WorldWideScience

Sample records for rats increases thalamic

  1. Enlarged thalamic volumes and increased fractional anisotropy in the thalamic radiations in Veterans with suicide behaviors

    Directory of Open Access Journals (Sweden)

    Melissa eLopez-Larson

    2013-08-01

    Full Text Available Post-mortem studies have suggested a link between the thalamus, psychiatric disorders, and suicide. We evaluated the thalamus and anterior thalamic radiations (ATR in a group of Veterans with and without a history of suicidal behavior (SB to determine if thalamic abnormalities were associated with an increased risk of SB. Forty Veterans with mild traumatic brain injury (TBI and no SB (TBI-SB, 19 Veterans with mild TBI and a history of SB (TB+SB and 15 healthy controls (HC underwent MRI scanning including a structural and diffusion tensor imaging scan. Suicidal behaviors were evaluated utilizing the Columbia Suicide Rating Scale and impulsivity was measured using the Barratt Impulsiveness Scale (BIS. Differences in thalamic volumes and ATR fractional anisotropy (FA were examined between 1 TBI+SB versus HC and 2 TBI+SB versus combined HC and TBI-SB and 2 between TBI+SB and TBI-SB. Left and right thalamic volumes were significantly increased in those with TBI+SB compared to the HC, TBI-SB and the combined group. Veterans with TBI+SB had increased FA bilaterally compared to the HC, HC and TBI-SB group, and the TBI-SB only group. Significant positive associations were found for bilateral ATR and BIS in the TBI+SB group. Our findings of thalamic enlargement and increased FA in individuals with TBI+SB suggest that this region may be a biomarker for suicide risk. Our findings are consistent with previous evidence indicating that suicide may be associated with behavioral disinhibition and frontal-thalamic-limbic dysfunction and suggest a neurobiologic mechanism that may increase vulnerability to suicide.

  2. Dissociation of Recognition and Recency Memory Judgments After Anterior Thalamic Nuclei Lesions in Rats

    Science.gov (United States)

    Dumont, Julie R.; Aggleton, John P.

    2013-01-01

    The anterior thalamic nuclei form part of a network for episodic memory in humans. The importance of these nuclei for recognition and recency judgments remains, however, unclear. Rats with anterior thalamic nuclei lesions and their controls were tested on object recognition, along with two types of recency judgment. The spontaneous discrimination of a novel object or a novel odor from a familiar counterpart (recognition memory) was not affected by anterior thalamic lesions when tested after retention delays of 1 and 60 min. To measure recency memory, rats were shown two familiar objects, one of which had been explored more recently. In one condition, rats were presented with two lists (List A, List B) of objects separated by a delay, thereby creating two distinct blocks of stimuli. After an additional delay, rats were presented with pairs of objects, one from List A and one from List B (between-block recency). No lesion-induced deficit was apparent for recency discriminations between objects from different lists, despite using three different levels of task difficulty. In contrast, rats with anterior thalamic lesions were significantly impaired when presented with a continuous list of objects and then tested on their ability to distinguish between those items early and late in the same list (within-block recency). The contrasting effects on recognition and recency support the notion that interlinked hippocampal–anterior thalamic interconnections support aspects of both spatial and nonspatial learning, although the role of the anterior thalamic nuclei may be restricted to a subclass of recency judgments (within-block). PMID:23731076

  3. Increased thalamic resting-state connectivity as a core driver of LSD-induced hallucinations.

    Science.gov (United States)

    Müller, F; Lenz, C; Dolder, P; Lang, U; Schmidt, A; Liechti, M; Borgwardt, S

    2017-12-01

    It has been proposed that the thalamocortical system is an important site of action of hallucinogenic drugs and an essential component of the neural correlates of consciousness. Hallucinogenic drugs such as LSD can be used to induce profoundly altered states of consciousness, and it is thus of interest to test the effects of these drugs on this system. 100 μg LSD was administrated orally to 20 healthy participants prior to fMRI assessment. Whole brain thalamic functional connectivity was measured using ROI-to-ROI and ROI-to-voxel approaches. Correlation analyses were used to explore relationships between thalamic connectivity to regions involved in auditory and visual hallucinations and subjective ratings on auditory and visual drug effects. LSD caused significant alterations in all dimensions of the 5D-ASC scale and significantly increased thalamic functional connectivity to various cortical regions. Furthermore, LSD-induced functional connectivity measures between the thalamus and the right fusiform gyrus and insula correlated significantly with subjective auditory and visual drug effects. Hallucinogenic drug effects might be provoked by facilitations of cortical excitability via thalamocortical interactions. Our findings have implications for the understanding of the mechanism of action of hallucinogenic drugs and provide further insight into the role of the 5-HT 2A -receptor in altered states of consciousness. © 2017 The Authors Acta Psychiatrica Scandinavica Published by John Wiley & Sons Ltd.

  4. Thalamic inputs to dorsomedial striatum are involved in inhibitory control: evidence from the five-choice serial reaction time task in rats.

    Science.gov (United States)

    Saund, Jasjot; Dautan, Daniel; Rostron, Claire; Urcelay, Gonzalo P; Gerdjikov, Todor V

    2017-08-01

    Corticostriatal circuits are widely implicated in the top-down control of attention including inhibitory control and behavioural flexibility. However, recent neurophysiological evidence also suggests a role for thalamic inputs to striatum in behaviours related to salient, reward-paired cues. Here, we used designer receptors exclusively activated by designer drugs (DREADDs) to investigate the role of parafascicular (Pf) thalamic inputs to the dorsomedial striatum (DMS) using the five-choice serial reaction time task (5CSRTT) in rats. The 5CSRTT requires sustained attention in order to detect spatially and temporally distributed visual cues and provides measures of inhibitory control related to impulsivity (premature responses) and compulsivity (perseverative responses). Rats underwent bilateral Pf injections of the DREADD vector, AAV2-CaMKIIa-HA-hM4D(Gi)-IRES-mCitrine. The DREADD agonist, clozapine N-oxide (CNO; 1 μl bilateral; 3 μM) or vehicle, was injected into DMS 1 h before behavioural testing. Task parameters were manipulated to increase attention load or reduce stimulus predictability respectively. We found that inhibition of the Pf-DMS projection significantly increased perseverative responses when stimulus predictability was reduced but had no effect on premature responses or response accuracy, even under increased attentional load. Control experiments showed no effects on locomotor activity in an open field. These results complement previous lesion work in which the DMS and orbitofrontal cortex were similarly implicated in perseverative responses and suggest a specific role for thalamostriatal inputs in inhibitory control.

  5. Posterior Thalamic Nucleus Modulation of Tactile Stimuli Processing in Rat Motor and Primary Somatosensory Cortices

    Directory of Open Access Journals (Sweden)

    Diana Casas-Torremocha

    2017-09-01

    Full Text Available Rodents move rhythmically their facial whiskers and compute differences between signals predicted and those resulting from the movement to infer information about objects near their head. These computations are carried out by a large network of forebrain structures that includes the thalamus and the primary somatosensory (S1BF and motor (M1wk cortices. Spatially and temporally precise mechanorreceptive whisker information reaches the S1BF cortex via the ventroposterior medial thalamic nucleus (VPM. Other whisker-related information may reach both M1wk and S1BF via the axons from the posterior thalamic nucleus (Po. However, Po axons may convey, in addition to direct sensory signals, the dynamic output of computations between whisker signals and descending motor commands. It has been proposed that this input may be relevant for adjusting cortical responses to predicted vs. unpredicted whisker signals, but the effects of Po input on M1wk and S1BF function have not been directly tested or compared in vivo. Here, using electrophysiology, optogenetics and pharmacological tools, we compared in adult rats M1wk and S1BF in vivo responses in the whisker areas of the motor and primary somatosensory cortices to passive multi-whisker deflection, their dependence on Po activity, and their changes after a brief intense activation of Po axons. We report that the latencies of the first component of tactile-evoked local field potentials in M1wk and S1BF are similar. The evoked potentials decrease markedly in M1wk, but not in S1BF, by injection in Po of the GABAA agonist muscimol. A brief high-frequency electrical stimulation of Po decreases the responsivity of M1wk and S1BF cells to subsequent whisker stimulation. This effect is prevented by the local application of omega-agatoxin, suggesting that it may in part depend on GABA release by fast-spiking parvalbumin (PV-expressing cortical interneurons. Local optogenetic activation of Po synapses in different

  6. Two distinct populations of projection neurons in the rat lateral parafascicular thalamic nucleus and their cholinergic responsiveness.

    Science.gov (United States)

    Beatty, J A; Sylwestrak, E L; Cox, C L

    2009-08-04

    The lateral parafascicular nucleus (lPf) is a member of the intralaminar thalamic nuclei, a collection of nuclei that characteristically provides widespread projections to the neocortex and basal ganglia and is associated with arousal, sensory, and motor functions. Recently, lPf neurons have been shown to possess different characteristics than other cortical-projecting thalamic relay neurons. We performed whole cell recordings from lPf neurons using an in vitro rat slice preparation and found two distinct neuronal subtypes that were differentiated by distinct morphological and physiological characteristics: diffuse and bushy. Diffuse neurons, which had been previously described, were the predominant neuronal subtype (66%). These neurons had few, poorly-branching, extended dendrites, and rarely displayed burst-like action potential discharge, a ubiquitous feature of thalamocortical relay neurons. Interestingly, we discovered a smaller population of bushy neurons (34%) that shared similar morphological and physiological characteristics with thalamocortical relay neurons of primary sensory thalamic nuclei. In contrast to other thalamocortical relay neurons, activation of muscarinic cholinergic receptors produced a membrane hyperpolarization via activation of M(2) receptors in most lPf neurons (60%). In a minority of lPf neurons (33%), muscarinic agonists produced a membrane depolarization via activation of predominantly M(3) receptors. The muscarinic receptor-mediated actions were independent of lPf neuronal subtype (i.e. diffuse or bushy neurons); however the cholinergic actions were correlated with lPf neurons with different efferent targets. Retrogradely-labeled lPf neurons from frontal cortical fluorescent bead injections primarily consisted of bushy type lPf neurons (78%), but more importantly, all of these neurons were depolarized by muscarinic agonists. On the other hand, lPf neurons labeled by striatal injections were predominantly hyperpolarized by muscarinic

  7. The role of the nucleus basalis of Meynert and reticular thalamic nucleus in pathogenesis of genetically determined absence epilepsy in rats : A lesion study

    NARCIS (Netherlands)

    Berdiev, R. K.; Chepurnov, S. A.; Veening, J. G.; Chepurnova, N. E.; van Luiftelaar, G.

    2007-01-01

    The role of cholinergic nucleus basalis (of Meynert) and the reticular thalamic nucleus in mechanisms of the generation spontaneous spike-and-wave discharges (SWDs) was investigated in the WAG/Rij rat model of absence epilepsy. Selective lesions were affected by local unilateral intraparenchymal

  8. Different expressions of high voltage-activated Ca2+ channel types in the rostral reticular thalamic nucleus of the absence epileptic WAG/Rij rat.

    NARCIS (Netherlands)

    Bovenkamp-Janssen, M.C. van de; Scheenen, W.J.J.M.; Kuijpers-Kwant, F.J.; Kozicz, L.T.; Veening, J.G.; Luijtelaar, E.L.J.M. van; McEnery, M.W.; Roubos, E.W.

