2 g/kg diet PCB with or without 30 g/kg diet of taurine for 14 d. The rats fed the PCB-containing diets had greater liver weight, higher ascorbic acid concentrations in the liver and spleen and greater hepatic cytochrome P-450 contents than control rats that were not treated with PCB (P ascorbic acid excretion was enhanced, and serum cholesterol concentration (especially HDL-cholesterol) was significantly elevated compared with those in control rats. Dietary taurine significantly potentiated the increases in the urinary excretion of ascorbic acid and the rise in the levels of cytochrome P-450 which were caused by PCB treatment. On the other hand, the supplementation of taurine to control diet did not alter these variables. Taurine may enhance the hepatic drug-metabolizing systems, leading to the stimulation of the ascorbic acid metabolism in rats fed diets containing PCB.

  5. Decaffeinated coffee consumption induces expression of tight junction proteins in high fat diet fed rats

    Directory of Open Access Journals (Sweden)

    Mazzone G

    2016-09-01

    Full Text Available Background: Recent evidence indicates that gut microbiota plays a key role in the development of NAFLD through the gut-liver axis. An altered gut permeability induced by alterations of tight junction (TJ proteins allows the passage of bacteria and substances leading to liver inflammation, hepatocyte damage and fibrosis. This study aims to evaluate the influence of decaffeinated coffee on gut permeability in a rat model of fat liver damage induced by a high fat diet (HFD. Methods: Twelve male Wistar rats were assigned to 3 groups. The first group received HFD for 5 months and drank water. The second group received HFD for 5 months and drank water added with 1.2mL decaffeinated coffee/day starting from the 4th month. The third group received standard diet (SD and drank water. Protein and mRNA expression levels of Toll-Like Receptor- 4 (TLR-4, Occludin and Zonula occludens-1 (ZO-1 were assessed in rat intestines. Results: A significant reduction of Occludin and ZO-1 was observed in HFD fed rats (0.97±0.05 vs 0.15±0.08 p˂0.01, and 0.97±0.05 vs 0.57±0.14 p˂0.001 respectively. This reduction was reverted in HFD+COFFEE rats (0.15±0.08 vs 0.83±0.27 p˂0.01 and 0.57±0.14 vs 0.85±0.12 p˂0.01 respectively. The TLR-4 expression up-regulated by HFD was partially reduced by coffee administration. Conclusions: HFD impairs the intestinal TJ barrier integrity. Coffee increases the expression of TJ proteins, reverting the altered gut permeability and reducing TLR-4 expression.

  6. Protective effect of lycopene on high-fat diet-induced cognitive impairment in rats.

    Science.gov (United States)

    Wang, Zhiqiang; Fan, Jin; Wang, Jian; Li, Yuxia; Xiao, Li; Duan, Dan; Wang, Qingsong

    2016-08-03

    A Western diet, high in saturated fats, has been linked to the development of cognitive impairment. Lycopene has recently received considerable attention for its potent protective properties demonstrated in several models of nervous system dysfunction. However, it remains unclear whether lycopene exerts protective effects on cognition. The present study aimed to investigate the protective effects of lycopene on learning and memory impairment and the potential underlying mechanism in rats fed a high-fat diet (HFD). One-month-old male rats were fed different diets for 16 weeks (n=12 per group), including a standard chow diet (CD), a HFD, or a HFD plus lycopene (4mg/kg, oral gavage in the last three weeks). Behavioral testing, including the Morris water maze (MWM), object recognition task (ORT), and anxiety-like behavior in an open field (OF), were assessed at week 16. The dendritic spine density and neuronal density in the hippocampal CA1 subfield were subsequently measured. The results indicate that HFD consumption for 16 weeks significantly impaired spatial memory (Plycopene significantly attenuated learning and memory impairments and prevented the reduction in dendritic spine density (Plycopene helps to protect HFD induced cognitive dysfunction. Copyright © 2016. Published by Elsevier Ireland Ltd.

  7. Moringa oleifera-rich diet and T cell calcium signaling in spontaneously hypertensive rats.

    Science.gov (United States)

    Attakpa, E S; Bertin, G A; Chabi, N W; Ategbo, J-M; Seri, B; Khan, N A

    2017-11-24

    Moringa oleifera is a plant whose fruits, roots and leaves have been advocated for traditional medicinal uses. The physicochemical analysis shows that Moringa oleifera contains more dietary polyunsaturated fatty acids (PUFA) than saturated fatty acids (SFA). The consumption of an experimental diet enriched with Moringa oleifera extracts lowered blood pressure in spontaneously hypertensive rats (SHR), but not in normotensive Wistar-Kyoto (WKY) rats as compared to rats fed an unsupplemented control diet. Anti-CD3-stimulated T cell proliferation was diminished in both strains of rats fed the Moringa oleifera. The experimental diet lowered secretion of interleukin-2 in SHR, but not in WKY rats compared with rats fed the control diet. Studies of platelets from patients with primary hypertension and from SHR support the notion that the concentration of intracellular free calcium [Ca(2+)](i) is modified in both clinical and experimental hypertension. We observed that the basal, [Ca(2+)](i) was lower in T cells of SHR than in those of WKY rats fed the control diet. Feeding the diet with Moringa oleifera extracts to WKY rats did not alter basal [Ca(2+)](i) in T cells but increased basal [Ca(2+)](i) in SHR. Our study clearly demonstrated that Moringa oleifera exerts antihypertensive effects by inhibiting the secretion of IL-2 and modulates T cell calcium signaling in hypertensive rats.

  8. High fat diet and inflammation - modulation of Haptoglobin level in rat brain

    Directory of Open Access Journals (Sweden)

    Maria Stefania eSpagnuolo

    2015-12-01

    Full Text Available Obesity and dietary fats are well known risk factors for the pathogenesis of neurodegenerative diseases. The analysis of specific markers, whose brain level can be affected by diet, might contribute to unveil the intersection between inflammation/obesity and neurodegeneration. Haptoglobin (Hpt is an acute phase protein, which acts as antioxidant by binding free Haemoglobin (Hb, thus neutralizing its pro-oxidative action. We previously demonstrated that Hpt plays critical functions in brain, modulating cholesterol trafficking in neuroblastoma cell lines, beta-amyloid (Aβ uptake by astrocyte, and limiting Aβ toxicity on these cells. A major aim of this study was to evaluate whether a long term (12 or 24 weeks high-fat diet (HFD influences Hpt and Hb expression in rat hippocampus. We also assessed the development of obesity-induced inflammation by measuring hippocampal level of TNF-alpha, and the extent of protein oxidation by titrating nitro-tyrosine (N-Tyr. Hpt concentration was lower (p<0.001 in hippocampus of HFD rats than in control animals, both in the 12 and in the 24 weeks fed groups. HFD was also associated in hippocampus with the increase of Hb level (p<0.01, inflammation and protein oxidative modification, as evidenced by the increase in the concentration of TNF-alpha and nitro-tyrosine. In fact, TNF-alpha concentration was higher in rats receiving HFD for 12 (p<0.01 or 24 weeks (p<0.001 compared to those receiving the control diet. N-Tyr concentration was more elevated in hippocampus of HFD than in control rats in both 12 weeks (p=0.04 and 24 weeks groups (p=0.01, and a positive correlation between Hb and N-Tyr concentration was found in each group. Finally, we found that the treatment of the human glioblastoma-astrocytoma cell line U-87 MG with cholesterol and fatty acids, such as palmitic and linoleic acid, significantly impairs (p<0.001 Hpt secretion in the extracellular compartment.We hypothesize that the HFD-dependent decrease of

  9. High-NaCl diet impairs dynamic renal blood flow autoregulation in rats with adenine-induced chronic renal failure.

    Science.gov (United States)

    Saeed, Aso; DiBona, Gerald F; Grimberg, Elisabeth; Nguy, Lisa; Mikkelsen, Minne Line Nedergaard; Marcussen, Niels; Guron, Gregor

    2014-03-15

    This study examined the effects of 2 wk of high-NaCl diet on kidney function and dynamic renal blood flow autoregulation (RBFA) in rats with adenine-induced chronic renal failure (ACRF). Male Sprague-Dawley rats received either chow containing adenine or were pair-fed an identical diet without adenine (controls). After 10 wk, rats were randomized to either remain on the same diet (0.6% NaCl) or to be switched to high 4% NaCl chow. Two weeks after randomization, renal clearance experiments were performed under isoflurane anesthesia and dynamic RBFA, baroreflex sensitivity (BRS), systolic arterial pressure variability (SAPV), and heart rate variability were assessed by spectral analytical techniques. Rats with ACRF showed marked reductions in glomerular filtration rate and renal blood flow (RBF), whereas mean arterial pressure and SAPV were significantly elevated. In addition, spontaneous BRS was reduced by ∼50% in ACRF animals. High-NaCl diet significantly increased transfer function fractional gain values between arterial pressure and RBF in the frequency range of the myogenic response (0.06-0.09 Hz) only in ACRF animals (0.3 ± 4.0 vs. -4.4 ± 3.8 dB; P renal failure by facilitating pressure transmission to the microvasculature.

  10. Aqueous seed extract of Hunteria umbellata (K. Schum.) Hallier f. (Apocynaceae) palliates hyperglycemia, insulin resistance, dyslipidemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Ajiboye, T O; Hussaini, A A; Nafiu, B Y; Ibitoye, O B

    2017-02-23

    Hunteria umbellata is used in the management and treatment of diabetes and obesity in Nigeria. This study evaluates the effect of aqueous seed extract of Hunteria umbellata on insulin resistance, dyslipidemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome MATERIALS AND METHODS: Rats were randomized into seven groups (A-G). Control (group A) and group C rats received control diet for nine weeks while rats in groups B, D - G were placed on high-fructose diet for 9 weeks. In addition to the diets, groups C - F rats orally received 400, 100, 200 and 400mg/kg body weight aqueous seed extract of Hunteria umbellata for 3 weeks starting from 6th - 9th week. High-fructose diet (when compared to control rats) mediated a significant (phigh-density lipoprotein cholesterol was decreased significantly. Levels of proinflammatory factor, tumour necrosis factor-α, interleukin-6 and 8 were also increased by the high fructose diet. Moreover, it mediated decrease in activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose 6-phosphate dehydrogenase and level of glutathione reduced. Conversely, levels of malondialdehyde, conjugated dienes, lipid hydroperoxides, protein carbonyl and fragmented DNA were elevated. Aqueous seed extract of Hunteria umbellata significantly ameliorated the high fructose diet-mediated alterations. From this study, it is concluded that aqueous seed extract of Hunteria umbellata possesses hypoglycemic, hypolipidemic and antioxidants abilities as evident from its capability to extenuate insulin resistance, dyslipidemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome rats. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  11. Life-long Maternal Cafeteria Diet Promotes Tissue-Specific Morphological Changes in Male Offspring Adult Rats

    Directory of Open Access Journals (Sweden)

    CAROLYNE D.S. SANTOS

    Full Text Available ABSTRACT Here, we evaluated whether the exposure of rats to a cafeteria diet pre- and/or post-weaning, alters histological characteristics in the White Adipose Tissue (WAT, Brown Adipose Tissue (BAT, and liver of adult male offspring. Female Wistar rats were divided into Control (CTL; fed on standard rodent chow and Cafeteria (CAF; fed with the cafeteria diet throughout life, including pregnancy and lactation. After birth, only male offspring (F1 were maintained and received the CTL or CAF diets; originating four experimental groups: CTL-CTLF1; CTL-CAFF1; CAF-CTLF1; CAF-CAFF1. Data of biometrics, metabolic parameters, liver, BAT and WAT histology were assessed and integrated using the Principal Component Analysis (PCA. According to PCA analysis worse metabolic and biometric characteristics in adulthood are associated with the post-weaning CAF diet compared to pre and post weaning CAF diet. Thus, the CTL-CAFF1 group showed obesity, higher deposition of fat in the liver and BAT and high fasting plasma levels of glucose, triglycerides and cholesterol. Interestingly, the association between pre and post-weaning CAF diet attenuated the obesity and improved the plasma levels of glucose and triglycerides compared to CTL-CAFF1 without avoiding the higher lipid accumulation in BAT and in liver, suggesting that the impact of maternal CAF diet is tissue-specific.

  12. Short exposure to a diet rich in both fat and sugar or sugar alone impairs place, but not object recognition memory in rats.

    Science.gov (United States)

    Beilharz, Jessica E; Maniam, Jayanthi; Morris, Margaret J

    2014-03-01

    High energy diets have been shown to impair cognition however, the rapidity of these effects, and the dietary component/s responsible are currently unclear. We conducted two experiments in rats to examine the effects of short-term exposure to a diet rich in sugar and fat or rich in sugar on object (perirhinal-dependent) and place (hippocampal-dependent) recognition memory, and the role of inflammatory mediators in these responses. In Experiment 1, rats fed a cafeteria style diet containing chow supplemented with lard, cakes, biscuits, and a 10% sucrose solution performed worse on the place, but not the object recognition task, than chow fed control rats when tested after 5, 11, and 20 days. In Experiment 2, rats fed the cafeteria style diet either with or without sucrose and rats fed chow supplemented with sucrose also performed worse on the place, but not the object recognition task when tested after 5, 11, and 20 days. Rats fed the cafeteria diets consumed five times more energy than control rats and exhibited increased plasma leptin, insulin and triglyceride concentrations; these were not affected in the sucrose only rats. Rats exposed to sucrose exhibited both increased hippocampal inflammation (TNF-α and IL-1β mRNA) and oxidative stress, as indicated by an upregulation of NRF1 mRNA compared to control rats. In contrast, these markers were not significantly elevated in rats that received the cafeteria diet without added sucrose. Hippocampal BDNF and neuritin mRNA were similar across all groups. These results show that relatively short exposures to diets rich in both fat and sugar or rich in sugar, impair hippocampal-dependent place recognition memory prior to the emergence of weight differences, and suggest a role for oxidative stress and neuroinflammation in this impairment. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  13. High-protein diet selectively reduces fat mass and improves glucose tolerance in Western-type diet-induced obese rats

    Science.gov (United States)

    Stengel, Andreas; Goebel-Stengel, Miriam; Wang, Lixin; Hu, Eugenia; Karasawa, Hiroshi; Pisegna, Joseph R.

    2013-01-01

    Obesity is an increasing health problem. Because drug treatments are limited, diets remain popular. High-protein diets (HPD) reduce body weight (BW), although the mechanisms are unclear. We investigated physiological mechanisms altered by switching diet induced obesity (DIO) rats from Western-type diet (WTD) to HPD. Male rats were fed standard (SD) or WTD (45% calories from fat). After developing DIO (50% of rats), they were switched to SD (15% calories from protein) or HPD (52% calories from protein) for up to 4 weeks. Food intake (FI), BW, body composition, glucose tolerance, insulin sensitivity, and intestinal hormone plasma levels were monitored. Rats fed WTD showed an increased FI and had a 25% greater BW gain after 9 wk compared with SD (P Diet-induced obese rats switched from WTD to HPD reduced daily FI by 30% on day 1, which lasted to day 9 (−9%) and decreased BW during the 2-wk period compared with SD/SD (P < 0.05). During these 2 wk, WTD/HPD rats lost 72% more fat mass than WTD/SD (P < 0.05), whereas lean mass was unaltered. WTD/HPD rats had lower blood glucose than WTD/SD at 30 min postglucose gavage (P < 0.05). The increase of pancreatic polypeptide and peptide YY during the 2-h dark-phase feeding was higher in WTD/HPD compared with WTD/SD (P < 0.05). These data indicate that HPD reduces BW in WTD rats, which may be related to decreased FI and the selective reduction of fat mass accompanied by improved glucose tolerance, suggesting relevant benefits of HPD in the treatment of obesity. PMID:23883680

  14. Study on the effects of consumption of milk containing Lactobacillus acidophilus on serum lipid trends and weight gain of rats fed high lipid diet

    Directory of Open Access Journals (Sweden)

    H Mirzaei

    2008-02-01

    Full Text Available Despite the significant progresses made in the reduction of mortality due to cardiovascular diseases, they are still the primary cause of death in many countries and hyperlipidemia is an important causal agent of cardiovascular diseases. Probiotics are food supplements containing live microbes which balance the flora of the digestive system and produce positive effects in the host body. L.acidophilus is a beneficial bacterium used in the production of probiotic products .The aim of this study is to evaluate the effects of consumption of milk containing L.acidophilus on serum lipid trends of rats fed high lipid diet. This is an experimental study in which 30 male albino Wistar rats with a body weight of 200±15 gr. were randomly allocated to two groups of treatment and control each containing 15 rats which were adapted to a high lipid diet (11.74% and water containing 25% milk within a week. Rats in both groups received high lipid diet and water containing 25% milk for 60 days with the exception that rats in the treatment group received water containing L. acidophilus at a level of 109 CFU/rat/day throughout the experiment. Independent t-test revealed that at a level of α= 0.05, mean levels of total cholesterol and LDL-C of rats in the treatment group was significantly lower than the control group (p

  15. Increased susceptibility of post-weaning rats on high-fat diet to metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Hong Sheng Cheng

    2017-11-01

    Full Text Available The present study aimed to examine the effects of the types of high-calorie diets (high-fat and high-fat-high-sucrose diets and two different developmental stages (post-weaning and young adult on the induction of metabolic syndrome. Male, post-weaning and adult (3- and 8-week old, respectively Sprague Dawley rats were given control, high-fat (60% kcal, and high-fat-high-sucrose (60% kcal fat + 30% sucrose water diets for eight weeks (n = 6 to 7 per group. Physical, biochemical, and transcriptional changes as well as liver histology were noted. Post-weaning rats had higher weight gain, abdominal fat mass, fasting glucose, high density lipoprotein cholesterol, faster hypertension onset, but lower circulating advanced glycation end products compared to adult rats. This is accompanied by upregulation of peroxisome proliferator-activated receptor (PPAR α and γ in the liver and receptor for advanced glycation end products (RAGE in the visceral adipose tissue. Post-weaning rats on high-fat diet manifested all phenotypes of metabolic syndrome and increased hepatic steatosis, which are linked to increased hepatic and adipocyte PPARγ expression. Adult rats on high-fat-high-sucrose diet merely became obese and hypertensive within the same treatment duration. Thus, it is more effective and less time-consuming to induce metabolic syndrome in male post-weaning rats with high-fat diet compared to young adult rats. As male rats were selectively included into the study, the results may not be generalisable to all post-weaning rats and further investigation on female rats is required.

  16. Moringa oleifera-based diet protects against nickel-induced hepatotoxicity in rats

    Science.gov (United States)

    Stephen Adeyemi, Oluyomi; Sokolayemji Aroge, Cincin; Adewumi Akanji, Musbau

    2017-01-01

    Multiple health-promoting effects have been attributed to the consumption of Moringa oleifera leaves, as part of diet without adequate scientific credence. This study evaluated the effect of M. oleifera-based diets on nickel (Ni) - induced hepatotoxicity in rats. Male rats assigned into six groups were given oral administration of 20 mg/kg body weight nickel sulfate in normal saline and either fed normal diet orM. oleifera-based diets for 21 days. All animals were sacrificed under anesthesia 24 hours after the last treatment. Ni exposure elevated the rat plasma activities of alanine transaminase, aspartate transaminase and alkaline phosphatase significantly. Ni exposure also raised the levels of triglyceride, total cholesterol and low-density lipoprotein cholesterol while depleting the high-density lipoprotein cholesterol concentration. Further, Ni exposure raised rat plasma malondialdehyde but depleted reduced glutathione concentrations. The histopathological presentations revealed inflammation and cellular degeneration caused by Ni exposure. We show evidence thatM. oleifera-based diets protected against Ni-induced hepatotoxicity by improving the rat liver function indices, lipid profile as well as restoring cellular architecture and integrity. Study lends credence to the health-promoting value ofM. oleifera as well as underscores its potential to attenuate hepatic injury. PMID:28808207

  17. Food intake and weight of lactating rats maintained on different protein-calorie diets, and pup growth

    Directory of Open Access Journals (Sweden)

    R.P.B. Cambraia

    1997-08-01

    Full Text Available Studies on rats maintained on low-protein-calorie diets during the lactation period show that food intake decreases. This process results in weight loss and a delay in litter development. The purpose of the present study was to determine the alterations in food intake, maternal weight and litter growth during lactation when dams were exposed to diets with different levels of protein and carbohydrate. Female Wistar rats receiving one of 4 different diets, A (N = 14, B (N = 14, C (N = 9 and D (N = 9, were used. Diet A contained 16% protein and 66% carbohydrate; diet B, 6% protein and 77% carbohydrate; diet C, 6% protein and 66% carbohydrate; diet D, 16% protein and 56% carbohydrate. Thus, C and D diets were hypocaloric, while A and B were isocaloric. The intake of a low-protein diet in groups B and C affected the weight of dams and litters during the last two weeks of lactation, while the low-calorie diets limited the growth of D litters at 21 days compared with A litters, but had no effect on the weight of D dams. Group B showed an increase in intake during the first five days of lactation, resulting in a behavioral calorie compensation due to the increase in carbohydrate content, but the intake decreased during the last part of lactation. Food intake regulation predominantly involves the recruitment of a variety of peripheral satiety systems that attempt to decrease the central feeding command system.

  18. Investigation on the absorption of 14C-leucine and 15N-leucine in rats after feeding a fish meal diet in comparison with a gelatine diet

    International Nuclear Information System (INIS)

    Bergner, U.; Adam, K.; Bergner, H.

    1981-01-01

    Albino rats received after nine days of adaptation to a fish meal diet in comparison with a gelatine diet 14 C-U-L-leucine and 15 N-L-leucine via a pellet made from the specific diet after food deprivation for 15 h. Thereafter, the animals consumed the non-labelled experimental diet ad libitum. 30 min, and 1, 2, 4 and 8 h, resp., after intake of the labelled food, four rats at a time were sacrificed. The contents of the digestive tract and tissue samples were examined for 14 C and 15 N and their percentages in the TCA-soluble fraction determined. If these values are regarded as non-absorbed leucine, the 14 C values obtained up to the four hour period of the experiment would be too high. Presumably, they are in the case of both diets simulated by other 14 C metabolites which originate from the leucine catabolism and reach the intestinal lumen. Amino acids labelled with 15 N should be preferred in studies on the absorption of amino acids because, in case of catabolization, the 15 N aminogroup is excreted mainly as urea via urine. (author)

  19. Diminished metabolic responses to centrally-administered apelin-13 in diet-induced obese rats fed a high-fat diet.

    Science.gov (United States)

    Clarke, K J; Whitaker, K W; Reyes, T M

    2009-02-01

    The central administration of apelin, a recently identified adipokine, has been shown to affect food and water intake. The present study investigated whether body weight could affect an animal's response to apelin. The effects of centrally-administered apelin-13 on food and water intake, activity and metabolic rate were investigated in adult male diet-induced obese (DIO) rats fed either a high fat (32%) or control diet. Rats were administered i.c.v. apelin-13, 15-30 min prior to lights out, and food and water intake, activity and metabolic rate were assessed. Intracerebroventricular administration of apelin-13 decreased food and water intake and respiratory exchange ratio in DIO rats on the control diet, but had no effect in DIO rats on the high-fat diet. In an effort to identify potential central mechanisms explaining the observed physiological responses, the mRNA level of the apelin receptor, APJ, was examined in the hypothalamus. A high-fat diet induced an up-regulation of the expression of the receptor. Apelin induced a down-regulation of the receptor, but only in the DIO animals on the high-fat diet. In conclusion, we have demonstrated a diminished central nervous system response to apelin that is coincident with obesity.

  20. Behavioral and Neurochemical Studies in Stressed and Unstressed Rats Fed on Protein, Carbohydrate and Fat Rich Diet

    Directory of Open Access Journals (Sweden)

    Samia Moin§, Saida Haider*, Saima Khaliq1, Saiqa Tabassum and Darakhshan J. Haleem

    2012-05-01

    Full Text Available Stress produces behavioral and neurochemical deficits. To study the relationship between adaptation to stress and macronutrient intake, the present study was designed to monitor the effects of different diets on feed intake, growth rate and serotonin (5-Hydroxytryptamine, 5-HT metabolism following exposure to restraint stress in rats. Rats were divided into four groups (n=12 as control, sugar, protein and fat rich diet fed rats. After 5 weeks of treatment animals of each group were divided into unrestrained and restrained animals (n=6. Rats of restrained group were given immobilization stress for 2 hours/day for 5 days. Food intake and growth rates of unrestrained and restrained rats were monitored daily. Rats were decapitated on 6th day to collect brain samples for neurochemical estimation. Results show that sugar diet fed rats produced adaptation to stress early as compared to normal diet fed rats. Food intake and growth rates of unrestrained and restrained rats were comparable on 3rd day in sugar diet fed rats and on 4th day in normal diet fed rats. Stress decreased food intake and growth rates of protein and fat treated rats. Repeated stress did not alter brain 5-HT and 5-HIAA levels of normal diet fed rats and sugar diet fed rats. Protein diet fed restrained rats showed elevated brain 5-HT levels. Fat diet fed restrained rats significantly decreased brain TRP and 5-HIAA levels. Finding suggested that carbohydrate diet might protect against stressful conditions. Study also showed that nutritional status could alter different behaviors in response to a stressful environment.

  1. Sardine protein diet increases plasma glucagon-like peptide-1 levels and prevents tissue oxidative stress in rats fed a high-fructose diet.

    Science.gov (United States)

    Madani, Zohra; Sener, Abdullah; Malaisse, Willy J; Dalila, Ait Yahia

    2015-11-01

    The current study investigated whether sardine protein mitigates the adverse effects of fructose on plasma glucagon‑like peptide-1 (GLP-1) and oxidative stress in rats. Rats were fed casein (C) or sardine protein (S) with or without high‑fructose (HF) for 2 months. Plasma glucose, insulin, GLP‑1, lipid and protein oxidation and antioxidant enzymes were assayed. HF rats developed obesity, hyperglycemia, hyperinsulinemia, insulin resistance and oxidative stress despite reduced energy and food intakes. High plasma creatinine and uric acid levels, in addition to albuminuria were observed in the HF groups. The S‑HF diet reduced plasma glucose, insulin, creatinine, uric acid and homeostasis model assessment‑insulin resistance index levels, however increased GLP‑1 levels compared with the C‑HF diet. Hydroperoxides were reduced in the liver, kidney, heart and muscle of S‑HF fed rats compared with C‑HF fed rats. A reduction in liver, kidney and heart carbonyls was observed in S‑HF fed rats compared with C‑HF fed rats. Reduced levels of nitric oxide (NO) were detected in the liver, kidney and heart of the S‑HF fed rats compared with C‑HF fed rats. The S diet compared with the C diet reduced levels of liver hydroperoxides, heart carbonyls and kidney NO. The S‑HF diet compared with the C‑HF diet increased the levels of liver and kidney superoxide dismutase, liver and muscle catalase, liver, heart and muscle glutathione peroxidase and liver ascorbic acid. The S diet prevented and reversed insulin resistance and oxidative stress, and may have benefits in patients with metabolic syndrome.

  2. A palatable hyperlipidic diet causes obesity and affects brain glucose metabolism in rats

    Directory of Open Access Journals (Sweden)

    Motoyama Caio SM

    2011-09-01

    Full Text Available Abstract Background We have previously shown that either the continuous intake of a palatable hyperlipidic diet (H or the alternation of chow (C and an H diet (CH regimen induced obesity in rats. Here, we investigated whether the time of the start and duration of these feeding regimens are relevant and whether they affect brain glucose metabolism. Methods Male Wistar rats received C, H, or CH diets during various periods of their life spans: days 30-60, days 30-90, or days 60-90. Experiments were performed the 60th or the 90th day of life. Rats were killed by decapitation. The glucose, insulin, leptin plasma concentration, and lipid content of the carcasses were determined. The brain was sliced and incubated with or without insulin for the analysis of glucose uptake, oxidation, and the conversion of [1-14C]-glucose to lipids. Results The relative carcass lipid content increased in all of the H and CH groups, and the H30-60 and H30-90 groups had the highest levels. Groups H30-60, H30-90, CH30-60, and CH30-90 exhibited a higher serum glucose level. Serum leptin increased in all H groups and in the CH60-90 and CH30-90 groups. Serum insulin was elevated in the H30-60, H60-90, CH60-90, CH30-90 groups. Basal brain glucose consumption and hypothalamic insulin receptor density were lower only in the CH30-60 group. The rate of brain lipogenesis was increased in the H30-90 and CH30-90 groups. Conclusion These findings indicate that both H and CH diet regimens increased body adiposity independent treatment and the age at which treatment was started, whereas these diets caused hyperglycemia and affected brain metabolism when started at an early age.

  3. [Correction of the combined vitamin deficiency in growing rats fed fiber enriched diets with different doses of vitamins].

    Science.gov (United States)

    Beketova, N A; Kodentsova, V M; Vrzhesinskaia, O A; Kosheleva, O V; Pereverzeva, O G; Sokol'nikov, A A; Aksenov, I V

    2014-01-01

    The effect of 5% dietary wheat bran (WB) on the correction of combined vitamin deficiency by two doses of vitamins (physiological and enhanced) has been analyzed using a rat model (8 groups, n = 8/group). Vitamin deficiency in male weanling Wistar rats (58.1 ± 0.5 g) was induced by 5-fold reduction of vitamin mixture amount in the feed and complete vitamin E, B1 and B2 exclusion from the mixture for 30 days, then deficit was corrected within 5 days. Rats from control group were fed a complete semisynthetic diet containing microcrystalline cellulose 2%. Vitamin deficient diet for 35 days resulted in reduced (p vitamin A in the liver by 25 fold, vitamin E and B1--2.0-2.3 fold, vitamin B2--by 40%, 25(OH)D blood plasma concentration--by 21% compared with the control. Feed consumption of the animals treated with vitamin deficient diet and WB was higher by 43% than in rats with vitamin deficit. Their rate of weight occupied the intermediate position between the rates of weight in deficit and in control animals, and they could not serve a full control to evaluate the WB impact on vitamin sufficiency. After filling the vitamin diet content to an adequate level vitamin E liver content was fully restored. To restore vitamins B1 and B2 liver level higher doses of vitamins (120-160% of adequate content) were required, and to restore the reduced levels of vitamin A in rat liver even 2-fold increased dose of vitamin A was insufficient. The diet enrichment with WB had no effect on vitamin B1 and B2 liver content, regardless of the amount of vitamins in the diet. Adding fiber to the diet of animals adequately provided with vitamins resulted in significantly 1,3-fold increase of 25(OH)D blood plasma concentration and a slight but significant decrease of α-tocopherol liver level by 16% as compared to rats not receiving WB. The enrichment of rat diet with dietary fibers worsened restoration of the reduced vitamin E status not only by filling vitamin content in the diet to an

  4. Sex-dependent effects of high-fat-diet feeding on rat pancreas oxidative stress.

    Science.gov (United States)

    Gómez-Pérez, Yolanda; Gianotti, Magdalena; Lladó, Isabel; Proenza, Ana M

    2011-07-01

    The objective of the study was to investigate whether sex differences in oxidative stress-associated insulin resistance previously reported in rats could be attributed to a possible sex dimorphism in pancreas redox status. Fifteen-month-old male and female Wistar rats were fed a control diet or a high-fat diet for 14 weeks. Serum glucose, lipids, and hormone levels were measured. Insulin immunohistochemistry and morphometric analysis of islets were performed. Pancreas triglyceride content, oxidative damage, and antioxidant enzymatic activities were determined. Lipoprotein lipase, hormone-sensitive lipase, and uncoupling protein 2 (UCP2) levels were also measured. Male rats showed a more marked insulin resistance profile than females. In control female rats, pancreas Mn-superoxide dismutase activity and UCP2 levels were higher, and oxidative damage was lower compared with males. High-fat-diet feeding decreased pancreas triglyceride content in female rats and UCP2 levels in male rats. High-fat-diet female rats showed larger islets than both their control and sex counterparts. These results confirm the existence of a sex dimorphism in pancreas oxidative status in both control and high-fat-diet feeding situations, with female rats showing higher protection against oxidative stress, thus maintaining pancreatic function and contributing to a lower risk of insulin resistance.

  5. Berberine improves insulin resistance induced by high fat diet in rats

    International Nuclear Information System (INIS)

    Zhou Libin; Yang Ying; Shang Wenbin; Li Fengying; Tang Jinfeng; Wang Xiao; Liu Shangquan; Yuan Guoyue; Chen Mingdao

    2005-01-01

    Objective: To observe the effect of berberine on insulin resistance induced by high fat diet in rats. Methods: Normal male SD rats (8 weeks old) were divided into two groups taking either normal chow (NC, n=9) or high fat diet (HF, n=20). After fourteen weeks, HF rats were divided into two groups. Ten rats continued to take high fat diet. Another ten rats took additional berberine gavage (HF+B, 150mg/kg weight once a day). Six weeks later, oral glucose tolerance test and insulin tolerance test were performed for estimating insulin sensitivity. Results: The body weight, liver weight and epididyaml fat pads weight of HF group were significantly higher than those of HF+B group and NC group (all P<0.01). Fasting plasma glucose, insulin and plasma glucose, insulin 2h after taking glucose in HF+B rats were significantly lower than those in HF rats (all P<0.01). Plasma glucose and insulin levels at all time points in HF rats were significantly higher than those in NC rats. Homa-IR of HF group was markedly higher than that of HF+B group (P<0.01). The glucose-lowering effects after the administration of insuin (0.5u/kg intrapenitoneally) at all time points in HF+B rats were stronger than those in HF rats with 23% and 7% reduction at 15min respectively. Conclusion: Long term high fat diet resulted in insulin resistance. Berberine was able to reverse insulin resistance through promoting peripheral tissue up taking of glucose and decreasing insulin, which would be quite ideal for the intervention of IGT. (authors)

  6. Strain differences among rats in response to Remington iodine-deficient diets

    International Nuclear Information System (INIS)

    Okamura, K.; Taurog, A.; Krulich, L.

    1981-01-01

    Male rats of five different strains (Simonsen albino, Wistar, Long-Evans, Holtzman Sprague-Dawley, and Charles River Sprague-Dawley) were tested for their response to the U.S. Biochemical Corp. Remington low iodine diet containing 15-18 microgram I/kg. Measurements made after the diet had been fed for 28-30 days indicated that Simonsen albino and Wistar strains consistently showed the greatest response, based on degree of thyroid enlargement, depletion of thyroidal iodine, reduction in serum T4, and elevation of serum TSH. Long-Evans and Holtzman Sprague-Dawley rats responded relatively poorly to the low iodine diet. One experiment included female rats, and the limited data suggested that within a given strain there was no significant sex difference. With more prolonged feeding (84 days), the difference between a rapidly responding strain (Simonsen albino) and a more slowly responding strain (Holtzman Sprague-Dawley) was not so marked. Our results indicate that given sufficient time and a diet sufficiently low in iodine, even a more slowly responding strain will ultimately develop signs of extreme iodine deficiency. However, it is inconvenient and expensive to maintain rats on a Remington low iodine diet for 3 months, and studies on the effect of severe iodine deficiency are much more rapidly performed using a rapidly responding strain such as the Simonsen albino. Our observation that rats of different strains differ markedly in their responses to an iodine-deficient diet suggests that hereditary factors play an important role in this response

  7. Moringa oleifera Supplemented Diets Prevented Nickel-Induced Nephrotoxicity in Wistar Rats

    Directory of Open Access Journals (Sweden)

    O. S. Adeyemi

    2014-01-01

    Full Text Available Background. The Moringa oleifera plant has been implicated for several therapeutic potentials. Objective. To evaluate whether addition of M. oleifera to diet has protective effect against nickel-induced nephrotoxicity in rats. Methodology. Male Wistar rats were assigned into six groups of five. The rats were given oral exposure to 20 mg/kg nickel sulphate (NiSO4 in normal saline and sustained on either normal diet or diets supplemented with Moringa oleifera at different concentrations for 21 days. 24 hours after cessation of treatments, all animals were sacrificed under slight anesthesia. The blood and kidney samples were collected for biochemical and histopathology analyses, respectively. Results. NiSO4 exposure reduced the kidney-to-body weight ratio in rats and caused significant elevation in the levels of plasma creatinine, urea, and potassium. Also, the plasma level of sodium was decreased by NiSO4 exposure. However, addition of M. oleifera to diets averted the nickel-induced alteration to the level of creatinine and urea. The histopathology revealed damaged renal tubules and glomerular walls caused by NiSO4 exposure. In contrast, the damages were ameliorated by the M. oleifera supplemented diets. Conclusion. The addition of M. oleifera to diet afforded significant protection against nickel-induced nephrotoxicity.

  8. Moringa oleifera Supplemented Diets Prevented Nickel-Induced Nephrotoxicity in Wistar Rats

    Science.gov (United States)

    Adeyemi, O. S.; Elebiyo, T. C.

    2014-01-01

    Background. The Moringa oleifera plant has been implicated for several therapeutic potentials. Objective. To evaluate whether addition of M. oleifera to diet has protective effect against nickel-induced nephrotoxicity in rats. Methodology. Male Wistar rats were assigned into six groups of five. The rats were given oral exposure to 20 mg/kg nickel sulphate (NiSO4) in normal saline and sustained on either normal diet or diets supplemented with Moringa oleifera at different concentrations for 21 days. 24 hours after cessation of treatments, all animals were sacrificed under slight anesthesia. The blood and kidney samples were collected for biochemical and histopathology analyses, respectively. Results. NiSO4 exposure reduced the kidney-to-body weight ratio in rats and caused significant elevation in the levels of plasma creatinine, urea, and potassium. Also, the plasma level of sodium was decreased by NiSO4 exposure. However, addition of M. oleifera to diets averted the nickel-induced alteration to the level of creatinine and urea. The histopathology revealed damaged renal tubules and glomerular walls caused by NiSO4 exposure. In contrast, the damages were ameliorated by the M. oleifera supplemented diets. Conclusion. The addition of M. oleifera to diet afforded significant protection against nickel-induced nephrotoxicity. PMID:25295181

  9. Cocoa-enriched diets modulate intestinal and systemic humoral immune response in young adult rats.

    Science.gov (United States)

    Pérez-Berezo, Teresa; Franch, Angels; Ramos-Romero, Sara; Castellote, Cristina; Pérez-Cano, Francisco J; Castell, Margarida

    2011-05-01

    Previous studies have shown that a highly enriched cocoa diet affects both intestinal and systemic immune function in young rats. The aim of this study was to elucidate whether diets containing lower amounts of cocoa could also influence the systemic and intestinal humoral immune response. Fecal and serum samples were collected during the study and, at the end, intestinal washes were obtained and mesenteric lymph nodes and small-intestine walls were excised for gene expression assessment. IgA, IgM, IgG1, IgG2a, IgG2b and IgG2c concentrations were quantified in serum whereas S-IgA and S-IgM were determined in feces and intestinal washes. Animals receiving 5 and 10% cocoa for 3 wk showed no age-related increase in serum IgG1 and IgG2a concentrations, and IgG2a values were significantly lower than those in reference animals. Serum IgM was also decreased by the 10% cocoa diet. The 5 and 10% cocoa diets dramatically reduced intestinal S-IgA concentration and modified the expression of several genes involved in IgA synthesis. A diet containing 2% cocoa had no effect on most of the studied variables. The results demonstrate the downregulatory effect of a 5% or higher cocoa diet on the systemic and intestinal humoral immune response in adult rats. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. High fat diet promotes achievement of peak bone mass in young rats

    Energy Technology Data Exchange (ETDEWEB)

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T. [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India); Mittal, Monika; Chattopadhyay, Naibedya [Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226 031 (India); Wani, Mohan R. [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India); Bhat, Manoj Kumar, E-mail: manojkbhat@nccs.res.in [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India)

    2014-12-05

    Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet.

  11. High fat diet promotes achievement of peak bone mass in young rats

    International Nuclear Information System (INIS)

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T.; Mittal, Monika; Chattopadhyay, Naibedya; Wani, Mohan R.; Bhat, Manoj Kumar

    2014-01-01

    Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet

  12. Moderate High Fat Diet Increases Sucrose Self-Administration In Young Rats

    OpenAIRE

    Figlewicz, Dianne P.; Jay, Jennifer L.; Acheson, Molly A.; Magrisso, Irwin J.; West, Constance H.; Zavosh, Aryana; Benoit, Stephen C.; Davis, Jon F.

    2012-01-01

    We have previously reported that a moderately high fat diet increases motivation for sucrose in adult rats. In this study, we tested the motivational, neurochemical, and metabolic effects of the high fat diet in male rats transitioning through puberty, during 5-8 weeks of age. We observed that the high fat diet increased motivated responding for sucrose, which was independent of either metabolic changes or changes in catecholamine neurotransmitter metabolites in the nucleus accumbens. However...

  13. Soft-food diet induces oxidative stress in the rat brain.

    Science.gov (United States)

    Yoshino, Fumihiko; Yoshida, Ayaka; Hori, Norio; Ono, Yumie; Kimoto, Katsuhiko; Onozuka, Minoru; Lee, Masaichi Chang-il

    2012-02-02

    Decreased dopamine (DA) release in the hippocampus may be caused by dysfunctional mastication, although the mechanisms involved remain unclear. The present study examined the effects of soft- and hard-food diets on oxidative stress in the brain, and the relationship between these effects and hippocampal DA levels. The present study showed that DA release in the hippocampus was decreased in rats fed a soft-food diet. Electron spin resonance studies using the nitroxyl spin probe 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl directly demonstrated a high level of oxidative stress in the rat brain due to soft-food diet feeding. In addition, we confirmed that DA directly react with reactive oxygen species such as hydroxyl radical and superoxide. These observations suggest that soft-food diet feeding enhances oxidative stress, which leads to oxidation and a decrease in the release of DA in the hippocampus of rats. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. A sucrose-rich diet induces mutations in the rat colon

    DEFF Research Database (Denmark)

    Dragsted, L.O.; Daneshvar, B.; Vogel, Ulla Birgitte

    2002-01-01

    A sucrose-rich diet has repeatedly been observed to have cocarcinogenic actions in the colon and liver of rats and to increase the number of aberrant crypt foci in rat colon. To investigate whether sucrose-rich diets might directly increase the genotoxic response in the rat colon or liver, we have...... or in blood plasma. We conclude that a sucrose-rich diet directly or indirectly increases the mutation frequency in rat colon in a dose-dependent manner and concomitantly decreases the level of background DNA adducts, without a direct effect on the expression of major DNA repair enzyme systems. We also...... conclude that an oxidative mechanism for this effect of sucrose is unlikely. This is the first demonstration of a genotoxic action of increased dietary sucrose in vivo. Both sucrose intake and colon cancer rates are high in the Western world, and our present results call for an examination of a possible...

  15. Effect of an avocado oil-enhanced diet (Persea americana) on sucrose-induced insulin resistance in Wistar rats.

    Science.gov (United States)

    Del Toro-Equihua, Mario; Velasco-Rodríguez, Raymundo; López-Ascencio, Raúl; Vásquez, Clemente

    2016-04-01

    A number of studies have been conducted to evaluate the effects of vegetable oils with varying percentages of monounsaturated and polyunsaturated fatty acids on insulin resistance. However, there is no report on the effect of avocado oil on this pathologic condition. The aim of this work was to evaluate the effect of avocado oil on sucrose-induced insulin resistance in Wistar rats. An experimental study was carried out on Wistar rats that were randomly assigned into six groups. Each group received a different diet over an 8-week period (n = 11 in each group): the control group was given a standard diet, and the other five groups were given the standard feed plus sucrose with the addition of avocado oil at 0%, 5%, 10%, 20%, and 30%, respectively. Variables were compared using Student t test and analysis of variance. Statistically significant difference was considered when p avocado oil showed lower insulin resistance (p = 0.022 and p = 0.024, respectively). Similar insulin resistance responses were observed in the control and 30% avocado oil addition groups (p = 0.85). Addition of 5-30% avocado oil lowered high sucrose diet-induced body weight gain in Wistar rats. It was thus concluded that glucose tolerance and insulin resistance induced by high sucrose diet in Wistar rats can be reduced by the dietary addition of 5-20% avocado oil. Copyright © 2016. Published by Elsevier B.V.

  16. Very low-carbohydrate versus isocaloric high-carbohydrate diet in dietary obese rats.

    Science.gov (United States)

    Axen, Kathleen V; Axen, Kenneth

    2006-08-01

    The effects of a very low-carbohydrate (VLC), high-fat (HF) dietary regimen on metabolic syndrome were compared with those of an isocaloric high-carbohydrate (HC), low-fat (LF) regimen in dietary obese rats. Male Sprague-Dawley rats, made obese by 8 weeks ad libitum consumption of an HF diet, developed features of the metabolic syndrome vs. lean control (C) rats, including greater visceral, subcutaneous, and hepatic fat masses, elevated plasma cholesterol levels, impaired glucose tolerance, and fasting and post-load insulin resistance. Half of the obese rats (VLC) were then fed a popular VLC-HF diet (Weeks 9 and 10 at 5% and Weeks 11 to 14 at 15% carbohydrate), and one-half (HC) were pair-fed an HC-LF diet (Weeks 9 to 14 at 60% carbohydrate). Energy intakes of pair-fed VLC and HC rats were less than C rats throughout Weeks 9 to 14. Compared with HC rats, VLC rats exhibited impaired insulin and glycemic responses to an intraperitoneal glucose load at Week 10 and lower plasma triacylglycerol levels but retarded loss of hepatic, retroperitoneal, and total body fat at Week 14. VLC, HC, and C rats no longer differed in body weight, plasma cholesterol, glucose tolerance, or fasting insulin resistance at Week 14. Progressive decreases in fasting insulin resistance in obese groups paralleled concomitant reductions in hepatic, retroperitoneal, and total body fat. When energy intake was matched, the VLC-HF diet provided no advantage in weight loss or in improving those components of the metabolic syndrome induced by dietary obesity and may delay loss of hepatic and visceral fat as compared with an HC-LF diet.

  17. Short-term blueberry-enriched diet prevents and reverses object recognition memory loss in aging rats.

    Science.gov (United States)

    Malin, David H; Lee, David R; Goyarzu, Pilar; Chang, Yu-Hsuan; Ennis, Lalanya J; Beckett, Elizabeth; Shukitt-Hale, Barbara; Joseph, James A

    2011-03-01

    Previously, 4 mo of a blueberry-enriched (BB) antioxidant diet prevented impaired object recognition memory in aging rats. Experiment 1 determined whether 1- and 2-mo BB diets would have a similar effect and whether the benefits would disappear promptly after terminating the diets. Experiment 2 determined whether a 1-mo BB diet could subsequently reverse existing object memory impairment in aging rats. In experiment 1, Fischer-344 rats were maintained on an appropriate control diet or on 1 or 2 mo of the BB diet before testing object memory at 19 mo postnatally. In experiment 2, rats were tested for object recognition memory at 19 mo and again at 20 mo after 1 mo of maintenance on a 2% BB or control diet. In experiment 1, the control group performed no better than chance, whereas the 1- and 2-mo BB diet groups performed similarly and significantly better than controls. The 2-mo BB-diet group, but not the 1-mo group, maintained its performance over a subsequent month on a standard laboratory diet. In experiment 2, the 19-mo-old rats performed near chance. At 20 mo of age, the rats subsequently maintained on the BB diet significantly increased their object memory scores, whereas the control diet group exhibited a non-significant decline. The change in object memory scores differed significantly between the two diet groups. These results suggest that a considerable degree of age-related object memory decline can be prevented and reversed by brief maintenance on BB diets. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Exercise training and return to a well-balanced diet activate the neuregulin 1/ErbB pathway in skeletal muscle of obese rats.

    Science.gov (United States)

    Ennequin, Gaël; Boisseau, Nathalie; Caillaud, Kevin; Chavanelle, Vivien; Gerbaix, Maude; Metz, Lore; Etienne, Monique; Walrand, Stéphane; Masgrau, Aurélie; Guillet, Christelle; Courteix, Daniel; Niu, Airu; Li, Yi-Ping; Capel, Fréderic; Sirvent, Pascal

    2015-06-15

    Some studies suggest that neuregulin 1 (NRG1) could be involved in the regulation of skeletal muscle energy metabolism in rodents. Here we assessed whether unbalanced diet is associated with alterations of the NRG1 signalling pathway and whether exercise and diet might restore NRG1 signalling in skeletal muscle of obese rats. We show that diet-induced obesity does not impair NRG1 signalling in rat skeletal muscle. We also report that endurance training and a well-balanced diet activate the NRG1 signalling in skeletal muscle of obese rats, possibly via a new mechanism mediated by the protease ADAM17. These results suggest that some beneficial effects of physical activity and diet in obese rats could be partly explained by stimulation of the NRG1 signalling pathway. Some studies suggest that the signalling pathway of neuregulin 1 (NRG1), a protein involved in the regulation of skeletal muscle metabolism, could be altered by nutritional and exercise interventions. We hypothesized that diet-induced obesity could lead to alterations of the NRG1 signalling pathway and that chronic exercise could improve NRG1 signalling in rat skeletal muscle. To test this hypothesis, male Wistar rats received a high fat/high sucrose (HF/HS) diet for 16 weeks. At the end of this period, NRG1 and ErbB expression/activity in skeletal muscle was assessed. The obese rats then continued the HF/HS diet or were switched to a well-balanced diet. Moreover, in both groups, half of the animals also performed low intensity treadmill exercise training. After another 8 weeks, NRG1 and ErbB expression/activity in skeletal muscle were tested again. The 16 week HF/HS diet induced obesity, but did not significantly affect the NRG1/ErbB signalling pathway in rat skeletal muscle. Conversely, after the switch to a well-balanced diet, NRG1 cleavage ratio and ErbB4 amount were increased. Chronic exercise training also promoted NRG1 cleavage, resulting in increased ErbB4 phosphorylation. This result was

  19. Beneficial effects of a red wine polyphenol extract on high-fat diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Auberval, Nathalie; Dal, Stéphanie; Maillard, Elisa; Bietiger, William; Peronet, Claude; Pinget, Michel; Schini-Kerth, Valérie; Sigrist, Séverine

    2017-06-01

    Individuals with metabolic syndrome (MS) show several metabolic abnormalities including insulin resistance, dyslipidaemia, and oxidative stress (OS). Diet is one of the factors influencing the development of MS, and current nutritional advice emphasises the benefits of fruit and vegetable consumption. Here, we assessed the effects of naturally occurring antioxidants, red wine polyphenols (RWPs), on MS and OS. Wistar rats (n = 20) weighing 200-220 g received a high-fat diet (HFD) for 2 months before they were divided into two groups that received either HFD only or HFD plus 50 mg/kg RWPs in their drinking water for an additional 2 months. A control group (n = 10) received a normal diet (ND) for 4 months. Rats receiving HFD increased body weight over 20 % throughout the duration of the study. They also showed increased blood levels of C-peptide, glucose, lipid peroxides, and oxidised proteins. In addition, the HFD increased OS in hepatic, pancreatic, and vascular tissues, as well as induced pancreatic islet cell hyperplasia and hepatic steatosis. Addition of RWPs to the HFD attenuated these effects on plasma and tissue OS and on islet cell hyperplasia. However, RWPs had no effect on blood glucose levels or hepatic steatosis. RWPs showed an antioxidant mechanism of action against MS. This result will inform future animal studies exploring the metabolic effects of RWPs in more detail. In addition, these findings support the use of antioxidants as adjunctive nutritional treatments for patients with diabetes.

  20. Hepatic fatty acid profile of rats fed a triheptanoin-based ketogenic diet

    OpenAIRE

    Meloi, Ingrid Sofia Vieira de; Ataidei, Terezinha da Rocha; Oliveirai, Suzana Lima de; Bezerra Buenoi, Nassib; Freitasi, Johnnatan Duarte de; Sant'Anai, Antônio Euzébio Goulart

    2015-01-01

    Objective: the aim of this study was to evaluate the influence of consumption of a ketogenic diet supplemented with triheptanoin, a medium-chain anaplerotic triacylglycerol, on the liver fatty acid profile of Wistar rats. Methods: three groups of male Wistar rats (n = 10) were submitted to an AIN-93 control diet, a triheptanoin- based ketogenic diet, or a soybean oil-based ketogenic diet for 60 days. Excised livers were subjected to lipid extraction and methylation to obtain fatty acids methy...

  1. Exercise training and return to a well-balanced diet activate the neuregulin 1/ErbB pathway in skeletal muscle of obese rats

    Science.gov (United States)

    Ennequin, Gaël; Boisseau, Nathalie; Caillaud, Kevin; Chavanelle, Vivien; Gerbaix, Maude; Metz, Lore; Etienne, Monique; Walrand, Stéphane; Masgrau, Aurélie; Guillet, Christelle; Courteix, Daniel; Niu, Airu; Li, Yi-Ping; Capel, Fréderic; Sirvent, Pascal

    2015-01-01

    Some studies suggest that the signalling pathway of neuregulin 1 (NRG1), a protein involved in the regulation of skeletal muscle metabolism, could be altered by nutritional and exercise interventions. We hypothesized that diet-induced obesity could lead to alterations of the NRG1 signalling pathway and that chronic exercise could improve NRG1 signalling in rat skeletal muscle. To test this hypothesis, male Wistar rats received a high fat/high sucrose (HF/HS) diet for 16 weeks. At the end of this period, NRG1 and ErbB expression/activity in skeletal muscle was assessed. The obese rats then continued the HF/HS diet or were switched to a well-balanced diet. Moreover, in both groups, half of the animals also performed low intensity treadmill exercise training. After another 8 weeks, NRG1 and ErbB expression/activity in skeletal muscle were tested again. The 16 week HF/HS diet induced obesity, but did not significantly affect the NRG1/ErbB signalling pathway in rat skeletal muscle. Conversely, after the switch to a well-balanced diet, NRG1 cleavage ratio and ErbB4 amount were increased. Chronic exercise training also promoted NRG1 cleavage, resulting in increased ErbB4 phosphorylation. This result was associated with increased protein expression and phosphorylation ratio of the metalloprotease ADAM17, which is involved in NRG1 shedding. Similarly, in vitro stretch-induced activation of ADAM17 in rat myoblasts induced NRG1 cleavage and ErbB4 activation. These results show that low intensity endurance training and well-balanced diet activate the NRG1-ErbB4 pathway, possibly via the metalloprotease ADAM17, in skeletal muscle of diet-induced obese rats. PMID:25820551

  2. Differential Effects of High-Carbohydrate and High-Fat Diet Composition on Metabolic Control and Insulin Resistance in Normal Rats

    Science.gov (United States)

    Ble-Castillo, Jorge L.; Aparicio-Trapala, María A.; Juárez-Rojop, Isela E.; Torres-Lopez, Jorge E.; Mendez, Jose D.; Aguilar-Mariscal, Hidemi; Olvera-Hernández, Viridiana; Palma-Cordova, Leydi C.; Diaz-Zagoya, Juan C.

    2012-01-01

    The macronutrient component of diets is critical for metabolic control and insulin action. The aim of this study was to compare the effects of high fat diets (HFDs) vs. high carbohydrate diets (HCDs) on metabolic control and insulin resistance in Wistar rats. Thirty animals divided into five groups (n = 6) were fed: (1) Control diet (CD); (2) High-saturated fat diet (HSFD); (3) High-unsaturated fat diet (HUFD); (4) High-digestible starch diet, (HDSD); and (5) High-resistant starch diet (HRSD) during eight weeks. HFDs and HCDs reduced weight gain in comparison with CD, however no statistical significance was reached. Calorie intake was similar in both HFDs and CD, but rats receiving HCDs showed higher calorie consumption than other groups, (p < 0.01). HRSD showed the lowest levels of serum and hepatic lipids. The HUFD induced the lowest fasting glycemia levels and HOMA-IR values. The HDSD group exhibited the highest insulin resistance and hepatic cholesterol content. In conclusion, HUFD exhibited the most beneficial effects on glycemic control meanwhile HRSD induced the highest reduction on lipid content and did not modify insulin sensitivity. In both groups, HFDs and HCDs, the diet constituents were more important factors than caloric intake for metabolic disturbance and insulin resistance. PMID:22754464

  3. Investigation on the absorption of /sup 14/C-leucine and /sup 15/N-leucine in rats after feeding a fish meal diet in comparison with a gelatine diet

    Energy Technology Data Exchange (ETDEWEB)

    Bergner, U; Adam, K; Bergner, H [Humboldt-Universitaet, Berlin (German Democratic Republic). Sektion Tierproduktion und Veterinaermedizin

    1981-01-01

    Albino rats received after nine days of adaptation to a fish meal diet in comparison with a gelatine diet /sup 14/C-U-L-leucine and /sup 15/N-L-leucine via a pellet made from the specific diet after food deprivation for 15 h. Thereafter, the animals consumed the non-labelled experimental diet ad libitum. 30 min, and 1, 2, 4 and 8 h, resp., after intake of the labelled food, four rats at a time were sacrificed. The contents of the digestive tract and tissue samples were examined for /sup 14/C and /sup 15/N and their percentages in the TCA-soluble fraction determined. If these values are regarded as non-absorbed leucine, the /sup 14/C values obtained up to the four hour period of the experiment would be too high. Presumably, they are in the case of both diets simulated by other /sup 14/C metabolites which originate from the leucine catabolism and reach the intestinal lumen. Amino acids labelled with /sup 15/N should be preferred in studies on the absorption of amino acids because, in case of catabolization, the /sup 15/N aminogroup is excreted mainly as urea via urine.

  4. Moderate high fat diet increases sucrose self-administration in young rats.

    Science.gov (United States)

    Figlewicz, Dianne P; Jay, Jennifer L; Acheson, Molly A; Magrisso, Irwin J; West, Constance H; Zavosh, Aryana; Benoit, Stephen C; Davis, Jon F

    2013-02-01

    We have previously reported that a moderately high fat diet increases motivation for sucrose in adult rats. In this study, we tested the motivational, neurochemical, and metabolic effects of the high fat diet in male rats transitioning through puberty, during 5-8 weeks of age. We observed that the high fat diet increased motivated responding for sucrose, which was independent of either metabolic changes or changes in catecholamine neurotransmitter metabolites in the nucleus accumbens. However, AGRP mRNA levels in the hypothalamus were significantly elevated. We demonstrated that increased activation of AGRP neurons is associated with motivated behavior, and that exogenous (third cerebroventricular) AGRP administration resulted in significantly increased motivation for sucrose. These observations suggest that increased expression and activity of AGRP in the medial hypothalamus may underlie the increased responding for sucrose caused by the high fat diet intervention. Finally, we compared motivation for sucrose in pubertal vs. adult rats and observed increased motivation for sucrose in the pubertal rats, which is consistent with previous reports that young animals and humans have an increased preference for sweet taste, compared with adults. Together, our studies suggest that background diet plays a strong modulatory role in motivation for sweet taste in adolescent animals. Published by Elsevier Ltd.

  5. Ketogenic diet does not impair spatial ability controlled by the hippocampus in male rats.

    Science.gov (United States)

    Fukushima, Atsushi; Ogura, Yuji; Furuta, Miyako; Kakehashi, Chiaki; Funabashi, Toshiya; Akema, Tatsuo

    2015-10-05

    A ketogenic diet was recently shown to reduce glutamate accumulation in synaptic vesicles, decreasing glutamate transmission. We questioned whether a ketogenic diet affects hippocampal function, as glutamate transmission is critically involved in visuospatial ability. In the present study, male Wistar rats were maintained on a ketogenic diet containing 10% protein and 90% fat with complements for 3 weeks to change their energy expenditure from glucose-dependent to fat-dependent. Control rats were fed a diet containing 10% protein, 10% fat, and 80% carbohydrates. The fat-dependent energy expenditure induced by the ketogenic diet led to decreased body weight and increased blood ketone production, though the rats in the two groups consumed the same number of calories. The ketogenic diet did not alter food preferences for the control or high-fat diet containing 10% protein, 45% fat, and 45% carbohydrates. Anxiety in the open field was not altered by ingestion the ketogenic diet. However, rats fed the ketogenic diet performed better in the Y-maze test than rats fed the control diet. No difference was observed between the two groups in the Morris water maze test. Finally, Western blot revealed that the hippocampal expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor subunit 1 (GluR1) was significantly increased in mice fed a ketogenic diet. These results suggest that hippocampal function is not impaired by a ketogenic diet and we speculate that the fat-dependent energy expenditure does not impair visuospatial ability. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Ketogenic Diet suppresses Alcohol Withdrawal Syndrome in Rats

    DEFF Research Database (Denmark)

    Dencker, Ditte; Molander, Anna; Thomsen, Morgane

    2018-01-01

    , we investigated the potential therapeutic benefit of a ketogenic diet in managing alcohol withdrawal symptoms during detoxification. METHODS: Male Sprague Dawley rats fed either ketogenic or regular diets were administered ethanol or water orally, twice daily for 6 days while the diet conditions were...... maintained. Abstinence symptoms were rated 6, 24, 48, and 72 hours after the last alcohol administration. RESULTS: Maintenance on a ketogenic diet caused a significant decrease in the alcohol withdrawal symptoms 'rigidity' and 'irritability'. CONCLUSION: Our preclinical pilot study suggests that a ketogenic...... diet may be a novel approach for treating alcohol withdrawal symptoms in humans. This article is protected by copyright. All rights reserved....

  7. A comparative study of the effect of diet and soda carbonated drinks on the histology of the cerebellum of adult female albino Wistar rats.

    Science.gov (United States)

    Eluwa, M A; Inyangmme, I I; Akpantah, A O; Ekanem, T B; Ekong, M B; Asuquo, O R; Nwakanma, A A

    2013-09-01

    Carbonated drinks are widely consumed because of their taste and their ability to refresh and quench thirst. These carbonated drinks also exist in the form of diet drinks, for example Diet Coke®, Pepsi®, extra. A comparative effect of the diet and regular soda carbonated drinks on the histology of the cerebellum of female albino Wistar rats was investigated. Fifteen adult female Wistar rats weighing between 180-200 g were divided into 3 groups; designated as groups A, B and C, and each group consisted of five rats. Group A was the Control group and received distilled water, while groups B and C were the experimental groups. Group B was administered 50 ml of regular soda (RS), and group C was administered 50 ml of diet soda (DS) each per day for 21 days, and the rats were sacrificed on Day 22, and their cerebellums excised and preserved. Histological result of the sections of the cerebellum showed shrunken and degenerated Purkinje cells with hypertrophied dendrites, especially in the DS group, which was less in the RS group compared to the control group. These results suggest that diet soda has adverse effect on the cerebellum of adult female albino Wistar rats.

  8. Quality of diets with fluidized bed combustion residue treatment: I. Rat trials

    Energy Technology Data Exchange (ETDEWEB)

    Cahill, N.J.; Reid, R.L.; Head, M.K.; Hern, J.L.; Bennett, O.L.

    Feeding trials were conducted with rats (Rattus rattus) to examine effects of soil application, or dietary inclusion, of fluidized bed combustion residue (FBCR) on the composition and quality of foods. Four diets (vegetable protein, egg protein, chicken, chicken + dietary FBCR) prepared with either FBCR or lime (control) treatments, were fed to weanling, female rats in three growth and reproduction trials. Intake, growth rate, and composition of body and organs of rats were measured. Rats in one trial were bred, their litters maintained on dietary treatments, and the offspring rebred. Treatment (FBCR vs. lime) x diet interactions on food composition and animal responses generally were not significant. Treatment had little effect on element composition of diets; mineral concentrations were in normal ranges. Diet treatment with FBCR depressed (P<0.01) food intake and growth of rats in one trial, but not in others, and had no effect (P<0.05) on body water, protein, ether extract, or gross energy composition. Some differences in element concentrations in the carcass and organs of rats and pups resulted from FBCR treatment, but effects were small and inconsistent. Litters from the first reproductive cycle appeared normal, except for animals fed the chicken + dietary FBCR treatment, on which pups showed poor growth and anemia. Offspring from certain diets were rebred and litters showed a high mortality, although this was not associated specifically with FBCR treatment. Results indicated no major detrimental effects on food composition, or growth, tissue element accumulation, and reproduction in the rat relating to use of FBCR as a soil amendment. 20 refs., 9 tabs.

  9. Characterization of an alcoholic hepatic steatosis model induced by ethanol and high-fat diet in rats

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Alves de Souza

    2015-06-01

    Full Text Available Alcoholic liver disease is characterized by a wide spectrum of liver damage, which increases when ethanol is associated with high-fat diets (HFD. This work aimed to establish a model of alcoholic hepatic steatosis (AHS by using a combination of 10% ethanol and sunflower seeds as the source of HFD. Male rats received water or 10% ethanol and regular chow diet and/or HFD, which consisted of sunflower seeds. The food consumption, liquid intake and body weight of the rats were monitored for 30 days. After this period, blood was collected for biochemical evaluation, and liver samples were collected for histological, mitochondrial enzyme activity and oxidative stress analyses. Our results indicated that the combination of 10% ethanol and HFD induced micro- and macrosteatosis and hepatocyte tumefaction, decreased the levels of reduced glutathione and glutathione S-transferase activity and increased the level of lipoperoxidation and superoxide dismutase activity. The mitochondrial oxidation of NADH and succinate were partially inhibited. Complexes I and II were the main inhibition sites. Hepatic steatosis was successfully induced after 4 weeks of the diet, and the liver function was modified. The combination of 10% ethanol and sunflower seeds as an HFD produced an inexpensive model to study AHS in rats.

  10. Hypothyroidism Exacerbates Thrombophilia in Female Rats Fed with a High Fat Diet

    Directory of Open Access Journals (Sweden)

    Harald Mangge

    2015-07-01

    Full Text Available Clotting abnormalities are discussed both in the context with thyroid dysfunctions and obesity caused by a high fat diet. This study aimed to investigate the impact of hypo-, or hyperthyroidism on the endogenous thrombin potential (ETP, a master indicator of clotting activation, on Sprague Dawley rats fed a normal or high fat diet. Female Sprague Dawley rats (n = 66 were grouped into normal diet (ND; n = 30 and high-fat diet (HFD; n = 36 groups and subdivided into controls, hypothyroid and hyperthyroid groups, induced through propylthiouracil or triiodothyronine (T3 treatment, respectively. After 12 weeks of treatment ETP, body weight and food intake were analyzed. Successfully induced thyroid dysfunction was shown by T3 levels, both under normal and high fat diet. Thyroid dysfunction was accompanied by changes in calorie intake and body weight. In detail, compared to euthyroid controls, hypothyroid rats showed significantly increased—and hyperthyroid animals significantly decreased—ETP levels. High fat diet potentiated these effects in both directions. In summary, we are the first to show that hypothyroidism and high fat diet potentiate the thrombotic capacity of the clotting system in Sprague Dawley rats. This effect may be relevant for cardiovascular disease where thyroid function is poorly understood as a pathological contributor in the context of clotting activity and obesogenic nutrition.

  11. Delayed development, death and abnormal thyroglobulin in rats maintained on low-iodine diets

    International Nuclear Information System (INIS)

    Van Middlesworth, L.

    1976-01-01

    Rats weaned on Remington Low Iodine Diet (0.006 to 0.009 μgI/g) grew poorly, were very slow to breed, and 83% of their pups died in the neonatal period. A large iodide supplement (100μgI/d) improved growth of the females to almost normal but did not improve growth of males. With the iodide supplement they bred at an earlier age than rats fed the low iodide Remington diet but still 73% of the pups died before weaning. The addition of a vitamin mixture (biotin, vitamin B 12 , E, patothenic acid, riboflavin, thiamine and pyridoxine) to Remington Diet resulted in delayed pregnancies but 86% survival of offspring. A more nutritious low-iodine diet with a 'complete' mineral and vitamin supplement improved growth and survival, and the litters were delivered at the normal time. However, this more complete diet contained more iodine than the Remington diet. During the neonatal period, all the low iodine diets resulted in offspring that were unable to make T 3 as readily as adults fed the same diet. Pups from dams fed the Remington diet had thyroblobulin with lower sedimentation constants (18S and 12S) than was found in normal newborns. This unfolded and dissociated thyroglobulin may be an inadequate source of thyroid hormones, but it may hydrolyse more rapidly than normal 19S thyroglobulin. It is concluded that rats raised on a diet severely deficient in iodine were unable to litter until they were older than normal rats, and the survival of the offspring was poor unless the diet was supplemented with a vitamin mixture. The synthesis of thyroid hormones in low iodine neonatal rats was more severely impaired than in adults. (author)

  12. Spontaneous motor activity during the development and maintenance of diet-induced obesity in the rat.

    Science.gov (United States)

    Levin, B E

    1991-09-01

    More than 80% of most daily spontaneous activities (assessed in an Omnitech activity monitor) occurred during the last hour of light and 12 h of the dark phase in 8 chow-fed male Sprague-Dawley rats. Thirty additional rats were, therefore, monitored over this 13-h period to assess the relationship of activity to the development and maintenance of diet-induced obesity (DIO) on a diet high in energy, fat and sucrose (CM diet). Nine of 20 rats became obese after 3 months on the CM diet, with 71% greater weight gain than 10 chow-fed controls. Eleven of 20 rats were diet resistant (DR), gaining the same amount of weight as chow-fed rats. Neither initial activity levels nor initial body weights on chow (Period I) differed significantly across retrospectively identified groups. After 3 months on CM diet or chow (Period II), as well as after an additional 3 months after CM diet-fed rats returned to chow (Period III), there were significant inverse correlations (r = -.606 to -.370) between body weight at the time of testing and various measures of movement in the horizontal plane. There was no relationship to dietary content nor consistent correlations of body weight or diet group to vertical movements, an indirect measure of ingestive behavior. Patterns of time spent in the vertical position were significantly different for DIO vs. DR rats in Period III, however. Thus, differences in food intake and metabolic efficiency, rather than differences in nocturnal activity, are probably responsible for the greater weight gain in DIO-prone rats placed on CM diet.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Anti-obesity effect of extract from fermented Curcuma longa L. through regulation of adipogenesis and lipolysis pathway in high-fat diet-induced obese rats

    Science.gov (United States)

    Kim, Ji Hye; Kim, Ok-Kyung; Yoon, Ho-Geun; Park, Jeongjin; You, Yanghee; Kim, Kyungmi; Lee, Yoo-Hyun; Choi, Kyung-Chul; Lee, Jeongmin; Jun, Woojin

    2016-01-01

    Background Even though Curcuma longa L. possesses various biological activities, it has strong flavor and taste, which decrease consumer palatability and limit industrial applications in food. Objective The present study investigates the effects of C. longa L. fermented with Aspergillus oryzae supplementation in 60% high-fat diet-induced obese rats measured by the activation of adipogenesis and lipolysis. Design Rats were divided into four groups (n=6 per group) after 1 week of acclimatization: a normal diet group comprised rats fed the AIN76A rodent diet; a high-fat diet-induced obese group with rats fed a 60% high-fat diet; a Garcinia cambogia treated group (positive control) with rats fed a 60% high-fat diet with G. cambogia 500 g/kg body weight (b.w.)/day; and an fermented C. longa L. 50% ethanolic extract treated group (FCE50) with rats fed a 60% high-fat diet with FCE50 500 g/kg b.w./day. Each group received the appropriate vehicle or sample daily by gastric intubation for 12 weeks. Results We found that FCE50 administration suppressed b.w. gain and reduced white adipose tissue weight, serum triglyceride (TG), and cholesterol in high-fat diet-induced obese rats. These results can be associated with the suppression of adipocyte differentiation and lipogenesis with a decrease in the mRNA expressions of fatty acid synthase, acetyl-CoA carboxylase, adipocyte protein 2, and lipoprotein lipase induced by FCE50 administration. In addition, FCE50 increased lipolysis and β-oxidation by up-regulating the expression of lipases such as adipose triglyceride lipase, hormone-sensitive lipase, adiponectin, and AMP-activated protein kinase. Conclusions These results suggest that FCE50 can be a candidate for the prevention of obesity via suppressing adipogenesis and promoting lipolysis. PMID:26822962

  14. Aerobic capacity of rats recovered from fetal malnutrition with a fructose-rich diet.

    Science.gov (United States)

    Cambri, Lucieli Teresa; Dalia, Rodrigo Augusto; Ribeiro, Carla; Rostom de Mello, Maria Alice

    2010-08-01

    The objective of this study was to analyze the aerobic capacity, through the maximal lactate steady-state (MLSS) protocol, of rats subjected to fetal protein malnutrition and recovered with a fructose-rich diet. Pregnant adult Wistar rats that were fed a balanced (17% protein) diet or a low-protein (6% protein) diet were used. After birth, the offspring were distributed into groups according to diet until 60 days of age: balanced (B), balanced diet during the whole experimental period; balanced-fructose (BF), balanced diet until birth and fructose-rich diet (60% fructose) until 60 days; low protein-balanced (LB), low-protein diet until birth and balanced diet until 60 days; and low protein-fructose (LF), low protein diet until birth and fructose-rich diet until 60 days. It was verified that the fructose-rich diet reduced body growth, mainly in the BF group. There was no difference among the groups in the load corresponding to the MLSS (B, 7.5+/-0.5%; BF, 7.4+/-0.6%; LB, 7.7+/-0.4%; and LF, 7.7+/-0.6% relative to body weight). However, the BF group presented higher blood lactate concentrations (4.8+/-0.9 mmol.L(-1)) at 25 min in the load corresponding to the MLSS (B, 3.2+/-0.9 mmol.L(-1); LB, 3.4+/-0.9 mmol.L(-1); and LF, 3.2+/-1.0 mmol.L(-1)). Taken together, these results indicate that the ability of young rats to perform exercise was not altered by intrauterine malnutrition or a fructose-rich diet, although the high fructose intake after the balanced diet in utero increased blood lactate during swimming exercises in rats.

  15. Influence of creatine supplementation on indicators of glucose metabolism in skeletal muscle of exercised rats

    Directory of Open Access Journals (Sweden)

    Michel Barbosa de Araújo

    2013-12-01

    Full Text Available The purpose of this study was to evaluate the effect of creatine supplementation in the diet on indicators of glucose metabolism in skeletal muscle of exercised rats. Forty Wistar adult rats were distributed into four groups for eight weeks: 1 Control: sedentary rats that received balanced diet; 2 Creatine control: sedentary rats that received supplementation of 2% creatine in the balanced diet; 3 Trained: rats that ran on a treadmill at the Maximal Lactate Steady State and received balanced diet; and 4 Supplemented-trained: rats that ran on a treadmill at the Maximal Lactate Steady State and received creatine supplementation (2% in the balanced diet. The hydric intake increased and the body weight gain decreased in the supplemented-trained group. In the soleus muscle, the glucose oxidation increased in both supplemented groups. The production of lactate and glycemia during glucose tolerance test decreased in the supplemented-trained group. Creatine supplementation in conjunction with exercise training improved muscular glycidic metabolism of rats.

  16. Decreased insulin secretion in pregnant rats fed a low protein diet.

    Science.gov (United States)

    Gao, Haijun; Ho, Eric; Balakrishnan, Meena; Yechoor, Vijay; Yallampalli, Chandra

    2017-10-01

    Low protein (LP) diet during pregnancy leads to reduced plasma insulin levels in rodents, but the underlying mechanisms remain unclear. Glucose is the primary insulin secretagogue, and enhanced glucose-stimulated insulin secretion (GSIS) in beta cells contributes to compensation for insulin resistance and maintenance of glucose homeostasis during pregnancy. In this study, we hypothesized that plasma insulin levels in pregnant rats fed LP diet are reduced due to disrupted GSIS of pancreatic islets. We first confirmed reduced plasma insulin levels, then investigated in vivo insulin secretion by glucose tolerance test and ex vivo GSIS of pancreatic islets in the presence of glucose at different doses, and KCl, glibenclamide, and L-arginine. Main findings include (1) plasma insulin levels were unaltered on day 10, but significantly reduced on days 14-22 of pregnancy in rats fed LP diet compared to those of control (CT) rats; (2) insulin sensitivity was unchanged, but glucose intolerance was more severe in pregnant rats fed LP diet; (3) GSIS in pancreatic islets was lower in LP rats compared to CT rats in the presence of glucose, KCl, and glibenclamide, and the response to L-arginine was abolished in LP rats; and (4) the total insulin content in pancreatic islets and expression of Ins2 were reduced in LP rats, but expression of Gcg was unaltered. These studies demonstrate that decreased GSIS in beta cells of LP rats contributes to reduced plasma insulin levels, which may lead to placental and fetal growth restriction and programs hypertension and other metabolic diseases in offspring. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Diet composition alters the satiety effect of cholecystokinin in lean and obese Zucker rats.

    Science.gov (United States)

    Maggio, C A; Haraczkiewicz, E; Vasselli, J R

    1988-01-01

    Although exogenous administration of the peptide cholecystokinin (CCK) has been shown to reduce food intake in a variety of experimental situations, few studies have examined the influence of dietary content upon CCK's effectiveness, particularly in obese states. To evaluate the effectiveness of CCK administration in animals consuming high fat diets, groups of obese and lean Zucker rats were maintained on laboratory chow (CH), a high fat diet isocaloric to chow (IF), or a hypercaloric fat diet (HF). After a 17 hr fast, rats were given intraperitoneal injections of saline or ascending doses of 0.06 to 2.0 micrograms/kg of the synthetic octapeptide of CCK. On all diets, obese rats required higher doses of CCK to significantly reduce feeding and showed smaller intake reductions than lean rats (p less than 0.001). Despite higher baseline caloric intakes (p less than 0.001), rats of both genotypes maintained on HF displayed larger reductions of intake than those fed IF or CH (p less than 0.001). Intake reductions by either genotype maintained on IF or CH were not reliably different. The manner in which the satiety effect of CCK was enhanced in rats consuming the calorically dense, palatable HF diet is unclear but may be related to orosensory and/or postingestive attributes of the diet.

  18. Glucose and Lipid Dysmetabolism in a Rat Model of Prediabetes Induced by a High-Sucrose Diet

    Science.gov (United States)

    Burgeiro, Ana; Cerqueira, Manuela G.; Varela-Rodríguez, Bárbara M.; Nunes, Sara; Neto, Paula; Pereira, Frederico C.; Reis, Flávio; Carvalho, Eugénia

    2017-01-01

    Glucotoxicity and lipotoxicity are key features of type 2 diabetes mellitus, but their molecular nature during the early stages of the disease remains to be elucidated. We aimed to characterize glucose and lipid metabolism in insulin-target organs (liver, skeletal muscle, and white adipose tissue) in a rat model treated with a high-sucrose (HSu) diet. Two groups of 16-week-old male Wistar rats underwent a 9-week protocol: HSu diet (n = 10)—received 35% of sucrose in drinking water; Control (n = 12)—received vehicle (water). Body weight, food, and beverage consumption were monitored and glucose, insulin, and lipid profiles were measured. Serum and liver triglyceride concentrations, as well as the expression of genes and proteins involved in lipid biosynthesis were assessed. The insulin-stimulated glucose uptake and isoproterenol-stimulated lipolysis were also measured in freshly isolated adipocytes. Even in the absence of obesity, this rat model already presented the main features of prediabetes, with fasting normoglycemia but reduced glucose tolerance, postprandial hyperglycemia, compensatory hyperinsulinemia, as well as decreased insulin sensitivity (resistance) and hypertriglyceridemia. In addition, impaired hepatic function, including altered gluconeogenic and lipogenic pathways, as well as increased expression of acetyl-coenzyme A carboxylase 1 and fatty acid synthase in the liver, were observed, suggesting that liver glucose and lipid dysmetabolism may play a major role at this stage of the disease. PMID:28635632

  19. Blunted hypothalamic ghrelin signaling reduces diet intake in rats fed a low-protein diet in late pregnancy

    Science.gov (United States)

    Diet intake in pregnant rats fed a low-protein (LP) diet was significantly reduced during late pregnancy despite elevated plasma levels of ghrelin. In this study, we hypothesized that ghrelin signaling in the hypothalamus is blunted under a low-protein diet condition and therefore, it does not stimu...