    2004-01-01

    In the WAG/Rij rat, a model for human absence epilepsy, spike-wave discharges (SWD) and absence epileptic behavior develop after the age of 3 months. The rostral part of the reticular thalamic nucleus (rRTN) is involved in SWD. Ca(2+) channels play a central role in the initiation and maintenance of

  9. Strong, reliable and precise synaptic connections between thalamic relay cells and neurones of the nucleus reticularis in juvenile rats

    Science.gov (United States)

    Gentet, Luc J; Ulrich, Daniel

    2003-01-01

    The thalamic reticular nucleus (nRT) is composed entirely of GABAergic inhibitory neurones that receive input from pyramidal cortical neurones and excitatory relay cells of the ventrobasal complex of the thalamus (VB). It plays a major role in the synchrony of thalamic networks, yet the synaptic connections it receives from VB cells have never been fully physiologically characterised. Here, whole-cell current-clamp recordings were obtained from 22 synaptically connected VB-nRT cell pairs in slices of juvenile (P14–20) rats. At 34–36 °C, single presynaptic APs evoked unitary EPSPs in nRT cells with a peak amplitude of 7.4 ± 1.5 mV (mean ± s.e.m.) and a decay time constant of 15.1 ± 0.9 ms. Only four out of 22 pairs showed transmission failures at a mean rate of 6.8 ± 1.1 %. An NMDA receptor (NMDAR)-mediated component was significant at rest and subsequent EPSPs in a train were depressed. Only one out of 14 pairs tested was reciprocally connected; the observed IPSPs in the VB cell had a peak amplitude of 0.8 mV and were completely abolished in the presence of 10 μm bicuculline. Thus, synaptic connections from VB cells to nRT neurones are mainly ‘drivers’, while a small subset of cells form closed disynaptic loops. PMID:12563005

  10. Sensory processing of deep tissue nociception in the rat spinal cord and thalamic ventrobasal complex.

    Science.gov (United States)

    Sikandar, Shafaq; West, Steven J; McMahon, Stephen B; Bennett, David L; Dickenson, Anthony H

    2017-07-01

    Sensory processing of deep somatic tissue constitutes an important component of the nociceptive system, yet associated central processing pathways remain poorly understood. Here, we provide a novel electrophysiological characterization and immunohistochemical analysis of neural activation in the lateral spinal nucleus (LSN). These neurons show evoked activity to deep, but not cutaneous, stimulation. The evoked responses of neurons in the LSN can be sensitized to somatosensory stimulation following intramuscular hypertonic saline, an acute model of muscle pain, suggesting this is an important spinal relay site for the processing of deep tissue nociceptive inputs. Neurons of the thalamic ventrobasal complex (VBC) mediate both cutaneous and deep tissue sensory processing, but in contrast to the lateral spinal nucleus our electrophysiological studies do not suggest the existence of a subgroup of cells that selectively process deep tissue inputs. The sensitization of polymodal and thermospecific VBC neurons to mechanical somatosensory stimulation following acute muscle stimulation with hypertonic saline suggests differential roles of thalamic subpopulations in mediating cutaneous and deep tissue nociception in pathological states. Overall, our studies at both the spinal (lateral spinal nucleus) and supraspinal (thalamic ventrobasal complex) levels suggest a convergence of cutaneous and deep somatosensory inputs onto spinothalamic pathways, which are unmasked by activation of muscle nociceptive afferents to produce consequent phenotypic alterations in spinal and thalamic neural coding of somatosensory stimulation. A better understanding of the sensory pathways involved in deep tissue nociception, as well as the degree of labeled line and convergent pathways for cutaneous and deep somatosensory inputs, is fundamental to developing targeted analgesic therapies for deep pain syndromes. © 2017 University College London. Physiological Reports published by Wiley Periodicals

  11. Resolving the detailed structure of cortical and thalamic neurons in the adult rat brain with refined biotinylated dextran amine labeling.

    Science.gov (United States)

    Ling, Changying; Hendrickson, Michael L; Kalil, Ronald E

    2012-01-01

    Biotinylated dextran amine (BDA) has been used frequently for both anterograde and retrograde pathway tracing in the central nervous system. Typically, BDA labels axons and cell somas in sufficient detail to identify their topographical location accurately. However, BDA labeling often has proved to be inadequate to resolve the fine structural details of axon arbors or the dendrites of neurons at a distance from the site of BDA injection. To overcome this limitation, we varied several experimental parameters associated with the BDA labeling of neurons in the adult rat brain in order to improve the sensitivity of the method. Specifically, we compared the effect on labeling sensitivity of: (a) using 3,000 or 10,000 MW BDA; (b) injecting different volumes of BDA; (c) co-injecting BDA with NMDA; and (d) employing various post-injection survival times. Following the extracellular injection of BDA into the visual cortex, labeled cells and axons were observed in both cortical and thalamic areas of all animals studied. However, the detailed morphology of axon arbors and distal dendrites was evident only under optimal conditions for BDA labeling that take into account the: molecular weight of the BDA used, concentration and volume of BDA injected, post-injection survival time, and toning of the resolved BDA with gold and silver. In these instances, anterogradely labeled axons and retrogradely labeled dendrites were resolved in fine detail, approximating that which can be achieved with intracellularly injected compounds such as biocytin or fluorescent dyes.

  12. Altered thalamic functional connectivity in multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yaou; Liang, Peipeng; Duan, Yunyun; Huang, Jing; Ren, Zhuoqiong; Jia, Xiuqin [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Dong, Huiqing; Ye, Jing [Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Shi, Fu-Dong [Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052 (China); Butzkueven, Helmut [Department of Medicine, University of Melbourne, Parkville 3010 (Australia); Li, Kuncheng, E-mail: kunchengli55@gmail.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China)

    2015-04-15

    Highlights: •We demonstrated decreased connectivity between thalamus and cortical regions in MS. •Increased intra- and inter-thalamic connectivity was also observed in MS. •The increased functional connectivity is attenuated by increasing disease duration. -- Abstract: Objective: To compare thalamic functional connectivity (FC) in patients with multiple sclerosis (MS) and healthy controls (HC), and correlate these connectivity measures with other MRI and clinical variables. Methods: We employed resting-state functional MRI (fMRI) to examine changes in thalamic connectivity by comparing thirty-five patients with MS and 35 age- and sex-matched HC. Thalamic FC was investigated by correlating low frequency fMRI signal fluctuations in thalamic voxels with voxels in all other brain regions. Additionally thalamic volume fraction (TF), T2 lesion volume (T2LV), EDSS and disease duration were recorded and correlated with the FC changes. Results: MS patients were found to have a significantly lower TF than HC in bilateral thalami. Compared to HC, the MS group showed significantly decreased FC between thalamus and several brain regions including right middle frontal and parahippocampal gyri, and the left inferior parietal lobule. Increased intra- and inter-thalamic FC was observed in the MS group compared to HC. These FC alterations were not correlated with T2LV, thalamic volume or lesions. In the MS group, however, there was a negative correlation between disease duration and inter-thalamic connectivity (r = −0.59, p < 0.001). Conclusion: We demonstrated decreased FC between thalamus and several cortical regions, while increased intra- and inter-thalamic connectivity in MS patients. These complex functional changes reflect impairments and/or adaptations that are independent of T2LV, thalamic volume or presence of thalamic lesions. The negative correlation between disease duration and inter-thalamic connectivity could indicate an adaptive role of thalamus that is

  13. Midline thalamic reuniens lesions improve executive behaviors.

    Science.gov (United States)

    Prasad, J A; Abela, A R; Chudasama, Y

    2017-03-14

    The role of the thalamus in complex cognitive behavior is a topic of increasing interest. Here we demonstrate that lesions of the nucleus reuniens (NRe), a midline thalamic nucleus interconnected with both hippocampal and prefrontal circuitry, lead to enhancement of executive behaviors typically associated with the prefrontal cortex. Rats were tested on four behavioral tasks: (1) the combined attention-memory (CAM) task, which simultaneously assessed attention to a visual target and memory for that target over a variable delay; (2) spatial memory using a radial arm maze, (3) discrimination and reversal learning using a touchscreen operant platform, and (4) decision-making with delayed outcomes. Following NRe lesions, the animals became more efficient in their performance, responding with shorter reaction times but also less impulsively than controls. This change, combined with a decrease in perseverative responses, led to focused attention in the CAM task and accelerated learning in the visual discrimination task. There were no observed changes in tasks involving either spatial memory or value-based decision making. These data complement ongoing efforts to understand the role of midline thalamic structures in human cognition, including the development of thalamic stimulation as a therapeutic strategy for acquired cognitive disabilities (Schiff, 2008; Mair et al., 2011), and point to the NRe as a potential target for clinical intervention. Published by Elsevier Ltd.

  14. Sex specific recruitment of a medial prefrontal cortex-hippocampal-thalamic system during context-dependent renewal of responding to food cues in rats.

    Science.gov (United States)

    Anderson, Lauren C; Petrovich, Gorica D

    2017-03-01

    Renewal, or reinstatement, of responding to food cues after extinction may explain the inability to resist palatable foods and change maladaptive eating habits. Previously, we found sex differences in context-dependent renewal of extinguished Pavlovian conditioned responding to food cues. Context-induced renewal involves cue-food conditioning and extinction in different contexts and the renewal of conditioned behavior is induced by return to the conditioning context (ABA renewal). Male rats showed renewal of responding while females did not. In the current study we sought to identify recruitment of key neural systems underlying context-mediated renewal and sex differences. We examined Fos induction within the ventromedial prefrontal cortex (vmPFC), hippocampal formation, thalamus and amygdala in male and female rats during the test for renewal. We found sex differences in vmPFC recruitment during renewal. Male rats in the experimental condition showed renewal of responding and had more Fos induction within the infralimbic and prelimbic vmPFC areas compared to controls that remained in the same context throughout training and testing. Females in the experimental condition did not show renewal or an increase in Fos induction. Additionally, Fos expression differed between experimental and control groups and between the sexes in the hippocampal formation, thalamus and amygdala. Within the ventral subiculum, the experimental groups of both sexes had more Fos compared to control groups. Within the dorsal CA1 and the anterior region of the paraventricular nucleus of the thalamus, in males, the experimental group had higher Fos induction, while both females groups had similar number of Fos-positive neurons. Within the capsular part of the central amygdalar nucleus, females in the experimental group had higher Fos induction, while males groups had similar amounts. The differential recruitment corresponded to the behavioral differences between males and females and suggests

  15. Increased thalamic perfusion as a characteristic finding with brain SPECT in patients with obsessive-compulsive disorder

    International Nuclear Information System (INIS)

    Mut, F.; Beretta, M.; Nunez, M.; Zamora, R.

    2002-01-01

    Aim: Obsessive-compulsive disorder (OCD) is a relatively frequent psychiatric condition affecting most commonly young patients. Correct diagnosis and follow-up is essential in order to apply effective therapy. However, some common characteristics have been reported with brain SPECT for OCD and depression, with several brain structures belonging to the limbic system involved in both conditions: frontal cortex, cingulate gyrus, caudate nucleus, thalamus and hippocampus, among others. The aim of this study was to investigate quantitative findings of brain SPECT in OCD compared to other psychiatric conditions such as depression and dementia. Material and Methods: We studied 33 patients, 22 women, ages 39.3±10.9 years. Fifteen patients had clinical diagnosis of OCD (8 women, 21∫8 ys.), 13 of bipolar or unipolar depression (11 women, 28±15 ys.) and 5 of senile dementia (3 women, 69±10 ys). All were injected in the basal state with a standard dose of 925 MBq (25 mCi) of 99mTc-ECD. Brain SPECT was performed with a dual-head camera equipped with a high-resolution collimator using 360 0 rotation, 120 angular steps and 15 sec/step in a 64x64 matrix with 1.5 x magnification. Reconstruction of transaxial tomograms was performed using filtered backprojection with a Metz filter. Attenuation correction was applied according to Chang's method. In order to calculate uptake ratios, regions of interest (ROIs) were placed on the right and left frontal cortex (RFron, LFron), anterior or posterior cingulate gyrus (Cing) according to the site of highest uptake recorded, both caudate nucleus (RCau, LCau), thalamus (Thal) and cerebellum (cer). Results: The findings are presented. Conclusion: Cingulate gyrus hyperactivity has been reported in patients with OCD and confirmed in our series, however not significantly different from that observed in depressed patients. The only distinct finding was higher thalamic activity in OCD patients compared to the other groups, suggesting that this

  16. Individual mediodorsal thalamic neurons project to multiple areas of the rat prefrontal cortex: A single neuron-tracing study using virus vectors.

    Science.gov (United States)

    Kuramoto, Eriko; Pan, Shixiu; Furuta, Takahiro; Tanaka, Yasuhiro R; Iwai, Haruki; Yamanaka, Atsushi; Ohno, Sachi; Kaneko, Takeshi; Goto, Tetsuya; Hioki, Hiroyuki

    2017-01-01

    The prefrontal cortex has an important role in a variety of cognitive and executive processes, and is generally defined by its reciprocal connections with the mediodorsal thalamic nucleus (MD). The rat MD is mainly subdivided into three segments, the medial (MDm), central (MDc), and lateral (MDl) divisions, on the basis of the cytoarchitecture and chemoarchitecture. The MD segments are known to topographically project to multiple prefrontal areas at the population level: the MDm mainly to the prelimbic, infralimbic, and agranular insular areas; the MDc to the orbital and agranular insular areas; and the MDl to the prelimbic and anterior cingulate areas. However, it is unknown whether individual MD neurons project to single or multiple prefrontal cortical areas. In the present study, we visualized individual MD neurons with Sindbis virus vectors, and reconstructed whole structures of MD neurons. While the main cortical projection targets of MDm, MDc, and MDl neurons were generally consistent with those of previous results, it was found that individual MD neurons sent their axon fibers to multiple prefrontal areas, and displayed various projection patterns in the target areas. Furthermore, the axons of single MD neurons were not homogeneously spread, but were rather distributed to form patchy axon arbors approximately 1 mm in diameter. The multiple-area projections and patchy axon arbors of single MD neurons might be able to coactivate cortical neuron groups in distant prefrontal areas simultaneously. Furthermore, considerable heterogeneity of the projection patterns is likely, to recruit the different sets of cortical neurons, and thus contributes to a variety of prefrontal functions. J. Comp. Neurol. 525:166-185, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Sex Differences in Risk Preference and c-Fos Expression in Paraventricular Thalamic Nucleus of Rats During Gambling Task

    Science.gov (United States)

    Ishii, Hironori; Onodera, Mariko; Ohara, Shinya; Tsutsui, Ken-Ichiro; Iijima, Toshio

    2018-01-01

    Different biological requirements between males and females may cause sex differences in decision preference when choosing between taking a risk to get a higher gain or taking a lower but sure gain. Several studies have tested this assumption in rats, however the conclusion remains controversial because the previous real-world like gambling tasks contained a learning component to track a global payoff of probabilistic outcome in addition to risk preference. Therefore, we modified a simple gambling task allowing us to exclude such learning effect, and investigated the sex difference in risk preference of rats and its neural basis. The task required water deprived rats to choose between a risky option which provided four drops of water or no reward at a 50% random chance vs. a sure option which provided predictable amount x (x = 1, 2, 3, 4). The amount and the risk were explicitly instructed so that different choice conditions could be tested trial by trial without re-learning of reward contingency. Although both sexes correctly chose the sure option with the same level of accuracy when the sure option provided the best offer (x = 4), they exhibited different choice performances when two options had the same expected value (x = 2). Males and females both preferred to take risky choices than sure choices (risk seeking), but males were more risk seeking than females. Outcome-history analysis of their choice pattern revealed that females reduced their risk preference after losing risky choices, whereas males did not. Rather, as losses continued, reaction time for subsequent risky choices got shorter in males. Given that significant sex difference features mainly emerged after negative experiences, male and female rats may evaluate an unsuccessful outcome of their decision in different manners. Furthermore, c-Fos expression in the paraventricular nucleus of the thalamus (PV) was higher in the gambling task than for the control task in males while c-fos levels did not

  18. Hypertensive thalamic hemorrhage

    International Nuclear Information System (INIS)

    Munaka, Masahiro; Nishikawa, Michio; Hirai, Osamu; Kaneko, Takaaki; Watanabe, Syu; Fukuma, Jun; Handa, Hajime

    1988-01-01

    In the past six years, we have had experience with 40 patients with hypertensive thalamic hemorrhages, as verified by CT scan at our hospital within 24 hours. These patients were classified into the following three groups according to the location of the bleeding point and the size of the hematoma: (1) anteromedial (4 cases), (2) posterolateral (16 cases), and (3) massive (20 cases). The (1) and (2) hematomas were small (less than 3 cm in diameter), while those in (3) were large (more than 3 cm in diameter). Twenty cases (50% of all the thalamic hematomas) were small hematomas. The characteristic clinical symptoms of the anteromedial type were a mild disturbance of consciousness and thalamic dementia, while those of the posterolateral type were motor and sensory disturbance, and thalamic aphasia, respectively. Twenty cases (50%) were large hematomas. The clinical symptoms of these cases were mainly consciousness disturbance; 7 of them expired. Based on this experience, it may be considered that the patients whose hematoma size was larger than 3 cm had a poor prognosis and that the patients with the posterolateral type had a poor functional diagnosis. (author)

  19. Role of the thalamic parafascicular nucleus cholinergic system in the modulation of acute corneal nociception in rats

    Directory of Open Access Journals (Sweden)

    Esmaeal Tamaddonfard

    2011-11-01

    Full Text Available The present study investigated the effects of microinjections of acetylcholine (a cholinergic agonist, physostigmine (a cholinesterase inhibitor, atropine (an antagonist of muscarinic cholinergic receptors and hexamethonium (an antagonist of nicotinic cholinergic receptors into the parafascicular nucleus of thalamus on the acute corneal nociception in rats. Acute corneal nociception was induced by putting a drop of 5 M NaCl solution onto the corneal surface of the eye and the number of eye wipes was counted during the first 30s. Both acetylcholine and physostigmine at the same doses of 0.5, 1 and 2 μg significantly (P < 0.05 reduced the number of eye wipes. The intensity of corneal nociception was not changed when atropine and hexamethonium were used alone. Atropine (4 μg, but not hexamethonium (4 μg significantly (P < 0.05 prevented acetylcholine (2 μg- and physostigmine (2 μg-induced antinociceptive effects. The results indicated that at the level of the parafascicular nucleus of thalamus, the muscarinic cholinergic receptors might be involved in the antinociceptive effects of acetylcholine and physostigmine.

  20. Increased thalamic gamma band activity correlates with symptom relief following deep brain stimulation in humans with Tourette's syndrome.

    Directory of Open Access Journals (Sweden)

    Nicholas Maling

    Full Text Available Tourette syndrome (TS is an idiopathic, childhood-onset neuropsychiatric disorder, which is marked by persistent multiple motor and phonic tics. The disorder is highly disruptive and in some cases completely debilitating. For those with severe, treatment-refractory TS, deep brain stimulation (DBS has emerged as a possible option, although its mechanism of action is not fully understood. We performed a longitudinal study of the effects of DBS on TS symptomatology while concomitantly examining neurophysiological dynamics. We present the first report of the clinical correlation between the presence of gamma band activity and decreased tic severity. Local field potential recordings from five subjects implanted in the centromedian nucleus (CM of the thalamus revealed a temporal correlation between the power of gamma band activity and the clinical metrics of symptomatology as measured by the Yale Global Tic Severity Scale and the Modified Rush Tic Rating Scale. Additional studies utilizing short-term stimulation also produced increases in gamma power. Our results suggest that modulation of gamma band activity in both long-term and short-term DBS of the CM is a key factor in mitigating the pathophysiology associated with TS.

  1. The Medial Dorsal Thalamic Nucleus and the Medial Prefrontal Cortex of the Rat Function Together to Support Associative Recognition and Recency but Not Item Recognition

    Science.gov (United States)

    Cross, Laura; Brown, Malcolm W.; Aggleton, John P.; Warburton, E. Clea

    2013-01-01

    In humans recognition memory deficits, a typical feature of diencephalic amnesia, have been tentatively linked to mediodorsal thalamic nucleus (MD) damage. Animal studies have occasionally investigated the role of the MD in single-item recognition, but have not systematically analyzed its involvement in other recognition memory processes. In…

  2. Generation of thalamic neurons from mouse embryonic stem cells.

    Science.gov (United States)

    Shiraishi, Atsushi; Muguruma, Keiko; Sasai, Yoshiki

    2017-04-01

    The thalamus is a diencephalic structure that plays crucial roles in relaying and modulating sensory and motor information to the neocortex. The thalamus develops in the dorsal part of the neural tube at the level of the caudal forebrain. However, the molecular mechanisms that are essential for thalamic differentiation are still unknown. Here, we have succeeded in generating thalamic neurons from mouse embryonic stem cells (mESCs) by modifying the default method that induces the most-anterior neural type in self-organizing culture. A low concentration of the caudalizing factor insulin and a MAPK/ERK kinase inhibitor enhanced the expression of the caudal forebrain markers Otx2 and Pax6. BMP7 promoted an increase in thalamic precursors such as Tcf7l2 + /Gbx2 + and Tcf7l2 + /Olig3 + cells. mESC thalamic precursors began to express the glutamate transporter vGlut2 and the axon-specific marker VGF, similar to mature projection neurons. The mESC thalamic neurons extended their axons to cortical layers in both organotypic culture and subcortical transplantation. Thus, we have identified the minimum elements sufficient for in vitro generation of thalamic neurons. These findings expand our knowledge of thalamic development. © 2017. Published by The Company of Biologists Ltd.

  3. Isoflurane increases cardiorespiratory coordination in rats

    Science.gov (United States)

    Kabir, Muammar M.; Beig, Mirza I.; Nalivaiko, Eugene; Abbott, Derek; Baumert, Mathias

    2008-12-01

    Anesthetics such as isoflurane adversely affect heart rate. In this study we analysed the interaction between heart rhythm and respiration at different concentrations of isoflurane and ventilation rates. In two rats, the electrocardiogram (ECG) and respiratory signals were recorded under the influence of isoflurane. For the assessment of cardiorespiratory coordination, we analysed the phase locking between heart rate, computed from the R-R intervals of body surface ECG, and respiratory rate, computed from impedance changes, using Hilbert transform. The changes in heart rate, percentage of synchronization and duration of synchronized epochs at different isoflurane concentrations and ventilation rates were assessed using linear regression model. From this study it appears that the amount of phase locking between cardiac and respiratory rates increases with the increase in concentration of isoflurane. Heart rate and duration of synchronized epochs increased significantly with the increase in the level of isoflurane concentration while respiratory rate was not significantly affected. Cardiorespiratory coordination also showed a considerable increase at the ventilation rates of 50- 55 cpm in both the rats, suggesting that the phase-locking between the cardiac and respiratory oscillators can be increased by breathing at a particular respiratory frequency.