  20. Brain and behavioral perturbations in rats following Western diet access.

    Science.gov (United States)

    Hargrave, Sara L; Davidson, Terry L; Lee, Tien-Jui; Kinzig, Kimberly P

    2015-10-01

    Energy dense "Western" diets (WD) are known to cause obesity as well as learning and memory impairments, blood-brain barrier damage, and psychological disturbances. Impaired glucose (GLUT1) and monocarboxylate (MCT1) transport may play a role in diet-induced dementia development. In contrast, ketogenic diets (KD) have been shown to be neuroprotective. We assessed the effect of 10, 40 and 90 days WD, KD and Chow maintenance on spontaneous alternation (SA) and vicarious trial and error (VTE) behaviors in male rats, then analyzed blood glucose, insulin, and ketone levels; and hippocampal GLUT1 and MCT1 mRNA. Compared to Chow and KD, rats fed WD had increased 90 day insulin levels. SA was decreased in WD rats at 10, but not 40 or 90 days. VTE was perturbed in WD-fed rats, particularly at 10 and 90 days, indicating hippocampal deficits. WD rats had lower hippocampal GLUT1 and MCT1 expression compared to Chow and KD, and KD rats had increased 90 day MCT1 expression compared to Chow and WD. These data suggest that WD reduces glucose and monocarboxylate transport at the hippocampus, which may result in learning and memory deficits. Further, KD consumption may be useful for MCT1 transporter recovery, which may benefit cognition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Food intake in laboratory rats provided standard and fenbendazole-supplemented diets.

    Science.gov (United States)

    Vento, Peter J; Swartz, Megan E; Martin, Lisa Be; Daniels, Derek

    2008-11-01

    The benzimidazole anthelmintic fenbendazole (FBZ) is a common and effective treatment for pinworm infestation in laboratory animal colonies. Although many investigators have examined the potential for deleterious biologic effects of FBZ, more subtle aspects of the treatment remain untested. Accordingly, we evaluated differences in food intake when healthy male Sprague-Dawley rats were provided a standard nonmedicated laboratory rodent chow or the same chow supplemented with FBZ. We also tested for a preference for either food type when subjects were provided a choice of the 2 diets. Data from these experiments showed no differences in food intake or body weight when rats were maintained on either standard or FBZ-supplemented chow. When the rats were given access to both the standard and FBZ-supplemented diets, they showed a clear preference for the standard diet. The preference for the standard diet indicates that the rats can discriminate between the 2 foods and may avoid the FBZ-supplemented chow when possible. Investigators conducting experiments during treatment with FBZ in which differences in food preference are relevant should be aware of these data and plan their studies accordingly.

  2. Effects of Neem (Azadirachta indic and Custard Apple (Annona reticulata Diets on Sterility of House Rat (Rattus rattus

    Directory of Open Access Journals (Sweden)

    Prem Nidhi Sharma

    2015-12-01

    Full Text Available Three different plant products diets – i neem (Azadirachta indic A. Juss oil mixed diet (neem oil mixed @ 80 ml/kg of normal diet, ii neem seed powder mixed diet (neem seed powder mixed @ 80 g/kg of normal diet and iii custard apple (Annona reticulata L. seed powder mixed diet (custard apple seed powder mixed @ 80 g/kg of normal diet were separately fed to mature rats (Rattus rattus with single dose feeding of 80 g per pair in a day on 13th week-age during the experimenting years, 2012/013 and 2013/014. In control group only normal diet without neem and custard apple constituents were fed. Sterility test of rat was conducted up to 38 and 28 weeks-age in first and second year, respectively. The test rats were fed normal diet during whole experimenting periods except the one day when they were fed only the neem or custard apple mixed diet on the age of 13th week. Efficacy of the mixed diets on rat-sterility was determined based on pregnancy and parturition by the rats. The two years' results confirmed that all the tested three mixed diets – neem oil mixed diet, neem seed powder mixed diet, and custard apple seed powder mixed diet were effective to stop pregnancy and parturition in rats during whole experimenting periods up to 38 and 28 weeks-age with single dose feeding of 80 g per pair (40 gm/rat in a day on 13th week-age of the rats; whereas the pregnancy and parturition were observed in the rats that were fed only the normal diet. It is expected, neem and custard apple mixed diets can be utilized in reducing the economically important rodent populations in rice-wheat cropping system in future.

  3. Effects of high-fat diet and fructose-rich diet on obesity, dyslipidemia and hyperglycemia in the WBN/Kob-Leprfa rat, a new model of type 2 diabetes mellitus.

    Science.gov (United States)

    Namekawa, Junichi; Takagi, Yoshiichi; Wakabayashi, Kaoru; Nakamura, Yuki; Watanabe, Ayaka; Nagakubo, Dai; Shirai, Mitsuyuki; Asai, Fumitoshi

    2017-06-10

    Obesity and type 2 diabetes mellitus (T2DM) are occurring at epidemic-like rates, and these epidemics appear to have emerged largely from changes in daily diet. In the present study, we compared effects of high-fat diet (HFD) and fructose-rich diet (FRD) in WBN/Kob-Lepr fa (WBKDF) rats that spontaneously develop obesity, dyslipidemia and T2DM. After a 4-week feeding of each diet, WBKDF-HFD and WBKDF-FRD rats exhibited aggravated obesity and dyslipidemia compared with WBKDF rats fed standard diet (STD). In contrast, hyperglycemia developed in WBKDF-STD rats was significantly inhibited in WBKDF-FRD rats, but not in WBKDF-HFD rats. The present study demonstrated that the 4-week feeding of HFD and FRD caused diet-induced obesity with a distinct phenotype in the glucose metabolism in WBKDF rats.

  4. Euterpe edulis Extract but Not Oil Enhances Antioxidant Defenses and Protects against Nonalcoholic Fatty Liver Disease Induced by a High-Fat Diet in Rats

    Directory of Open Access Journals (Sweden)

    Rodrigo Barros Freitas

    2016-01-01

    Full Text Available We investigated the effects of E. edulis bioproducts (lyophilized pulp [LEE], defatted lyophilized pulp [LDEE], and oil [EO] on nonalcoholic fatty liver disease (NAFLD induced by a high-fat diet (HFD in rats. All products were chemically analyzed. In vivo, 42 rats were equally randomized into seven groups receiving standard diet, HFD alone or combined with EO, LEE, or LDEE. After NAFLD induction, LEE, LDEE, or EO was added to the animals’ diet for 4 weeks. LEE was rich in polyunsaturated fatty acids. From LEE degreasing, LDEE presented higher levels of anthocyanins and antioxidant capacity in vitro. Dietary intake of LEE and especially LDEE, but not EO, attenuated diet-induced NAFLD, reducing inflammatory infiltrate, steatosis, and lipid peroxidation in liver tissue. Although both E. edulis bioproducts were not hepatotoxic, only LDEE presented sufficient benefits to treat NAFLD in rats, possibly by its low lipid content and high amount of phenols and anthocyanins.

  5. Muscle protein turnover in rats treated with corticosterone (CC) or/and nandrolone decanoate (ND) and fed an adequate or a low-protein diet

    Energy Technology Data Exchange (ETDEWEB)

    Santidrian, S.; Cuevillas, F.; Goena, M.; Larralde, J.

    1986-03-01

    In order to investigate the possible antagonistic effect between glucocorticoids and androgens on muscle protein turnover, the authors have measured the fractional rates of gastrocnemius muscle protein synthesis (k/sub s/) and degradation (k/sub d/) by the constant-intravenous-infusion method using L-//sup 14/C/-tyrosine in rats receiving via s.c. per 100 g b.wt. 10 mg of CC, or 2 mg of ND or CC+ND at the indicated doses, and fed either an 18% or 5% protein diets over a period of 5 days. As an additional index of protein synthesis, RNA activity (g of synthesized protein/day/g RNA) was determined as well. Results showed that as compared to vehicle-injected animals fed the adequate diet, CC-treated rats exhibited a reduction of muscle k/sub d/, while ND-treated rats had an outstanding increase of muscle k/sub s/. However, rats receiving CC+ND showed k/sub s/ and k/sub d/ values similar to those displayed by control animals. Nevertheless, when the steroids were injected to rats fed the low-protein diet, CC has a catabolic effect on muscle protein but by reducing k/sub s/, while the anabolic action of ND is still displayed but by a significant reduction of muscle k/sub d/. CC+ND given to these protein-deficient rats caused an increase in muscle k/sub s/ and a reduction in k/sub d/. These results might indicate that, at least in part, ND antagonizes the catabolic action of high doses of CC on muscle protein metabolism.

  6. Muscle protein turnover in rats treated with corticosterone (CC) or/and nandrolone decanoate (ND) and fed an adequate or a low-protein diet

    International Nuclear Information System (INIS)

    Santidrian, S.; Cuevillas, F.; Goena, M.; Larralde, J.

    1986-01-01

    In order to investigate the possible antagonistic effect between glucocorticoids and androgens on muscle protein turnover, the authors have measured the fractional rates of gastrocnemius muscle protein synthesis (k/sub s/) and degradation (k/sub d/) by the constant-intravenous-infusion method using L-/ 14 C/-tyrosine in rats receiving via s.c. per 100 g b.wt. 10 mg of CC, or 2 mg of ND or CC+ND at the indicated doses, and fed either an 18% or 5% protein diets over a period of 5 days. As an additional index of protein synthesis, RNA activity (g of synthesized protein/day/g RNA) was determined as well. Results showed that as compared to vehicle-injected animals fed the adequate diet, CC-treated rats exhibited a reduction of muscle k/sub d/, while ND-treated rats had an outstanding increase of muscle k/sub s/. However, rats receiving CC+ND showed k/sub s/ and k/sub d/ values similar to those displayed by control animals. Nevertheless, when the steroids were injected to rats fed the low-protein diet, CC has a catabolic effect on muscle protein but by reducing k/sub s/, while the anabolic action of ND is still displayed but by a significant reduction of muscle k/sub d/. CC+ND given to these protein-deficient rats caused an increase in muscle k/sub s/ and a reduction in k/sub d/. These results might indicate that, at least in part, ND antagonizes the catabolic action of high doses of CC on muscle protein metabolism

  7. A High Phosphorus Diet Affects Lipid Metabolism in Rat Liver: A DNA Microarray Analysis

    Science.gov (United States)

    Chun, Sunwoo; Bamba, Takeshi; Suyama, Tatsuya; Ishijima, Tomoko; Fukusaki, Eiichiro; Abe, Keiko; Nakai, Yuji

    2016-01-01

    A high phosphorus (HP) diet causes disorders of renal function, bone metabolism, and vascular function. We previously demonstrated that DNA microarray analysis is an appropriate method to comprehensively evaluate the effects of a HP diet on kidney dysfunction such as calcification, fibrillization, and inflammation. We reported that type IIb sodium-dependent phosphate transporter is significantly up-regulated in this context. In the present study, we performed DNA microarray analysis to investigate the effects of a HP diet on the liver, which plays a pivotal role in energy metabolism. DNA microarray analysis was performed with total RNA isolated from the livers of rats fed a control diet (containing 0.3% phosphorus) or a HP diet (containing 1.2% phosphorus). Gene Ontology analysis of differentially expressed genes (DEGs) revealed that the HP diet induced down-regulation of genes involved in hepatic amino acid catabolism and lipogenesis, while genes related to fatty acid β-oxidation process were up-regulated. Although genes related to fatty acid biosynthesis were down-regulated in HP diet-fed rats, genes important for the elongation and desaturation reactions of omega-3 and -6 fatty acids were up-regulated. Concentrations of hepatic arachidonic acid and eicosapentaenoic acid were increased in HP diet-fed rats. These essential fatty acids activate peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor for fatty acid β-oxidation. Evaluation of the upstream regulators of DEGs using Ingenuity Pathway Analysis indicated that PPARα was activated in the livers of HP diet-fed rats. Furthermore, the serum concentration of fibroblast growth factor 21, a hormone secreted from the liver that promotes fatty acid utilization in adipose tissue as a PPARα target gene, was higher (p = 0.054) in HP diet-fed rats than in control diet-fed rats. These data suggest that a HP diet enhances energy expenditure through the utilization of free fatty acids

  8. A High Phosphorus Diet Affects Lipid Metabolism in Rat Liver: A DNA Microarray Analysis.

    Directory of Open Access Journals (Sweden)

    Sunwoo Chun

    Full Text Available A high phosphorus (HP diet causes disorders of renal function, bone metabolism, and vascular function. We previously demonstrated that DNA microarray analysis is an appropriate method to comprehensively evaluate the effects of a HP diet on kidney dysfunction such as calcification, fibrillization, and inflammation. We reported that type IIb sodium-dependent phosphate transporter is significantly up-regulated in this context. In the present study, we performed DNA microarray analysis to investigate the effects of a HP diet on the liver, which plays a pivotal role in energy metabolism. DNA microarray analysis was performed with total RNA isolated from the livers of rats fed a control diet (containing 0.3% phosphorus or a HP diet (containing 1.2% phosphorus. Gene Ontology analysis of differentially expressed genes (DEGs revealed that the HP diet induced down-regulation of genes involved in hepatic amino acid catabolism and lipogenesis, while genes related to fatty acid β-oxidation process were up-regulated. Although genes related to fatty acid biosynthesis were down-regulated in HP diet-fed rats, genes important for the elongation and desaturation reactions of omega-3 and -6 fatty acids were up-regulated. Concentrations of hepatic arachidonic acid and eicosapentaenoic acid were increased in HP diet-fed rats. These essential fatty acids activate peroxisome proliferator-activated receptor alpha (PPARα, a transcription factor for fatty acid β-oxidation. Evaluation of the upstream regulators of DEGs using Ingenuity Pathway Analysis indicated that PPARα was activated in the livers of HP diet-fed rats. Furthermore, the serum concentration of fibroblast growth factor 21, a hormone secreted from the liver that promotes fatty acid utilization in adipose tissue as a PPARα target gene, was higher (p = 0.054 in HP diet-fed rats than in control diet-fed rats. These data suggest that a HP diet enhances energy expenditure through the utilization of free fatty

  9. Dahl salt-sensitive rats develop hypovitaminosis D and hyperparathyroidism when fed a standard diet

    Science.gov (United States)

    Thierry-Palmer, Myrtle; Cephas, Stacy; Sayavongsa, Phouyong; Doherty, Akins; Arnaud, Sara B.

    2005-01-01

    The Dahl salt-sensitive rat (S), a model for salt-sensitive hypertension, excretes protein-bound 25-hydroxyvitamin D (25-OHD) into urine when fed a low salt diet. Urinary 25-OHD increases during high salt intake. We tested the hypothesis that continuous loss of 25-OHD into urine would result in low plasma 25-OHD concentration in mature S rats raised on a standard diet. Dahl S and salt-resistant (R) male rats were raised to maturity (12-month-old) on a commercial rat diet (1% salt) and switched to 0.3% (low) or 2% (high) salt diets 3 weeks before euthanasia. Urine (24 h) was collected at the end of the dietary treatments. Urinary 25-OHD and urinary 25-OHD binding activity of S rats were three times that of R rats, resulting in lower plasma 25-OHD and 24,25-dihydroxyvitamin D concentrations in S rats than in R rats (P D concentrations than those fed 0.3% salt (P = 0.002). S rats excreted more calcium into urine than R rats (P D and high plasma 1,25-dihydroxyvitamin D and PTH concentrations seen in the mature S rats have also been reported for elderly patients with low-renin (salt-induced) hypertension. An implication of this study is that low vitamin D status may occur with age in salt-sensitive individuals, even when salt intake is normal.

  10. Effects of metformin on learning and memory behaviors and brain mitochondrial functions in high fat diet induced insulin resistant rats.

    Science.gov (United States)

    Pintana, Hiranya; Apaijai, Nattayaporn; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2012-10-05

    Metformin is a first line drug for the treatment of type 2 diabetes mellitus (T2DM). Our previous study reported that high-fat diet (HFD) consumption caused not only peripheral and neuronal insulin resistance, but also induced brain mitochondrial dysfunction as well as learning impairment. However, the effects of metformin on learning behavior and brain mitochondrial functions in HFD-induced insulin resistant rats have never been investigated. Thirty-two male Wistar rats were divided into two groups to receive either a normal diet (ND) or a high-fat diet (HFD) for 12weeks. Then, rats in each group were divided into two treatment groups to receive either vehicle or metformin (15mg/kg BW twice daily) for 21days. All rats were tested for cognitive behaviors using the Morris water maze (MWM) test, and blood samples were collected for the determination of glucose, insulin, and malondialdehyde. At the end of the study, animals were euthanized and the brain was removed for studying brain mitochondrial function and brain oxidative stress. We found that in the HFD group, metformin significantly attenuated the insulin resistant condition by improving metabolic parameters, decreasing peripheral and brain oxidative stress levels, and improving learning behavior, compared to the vehicle-treated group. Furthermore, metformin completely prevented brain mitochondrial dysfunction caused by long-term HFD consumption. Our findings suggest that metformin effectively improves peripheral insulin sensitivity, prevents brain mitochondrial dysfunction, and completely restores learning behavior, which were all impaired by long-term HFD consumption. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Chronic vitamin A-enriched diet feeding regulates hypercholesterolaemia through transcriptional regulation of reverse cholesterol transport pathway genes in obese rat model of WNIN/GR-Ob strain

    Directory of Open Access Journals (Sweden)

    Shanmugam M Jeyakumar

    2016-01-01

    Full Text Available Background & objectives: Hepatic scavenger receptor class B1 (SR-B1, a high-density lipoprotein (HDL receptor, is involved in the selective uptake of HDL-associated esterified cholesterol (EC, thereby regulates cholesterol homoeostasis and improves reverse cholesterol transport. Previously, we reported in euglycaemic obese rats (WNIN/Ob strain that feeding of vitamin A-enriched diet normalized hypercholesterolaemia, possibly through hepatic SR-B1-mediated pathway. This study was aimed to test whether it would be possible to normalize hypercholesterolaemia in glucose-intolerant obese rat model (WNIN/GR/Ob through similar mechanism by feeding identical vitamin A-enriched diet. Methods: In this study, 30 wk old male lean and obese rats of WNIN/GR-Ob strain were divided into two groups and received either stock diet or vitamin A-enriched diet (2.6 mg or 129 mg vitamin A/kg diet for 14 wk. Blood and other tissues were collected for various biochemical analyses. Results: Chronic vitamin A-enriched diet feeding decreased hypercholesterolaemia and normalized abnormally elevated plasma HDL-cholesterol (HDL-C levels in obese rats as compared to stock diet-fed obese groups. Further, decreased free cholesterol (FC and increased esterified cholesterol (EC contents of plasma cholesterol were observed, which were reflected in higher EC to FC ratio of vitamin A-enriched diet-fed obese rats. However, neither lecithin-cholesterol acyltransferase (LCAT activity of plasma nor its expression (both gene and protein in the liver were altered. On the contrary, hepatic cholesterol levels significantly increased in vitamin A-enriched diet fed obese rats. Hepatic SR-B1 expression (both mRNA and protein remained unaltered among groups. Vitamin A-enriched diet fed obese rats showed a significant increase in hepatic low-density lipoprotein receptor mRNA levels, while the expression of genes involved in HDL synthesis, namely, ATP-binding cassette protein 1 (ABCA1 and

  12. The effects of irradiation on the periodontal tissues of rats with the low calcium diet

    International Nuclear Information System (INIS)

    Choi, Mun Cheol; Lee, Sang Rae

    1992-01-01

    The purpose of this study was to investigate the changes of periodontal tissues in the irradiated mandibular bone in rats which were fed normal diet and low calcium diet. In order to carry out this experiment, 64 seven-week old Sprague-Dawley strain rats weighing about 150 gms were selected and equally divided into one experimental group of 32 rats and one control group with the remainder. The experimental group and the control group were then subdivided into two groups when the rats reached the age of 10 weeks, 16 rats were allotted for each subdivided group was composed of 16 rats and exposed to irradiation. The two groups were irradiated a single dose of 20 Gy on the only jaw area and irradiated with a cobalt-60 teletherapy unit. The rats in the control and experimental groups were warily dissected by fours on the 3rd, 7th, the 14th, and the 21st day after irradiation. After each dissection, both sides of the dead rat mandibular bodies were removed and fixed with 10% neutral formalin. The specimens sectioned and observed in histopathological, histochemical, and immunocellular chemical methods. The obtained results were as follows: 1. In the mandibles of rats with low calcium diet the increased number of fibroblasts of periodontal ligaments, many small capillaries and irregular arrangement of loose collagen fibers were detected and the partial resorption of dentin and cementum could be found by the microscopic studies. 2. In the group of irradiated rats, deaerated periodontal tissues led to the condition of irregular arrangement of collagen fibers and the decreased number of fibroblasts. But this condition was somewhat restored after 21 days of experiment. 3. Periodontal tissues of the irradiated rat group with low calcium diet were destroyed earlier than those of the irradiated rat group with normal diet. Soon this condition was restored and then high cellularity and dense collagen fibers were observed. 4. Many periodontal cells bearing tumor necrosis factor

  13. A grape-enriched diet increases bone calcium retention and cortical bone properties in ovariectomized rats.

    Science.gov (United States)

    Hohman, Emily E; Weaver, Connie M

    2015-02-01

    Grapes and their associated phytochemicals have been investigated for beneficial effects on cardiovascular health, cancer prevention, and other chronic diseases, but the effect of grape consumption on bone health has not been fully determined. We previously found short-term benefits of grape products on reducing bone turnover in ovariectomized rats. The objective of this study was to determine the long-term benefits of a grape-enriched diet on bone in ovariectomized rats. Rats were ovariectomized at 3 mo of age and were administered a single dose of (45)Ca to prelabel bones at 4 mo of age. After a 1-mo equilibration period, baseline urinary (45)Ca excretion was determined. Rats (n = 22/group) were then randomly assigned to a modified AIN93M diet containing 25% freeze-dried grape powder or to a control diet for 8 wk. Urinary (45)Ca excretion was monitored throughout the study to determine changes in bone (45)Ca retention. Calcium balance was assessed after 1 and 8 wk of consuming the experimental diets, and a calcium kinetic study was performed at 8 wk. After 8 wk, femurs were collected for micro-computed tomographic imaging, 3-point bending, and reference point indentation. Rats fed the grape-enriched diet had 44% greater net bone calcium retention than did rats fed the control diet. There were no differences in calcium balance due to diet at either week 1 or week 8, but there was a significant increase in net calcium absorption (10.6%) and retention (5.7%) from week 1 to week 8 in the grape-enriched diet group only. Grape-enriched diet-fed rats had 3% greater cortical thickness and 11% greater breaking strength. There were no differences in femur bone mineral density, trabecular microarchitecture, or reference point indentation variables due to diet. This study of ovariectomized rats indicates that the consumption of grape products may improve calcium utilization and suppress bone turnover, resulting in improvements in bone quality. © 2015 American Society for

  14. Protective Effects of Tamarillo (Cyphomandra betacea Extract against High Fat Diet Induced Obesity in Sprague-Dawley Rats

    Directory of Open Access Journals (Sweden)

    Noor Atiqah Aizan Abdul Kadir

    2015-01-01

    Full Text Available This study aims to investigate the protective effect of Cyphomandra betacea in adult male Sprague-Dawley rats fed with high fat diet. Rats were fed on either normal chow or high fat diet for 10 weeks for obesity induction phase and subsequently received C. betacea extract at low dose (150 mg kg−1, medium dose (200 mg kg−1, or high dose (300 mg kg−1 or placebo via oral gavages for another 7 weeks for treatment phase. Treatment of obese rats with C. betacea extracts led to a significant decrease in total cholesterol and significant increase in HDL-C (p<0.05. Also there was a trend of positive reduction in blood glucose, triglyceride, and LDL-C with positive reduction of body weight detected in medium and high dosage of C. betacea extract. Interestingly, C. betacea treated rats showed positive improvement of superoxide dismutase (SOD activity and glutathione peroxidase (GPx activity along with a significant increase of total antioxidant status (TAS (p<0.05. Further, rats treated with C. betacea show significantly lower in TNF-α and IL-6 activities (p<0.05. This study demonstrates the potential use of Cyphomandra betacea extract for weight maintenance and complimentary therapy to suppress some obesity complication signs.

  15. Long term highly saturated fat diet does not induce NASH in Wistar rats

    Directory of Open Access Journals (Sweden)

    Filippi Céline

    2007-02-01

    Full Text Available Abstract Background Understanding of nonalcoholic steatohepatitis (NASH is hampered by the lack of a suitable model. Our aim was to investigate whether long term high saturated-fat feeding would induce NASH in rats. Methods 21 day-old rats fed high fat diets for 14 weeks, with either coconut oil or butter, and were compared with rats feeding a standard diet or a methionine choline-deficient (MCD diet, a non physiological model of NASH. Results MCDD fed rats rapidly lost weight and showed NASH features. Rats fed coconut (86% of saturated fatty acid or butter (51% of saturated fatty acid had an increased caloric intake (+143% and +30%. At the end of the study period, total lipid ingestion in term of percentage of energy intake was higher in both coconut (45% and butter (42% groups than in the standard (7% diet group. No change in body mass was observed as compared with standard rats at the end of the experiment. However, high fat fed rats were fattier with enlarged white and brown adipose tissue (BAT depots, but they showed no liver steatosis and no difference in triglyceride content in hepatocytes, as compared with standard rats. Absence of hepatic lipid accumulation with high fat diets was not related to a higher lipid oxidation by isolated hepatocytes (unchanged ketogenesis and oxygen consumption or hepatic mitochondrial respiration but was rather associated with a rise in BAT uncoupling protein UCP1 (+25–28% vs standard. Conclusion Long term high saturated fat feeding led to increased "peripheral" fat storage and BAT thermogenesis but did not induce hepatic steatosis and NASH.

  16. Increased Hypothalamic Inflammation Associated with the Susceptibility to Obesity in Rats Exposed to High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Xiaoke Wang

    2012-01-01

    Full Text Available Inflammation has been implicated in the hypothalamic leptin and insulin resistance resulting defective food intake during high fat diet period. To investigate hypothalamic inflammation in dietary induced obesity (DIO and obesity resistant (DIO-R rats, we established rat models of DIO and DIO-R by feeding high fat diet for 10 weeks. Then we switched half of DIO and DIO-R rats to chow food and the other half to high fat diet for the following 8 weeks to explore hypothalamic inflammation response to the low fat diet intervention. Body weight, caloric intake, HOMA-IR, as well as the mRNA expression of hypothalamic TLR4, NF-κB, TNF-α, IL-1β, and IL-6 in DIO/HF rats were significantly increased compared to DIO-R/HF and CF rats, whereas IL-10 mRNA expression was lower in both DIO/HF and DIO-R/HF rats compared with CF rats. Switching to chow food from high fat diet reduced the body weight and improved insulin sensitivity but not affecting the expressions of studied inflammatory genes in DIO rats. Take together, upregulated hypothalamic inflammation may contribute to the overeating and development of obesity susceptibility induced by high fat diet. Switching to chow food had limited role in correcting hypothalamic inflammation in DIO rats during the intervention period.

  17. Low-carbohydrate, high-fat diets have sex-specific effects on bone health in rats

    DEFF Research Database (Denmark)

    Zengin, Ayse; Kropp, Benedikt; Chevalier, Yan

    2016-01-01

    the effects in female rats remain unknown. Therefore, we investigated whether sex-specific effects of LC-HF diets on bone health exist. METHODS: Twelve-week-old male and female Wistar rats were isoenergetically pair-fed either a control diet (CD), "Atkins-style" protein-matched diet (LC-HF-1), or ketogenic......PURPOSE: Studies in humans suggest that consumption of low-carbohydrate, high-fat diets (LC-HF) could be detrimental for growth and bone health. In young male rats, LC-HF diets negatively affect bone health by impairing the growth hormone/insulin-like growth factor axis (GH/IGF axis), while...... low-protein diet (LC-HF-2) for 4 weeks. In females, microcomputed tomography and histomorphometry analyses were performed on the distal femur. Sex hormones were analysed with liquid chromatography-tandem mass spectrometry, and endocrine parameters including GH and IGF-I were measured by immunoassay...

  18. Nitrogen excretion in rats on a protein-free diet and during starvation

    DEFF Research Database (Denmark)

    Chwalibog, André; Sawosz, Ewa; Niemiec, Tomasz

    2008-01-01

    Nitrogen balances (six days) were determined in male Wistar rats during feeding a diet with sufficient protein or a nearly protein-free diet (n = 2 x 24), and then during three days of starvation (n = 2 x 12). The objective was to evaluate the effect of protein withdrawal on minimum nitrogen...... excretion in urine (UN), corresponding to endogenous UN, during feeding and subsequent starvation periods. The rats fed the protein free-diet had almost the same excretion of urinary N during feeding and starvation (165 and 157 mg/kg W(0.75)), while it was 444 mg/kg W(0.75) in rats previously fed...... with protein, demonstrating a major influence of protein content in a diet on N excretion during starvation. Consequently, the impact of former protein supply on N losses during starvation ought to be considered when evaluating minimum N requirement necessary to sustain life....

  19. Molecular fingerprint of high fat diet induced urinary bladder metabolic dysfunction in a rat model.

    Directory of Open Access Journals (Sweden)

    Andreas Oberbach

    Full Text Available AIMS/HYPOTHESIS: Diabetic voiding dysfunction has been reported in epidemiological dimension of individuals with diabetes mellitus. Animal models might provide new insights into the molecular mechanisms of this dysfunction to facilitate early diagnosis and to identify new drug targets for therapeutic interventions. METHODS: Thirty male Sprague-Dawley rats received either chow or high-fat diet for eleven weeks. Proteomic alterations were comparatively monitored in both groups to discover a molecular fingerprinting of the urinary bladder remodelling/dysfunction. Results were validated by ELISA, Western blotting and immunohistology. RESULTS: In the proteome analysis 383 proteins were identified and canonical pathway analysis revealed a significant up-regulation of acute phase reaction, hypoxia, glycolysis, β-oxidation, and proteins related to mitochondrial dysfunction in high-fat diet rats. In contrast, calcium signalling, cytoskeletal proteins, calpain, 14-3-3η and eNOS signalling were down-regulated in this group. Interestingly, we found increased ubiquitin proteasome activity in the high-fat diet group that might explain the significant down-regulation of eNOS, 14-3-3η and calpain. CONCLUSIONS/INTERPRETATION: Thus, high-fat diet is sufficient to induce significant remodelling of the urinary bladder and alterations of the molecular fingerprint. Our findings give new insights into obesity related bladder dysfunction and identified proteins that may indicate novel pathophysiological mechanisms and therefore constitute new drug targets.

  20. The influence of high iron diet on rat lung manganese absorption

    International Nuclear Information System (INIS)

    Thompson, Khristy; Molina, Ramon; Donaghey, Thomas; Brain, Joseph D.; Wessling-Resnick, Marianne

    2006-01-01

    Individuals chronically exposed to manganese are at high risk for neurotoxic effects of this metal. A primary route of exposure is through respiration, although little is known about pulmonary uptake of metals or factors that modify this process. High dietary iron levels inversely affect intestinal uptake of manganese, and a major goal of this study was to determine if dietary iron loading could increase lung non-heme iron levels and alter manganese absorption. Rats were fed a high iron (1% carbonyl iron) or control diet for 4 weeks. Lung non-heme iron levels increased ∼2-fold in rats fed the high iron diet. To determine if iron-loading affected manganese uptake, 54 Mn was administered by intratracheal (it) instillation or intravenous (iv) injection for pharmacokinetic studies. 54 Mn absorption from the lungs to the blood was lower in it-instilled rats fed the 1% carbonyl iron diet. Pharmacokinetics of iv-injected 54 Mn revealed that the isotope was cleared more rapidly from the blood of iron-loaded rats. In situ analysis of divalent metal transporter-1 (DMT1) expression in lung detected mRNA in airway epithelium and bronchus-associated lymphatic tissue (BALT). Staining of the latter was significantly reduced in rats fed the high iron diet. In situ analysis of transferrin receptor (TfR) mRNA showed staining in BALT alone. These data demonstrate that manganese absorption from the lungs to the blood can be modified by iron status and the route of administration

  1. Temporal microbiota changes of high-protein diet intake in a rat model.

    Science.gov (United States)

    Mu, Chunlong; Yang, Yuxiang; Luo, Zhen; Zhu, Weiyun

    2017-10-01

    Alterations of specific microbes serve as important indicators that link gut health with specific diet intake. Although a six-week high-protein diet (45% protein) upregulates the pro-inflammatory response and oxidative stress in colon of rats, the dynamic alteration of gut microbiota remains unclear. To dissect temporal changes of microbiota, dynamic analyses of fecal microbiota were conducted using a rat model. Adult rats were fed a normal-protein diet or an HPD for 6 weeks, and feces collected at different weeks were used for microbiota and metabolite analysis. The structural alteration of fecal microbiota was observed after 4 weeks, especially for the decreased appearance of bands related to Akkermansia species. HPD increased numbers of Escherichia coli while decreased Akkermansia muciniphila, Bifidobacterium, Prevotella, Ruminococcus bromii, and Roseburia/Eubacterium rectale (P protein diet. HPD also decreased the copies of genes encoding butyryl-CoA:acetate CoA-transferase and Prevotella-associated methylmalonyl-CoA decarboxylase α-subunit (P high-protein diet. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Investigation of the effects of oleuropein rich diet on rat enteric bacterial flora.

    Science.gov (United States)

    Kiraz, A; Simsek, T; Tekin, S Z; Elmas, S; Tekin, M; Sahin, H; Altinisik, H B; Pala, C

    2016-01-01

    Oleuropein is a phenolic compound of olive leaves. Enteric bacterial flora is very important for human health and diet is a directly affecting factor of enteric bacterial flora composition. In this study, it was hypothesized that oleuropein could reduce total aerobic bacterial count in rat caecal flora. Twenty adult, male, Wistar albino rats were randomly divided into two groups. Group C (n=10) was fed with standard rat chow and water for 30 days. Group O (n=10) received olive leaf extract 20 mg/kg/day by intragastric gavage in addition to standard rat chow and water for 30 days. One gram of caecal content was collected from each rat and then consecutive 10-fold serial dilutions were prepared with a final concentration of 10-8. Then 0.1 ml of each dilution were spread onto the surfaces of Plate Count Agar and Violet Red Bile Glucose Agar to enumerate the aerobic enteric bacteria. Total aerobic bacterial counts of Group O were significantly lower than of Group C in all agar plates inoculated with ceacal samples for every dilution (pbacterial translocation by reducing enteric bacterial counts (Tab. 1, Ref. 32).

  3. Early Onset Inflammation in Pre-Insulin-Resistant Diet-Induced Obese Rats Does Not Affect the Vasoreactivity of Isolated Small Mesenteric Arteries

    DEFF Research Database (Denmark)

    Blædel, Martin; Raun, Kirsten; Boonen, Harrie C M

    2012-01-01

    Background: Obesity is an increasing burden affecting developed and emerging societies since it is associated with an increased risk of diabetes and consequent cardiovascular complications. Increasing evidence points towards a pivotal role of inflammation in the etiology of vascular dysfunction. ...... concomitant vascular dysfunction. The results show that inflammation and obesity are tightly associated, and that inflammation is manifested prior to significant insulin resistance and vascular dysfunction........ Our study aimed to investigate signs of inflammation and their relation to vascular dysfunction in rats receiving a high fat diet. Methods: Diet-induced obese (DIO) rats were used as a model since these rats exhibit a human pre-diabetic pathology. Oral glucose and insulin tolerance tests were...... conducted on DIO rats and their controls prior to the development of insulin resistance. Furthermore, the plasma contents of selected cytokines [macrophage chemoattractant protein (MCP-1), interleukin-6 (IL-6), and interleukin-1 (IL-1)] and the concentration of adiponectin were measured. Using wire...

  4. GABA dramatically improves glucose tolerance in streptozotocin-induced diabetic rats fed with high-fat diet.

    Science.gov (United States)

    Sohrabipour, Shahla; Sharifi, Mohammad Reza; Talebi, Ardeshir; Sharifi, Mohammadreza; Soltani, Nepton

    2018-05-05

    Skeletal muscle, hepatic insulin resistance, and beta cell dysfunction are the characteristic pathophysiological features of type 2 diabetes mellitus. GABA has an important role in pancreatic islet cells. The present study attempted to clarify the possible mechanism of GABA to improve glucose tolerance in a model of type 2 diabetes mellitus in rats. Fifty Wistar rats were divided into five groups: NDC that was fed the normal diet, CD which received a high-fat diet with streptozotocin, CD-GABA animals that received GABA via intraperitoneal injection, plus CD-Ins1 and CD-Ins2 groups which were treated with low and high doses of insulin, respectively. Body weight and blood glucose were measured weekly. Intraperitoneal glucose tolerance test (IPGTT), insulin tolerance test (ITT), urine volume, amount of water drinking, and food intake assessments were performed monthly. The hyperinsulinemic euglycemic clamp was done for assessing insulin resistance. Plasma insulin and glucagon were measured. Abdominal fat was measured. Glucagon receptor, Glucose 6 phosphatase, Phosphoenolpyruvate carboxykinase genes expression were evaluated in liver and Glucose transporter 4 (GLUT4) genes expression and protein translocation were evaluated in the muscle. GABA or insulin therapy improved blood glucose, insulin level, IPGTT, ITT, gluconeogenesis pathway, Glucagon receptor, body weight and body fat in diabetic rats. GLUT4 gene and protein expression increased. GABA whose beneficial effect was comparable to that of insulin, also increased glucose infusion rate during an euglycemic clamp. GABA could improve insulin resistance via rising GLUT4 and also decreasing the gluconeogenesis pathway and Glucagon receptor gene expression. Copyright © 2018. Published by Elsevier B.V.

  5. 54Mn absorption and excretion in rats fed soy protein and casein diets

    International Nuclear Information System (INIS)

    Lee, D.Y.; Johnson, P.E.

    1989-01-01

    Rats were fed diets containing either soy protein or casein and different levels of manganese, methionine, phytic acid, or arginine for 7 days and then fed test meals labeled with 2 microCi of 54Mn after an overnight fast. Retention of 54Mn in each rat was measured every other day for 21 days using a whole-body counter. Liver manganese was higher (P less than 0.0001) in soy protein-fed rats (8.8 micrograms/g) than in casein-fed rats (5.2 micrograms/g); manganese superoxide dismutase activity also was higher in soy protein-fed rats than in casein-fed rats (P less than 0.01). There was a significant interaction between manganese and protein which affected manganese absorption and biologic half-life of 54Mn. In a second experiment, rats fed soy protein-test meals retained more 54Mn (P less than 0.001) than casein-fed rats. Liver manganese (8.3 micrograms/g) in the soy protein group was also higher than that (5.7 micrograms/g) in the casein group (P less than 0.0001), but manganese superoxide dismutase activity was unaffected by protein. Supplementation with methionine increased 54Mn retention from both soy and casein diets (P less than 0.06); activity of manganese superoxide dismutase increased (P less than 0.05) but liver manganese did not change. The addition of arginine to casein diets had little effect on manganese bioavailability. Phytic acid affected neither manganese absorption nor biologic half-life in two experiments, but it depressed liver manganese in one experiment. These results suggest that neither arginine nor phytic acid was the component in soy protein which made manganese more available from soy protein diets than casein diets

  6. Fructose-Rich Diet Affects Mitochondrial DNA Damage and Repair in Rats.

    Science.gov (United States)

    Cioffi, Federica; Senese, Rosalba; Lasala, Pasquale; Ziello, Angela; Mazzoli, Arianna; Crescenzo, Raffaella; Liverini, Giovanna; Lanni, Antonia; Goglia, Fernando; Iossa, Susanna

    2017-03-24

    Evidence indicates that many forms of fructose-induced metabolic disturbance are associated with oxidative stress and mitochondrial dysfunction. Mitochondria are prominent targets of oxidative damage; however, it is not clear whether mitochondrial DNA (mtDNA) damage and/or its lack of repair are events involved in metabolic disease resulting from a fructose-rich diet. In the present study, we evaluated the degree of oxidative damage to liver mtDNA and its repair, in addition to the state of oxidative stress and antioxidant defense in the liver of rats fed a high-fructose diet. We used male rats feeding on a high-fructose or control diet for eight weeks. Our results showed an increase in mtDNA damage in the liver of rats fed a high-fructose diet and this damage, as evaluated by the expression of DNA polymerase γ, was not repaired; in addition, the mtDNA copy number was found to be significantly reduced. A reduction in the mtDNA copy number is indicative of impaired mitochondrial biogenesis, as is the finding of a reduction in the expression of genes involved in mitochondrial biogenesis. In conclusion, a fructose-rich diet leads to mitochondrial and mtDNA damage, which consequently may have a role in liver dysfunction and metabolic diseases.

  7. Prevention by Methionine of Enhancement of Hepatocarcinogenesis by Coadministration of a Choline‐deficient L‐Amino Acid‐defined Diet and Ethionine in Rats

    Science.gov (United States)

    Tsujiuchi, Toshifumi; Kobayashi, Eisaku; Nakae, Dai; Mizumoto, Yasushi; Andoh, Nobuaki; Kitada, Hiromichi; Ohashi, Kazuo; Fukuda, Tomokazu; Kido, Akira; Tsutsumi, Masahiro; Denda, Ayumi

    1995-01-01

    The effects of methionine on hepatocarcinogenesis induced by Coadministration of a choline‐deflcient L‐amino acid‐defined (CDAA) diet and ethionine were examined. F344 male rats were divided into 4 experimental groups. Groups 1 and 2 received the CDAA diet and a choline‐supplemented L‐amino acid‐defined (CSAA) diet, respectively. Group 3 received the CDAA diet containing 0.05% ethionine, and group 4 the CDAA diet containing 0.05% ethionine and 0.47% methionine. Animals were killed after 12 weeks of treatment. Histologically, the CDAA diet induced intracellular fat accumulation and foci. In contrast, ethionine caused not only foci, but also hyperplastic nodules, cholangiofibrosis and the proliferation of oval cells without such fat accumulation. Methionine abolished the development of all of the liver lesions induced by Coadministration of the CDAA diet and ethionine. To investigate the effects of methionine on induction of c‐myc and c‐Ha‐ras expression, as well as generation of 8‐hydroxyguanine (8‐OHGua) and 2‐thiobarbituric acid‐reacting substances (TBARS), by Coadministration of the CDAA diet and ethionine, subgroups of 3 to 5 animals were killed at 2, 4, 8 or 11 days after the beginning of the experiment. Coadministration of the CDAA diet and ethionine markedly enhanced the level of expression of c‐myc and c‐Ha‐ras, 8‐OHGua formation and TBARS generation as compared with the CDAA or CSAA diet within 11 days, and methionine blocked these actions. These results indicate that addition of methionine prevents the induction of c‐myc and c‐Ha‐ras expression, 8‐OHGua formation and TBARS generation, as well as hepatocellular lesions, by Coadministration of the CDAA diet and ethionine in rats, and suggest a possible involvement of oxidative stress and gene expression in hepatocarcinogenesis by these agents. PMID:8636001

  8. The effects of X-ray radiation on mandibular bone of low-calcium diet rats

    Energy Technology Data Exchange (ETDEWEB)

    Kurita, Akihiko (Nippon Dental Univ., Tokyo (Japan))

    1991-08-01

    In an attempt to examine the effects of X-ray on osteoporosis, a single dose of 30 Gy was delivered to the mandible in rats given low-calcium diet. Serum levels of calcium (Ca) and inorganic phosphorus (P) were measured; and changes in bone salt were determined by autoradiography, microradiography, and roentgenography using an electron probe microanalyzer. Body weight was lower in the irradiated group than the non-irradiated group, irrespective of types of diet. The serum Ca levels in the irradiated group given a normal diet were significantly decreased on Days 3, 7, and 14 days after irradiation. When given a low-Ca diet, these levels tended to be lower in the irradiated group than the non-irradiated group on Day 7 or later. The serum levels of inorganic P were significantly lower in the irradiated group given a normal diet than the non-irradiated group on Day 3. Rats given a low-Ca diet had the same levels, irrespective of irradiation. Autoradiography revealed that Ca-45 retention in the whole jaw was slightly greater in the irradiated group than the non-irradiated group On Days 7 and 21. Rats given a low-Ca diet in both irradiated and non-irradiated groups had a greater Ca-45 retention than those given a normal diet. Microradiography revealed that bone formation-like changes, such as flat surface of the periodontal membrane at the intra-alveolar septum, were slightly noticeable in the irradiated group of rats given a normal diet on Day 21. Thinning of the intra-alveolar septum and decrease of the trabecula at the diaphysis were also noticeable in the irradiated group of rats given a low-Ca diet. Variation of X-ray intensity was more marked on Day 7 than on Day 21 in the irradiated group given a normal diet. When given a low-Ca diet, both the irradiated and non-irradiated group had noticeable X-ray intensity variation. (N.K.).

  9. Modulatory role of chelating agents in diet-induced hypercholesterolemia in rats

    Directory of Open Access Journals (Sweden)

    Heba M. Mahmoud

    2014-06-01

    Conclusion: Pretreatment of hypercholesterolemic rats with simvastatin, CaNa2EDTA or DMSA attenuated most of the changes induced by feeding rats with cholesterol-rich diet owing to their observed anti-hyperlipidemic and antioxidant properties.

  10. PENGARUH DIET KACANG MERAH TERHADAP KADAR GULA DARAH TIKUS DIABETIK INDUKSI ALLOXAN [Effect of Red Bean Diet on Blood Glucose Concentration of Alloxan-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Y. Marsono 1

    2003-04-01

    Full Text Available Hypoglycemic response of red bean were evaluated in alloxan-induced diabetic rats. The objective of this research was to evaluate the effect of red bean (Vigna umbellata diet compare with soy bean diet on blood glucose concentration in alloxan-induced diabetic rats.Thirty male Sprague-Dawley (SD rats (250-300 g were diabetic induced by alloxan injection (80 mg/kg of body weight by intra muscular injection. They were divided into three groups of ten rats. They were fed (1 Standard diet (STD, (2 Red bean diet (KM, and (3 Soy bean diet (KD for 28 days. Concentration of serum glucose were determined before injection (0 day,after injection (day 17th and every sweek during diet intervention (day 24,31,38 and 45thIt was found that alloxan injection increased serum glucose concentration of STD, KM, and KD rats. After 28 days intervention, red bean decreased the serum glucose concentration from 217, 87 mg/dL to 57,70 mg/dL (69 % in KM groups and from 218,94 mg/dL to 76,82 mg/dL (65 % in KD groups, but standard diet (STD were decreased less than both of KM and KD diet.

  11. Environmental Enrichment Mitigates Detrimental Cognitive Effects of Ketogenic Diet in Weanling Rats.

    Science.gov (United States)

    Scichilone, John M; Yarraguntla, Kalyan; Charalambides, Ana; Harney, Jacob P; Butler, David

    2016-09-01

    For decades, the ketogenic diet has been an effective treatment of intractable epilepsy in children. Childhood epilepsy is pharmacoresistant in 25-40 % of patients taking the current prescribed medications. Chronic seizure activity has been linked to deficits in cognitive function and behavioral problems which negatively affect the learning abilities of the child. Recent studies suggest the ketogenic diet (KD), a high fat with low carbohydrate and protein diet, has adverse effects on cognition in weanling rats. The diet reduces circulating glucose levels to where energy metabolism is converted from glycolysis to burning fat and generating ketone bodies which has been suggested as a highly efficient source of energy for the brain. In contrast, when weanling rats are placed in an enriched environment, they exhibit increased spatial learning, memory, and neurogenesis. Thus, this study was done to determine if weanling rats being administered a KD in an environmental enrichment (EE) would still exhibit the negative cognitive effects of the diet previously observed. The present study suggests that an altered environment is capable of reducing the cognitive deficits in weanling rats administered a KD. Learning was improved with an EE. The effect of diet and environment on anxiety and depression suggests a significant reduction in anxiety with enrichment rearing. Interestingly, circulating energy substrate levels were increased in the EE groups along with brain-derived neurotrophic factor despite the least changes in weight gain. In light of numerous studies using KDs that seemingly have adverse effects on cognition, KD-induced reductions in excitotoxic events would not necessarily eliminate that negative aspect of seizures.

  12. Cardiac Hypertrophy and Brain Natriuretic Peptide Levels in an Ovariectomized Rat Model Fed a High-Fat Diet

    Science.gov (United States)

    Goncalves, Gleisy Kelly; de Oliveira, Thiago Henrique Caldeira; de Oliveira Belo, Najara

    2017-01-01

    Background Heart failure in women increases around the time of menopause when high-fat diets may result in obesity. The heart produces brain natriuretic peptide (BNP), also known as B-type natriuretic peptide. This aims of this study were to assess cardiac hypertrophy and BNP levels in ovariectomized rats fed a high-fat diet. Material/Methods Forty-eight female Wistar rats were divided into four groups: sham-operated rats fed a control diet (SC) (n=12); ovariectomized rats fed a control diet (OC) (n=12); sham-operated rats fed a high-fat diet (SF) (n=12); and ovariectomized rats fed a high-fat diet (OF) (n=12). Body weight and blood pressure were measured weekly for 24 weeks. Rats were then euthanized, and plasma samples and heart tissue were studied for gene expression, hydroxyproline levels, and histological examination. Results A high-fat diet and ovariectomy (group OF) increased the weight body and the systolic blood pressure after three months and five months, respectively. Cardiomyocyte hypertrophy was associated with increased expression of ventricular BNP, decreased natriuretic peptide receptor (NPR)-A and increased levels of hydroxyproline and transforming growth factor (TGF)-β. The plasma levels of BNP and estradiol were inversely correlated; expression of estrogen receptor (ER)β and ERα were reduced. Conclusions The findings of this study showed that, in the ovariectomized rats fed a high-fat diet, the BNP-NPR-A receptor complex was involved in cardiac remodeling. BNP may be a marker of cardiac hypertrophy in this animal model. PMID:29249795

  13. Effect of diet protein quality on growth and protein synthesis in rats

    International Nuclear Information System (INIS)

    Chinchalkar, D.V.; Mehta, S.L.

    1978-01-01

    The effect of diet protein quality on albino rats was studied by feeding normal and opaque-2 maize. The weight gain in rats was 60 percent higher on opaque-2 maize as compared to those fed on normal maize. Rats converted 1.0 g of dietary opaque-2 maize to 0.226 g weight gain as compared to 0.131 g for normal maize. The protein content per liver was higher with opaque-2 maize diet suggesting a higher net protein synthesis in opaque-2 maize fed rat livers. In vitro 14 C-phenylalanine incorporation showed that polysomes from opaque-2 maize fed rat livers were more efficient in protein synthesis than those from normal maize fed rat livers. Addition of poly-U resulted in more enhanced amino acid incorporation with polysomes from normal maize fed rats as compared to other group indicating greater limitation of mRNA in polysomes from normal maize fed rats. The total yield of liver polysomes from opaque-2 maize fed rats was substantially higher. (author)

  14. Effects of medium-chain triglycerides on gluconeogenesis and ureagenesis in weaned rats fed a high fat diet

    Directory of Open Access Journals (Sweden)

    Chitose Sugiyama

    2015-12-01

    Full Text Available We explored the effects of Medium-chain triglycerides (MCT on gluconeogenesis and ureagenesis in the liver of weaned male rats fed high fat, carbohydrate-free diets. The rats of three experimental groups and control were fed for 10 days. The diets were high fat, carbohydrate-free diets consisting either of a corn oil or MCT, and high protein carbohydrate-free diet and a control (high carbohydrate diet. The hepatic glucose-6-phosphatase (G6Pase activity increased in the experimental groups. Despite the elevated G6Pase activity in these groups, hepatic activities of glutamic alanine transaminase (GAT, pyruvate carboxylase (PC and arginase differed among the experimental groups. The HF-corn oil rats showed elevation of PC activity, but no elevation of GAT activity, and the lowest arginase activity among the three groups. The HF-MCT diet-fed rats showed higher GAT and arginase activities than the HF-corn oil group. In the HP diet-fed rats, GAT and arginase activities enhanced, PC did not.

  15. A gut reaction: the combined influence of exercise and diet on gastrointestinal microbiota in rats.

    Science.gov (United States)

    Batacan, R B; Fenning, A S; Dalbo, V J; Scanlan, A T; Duncan, M J; Moore, R J; Stanley, D

    2017-06-01

    Intestinal microbiota modulates the development of clinical conditions, including metabolic syndrome and obesity. Many of these conditions are influenced by nutritional and exercise behaviours. This study aimed to investigate the ability of exercise to re-shape the intestinal microbiota and the influence of the diet on the process. A rat model was used to examine the intestinal microbiota responses to four activity conditions, including: high-intensity interval training (HIIT), light-intensity training (LIT), sedentary and normal control, each containing two nutritional conditions: high-fat high-fructose diet (HF) and standard chow (SC) diet. No significant differences in microbiota were apparent between activity conditions in rats fed a HF diet but changes in the presence/absence of phylotypes were observed in the LIT and HIIT groups. In rats fed SC, significant differences in intestinal microbiota were evident between exercised and nonexercised rats. Both LIT and HIIT induced significant differences in intestinal microbiota in SC-fed rats compared to their respective SC-fed controls. Characterization of the exercise-induced bacterial phylotypes indicated an increase in bacteria likely capable of degrading resistant polysaccharides and an increase in short chain fatty acid producers. While a significant effect of exercise on microbiota composition occurred in SC-fed rats, the HF-fed rats microbiota showed little response. These data suggest that a HF diet prevented microbiota differentiation in response to exercise. The importance of diet-exercise interaction is extended to the level of intestinal bacteria and gut health. © 2017 The Society for Applied Microbiology.

  16. Kappaphycus alvarezii as a Food Supplement Prevents Diet-Induced Metabolic Syndrome in Rats

    Directory of Open Access Journals (Sweden)

    Stephen Wanyonyi

    2017-11-01

    Full Text Available The red seaweed, Kappaphycus alvarezii, was evaluated for its potential to prevent signs of metabolic syndrome through use as a whole food supplement. Major biochemical components of dried Kappaphycus are carrageenan (soluble fiber ~34.6% and salt (predominantly potassium (K 20% with a low overall energy content for whole seaweed. Eight to nine week old male Wistar rats were randomly divided into three groups and fed for 8 weeks on a corn starch diet, a high-carbohydrate, high-fat (H diet, alone or supplemented with a 5% (w/w dried and milled Kappaphycus blended into the base diet. H-fed rats showed symptoms of metabolic syndrome including increased body weight, total fat mass, systolic blood pressure, left ventricular collagen deposition, plasma triglycerides, and plasma non-esterified fatty acids along with fatty liver. Relative to these obese rats, Kappaphycus-treated rats showed normalized body weight and adiposity, lower systolic blood pressure, improved heart and liver structure, and lower plasma lipids, even in presence of H diet. Kappaphycus modulated the balance between Firmicutes and Bacteroidetes in the gut, which could serve as the potential mechanism for improved metabolic variables; this was accompanied by no damage to the gut structure. Thus, whole Kappaphycus improved cardiovascular, liver, and metabolic parameters in obese rats.

  17. Effect of Carnitine and herbal mixture extract on obesity induced by high fat diet in rats.

    Science.gov (United States)

    Amin, Kamal A; Nagy, Mohamed A

    2009-10-16

    Obesity-associated type 2 diabetes is rapidly increasing throughout the world. It is generally recognized that natural products with a long history of safety can modulate obesity. To investigate the development of obesity in response to a high fat diet (HFD) and to estimate the effect of L-carnitine and an Egyptian Herbal mixture formulation (HMF) (consisting of T. chebula, Senae, rhubarb, black cumin, aniseed, fennel and licorice) on bodyweight, food intake, lipid profiles, renal, hepatic, cardiac function markers, lipid Peroxidation, and the glucose and insulin levels in blood and liver tissue in rats. White male albino rats weighing 80-90 gm, 60 days old. 10 rats were fed a normal basal diet (Cr), 30 rats fed a high-fat diet (HFD) for 14 weeks during the entire study. Rats of the HFD group were equally divided into 3 subgroups each one include 10 rats. The first group received HFD with no supplement (HFD), the 2nd group HFD+L-carnitine and the third group received HFD+HMF. Carnitine and HMF were administered at 10th week (start time for treatments) for 4 weeks.Body weight, lipid profile & renal function (urea, uric acid creatinine) ALT & AST activities, cardiac markers, (LDH, C.K-NAC and MB) the oxidative stress marker reduced glutathione (GSH), and Malondialdehyde (MDA) catalase activity, in addition to glucose, insulin, and insulin resistance in serum & tissues were analyzed. Data showed that feeding HFD diet significantly increased final body weight, triglycerides (TG), total cholesterol, & LDL concentration compared with controls, while significantly decreasing HDL; meanwhile treatment with L-carnitine, or HMF significantly normalized the lipid profile.Serum ALT, urea, uric acid, creatinine, LDH, CK-NAC, CK-MB were significantly higher in the high fat group compared with normal controls; and administration of L-carnitine or herbal extract significantly lessened the effect of the HFD. Hyperglycemia, hyperinsulinemia, and high insulin resistance (IR

  18. Effect of Carnitine and herbal mixture extract on obesity induced by high fat diet in rats

    Directory of Open Access Journals (Sweden)

    Amin Kamal A

    2009-10-01

    Full Text Available Abstract Background Obesity-associated type 2 diabetes is rapidly increasing throughout the world. It is generally recognized that natural products with a long history of safety can modulate obesity. Aim To investigate the development of obesity in response to a high fat diet (HFD and to estimate the effect of L-carnitine and an Egyptian Herbal mixture formulation (HMF (consisting of T. chebula, Senae, rhubarb, black cumin, aniseed, fennel and licorice on bodyweight, food intake, lipid profiles, renal, hepatic, cardiac function markers, lipid Peroxidation, and the glucose and insulin levels in blood and liver tissue in rats. Method White male albino rats weighing 80-90 gm, 60 days old. 10 rats were fed a normal basal diet (Cr, 30 rats fed a high-fat diet (HFD for 14 weeks during the entire study. Rats of the HFD group were equally divided into 3 subgroups each one include 10 rats. The first group received HFD with no supplement (HFD, the 2nd group HFD+L-carnitine and the third group received HFD+HMF. Carnitine and HMF were administered at 10th week (start time for treatments for 4 weeks. Body weight, lipid profile & renal function (urea, uric acid creatinine ALT & AST activities, cardiac markers, (LDH, C.K-NAC and MB the oxidative stress marker reduced glutathione (GSH, and Malondialdehyde (MDA catalase activity, in addition to glucose, insulin, and insulin resistance in serum & tissues were analyzed. Results Data showed that feeding HFD diet significantly increased final body weight, triglycerides (TG, total cholesterol, & LDL concentration compared with controls, while significantly decreasing HDL; meanwhile treatment with L-carnitine, or HMF significantly normalized the lipid profile. Serum ALT, urea, uric acid, creatinine, LDH, CK-NAC, CK-MB were significantly higher in the high fat group compared with normal controls; and administration of L-carnitine or herbal extract significantly lessened the effect of the HFD. Hyperglycemia

  19. Ellagic acid attenuates high-carbohydrate, high-fat diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Panchal, Sunil K; Ward, Leigh; Brown, Lindsay

    2013-03-01

    Fruits and nuts may prevent or reverse common human health conditions such as obesity, diabetes and hypertension; together, these conditions are referred to as metabolic syndrome, an increasing problem. This study has investigated the responses to ellagic acid, present in many fruits and nuts, in a diet-induced rat model of metabolic syndrome. Eight- to nine-week-old male Wistar rats were divided into four groups for 16-week feeding with cornstarch diet (C), cornstarch diet supplemented with ellagic acid (CE), high-carbohydrate, high-fat diet (H) and high-carbohydrate, high-fat diet supplemented with ellagic acid (HE). CE and HE rats were given 0.8 g/kg ellagic acid in food from week 8 to 16 only. At the end of 16 weeks, cardiovascular, hepatic and metabolic parameters along with protein levels of Nrf2, NF-κB and CPT1 in the heart and the liver were characterised. High-carbohydrate, high-fat diet-fed rats developed cardiovascular remodelling, impaired ventricular function, impaired glucose tolerance, non-alcoholic fatty liver disease with increased protein levels of NF-κB and decreased protein levels of Nrf2 and CPT1 in the heart and the liver. Ellagic acid attenuated these diet-induced symptoms of metabolic syndrome with normalisation of protein levels of Nrf2, NF-κB and CPT1. Ellagic acid derived from nuts and fruits such as raspberries and pomegranates may provide a useful dietary supplement to decrease the characteristic changes in metabolism and in cardiac and hepatic structure and function induced by a high-carbohydrate, high-fat diet by suppressing oxidative stress and inflammation.

  20. A diet containing the soy phytoestrogen genistein causes infertility in female rats partially deficient in UDP glucuronyltransferase

    International Nuclear Information System (INIS)

    Seppen, Jurgen

    2012-01-01

    Soy beans contain genistein, a natural compound that has estrogenic effects because it binds the estrogen receptor with relatively high affinity. Genistein is therefore the most important environmental estrogen in the human diet. Detoxification of genistein is mediated through conjugation by UDP-glucuronyltransferase 1 and 2 (UGT1 and UGT2) isoenzymes. Gunn rats have a genetic deficiency in UGT1 activity, UGT2 activities are not affected. Because our Gunn rats stopped breeding after the animal chow was changed to a type with much higher soy content, we examined the mechanism behind this soy diet induced infertility. Gunn and control rats were fed diets with and without genistein. In these rats, plasma levels of genistein and metabolites, fertility and reproductive parameters were determined. Enzyme assays showed reduced genistein UGT activity in Gunn rats, as compared to wild type rats. Female Gunn rats were completely infertile on a genistein diet, wild type rats were fertile. Genistein diet caused a persistent estrus, lowered serum progesterone and inhibited development of corpora lutea in Gunn rats. Concentrations of total genistein in Gunn and control rat plasma were identical and within the range observed in humans after soy consumption. However, Gunn rat plasma contained 25% unconjugated genistein, compared to 3.6% in control rats. This study shows that, under conditions of reduced glucuronidation, dietary genistein exhibits a strongly increased estrogenic effect. Because polymorphisms that reduce UGT1 expression are prevalent in the human population, these results suggest a cautionary attitude towards the consumption of large amounts of soy or soy supplements. -- Highlights: ► Gunn rats are partially deficient in detoxification by UDP glucuronyltransferases. ► Female Gunn rats are infertile on a soy containing diet. ► Soy contains genistein, a potent phytoestrogen. ► Inefficient glucuronidation of genistein causes female infertility.

  1. A diet containing the soy phytoestrogen genistein causes infertility in female rats partially deficient in UDP glucuronyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Seppen, Jurgen, E-mail: j.seppen@amc.uva.nl

    2012-11-01

    Soy beans contain genistein, a natural compound that has estrogenic effects because it binds the estrogen receptor with relatively high affinity. Genistein is therefore the most important environmental estrogen in the human diet. Detoxification of genistein is mediated through conjugation by UDP-glucuronyltransferase 1 and 2 (UGT1 and UGT2) isoenzymes. Gunn rats have a genetic deficiency in UGT1 activity, UGT2 activities are not affected. Because our Gunn rats stopped breeding after the animal chow was changed to a type with much higher soy content, we examined the mechanism behind this soy diet induced infertility. Gunn and control rats were fed diets with and without genistein. In these rats, plasma levels of genistein and metabolites, fertility and reproductive parameters were determined. Enzyme assays showed reduced genistein UGT activity in Gunn rats, as compared to wild type rats. Female Gunn rats were completely infertile on a genistein diet, wild type rats were fertile. Genistein diet caused a persistent estrus, lowered serum progesterone and inhibited development of corpora lutea in Gunn rats. Concentrations of total genistein in Gunn and control rat plasma were identical and within the range observed in humans after soy consumption. However, Gunn rat plasma contained 25% unconjugated genistein, compared to 3.6% in control rats. This study shows that, under conditions of reduced glucuronidation, dietary genistein exhibits a strongly increased estrogenic effect. Because polymorphisms that reduce UGT1 expression are prevalent in the human population, these results suggest a cautionary attitude towards the consumption of large amounts of soy or soy supplements. -- Highlights: ► Gunn rats are partially deficient in detoxification by UDP glucuronyltransferases. ► Female Gunn rats are infertile on a soy containing diet. ► Soy contains genistein, a potent phytoestrogen. ► Inefficient glucuronidation of genistein causes female infertility.

  2. Dietary D-psicose reduced visceral fat mass in high-fat diet-induced obese rats.

    Science.gov (United States)

    Chung, Young-Mee; Hyun Lee, Joo; Youl Kim, Deuk; Hwang, Se-Hee; Hong, Young-Ho; Kim, Seong-Bo; Jin Lee, Song; Hye Park, Chi

    2012-02-01

    D-Psicose, a C-3 epimer of D-fructose, has shown promise in reducing body fat accumulation in normal rats and plasma glucose level in genetic diabetic mice. Effects of D-psicose on diet-induced obesity are not clearly elucidated, and we investigated food intake, body weight, and fat accumulation in rats fed high-fat (HF) diet. Sprague-Dawley rats became obese by feeding HF diet for 4 wk, and were assigned either to normal or HF diet supplemented with or without D-psicose, sucrose, or erythritol for 8 wk. Changing HF to normal diet gained less body weight and adipose tissue due to different energy intake. D-psicose-fed rats exhibited lower weight gain, food efficiency ratio, and fat accumulation than erythritol- and sucrose-fed rats. This effect was more prominent in D-psicose-fed rats with normal diet than with HF diet, suggesting combination of psicose and calorie restriction further reduced obesity. There was no difference in serum cholesterol/high-density lipoprotein (HDL)-C and low-density lipoprotein (LDL)-C/HDL-C ratios between D-psicose group and other groups. Liver weight in 5% psicose group with normal diet was higher than in other groups, but histopathological examination did not reveal any psicose-related change. D-Psicose inhibited the differentiation of mesenchymal stem cell (MSC) to adipose tissue in a concentration-dependent manner. These results demonstrate that D-psicose produces a marked decrease, greater than erythritol, in weight gain and visceral fat in an established obesity model by inhibiting MSC differentiation to adipocyte. Thus, D-psicose can be useful in preventing and reducing obesity as a sugar substitute and food ingredient. We can develop D-psicose as a sugar substitute and food ingredient since it can prevent obesity in normal people, but also suppress adiposity as a sugar substitute or food ingredients with antiobesity effect in obese people. D-psicose can be unique functional sweetener because of its function of reducing visceral

  3. Modulatory effects of dietary supplementation by Vernonia amygdalina on high-fat-diet-induced obesity in Wistar rats.

    Science.gov (United States)

    Ekeleme-Egedigwe, Chima A; Ijeh, Ifeoma I; Okafor, Polycarp N

    2017-01-01

    Obesity is a growing public health problem arising from energy imbalance. The effect of 10% dietary incorporation of Vernonia amygdalina (VA) leaves into high-fat diets on some biological markers of adiposity and dyslipidaemia was investigated. Experimental diets consisted of the following – CD (control diet); HFD (high-fat diet); and HFD- VA (HFD containing 10% Vernonia amygdalina leaves) supplementation. Fifteen male Wistar rats were randomly divided into three groups of five animals each. After twelve weeks of feeding, serum lipid profile, blood glucose concentrations, body weight, adiposity index, feed intake, fecal loss and relative organ weight were investigated. Vernonia amygdalina (VA) inhibited HFD-induced weight gain and adiposity in rats. HFD-induced obese rats showed a significant increase in the levels of serum TG and TC compared to rats on a normal diet. However, the levels of serum TG, TC, LDL-C in HFDVA rats reduced significantly relative to the levels in HFD rats. Our results indicate that HFDVA reversed fatty infiltration leading to decreased body weight and fat tissue mass in the rats. These results suggested that incorporation of Vernonia amygdalina into high-fat diets may have therapeutic potentials for obesity and related metabolic disorders. Further studies to explore its possibility as an alternative pharmacologic agent to treat obesity are warranted.

  4. Biochemical Study of Oxidative Stress Markers in the Liver, Kidney and Heart of High Fat Diet Induced Obesity in Rats

    Directory of Open Access Journals (Sweden)

    Noeman Saad A

    2011-08-01

    Full Text Available Abstract Background Obesity has become a leading global health problem owing to its strong association with a high incidence of diseases. Aim To induce rat obesity using high fat diet (HFD and to estimate oxidative stress markers in their liver, heart and kidney tissues in order to shed the light on the effect of obesity on these organs. Materials and methods Sixty white albino rats weighing 150-200 g were randomly divided into two equal groups; group I: received high fat diet for 16 weeks, and group II (control group: received only normal diet (rat chow for 16 weeks. Blood samples were taken for measurement of lipid profile, tissue samples from liver, heart and kidney were taken for determination of malondialdehyde (MDA, protein carbonyl (PCO, reduced glutathione (GSH levels, and the activities of glutathione S- transferase (GST glutathione peroxidase (GPx, catalase (CAT and paraoxonase1 (PON1 enzymes. Results Data showed that feeding HFD diet significantly increased final body weight and induced a state of dyslipideamia. Also our results showed a significant increase MDA and PCO levels in the hepatic, heart and renal tissues of obese rats, as well as a significant decrease in the activity of GST, GPx and PON 1 enzymes. On the other hand CAT enzyme activity showed significant decrease only in renal tissues of obese rats with non significant difference in hepatic and heart tissues. GSH levels showed significant decrease in both renal and hepatic tissues of obese animals and significant increase in their heart tissues. Correlation studies in obese animals showed a negative correlation between MDA and PCO tissue levels and the activities of GPx, GST and PON1 in all tissues and also with CAT enzyme activity in renal tissues. Also a negative correlation was detected between MDA & PCO tissues levels and GSH levels in both hepatic and renal tissues. While positive correlation was found between them and GSH levels in heart tissues. Conclusion High fat

  5. Isoflavone and Protein Constituents of Lactic Acid-Fermented Soy Milk Combine to Prevent Dyslipidemia in Rats Fed a High Cholesterol Diet

    Science.gov (United States)

    Kobayashi, Maki; Egusa, Shintaro; Fukuda, Mitsuru

    2014-01-01

    A high cholesterol diet induces dyslipidemia. This study investigated whether isoflavone aglycones in lactic acid-fermented soy milk (LFS) improve lipid metabolism in rats fed a high cholesterol diet. Male Sprague-Dawley rats aged seven weeks were fed an AIN-93G diet, a 1% cholesterol diet (a high cholesterol diet), a high-cholesterol diet containing 4% isoflavone extract of LFS (LFS extract diet), a high-cholesterol diet containing 19.4% ethanol-washed LFS (ethanol-washed LFS diet, isoflavone-poor diet), or a high cholesterol diet containing 23.2% intact LFS (intact LFS diet) for five weeks. The plasma total cholesterol (TC) level was increased in the rats fed the LFS extract diet compared with those fed the high cholesterol diet. The TC level was decreased by the intact LFS and ethanol-washed LFS diets. The cholesterol-lowering effect was stronger in the rats fed the intact LFS diet than those fed the ethanol-washed LFS diet. The plasma triglyceride (TG) level was unchanged in the rats fed the LFS extract diet, but it decreased in rats fed the intact LFS and ethanol-washed LFS diets. Although, compared with the high cholesterol diet, the LFS extract and ethanol-washed LFS diets did not reduce hepatic cholesterol and TG, both levels were remarkably lowered by the intact LFS diet. These results suggest that the improvement in lipid metabolism of rats fed a high-cholesterol diet containing LFS isoflavone aglycones is not due to an independent effect but due to a cooperative effect with soy protein. PMID:25514389

  6. Isoflavone and Protein Constituents of Lactic Acid-Fermented Soy Milk Combine to Prevent Dyslipidemia in Rats Fed a High Cholesterol Diet

    Directory of Open Access Journals (Sweden)

    Maki Kobayashi

    2014-12-01

    Full Text Available A high cholesterol diet induces dyslipidemia. This study investigated whether isoflavone aglycones in lactic acid-fermented soy milk (LFS improve lipid metabolism in rats fed a high cholesterol diet. Male Sprague-Dawley rats aged seven weeks were fed an AIN-93G diet, a 1% cholesterol diet (a high cholesterol diet, a high-cholesterol diet containing 4% isoflavone extract of LFS (LFS extract diet, a high-cholesterol diet containing 19.4% ethanol-washed LFS (ethanol-washed LFS diet, isoflavone-poor diet, or a high cholesterol diet containing 23.2% intact LFS (intact LFS diet for five weeks. The plasma total cholesterol (TC level was increased in the rats fed the LFS extract diet compared with those fed the high cholesterol diet. The TC level was decreased by the intact LFS and ethanol-washed LFS diets. The cholesterol-lowering effect was stronger in the rats fed the intact LFS diet than those fed the ethanol-washed LFS diet. The plasma triglyceride (TG level was unchanged in the rats fed the LFS extract diet, but it decreased in rats fed the intact LFS and ethanol-washed LFS diets. Although, compared with the high cholesterol diet, the LFS extract and ethanol-washed LFS diets did not reduce hepatic cholesterol and TG, both levels were remarkably lowered by the intact LFS diet. These results suggest that the improvement in lipid metabolism of rats fed a high-cholesterol diet containing LFS isoflavone aglycones is not due to an independent effect but due to a cooperative effect with soy protein.

  7. The effects of the low calcium diet and irradiation on the mandibular condyle of rats

    International Nuclear Information System (INIS)

    Ahn, Hee Mun; Lee, Sang Rae

    1993-01-01

    This study was performed to investigate the changes of mandibular condyle by low diet and the effects of irradiation on the bone in ofteoporotic state. In order to carry out this experiment, 80 served-week old Sprague-Dawley strain rats about 150gm were selected and equally divided into one experimental group of 40 rats and one control group with the remainder. The experimental group and the control group of 40 rats and one control group with the remainder. The experimental group and the control group were then subdivided into two group and exposed to irradiation. The two irradiation groups received a single dose of 20 Gy on the jaw area only and irradiated with a cobalt-60 teletherapy unit. The rats in the control and experimental groups were serially terminated by fours on the 3rd, the 7th, the 14th, and the 21st day after irradiation. After termination, both sides of the dead rats mandibular condyle were removed and fixed with 10% neutral formalin. The bone mineral density of mandibular condle was measured by use of dual energy X-ray with Hitex HA-80 (Hitex Co., Japan). Thereafter, the obtained radiographs were observed, and the mandibular condyle was further decalcified and embedded in paraffin as the general method. The specimen sectioned and stained with hematoxylin-eosin, PAS and Rabbit Anti-Human Tumor Necrosis Factor-α observed by a light microscope. The obtained results were as follows: 1. In the non-irradiated group with low calcium diet, the bone mineral density of the condyle was markedly decreased after 14 days, and decrease the number of trabeculae of the condyle and resorption of the calcified cartilaginous zone were observed after 3 days. On microscopic observation, the number and size of trabecular were decreased after 7 days of experiment. 2. In the irradiated group with the low calcium diet, the bone mineral density of the condyle was markedly decreased after 14 days and resorption of the calcified cartilaginous zone and decrease the number and

  8. Effects of Vitamin D Restricted Diet Administered during Perinatal and Postnatal Periods on the Penis of Wistar Rats

    Directory of Open Access Journals (Sweden)

    Flávia Fernandes-Lima

    2018-01-01

    Full Text Available Vitamin D deficiency is common in pregnant women and infants. The present study aimed to investigate the effects of vitamin D restricted diet on the Wistar rats offspring penis morphology. Mother rats received either standard diet (SC or vitamin D restricted (VitD diet. At birth, offspring were divided into SC/SC (from SC mothers, fed with SC diet and VitD/VitD (from VitD mothers, fed with VitD diet. After euthanasia the penises were processed for histomorphometric analysis. The VitD/VitD offspring displayed metabolic changes and reduction in the cross-sectional area of the penis, corpus cavernosum, tunica albuginea, and increased area of the corpus spongiosum. The connective tissue, smooth muscle, and cell proliferation percentages were greater in the corpus cavernosum and corpus spongiosum in the VitD/VitD offspring. The percentages of sinusoidal spaces and elastic fibers in the corpus cavernosum decreased. The elastic fibers in the tunica albuginea of the corpus spongiosum in the VitD/VitD offspring were reduced. Vitamin D restriction during perinatal and postnatal periods induced metabolic and structural changes and represented important risk factors for erectile dysfunction in the penis of the adult offspring. These findings suggest that vitamin D is an important micronutrient in maintaining the cytoarchitecture of the penis.

  9. Effect of high-fat diet during gestation, lactation, or postweaning on physiological and behavioral indexes in borderline hypertensive rats.

    Science.gov (United States)

    Mitra, Anaya; Alvers, Kristin M; Crump, Erica M; Rowland, Neil E

    2009-01-01

    Maternal obesity is becoming more prevalent. We used borderline hypertensive rats (BHR) to investigate whether a high-fat diet at different stages of development has adverse programming consequences on metabolic parameters and blood pressure. Wistar dams were fed a high- or low-fat diet for 6 wk before mating with spontaneously hypertensive males and during the ensuing pregnancy. At birth, litters were fostered to a dam from the same diet group as during gestation or to the alternate diet condition. Female offspring were weaned on either control or "junk food" diets until about 6 mo of age. Rats fed the high-fat junk food diet were hyperphagic relative to their chow-fed controls. The junk food-fed rats were significantly heavier and had greater fat pad mass than those rats maintained on chow alone. Importantly, those rats suckled by high-fat dams had heavier fat pads than those suckled by control diet dams. Fasting serum leptin and insulin levels differed as a function of the gestational, lactational, and postweaning diet histories. Rats gestated in, or suckled by high-fat dams, or maintained on the junk food diet were hyperleptinemic compared with their respective controls. Indirect blood pressure did not differ as a function of postweaning diet, but rats gestated in the high-fat dams had lower mean arterial blood pressures than those gestated in the control diet dams. The postweaning dietary history affected food-motivated behavior; junk food-fed rats earned less food pellets on fixed (FR) and progressive (PR) ratio cost schedules than chow-fed controls. In conclusion, the effects of maternal high-fat diet during gestation or lactation were mostly small and transient. The postweaning effects of junk food diet were evident on the majority of the parameters measured, including body weight, fat pad mass, serum leptin and insulin levels, and operant performance.

  10. [High-density lipoproteins (HDL) size and composition are modified in the rat by a diet supplemented with "Hass" avocado (Persea americana Miller)].

    Science.gov (United States)

    Pérez Méndez, Oscar; García Hernández, Lizbeth

    2007-01-01

    To determine the effects of dietary avocado on HDL structure and their associated enzyme, paraoxonase 1 (PON1). Fifteen Wistar male rats received avocado as part of their daily meal (5 g by 17.5 g chow diet), keeping the caloric intake similar to the control group (n=15) that received their usual chow diet. After 5 weeks, HDL were isolated by sequential ultracentrifugation and their size and chemical composition were analyzed. PON1 was determined in serum spectrophotometrically using phenylacetate as substrate. Rats that received avocado had about 27% lower triglycerides plasma levels whereas their HDL-cholesterol was 17% higher as compared to control group. The mean HDL Stokes diameter was significantly lower in avocado group (11.71 +/- 0.8 vs. 12.27 +/- 0.26 nm, in control group, p avocado group. HDL structural modifications induced by avocado were not related to modifications of LCAT and PLTP activities, but occurred in parallel with higher serum levels of PON1 activity when compared to the controls (57.4 +/- 8.9 vs. 43.0 +/- 5.6 micromol/min/mL serum, p avocado in the diet decreased plasma triglycerides, increased HDL-cholesterol plasma levels and modified HDL structure. The latter effect may enhance the antiatherogenic properties of HDL since PON1 activity also increased as a consequence of avocado.

  11. The effects of a "low-risk" diet on cell proliferation and enzymatic parameters of preneoplastic rat colon.

    Science.gov (United States)

    Goettler, D; Rao, A V; Bird, R P

    1987-01-01

    The relationship between various dietary constituents and colon cancer has been demonstrated by previous research. This study was conducted to investigate the combined effects of several dietary constituents on the preneoplastic stage of azoxymethane (AOM)-induced colon cancer in rats. A nutritionally adequate, "low-risk" (LR) diet was formulated through the modulation of dietary fat, fiber, protein, vitamins A and E, and selenium. Female F344 rats were given three weekly subcutaneous injections of AOM and were maintained on either the LR diet or a "high-risk" (HR) diet. After 12 weeks, the rats were killed and the following parameters were determined: pH of colon contents, fecal beta-glucuronidase activity, tissue ornithine decarboxylase (ODC) activity, and colonic labeling index. The pH of the colon contents and incremental labeling index were lower in the group given the LR diet and treated with AOM compared with the group given the HR diet and treated with AOM; however, no statistically significant dietary effects were observed for beta-glucuronidase and ODC activities. The results of this study indicated that the colons of rats fed the LR diet exhibited different proliferative characteristics than did the colons of rats fed the HR diet.

  12. Mechanism of protection of moderately diet restricted rats against doxorubicin-induced acute cardiotoxicity

    International Nuclear Information System (INIS)

    Mitra, Mayurranjan S.; Donthamsetty, Shashikiran; White, Brent; Latendresse, John R.; Mehendale, Harihara M.

    2007-01-01

    Clinical use of doxorubicin (Adriamycin (registered) ), an antitumor agent, is limited by its oxyradical-mediated cardiotoxicity. We tested the hypothesis that moderate diet restriction protects against doxorubicin-induced cardiotoxicity by decreasing oxidative stress and inducing cardioprotective mechanisms. Male Sprague-Dawley rats (250-275 g) were maintained on diet restriction [35% less food than ad libitum]. Cardiotoxicity was estimated by measuring biomarkers of cardiotoxicity, cardiac function, lipid peroxidation, and histopathology. A LD 100 dose of doxorubicin (12 mg/kg, ip) administered on day 43 led to 100% mortality in ad libitum rats between 7 and 13 days due to higher cardiotoxicity and cardiac dysfunction, whereas all the diet restricted rats exhibited normal cardiac function and survived. Toxicokinetic analysis revealed equal accumulation of doxorubicin and doxorubicinol (toxic metabolite) in the ad libitum and diet restricted hearts. Mechanistic studies revealed that diet restricted rats were protected due to (1) lower oxyradical stress from increased cardiac antioxidants leading to downregulation of uncoupling proteins 2 and 3, (2) induction of cardiac peroxisome proliferators activated receptor-α and plasma adiponectin increased cardiac fatty acid oxidation (666.9 ±14.0 nmol/min/g heart in ad libitum versus 1035.6 ± 32.3 nmol/min/g heart in diet restriction) and mitochondrial AMPα2 protein kinase. The changes led to 51% higher cardiac ATP levels (17.7 ± 2.1 μmol/g heart in ad libitum versus 26.7 ± 1.9 μmol/g heart in diet restriction), higher ATP/ADP ratio, and (3) increased cardiac erythropoietin and decreased suppressor of cytokine signaling 3, which upregulates cardioprotective JAK/STAT3 pathway. These findings collectively show that moderate diet restriction renders resiliency against doxorubicin cardiotoxicity by lowering oxidative stress, enhancing ATP synthesis, and inducing the JAK/STAT3 pathway

  13. Protective effects of pre-germinated brown rice diet on low levels of Pb-induced learning and memory deficits in developing rat.

    Science.gov (United States)

    Zhang, Rong; Lu, Hongzhi; Tian, Su; Yin, Jie; Chen, Qing; Ma, Li; Cui, Shijie; Niu, Yujie

    2010-03-30

    Lead (Pb) is a known neurotoxicant in humans and experimental animals. Numerous studies have provided evidence that humans, especially young children, and animals chronically intoxicated with low levels of Pb show learning and memory impairments. Unfortunately, Pb-poisoning cases continue to occur in many countries. Because the current treatment options are very limited, there is a need for alternative methods to attenuate Pb toxicity. In this study, the weaning (postnatal day 21, PND21) rats were randomly divided into five groups: the control group (AIN-93G diet, de-ionized water), the lead acetate (PbAC) group (AIN-93G diet, 2g/L PbAC in de-ionized water), the lead acetate+WR group (white rice diet, 2g/L PbAC in de-ionized water; PbAC+WR), the lead acetate+BR group (brown rice diet, 2g/L PbAC in de-ionized water; PbAC+BR) and the lead acetate+PR group (pre-germinated brown rice diet, 2g/L PbAC in de-ionized water; PbAC+PR). The animals received the different diets until PND60, and then the experiments were terminated. The protective effects of pre-germinated brown rice (PR) on Pb-induced learning and memory impairment in weaning rats were assessed by the Morris water maze and one-trial-learning passive avoidance test. The anti-oxidative effects of feeding a PR diet to Pb-exposed rats were evaluated. The levels of reactive oxygen species (ROS) were determined by flow cytometry. The levels of 8-hydroxy-2-deoxyguanosine (8-OHdG), gamma-aminobutyric acid (GABA) and glutamate were determined by HPLC. Our data showed that feeding a PR diet decreased the accumulation of lead and decreased Pb-induced learning and memory deficits in developing rats. The mechanisms might be related to the anti-oxidative effects and large amount of GABA in PR. Our study provides a regimen to reduce Pb-induced toxicity, especially future learning and memory deficits in the developing brain.

  14. Effects of exercise and diet change on cognition function and synaptic plasticity in high fat diet induced obese rats

    Science.gov (United States)

    2013-01-01

    Background Nutritional imbalance-induced obesity causes a variety of diseases and in particular is an important cause of cognitive function decline. This study was performed on Sprague Dawley (SD) rats with 13-weeks of high fat diet-induced obesity in connection to the effects of regular exercise and dietary control for 8 weeks on the synaptic plasticity and cognitive abilities of brain. Methods Four weeks-old SD rats were adopted classified into normal-normal diet-sedentary (NNS, n = 8), obesity-high fat diet-sedentary (OHS, n = 8), obesity-high fat diet-training (OHT, n = 8), obesity-normal diet-sedentary (ONS, n = 8) and obesity- normal diet-training (ONT, n = 8). The exercise program consisted of a treadmill exercise administered at a speed of 8 m/min for 1–4 weeks, and 14 m/min for 5–8 weeks. The Western blot method was used to measure the expression of NGF, BDNF, p38MAPK and p-p38MAPK proteins in hippocampus of the brain, and expressions of NGF, BDNF, TrkA, TrkB, CREB and synapsin1 mRNA were analyzed through qRT-PCR. Results The results suggest cognitive function-related protein levels and mRNA expression to be significantly decreased in the hippocampus of obese rats, and synaptic plasticity as well as cognitive function signaling sub-pathway factors were also significantly decreased. In addition, 8-weeks exercises and treatment by dietary change had induced significant increase of cognitive function-related protein levels and mRNA expression as well as synaptic plasticity and cognitive function signaling sub-pathway factors in obese rats. In particular, the combined treatment had presented even more positive effect. Conclusions Therefore, it was determined that the high fat diet-induced obesity decreases plasticity and cognitive function of the brain, but was identified as being improved by exercises and dietary changes. In particular, it is considered that regular exercise has positive effects on memory span and learning

  15. Vitamin K deficiency in SPF-rats fed a semisynthetic irradiated diet

    Energy Technology Data Exchange (ETDEWEB)

    Juhr, N C; Dietzel, L; Horn, J [Freie Universitaet, Berlin(West). Fachbereich Veterinaermedizin

    1975-01-01

    A case of vitamin K deficiency in male SPF-rats fed an irradiated semisynthetic diet (24% Soyprotein, 0.25% DL-Methionin, 48% Cornstarch, 10% Sucrose, 5% Soyoil and 7% Cellulose and a vitamin- and mineral mixture) with a vitamin K content of 0.63 mg/kg diet is reported including clinical symptoms, pathological findings, coagulation parameters and investigations of intestinal flora. The deficiency could be reproduced experimentally in SPF- and germfree male rats and prevented by vitamin K supplementation (K/sub 3/ in the water or K/sub 1/ parenterally). Monoassoziation with an E. coli strain as well as conventionalization of SPF-rats were effective to prevent deficiency symptoms. The significance of a stable intestinal flora for intestinal vitamin K synthesis is emphasized. Nutrients and their influence on the intestinal flora are discussed with special reference to the mechanism of coprophagy, which makes intestinal vitamin K synthesis available to the rat.

  16. Vitamin K deficiency in SPF-rats fed a semisynthetic irradiated diet

    International Nuclear Information System (INIS)

    Juhr, N.C.; Dietzel, L.; Horn, J.

    1975-01-01

    A case of vitamin K deficiency in male SPF-rats fed an irradiated semisynthetic diet (24% Soyprotein, 0.25% DL-Methionin, 48% Cornstarch, 10% Sucrose, 5% Soyoil and 7% Cellulose and a vitamin- and mineralmixture) with a vitamin K content of 0.63 mg/kg diet is reported including clinical symptoms, pathological findings, coagulation parameters and investigations of intestinal flora. The deficiency could be reproduced experimentally in SPF- and germfree male rats and prevented by vitamin K supplementation (K 3 in the water or K 1 parenterally). Monoassoziation with an E. coli strain as well as conventionalization of SPF-rats were effective to prevent deficiency symptoms. The significance of a stable intestinal flora for intestinal vitamin K synthesis is emphasized. Nutrients and their influence on the intestinal flora are discussed with special reference to the mechanism of coprophagy, which makes intestinal vitamin K synthesis available to the rat

  17. Effects of a ketogenic diet on adipose tissue, liver, and serum biomarkers in sedentary rats and rats that exercised via resisted voluntary wheel running.

    Science.gov (United States)

    Holland, Angelia Maleah; Kephart, Wesley C; Mumford, Petey W; Mobley, Christopher Brooks; Lowery, Ryan P; Shake, Joshua J; Patel, Romil K; Healy, James C; McCullough, Danielle J; Kluess, Heidi A; Huggins, Kevin W; Kavazis, Andreas N; Wilson, Jacob M; Roberts, Michael D

    2016-08-01

    We investigated the effects of different diets on adipose tissue, liver, serum morphology, and biomarkers in rats that voluntarily exercised. Male Sprague-Dawley rats (∼9-10 wk of age) exercised with resistance-loaded voluntary running wheels (EX; wheels loaded with 20-60% body mass) or remained sedentary (SED) over 6 wk. EX and SED rats were provided isocaloric amounts of either a ketogenic diet (KD; 20.2%-10.3%-69.5% protein-carbohydrate-fat), a Western diet (WD; 15.2%-42.7-42.0%), or standard chow (SC; 24.0%-58.0%-18.0%); n = 8-10 in each diet for SED and EX rats. Following the intervention, body mass and feed efficiency were lowest in KD rats, independent of exercise (P diets [total acetyl coA carboxylase (ACC), CD36, and CEBPα or phosphorylated NF-κB/p65, AMPKα, and hormone-sensitive lipase (HSL)], although EX unexpectedly altered some OMAT markers (i.e., higher ACC and phosphorylated NF-κB/p65, and lower phosphorylated AMPKα and phosphorylated HSL). Liver triglycerides were greatest in WD rats (P < 0.05), and liver phosphorylated NF-κB/p65 was lowest in KD rats (P < 0.05). Serum insulin, glucose, triglycerides, and total cholesterol were greater in WD and/or SC rats compared with KD rats (P < 0.05), and serum β-hydroxybutyrate was greater in KD vs. SC rats (P < 0.05). In conclusion, KD rats presented a healthier metabolic profile, albeit the employed exercise protocol minimally impacts any potentiating effects that KD has on fat loss. Copyright © 2016 the American Physiological Society.

  18. Lipid Lowering Effect of Punica granatum L. Peel in High Lipid Diet Fed Male Rats

    Directory of Open Access Journals (Sweden)

    Alireza Sadeghipour

    2014-01-01

    Full Text Available Many herbal medicines have been recommended for the treatment of dyslipidemia. The antilipidemic effect of hydroethanolic extract of pomegranate peel (Punica granatum L. was investigated in high lipid diet fed male rats. Intraperitoneally administration of pomegranate peel extract (50, 100, 200, and 300 mg/kg body weight for 23 days on the levels of serum cholesterol, triglycerides, LDL, HDL, alkaline phosphatase (AP, aspartate aminotransferase (AST, and alanine aminotransferase (ALT in high lipid diet fed male rats was evaluated. Treatment of pomegranate extract decreased body weight in treated rats, significantly. Administration of the plant extract significantly decreased serum total cholesterol, triglycerides, LDL-C, alkaline phosphatise, AST, and ALT levels, whereas it increased serum HDL-C in high lipid diet fed rats in comparison to saline control group. Also, histopathological study showed that treatment of pomegranate peel extract attenuates liver damage in high lipid diet fed rats in comparison to saline group. It is concluded that the plant should be considered as an excellent candidate for future studies on dyslipidemia.

  19. Lipid Lowering Effect of Punica granatum L. Peel in High Lipid Diet Fed Male Rats

    Science.gov (United States)

    Sadeghipour, Alireza; Ilchizadeh Kavgani, Ali; Ghahramani, Reza; Shahabzadeh, Saleh; Anissian, Ali

    2014-01-01

    Many herbal medicines have been recommended for the treatment of dyslipidemia. The antilipidemic effect of hydroethanolic extract of pomegranate peel (Punica granatum L.) was investigated in high lipid diet fed male rats. Intraperitoneally administration of pomegranate peel extract (50, 100, 200, and 300 mg/kg body weight) for 23 days on the levels of serum cholesterol, triglycerides, LDL, HDL, alkaline phosphatase (AP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in high lipid diet fed male rats was evaluated. Treatment of pomegranate extract decreased body weight in treated rats, significantly. Administration of the plant extract significantly decreased serum total cholesterol, triglycerides, LDL-C, alkaline phosphatise, AST, and ALT levels, whereas it increased serum HDL-C in high lipid diet fed rats in comparison to saline control group. Also, histopathological study showed that treatment of pomegranate peel extract attenuates liver damage in high lipid diet fed rats in comparison to saline group. It is concluded that the plant should be considered as an excellent candidate for future studies on dyslipidemia. PMID:25295067

  20. High-fat diet induced insulin resistance in pregnant rats through pancreatic pax6 signaling pathway.

    Science.gov (United States)

    Wu, Hao; Liu, Yunyun; Wang, Hongkun; Xu, Xianming

    2015-01-01

    To explore the changes in pancreas islet function of pregnant rats after consumption of high-fat diet and the underlying mechanism. Thirty pregnant Wistar rats were randomly divided into two groups: high-fat diet group and normal control group. Twenty days after gestation, fasting blood glucose concentration (FBG) and fasting serum insulin concentration (FINS) were measured. Then, oral glucose tolerance test (OGTT) and insulin release test (IRT) were performed. Finally, all the rats were sacrificed and pancreas were harvested. Insulin sensitivity index (ISI) and insulin resistance index (HOMA-IR) were calculated according to FBG and FINS. RT-PCR and Real-time PCR were performed to study the expression of paired box 6 transcription factor (Pax6) and its target genes in pancreatic tissues. The body weight was significantly increased in the high-fat diet group compared with that of normal control rats (Pinsulin concentration between the two groups. OGTT and IRT were abnormal in the high-fat diet group. The high-fat diet rats were more prone to impaired glucose tolerance and insulin resistance. The level of the expression of Pax6 transcription factor and its target genes in pancreas, such as pancreatic and duodenal homeobox factor-1 (Pdx1), v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA) and glucose transporter 2 (Glut2) were decreased significantly compared with those of normal control group. High-fat diet feeding during pregnancy may induce insulin resistance in maternal rats by inhibiting pancreatic Pax6 and its target genes expression.

  1. Vagus nerve contributes to metabolic syndrome in high-fat diet-fed young and adult rats.

    Science.gov (United States)

    Barella, Luiz F; Miranda, Rosiane A; Franco, Claudinéia C S; Alves, Vander S; Malta, Ananda; Ribeiro, Tatiane A S; Gravena, Clarice; Mathias, Paulo C F; de Oliveira, Júlio C

    2015-01-01

    What is the central question of this study? Different nerve contributes periods of life are known for their differential sensitivity to interventions, and increased parasympathetic activity affects the development and maintenance of obesity. Thus, we evaluated the involvement of the vagus nerve by performing a vagotomy in young or adult rats that were offered an obesogenic high-fat diet. What is the main finding and its importance? Although the accumulation of adipose tissue decreased in both younger and older groups, the younger rats showed a greater response to the effects of vagotomy in general. In addition to the important role of the parasympathetic activity, we suggest that the vagus nerve contributes to the condition of obesity. Obesity has become a global problem, and this condition develops primarily because of an imbalance between energy intake and expenditure. The high complexity involved in the regulation of energy metabolism results from several factors besides endocrine factors. It has been suggested that obesity could be caused by an imbalance in the autonomous nervous system, which could lead to a condition of high parasympathetic activity in counterpart to low sympathetic tonus. High-fat (HF) diets have been used to induce obesity in experimental animals, and their use in animals leads to insulin resistance, hyperinsulinaemia and high parasympathetic activity, among other disorders. The aim of this work was to evaluate the effects of a vagotomy performed at the initiation of a HF diet at two different stages of life, weaning and adulthood. The vagotomy reduced parasympathetic activity (-32 and -51% in normal fat-fed rats and -43 and -55% in HF diet-fed rats; P fat depots (-17 and -33%, only in HF diet-fed rats; P fat diet-fed rats exhibited fasting hyperinsulinaemia (fivefold higher in young rats and threefold higher in older rats; P diet-fed groups was not altered in the vagotomized rats. We suggest that the vagus nerve, in addition to the

  2. Tocotrienols and Whey Protein Isolates Substantially Increase Exercise Endurance Capacity in Diet -Induced Obese Male Sprague-Dawley Rats

    Science.gov (United States)

    Aguila, Jay; McConell, Glenn K.; McAinch, Andrew J.; Mathai, Michael L.

    2016-01-01

    Background and Aims Obesity and impairments in metabolic health are associated with reductions in exercise capacity. Both whey protein isolates (WPIs) and vitamin E tocotrienols (TCTs) exert favorable effects on obesity-related metabolic parameters. This research sought to determine whether these supplements improved exercise capacity and increased glucose tolerance in diet-induced obese rats. Methods Six week old male rats (n = 35) weighing 187 ± 32g were allocated to either: Control (n = 9), TCT (n = 9), WPI (n = 8) or TCT + WPI (n = 9) and placed on a high-fat diet (40% of energy from fat) for 10 weeks. Animals received 50mg/kg body weight and 8% of total energy intake per day of TCTs and/or WPIs respectively. Food intake, body composition, glucose tolerance, insulin sensitivity, exercise capacity, skeletal muscle glycogen content and oxidative enzyme activity were determined. Results Both TCT and WPI groups ran >50% longer (2271 ± 185m and 2195 ± 265m respectively) than the Control group (1428 ± 139m) during the run to exhaustion test (Pexercise endurance (2068 ± 104m). WPIs increased the maximum in vitro activity of beta-hydroxyacyl-CoA in the soleus muscle (Pexercise endurance by 50% in sedentary, diet-induced obese rats. These positive effects of TCTs and WPIs were independent of body weight, adiposity or glucose tolerance. PMID:27058737

  3. Effect of broccoli extract enriched diet on liver cholesterol oxidation in rats subjected to exhaustive exercise.

    Science.gov (United States)

    Cardenia, Vladimiro; Rodriguez-Estrada, Maria Teresa; Lorenzini, Antonello; Bandini, Erika; Angeloni, Cristina; Hrelia, Silvana; Malaguti, Marco

    2017-05-01

    The effect of broccoli extract (BE)-enriched diet was studied in order to evaluate its ability to counteract liver cholesterol oxidation products (COPs) induced by acute strenuous exercise in rats. Thirty-two female Wistar rats were randomly divided into four groups: control diet without exercise (C), BE-enriched diet without exercise (B), control diet with acute exhaustive exercise (S) and BE-enriched diet with acute exhaustive exercise (BS). The study lasted 45days and on the last day, rats of S and BS groups were forced to run until exhaustion on a treadmill. Glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx), catalase (CAT) and cholesterol oxidation products (COPs) were determined in liver. Exhaustive exercise was clearly responsible for tissue damage, as evidenced by the increase of lactate dehydrogenase (LDH) plasma activity in the S group. Moreover, the exercise protocol reduced CAT activity in liver, while it did not affect GST, GR and GPx. BE-enriched diet raised GST, GR and CAT activities in rats of BS group. The main COPs found were 7α-hydroxycholesterol, 7β-hydroxycholesterol, 7-ketocholesterol, cholestanetriol, 24-hydroxycholesterol and 27-hydroxycholesterol. The BE-enriched diet led to reduced cholesterol oxidation following exhaustive exercise; the highest level of COPs was found in the S group, whereas the BS rats showed the lowest amount. This study indicates that the BE-enriched diet increases antioxidant enzyme activities and exerts an antioxidant effect towards cholesterol oxidation in rat liver, suggesting the use of phytochemicals in the prevention of oxidative damage and in the modulation of the redox environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Sciatic nerve regeneration in rats subjected to ketogenic diet.

    Science.gov (United States)

    Liśkiewicz, Arkadiusz; Właszczuk, Adam; Gendosz, Daria; Larysz-Brysz, Magdalena; Kapustka, Bartosz; Łączyński, Mariusz; Lewin-Kowalik, Joanna; Jędrzejowska-Szypułka, Halina

    2016-01-01

    Ketogenic diet (KD) is a high-fat-content diet with insufficiency of carbohydrates that induces ketogenesis. Besides its anticonvulsant properties, many studies have shown its neuroprotective effect in central nervous system, but its influence on peripheral nervous system has not been studied yet. We examined the influence of KD on regeneration of peripheral nerves in adult rats. Fifty one rats were divided into three experimental (n = 15) and one control (n = 6) groups. Right sciatic nerve was crushed and animals were kept on standard (ST group) or ketogenic diet, the latter was introduced 3 weeks before (KDB group) or on the day of surgery (KDA group). Functional (CatWalk) tests were performed once a week, and morphometric (fiber density, axon diameter, and myelin thickness) analysis of the nerves was made after 6 weeks. Body weight and blood ketone bodies level were estimated at the beginning and the end of experiment. Functional analysis showed no differences between groups. Morphometric evaluation showed most similarities to the healthy (uncrushed) nerves in KDB group. Nerves in ST group differed mostly from all other groups. Ketone bodies were elevated in both KD groups, while post-surgery animals' body weight was lower as compared to ST group. Regeneration of sciatic nerves was improved in KD - preconditioned rats. These results suggest a neuroprotective effect of KD on peripheral nerves.

  5. Diet-induced impulsivity: Effects of a high-fat and a high-sugar diet on impulsive choice in rats.

    Science.gov (United States)

    Steele, Catherine C; Pirkle, Jesseca R A; Kirkpatrick, Kimberly

    2017-01-01

    Impulsive choice is a common charactertistic among individuals with gambling problems, obesity, and substance abuse issues. Impulsive choice has been classified as a trans-disease process, and understanding the etiology of trait impulsivity could help to understand how diseases and disorders related to impulsive choice are manifested. The Western diet is a possible catalyst of impulsive choice as individuals who are obese and who eat diets high in fat and sugar are typically more impulsive. However, such correlational evidence is unable to discern the direction and causal nature of the relationship. The present study sought to determine how diet may directly contribute to impulsive choice. After 8 weeks of dietary exposure (high-fat, high-sugar, chow), the rats were tested on an impulsive choice task, which presented choices between a smaller-sooner reward (SS) and a larger-later reward (LL). Then, the rats were transferred to a chow diet and retested on the impulsive choice task. The high-sugar and high-fat groups made significantly more impulsive choices than the chow group. Both groups became more self-controlled when they were off the diet, but there were some residual effects of the diet on choice behavior. These results suggest that diet, specifically one high in processed fat or sugar, induces impulsive choice. This diet-induced impulsivity could be a precursor to other disorders that are characterized by impulsivity, such as diet-induced obesity, and could offer potential understanding of the trans-disease nature of impulsive choice.

  6. Effects of diets with different content in protein and fiber on embryotoxicity induced by experimental diabetes in rats.

    Science.gov (United States)

    Giavini, E; Airoldi, L; Broccia, M L; Roversi, G D; Prati, M

    1993-01-01

    Three groups of streptozotocin-diabetic rats were maintained during pregnancy on three hyperproteic diets with different protein contents. These differences were compensated by an equal quantity of fiber (group 1: protein 55.0%, fiber 4.5%; group 2: 45.0%, 14.0%; group 3: 35.0%, 24.0%). Three groups of nondiabetic pregnant rats were fed with the same diets and served as control. The differences of the daily protein intake among the diabetic groups were less pronounced than those expected on the basis of the diet composition, and the embryopathic effects (reduced fetal weight, increased in malformation and resorption rate) were not statistically different among the three groups of diabetic animals. The frequency of congenital malformations was higher than that observed in a previous experiment in diabetic rats maintained on a standard diet, but much lower than that observed in animals fed on a purified, fiber-poor, normoproteic diet. When the caloric intake of the diabetic rats in the different groups was determined it was found to be similar for all of them and also similar to the caloric intake of the rats given a standard nonteratogenic diet (in previous experiments), while the rats maintained on a normoproteic, teratogenic diet increased their caloric intake. These results seem to indicate that the diet composition greatly influences the intake of food and calories of pregnant diabetic rats and this may play a role in modulating the embryopathic effect of diabetes.

  7. Thyroid function in post-weaning rats whose dams were fed a low-protein diet during suckling

    Directory of Open Access Journals (Sweden)

    Ramos C.F.

    1997-01-01

    Full Text Available This study was designed to evaluate the thyroid and pituitary hormone levels in post-weaning rats whose dams were fed a low-protein diet during suckling (21 days. The dams and pups were divided into 2 groups: a control group fed a diet containing 22% protein that supplies the necessary amount of protein for the rat and is the usual content of protein in most commercial rat chow, and a diet group fed a low-protein (8% diet in which the protein was substituted by an isocaloric amount of starch. After weaning all dams and pups received the 22% protein diet. Two hours before sacrifice of pups aged 21, 30 and 60 days, a tracer dose (0.6 µCi of 125I was injected (ip into each animal. Blood and thyroid glands of pups were collected for the determination of serum T4, T3 and TSH and radioiodine uptake. Low protein diet caused a slight decrease in radioiodine uptake at 21 days, and a significant decrease in T3 levels (128 ± 14 vs 74 ± 9 ng/dl, P<0.05, while T4 levels did not change and TSH was increased slightly. At 30 days, T3 and TSH did not change while there was a significant increase in both T4 levels (4.8 ± 0.3 vs 6.1 ± 0.2 µg/dl, P<0.05 and in radioiodine uptake levels (0.34 ± 0.02 vs 0.50 ± 0.03%/mg thyroid, P<0.05. At 60 days serum T3, T4 and TSH levels were normal, but radioiodine uptake was still significantly increased (0.33 ± 0.02 vs 0.41 ± 0.03%/mg thyroid, P<0.05. Thus, it seems that protein malnutrition of the dams during suckling causes hypothyroidism in the pups at 21 days that has a compensatory mechanism increasing thyroid function after refeeding with a 22% protein diet. The radioiodine uptake still remained altered at 60 days, when all the hormonal serum levels returned to the normal values, suggesting a permanent change in the thyroid function

  8. A comparative genotoxicity study of a supraphysiological dose of triiodothyronine (T₃) in obese rats subjected to either calorie-restricted diet or hyperthyroidism.

    Science.gov (United States)

    De Sibio, Maria Teresa; Luvizotto, Renata Azevedo Melo; Olimpio, Regiane Marques Castro; Corrêa, Camila Renata; Marino, Juliana; de Oliveira, Miriane; Conde, Sandro José; Ferreira, Ana Lúcia dos Anjos; Padovani, Carlos Roberto; Nogueira, Célia Regina

    2013-01-01

    This study was designed to determine the genotoxicity of a supraphysiological dose of triiodothyronine (T3) in both obese and calorie-restricted obese animals. Fifty male Wistar rats were randomly assigned to one of the two following groups: control (C; n = 10) and obese (OB; n = 40). The C group received standard food, whereas the OB group was fed a hypercaloric diet for 20 weeks. After this period, half of the OB animals (n = 20) were subjected to a 25%-calorie restriction of standard diet for 8 weeks forming thus a new group (OR), whereas the remaining OB animals were kept on the initial hypercaloric diet. During the following two weeks, 10 OR animals continued on the calorie restriction diet, whereas the remaining 10 rats of this group formed a new group (ORS) given a supraphysiological dose of T3 (25 µg/100 g body weight) along with the calorie restriction diet. Similarly, the remaining OB animals were divided into two groups, one that continued on the hypercaloric diet (OB, n = 10), and one that received the supraphysiological dose of T3 (25 µg/100 g body weight) along with the hypercaloric diet (OS, n = 10) for two weeks. The OB group showed weight gain, increased adiposity, insulin resistance, increased leptin levels and genotoxicity; T3 administration in OS animals led to an increase in genotoxicity and oxidative stress when compared with the OB group. The OR group showed weight loss and normalized levels of adiposity, insulin resistance, serum leptin and genotoxicity, thus having features similar to those of the C group. On the other hand, the ORS group, compared to OR animals, showed higher genotoxicity. Our results indicate that regardless of diet, a supraphysiological dose of T3 causes genotoxicity and potentiates oxidative stress.

  9. A comparative genotoxicity study of a supraphysiological dose of triiodothyronine (T₃ in obese rats subjected to either calorie-restricted diet or hyperthyroidism.

    Directory of Open Access Journals (Sweden)

    Maria Teresa De Sibio

    Full Text Available This study was designed to determine the genotoxicity of a supraphysiological dose of triiodothyronine (T3 in both obese and calorie-restricted obese animals. Fifty male Wistar rats were randomly assigned to one of the two following groups: control (C; n = 10 and obese (OB; n = 40. The C group received standard food, whereas the OB group was fed a hypercaloric diet for 20 weeks. After this period, half of the OB animals (n = 20 were subjected to a 25%-calorie restriction of standard diet for 8 weeks forming thus a new group (OR, whereas the remaining OB animals were kept on the initial hypercaloric diet. During the following two weeks, 10 OR animals continued on the calorie restriction diet, whereas the remaining 10 rats of this group formed a new group (ORS given a supraphysiological dose of T3 (25 µg/100 g body weight along with the calorie restriction diet. Similarly, the remaining OB animals were divided into two groups, one that continued on the hypercaloric diet (OB, n = 10, and one that received the supraphysiological dose of T3 (25 µg/100 g body weight along with the hypercaloric diet (OS, n = 10 for two weeks. The OB group showed weight gain, increased adiposity, insulin resistance, increased leptin levels and genotoxicity; T3 administration in OS animals led to an increase in genotoxicity and oxidative stress when compared with the OB group. The OR group showed weight loss and normalized levels of adiposity, insulin resistance, serum leptin and genotoxicity, thus having features similar to those of the C group. On the other hand, the ORS group, compared to OR animals, showed higher genotoxicity. Our results indicate that regardless of diet, a supraphysiological dose of T3 causes genotoxicity and potentiates oxidative stress.

  10. A comparative study on the effect of high cholesterol diet on the hippocampal CA1 area of adult and aged rats.

    Science.gov (United States)

    Abo El-Khair, Doaa M; El-Safti, Fatma El-Nabawia A; Nooh, Hanaa Z; El-Mehi, Abeer E

    2014-06-01

    Dementia is one of the most important problems nowadays. Aging is associated with learning and memory impairments. Diet rich in cholesterol has been shown to be detrimental to cognitive performance. This work was carried out to compare the effect of high cholesterol diet on the hippocampus of adult and aged male albino rats. Twenty adult and twenty aged male rats were used in this study. According to age, the rats were randomly subdivided into balanced and high cholesterol diet fed groups. The diet was 15 g/rat/day for adult rats and 20 g/rat/day for aged rats for eight weeks. Serial coronal sections of hippocampus and blood samples were taken from each rat. For diet effect evaluation, Clinical, biochemical, histological, immunohistochemical, and morphometric assessments were done. In compare to a balanced diet fed rat, examination of Cornu Ammonis 1 (CA 1) area in the hippocampus of the high cholesterol diet adult rats showed degeneration, a significant decrease of the pyramidal cells, attenuation and/or thickening of small blood vessels, apparent increase of astrocytes and apparent decrease of Nissl's granules content. Moreover, the high cholesterol diet aged rats showed aggravation of senility changes of the hippocampus together with Alzheimer like pathological changes. In conclusion, the high cholesterol diet has a significant detrimental effect on the hippocampus and aging might pronounce this effect. So, we should direct our attention to limit cholesterol intake in our food to maintain a healthy life style for a successful aging.

  11. Effect of diet on triolein absorption in weanling rats

    International Nuclear Information System (INIS)

    Flores, C.A.; Brannon, P.M.; Wells, M.A.; Morrill, M.; Koldovsky, O.

    1990-01-01

    To determine the effect of altered dietary fat intake on the rate of fat absorption in the intact animal, we fed male weanling rats either a high fat-low carbohydrate (HF-LC) (calories: 67% fat, 10% carbohydrate, 20% protein) or low fat-high carbohydrate (LF-HC) (calories: 10% fat, 67% carbohydrate, 20% protein) diet for 8 days. Absorption of [ 14 C]triolein was estimated by determining (1) 14 CO 2 expiration in breath, (2) intestinal triglyceride output using Triton WR-1339, an inhibitor of lipoprotein lipase, and (3) quantitating the disappearance of labeled triolein from the gastrointestinal tract. Changes in the activity of pancreatic lipase and amylase confirmed the adaptation to altered fat and carbohydrate intake. Animals fed the HF-LC diet exhibited approximately twofold greater triolein disappearance, oxidation, and intestinal triglyceride output compared with animals fed LF-HC. There was also a highly significant linear relationship between 14 CO 2 excretion and intestinal triglyceride output in both diet groups. These data show that high dietary fat content markedly enhances in vivo fat absorption in the weanling rat

  12. Lipid metabolism in rats fed diets containing different types of lipids

    Directory of Open Access Journals (Sweden)

    Águila Márcia Barbosa

    2002-01-01

    Full Text Available OBJECTIVE: To assess the effect of different types of lipid diets on the lipid metabolism of aging rats. METHODS: Fifty male Wistar rats were studied from the time of weaning to 12 and 18 months of age. Their diets were supplemented as follows: with soybean oil (S, canola oil (CA, lard and egg yolk (LE, and canola oil + lard and egg yolk (CA + LE. Blood pressure (BP was measured every month, and the heart/body ratio (H/BR was determined. The rats were euthanized at the age of 12 and 18 months, and blood samples were collected for lipid analysis as follows: total cholesterol (TC, LDL-C, VLDL-C, HDL-C, triglycerides (TG, and glucose. RESULTS: The type of oil ingested by the animals significantly altered BP, H/BR, and serum lipid levels in rats at 12 and 18 months. No difference was observed in the survival curve of the animals in the different groups. The LE group had the highest BP, and the CA group was the only one in which BP did not change with aging. A reduction in the H/BR was observed in the LE and CA+LE animals. At the age of 12 months, differences in TC, HDL-C, LDL-C, VLDL-C, TG, and glucose were observed. At the age of 18 months, a significant difference in TC, HDL-C, and glucose was observed. The highest TC value was found in the CA group and the lowest in the S group. CONCLUSION: No increase in BP occurred, and an improvement was evident in the lipid profile of rats fed a diet supplemented with CA, in which an elevation in HDL-C levels was observed, as compared with levels with the other types of diet.

  13. Effects of Selenium Yeast on Blood Glucose and Antioxidant Biomarkers in Cholesterol Fed Diet Induced Type 2 Diabetes Mellitus in Wistar Rats.

    Science.gov (United States)

    Tanko, Y; Jimoh, A; Ahmed, A; Adam, A; Ejeh, L; Mohammed, A; Ayo, J O

    2017-03-06

    Selenium is an antioxidant that prevents oxygen radical from damaging cells from chronic diseases that can develop from cell injury and inflammation such as diabetes mellitus. The aim of the study is to investigate the possible protective effect of selenium yeast on cholesterol diet induced type-2 diabetes mellitus and oxidative stress in rats. Twenty male wistar rats were divided in to four groups of five animals each: Group 1: (Negative control) received standard animal feed only, Group 2:  received cholesterol diet (CD) only, Group 3: received CD and 0.1 mg/kg selenium yeast orally, Group 4: Received CD and 0.2 mg/kg selenium yeast orally for six weeks. At the end of the study period, the animals were sacrificed and the serum samples were collected and evaluated for estimation of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). The results showed a significant decrease in blood glucose level in the groups  co-administered CD and selenium yeast when compared to CD group only. Antioxidant enzymes status recorded significant decrease in SOD, CAT and GPx activities in CD and selenium yeast administered when compared to CD group only. In Conclusion, Selenium yeast administrations prevent free radical formations which are potent inducer of diabetes mellitus.

  14. Immunomodulatory effects of high-protein diet with resveratrol supplementation on radiation-induced acute-phase inflammation in rats.

    Science.gov (United States)

    Kim, Kyoung-Ok; Park, HyunJin; Chun, Mison; Kim, Hyun-Sook

    2014-09-01

    We hypothesized that a high-protein diet and/or resveratrol supplementation will improve acute inflammatory responses in rats after receiving experimental abdominal radiation treatment (ART). Based on our previous study, the period of 10 days after ART was used as an acute inflammation model. Rats were exposed to a radiation dose of 17.5 Gy and were supplied with a control (C), 30% high-protein diet (HP), resveratrol supplementation (RES), or HP with RES diet ([HP+RES]). At day 10 after ART, we measured profiles of lipids, proteins, and immune cells in blood. The levels of clusters of differentiating 4(+) (CD4(+)) cells and regulatory T cells, serum proinflammatory cytokines, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in urine were also measured. ART caused significant disturbances of lipid profiles by increasing triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C), and decreasing high-density lipoprotein cholesterol. The proinflammatroy cytokine levels were also increased by ART. All the experimental diets (HP, RES, and [HP+RES]) significantly decreased levels of TG, monocytes, proinflammatory cytokines, and 8-OHdG, whereas the platelet counts were increased. In addition, the HP and [HP+RES] diets decreased the concentrations of plasma LDL-C and total cholesterol. Also, the HP and RES diets decreased regulatory T cells compared with those of the control diet in ART group. Further, the HP diet led to a significant recovery of white blood cell counts, as well as increased percentages of lymphocyte and decreased percentages of neutrophils. In summary, RES appeared to be significantly effective in minimizing radiation-induced damage to lipid metabolism and immune responses. Our study also demonstrated the importance of dietary protein intake in recovering from acute inflammation by radiation.

  15. Diet and liver apoptosis in rats: a particular metabolic pathway.

    Science.gov (United States)

    Monteiro, Maria Emilia Lopes; Xavier, Analucia Rampazzo; Azeredo, Vilma Blondet

    2017-03-30

    Various studies have indicated an association between modifi cation in dietary macronutrient composition and liver apoptosis. To explain how changes in metabolic pathways associated with a high-protein, high-fat, and low-carbohydrate diet causes liver apoptosis. Two groups of rats were compared. An experimental diet group (n = 8) using a high-protein (59.46%), high-fat (31.77%), and low-carbohydrate (8.77%) diet versus a control one (n = 9) with American Institute of Nutrition (AIN)-93-M diet. Animals were sacrificed after eight weeks, the adipose tissue weighed, the liver removed for flow cytometry analysis, and blood collected to measure glucose, insulin, glucagon, IL-6, TNF, triglycerides, malondialdehyde, and β-hydroxybutyrate. Statistical analysis was carried out using the unpaired and parametric Student's t-test and Pearson's correlation coeffi ents. Significance was set at p triglycerides lower levels compared with the control group. The results show a positive and significant correlation between the percentage of nonviable hepatocytes and malondialdehyde levels (p = 0.0217) and a statistically significant negative correlation with triglycerides levels (p = 0.006). Results suggest that plasmatic malondialdehyde and triglyceride levels are probably good predictors of liver damage associated with an experimental low-carbohydrate diet in rats.

  16. Identification of a nutrient-sensing transcriptional network in monocytes by using inbred rat models on a cafeteria diet

    Directory of Open Access Journals (Sweden)

    Neus Martínez-Micaelo

    2016-10-01

    Full Text Available Obesity has reached pandemic levels worldwide. The current models of diet-induced obesity in rodents use predominantly high-fat based diets that do not take into account the consumption of variety of highly palatable, energy-dense foods that are prevalent in Western society. We and others have shown that the cafeteria (CAF diet is a robust and reproducible model of human metabolic syndrome with tissue inflammation in the rat. We have previously shown that inbred rat strains such as Wistar Kyoto (WKY and Lewis (LEW show different susceptibilities to CAF diets with distinct metabolic and morphometric profiles. Here, we show a difference in plasma MCP-1 levels and investigate the effect of the CAF diet on peripheral blood monocyte transcriptome, as powerful stress-sensing immune cells, in WKY and LEW rats. We found that 75.5% of the differentially expressed transcripts under the CAF diet were upregulated in WKY rats and were functionally related to the activation of the immune response. Using a gene co-expression network constructed from the genes differentially expressed between CAF diet-fed LEW and WKY rats, we identified acyl-CoA synthetase short-chain family member 2 (Acss2 as a hub gene for a nutrient-sensing cluster of transcripts in monocytes. The Acss2 genomic region is significantly enriched for previously established metabolism quantitative trait loci in the rat. Notably, monocyte expression levels of Acss2 significantly correlated with plasma glucose, triglyceride, leptin and non-esterified fatty acid (NEFA levels as well as morphometric measurements such as body weight and the total fat following feeding with the CAF diet in the rat. These results show the importance of the genetic background in nutritional genomics and identify inbred rat strains as potential models for CAF-diet-induced obesity.

  17. The effects of probiotic, prebiotic and synbiotic diets containing Bacillus coagulans and inulin on rat intestinal microbiota.

    Science.gov (United States)

    Abhari, Kh; Shekarforoush, S S; Sajedianfard, J; Hosseinzadeh, S; Nazifi, S

    2015-01-01

    An in vivo experiment was conducted to study the effects of probiotic Bacillus coagulans spores, with and without prebiotic, inulin, on gastrointestinal (GI) microbiota of healthy rats and its potentiality to survive in the GI tract. Forty-eight male Wistar rats were randomly divided into four groups (n=12) and fed as follows: standard diet (control), standard diet supplied with 5% w/w long chain inulin (prebiotic), standard diet with 10(9)/day spores of B. coagulans by orogastric gavage (probiotic), and standard diet with 5% w/w long chain inulin and 10(9) spores/day of B. coagulans by orogastric gavage (synbiotic). Rats were fed the diets for 30 days. At day 10, 20 and 30 of experiment, 24 h post administration, four rats from each group were randomly selected and after faecal collection were sacrificed. Small intestine, cecum, and colon were excised from each rat and used for microbial analysis. Administration of synbiotic and probiotic diets led to a significant (Pcoagulans was efficient in beneficially modulating GI microbiota and considering transitional characteristics of B. coagulans, daily consumption of probiotic products is necessary for any long-term effect.

  18. Haloperidol and Rimonabant Increase Delay Discounting in Rats Fed High-Fat and Standard-Chow Diets

    Science.gov (United States)

    Boomhower, Steven R.; Rasmussen, Erin B.

    2016-01-01

    The dopamine and endocannabinoid neurotransmitter systems have been implicated in delay discounting, a measure of impulsive choice, and obesity. The current study was designed to determine the extent to which haloperidol and rimonabant affected delay discounting in rats fed standard-chow and high-fat diets. Sprague-Dawley rats were allowed to free-feed under a high-fat diet (4.73 kcal/g) or a standard-chow diet (3.0 kcal/g) for three months. Then, operant sessions began in which rats (n = 9 standard chow; n = 10 high-fat) chose between one sucrose pellet delivered immediately vs. three sucrose pellets after a series of delays. In another condition, carrot-flavored pellets replaced sucrose pellets. After behavior stabilized, acute injections of rimonabant (0.3-10 mg/kg) and haloperidol (0.003-0.1 mg/kg) were administered i.p. before some choice sessions in both pellet conditions. Haloperidol and rimonabant increased discounting in both groups of rats by decreasing percent choice for the larger reinforcer and area-under-the-curve (AUC) values. Rats in the high-fat diet condition demonstrated increased sensitivity to haloperidol compared to chow-fed controls: haloperidol increased discounting in both dietary groups in the sucrose condition,, but only in the high-fat-fed rats in the carrot-pellet condition. These findings indicate that blocking D2 and CB1 receptors results in increased delay discounting, and that a high-fat diet may alter sensitivity to dopaminergic compounds using the delay-discounting task. PMID:25000488

  19. Extremely decreased release of prostaglandin E-like activity from chopped lung of ethyl linolenate-supplemented rats

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Jensen, B.; Fjalland, B.

    1983-01-01

    Three groups of weanling male rats were reared on a fat-free diet for 13 weeks. One group received only the fat-free diet (FF rats), the other 2 groups received the fat-free diet and a daily supplement of 2 energy% ethyl linoleate ([n-6] rats), or 2 energy% ethyl linolenate ([n-3] rats). The chop......). The chopped lung preparation was used to illustrate an in vitro prostaglandin formation. PGE-like activity was quantified on rat stomach strip. The release of PGE-like activity expressed as ng PGE-equivalent per g lung tissue (mean±SD) was 23±7,...

  20. Cocoa Diet Prevents Antibody Synthesis and Modifies Lymph Node Composition and Functionality in a Rat Oral Sensitization Model

    OpenAIRE

    Camps-Bossacoma, Mariona; Abril-Gil, Mar; Salda?a-Ruiz, Sandra; Franch, ?ngels; P?rez-Cano, Francisco J.; Castell, Margarida

    2016-01-01

    Cocoa powder, a rich source of polyphenols, has shown immunomodulatory properties in both the intestinal and systemic immune compartments of rats. The aim of the current study was to establish the effect of a cocoa diet in a rat oral sensitization model and also to gain insight into the mesenteric lymph nodes (MLN) activities induced by this diet. To achieve this, three-week-old Lewis rats were fed either a standard diet or a diet with 10% cocoa and were orally sensitized with ovalbumin (OVA)...

  1. Effect of feeding a high-fat diet independently of caloric intake on reproductive function in diet-induced obese female rats

    Science.gov (United States)

    Hussain, Mona A.; Abogresha, Noha M.; Tamany, Dalia A.; Lotfy, Mariam

    2016-01-01

    Introduction Globally, the prevalence of overweight and obesity is increasing, predisposing females to health hazards including compromised reproductive capacity. Our objective was to investigate the effect of ad libitum, isocalorically and hypocalorically restricted high-fat diet (HFD) feeding on reproductive function in diet-induced obese female rats. Material and methods Twenty female albino Sprague Dawley rats were used; 5 rats were kept on a standard pellet animal diet to serve as a control group (A) and 15 rats were fed a HFD for 9 weeks to induce obesity. The HFD fed animals were equally divided into three groups: an ad libitum HFD group (B), an isocalorically restricted HFD group (C), and a hypocalorically restricted HFD group (D). Estrous cyclicity, hormonal levels, ovarian histopathology and caspase-3 immunoreactivity were evaluated. Results The HFD-fed rats in groups B, C and D had significant irregularity in estrous cyclicity Vs group A (p = 0.001, 0.003 and 0.034 respectively). Groups C and D had significant reduction in serum progesterone level (p = 0.006 and 0.018 Vs A). Isocaloric restriction of HFD feeding significantly increased serum LH. Groups B and C had a significant increase in caspase-3 expression in the ovary (p < 0.001). Conclusions Ad libitum HFD interfered with the normal estrous cycle and enhanced apoptosis of luteal cells in obese female rats. The HFD restriction interfered with the normal estrous cycle and caused functional insufficiency of the corpus luteum in obese female rats. These results suggest that HFD feeding determinately affects female reproductive function independently of caloric intake. PMID:27478474

  2. Therapeutic effect of an elemental diet on proline absorption across the irradiated rat small intestine

    International Nuclear Information System (INIS)

    Mohiuddin, M.; Kramer, S.

    1978-01-01

    Active absorption of [ 3 H]L-proline across the intestinal wall was used to measure functional change following irradiation of the exteriorized rat small intestine and to see whether an elemental amino acid diet would modify these changes. Segments (15 cm) of the exteriorized upper ileum of male Wistar rats were exposed to 1000 rad. Active transport against a concentration gradient of [ 3 H]L-proline from this irradiated segment was measured using the everted sac technique on days 1, 3, 7, 10, 14, 21, and 30 post-irradiation. Irradiated rats maintained on a normal diet showed depression of absorptive function with only partial recovery by day 30. Irradiated rats maintained on an elemental amino acid diet also showed an initial drop in function but then recovered absorptive function completely by day 7

  3. Effects of Diets Supplemented with Branched-Chain Amino Acids on the Performance and Fatigue Mechanisms of Rats Submitted to Prolonged Physical Exercise

    Directory of Open Access Journals (Sweden)

    Inar Alves de Castro

    2012-11-01

    Full Text Available This study aimed to determine the effects of diets chronically supplemented with branched-chain amino acids (BCAA on the fatigue mechanisms of trained rats. Thirty-six adult Wistar rats were trained for six weeks. The training protocol consisted of bouts of swimming exercise (one hour a day, five times a week, for six weeks. The animals received a control diet (C (n = 12, a diet supplemented with 3.57% BCAA (S1 (n = 12, or a diet supplemented with 4.76% BCAA (S2 (n = 12. On the last day of the training protocol, half the animals in each group were sacrificed after one hour of swimming (1H, and the other half after a swimming exhaustion test (EX. Swimming time until exhaustion was increased by 37% in group S1 and reduced by 43% in group S2 compared to group C. Results indicate that the S1 diet had a beneficial effect on performance by sparing glycogen in the soleus muscle (p < 0.05 and by inducing a lower concentration of plasma ammonia, whereas the S2 diet had a negative effect on performance due to hyperammonemia (p < 0.05. The hypothalamic concentration of serotonin was not significantly different between the 1H and EX conditions. In conclusion, chronic BCAA supplementation led to increased performance in rats subjected to a swimming test to exhaustion. However, this is a dose-dependent effect, since chronic ingestion of elevated quantities of BCAA led to a reduction in performance.

  4. A Comparative Genotoxicity Study of a Supraphysiological Dose of Triiodothyronine (T3) in Obese Rats Subjected to Either Calorie-Restricted Diet or Hyperthyroidism

    Science.gov (United States)

    De Sibio, Maria Teresa; Luvizotto, Renata Azevedo Melo; Olimpio, Regiane Marques Castro; Corrêa, Camila Renata; Marino, Juliana; de Oliveira, Miriane; Conde, Sandro José; Ferreira, Ana Lúcia dos Anjos; Padovani, Carlos Roberto; Nogueira, Célia Regina

    2013-01-01

    This study was designed to determine the genotoxicity of a supraphysiological dose of triiodothyronine (T3) in both obese and calorie-restricted obese animals. Fifty male Wistar rats were randomly assigned to one of the two following groups: control (C; n = 10) and obese (OB; n = 40). The C group received standard food, whereas the OB group was fed a hypercaloric diet for 20 weeks. After this period, half of the OB animals (n = 20) were subjected to a 25%-calorie restriction of standard diet for 8 weeks forming thus a new group (OR), whereas the remaining OB animals were kept on the initial hypercaloric diet. During the following two weeks, 10 OR animals continued on the calorie restriction diet, whereas the remaining 10 rats of this group formed a new group (ORS) given a supraphysiological dose of T3 (25 µg/100 g body weight) along with the calorie restriction diet. Similarly, the remaining OB animals were divided into two groups, one that continued on the hypercaloric diet (OB, n = 10), and one that received the supraphysiological dose of T3 (25 µg/100 g body weight) along with the hypercaloric diet (OS, n = 10) for two weeks. The OB group showed weight gain, increased adiposity, insulin resistance, increased leptin levels and genotoxicity; T3 administration in OS animals led to an increase in genotoxicity and oxidative stress when compared with the OB group. The OR group showed weight loss and normalized levels of adiposity, insulin resistance, serum leptin and genotoxicity, thus having features similar to those of the C group. On the other hand, the ORS group, compared to OR animals, showed higher genotoxicity. Our results indicate that regardless of diet, a supraphysiological dose of T3 causes genotoxicity and potentiates oxidative stress. PMID:23468891

  5. Dietary L-cysteine improves the antioxidative potential and lipid metabolism in rats fed a normal diet.

    Science.gov (United States)

    Lee, Seulki; Han, Kyu-Ho; Nakamura, Yumi; Kawakami, Sakura; Shimada, Ken-ichiro; Hayakawa, Touru; Onoue, Hirotake; Fukushima, Michihiro

    2013-01-01

    L-cysteine works as a precursor of the antioxidant, glutathione. We investigated the effects of L-cysteine (1% and 2%) on lipid metabolism and the antioxidative system in rats fed a normal diet. Administering L-cysteine dependently decreased the food intake, fat mass weight and body weight dose. Dietary L-cysteine also decreased the triglyceride levels in the serum and liver. However, there were no significant differences in the hepatic TBARS and glutathione (GSH) levels among the groups. The activities of catalase and glutathione reductase in the rats receiving 2% L-cysteine were significantly higher (pL-cysteine dose-dependently affected the antioxidative enzyme activities, and the lipid levels in the serum and liver which might be related to the reduced food intake.

  6. A low-protein diet restricts albumin synthesis in nephrotic rats.

    OpenAIRE

    Kaysen, G A; Jones, H; Martin, V; Hutchison, F N

    1989-01-01

    High-protein diets increase albumin synthesis in rats with Heymann nephritis but albuminuria increases also, causing serum albumin concentration to be suppressed further than in nephrotic animals eating a low-protein diet. Experiments were designed to determine whether dietary protein augmentation directly stimulates albumin synthesis, or whether instead increased albumin synthesis is triggered by the decrease in serum albumin concentration. Evidence is presented that dietary protein augmenta...

  7. Erythrocyte osmotic fragility and general health status of adolescent Sprague Dawley rats supplemented with Hibiscus sabdariffa aqueous calyx extracts as neonates followed by a high-fructose diet post-weaning.

    Science.gov (United States)

    Ibrahim, K G; Lembede, B W; Chivandi, E; Erlwanger, K

    2018-02-01

    High-fructose diets (HFD) can cause oxidative damage to tissues including erythrocyte cell membranes. Hibiscus sabdariffa (HS) has protective antioxidant properties. Rats were used to investigate whether the consumption of HS by neonates would result in long-term effects on their erythrocyte osmotic fragility (EOF) and general health when later fed a high-fructose diet post-weaning through adolescence. Eighty of four-day-old Sprague Dawley rat pups were divided randomly into three treatment groups. The controls (n = 27) received distilled water at 10 ml/kg b. w, while the other groups received either 50 mg/kg (n = 28) or 500 mg/kg (n = 25) of an HS aqueous calyx extract orally till post-natal day 14. The rats in each group were weaned and divided into two subgroups; one continued on normal rat chow, and the other received fructose (20% w/v) in their drinking water for 30 days. Blood was collected in heparinised tubes and added to serially diluted (0.0-0.85%) phosphate-buffered saline to determine the EOF. Clinical markers of health status were determined with an automated chemical analyser. HS extracts did not programme metabolism in the growing rats to alter their general health and EOF in response to the HFD. © 2017 Blackwell Verlag GmbH.

  8. Cardamom powder supplementation prevents obesity, improves glucose intolerance, inflammation and oxidative stress in liver of high carbohydrate high fat diet induced obese rats.

    Science.gov (United States)

    Rahman, Md Mizanur; Alam, Mohammad Nazmul; Ulla, Anayt; Sumi, Farzana Akther; Subhan, Nusrat; Khan, Trisha; Sikder, Bishwajit; Hossain, Hemayet; Reza, Hasan Mahmud; Alam, Md Ashraful

    2017-08-14

    Cardamom is a well-known spice in Indian subcontinent, used in culinary and traditional medicine practices since ancient times. The current investigation was untaken to evaluate the potential benefit of cardamom powder supplementation in high carbohydrate high fat (HCHF) diet induced obese rats. Male Wistar rats (28 rats) were divided into four different groups such as Control, Control + cardamom, HCHF, HCHF + cardamom. High carbohydrate and high fat (HCHF) diet was prepared in our laboratory. Oral glucose tolerance test, organs wet weight measurements and oxidative stress parameters analysis as well as liver marker enzymes such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) activities were assayed on the tissues collected from the rats. Plasma lipids profiles were also measured in all groups of animals. Moreover, histological staining was also performed to evaluate inflammatory cells infiltration and fibrosis in liver. The current investigation showed that, HCHF diet feeding in rats developed glucose intolerance and increased peritoneal fat deposition compared to control rats. Cardamom powder supplementation improved the glucose intolerance significantly (p > 0.05) and prevented the abdominal fat deposition in HCHF diet fed rats. HCHF diet feeding in rats also developed dyslipidemia, increased fat deposition and inflammation in liver compared to control rats. Cardamom powder supplementation significantly prevented the rise of lipid parameters (p > 0.05) in HCHF diet fed rats. Histological assessments confirmed that HCHF diet increased the fat deposition and inflammatory cells infiltration in liver which was normalized by cardamom powder supplementation in HCHF diet fed rats. Furthermore, HCHF diet increased lipid peroxidation, decreased antioxidant enzymes activities and increased advanced protein oxidation product level significantly (p > 0.05) both in plasma and liver tissue which were modulated by

  9. Antihypertensive Effect of Radix Paeoniae Alba in Spontaneously Hypertensive Rats and Excessive Alcohol Intake and High Fat Diet Induced Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Chen Su-Hong

    2015-01-01

    Full Text Available Radix Paeoniae Alba (Baishao, RPA has long been used in traditional Chinese medicine formulation to treat hypertension by repression the hyperfunction of liver. However, whether the RPA itself has the antihypertensive effect or not is seldom studied. This study was to evaluate the protective effect of RPA on hypertensive rats. Alcohol in conjunction with a high fat diet- (ACHFD- induced hypertensive rats and spontaneously hypertensive rats (SHR was constantly received either RPA extract (25 or 75 mg/kg or captopril (15 mg/kg all along the experiments. As a result, RPA extract (75 mg/kg could significantly reduce systolic blood pressure of both ACHFD-induced hypertensive rats and SHR after 9-week or 4-week treatment. In ACHFD-induced hypertensive rats, the blood pressure was significantly increased and the lipid profiles in serum including triglyceride, total cholesterol, LDL-cholesterol, and HDL-cholesterol were significantly deteriorated. Also, hepatic damage was manifested by a significant increase in alanine transaminase (ALT and aspartate transaminase (AST in serum. The RPA extract significantly reversed these parameters, which revealed that it could alleviate the liver damage of rats. In SHR, our result suggested that the antihypertensive active of RPA extract may be related to its effect on regulating serum nitric oxide (NO and endothelin (ET levels.

  10. The effects of losartan on memory performance and leptin resistance induced by obesity and high-fat diet in adult male rats.

    Science.gov (United States)

    Sharieh Hosseini, Seyydeh Gohar; Khatamsaz, Saeed; Shariati, Mehrdad

    2014-01-01

    Leptin is a hormone secreted by adipose tissue and is involved not only in the regulation of feeding and energy expenditure, but also its role in memory enhancement has been demonstrated as well. The partial transfer of leptin across the blood-brain barrier in obese individuals causes leptin resistance and prevents leptin reaching brain. On the other hand, studies have shown that angiotensin antagonists such as losartan can improve memory and learning abilities. The aim of this study was to evaluate the effects of losartan on improving memory and leptin resistance induced by high fat diet in obese rats. 40 Wistar male rats were divided in 4 groups: control (C), losartan (LOS), high-fat diet (HFD) and high-fat diet and losartan (HFD and LOS). The spatial memory performances of the rats were assessed in the Morris water maze after 2 months of treatment. Then they were weighed and serum levels of leptin and triglyceride were measured. In spite of receiving high-fat diet, no significant differences in body weight were observed in the (HFD & LOS) group. In the Morris water maze trial, the (LOS) and (HFD & LOS) groups also showed a significant reduction (P <0.05) in latency and path length. In addition, a significant decrease (P <0.05) in serum levels of leptin and no significant difference in serum levels of triglyceride was observed in the (HFD & LOS) group. Losartan can improve leptin resistance induced by obesity and high fat diet. At the same time, it modulates body weight and enhances learning and memory.

  11. Selected Physiological Effects of a Garcinia Gummi-Gutta Extract in Rats Fed with Different Hypercaloric Diets

    Directory of Open Access Journals (Sweden)

    Carolina Guillén-Enríquez

    2018-05-01

    Full Text Available Garcinia gummi-gutta (GGG rind extract is effective for reducing appetite, body weight and adiposity of obese rodents fed high-fat (HF, high-sugar (HS or high fat/sugar (HFS-based diets, but these effects have not been simultaneously evaluated. Thirty obese (~425 g male Wistar rats were fed for eleven weeks with six hypercaloric diets (4.1 kcal/g; five rats/diet non-supplemented (HF, HS, HFS, or supplemented (HF+, HS+, HFS+ with GGG extract (5.9%, while rats from the control group (375 g were fed a normocaloric diet (3.5 kcal/g. Body weight, dietary intake, body fat distribution, and histological and biochemical parameters were recorded. Compared to control rats, non-supplemented and supplemented groups consumed significantly less food (14.3% and 24.6% (−4.3 g/day, respectively (p < 0.05. Weight loss was greater in the HF+ group (35–52 g, which consumed 1.9 times less food than the HS+ or HFS+ fed groups. The HF and HFS groups showed 40% less plasma triacylglycerides and lower glucose levels compared to the HF+. GGG-supplemented diets were associated with lower ketonuria. The HF+ diet was associated with the best anti-adiposity effect (as measured with the dual X-ray absorptiometry (DXA and Soxhlet methods. The severity of hepatocyte lipidosis was HF > control > HF+, and no signs of toxicity in the testes were observed. The results indicate that GGG is more effective when co-administered with HF diets in obese rats.

  12. Assessment of the haematological indices of albino rats fed diets ...

    African Journals Online (AJOL)

    Keywords: Haematology, jackfruit, bulb, seed, supplementation. INTRODUCTION ... Albokhadaim, 2015) and humans (Lavy,. 1994 .... Table 2: Body weights and daily food intake of control and rats fed jackfruit seed diet (g). Experimental.

  13. Virgin coconut oil (VCO) by normalizing NLRP3 inflammasome showed potential neuroprotective effects in Amyloid-β induced toxicity and high-fat diet fed rat.

    Science.gov (United States)

    Mirzaei, Fatemeh; Khazaei, Mozafar; Komaki, Alireza; Amiri, Iraj; Jalili, Cyrus

    2018-05-02

    Both dyslipidemia and Alzheimer disease (AD) are associated with aging. In this study, the effects of virgin coconut oil (VCO) on inflammasome and oxidative stress in Alzheimer's model (receiving Amyloid-β (Aβ)) and high-fat diet (HFD) model were determined. A total of 120 male Wistar rats, were divided into 12 groups (n = 10), including; healthy control, sham surgery, sham surgery receiving normal saline, HFD, HFD + 8% VCO, HFD + 10% VCO, Aβ received rats, Aβ + 8%VCO, Aβ + 10%VCO, HFD + Aβ, HFD + Aβ+8%VCO, and HFD + Aβ + 10%VCO. Following memory and learning tests, blood sample prepared from the heart and hippocampus of rats in each group was kept at -70 °C for genes expression, oxidative stress, and biochemical tests. Aβ and HFD significantly impaired memory and learning by activating of both NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and oxidative stress (p<0.05), while treatment with both 8 and 10% VCO normalized inflammasome genes expression and oxidative stress (p<0.05). The Congo Red, Cresyl Violet staining and immunohistochemistry (IHC) test revealed that VCO improved hippocampus histological changes, reduced Aβ plaques and phosphorylated Tau. High-fat diet has exacerbated the effects of Aβ, while VCO showed potential neuroprotective effect. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Dietary supplementation with Agaricus blazei murill extract prevents diet-induced obesity and insulin resistance in rats.

    Science.gov (United States)

    Vincent, Mylène; Philippe, Erwann; Everard, Amandine; Kassis, Nadim; Rouch, Claude; Denom, Jessica; Takeda, Yorihiko; Uchiyama, Shoji; Delzenne, Nathalie M; Cani, Patrice D; Migrenne, Stéphanie; Magnan, Christophe

    2013-03-01

    Dietary supplement may potentially help to fight obesity and other metabolic disorders such as insulin-resistance and low-grade inflammation. The present study aimed to test whether supplementation with Agaricus blazei murill (ABM) extract could have an effect on diet-induced obesity in rats. Wistar rats were fed with control diet (CD) or high-fat diet (HF) and either with or without supplemented ABM for 20 weeks. HF diet-induced body weight gain and increased fat mass compared to CD. In addition HF-fed rats developed hyperleptinemia and insulinemia as well as insulin resistance and glucose intolerance. In HF-fed rats, visceral adipose tissue also expressed biomarkers of inflammation. ABM supplementation in HF rats had a protective effect against body weight gain and all study related disorders. This was not due to decreased food intake which remained significantly higher in HF rats whether supplemented with ABM or not compared to control. There was also no change in gut microbiota composition in HF supplemented with ABM. Interestingly, ABM supplementation induced an increase in both energy expenditure and locomotor activity which could partially explain its protective effect against diet-induced obesity. In addition a decrease in pancreatic lipase activity is also observed in jejunum of ABM-treated rats suggesting a decrease in lipid absorption. Taken together these data highlight a role for ABM to prevent body weight gain and related disorders in peripheral targets independently of effect in food intake in central nervous system. Copyright © 2012 The Obesity Society.

  15. Age-Related Loss in Bone Mineral Density of Rats Fed Lifelong on a Fish Oil-Based Diet Is Avoided by Coenzyme Q10 Addition

    Directory of Open Access Journals (Sweden)

    Alfonso Varela-López

    2017-02-01

    Full Text Available During aging, bone mass declines increasing osteoporosis and fracture risks. Oxidative stress has been related to this bone loss, making dietary compounds with antioxidant properties a promising weapon. Male Wistar rats were maintained for 6 or 24 months on diets with fish oil as unique fat source, supplemented or not with coenzyme Q10 (CoQ10, to evaluate the potential of adding this molecule to the n-3 polyunsaturated fatty acid (n-3 PUFA-based diet for bone mineral density (BMD preservation. BMD was evaluated in the femur. Serum osteocalcin, osteopontin, receptor activator of nuclear factor-κB ligand, ostroprotegerin, parathyroid hormone, urinary F2-isoprostanes, and lymphocytes DNA strand breaks were also measured. BMD was lower in aged rats fed a diet without CoQ10 respect than their younger counterparts, whereas older animals receiving CoQ10 showed the highest BMD. F2-isoprostanes and DNA strand breaks showed that oxidative stress was higher during aging. Supplementation with CoQ10 prevented oxidative damage to lipid and DNA, in young and old animals, respectively. Reduced oxidative stress associated to CoQ10 supplementation of this n-3 PUFA-rich diet might explain the higher BMD found in aged rats in this group of animals.

  16. Roselle is cardioprotective in diet-induced obesity rat model with myocardial infarction.

    Science.gov (United States)

    Si, Lislivia Yiang-Nee; Ali, Siti Aishah Mohd; Latip, Jalifah; Fauzi, Norsyahida Mohd; Budin, Siti Balkis; Zainalabidin, Satirah

    2017-12-15

    Obesity increase the risks of hypertension and myocardial infarction (MI) mediated by oxidative stress. This study was undertaken to investigate the actions of roselle aqueous extract (R) on cardiotoxicity in obese (OB) rats and thereon OB rats subjected to MI. Male Sprague-Dawley rats were fed with either normal diet or high-fat diet for 8weeks. Firstly, OB rats were divided into (1) OB and (2) OB+R (100mg/kg, p.o, 28days). Then, OB rats were subjected to MI (ISO, 85mg/kg, s.c, 2days) and divided into three groups: (1) OB+MI, (2) OB+MI+R and (3) OB+MI+enalapril for another 4weeks. Roselle ameliorated OB and OB+MI's cardiac systolic dysfunction and reduced cardiac hypertrophy and fibrosis. The increased oxidative markers and decreased antioxidant enzymes in OB and OB+MI groups were all attenuated by roselle. These observations indicate the protective effect of roselle on cardiac dysfunction in OB and OB+MI rats, which suggest its potential to be developed as a nutraceutical product for obese and obese patients with MI in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The Colonic Microbiome and Epithelial Transcriptome Are Altered in Rats Fed a High-Protein Diet Compared with a Normal-Protein Diet.

    Science.gov (United States)

    Mu, Chunlong; Yang, Yuxiang; Luo, Zhen; Guan, Leluo; Zhu, Weiyun

    2016-03-01

    A high-protein diet (HPD) can produce hazardous compounds and reduce butyrate-producing bacteria in feces, which may be detrimental to gut health. However, information on whether HPD affects intestinal function is limited. The aim of this study was to determine the impact of an HPD on the microbiota, microbial metabolites, and epithelial transcriptome in the colons of rats. Adult male Wistar rats were fed either a normal-protein diet (20% protein, 56% carbohydrate) or an HPD (45% protein, 30% carbohydrate) for 6 wk (n = 10 rats per group, individually fed). After 6 wk, the colonic microbiome, microbial metabolites, and epithelial transcriptome were determined. Compared with the normal-protein diet, the HPD adversely altered the colonic microbiota by increasing (P 0.7, P < 0.05) with genes and metabolites generally regarded as being involved in disease pathogenesis, suggesting these bacteria may mediate the detrimental effects of HPDs on colonic health. Our findings suggest that the HPD altered the colonic microbial community, shifted the metabolic profile, and affected the host response in the colons of rats toward an increased risk of colonic disease. © 2016 American Society for Nutrition.

  18. Effect of Herbal Acupuncture with Sang-hwang(Phellinus linteus on High Fat Diet-induced Obesity in Rats

    Directory of Open Access Journals (Sweden)

    Ji Hyun Kim

    2004-02-01

    Full Text Available Acupuncture has fairly good weight-reducing effect in treating simple obesity due to the neuroendocrine regulation. In this study, the anti-obesity effects of herbal acupuncture (HA with Sang-hwang (Phellinus linteus at Fuai (SP16 were investigated in the rat fed on high-fat (HF diet. Sang-hwang mushroom has been proven to have anti-carcinogenic effects and Sang-hwang extracts are highly effective in treatment and preventive treatment of AIDS, diabetes and high blood-pressure. To determine whether the Sang-hwang herbal acupuncture may have the anti-obesity effect, male Sprague-Dawley (4-wk-old rats were fed a HF diet for 5 wk, which produced significant weight gain compared to rats were fed a normal diet, and then herbal acupuncture were treated for 3 wk in HF diet group. The body weight, food consumption, food effeciency ratio (FER, body fat mass, plasma nitric oxide (NO were investigated in rats fed on normal diet, HF diet, and HF diet with HA (HF-diet-HA groups. NO has been proposed to be involved in the regulation of food intake. In addition, the expression of appetite peptides such as orexigenic peptide neuropeptide Y (NPY and the anorectic peptide cholecystokinin (CCK were observed in the hypothalamus. HF-HA group reduced body weight gain, FER, body fat contents and NO concentration compared to HF diet group. The expression of NPY was reduced in arcuate nucleus (ARC, and CCK was increased in the paraventricular nucleus (PVN after treatment of HA. In conclusion, Sang-hwang HA reduced adipocity, plasma NO and hypothalamic NPY, but increased CCK expression in the HF diet-induced obesity rat, therefore HA may have anti-obesity action through regulating body weight and appetite peptide of the central nervous system.

  19. Hypocaloric high-protein diet improves fatty liver and hypertriglyceridemia in sucrose-fed obese rats via two pathways.

    Science.gov (United States)

    Uebanso, Takashi; Taketani, Yutaka; Fukaya, Makiko; Sato, Kazusa; Takei, Yuichiro; Sato, Tadatoshi; Sawada, Naoki; Amo, Kikuko; Harada, Nagakatsu; Arai, Hidekazu; Yamamoto, Hironori; Takeda, Eiji

    2009-07-01

    The mechanism by which replacement of some dietary carbohydrates with protein during weight loss favors lipid metabolism remains obscure. In this study, we investigated the effect of an energy-restricted, high-protein/low-carbohydrate diet on lipid metabolism in obese rats. High-sucrose-induced obese rats were assigned randomly to one of two energy-restricted dietary interventions: a carbohydrate-based control diet (CD) or a high-protein diet (HPD). Lean rats of the same age were assigned as normal control. There was significantly greater improvement in fatty liver and hypertriglyceridemia with the HPD diet relative to the CD diet. Expression of genes regulated by fibroblast growth factor-21 (FGF21) and involved in liver lipolysis and lipid utilitization, such as lipase and acyl-CoA oxidase, increased in obese rats fed the HPD. Furthermore, there was an inverse correlation between levels of FGF21 gene expression (regulated by glucagon/insulin balance) and increased triglyceride concentrations in liver from obese rats. Expression of hepatic stearoyl-CoA desaturase-1 (SCD1), regulated primarily by the dietary carbohydrate, was also markedly reduced in the HPD group (similar to plasma triglyceride levels in fasting animals) relative to the CD group. In conclusion, a hypocaloric high-protein diet improves fatty liver and hypertriglyceridemia effectively relative to a carbohydrate diet. The two cellular pathways at work behind these benefits include stimulation of hepatic lipolysis and lipid utilization mediated by FGF21 and reduction of hepatic VLDL-TG production by SCD1 regulation.

  20. An experimental evaluation of the anti-atherogenic potential of the plant, Piper betle, and its active constitutent, eugenol, in rats fed an atherogenic diet.

    Science.gov (United States)

    Venkadeswaran, Karuppasamy; Thomas, Philip A; Geraldine, Pitchairaj

    2016-05-01

    Hypercholesterolemia is a major risk factor for systemic atherosclerosis and subsequent cardiovascular disease. Lipoperoxidation-mediated oxidative damage is believed to contribute strongly to the progression of atherogenesis. In the current investigation, putative anti-atherogenic and antioxidative properties of an ethanolic extract of Piper betle and of its active constituent, eugenol, were sought in an experimental animal model of chronic hypercholesterolemia. Atherogenic diet-fed rats that received either Piper betle extract orally (500mg/kg b.wt) or eugenol orally (5mg/kg b.wt) for 15days (commencing 30days after the atherogenic diet had been started) exhibited the following variations in different parameters, when compared to atherogenic diet-fed rats that received only saline: (1) significantly lower mean levels of total cholesterol, triglycerides, low-density lipoprotein cholesterol and very low density lipoprotein cholesterol in both serum and hepatic tissue samples; (2) lower mean serum levels of aspartate amino-transferase, alanine amino-transferase, alkaline phosphatase, lactate dehydrogenase and lipid-metabolizing enzymes (lipoprotein lipase, 3-hydroxy-3-methyl-glutaryl-CoA reductase; (3) significantly lower mean levels of enzymatic antioxidants (catalase, superoxide dismutase, glutathione peroxidase, glutathione-S-transferase) and non-enzymatic antioxidants (reduced glutathione, vitamin C and vitamin E) and significantly higher mean levels of malondialdehyde in haemolysate and hepatic tissue samples. Histopathological findings suggested a protective effect of the Piper betle extract and a more pronounced protective effect of eugenol on the hepatic and aortic tissues of atherogenic diet-fed (presumed atherosclerotic) rats. These results strongly suggest that the Piper betle extract and its active constituent, eugenol, exhibit anti-atherogenic effects which may be due to their anti-oxidative properties. Copyright © 2016 Elsevier Masson SAS. All rights

  1. Impact of Western and Mediterranean Diets and Vitamin D on Muscle Fibers of Sedentary Rats

    Science.gov (United States)

    Purrello, Francesco

    2018-01-01

    Background: The metabolic syndrome is associated with sarcopenia. Decreased serum levels of Vitamin D (VitD) and insulin-like growth factor (IGF)-1 and their mutual relationship were also reported. We aimed to evaluate whether different dietary profiles, containing or not VitD, may exert different effects on muscle molecular morphology. Methods: Twenty-eight male rats were fed for 10 weeks in order to detect early defects induced by different dietary regimens: regular diet (R); regular diet with vitamin D supplementation (R-DS) and regular diet with vitamin D restriction (R-DR); high-fat butter-based diets (HFB-DS and HFB-DR) with 41% energy from fat; high-fat extra-virgin olive oil-based diets (HFEVO-DS and HFEVO-DR) with 41% energy from fat. IL-1β, insulin-like growth factor (IGF)1, Dickkopf-1 (DKK-1), and VitD-receptor (VDR) expressions were evaluated by immunohistochemistry. Muscle fiber perimeter was measured by histology and morphometric analysis. Results: The muscle fibers of the HEVO-DS rats were hypertrophic, comparable to those of the R-DS rats. An inverse correlation existed between the dietary fat content and the perimeter of the muscle fibers (p < 0.01). In the HFB-DR rats, the muscle fibers appeared hypotrophic with an increase of IL-1β and a dramatic decrease of IGF-1 expression. Conclusions: High-fat western diet could impair muscle metabolism and lay the ground for subsequent muscle damage. VitD associated with a Mediterranean diet showed trophic action on the muscle fibers. PMID:29462978

  2. The effect of micronized corn fiber on body weight, glycemia, and lipid metabolism in rats fed cafeteria diet

    Directory of Open Access Journals (Sweden)

    Vanessa Barbosa de Moraes THOMPSON

    2018-05-01

    Full Text Available Abstract During corn industrial dry milling, a residue rich in dietary fibers is generated. This study aimed to evaluate the effects of micronized corn fiber (MCF as part of a cafeteria diet in the macronutrient metabolism and body weight. Wistar male rats, with initial body weight of 249 ± 14 g (n = 13, received AIN-93M diet (Group 1 or cafeteria diet (Groups 2, 3 and 4, composed of commercial ration, cookies, fried potato sticks, milk chocolate, bacon and chicken liver pâté. Groups 3 and 4 received MCF to replace 100 and 50% of the cellulose from the AIN-93M diet, respectively. After 35 days, blood, tissues and feces were collected. Data were analyzed by ANOVA followed by Tukey test (p < 0.10. The weight gain of the animals increased by 25.9%, 20.8% and 22.0%, when fed cafeteria diet or 100 and 50% of MCF respectively, compared to the control group, although food consumption did not differ between them. Body weight and food efficiency ratio did not differ between the groups fed cafeteria diet with or without MCF. The addition of MCF to the cafeteria diet did not alter the animal lipid profile and glycemia, however, the accumulation of lipids in their livers was similar to the control group. The intake of 100% MCF resulted in higher fecal weight and fecal excretion of lipids, and lower fecal nitrogen, lipid absorption and lipid deposition in the liver than the cafeteria diet. In conclusion, MCF has a potential to improve intestinal transit and lipid excretion, but showed no benefit on blood lipid and glucose levels.