  4. DDT increases hepatic testosterone metabolism in rats

    Energy Technology Data Exchange (ETDEWEB)

    Sierra-Santoyo, Adolfo; Albores, Arnulfo; Cebrian, Mariano E. [Cinvestav-IPN, Seccion de Toxicologia, Mexico (Mexico); Hernandez, Manuel [Cinvestav-IPN, Departamento de Biologia Celular (Mexico)

    2005-01-01

    DDT and its metabolites are considered as endocrine disruptors able to promote hormone-dependent pathologies. We studied the effects of technical-grade DDT on hepatic testosterone metabolism and testosterone hydroxylase activity ratios in the rat. Male and female Wistar rats were treated by gavage with a single dose of technical-grade DDT (0, 0.1, 1, 10, and 100 mg/kg body weight) and killed 24 h later. Hepatic microsomes were incubated with [4-{sup 14}C]-testosterone and the metabolites were separated by thin-layer chromatography and quantified by radio scanning. DDT increased testosterone biotransformation and modified the profile of metabolites produced in a sex-dependent manner. Males treated with a representative dose (10 mg/kg) produced relatively less androstenedione (AD), 2{alpha}-hydroxytestosterone (OHT), and 16{alpha}-OHT but higher 6{beta}-OHT whereas treated females produced less 7{alpha}-OHT and AD but higher 6{beta}-OHT and 6{alpha}-OHT than their respective controls. In both sexes DDT decreased the relative proportion of AD and increased that of 6{beta}-OHT suggesting that the androgen-saving pathway was affected. The testosterone 6{alpha}-/15{alpha}-OHT ratio, a proposed indicator of demasculinization, was increased in treated males. This effect was in agreement with the demasculinizing ability proposed for DDT. The effects on 6{alpha}-/16{alpha}-OHT and 6-dehydrotestosterone/16{alpha}-OHT ratios followed a similar tendency, with the ratio 6{alpha}-/16{alpha}-OHT being the most sensitive marker. Interestingly, these ratios were reduced in treated females suggesting that technical-grade DDT shifted testosterone hydroxylations toward a more masculine pattern. Thus, technical-grade DDT altered the hepatic sexual dimorphism in testosterone metabolism and decreased the metabolic differences between male and female rats. (orig.)

  5. A unique combination of anatomy and physiology in cells of the rat paralaminar thalamic nuclei adjacent to the medial geniculate body

    Science.gov (United States)

    Smith, Philip H.; Bartlett, Edward L.; Kowalkowski, Anna

    2010-01-01

    The medial geniculate body (MGB) has three major subdivisions - ventral (MGV), dorsal (MGD) and medial (MGM). MGM is linked with paralaminar nuclei that are situated medial and ventral to MGV/MGD. Paralaminar nuclei have unique inputs and outputs when compared with MGV and MGD and have been linked to circuitry underlying some important functional roles. We recorded intracellularly from cells in the paralaminar nuclei in vitro. We found that they possess an unusual combination of anatomical and physiological features when compared to those reported for “standard” thalamic neurons seen in the MGV/MGD and elsewhere in the thalamus. Compared to MGV/MGD neurons, anatomically, 1) paralaminar cell dendrites can be long, branch sparingly and encompass a much larger area. 2) their dendrites may be smooth but can have well defined spines and 3) their axons can have collaterals that branch locally within the same or nearby paralaminar nuclei. When compared to MGV/MGD neurons physiologically 1) their spikes are larger in amplitude and can be shorter in duration and 2) can have dual afterhyperpolarizations with fast and slow components and 3) they can have a reduction or complete absence of the low threshold, voltage-sensitive calcium conductance that reduces or eliminates the voltage-dependent burst response. We also recorded from cells in the parafascicular nucleus, a nucleus of the posterior intralaminar nuclear group, because they have unusual anatomical features that are similar to some of our paralaminar cells. Like the labeled paralaminar cells, parafascicular cells had physiological features distinguishing them from typical thalamic neurons. PMID:16566009

  6. Impact of surgery targeting the caudal intralaminar thalamic nuclei on the pathophysiological functioning of basal ganglia in a rat model of Parkinson's disease.

    Science.gov (United States)

    Kerkerian-Le Goff, Lydia; Bacci, Jean-Jacques; Jouve, Loreline; Melon, Christophe; Salin, Pascal

    2009-02-16

    There is accumulating evidence that the centre median-parafascicular (CM/Pf) complex of the thalamus is implicated in basal ganglia-related movement disorders and notably in Parkinson's disease. However, the impact of the changes affecting CM/Pf on the pathophysiological functioning of basal ganglia in parkinsonian state remains poorly understood. To address this issue, we have examined the effects of excitotoxic lesion of CM/Pf and of 6-hydroxydopamine-induced lesion of nigral dopamine neurons, separately or in association, on gene expression of markers of neuronal activity in the rat basal ganglia (striatal neuropeptide precursors, GAD67, cytochrome oxidase subunit I) by quantitative in situ hybridization histochemistry. CM/Pf lesion prevented the changes produced by the dopamine denervation in the components of the indirect pathway connecting the striatum to the output structures (striatopallidal neurons, globus pallidus, subthalamic nucleus), and among the output structures, in the entopeduncular nucleus. Preliminary data on the effects of deep brain stimulation of CM/Pf in rats with nigral dopamine lesion show that this surgical approach produces efficient anti-akinetic effect associated with partial reversal of the dopamine lesion-induced increase in striatal preproenkephalin A mRNA levels, a marker of the striatopallidal neurons. These data, which provide substrates for the potential of CM/Pf surgery in the treatment of movement disorders, are discussed in comparison with the effects of lesion or deep brain stimulation of the subthalamic nucleus, the currently preferred target for the surgical treatment of PD.

  7. Thalamic hemorrhage following carotid angioplasty and stenting

    International Nuclear Information System (INIS)

    Friedman, Jonathan A.; Kallmes, David F.; Wijdicks, Eelco F.M.

    2004-01-01

    Carotid angioplasty and stenting (CAS) has emerged as an alternative treatment of carotid stenosis for patients poorly suited for endarterectomy. Intracerebral hemorrhage following carotid revascularization is rare and thought to be related to hyperperfusion injury in most cases. Early experience suggests an increased incidence of hemorrhage following CAS as compared to endarterectomy. We describe a patient who suffered a thalamic hemorrhage following CAS. Because this hemorrhage occurred in a vascular territory unlikely to have been supplied by the treated artery, this case suggests that the mechanism of intracerebral hemorrhage following CAS may in some cases be different from the hyperperfusion hemorrhage classically described following endarterectomy. (orig.)

  8. Increased gluconeogenesis in rats exposed to hyper-G stress

    International Nuclear Information System (INIS)

    Daligcon, B.C.; Oyama, J.; Hannak, K.

    1985-01-01

    The role of gluconeogenesis on the increase in plasma glucose and liver glycogen of rats exposed to hyper-G (radial acceleration) stress was determined. Overnight-fasted, male Sprague-Dawley rats (250-300 g) were injected i.p. with uniformly labeled 14 C lactate, alanine, or glycerol (5 μCi/rat) and immediately exposed to 3.1 G for 0.25, 0.50, and 1.0 hr. 14 C incorporation of the labeled substrates into plasma glucose and liver glycogen was measured and compared to noncentrifuged control rats injected in a similar manner. Significant increases in 14 C incorporation of all three labeled substrates into plasma glucose were observed in centrifuged rats at all exposure periods; 14 C incorporation into liver glycogen was significantly increased only at 0.50 and 1.0 hr. The i.p. administration (5 mg/100-g body wt) of 5-methoxyindole-2-carboxylic acid, a potent gluconeogenesis inhibitor, prior to centrifugation blocked the increase in plasma glucose and liver glycogen during the first hour of centrifugation. The increase in plasma glucose and liver glycogen was also abolished in adrenodemedullated rats exposed to centrifugation for 1.0 hr. Propranolol, a beta-adrenergic blocker, suppressed the increase in plasma glucose of rats exposed to centrifugation for 0.25 hr. From the results of this study, it is concluded that the initial, rapid rise in plasma glucose as well as the increase in liver glycogen of rats exposed to hyper-G stress can be attributed to an increased rate of gluconeogenesis, and that epinephrine plays a dominant role during the early stages of exposure to centrifugation. 11 references, 3 tables

  9. Outcome After Pituitary Radiosurgery for Thalamic Pain Syndrome

    International Nuclear Information System (INIS)

    Hayashi, Motohiro; Chernov, Mikhail F.; Taira, Takaomi; Ochiai, Taku; Nakaya, Kotaro; Tamura, Noriko; Goto, Shinichi; Yomo, Shoji; Kouyama, Nobuo; Katayama, Yoko; Kawakami, Yoriko; Izawa, Masahiro; Muragaki, Yoshihiro

    2007-01-01

    Purpose: To evaluate outcomes after pituitary radiosurgery in patients with post-stroke thalamic pain syndrome. Methods and Materials: From 2002 to 2006, 24 patients with thalamic pain syndrome underwent pituitary radiosurgery at Tokyo Women's Medical University and were followed at least 12 months thereafter. The radiosurgical target was defined as the pituitary gland and its connection with the pituitary stalk. The maximum dose varied from 140 to 180 Gy. Mean follow-up after treatment was 35 months (range, 12-48 months). Results: Initial pain reduction, usually within 48 h after radiosurgery, was marked in 17 patients (71%). However, in the majority of cases the pain recurred within 6 months after treatment, and at the time of the last follow-up examination durable pain control was marked in only 5 patients (21%). Ten patients (42%) had treatment-associated side effects. Anterior pituitary abnormalities were marked in 8 cases and required hormonal replacement therapy in 3; transient diabetes insipidus was observed in 2 cases, transient hyponatremia in 1, and clinical deterioration due to increase of the numbness severity despite significant reduction of pain was seen once. Conclusions: Pituitary radiosurgery for thalamic pain results in a high rate of initial efficacy and is accompanied by acceptable morbidity. It can be used as a primary minimally invasive management option for patients with post-stroke thalamic pain resistant to medical therapy. However, in the majority of cases pain recurrence occurs within 1 year after treatment

  10. Risperidone treatment increases CB1 receptor binding in rat brain

    DEFF Research Database (Denmark)

    Secher, Anna; Husum, Henriette; Holst, Birgitte

    2010-01-01

    , the ghrelin receptor, neuropeptide Y, adiponectin and proopiomelanocortin. We investigated whether the expression of these factors was affected in rats chronically treated with the antipsychotic risperidone. METHODS: Male Sprague-Dawley rats were treated with risperidone (1.0 mg/kg/day) or vehicle (20...... showed that risperidone treatment altered CB(1) receptor binding in the rat brain. Risperidone-induced adiposity and metabolic dysfunction in the clinic may be explained by increased CB(1) receptor density in brain regions involved in appetite and regulation of metabolic function....

  11. Multivoxel proton magnetic resonance spectroscopy detects thalamic neurochemical metabolic changes in patients with major depressive disorder

    Directory of Open Access Journals (Sweden)

    Rania E. Mohamed

    2017-06-01

    Conclusion: The multi-voxel 1H-MRS can provide an insight to the neurochemical metabolic changes occurring in both thalami in patients with MDD. Increased severity of depression is significantly related to these thalamic neurochemical changes.

  12. Both hypothyroidism and hyperthyroidism increase atrial fibrillation inducibility in rats.

    Science.gov (United States)

    Zhang, Youhua; Dedkov, Eduard I; Teplitsky, Diana; Weltman, Nathan Y; Pol, Christine J; Rajagopalan, Viswanathan; Lee, Bianca; Gerdes, A Martin

    2013-10-01

    Evidence indicates that cardiac hypothyroidism may contribute to heart failure progression. It is also known that heart failure is associated with an increased risk of atrial fibrillation (AF). Although it is established that hyperthyroidism increases AF incidence, the effect of hypothyroidism on AF is unclear. This study investigated the effects of different thyroid hormone levels, ranging from hypothyroidism to hyperthyroidism on AF inducibility in thyroidectomized rats. Thyroidectomized rats with serum-confirmed hypothyroidism 1 month after surgery were randomized into hypothyroid (N=9), euthyroid (N=9), and hyperthyroid (N=9) groups. Rats received placebo, 3.3-mg l-thyroxine (T4), or 20-mg T4 pellets (60-day release form) for 2 months, respectively. At the end of treatment, hypothyroid, euthyroid, and hyperthyroid status was confirmed. Hypothyroid animals showed cardiac atrophy and reduced cardiac systolic and diastolic functions, whereas hyperthyroid rats exhibited cardiac hypertrophy and increased cardiac function. Hypothyroidism and hyperthyroidism produced opposite electrophysiological changes in heart rates and atrial effective refractory period, but both significantly increased AF susceptibility. AF incidence was 78% in hypothyroid, 67% in hyperthyroid, and the duration of induced AF was also longer, compared with 11% in the euthyroid group (all Phyperthyroidism lead to increased AF vulnerability in a rat thyroidectomy model. Our results stress that normal thyroid hormone levels are required to maintain normal cardiac electrophysiology and to prevent cardiac arrhythmias and AF.

  13. Both Hypothyroidism and Hyperthyroidism Increase Atrial Fibrillation Inducibility in Rats

    Science.gov (United States)

    Zhang, Youhua; Dedkov, Eduard I.; Teplitsky, Diana; Weltman, Nathan Y.; Pol, Christine J.; Rajagopalan, Viswanathan; Lee, Bianca; Gerdes, A. Martin

    2014-01-01

    Background Evidence indicates that cardiac hypothyroidism may contribute to heart failure (HF) progression. It is also known that HF is associated with an increased risk of atrial fibrillation (AF). While it is established that hyperthyroidism increases AF incidence, the effect of hypothyroidism on AF is unclear. This study investigated the effects of different thyroid hormone levels, ranging from hypothyroidism to hyperthyroidism on AF inducibility in thyroidectomized rats. Methods and Results Thyroidectomized rats with serum confirmed hypothyroidism 1 month after surgery were randomized into hypothyroid (n=9), euthyroid (n=9) and hyperthyroid (n=9) groups. Rats received placebo, 3.3mg L-thyroxine (T4), or 20 mg T4 pellets (60 day release form) for 2 months, respectively. At the end of treatment, hypothyroid, euthyroid and hyperthyroid status was confirmed. Hypothyroid animals showed cardiac atrophy and reduced cardiac systolic and diastolic function, while hyperthyroid rats exhibited cardiac hypertrophy and increased cardiac function. Hypothyroidism and hyperthyroidism produced opposite electrophysiological changes in heart rates and atrial effective refractory period, but both significantly increased AF susceptibility. AF incidence was 78% in hypothyroid, 67% in hyperthyroid, and the duration of induced AF was also longer, compared with 11% in the euthyroid group (all phyperthyroidism lead to increased AF vulnerability in a rat thyroidectomy model. Our results stress that normal thyroid hormone levels are required to maintain normal cardiac electrophysiology and prevent cardiac arrhythmias and AF. PMID:24036190

  14. Increased parathyroid expression of klotho in uremic rats

    DEFF Research Database (Denmark)

    Hofman-Bang, J.; Martuseviciene, G.; Santini, M.A.

    2010-01-01

    /6 nephrectomy rat model of secondary hyperparathyroidism. Parathyroid klotho gene expression and protein were significantly increased in severely uremic hyperphosphatemic rats, but not affected by moderate uremia and normal serum phosphorus. Calcitriol suppressed klotho gene and protein expression in severe...... secondary hyperparathyroidism, despite a further increase in plasma phosphate. Both FGFR1 IIIC and Na+/K+-ATPase gene expression were significantly elevated in severe secondary hyperparathyroidism. Parathyroid gland klotho expression and the plasma calcium ion concentration were inversely correlated. Thus......, our study suggests that klotho may act as a positive regulator of PTH expression and secretion in secondary hyperparathyroidism....

  15. Increased glucose dependence in resting, iron-deficient rats

    International Nuclear Information System (INIS)

    Brooks, G.A.; Henderson, S.A.; Dallman, P.R.

    1987-01-01

    Rates of blood glucose and lactate turnover were assessed in resting iron-deficient and iron-sufficient (control) rats to test the hypothesis that dependence on glucose metabolism is increased in iron deficiency. Male Sprague-Dawley rats, 21 days old, were fed a diet containing either 6 mg iron/kg feed (iron-deficient group) or 50 mg iron/kg feed (iron-sufficient group) for 3-4 wk. The iron-deficient group became anemic, with hemoglobin levels of 6.4 ± 0.2 compared with 13.8 ± 0.3 g/dl for controls. Rats received a 90-min primed continuous infusion of D-[6- 3 H]glucose and sodium L-[U- 14 C]lactate via a jugular catheter. Serial samples were taken from a carotid catheter for concentration and specific activity determinations. Iron-deficient rats had significantly higher blood glucose and lactate concentrations than controls. The iron-deficient group had a significantly higher glucose turnover rate than the control group. Significantly more metabolite recycling in iron-deficient rats was indicated by greater incorporation of 14 C into blood glucose. Assuming a carbon crossover correction factor of 2, half of blood glucose arose from lactate in deficient animals. By comparison, only 25% of glucose arose from lactate in controls. Lack of a difference in lactate turnover rates between deficient rats and controls was attributed to 14 C recycling. The results indicate a greater dependence on glucose metabolism in iron-deficient rats

  16. Language disturbances from mesencephalo-thalamic infarcts

    International Nuclear Information System (INIS)

    Lazzarino, L.G.; Nicolai, A.; Valassi, F.; Biasizzo, E.

    1991-01-01

    The authors report the cases of two patients with CT-documented paramedian mesencephalo-thalamic infarcts, showing language disturbances. The first patient showed a non fluent, transcortical motor-like aphasia, the other had a fluent but severely paraphasic language disorder. The CT study disclosed that it was the dorso-median thalamic nucleus that was mostly involved in both cases. These findings agree with a few previous pathological studies suggesting that the paramedian thalamic nuclei, particlularly the dorso-median nucleus may play some role in language disturbances. However the anatomical basis for thalamic aphasia remains speculative, taking into account the importantce of cortical connections in the origin of subcortical neuropsychological disturbances. (orig.)

  17. Repeated administration of fresh garlic increases memory retention in rats.

    Science.gov (United States)

    Haider, Saida; Naz, Nosheen; Khaliq, Saima; Perveen, Tahira; Haleem, Darakhshan J

    2008-12-01

    Garlic (Allium sativum) is regarded as both a food and a medicinal herb. Increasing attention has focused on the biological functions and health benefits of garlic as a potentially major dietary component. Chronic garlic administration has been shown to enhance memory function. Evidence also shows that garlic administration in rats affects brain serotonin (5-hydroxytryptamine [5-HT]) levels. 5-HT, a neurotransmitter involved in a number of physiological functions, is also known to enhance cognitive performance. The present study was designed to investigate the probable neurochemical mechanism responsible for the enhancement of memory following garlic administration. Sixteen adult locally bred male albino Wistar rats were divided into control (n = 8) and test (n = 8) groups. The test group was orally administered 250 mg/kg fresh garlic homogenate (FGH), while control animals received an equal amount of water daily for 21 days. Estimation of plasma free and total tryptophan (TRP) and whole brain TRP, 5-HT, and 5-hydroxyindole acetic acid (5-HIAA) was determined by high-performance liquid chromatography with electrochemical detection. For assessment of memory, a step-through passive avoidance paradigm (electric shock avoidance) was used. The results showed that the levels of plasma free TRP significantly increased (P < .01) and plasma total TRP significantly decreased (P < .01) in garlic-treated rats. Brain TRP, 5-HT, and 5-HIAA levels were also significantly increased following garlic administration. A significant improvement in memory function was exhibited by garlic-treated rats in the passive avoidance test. Increased brain 5-HT levels were associated with improved cognitive performance. The present results, therefore, demonstrate that the memory-enhancing effect of garlic may be associated with increased brain 5-HT metabolism in rats. The results further support the use of garlic as a food supplement for the enhancement of memory.

  18. Thalamic lesions in multiple sclerosis by 7T MRI: Clinical implications and relationship to cortical pathology.

    Science.gov (United States)

    Harrison, Daniel M; Oh, Jiwon; Roy, Snehashis; Wood, Emily T; Whetstone, Anna; Seigo, Michaela A; Jones, Craig K; Pham, Dzung; van Zijl, Peter; Reich, Daniel S; Calabresi, Peter A

    2015-08-01

    Pathology in both cortex and deep gray matter contribute to disability in multiple sclerosis (MS). We used the increased signal-to-noise ratio of 7-tesla (7T) MRI to visualize small lesions within the thalamus and to relate this to clinical information and cortical lesions. We obtained 7T MRI scans on 34 MS cases and 15 healthy volunteers. Thalamic lesion number and volume were related to demographic data, clinical disability measures, and lesions in cortical gray matter. Thalamic lesions were found in 24/34 of MS cases. Two lesion subtypes were noted: discrete, ovoid lesions, and more diffuse lesional areas lining the periventricular surface. The number of thalamic lesions was greater in progressive MS compared to relapsing-remitting (mean ±SD, 10.7 ±0.7 vs. 3.0 ±0.7, respectively, p < 0.001). Thalamic lesion burden (count and volume) correlated with EDSS score and measures of cortical lesion burden, but not with white matter lesion burden or white matter volume. Using 7T MRI allows identification of thalamic lesions in MS, which are associated with disability, progressive disease, and cortical lesions. Thalamic lesion analysis may be a simpler, more rapid estimate of overall gray matter lesion burden in MS. © The Author(s), 2015.

  19. Flexible Use of Predictive Cues beyond the Orbitofrontal Cortex: Role of the Submedius Thalamic Nucleus.

    Science.gov (United States)

    Alcaraz, Fabien; Marchand, Alain R; Vidal, Elisa; Guillou, Alexandre; Faugère, Angélique; Coutureau, Etienne; Wolff, Mathieu

    2015-09-23

    The orbitofrontal cortex (OFC) is known to play a crucial role in learning the consequences of specific events. However, the contribution of OFC thalamic inputs to these processes is largely unknown. Using a tract-tracing approach, we first demonstrated that the submedius nucleus (Sub) shares extensive reciprocal connections with the OFC. We then compared the effects of excitotoxic lesions of the Sub or the OFC on the ability of rats to use outcome identity to direct responding. We found that neither OFC nor Sub lesions interfered with the basic differential outcomes effect. However, more specific tests revealed that OFC rats, but not Sub rats, were disproportionally relying on the outcome, rather than on the discriminative stimulus, to guide behavior, which is consistent with the view that the OFC integrates information about predictive cues. In subsequent experiments using a Pavlovian contingency degradation procedure, we found that both OFC and Sub lesions produced a severe deficit in the ability to update Pavlovian associations. Altogether, the submedius therefore appears as a functionally relevant thalamic component in a circuit dedicated to the integration of predictive cues to guide behavior, previously conceived as essentially dependent on orbitofrontal functions. Significance statement: In the present study, we identify a largely unknown thalamic region, the submedius nucleus, as a new functionally relevant component in a circuit supporting the flexible use of predictive cues. Such abilities were previously conceived as largely dependent on the orbitofrontal cortex. Interestingly, this echoes recent findings in the field showing, in research involving an instrumental setup, an additional involvement of another thalamic nuclei, the parafascicular nucleus, when correct responding requires an element of flexibility (Bradfield et al., 2013a). Therefore, the present contribution supports the emerging view that limbic thalamic nuclei may contribute critically to

  20. Wheat aleurone polyphenols increase plasma eicosapentaenoic acid in rats

    Directory of Open Access Journals (Sweden)

    Fayçal Ounnas

    2014-08-01

    Full Text Available Methods: These studies were designed to assess whether wheat polyphenols (mainly ferulic acid [FA] increased the very-long-chain omega-3 fatty acids (VLC n-3 [eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA] in rats. Wheat aleurone (WA was used as a dietary source of wheat polyphenols. Two experiments were performed; in the first one, the rats were fed WA or control pellets (CP in presence of linseed oil (LO to provide alpha-linolenic acid (ALA, the precursor of VLC n-3. In the second one, the rats were fed WA or CP in presence of control oil (CO without ALA. The concentrations of phenolic acid metabolites in urine were also investigated. Results: The urinary concentration of conjugated FA increased with WA ingestion (p<0.05. Plasma EPA increased by 25% (p<0.05 with WA in the CO group but not in the LO group. In contrast, there was no effect of WA on plasma DHA and omega-6 fatty acids (n-6. Finally, both n-3 and n-6 in the liver remained unchanged by the WA. Conclusion: These results suggest that WA consumption has a significant effect on EPA in plasma without affecting n-6. Subsequent studies are required to examine whether these effects may explain partly the health benefits associated with whole wheat consumption.