  3. Valine entry into rat brain after diet-induced changes in plasma amino acids

    International Nuclear Information System (INIS)

    Tews, J.K.; Greenwood, J.; Pratt, O.E.; Harper, A.E.

    1987-01-01

    Passage of amino acids across the blood-brain barrier is assumed to be modified by amino acid composition of the blood. To gain a better understanding of the effects of protein intake on brain amino acid uptake, the authors examined associations among diet, plasma amino acid patterns, and the rate of entry of valine into the brain. Rats were fed diets containing 6, 18, or 50% casein before receiving one meal of a diet containing 0, 6, 18, or 50% casein. After 4-7 h, they were anesthetized and infused intravenously with [ 14 C]valine for 5 min before plasma and brain samples were taken for determination of radioactivity and content of individual amino acids. As protein content of the meal was increased from 0 to 50% casein, plasma and brain concentrations of valine and most other large neutral amino acid (LNAA) increased severalfold; also the ratio of [ 14 C]valine in brain to that in plasma decreased by >50%, and the rate of valine entry into the brain increased 3.5-fold. The increase in valine flux slowed as plasma levels of LNAA, competitors for valine transport, increased. The results were far more dependent on protein content of the final meal than on that of the adaptation diet; thus changes in protein intake, as reflected in altered plasma amino acid patterns, markedly altered valine entry into the brain

  4. Butter improves glucose tolerance compared with at highly polyunsaturated diet in the rat

    DEFF Research Database (Denmark)

    Hellgren, Lars

    in epidemiological studies, where the typical fatty acid composition of milk-fat, i.e. a high level of saturated fatty acids (SFA) and low concentration of polyunsaturated fatty acids (PUFAs), has been correlated to increased insulin-resistance. It is therefore essential to characterize the impact of milk......-fat on glucose-tolerance in intervention studies. Methods: 16 rats were divided into two groups and fed a semisynthetic diet containing 31 E-% fat, either as butter or highly polyunsaturated grapeseed oil. After 12 weeks on the diets, glucose-tolerance was assayed with the oral-glucose tolerance test (OGTT......). Results and Discussion: The OGTT revealed that the rats on the butter-containing diet, had a substantially higher glucose tolerance than the rats, which were fed grapeseed oil (area under the curve =195  31 mM*min-2 vs. 310  13 mM*min-2, n= 8, p=0.004). There were no differences in serum triacylglycerol...

  5. Effects of proportions of dietary macronutrients on glucocorticoid metabolism in diet-induced obesity in rats.

    Directory of Open Access Journals (Sweden)

    Roland H Stimson

    2010-01-01

    Full Text Available Tissue glucocorticoid levels in the liver and adipose tissue are regulated by regeneration of inactive glucocorticoid by 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1 and inactivation by 5alpha- and 5beta-reductases. A low carbohydrate diet increases hepatic 11beta-HSD1 and reduces glucocorticoid metabolism during weight loss in obese humans. We hypothesized that similar variations in macronutrient proportions regulate glucocorticoid metabolism in obese rats. Male Lister Hooded rats were fed an obesity-inducing ad libitum 'Western' diet (37% fat, n = 36 for 22 weeks, then randomised to continue this diet (n = 12 or to switch to either a low carbohydrate (n = 12 or a moderate carbohydrate (n = 12 diet for the final 8 weeks. A parallel lean control group were fed an ad libitum control diet (10% fat, n = 12 throughout. The low and moderate carbohydrate diets decreased hepatic 11beta-HSD1 mRNA compared with the Western diet (both 0.7+/-0.0 vs 0.9+/-0.1 AU; p<0.01, but did not alter 11beta-HSD1 in adipose tissue. 5Alpha-reductase mRNA was increased on the low carbohydrate compared with the moderate carbohydrate diet. Compared with lean controls, the Western diet decreased 11beta-HSD1 activity (1.6+/-0.1 vs 2.8+/-0.1 nmol/mcg protein/hr; p<0.001 and increased 5alpha-reductase and 5beta-reductase mRNAs (1.9+/-0.3 vs 1.0+/-0.2 and 1.6+/-0.1 vs 1.0+/-0.1 AU respectively; p<0.01 in the liver, and reduced 11beta-HSD1 mRNA and activity (both p<0.01 in adipose tissue. Although an obesity-inducing high fat diet in rats recapitulates the abnormal glucocorticoid metabolism associated with human obesity in liver (but not in adipose tissue, a low carbohydrate diet does not increase hepatic 11beta-HSD1 in obese rats as occurs in humans.

  6. Cereal based diets modulate some markers of oxidative stress and inflammation in lean and obese Zucker rats

    Directory of Open Access Journals (Sweden)

    Mano Mark

    2011-05-01

    Full Text Available Abstract Background The potential of cereals with high antioxidant capacity for reducing oxidative stress and inflammation in obesity is unknown. This study investigated the impact of wheat bran, barley or a control diet (α-cellulose on the development of oxidative stress and inflammation in lean and obese Zucker rats. Methods Seven wk old, lean and obese male Zucker rats (n = 8/group were fed diets that contained wheat bran, barley or α-cellulose (control. After 3 months on these diets, systolic blood pressure was measured and plasma was analysed for glucose, insulin, lipids, oxygen radical absorbance capacity (ORAC, malondialdehyde, glutathione peroxidase and adipokine concentration (leptin, adiponectin, interleukin (IL-1β, IL-6, TNFα, plasminogen activator inhibitor (PAI-1, monocyte chemotactic protein (MCP-1. Adipokine secretion rates from visceral and subcutaneous adipose tissue explants were also determined. Results Obese rats had higher body weight, systolic blood pressure and fasting blood lipids, glucose, insulin, leptin and IL-1β in comparison to lean rats, and these measures were not reduced by consumption of wheat bran or barley based diets. Serum ORAC tended to be higher in obese rats fed wheat bran and barley in comparison to control (p = 0.06. Obese rats had higher plasma malondialdehyde (p Conclusions A 3-month dietary intervention was sufficient for Zucker obese rats to develop oxidative stress and systemic inflammation. Cereal-based diets with moderate and high antioxidant capacity elicited modest improvements in indices of oxidative stress and inflammation.

  7. The diet board: welfare impacts of a novel method of dietary restriction in laboratory rats

    DEFF Research Database (Denmark)

    Kasanen, I H E; Inhilä, K J; Vainio, O M

    2009-01-01

    adrenaline and noradrenaline content than the diet board animals. No gastric ulcers were found in any of the animals at necropsy. The diet board thus appears to cause a stress reaction when compared with AL-fed rats, but no apparent pathology was associated with this reaction. The diet board could help...... the stress physiology of diet board fed animals with that of AL-fed animals. Diet board feeding was associated with higher serum corticosterone levels and lower faecal secretion of IgA, suggesting the diet board causes a stress reaction. However, the AL-fed group had larger adrenal glands with higher...... to solve the health problems associated with AL feeding, while allowing the rats to be group-housed and to maintain their normal diurnal eating rhythms. The diet board can also be seen as a functional cage furniture item, dividing the cage into compartments and thus increasing the structural complexity...

  8. Dietary intake of ain-93 standard diet induces Fatty liver with altered hepatic fatty acid profile in Wistar rats.

    Science.gov (United States)

    Farias Santos, Juliana; Suruagy Amaral, Monique; Lima Oliveira, Suzana; Porto Barbosa, Júnia; Rego Cabral, Cyro; Sofia Melo, Ingrid; Bezerra Bueno, Nassib; Duarte Freitas, Johnatan; Goulart Sant'ana, Antônio; Rocha Ataíde, Terezinha

    2015-05-01

    There are several standard diets for animals used in scientific research, usually conceived by scientific institutions. The AIN-93 diet is widely used, but there are some reports of fatty liver in Wistar rats fed this diet. We aimed to evaluate the hepatic repercussions of the AIN-93 diet intake in Wistar rats. Forty newly-weaned 21-day-old male Wistar rats were fed either the AIN-93 diet or a commercial diet for either 1 month or 4 months. Weight gain, serum biochemistry, hepatic histology, and hepatic fatty acid profile were analyzed. Hepatic steatosis was observed, especially in the group fed the AIN-93 diet. Serum blood glucose, absolute and relative liver weight and hepatic levels of oleic, palmitoleic, stearic, and palmitic fatty acids were related to the observed steatosis, while lipidogram and serum markers of liver function and injury were not. AIN-93 diet induced acute hepatic steatosis in Wistar rats, which may compromise its use as a standard diet for experimental studies with rodents. The hepatic fatty acid profile was associated with steatosis, with possible implications for disease prognosis. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  9. Effect of potato on acid-base and mineral homeostasis in rats fed a high-sodium chloride diet.

    Science.gov (United States)

    Narcy, Agnès; Robert, Laetitia; Mazur, Andrzej; Demigné, Christian; Rémésy, Christian

    2006-05-01

    Excessive dietary NaCl in association with a paucity of plant foods, major sources of K alkaline salts, is a common feature in Western eating habits which may lead to acid-base disorders and to Ca and Mg wasting. In this context, to evaluate the effects of potato, rich in potassium citrate, on acid-base homeostasis and mineral retention, Wistar rats were fed wheat starch (WS) or cooked potato (CP) diets with a low (0.5 %) or a high (2 %) NaCl content during 3 weeks. The replacement of WS by CP in the diets resulted in a significant urinary alkalinisation (pH from 5.5 to 7.3) parallel to a rise in citrate and K excretion. Urinary Ca and Mg elimination represented respectively 17 and 62 % of the daily absorbed mineral in rats fed the high-salt WS diet compared with 5 and 28 % in rats fed the high-salt CP diet. The total SCFA concentration in the caecum was 3-fold higher in rats fed the CP diets compared with rats fed the WS diets, and it led to a significant rise in Ca and Mg intestinal absorption (Ca from 39 to 56 %; Mg from 37 to 60 %). The present model of low-grade metabolic acidosis indicates that CP may be effective in alkalinising urine, enhancing citrate excretion and ameliorating Ca and Mg balance.

  10. Modification of sympathetic neuronal function in the rat tail artery by dietary lipid treatment

    International Nuclear Information System (INIS)

    Panek, R.L.; Dixon, W.R.; Rutledge, C.O.

    1985-01-01

    The effect of dietary lipid treatment on sympathetic neuronal function was examined in isolated perfused tail arteries of adult rats. The hypothesis that dietary manipulations alter the lipid environment of receptor proteins which may result in the perturbation of specific membrane-associated processes that regulate peripheral adrenergic neurotransmission in the vasculature was the basis for this investigation. In the present study, rats were fed semisynthetic diets enriched in either 16% coconut oil (saturated fat) or 16% sunflower oil (unsaturated fat). The field stimulation-evoked release of endogenous norepinephrine and total 3 H was decreased significantly in rats receiving the coconut oil diet when compared to either sunflower oil- or standard lab chow-fed rats. Norepinephrine content in artery segments from coconut oil-treated rats was significantly higher compared to either sunflower oil- or standard lab chow-fed rats. Tail arteries from rats receiving the coconut oil diet displayed significantly lower perfusion pressure responses to nerve stimulation at all frequencies tested when compared to the sunflower oil- or standard lab chow-fed rats. Vasoconstrictor responses of perfused tail arteries exposed to exogenous norepinephrine resulted in an EC50 for norepinephrine that was not changed by the dietary treatment, but adult rats receiving the sunflower oil diet displayed a significantly greater maximum response to exogenous norepinephrine (10(-5) M) compared to arteries from either coconut oil- or standard lab chow-fed rats

  11. [Effects of octreotide on fatty infiltration of the pancreas in high-fat diet induced obesity rats].

    Science.gov (United States)

    Yu, Tao; Liu, Rui; Li, Mao; Li, Xian; Qiang, Ou; Huang, Wei; Tang, Chengwei

    2014-03-01

    To investigate effects of octreotide on fatty infiltration of the pancreas in high-fat diet induced obesity rats. SD rats were divided into control group (n = 14) and high-fat diet group (n = 36). Obese rats from the high-fat diet group were further divided into 2 groups: the obese group (n = 14) and the octreotide-treated group (n = 16). Rats in the octreotide-treated group were subcutaneously injected with octreotide per 12 h (40 mg/kg BW) for 8 days. Body weight, fasting plasma glucose (FPG), fasting serum insulin, triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) levels, pancreatic TG and FFA content were measured. Homeostatic model assessment (HOMA) index was calculated. Somatostatin (SST) and the expression of adipose differentiation-related protein (ADFP) in pancrea were measured. Pathological changes of pancreas were examined with light microscopy. Body weight, Lee's index, FPG, fasting serum insulin, TG, TC levels and HOMA index in the obese group were higher than those in the control group (P pancreas, and lowering the levels of plasma glucose and lipid in the high-fat diet induced obesity rats.

  12. Alternate-Day High-Fat Diet Induces an Increase in Mitochondrial Enzyme Activities and Protein Content in Rat Skeletal Muscle.

    Science.gov (United States)

    Li, Xi; Higashida, Kazuhiko; Kawamura, Takuji; Higuchi, Mitsuru

    2016-04-06

    Long-term high-fat diet increases muscle mitochondrial enzyme activity and endurance performance. However, excessive calorie intake causes intra-abdominal fat accumulation and metabolic syndrome. The purpose of this study was to investigate the effect of an alternating day high-fat diet on muscle mitochondrial enzyme activities, protein content, and intra-abdominal fat mass in rats. Male Wistar rats were given a standard chow diet (CON), high-fat diet (HFD), or alternate-day high-fat diet (ALT) for 4 weeks. Rats in the ALT group were fed a high-fat diet and standard chow every other day for 4 weeks. After the dietary intervention, mitochondrial enzyme activities and protein content in skeletal muscle were measured. Although body weight did not differ among groups, the epididymal fat mass in the HFD group was higher than those of the CON and ALT groups. Citrate synthase and beta-hydroxyacyl CoA dehydrogenase activities in the plantaris muscle of rats in HFD and ALT were significantly higher than that in CON rats, whereas there was no difference between HFD and ALT groups. No significant difference was observed in muscle glycogen concentration or glucose transporter-4 protein content among the three groups. These results suggest that an alternate-day high-fat diet induces increases in mitochondrial enzyme activities and protein content in rat skeletal muscle without intra-abdominal fat accumulation.

  13. Anti-oxidant and anti-hyperlipidemic activity of Hemidesmus indicus in rats fed with high-fat diet

    Directory of Open Access Journals (Sweden)

    Suganya Venkateshan

    2016-08-01

    Full Text Available Objective: Dietary changes playmajor risk roles in oxidative stress andcardiovascular disease and modulate normal metabolic function. The present study was designed to investigate the ameliorative potential of different extracts of Hemidesmus indicus to experimental high-fat diet in wistar rats, and their possible mechanism of action.  Materials and Methods: Male wistar rats were divided into 6 groups (n=6/group andfed with a standard diet (control, high-fat diet (HFD, high-fat diet supplemented with different extracts and positive control for 9 weeks. High-fat diet induced changes in average body weight andoxidative stress and elevated levels of plasma lipid profilein rats. Results: Oral administration of methanolic extract of H. indicus(200 mg/kg offered a significant dose-dependent protection against HFD-induced oxidative stress, as reflected in the levels of catalase (pConclusion: The present study revealed that the methanolic extract of H.indicus protects against oxidative stress, hyperlipidemia and liver damage.

  14. Rodent malaria in rats exacerbated by milk protein, attenuated by low-protein vegetable diet

    NARCIS (Netherlands)

    Doorne, C.W. van; Eling, W.M.C.; Luyken, R.

    1998-01-01

    Young male Wistar rats were fed a purified, vegetable, low-protein diet containing 6% protein from maize gluten and 2% from soy protein isolate, or comparable diets in which maize gluten was replaced partly or completely by the equivalent amount of a milk protein concentrate. Diets with adequate

  15. Chronic high-fat diet-induced obesity decreased survival and increased hypertrophy of rats with experimental eccentric hypertrophy from chronic aortic regurgitation.

    Science.gov (United States)

    Dhahri, Wahiba; Drolet, Marie-Claude; Roussel, Elise; Couet, Jacques; Arsenault, Marie

    2014-09-24

    The composition of a diet can influence myocardial metabolism and development of left ventricular hypertrophy (LVH). The impact of a high-fat diet in chronic left ventricular volume overload (VO) causing eccentric LVH is unknown. This study examined the effects of chronic ingestion of a high-fat diet in rats with chronic VO caused by severe aortic valve regurgitation (AR) on LVH, function and on myocardial energetics and survival. Male Wistar rats were divided in four groups: Shams on control or high-fat (HF) diet (15 rats/group) and AR rats fed with the same diets (ARC (n = 56) and ARHF (n = 32)). HF diet was started one week before AR induction and the protocol was stopped 30 weeks later. As expected, AR caused significant LV dilation and hypertrophy and this was exacerbated in the ARHF group. Moreover, survival in the ARHF group was significantly decreased compared the ARC group. Although the sham animals on HF also developed significant obesity compared to those on control diet, this was not associated with heart hypertrophy. The HF diet in AR rats partially countered the expected shift in myocardial energy substrate preference usually observed in heart hypertrophy (from fatty acids towards glucose). Systolic function was decreased in AR rats but HF diet had no impact on this parameter. The response to HF diet of different fatty acid oxidation markers as well as the increase in glucose transporter-4 translocation to the plasma membrane compared to ARC was blunted in AR animals compared to those on control diet. HF diet for 30 weeks decreased survival of AR rats and worsened eccentric hypertrophy without affecting systolic function. The expected adaptation of myocardial energetics to volume-overload left ventricle hypertrophy in AR animals seemed to be impaired by the high-fat diet suggesting less metabolic flexibility.

  16. Glucose Tolerance, Lipids, and GLP-1 Secretion in JCR:LA-cp Rats Fed a High Protein Fiber Diet

    Science.gov (United States)

    Reimer, Raylene A.; Russell, James C.

    2013-01-01

    Background We have shown that individually, dietary fiber and protein increase secretion of the anorexigenic and insulinotropic hormone, glucagon-like peptide-1 (GLP-1). Objective Our objective was to combine, in one diet, high levels of fiber and protein to maximize GLP-1 secretion, improve glucose tolerance, and reduce weight gain. Methods and Procedures Lean (+/?) and obese (cp/cp) male James C Russell corpulent (JCR:LA-cp) rats lacking a functional leptin receptor were fed one of four experimental diets (control, high protein (HP), high fiber (HF, prebiotic fiber inulin), or combination (CB)) for 3 weeks. An oral glucose tolerance test (OGTT) was performed to evaluate plasma GLP-1, insulin and glucose. Plasma lipids and intestinal proglucagon mRNA expression were determined. Results Energy intake was lower with the HF diet in lean and obese rats. Weight gain did not differ between diets. Higher colonic proglucagon mRNA in lean rats fed a CB diet was associated with higher GLP-1 secretion during OGTT. The HP diet significantly reduced plasma glucose area under the curve (AUC) during OGTT in obese rats, which reflected both an increased GLP-1 AUC and higher fasting insulin. Diets containing inulin resulted in the lowest plasma triglyceride and total cholesterol levels. Discussion Overall, combining HP with HF in the diet increased GLP-1 secretion in response to oral glucose, but did not improve glucose tolerance or lipid profiles more than the HF diet alone did. We also suggest that glycemic and insulinemic response to prebiotics differ among rat models and future research work should examine their role in improving glucose tolerance in diet-induced vs. genetic obesity with overt hyperleptinemia. PMID:18223610

  17. The response of male and female rats to a high-fructose diet during adolescence following early administration of Hibiscus sabdariffa aqueous calyx extracts.

    Science.gov (United States)

    Ibrahim, K G; Chivandi, E; Mojiminiyi, F B O; Erlwanger, K H

    2017-12-01

    Metabolic syndrome is linked to the consumption of fructose-rich diets. Nutritional and pharmacological interventions perinatally can cause epigenetic changes that programme an individual to predispose or protect them from the development of metabolic diseases later. Hibiscus sabdariffa (HS) reportedly has anti-obesity and hypocholesterolaemic properties in adults. We investigated the impact of neonatal intake of HS on the programming of metabolism by fructose. A total of 85 4-day-old Sprague Dawley rats were divided randomly into three groups. The control group (n=27, 12 males, 15 females) received distilled water at 10 ml/kg body weight. The other groups received either 50 mg/kg (n=30, 13 males, 17 females) or 500 mg/kg (n=28, 11 males, 17 females) of an HS aqueous calyx extract orally till postnatal day (PND) 14. There was no intervention from PND 14 to PND 21 when the pups were weaned. The rats in each group were then divided into two groups; one continued on a normal diet and the other received fructose (20% w/v) in their drinking water for 30 days. The female rats that were administered with HS aqueous calyx extract as neonates were protected against fructose-induced hypertriglyceridaemia and increased liver lipid deposition. The early administration of HS resulted in a significant (P⩽0.05) increase in plasma cholesterol concentrations with or without a secondary fructose insult. In males, HS prevented the development of fructose-induced hypercholesterolaemia. The potential beneficial and detrimental effects of neonatal HS administration on the programming of metabolism in rats need to be considered in the long-term well-being of children.

  18. Rats eat a cafeteria-style diet to excess but eat smaller amounts and less frequently when tested with chow.

    Directory of Open Access Journals (Sweden)

    Timothy South

    Full Text Available BACKGROUND: Obesity is associated with excessive consumption of palatable, energy dense foods. The present study used an animal model to examine feeding patterns during exposure to and withdrawal from these foods. METHODS: Male Sprague Dawley rats were exposed to standard lab chow only (Chow rats or a range of cafeteria-style foods eaten by people (Caf rats. After 1, 4, 7 and 10 weeks of diet in their home cage, rats were subjected to 24-hour test sessions in a Comprehensive Lab Animal Monitoring System (CLAMS. In the first two test sessions, Chow rats were exposed to standard lab chow only while Caf rats were exposed to a biscuit and high-fat chow diet. In the final two test sessions, half the rats in each group were switched to the opposing diet. In each session we recorded numbers of bouts, energy consumed per bout, and intervals between bouts across the entire 24 hours. RESULTS: Relative to Chow rats, Caf rats initiated fewer bouts but consumed more energy per bout; however, their motivation to feed in the CLAMS declined over time, which was attributed to reduced variety of foods relative to their home cage diet. This decline in motivation was especially pronounced among Caf rats switched from the palatable CLAMS diet to standard lab chow only: the reduced energy intake in this group was due to a modest decline in bout frequency and a dramatic decline in bout size. CONCLUSIONS: Exposure to a cafeteria-diet, rich in variety, altered feeding patterns, reduced rats' motivation to consume palatable foods in the absence of variety, and further diminished motivation to feed when palatable foods were withdrawn and replaced with chow. Hence, variety is a key factor in driving excessive consumption of energy dense foods, and therefore, excessive weight gain.

  19. Administration of dried Aloe vera gel powder reduced body fat mass in diet-induced obesity (DIO) rats.

    Science.gov (United States)

    Misawa, Eriko; Tanaka, Miyuki; Nabeshima, Kazumi; Nomaguchi, Kouji; Yamada, Muneo; Toida, Tomohiro; Iwatsuki, Keiji

    2012-01-01

    The aim of the present study was to investigate the anti-obesity effects of Aloe vera gel administration in male Sprague-Dawley (SD) rats with diet-induced obesity (DIO). SD rats at 7 wk of age were fed either a standard diet (10 kcal% fat) (StdD) or high-fat (60 kcal% fat) diet (HFD) during the experimental period. Four weeks after of HFD-feeding, DIO rats (11 wk of age) were orally administered with two doses of Aloe vera gel powder (20 and 200 mg/kg/d) for 90 d. Body weights (g) and body fat (%) of HFD fed rats were significantly higher than those of StdD-fed rats. Although a modest decrease of body weight (g) was observed with the administration of dried Aloe vera gel powder, both subcutaneous and visceral fat weight (g) and body fat (%) were reduced significantly in Aloe vera gel-treated rats. Serum lipid parameters elevated by HFD were also improved by the Aloe vera gel treatment. The oxygen consumption (VO(2)), an index of energy expenditure, was decreased in HFD-fed rats compared with that in StdD-fed rats. Administration of Aloe vera gel reversed the change in VO(2) in the HFD-fed rats. These results suggest that intake of Aloe vera gel reduced body fat accumulation, in part, by stimulation of energy expenditure. Aloe vera gel might be beneficial for the prevention and improvement of diet-induced obesity.

  20. Effects of growth hormone plus a hyperproteic diet on methotrexate-induced injury in rat intestines.

    Science.gov (United States)

    Ortega, M; Gomez-de-Segura, I A; Vázquez, I; López, J M; de Guevara, C L; De-Miguel, E

    2001-01-01

    The aim of this study was to determine whether growth hormone treatment reduces injury to the intestinal mucosa induced by methotrexate (MTX). Wistar rats with intestinal injury induced by methotrexate were treated with daily growth hormone, beginning 3 days before MTX treatment until 3 or 4 days after MTX administration. The rats were killed at 3 or 7 days post-MTX administration. The rats were fed with either a normoproteic diet or a hyperproteic diet. Body weight, mortality, bacterial translocation, intestinal morphometry, proliferation and apoptosis and blood somatostatin and IGF-1 were determined. Combined administration of growth hormone and a hyperproteic diet reduces MTX-induced mortality. This effect was accompanied by increased cell proliferation and decreased apoptosis within the crypt. Morphometric data showed complete recovery of the mucosa by day 7 post-MTX administration. These results indicate a synergistic protective action of growth hormone combined with a hyperproteic diet to MTX-induced injury.

  1. Ketogenic Diet Suppresses Alcohol Withdrawal Syndrome in Rats.

    Science.gov (United States)

    Dencker, Ditte; Molander, Anna; Thomsen, Morgane; Schlumberger, Chantal; Wortwein, Gitta; Weikop, Pia; Benveniste, Helene; Volkow, Nora D; Fink-Jensen, Anders

    2018-02-01

    Alcohol use disorder is underdiagnosed and undertreated, and up to 50% of alcohol-abstinent patients diagnosed with alcohol dependence relapse within the first year of treatment. Current treatments for the maintenance of alcohol abstinence in patients with alcohol use disorder have limited efficacy, and there is an urgent need for novel treatment strategies. Decreased cerebral glucose metabolism and increased brain uptake of acetate were recently reported in heavy drinkers, relative to controls. Given the switch of metabolic fuel from glucose to acetate in the alcohol-dependent brain, we investigated the potential therapeutic benefit of a ketogenic diet in managing alcohol withdrawal symptoms during detoxification. Male Sprague Dawley rats fed either ketogenic or regular diet were administered ethanol or water orally, twice daily for 6 days while the diet conditions were maintained. Abstinence symptoms were rated 6, 24, 48, and 72 hours after the last alcohol administration. Maintenance on a ketogenic diet caused a significant decrease in the alcohol withdrawal symptoms' "rigidity" and "irritability." Our preclinical pilot study suggests that a ketogenic diet may be a novel approach for treating alcohol withdrawal symptoms in humans. Copyright © 2017 by the Research Society on Alcoholism.

  2. Bioavailability of vitamin B-6 from rat diets containing wheat bran or cellulose

    International Nuclear Information System (INIS)

    Hudson, C.A.; Betschart, A.A.; Oace, S.M.

    1988-01-01

    Bioavailability of vitamin B-6 (B-6) in the total diet was studied in male, weanling Sprague-Dawley rats fed fiber-free (FF) diets with 0.2 or 6.9 mg pyridoxine/kg diet (0-, 2- or 6.9-PYR), 20% wheat bran (WB) diets with 3.9- or 5.5-PYR or 7% cellulose (C) diets with 0- or 2-PYR for 28 d. Body weight gain (mean +/- SEM) with 0-PYR was 70 +/- 9.0 and 81.2 +/- 4.2 g for FF and C, respectively. All other groups gained 170-180 g. Urinary excretion of 4-pyridoxic acid (4-PA), a major B-6 metabolite, for FF groups was 1.31 +/- 0.22, 2.26 +/- 0.28 and 6.39 +/- 1.73 micrograms/24 h, at 0-, 2- and 6.9-PYR, respectively. Rats fed WB diets excreted 4.99 +/- 0.58 and 9.81 +/- 0.76 micrograms/24 h (3.9- and 5.5-PYR, respectively) and those fed C diets excreted 1.46 +/- 0.34 and 2.69 +/- 0.72 micrograms/24 h (0- and 2-PYR). There was increasing turnover and shorter biological half-life of [ 14 C]pyridoxine (1 mu Ci injected on d 1) with increasing dietary B-6. Growth, 4-PA and 14 C turnover data indicated that WB contributed to B-6 intake of these rats. Cellulose acted as a simple dietary diluent and had no effect on indices of B-6 status. These data suggest that dietary fiber, as cellulose or the indigestible component of wheat bran, does not adversely affect the bioavailability of vitamin B-6

  3. Effects of low calcium plus high aluminum diet on magnesium and calcium contents in spinal cord and trabecular bone of rats

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Masayuki; Ota, Kiichiro [Wakayama Medical Coll. (Japan); Sasajima, Kazuhisa

    1998-01-01

    Current epidemiological surveys in the Western Pacific area and Kii Peninsula have suggested that low calcium (Ca), magnesium (Mg), and high aluminum (Al) and manganese (Mn) in river, soil and drinking water may be implicated in the pathogenetic process of amyotrophic lateral sclerosis (ALS) and parkinsonism-dementia (PD). The condition of unbalanced minerals was experimentally duplicated in this study using rats. Male Wistar rats, weighing 200 g, were maintained for 60 days on the following diets: (A) standard diet, (B) low Ca diet, (C) low Ca diet with high Al. Magnesium concentration was determined in spinal cord and trabecular bone using inductively coupled plasma emission spectrometry (ICP) and the calcium concentration was determined using neutron activation method. In the group maintained on low Ca high Al diet, magnesium content of the spinal cord was lower than the group fed standard diet. Also, magnesium content of lumbar bone showed lower values in the unbalanced diet group fed low Ca high Al diet than those in the standard diet and low Ca diet groups. Calcium content of spinal cord was highest in rats maintained on low Ca high Al diet. Calcium content in lumbar bone of rats significantly decreased in rats maintained on the low Ca diet (group B and C) compared to rats given a standard diet (group A). Our data indicate that low Ca and high Al dietary intake influence Mg concentration in bone and central nervous system (CNS) tissues and that low Ca and high Al diet diminish Mg in bone and CNS tissues, thereby inducing loss of calcification in bone and degeneration of CNS tissues due to disturbance of the normal biological effects of Mg. (author)

  4. Phytase supplementation increases bone mineral density, lean body mass and voluntary physical activity in rats fed a low-zinc diet.

    Science.gov (United States)

    Scrimgeour, Angus G; Marchitelli, Louis J; Whicker, Jered S; Song, Yang; Ho, Emily; Young, Andrew J

    2010-07-01

    Phytic acid forms insoluble complexes with nutritionally essential minerals, including zinc (Zn). Animal studies show that addition of microbial phytase (P) to low-Zn diets improves Zn status and bone strength. The present study determined the effects of phytase supplementation on bone mineral density (BMD), body composition and voluntary running activity of male rats fed a high phytic acid, low-Zn diet. In a factorial design, rats were assigned to ZnLO (5 mg/kg diet), ZnLO+P (ZnLO diet with 1500 U phytase/kg) or ZnAD (30 mg/kg diet) groups and were divided into voluntary exercise (EX) or sedentary (SED) groups, for 9 weeks. SED rats were significantly heavier from the second week, and no catch-up growth occurred in EX rats. Feed intakes were not different between groups throughout the study. ZnLO animals had decreased food efficiency ratios compared to both phytase-supplemented (ZnLO+P) and Zn-adequate (ZnAD) animals (Pbone mineral content (BMC), bone area (BA) and BMD than rats fed ZnLO diets; and in rats fed ZnAD diets these indices were the highest. The dietary effects on BMC, BA and BMD were independent of activity level. We conclude that consuming supplemental dietary phytase or dietary Zn additively enhances Zn status to increase BMD, LBM and voluntary physical activity in rats fed a low-Zn diet. While the findings confirm that bone health is vulnerable to disruption by moderate Zn deficiency in rats, this new data suggests that if dietary Zn is limiting, supplemental phytase may have beneficial effects on LBM and performance activity. (c) 2010 Elsevier Inc. All rights reserved.

  5. Exercise reverses metabolic syndrome in high-fat diet-induced obese rats.

    Science.gov (United States)

    Touati, Sabeur; Meziri, Fayçal; Devaux, Sylvie; Berthelot, Alain; Touyz, Rhian M; Laurant, Pascal

    2011-03-01

    Chronic consumption of a high-fat diet induces obesity. We investigated whether exercise would reverse the cardiometabolic disorders associated with obesity without it being necessary to change from a high- to normal-fat diet. Sprague-Dawley rats were placed on a high-fat (HFD) or control diet (CD) for 12 wk. HFD rats were then divided into four groups: sedentary HFD (HFD-S), exercise trained (motor treadmill for 12 wk) HFD (HFD-Ex), modified diet (HFD to CD; HF/CD-S), and exercise trained with modified diet (HF/CD-Ex). Cardiovascular risk parameters associated with metabolic syndrome were measured, and contents of aortic Akt, phospho-Akt at Ser (473), total endothelial nitric oxide synthase (eNOS), and phospho-eNOS at Ser (1177) were determined by Western blotting. Chronic consumption of HFD induced a metabolic syndrome. Exercise and dietary modifications reduced adiposity, improved glucose and insulin levels and plasma lipid profile, and exerted an antihypertensive effect. Exercise was more effective than dietary modification in improving plasma levels of thiobarbituric acid-reacting substance and in correcting the endothelium-dependent relaxation to acetylcholine and insulin. Furthermore, independent of the diet used, exercise increased Akt and eNOS phosphorylation. Metabolic syndrome induced by HFD is reversed by exercise and diet modification. It is demonstrated that exercise training induces these beneficial effects without the requirement for dietary modification, and these beneficial effects may be mediated by shear stress-induced Akt/eNOS pathway activation. Thus, exercise may be an effective strategy to reverse almost all the atherosclerotic risk factors linked to obesity, particularly in the vasculature.

  6. Moderately Low Magnesium Intake Impairs Growth of Lean Body Mass in Obese-Prone and Obese-Resistant Rats Fed a High-Energy Diet

    Directory of Open Access Journals (Sweden)

    Jesse Bertinato

    2016-04-01

    Full Text Available The physical and biochemical changes resulting from moderately low magnesium (Mg intake are not fully understood. Obesity and associated co-morbidities affect Mg metabolism and may exacerbate Mg deficiency and physiological effects. Male rats selectively bred for diet-induced obesity (OP, obese-prone or resistance (OR, obese-resistant were fed a high-fat, high-energy diet containing moderately low (LMg, 0.116 ± 0.001 g/kg or normal (NMg, 0.516 ± 0.007 g/kg Mg for 13 weeks. The growth, body composition, mineral homeostasis, bone development, and glucose metabolism of the rats were examined. OP and OR rats showed differences (p < 0.05 in many physical and biochemical measures regardless of diet. OP and OR rats fed the LMg diet had decreased body weight, lean body mass, decreased femoral size (width, weight, and volume, and serum Mg and potassium concentrations compared to rats fed the NMg diet. The LMg diet increased serum calcium (Ca concentration in both rat strains with a concomitant decrease in serum parathyroid hormone concentration only in the OR strain. In the femur, Mg concentration was reduced, whereas concentrations of Ca and sodium were increased in both strains fed the LMg diet. Plasma glucose and insulin concentrations in an oral glucose tolerance test were similar in rats fed the LMg or NMg diets. These results show that a moderately low Mg diet impairs the growth of lean body mass and alters femoral geometry and mineral metabolism in OP and OR rats fed a high-energy diet.

  7. Inhibition of angiotensin-1-converting enzyme activity by two varieties of ginger (Zingiber officinale) in rats fed a high cholesterol diet.

    Science.gov (United States)

    Akinyemi, Ayodele Jacob; Ademiluyi, Adedayo Oluwaseun; Oboh, Ganiyu

    2014-03-01

    Angiotensin-1-converting enzyme (ACE) inhibitors are widely used in the treatment of cardiovascular diseases. This study sought to investigate the inhibitory effect of two varieties of ginger (Zingiber officinale) commonly consumed in Nigeria on ACE activity in rats fed a high cholesterol diet. The inhibition of ACE activity of two varieties of ginger (Z. officinale) was investigated in a high cholesterol (2%) diet fed to rats for 3 days. Feeding high cholesterol diets to rats caused a significant (Pginger varieties. Rats that were fed 4% white ginger had the greatest inhibitory effect as compared with a control diet. Furthermore, there was a significant (Pginger (either 2% or 4%) caused a significant (Pginger had the greatest reduction as compared with control diet. In conclusion, both ginger varieties exhibited anti-hypercholesterolemic properties in a high cholesterol diet fed to rats. This activity of the gingers may be attributed to its ACE inhibitory activity. However, white ginger inhibited ACE better in a high cholesterol diet fed to rats than red ginger. Therefore, both gingers could serve as good functional foods/nutraceuticals in the management/treatment of hypertension and other cardiovascular diseases.

  8. Insulin detemir attenuates food intake, body weight gain and fat mass gain in diet-induced obese Sprague-Dawley rats.

    Science.gov (United States)

    Rojas, J M; Printz, R L; Niswender, K D

    2011-07-04

    Initiation and intensification of insulin therapy commonly causes weight gain, a barrier to therapy. A contrasting body of evidence indicates that insulin functions as an adiposity negative feedback signal and reduces food intake, weight gain and adiposity via action in the central nervous system. Basal insulin analogs, detemir (Det) and glargine (Glar), have been associated with less hypoglycemia compared with neutral protamine hagedorn insulin, and Det with less weight gain, especially in patients with higher body mass index (BMI). We sought to determine whether insulin therapy per se causes body weight and fat mass gain when delivered via a clinically relevant subcutaneous (SC) route in the absence of hypoglycemia and glycosuria in non-diabetic lean and diet-induced obese rats. Rats were exposed to either a low-fat diet (LFD; 13.5% fat) or high-fat diet (HFD; 60% fat), and received Det (0.5 U kg(-1)), Glar (0.2 U kg(-1)) or vehicle (Veh) SC once daily for 4 weeks. These dosages of insulin were equipotent in rats with respect to blood-glucose concentration and did not induce hypoglycemia. As predicted by current models of energy homeostasis, neither insulin Det nor Glar therapy affected food intake and weight gain in LFD rats. Det treatment significantly attenuated food intake, body weight gain and fat mass gain relative to the Glar and Veh in high-fat fed animals, mirroring observations in humans. That neither insulin group gained excess weight, suggests weight gain with SC basal insulin therapy may not be inevitable. Our data further suggest that Det possesses a unique property to attenuate the development of obesity associated with a HFD.

  9. Isoflavone and Protein Constituents of Lactic Acid-Fermented Soy Milk Combine to Prevent Dyslipidemia in Rats Fed a High Cholesterol Diet

    OpenAIRE

    Kobayashi, Maki; Egusa, Shintaro; Fukuda, Mitsuru

    2014-01-01

    A high cholesterol diet induces dyslipidemia. This study investigated whether isoflavone aglycones in lactic acid-fermented soy milk (LFS) improve lipid metabolism in rats fed a high cholesterol diet. Male Sprague-Dawley rats aged seven weeks were fed an AIN-93G diet, a 1% cholesterol diet (a high cholesterol diet), a high-cholesterol diet containing 4% isoflavone extract of LFS (LFS extract diet), a high-cholesterol diet containing 19.4% ethanol-washed LFS (ethanol-washed LFS diet, isoflavon...

  10. Beneficial effects of curcumin nano-emulsion on spermatogenesis and reproductive performance in male rats under protein deficient diet model: enhancement of sperm motility, conservancy of testicular tissue integrity, cell energy and seminal plasma amino acids content.

    Science.gov (United States)

    Ahmed-Farid, Omar A H; Nasr, Maha; Ahmed, Rania F; Bakeer, Rofanda M

    2017-09-02

    Malnutrition resulting from protein and calorie deficiency continues to be a major concern worldwide especially in developing countries. Specific deficiencies in the protein intake can adversely influence reproductive performance. The present study aimed to evaluate the effects of curcumin and curcumin nano-emulsion on protein deficient diet (PDD)-induced testicular atrophy, troubled spermatogenesis and decreased reproductive performance in male rats. Juvenile rats were fed the protein deficient diet (PDD) for 75 days. Starting from day 60 the rats were divided into 4 groups and given the corresponding treatments for the last 15 days orally and daily as follows: 1st group; curcumin group (C) received 50 mg/kg curcumin p.o. 2 nd group; curcumin nano-form low dose group (NCL) received 2.5 mg/kg nano-curcumin. 3rd group; curcumin nano-form high dose group (NCH) received 5 mg/kg nano-curcumin. 4th group served as malnutrition group (PDD group) receiving the protein deficient diet daily for 75 days and received distilled water ingestions (5 ml/kg p.o) daily for the last 15 days of the experiment. A normal control group was kept under the same conditions for the whole experiment and received normal diet according to nutrition requirement center daily for 75 days and received distilled water ingestions (5 ml/kg p.o) daily for the last 15 days of the experiment. PDD induced significant (P curcumin (50 mg/kg) and curcumin nano-emulsion (2.5 and 5 mg/kg) showed significant (Pcurcumin (50 mg/kg). The present study suggests that administration of curcumin nano-emulsion as a daily supplement would be beneficial in malnutrition- induced troubled male reproductive performance and spermatogenesis cases.

  11. Incorporation in vivo of 1-14C-acetate into lipids of rats fed threonine imbalanced diet

    International Nuclear Information System (INIS)

    Maeda, Hideo; Sugano, Michihiro

    1975-01-01

    In order to investigate the mechanism of the fatty liver production in rats fed the thereonine imbalanced diet, time course of lipogenesis was followed after intraperitoneal injection of 1- 14 C-acetate into rats that had been reared on the imbalanced diet for 7 days. 1) The rate of the incorporation of 1- 14 C-acetate into hepatic triglyceride, estimated either on the base of unit weight of liver or of whole liver, in comparison with that of the control rats, did not increase by feeding the imbalanced diet under the condition where the extent of lipogenesis could be measured (30 min after the dose of the label). Also, the specific activity of triglyceride was by no means high at this point. The rate of disappearance of the radioactivity, between 60 min and 180 min after the label injection, from triglyceride was evidently slower in rats fed the imbalanced diet, thus the radioactivity of triglyceride in this animal being to some extent higher after 180 min. 2) The incorporation of radioactivity into phospholipid was not influenced by the imbalanced diet. 3) There was no difference in the incorporation of the radioactivity into kidney lipids between the control and imbalanced groups. 4) From the distribution of the radioactivity in the hepatic lipid fractions, it appeared that the relative incorporation into triglyceride tended to increase after feeding the imbalanced diet. 5) There were no demonstrable differences in the activity of plasma total lipids at any times after the injection of the label. The ratio of the label incorporation into whole plasma and liver total lipids tended to decrease in the imbalanced rat after 180 min. These results suggested that, although alternative explanations are possible, the decreased turnover in hepatic triglyceride, rather than the increased hepatic lipogenesis, would largely be responsible for the production of fatty liver in rats fed the threonine imbalanced diet. (auth.)

  12. Alveolar wound healing in rats fed on high sucrose diet.

    Science.gov (United States)

    Baró, María A; Rocamundi, Marina R; Viotto, Javier O; Ferreyra, Ruth S

    2013-01-01

    The potential for bone repair is influenced by various biochemical, biomechanical, hormonal, and pathological mechanisms and factors such as diet and its components, all of which govern the behavior and function of the cells responsible for forming new bone. Several authors suggest that a high sucrose diet could change the calcium balance and bone composition in animals, altering hard tissue mineralization. The mechanism by which it occurs is unclear. Alveolar healing following tooth extraction has certain characteristics making this type of wound unique, in both animals and humans. The general aim of this study was to evaluate and quantify the biological response during alveolar healing following tooth extraction in rats fed on high sucrose diets, by means of osteocyte lacunae histomorphometry, counting empty lacunae and measuring areas of bone quiescence, formation and resorption. Forty-two Wistar rats of both sexes were divided into two groups: an experimental group fed on modified Stephan Harris diet (43% sucrose) and a control group fed on standard balanced diet. The animals were anesthetized and their left and right lower molars extracted. They were killed at 0 hours, 14, 28, 60 and 120 days. Samples were fixed, decalcified in EDTA and embedded in paraffin to prepare sections for optical microscopy which were stained with hematoxylin/eosin. Histomorphometric analysis showed significant differences in the size of osteocyte lacunae between groups at 28 and 60 days, with the experimental group having larger lacunae. There were more empty lacunae in the experimental group at 14 days, and no significant difference in the areas of bone activity. A high sucrose diet could modify the morphology and quality of bone tissue formed in the alveolus following tooth extraction.

  13. Consumption of thermally oxidized palm oil diets alters biochemical indices in rats

    Directory of Open Access Journals (Sweden)

    Ayodeji Osmund Falade

    2015-06-01

    Full Text Available Palm oil is thermally oxidized to increase its palatability and this has been a usual practice in most homes. This study sought to assess the biochemical responses of rats to thermally oxidized palm oil diets. Therefore, Wistar strain albino rats (Rattus norveigicus were fed with fresh palm oil (control and thermally oxidized palm oil (test groups diets and water ad libitum for 30 days. Then, the malondialdehyde (MDA contents and total protein of the plasma and liver were determined. Subsequently, the plasma liver function markers [alanine transaminase (ALT, aspartate transaminase (AST, alkaline phosphatase (ALP, albumin (ALB and total bilirubin (TBIL ] and the lipid profile [triglyceride (TRIG, total cholesterol (T-CHOL, high density lipoprotein (HDL-CHOL and low density lipoprotein (LDL-CHOL ] were assayed. The results of the study revealed that there was a significant decrease (P < 0.05 in the plasma and liver total protein, ALB, TRIG and HDL-CHOL of the test groups when compared with the control. Conversely, there was a significant increase (P < 0.05 in the activities of ALT, AST and ALP, TBIL, T-CHOL, LDL-CHOL and plasma/liver MDA of the test groups when compared with the control. These effects were most pronounced in rats fed with 20 min-thermally oxidized palm oil diet. Hence, consumption of thermally oxidized palm oil diets had deleterious effects on biochemical indices in rats. Therefore, cooking with and/or consumption of palm oil subjected to heat treatment for several long periods of time should be discouraged in our homes as this might have deleterious effects on human health.

  14. Simulated weightlessness and synbiotic diet effects on rat bone mechanical strength

    Science.gov (United States)

    Sarper, Hüseyin; Blanton, Cynthia; DePalma, Jude; Melnykov, Igor V.; Gabaldón, Annette M.

    2014-10-01

    This paper reports results on exposure to simulated weightlessness that leads to a rapid decrease in bone mineral density known as spaceflight osteopenia by evaluating the effectiveness of dietary supplementation with synbiotics to counteract the effects of skeletal unloading. Forty adult male rats were studied under four different conditions in a 2 × 2 factorial design with main effects of diet (synbiotic and control) and weight condition (unloaded and control). Hindlimb unloading was performed at all times for 14 days followed by 14 days of recovery (reambulation). The synbiotic diet contained probiotic strains Lactobacillus acidophilus and Lactococcus lactis lactis and prebiotic fructooligosaccharide. This paper also reports on the development of a desktop three-point bending device to measure the mechanical strength of bones from rats subjected to simulated weightlessness. The importance of quantifying bone resistance to breakage is critical when examining the effectiveness of interventions against osteopenia resulting from skeletal unloading, such as astronauts experience, disuse or disease. Mechanical strength indices provide information beyond measures of bone density and microarchitecture that enhance the overall assessment of a treatment's potency. In this study we used a newly constructed three-point bending device to measure the mechanical strength of femur and tibia bones from hindlimb-unloaded rats fed an experimental synbiotic diet enriched with probiotics and fermentable fiber. Two calculated outputs for each sample were Young's modulus of elasticity and fracture stress. Bone major elements (calcium, magnesium, and phosphorous) were quantified using ICP-MS analysis. Hindlimb unloading was associated with a significant loss of strength in the femur, and with significant reductions in major bone elements. The synbiotic diet did not protect against these unloading effects. Tibia strength and major elements were not reduced by hindlimb unloading, as was

  15. Long-term feeding of red algae (Gelidium amansii ameliorates glucose and lipid metabolism in a high fructose diet-impaired glucose tolerance rat model

    Directory of Open Access Journals (Sweden)

    Hshuan-Chen Liu

    2017-07-01

    Full Text Available This study was designed to investigate the effect of Gelidium amansii (GA on carbohydrate and lipid metabolism in rats with high fructose (HF diet (57.1% w/w. Five-week-old male Sprague-Dawley rats were fed a HF diet to induce glucose intolerance and hyperlipidemia. The experiment was divided into three groups: (1 control diet group (Con; (2 HF diet group (HF; and (3 HF with GA diet group (HF + 5% GA. The rats were fed the experimental diets and drinking water ad libitum for 23 weeks. The results showed that GA significantly decreased retroperitoneal fat mass weight of HF diet-fed rats. Supplementation of GA caused a decrease in plasma glucose, insulin, tumor necrosis factor-α, and leptin. HF diet increased hepatic lipid content. However, intake of GA reduced the accumulation of hepatic lipids including total cholesterol (TC and triglyceride contents. GA elevated the excretion of fecal lipids and bile acid in HF diet-fed rats. Furthermore, GA significantly decreased plasma TC, triglyceride, low density lipoprotein plus very low density lipoprotein cholesterol, and TC/high density lipoprotein cholesterol ratio in HF diet-fed rats. HF diet induced an in plasma glucose and an impaired glucose tolerance, but GA supplementation decreased homeostasis model assessment equation-insulin resistance and improved impairment of glucose tolerance. Taken together, these results indicate that supplementation of GA can improve the impairment of glucose and lipid metabolism in an HF diet-fed rat model.

  16. Equisetum sylvaticum base reduces atherosclerosis risk factors in rats fed a high-fat diet

    Directory of Open Access Journals (Sweden)

    Cheng-He Lin

    2014-08-01

    Full Text Available We identify an Equisetum sylvaticum alkaloid (ESA derived from E. hyemale, which has robust antihyperlipidemic effects in rats fed a high-fat diet. ESA was isolated from E. hyemale and identified by IR, 13C NMR and 1H NMR. Rats were induced to hyperlipidemia and subjected to ESA treatment. In hyperlipidemic model, fed with a high-fat diet, the blood levels of TC, TG and LDL-C were increased. The administration of ESA (20 or 40 mg/kg to those rats significantly improved the HDL-C level and reduced the levels of TC, TG, LDL-C. The atherosclerosis index and atherosclerosis risk of these rats were significantly reduced by ESA. In addition, the administration of ESA in rats increased the activity of SOD and decreased the level of MDA. These results reveal the antihyperlipidemic and anti-oxidative effects of ESA in vivo.

  17. Freely accessible water does not decrease consumption of ethanol liquid diets.

    Science.gov (United States)

    de Fiebre, NancyEllen C; de Fiebre, Christopher M

    2003-02-01

    In experimental studies, liquid ethanol diets are usually given as the sole source of nutrition and fluid. Two series of experiments were conducted to examine the effect of freely accessible water on the consumption of ethanol liquid diets in male Long-Evans rats. The consumption of diets and subsequent learning ability of rats were first examined in animals given twice-daily saline injections. One group received diet with no access to water for 12 weeks and was subsequently given free access to water with diets for an additional 12 weeks. A second group was given diet and water ad libitum for 24 weeks. Control animals received an isocaloric sucrose-containing diet (with or without ad libitum access to water). Subsequently, rats were tested for active avoidance learning. In the first 12 weeks, animals with ad libitum access to water drank more diet than did water-restricted animals, and previously water-restricted animals increased their diet consumption when access to water was freely available. All water-restricted animals, in both ethanol- and sucrose-treated groups, showed deficits in active avoidance learning, whereas only ethanol-treated animals in groups with ad libitum access to water showed learning deficits. In the second series of experiments, the effect of saline injections on diet consumption, both in the presence and absence of water, was examined. Although saline injections were associated with decreased diet consumption, there was no effect of free access to water. No differences in blood ethanol concentration were seen among groups. Findings obtained from both series of studies demonstrate that consumption of a Sustacal-based liquid ethanol diet does not decrease if access to water is freely available.

  18. Effects of discontinuing a high-fat diet on mitochondrial proteins and 6-hydroxydopamine-induced dopamine depletion in rats.

    Science.gov (United States)

    Ma, Delin; Shuler, Jeffrey M; Raider, Kayla D; Rogers, Robert S; Wheatley, Joshua L; Geiger, Paige C; Stanford, John A

    2015-07-10

    Diet-induced obesity can increase the risk for developing age-related neurodegenerative diseases including Parkinson's disease (PD). Increasing evidence suggests that mitochondrial and proteasomal mechanisms are involved in both insulin resistance and PD. The goal of this study was to determine whether diet intervention could influence mitochondrial or proteasomal protein expression and vulnerability to 6-Hydroxydopamine (6-OHDA)-induced nigrostriatal dopamine (DA) depletion in rats' nigrostriatal system. After a 3 month high-fat diet regimen, we switched one group of rats to a low-fat diet for 3 months (HF-LF group), while the other half continued with the high-fat diet (HF group). A chow group was included as a control. Three weeks after unilateral 6-OHDA lesions, HF rats had higher fasting insulin levels and higher Homeostasis model assessment of insulin resistance (HOMA-IR), indicating insulin resistance. HOMA-IR was significantly lower in HF-LF rats than HF rats, indicating that insulin resistance was reversed by switching to a low-fat diet. Compared to the Chow group, the HF group exhibited significantly greater DA depletion in the substantia nigra but not in the striatum. DA depletion did not differ between the HF-LF and HF group. Proteins related to mitochondrial function (such as AMPK, PGC-1α), and to proteasomal function (such as TCF11/Nrf1) were influenced by diet intervention, or by 6-OHDA lesion. Our findings suggest that switching to a low-fat diet reverses the effects of a high-fat diet on systemic insulin resistance, and mitochondrial and proteasomal function in the striatum. Conversely, they suggest that the effects of the high-fat diet on nigrostriatal vulnerability to 6-OHDA-induced DA depletion persist. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Effect of administering a diet contamined with fumonisins on the kidneys of wistar rats

    Directory of Open Access Journals (Sweden)

    Jade Cabestre Venancio

    2014-08-01

    Full Text Available Fumonisins (FBs are mycotoxins produced by Fusarium molds. Several works have shown contamination of maize by this toxin. Fumonisin B1 (FB-1 is found in greatest proportion (about 70%, resistant to several industrialization processes. In that context, the objective of this work was to analyze the effect of administering a diet contaminated with FB-1 on the morphophysiology of the kidneys of 21-day old male Wistar rats. The animals were divided into 2 groups: G0 (with animals receiving feed free of FBs and G6 (6mg of FB1 kg-1 of feed. The diet was administered during 42 days. After that period, the animals were placed in metabolic cages for urine collection, blood was collected for analysis of plasma creatinine, and the kidneys were fixed and stained with Masson's trichrome. We observed that FB1 administration did not affect feed intake, body weight gain and animal growth. The normal levels of plasma creatinine suggest that the toxin did not lead to glomerular lesion. There was also no change in water intake, osmolarity and excretion of sodium in urine. However, there was a significant increase in urine volume and potassium excretion in urine, with mild tubulointerstitial changes in the outer cortex for the group receiving the mycotoxin.

  20. Diet choice patterns in rodents depend on novelty of the diet, exercise, species, and sex.

    Science.gov (United States)

    Yang, Tiffany; Xu, Wei-Jie; York, Haley; Liang, Nu-Chu

    2017-07-01

    Prolonged consumption of a palatable, high fat (HF) diet paired with a lack of physical activity can exacerbate the development of obesity. Exercise can facilitate the maintenance of a healthy body weight, possibly though mediating changes in diet preference. Using a two-diet choice and wheel running (WR) paradigm, our laboratory previously demonstrated that WR induces HF diet avoidance with different persistency in male and female rats when HF diet and WR are introduced simultaneously. The aims of this study were to examine whether this behavior is species dependent and to what extent the novelty of the diet affects WR induced HF diet avoidance. Experiment 1 utilized male C57BL6 mice in a two-diet choice and WR paradigm. Results show that all mice preferred HF to chow diet regardless of exercise and the order in which exercise and HF diet were presented. Experiment 2A (diet novelty) utilized Sprague-Dawley rats that were first habituated to a 45% HF diet prior to the simultaneous introduction of WR and a novel high-carbohydrate, low-fat (DK) diet. All rats avoided the novel high-carbohydrate diet and neither male nor female wheel running rats exhibited reduction in HF diet intake or HF diet avoidance. After all rats were returned to a sedentary condition, female rats consumed significantly more of the DK diet than the male rats. In Experiment 2B (diet familiarity), rats remained sedentary and were re-habituated to the DK diet until intake stabilized. Subsequently, a 60% HF diet was introduced for all rats and for running rats, access to the running wheels were provided simultaneously. Consistent with our previous findings, HF diet intake and preference was significantly reduced in all wheel running rats. These data suggest that exercise induced HF diet avoidance is affected by species and the novelty of the diet. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Myocardial Perfusion and Function Are Distinctly Altered by Sevoflurane Anesthesia in Diet-Induced Prediabetic Rats.

    Science.gov (United States)

    van den Brom, Charissa E; Boly, Chantal A; Bulte, Carolien S E; van den Akker, Rob F P; Kwekkeboom, Rick F J; Loer, Stephan A; Boer, Christa; Bouwman, R Arthur

    2016-01-01

    Preservation of myocardial perfusion during surgery is particularly important in patients with increased risk for perioperative complications, such as diabetes. Volatile anesthetics, like sevoflurane, have cardiodepressive effects and may aggravate cardiovascular complications. We investigated the effect of sevoflurane on myocardial perfusion and function in prediabetic rats. Rats were fed a western diet (WD; n = 18) or control diet (CD; n = 18) for 8 weeks and underwent (contrast) echocardiography to determine perfusion and function during baseline and sevoflurane exposure. Myocardial perfusion was estimated based on the product of microvascular filling velocity and blood volume. WD-feeding resulted in a prediabetic phenotype characterized by obesity, hyperinsulinemia, hyperlipidemia, glucose intolerance, and hyperglycemia. At baseline, WD-feeding impaired myocardial perfusion and systolic function compared to CD-feeding. Exposure of healthy rats to sevoflurane increased the microvascular filling velocity without altering myocardial perfusion but impaired systolic function. In prediabetic rats, sevoflurane did also not affect myocardial perfusion; however, it further impaired systolic function. Diet-induced prediabetes is associated with impaired myocardial perfusion and function in rats. While sevoflurane further impaired systolic function, it did not affect myocardial perfusion in prediabetic rats. Our findings suggest that sevoflurane anesthesia leads to uncoupling of myocardial perfusion and function, irrespective of the metabolic state.

  2. Pre-existing differences and diet-induced alterations in striatal dopamine systems of obesity-prone rats.

    Science.gov (United States)

    Vollbrecht, Peter J; Mabrouk, Omar S; Nelson, Andrew D; Kennedy, Robert T; Ferrario, Carrie R

    2016-03-01

    Interactions between pre-existing differences in mesolimbic function and neuroadaptations induced by consumption of fatty, sugary foods are thought to contribute to human obesity. This study examined basal and cocaine-induced changes in striatal neurotransmitter levels without diet manipulation and D2 /D3 dopamine receptor-mediated transmission prior to and after consumption of "junk-foods" in obesity-prone and obesity-resistant rats. Microdialysis and liquid chromatography-mass spectrometry were used to determine basal and cocaine-induced changes in neurotransmitter levels in real time with cocaine-induced locomotor activity. Sensitivity to the D2 /D3 dopamine receptor agonist quinpirole was examined before and after restricted junk-food exposure. Selectively bred obesity-prone and obesity-resistant rats were used. Cocaine-induced locomotion was greater in obesity-prone rats versus obesity-resistant rats prior to diet manipulation. Basal and cocaine-induced increases in dopamine and serotonin levels did not differ. Obesity-prone rats were more sensitive to the D2 receptor-mediated effects of quinpirole, and junk-food produced modest alterations in quinpirole sensitivity in obesity-resistant rats. These data show that mesolimbic systems differ prior to diet manipulation in susceptible versus resistant rats, and that consumption of fatty, sugary foods produce different neuroadaptations in these populations. These differences may contribute to enhanced food craving and an inability to limit food intake in susceptible individuals. © 2016 The Obesity Society.

  3. Essential fatty acid-rich diets protect against striatal oxidative damage induced by quinolinic acid in rats.

    Science.gov (United States)

    Morales-Martínez, Adriana; Sánchez-Mendoza, Alicia; Martínez-Lazcano, Juan Carlos; Pineda-Farías, Jorge Baruch; Montes, Sergio; El-Hafidi, Mohammed; Martínez-Gopar, Pablo Eliasib; Tristán-López, Luis; Pérez-Neri, Iván; Zamorano-Carrillo, Absalom; Castro, Nelly; Ríos, Camilo; Pérez-Severiano, Francisca

    2017-09-01

    Essential fatty acids have an important effect on oxidative stress-related diseases. The Huntington's disease (HD) is a hereditary neurologic disorder in which oxidative stress caused by free radicals is an important damage mechanism. The HD experimental model induced by quinolinic acid (QUIN) has been widely used to evaluate therapeutic effects of antioxidant compounds. The aim of this study was to test whether the fatty acid content in olive- or fish-oil-rich diet prevents against QUIN-related oxidative damage in rats. Rats were fed during 20 days with an olive- or a fish-oil-rich diet (15% w/w). Posterior to diet period, rats were striatally microinjected with QUIN (240 nmol/µl) or saline solution. Then, we evaluated the neurological damage, oxidative status, and gamma isoform of the peroxisome proliferator-activated receptor (PPARγ) expression. Results showed that fatty acid-rich diet, mainly by fish oil, reduced circling behavior, prevented the fall in GABA levels, increased PPARγ expression, and prevented oxidative damage in striatal tissue. In addition none of the enriched diets exerted changes neither on triglycerides or cholesterol blood levels, nor or hepatic function. This study suggests that olive- and fish-oil-rich diets exert neuroprotective effects.

  4. Long-Term Feeding of Chitosan Ameliorates Glucose and Lipid Metabolism in a High-Fructose-Diet-Impaired Rat Model of Glucose Tolerance

    Directory of Open Access Journals (Sweden)

    Shing-Hwa Liu

    2015-12-01

    Full Text Available This study was designed to investigate the effects of long-term feeding of chitosan on plasma glucose and lipids in rats fed a high-fructose (HF diet (63.1%. Male Sprague-Dawley rats aged seven weeks were used as experimental animals. Rats were divided into three groups: (1 normal group (normal; (2 HF group; (3 chitosan + HF group (HF + C. The rats were fed the experimental diets and drinking water ad libitum for 21 weeks. The results showed that chitosan (average molecular weight was about 3.8 × 105 Dalton and degree of deacetylation was about 89.8% significantly decreased body weight, paraepididymal fat mass, and retroperitoneal fat mass weight, but elevated the lipolysis rate in retroperitoneal fats of HF diet-fed rats. Supplementation of chitosan causes a decrease in plasma insulin, tumor necrosis factor (TNF-α, Interleukin (IL-6, and leptin, and an increase in plasma adiponectin. The HF diet increased hepatic lipids. However, intake of chitosan reduced the accumulation of hepatic lipids, including total cholesterol (TC and triglyceride (TG contents. In addition, chitosan elevated the excretion of fecal lipids in HF diet-fed rats. Furthermore, chitosan significantly decreased plasma TC, low-density lipoprotein cholesterol (LDL-C, very-low-density lipoprotein cholesterol (VLDL-C, the TC/high-density lipoprotein cholesterol (HDL-C ratio, and increased the HDL-C/(LDL-C + VLDL-C ratio, but elevated the plasma TG and free fatty acids concentrations in HF diet-fed rats. Plasma angiopoietin-like 4 (ANGPTL4 protein expression was not affected by the HF diet, but it was significantly increased in chitosan-supplemented, HF-diet-fed rats. The high-fructose diet induced an increase in plasma glucose and impaired glucose tolerance, but chitosan supplementation decreased plasma glucose and improved impairment of glucose tolerance and insulin tolerance. Taken together, these results indicate that supplementation with chitosan can improve the impairment

  5. α-Amyrin attenuates high fructose diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Prabhakar, Pankaj; Reeta, K H; Maulik, Subir Kumar; Dinda, Amit Kumar; Gupta, Yogendra Kumar

    2017-01-01

    This study investigated the effect of α-amyrin (a pentacyclic triterpene) on high-fructose diet (HFD)-induced metabolic syndrome in rats. Male Wistar rats were randomly distributed into different groups. The control group was fed normal rat chow diet. The HFD group was fed HFD (60%; w/w) for 42 days. Pioglitazone (10 mg/kg, orally, once daily) was used as a standard drug. α-Amyrin was administered in 3 doses (50, 100, and 200 mg/kg, orally, once daily along with HFD). Plasma glucose, total cholesterol, triglycerides, and high-density lipoprotein cholesterol (HDL-C) were estimated. Changes in blood pressure, oral glucose tolerance, and insulin tolerance were measured. Hepatic oxidative stress as well as messenger RNA (mRNA) and protein levels of peroxisome proliferator-activated receptor alpha (PPAR-α) were analyzed. A significant increase in systolic blood pressure, plasma glucose, total cholesterol, and plasma triglycerides and a significant decrease in HDL-C were observed in HFD rats as compared with control rats. Glucose tolerance and insulin tolerance were also significantly impaired with HFD. α-Amyrin prevented these changes in a dose-dependent manner. Hepatic oxidative stress as well as micro- and macrovesicular fatty changes in hepatocytes caused by HFD were also attenuated by α-amyrin. α-Amyrin preserved the hepatic mRNA and protein levels of PPAR-α, which was reduced in HFD group. This study thus demonstrates that α-amyrin attenuates HFD-induced metabolic syndrome in rats.

  6. Açai (Euterpe oleracea Mart. Upregulates Paraoxonase 1 Gene Expression and Activity with Concomitant Reduction of Hepatic Steatosis in High-Fat Diet-Fed Rats

    Directory of Open Access Journals (Sweden)

    Renata Rebeca Pereira

    2016-01-01

    Full Text Available Açai (Euterpe oleracea Mart., a fruit from the Amazon region, has emerged as a promising source of polyphenols. Açai consumption has been increasing owing to ascribed health benefits and antioxidant properties; however, its effects on hepatic injury are limited. In this study, we evaluated the antioxidant effect of filtered açai pulp on the expression of paraoxonase (PON isoforms and PON1 activity in rats with nonalcoholic fatty liver disease (NAFLD. The rats were fed a standard AIN-93M (control diet or a high-fat (HF diet containing 25% soy oil and 1% cholesterol with or without açai pulp (2 g/day for 6 weeks. Our results show that açai pulp prevented low-density lipoprotein (LDL oxidation, increased serum and hepatic PON1 activity, and upregulated the expression of PON1 and ApoA-I in the liver. In HF diet-fed rats, treatment with açai pulp attenuated liver damage, reducing fat infiltration and triglyceride (TG content. In rats receiving açai, increased serum PON1 activity was correlated with a reduction in hepatic steatosis and hepatic injury. These findings suggest the use of açai as a potential therapy for liver injuries, supporting the idea that dietary antioxidants are a promising approach to enhance the defensive systems against oxidative stress.

  7. Coenzyme Q Metabolism Is Disturbed in High Fat Diet-Induced Non Alcoholic Fatty Liver Disease in Rats

    Directory of Open Access Journals (Sweden)

    Kathleen M Botham

    2012-02-01

    Full Text Available Oxidative stress is believed to be a major contributory factor in the development of non alcoholic fatty liver disease (NAFLD, the most common liver disorder worldwide. In this study, the effects of high fat diet-induced NAFLD on Coenzyme Q (CoQ metabolism and plasma oxidative stress markers in rats were investigated. Rats were fed a standard low fat diet (control or a high fat diet (57% metabolizable energy as fat for 18 weeks. The concentrations of total (reduced + oxidized CoQ9 were increased by > 2 fold in the plasma of animals fed the high fat diet, while those of total CoQ10 were unchanged. Reduced CoQ levels were raised, but oxidized CoQ levels were not, thus the proportion in the reduced form was increased by about 75%. A higher percentage of plasma CoQ9 as compared to CoQ10 was in the reduced form in both control and high fat fed rats. Plasma protein thiol (SH levels were decreased in the high fat-fed rats as compared to the control group, but concentrations of lipid hydroperoxides and low density lipoprotein (LDL conjugated dienes were unchanged. These results indicate that high fat diet-induced NAFLD in rats is associated with altered CoQ metabolism and increased protein, but not lipid, oxidative stress.

  8. Rats Fed a Diet Rich in Fats and Sugars Are Impaired in the Use of Spatial Geometry.

    Science.gov (United States)

    Tran, Dominic M D; Westbrook, R Frederick

    2015-12-01

    A diet rich in fats and sugars is associated with cognitive deficits in people, and rodent models have shown that such a diet produces deficits on tasks assessing spatial learning and memory. Spatial navigation is guided by two distinct types of information: geometrical, such as distance and direction, and featural, such as luminance and pattern. To clarify the nature of diet-induced spatial impairments, we provided rats with standard chow supplemented with sugar water and a range of energy-rich foods eaten by people, and then we assessed their place- and object-recognition memory. Rats exposed to this diet performed comparably with control rats fed only chow on object recognition but worse on place recognition. This impairment on the place-recognition task was present after only a few days on the diet and persisted across tests. Critically, this spatial impairment was specific to the processing of distance and direction. © The Author(s) 2015.

  9. The role of black rice (Oryza sativa L.) in the control of hypercholesterolemia in rats.

    Science.gov (United States)

    Salgado, Jocelem Mastrodi; Oliveira, Anderson Giovanni Candido de; Mansi, Débora Niero; Donado-Pestana, Carlos M; Bastos, Candido Ricardo; Marcondes, Fernanda Klein

    2010-12-01

    Cardiovascular disease is a serious public health problem; it is the first "cause of death" in Brazil and in developed countries. Thus, it is essential to search for alternative sources such as some functional foods to prevent and control the risks of this disease. The purpose of this study was to evaluate the lipidemic parameters in hypercholesterolemic rats fed diets containing black rice variety IAC 600 or unrefined rice. Adult male Wistar rats (Rattus norvegicus var. albinos) were used, weighing about 200-220 g. The animals were divided into four groups: the first received a control casein diet, the second received hypercholesterolemic diet, and the other two groups, after induction of hypercholesterolemia, received the test diets, the first containing 20% black rice and the second 20% unrefined, for 30 days. It was observed that diet containing black rice reduced the level of plasma cholesterol, triglycerides, and low-density lipoprotein. For high-density lipoprotein values, the diet that provided an increase in the levels was the black rice. The diet containing black rice was more effective in controlling the lipidemia in rats compared with the whole rice diet.

  10. Long-term feeding of red algae (Gelidium amansii) ameliorates glucose and lipid metabolism in a high fructose diet-impaired glucose tolerance rat model.

    Science.gov (United States)

    Liu, Hshuan-Chen; Chang, Chun-Ju; Yang, Tsung-Han; Chiang, Meng-Tsan

    2017-07-01

    This study was designed to investigate the effect of Gelidium amansii (GA) on carbohydrate and lipid metabolism in rats with high fructose (HF) diet (57.1% w/w). Five-week-old male Sprague-Dawley rats were fed a HF diet to induce glucose intolerance and hyperlipidemia. The experiment was divided into three groups: (1) control diet group (Con); (2) HF diet group (HF); and (3) HF with GA diet group (HF + 5% GA). The rats were fed the experimental diets and drinking water ad libitum for 23 weeks. The results showed that GA significantly decreased retroperitoneal fat mass weight of HF diet-fed rats. Supplementation of GA caused a decrease in plasma glucose, insulin, tumor necrosis factor-α, and leptin. HF diet increased hepatic lipid content. However, intake of GA reduced the accumulation of hepatic lipids including total cholesterol (TC) and triglyceride contents. GA elevated the excretion of fecal lipids and bile acid in HF diet-fed rats. Furthermore, GA significantly decreased plasma TC, triglyceride, low density lipoprotein plus very low density lipoprotein cholesterol, and TC/high density lipoprotein cholesterol ratio in HF diet-fed rats. HF diet induced an in plasma glucose and an impaired glucose tolerance, but GA supplementation decreased homeostasis model assessment equation-insulin resistance and improved impairment of glucose tolerance. Taken together, these results indicate that supplementation of GA can improve the impairment of glucose and lipid metabolism in an HF diet-fed rat model. Copyright © 2016. Published by Elsevier B.V.

  11. Oral insulin improves metabolic parameters in high fat diet fed rats

    Directory of Open Access Journals (Sweden)

    LEANDRO C. LIPINSKI

    2017-08-01

    Full Text Available ABSTRACT Introduction/Aim: The gut has shown to have a pivotal role on the pathophysiology of metabolic disease. Food stimulation of distal intestinal segments promotes enterohormones secretion influencing insulin metabolism. In diabetic rats, oral insulin has potential to change intestinal epithelium behavior. This macromolecule promotes positive effects on laboratorial metabolic parameters and decreases diabetic intestinal hypertrophy. This study aims to test if oral insulin can influence metabolic parameters and intestinal weight in obese non-diabetic rats. Methods: Twelve weeks old Wistar rats were divided in 3 groups: control (CTRL standard chow group; high fat diet low carbohydrates group (HFD and HFD plus daily oral 20U insulin gavage (HFD+INS. Weight and food consumption were weekly obtained. After eight weeks, fasting blood samples were collected for laboratorial analysis. After euthanasia gut samples were isolated. Results: Rat oral insulin treatment decreased body weight gain (p<0,001, fasting glucose and triglycerides serum levels (p<0,05 an increased intestinal weight of distal ileum (P<0,05. Animal submitted to high fat diet presented higher levels of HOMA-IR although significant difference to CT was not achieved. HOMA-beta were significantly higher (p<0.05 in HFD+INS. Visceral fat was 10% lower in HFD+INS but the difference was not significant. Conclusions: In non-diabetic obese rats, oral insulin improves metabolic malfunction associated to rescue of beta-cell activity.

  12. Utilization of [1-14C]carbon of glycine of high glycine diet fed young and old rats

    International Nuclear Information System (INIS)

    Petzke, K.J.; Albrecht, V.; Medovar, B.Ya.; Pisarczuk, K.L.; Grigorov, Yu.G.

    1987-01-01

    The incorporation of radioactivity from [1- 14 C]glycine was studied in various organ (serum, liver, muscle) fractions (acid soluble, proteins, lipids, liver glycogen) and carbon dioxide in rats fed with isonitrogenous isocaloric purfied diets. The diets contained 30% casein (control), gelatin (exchange of half of the 30% casein) or glycine (corresponding level of glycine in relation to the gelatin diet). The incorporation of radioactivity into proteins was reduced by feeding high glycine diets in young (20-weeks-old) and old (18-month-old) rats in relation to the control diet. The modifications of the results for old animals may be partially explained on the base of a reduced protein turnover rate and adaptation to a high gelatin (glycine) diet. (author)

  13. Hypolipidemic activity of Piper betel in high fat diet induced hyperlipidemic rat

    OpenAIRE

    Thirunavukkarasu Thirumalai; Narayanaswamy Tamilselvan; Ernest David

    2014-01-01

    Objective: To evaluate the hypolipidemic effect of Piper betel (P. betel) in high fat diet induced hyperlipidemia rat. Methods: The methanol leaf extract was tested for hypolipidemic effect in the albino rats at the selected optimum dosage of 250 mg/kg body weight and administered orally. Adult male albino rats of six numbers in each group were undertaken study and evaluated. Results: In group II animals, the activity levels of serum total cholesterol (TC), triglycerides (TG), low densi...

  14. Effects of environmental lighting and tryptophan devoid diet on the rat vaginal cycle.

    Science.gov (United States)

    Giammanco, S; Ernandes, M; La Guardia, M

    1997-09-01

    Cerebral serotonin level influences luteinizing hormone release and, consequently, ovulation. The present study evaluated the effects of precooked maize meal (polenta), a diet almost devoid of tryptophan the serotonin precursor on the alterations of the estrus cycle as measured by vaginal smears analysis in Wistar rats. Several conditions of environmental lighting were used in order to modify ovarian cycle: 1) natural alternating light/dark cycle; 2) continuous darkness; 3) continuous light by sodium steams: 4) continuous light by fluorescent neon tubes. Rats bred in continuous lighting showed estrus-proestrus rate significantly greater than rats bred in normal lighting or in continuous darkness. The feeding with precooked maize meal suppressed persistent estrus in rats bred in continuous lighting, and significantly cut down the estrus-proestrus frequency in any condition of environmental lighting. Our results lead to hypothesize that polenta diet, for its low tryptophan content, cutting down both tryptophan plasma content and serotonin neuronal synthesis, promotes luteinizing hormone peak.