  1. Pathogenesis and prognosis of bilateral thalamic infarction

    International Nuclear Information System (INIS)

    Nakase, Taizen; Ogura, Naoko; Maeda, Tetsuya; Yamazaki, Takashi; Kameda, Tomoaki; Sato, Yuichi; Nagata, Ken

    2008-01-01

    Only a few reports have discussed the detailed clinical symptoms and pathogenesis of bilateral thalamic infarction. The thalamus is composed of different functional nuclei and supplied by vessels containing several variations from the main arteries, leading to difficulty in the precise evaluation of bilateral thalamic infarction. In the present study, we assessed the prognosis of bilateral thalamic infarction based on the distribution of stroke lesions. From among the consecutive ischemic stroke patients admitted to hospital between April 2001 and March 2005, cases of acute bilateral thalamic infarction were selected for this study (n=9; 65.1±13.6 y.o.). The stroke lesions and vascular abnormalities were investigated by magnetic resonance imaging and magnetic resonance angiography on admission. Outcome was evaluated from the modified Rankin scale (mRS) at discharge. Good outcome patients (mRS 0-2; n=5) showed memory disturbance, cognitive impairment and hypersomnia. On the other hand, quadriplegia, oculomotor disturbance and bulbar palsy were observed in the poor outcome patients (mRS≥4; n=4). The critical features of a poor outcome were the age at onset (72.0±15.3 vs. 58.2±11.9 y.o.), inclusion of brainstem lesions and total occlusion of the basilar artery. In conclusion, older age at onset and/or basilar artery occlusion may be critical factors for predicting a poor outcome in bilateral thalamic infarction cases. (author)

  2. Increased intraretinal PO2 in short-term diabetic rats.

    Science.gov (United States)

    Lau, Jennifer C M; Linsenmeier, Robert A

    2014-12-01

    In diabetic retinopathy, neovascularization is hypothesized to develop due to hypoxia in the retina. However, evidence for retinal hypoxia is limited, and the progressive changes in oxygenation are unknown. The objective of this study was to determine if retinal hypoxia occurs early in the development of diabetes. Intraretinal oxygen (PO2) profiles were recorded with oxygen-sensitive microelectrodes in control and diabetic Long-Evans rats at 4 and 12 weeks after induction of diabetes. Diabetes did not affect oxygen consumption in the photoreceptors in either dark or light adaptation. Oxygenation of the inner retina was not affected after 4 weeks of diabetes, although vascular endothelial growth factor levels increased. At 12 weeks, average inner retinal PO2, normalized to choriocapillaris PO2, was higher in diabetic rats than in age-matched controls, which was opposite to what was expected. Thus retinal hypoxia is not a condition of early diabetes in rat retina. Increased inner retinal PO2 may occur because oxygen consumption decreases in the inner retina. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  3. Prefrontal-Thalamic Anatomical Connectivity and Executive Cognitive Function in Schizophrenia.

    Science.gov (United States)

    Giraldo-Chica, Monica; Rogers, Baxter P; Damon, Stephen M; Landman, Bennett A; Woodward, Neil D

    2018-03-15

    Executive cognitive functions, including working memory, cognitive flexibility, and inhibition, are impaired in schizophrenia. Executive functions rely on coordinated information processing between the prefrontal cortex (PFC) and thalamus, particularly the mediodorsal nucleus. This raises the possibility that anatomical connectivity between the PFC and mediodorsal thalamus may be 1) reduced in schizophrenia and 2) related to deficits in executive function. The current investigation tested these hypotheses. Forty-five healthy subjects and 62 patients with a schizophrenia spectrum disorder completed a battery of tests of executive function and underwent diffusion-weighted imaging. Probabilistic tractography was used to quantify anatomical connectivity between six cortical regions, including PFC, and the thalamus. Thalamocortical anatomical connectivity was compared between healthy subjects and patients with schizophrenia using region-of-interest and voxelwise approaches, and the association between PFC-thalamic anatomical connectivity and severity of executive function impairment was examined in patients. Anatomical connectivity between the thalamus and PFC was reduced in schizophrenia. Voxelwise analysis localized the reduction to areas of the mediodorsal thalamus connected to lateral PFC. Reduced PFC-thalamic connectivity in schizophrenia correlated with impaired working memory but not cognitive flexibility and inhibition. In contrast to reduced PFC-thalamic connectivity, thalamic connectivity with somatosensory and occipital cortices was increased in schizophrenia. The results are consistent with models implicating disrupted PFC-thalamic connectivity in the pathophysiology of schizophrenia and mechanisms of cognitive impairment. PFC-thalamic anatomical connectivity may be an important target for procognitive interventions. Further work is needed to determine the implications of increased thalamic connectivity with sensory cortex. Copyright © 2017 Society of

  4. Aphasia following left thalamic hemorrhage

    International Nuclear Information System (INIS)

    Makishita, Hideo; Miyasaka, Motomaro; Tanizaki, Yoshio; Yanagisawa, Nobuo; Sugishita, Morihiro.

    1984-01-01

    We reported 7 patients with left thalamic hemorrhage in the chronic stage (from 1.5 months to 4.5 months), and described language disorders examined by Western Aphasia Battery (WAB) and measured cerebral blood flow by single photon emission CT. Examination of language by WAB revealed 4 aphasics out of 7 cases, and 3 patients had no language deficit. The patient with Wernicke's aphasia showed low density area only in the left posterior thalamus in X-ray CT, and revealed severe low blood flow area extending to left temporal lobe in emission CT. In the case with transcortical sensory aphasia, although X-ray CT showed no obvious low density area, emission CT revealed moderate low flow area in watershed area that involved the territory between posterior cerebral and middle cerebral arteries in the left temporooccipital region in addition to low blood flow at the left thalamus. In one of the two patients classified as anomic aphasia, whose score of repetition (8.4) was higher than that of comprehension (7.4), emission CT showed slight low flow area at the temporo-occipital region similarly as the case with transcortical sensory aphasia. In another case with anomic aphasia, scored 9 on both fluensy and comprehension subtests and 10 on repetition, there was wide low density area all over the left thalamus and midline shift to the right in X-ray CT, and emission CT showed severe low blood flow in the same region spreading widely toward the cerebral surface. On the other hand, in all of the 3 patients without aphasia, emission CT showed low flow region restricted to the left thalamus. (J.P.N.)

  5. Thalamic changes with mesial temporal sclerosis: MRI

    Energy Technology Data Exchange (ETDEWEB)

    Deasy, N.P.; Jarosz, J.M.; Cox, T.C.S. [Department of Neuroradiology, King' s College Hospital, London (United Kingdom); Elwes, R.C.D. [Department of Neurology, King' s College Hospital, London (United Kingdom); Polkey, C.E. [Department of Neurosurgery, King' s College and Maudsley Hospitals, London (United Kingdom)

    2000-05-01

    We reviewed the preoperative images of 28 patients with pathologically proven mesial temporal sclerosis, to assess thalamic asymmetry and signal change. A further 25 nonsurgical patients with temporal lobe epilepsy and unequivocal, unilateral changes of mesial temporal sclerosis, and 20 controls, were also reviewed. None of the control group had unequivocal asymmetry of the thalamus. There was an ipsilateral asymmetrically small thalamus in five (18 %) of the surgical group and in three (12 %) of the nonsurgical patients. In four cases there was thalamic signal change. In three patients with thalamic volume loss there was ipsilateral hemiatrophy. All patients with an asymmetrically small thalamus had an asymmetrically small fornix and all but one a small ipsilateral mamillary body. (orig.)

  6. Right thalamic infarction after closed head injury

    International Nuclear Information System (INIS)

    Nagaya, Takashi; Doi, Terushige; Katsumata, Tsuguo; Kuwayama, Naoto

    1986-01-01

    We reported a case of right thalamic infarction after a closed head injury. A 12-year-old boy was hit by an autotruck. He was semi-comatose, with left temporal scalp swelling and excoriation in the left lower limb. Three days after the accident, he exhibited left hemiparesis. CT scans on the day of the accident showed no abnormality, but on the following day, right thalamic infarction appeared. Right carotid angiography showed only an irregular vascular shadow in the cisternal segment of the right internal carotid artery. Vascular obstruction after closed head injury is rare, especially in the intracranial vessels, and several pathogeneses may be postulated. The right thalamic infarction in this case was supposed to be due to the damage of the perforators from the right posterior communicating artery and the right posterior cerebral artery, which were struck as a contre-coup by the force from the left side. (author)

  7. Benzyl alcohol increases voluntary ethanol drinking in rats.

    Science.gov (United States)

    Etelälahti, T J; Eriksson, C J P

    2014-09-01

    The anabolic steroid nandrolone decanoate has been reported to increase voluntary ethanol intake in Wistar rats. In recent experiments we received opposite results, with decreased voluntary ethanol intake in both high drinking AA and low drinking Wistar rats after nandrolone treatment. The difference between the two studies was that we used pure nandrolone decanoate in oil, whereas in the previous study the nandrolone product Deca-Durabolin containing benzyl alcohol (BA) was used. The aims of the present study were to clarify whether the BA treatment could promote ethanol drinking and to assess the role of the hypothalamic-pituitary-adrenal-gonadal axes (HPAGA) in the potential BA effect. Male AA and Wistar rats received subcutaneously BA or vehicle oil for 14 days. Hereafter followed a 1-week washout and consecutively a 3-week voluntary alcohol consumption period. The median (± median absolute deviation) voluntary ethanol consumption during the drinking period was higher in BA-treated than in control rats (4.94 ± 1.31 g/kg/day vs. 4.17 ± 0.31 g/kg/day, p = 0.07 and 1.01 ± 0.26 g/kg/day vs. 0.38 ± 0.27 g/kg/day, p = 0.05, for AA and Wistar rats, respectively; combined effect p < 0.01). The present results can explain the previous discrepancy between the two nandrolone studies. No significant BA effects on basal and ethanol-mediated serum testosterone and corticosterone levels were observed in blood samples taken at days 1, 8 and 22. However, 2h after ethanol administration significantly (p = 0.02) higher frequency of testosterone elevations was detected in high drinking AA rats compared to low drinking Wistars, which supports our previous hypotheses of a role of testosterone elevation in promoting ethanol drinking. Skin irritation and dermatitis were shown exclusively in the BA-treated animals. Altogether, the present results indicate that earlier findings obtained with Deca-Durabolin containing BA need to be re-evaluated. Copyright © 2014 Elsevier Inc. All

  8. Dynamics of epileptic activity in a peculiar case of childhood absence epilepsy and correlation with thalamic levels of GABA

    Directory of Open Access Journals (Sweden)

    Alberto Leal

    2016-01-01

    Significance: In a clinical case of CAE with EEG and fMRI-BOLD manifestations restricted to one hemisphere, we found an associated increase in thalamic GABA concentration consistent with a role for this abnormality in human CAE.

  9. Estradiol increases choice of cocaine over food in male rats.

    Science.gov (United States)

    Bagley, Jared R; Adams, Julia; Bozadjian, Rachel V; Bubalo, Lana; Ploense, Kyle L; Kippin, Tod E

    2017-10-19

    Estradiol modulates the rewarding and reinforcing properties of cocaine in females, including an increase in selection of cocaine over alternative reinforcers. However, the effects of estradiol on male cocaine self-administration behavior are less studied despite equivalent levels of estradiol in the brains of adult males and females, estradiol effects on motivated behaviors in males that share underlying neural substrates with cocaine reinforcement as well as expression of estrogen receptors in the male brain. Therefore, we sought to characterize the effects of estradiol in males on choice between concurrently-available cocaine and food reinforcement as well as responding for cocaine or food in isolation. Male castrated rats (n=46) were treated daily with estradiol benzoate (EB) (5μg/0.1, S.C.) or vehicle (peanut oil) throughout operant acquisition of cocaine (1mg/kg, IV; FI20 sec) and food (3×45mg; FI20 sec) responding, choice during concurrent access and cocaine and food reinforcement under progressive ratio (PR) schedules. EB increased cocaine choice, both in terms of percent of trials on which cocaine was selected and the proportion of rats exhibiting a cocaine preference as well as increased cocaine, but not food, intake under PR. Additionally, within the EB treated group, cocaine-preferring rats exhibited enhanced acquisition of cocaine, but not food, reinforcement whereas no acquisition differences were observed across preferences in the vehicle treated group. These findings demonstrate that estradiol increases cocaine choice in males similarly to what is observed in females. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Dissociable Contributions of Thalamic Nuclei to Recognition Memory: Novel Evidence from a Case of Medial Dorsal Thalamic Damage

    Science.gov (United States)

    Newsome, Rachel N.; Trelle, Alexandra N.; Fidalgo, Celia; Hong, Bryan; Smith, Victoria M.; Jacob, Alexander; Ryan, Jennifer D.; Rosenbaum, R. Shayna; Cowell, Rosemary A.; Barense, Morgan D.

    2018-01-01

    The thalamic nuclei are thought to play a critical role in recognition memory. Specifically, the anterior thalamic nuclei and medial dorsal nuclei may serve as critical output structures in distinct hippocampal and perirhinal cortex systems, respectively. Existing evidence indicates that damage to the anterior thalamic nuclei leads to impairments…

  11. Language disturbances from mesencephalo-thalamic infarcts. Identification of thalamic nuclei by CT-reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarino, L G; Nicolai, A; Valassi, F [Ospedale Civile di Gorizia (Italy). Div. di Neurologia; Biasizzo, E [Ospedale di Udine (Italy). Servizio di Neuroradiologia

    1991-08-01

    The authors report the cases of two patients with CT-documented paramedian mesencephalo-thalamic infarcts, showing language disturbances. The first patient showed a non fluent, transcortical motor-like aphasia, the other had a fluent but severely paraphasic language disorder. The CT study disclosed that it was the dorso-median thalamic nucleus that was mostly involved in both cases. These findings agree with a few previous pathological studies suggesting that the paramedian thalamic nuclei, particlularly the dorso-median nucleus may play some role in language disturbances. However the anatomical basis for thalamic aphasia remains speculative, taking into account the importantce of cortical connections in the origin of subcortical neuropsychological disturbances. (orig.).

  12. Endurance training increases the efficiency of rat skeletal muscle mitochondria.

    Science.gov (United States)

    Zoladz, Jerzy A; Koziel, Agnieszka; Woyda-Ploszczyca, Andrzej; Celichowski, Jan; Jarmuszkiewicz, Wieslawa

    2016-10-01

    Endurance training enhances mitochondrial oxidative capacity, but its effect on mitochondria functioning is poorly understood. In the present study, the influence of an 8-week endurance training on the bioenergetic functioning of rat skeletal muscle mitochondria under different assay temperatures (25, 35, and 42 °C) was investigated. The study was performed on 24 adult 4-month-old male Wistar rats, which were randomly assigned to either a treadmill training group (n = 12) or a sedentary control group (n = 12). In skeletal muscles, endurance training stimulated mitochondrial biogenesis and oxidative capacity. In isolated mitochondria, endurance training increased the phosphorylation rate and elevated levels of coenzyme Q. Moreover, a decrease in mitochondrial uncoupling, including uncoupling protein-mediated proton leak, was observed after training, which could explain the increased reactive oxygen species production (in nonphosphorylating mitochondria) and enhanced oxidative phosphorylation efficiency. At all studied temperatures, endurance training significantly augmented H2O2 production (and coenzyme Q reduction level) in nonphosphorylating mitochondria and decreased H2O2 production (and coenzyme Q reduction level) in phosphorylating mitochondria. Endurance training magnified the hyperthermia-induced increase in oxidative capacity and attenuated the hyperthermia-induced decline in oxidative phosphorylation efficiency and reactive oxygen species formation of nonphosphorylating mitochondria via proton leak enhancement. Thus, endurance training induces both quantitative and qualitative changes in muscle mitochondria that are important for cell signaling as well as for maintaining muscle energy homeostasis, especially at high temperatures.

  13. Osteoinductive potential of demineralized rat bone increases with increasing donor age from birth to adulthood

    DEFF Research Database (Denmark)

    Pinholt, E M; Solheim, E

    1998-01-01

    Demineralized allogenic bone implanted in the subcutis or muscle of rodents causes formation of heterotopic bone by osteoinduction. The osteoinductive response may be weaker in primates than in rodents. It was suggested that the osteoinductive response of demineralized bone for clinical use could...... be enhanced by using young donors, because studies have indicated that the osteoinductive response is reduced in demineralized bone of old versus young donors. However, these findings may not represent a gradual decline in the osteoinductive property of bone matrix throughout the life span. We evaluated...... quantitatively, by uptake of strontium 85, the osteoinductive effect of demineralized bone matrix from newborn, 8-week-old (adolescent), and 8-month-old (adult) male Wistar rats implanted in the abdominal muscles of 8-week-old male Wistar rats. The osteoinductive response increased significantly with increasing...

  14. Unilateral Thalamic Infarct Presenting as a Convulsive Seizure.

    Science.gov (United States)

    Kumar, Rajesh; Brohi, Hazim; Mughul, Afshan

    2017-09-01

    Lesions of the thalamus and those extending into midbrain can cause various types of movement disorders such as dystonia, asterixis and ballism-chorea. Seizures are rare manifestation of thalamic disorder. Occurrence of seizures in bilateral thalamic infarct has been reported; but seizures in unilateral thalamic infarct have been reported very rarely. Literature review showed only single case of perinatal unilateral thalamic infarct presenting with seizures. We are reporting a unique case of convulsive seizure at the onset of unilateral thalamic infarct in an adult male, which has never been reported to the best of our knowledge.

  15. Thalamic stimulation in absence epilepsy

    NARCIS (Netherlands)

    Luttjohann, A.K.; Luijtelaar, E.L.J.M. van

    2013-01-01

    Purpose The site specific effects of two different types of electrical stimulation of the thalamus on electroencephalic epileptic activity as generated in the cortico-thalamo-cortical system were investigated in genetic epileptic WAG/Rij rats, a well characterized and validated absence

  16. Effect of Spinal Cord Stimulation on Gait in a Patient with Thalamic Pain

    Directory of Open Access Journals (Sweden)

    Arito Yozu

    2016-01-01

    Full Text Available Thalamic pain is a central neuropathic pain disorder which occurs after stroke. Its severe chronic pain is often intractable to pharmacotherapies and affects the patients’ activities of daily living (ADL and quality of life (QOL. Recently, spinal cord stimulation (SCS has been reported to be effective in relieving the pain of thalamic pain; however, the effect of SCS on gait performance in patients is unknown. Therefore, we evaluated the gait performance before and after SCS in a case with thalamic pain. A 73-year-old male with thalamic pain participated in this study. We evaluated the gait of the patient two times: before SCS insertion and after 6 days of SCS. At the second evaluation, we measured the gait in three conditions: stimulation off, comfortable stimulation, and strong stimulation. SCS succeeded in improving the pain from 7 to 2 on an 11-point numerical rating scale. Step frequency and the velocity of gait tended to increase between pre- and poststimulation periods. There were no apparent differences in gait among the three stimulation conditions (off, comfortable, and strong at the poststimulation period. SCS may be effective on gait in patients with thalamic pain.

  17. Thalamic morphology in schizophrenia and schizoaffective disorder.

    Science.gov (United States)

    Smith, Matthew J; Wang, Lei; Cronenwett, Will; Mamah, Daniel; Barch, Deanna M; Csernansky, John G

    2011-03-01

    Biomarkers are needed that can distinguish between schizophrenia and schizoaffective disorder to inform the ongoing debate over the diagnostic boundary between these two disorders. Neuromorphometric abnormalities of the thalamus have been reported in individuals with schizophrenia and linked to core features of the disorder, but have not been similarly investigated in individuals with schizoaffective disorder. In this study, we examine whether individuals with schizoaffective disorder have a pattern of thalamic deformation that is similar or different to the pattern found in individuals with schizophrenia. T1-weighted magnetic resonance images were collected from individuals with schizophrenia (n = 47), individuals with schizoaffective disorder (n = 15), and controls (n = 42). Large-deformation, high-dimensional brain mapping was used to obtain three-dimensional surfaces of the thalamus. Multiple analyses of variance were used to test for group differences in volume and measures of surface shape. Individuals with schizophrenia or schizoaffective disorder have similar thalamic volumes. Thalamic surface shape deformation associated with schizophrenia suggests selective involvement of the anterior and posterior thalamus, while deformations in mediodorsal and ventrolateral regions were observed in both groups. Schizoaffective disorder had distinct deformations in medial and lateral thalamic regions. Abnormalities distinct to schizoaffective disorder suggest involvement of the central and ventroposterior medial thalamus which may be involved in mood circuitry, dorsolateral nucleus which is involved in recall processing, and the lateral geniculate nucleus which is involved in visual processing. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Fear conditioning leads to alteration in specific genes expression in cortical and thalamic neurons that project to the lateral amygdala.

    Science.gov (United States)

    Katz, Ira K; Lamprecht, Raphael

    2015-02-01

    RNA transcription is needed for memory formation. However, the ability to identify genes whose expression is altered by learning is greatly impaired because of methodological difficulties in profiling gene expression in specific neurons involved in memory formation. Here, we report a novel approach to monitor the expression of genes after learning in neurons in specific brain pathways needed for memory formation. In this study, we aimed to monitor gene expression after fear learning. We retrogradely labeled discrete thalamic neurons that project to the lateral amygdala (LA) of rats. The labeled neurons were dissected, using laser microdissection microscopy, after fear conditioning learning or unpaired training. The RNAs from the dissected neurons were subjected to microarray analysis. The levels of selected RNAs detected by the microarray analysis to be altered by fear conditioning were also assessed by nanostring analysis. We observed that the expression of genes involved in the regulation of translation, maturation and degradation of proteins was increased 6 h after fear conditioning compared to unpaired or naïve trained rats. These genes were not expressed 24 h after training or in cortical neurons that project to the LA. The expression of genes involved in transcription regulation and neuronal development was altered after fear conditioning learning in the cortical-LA pathway. The present study provides key information on the identity of genes expressed in discrete thalamic and cortical neurons that project to the LA after fear conditioning. Such an approach could also serve to identify gene products as targets for the development of a new generation of therapeutic agents that could be aimed to functionally identified brain circuits to treat memory-related disorders. © 2014 International Society for Neurochemistry.