  15. Nicotine improves obesity and hepatic steatosis and ER stress in diet-induced obese male rats.

    Science.gov (United States)

    Seoane-Collazo, Patricia; Martínez de Morentin, Pablo B; Fernø, Johan; Diéguez, Carlos; Nogueiras, Rubén; López, Miguel

    2014-05-01

    Nicotine, the main addictive component of tobacco, promotes body weight reduction in humans and rodents. Recent evidence has suggested that nicotine acts in the central nervous system to modulate energy balance. Specifically, nicotine modulates hypothalamic AMP-activated protein kinase to decrease feeding and to increase brown adipose tissue thermogenesis through the sympathetic nervous system, leading to weight loss. Of note, most of this evidence has been obtained in animal models fed with normal diet or low-fat diet (LFD). However, its effectiveness in obese models remains elusive. Because obesity causes resistance towards many factors involved in energy homeostasis, the aim of this study has been to compare the effect of nicotine in a diet-induced obese (DIO) model, namely rats fed a high-fat diet, with rats fed a LFD. Our data show that chronic peripheral nicotine treatment reduced body weight by decreasing food intake and increasing brown adipose tissue thermogenesis in both LFD and DIO rats. This overall negative energy balance was associated to decreased activation of hypothalamic AMP-activated protein kinase in both models. Furthermore, nicotine improved serum lipid profile, decreased insulin serum levels, as well as reduced steatosis, inflammation, and endoplasmic reticulum stress in the liver of DIO rats but not in LFD rats. Overall, this evidence suggests that nicotine diminishes body weight and improves metabolic disorders linked to DIO and might offer a clear-cut strategy to develop new therapeutic approaches against obesity and its metabolic complications.

  16. Influence of a cocoa-enriched diet on specific immune response in ovalbumin-sensitized rats.

    Science.gov (United States)

    Pérez-Berezo, Teresa; Ramiro-Puig, Emma; Pérez-Cano, Francisco J; Castellote, Cristina; Permanyer, Joan; Franch, Angels; Castell, Margarida

    2009-03-01

    Previous studies in young rats have reported the impact of 3 weeks of high cocoa intake on healthy immune status. The present article describes the effects of a longer-term cocoa-enriched diet (9 weeks) on the specific immune response to ovalbumin (OVA) in adult Wistar rats. At 4 weeks after immunization, control rats produced anti-OVA antibodies, which, according their amount and isotype, were arranged as follows: IgG1 > IgG2a > IgM > IgG2b > IgG2c. Both cocoa diets studied (4% and 10%) down-modulated OVA-specific antibody levels of IgG1 (main subclass associated with the Th2 immune response in rats), IgG2a, IgG2c and IgM isotypes. Conversely, cocoa-fed rats presented equal or higher levels of anti-OVA IgG2b antibodies (subclass linked to the Th1 response). Spleen and lymph node cells from OVA-immunized control and cocoa-fed animals proliferated similarly under OVA stimulation. However, spleen cells from cocoa-fed animals showed decreased interleukin-4 secretion (main Th2 cytokine), and lymph node cells from the same rats displayed higher interferon-gamma secretion (main Th1 cytokine). These changes were accompanied by a reduction in the number of anti-OVA IgG-secreting cells in spleen. In conclusion, cocoa diets induced attenuation of antibody synthesis that may be attributable to specific down-regulation of the Th2 immune response.

  17. Protective potentials of wild rice (Zizania latifolia (Griseb) Turcz) against obesity and lipotoxicity induced by a high-fat/cholesterol diet in rats.

    Science.gov (United States)

    Han, Shu-Fen; Zhang, Hong; Zhai, Cheng-Kai

    2012-07-01

    The study evaluates the protective potentials of wild rice against obesity and lipotoxicity induced by a high-fat/cholesterol diet in rats. In addition to the rats of low-fat diet group, others animals were exposed to a high-fat/cholesterol diet condition for 8 weeks. The city diet (CD) is based on the diet consumed by urban residents in modern China, which is rich in fat/cholesterol and high in carbohydrates from white rice and processed wheat starch. The chief source of dietary carbohydrates of wild rice diet (WRD) is from Chinese wild rice and other compositions are the same with CD. Rats fed CD showed elevated body and liver organ weights, lipid profiles, free fatty acids (FFA) and leptin comparable with rats fed high-fat/cholesterol diet (HFD) known to induce obesity and hyperlipidaemia in this species. However, rats consuming WRD suppressed the increase of lipid droplets accumulation, FFA, and leptin, and the decrease of lipoprotein lipase and adipose triglyceride lipase. Meanwhile, WRD prevented high-fat/cholesterol diet-induced elevation in protein expression of sterol-regulatory element binding protein-1c, and gene expression of fatty acid synthase and acetyl-CoA carboxylase. These findings indicate that wild rice as a natural food has the potentials of preventing obesity and liver lipotoxicity induced by a high-fat/cholesterol diet in rats. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Effect of Octreotide on Hepatic Steatosis in Diet-Induced Obesity in Rats.

    Directory of Open Access Journals (Sweden)

    Mao Li

    Full Text Available Non-alcoholic fatty liver disease (NAFLD caused by liver lipid dysregulation is linked to obesity. Somatostatin (SST and its analogs have been used to treat pediatric hypothalamic obesity. However, the application of such drugs for the treatment of NAFLD has not been evaluated.This study aimed to investigate the expression levels of important regulators of hepatic lipid metabolism and the possible effect of the SST analog octreotide on these regulators.SD rats were assigned to a control group and a high-fat diet group. Obese rats from the high-fat diet group were further divided into the obese and octreotide-treated groups. The body weight, plasma SST, fasting plasma glucose (FPG, insulin, triglyceride (TG, total cholesterol (TC, low-density lipoprotein cholesterol (LDL-C, high-density lipoprotein cholesterol (HDL-C and free fatty acid (FFA levels were measured. Hepatic steatosis was evaluated based on the liver TG content, HE staining and oil red O staining. The SREBP-1c, ACC1, FAS, MTP, apoB and ADRP expression levels in the liver were also determined by RT-PCR, qRT-PCR, western blot or ELISA.The obese rats induced by high-fat diet expressed more SREBP-1c, FAS and ADRP but less MTP protein in the liver than those of control rats, whereas octreotide intervention reversed these changes and increased the level of apoB protein. Compared to the control group, obese rats showed increased liver ACC1, SREBP-1c and apoB mRNA levels, whereas octreotide-treated rats showed decreased mRNA levels of apoB and SREBP-1c. This was accompanied by increased body weight, liver TG contents, FPG, TG, TC, LDL-C, FFA, insulin and derived homeostatic model assessment (HOMA values. Octreotide intervention significantly decreased these parameters. Compared to the control group, the obese group showed a decreasing trend on plasma SST levels, which were significantly increased by the octreotide intervention.Octreotide can ameliorate hepatic steatosis in obese rats

  19. High fat diet disrupts endoplasmic reticulum calcium homeostasis in the rat liver.

    Science.gov (United States)

    Wires, Emily S; Trychta, Kathleen A; Bäck, Susanne; Sulima, Agnieszka; Rice, Kenner C; Harvey, Brandon K

    2017-11-01

    Disruption to endoplasmic reticulum (ER) calcium homeostasis has been implicated in obesity, however, the ability to longitudinally monitor ER calcium fluctuations has been challenging with prior methodologies. We recently described the development of a Gaussia luciferase (GLuc)-based reporter protein responsive to ER calcium depletion (GLuc-SERCaMP) and investigated the effect of a high fat diet on ER calcium homeostasis. A GLuc-based reporter cell line was treated with palmitate, a free fatty acid. Rats intrahepatically injected with GLuc-SERCaMP reporter were fed a cafeteria diet or high fat diet. The liver and plasma were examined for established markers of steatosis and compared to plasma levels of SERCaMP activity. Palmitate induced GLuc-SERCaMP release in vitro, indicating ER calcium depletion. Consumption of a cafeteria diet or high fat pellets correlated with alterations to hepatic ER calcium homeostasis in rats, shown by increased GLuc-SERCaMP release. Access to ad lib high fat pellets also led to a corresponding decrease in microsomal calcium ATPase activity and an increase in markers of hepatic steatosis. In addition to GLuc-SERCaMP, we have also identified endogenous proteins (endogenous SERCaMPs) with a similar response to ER calcium depletion. We demonstrated the release of an endogenous SERCaMP, thought to be a liver esterase, during access to a high fat diet. Attenuation of both GLuc-SERCaMP and endogenous SERCaMP was observed during dantrolene administration. Here we describe the use of a reporter for in vitro and in vivo models of high fat diet. Our results support the theory that dietary fat intake correlates with a decrease in ER calcium levels in the liver and suggest a high fat diet alters the ER proteome. Lay summary: ER calcium dysregulation was observed in rats fed a cafeteria diet or high fat pellets, with fluctuations in sensor release correlating with fat intake. Attenuation of sensor release, as well as food intake was observed during

  20. Effects of high fat diet on incidence of spontaneous tumors in Wistar rats

    DEFF Research Database (Denmark)

    KRISTIANSEN, E.; Madsen, Charlotte Bernhard; Meyer, Otto A.

    1993-01-01

    In a 2.5-year carcinogenicity study, two groups, both including male and female Wistar rats, were fed two different diets with 4% and 16% fat. In addition to 4% soybean oil, the high-fat diet contained 12% mono- and diglycerides, of which 85% was stearic acid and 13% palmitic acid...

  1. Isoenergetic feeding of low carbohydrate-high fat diets does not increase brown adipose tissue thermogenic capacity in rats.

    Science.gov (United States)

    Betz, Matthias J; Bielohuby, Maximilian; Mauracher, Brigitte; Abplanalp, William; Müller, Hans-Helge; Pieper, Korbinian; Ramisch, Juliane; Tschöp, Matthias H; Beuschlein, Felix; Bidlingmaier, Martin; Slawik, Marc

    2012-01-01

    Low-carbohydrate, high-fat (LC-HF) diets are popular for inducing weight loss in overweighed adults. Adaptive thermogenesis increased by specific effects of macronutrients on energy expenditure has been postulated to induce this weight loss. We studied brown adipose tissue (BAT) morphology and function following exposure to different LC-HF diets. Male Wistar rats were fed a standard control diet ad libitum or pair-fed isoenergetic amounts of three experimental diets for 4 weeks. The diets had the following macronutrient composition (% metabolizable energy: carbohydrates, fat, protein): control (64.3/16.7/19), LC-HF-low protein (LC-HF-LP, 1.7/92.8/5.5), LC-HF-normal-protein (LC-HF-NP, 2.2/78.7/19.1), and a high fat diet with carbohydrates ("high fat", 19.4/61.9/18.7). Body weight gain was reduced in all pair-fed experimental groups as compared to rats fed the control diet, with more pronounced effect in rats on LC-HF diets than on the high fat diet with carbohydrates. High fat diets increased expression of PGC1α and ADRB3 in BAT indicating higher SNS outflow. However, UCP1 mRNA expression and expression of UCP1 assessed by immunohistochemistry was not different between diet groups. In accordance, analysis of mitochondrial function in-vitro by extracellular flux analyser (Seahorse Bioscience) and measurement of inducible thermogenesis in vivo (primary endpoint), explored by indirect calorimetry following norepinephrine injection, did not show significant differences between groups. Histology of BAT revealed increased lipid droplet size in rats fed the high-fat diet and both LC-HF diets. All experimental diets upregulated expression of genes which are indicative for increased BAT activity. However, the functional measurements in vivo revealed no increase of inducible BAT thermogenesis. This indicates that lower body weight gain with LC-HF diets and a high fat diet in a pair-feeding setting is not caused by increased adaptive thermogenesis in BAT.

  2. Isoenergetic feeding of low carbohydrate-high fat diets does not increase brown adipose tissue thermogenic capacity in rats.

    Directory of Open Access Journals (Sweden)

    Matthias J Betz

    Full Text Available UNLABELLED: Low-carbohydrate, high-fat (LC-HF diets are popular for inducing weight loss in overweighed adults. Adaptive thermogenesis increased by specific effects of macronutrients on energy expenditure has been postulated to induce this weight loss. We studied brown adipose tissue (BAT morphology and function following exposure to different LC-HF diets. METHODS: Male Wistar rats were fed a standard control diet ad libitum or pair-fed isoenergetic amounts of three experimental diets for 4 weeks. The diets had the following macronutrient composition (% metabolizable energy: carbohydrates, fat, protein: control (64.3/16.7/19, LC-HF-low protein (LC-HF-LP, 1.7/92.8/5.5, LC-HF-normal-protein (LC-HF-NP, 2.2/78.7/19.1, and a high fat diet with carbohydrates ("high fat", 19.4/61.9/18.7. RESULTS: Body weight gain was reduced in all pair-fed experimental groups as compared to rats fed the control diet, with more pronounced effect in rats on LC-HF diets than on the high fat diet with carbohydrates. High fat diets increased expression of PGC1α and ADRB3 in BAT indicating higher SNS outflow. However, UCP1 mRNA expression and expression of UCP1 assessed by immunohistochemistry was not different between diet groups. In accordance, analysis of mitochondrial function in-vitro by extracellular flux analyser (Seahorse Bioscience and measurement of inducible thermogenesis in vivo (primary endpoint, explored by indirect calorimetry following norepinephrine injection, did not show significant differences between groups. Histology of BAT revealed increased lipid droplet size in rats fed the high-fat diet and both LC-HF diets. CONCLUSION: All experimental diets upregulated expression of genes which are indicative for increased BAT activity. However, the functional measurements in vivo revealed no increase of inducible BAT thermogenesis. This indicates that lower body weight gain with LC-HF diets and a high fat diet in a pair-feeding setting is not caused by

  3. Emodin Prevents Intrahepatic Fat Accumulation, Inflammation and Redox Status Imbalance During Diet-Induced Hepatosteatosis in Rats

    Directory of Open Access Journals (Sweden)

    Valerio Nobili

    2012-02-01

    Full Text Available High-fat and/or high-carbohydrate diets may predispose to several metabolic disturbances including liver fatty infiltration (hepatosteatosis or be associated with necro-inflammation and fibrosis (steatohepatitis. Several studies have emphasized the hepatoprotective effect of some natural agents. In this study, we investigated the potential therapeutic effects of the treatment with emodin, an anthraquinone derivative with anti-oxidant and anti-cancer abilities, in rats developing diet-induced hepatosteatosis and steatohepatitis. Sprague-Dawley rats were fed a standard diet (SD for 15 weeks, or a high-fat/high-fructose diet (HFD/HF. After 5 weeks, emodin was added to the drinking water of some of the SD and HFD/HF rats. The experiment ended after an additional 10 weeks. Emodin-treated HFD/HF rats were protected from hepatosteatosis and metabolic derangements usually observed in HFD/HF animals. Furthermore, emodin exerted anti-inflammatory activity by inhibiting the HFD/HF-induced increase of tumor necrosis factor (TNF-α. Emodin also affected the hepatocytes glutathione homeostasis and levels of the HFD/HF-induced increase of glutathionylated/phosphorylated phosphatase and tensin homolog (PTEN. In conclusion, we demonstrated that a natural agent such as emodin can prevent hepatosteatosis, preserving liver from pro-inflammatory and pro-oxidant damage caused by HFD/HF diet. These findings are promising, proposing emodin as a possible hindrance to progression of hepatosteatosis into steatohepatitis.

  4. The snacking rat as model of human obesity: effects of a free-choice high-fat high-sugar diet on meal patterns.

    Science.gov (United States)

    la Fleur, S E; Luijendijk, M C M; van der Zwaal, E M; Brans, M A D; Adan, R A H

    2014-05-01

    Rats subjected to a free-choice high-fat high-sugar (fcHFHS) diet persistently overeat, exhibit increased food-motivated behavior and become overtly obese. Conversely, several studies using a non-choice (nc) high-energy diet showed only an initial increase in food intake with unaltered or reduced food-motivated behavior. This raises the question of the importance of choice in the persistence of hyperphagia in rats on a fcHFHS diet. Meal patterns, food intake and body weight gain were studied in male Wistar rats on free-choice diets with fat and/or sugar and in rats on nc diets with fat and sugar (custom made with ingredients similar to the fcHFHS diet). Rats on a ncHFHS diet initially overconsumed, but reduced intake thereafter, whereas rats on a fcHFHS diet remained hyperphagic. Because half of the sugar intake in the fcHFHS group occurred during the inactive period, we next determined whether sugar intake during the light phase was a necessary requirement for hyperphagia, by restricting access to liquid sugar to either the light or dark period with unlimited access to fat and chow. Results showed that hyperphagia occurred irrespective of the timing of sugar intake. Meal pattern analysis revealed consumption of larger but fewer meals in the ncHFHS group, as well as the fcHF group. Interestingly, meal number was increased in all rats drinking liquid sugar (whether on a fcHFHS or a fcHS diet), whereas a compensatory decrease in meal size was only observed in the fcHS group, but not the fcHFHS group. We hereby show the importance of choice in the observation of fcHFHS diet-induced hyperphagia, which results in increases in meal number due to sugar drinking without any compensatory decrease in meal size. We thus provide a novel dietary model in rats that mimics important features of human overconsumption that have been ignored in rodent models of obesity.

  5. Impact of Diet Composition in Adult Offspring is Dependent on Maternal Diet during Pregnancy and Lactation in Rats

    Science.gov (United States)

    Hallam, Megan C.; Reimer, Raylene A.

    2016-01-01

    The Thrifty Phenotype Hypothesis proposes that the fetus takes cues from the maternal environment to predict its postnatal environment. A mismatch between the predicted and actual environments precipitates an increased risk of chronic disease. Our objective was to determine if, following a high fat, high sucrose (HFS) diet challenge in adulthood, re-matching offspring to their maternal gestational diet would improve metabolic health more so than if there was no previous exposure to that diet. Animals re-matched to a high prebiotic fiber diet (HF) had lower body weight and adiposity than animals re-matched to a high protein (HP) or control (C) diet and also had increased levels of the satiety hormones GLP-1 and PYY (p diet was associated with the most beneficial metabolic phenotype (body fat, glucose control, satiety hormones). The HP diet, as per our previous work, had detrimental effects on body weight and adiposity. Findings in control rats suggest that the obesogenic potential of the powdered AIN-93 diet warrants investigation. PMID:26784224

  6. Effects of Lactobacillus fermented soymilk and soy yogurt on hepatic lipid accumulation in rats fed a cholesterol-free diet.

    Science.gov (United States)

    Kitawaki, Ryoko; Nishimura, Yuko; Takagi, Naohiro; Iwasaki, Mitsuhiro; Tsuzuki, Kimiko; Fukuda, Mitsuru

    2009-07-01

    We examined the effects of lactic acid fermented soymilk, in which part of the soymilk was replaced with okara (soy yogurt), on plasma and hepatic lipid profiles in rats fed a cholesterol-free diet. Additionally, we investigated the effects of soy yogurt on hepatic gene expression in rats using DNA microarray analysis. Male Sprague-Dawley rats aged 5 weeks (n=5/group) were fed a control diet (AIN-93) or a test diet in which 20% of the diet was replaced by soy yogurt for 7 weeks. Soy yogurt consumption did not affect body weight or adipose tissue weight as compared with control diet. In the soy yogurt group, the liver weight and hepatic triglyceride content were significantly lower than the control group, and the level of plasma cholesterol was also lower. Furthermore, DNA microarray analysis indicated that soy yogurt ingestion down-regulated the expression of the SREBP-1 gene and enzymes related to lipogenesis in the rat liver, while expression of beta-oxidation-related genes was up-regulated. These results suggest that soy yogurt is beneficial in preventing hepatic lipid accumulation in rats.

  7. [Rosuvastatin improves insulin sensitivity in overweight rats induced by high fat diet. Role of SIRT1 in adipose tissue].

    Science.gov (United States)

    Valero-Muñoz, María; Martín-Fernández, Beatriz; Ballesteros, Sandra; Cachofeiro, Victoria; Lahera, Vicente; de Las Heras, Natalia

    2014-01-01

    To study the effects of rosuvastatin on insulin resistance in overweight rats induced by high fat diet, as well as potential mediators. We used male Wistar rats fed with a standard diet (CT) or high fat diet (33.5% fat) (HFD); half of the animals HFD were treated with rosuvastatin (15mg/kg/day) (HFD+Rosu) for 7 weeks. HFD rats showed increased body, epididymal and lumbar adipose tissue weights. Treatment with Rosu did not modify body weight or the weight of the adipose packages in HFD rat. Plasma glucose and insulin levels and HOMA index were higher in HFD rats, and rosuvastatin treatment reduced them. Leptin/adiponectin ratio in plasma and lumbar adipose tissue were higher in HDF rats, and were reduced by rosuvastatin. SIRT-1, PPAR-γ and GLUT-4 protein expression in lumbar adipose tissue were lower in HFD rats and Rosu normalized expression of the three mediators. Rosuvastatin ameliorates insulin sensitivity induced by HFD in rats. This effect is mediated by several mechanisms including reduction of leptin and enhancement of SIRT-1, PPAR-γ and GLUT-4 expression in white adipose tissue. SIRT1 could be considered a major mediator of the beneficial effects of rosuvastatin on insulin sensitivity in overweight rats induced by diet. Copyright © 2013 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.

  8. Reduced-calorie avocado paste attenuates metabolic factors associated with a hypercholesterolemic-high fructose diet in rats.

    Science.gov (United States)

    Pahua-Ramos, María Elena; Garduño-Siciliano, Leticia; Dorantes-Alvarez, Lidia; Chamorro-Cevallos, German; Herrera-Martínez, Julieta; Osorio-Esquivel, Obed; Ortiz-Moreno, Alicia

    2014-03-01

    The objective of this study was to evaluate the effect of reduced-calorie avocado paste on lipid serum profile, insulin sensitivity, and hepatic steatosis in rats fed a hypercholesterolemic-high fructose diet. Thirty five male Wistar rats were randomly separated in five groups: Control group (ground commercial diet); hypercholesterolemic diet plus 60% fructose solution (HHF group); hypercholesterolemic diet plus 60% fructose solution supplemented with avocado pulp (HHF+A group); hypercholesterolemic diet plus 60% fructose solution supplemented with reduced-calorie avocado paste (HHF+P group); and hypercholesterolemic diet plus 60% fructose solution supplemented with a reduced-calorie avocado paste plus fiber (HHF+FP group). The A, P, and FP were supplemented at 2 g/kg/d. The study was carried out for seven weeks. Rats belonging to the HHF group exhibited significantly (P ≤ 0.05) higher total cholesterol, triglycerides, and insulin levels in serum as well as lower insulin sensitivity than the control group. Supplementation with reduced-calorie avocado paste showed a significant (P ≤ 0.05) decrease in total cholesterol (43.1%), low-density lipoprotein (45.4%), and triglycerides (32.8%) in plasma as well as elevated insulin sensitivity compared to the HHF group. Additionally, the liver enzymes alanine aminotransferase and aspartate aminotransferase decreased significantly in the HHF-P group (39.8 and 35.1%, respectively). These results are likely due to biocompounds present in the reduced-calorie avocado paste, such as polyphenols, carotenoids, chlorophylls, and dietary fibre, which are capable of reducing oxidative stress. Therefore, reduced-calorie avocado paste attenuates the effects of a hypercholesterolemic-high fructose diet in rats.

  9. A low-carbohydrate/high-fat diet reduces blood pressure in spontaneously hypertensive rats without deleterious changes in insulin resistance

    OpenAIRE

    Bosse, John D.; Lin, Han Yi; Sloan, Crystal; Zhang, Quan-Jiang; Abel, E. Dale; Pereira, Troy J.; Dolinsky, Vernon W.; Symons, J. David; Jalili, Thunder

    2013-01-01

    Previous studies reported that diets high in simple carbohydrates could increase blood pressure in rodents. We hypothesized that the converse, a low-carbohydrate/high-fat diet, might reduce blood pressure. Six-week-old spontaneously hypertensive rats (SHR; n = 54) and Wistar-Kyoto rats (WKY; n = 53, normotensive control) were fed either a control diet (C; 10% fat, 70% carbohydrate, 20% protein) or a low-carbohydrate/high-fat diet (HF; 20% carbohydrate, 60% fat, 20% protein). After 10 wk, SHR-...

  10. Shrimp diet and skin healing strength in rats Dieta com camarão e resistência cicatricial da pele, em ratos

    Directory of Open Access Journals (Sweden)

    Elizabeth Lage Borges

    2007-06-01

    Full Text Available OBJECTIVE: Surgical scar tensile strength may be influenced by several factors such as drugs, hormones and diet. The purpose of the present study was to determine the influence of a shrimp-enriched diet on the tensile strength of rat scars. METHODS: Forty male Wistar rats were submitted to a 4 cm dorsal skin incision and the wounds were sutured with 5-0 nylon interrupted suture. The animals were divided into two groups: Group 1 (control received a regular diet, and Group 2 (experimental received a shrimp-enriched diet. The two diets contained the same amounts of proteins, lipids and carbohydrates. The rats in each group were divided into two subgroups according to the time of assessment of the scar tensile strength: subgroup A, studied on the 5th postoperative day, and subgroup B, studied on the 21st postoperative day. RESULTS: The tensile strength of the scar on the 5th postoperative day was lower in the animals that received the shrimp-enriched-diet (303.0, standard error of mean= 34.1 than in the control group (460.1, SEM = 56.7 (pOBJETIVO: A resistência cicatricial da pele pode ser influenciada por diversos fatores como medicamentos, hormônios e dieta. Este trabalho foi delineado para determinar a influência da dieta com camarão na resistência cicatricial na pele. MÉTODOS: Quarenta ratos machos Wistar foram submetidos a incisão (4cm e suturas interrompidas da pele dorsal, com fio de nylon 5-0, e foram divididos em dois grupos: o Grupo 1 (controle recebeu uma dieta convencional e Grupo 2 (experimental, recebeu dieta com adição de com camarão. As duas dietas continham quantidades semelhantes de proteína, lipídeos, e carboidratos. Os ratos de cada grupo foram divididos em dois subgrupos de acordo com os distintos períodos pós-operatórios de avaliação da resistência tecidual: subgrupo A, estudado no 5° dia pós-operatório, e subgrupo B, estudado no 21° dia pós-operatório. RESULTADOS: A resistência cicatricial da pele no 5

  11. Food restriction followed by refeeding with a casein- or whey-based diet differentially affects the gut microbiota of pre-pubertal male rats.

    Science.gov (United States)

    Masarwi, Majdi; Solnik, Hadas Isaac; Phillip, Moshe; Yaron, Sima; Shamir, Raanan; Pasmanic-Chor, Metsada; Gat-Yablonski, Galia

    2018-01-01

    Researchers are gaining an increasing understanding of host-gut microbiota interactions, but studies of the role of gut microbiota in linear growth are scarce. The aim of this study was to investigate the effect of food restriction and refeeding with different diets on gut microbiota composition in fast-growing rats. Young male Sprague-Dawley rats were fed regular rat chow ad libitum (control group) or subjected to 40% food restriction for 36 days followed by continued restriction or ad libitum refeeding for 24 days. Three different diets were used for refeeding: regular vegetarian protein chow or chow in which the sole source of protein was casein or whey. In the control group, the composition of the microbiota remained stable. Food restriction for 60 days led to a significant change in the gut microbiota at the phylum level, with a reduction in the abundance of Firmicutes and an increase in Bacteroidetes and Proteobacteria. Rats refed with the vegetarian protein diet had a different microbiota composition than rats refed the casein- or whey-based diet. Similarities in the bacterial population were found between rats refed vegetarian protein or a whey-based diet and control rats, and between rats refed a casein-based diet and rats on continued restriction. There was a significant strong correlation between the gut microbiota and growth parameters: humerus length, epiphyseal growth plate height, and levels of insulin-like growth factor 1 and leptin. In conclusion, the type of protein in the diet significantly affects the gut microbiota and, thereby, may affect animal's health. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Watermelon consumption improves inflammation and antioxidant capacity in rats fed an atherogenic diet.

    Science.gov (United States)

    Hong, Mee Young; Hartig, Nicole; Kaufman, Katy; Hooshmand, Shirin; Figueroa, Arturo; Kern, Mark

    2015-03-01

    Cardiovascular disease (CVD) is the leading cause of death in the United States. Watermelon, rich in antioxidants and other bioactive components, may be a viable method to improve CVD risk factors through reduced oxidative stress. The purpose of the study was to determine the effects of watermelon powder consumption on lipid profiles, antioxidant capacity, and inflammation in dextran sodium sulfate (DSS)-treated rats fed an atherogenic diet. We hypothesized that watermelon would increase antioxidant capacity and reduce blood lipids and inflammation through modulation of related gene expression. Forty male-weanling (21 days old) Sprague-Dawley rats were divided into 4 groups (10 per group, total N = 40) in a 2 diets (control or 0.33% watermelon) × 2 treatments (with or without DSS) factorial design using an atherogenic diet. Watermelon-fed groups exhibited significantly lower serum triglycerides, total cholesterol, and low-density lipoprotein cholesterol (Pwatermelon-fed rats than the control (P= .001). In addition, oxidative stress as measured by thiobarbituric acid reactive substances was significantly lower in watermelon groups (P= .001). Total antioxidant capacity, superoxide dismutase, and catalase activities were greater in watermelon groups (Pwatermelon was consumed (Pwatermelon group without DSS (Pwatermelon improves risk factors for CVD in rats through better lipid profiles, lower inflammation, and greater antioxidant capacity by altering gene expression for lipid metabolism. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Arctium lappa ameliorates endothelial dysfunction in rats fed with high fat/cholesterol diets.

    Science.gov (United States)

    Lee, Yun Jung; Choi, Deok Ho; Cho, Guk Hyun; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub

    2012-08-06

    Arctium lappa L. (Asteraceae), burdock, is a medicinal plant that is popularly used for treating hypertension, gout, hepatitis, and other inflammatory disorders. This study was performed to test the effect of ethanol extract of Arctium lappa L. (EAL) seeds on vascular reactivity and inflammatory factors in rats fed a high fat/cholesterol diet (HFCD). EAL-I (100 mg·kg-1/day), EAL-II (200 mg·kg-1/day), and fluvastatin (3 mg·kg-1/day) groups initially received HFCD alone for 8 weeks, with EAL supplementation provided during the final 6 weeks. Treatment with low or high doses of EAL markedly attenuated plasma levels of triglycerides and augmented plasma levels of high-density lipoprotein (HDL) in HFCD-fed rats. Chronic treatment with EAL markedly reduced impairments of acetylcholine (ACh)-induced relaxation of aortic rings. Furthermore, chronic treatment with EAL significantly lowered systolic blood pressure (SBP) and maintained smooth and flexible intimal endothelial layers in HFCD-fed rats. Chronic treatment with EAL suppressed upregulation of intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, and E-selectin in the aorta. Chronic treatment with EAL also suppressed increases in matrix metalloproteinase (MMP)-2 expression. These results suggested that EAL can inhibit HFCD-induced vascular inflammation in the rat model. The present study provides evidence that EAL ameliorates HFCD-induced vascular dysfunction through protection of vascular relaxation and suppression of vascular inflammation.

  14. Arctium lappa ameliorates endothelial dysfunction in rats fed with high fat/cholesterol diets

    Directory of Open Access Journals (Sweden)

    Lee Yun

    2012-08-01

    Full Text Available Abstract Background Arctium lappa L. (Asteraceae, burdock, is a medicinal plant that is popularly used for treating hypertension, gout, hepatitis, and other inflammatory disorders. This study was performed to test the effect of ethanol extract of Arctium lappa L. (EAL seeds on vascular reactivity and inflammatory factors in rats fed a high fat/cholesterol diet (HFCD. Method EAL-I (100 mg·kg−1/day, EAL-II (200 mg·kg−1/day, and fluvastatin (3 mg·kg−1/day groups initially received HFCD alone for 8 weeks, with EAL supplementation provided during the final 6 weeks. Results Treatment with low or high doses of EAL markedly attenuated plasma levels of triglycerides and augmented plasma levels of high-density lipoprotein (HDL in HFCD-fed rats. Chronic treatment with EAL markedly reduced impairments of acetylcholine (ACh-induced relaxation of aortic rings. Furthermore, chronic treatment with EAL significantly lowered systolic blood pressure (SBP and maintained smooth and flexible intimal endothelial layers in HFCD-fed rats. Chronic treatment with EAL suppressed upregulation of intercellular adhesion molecule (ICAM-1, vascular cell adhesion molecule (VCAM-1, and E-selectin in the aorta. Chronic treatment with EAL also suppressed increases in matrix metalloproteinase (MMP-2 expression. These results suggested that EAL can inhibit HFCD-induced vascular inflammation in the rat model. Conclusion The present study provides evidence that EAL ameliorates HFCD-induced vascular dysfunction through protection of vascular relaxation and suppression of vascular inflammation.

  15. Influence of caffeine consumption on 7,12-dimethylbenz(a)anthracene-induced mammary gland tumorigenesis in female rats fed a chemically defined diet containing standard and high levels of unsaturated fat.

    Science.gov (United States)

    Welsch, C W; DeHoog, J V

    1988-04-15

    The effect of caffeine (430-500 mg/liter of drinking water) on the initiation and promotion phases of 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary gland tumorigenesis in female Sprague-Dawley rats fed a chemically defined diet containing standard (5%) or high (20%) levels of fat (corn oil) was examined. In the initiation studies, caffeine and the standard or high fat diet treatments were provided for 34 days, from 24-29 days of age to 58-63 days of age. Three days prior to termination of caffeine-fat diet treatments, each rat received a single dose of DMBA. In the promotion studies, caffeine and the standard or high fat diets were provided commencing 3 days after a single dose of DMBA (at 56-61 days of age) and until termination of the study. Caffeine consumption, during the initiation phase significantly (P less than 0.05) reduced mammary carcinoma multiplicity (number of tumors/rat), in rats fed either a standard or high fat diet. In the promotion studies, prolonged consumption of caffeine in rats fed either a standard or high fat diet did not significantly effect mammary carcinoma multiplicity. In the early stages of promotion, an apparent increase in mammary carcinoma multiplicity was observed; this increase in mammary carcinoma multiplicity did not, however, reach the 5% level of statistical probability. When caffeine was administered during both the initiation and promotion phases, no significant effect on mammary carcinoma multiplicity was observed. Treatment of rats during the initiation or promotion phases with caffeinated coffee (via drinking water) mimicked the mammary tumor modulating activities of caffeine. Decaffeinated coffee consumption did not effect either the initiation or promotion phases of this tumorigenic process. In both the initiation and promotion studies, caffeine and/or coffee consumption did not significantly affect the incidence of mammary carcinomas (percentage of rats bearing mammary carcinomas) or the mean latency period of

  16. Effect of Ethanolic Extract of Emblica officinalis (Amla on Glucose Homeostasis in Rats Fed with High Fat Diet

    Directory of Open Access Journals (Sweden)

    Pallavi S. Kanthe

    2017-07-01

    Full Text Available Background: Emblica officinalis contains many biological active components which are found to have some medicinal properties against diseases. Aim and Objectives: To assess hypolipidemic and glucose regulatory actions of Ethanolic Extract of Emblica officinalis (EEO on High Fat Diet (HFD fed experimental rats. Material and Methods: Twenty four rats were divided into four groups, having six rats in each group as following; Group I- Control (20% fat; Group II (EEO 100 mg/kg/b w; Group III (30% fat and Group IV (30% fat + EEO 100 mg/kg/b w. The treatment was continued for 21 days. Gravimetric parameters and lipid profiles of all the groups were measured. Oral Glucose Tolerance Test (OGTT, fasting and postprandial glucose and fasting insulin levels were estimated. Homeostasis Model Assessment of Insulin Resistance (HOMA-IR was calculated. Statistical analysis was done. Results: Significant alteration in serum lipid profile, fasting and post prandial blood glucose levels and fasting insulin level were observed in rats of Group III fed with high fat diet. Supplementation of EEO improved both of glycemic and lipid profiles in rats of Group IV fed with high fat diet. Conclusion: Results from the study indicate the beneficial role of EEO on dyslipidemia and glucose homeostasis in rats treated with high fat diet.

  17. Diet-induced hyperinsulinemia differentially affects glucose and protein metabolism: a high-throughput metabolomic approach in rats.

    Science.gov (United States)

    Etxeberria, U; de la Garza, A L; Martínez, J A; Milagro, F I

    2013-09-01

    Metabolomics is a high-throughput tool that quantifies and identifies the complete set of biofluid metabolites. This "omics" science is playing an increasing role in understanding the mechanisms involved in disease progression. The aim of this study was to determine whether a nontargeted metabolomic approach could be applied to investigate metabolic differences between obese rats fed a high-fat sucrose (HFS) diet for 9 weeks and control diet-fed rats. Animals fed with the HFS diet became obese, hyperleptinemic, hyperglycemic, hyperinsulinemic, and resistant to insulin. Serum samples of overnight-fasted animals were analyzed by (1)H NMR technique, and 49 metabolites were identified and quantified. The biochemical changes observed suggest that major metabolic processes like carbohydrate metabolism, β-oxidation, tricarboxylic acid cycle, Kennedy pathway, and folate-mediated one-carbon metabolism were altered in obese rats. The circulating levels of most amino acids were lower in obese animals. Serum levels of docosahexaenoic acid, linoleic acid, unsaturated n-6 fatty acids, and total polyunsaturated fatty acids also decreased in HFS-fed rats. The circulating levels of urea, six water-soluble metabolites (creatine, creatinine, choline, acetyl carnitine, formate, and allantoin), and two lipid compounds (phosphatidylcholines and sphingomyelin) were also significantly reduced by the HFS diet intake. This study offers further insight of the possible mechanisms implicated in the development of diet-induced obesity. It suggests that the HFS diet-induced hyperinsulinemia is responsible for the decrease in the circulating levels of urea, creatinine, and many amino acids, despite an increase in serum glucose levels.

  18. Iron bioavailability of Lupinus rotundiflorus seeds and roots in low-iron-diet treated rats

    Directory of Open Access Journals (Sweden)

    Elia Herminia VALDÉS MIRAMONTES

    Full Text Available ABSTRACT Objective To evaluate iron bioavailability of roots and cooked seeds of Lupinus rotundiflorus for human consumption using a low-iron-diet rat model. Methods A hemoglobin depletion–repletion test was performed using rats. A standard diet containing 8mg kg-1 of iron was used. Three experimental diets were prepared based on the standard diet: 2.3g of root flour added to D1, 21.5g cooked seed flour added to D2, and 0.03g of ferrous sulfate added to D3 (control diet, adjusting iron concentration of the diets to 24mg kg-1. Hemoglobin regeneration efficiency was used to measure iron bioavailability. Results Hemoglobin regeneration efficiency showed values of 13.80+2.49%, 13.70+1.60% and 18.38+1.56 in D1, D2 and D3 respectively, and biological relative values of 72.8, 75.08, and 100.00% (.<0.05. Conclusion Roots and cooked seeds of Lupinus rotundiflorus showed potential iron bioavailability, despite being a vegetal source, which could also encourage the study of other species of lupin as a source of iron.

  19. The Effects of Irradiation and Calcium-deficient Diet on the Expression of Interleukin-1 during Tooth Formation of Rat Molar

    International Nuclear Information System (INIS)

    Kim, Il Joong; Hwang, Eui Hwan; Lee, Sang Rae

    2000-01-01

    To elucidate the effects of the irradiation and calcium-deficient diet on expression of interleukin (IL)-1 during tooth formation of rat molar. The pregnant three-week-old Spague-Dawley rats were used for the study. The control group was non-irradiation/normal diet group, and the experimental groups were irradiation/normal diet group and irradiation/calcium-diet group. The abdomen of the rats on the 9th day of pregnancy were irradiated with single dose of 350 cGy. The rat pups were sacrificed on the 14th day after delivery and the maxillae tooth germs were taken. The specimen were prepared to make sections for light microscopy, and some of tissue sections were stained immunohistochemically with anti-IL-1 antibody. In the irradiation/normal diet group, dental follicle showed fewer blood vessels, mononuclear cells, and fusions of mononuclear cells than in non-irradiation/normal diet group. Alveolar bone showed a few osteoblasts and osteoclasts. Periodontal ligament showed collagen fibers and fibroblasts with irregularity. Weak immunoreactivity for IL-1 was shown in dental follicle, alveolar bone, and periodontal ligament. In the irradiation/calcium-deficient diet group, dental follicle showed sparse cellularity. Alveolar bone showed diminished number of osteoblasts. Periodontal ligament showed irregular collagen fibers and atrophy of cementoblasts and fibroblasts. No immunoreactivity for IL-1 was shown in dental follicle, alveolar bone, and periodontal ligament. Irradiation and calcium-deficient diet seems to cause disturbance of the expression of interleukin-1 during tooth formation of rat molar.

  20. The Effects of Irradiation and Calcium-deficient Diet on the Expression of Interleukin-1 during Tooth Formation of Rat Molar

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Il Joong; Hwang, Eui Hwan; Lee, Sang Rae [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Kyunghee University, Seoul (Korea, Republic of)

    2000-09-15

    To elucidate the effects of the irradiation and calcium-deficient diet on expression of interleukin (IL)-1 during tooth formation of rat molar. The pregnant three-week-old Spague-Dawley rats were used for the study. The control group was non-irradiation/normal diet group, and the experimental groups were irradiation/normal diet group and irradiation/calcium-diet group. The abdomen of the rats on the 9th day of pregnancy were irradiated with single dose of 350 cGy. The rat pups were sacrificed on the 14th day after delivery and the maxillae tooth germs were taken. The specimen were prepared to make sections for light microscopy, and some of tissue sections were stained immunohistochemically with anti-IL-1 antibody. In the irradiation/normal diet group, dental follicle showed fewer blood vessels, mononuclear cells, and fusions of mononuclear cells than in non-irradiation/normal diet group. Alveolar bone showed a few osteoblasts and osteoclasts. Periodontal ligament showed collagen fibers and fibroblasts with irregularity. Weak immunoreactivity for IL-1 was shown in dental follicle, alveolar bone, and periodontal ligament. In the irradiation/calcium-deficient diet group, dental follicle showed sparse cellularity. Alveolar bone showed diminished number of osteoblasts. Periodontal ligament showed irregular collagen fibers and atrophy of cementoblasts and fibroblasts. No immunoreactivity for IL-1 was shown in dental follicle, alveolar bone, and periodontal ligament. Irradiation and calcium-deficient diet seems to cause disturbance of the expression of interleukin-1 during tooth formation of rat molar.

  1. Methodological considerations on descriptive studies of induced periodontal diseases in rats

    Directory of Open Access Journals (Sweden)

    Galvão Mariane Ponzio de Azevedo

    2003-01-01

    Full Text Available The aim of this study was to show the technique and the methodological approach used in describing histological characteristics of induced periodontal disease in rats. To reach that inflammatory process, periodontal disease was induced by ligature, with or without sucrose-rich diet. Twenty-four female adult (60 days old Wistar rats were divided in four groups: Group 1, or control (which received standard diet, Group 2 (which received ligature around the upper second molars and a standard diet, Group 3 (which received a sucrose-rich diet, and Group 4 (which received ligature around the upper second molars and a sucrose-rich diet. The animals were followed for a period of 30 days, after which they were sacrificed. The upper second molars were removed, processed, and the histological characteristics were analyzed by a descriptive dichotomous method. The results were analyzed by the Fisher's exact test (significance level of 95% and by a residual test, which showed the relation between groups and histological characteristics. The animals which received ligature (Groups 2 and 4 showed histological characteristics related with periodontitis, whilst the animals without ligatures showed no periodontal destruction. This was shown by a distribution of these groups in extremes of a graphic representation. The use of a ligature, as done in this study, was able to promote a chronic inflammatory process in the periodontium of rats, regardless of the adopted diet. The correspondence factorial analysis was capable of showing these characteristics, being one more tool to be used in histological research.

  2. Effects of heavy particle irradiation and diet on object recognition memory in rats

    Science.gov (United States)

    Rabin, Bernard M.; Carrihill-Knoll, Kirsty; Hinchman, Marie; Shukitt-Hale, Barbara; Joseph, James A.; Foster, Brian C.

    2009-04-01

    On long-duration missions to other planets astronauts will be exposed to types and doses of radiation that are not experienced in low earth orbit. Previous research using a ground-based model for exposure to cosmic rays has shown that exposure to heavy particles, such as 56Fe, disrupts spatial learning and memory measured using the Morris water maze. Maintaining rats on diets containing antioxidant phytochemicals for 2 weeks prior to irradiation ameliorated this deficit. The present experiments were designed to determine: (1) the generality of the particle-induced disruption of memory by examining the effects of exposure to 56Fe particles on object recognition memory; and (2) whether maintaining rats on these antioxidant diets for 2 weeks prior to irradiation would also ameliorate any potential deficit. The results showed that exposure to low doses of 56Fe particles does disrupt recognition memory and that maintaining rats on antioxidant diets containing blueberry and strawberry extract for only 2 weeks was effective in ameliorating the disruptive effects of irradiation. The results are discussed in terms of the mechanisms by which exposure to these particles may produce effects on neurocognitive performance.

  3. Liver phospholipids fatty acids composition in response to different types of diets in rats of both sexes.

    Science.gov (United States)

    Ranković, Slavica; Popović, Tamara; Martačić, Jasmina Debeljak; Petrović, Snježana; Tomić, Mirko; Ignjatović, Đurđica; Tovilović-Kovačević, Gordana; Glibetić, Maria

    2017-05-19

    Dietary intake influence changes in fatty acids (FA) profiles in liver which plays a central role in fatty acid metabolism, triacylglycerol synthesis and energy homeostasis. We investigated the effects of 4-weeks treatment with milk- and fish-based diet, on plasma biochemical parameters and FA composition of liver phospholipids (PL) in rats of both sexes. Adult, 4 months old, Wistar rats of both sexes, were fed with different types of diets: standard, milk-based and fish-based, during 4 weeks. Analytical characterization of different foods was done. Biochemical parameters in plasma were determined. Fatty acid composition was analyzed by gas-chromatography. Statistical significance of FA levels was tested with two-way analysis of variance (ANOVA) using the sex of animals and treatment (type of diet) as factors on logarithmic or trigonometric transformed data. Our results showed that both, milk- and fish-based diet, changed the composition and ratio of rat liver phospholipids FA, in gender-specific manner. Initially present sex differences appear to be dietary modulated. Although, applied diets changed the ratio of total saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA), and effects were gender specific. Milk-based diet lowered SFA and elevated MUFA in males and increased PUFA in females vs. standard diet. The same diet decreased n-3, increased n-6 and n-6/n-3 ratio in males. Fish-based diet increased n-3, decreased n-6 and n-6/n-3 ratio vs. standard and milk-based diet in females. However, the ratio of individual FA in liver PL was also dietary-influenced, but with gender specific manner. While in females fish-based diet decreased AA (arachidonic acid) increased level of EPA (eicosapentaenoic acid), DPA (docosapentaenoic acid) and DHA (docosahexaenoic acid), the same diet elevated only DHA levels in males. Gender related variations in FA composition of rat liver PL were observed, and results have shown that

  4. Cocoa-enriched diet enhances antioxidant enzyme activity and modulates lymphocyte composition in thymus from young rats.

    Science.gov (United States)

    Ramiro-Puig, Emma; Urpí-Sardà, Mireia; Pérez-Cano, Francisco J; Franch, Angels; Castellote, Cristina; Andrés-Lacueva, Cristina; Izquierdo-Pulido, Maria; Castell, Margarida

    2007-08-08

    Cocoa is a rich source of flavonoids, mainly (-)-epicatechin, (+)-catechin, and procyanidins. This article reports the effect of continuous cocoa intake on antioxidant capacity in plasma and tissues, including lymphoid organs and liver, from young rats. Weaned Wistar rats received natural cocoa (4% or 10% food intake) for three weeks, corresponding to their infancy. Flavonoid absorption was confirmed through the quantification of epicatechin metabolites in urine. Total antioxidant capacity (TAC) and the activity of antioxidant enzymes, superoxide dismutase (SOD) and catalase, were examined. Cocoa intake enhanced TAC in all tissues especially in thymus. Moreover, thymus SOD and catalase activities were also dose-dependently increased by cocoa. It was also analyzed whether the enhanced antioxidant system in thymus could influence its cellular composition. An increase in the percentage of thymocytes in advanced development stage was found. In summary, cocoa diet enhances thymus antioxidant defenses and influences thymocyte differentiation.

  5. The effects of silver ions on copper metabolism in rats.

    Science.gov (United States)

    Ilyechova, E Yu; Saveliev, A N; Skvortsov, A N; Babich, P S; Zatulovskaia, Yu A; Pliss, M G; Korzhevskii, D E; Tsymbalenko, N V; Puchkova, L V

    2014-10-01

    The influence of short and prolonged diet containing silver ions (Ag-diet) on copper metabolism was studied. Two groups of animals were used: one group of adult rats received a Ag-diet for one month (Ag-A1) and another group received a Ag-diet for 6 months from birth (Ag-N6). In Ag-A1 rats, the Ag-diet caused a dramatic decrease of copper status indexes that was manifested as ceruloplasmin-associated copper deficiency. In Ag-N6 rats, copper status indexes decreased only 2-fold as compared to control rats. In rats of both groups, silver entered the bloodstream and accumulated in the liver. Silver was incorporated into ceruloplasmin (Cp), but not SOD1. In the liver, a prolonged Ag-diet caused a decrease of the expression level of genes, associated with copper metabolism. Comparative spectrophotometric analysis of partially purified Cp fractions has shown that Cp from Ag-N6 rats was closer to holo-Cp by specific enzymatic activities and tertiary structure than Cp from Ag-A1 rats. However, Cp of Ag-N6 differs from control holo-Cp and Cp of Ag-A1 in its affinity to DEAE-Sepharose and in its binding properties to lectins. In the bloodstream of Ag-N6, two Cp forms are present as shown in pulse-experiments on rats with the liver isolated from circulation. One of the Cp isoforms is of hepatic origin, and the other is of extrahepatic origin; the latter is characterized by a faster rate of secretion than hepatic Cp. These data allowed us to suggest that the disturbance of holo-Cp formation in the liver was compensated by induction of extrahepatic Cp synthesis. The possible biological importance of these effects is discussed.

  6. The regulatory effects of fish oil and chitosan on hepatic lipogenic signals in high-fat diet-induced obese rats.

    Science.gov (United States)

    Chiu, Chen-Yuan; Chang, Tien-Chia; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2017-10-01

    The present study investigated the regulatory effects of fish oil and chitosan on the signals of hepatic lipid metabolism and the postulated mechanism in high-fat diet-induced obese rats. Diet supplementation of chitosan and fish oil efficiently suppressed the increased weights in body and livers of high-fat diet-fed rats. Supplementation of chitosan and fish oil significantly decreased the activities of hepatic lipid biosynthesis-related enzymes and efficiently regulated plasma lipoprotein homeostasis. Both chitosan and fish oil significantly ameliorated the alterations in the protein expressions of hepatic lipogenic transcription factors (LXRα and PPARα), and could also significantly regulate the downstream hepatic lipogenic genes (FAS, HMGCR, CYP7A1, FATP, FABP, AOX, and ABCA) expressions in high-fat diet-fed rats. These results suggest that both fish oil and chitosan exerts downregulative effects on hepatic lipid metabolism in high-fat diet-induced obese rats via the LXRα inhibition and PPARα activation, which further affect the expressions of hepatic lipogenesis-associated genes. Copyright © 2017. Published by Elsevier B.V.

  7. A diphenyl diselenide-supplemented diet and swimming exercise promote neuroprotection, reduced cell apoptosis and glial cell activation in the hypothalamus of old rats.

    Science.gov (United States)

    Leite, Marlon R; Cechella, José L; Pinton, Simone; Nogueira, Cristina W; Zeni, Gilson

    2016-09-01

    Aging is a process characterized by deterioration of the homeostasis of various physiological systems; although being a process under influence of multiple factors, the mechanisms involved in aging are not well understood. Here we investigated the effect of a (PhSe)2-supplemented diet (1ppm, 4weeks) and swimming exercise (1% of body weight, 20min per day, 4weeks) on proteins related to glial cells activation, apoptosis and neuroprotection in the hypothalamus of old male Wistar rats (27month-old). Old rats had activation of astrocytes and microglia which was demonstrated by the increase in the levels of glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule 1 (Iba-1) in hypothalamus. A decrease of B-cell lymphoma 2 (Bcl-2) and procaspase-3 levels as well as an increase of the cleaved PARP/full length PARP ratio (poly (ADP-ribose) polymerase, PARP) and the pJNK/JNK ratio (c-Jun N-terminal kinase, JNK) were observed. The levels of mature brain-derived neurotrophic factor (mBDNF), the pAkt/Akt ratio (also known as protein kinase B) and NeuN (neuronal nuclei), a neuron marker, were decreased in the hypothalamus of old rats. Old rats that received a (PhSe)2-supplemented diet and performed swimming exercise had the hypothalamic levels of Iba-1 and GFAP decreased. The combined treatment also increased the levels of Bcl-2 and procaspase-3 and decreased the ratios of cleaved PARP/full length PARP and pJNK/JNK in old rats. The levels of mBDNF and NeuN, but not the pAkt/Akt ratio, were increased by combined treatment. In conclusion, a (PhSe)2-supplemented diet and swimming exercise promoted neuroprotection in the hypothalamus of old rats, reducing apoptosis and glial cell activation. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Effect of omnivorous and vegan diets with different protein and carbohydrate content on growth and metabolism of growing rats.

    Science.gov (United States)

    Giuberti, Gianluca; Morlacchini, Mauro; Crippa, Luca; Capraro, Jessica; Paganini, Beatrice; Gallo, Antonio; Rossi, Filippo

    2018-08-01

    The purpose of this study was to observe, in a rat animal model, the short and medium term effects of vegan (VEG) or omnivorous (OMNI) diets with different energy partition between nutrients (zone or classic). Six different diets were administered, for 72 days to 120 growing male Sprague-Dawley rats: (i) VEG zone diet; (ii) VEG classic diet; (iii) OMNI zone diet; (iv) OMNI classic diet; (v) OMNI zone diet with added fibre and (vi) OMNI classic diet with added fibre. Zone diets (high protein and low carbohydrates), resulted in better growth , feed efficiency, lower blood glucose and insulin responses. VEG diets have lowered cholesterol blood level. Histopathological analysis evidenced no damage to liver and kidney tissue by the intake of any of the diet types. Further longer animal and human duration studies should be performed to exclude detrimental effect of higher protein diet.

  9. Effect of erva-mate (Ilex paraguariensis A. St.-Hil., Aquifoliaceae on serum cholesterol, triacylglycerides and glucose in Wistar rats fed a diet supplemented with fat and sugar

    Directory of Open Access Journals (Sweden)

    Franciele Przygodda

    2010-11-01

    Full Text Available Ilex paraguariensis A. St.-Hil., Aquifoliaceae, is a species native to the subtropical and temperate regions of South America, used in beverages prepared by infusion such as teas, chimarrão and tererê. To investigate the physiological effects of I. paraguariensis on the metabolism of fats and sugars in Wistar rats, following the ingestion of erva-mate tea, four experimental groups were constructed: Lipid Control Group (receiving water and high-fat diet; Lipid Tea Group (extract of I. paraguariensis and high-fat diet; the Sugar Control Group (water and high-sugar diet; and Sugar Tea Group (extract of I. paraguariensis and high-sugar diet. The animals received their particular diet for 60 days, and were weighed weekly. After this period, the plasma concentrations of cholesterol, glucose and triacylglycerides were determined, together with the weight of visceral fat. The data were subjected to statistical analysis with a significance level of p<0.05. The results show that the ingestion of erva-mate affected body weight, visceral fat and plasma glucose, cholesterol and triacylglyceride levels.

  10. A Moderate Low-Carbohydrate Low-Calorie Diet Improves Lipid Profile, Insulin Sensitivity and Adiponectin Expression in Rats

    Directory of Open Access Journals (Sweden)

    Jie-Hua Chen

    2015-06-01

    Full Text Available Calorie restriction (CR via manipulating dietary carbohydrates has attracted increasing interest in the prevention and treatment of metabolic syndrome. There is little consensus about the extent of carbohydrate restriction to elicit optimal results in controlling metabolic parameters. Our study will identify a better carbohydrate-restricted diet using rat models. Rats were fed with one of the following diets for 12 weeks: Control diet, 80% energy (34% carbohydrate-reduced and 60% energy (68% carbohydrate-reduced of the control diet. Changes in metabolic parameters and expressions of adiponectin and peroxisome proliferator activator receptor γ (PPARγ were identified. Compared to the control diet, 68% carbohydrate-reduced diet led to a decrease in serum triglyceride and increases inlow density lipoprotein-cholesterol (LDL-C, high density lipoprotein-cholesterol (HDL-C and total cholesterol; a 34% carbohydrate-reduced diet resulted in a decrease in triglycerides and an increase in HDL-cholesterol, no changes however, were shown in LDL-cholesterol and total cholesterol; reductions in HOMA-IR were observed in both CR groups. Gene expressions of adiponectin and PPARγ in adipose tissues were found proportionally elevated with an increased degree of energy restriction. Our study for the first time ever identified that a moderate-carbohydrate restricted diet is not only effective in raising gene expressions of adiponectin and PPARγ which potentially lead to better metabolic conditions but is better at improving lipid profiles than a low-carbohydrate diet in rats.

  11. Decreased expression of CD36 in circumvallate taste buds of high-fat diet induced obese rats.

    Science.gov (United States)

    Zhang, Xiao-Juan; Zhou, Li-Hong; Ban, Xiang; Liu, Dian-Xin; Jiang, Wei; Liu, Xiao-Min

    2011-10-01

    Mammals spontaneously prefer lipid rich foods. Overconsumption of high-fat diet leads to obesity and related diseases. Recent findings indicate that taste may participate in the orosensory perception of dietary lipids and the fatty taste may contribute to a preference for and excessive consumption of dietary fat. CD36, a trans-membrane glycoprotein, which is located in the taste buds of circumvallate papillae of rodents, appears to be a plausible receptor for this fatty taste. Obese subjects present a stronger preference for fatty foods, though the mechanisms involved are complex and are not fully investigated. Our data from immunofluorescence and real-time RT-PCR showed that the expression levels of CD36 in circumvallate taste buds were significantly lower in high-fat diet induced obese rats as compared with that of control rats fed a normal diet. These results suggest that decreased expression of CD36 in circumvallate taste buds of high-fat diet induced obese rats may be associated with diminished fatty taste sensitivity and in order to compensate the preference for dietary fat, rats consume more fatty foods. Therapeutic strategies designed to alter or manipulate CD36 expression or function in taste buds may have important implications in treating obesity and related diseases. Copyright © 2010 Elsevier GmbH. All rights reserved.

  12. Ketogenic diet prevents neuronal firing increase within the substantia nigra during pentylenetetrazole-induced seizure in rats.

    Science.gov (United States)

    Viggiano, Andrea; Stoddard, Madison; Pisano, Simone; Operto, Francesca Felicia; Iovane, Valentina; Monda, Marcellino; Coppola, Giangennaro

    2016-07-01

    The mechanism responsible for the anti-seizure effect of ketogenic diets is poorly understood. Because the substantia nigra pars reticulata (SNr) is a "gate" center for seizures, the aim of the present experiment was to evaluate if a ketogenic diet modifies the neuronal response of this nucleus when a seizure-inducing drug is administered in rats. Two groups of rats were given a standard diet (group 1) or a ketogenic diet (group 2) for four weeks, then the threshold for seizure induction and the firing rate of putative GABAergic neurons within the SNr were evaluated with progressive infusion of pentylenetetrazole under general anesthesia. The results demonstrated that the ketogenic diet abolished the correlation between the firing rate response of SNr-neurons and the seizure-threshold. This result suggests that the anti-seizure effect of ketogenic diets can be due to a decrease in reactivity of GABAergic SNr-neurons. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Effect of L-Carnitine on Skeletal Muscle Lipids and Oxidative Stress in Rats Fed High-Fructose Diet

    Directory of Open Access Journals (Sweden)

    Panchamoorthy Rajasekar

    2007-01-01

    Full Text Available There is evidence that high-fructose diet induces insulin resistance, alterations in lipid metabolism, and oxidative stress in rat tissues. The purpose of this study was to evaluate the effect of L-carnitine (CAR on lipid accumulation and peroxidative damage in skeletal muscle of rats fed high-fructose diet. Fructose-fed animals (60 g/100 g diet displayed decreased glucose/insulin (G/I ratio and insulin sensitivity index (ISI0,120 indicating the development of insulin resistance. Rats showed alterations in the levels of triglycerides, free fatty acids, cholesterol, and phospholipids in skeletal muscle. The condition was associated with oxidative stress as evidenced by the accumulation of lipid peroxidation products, protein carbonyls, and aldehydes along with depletion of both enzymic and nonenzymic antioxidants. Simultaneous intraperitoneal administration of CAR (300 mg/kg/day to fructose-fed rats alleviated the effects of fructose. These rats showed near-normal levels of the parameters studied. The effects of CAR in this model suggest that CAR supplementation may have some benefits in patients suffering from insulin resistance.

  14. Effect of Partial Sleep Deprivation on Lipid Profile in High Fat Diet-Fed Rats in the Presence and Absence of Vitamin C

    OpenAIRE

    Hossein Najafzadeh; Mohammad-Kazem Gharibnaseri; Ali Shahriyari; Hamideh Akbari-Aliabad

    2013-01-01

    Background: The daily stress and shift working cause insomnia. In other hands, fatty food consumption increased this disorder. The aim of present study is evaluation additive effect of partial insomnia and high fatty diet with or without vitamin C on serum lipid profile in rats.Materials and Methods: Fifty six rats in 7 groups (8 rats each group) were conducted for study during 26 days as: 1: normal diet+normal sleep, 2: high fatty diet+normal sleep, 3: normal diet+insomnia, 4: high fatty die...

  15. A comparison of effects of lard and hydrogenated vegetable shortening on the development of high-fat diet-induced obesity in rats.

    Science.gov (United States)

    Kubant, R; Poon, A N; Sánchez-Hernández, D; Domenichiello, A F; Huot, P S P; Pannia, E; Cho, C E; Hunschede, S; Bazinet, R P; Anderson, G H

    2015-12-14

    Obesity is associated with increased consumption and preference for dietary fat. Experimental models of fat-induced obesity use either lard or vegetable shortening. Yet, there are no direct comparisons of these commonly used fat sources, or the influence of their fatty acid composition, on the development of diet-induced obesity. To compare the effects of lard and hydrogenated vegetable-shortening diets, which differ in their fatty acid composition, on weight gain and the development of obesity and insulin resistance in rats. Male Wistar rats were fed ad libitum for 14 weeks high-fat diets containing either (1) high vegetable fat (HVF, 60 kcal% from vegetable shortening) or (2) high lard fat (HLF, 60 kcal% from lard). Rats fed normal-fat (NF, 16 kcal% from vegetable shortening) diet served as control. Body weight, food intake, adipose tissue mass, serum 25[OH]D3, glucose, insulin and fatty acid composition of diets were measured. Rats fed either of the two high-fat diets had higher energy intake, weight gain and fat accretion than rats fed normal-fat diet. However, rats fed the HLF diet consumed more calories and gained more weight and body fat with greater increases of 32% in total (158.5±8.2 vs 120.2±6.6 g, P<0.05), 30% in visceral (104.4±5.2 vs 80.3±4.2 g, P<0.05) and 36% in subcutaneous fat mass (54.1±3.6 vs 39.9±3.1 g, P<0.05), compared with rats fed the HVF diet. Higher visceral adiposity was positively correlated with serum insulin (r=0.376, P<0.05) and homeostatic model assessment insulin resistance (r=0.391, P<0.05). We conclude that lard-based high-fat diets accentuate the increase in weight gain and the development of obesity and insulin resistance more than hydrogenated vegetable-shortening diets. These results further point to the importance of standardizing fatty acid composition and type of fat used in determining outcomes of consuming high-fat diets.

  16. Hypercaloric diet modulates effects of chronic stress: a behavioral and biometric study on rats.

    Science.gov (United States)

    Oliveira, Carla de; Oliveira, Cleverson Moraes de; de Macedo, Isabel Cristina; Quevedo, Alexandre S; Filho, Paulo Ricardo Marques; Silva, Fernanda Ribeiro da; Vercelino, Rafael; de Souza, Izabel C Custodio; Caumo, Wolnei; Torres, Iraci L S

    2015-01-01

    Obesity is a chronic disease that has been associated with chronic stress and hypercaloric diet (HD) consumption. Increased ingestion of food containing sugar and fat ingredients (comfort food) is proposed to "compensate" chronic stress effects. However, this eating habit may increase body fat depositions leading to obesity. This study evaluated behavioral/physiological parameters seeking to establish whether there is an association between the effects of HD intake and stress, and to test the hypothesis that the development of anxious behavior and obesity during chronic stress periods depends on the type of diet. Sixty-day-old male Wistar rats (n = 100) were divided into four groups: standard chow, hypercaloric diet, chronic stress/standard chow and chronic stress/hypercaloric diet. Chronic stress was induced by restraint stress exposure for 1 h/day, for 80 d. At the end of this period, rat behavior was evaluated using open-field and plus-maze tests. The results showed that HD alone increased weight gain and adipose deposition in subcutaneous and mesenteric areas. However, stress reduced weight gain and adipose tissue in these areas. HD also increased naso-anal length and concurrent stress prevented this. Behavioral data indicated that stress increased anxiety-like behaviors and comfort food reduced these anxiogenic effects; locomotor activity increased in rats fed with HD. Furthermore, HD decreased corticosterone levels and stress increased adrenal weight. The data indicate that when rats are given HD and experience chronic stress this association reduces the pro-obesogenic effects of HD, and decreases adrenocortical activity.

  17. Silicon Alleviates Nonalcoholic Steatohepatitis by Reducing Apoptosis in Aged Wistar Rats Fed a High-Saturated Fat, High-Cholesterol Diet.

    Science.gov (United States)

    Garcimartín, Alba; López-Oliva, M Elvira; Sántos-López, Jorge A; García-Fernández, Rosa A; Macho-González, Adrián; Bastida, Sara; Benedí, Juana; Sánchez-Muniz, Francisco J

    2017-06-01

    Background: Lipoapoptosis has been identified as a key event in the progression of nonalcoholic fatty liver disease (NAFLD), and hence, antiapoptotic agents have been recommended as a possible effective treatment for nonalcoholic steatohepatitis (NASH). Silicon, included in meat as a functional ingredient, improves lipoprotein profiles and liver antioxidant defenses in aged rats fed a high-saturated fat, high-cholesterol diet (HSHCD). However, to our knowledge, the antiapoptotic effect of this potential functional meat on the liver has never been tested. Objective: This study was designed to evaluate the effect of silicon on NASH development and the potential antiapoptotic properties of silicon in aged rats. Methods: One-year-old male Wistar rats weighing ∼500 g were fed 3 experimental diets containing restructured pork (RP) for 8 wk: 1 ) a high-saturated fat diet, as an NAFLD control, with 16.9% total fat, 0.14 g cholesterol/kg diet, and 46.8 mg SiO 2 /kg (control); 2 ) the HSHCD as a model of NASH, with 16.6% total fat, 16.3 g cholesterol/kg diet, and 46.8 mg SiO 2 /kg [high-cholesterol diet (Chol-C)]; and 3 ) the HSHCD with silicon-supplemented RP with amounts of fat and cholesterol identical to those in the Chol-C diet, but with 750 mg SiO 2 /kg (Chol-Si). Detailed histopathological assessments were performed, and the NAFLD activity score (NAS) was calculated. Liver apoptosis and damage markers were evaluated by Western blotting and immunohistochemical staining. Results: Chol-C rats had a higher mean NAS (7.4) than did control rats (1.9; P silicon substantially affects NASH development in aged male Wistar rats fed an HSHCD by partially blocking apoptosis. These results suggest that silicon-enriched RP could be used as an effective nutritional strategy in preventing NASH. © 2017 American Society for Nutrition.

  18. Cocoa Diet Prevents Antibody Synthesis and Modifies Lymph Node Composition and Functionality in a Rat Oral Sensitization Model

    Directory of Open Access Journals (Sweden)

    Mariona Camps-Bossacoma

    2016-04-01

    Full Text Available Cocoa powder, a rich source of polyphenols, has shown immunomodulatory properties in both the intestinal and systemic immune compartments of rats. The aim of the current study was to establish the effect of a cocoa diet in a rat oral sensitization model and also to gain insight into the mesenteric lymph nodes (MLN activities induced by this diet. To achieve this, three-week-old Lewis rats were fed either a standard diet or a diet with 10% cocoa and were orally sensitized with ovalbumin (OVA and with cholera toxin as a mucosal adjuvant. Specific antibodies were quantified, and lymphocyte composition, gene expression, and cytokine release were established in MLN. The development of anti-OVA antibodies was almost totally prevented in cocoa-fed rats. In addition, this diet increased the proportion of TCRγδ+ and CD103+CD8+ cells and decreased the proportion of CD62L+CD4+ and CD62L+CD8+ cells in MLN, whereas it upregulated the gene expression of OX40L, CD11c, and IL-1β and downregulated the gene expression of IL-17α. In conclusion, the cocoa diet induced tolerance in an oral sensitization model accompanied by changes in MLN that could contribute to this effect, suggesting its potential implication in the prevention of food allergies.

  19. Cocoa Diet Prevents Antibody Synthesis and Modifies Lymph Node Composition and Functionality in a Rat Oral Sensitization Model.

    Science.gov (United States)

    Camps-Bossacoma, Mariona; Abril-Gil, Mar; Saldaña-Ruiz, Sandra; Franch, Àngels; Pérez-Cano, Francisco J; Castell, Margarida

    2016-04-23

    Cocoa powder, a rich source of polyphenols, has shown immunomodulatory properties in both the intestinal and systemic immune compartments of rats. The aim of the current study was to establish the effect of a cocoa diet in a rat oral sensitization model and also to gain insight into the mesenteric lymph nodes (MLN) activities induced by this diet. To achieve this, three-week-old Lewis rats were fed either a standard diet or a diet with 10% cocoa and were orally sensitized with ovalbumin (OVA) and with cholera toxin as a mucosal adjuvant. Specific antibodies were quantified, and lymphocyte composition, gene expression, and cytokine release were established in MLN. The development of anti-OVA antibodies was almost totally prevented in cocoa-fed rats. In addition, this diet increased the proportion of TCRγδ+ and CD103+CD8+ cells and decreased the proportion of CD62L+CD4+ and CD62L+CD8+ cells in MLN, whereas it upregulated the gene expression of OX40L, CD11c, and IL-1β and downregulated the gene expression of IL-17α. In conclusion, the cocoa diet induced tolerance in an oral sensitization model accompanied by changes in MLN that could contribute to this effect, suggesting its potential implication in the prevention of food allergies.

  20. Effect of Red Yeast Rice and Coconut, Rice Bran or Sunflower Oil Combination in Rats on Hypercholesterolemic Diet.

    Science.gov (United States)

    Govindarajan, Sumitra; Vellingiri, Kishore

    2016-04-01

    Dietary supplements provide a novel population based health approach for treating hyperlipidemias. Red yeast rice is known to have lipid lowering effects. Combination of red yeast rice with various oils is taken by different population around the world. In this present work, we aimed to compare the effects of red yeast rice with different oil (coconut, rice bran and sunflower oil) supplementations on lipid levels and oxidative stress in rats fed on hypercholesterolemic diet. A Randomized controlled study was conducted on 28 male Sprague Dawley rats. It included 4 arms-Control arm (hypercholesterolemic diet), Test arm A (hypercholesterolemic diet +Red yeast rice + Rice bran oil), arm B (hypercholesterolemic diet +Red yeast rice + Coconut oil) and arm C (hypercholesterolemic diet +Red yeast rice + Sunflower oil). At the end of one month, serum cholesterol, triglycerides, MDA and paraoxonase was measured. The mean values of analytes between the different groups were compared using student 't-' test. The rats fed with red yeast rice and rice bran oil combination showed significantly lower levels of serum cholesterol, triglycerides and MDA when compared to the controls. The serum paraoxonase levels were significantly higher in this group when compared to the controls. The rats fed with red yeast rice and coconut oil combination showed significantly lower serum cholesterol and MDA levels when compared to the controls. The mean triglyceride and paraoxonase levels did not show any statistically significant difference from the controls. The rats on red yeast rice and sunflower oil combination did not show any statistically significant difference in the lipid levels and oxidative stress parameters. The food combination which had best outcome in preventing the development of hyperlipidemia and oxidative stress in rats fed with hypercholesterolemic diet was red yeast rice and rice bran oil. Combining red yeast rice with coconut oil and sunflower oil gave suboptimal benefits.

  1. Effect of a hyper-protein diet on Wistar rats development and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-04

    May 4, 2009 ... studied possible presence of anti milk-protein seric IgG induced by the .... when administrating long term hyper-protein diets for humans. Reactivity to the ... adipose tissue without major side effects in Wistar male rats. Am. J.

  2. Influence of diet with kale on lipid peroxides and malondialdehyde levels in blood serum of laboratory rats over intoxication with paraquat.

    Science.gov (United States)

    Sikora, Elżbieta; Bodziarczyk, Izabela

    2013-01-01

    Organism's lipid peroxidation is one of the most often examined and known physiological process evoked by free radicals. It concerns oxidation reaction of unsaturated fatty acid and/or other lipids leading to lipid oxidation products (LOP), which as a result of further changes generate among others the malondialdehyde molecules. The aim of the work was an estimation if raw or cooked kale addition to rat's diet influences antioxidant defense efficiency in their organisms in comparison to rats fed with standard AIN-93G diet. The experiment was conducted with 36 Wistar strain, male rats over 21 days. The rats were divided into 3 groups (each 12 stuck) which were fed with: standard diet AIN-93G (2 groups), AIN-93G diet with 10% addition of raw kale (2 groups), and AIN-93G with 10% addition of cooked lyophilised kale. The total content of polyphenols (FC method) and antioxidant activity (ABTS+•) were previously determined in raw and then in cooked kale. On the 20th day of experiment, half of rats (6 stuck) of each kind of the diet were injected intraperitoneally by the solution of paraquat (PQ) in physiological salt to evoke the oxidative stress. The next day animals were stunned and blood from their hearts was sampled. In the obtained serum, the levels of lipid oxidation products (LOP) and malondialdehyde (MDA) were assessed. It was observed that in blood serum of rats fed with modified diet with raw and cooked lyophilised kale addition the lipid oxides level was lower in comparison to control group fed with standard diet (p kale addition. Diet with kale, both raw and cooked, efficiently inhibited the lipid peroxidation process in rats' organisms, ongoing during natural metabolism and during evoked oxidative stress.

  3. Alfalfa leaf meal in beef steer receiving diets. Quarterly report, July 1, 1997--September 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Zehnder, C.M.; DiCostanzo, A.; Smith, L.B.

    1998-06-01

    Two trials were conducted to study the effects of alfalfa leaf meal (ALM) in receiving diets of steers. In trial one, ninety-six medium frame, Angus and Angus cross steer calves (average initial weight 500 lb) were allotted to a heavy or light weight block and then randomly assigned to one of four dietary treatments for a 29-day receiving trial. In trial two, sixty medium frame, Angus and Angus cross steer calves (average initial weight 518 lb) were allotted to one of ten dietary treatments. Trial two was divided into two periods, defined as a receiving period, 29 days, and a step-up period, 33 days. In trial one, treatments were control (supplemental soybean meal), alfalfa leaf meal (ALM) providing 33%, 66%, or 100% of supplemental protein; the balance was soybean meal. Receiving diets were formulated to contain .54 Mcal NE{sub g} /lb dry matter, 14% crude protein, .6 % Ca and .3 % P. In study two, treatments were control (supplemental soybean meal), ALM providing 33%, 66%7 100% of supplemental protein, the balance was soybean meal and urea or a blend of ALM and blood meal (93 % ALM and 7 % blood meal) to provide supplemental protein. Each protein treatment was fed in diets consisting of cracked or whole corn. Trial two receiving diets were formulated to contain .54 Mcal NE{sub g} /lb dry matter, 14% crude protein, .6 % Ca and .3 % P, step-up diets were formulated to contain .58 Mcal NE9 /lb dry matter, 11.3% crude protein, .6 % Ca and .3 % P.

  4. Diet supplementation with açaí (Euterpe oleracea Mart.) pulp improves biomarkers of oxidative stress and the serum lipid profile in rats.

    OpenAIRE

    Souza, Melina Oliveira de; Silva, Maísa; Silva, Marcelo Eustáquio; Oliveira, Riva de Paula; Pedrosa, Maria Lúcia

    2010-01-01

    Objective: We investigated the antioxidant potential and hypocholesterolemic effects of acai (Euterpe oleracea Mart.) pulp ingestion in rats fed a standard or hypercholesterolemic diet. Methods: Female Fischer rats were fed a standard AIN-93 M diet (control) or a hypercholesterolemic diet that contained 25% soy oil and 1% cholesterol. The test diet was supplemented with 2% acai pulp (dry wt/wt) for control (group CA) and hypercholesterolemic rats (group HA) for 6 wk. At the end of the experim...

  5. Dietary Shiitake Mushroom (Lentinus edodes Prevents Fat Deposition and Lowers Triglyceride in Rats Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    D. Handayani

    2011-01-01

    Full Text Available High-fat diet (HFD induces obesity. This study examined the effects of Shiitake mushroom on the prevention of alterations of plasma lipid profiles, fat deposition, energy efficiency, and body fat index induced by HFD. Rats were given a low, medium, and high (7, 20, 60 g/kg = LD-M, MD-M, HD-M Shiitake mushroom powder in their high-fat (50% in kcal diets for 6 weeks. The results showed that the rats on the HD-M diet had the lowest body weight gain compared to MD-M and LD-M groups (P<0.05. The total fat deposition was significantly lower (−35%, P<0.05 in rats fed an HD-M diet than that of HFD group. Interestingly, plasma triacylglycerol (TAG level was significantly lower (−55%, P<0.05 in rats on HD-M than HFD. This study also revealed the existence of negative correlations between the amount of Shiitake mushroom supplementation and body weight gain, plasma TAG, and total fat masses.

  6. Effects of Shiitake Intake on Serum Lipids in Rats Fed Different High-Oil or High-Fat Diets.

    Science.gov (United States)

    Asada, Norihiko; Kairiku, Rumi; Tobo, Mika; Ono, Akifumi

    2018-04-27

    Shiitake (Lentinula edodes) extract, eritadenine, has been shown to reduce cholesterol levels, and its hypocholesterolemic actions are involved in the metabolism of methionine. However, the mechanisms by which eritadenine affects cholesterol metabolism in animals fed a high-fat diet containing different sources of lipids have not yet been elucidated in detail. This study was conducted to investigate the effects of shiitake supplementation on serum lipid concentrations in rats fed a diet including a high amount of a plant oil (HO [high oil] and HOS [high oil with shiitake] groups), animal fat (HF [high fat] and HFS [high fat with shiitake] groups), or MCT- (medium-chain triglyceride-) rich plant oil (HM [high MCT] and HMS [high MCT with shiitake] groups). Rats in the HOS, HFS, and HMS groups were fed shiitake. When rats were fed a diet containing shiitake, serum triglyceride, cholesterol levels, and LCAT (lecithin-cholesterol acyltransferase) activities were lower in rats given MCT-rich plant oil than in those that consumed lard. The lipid type in the diet with shiitake also affected serum cholesterol levels and LCAT activities. The diet containing MCT-rich plant oil showed the greatest rates of decrease in all serum lipid profiles and LCAT activities. These results suggest that shiitake and MCT-rich plant oil work together to reduce lipid profiles and LCAT activity in serum.

  7. Enhanced flavor-nutrient conditioning in obese rats on a high-fat, high-carbohydrate choice diet.

    Science.gov (United States)

    Wald, Hallie S; Myers, Kevin P

    2015-11-01

    Through flavor-nutrient conditioning rats learn to prefer and increase their intake of flavors paired with rewarding, postingestive nutritional consequences. Since obesity is linked to altered experience of food reward and to perturbations of nutrient sensing, we investigated flavor-nutrient learning in rats made obese using a high fat/high carbohydrate (HFHC) choice model of diet-induced obesity (ad libitum lard and maltodextrin solution plus standard rodent chow). Forty rats were maintained on HFHC to induce substantial weight gain, and 20 were maintained on chow only (CON). Among HFHC rats, individual differences in propensity to weight gain were studied by comparing those with the highest proportional weight gain (obesity prone, OP) to those with the lowest (obesity resistant, OR). Sensitivity to postingestive food reward was tested in a flavor-nutrient conditioning protocol. To measure initial, within-meal stimulation of flavor acceptance by post-oral nutrient sensing, first, in sessions 1-3, baseline licking was measured while rats consumed grape- or cherry-flavored saccharin accompanied by intragastric (IG) water infusion. Then, in the next three test sessions they received the opposite flavor paired with 5 ml of IG 12% glucose. Finally, after additional sessions alternating between the two flavor-infusion contingencies, preference was measured in a two-bottle choice between the flavors without IG infusions. HFHC-OP rats showed stronger initial enhancement of intake in the first glucose infusion sessions than CON or HFHC-OR rats. OP rats also most strongly preferred the glucose-paired flavor in the two-bottle choice. These differences between OP versus OR and CON rats suggest that obesity is linked to responsiveness to postoral nutrient reward, consistent with the view that flavor-nutrient learning perpetuates overeating in obesity. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Sensory-specific satiety is intact in rats made obese on a high-fat high-sugar choice diet.

    Science.gov (United States)

    Myers, Kevin P

    2017-05-01

    Sensory-specific satiety (SSS) is the temporary decreased pleasantness of a recently eaten food, which inhibits further eating. Evidence is currently mixed whether SSS is weaker in obese people, and whether such difference precedes or follows from the obese state. Animal models allow testing whether diet-induced obesity causes SSS impairment. Female rats (n = 24) were randomly assigned to an obesogenic high-fat, high-sugar choice diet or chow-only control. Tests of SSS involved pre-feeding a single palatable, distinctively-flavored food (cheese- or cocoa-flavored) prior to free choice between both foods. Rats were tested for short-term SSS (2 h pre-feeding immediately followed by 2 h choice) and long-term SSS (3 day pre-feeding prior to choice on day 4). In both short- and long-term tests rats exhibited SSS by shifting preference towards the food not recently eaten. SSS was not impaired in obese rats. On the contrary, in the long-term tests they showed stronger SSS than controls. This demonstrates that neither the obese state nor a history of excess energy consumption fundamentally causes impaired SSS in rats. The putative impaired SSS in obese people may instead reflect a specific predisposition, properties of the obesogenic diet, or history of restrictive dieting and bingeing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Lentil-based diets attenuate hypertension and large-artery remodelling in spontaneously hypertensive rats.

    Science.gov (United States)

    Hanson, Matthew G; Zahradka, Peter; Taylor, Carla G

    2014-02-01

    Hypertension is a major risk factor for CVD, the leading cause of mortality worldwide. The prevalence of hypertension is expected to continue increasing, and current pharmacological treatments cannot alleviate all the associated problems. Pulse crops have been touted as a general health food and are now being studied for their possible effects on several disease states including hypertension, obesity and diabetes. In the present study, 15-week-old spontaneously hypertensive rats (SHR) were fed diets containing 30% w/w beans, peas, lentils, chickpeas, or mixed pulses or a pulse-free control diet for 4 weeks. Normotensive Wistar-Kyoto (WKY) rats were placed on a control diet. Pulse wave velocity (PWV) was measured weekly, while blood pressure (BP) was measured at baseline and week 4. Fasting serum obtained in week 4 of the study was analysed for circulating lipids. A histological analysis was carried out on aortic sections to determine vascular geometry. Of all the pulse varieties studied, lentils were found to be able to attenuate the rise in BP in the SHR model (P< 0·05). Lentils were able to decrease the media:lumen ratio and media width of the aorta. The total cholesterol (TC), LDL-cholesterol (LDL-C) and HDL-cholesterol levels of rats fed the pulse-based diets were found to be lower when compared with those of the WKY rat and SHR controls (P< 0·05). Although all pulses reduced circulating TC and LDL-C levels in the SHR, only lentils significantly reduced the rise in BP and large-artery remodelling in the SHR, but had no effect on PWV. These results indicate that the effects of lentils on arterial remodelling and BP in the SHR are independent of circulating LDL-C levels.

  10. Effects of potato fiber and potato-resistant starch on biomarkers of colonic health in rats fed diets containing red meat.

    Science.gov (United States)

    Paturi, Gunaranjan; Nyanhanda, Tafadzwa; Butts, Christine A; Herath, Thanuja D; Monro, John A; Ansell, Juliet

    2012-10-01

    The effects of red meat consumption with and without fermentable carbohydrates on indices of large bowel health in rats were examined. Sprague-Dawley rats were fed cellulose, potato fiber, or potato-resistant starch diets containing 12% casein for 2 wk, then similar diets containing 25% cooked beef for 6 wk. After week 8, cecal and colonic microbiota composition, fermentation end-products, colon structure, and colonocyte DNA damage were analyzed. Rats fed potato fiber had lower Bacteroides-Prevotella-Porphyromonas group compared to other diet groups. Colonic Bifidobacterium spp. and/or Lactobacillus spp. were higher in potato fiber and potato-resistant starch diets than in the cellulose diet. Beneficial changes were observed in short-chain fatty acid concentrations (acetic, butyric, and propionic acids) in rats fed potato fiber compared with rats fed cellulose. Phenol and p-cresol concentrations were lower in the cecum and colon of rats fed potato fiber. An increase in goblet cells per crypt and longer crypts were found in the colon of rats fed potato fiber and potato-resistant starch diets. Fermentable carbohydrates had no effect on colonic DNA damage. Dietary combinations of red meat with potato fiber or potato-resistant starch have distinctive effects in the large bowel. Future studies are essential to examine the efficacy of different types of nondigestible carbohydrates in maintaining colonic health during long-term consumption of high-protein diets. Improved understanding of interactions between the food consumed and gut microbiota provides knowledge needed to make healthier food choices for large bowel health. The impact of red meat on large bowel health may be ameliorated by consuming with fermentable dietary fiber, a colonic energy source that produces less harmful by-products than the microbial breakdown of colonic protein for energy. Developing functional red meat products with fermentable dietary fiber could be one way to promote a healthy and balanced

  11. Antioxidant and anti hyperglycemic role of wine grape powder in rats fed with a high fructose diet

    Directory of Open Access Journals (Sweden)

    Romina Hernández-Salinas

    2015-01-01

    Full Text Available BACKGROUND: Metabolic syndrome is a growing worldwide health problem. We evaluated the effects of wine grape powder (WGP, rich in antioxidants and fiber, in a rat model of metabolic syndrome induced by a high fructose diet. We tested whether WGP supplementation may prevent glucose intolerance and decrease oxidative stress in rats fed with a high fructose diet. METHODS: Male Sprague-Dawley rats weighing 180 g were divided into four groups according to their feeding protocols. Rats were fed with control diet (C, control plus 20 % WGP (C + WGP, 50 % high fructose (HF or 50 % fructose plus 20 % WGP (HF + WGP for 16 weeks. Blood glucose, insulin and triglycerides, weight, and arterial blood pressure were measured. Homeostasis model assessment (HOMA index was calculated using insulin and glucose values. A glucose tolerance test was performed 2 days before the end of the experiment. As an index of oxidative stress, thio-barbituric acid reactive substances (TBARS level was measured in plasma and kidney, and superoxide dismutase was measured in the kidney. RESULTS: Thiobarbituric acid reactive substances in plasma and renal tissue were significantly higher when compared to the control group. In addition, the area under the curve of the glucose tolerance test was higher in HF fed animals. Furthermore, fasting blood glucose, plasma insulin levels, and the HOMA index, were also increased. WGP supplementation prevented these alterations in rats fed with the HF diet. We did not find any significant difference in body weight or systolic blood pressure in any of the groups. CONCLUSIONS: Our results show that WGP supplementation prevented hyperglycemia, insulin resistance and reduced oxidative stress in rats fed with HF diet. We propose that WGP may be used as a supplement in human food as well.

  12. Protective effects of synbiotic diets of Bacillus coagulans, Lactobacillus plantarum and inulin against acute cadmium toxicity in rats.

    Science.gov (United States)

    Jafarpour, Dornoush; Shekarforoush, Seyed Shahram; Ghaisari, Hamid Reza; Nazifi, Saeed; Sajedianfard, Javad; Eskandari, Mohammad Hadi

    2017-06-05

    Cadmium is a heavy metal that causes oxidative stress and has toxic effects in humans. The aim of this study was to investigate the influence of two probiotics along with a prebiotic in preventing the toxic effects of cadmium in rats. Twenty-four male Wistar rats were randomly divided into four groups namely control, cadmium only, cadmium along with Lactobacillus plantarum (1 × 109 CFU/day) and inulin (5% of feedstuff) and cadmium along with Bacillus coagulans (1 × 109 spore/day) and inulin (5% of feedstuff). Cadmium treated groups received 200 μg/rat/day CdCl2 administered by gavage. During the 42-day experimental period, they were weighed weekly. For evaluation of changes in oxidative stress, the levels of some biochemicals and enzymes of serum including SOD, GPX, MDA, AST, ALT, total bilirubin, BUN and creatinine, and also SOD level of livers were measured at day 21 and 42 of treatment. The cadmium content of kidney and liver was determined by using atomic absorption mass spectrophotometry. Data were analyzed using analysis of variance (ANOVA) followed by Duncan's post hoc test. Treatment of cadmium induced rats with synbiotic diets significantly improved the liver enzymes and biochemical parameters that decreased AST, ALT, total bilirubin, BUN and metal accumulation in the liver and kidney and increased body weight, serum and liver SOD values in comparison with the cadmium-treated group. No significant differences were observed with MDA and GP X values between all groups (p > 0.05). This study showed that synbiotic diets containing probiotics (L. plantarum and B. coagulans) in combination with the prebiotic (inulin) can reduce the level of cadmium in the liver and kidney, preventing their damage and recover antioxidant enzymes in acute cadmium poisoning in rat.

  13. Postnatal treatment with metyrapone attenuates the effects of diet-induced obesity in female rats exposed to early-life stress.

    Science.gov (United States)

    Murphy, Margaret O; Herald, Joseph B; Wills, Caleb T; Unfried, Stanley G; Cohn, Dianne M; Loria, Analia S

    2017-02-01

    Experimental studies in rodents have shown that females are more susceptible to exhibiting fat expansion and metabolic disease compared with males in several models of fetal programming. This study tested the hypothesis that female rat pups exposed to maternal separation (MatSep), a model of early-life stress, display an exacerbated response to diet-induced obesity compared with male rats. Also, we tested whether the postnatal treatment with metyrapone (MTP), a corticosterone synthase inhibitor, would attenuate this phenotype. MatSep was performed in WKY offspring by separation from the dam (3 h/day, postnatal days 2-14). Upon weaning, male and female rats were placed on a normal (ND; 18% kcal fat) or high-fat diet (HFD; 60% kcal fat). Nondisturbed littermates served as controls. In male rats, no diet-induced differences in body weight (BW), glucose tolerance, and fat tissue weight and morphology were found between MatSep and control male rats. However, female MatSep rats displayed increased BW gain, fat pad weights, and glucose intolerance compared with control rats (P obesity risk factors, including elevated adiposity, hyperleptinemia, and glucose intolerance. These findings show that exposure to stress hormones during early life could be a key event to enhance diet-induced obesity and metabolic disease in female rats. Thus, pharmacological and/or behavioral inflection of the stress levels is a potential therapeutic approach for prevention of early life stress-enhanced obesity and metabolic disease. Copyright © 2017 the American Physiological Society.

  14. Analysis of time-dependent adaptations in whole-body energy balance in obesity induced by high-fat diet in rats

    Directory of Open Access Journals (Sweden)

    Maghdoori Babak

    2011-06-01

    Full Text Available Abstract Background High-fat (HF diet has been extensively used as a model to study metabolic disorders of human obesity in rodents. However, the adaptive whole-body metabolic responses that drive the development of obesity with chronically feeding a HF diet are not fully understood. Therefore, this study investigated the physiological mechanisms by which whole-body energy balance and substrate partitioning are adjusted in the course of HF diet-induced obesity. Methods Male Wistar rats were fed ad libitum either a standard or a HF diet for 8 weeks. Food intake (FI and body weight were monitored daily, while oxygen consumption, respiratory exchange ratio, physical activity, and energy expenditure (EE were assessed weekly. At week 8, fat mass and lean body mass (LBM, fatty acid oxidation and uncoupling protein-1 (UCP-1 content in brown adipose tissue (BAT, as well as acetyl-CoA carboxylase (ACC content in liver and epidydimal fat were measured. Results Within 1 week of ad libitum HF diet, rats were able to spontaneously reduce FI to precisely match energy intake of control rats, indicating that alterations in dietary energy density were rapidly detected and FI was self-regulated accordingly. Oxygen consumption was higher in HF than controls throughout the study as whole-body fat oxidation also progressively increased. In HF rats, EE initially increased, but then reduced as dark cycle ambulatory activity reached values ~38% lower than controls. No differences in LBM were detected; however, epidydimal, inguinal, and retroperitoneal fat pads were 1.85-, 1.89-, and 2.54-fold larger in HF-fed than control rats, respectively. Plasma leptin was higher in HF rats than controls throughout the study, indicating the induction of leptin resistance by HF diet. At week 8, UCP-1 content and palmitate oxidation in BAT were 3.1- and 1.5-fold higher in HF rats than controls, respectively, while ACC content in liver and epididymal fat was markedly reduced

  15. [Autophagy-lysosome pathway in skeletal muscle of diabetic nephropathy rats and the effect of low-protein diet plus α-keto acids on it].

    Science.gov (United States)

    Huang, Juan; Yuan, Wei-jie; Wang, Jia-lin; Gu, Li-jie; Yin, Jun; Dong, Ting; Bao, Jin-fang; Tang, Zhi-huan

    2013-11-26

    To explore the regulation of autophagy-lysosome pathway (ALP) in skeletal muscle of diabetic nephropathy and examine the effect of low protein diet plus α-keto acid on ALP. A total of 45 24-week-old Goto-Kakizaki rats were randomized to receive normal protein (22%) diet (NPD), low-protein (6%) diet (LPD) or low-protein (5%) plus α-keto acids (1%) diet (Keto) (n = 15 each). Wistar control rats had a normal protein diet. The mRNA and protein levels of ALP markers LC3B, Bnip3, Cathepsin L in soleus muscle were evaluated at 48 weeks. Electron microscopy was used to confirm the changes of autophagy. Compared with CTL group, the mRNA levels of LC3B, Bnip3, Cathepsin L in soleus muscle of rats on NPD were higher, and protein levels of LC3B-I, LC3B-II, Bnip3, Cathepsin L in soleus muscle of rats on NPD also higher than CTL group (0.82 ± 0.33 vs 0.25 ± 0.07, 0.76 ± 0.38 vs 0.20 ± 0.12, 1.25 ± 0.30 vs 0.56 ± 0.19, 1.29 ± 0.40 vs 0.69 ± 0.20). The mRNA levels of LC3B, Bnip3 and Cathepsin L in LPD group were slightly lower, compared with NPD group. However there was no statistical significance. Similarly the protein levels of LC3B-I, LC3B-II, Bnip3 and Cathepsin L in LPD group were slightly lower with no statistical significance. In contrast, the mRNA levels of LC3B, Bnip3 and Cathepsin L were greatly lower in Keto group in comparison with NPD and LPD. And protein levels of LC3B-I, LC3B-II, Bnip3 and Cathepsin L were also greatly lower in Keto group in comparison with NPD and LPD. Additionally, autophagosome or auto-lysosome was found in NPD and LPD groups by electron microscopy. ALP is activated in skeletal muscle of diabetic nephropathy rats. And low protein plus α-keto acid decrease the activation of ALP and improve muscle wasting.

  16. Age-dependent effect of high cholesterol diets on anxiety-like behavior in elevated plus maze test in rats.

    Science.gov (United States)

    Hu, Xu; Wang, Tao; Luo, Jia; Liang, Shan; Li, Wei; Wu, Xiaoli; Jin, Feng; Wang, Li

    2014-09-01

    Cholesterol is an essential component of brain and nerve cells and is essential for maintaining the function of the nervous system. Epidemiological studies showed that patients suffering from anxiety disorders have higher serum cholesterol levels. In this study, we investigated the influence of high cholesterol diet on anxiety-like behavior in elevated plus maze in animal model and explored the relationship between cholesterol and anxiety-like behavior from the aspect of central neurochemical changes. Young (3 weeks old) and adult (20 weeks old) rats were given a high cholesterol diet for 8 weeks. The anxiety-like behavior in elevated plus maze test and changes of central neurochemical implicated in anxiety were measured. In young rats, high cholesterol diet induced anxiolytic-like behavior, decreased serum corticosterone (CORT), increased hippocampal brain-derived neurotrophic factor (BDNF), increased hippocampal mineralocorticoid receptor (MR) and decreased glucocorticoid receptor (GR). In adult rats, high cholesterol diet induced anxiety-like behavior and increase of serum CORT and decrease of hippocampal BDNF comparing with their respective control group that fed the regular diet. High cholesterol diet induced age-dependent effects on anxiety-like behavior and central neurochemical changes. High cholesterol diet might affect the central nervous system (CNS) function differently, and resulting in different behavior performance of anxiety in different age period.

  17. Comparison of growth, nitrogen metabolism and organ weights in piglets and rats fed on diets containing Phaseolus vulgaris beans

    NARCIS (Netherlands)

    Huisman, J.; Poel, A.F.B. van der; Leeuwen, P. van; Verstegen, M.W.A.

    1990-01-01

    The effects of lectins in the diet have been mainly studied in rats. An important question is whether results obtained in rats can be extrapolated to larger animals like the pig. Phaseolus vulgaris beans are rich in toxic lectins. Therefore a study was carried out to compare the effects of diets

  18. The biochemical changes in hippocampal formation occurring in normal and seizure experiencing rats as a result of a ketogenic diet.

    Science.gov (United States)

    Chwiej, Joanna; Skoczen, Agnieszka; Janeczko, Krzysztof; Kutorasinska, Justyna; Matusiak, Katarzyna; Figiel, Henryk; Dumas, Paul; Sandt, Christophe; Setkowicz, Zuzanna

    2015-04-07

    In this study, ketogenic diet-induced biochemical changes occurring in normal and epileptic hippocampal formations were compared. Four groups of rats were analyzed, namely seizure experiencing animals and normal rats previously fed with ketogenic (KSE and K groups respectively) or standard laboratory diet (NSE and N groups respectively). Synchrotron radiation based Fourier-transform infrared microspectroscopy was used for the analysis of distributions of the main organic components (proteins, lipids, compounds containing phosphate group(s)) and their structural modifications as well as anomalies in creatine accumulation with micrometer spatial resolution. Infrared spectra recorded in the molecular layers of the dentate gyrus (DG) areas of normal rats on a ketogenic diet (K) presented increased intensity of the 1740 cm(-1) absorption band. This originates from the stretching vibrations of carbonyl groups and probably reflects increased accumulation of ketone bodies occurring in animals on a high fat diet compared to those fed with a standard laboratory diet (N). The comparison of K and N groups showed, moreover, elevated ratios of absorbance at 1634 and 1658 cm(-1) for DG internal layers and increased accumulation of creatine deposits in sector 3 of the Ammon's horn (CA3) hippocampal area of ketogenic diet fed rats. In multiform and internal layers of CA3, seizure experiencing animals on ketogenic diet (KSE) presented a lower ratio of absorbance at 1634 and 1658 cm(-1) compared to rats on standard laboratory diet (NSE). Moreover, in some of the examined cellular layers, the increased intensity of the 2924 cm(-1) lipid band as well as the massifs of 2800-3000 cm(-1) and 1360-1480 cm(-1), was found in KSE compared to NSE animals. The intensity of the 1740 cm(-1) band was diminished in DG molecular layers of KSE rats. The ketogenic diet did not modify the seizure induced anomalies in the unsaturation level of lipids or the number of creatine deposits.

  19. High-fructose diet during periadolescent development increases depressive-like behavior and remodels the hypothalamic transcriptome in male rats

    Science.gov (United States)

    Harrell, Constance S.; Burgado, Jillybeth; Kelly, Sean D.; Johnson, Zachary P.; Neigh, Gretchen N.

    2015-01-01

    Fructose consumption, which promotes insulin resistance, hypertension, and dyslipidemia, has increased by over 25% since the 1970s. In addition to metabolic dysregulation, fructose ingestion stimulates the hypothalamic-pituitary-adrenal (HPA) axis leading to elevations in glucocorticoids. Adolescents are the greatest consumers of fructose, and adolescence is a critical period for maturation of the HPA axis. Repeated consumption of high levels of fructose during adolescence has the potential to promote long-term dysregulation of the stress response. Therefore, we determined the extent to which consumption of a diet high in fructose affected behavior, serum corticosterone, and hypothalamic gene expression using a whole-transcriptomics approach. In addition, we examined the potential of a high-fructose diet to interact with exposure to chronic adolescent stress. Male Wistar rats fed the periadolescent high-fructose diet showed increased anxiety-like behavior in the elevated plus maze and depressive-like behavior in the forced swim test in adulthood, irrespective of stress history. Periadolescent fructose-fed rats also exhibited elevated basal corticosterone concentrations relative to their chow-fed peers. These behavioral and hormonal responses to the high-fructose diet did not occur in rats fed fructose during adulthood only. Finally, rats fed the high-fructose diet throughout development underwent marked hypothalamic transcript expression remodeling, with 966 genes (5.6%) significantly altered and a pronounced enrichment of significantly altered transcripts in several pathways relating to regulation of the HPA axis. Collectively, the data presented herein indicate that diet, specifically one high in fructose, has the potential to alter behavior, HPA axis function, and the hypothalamic transcriptome in male rats. PMID:26356038

  20. Adaptation to a high protein, carbohydrate-free diet induces a marked reduction of fatty acid synthesis and lipogenic enzymes in rat adipose tissue that is rapidly reverted by a balanced diet.

    Science.gov (United States)

    Brito, S M R C; Moura, M A F; Kawashita, N H; Festuccia, W T L; Garófalo, M A R; Kettelhut, I C; Migliorini, R H

    2005-06-01

    We have previously shown that in vivo lipogenesis is markedly reduced in liver, carcass, and in 4 different depots of adipose tissue of rats adapted to a high protein, carbohydrate-free (HP) diet. In the present work, we investigate the activity of enzymes involved in lipogenesis in the epididymal adipose tissue (EPI) of rats adapted to an HP diet before and 12 h after a balanced diet was introduced. Rats fed an HP diet for 15 days showed a 60% reduction of EPI fatty acid synthesis in vivo that was accompanied by 45%-55% decreases in the activities of pyruvate dehydrogenase complex, ATP-citrate lyase, acetyl-CoA carboxylase, glucose-6-phosphate dehydrogenase, and malic enzyme. Reversion to a balanced diet for 12 h resulted in a normalization of in vivo EPI lipogenesis, and in a restoration of acetyl-CoA carboxylase activity to levels that did not differ significantly from control values. The activities of ATP-citrate lyase and pyruvate dehydrogenase complex increased to about 75%-86% of control values, but the activities of glucose-6-phosphate dehydrogenase and malic enzyme remained unchanged 12 h after diet reversion. The data indicate that in rats, the adjustment of adipose tissue lipogenic activity is an important component of the metabolic adaptation to different nutritional conditions.

  1. Effects of diuron on male rat reproductive organs: a developmental and postnatal study.

    Science.gov (United States)

    Fernandes, Glaura S A; Favareto, Ana Paula A; Fernandez, Carla D B; Bellentani, Fernanda F; Arena, Arielle C; Grassi, Tony F; Kempinas, Wilma G; Barbisan, Luís F

    2012-01-01

    This study was performed to determine whether developmental exposure (perinatal and juvenile) to the herbicide diuron exerted adverse effects on adult rat male reproductive system. Pregnant Sprague-Dawley rats received basal diet or diet containing diuron at 500 or 750 ppm from gestational day 12 (GD 12) until the end of lactation period (postnatal day 21, PND 21). After weaning male offspring received basal diet or diet containing diuron until PND 42 (peripubertal age). At PND 90, adult male rats from each experimental group were anesthetized and euthanized for evaluation of body and reproductive organ weights, sperm parameters, plasma testosterone levels, and testicular and epididymal histopathology. Male offspring exposed to diuron at 750 ppm displayed reduced body weight at PND 10, 21, 42, and 90 compared to controls. At PND 90, diuron treatment did not induce significant change in daily sperm production, sperm morphology and motility, and testosterone levels compared to controls. In conclusion, diuron at 750 ppm induced male offspring toxicity but these alterations were not permanent, as evidenced by absence of reproductive-system alterations in adult Sprague Dawley rats.

  2. Effects of multi-deficiencies-diet on bone parameters of peripheral bone in ovariectomized mature rat.

    Directory of Open Access Journals (Sweden)

    Thaqif El Khassawna

    Full Text Available Many postmenopausal women have vitamin D and calcium deficiency. Therefore, vitamin D and calcium supplementation is recommended for all patients with osteopenia and osteoporosis. We used an experimental rat model to test the hypothesis that induction of osteoporosis is more efficiently achieved in peripheral bone through combining ovariectomy with a unique multi-deficiencies diet (vitamin D depletion and deficient calcium, vitamin K and phosphorus. 14-week-old Sprague-Dawley rats served as controls to examine the initial bone status. 11 rats were bilaterally ovariectomized (OVX and fed with multi-deficiencies diet. Three months later the treated group and the Sham group (n = 8 were euthanized. Bone biomechanical competence of the diaphyseal bone was examined on both, tibia and femur. Image analysis was performed on tibia via µCT, and on femur via histological analysis. Lower torsional stiffness indicated inferior mechanical competence of the tibia in 3 month OVX+Diet. Proximal metaphyseal region of the tibia showed a diminished bone tissue portion to total tissue in the µCT despite the increased total area as evaluated in both µCT and histology. Cortical bone showed higher porosity and smaller cross sectional thickness of the tibial diaphysis in the OVX+Diet rats. A lower ALP positive area and elevated serum level of RANKL exhibited the unbalanced cellular interaction in bone remodeling in the OVX+Diet rat after 3 month of treatment. Interestingly, more adipose tissue area in bone marrow indicated an effect of bone loss similar to that observed in osteoporotic patients. Nonetheless, the presence of osteoid and elevated serum level of PTH, BGP and Opn suggest the development of osteomalacia rather than an osteoporosis. As the treatment and fracture management of both osteoporotic and osteomalacia patients are clinically overlapping, this study provides a preclinical animal model to be utilized in local supplementation of minerals, drugs

  3. Effects of multi-deficiencies-diet on bone parameters of peripheral bone in ovariectomized mature rat.

    Science.gov (United States)

    El Khassawna, Thaqif; Böcker, Wolfgang; Govindarajan, Parameswari; Schliefke, Nathalie; Hürter, Britta; Kampschulte, Marian; Schlewitz, Gudrun; Alt, Volker; Lips, Katrin Susanne; Faulenbach, Miriam; Möllmann, Henriette; Zahner, Daniel; Dürselen, Lutz; Ignatius, Anita; Bauer, Natali; Wenisch, Sabine; Langheinrich, Alexander Claus; Schnettler, Reinhard; Heiss, Christian

    2013-01-01

    Many postmenopausal women have vitamin D and calcium deficiency. Therefore, vitamin D and calcium supplementation is recommended for all patients with osteopenia and osteoporosis. We used an experimental rat model to test the hypothesis that induction of osteoporosis is more efficiently achieved in peripheral bone through combining ovariectomy with a unique multi-deficiencies diet (vitamin D depletion and deficient calcium, vitamin K and phosphorus). 14-week-old Sprague-Dawley rats served as controls to examine the initial bone status. 11 rats were bilaterally ovariectomized (OVX) and fed with multi-deficiencies diet. Three months later the treated group and the Sham group (n = 8) were euthanized. Bone biomechanical competence of the diaphyseal bone was examined on both, tibia and femur. Image analysis was performed on tibia via µCT, and on femur via histological analysis. Lower torsional stiffness indicated inferior mechanical competence of the tibia in 3 month OVX+Diet. Proximal metaphyseal region of the tibia showed a diminished bone tissue portion to total tissue in the µCT despite the increased total area as evaluated in both µCT and histology. Cortical bone showed higher porosity and smaller cross sectional thickness of the tibial diaphysis in the OVX+Diet rats. A lower ALP positive area and elevated serum level of RANKL exhibited the unbalanced cellular interaction in bone remodeling in the OVX+Diet rat after 3 month of treatment. Interestingly, more adipose tissue area in bone marrow indicated an effect of bone loss similar to that observed in osteoporotic patients. Nonetheless, the presence of osteoid and elevated serum level of PTH, BGP and Opn suggest the development of osteomalacia rather than an osteoporosis. As the treatment and fracture management of both osteoporotic and osteomalacia patients are clinically overlapping, this study provides a preclinical animal model to be utilized in local supplementation of minerals, drugs and growth factors

  4. Fibrogenic response of hepatic stellate cells in ovariectomised rats exposed to ketogenic diet.

    Science.gov (United States)

    Bobowiec, R; Wojcik, M; Jaworska-Adamu, J; Tusinska, E

    2013-02-01

    The discrepancy about the role of estrogens in hepatic fibrogenesis and lack of studies addressed of ketogenic diet (KD) on hepatic stellate cells (HSC), prompted us to investigate the activity of HSC in control, KD- and thioacetamide (TAA)-administrated rats with different plasma concentration of estradiol (E2). HSC were isolated by the collagenase perfusion methods and separated by the Percoll gradient centrifugation. After the 4(th) and 8(th) day of incubation, lysates of HSC and the media were collected for further analysis. The HSC derived from KD-rats released remarkably more transforming growth factor (TGF)-β1 than cells obtained from animals fed with a standard diet. The ovariectomy of KD-rats markedly intensified the secretion of this fibrogenic cytokine on the 8(th) day of incubation (201.33 ±1 7.15 pg/ml). In HSC of rats exposed to E2, the TGF-β1 concentration did not exceed 157 ± 34.39 pg/ml. In respect to the collagen type I, the HSC obtained from ovariectomised KD-rats released an augmented amount of this ECM protein after the 8(th) day of culture (1.83 ± 0.14 U/ml). In the same time, higher quantities of ASMA appeared in the KD rats (1.41 ± 0.3 pg/mg protein). Exposition of rats to E2 did not markedly decrease the amount of ASMA. In summary, KD was able to induce morphological and functional changes in HSC, especially derived from rats deprived of ovarian estrogens. However, the preservation of E2 in ovariectomised rats didn't substantially alter the activation of HSC.

  5. Feeding blueberry diets to young rats dose-dependently inhibits bone resorption through suppression of RANKL in stromal cells.

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    Full Text Available Previous studies have demonstrated that weanling rats fed AIN-93G semi-purified diets supplemented with 10% whole blueberry (BB powder for two weeks beginning on postnatal day 21 (PND21 significantly increased bone formation at PND35. However, the minimal level of dietary BB needed to produce these effects is, as yet, unknown. The current study examined the effects of three different levels of BB diet supplementation (1, 3, and 5% for 35 days beginning on PND25 on bone quality, and osteoclastic bone resorption in female rats. Peripheral quantitative CT scan (pQCT of tibia, demonstrated that bone mineral density (BMD and content (BMC were dose-dependently increased in BB-fed rats compared to controls (P<0.05. Significantly increased bone mass after feeding 5% BB extracts was also observed in a TEN (total enteral nutrition rat model in which daily caloric and food intake was precisely controlled. Expression of RANKL (receptor activator of nuclear factor-κB ligand a protein essential for osteoclast formation was dose-dependently decreased in the femur of BB animals. In addition, expression of PPARγ (peroxisome proliferator-activated receptor γ which regulates bone marrow adipogenesis was suppressed in BB diet rats compared to non-BB diet controls. Finally, a set of in vitro cell cultures revealed that the inhibitory effect of BB diet rat serum on RANKL expression was more profound in mesenchymal stromal cells compared to its effect on mature osteoblasts, pre-adipocytes and osteocytes. These results suggest that inhibition of bone resorption may contribute to increased bone mass during early development after BB consumption.

  6. Maternal Melatonin Therapy Rescues Prenatal Dexamethasone and Postnatal High-Fat Diet Induced Programmed Hypertension in Male Rat Offspring

    Directory of Open Access Journals (Sweden)

    You-Lin eTain

    2015-12-01

    Full Text Available Prenatal dexamethasone (DEX exposure and high-fat (HF intake are linked to hypertension. We examined whether maternal melatonin therapy prevents programmed hypertension synergistically induced by prenatal DEX plus postnatal HF in adult offspring. We also examined whether DEX and melatonin causes renal programming using next-generation RNA sequencing (NGS technology. Pregnant Sprague-Dawley rats received intraperitoneal dexamethasone (0.1 mg/kg or vehicle from gestational day 16 to 22. In the melatonin-treatment groups (M, rats received 0.01% melatonin in drinking water during their entire pregnancy and lactation. Male offspring were assigned to five groups: control, DEX, HF, DEX+HF, and DEX+HF+M. Male offspring in the HF group were fed a HF diet from weaning to 4 months of age. Prenatal DEX and postnatal HF diet synergistically induced programmed hypertension in adult offspring, which melatonin prevented. Maternal melatonin treatment modified over 3000 renal transcripts in the developing offspring kidney. Our NGS data indicate that PPAR signaling and fatty acid metabolism are two significantly regulated pathways. In addition, maternal melatonin therapy elicits longstanding alterations on renal programming, including regulation of the melatonin signaling pathway and upregulation of Agtr1b and Mas1 expression in the renin-angiotensin system (RAS, to protect male offspring against programmed hypertension. Postnatal HF aggravates prenatal DEX induced programmed hypertension in adult offspring, which melatonin prevented. The protective effects of melatonin on programmed hypertension is associated with regulation of the RAS and melatonin receptors. The long-term effects of maternal melatonin therapy on renal transcriptome require further clarification.

  7. Moderate red-wine consumption partially prevents body weight gain in rats fed a hyperlipidic diet.

    Science.gov (United States)

    Vadillo, Montserrat; Bargalló, Montserrat Vadillo; Ardévol, Anna; Grau, Anna Ardévol; Fernández-Larrea, Juan; Fernández-Larrea, Juan de Dios; Pujadas, Gerard; Anguiano, Gerard Pujadas; Bladé, Cinta; Segarra, Maria Cinta Bladé; Salvadó, Maria Josepa; Rovira, Maria Josepa Salvadó; Arola, Lluís; Ferré, Lluia Arola; Blay, Mayte; Olivé, Mayte Blay

    2006-02-01

    Red wine is a beverage that can exert a broad spectrum of health-promoting actions both in humans and laboratory animal models if consumed moderately. However, information about its effect on body weight is scarce. We have evaluated the effect of moderate red wine consumption on body weight and energy intake in male Zucker lean rats fed a hypercaloric diet for 8 weeks. For this purpose, we used three 5-animal groups: a high-fat diet group (HFD), a high-fat-diet red-wine-drinking group (HFRWD), and a standard diet group (SD). After 8 weeks, the HFRWD group had a lower body weight gain (175.66 +/- 2.78% vs 188.22 +/- 4.83%; Pred wine didn't modified the fed efficiency 0.012 +/- 0.001 g/KJ for HFRWD group versus 0.013 +/- 0.001 g/KJ for the HFD one (P=.080). These findings, though preliminary, show that moderate red wine intake can prevent the increase of body weight by modulating energy intake in a rat diet-induced model of obesity.

  8. Efficacy of lycopene on modulation of renal antioxidant enzymes, ACE and ACE gene expression in hyperlipidaemic rats.

    Science.gov (United States)

    Khan, Nazish Iqbal; Noori, Shafaq; Mahboob, Tabassum

    2016-07-01

    We aimed to evaluate the efficacy of lycopene on renal tissue antioxidant enzymes and angiotensin converting enzyme (ACE) gene expression and serum activity in diet-induced hyperlipidaemia. Thirty-two female Wistar albino rats (200-250 g weight), 5-6 months of age, were randomly selected and divided into four groups. Group I received normal diet; group II received 24 g high fat diet/100 g of daily diet; group III received 24 g high fat diet/100 g daily diet and 200 ml of lycopene extract (twice a week) for 8 weeks; and group IV received 200 ml oral lycopene extract twice a week for 8 weeks. A marked increase was observed in plasma urea and creatinine levels, serum C-reactive protein, kidney weight, tissue renal malonyldialdehyde level, ACE gene expression and serum level, while a decrease catalase level among hyperlipidaemic rats was observed. Histologically, interstitial inflammation and proliferation was seen. Lycopene supplementation significantly decreased plasma urea and creatinine, serum ACE, renal tissue malonyldialdehyde level and C-reactive protein level, while it increased tissue antioxidant enzymes level and total protein. Tissue inflammation and proliferation was improved. This finding suggests that supplementation of lycopene is effective for renal antioxidant enzymes, ACE gene expression and ACE serum level in hyperlipidaemic rats. © The Author(s) 2016.

  9. Developmental programming of aortic and renal structure in offspring of rats fed fat-rich diets in pregnancy

    DEFF Research Database (Denmark)

    Armitage, James A.; Lakasing, Lorin; Taylor, Paul D.

    2005-01-01

    Evidence from human and animal studies suggests that maternal nutrition can induce developmental programming of adult hypertension in offspring. We have previously described a model of maternal dietary imbalance in Sprague-Dawley rats whereby administration of a maternal diet rich in animal lard......-Dawley rats fed a control diet (OC) or lard-rich diet (OHF) during pregnancy and suckling followed by a control diet post-weaning. To gain further insight, we assessed aortic reactivity and elasticity in an organ bath preparation and renal renin and Na+,K+-ATPase activity. Plasma aldosterone concentration...... weight, glomerular number or volume in OHF compared with OC, but renin and Na+,K+-ATPase activity were significantly reduced in OHF compared with controls. Programmed alterations to aortic structure and function are consistent with previous observations that exposure to maternal high fat diets produces...

  10. Effect of diet composition and mixture of selected food additives on the erythrocytic system and iron metabolism in peripheral blood of male rats.

    Science.gov (United States)

    Sadowska, Joanna; Kuchlewska, Magdalena

    2011-01-01

    Metabolic processes of food additives which are "exogenous xenobiotics" are catalysed, primarily, by enzymes located in microsomes of hepatocytes affiliated to P-450 cytochrome superfamily, containing iron. The aim of the study was to investigate the effect of diet composition and selected food additives on the erythrocyte system and iron metabolism in peripheral blood of male rats. The experiment was carried out on 30 male rats sorted into three equinumerous groups. For drinking animals received pure, settled tap water, animals from group III were receiving additionally an aqueous solution of sodium (nitrate), potassium nitrite, benzoic acid, sorbic acid and monosodium glutamate. Ascertained a significant effect of changes in diet composition on the increase in hematocrit marker value and the count of red blood cells in blood of animals examined. Used food additives diminished hemoglobin concentration, hematocrit value and red blood cell count, diminishing also iron concentration in serum, the total iron binding capacity and transferrin saturation with iron. Analysis of the results allowed ascertain adverse changes in values of the erythrocytic system markers, occurring under the influence of the applied mixture of food additives. Used food additives change the iron metabolism, most likely from the necessity of applied xenobiotics biotransformation by heme-containing monoxygenases of P-450 cytochrome.

  11. Herbal Formula HT048 Attenuates Diet-Induced Obesity by Improving Hepatic Lipid Metabolism and Insulin Resistance in Obese Rats

    Directory of Open Access Journals (Sweden)

    Yoon Hee Lee

    2016-10-01

    Full Text Available It is well established that obesity causes a variety of chronic diseases such as cardiovascular diseases and diabetes. Despite the diligent scientific efforts to find effective ways to lower the level of obesity, the size of obese population grows continuously around the world. Here we present the results that show feeding diet containing HT048, a mixture of the extracts of Crataegus pinnatifida leaves and Citrus unshiu peel, two of the well-known traditional herbal medicines in Eastern Asia, decreases obesity in rats. We fed rats with five different diets for 10 weeks: chow diet (STD, high-fat diet (HFD, high-fat diet with 0.04% orlistat, a drug to treat obesity (HFD + Orlistat, high-fat diet with 0.2% HT048 (w/w; HFD + 0.2% HT048, and high-fat diet with 0.6% HT048 (w/w; HFD + 0.6% HT048. It was found that both body and total white adipose tissue weight of HT048 groups significantly decreased compared to those of the HFD group. Moreover, HT048 decreased serum insulin levels in HFD-fed obese rats. At the molecular level, HT048 supplementation downregulated genes involved in lipogenesis, gluconeogenesis, and adipogenesis, while the expression level of β-oxidation genes was increased. Supplementation-drug interactions are not likely as HFD and HT048-containing diet did not significantly induce genes encoding CYPs. Collectively, this study suggests that HT048 taken as dietary supplement helps to decrease obesity and insulin resistance in HFD-fed obese rats.

  12. Estrogen restores brain insulin sensitivity in ovariectomized non-obese rats, but not in ovariectomized obese rats.

    Science.gov (United States)

    Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2014-06-01

    We previously demonstrated that obesity caused the reduction of peripheral and brain insulin sensitivity and that estrogen therapy improved these defects. However, the beneficial effect of estrogen on brain insulin sensitivity and oxidative stress in either ovariectomy alone or ovariectomy with obesity models has not been determined. We hypothesized that ovariectomy alone or ovariectomy with obesity reduces brain insulin sensitivity and increases brain oxidative stress, which are reversed by estrogen treatment. Thirty female rats were assigned as either sham-operated or ovariectomized. After the surgery, each group was fed either a normal diet or high-fat diet for 12 weeks. At week 13, rats in each group received either the vehicle or estradiol for 30 days. At week 16, blood and brain were collected for determining the peripheral and brain insulin sensitivity as well as brain oxidative stress. We found that ovariectomized rats and high-fat diet fed rats incurred obesity, reduced peripheral and brain insulin sensitivity, and increased brain oxidative stress. Estrogen ameliorated peripheral insulin sensitivity in these rats. However, the beneficial effect of estrogen on brain insulin sensitivity and brain oxidative stress was observed only in ovariectomized normal diet-fed rats, but not in ovariectomized high fat diet-fed rats. Our results suggested that reduced brain insulin sensitivity and increased brain oxidative stress occurred after either ovariectomy or obesity. However, the reduced brain insulin sensitivity and the increased brain oxidative stress in ovariectomy with obesity could not be ameliorated by estrogen treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Comparative evaluation of the hypolipidemic effects of coconut water and lovastatin in rats fed fat-cholesterol enriched diet.

    Science.gov (United States)

    Sandhya, V G; Rajamohan, T

    2008-12-01

    The coconut water presents a series of nutritional and therapeutic properties, being a natural, acid and sterile solution, which contains several biologically active components, l-arginine, ascorbic acid, minerals such as calcium, magnesium and potassium, which have beneficial effects on lipid levels. Recent studies in our laboratory showed that both tender and mature coconut water feeding significantly (Pcholesterol fed rats [Sandhya, V.G., Rajamohan, T., 2006. Beneficial effects of coconut water feeding on lipid metabolism in cholesterol fed rats. J. Med. Food 9, 400-407]. The current study evaluated the hypolipidemic effect of coconut water (4ml/100g body weight) with a lipid lowering drug, lovastatin (0.1/100g diet) in rats fed fat-cholesterol enriched diet ad libitum for 45 days. Coconut water or lovastatin supplementation lowered the levels of serum total cholesterol, VLDL+LDL cholesterol, triglycerides and increased HDL cholesterol in experimental rats (Pcholesterol in the liver were higher in coconut water treated rats. Coconut water supplementation increased hepatic bile acid and fecal bile acids and neutral sterols (Pcholesterol enriched diet.

  14. Impact of Diet Composition in Adult Offspring is Dependent on Maternal Diet during Pregnancy and Lactation in Rats

    Directory of Open Access Journals (Sweden)

    Megan C. Hallam

    2016-01-01

    Full Text Available The Thrifty Phenotype Hypothesis proposes that the fetus takes cues from the maternal environment to predict its postnatal environment. A mismatch between the predicted and actual environments precipitates an increased risk of chronic disease. Our objective was to determine if, following a high fat, high sucrose (HFS diet challenge in adulthood, re-matching offspring to their maternal gestational diet would improve metabolic health more so than if there was no previous exposure to that diet. Animals re-matched to a high prebiotic fiber diet (HF had lower body weight and adiposity than animals re-matched to a high protein (HP or control (C diet and also had increased levels of the satiety hormones GLP-1 and PYY (p < 0.05. Control animals, whether maintained throughout the study on AIN-93M, or continued on HFS rather than reverting back to AIN-93M, did not differ from each other in body weight or adiposity. Overall, the HF diet was associated with the most beneficial metabolic phenotype (body fat, glucose control, satiety hormones. The HP diet, as per our previous work, had detrimental effects on body weight and adiposity. Findings in control rats suggest that the obesogenic potential of the powdered AIN-93 diet warrants investigation.

  15. High doses of garlic extract significantly attenuated the ratio of serum LDL to HDL level in rat-fed with hypercholesterolemia diet.

    Science.gov (United States)

    Ebrahimi, Tahereh; Behdad, Behnoosh; Abbasi, Maryam Agha; Rabati, Rahman Ghaffarzadegan; Fayyaz, Amir Farshid; Behnod, Vahid; Asgari, Ali

    2015-06-20

    Hypercholesterolemia is associated with an increased risk of heart disease. In this study, we investigated the antihyperlipidemic effects of garlic (Allium sativum L.) in rat models of hypercholesterolemic. Wistar male rats were randomly divided into 4 diet groups with garlic supplementation. Male Wistar rats were fed by standard pellet diet (group I), standard diet supplemented with 4% garlic (group II), lipogenic diet (containing sunflower oil, cholesterol and ethanol) equivalent to 200 mg raw garlic/kg body weight (raw) (group III) and lipogenic diet equivalent to 400 mg raw garlic/kg body weight (raw) (group IV). Rats fed 400 g/kg garlic extract(GE), had a significantly lower concentration of serum low-density lipoprotein cholesterol (LDL-C) cholesterol and elevated HDL -C cholesterol at day 28 (P garlic supplementation (P garlic in reducing lateral side effects of hyperlipidemia. Our data demonstrate that GE has protective effects on HDL in rats with high LDL intake. Therefore, it could be used to remedy hypercholesterolemia with help reduce risk of coronary heart disease The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1834155749171141.

  16. High-protein diet improves sensitivity to cholecystokinin and shifts the cecal microbiome without altering brain inflammation in diet-induced obesity in rats.

    Science.gov (United States)

    Wang, Lixin; Jacobs, Jonathan P; Lagishetty, Venu; Yuan, Pu-Qing; Wu, Shuping V; Million, Mulugeta; Reeve, Joseph R; Pisegna, Joseph R; Taché, Yvette

    2017-10-01

    High-protein diet (HPD) curtails obesity and/or fat mass, but it is unknown whether it reverses neuroinflammation or alters glucose levels, CCK sensitivity, and gut microbiome in rats fed a Western diet (WD)-induced obesity (DIO). Male rats fed a WD (high fat and sugar) for 12 wk were switched to a HPD for 6 wk. Body composition, food intake, meal pattern, sensitivity to intraperitoneal CCK-8S, blood glucose, brain signaling, and cecal microbiota were assessed. When compared with a normal diet, WD increased body weight (9.3%) and fat mass (73.4%). CCK-8S (1.8 or 5.2 nmol/kg) did not alter food intake and meal pattern in DIO rats. Switching to a HPD for 6 wk reduced fat mass (15.7%) with a nonsignificantly reduced body weight gain, normalized blood glucose, and decreased feeding after CCK-8S. DIO rats on the WD or switched to a HPD showed comparable microbial diversity. However, in HPD versus WD rats, there was enrichment of 114 operational taxonomic units (OTUs) and depletion of 188 OTUs. Of those, Akkermansia muciniphila (enriched on a HPD), an unclassified Clostridiales, a member of the RF39 order, and a Phascolarctobacterium were significantly associated with fat mass. The WD increased cytokine expression in the hypothalamus and dorsal medulla that was unchanged by switching to HPD. These data indicate that HPD reduces body fat and restores glucose homeostasis and CCK sensitivity, while not modifying brain inflammation. In addition, expansion of cecal Akkermansia muciniphila correlated to fat mass loss may represent a potential peripheral mechanism of HPD beneficial effects.

  17. Effect of Cocoa Butter and Sunflower Oil Supplementation on Performance, Immunoglobulin, and Antioxidant Vitamin Status of Rats

    OpenAIRE

    Ebru Yıldırım; Miyase Çınar; İlkay Yalçınkaya; Hüsamettin Ekici; Nurgül Atmaca; Enes Güncüm

    2014-01-01

    This study investigated the effects of cocoa butter and sunflower oil alone and in combination on performance, some biochemical parameters, immunoglobulin, and antioxidant vitamin status in Wistar rats. Forty-eight male rats were assigned to four groups, consisting of 12 rats with 3 replicates. Control received balanced rat diet without oil, cocoa butter group received 3.5% cocoa butter, sunflower oil group received 3.5% sunflower oil, the last group received 1.75% sunflower oil + 1.75% cocoa...

  18. High Temperature- and High Pressure-Processed Garlic Improves Lipid Profiles in Rats Fed High Cholesterol Diets

    Science.gov (United States)

    Sohn, Chan Wok; Kim, Hyunae; You, Bo Ram; Kim, Min Jee; Kim, Hyo Jin; Lee, Ji Yeon; Sok, Dai-Eun; Kim, Jin Hee; Lee, Kun Jong

    2012-01-01

    Abstract Garlic protects against degenerative diseases such as hyperlipidemia and cardiovascular diseases. However, raw garlic has a strong pungency, which is unpleasant. In this study, we examined the effect of high temperature/high pressure-processed garlic on plasma lipid profiles in rats. Sprague–Dawley rats were fed a normal control diet, a high cholesterol (0.5% cholesterol) diet (HCD) only, or a high cholesterol diet supplemented with 0.5% high temperature/high pressure-processed garlic (HCP) or raw garlic (HCR) for 10 weeks. The body weights of the rats fed the garlic-supplemented diets decreased, mostly because of reduced fat pad weights. Plasma levels of total cholesterol (TC), low-density lipoprotein cholesterol, and triglyceride (TG) in the HCP and HCR groups decreased significantly compared with those in the HCD group. Additionally, fecal TC and TG increased significantly in the HCP and HCR groups. It is notable that no significant differences in plasma or fecal lipid profiles were observed between the HCP and HCR groups. High temperature/high pressure-processed garlic contained a higher amount of S-allyl cysteine than raw garlic (Pgarlic may be useful as a functional food to improve lipid profiles. PMID:22404600

  19. Effect of dietary supplementation with olive and sunflower oils on lipid profile and liver histology in rats fed high cholesterol diet.

    Science.gov (United States)

    Duavy, Sandra Mara Pimentel; Salazar, Gerson Javier Torres; Leite, Gerlânia de Oliveira; Ecker, Assis; Barbosa, Nilda Vargas

    2017-06-01

    To compare the effects of high-monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA) against the metabolic disorders elicited by a high-cholesterol diet (HC) in rats. Using in vivo dietary manipulation, rats were fed with different diets containing 4% soybean oil (cholesterol free diet) and 1% HC containing 12% olive oil (HC + OO) enriched with MUFA and 12% sunflower oil (HC + SO) enriched with PUFA for 60 d. Serum lipid levels and hepatic steatosis were evaluated after the treatment period. Comparatively, rats treated with HC + OO diet experienced a decrease in the serum LDL-C, VLDL-C and CT levels compared to those fed with HC + SO diet (P blood. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  20. Influence of various carbohydrates on the utilization of low protein diet by the adult rat

    International Nuclear Information System (INIS)

    Khan, M. Akmal.

    1975-01-01

    The effect of different dietary carbohydrates on food intake, body weight and nitrogen balance of adult rats fed 5 per cent protein diet ad-libitum for 14, 24, and 45 days or restricted to 70 per cent of their normal food intake for 10 and 31 days was studied. No significant difference in food intake and body weight on either of treatments was observed. Nitrogen balance studies indicated that rats fed ad-libitum or restricted diet having starch as a source of dietary carbohydrate utilized nitrogen more efficiently than sucrose fed animals. Possible explanations have been discussed. Regression equations were calculated and it was found from the regression lines that minimum calories and nitrogen intake to maintain nitrogen equilibrium under experimental conditions were 123 kcal and 270 mg N per kg 3/4/day on starch based diet compared with 136 kcal and 295 mg N per kg 3/4/day on sucrose diet respectively

  1. Prevention of diet-induced obesity in rats by oral application of collagen fragments

    Directory of Open Access Journals (Sweden)

    Raksha Nataliia G.

    2018-01-01

    Full Text Available The aim of the present study was to determine whether orally applied collagen fragments (CFs could affect the development of obesity in obese rats. To this end, experimental rats that were exposed to a high-calorie diet (HCD for four weeks were randomly divided into two groups: HCD and HCD+CFs, with both groups continuing to receive the HCD. However, rats from the HCD+CFs group were also provided with CFs in a 0.05-M citrate buffer (pH 5.0 (1 g·kg-1 of body weight by intragastric administration, every other day for the next six weeks. Selected parameters associated with obesity development and insulin resistance, as well as serum markers of oxidative stress and the cytokine profile were assessed at the end of the 10th week. Supplementation with CFs resulted in a decrease in body weight and body mass index when compared to animals exposed to a HCD. The observed changes were assumed to be caused by a lower food intake and increased water intake by obese rats treated with CFs. Enhanced activity of superoxide dismutase (SOD, catalase (CAT and decreased malondialdehyde (MDA concentration were detected in the HCD+CF group of animals when compared to untreated HCD-fed rats. Administration of CFs also lowered the serum concentrations of the proinflammatory cytokines IL-1β and IL-12, whereas the concentration of the anti-inflammatory cytokine IL-10 was significantly increased and the concentration of cytokine IL-4 was near the control value. Decreased concentrations of fasting blood glucose, glycated hemoglobin (GHbA1c and serum insulin and increased tolerance to glucose in the oral glucose tolerance test (OGTT were observed in the HCD+CF group of animals when compared to rats in the HCD group. We concluded that CFs mediated a therapeutic effect on obesity development in rats exposed to a HCD by affecting pathways involved in obesity pathogenesis.

  2. Effect of soy protein isolate in the diet on retention by the rat of iron from radiolabeled test meals

    International Nuclear Information System (INIS)

    Thompson, D.B.; Erdman, J.W. Jr.

    1984-01-01

    The influence of soy protein isolate (SPI) in the diet on whole-body retention of extrinsically radiolabeled iron from test meals containing or not containing SPI was evaluated in marginally iron-deficient weanling rats. In experiment 1 SPI was compared with casein in a 2 X 2 factorial design: diets and test meals were either SPI-based or casein-based. Diets were fed for 13 days prior to the test meal and for 7 days subsequent to the test meal. Rats fed the SPI-based diet retained less iron from test meals than did rats fed the casein-based diet (66.1 vs. 74.8%, P less than 0.01). Experiment 2 showed that an SPI-based diet fed during the final 4 days of a 14-day pre-test meal period and subsequent to the test meal led to less iron retention compared to a casein-based diet. In addition to the observed diet effect, experiment 1 showed that iron retention was less from an SPI-based test meal than from a casein-based test meal, confirming previous reports of adverse effects of SPI on iron retention. The present experiments show that SPI can adversely affect from retention in two ways: by its presence in the diet before and after a test meal, and by its presence in a test meal

  3. Rapeseed oil-rich diet alters in vitro menadione and nimesulide hepatic mitochondrial toxicity.

    Science.gov (United States)

    Monteiro, João P; Silva, Ana M; Jurado, Amália S; Oliveira, Paulo J

    2013-10-01

    Diet-induced changes in the lipid composition of mitochondrial membranes have been shown to influence physiological processes. However, the modulation effect of diet on mitochondrially-active drugs has not yet received the deserved attention. Our hypothesis is that modulation of membrane dynamics by diet impacts drug-effects on liver mitochondrial functioning. In a previous work, we have shown that a diet rich in rapeseed oil altered mitochondrial membrane composition and bioenergetics in Wistar rats. In the present work, we investigated the influence of the modified diet on hepatic mitochondrial activity of two drugs, menadione and nimesulide, and FCCP, a classic protonophore, was used for comparison. The results showed that the effects of menadione and nimesulide were less severe on liver mitochondria for rats fed the modified diet than on rats fed the control diet. A specific effect on complex I seemed to be involved in drug-induced mitochondria dysfunction. Liver mitochondria from the modified diet group were more susceptible to nimesulide effects on MPT induction. The present work demonstrates that diet manipulation aimed at modifying mitochondrial membrane properties alters the toxicity of mitochondria active agents. This work highlights that diet may potentiate mitochondrial pharmacologic effects or increase drug-induced liabilities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Hypercaloric diet prevents sexual impairment induced by maternal food restriction.

    Science.gov (United States)

    Bernardi, M M; Macrini, D J; Teodorov, E; Bonamin, L V; Dalboni, L C; Coelho, C P; Chaves-Kirsten, G P; Florio, J C; Queiroz-Hazarbassanov, N; Bondan, E F; Kirsten, T B

    2017-05-01

    Prenatal undernutrition impairs copulatory behavior and increases the tendency to become obese/overweight, which also reduces sexual behavior. Re-feeding rats prenatally undernourished with a normocaloric diet can restore their physiological conditions and copulatory behavior. Thus, the present study investigated whether a hypercaloric diet that is administered in rats during the juvenile period prevents sexual impairments that are caused by maternal food restriction and the tendency to become overweight/obese. Female rats were prenatally fed a 40% restricted diet from gestational day 2 to 18. The pups received a hypercaloric diet from postnatal day (PND) 23 to PND65 (food restricted hypercaloric [FRH] group) or laboratory chow (food restricted control [FRC] group). Pups from non-food-restricted dams received laboratory chow during the entire experiment (non-food-restricted [NFR] group). During the juvenile period and adulthood, body weight gain was evaluated weekly. The day of balanopreputial separation, sexual behavior, sexual organ weight, hypodermal adiposity, striatal dopamine and serotonin, serum testosterone, and tumor necrosis factor α (TNF-α) were evaluated. The FRH group exhibited an increase in body weight on PND58 and PND65. The FRC group exhibited an increase in the latency to the first mount and intromission and an increase in serum TNF-α levels but a reduction of dopaminergic activity. The hypercaloric diet reversed all of these effects but increased adiposity. We concluded that the hypercaloric diet administered during the juvenile period attenuated reproductive impairments that were induced by maternal food restriction through increases in the energy expenditure but not the tendency to become overweight/obese. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Effects of glucose and sucrose variants of the caries-promoting Diet 2000 on the feeding patterns and parotid glands of prematurely weaned rats.

    Science.gov (United States)

    Redman, Robert S

    2015-03-01

    The hypothesis of this study was that feeding glucose instead of sucrose in the cariogenic Diet 2000 to rats weaned at age 18 days would result in greater light/dark differences in feeding activity and secretion and storage of parotid salivary enzymes. Diet 2000 and a stock commercial diet (controls) were prepared in pelleted and powdered forms, as the increased mastication required by pellets has been shown to support circadian rhythms in rats. Food jars were weighed at lights on and just prior to lights off daily. Rats were euthanized at 25 days and their parotid glands removed, weighed, and analyzed for specific activities of the salivary enzymes α-amylase and deoxyribonuclease I. Light/dark differences in feeding activity were strong in the rats fed the pelleted stock diet and both powdered and pelleted glucose 2000 diets, moderate with the pelleted sucrose 2000 diet, and not significant with the powdered sucrose 2000 and stock diets. Light/dark differences in the parotid salivary enzymes were strong with the powdered glucose 2000 diet and the pelleted forms of the glucose and sucrose 2000 and stock diets, and not significant with the powdered stock and sucrose 2000 diets. Caries reportedly is higher in sucrose than glucose fed to rats in the standard powdered form of Diet 2000, mainly due to the colonizing advantage Streptococcus mutans gains with sucrose. These results suggest that additional factors are more feeding during lights on and less stimulation of parotid salivary secretion with the sucrose powder. Published by Elsevier Ltd.

  6. Effects of a normolipidic diet containing trans fatty acids during perinatal period on the growth, hippocampus fatty acid profile, and memory of young rats according to sex.

    Science.gov (United States)

    de Souza, Amanda Santos; Rocha, Mônica Santos; Tavares do Carmo, Maria das Graças

    2012-04-01

    To investigate whether dietary trans fatty acids (TFAs) are incorporated in the hippocampus and its effects on the growth and aversive and spatial memories of young rats. Wistar rat offspring whose mothers were fed with normolipidic diets containing soybean oil (soy group) or hydrogenated vegetable oil (trans group) during gestation and lactation were used. Male and female pups received the same diets as their mothers until the end of behavioral testing. The composition of fatty acids in the total lipids of the diets and hippocampus was quantified by gas chromatography. The results were evaluated by Student's t test or analysis of variance followed by the Bonferroni correction. The trans male and female body weights were higher during lactation and after weaning, with trans males having the lower body weight of the two. There was incorporation of 0.11% and 0.17% of TFAs in the hippocampi of male and female rats, respectively. During passive avoidance test, there was no significant difference. In the water maze test, there was no significant difference between male groups in the training and retention phases, except on day 4, when there was a significant decrease in latency in trans males. Trans females were worse on day 2 only and showed an improvement in spatial memory during the probe trial. The TFAs were incorporated in small amounts in the hippocampus and did not affect aversive memory. However, spatial memory was modified in young rats fed with a diet rich in TFAs. These findings suggested that, in addition to the TFA content of the diet provided, it is important to consider the provision of essential fatty acids and the ω-6/ω-3 ratio. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Energy restriction does not prevent insulin resistance but does prevent liver steatosis in aging rats on a Western-style diet.

    Science.gov (United States)

    Hennebelle, Marie; Roy, Maggie; St-Pierre, Valérie; Courchesne-Loyer, Alexandre; Fortier, Mélanie; Bouzier-Sore, Anne-Karine; Gallis, Jean-Louis; Beauvieux, Marie-Christine; Cunnane, Stephen C

    2015-03-01

    The aim of this study was to evaluate the effects of long-term energy restriction (ER) on plasma, liver, and skeletal muscle metabolite profiles in aging rats fed a Western-style diet. Three groups of male Sprague-Dawley rats were studied. Group 1 consisted of 2 mo old rats fed ad libitum; group 2 were 19 mo old rats also fed ad libitum; and group 3 were 19 mo old rats subjected to 40% ER for the last 11.5 mo. To imitate a Western-style diet, all rats were given a high-sucrose, very low ω-3 polyunsaturated fatty acid (PUFA) diet. High-resolution magic angle spinning-(1)H nuclear magnetic resonance spectroscopy was used for hepatic and skeletal muscle metabolite determination, and fatty acid profiles were measured by capillary gas chromatography on plasma, liver, and skeletal muscle. ER coupled with a Western-style diet did not prevent age-induced insulin resistance or the increase in triacylglycerol content in plasma and skeletal muscle associated with aging. However, in the liver, ER did prevent steatosis and increased the percent of saturated and monounsaturated fatty acids relative to ω-6 and ω-3 PUFA. Although steatosis was reduced, the beneficial effects of ER on systemic insulin resistance and plasma and skeletal muscle metabolites observed elsewhere with a balanced diet seem to be compromised by high-sucrose and low ω-3 PUFA intake. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Effects of preoperative exposure to a high-fat versus a low-fat diet on ingestive behavior after gastric bypass surgery in rats.

    Science.gov (United States)

    Seyfried, Florian; Miras, Alexander D; Bueter, Marco; Prechtl, Christina G; Spector, Alan C; le Roux, Carel W

    2013-11-01

    The consumption of high fat and sugar diets is decreased after gastric bypass surgery (GB). The mechanisms remain unclear, with tests of motivated behavior toward fat and sugar producing conflicting results in a rat model. These discrepancies may be due to differences in presurgical maintenance diets. The authors used their GB rat model to determine whether the fat content of preoperative maintenance diets affects weight loss, calorie intake, and macronutrient selection after surgery. Male Wistar rats were either low-fat diet fed (LFDF) with normal chow or high-fat diet fed (HFDF) before randomization to GB or sham surgery. In food preference test 1, the animals were offered the choice of a vegetable drink (V8) or a high-calorie liquid (Ensure), and in food preference test 2, they could choose normal chow or a solid high-fat diet. The GB groups did not differ significantly in terms of body weight loss or caloric intake. In food preference test 1, both groups responded similarly by reducing their preference for Ensure and increasing their preference for V8. In food preference test 2, the HFDF-GB rats reduced their preference for a solid high-fat diet gradually compared with the immediate reduction observed in the LFDF-GB rats. The consumption of presurgical maintenance diets with different fat contents did not affect postoperative weight loss outcomes. Both the LFDF-GB and HFDF-GB rats exhibited behaviors consistent with the possible expression of a conditioned taste aversion to a high-fat stimulus. These results suggest that for some physiologic parameters, low-fat-induced obesity models can be used for the study of changes after GB and have relevance to many obese humans who consume high-calorie but low-fat diets.

  9. Treatment of young rats with cholestyramine or a hypercholesterolemic diet does not influence the response of serum cholesterol to dietary cholesterol in later life

    NARCIS (Netherlands)

    Beynen, A.C.; Bruijne, J.J. de; Katan, M.B.

    1985-01-01

    Groups of 10 female Wistar rats (aged 4 weeks) were fed for 29 days either a low-cholesterol commercial diet, a commercial diet containing 2% (w/w) cholesterol, 0.5% cholate and 5% olive oil or a diet containing 2% cholestyramine. The rats were then fed the low-cholesterol commercial diet for the

  10. In rats fed high-energy diets, taste, rather than fat content, is the key factor increasing food intake: a comparison of a cafeteria and a lipid-supplemented standard diet

    Directory of Open Access Journals (Sweden)

    Laia Oliva

    2017-09-01

    Full Text Available Background Food selection and ingestion both in humans and rodents, often is a critical factor in determining excess energy intake and its related disorders. Methods Two different concepts of high-fat diets were tested for their obesogenic effects in rats; in both cases, lipids constituted about 40% of their energy intake. The main difference with controls fed standard lab chow, was, precisely, the lipid content. Cafeteria diets (K were self-selected diets devised to be desirable to the rats, mainly because of its diverse mix of tastes, particularly salty and sweet. This diet was compared with another, more classical high-fat (HF diet, devised not to be as tasty as K, and prepared by supplementing standard chow pellets with fat. We also analysed the influence of sex on the effects of the diets. Results K rats grew faster because of a high lipid, sugar and protein intake, especially the males, while females showed lower weight but higher proportion of body lipid. In contrast, the weight of HF groups were not different from controls. Individual nutrient’s intake were analysed, and we found that K rats ingested large amounts of both disaccharides and salt, with scant differences of other nutrients’ proportion between the three groups. The results suggest that the key differential factor of the diet eliciting excess energy intake was the massive presence of sweet and salty tasting food. Conclusions The significant presence of sugar and salt appears as a powerful inducer of excess food intake, more effective than a simple (albeit large increase in the diet’s lipid content. These effects appeared already after a relatively short treatment. The differential effects of sex agree with their different hedonic and obesogenic response to diet.

  11. Effects of Food Based Yeast on Oxidant-Antioxidant Systems in Rats fed by High Cholesterol Diet

    OpenAIRE

    Savaş, Hasan Basri; Yüksel, Özlem; Şanlıdere Aloğlu, Hatice; Öner, Zübeyde; Demir Özer, Ezgi; Gültekin, Fatih

    2013-01-01

    In living organisms, oxidant and antioxidant systems are in a balance. In the present study, our aim was to study the effects of Cryptococcus humicola, which is a food based yeast whose cholesterol lowering activity is under investigation, on oxidant and antioxidant systems.31 adult male, Wistar albino rats weighing 200-250 gr were included in the study. Rats were divided into four groups based on their diets. Group 1(Control Group) was fed a normal diet, Group 2 was fed a high cholesterol di...

  12. Exercise counteracts fatty liver disease in rats fed on fructose-rich diet

    Directory of Open Access Journals (Sweden)

    Voltarelli Fabrício A

    2010-10-01

    Full Text Available Abstract Background This study aimed to analyze the effects of exercise at the aerobic/anaerobic transition on the markers of non-alcoholic fatty liver disease (NAFLD, insulin sensitivity and the blood chemistry of rats kept on a fructose-rich diet. Methods We separated 48 Wistar rats into two groups according to diet: a control group (balanced diet AIN-93 G and a fructose-rich diet group (60% fructose. The animals were tested for maximal lactate-steady state (MLSS in order to identify the aerobic/anaerobic metabolic transition during swimming exercises at 28 and 90 days of age. One third of the animals of each group were submitted to swimming training at an intensity equivalent to the individual MLSS for 1 hours/day, 5 days/week from 28 to 120 days (early protocol. Another third were submitted to the training from 90 to 120 days (late protocol, and the others remained sedentary. The main assays performed included an insulin tolerance test (ITT and tests of serum alanine aminotransferase [ALT] and aspartate aminotransferase [AST] activities, serum triglyceride concentrations [TG] and liver total lipid concentrations. Results The fructose-fed rats showed decreased insulin sensitivity, and the late-exercise training protocol counteracted this alteration. There was no difference between the groups in levels of serum ALT, whereas AST and liver lipids increased in the fructose-fed sedentary group when compared with the other groups. Serum triglycerides concentrations were higher in the fructose-fed trained groups when compared with the corresponding control group. Conclusions The late-training protocol was effective in restoring insulin sensitivity to acceptable standards. Considering the markers here evaluated, both training protocols were successful in preventing the emergence of non-alcoholic fatty liver status disease.

  13. Synchrotron Based Phase Contrast Tomography of Hyper cholesteromic Rat Liver

    Directory of Open Access Journals (Sweden)

    Fatima A

    2017-05-01

    Full Text Available X-ray phase contrast imaging technique has been applied for the study of morphological variations in soft tissues. The effect of an antioxidant, α-lipoic acid in reducing hypercholesterolemia in rats is investigated. The experiment was conducted to measure serum lipid profile and diameter of vessels in rat liver, as liver is the most vital organ in hypolipidemic activity studies. Methods: Four groups of male Wistar rats, control (Group I, hyperlipidemic (Group II, positive control (Group III and treated Group IV were studied for serum lipid profile and liver vessels with synchrotron X-ray phase tomography. The Group I rats received chow diet, in Group II rats, administration of 20% butter rich diet induced hyperlipidemia. Group III, treated rats received hypolipidemic drug Atorvastatin and Group IV animals received a potent antioxidant DL-α-Lipoic acid. The excised liver tissue immersed in 10% formalin. X-ray phase contrast tomography was performed for comparison of diameter of liver vessels. Results: Among the four group of animals, the diameter of liver vessels was much larger in hypercholesterolemic rat (Group II. The liver vessel diameter comparison with X-ray phase contrast tomography and the lipid profile shows reduction in serum lipids and lipoproteins by ALA treatment.

  14. Inulin oligofructose attenuates metabolic syndrome in high-carbohydrate, high-fat diet-fed rats.

    Science.gov (United States)

    Kumar, Senthil A; Ward, Leigh C; Brown, Lindsay

    2016-11-01

    Prebiotics alter bacterial content in the colon, and therefore could be useful for obesity management. We investigated the changes following addition of inulin oligofructose (IO) in the food of rats fed either a corn starch (C) diet or a high-carbohydrate, high-fat (H) diet as a model of diet-induced metabolic syndrome. IO did not affect food intake, but reduced body weight gain by 5·3 and 12·3 % in corn starch+inulin oligofructose (CIO) and high-carbohydrate, high-fat with inulin oligofructose (HIO) rats, respectively. IO reduced plasma concentrations of free fatty acids by 26·2 % and TAG by 75·8 % in HIO rats. IO increased faecal output by 93·2 %, faecal lipid excretion by 37·9 % and weight of caecum by 23·4 % and colon by 41·5 % in HIO rats. IO improved ileal morphology by reducing inflammation and improving the density of crypt cells in HIO rats. IO attenuated H diet-induced increases in abdominal fat pads (C 275 (sem 19), CIO 264 (sem 40), H 688 (sem 55), HIO 419 (sem 32) mg/mm tibial length), fasting blood glucose concentrations (C 4·5 (sem 0·1), CIO 4·2 (sem 0·1), H 5·2 (sem 0·1), HIO 4·3 (sem 0·1) mmol/l), systolic blood pressure (C 124 (sem 2), CIO 118 (sem 2), H 152 (sem 2), HIO 123 (sem 3) mmHg), left ventricular diastolic stiffness (C 22·9 (sem 0·6), CIO 22·9 (sem 0·5), H 27·8 (sem 0·5), HIO 22·6 (sem 1·2)) and plasma alanine transaminase (C 29·6 (sem 2·8), CIO 32·1 (sem 3·0), H 43·9 (sem 2·6), HIO 33·6 (sem 2·0) U/l). IO attenuated H-induced increases in inflammatory cell infiltration in the heart and liver, lipid droplets in the liver and plasma lipids as well as impaired glucose and insulin tolerance. These results suggest that increasing soluble fibre intake with IO improves signs of the metabolic syndrome by decreasing gastrointestinal carbohydrate and lipid uptake.

  15. Age-dependent effect of high cholesterol diets on anxiety-like behavior in elevated plus maze test in rats

    Science.gov (United States)

    2014-01-01

    Background Cholesterol is an essential component of brain and nerve cells and is essential for maintaining the function of the nervous system. Epidemiological studies showed that patients suffering from anxiety disorders have higher serum cholesterol levels. In this study, we investigated the influence of high cholesterol diet on anxiety-like behavior in elevated plus maze in animal model and explored the relationship between cholesterol and anxiety-like behavior from the aspect of central neurochemical changes. Methods Young (3 weeks old) and adult (20 weeks old) rats were given a high cholesterol diet for 8 weeks. The anxiety-like behavior in elevated plus maze test and changes of central neurochemical implicated in anxiety were measured. Results In young rats, high cholesterol diet induced anxiolytic-like behavior, decreased serum corticosterone (CORT), increased hippocampal brain-derived neurotrophic factor (BDNF), increased hippocampal mineralocorticoid receptor (MR) and decreased glucocorticoid receptor (GR). In adult rats, high cholesterol diet induced anxiety-like behavior and increase of serum CORT and decrease of hippocampal BDNF comparing with their respective control group that fed the regular diet. Discussion High cholesterol diet induced age-dependent effects on anxiety-like behavior and central neurochemical changes. High cholesterol diet might affect the central nervous system (CNS) function differently, and resulting in different behavior performance of anxiety in different age period. PMID:25179125

  16. Effect of different commercial fat sources on brain, liver and blood lipid profiles of rats in growth phase

    OpenAIRE

    Angelis-Pereira, Michel Cardoso de; Barcelos, Maria de Fátima Píccolo; Pereira, Juciane de Abreu Ribeiro; Pereira, Rafaela Corrêa; Souza, Raimundo Vicente de

    2017-01-01

    Abstract Purpose: To investigate the fatty acid content of different fat sources and evaluate the effect of them on plasma and hepatic lipids and on the fatty acid profile of the brain tissue of Wistar rats. Methods: Thirty male albino Wistar rats received for 59 days, the following diets: diet added of margarine with low content of polyunsaturated fatty acids (PUFA); diet added of margarine with high content of PUFA; diet added of butter; diet added of hydrogenated vegetable fat; diet ad...

  17. Metabolism of L-leucine-U-14C in young rats fed excess glycine diets

    International Nuclear Information System (INIS)

    Takeuchi, Hisanao; Tadauchi, Nobuo; Muramatsu, Keiichiro

    1975-01-01

    As reported previously, while the growth-depressing effect of excess glycine was prevented by supplementing L-arginine and L-methionine, the degradation of glycine-U-(SUP 14)C into expired carbon dioxide was not accelerated by the supplement of both amino acids. However, it was found that the incorporation of the isotope into the lipids of livers and carcasses increased in the rats fed the excess glycine diet containing both amino acids. The lipid synthesis utilizing excess glycine may be accelerated by adding both amino acids to the 10% casein diet containing excess glycine. In the present experiment, the metabolic fate of L-leucine-U-(SUP 14)C was studied with the rats fed the excess glycine diet with or without L-arginine and L-methionine. 10% casein (10C), 10% casein diet containing 7% glycine (10C7G), or 10C7G Supplemented with 1.4% L-arginine-HCL and 0.9% L-methionine (10C7GArgMet) was fed to each rat, and the diet suspension containing 4 sup(μ)Ci of L-leucine-U-(SUP 14)C per 100 g of body weight was fed forcibly after 12 hr fast. The radioactivity in expired carbon dioxide, TCA soluble fraction, protein, glycogen, lipids and urine, and the concentration of free amino acids in blood plasma, livers and urine were measured. The body weight gain and food intake of the 10C7G group were much smaller than those of the other groups. The recovery of (SUP 14)C-radioactivity in expired carbon dioxide was much lower in the 10C7GArgMet group than that of the other groups. (Kako, I.)

  18. Geraniin Protects High-Fat Diet-Induced Oxidative Stress in Sprague Dawley Rats

    Directory of Open Access Journals (Sweden)

    Alexis Panny Y. S. Chung

    2018-03-01

    Full Text Available Geraniin, a hydrolysable polyphenol derived from Nephelium lappaceum L. fruit rind, has been shown to possess significant antioxidant activity in vitro and recently been recognized for its therapeutic potential in metabolic syndrome. This study investigated its antioxidative strength and protective effects on organs in high-fat diet (HFD-induced rodents. Rats were fed HFD for 6 weeks to induce obesity, followed by 10 and 50 mg/kg of geraniin supplementation for 4 weeks to assess its protective potential. The control groups were maintained on standard rat chows and HFD for the same period. At the 10th week, oxidative status was assessed and the pancreas, liver, heart and aorta, kidney, and brain of the Sprague Dawley rats were harvested and subjected to pathological studies. HFD rats demonstrated changes in redox balance; increased protein carbonyl content, decreased levels of superoxide dismutase, glutathione peroxidase, and glutathione reductase with a reduction in the non-enzymatic antioxidant mechanisms and total antioxidant capacity, indicating a higher oxidative stress (OS index. In addition, HFD rats demonstrated significant diet-induced changes particularly in the pancreas. Four-week oral geraniin supplementation, restored the OS observed in the HFD rats. It was able to restore OS biomarkers, serum antioxidants, and the glutathione redox balance (reduced glutathione/oxidized glutathione ratio to levels comparable with that of the control group, particularly at dosage of 50 mg geraniin. Geraniin was not toxic to the HFD rats but exhibited protection against glucotoxicity and lipotoxicity particularly in the pancreas of the obese rodents. It is suggested that geraniin has the pharmaceutical potential to be developed as a supplement to primary drugs in the treatment of obesity and its pathophysiological sequels.

  19. Basis of aggravated hepatic lipid metabolism by chronic stress in high-fat diet-fed rat.

    Science.gov (United States)

    Han, Ying; Lin, Min; Wang, Xiaobin; Guo, Keke; Wang, Shanshan; Sun, Mengfei; Wang, Jiao; Han, Xiaoyu; Fu, Ting; Hu, Yang; Fu, Jihua

    2015-03-01

    Our previous study has demonstrated that long-term stress, known as chronic stress (CS), can aggravate nonalcoholic fatty liver disease in high-fat diet (HFD)-fed rat. In this study, we tried to figure out which lipid metabolic pathways were impacted by CS in the HFD-fed rat. Male Sprague-Dawley rats (6 weeks of age, n = 8 per group) were fed with either standard diet or HFD with or without CS exposure for 8 weeks. Hepatic lipidosis, biochemical, hormonal, and lipid profile markers in serum and liver, and enzymes involved in de novo lipogenesis (DNL) of fatty acids (FAs) and cholesterol, β-oxidation, FAs uptake, triglycerides synthesis, and very low-density lipoprotein (VLDL) assembly in the liver were detected. CS exposure reduced hepatic lipidosis but further elevated hepatic VLDL content with aggravated dyslipidemia in the HFD-fed rats. There was a synergism between CS and HFD on VLDL production and dyslipidemia. PCR and western blot assays showed that CS exposure significantly promoted hepatic VLDL assembly in rats, especially in the HFD-fed rats, while it had little impact on DNL, β-oxidation, FAs uptake, and triglycerides synthesis in the HFD-fed rats. This phenomenon was in accordance with elevated serum glucocorticoid level. The critical influence of CS exposure on hepatic lipid metabolism in the HFD-fed rats is VLDL assembly which might be regulated by glucocorticoid.

  20. Long-term Western diet fed apolipoprotein E-deficient rats exhibit only modest early atherosclerotic characteristics

    DEFF Research Database (Denmark)

    Rune, Ida; Rolin, Bidda; Lykkesfeldt, Jens

    2018-01-01

    In the apolipoprotein E-deficient mouse, the gut microbiota has an impact on the development of atherosclerosis, but whether such correlations are also present in rats requires investigation. Therefore, we studied female SD-Apoe tm1sage (Apoe -/-) rats fed either a Western diet or a low-fat control...

  1. Post-weaning high-fat diet results in growth cartilage lesions in young male rats.

    Directory of Open Access Journals (Sweden)

    Samuel S Haysom

    Full Text Available To determine if a high-fat diet (HF from weaning would result in a pro-inflammatory state and affect joint cartilage, we fed male rats either HF or Chow diet post-weaning, and voluntary wheel exercise (EX or cage only activity (SED after 9 weeks of age. At 17 weeks body composition, plasma biomarkers and histomorphology scores of femoro-tibial cartilages of HF-SED, HF-EX, Chow-SED and Chow-EX groups were compared. Food intake and activity were not significantly different between groups. HF diet resulted in significantly higher weight gain, %fat, fat:lean ratio, and plasma leptin, insulin and TNFα concentrations, with significant interactions between diet and exercise. No abnormal features were detected in the hyaline articular cartilage or in the metaphyseal growth plate in all four groups. However, collagen type X- positive regions of retained epiphyseal growth cartilage (EGC was present in all HF-fed animals and significantly greater than that observed in Chow-fed sedentary rats. Most lesions were located in the lateral posterior aspect of the tibia and/or femur. The severity of lesions was greater in HF-fed animals. Although exercise had a significantly greater effect in reducing adiposity and associated systemic inflammation in HF-fed rats, it had no effect on lesion incidence or severity. Lesion incidence was also significantly associated with indices of obesity and plasma markers of chronic inflammation. Clinically, EGC lesions induced by HF feeding in rats from very early in life, and possibly by insufficient activity, is typical of osteochondrosis in animals. Such lesions may be the precursor of juvenile osteochondritis dissecans requiring surgery in children/adolescents, conservative management of which could benefit from improved understanding of early changes in cellular and gene expression.

  2. Altered feeding patterns in rats exposed to a palatable cafeteria diet: increased snacking and its implications for development of obesity.

    Directory of Open Access Journals (Sweden)

    Sarah I Martire

    Full Text Available BACKGROUND: Rats prefer energy-rich foods over chow and eat them to excess. The pattern of eating elicited by this diet is unknown. We used the behavioral satiety sequence to classify an eating bout as a meal or snack and compared the eating patterns of rats fed an energy rich cafeteria diet or chow. METHODS: Eight week old male Sprague Dawley rats were exposed to lab chow or an energy-rich cafeteria diet (plus chow for 16 weeks. After 5, 10 and 15 weeks, home-cage overnight feeding behavior was recorded. Eating followed by grooming then resting or sleeping was classified as a meal; whereas eating not followed by the full sequence was classified as a snack. Numbers of meals and snacks, their duration, and waiting times between feeding bouts were compared between the two conditions. RESULTS: Cafeteria-fed rats ate more protein, fat and carbohydrate, consistently ingesting double the energy of chow-fed rats, and were significantly heavier by week 4. Cafeteria-fed rats tended to take multiple snacks between meals and ate fewer meals than chow-fed rats. They also ate more snacks at 5 weeks, were less effective at compensating for snacking by reducing meals, and the number of snacks in the majority of the cafeteria-fed rats was positively related to terminal body weights. CONCLUSIONS: Exposure to a palatable diet had long-term effects on feeding patterns. Rats became overweight because they initially ate more frequently and ultimately ate more of foods with higher energy density. The early increased snacking in young cafeteria-fed rats may represent the establishment of eating habits that promote weight gain.

  3. Relationship between lipogenesis, ketogenesis, and malonyl-CoA content in isolated hepatocytes from the obese Zucker rat adapted to a high-fat diet.

    Science.gov (United States)

    Malewiak, M I; Griglio, S; Le Liepvre, X

    1985-07-01

    The relationship between lipogenesis and ketogenesis and the concentration of malonyl coenzyme A (CoA) was investigated in hepatocytes from adult obese Zucker rats and their lean littermates fed either a control low-fat diet or a high-fat diet (30% lard in weight). With the control diet, lipogenesis--although strongly inhibited in the presence of either 1 mmol/L oleate, 10(-6) mol/L glucagon or 0.1 mmol/L TOFA (a hypolipidemic drug)--remained about fifteen-fold higher in the obese rats than in the lean rats. In contrast, ketogenesis under some conditions (oleate + TOFA) was not significantly lower (30%) as compared with the lean rats. After adaptation to the high-fat diet, lipogenesis was depressed fourfold in the lean rats and ninefold in the obese ones; however its magnitude remained significantly higher in the latter, namely at a value close to that measured in control-fed lean rats. Ketogenesis was comparable in lean and obese rats and much higher in the presence of 1 mmol/L oleate than of 0.3 mmol/L oleate, whereas lipogenesis did not vary with increasing oleate concentration in the medium. Acetyl-CoA carboxylase activity measured in liver homogenates was higher in the obese group, but was stepwise inhibited by increasing concentrations of oleyl-CoA regardless of the diet for both lean and obese rats, thus showing no abnormality of in vitro responsiveness to this inhibitor. With the control diet, hepatocyte malonyl-CoA levels were significantly higher in the obese rats, both in the basal state and after inhibition of lipogenesis by oleate and TOFA.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. A cafeteria diet alters the decision making strategy and metabolic markers in Sprague-Dawley male rats

    DEFF Research Database (Denmark)

    Virtuoso, Alessandro; Forkman, Björn; Sarruf, David A.

    2018-01-01

    of completion of a task, both of which can be influenced by the physiological changes induced by obesity. Here we assess the effects of an energy rich diet (Cafeteria Diet, CAF) on the performance of male Sprague-Dawley rats in the Decision Making paradigm, an operant conditioning task using water...... as a reinforcer and based on the patch depletion paradigm of optimal foraging in a test that is independent from motivation and time budget. As expected, CAF diet resulted in increased body weight and circulating leptin and insulin levels. Our results show that the decision rule of rats fed a CAF is altered......Consumption of diets rich in refined sugar and saturated fat has been linked with development of mild cognitive impairment and dementia in humans. Most cognitive paradigms used in biomedical research to investigate the relationship between obesity and cognition rely on food motivation and speed...

  5. Supplementation of Syzygium cumini seed powder prevented obesity, glucose intolerance, hyperlipidemia and oxidative stress in high carbohydrate high fat diet induced obese rats.

    Science.gov (United States)

    Ulla, Anayt; Alam, Md Ashraful; Sikder, Biswajit; Sumi, Farzana Akter; Rahman, Md Mizanur; Habib, Zaki Farhad; Mohammed, Mostafe Khalid; Subhan, Nusrat; Hossain, Hemayet; Reza, Hasan Mahmud

    2017-06-02

    Obesity and related complications have now became epidemic both in developed and developing countries. Cafeteria type diet mainly composed of high fat high carbohydrate components which plays a significant role in the development of obesity and metabolic syndrome. This study investigated the effect of Syzygium cumini seed powder on fat accumulation and dyslipidemia in high carbohydrate high fat diet (HCHF) induced obese rats. Male Wistar rats were fed with HCHF diet ad libitum, and the rats on HCHF diet were supplemented with Syzygium cumini seed powder for 56 days (2.5% w/w of diet). Oral glucose tolerance test, lipid parameters, liver marker enzymes (AST, ALT and ALP) and lipid peroxidation products were analyzed at the end of 56 days. Moreover, antioxidant enzyme activities were also measured in all groups of rats. Supplementation with Syzygium cumini seed powder significantly reduced body weight gain, white adipose tissue (WAT) weights, blood glucose, serum insulin, and plasma lipids such as total cholesterol, triglyceride, LDL and HDL concentration. Syzygium cumini seed powder supplementation in HCHF rats improved serum aspartate amino transferase (AST), alanine amino transferase (ALT), and alkaline phosphatase (ALP) activities. Syzygium cumini seed powder supplementation also reduced the hepatic thiobarbituric acid reactive substances (TBARS) and elevated the antioxidant enzyme superoxide dismutase (SOD) and catalase (CAT) activities as well as increased glutathione (GSH) concentration. In addition, histological assessment showed that Syzygium cumini seed powder supplementation prevented inflammatory cell infiltration; fatty droplet deposition and fibrosis in liver of HCHFD fed rats. Our investigation suggests that Syzygium cumini seed powder supplementation prevents oxidative stress and showed anti-inflammatory and antifibrotic activity in liver of HCHF diet fed rats. In addition, Syzygium cumini seed powder may be beneficial in ameliorating insulin

  6. A high-fat diet differentially affects the gut metabolism and blood lipids of rats depending on the type of dietary fat and carbohydrate.

    Science.gov (United States)

    Jurgoński, Adam; Juśkiewicz, Jerzy; Zduńczyk, Zenon

    2014-02-03

    The aim of this model study was to investigate how selected gut functions and serum lipid profile in rats on high-fat diets differed according to the type of fat (saturated vs. unsaturated) and carbohydrate (simple vs. complex). The experiment was conducted using 32 male Wistar rats distributed into 4 groups of 8 animals each. For 4 weeks, the animals were fed group-specific diets that were either rich in lard or soybean oil (16% of the diet) as the source of saturated or unsaturated fatty acids, respectively; further, each lard- and soybean oil-rich diet contained either fructose or corn starch (45.3% of the diet) as the source of simple or complex carbohydrates, respectively. Both dietary factors contributed to changes in the caecal short-chain fatty acid concentrations, especially to the butyrate concentration, which was higher in rats fed lard- and corn starch-rich diets compared to soybean oil- and fructose-rich diets, respectively. The lowest butyrate concentration was observed in rats fed the soybean oil- and fructose-rich diet. On the other hand, the lard- and fructose-rich diet vs. the other dietary combinations significantly increased serum total cholesterol concentration, to more than two times serum triglyceride concentration and to more than five times the atherogenic index. In conclusion, a high-fat diet rich in fructose can unfavorably affect gut metabolism when unsaturated fats are predominant in the diet or the blood lipids when a diet is rich in saturated fats.

  7. A High-Fat Diet Differentially Affects the Gut Metabolism and Blood Lipids of Rats Depending on the Type of Dietary Fat and Carbohydrate

    Directory of Open Access Journals (Sweden)

    Adam Jurgoński

    2014-02-01

    Full Text Available The aim of this model study was to investigate how selected gut functions and serum lipid profile in rats on high-fat diets differed according to the type of fat (saturated vs. unsaturated and carbohydrate (simple vs. complex. The experiment was conducted using 32 male Wistar rats distributed into 4 groups of 8 animals each. For 4 weeks, the animals were fed group-specific diets that were either rich in lard or soybean oil (16% of the diet as the source of saturated or unsaturated fatty acids, respectively; further, each lard- and soybean oil-rich diet contained either fructose or corn starch (45.3% of the diet as the source of simple or complex carbohydrates, respectively. Both dietary factors contributed to changes in the caecal short-chain fatty acid concentrations, especially to the butyrate concentration, which was higher in rats fed lard- and corn starch-rich diets compared to soybean oil- and fructose-rich diets, respectively. The lowest butyrate concentration was observed in rats fed the soybean oil- and fructose-rich diet. On the other hand, the lard- and fructose-rich diet vs. the other dietary combinations significantly increased serum total cholesterol concentration, to more than two times serum triglyceride concentration and to more than five times the atherogenic index. In conclusion, a high-fat diet rich in fructose can unfavorably affect gut metabolism when unsaturated fats are predominant in the diet or the blood lipids when a diet is rich in saturated fats.

  8. Evaluation of calcium, magnesium, zinc, aluminum and manganese deposition in bones and CNS of rats fed calcium-deficient diets

    International Nuclear Information System (INIS)

    Yasui, Masayuki; Ota, Kiichiro; Sasajima, Kazuhisa; Iwata, Shiro.

    1994-01-01

    The long term intake of unbalanced mineral diets has been reported to be one of the pathogenetic factors of central nervous system (CNS) degeneration, and the unbalanced mineral distribution in the bones clinically is expressed as a metabolic bone disorder or deposition of neurotoxic minerals/metals. The unbalanced mineral or metal diets in animals provoke the unbalanced mineral distribution in bones and soft tissues. In this study, the calcium (Ca), magnesium (Mg), zinc (Zn), aluminum (Al) and manganese (Mn) contents in the CNS and the bones of rats maintained on unbalanced mineral diets were analyzed to investigate the roles of bone on CNS degeneration. Male Wistar rats were maintained for 90 days on the following diets: (A) standard diet, (B) low Ca diet, (C) low Ca-Mg diet, (D) low Ca-Mg diet with high Al. Al and Mn contents were determined in the frontal cortex, spinal cord, lumbar spine and femur using inductively coupled plasma emission spectrometry (ICP) for Ca, Mg and Zn, and neutron activation analysis (NAA) for Al and Mn. Intake of low Ca and Mg with added Al in rats led to the abnormal distribution of metals or minerals in the bones and in the CNS. These results illustrate that unbalanced mineral diets and metal-metal interactions may lead to the irregular deposition of Al and Mn in the bones and ultimately in the CNS, thus inducing CNS degeneration. (author)

  9. Beneficial effects of Ginkgo biloba extract on insulin signaling cascade, dyslipidemia, and body adiposity of diet-induced obese rats

    Directory of Open Access Journals (Sweden)

    R.M. Banin

    2014-09-01

    Full Text Available Ginkgo biloba extract (GbE has been indicated as an efficient medicine for the treatment of diabetes mellitus type 2. It remains unclear if its effects are due to an improvement of the insulin signaling cascade, especially in obese subjects. The aim of the present study was to evaluate the effect of GbE on insulin tolerance, food intake, body adiposity, lipid profile, fasting insulin, and muscle levels of insulin receptor substrate 1 (IRS-1, protein tyrosine phosphatase 1B (PTP-1B, and protein kinase B (Akt, as well as Akt phosphorylation, in diet-induced obese rats. Rats were fed with a high-fat diet (HFD or a normal fat diet (NFD for 8 weeks. After that, the HFD group was divided into two groups: rats gavaged with a saline vehicle (HFD+V, and rats gavaged with 500 mg/kg of GbE diluted in the saline vehicle (HFD+Gb. NFD rats were gavaged with the saline vehicle only. At the end of the treatment, the rats were anesthetized, insulin was injected into the portal vein, and after 90s, the gastrocnemius muscle was removed. The quantification of IRS-1, Akt, and Akt phosphorylation was performed using Western blotting. Serum levels of fasting insulin and glucose, triacylglycerols and total cholesterol, and LDL and HDL fractions were measured. An insulin tolerance test was also performed. Ingestion of a hyperlipidic diet promoted loss of insulin sensitivity and also resulted in a significant increase in body adiposity, plasma triacylglycerol, and glucose levels. In addition, GbE treatment significantly reduced food intake and body adiposity while it protected against hyperglycemia and dyslipidemia in diet-induced obesity rats. It also enhanced insulin sensitivity in comparison to HFD+V rats, while it restored insulin-induced Akt phosphorylation, increased IRS-1, and reduced PTP-1B levels in gastrocnemius muscle. The present findings suggest that G. biloba might be efficient in preventing and treating obesity-induced insulin signaling impairment.

  10. Beneficial effects of Ginkgo biloba extract on insulin signaling cascade, dyslipidemia, and body adiposity of diet-induced obese rats

    International Nuclear Information System (INIS)

    Banin, R.M.; Hirata, B.K.S.; Andrade, I.S.; Zemdegs, J.C.S.; Clemente, A.P.G.; Dornellas, A.P.S.; Boldarine, V.T.; Estadella, D.; Albuquerque, K.T.; Oyama, L.M.; Ribeiro, E.B.; Telles, M.M.

    2014-01-01

    Ginkgo biloba extract (GbE) has been indicated as an efficient medicine for the treatment of diabetes mellitus type 2. It remains unclear if its effects are due to an improvement of the insulin signaling cascade, especially in obese subjects. The aim of the present study was to evaluate the effect of GbE on insulin tolerance, food intake, body adiposity, lipid profile, fasting insulin, and muscle levels of insulin receptor substrate 1 (IRS-1), protein tyrosine phosphatase 1B (PTP-1B), and protein kinase B (Akt), as well as Akt phosphorylation, in diet-induced obese rats. Rats were fed with a high-fat diet (HFD) or a normal fat diet (NFD) for 8 weeks. After that, the HFD group was divided into two groups: rats gavaged with a saline vehicle (HFD+V), and rats gavaged with 500 mg/kg of GbE diluted in the saline vehicle (HFD+Gb). NFD rats were gavaged with the saline vehicle only. At the end of the treatment, the rats were anesthetized, insulin was injected into the portal vein, and after 90s, the gastrocnemius muscle was removed. The quantification of IRS-1, Akt, and Akt phosphorylation was performed using Western blotting. Serum levels of fasting insulin and glucose, triacylglycerols and total cholesterol, and LDL and HDL fractions were measured. An insulin tolerance test was also performed. Ingestion of a hyperlipidic diet promoted loss of insulin sensitivity and also resulted in a significant increase in body adiposity, plasma triacylglycerol, and glucose levels. In addition, GbE treatment significantly reduced food intake and body adiposity while it protected against hyperglycemia and dyslipidemia in diet-induced obesity rats. It also enhanced insulin sensitivity in comparison to HFD+V rats, while it restored insulin-induced Akt phosphorylation, increased IRS-1, and reduced PTP-1B levels in gastrocnemius muscle. The present findings suggest that G. biloba might be efficient in preventing and treating obesity-induced insulin signaling impairment

  11. Beneficial effects of Ginkgo biloba extract on insulin signaling cascade, dyslipidemia, and body adiposity of diet-induced obese rats

    Energy Technology Data Exchange (ETDEWEB)

    Banin, R. M.; Hirata, B. K.S. [Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, SP (Brazil); Andrade, I. S.; Zemdegs, J. C.S. [Disciplina de Fisiologia da Nutrição, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Clemente, A. P.G. [Faculdade de Nutrição, Universidade Federal de Alagoas, Maceió, AL (Brazil); Dornellas, A. P.S.; Boldarine, V. T. [Disciplina de Fisiologia da Nutrição, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Estadella, D. [Departamento de Biociências, Universidade Federal de São Paulo, Baixada Santista, SP (Brazil); Albuquerque, K. T. [Curso de Nutrição, Universidade Federal do Rio de Janeiro, Macaé, RJ (Brazil); Oyama, L. M.; Ribeiro, E. B. [Disciplina de Fisiologia da Nutrição, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Telles, M. M. [Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, SP (Brazil)

    2014-07-25

    Ginkgo biloba extract (GbE) has been indicated as an efficient medicine for the treatment of diabetes mellitus type 2. It remains unclear if its effects are due to an improvement of the insulin signaling cascade, especially in obese subjects. The aim of the present study was to evaluate the effect of GbE on insulin tolerance, food intake, body adiposity, lipid profile, fasting insulin, and muscle levels of insulin receptor substrate 1 (IRS-1), protein tyrosine phosphatase 1B (PTP-1B), and protein kinase B (Akt), as well as Akt phosphorylation, in diet-induced obese rats. Rats were fed with a high-fat diet (HFD) or a normal fat diet (NFD) for 8 weeks. After that, the HFD group was divided into two groups: rats gavaged with a saline vehicle (HFD+V), and rats gavaged with 500 mg/kg of GbE diluted in the saline vehicle (HFD+Gb). NFD rats were gavaged with the saline vehicle only. At the end of the treatment, the rats were anesthetized, insulin was injected into the portal vein, and after 90s, the gastrocnemius muscle was removed. The quantification of IRS-1, Akt, and Akt phosphorylation was performed using Western blotting. Serum levels of fasting insulin and glucose, triacylglycerols and total cholesterol, and LDL and HDL fractions were measured. An insulin tolerance test was also performed. Ingestion of a hyperlipidic diet promoted loss of insulin sensitivity and also resulted in a significant increase in body adiposity, plasma triacylglycerol, and glucose levels. In addition, GbE treatment significantly reduced food intake and body adiposity while it protected against hyperglycemia and dyslipidemia in diet-induced obesity rats. It also enhanced insulin sensitivity in comparison to HFD+V rats, while it restored insulin-induced Akt phosphorylation, increased IRS-1, and reduced PTP-1B levels in gastrocnemius muscle. The present findings suggest that G. biloba might be efficient in preventing and treating obesity-induced insulin signaling impairment.

  12. A butter diet induces higher levels of n-3 PUFA and of n-3/n-6 PUFA ratio in rat serum and hearts than a safflower oil diet.

    Science.gov (United States)

    Hirai, K; Ozeki, Y; Nakano, T; Takezoe, R; Nakanishi, M; Asano, Y; Higuchi, H

    2001-01-01

    The effects of a 47-week diet of butter or safflower oil as fat in combination with casein or soy protein as protein were observed for the serum concentrations of lipids and fatty acid compositions in rat serum and heart. Serum total cholesterol (Chol) did not differ among the four experimental diet groups. In the butter groups, significantly higher low-density lipoprotein (LDL)-Chol and lower high-density lipoprotein (HDL)-Chol were observed than in the safflower oil groups (psafflower oil groups (psafflower oil groups, the butter groups showed higher n-3 polyunsaturated fatty acids (PUFA) contents and lower n-6 PUFA contents in serum and the hearts (psafflower oil groups of under 0.01 in serum and 0.02 and 0.03 in the hearts (safflower oil-casein diet and safflower oil-soy protein diet, respectively) (psafflower oil diet in rat serum and hearts over a long feeding period.

  13. Offspring predisposition to obesity due to maternal-diet-induced obesity in rats is preventable by dietary normalization before mating.

    Science.gov (United States)

    Castro, Heriberto; Pomar, Catalina Amadora; Palou, Andreu; Picó, Catalina; Sánchez, Juana

    2017-03-01

    We studied in rats whether the expected detrimental effects in offspring associated to maternal dietary obesity may be reverted by obesogenic diet removal 1 month before mating. Female rats were fed a cafeteria diet (CD) from days 10 to 100 and then a standard diet (SD) (postcafeteria rats). One month after CD removal, postcafeteria rats and a group of SD-fed female rats (controls) were mated with males. At weaning, offspring were fed SD and followed until 4 months old. CD was effective at inducing obesity in dams. Its removal led to a reduction in body weight, although, after 30 days, rats retained excess body weight and fat than controls. During lactation, postcafeteria dams showed greater body fat, and higher leptin and adiponectin levels in milk than controls. From 2 months of life, offspring of postcafeteria dams displayed lower body weight than controls, with no differences in the percentage of fat, homeostatic model assessment for insulin resistance, or circulating parameters. Removal of CD in obese rats before gestation, although without complete reversion of body weight excess, may prevent the expected detrimental effects in offspring associated to an excess fat accumulation in adulthood and the related metabolic disturbances. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Maternal diet during gestation and lactation modifies the severity of salt-induced hypertension and renal injury in Dahl salt-sensitive rats.

    Science.gov (United States)

    Geurts, Aron M; Mattson, David L; Liu, Pengyuan; Cabacungan, Erwin; Skelton, Meredith M; Kurth, Theresa M; Yang, Chun; Endres, Bradley T; Klotz, Jason; Liang, Mingyu; Cowley, Allen W

    2015-02-01

    Environmental exposure of parents or early in life may affect disease development in adults. We found that hypertension and renal injury induced by a high-salt diet were substantially attenuated in Dahl SS/JrHsdMcwiCrl (SS/Crl) rats that had been maintained for many generations on the grain-based 5L2F diet compared with SS/JrHsdMcwi rats (SS/Mcw) maintained on the casein-based AIN-76A diet (mean arterial pressure, 116±9 versus 154±25 mm Hg; urinary albumin excretion, 23±12 versus 170±80 mg/d). RNAseq analysis of the renal outer medulla identified 129 and 82 genes responding to a high-salt diet uniquely in SS/Mcw and SS/Crl rats, respectively, along with minor genetic differences between the SS substrains. The 129 genes responding to salt in the SS/Mcw strain included numerous genes with homologs associated with hypertension, cardiovascular disease, or renal disease in human. To narrow the critical window of exposure, we performed embryo-transfer experiments in which single-cell embryos from 1 colony (SS/Mcw or SS/Crl) were transferred to surrogate mothers from the other colony, with parents and surrogate mothers maintained on their respective original diet. All offspring were fed the AIN-76A diet after weaning. Salt-induced hypertension and renal injury were substantially exacerbated in rats developed from SS/Crl embryos transferred to SS/Mcw surrogate mothers. Conversely, salt-induced hypertension and renal injury were significantly attenuated in rats developed from SS/Mcw embryos transferred to SS/Crl surrogate mothers. Together, the data suggest that maternal diet during the gestational-lactational period has substantial effects on the development of salt-induced hypertension and renal injury in adult SS rats. © 2014 American Heart Association, Inc.

  15. Not any type of rice performs equally to improve lactose-induced diarrhea characteristics in rats: is amylose an antidiarrheal factor?

    OpenAIRE

    Felipoff,Ana Lia; Zuleta,Angela; Sambucetti,Maria Elena; Rio,Maria Esther

    2012-01-01

    The effectiveness of different types of rice in relation to their ability to accelerate diarrhea recovering was evaluated in a rat model of osmotic diarrhea (OD). Animals (90-100 g) received protein free diet until reaching up to 20% weight loss, followed by lactose rich diet (LRD) to induce osmotic diarrhea. Rats presenting osmotic diarrhea were divided into 4 groups, which received lactose rich diet for 4 days from 8 am to 8 pm, and one of three experimental products containing 6% rice flou...

  16. Antiobesity Effects of the Ethanol Extract of Laminaria japonica Areshoung in High-Fat-Diet-Induced Obese Rat

    Directory of Open Access Journals (Sweden)

    Woong Sun Jang

    2013-01-01

    Full Text Available Laminaria japonica Areshoung, a widely consumed marine vegetable, has traditionally been used in Korean maternal health. The present study investigated the antiobesity effects of Laminaria japonica Areshoung ethanol extract (LE and its molecular mechanism in high-fat-diet-induced obese rats. Six-week-old Sprague-Dawley male rats were separately fed a normal diet or a high-calorie high-fat diet for 6 weeks; then they were treated with LE or tea catechin for another 6 weeks. LE administration significantly decreased the body weight gain, fat-pad weights, and serum and hepatic lipid levels in HD-induced obese rats. The histological analysis revealed that LE-treated group showed a significantly decreased number of lipid droplets and size of adipocytes compared to the HD group. To elucidate the mechanism of action of LE, the levels of genes and proteins involved in obesity were measured in the liver and skeletal muscle. LE treatment resulted in an increased expression of fatty acid oxidation and thermogenesis-related genes in obese rats. Conversely, the expression of the fat intake-related gene (ACC2 and lipogenesis-related genes was reduced by LE treatment. Additionally, LE treatment increased the phosphorylation of AMP-activated protein kinase and its direct downstream protein, acetyl coenzyme A carboxylase, which is one of the rate-limiting enzymes in fatty acid synthesis pathway. These findings demonstrate that LE treatment has a protective effect against a high-fat-diet-induced obesity in rats through regulation of expression of genes and proteins involved in lipolysis and lipogenesis.

  17. Short-term blueberry-enriched antioxidant diet prevents and reverses object recognition memory loss in aged rats

    Science.gov (United States)

    Objective Previously, four months of a blueberry-enriched (BB) antioxidant diet prevented impaired object recognition memory in aged rats. Experiment 1 determined whether one and two-month BB diets would have a similar effect and whether the benefits would disappear promptly after terminating the d...

  18. Hypocholesterolemic Effects of the Cauliflower Culinary-Medicinal Mushroom, Sparassis crispa (Higher Basidiomycetes), in Diet-Induced Hypercholesterolemic Rats.

    Science.gov (United States)

    Hong, Ki Bae; Hong, Sung-Yong; Joung, Eun Young; Kim, Byung Hee; Bae, Song-Hwan; Park, Yooheon; Suh, Hyung Joo

    2015-01-01

    The cauliflower culinary-medicinal mushroom, Sparassis crispa, possesses various biological activities that have been widely reported to have therapeutic applications. We examined the effects of S. crispa on serum cholesterol, hepatic enzymes related to cholesterol metabolism, and fecal sterol excretion in rats fed a cholesterol-rich diet for 4 weeks. Male Sprague-Dawley rats (8 weeks old) were randomly divided into 5 groups (n = 6 mice per group): normal diet (normal control [NC]), cholesterol-rich diet (cholesterol control [CC]), cholesterol-rich diet plus S. crispa fruiting body (SC), cholesterol-rich diet plus S. crispa extract (SCE), and cholesterol-rich diet plus S. crispa residue (SCR). SCE supplementation significantly enhanced hepatic cholesterol catabolism through the upregulation of cholesterol 7α-hydroxylase (CYP7A1) messenger RNA (mRNA) expression (2.55-fold compared with that in the NC group; P < 0.05) and the downregulation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase mRNA expression (0.57-fold compared with that in the NC group; P < 0.05). Additionally, the SCE diet resulted in the highest fecal excretion of cholesterol and bile acid in hypercholesterolemic rats. In conclusion, mRNA expression of CYP7A1 and HMG-CoA reductase were significantly modulated by the absorption of SCE samples. Also, SCE samples had a significant effect on fecal bile acid and cholesterol excretion. These results suggest that SCE samples can induce hypocholesterolic effects through cholesterol metabolism and the reduction of circulating cholesterol levels.

  19. Plantago maxima leaves extract inhibits adipogenic action of a high-fat diet in female Wistar rats.

    Science.gov (United States)

    Tinkov, Alexey A; Nemereshina, Olga N; Popova, Elizaveta V; Polyakova, Valentina S; Gritsenko, Viktor A; Nikonorov, Alexandr A

    2014-04-01

    The primary objective of this study is to investigate the content of biologically active compounds producing an antioxidant effect in Plantago maxima and their influence on main mechanisms of dietary obesity development. Biologically active compounds in P. maxima were tested using paper chromatography. In in vivo experiment, high-fat-fed Wistar rats obtained P. maxima water extract for 3 months. Morphometric parameters, weight gain, serum adipokines, and cytokines, as well as oxidative stress biomarkers in rats’ tissues were evaluated. Gut microflora was also examined. Plantago maxima leaves used in the experiment contained significant amount of flavonoids, iridoids, phenol carboxylic acids, and tannins and ascorbic acid. Our in vivo experiment data demonstrate that P. maxima water extract prevents excessive adiposity in a diet-induced model. P. maxima consumption reduced serum leptin (twofold), macrophage chemoattractant protein-1 (sevenfold), tumornecrosis factor-α (25%), and interleukine-6 (26%) levels. P. maxima water extract decreased adipose tissue oxidative stress biomarkers in rats fed a high-fat diet. In addition, increased bacterial growth in the diet-induced obesity model was reversed by the P. maxima extract treatment. Plantago maxima water extract possessed antiadipogenic, antidiabetic, antiinflammatory, antioxidant activity, and normalized gut microflora in a rat model of diet-induced excessive adiposity due to a high content of biologically active compounds.

  20. Microarray Analyses of Genes Differentially Expressed by Diet (Black Beans and Soy Flour) during Azoxymethane-Induced Colon Carcinogenesis in Rats.

    Science.gov (United States)

    Rondini, Elizabeth A; Bennink, Maurice R

    2012-01-01

    We previously demonstrated that black bean (BB) and soy flour (SF)-based diets inhibit azoxymethane (AOM)-induced colon cancer. The objective of this study was to identify genes altered by carcinogen treatment in normal-appearing colonic mucosa and those attenuated by bean feeding. Ninety-five male F344 rats were fed control (AIN) diets upon arrival. At 4 and 5 weeks, rats were injected with AOM (15 mg/kg) or saline and one week later administered an AIN, BB-, or SF-based diet. Rats were sacrificed after 31 weeks, and microarrays were conducted on RNA isolated from the distal colonic mucosa. AOM treatment induced a number of genes involved in immunity, including several MHC II-associated antigens and innate defense genes (RatNP-3, Lyz2, Pla2g2a). BB- and SF-fed rats exhibited a higher expression of genes involved in energy metabolism and water and sodium absorption and lower expression of innate (RatNP-3, Pla2g2a, Tlr4, Dmbt1) and cell cycle-associated (Cdc2, Ccnb1, Top2a) genes. Genes involved in the extracellular matrix (Col1a1, Fn1) and innate immunity (RatNP-3, Pla2g2a) were induced by AOM in all diets, but to a lower extent in bean-fed animals. This profile suggests beans inhibit colon carcinogenesis by modulating cellular kinetics and reducing inflammation, potentially by preserving mucosal barrier function.

  1. A high-fat diet decreases GABA concentration in the frontal cortex and hippocampus of rats.

    Science.gov (United States)

    Sandoval-Salazar, Cuauhtemoc; Ramírez-Emiliano, Joel; Trejo-Bahena, Aurora; Oviedo-Solís, Cecilia I; Solís-Ortiz, Martha Silvia

    2016-02-29

    It has been proposed that the γ-aminobutyric acid (GABA) plays a key role in the regulation of food intake and body weight by controlling the excitability, plasticity and the synchronization of neuronal activity in the frontal cortex (FC). It has been also proposed that the high-fat diet (HFD) could disturb the metabolism of glutamate and consequently the GABA levels, but the mechanism is not yet clearly understood. Therefore, the aim of this study was to investigate the effect of a HFD on the GABA levels in the FC and hippocampus of rats. The HFD significantly increased weight gain and blood glucose levels, whereas decreased the GABA levels in the FC and hippocampus compared with standard diet-fed rats. HFD decreases GABA levels in the FC and hippocampus of rat, which likely disrupts the GABAergic inhibitory processes, underlying feeding behavior.

  2. Cocoa Flavonoid-Enriched Diet Modulates Systemic and Intestinal Immunoglobulin Synthesis in Adult Lewis Rats

    Directory of Open Access Journals (Sweden)

    Francisco J. Pérez-Cano

    2013-08-01

    Full Text Available Previous studies have reported that a diet containing 10% cocoa, a rich source of flavonoids, has immunomodulatory effects on rats and, among others effects, is able to attenuate the immunoglobulin (Ig synthesis in both systemic and intestinal compartments. The purpose of the present study was focused on investigating whether these effects were attributed exclusively to the flavonoid content or to other compounds present in cocoa. To this end, eight-week-old Lewis rats were fed, for two weeks, either a standard diet or three isoenergetic diets containing increasing proportions of cocoa flavonoids from different sources: one with 0.2% polyphenols from conventional defatted cocoa, and two others with 0.4% and 0.8% polyphenols, respectively, from non-fermented cocoa. Diet intake and body weight were monitored and fecal samples were obtained throughout the study to determine fecal pH, IgA, bacteria proportions, and IgA-coated bacteria. Moreover, IgG and IgM concentrations in serum samples collected during the study were quantified. At the end of the dietary intervention no clear changes of serum IgG or IgM concentrations were quantified, showing few effects of cocoa polyphenol diets at the systemic level. However, in the intestine, all cocoa polyphenol-enriched diets attenuated the age-related increase of both fecal IgA and IgA-coated bacteria, as well as the proportion of bacteria in feces. As these effects were not dependent on the dose of polyphenol present in the diets, other compounds and/or the precise polyphenol composition present in cocoa raw material used for the diets could be key factors in this effect.

  3. Gut Microbiota in a Rat Oral Sensitization Model: Effect of a Cocoa-Enriched Diet.

    Science.gov (United States)

    Camps-Bossacoma, Mariona; Pérez-Cano, Francisco J; Franch, Àngels; Castell, Margarida

    2017-01-01

    Increasing evidence is emerging suggesting a relation between dietary compounds, microbiota, and the susceptibility to allergic diseases, particularly food allergy. Cocoa, a source of antioxidant polyphenols, has shown effects on gut microbiota and the ability to promote tolerance in an oral sensitization model. Taking these facts into consideration, the aim of the present study was to establish the influence of an oral sensitization model, both alone and together with a cocoa-enriched diet, on gut microbiota. Lewis rats were orally sensitized and fed with either a standard or 10% cocoa diet. Faecal microbiota was analysed through metagenomics study. Intestinal IgA concentration was also determined. Oral sensitization produced few changes in intestinal microbiota, but in those rats fed a cocoa diet significant modifications appeared. Decreased bacteria from the Firmicutes and Proteobacteria phyla and a higher percentage of bacteria belonging to the Tenericutes and Cyanobacteria phyla were observed. In conclusion, a cocoa diet is able to modify the microbiota bacterial pattern in orally sensitized animals. As cocoa inhibits the synthesis of specific antibodies and also intestinal IgA, those changes in microbiota pattern, particularly those of the Proteobacteria phylum, might be partially responsible for the tolerogenic effect of cocoa.

  4. Changes in UCP expression in tissues of Zucker rats fed diets with different protein content.

    Science.gov (United States)

    Masanés, R M; Yubero, P; Rafecas, I; Remesar, X

    2002-09-01

    The effect of dietary protein content on the uncoupling proteins (UCP) 1, 2 and 3 expression in a number of tissues of Zucker lean and obese rats was studied. Thirty-day-old male Zucker lean (Fa/?) and obese (fa/fa) rats were fed on hyperproteic (HP, 30% protein), standard (RD, 17% protein) or hypoproteic (LP, 9% protein) diets ad libitum for 30 days. Although dietary protein intake affected the weights of individual muscles in lean and obese animals, these weights were similar. In contrast, huge differences were observed in brown adipose tissue (BAT) and liver weights. Lean rats fed on the LP diet generally increased UCP expression, whereas the HP group had lower values. Obese animals, HP and LP groups showed higher UCP expression in muscles, with slight differences in BAT and lower values for UCP3 in subcutaneous adipose tissue. The mean values of UCP expression in BAT of obese rats were lower than in their lean counterpart, whereas the expression in skeletal muscle was increased. Thus, expression of UCPs can be modified by dietary protein content, in lean and obese rats. A possible thermogenic function of UCP3 in muscle and WAT in obese rats must be taken into account.

  5. Influence of Dietary Irradiated Curcuma ionga (Turmeric) on Physiological and Biochemical Parameters of Growing Rats

    International Nuclear Information System (INIS)

    El-Niely, H.F.G.; El-Shennaway, H.M.; Hamaza, R.G.

    2010-01-01

    Turmeric, (Curcuma ionga), is a dietary antioxidant and has been known since ancient times to possess therapeutic properties. The present investigation examined the correlation between raw and irradiated turmeric powder (at dose levels of 10, 15 and 20 kGy) intake and the physiological effects on organs weight, haematological parameters, indices of liver function and lipid profile in growing Albino male rats. Also, this study was performed to examine the efficacy of radiation processed turmeric powder to modulate the induced hyperlipidaemia in growing Albino male rats. Thirty six male rats were equally and randomly categorized into six groups. Control group fed a reference diet (casein diet), high fat diet was daily received to rats for 6 weeks. Other animals fed daily on high fat diets containing either raw or irradiated turmeric powder (2 g per 100 g diet) at doses 10, 15 or 20 kGy for 6 weeks. The results showed that the relative spleen, kidneys, heart, lungs, and testes weight, and the levels of Hb, PCV and MCHC were not changed in animals fed the experimental diets for 6 weeks. Animals kept on HFD suffered from liver enlargement. Dietary interventions through administrating 2% (w/w) raw or irradiated turmeric powder at 20 kGy normalized the liver size as compared with those received reference diet. Meanwhile, the results revealed that rats fed on high fat diet significantly increased plasma AST, ALT, TC and TG and significant decrease was observed in HDL. Meanwhile, feeding rats on diet containing of either raw or irradiated turmeric powder at 10, 15 and 20 kGy induced a significant improvement in the above mentioned parameters. These results imply that irradiated turmeric powder at 20 kGy can offer protection against the biochemical changes as a consequence of hyperlipidaemic food and contribute to the regulation of lipid metabolism safely

  6. Chronic high-sodium diet increases aortic wall endothelin-1 expression in a blood pressure-independent fashion in rats.

    Science.gov (United States)

    Tsai, Yu-Hwai; Ohkita, Mamoru; Gariepy, Cheryl E

    2006-06-01

    Vascular endothelin (ET)-1 is upregulated in several forms of salt-induced hypertension. It is unclear to what extent these effects are primary or secondary to endothelial damage. We hypothesized that a high-sodium diet (HNa) increases vascular ET-1 production independent of arterial blood pressure changes. We investigated the effect of chronic HNa with and without ET(A) blockade on circulating and aortic ET-1 protein levels as well as aortic expression of ET-1 and ET(A) messenger RNA (mRNA) in inbred Wistar-Kyoto (WKY) and congenic ET(B)-deficient rats. Comparing WKY rats fed a low-sodium diet (LNa) with those fed HNa for 3 weeks, aortic wall ET-1 protein is significantly increased in response to HNa (331 +/- 43 pg/g tissue for LNa vs. 557 +/- 34 pg/gm tissue for HNa). HNa also increased aortic wall ET-1 mRNA levels by 40%, as determined by quantitative reverse transcriptase polymerase chain reaction. We then compared rats chronically treated with the ET(A)-selective antagonist, ABT-627, while receiving either LNa or HNa. There were no differences in arterial blood pressure (mean arterial pressure 89 +/- 1 mm Hg for WKY on LNa; 90 +/- 3 for WKY on HNa; 91 +/- 2 for ET(B)-deficient/ABT-627-treated on HNa) or heart rate. However, aortic wall ET-1 protein levels were 4-fold higher in the HNa group. Further, HNa increased aortic wall ET-1 mRNA (approximately 1.5- to 3-fold) and ET(A) mRNA (approximately 2- to 7-fold), independent of activation of ET(B). Therefore, the expression of ET-1 mRNA by the aortic wall is increased in response to chronic high dietary sodium in WKY rats in the absence of changes in arterial blood pressure.

  7. Evaluation of body fat composition after linagliptin treatment in a rat model of diet-induced obesity: a magnetic resonance spectroscopy study in comparison with sibutramine.

    Science.gov (United States)

    Klein, T; Niessen, H G; Ittrich, C; Mayoux, E; Mueller, H-P; Cheetham, S; Stiller, D; Kassubek, J; Mark, M

    2012-11-01

    The effects of linagliptin on fat content in diet-induced obese rats were compared with those of the appetite suppressant sibutramine. Female Wistar rats fed a high-fat diet (HFD) for 3 months received vehicle, linagliptin (10 mg/kg) or sibutramine (5 mg/kg) treatment orally, once daily for 6 additional weeks, while continuing the HFD. Magnetic resonance spectroscopy analysis of fat content was performed at baseline and at the end of the 6-week treatment period. Linagliptin treatment profoundly reduced hepatic fat compared with vehicle, with an effect comparable to that of sibutramine. The vehicle-corrected mean change (95% CI) from baseline in hepatic fat and intramyocellular lipid was -59.0% (-104.3%, -13.6%; p = 0.015) and -62.1% (-131.6%, 7.4%; p = 0.073), respectively, for linagliptin compared with -54.3% (-101.5%, -7.1%; p = 0.027) and -72.4% (-142.4%, -2.4%; p = 0.044), respectively, for sibutramine. © 2012 Blackwell Publishing Ltd.

  8. Recommendations for the clinical management of children with refractory epilepsy receiving the ketogenic diet.

    Science.gov (United States)

    Alberti, María J; Agustinho, Ariela; Argumedo, Laura; Armeno, Marisa; Blanco, Virginia; Bouquet, Cecilia; Cabrera, Analía; Caraballo, Roberto; Caramuta, Luciana; Cresta, Araceli; de Grandis, Elizabeth S; De Martini, Martha G; Diez, Cecilia; Dlugoszewski, Corina; Escobal, Nidia; Ferrero, Hilario; Galicchio, Santiago; Gambarini, Victoria; Gamboni, Beatriz; Guisande, Silvina; Hassan, Amal; Matarrese, Pablo; Mestre, Graciela; Pesce, Laura; Ríos, Viviana; Sosa, Patricia; Vaccarezza, María; Viollaz, Rocío; Panico, Luis

    2016-02-01

    The ketogenic diet, a non-drug treatment with proven effectiveness, has been the most commonly used therapy in the past decade for the management of refractory epilepsy in the pediatric population. Compared to adding a new drug to a pre-existing treatment, the ketogenic diet is highly effective and reduces the number of seizures by 50-90% in approximately 45-60% of children after six months of treatment. For this reason, the Argentine Society of Pediatric Neurology established the Ketogenic Diet Working Group. It is integrated by pediatric dietitians, pediatricians, pediatric neurologists and B.S. in Nutrition, who developed recommendations for the optimal management of patients receiving the classical ketogenic diet based on expert consensus and scientific publications in this field. Sociedad Argentina de Pediatría.

  9. Effect of Cocoa Butter and Sunflower Oil Supplementation on Performance, Immunoglobulin, and Antioxidant Vitamin Status of Rats

    Directory of Open Access Journals (Sweden)

    Ebru Yıldırım

    2014-01-01

    Full Text Available This study investigated the effects of cocoa butter and sunflower oil alone and in combination on performance, some biochemical parameters, immunoglobulin, and antioxidant vitamin status in Wistar rats. Forty-eight male rats were assigned to four groups, consisting of 12 rats with 3 replicates. Control received balanced rat diet without oil, cocoa butter group received 3.5% cocoa butter, sunflower oil group received 3.5% sunflower oil, the last group received 1.75% sunflower oil + 1.75% cocoa butter supplementation in the rat diet for 8 weeks. The total feed consumption in sunflower oil group was statistically lower than in the other groups. The serum creatinine level was decreased in cocoa butter group compared to control. Triglyceride and VLDL cholesterol levels were decreased in only sunflower oil and only cocoa butter groups as compared to control. The level of Ig M was statistically lower in cocoa butter and cocoa butter + sunflower oil groups than in control and sunflower oil groups. There were no statistically important difference in vitamin concentrations among trial groups. It was concluded that the supplementation of cocoa butter in diet decreased Ig M level, while the supplementation of cocoa butter and sunflower oil alone decreased the triglyceride and VLDL cholesterol levels.

  10. Neutron activation analysis in the central nervous system tissues of neurological diseases and rats maintained on minerally unbalanced diets

    International Nuclear Information System (INIS)

    Yasui, Masayuki; Ota, Kiichiro; Sasajima, Kazuhisa.

    1995-01-01

    Epidemiological surveys on Guam have suggested that low calcium (Ca), magnesium (Mg) and high Al and Mn in river, soil and drinking water may be implicated in the pathogenesis of PD. Experimentally, low Ca-Mg diets with or without added Al have been found to accelerate Al deposition in the CNS of rats and monkeys. Although excessive deposition of Mn produces neurotoxic action similar to Al in CNS tissues, the mechanism of Mn deposition coupled with Al loading in the presence of low Ca-Mg intake is not yet known. In this animal study, the deposition and metal-metal interaction of both Al and Mn in the CNS, visceral organs and bones of rats fed unbalanced mineral diets were analyzed. Male Wistar rats, weighing 200 g, were maintained for 90 days on the following diets: (A) standard diet, (B) low Ca diet, (C) low Ca-Mg diet, (D) low Ca-Mg diet with high Al. Al and Mn content were determined in the frontal cortex, spinal cord, kidney, muscle, abdominal aorta, femur and lumbar spine using neutron activation analysis (NAA). Intake of low Ca and Mg with added Al in rats led to the high concentrations of Mn and Al in bones and in the frontal cortex. It is likely that unbalanced mineral diets and metal-metal interactions may lead to the unequal distribution of Al and Mn in bones and ultimately in the CNS inducing CNS degeneration. On the other hand, concentrations of copper (Cu), calcium (Ca) and aluminum (Al) for 26 subanatomical regions of the CNS were measured by neutron activation analysis (NAA) in two cases of Wilson's disease, two of portal systemic encephalopathy, six pathologically verified cases of ALS, four of Parkinson's disease and five neurologically normal controls. Also zinc (Zn) and iron (Fe) concentrations were measured by NAA for frontal and occipital lobes of parkinsonism-dementia. (author)

  11. Functional Comparison for Lipid Metabolism and Intestinal and Fecal Microflora Enzyme Activities between Low Molecular Weight Chitosan and Chitosan Oligosaccharide in High-Fat-Diet-Fed Rats.

    Science.gov (United States)

    Chiu, Chen-Yuan; Feng, Shih-An; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2017-07-24

    The present study investigated and compared the regulatory effects on the lipid-related metabolism and intestinal disaccharidase/fecal bacterial enzyme activities between low molecular weight chitosan and chitosan oligosaccharide in high-fat-diet-fed rats. Diet supplementation of low molecular weight chitosan showed greater efficiency than chitosan oligosaccharide in suppressing the increased weights in body and in liver and adipose tissues of high-fat-diet-fed rats. Supplementation of low molecular weight chitosan also showed a greater improvement than chitosan oligosaccharide in imbalance of plasma, hepatic, and fecal lipid profiles, and intestinal disaccharidase activities in high-fat-diet-fed rats. Moreover, both low molecular weight chitosan and chitosan oligosaccharide significantly decreased the fecal microflora mucinase and β-glucuronidase activities in high-fat-diet-fed rats. These results suggest that low molecular weight chitosan exerts a greater positive improvement than chitosan oligosaccharide in lipid metabolism and intestinal disaccharidase activity in high-fat-diet-induced obese rats.

  12. A Low-Protein, High-Carbohydrate Diet Stimulates Thermogenesis in the Brown Adipose Tissue of Rats via ATF-2.

    Science.gov (United States)

    de França, Suélem A; dos Santos, Maísa P; Przygodda, Franciele; Garófalo, Maria Antonieta R; Kettelhut, Isis C; Magalhães, Diego A; Bezerra, Kalinne S; Colodel, Edson M; Flouris, Andreas D; Andrade, Cláudia M B; Kawashita, Nair H

    2016-03-01

    The aim of this study was to evaluate thermogenesis in the interscapular brown adipose tissue (IBAT) of rats submitted to low-protein, high-carbohydrate (LPHC) diet and the involvement of adrenergic stimulation in this process. Male rats (~100 g) were submitted to LPHC (6%-protein; 74%-carbohydrate) or control (C; 17%-protein; 63%-carbohydrate) isocaloric diets for 15 days. The IBAT temperature was evaluated in the rats before and after the administration of noradrenaline (NA) (20 µg 100 g b w(-1) min(-1)). The expression levels of uncoupling protein 1 (UCP1) and other proteins involved in the regulation of UCP1 expression were determined by Western blot (Student's t test, P ≤ 0.05). The LPHC diet promoted a 1.1 °C increase in the basal temperature of IBAT when compared with the basal temperature in the IBAT of the C group. NA administration promoted a 0.3 °C increase in basal temperature in the IBAT of the C rats and a 0.5 °C increase in the IBAT of the LPHC group. The level of UCP1 increased 60% in the IBAT of LPHC-fed rats, and among the proteins involved in its expression, such as β3-AR and α1-AR, there was a 40% increase in the levels of p38-MAPK and a 30% decrease in CREB when compared to the C rats. The higher sympathetic flux to IBAT, which is a consequence of the administration of the LPHC diet to rats, activates thermogenesis and increases the expression of UCP1 in the tissue. Our results suggest that the increase in UCP1 content may occur via p38 MAPK and ATF2.

  13. Lymphatic recovery of exogenous oleic acid in rats on long chain or specific structured triacylglycerol diets

    DEFF Research Database (Denmark)

    Vistisen, Bodil; Mu, Huiling; Høy, Carl-Erik

    2006-01-01

    Specific structured triacylglycerols, MLM (M = medium-chain fatty acid, L = long-chain fatty acid), rapidly deliver energy and long-chain fatty acids to the body and are used for longer periods in human enteral feeding. In the present study rats were fed diets of 10 wt% MLM or LLL (L = oleic acid......% and 45%, respectively). However, the recovery of exogenous 18:1 n-9 was higher after a single bolus of MLM compared with a bolus of LLL in rats on the MLM diet (40% and 24%, respectively, P = 0.009). The recovery of lymphatic 18:1 n-9 of the LLL bolus tended to depend on the diet triacylglycerol...... structure and composition (P = 0.07). This study demonstrated that with a diet containing specific structured triacylglycerol, the lymphatic recovery of 18:1 n-9 after a single bolus of fat was dependent on the triacylglycerol structure of the bolus. This indicates that the lymphatic recovery of long...

  14. Increased concentration of vasopressin in plasma of essential fatty acid-deficient rats

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Jensen, B.; Warberg, J.

    1985-01-01

    The effect of essential fatty acid deficiency (EFA-D) on the plasma concentration of arginine-vasopressin (AVP) and the urinary AVP excretion was investigated. Weanling rats were fed a fat-free diet (FF-rats). Control rats received the same diet in which 6% by wt. of sucrose was replaced by arachis...... oil. After 4-6 weeks of feeding, urine and plasma were analysed for AVP, osmolality, sodium and potassium. When compared to control rats FF-rats had decreased urine volume (6.0 ± 1.6 ml/24 hr versus 11.7 ± 3.2 ml/24 hr), increased urine osmolality (2409 ± 691 mOsm/kg versus 1260 ± 434 m...

  15. Diets containing salmon fillet delay development of high blood pressure and hyperfusion damage in kidneys in obese Zucker fa/fa rats.

    Science.gov (United States)

    Vikøren, Linn A; Drotningsvik, Aslaug; Mwakimonga, Angela; Leh, Sabine; Mellgren, Gunnar; Gudbrandsen, Oddrun A

    2018-04-01

    Hypertension is the leading risk factor for cardiovascular and chronic renal diseases, affecting more than 1 billion people. Fish intake is inversely correlated with the prevalence of hypertension in several, but not all, studies, and intake of fish oil and fish proteins has shown promising potential to delay development of high blood pressure in rats. The effects of baked and raw salmon fillet intake on blood pressure and renal function were investigated in obese Zucker fa/fa rats, which spontaneously develop hypertension with proteinuria and renal failure. Rats were fed diets containing baked or raw salmon fillet in an amount corresponding to 25% of total protein from salmon and 75% of protein from casein, or casein as the sole protein source (control group) for 4 weeks. Results show lower blood pressure and lower urine concentrations of albumin and cystatin C (relative to creatinine) in salmon diet groups when compared to control group. Morphological examinations revealed less prominent hyperfusion damage in podocytes from rats fed diets containing baked or raw salmon when compared to control rats. In conclusion, diets containing baked or raw salmon fillet delayed the development of hypertension and protected against podocyte damage in obese Zucker fa/fa rats. Copyright © 2018 American Heart Association. Published by Elsevier Inc. All rights reserved.

  16. Cecal parameters of rats fed diets containing grapefruit polyphenols and inulin as single supplements or in a combination.

    Science.gov (United States)

    Zduńczyk, Zenon; Juśkiewicz, Jerzy; Estrella, Isabel

    2006-09-01

    We compared the effects of grapefruit flavonoids and inulin, as single dietary components or in a combination, on cecal fermentation in rats adapted to a semipurified diet. The experimental diets contained 0.3% flavonoid extract and 5% or 10% inulin and a combination of both supplements. The large bowel metabolism assessment was based on cecal parameters: bulk effect, pH, microbial enzymes activity, and short-chain fatty acid production. Both supplements induced significant enlargement of the cecal digesta weight. Acidification of cecal digesta was more pronounced, with a higher inulin addition to the diet. Cecal pH was the highest with the flavonoid-rich diets and lowest in the case of a simultaneous addition of flavonoids and a high content of inulin. The flavonoid extract applied as a single dietary supplement was observed to decrease the activity of bacterial beta-glucosidase and beta- and alpha-galactosidases in the cecal digesta. In contrast, addition of the grapefruit extract to inulin-containing diets increased the activity of alpha-glucosidase, alpha-galactosidase, and beta-galactosidase. Great accumulation of cecal digesta in rats consuming the flavonoid-diet caused a considerable increase in the short-chain fatty acid pool, mainly acetic acid. Inulin added to the diet decreased the excessive enlargement of digesta caused by dietary flavonoids. Dietary addition of inulin to the flavonoid-diet also normalized hydration of cecal digesta and significantly decreased the pH of digesta. The presence of polyphenols in the inulin-containing diets did not change total short-chain fatty acid production in the cecum of rats. Our results suggested that simultaneous intake of inulin and polyphenols can decrease the detrimental effects of the latter on cecal fermentation.

  17. Effect of administration of high-protein diet in rats submitted to resistance training.

    Science.gov (United States)

    da Rosa Lima, Thiago; Ávila, Eudes Thiago Pereira; Fraga, Géssica Alves; de Souza Sena, Mariana; de Souza Dias, Arlyson Batista; de Almeida, Paula Caroline; Dos Santos Trombeta, Joice Cristina; Junior, Roberto Carlos Vieira; Damazo, Amílcar Sabino; Navalta, James Wilfred; Prestes, Jonato; Voltarelli, Fabrício Azevedo

    2018-04-01

    Although there is limited evidence regarding the pathophysiological effects of a high-protein diet (HD), it is believed that this type of diet could overload the body and cause damage to the organs directly involved with protein metabolism and excretion. The aim of this study was to verify the effects of HD on biochemical and morphological parameters of rats that completed a resistance training protocol (RT; aquatic jump) for 8 weeks. Thirty-two adult male Wistar rats were divided into four groups (n = 8 for each group): sedentary normal protein diet (SN-14%), sedentary high-protein diet (SH-35%), trained normal protein diet (TN-14%), and trained high-protein diet (TH-35%). Biochemical, tissue, and morphological measurements were made. Kidney (1.91 ± 0.34) and liver weights (12.88 ± 1.42) were higher in the SH. Soleus muscle weight was higher in the SH (0.22 ± 0.03) when compared to all groups. Blood glucose (123.2 ± 1.8), triglycerides (128.5 ± 44.0), and HDL cholesterol levels (65.7 ± 20.9) were also higher in the SH compared with the other experimental groups. Exercise reduced urea levels in the trained groups TN and TH (31.0 ± 4.1 and 36.8 ± 6.6), respectively. Creatinine levels were lower in TH and SH groups (0.68 ± 0.12; 0.54 ± 0.19), respectively. HD negatively altered renal morphology in SH, but when associated with RT, the apparent damage was partially reversed. In addition, the aquatic jump protocol reversed the damage to the gastrocnemius muscle caused by the HD. A high-protein diet promoted negative metabolic and morphological changes, while RT was effective in reversing these deleterious effects.

  18. Effect of vitamin E supplementation on serumic levels of lipids and lipoproteins in cholesterol-fed male rat

    Directory of Open Access Journals (Sweden)

    M.H Khayat Nouri

    2008-11-01

    Full Text Available Hypercholesterolemia is one of the risk factors of cardiovascular diseases. High blood cholesterol affects the general health and increases the mortality rate of cardiovascular diseases. High levels of cholesterol in the diet increases LDL levels and decreases the activity of LDL receptors in the liver. Oxidation of vascular LDL lipoproteins increases the development of atherosclerosis. Previous studies have indicated that consumption of antioxidants decreases hypercholesterolemia. This study evaluates the effect of vitamin E supplementation on blood lipid levels in high cholesterol-fed rats. In this experimental study, three groups of male rats (n=10 for each group were used. The control group received basic diet and one of the other two groups received a diet containing one percent cholesterol and while the other received the same diet plus vitamin E supplement (2500 IU/kg in dry matter of the diet for one month. After determining the values of TC, LDL, VLDL, HDL and TG the results indicated that in rats fed with 1% cholesterol apart from HDL and VLDL the other lipids had increased significantly compared with the control group (p

  19. Interactive effects of chronic stress and a high-sucrose diet on nonalcoholic fatty liver in young adult male rats.

    Science.gov (United States)

    Corona-Pérez, Adriana; Díaz-Muñoz, Mauricio; Cuevas-Romero, Estela; Luna-Moreno, Dalia; Valente-Godínez, Héctor; Vázquez-Martínez, Olivia; Martínez-Gómez, Margarita; Rodríguez-Antolín, Jorge; Nicolás-Toledo, Leticia

    2017-11-01

    Glucocorticoids have been implicated in nonalcoholic fatty liver diseases (NAFLD). The influence of a palatable diet on the response to stress is controversial. This study explored whether a high-sucrose diet could protect from hepatic steatosis induced by chronic restraint stress in young adult rats. Male Wistar rats aged 21 days were allocated into four groups (n = 6-8 per group): control, chronic restraint stress, 30% sucrose diet, and 30% sucrose diet plus chronic restraint stress. After being exposed to either tap water or sucrose solution during eight weeks, half of the rats belonging to each group were subject or not to repeated restraint stress (1 h per day, 5 days per week) during four weeks. Triacylglycerol (TAG), oxidative stress, activity of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD-1), infiltration of immune cells, and glycogen amount in the liver were quantified. Serum concentrations of corticosterone and testosterone were also measured. The stressed group showed normal serum concentrations of corticosterone and did not have hepatic steatosis. However, this group showed increased glycogen, inflammation, mild fibrosis, oxidative stress, and a high activity of 11β-HSD-1 in the liver. The group exposed to the high-sucrose diet had lower concentrations of corticosterone, hepatic steatosis and moderate fibrosis. The group subject to high-sucrose diet plus chronic restraint stress showed low concentrations of corticosterone, hepatic steatosis, oxidative stress, and high concentrations of testosterone. Thus, restraint stress and a high-sucrose diet each generate different components of nonalcoholic fatty liver in young adult rats. The combination of both the factors could promote a faster development of NAFLD.

  20. Rutin ameliorates glycemic index, lipid profile and enzymatic activities in serum, heart and liver tissues of rats fed with a combination of hypercaloric diet and chronic ethanol consumption.

    Science.gov (United States)

    Chuffa, Luiz Gustavo A; Fioruci-Fontanelli, Beatriz A; Bordon, Juliana G; Pires, Rafaelle B; Braga, Camila P; Seiva, Fábio R F; Fernandes, Ana Angélica H

    2014-06-01

    Alcoholism and obesity are strongly associated with several disorders including heart and liver diseases. This study evaluated the effects of rutin treatment in serum, heart and liver tissues of rats subjected to a combination of hypercaloric diet (HD) and chronic ethanol consumption. Rats were divided into three groups: Control: rats fed a standard diet and drinking water ad libitum; G1: rats fed the HD and receiving a solution of 10% (v/v) ethanol; and G2: rats fed the HD and ethanol solution, followed by injections of 50 mg/kg(-1) rutin as treatment. After 53 days of HD and ethanol exposure, the rutin was administered every three days for nine days. At the end of the experimental period (95 days), biochemical analyses were carried out on sera, cardiac and hepatic tissues. Body weight gain and food consumption were reduced in both the G1 and G2 groups compared to control animals. Rutin effectively reduced the total lipids (TL), triglycerides (TG), total cholesterol (TC), VLDL, LDL-cholesterol and glucose levels, while it increased the HDL-cholesterol in the serum of G2 rats, compared to G1. Although rutin had no effect on total protein, albumin, uric acid and cretinine levels, it was able to restore serum activities of alkaline phosphatase (ALP), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and creatine kinase (CK) in animals fed HD and receiving ethanol. Glycogen stores were replenished in both hepatic and cardiac tissues after rutin treatment. Moreover, rutin consistently reduced hepatic levels of TG and TC and cardiac AST, ALT and CK activities. Thus, rutin treatment was effective in reducing the risk factors for cardiac and hepatic disease caused by both HD and chronic ethanol consumption.

  1. A diet high in fat and sugar reverses anxiety-like behaviour induced by limited nesting in male rats: Impacts on hippocampal markers.

    Science.gov (United States)

    Maniam, Jayanthi; Antoniadis, Christopher P; Le, Vivian; Morris, Margaret J

    2016-06-01

    Stress exposure during early development is known to produce long-term mental health deficits. Stress promotes poor lifestyle choices such as poor diet. Early life adversity and diets high in fat and sugar (HFHS) are known to affect anxiety and memory. However additive effects of HFHS and stress during early development are less explored. Here, we examined whether early life stress (ELS) simulated by limited nesting (LN) induces anxiety-like behaviour and cognitive deficits that are modulated by HFHS diet. We examined key hippocampal markers involved in anxiety and cognition, testing the hypothesis that post-weaning HFHS following ELS would ameliorate anxiety-like behaviour but worsen memory and associated hippocampal changes. Sprague-Dawley rats were exposed to LN, postnatal days 2-9, and at weaning, male siblings were given unlimited access to chow or HFHS resulting in (Con-Chow, Con-HFHS, LN-Chow, LN-HFHS, n=11-15/group). Anxiety-like behaviour was assessed by Elevated Plus Maze (EPM) at 10 weeks and spatial and object recognition tested at 11 weeks of age. Rats were culled at 13 weeks. Hippocampal mRNA expression was measured using TaqMan(®) Array Micro Fluidic cards (Life Technologies). As expected HFHS diet increased body weight; LN and control rats had similar weights at 13 weeks, energy intake was also similar across groups. LN-Chow rats showed increased anxiety-like behaviour relative to control rats, but this was reversed by HFHS diet. Spatial and object recognition memory were unaltered by LN exposure or consumption of HFHS diet. Hippocampal glucocorticoid receptor (GR) protein was not affected by LN exposure in chow rats, but was increased by 45% in HFHS rats relative to controls. Hippocampal genes involved in plasticity and mood regulation, GSKα and GSKβ were affected, with reductions in GSKβ under both diet conditions, and reduced GSKα only in LN-HFHS versus Con-HFHS. Interestingly, HFHS diet and LN exposure independently reduced expression of

  2. Improvement of physiological parameters of rats subjected to hypercaloric diet, with the use of Pereskia grandifolia (Cactaceae) leaf flour.

    Science.gov (United States)

    de Almeida, Martha Elisa Ferreira; Simão, Anderson Assaid; Corrêa, Angelita Duarte; de Barros Fernandes, Regiane Victória

    The aim of the present study was to investigate the anti-obesity effects of Pereskia grandifolia leaf flour on rats fed a hypercaloric diet. After a hypercaloric diet for 10 weeks, 21 animals were divided into the following groups and were fed the following diets for 4 weeks: control (CH), hypercaloric diet with P. grandifolia flour (PGF) 5%, and hypercaloric diet with PGF 10%. Several measurements were performed including body weight, food consumption, body mass index, Lee index, liver weight, liver and body moisture content, and body and hepatic lipid level. Data were analyzed by Tukey's test at 5% probability. Rats fed PGF diet had decreased food consumption and body weight and showed lower body mass and Lee indices compared to control group. At week 2, weight of the PGF 10% group was statistically lower than the control group (CH). At week 4, the PGF 10% group demonstrated the highest body weight loss compared to the other two groups. There were no significant difference in total lipids and moisture level between the groups; however, rats fed PGF diet had lower hepatic lipids levels than control group and reduced liver weight. This suggests that PGF induced weight loss and decreased hepatic lipid level and may be effective in treating obesity and related metabolic diseases. Copyright © 2015 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  3. Ginger extract and aerobic training reduces lipid profile in high-fat fed diet rats.

    Science.gov (United States)

    Khosravani, M; Azarbayjani, M A; Abolmaesoomi, M; Yusof, A; Zainal Abidin, N; Rahimi, E; Feizolahi, F; Akbari, M; Seyedjalali, S; Dehghan, F

    2016-04-01

    Obesity, hyperglycemia and dyslipidemia, are major risk factors. However, natural therapies, dietary components, and physical activity may effect on these concerns. The aim of this study was to examine the effect of aerobic exercise and consumption of liquid ginger extract on lipid profile of Male rats with a high-fat fed diet. 32 rats were randomly divided into 4 groups: 1) aerobic exercise, 2) Ginger extract, 3) combined aerobic exercise and Ginger extract, and 4) the control. Subjects of the first three groups received ginger extract via gavage feeding of 250 mg/kg. The exercise program was 3 sessions per week on 3 different days over 4 weeks. Total cholesterol (TC), Triglyceride (TG), HDL and LDL were measured 24-h before the first session and 24-h after the final training session. The concentration of TG in the control group was significantly higher than other groups. In addition, the mean concentration of TG in the aerobic exercise group was significantly lower than Ginger extract group but there was no significant difference as compared to combined aerobic exercise and ginger extract group. The combination of aerobic exercise and ginger consumption significantly reduced the TG level compared to ginger group. TC and LDL concentrations were significantly decreased in all groups compare to control. The combination of aerobic exercise and ginger extract feeding caused a significant increase in HDL levels. The finding of this study suggests that the combination of aerobic exercise and liquid ginger extract consumption might be an effective method of reducing lipid profiles, which will reduce the risk of cardiovascular diseases caused by high-fat diets.

  4. Antidiabetic effects of Mangifera indica Kernel Flour?supplemented diet in streptozotocin?induced type 2 diabetes in rats

    OpenAIRE

    Irondi, Emmanuel A.; Oboh, Ganiyu; Akindahunsi, Afolabi A.

    2016-01-01

    Abstract Our previous report showed that Mangifera indica kernel flour (MIKF) is a rich source of pharmacologically important flavonoids and phenolic acids; and that its methanolic extract inhibits some key enzymes linked to the pathology and complications of type 2 diabetes (T2D) in vitro. Hence, this study evaluated the antidiabetic effects of 10% and 20% MIKF?supplemented diets in T2D in rats. T2D was induced in rats using a high?fat diet (HFD), low?dose streptozotocin (HFD/STZ) model, by ...

  5. Effect of high fat and high sugar diet on insulin binding and insulin action in isolated rat adipocytes

    OpenAIRE

    岡﨑,悟

    1987-01-01

    To clarify on a cellular basis the mechanism of the diabetogenic effect of the westernized diet, insulin binding, insulin stimulated 3-o-methylglucose uptake and glucose oxidation were studied in isolated adipocytes from rats fed experimental diets : low fat-no sugar diet (energy ratio of 10% fat, 70% starch, a model of the traditional Japanese diet), high fat-high sugar diet (40% fat, 20% starch, 20% sugar, a model of the westernized diet), low fat-high sugar diet (10% fat, 50% starch, 20% s...

  6. Altered Potassium Ion Channel Function as a Possible Mechanism of Increased Blood Pressure in Rats Fed Thermally Oxidized Palm Oil Diets.

    Science.gov (United States)

    Nkanu, Etah E; Owu, Daniel U; Osim, Eme E

    2017-12-27

    Intake of thermally oxidized palm oil leads to cytotoxicity and alteration of the potassium ion channel function. This study investigated the effects of fresh and thermally oxidized palm oil diets on blood pressure and potassium ion channel function in blood pressure regulation. Male Wistar rats were randomly divided into three groups of eight rats. Control group received normal feed; fresh palm oil (FPO) and thermally oxidized palm oil (TPO) groups were fed a diet mixed with 15% (weight/weight) fresh palm oil and five times heated palm oil, respectively, for 16 weeks. Blood pressure was measured; blood samples, hearts, and aortas were collected for biochemical and histological analyses. Thermally oxidized palm oil significantly elevated basal mean arterial pressure (MAP). Glibenclamide (10 -5 mmol/L) and tetraethylammonium (TEA; 10 -3 mmol/L) significantly raised blood pressure in TPO compared with FPO and control groups. Levcromakalim (10 -6 mmol/L) significantly (p palm oil increases MAP probably due to the attenuation of adenosine triphosphate-sensitive potassium (K ATP ) and large-conductance calcium-dependent potassium (BK Ca ) channels, tissue peroxidation, and altered histological structures of the heart and blood vessels.

  7. Morphological study on dental caries induced in WBN/KobSlc rats (Rattus norvegicus) fed a standard laboratory diet.

    Science.gov (United States)

    Fukuzato, Yoko; Matsuura, Tetsuro; Ozaki, Kiyokazu; Matsuura, Masahiro; Sano, Tomoya; Nakahara, Yutaka; Kodama, Yasushi; Nakagawa, Akihito; Okamura, Sumie; Suido, Hirohisa; Torii, Kayo; Makino, Taketoshi; Narama, Isao

    2009-10-01

    In our previous studies, WBN/KobSlc was characterized as a rat strain in which only males began to develop pancreatitis, and then presented with diabetic symptoms. In the course of studying their pancreatic inflammation, we detected molar caries in prediabetic males feeding on a standard diet (CRF-1) widely used for experimental animals. The purpose of this study is to confirm whether the WBN/KobSlc strain is caries-susceptible to the diet reported to be non-cariogenic, and to examine the effect of a prediabetic condition on their dental caries. For a morphological study, 25 male WBN/KobSlc rats aged 3.2-7.8 months and 24 females of the same strain aged 3.3-6.6 months were used, along with 10 males and 10 females of 8.2-month-old F344 rats. Marked dental caries were detected in the mandibular molars of male and female WBN/KobSlc rats regardless of pancreatitis, although no similar changes were observed in any teeth of the F344 strain fed the same diet. Soft X-ray examination revealed that the caries began in the crown and progressed horizontally and vertically, and that a severe radiolucent lesion extensively expanded to the entire crown, corresponding to a macroscopically deleted molar. The caries had gradually developed mainly in the second mandibular molar from more than 3.5 months of age, while none were seen in any rats before that time. The WBN/KobSlc rats were caries-susceptible even to the standard laboratory diet, and pancreatitis was not directly associated with the onset of dental caries in this strain.

  8. Effect of docosahexaenoic acid and ascorbate on peroxidation of retinal membranes of ODS rats.

    Science.gov (United States)

    Wang, Jin-Ye; Sekine, Seiji; Saito, Morio

    2003-04-01

    Mutant male osteogenic disorder Shionogi (ODS) rats, unable to synthesize ascorbic acid, were fed diets containing a high content of docosahexaenoic acid (DHA) and different amounts of ascorbic acid, to study the effect of DHA on peroxidative susceptibility of the retina and possible antioxidant action of ascorbic acid. ODS rats were fed from 7 weeks of age with diets containing high DHA (6.4% of total energy). A control group received a diet high in linoleic acid. The diets also contained varying amounts of ascorbic acid. Fatty acid compositions and phospholipid hydroperoxides in rod outer segment (ROS) membranes, and retinal ascorbic acid were analyzed. DHA in ROS membranes was significantly increased in rats fed high DHA, compared with the linoleic acid diet. Levels of phospholipid hydroperoxides in the DHA-fed rats were significantly higher than the linoleic acid-fed rats. Ascorbic acid supplementation did not suppress the phospholipid hydroperoxide levels after a high DHA diet, even when the supplement increased the content of retinal ascorbic acid. In conclusion, high DHA feeding induced a marked increase of phospholipid hydroperoxides in ROS membranes of ODS rats. Supplementation of ascorbic acid did not reverse this increase.

  9. Dieta hiperlipídica e capacidade secretória de insulina em ratos High-fat diet and secretory capacity of insulin in rats

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Garcia de Oliveira Duarte

    2006-06-01

    the effects of continuous feeding of rats with a palatable high-fat diet on: body weight gain, adiposity, liver and muscle glycogen content, blood glucose and insulin levels, and pancreatic morphology and insulin secretion by in vitro isolated pancreatic beta cells. METHODS: Male Wistar rats (21 days old were fed with a palatable high-fat diet or a chow diet during 15wk. Body weight and food intake were recorded daily whereas blood glucose and insulin were analyzed weekly. After they were killed, pancreas, liver, gastrocnemius muscle and adipose tissues were removed and weighted. Morphology analysis of pancreatic tissue sections was performed using light microscopy. Serum insulin and the insulin secreted by isolated pancreatic islets, incubated for 90min under different concentrations of glucose, were analyzed by radioimmunoassay. RESULTS: The palatable high-fat diet increased adiposity, body weight gain and liver glycogen content when compared with the animals fed with a chow diet. Blood glucose and insulin levels did not differ between groups. The insulin secretion from isolated islets increased in the high-fat diet group only at physiological concentrations of glucose (G= 8.3mM. The size of the pancreas of rats receiving the high-fat diet decreased, although the number of beta cells increased. In addition, the lumen of pancreatic vessels was narrower compared with control islets. CONCLUSION: The obesity resulting from a high-fat diet did not alter the blood glucose and insulin levels of fasted rats. Despite the morphological alterations of the pancreas, normal blood glucose concentration in rats receiving a high-fat diet remained at physiological range due to a preserved secretory capacity of the pancreatic islets.

  10. Individual Differences in Cue-Induced Motivation and Striatal Systems in Rats Susceptible to Diet-Induced Obesity.

    Science.gov (United States)

    Robinson, Mike J F; Burghardt, Paul R; Patterson, Christa M; Nobile, Cameron W; Akil, Huda; Watson, Stanley J; Berridge, Kent C; Ferrario, Carrie R

    2015-08-01

    Pavlovian cues associated with junk-foods (caloric, highly sweet, and/or fatty foods), like the smell of brownies, can elicit craving to eat and increase the amount of food consumed. People who are more susceptible to these motivational effects of food cues may have a higher risk for becoming obese. Further, overconsumption of junk-foods leading to the development of obesity may itself heighten attraction to food cues. Here, we used a model of individual susceptibility to junk-foods diet-induced obesity to determine whether there are pre-existing and/or diet-induced increases in attraction to and motivation for sucrose-paired cues (ie, incentive salience or 'wanting'). We also assessed diet- vs obesity-associated alterations in mesolimbic function and receptor expression. We found that rats susceptible to diet-induced obesity displayed heightened conditioned approach prior to the development of obesity. In addition, after junk-food diet exposure, those rats that developed obesity also showed increased willingness to gain access to a sucrose cue. Heightened 'wanting' was not due to individual differences in the hedonic impact ('liking') of sucrose. Neurobiologically, Mu opioid receptor mRNA expression was lower in striatal 'hot-spots' that generate eating or hedonic impact only in those rats that became obese. In contrast, prolonged exposure to junk-food resulted in cross-sensitization to amphetamine-induced locomotion and downregulation of striatal D2R mRNA regardless of the development of obesity. Together these data shed light on individual differences in behavioral and neurobiological consequences of exposure to junk-food diets and the potential contribution of incentive sensitization in susceptible individuals to greater food cue-triggered motivation.

  11. Individual Differences in Cue-Induced Motivation and Striatal Systems in Rats Susceptible to Diet-Induced Obesity

    Science.gov (United States)

    Robinson, Mike JF; Burghardt, Paul R; Patterson, Christa M; Nobile, Cameron W; Akil, Huda; Watson, Stanley J; Berridge, Kent C; Ferrario, Carrie R

    2015-01-01

    Pavlovian cues associated with junk-foods (caloric, highly sweet, and/or fatty foods), like the smell of brownies, can elicit craving to eat and increase the amount of food consumed. People who are more susceptible to these motivational effects of food cues may have a higher risk for becoming obese. Further, overconsumption of junk-foods leading to the development of obesity may itself heighten attraction to food cues. Here, we used a model of individual susceptibility to junk-foods diet-induced obesity to determine whether there are pre-existing and/or diet-induced increases in attraction to and motivation for sucrose-paired cues (ie, incentive salience or ‘wanting’). We also assessed diet- vs obesity-associated alterations in mesolimbic function and receptor expression. We found that rats susceptible to diet-induced obesity displayed heightened conditioned approach prior to the development of obesity. In addition, after junk-food diet exposure, those rats that developed obesity also showed increased willingness to gain access to a sucrose cue. Heightened ‘wanting’ was not due to individual differences in the hedonic impact (‘liking’) of sucrose. Neurobiologically, Mu opioid receptor mRNA expression was lower in striatal ‘hot-spots’ that generate eating or hedonic impact only in those rats that became obese. In contrast, prolonged exposure to junk-food resulted in cross-sensitization to amphetamine-induced locomotion and downregulation of striatal D2R mRNA regardless of the development of obesity. Together these data shed light on individual differences in behavioral and neurobiological consequences of exposure to junk-food diets and the potential contribution of incentive sensitization in susceptible individuals to greater food cue-triggered motivation. PMID:25761571

  12. The effect of eight weeks endurance training and high-fat diet on appetite-regulating hormones in rat plasma

    Directory of Open Access Journals (Sweden)

    Rouhollah Haghshenas

    2014-04-01

    Full Text Available Objective(s:Consumption of high-fat foods is one of the major causes of obesity. Physical exercise is a strategy used to counteract obesity. The aim of this study was to investigate the effect of eight weeks endurance training and high-fat diet (HFD on appetite-regulating hormones in rat plasma. Materials and Methods:Twenty eight male Wistar rats were randomly divided into four groups: Control group with standard diet (CSD, endurance training with a standard diet (ESD, control group with high-fat diet (CHFD and endurance training with high-fat diet (EHFD. Twenty-four hr after the last training session, the blood samples were obtained and analyzed for hormones levels. Results: The significant increased weight gain and food intake and decreased plasma nesfatin-1 and PYY3-36 levels were observed in CHFD group, while exercise under the HFD antagonized these effects. There were no significant changes in ghrelin, insulin and leptin levels in different groups. Conclusion: These results suggest that exercise can prevent fattening effect of HFD. Probably, performing exercise makes a reduction of food intake and weight gain in rat via the increase in nesfatin-1 and PYY levels. However, further studies are necessary to understand the exact mechanisms involved in this field.

  13. Preventive Effects of Drinking Hydrogen-Rich Water on Gingival Oxidative Stress and Alveolar Bone Resorption in Rats Fed a High-Fat Diet.

    Science.gov (United States)

    Yoneda, Toshiki; Tomofuji, Takaaki; Kunitomo, Muneyoshi; Ekuni, Daisuke; Irie, Koichiro; Azuma, Tetsuji; Machida, Tatsuya; Miyai, Hisataka; Fujimori, Kouhei; Morita, Manabu

    2017-01-13

    Obesity induces gingival oxidative stress, which is involved in the progression of alveolar bone resorption. The antioxidant effect of hydrogen-rich water may attenuate gingival oxidative stress and prevent alveolar bone resorption in cases of obesity. We examined whether hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption in obese rats fed a high-fat diet. Male Fischer 344 rats ( n = 18) were divided into three groups of six rats each: a control group (fed a regular diet and drinking distilled water) and two experimental groups (fed a high-fat diet and drinking distilled water or hydrogen-rich water). The level of 8-hydroxydeoxyguanosine was determined to evaluate oxidative stress. The bone mineral density of the alveolar bone was analyzed by micro-computerized tomography. Obese rats, induced by a high-fat diet, showed a higher gingival level of 8-hydroxydeoxyguanosine and a lower level of alveolar bone density compared to the control group. Drinking hydrogen-rich water suppressed body weight gain, lowered gingival level of 8-hydroxydeoxyguanosine, and reduced alveolar bone resorption in rats on a high-fat diet. The results indicate that hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption by limiting obesity.

  14. Leucine supplementation improves adiponectin and total cholesterol concentrations despite the lack of changes in adiposity or glucose homeostasis in rats previously exposed to a high-fat diet

    Directory of Open Access Journals (Sweden)

    Donato Jose

    2011-09-01

    Full Text Available Abstract Background Studies suggest that leucine supplementation (LS has a therapeutic potential to prevent obesity and to promote glucose homeostasis. Furthermore, regular physical exercise is a widely accepted strategy for body weight maintenance and also for the prevention of obesity. The aim of this study was to determine the effect of chronic LS alone or combined with endurance training (ET as potential approaches for reversing the insulin resistance and obesity induced by a high-fat diet (HFD in rats. Methods Forty-seven rats were randomly divided into two groups. Animals were fed a control diet-low fat (n = 10 or HFD (n = 37. After 15 weeks on HFD, all rats received the control diet-low fat and were randomly divided according to treatment: reference (REF, LS, ET, and LS+ET (n = 7-8 rats per group. After 6 weeks of treatment, the animals were sacrificed and body composition, fat cell volume, and serum concentrations of total cholesterol, HDL-cholesterol, triacylglycerol, glucose, adiponectin, leptin and tumor necrosis factor-alpha (TNF-α were analyzed. Results At the end of the sixth week of treatment, there was no significant difference in body weight between the REF, LS, ET and LS+ET groups. However, ET increased lean body mass in rats (P = 0.019. In addition, ET was more effective than LS in reducing adiposity (P = 0.019, serum insulin (P = 0.022 and TNF-α (P = 0.044. Conversely, LS increased serum adiponectin (P = 0.021 levels and reduced serum total cholesterol concentration (P = 0.042. Conclusions The results showed that LS had no beneficial effects on insulin sensitivity or adiposity in previously obese rats. On the other hand, LS was effective in increasing adiponectin levels and in reducing total cholesterol concentration.

  15. The selective orexin receptor 1 antagonist ACT-335827 in a rat model of diet-induced obesity associated with metabolic syndrome.

    Science.gov (United States)

    Steiner, Michel A; Sciarretta, Carla; Pasquali, Anne; Jenck, Francois

    2013-01-01

    The orexin system regulates feeding, nutrient metabolism and energy homeostasis. Acute pharmacological blockade of orexin receptor 1 (OXR-1) in rodents induces satiety and reduces normal and palatable food intake. Genetic OXR-1 deletion in mice improves hyperglycemia under high-fat (HF) diet conditions. Here we investigated the effects of chronic treatment with the novel selective OXR-1 antagonist ACT-335827 in a rat model of diet-induced obesity (DIO) associated with metabolic syndrome (MetS). Rats were fed either standard chow (SC) or a cafeteria (CAF) diet comprised of intermittent human snacks and a constant free choice between a HF/sweet (HF/S) diet and SC for 13 weeks. Thereafter the SC group was treated with vehicle (for 4 weeks) and the CAF group was divided into a vehicle and an ACT-335827 treatment group. Energy and water intake, food preference, and indicators of MetS (abdominal obesity, glucose homeostasis, plasma lipids, and blood pressure) were monitored. Hippocampus-dependent memory, which can be impaired by DIO, was assessed. CAF diet fed rats treated with ACT-335827 consumed less of the HF/S diet and more of the SC, but did not change their snack or total kcal intake compared to vehicle-treated rats. ACT-335827 increased water intake and the high-density lipoprotein associated cholesterol proportion of total circulating cholesterol. ACT-335827 slightly increased body weight gain (4% vs. controls) and feed efficiency in the absence of hyperphagia. These effects were not associated with significant changes in the elevated fasting glucose and triglyceride (TG) plasma levels, glucose intolerance, elevated blood pressure, and adiposity due to CAF diet consumption. Neither CAF diet consumption alone nor ACT-335827 affected memory. In conclusion, the main metabolic characteristics associated with DIO and MetS in rats remained unaffected by chronic ACT-335827 treatment, suggesting that pharmacological OXR-1 blockade has minimal impact in this model.

  16. The selective orexin receptor 1 antagonist ACT-335827 in a rat model of diet-induced obesity associated with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Michel Alexander Steiner

    2013-12-01

    Full Text Available The orexin system regulates feeding, nutrient metabolism and energy homeostasis. Acute pharmacological blockade of orexin receptor 1 (OXR-1 in rodents induces satiety and reduces normal and palatable food intake. Genetic OXR-1 deletion in mice improves hyperglycemia under high-fat (HF diet conditions. Here we investigated the effects of chronic treatment with the novel selective OXR-1 antagonist ACT-335827 in a rat model of diet-induced obesity (DIO associated with metabolic syndrome (MetS. Rats were fed either standard chow (SC or a cafeteria (CAF diet comprised of intermittent human snacks and a constant free choice between a HF/sweet (HF/S diet and SC for 13 weeks. Thereafter the SC group was treated with vehicle (for 4 weeks and the CAF group was divided into a vehicle and an ACT-335827 treatment group. Energy and water intake, food preference, and indicators of MetS (abdominal obesity, glucose homeostasis, plasma lipids, and blood pressure were monitored. Hippocampus-dependent memory, which can be impaired by DIO, was assessed. CAF diet fed rats treated with ACT-335827 consumed less of the HF/S diet and more of the SC, but did not change their snack or total kcal intake compared to vehicle-treated rats. ACT-335827 increased water intake and the high-density lipoprotein associated cholesterol proportion of total circulating cholesterol. ACT-335827 slightly increased body weight gain (4% versus controls and feed efficiency in the absence of hyperphagia. These effects were not associated with significant changes in the elevated fasting glucose and triglyceride (TG plasma levels, glucose intolerance, elevated blood pressure, and adiposity due to CAF diet consumption. Neither CAF diet consumption alone nor ACT-335827 affected memory. In conclusion, the main metabolic characteristics associated with DIO and MetS in rats remained unaffected by chronic ACT-335827 treatment, suggesting that pharmacological OXR-1 blockade has minimal impact in this

  17. Nutritional treatment of cancer cachexia in rats. Use of a diet formulated with a crayfish enzymatic extract.

    Science.gov (United States)

    Cremades, Olga; Parrado, Juan; Jover, María; Collantes de Terán, Laura; Gutiérrez, Juan Francisco; Bautista Palomas, Juan D

    2007-09-01

    Terminal cancer-associated cachexia, characterized by a marked weight loss, anorexia, asthenia and anemia, is usually associated with a malnutrition status. To investigate whether a diet formulated with a crayfish enzymatic extract, enriched in essential amino acids, omega-3 fatty acids, and astaxanthin, would be effective for the treatment of cancer-associated cachexias, by decreasing mortality and morbidity rates in cachectic rats and/or improving survival. Two types of diet were used: a standard diet and one formulated with crayfish enzymatic extract. Rats were divided into two groups (24 animals per group): one without tumor (T-) and the other with tumor (T+) (AH-130 Yoshida ascites hepatoma). Each group was further divided into two subgroups (12 animals per subgroup). Two subgroups (T-(standard) and T+(standard)) were fed the standard diet and the other two (T-(CFEE) and T+(CFEE)) the crayfish enzymatic extract one for four weeks, after which different tissue and plasma parameters were studied. The implantation of the tumor resulted in a considerable loss of muscle and adipose tissue mass in both groups, but the loss of muscle and fat was lower in the group fed the crayfish enzymatic extract diet. There was also a concomitant increase in the plasma concentration of TNF-alpha, although the increase was smaller in the crayfish enzymatic extract-treated group. This study shows that although the treatment of cachetic rats with the crayfish enzymatic extract diet did not revert the cachexia, it increased survival (57.1% vs. 25.9% in the group treated with crayfish enzymatic extract and standard diets, respectively) and meliorated the cachexia symptoms--anorexia and body mass loss (muscle and adipose tissue).

  18. Exercise training starting at weaning age preserves cardiac pacemaker function in adulthood of diet-induced obese rats.

    Science.gov (United States)

    Carvalho de Lima, Daniel; Guimarães, Juliana Bohnen; Rodovalho, Gisele Vieira; Silveira, Simonton Andrade; Haibara, Andrea Siqueira; Coimbra, Cândido Celso

    2014-08-01

    Peripheral sympathetic overdrive in young obese subjects contributes to further aggravation of insulin resistance, diabetes, and hypertension, thus inducing worsening clinical conditions in adulthood. Exercise training has been considered a strategy to repair obesity autonomic dysfunction, thereby reducing the cardiometabolic risk. Therefore, the aim of this study was to assess the effect of early exercise training, starting immediately after weaning, on cardiac autonomic control in diet-induced obese rats. Male Wistar rats (weaning) were divided into four groups: (i) a control group (n = 6); (ii) an exercise-trained control group (n = 6); (iii) a diet-induced obesity group (n = 6); and (iv) an exercise-trained diet-induced obesity group (n = 6). The development of obesity was induced by 9 weeks of palatable diet intake, and the training program was implemented in a motor-driven treadmill (5 times per week) during the same period. After this period, animals were submitted to vein and artery catheter implantation to assess cardiac autonomic balance by methylatropine (3 mg/kg) and propranolol (4 mg/kg) administration. Exercise training increased running performance in both groups (p Exercise training also prevented the increased resting heart rate in obese rats, which seemed to be related to cardiac pacemaker activity preservation (p exercise program beginning at weaning age prevents cardiovascular dysfunction in obese rats, indicating that exercise training may be used as a nonpharmacological therapeutic strategy for the treatment of cardiometabolic diseases.

  19. A high-fat diet decreases GABA concentration in the frontal cortex and hippocampus of rats

    Directory of Open Access Journals (Sweden)

    Cuauhtemoc Sandoval-Salazar

    Full Text Available BACKGROUND: It has been proposed that the γ-aminobutyric acid (GABA plays a key role in the regulation of food intake and body weight by controlling the excitability, plasticity and the synchronization of neuronal activity in the frontal cortex (FC. It has been also proposed that the high-fat diet (HFD could disturb the metabolism of glutamate and consequently the GABA levels, but the mechanism is not yet clearly understood. Therefore, the aim of this study was to investigate the effect of a HFD on the GABA levels in the FC and hippocampus of rats RESULTS: The HFD significantly increased weight gain and blood glucose levels, whereas decreased the GABA levels in the FC and hippocampus compared with standard diet-fed rats CONCLUSIONS: HFD decreases GABA levels in the FC and hippocampus of rat, which likely disrupts the GABAergic inhibitory processes, underlying feeding behavior.

  20. Diets containing sea cucumber (Isostichopus badionotus meals are hypocholesterolemic in young rats.

    Directory of Open Access Journals (Sweden)

    Leticia Olivera-Castillo

    Full Text Available Sea cucumber is widely consumed as a putative functional food. It contains many biologically-active substances, but only limited research on its properties in vivo has been done. The effects of different meals containing Isostichopus badionotus, a sea cucumber from southeast Mexico, on growth performance and body lipid profile in young rats were analyzed. Sea cucumber body wall was either lyophilized, cooked (100 °C, 1 h in water and lyophilized, or oven-dried (70 °C for 12 h. It was then ground and incorporated into cholesterol-containing diets. I. badionotus meals supported growth and improved lipid profile in rats. In particular, serum cholesterol, low density lipoproteins, triglycerides concentration and atherogenic index values were greatly reduced by some I. badionotus containing diets. Liver total lipids, triglycerides and cholesterol were also reduced. Cooking or heat-treatment of the meals lowered but did not abolish their hypolipidemic potency. Gene expression analysis of several key genes involved in cholesterol and lipid metabolism in liver showed that diets containing I. badionotus repressed the induction of key genes associated with dyslipidemia exerted by cholesterol supplementation. Consumption of I. badionotus from the Yucatan Peninsula is beneficial for dyslipidemia, although biological effect is clearly dependent on preparation method.

  1. Docosapentaenoic acid and docosahexaenoic acid are positively associated with insulin sensitivity in rats fed high-fat and high-fructose diets.

    Science.gov (United States)

    Huang, Jiung-Pang; Cheng, Mei-Ling; Hung, Cheng-Yu; Wang, Chao-Hung; Hsieh, Po-Shiuan; Shiao, Ming-Shi; Chen, Jan-Kan; Li, Dai-Er; Hung, Li-Man

    2017-10-01

    The aim of the present study was to compare insulin resistance and metabolic changes using a global lipidomic approach. Rats were fed a high-fat diet (HFD) or a high-fructose diet (HFrD) for 12 weeks to induce insulin resistance (IR) syndrome. After 12 weeks feeding, physiological and biochemical parameters were examined. Insulin sensitivity and plasma metabolites were evaluated using a euglycemic-hyperinsulinemic clamp and mass spectrometry, respectively. Pearson's correlation coefficient was used to investigate the strength of correlations. Rats on both diets developed IR syndrome, characterized by hypertension, hyperlipidemia, hyperinsulinemia, impaired fasting glucose, and IR. Compared with HFrD-fed rats, non-esterified fatty acids were lower and body weight and plasma insulin levels were markedly higher in HFD-fed rats. Adiposity and plasma leptin levels were increased in both groups. However, the size of adipocytes was greater in HFD- than HFrD-fed rats. Notably, the lipidomic heat map revealed metabolites exhibiting greater differences in HFD- and HFrD-fed rats compared with controls. Plasma adrenic acid levels were higher in HFD- than HFrD-fed rats. Nevertheless, linoleic and arachidonic acid levels decreased in HFrD-fed rats compared with controls. Plasma concentrations of docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) were significantly reduced after feeding of both diets, particularly the HFrD. There was a strong positive correlation between these two fatty acids and the insulin sensitivity index. The systemic lipidomic analysis indicated that a reduction in DHA and DPA was strongly correlated with IR in rats under long-term overnutrition. These results provide a potential therapeutic target for IR and metabolic syndrome. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  2. Effect of diet on insulin binding and glucose transport in rat sarcolemmal vesicles

    International Nuclear Information System (INIS)

    Grimditch, G.K.; Barnard, R.J.; Sternlicht, E.; Whitson, R.H.; Kaplan, S.A.

    1987-01-01

    The purpose of this study was to compare the effects of a high-fat, high-sucrose diet (HFS) and a low-fat, high-complex carbohydrate diet (LFC) on glucose tolerance, insulin binding, and glucose transport in rat skeletal muscle. During the intravenous glucose tolerance test, peak glucose values at 5 min were significantly higher in the HFS group; 0-, 20-, and 60-min values were similar. Insulin values were significantly higher in the HFS group at all time points (except 60 min), indicating whole-body insulin resistance. Skeletal muscle was responsible, in part, for this insulin resistance, because specific D-glucose transport in isolated sarcolemmal (SL) vesicles under basal conditions was similar between LFC and HFS rats, despite the higher plasma insulin levels. Scatchard analyses of insulin binding curves to sarcolemmal vesicles revealed that the K/sub a/ of the high-affinity binding sites was significantly reduced by the HFS diet; no other binding changes were noted. Specific D-glucose transport in SL vesicles after maximum insulin stimulation (1 U/kg) was significantly depressed in the HFS group, indicating that HFS feeding also caused a postbinding defect. These results indicate that the insulin resistance in skeletal muscle associated with a HFS diet is due to both a decrease in the K/sub a/ of the high-affinity insulin receptors and a postbinding defect

  3. Supplementation of chitosan alleviates high-fat diet-enhanced lipogenesis in rats via adenosine monophosphate (AMP)-activated protein kinase activation and inhibition of lipogenesis-associated genes.

    Science.gov (United States)

    Chiu, Chen-Yuan; Chan, Im-Lam; Yang, Tsung-Han; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2015-03-25

    This study investigated the role of chitosan in lipogenesis in high-fat diet-induced obese rats. The lipogenesis-associated genes and their upstream regulatory proteins were explored. Diet supplementation of chitosan efficiently decreased the increased weights in body, livers, and adipose tissues in high-fat diet-fed rats. Chitosan supplementation significantly raised the lipolysis rate; attenuated the adipocyte hypertrophy, triglyceride accumulation, and lipoprotein lipase activity in epididymal adipose tissues; and decreased hepatic enzyme activities of lipid biosynthesis. Chitosan supplementation significantly activated adenosine monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation and attenuated high-fat diet-induced protein expressions of lipogenic transcription factors (PPAR-γ and SREBP1c) in livers and adipose tissues. Moreover, chitosan supplementation significantly inhibited the expressions of downstream lipogenic genes (FAS, HMGCR, FATP1, and FABP4) in livers and adipose tissues of high-fat diet-fed rats. These results demonstrate for the first time that chitosan supplementation alleviates high-fat diet-enhanced lipogenesis in rats via AMPK activation and lipogenesis-associated gene inhibition.

  4. Exercise training prevents the attenuation of anesthetic pre-conditioning-mediated cardioprotection in diet-induced obese rats.

    Science.gov (United States)

    Li, L; Meng, F; Li, N; Zhang, L; Wang, J; Wang, H; Li, D; Zhang, X; Dong, P; Chen, Y

    2015-01-01

    Obesity abolishes anesthetic pre-conditioning-induced cardioprotection due to impaired reactive oxygen species (ROS)-mediated adenosine monophosphate-activated protein kinase (AMPK) pathway, a consequence of increased basal myocardial oxidative stress. Exercise training has been shown to attenuate obesity-related oxidative stress. This study tests whether exercise training could normalize ROS-mediated AMPK pathway and prevent the attenuation of anesthetic pre-conditioning-induced cardioprotection in obesity. Male Sprague-Dawley rats were divided into lean rats fed with control diet and obese rats fed with high-fat diet. After 4 weeks of feeding, lean and obese rats were assigned to sedentary conditions or treadmill exercise for 8 weeks. There was no difference in infarct size between lean sedentary and obese sedentary rats after 25 min of myocardial ischemia followed by 120 min reperfusion. In lean rats, sevoflurane equally reduced infarct size in lean sedentary and lean exercise-trained rats. Molecular studies revealed that AMPK activity, endothelial nitric oxide synthase, and superoxide production measured at the end of ischemia in lean rats were increased in response to sevoflurane. In obese rats, sevoflurane increased the above molecular parameters and reduced infarct size in obese exercise-trained rats but not in obese sedentary rats. Additional study showed that obese exercise-trained rats had decreased basal oxidative stress than obese sedentary rats. The results indicate that exercise training can prevent the attenuation of anesthetic cardioprotection in obesity. Preventing the attenuation of this strategy may be associated with reduced basal oxidative stress and normalized ROS-mediated AMPK pathway, but the causal relationship remains to be determined. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  5. A high-fructose diet induces changes in pp185 phosphorylation in muscle and liver of rats

    Directory of Open Access Journals (Sweden)

    M. Ueno

    2000-12-01

    Full Text Available Insulin stimulates the tyrosine kinase activity of its receptor resulting in the tyrosine phosphorylation of pp185, which contains insulin receptor substrates IRS-1 and IRS-2. These early steps in insulin action are essential for the metabolic effects of insulin. Feeding animals a high-fructose diet results in insulin resistance. However, the exact molecular mechanism underlying this effect is unknown. In the present study, we determined the levels and phosphorylation status of the insulin receptor and pp185 (IRS-1/2 in liver and muscle of rats submitted to a high-fructose diet evaluated by immunoblotting with specific antibodies. Feeding fructose (28 days induced a discrete insulin resistance, as demonstrated by the insulin tolerance test. Plasma glucose and serum insulin and cholesterol levels of the two groups of rats, fructose-fed and control, were similar, whereas plasma triacylglycerol concentration was significantly increased in the rats submitted to the fructose diet (P<0.05. There were no changes in insulin receptor concentration in the liver or muscle of either group. However, insulin-stimulated receptor autophosphorylation was reduced to 72 ± 4% (P<0.05 in the liver of high-fructose rats. The IRS-1 protein levels were similar in both liver and muscle of the two groups of rats. In contrast, there was a significant decrease in insulin-induced pp185 (IRS-1/2 phosphorylation, to 83 ± 5% (P<0.05 in liver and to 77 ± 4% (P<0.05 in muscle of the high-fructose rats. These data suggest that changes in the early steps of insulin signal transduction may have an important role in the insulin resistance induced by high-fructose feeding.

  6. Fatty acid and lipidomic data in normal and tumor colon tissues of rats fed diets with and without fish oil

    Directory of Open Access Journals (Sweden)

    Zora Djuric

    2017-08-01

    Full Text Available Data is provided to show the detailed fatty acid and lipidomic composition of normal and tumor rat colon tissues. Rats were fed either a Western fat diet or a fish oil diet, and half the rats from each diet group were treated with chemical carcinogens that induce colon cancer (azoxymethane and dextran sodium sulfate. The data show total fatty acid profiles of sera and of all the colon tissues, namely normal tissue from control rats and both normal and tumor tissues from carcinogen-treated rats, as obtained by gas chromatography with mass spectral detection. Data from lipidomic analyses of a representative subset of the colon tissue samples is also shown in heat maps generated from hierarchical cluster analysis. These data display the utility lipidomic analyses to enhance the interpretation of dietary feeding studies aimed at cancer prevention and support the findings published in the companion paper (Effects of fish oil supplementation on prostaglandins in normal and tumor colon tissue: modulation by the lipogenic phenotype of colon tumors, Djuric et al., 2017 [1].

  7. High fat diet-fed obese rats are highly sensitive to doxorubicin-induced cardiotoxicity

    International Nuclear Information System (INIS)

    Mitra, Mayurranjan S.; Donthamsetty, Shashikiran; White, Brent; Mehendale, Harihara M.

    2008-01-01

    Often, chemotherapy by doxorubicin (Adriamycin) is limited due to life threatening cardiotoxicity in patients during and posttherapy. Recently, we have shown that moderate diet restriction remarkably protects against doxorubicin-induced cardiotoxicity. This cardioprotection is accompanied by decreased cardiac oxidative stress and triglycerides and increased cardiac fatty-acid oxidation, ATP synthesis, and upregulated JAK/STAT3 pathway. In the current study, we investigated whether a physiological intervention by feeding 40% high fat diet (HFD), which induces obesity in male Sprague-Dawley rats (250-275 g), sensitizes to doxorubicin-induced cardiotoxicity. A LD 10 dose (8 mg doxorubicin/kg, ip) administered on day 43 of the HFD feeding regimen led to higher cardiotoxicity, cardiac dysfunction, lipid peroxidation, and 80% mortality in the obese (OB) rats in the absence of any significant renal or hepatic toxicity. Doxorubicin toxicokinetics studies revealed no change in accumulation of doxorubicin and doxorubicinol (toxic metabolite) in the normal diet-fed (ND) and OB hearts. Mechanistic studies revealed that OB rats are sensitized due to: (1) higher oxyradical stress leading to upregulation of uncoupling proteins 2 and 3, (2) downregulation of cardiac peroxisome proliferators activated receptor-α, (3) decreased plasma adiponectin levels, (4) decreased cardiac fatty-acid oxidation (666.9 ± 14.0 nmol/min/g heart in ND versus 400.2 ± 11.8 nmol/min/g heart in OB), (5) decreased mitochondrial AMP-α2 protein kinase, and (6) 86% drop in cardiac ATP levels accompanied by decreased ATP/ADP ratio after doxorubicin administration. Decreased cardiac erythropoietin and increased SOCS3 further downregulated the cardioprotective JAK/STAT3 pathway. In conclusion, HFD-induced obese rats are highly sensitized to doxorubicin-induced cardiotoxicity by substantially downregulating cardiac mitochondrial ATP generation, increasing oxidative stress and downregulating the JAK/STAT3

  8. Grape powder consumption affects the expression of neurodegeneration-related brain proteins in rats chronically fed a high-fructose-high-fat diet.

    Science.gov (United States)

    Liao, Hsiang; Chou, Liang-Mao; Chien, Yi-Wen; Wu, Chi-Hao; Chang, Jung-Su; Lin, Ching-I; Lin, Shyh-Hsiang

    2017-05-01

    Abnormal glucose metabolism in the brain is recognized to be associated with cognitive decline. Because grapes are rich in polyphenols that produce antioxidative and blood sugar-lowering effects, we investigated how grape consumption affects the expression and/or phosphorylation of neurodegeneration-related brain proteins in aged rats fed a high-fructose-high-fat (HFHF) diet. Wistar rats were maintained on the HFHF diet from the age of 8 weeks to 66 weeks, and then on an HFHF diet containing either 3% or 6% grape powder as an intervention for 12 weeks. Western blotting was performed to measure the expression/phosphorylation levels of several cortical and hippocampal proteins, including amyloid precursor protein (APP), tau, phosphatidylinositol-3-kinase (PI3K), extracellular signal-regulated kinase (ERK), receptor for advanced glycation end products (RAGEs), erythroid 2-related factor 2 (Nrf2) and brain-derived neurotrophic factor (BDNF). Inclusion of up to 6% grape powder in the diet markedly reduced RAGE expression and tau hyperphosphorylation, but upregulated the expression of Nrf2 and BDNF, as well as the phosphorylation of PI3K and ERK, in the brain tissues of aged rats fed the HFHF diet. Thus, grape powder consumption produced beneficial effects in HFHF-diet-fed rats, exhibiting the potential to ameliorate changes in neurodegeneration-related proteins in the brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. The effects of prebiotic, probiotic and synbiotic diets containing Bacillus coagulans and inulin on serum lipid profile in the rat

    Directory of Open Access Journals (Sweden)

    Khadijeh Abhari

    2015-07-01

    Full Text Available An in vivo trial was conducted to evaluate the effects of Bacillus coagulans, and inulin, either separately or in combination, on lipid profile using a rat model. Thirty-two male Wistar rats were randomly divided into four groups (n=8 and fed as follows: standard diet (control, standard diet with 5% w/w long chain inulin (prebiotic, standard diet with 109 spores/day spores of B. coagulans by orogastric gavage (probiotic, and standard diet with 5% w/w long chain inulin and 109 spores/day of B. coagulans (synbiotic. Rats were fed for 30 days. Serum samples were collected 10, 20 and 30 days following onset of treatment. Total, HDL and LDL cholesterol and triglycerides concentrations were analyzed. Results of this study showed that inulin potentially affected the lipid profile. An obvious decrease in serum total cholesterol and LDL-cholesterol of rats fed with inulin in symbiotic and prebiotic groups was seen in all sampling days. Inulin fed rats also demonstrated higher levels of HDL-cholesterol concentration; however this value in probiotic and control fed rats remains without significant change. According to the results of this study, B. coagulans did not contribute to any lipid profile changes after 30 days. Thus, further in vitro investigations on the characteristic of these bacteria could be useful to gain insights into understanding the treatment of probiotics in order to achieve the maximum beneficial effect.

  10. Vitamin C and Vitamin E in Prevention of Nonalcoholic Fatty Liver Disease (NAFLD in Choline Deficient Diet Fed Rats

    Directory of Open Access Journals (Sweden)

    Lopasso Fabio P

    2003-10-01

    Full Text Available Abstract Aim Oxidative stress has been implicated in the pathogenesis of Nonalcoholic Fatty Liver Disease (NAFLD. Vitamin C and vitamin E are known to react with reactive oxygen species (ROS blocking the propagation of radical reactions in a wide range of oxidative stress situations. The potential therapeutic efficacy of antioxidants in NAFLD is unknown. The aim of this study was to evaluate the role of antioxidant drugs (vitamin C or vitamin E in its prevention. Methods Fatty liver disease was induced in Wistar rats by choline-deficient diet for four weeks. The rats were randomly assigned to receive vitamin E (n = 6 – (200 mg/day, vitamin C (n = 6 (30 mg/Kg/day or vehicle orally. Results In the vehicle and vitamin E-treated rats, there were moderate macro and microvesicular fatty changes in periportal area without inflammatory infiltrate or fibrosis. Scharlach stain that used for a more precise identification of fatty change was strong positive. With vitamin C, there was marked decrease in histological alterations. Essentially, there was no liver steatosis, only hepatocellular ballooning. Scharlach stain was negative. The lucigenin-enhanced luminescence was reduced with vitamin C (1080 ± 330 cpm/mg/minx103 as compared to those Vitamin E and control (2247 ± 790; 2020 ± 407 cpm/mg/minx103, respectively (p Conclusions 1 Vitamin C reduced oxidative stress and markedly inhibited the development of experimental liver steatosis induced by choline-deficient diet ; 2Vitamin E neither prevented the development of fatty liver nor reduced the oxidative stress in this model.

  11. Adherence to a Gluten Free Diet Is Associated with Receiving Gluten Free Foods on Prescription and Understanding Food Labelling.

    Science.gov (United States)

    Muhammad, Humayun; Reeves, Sue; Ishaq, Sauid; Mayberry, John; Jeanes, Yvonne M

    2017-07-06

    Treatment of coeliac disease requires a strict gluten-free (GF) diet, however, a high proportion of patients do not adhere to a GF diet. The study explores the practical challenges of a GF diet and dietary adherence in Caucasian and South Asian adults with coeliac disease. Patients with biopsy- and serology-proven coeliac disease were recruited from a hospital database. Participants completed a postal survey ( n = 375), including a validated questionnaire designed to measure GF dietary adherence. Half of Caucasians (53%) and South Asians (53%) were adhering to a GF diet. The quarter of patients ( n = 97) not receiving GF foods on prescription had a lower GF dietary adherence score compared with those receiving GF foods on prescription (12.5 versus 16.0; p diet in all population groups.

  12. Diet composition modifies embryotoxic effects induced by experimental diabetes in rats.

    Science.gov (United States)

    Giavini, E; Broccia, M L; Prati, M; Domenico Roversi, G

    1991-01-01

    Despite improvements in prenatal care, the incidence of congenital malformations in diabetic pregnancies is still 3-4 times higher than in normal pregnancies. These defects could be attributed to alterations of intrauterine environment due to disorder of the maternal metabolism. If this were true, the quality of food could play a role in diabetes-induced embryotoxicity. To check this hypothesis, female CD rats were made diabetic by injecting intravenously 50 mg/kg of streptozotocin 2 weeks before mating. From the first day of pregnancy they were divided into three groups and maintained on the following diets: (1) standard diet (Italiana Mangimi); (2) purified high protein diet (protein 55%, carbohydrates 25.5%, fat 7.5%, fiber 4.5%, ash 7.5%); (3) purified normoprotein diet (protein 19%, carbohydrates 62.5%, fat 7.5%, fiber 4%, ash 7%). Nondiabetic pregnant females fed with standard diet served as negative control. No significant differences were observed in blood glucose levels among the groups (range 410-500 mg/dl). The group fed on normoprotein diet showed at term of pregnancy: (1) higher rate of resorptions; (2) lower fetal weight; (3) higher frequency of major malformations than the groups fed standard and hyperproteic diets. Although we are not able at this time to discriminate between a protective effect of a diet with a high protein content and a disruptive effect of a diet containing high quantity of carbohydrates, the results of this trial support the hypothesis of a fuel-mediated teratogenesis in diabetic pregnancy.

  13. Muscle and liver protein synthesis in growing rats fed diets containing raw legumes as the main source of protein

    International Nuclear Information System (INIS)

    Goena, M.; Santidrian, S.; Cuevillas, F.; Larralde, J.

    1986-01-01

    Although legumes are widely used as protein sources, their effects on protein metabolism remain quite unexplored. The authors have measured the rates of gastrocnemius muscle and liver protein synthesis in growing rats fed ad libitum over periods of 12 days on diets containing raw field bean (Vicia faba L.), raw kidney bean (Phaseolus vulgaris L.), and raw bitter vetch (Vicia ervilia L.) as the major sources of protein. Diets were isocaloric and contained about 12% protein. Protein synthesis was evaluated by the constant-intravenous-infusion method, using L-/ 14 C/-tyrosine, as well as by the determination of the RNA-activity (g of newly synthesized protein/day/g RNA). Results showed that, as compared to well-fed control animals, those fed the raw legume diets exhibited a marked reduction in the rate of growth with no changes in the amount of food intake (per 100 g b.wt.). These changes were accompanied by a significant reduction in the rate of muscle protein synthesis in all legume-treated rats, being this reduction greater in the animals fed the Ph. vulgaris and V. ervilia diets. Liver protein synthesis was slightly higher in the rats fed the V. faba and V. ervilia diets, and smaller in the Ph. vulgaris-fed rats. It is suggested that both sulfur amino acid deficiency and the presence of different anti-nutritive factors in raw legumes may account for these effects

  14. The effects of ionizing radiation in the rat's mandibular bone freeding the hypernomic calcium-deficient diet

    International Nuclear Information System (INIS)

    Hasegawa, Gen; Kurita, Akihiko; Nasu, Masanori; Furumoto, Keiichi

    1994-01-01

    The mandibles of rats in a group maintained on the Ca-deficient diet for a long period were irradiated with 30 Gy. To study the effects of radiation, serum Ca and inorganic phosphorus levels were determined for 3 weeks, and the data were compared with findings obtained from rats maintained on a standard diet by autoradiography using 45 Ca and microradiography. The serum Ca level tended to decrease with time after irradiation in the irradiated group maintained on the Ca-deficient diet, but there was no significant difference between the group maintained on the Ca-deficient diet and the group maintained on the standard diet. The serum inorganic phosphorus levels were almost constant throughout the observation period in both the non-irradiated and radiated groups regardless of diet. Uptake of 45 Ca was examined by autoradiography. Both the non-irradiated and irradiated groups maintained on the Ca-deficient diet showed intense 45 Ca uptake, there was almost no difference between these groups in photographic density or in weekly changes after irradiation. The microradiographic study of bone trabeculae revealed only slight changes in the bone cortex after irradiation in the group maintained on the standard diet. On day 3 after irradiation both thinning and roughness of the trabeculae were observed in the interradicular septa and incisal inferior margin and on day 7 in cancellous bone. In the groups maintained on the Ca-deficient diet, marked thinning and roughness of the trabeculae were observed mainly in the cancellous bone. (author)

  15. Dietary fructans, but not cellulose, decrease triglyceride accumulation in the liver of obese Zucker fa/fa rats.

    Science.gov (United States)

    Daubioul, Catherine; Rousseau, Nicolas; Demeure, Roger; Gallez, Bernard; Taper, Henryk; Declerck, Barbara; Delzenne, Nathalie

    2002-05-01

    This study was designed to compare the effects of dietary supplementation with nondigestible carbohydrates, differing in fermentability by colonic bacteria, on hepatic steatosis in growing obese Zucker rats. Male Zucker fa/fa rats were divided into three groups: a control group that received the basal diet, a fructan group that received 10 g highly fermented Synergy 1/100 g diet and a cellulose group that received 10 g poorly fermented Vivapur Microcrystalline cellulose/100 g diet. Rats consuming fructan had a lower energy intake, a lower body weight and less triacylglycerol accumulation in the liver as assessed in vivo by nuclear magnetic resonance (NMR) spectroscopy, and ex vivo by biochemical and histochemical analysis compared with the control and/or cellulose groups. The high fermentation of fructans compared with cellulose was reflected by greater cecal contents and by a twofold greater propionate concentration in the portal vein of rats fed fructan compared with those fed cellulose. By measuring the capacity of hepatocytes isolated from liver of Zucker rats to synthesize triglycerides or total lipids from different precursors, we showed that propionate, at the concentrations measured in the portal vein of rats treated with fructan, selectively decreased the incorporation of acetate into total lipids, a phenomenon that could contribute, along with the lower energy intake, to less triglyceride accumulation in the liver of obese Zucker rats fed dietary fructans.

  16. Gut Microbiota in a Rat Oral Sensitization Model: Effect of a Cocoa-Enriched Diet

    Directory of Open Access Journals (Sweden)

    Mariona Camps-Bossacoma

    2017-01-01

    Full Text Available Increasing evidence is emerging suggesting a relation between dietary compounds, microbiota, and the susceptibility to allergic diseases, particularly food allergy. Cocoa, a source of antioxidant polyphenols, has shown effects on gut microbiota and the ability to promote tolerance in an oral sensitization model. Taking these facts into consideration, the aim of the present study was to establish the influence of an oral sensitization model, both alone and together with a cocoa-enriched diet, on gut microbiota. Lewis rats were orally sensitized and fed with either a standard or 10% cocoa diet. Faecal microbiota was analysed through metagenomics study. Intestinal IgA concentration was also determined. Oral sensitization produced few changes in intestinal microbiota, but in those rats fed a cocoa diet significant modifications appeared. Decreased bacteria from the Firmicutes and Proteobacteria phyla and a higher percentage of bacteria belonging to the Tenericutes and Cyanobacteria phyla were observed. In conclusion, a cocoa diet is able to modify the microbiota bacterial pattern in orally sensitized animals. As cocoa inhibits the synthesis of specific antibodies and also intestinal IgA, those changes in microbiota pattern, particularly those of the Proteobacteria phylum, might be partially responsible for the tolerogenic effect of cocoa.

  17. Grape juice concentrate modulates p16 expression in high fat diet-induced liver steatosis in Wistar rats.

    Science.gov (United States)

    Ferreira, Andressa Orlandeli; Gollücke, Andréa Pittelli Boiago; Noguti, Juliana; da Silva, Victor Hugo Pereira; Yamamura, Elsa Tiemi Hojo; Ribeiro, Daniel Araki

    2012-04-01

    The goal of this study was to investigate whether subchronic treatment with grape juice concentrate is able to protect the liver from high fat diet injury in rats. The effects of grape juice concentrate treatment on histopathological changes, and immunohistochemistry for p53, p16 and p21 were evaluated. Male Wistar rats (n = 18) were distributed into three groups: group 1: negative control; group 2: cholesterol at 1% (w/w) in their diet, treated during 5 weeks; and group 3: cholesterol at 1% in their chow during 5 weeks, and grape juice concentrate at 222 mg per day in their drinking-water in the last week only. The results pointed out that treatment with grape juice concentrate did not show remarkable differences regarding liver tissue in the cholesterol-exposed group when compared to group 2. However, grape juice concentrate was able to modulate p16 immunoexpression when compared to high fat diet group. p53 and p21 did not show any significant statistical differences among groups. Taken together, our results suggest that subchronic grape juice concentrate administration was able to modulate cell cycle control by downregulation of p16 immunoexpression in high fat diet-induced liver steatosis in rats.

  18. Endothelial dysfunction in high fructose containing diet fed rats: Increased nitric oxide and decreased endothelin-1 levels in liver tissue

    Directory of Open Access Journals (Sweden)

    Zeki Arı

    2010-09-01

    Full Text Available Objectives: Dietary high fructose consumption which is closely associated with endothelial dysfunction via insulin re-sistance has recently increased in developed countries. Insulin resistance has a promoter effect on many metabolic disorders such as syndrome X, polycystic ovary syndrome, Type 2 diabetes mellitus etc. Our aim in this study is to understand the impact of increased fructose intake on metabolisms of glucose, insulin and endothelial dysfunction by measuring nitric oxide (NO and endothelin-1 (ET-1 levels in hepatic tissue which is crucial in fructose metabolism.Materials and Methods: We designed an animal study to understand increased fructose intake on hepatic endothe-lium. Twenty adult male albino rats were divided into two groups; the study group (group 1, n=10 received isocaloric fructose enriched diet (fructose-fed rats, containing 18.3% protein, 60.3% fructose and 5.2% fat while the control group received purified regular chow (group 2, n=10 for 2 weeks. After feeding period, blood and hepatic tissue samples were collected and glucose, insulin, NO and ET-1 levels were analysed.Results: We found increased fasting glucose and insulin levels and impaired glucose tolerance in fructose fed rats. Higher NO and lower ET–1 levels were also detected in hepatic tissue samples of the group 1.Conclusion: Increased fructose consumption has deleterious effects on glucose tolerance, insulin resistance and may cause to endothelial dysfunction.

  19. Low-protein, high-carbohydrate diet increases glucose uptake and fatty acid synthesis in brown adipose tissue of rats.

    Science.gov (United States)

    Aparecida de França, Suélem; Pavani Dos Santos, Maísa; Nunes Queiroz da Costa, Roger Vinícius; Froelich, Mendalli; Buzelle, Samyra Lopes; Chaves, Valéria Ernestânia; Giordani, Morenna Alana; Pereira, Mayara Peron; Colodel, Edson Moleta; Marlise Balbinotti Andrade, Cláudia; Kawashita, Nair Honda

    2014-04-01

    The aim of this study was to evaluate glucose uptake and the contribution of glucose to fatty acid (FA) synthesis and the glycerol-3-phosphate (G3P) of triacylglycerol synthesis by interscapular brown adipose tissue (IBAT) of low-protein, high-carbohydrate (LPHC) diet-fed rats. LPHC (6% protein; 74% carbohydrate) or control (17% protein; 63% carbohydrate) diets were administered to rats (∼ 100 g) for 15 d. Total FA and G3P synthesis and the synthesis of FA and G3P from glucose were evaluated in vivo by (3)H2O and (14)C-glucose. Sympathetic neural contribution for FA synthesis was evaluated by comparing the synthesis in denervated (7 d before) IBAT with that of the contralateral innervated side. The insulin signaling and β3 adrenergic receptor (β3-AR) contents, as well as others, were determined by Western blot (Student's t test or analysis of variance; P ≤ 0.05). Total FA synthesis in IBAT was 133% higher in the LPHC group and was reduced 85% and 70% by denervation for the LPHC and control groups, respectively. Glucose uptake was 3.5-fold higher in the IBAT of LPHC rats than in that of the control rats, and the contribution of glucose to the total FA synthesis increased by 12% in control rats compared with 18% in LPHC rats. The LPHC diet increased the G3P generation from glucose by 270% and the insulin receptor content and the p-AKT insulin stimulation in IBAT by 120% and reduced the β3-AR content by 50%. The LPHC diet stimulated glucose uptake, both the total rates and the rates derived from glucose-dependent FA and G3P synthesis, by increasing the insulin sensitivity and the sympathetic flux, despite a reduction in the β3-AR content. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Contributing factors for therapeutic diet adherence in patients receiving haemodialysis treatment: an integrative review.

    Science.gov (United States)

    Oquendo, Lissete González; Asencio, José Miguel Morales; de Las Nieves, Candela Bonill

    2017-12-01

    The objective of this integrative review is to identify the factors that contribute to diet adherence in people suffering from kidney disease who are receiving haemodialysis treatment. Adherence to the therapeutic regimen determines therapeutic success, quality of life and survival in patients on haemodialysis. Lack of diet adherence ranges from 25%-86% in patients receiving haemodialysis treatment and affects patient morbidity and mortality. An integrative literature review was conducted based on the criteria of Whittemore & Knafl. A literature review was performed by two members of the team using twelve databases including PubMed, CUIDEN, CINAHL, The Cochrane Library and ScienceDirect. The main issues identified after analysing the results were as follows: the intrinsic barriers (age, dialysis time, motivation, perceived benefit, distorted perception of adherence) and facilitators (self-efficacy, perception of disease, perception of control), extrinsic barriers (family dysfunction, lack of social support, cultural patterns of consumption of food) and facilitators (social support, relationship with healthcare providers), and interventions to encourage diet adherence, such as the use of motivational interviewing in educational interventions, and the training and education of relevant professionals in communication skills. Diet nonadherence remains a serious health problem and suffers from a lack of solid criteria to identify this condition. The onset of depression signs and the level of social support available to the patient should be assessed, because these are important factors that determine adherence to treatment. Professionals should be trained in health education and communication techniques to contribute to the patient's self-management and motivation for diet adherence. Controlled and randomised clinical studies involving predialysis stages should be performed to investigate the impact of the assessment and control of barriers to diet adherence. © 2017

  1. Low Protein Diet Inhibits Uric Acid Synthesis and Attenuates Renal Damage in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Jianmin Ran

    2014-01-01

    Full Text Available Aim. Several studies indicated that hyperuricemia may link to the worsening of diabetic nephropathy (DN. Meanwhile, low protein diet (LPD retards exacerbation of renal damage in chronic kidney disease. We then assessed whether LPD influences uric acid metabolism and benefits the progression of DN in streptozotocin- (STZ- induced diabetic rats. Methods. STZ-induced and control rats were both fed with LPD (5% and normal protein diet (18%, respectively, for 12 weeks. Vital signs, blood and urinary samples for UA metabolism were taken and analyzed every 3 weeks. Kidneys were removed at the end of the experiment. Results. Diabetic rats developed into constantly high levels of serum UA (SUA, creatinine (SCr and 24 h amounts of urinary albumin excretion (UAE, creatintine (UCr, urea nitrogen (UUN, and uric acid (UUA. LPD significantly decreased SUA, UAE, and blood glucose, yet left SCr, UCr, and UUN unchanged. A stepwise regression showed that high UUA is an independent risk factor for DN. LPD remarkably ameliorated degrees of enlarged glomeruli, proliferated mesangial cells, and hyaline-degenerated tubular epithelial cells in diabetic rats. Expression of TNF-α in tubulointerstitium significantly decreased in LPD-fed diabetic rats. Conclusion. LPD inhibits endogenous uric acid synthesis and might accordingly attenuate renal damage in STZ-induced diabetic rats.

  2. Inhibition of serum cholesterol oxidation by dietary vitamin C and selenium intake in high fat fed rats.

    Science.gov (United States)

    Menéndez-Carreño, M; Ansorena, D; Milagro, F I; Campión, J; Martínez, J A; Astiasarán, I

    2008-04-01

    Cholesterol oxidation products (COPs) have been considered as specific in vivo markers of oxidative stress. In this study, an increased oxidative status was induced in Wistar rats by feeding them a high-fat diet (cafeteria diet). Another group of animals received the same diet supplemented with a combination of two different antioxidants, ascorbic acid (100 mg/kg rat/day) and sodium selenite (200 microg/kg rat/day) and a third group fed on a control diet. Total and individual COPs analysis of the different diets showed no differences among them. At the end of the experimental trial, rats were sacrificed and serum cholesterol, triglycerides and COPs were measured. None of the diets induced changes in rats body weight, total cholesterol and triglycerides levels. Serum total COPs in rats fed on the high-fat diet were 1.01 microg/ml, two times the amount of the control rats (0.47 microg/ml). When dietary antioxidant supplementation was given, serum total COPs concentration (0.44 microg/ml) showed the same levels than those of the rats on control diet. 7beta-hydroxycholesterol, formed non-enzymatically via cholesterol peroxidation in the presence of reactive oxygen species, showed slightly lower values in the antioxidant-supplemented animals compared to the control ones. This study confirms the importance of dietary antioxidants as protective factors against the formation of oxysterols.

  3. Effect of rana galamensis–based diet on the activities of some enzymes and histopathology of selected tissues of albino rats

    Directory of Open Access Journals (Sweden)

    Basiru Olaitan Ajiboye

    2016-10-01

    Full Text Available The effect of Rana galamensis-based diet on the activities of some enzymes and histopathology of selected tissues of albino rats was investigated for eight weeks. A total of sixteen albino rats weighing between 29.15 and 26.01g (21 days old were divided into two groups. The first group contains animals fed on casein-based diet (control; the second group was fed on Rana galamensis-based diet. The animals were fed with their appropriate diet on daily basis and on the eight weeks of the experiment the animals were sacrificed using diethyl ether as anesthesia, blood was collected by cardiac puncture and organs of interest were harvested. Thereafter, organ to body weight ratio, some biochemical parameters and histopathology examination were carried out. There was no significant difference (p >0.05 in the organ to body weight ratio of the animals fed on control and Rana galamensis-based diets. Also, there was no significant different (p >0.05 in the activities of all the enzymes (ALP [alkaline phosphatase], AST [asparate transaminase], ALT [alanine transaminase], and γGT [gamma glutamyl transferase] investigated in the selected tissues and serum of rats fed on Rana galamensis- based diet when compared with the control. In addition, histological examinations of hepatocyte's rats fed on Rana galamensis- based diet show normal architecture structure when compared with the control. The insignificant different in the activities of all the enzymes studies (ALP, AST, ALT and γGT indicated no organ damage, supported by the normal histology studies. The obtained results may imply that Rana galamensis is safe for consumption.  Normal 0 false false false EN-US X-NONE X-NONE

  4. Effect of a cocoa-enriched diet on immune response and anaphylaxis in a food allergy model in Brown Norway rats.

    Science.gov (United States)

    Abril-Gil, Mar; Pérez-Cano, Francisco J; Franch, Àngels; Castell, Margarida

    2016-01-01

    Previous studies have demonstrated that cocoa intake decreased Th2 immune-related antibodies in rats. In consequence, we aimed to study in depth this cocoa action, particularly assessing its effect on a rat model of food allergy (FA) and also on an anaphylactic response. The involvement of the intestinal immune system was analyzed to allow the action mechanisms to be investigated. The role of cocoa flavonoids in the antiallergic properties of cocoa was also established. Brown Norway rats were fed either a reference diet or diets containing conventional cocoa (CC) or nonfermented cocoa (NFC). FA to ovalbumin (OVA) was induced and, later, an anaphylactic response was provoked. As expected, the synthesis of anti-OVA IgE and other Th2-related antibodies was inhibited by CC diet. In addition, the release of mast cell protease II after anaphylaxis was partially prevented by CC, although other variables were not modified. The CC diet also attenuated the increase of some Th2-related cytokines released from mesenteric lymph node and spleen cells, and modulated the intestinal gene expression of molecules involved in allergic response. These results demonstrated the local and systemic influence of CC diet. The effects of the NFC diet were weaker than those of CC, suggesting that cocoa components other than flavonoids play a role in cocoa's action. In conclusion, by acting on intestinal and systemic immune functions, a cocoa-enriched diet in rats exhibited a protective effect against FA and partially against anaphylaxis, making this a food of high interest to the fields of health and immunonutrition. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Disparate metabolic effects of blackcurrant seed oil in rats fed a basal and obesogenic diet.

    Science.gov (United States)

    Jurgoński, Adam; Fotschki, Bartosz; Juśkiewicz, Jerzy

    2015-09-01

    It was hypothesised that blackcurrant seed oil beneficially modulates metabolic disorders related to obesity and its complications. The study also aimed to investigate the potentially adverse effects of an unbalanced diet on the distal intestine. Male Wistar rats were randomly assigned to four groups of eight animals each and were fed a basal or obesogenic (high in fat and low in fibre) diet that contained either rapeseed oil (Canola) or blackcurrant seed oil. A two-way analysis of variance was then applied to assess the effects of diet and oil and the interaction between them. After 8 weeks, the obesogenic dietary regimen increased the body weight, altered the plasma lipid profile and increased the liver fat content and the plasma transaminase activities. In addition, the obesogenic diet decreased bacterial glycolytic activity and short-chain fatty acid formation in the distal intestine. Dietary blackcurrant seed oil improved the lipid metabolism by lowering liver fat accumulation and the plasma triglyceride concentration and atherogenicity as well by increasing the plasma HDL-cholesterol concentration. However, in rats fed an obesogenic diet containing blackcurrant seed oil, the plasma HDL-cholesterol concentration was comparable with both rapeseed oil-containing diets, and a significant elevation of the plasma transaminase activities was noted instead. The obesogenic dietary regimen causes a number of metabolic disorders, including alterations in the hindgut microbial metabolism. Dietary blackcurrant seed oil ameliorates the lipid metabolism; however, the beneficial effect is restricted when it is provided together with the obesogenic diet, and a risk of liver injury may occur.

  6. Chronic erythropoietin treatment improves diet-induced glucose intolerance in rats

    DEFF Research Database (Denmark)

    Caillaud, Corinne; Mechta, Mie; Ainge, Heidi

    2015-01-01

    Erythropoietin (EPO) ameliorates glucose metabolism through mechanisms not fully understood. In this study, we investigated the effect of EPO on glucose metabolism and insulin signaling in skeletal muscle. A 2-week EPO treatment of rats fed with a high-fat diet (HFD) improved fasting glucose levels...... and glucose tolerance, without altering total body weight or retroperitoneal fat mass. Concomitantly, EPO partially rescued insulin-stimulated AKT activation, reduced markers of oxidative stress, and restored heat-shock protein 72 expression in soleus muscles from HFD-fed rats. Incubation of skeletal muscle...... not directly activate the phosphorylation of AKT in muscle cells. We propose that the reduced systemic inflammation or oxidative stress that we observed after treatment with EPO could contribute to the improvement of whole-body glucose metabolism....

  7. Krill Oil Ameliorates Mitochondrial Dysfunctions in Rats Treated with High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Alessandra Ferramosca

    2015-01-01

    Full Text Available In recent years, several studies focused their attention on the role of dietary fats in the pathogenesis of hepatic steatosis. It has been demonstrated that a high-fat diet is able to induce hyperglycemia, hyperinsulinemia, obesity, and nonalcoholic fatty liver disease. On the other hand, krill oil, a novel dietary supplement of n-3 PUFAs, has the ability to improve lipid and glucose metabolism, exerting possible protective effects against hepatic steatosis. In this study we have investigated the effects of krill oil on mitochondrial energetic metabolism in animals fed a high-fat diet. To this end, male Sprague-Dawley rats were divided into three groups and fed for 4 weeks with a standard diet (control group, a diet with 35% fat (HF group, or a high-fat diet supplemented with 2.5% krill oil (HF+KO group. The obtained results suggest that krill oil promotes the burning of fat excess introduced by the high-fat diet. This effect is obtained by stimulating mitochondrial metabolic pathways such as fatty acid oxidation, Krebs cycle, and respiratory chain complexes activity. Modulation of the expression of carrier proteins involved in mitochondrial uncoupling was also observed. Overall, krill oil counteracts the negative effects of a high-fat diet on mitochondrial energetic metabolism.

  8. Krill Oil Ameliorates Mitochondrial Dysfunctions in Rats Treated with High-Fat Diet.

    Science.gov (United States)

    Ferramosca, Alessandra; Conte, Annalea; Zara, Vincenzo

    2015-01-01

    In recent years, several studies focused their attention on the role of dietary fats in the pathogenesis of hepatic steatosis. It has been demonstrated that a high-fat diet is able to induce hyperglycemia, hyperinsulinemia, obesity, and nonalcoholic fatty liver disease. On the other hand, krill oil, a novel dietary supplement of n-3 PUFAs, has the ability to improve lipid and glucose metabolism, exerting possible protective effects against hepatic steatosis. In this study we have investigated the effects of krill oil on mitochondrial energetic metabolism in animals fed a high-fat diet. To this end, male Sprague-Dawley rats were divided into three groups and fed for 4 weeks with a standard diet (control group), a diet with 35% fat (HF group), or a high-fat diet supplemented with 2.5% krill oil (HF+KO group). The obtained results suggest that krill oil promotes the burning of fat excess introduced by the high-fat diet. This effect is obtained by stimulating mitochondrial metabolic pathways such as fatty acid oxidation, Krebs cycle, and respiratory chain complexes activity. Modulation of the expression of carrier proteins involved in mitochondrial uncoupling was also observed. Overall, krill oil counteracts the negative effects of a high-fat diet on mitochondrial energetic metabolism.

  9. High-Methionine Diet Attenuates Severity of Arthritis and Modulates IGF-I Related Gene Expressions in an Adjuvant Arthritis Rats Model

    Directory of Open Access Journals (Sweden)

    Mingxin Li

    2016-01-01

    Full Text Available Rheumatoid arthritis, a synthesized form of adjuvant arthritis exhibited throughout many animal species, inhibits liver function and circulation of IGF-I and contributes to the degradation of skeletal muscle mass. One of the primary goals of the present study is determining whether a high-Methionine (high-Met diet is capable of reducing the adverse effects of arthritis, namely, loss of body mass. Following adjuvant injection, forty arthritic rats were randomly assigned to either a control group with a basal diet or a high-Met group with the same basal diet + 0.5% Methionine. After 14 days all rats were terminated. The high-Met group exhibited an increase in body weight and food intake in comparison with the control group (P<0.05. High-Met diet debilitated arthritis-induced surges in the gastrocnemius in both atrogin-1 and the MuRF1 expressions; however, it was observed to have little to no effect on atrogin-1 and MuRF1 gene expression in soleus. At the same time, high-Met diet rats experienced a rise in IGF-I, with lowering of IGFBP-3 gene expression in the gastrocnemius and the soleus. These data suggest that arthritis severity can be partly attenuated by high-Met diet.

  10. Chronic blood pressure and appetite responses to central leptin infusion in rats fed a high fat diet.

    Science.gov (United States)

    Dubinion, John H; da Silva, Alexandre A; Hall, John E

    2011-04-01

    Obesity has been suggested to induce selective leptin resistance whereby leptin's anorexic effects are attenuated, whereas the effects to increase sympathetic nervous system activity and blood pressure remain intact. Most studies, however, have tested only the acute responses to leptin administration. This study tested whether feeding a high-fat diet causes resistance to the appetite and cardiovascular responses to chronic central leptin infusion. Sprague-Dawley rats were fed high-fat diet (40% kcal from fat, n=5) or normal-fat diet (13% kcal from fat, n=5) for a year. Radiotelemeters were implanted for continuous monitoring of mean arterial pressure (MAP) and heart rate (HR). A 21G steel cannula was implanted in the lateral cerebral ventricle [intracerebroventricular (ICV)]. After recovery, leptin was infused ICV at 0.02 μg/kg per min for 10 days. High-fat rats were heavier than normal-fat rats (582±12 vs. 511±19 g) and exhibited significantly higher MAP (114±3 vs. 96±7 mmHg). Although the acute (24 h) effects of leptin were attenuated in high-fat rats, chronic ICV leptin infusion decreased caloric intake in both groups similarly (50±8 vs. 40±10%) by day 5. Despite decreased food intake and weight loss, leptin infusion significantly increased MAP and HR in both high-fat and normal-fat rats (7±2 and 5±1 mmHg; 18±11 and 21±10 b.p.m., respectively). These results suggest that obesity induced by feeding a high-fat diet blunts the acute anorexic effects of leptin but does not cause significant resistance to the chronic central nervous system effects of leptin on appetite, MAP, or HR.

  11. Effects of High Fat Diet and Physical Exercise on Glucose Tolelance and Insulin Sensitivity in Rats

    OpenAIRE

    福田,哲也

    1987-01-01

    To investigate the interrelationships between the westernized diet and physical exercise as they affect the development of non-insulin-dependent diabetes mellitus (NIDDM), adiposity, glucose tolerance and insulin response to an intraperitoneal glucose load (1.5g/kg bw) and insulin sensitivity to exogenous insulin (0.2U/kg bw) were studied in spontaneously exercised and sedentary rats fed either a high fat diet (40% fat, modern western type) or a low fat diet (10% fat, traditional Japanese typ...

  12. Food quality and motivation: a refined low-fat diet induces obesity and impairs performance on a progressive ratio schedule of instrumental lever pressing in rats.

    Science.gov (United States)

    Blaisdell, Aaron P; Lau, Yan Lam Matthew; Telminova, Ekatherina; Lim, Hwee Cheei; Fan, Boyang; Fast, Cynthia D; Garlick, Dennis; Pendergrass, David C

    2014-04-10

    Purified high-fat diet (HFD) feeding causes deleterious metabolic and cognitive effects when compared with unrefined low-fat diets in rodent models. These effects are often attributed to the diet's high content of fat, while less attention has been paid to other mechanisms associated with the diet's highly refined state. Although the effects of HFD feeding on cognition have been explored, little is known about the impact of refined vs. unrefined food on cognition. We tested the hypothesis that a refined low-fat diet (LFD) increases body weight and adversely affects cognition relative to an unrefined diet. Rats were allowed ad libitum access to unrefined rodent chow (CON, Lab Diets 5001) or a purified low-fat diet (REF, Research Diets D12450B) for 6 months, and body weight and performance on an instrumental lever pressing task were recorded. After six months on their respective diets, group REF gained significantly more weight than group CON. REF rats made significantly fewer lever presses and exhibited dramatically lower breaking points than CON rats for sucrose and water reinforcement, indicating a chronic reduction of motivation for instrumental performance. Switching the rats' diet for 9 days had no effect on these measures. Diet-induced obesity produces a substantial deficit in motivated behavior in rats, independent of dietary fat content. This holds implications for an association between obesity and motivation. Specifically, behavioral traits comorbid with obesity, such as depression and fatigue, may be effects of obesity rather than contributing causes. To the degree that refined foods contribute to obesity, as demonstrated in our study, they may play a significant contributing role to other behavioral and cognitive disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Maternal low-protein diet-induced delayed reflex ontogeny is attenuated by moderate physical training during gestation in rats.

    Science.gov (United States)

    Falcão-Tebas, Filippe; Bento-Santos, Adriano; Fidalgo, Marco Antônio; de Almeida, Marcelus Brito; dos Santos, José Antônio; Lopes de Souza, Sandra; Manhães-de-Castro, Raul; Leandro, Carol Góis

    2012-02-01

    We evaluated the effects of moderate- to low-intensity physical training during gestation on reflex ontogeny in neonate rats whose mothers were undernourished. Virgin female Wistar rats were divided into four groups as follows: untrained (NT, n 7); trained (T, n 7); untrained with a low-protein diet (NT+LP, n 7); trained with a low-protein diet (T+LP, n 4). Trained rats were subjected to a protocol of moderate physical training on a treadmill over a period of 4 weeks (5 d/week and 60 min/d, at 65 % of VO₂max). After confirming the pregnancy, the intensity and duration of the exercise were reduced. Low-protein groups were provided with an 8 % casein diet, and controls were provided with a 17 % casein diet. Their respective offspring were evaluated (during the 10th-17th days of postnatal life) in terms of physical feature maturation, somatic growth and reflex ontogeny. Pups born to mothers provided with the low-protein diet during gestation and lactation showed delayed physical feature and reflex maturation and a deficit in somatic growth when compared with controls. However, most of these deficiencies were attenuated in pups of undernourished mothers undergoing training. In conclusion, physical training during gestation attenuates the effects of perinatal undernutrition on some patterns of maturation in the central nervous system during development.

  14. High fat diet and food restriction differentially modify the behavioral effects of quinpirole and raclopride in rats.

    Science.gov (United States)

    Baladi, Michelle G; France, Charles P

    2009-05-21

    Nutritional status can impact dopamine systems in a manner that might be important to understanding possible common neurobiological mechanisms that mediate abnormal compulsive food (e.g., obesity) and drug taking. Limiting food intake, for example, can increase sensitivity to the behavioral effects of indirect-acting dopamine receptor agonists. Much less is known regarding possible diet-induced changes in sensitivity to direct-acting dopamine receptor drugs. The present study investigated the effects of a high fat diet and of food restriction on sensitivity of rats to the behavioral effects of a direct-acting dopamine receptor agonist and a dopamine receptor antagonist. Free access to high fat chow increased sensitivity to quinpirole-induced yawning without changing sensitivity to raclopride-induced catalepsy or quinpirole-induced hypothermia. Food restriction (10 g/day) decreased sensitivity to quinpirole-induced yawning and raclopride-induced catalepsy without affecting sensitivity to quinpirole-induced hypothermia. Free access to a standard chow restored sensitivity to the behavioral effects of both drugs in rats that were previously food-restricted but not in rats that previously ate a high fat diet. These data confirm that food restriction can decrease sensitivity to behavioral effects of direct-acting dopamine receptor drugs, they provide evidence (i.e., no change in hypothermic effects) indicating that these changes are not due to pharmacokinetic mechanisms, and they provide initial evidence showing enhanced sensitivity to behavioral effects of dopamine receptor drugs in rats eating a high fat diet. These changes in sensitivity of dopamine systems could be relevant to understanding the impact of nutrition on therapeutic and recreational drug use.

  15. Laser photobiomodulation as an adjunct of the wound healing impairment of rats exposed to a cafeteria diet

    Science.gov (United States)

    Uzeda, V.; Paraguassu, G. M.; Dos Santos, J. N.; Ramalho, M. J.; Rodriguez, T. T.; Ramalho, L. M. P.

    2014-02-01

    Obesity is associated to a delayed wound healing and prolonged inflammatory phase. Laser light has shown positive results in the photobiomodulation of tissue repair; however, its use associated with systemic disorders such as obesity is still little explored in the literature. The aim of this study was to validate an experimental system for studying weight gaining by consuming a high fat diet called "cafeteria diet" (CD) for the induction of obesity. Forty-eight rats were weaned, divided into two experimental groups: standard diet (SD) and Cafeteria Diet (CD). Free feeding was carried out during 20 weeks and the mass gaining was accompanied. After general anesthesia standardized surgical wounds were created (1cm2) in the dorsal midline region of each animal. Both groups (SD; CD) were divided into 2 subgroups of 12 animals, G1 and G3 (non-irradiated) and G2 and G4 (irradiated). The irradiation protocols (λ660 nm, 40 mW, CW; 24 J/cm2) started immediately after surgery and were repeated every other day during 14 days. The rats were killed at the 8th or 15th days after surgery. The abdominal fat was removed and weighed to verify the success of the induction technique. The specimens were taken and routinely processed histology (hematoxylin/eosin) was performed. It was concluded that the ingestion of fast-food increased abdominal fat in rats and modified the inflammatory pattern of the healing. Laser phototherapy in the parameters employed decreased inflammatory intensity quickening wound healing in obese rats.

  16. A high-protein diet enhances satiety without conditioned taste aversion in the rat.

    Science.gov (United States)

    Bensaïd, Ahmed; Tomé, Daniel; L'Heureux-Bourdon, Diane; Even, Patrick; Gietzen, Dorothy; Morens, Céline; Gaudichon, Claire; Larue-Achagiotis, Christiane; Fromentin, Gilles

    2003-02-01

    In order to determine the respective roles of conditioned food aversion, satiety and palatability, we studied behavioral responses to a 50% total milk protein diet, compared with those to a normal protein diet containing 14% total milk protein. Different paradigms were employed, including meal pattern analysis, two-choice testing, flavor testing, a behavioral satiety sequence (BSS) and taste reactivity. Our experiments showed that only behavioral and food intake parameters were disturbed during the first day when an animal ate the high-protein (P50) diet, and that most parameters returned to baseline values as soon as the second day of P50. Rats adapted to P50 did not acquire a conditioned taste aversion (CTA) but exhibited satiety, and a normal BSS. The initial reduction in high-protein diet intake appeared to result from the lower palatability of the food combined with the satiety effect of the high-protein diet and the delay required for metabolic adaptation to the higher protein level.

  17. Dietary phytic acid modulates characteristics of the colonic luminal environment and reduces serum levels of proinflammatory cytokines in rats fed a high-fat diet.

    Science.gov (United States)

    Okazaki, Yukako; Katayama, Tetsuyuki

    2014-12-01

    Dietary phytic acid (PA; myo-inositol [MI] hexaphosphate) is known to inhibit colon carcinogenesis in rodents. Dietary fiber, which is a negative risk factor of colon cancer, improves characteristics of the colonic environment, such as the content of organic acids and microflora. We hypothesized that dietary PA would improve the colonic luminal environment in rats fed a high-fat diet. To test this hypothesis, rats were fed diets containing 30% beef tallow with 2.04% sodium PA, 0.4% MI, or 1.02% sodium PA + 0.2% MI for 3 weeks. Compared with the control diet, the sodium PA diet up-regulated cecal organic acids, including acetate, propionate, and n-butyrate; this effect was especially prominent for cecal butyrate. The sodium PA + MI diet also significantly increased cecal butyrate, although this effect was less pronounced when compared with the sodium PA diet. The cecal ratio of Lactobacillales, cecal and fecal mucins (an index of intestinal barrier function), and fecal β-glucosidase activity were higher in rats fed the sodium PA diet than in those fed the control diet. The sodium PA, MI, and sodium PA + MI diets decreased levels of serum tumor necrosis factor α, which is a proinflammatory cytokine. Another proinflammatory cytokine, serum interleukin-6, was also down-regulated by the sodium PA and sodium PA + MI diets. These data showed that PA may improve the composition of cecal organic acids, microflora, and mucins, and it may decrease the levels of serum proinflammatory cytokines in rats fed a high-fat, mineral-sufficient diet. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Resistant starch and exercise independently attenuate weight regain on a high fat diet in a rat model of obesity

    Directory of Open Access Journals (Sweden)

    Johnson Ginger C

    2011-07-01

    Full Text Available Abstract Background Long-term weight reduction remains elusive for many obese individuals. Resistant starch (RS and exercise may be useful for weight maintenance. The effects of RS, with or without exercise, on weight regain was examined during relapse to obesity on a high carbohydrate, high fat (HC/HF diet. Methods Obesity-prone rats were fed ad libitum for 16 weeks then weight reduced on a low fat diet to induce a 17% body weight loss (weight reduced rats. Weight reduced rats were maintained on an energy-restricted low fat diet for 18 weeks, with or without a daily bout of treadmill exercise. Rats were then allowed free access to HC/HF diet containing low (0.3% or high (5.9% levels of RS. Weight regain, energy balance, body composition, adipocyte cellularity, and fuel utilization were monitored as rats relapsed to obesity and surpassed their original, obese weight. Results Both RS and exercise independently attenuated weight regain by reducing the energy gap between the drive to eat and suppressed energy requirements. Exercise attenuated the deposition of lean mass during relapse, whereas its combination with RS sustained lean mass accrual as body weight returned. Early in relapse, RS lowered insulin levels and reduced the deposition of fat in subcutaneous adipose tissue. Exercise cessation at five weeks of relapse led to increased weight gain, body fat, subcutaneous adipocytes, and decreased lean mass; all detrimental consequences to overall metabolic health. Conclusions These data are the first to show the complimentary effects of dietary RS and regular exercise in countering the metabolic drive to regain weight following weight loss and suggest that exercise cessation, in the context of relapse on a HC/HF diet, may have dire metabolic consequences.

  19. The organ specificity in pathological damage of chronic intermittent hypoxia: an experimental study on rat with high-fat diet.

    Science.gov (United States)

    Wang, Hui; Tian, Jian-li; Feng, Shu-zhi; Sun, Ning; Chen, Bao-yuan; Zhang, Yun

    2013-09-01

    It is known today that sleep apnea hypopnea syndrome and its characteristic chronic intermittent hypoxia can cause damages to multiple organs, including the cardiovascular system, urinary system, and liver. It is still unclear, however, whether the damage caused by sleep apnea hypopnea syndrome and the severity of the damage are organ-specific. This research observed the pathological effects of chronic intermittent hypoxia on rat's thoracic aorta, myocardium, liver, and kidney, under the condition of lipid metabolism disturbance, through establishing the rat model of chronic intermittent hypoxia with high-fat diet by imitating the features of human sleep apnea hypopnea syndrome. In this model, 24 male Wistar rats were randomly divided into three groups: a control group fed by regular diet, a high-fat group fed by high-fat diet, and a high-fat plus intermittent hypoxia group fed by high-fat diet and treated with intermittent hypoxia 7 h a day. At the end of the ninth week, the pathological changes of rat's organs, including the thoracic aorta, myocardium, liver, and kidney are observed (under both optical microscopy and transmission electron microscopy). As the result of the experiment shows, while there was no abnormal effect observed on any organs of the control group, slight pathological changes were found in the organs of the high-fat group. For the high-fat plus intermittent hypoxia group, however, remarkably severer damages were found on all the organs. It also showed that the severity of the damage varies by organ in the high-fat plus intermittent hypoxia group, with the thoracic aorta being the worst, followed by the liver and myocardium, and the kidney being the slightest. Chronic intermittent hypoxia can lead to multiple-organ damage to rat with high-fat diet. Different organs appear to have different sensitivity to chronic intermittent hypoxia.

  20. High-protein diet modifies colonic microbiota and luminal environment but not colonocyte metabolism in the rat model: the increased luminal bulk connection.

    Science.gov (United States)

    Liu, Xinxin; Blouin, Jean-Marc; Santacruz, Arlette; Lan, Annaïg; Andriamihaja, Mireille; Wilkanowicz, Sabina; Benetti, Pierre-Henri; Tomé, Daniel; Sanz, Yolanda; Blachier, François; Davila, Anne-Marie

    2014-08-15

    High-protein diets are used for body weight reduction, but consequences on the large intestine ecosystem are poorly known. Here, rats were fed for 15 days with either a normoproteic diet (NP, 14% protein) or a hyperproteic-hypoglucidic isocaloric diet (HP, 53% protein). Cecum and colon were recovered for analysis. Short- and branched-chain fatty acids, as well as lactate, succinate, formate, and ethanol contents, were markedly increased in the colonic luminal contents of HP rats (P diet, whereas the amount of butyrate in feces was increased (P diet consumption allows maintenance in the luminal butyrate concentration and thus its metabolism in colonocytes despite modified microbiota composition and increased substrate availability. Copyright © 2014 the American Physiological Society.