  19. Exposure of rat hippocampal astrocytes to Ziram increases oxidative stress.

    Science.gov (United States)

    Matei, Ann-Marie; Trombetta, Louis D

    2016-04-01

    Pesticides have been shown in several studies to be the leading candidates of environmental toxins and may contribute to the pathogenesis of several neurodegenerative diseases. Ziram (zinc-bis(dimethyldithiocarbamate)) is an agricultural dithiocarbamate fungicide that is used to treat a variety of plant diseases. In spite of their generally acknowledged low toxicity, dithiocarbamates are known to cause a wide range of neurobehavioral effects as well as neuropathological changes in the brain. Astrocytes play a key role in normal brain physiology and in the pathology of the nervous system. This investigation studied the effects of 1.0 µM Ziram on rat hippocampal astrocytes. The thiobarbituric acid reactive substance assay performed showed a significant increase in malondialdehyde, a product of lipid peroxidation, in the Ziram-treated cells. Biochemical analysis also revealed a significant increase in the induction of 70 kDa heat shock and heme oxygenase 1 stress proteins. In addition, an increase of glutathione peroxidase (GPx) and a significant increase in oxidized glutathione (GSSG) were observed in the Ziram-treated cells. The ratio GSH to GSSG calculated from the treated cells was also decreased. Light and transmission electron microscopy supported the biochemical findings in Ziram-treated astrocytes. This data suggest that the cytotoxic effects observed with Ziram treatments may be related to the increase of oxidative stress. © The Author(s) 2013.

  20. Increased dopaminergic activity in socially isolated rats: an electrophysiological study

    DEFF Research Database (Denmark)

    Fabricius, Katrine; Helboe, Lone; Fink-Jensen, Anders

    2010-01-01

    The development of animal models mimicking symptoms associated with schizophrenia has been a critical step in understanding the neurobiological mechanisms underlying the disease. Long-term social isolation from weaning in rodents, a model based on the neurodevelopmental hypothesis of schizophrenia......, has been suggested to mimic some of the deficits seen in schizophrenic patients. We confirm in the present study that socially isolated rats display an increase in both spontaneous and d-amphetamine-induced locomotor activity, as well as deficits in sensorimotor gating as assessed in a pre......, and a change of firing activity towards a more irregular and bursting firing pattern. Taken together, our findings suggest that the behavioral phenotype induced by social isolation may be driven by an overactive dopamine system....

  1. Combinatorial gene therapy renders increased survival in cirrhotic rats

    Directory of Open Access Journals (Sweden)

    Armendáriz-Borunda Juan S

    2010-05-01

    Full Text Available Abstract Background Liver fibrosis ranks as the second cause of death in México's productive-age population. This pathology is characterized by acummulation of fibrillar proteins in hepatic parenchyma causing synthetic and metabolic disfunction. Remotion of excessive fibrous proteins might result in benefit for subjects increasing survival index. The goal of this work was to find whether the already known therapeutical effect of human urokinase Plasminogen Activator and human Matrix Metalloprotease 8 extends survival index in cirrhotic animals. Methods Wistar rats (80 g underwent chronic intoxication with CCl4: mineral oil for 8 weeks. Cirrhotic animals were injected with a combined dose of Ad-delta-huPA plus Ad-MMP8 (3 × 1011 and 1.5 × 1011 vp/Kg, respectively or with Ad-beta-Gal (4.5 × 1011 and were killed after 2, 4, 6, 8 and 10 days. Then, liver and serum were collected. An additional set of cirrhotic animals injected with combined gene therapy was also monitored for their probability of survival. Results Only the cirrhotic animals treated with therapeutical genes (Ad-delta-huPA+Ad-MMP-8 showed improvement in liver fibrosis. These results correlated with hydroxyproline determinations. A significant decrement in alpha-SMA and TGF-beta1 gene expression was also observed. Cirrhotic rats treated with Ad-delta-huPA plus Ad-MMP8 had a higher probability of survival at 60 days with respect to Ad-beta-Gal-injected animals. Conclusion A single administration of Ad-delta-huPA plus Ad-MMP-8 is efficient to induce fibrosis regression and increase survival in experimental liver fibrosis.

  2. Bioburden Increases Heterotopic Ossification Formation in an Established Rat Model.

    Science.gov (United States)

    Pavey, Gabriel J; Qureshi, Ammar T; Hope, Donald N; Pavlicek, Rebecca L; Potter, Benjamin K; Forsberg, Jonathan A; Davis, Thomas A

    2015-09-01

    Heterotopic ossification (HO) develops in a majority of combat-related amputations wherein early bacterial colonization has been considered a potential early risk factor. Our group has recently developed a small animal model of trauma-induced HO that incorporates many of the multifaceted injury patterns of combat trauma in the absence of bacterial contamination and subsequent wound colonization. We sought to determine if (1) the presence of bioburden (Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus [MRSA]) increases the magnitude of ectopic bone formation in traumatized muscle after amputation; and (2) what persistent effects bacterial contamination has on late microbial flora within the amputation site. Using a blast-related HO model, we exposed 48 rats to blast overpressure, femur fracture, crush injury, and subsequent immediate transfemoral amputation through the zone of injury. Control injured rats (n = 8) were inoculated beneath the myodesis with phosphate-buffered saline not containing bacteria (vehicle) and treatment rats were inoculated with 1 × 10(6) colony-forming units of A baumannii (n = 20) or MRSA (n = 20). All animals formed HO. Heterotopic ossification was determined by quantitative volumetric measurements of ectopic bone at 12-weeks postinjury using micro-CT and qualitative histomorphometry for assessment of new bone formation in the residual limb. Bone marrow and muscle tissue biopsies were collected from the residual limb at 12 weeks to quantitatively measure the bioburden load and to qualitatively determine the species-level identification of the bacterial flora. At 12 weeks, we observed a greater volume of HO in rats infected with MRSA (68.9 ± 8.6 mm(3); 95% confidence interval [CI], 50.52-85.55) when compared with A baumannii (20.9 ± 3.7 mm(3); 95% CI, 13.61-28.14; p infection but were positive for other strains of bacteria (1.33 × 10(2) ± 0.89 × 10(2); 95% CI, -0.42 × 10(2)-3.08 × 10(2) and 1.25 × 10(6) ± 0

  3. Flavonoid rutin increases thyroid iodide uptake in rats.

    Directory of Open Access Journals (Sweden)

    Carlos Frederico Lima Gonçalves

    Full Text Available Thyroid iodide uptake through the sodium-iodide symporter (NIS is not only an essential step for thyroid hormones biosynthesis, but also fundamental for the diagnosis and treatment of different thyroid diseases. However, part of patients with thyroid cancer is refractory to radioiodine therapy, due to reduced ability to uptake iodide, which greatly reduces the chances of survival. Therefore, compounds able to increase thyroid iodide uptake are of great interest. It has been shown that some flavonoids are able to increase iodide uptake and NIS expression in vitro, however, data in vivo are lacking. Flavonoids are polyhydroxyphenolic compounds, found in vegetables present in human diet, and have been shown not only to modulate NIS, but also thyroperoxidase (TPO, the key enzyme in thyroid hormones biosynthesis, besides having antiproliferative effect in thyroid cancer cell lines. Therefore, we aimed to evaluate the effect of some flavonoids on thyroid iodide uptake in Wistar rats in vivo. Among the flavonoids tested, rutin was the only one able to increase thyroid iodide uptake, so we decided to evaluate the effect of this flavonoid on some aspects of thyroid hormones synthesis and metabolism. Rutin led to a slight reduction of serum T4 and T3 without changes in serum thyrotropin (TSH, and significantly increased hypothalamic, pituitary and brown adipose tissue type 2 deiodinase and decreased liver type 1 deiodinase activities. Moreover, rutin treatment increased thyroid iodide uptake probably due to the increment of NIS expression, which might be secondary to increased response to TSH, since TSH receptor expression was increased. Thus, rutin might be useful as an adjuvant in radioiodine therapy, since this flavonoid increased thyroid iodide uptake without greatly affecting thyroid function.

  4. Increasing intensity of TENS prevents analgesic tolerance in rats

    Science.gov (United States)

    Sato, Karina L.; Sanada, Luciana S.; Rakel, Barbara A.; Sluka, Kathleen A.

    2012-01-01

    Transcutaneous electrical nerve stimulation (TENS) reduces hyperalgesia and pain. Both low frequency (LF) and high frequency (HF) TENS, delivered at the same intensity (90% motor threshold (MT)) daily, result in analgesic tolerance with repeated use by the 5th day of treatment. Thecurrentstudytestedif 1) increasingintensityby 10% per daypreventsthedevelopmentoftolerance to repeated TENS, and 2) iflowerintensity TENS (50 % MT) produces an equivalentreduction in hyperalgesia when compared to 90% MT TENS. Sprague-Dawley rats with unilateral knee joint inflammation (3% carrageenan) were separated according to the intensity of TENS used: Sham, 50% LF, 50% HF, 90% LF, 90% HF, and increased intensity by 10% per day (LF and HF). The reduced mechanical withdrawal threshold following the induction of inflammation was reversed by application of TENS applied at 90% MT and increasing intensity for the first 4 days. On the 5th day, the groups that received 90% MT intensity showed tolerance. Nevertheless, the group that received an increased intensity on each day still showed a reversal of the mechanical withdrawal threshold with TENS. These results show that the development of tolerance can be delayed by increasing intensity of TENS. PMID:22858165

  5. Impairments of thalamic resting-state functional connectivity in patients with chronic tinnitus

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Chen, Yu-Chen [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Center for Hearing and Deafness, University at Buffalo, State University of New York, Buffalo, NY (United States); Feng, Xu [Department of Otolaryngology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Yang, Ming; Liu, Bin; Qian, Cheng [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Wang, Jian [Department of Physiology, Southeast University, Nanjing (China); School of Human Communication Disorders, Dalhousie University, Halifax, NS (Canada); Salvi, Richard [Center for Hearing and Deafness, University at Buffalo, State University of New York, Buffalo, NY (United States); Teng, Gao-Jun, E-mail: gjteng@vip.sina.com [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China)

    2015-07-15

    Highlights: • Tinnitus patients have aberrant thalamic connectivity to many brain regions. • Decreased thalamic connectivity is linked with tinnitus characteristics. • Thalamocortical connectivity disturbances can reflect tinnitus-related networks. - Abstract: Purpose: The phantom sound of tinnitus is believed to arise from abnormal functional coupling between the thalamus and cerebral cortex. To explore this hypothesis, we used resting-state functional magnetic resonance imaging (fMRI) to compare the degree of thalamocortical functional connectivity in chronic tinnitus patients and controls. Materials and methods: Resting-state fMRI scans were obtained from 31 chronic tinnitus patients and 33 well-matched healthy controls. Thalamocortical functional connectivity was characterized using a seed-based whole-brain correlation method. The resulting thalamic functional connectivity measures were correlated with other clinical data. Results: We found decreased functional connectivity between the seed region in left thalamus and right middle temporal gyrus (MTG), right middle orbitofrontal cortex, left middle frontal gyrus, right precentral gyrus, and bilateral calcarine cortex. Decreased functional connectivity was detected between the seed in the right thalamus and the left superior temporal gyrus (STG), left amygdala, right superior frontal gyrus, left precentral gyrus, and left middle occipital gyrus. Tinnitus distress correlated negatively with thalamic functional connectivity in right MTG; tinnitus duration correlated negatively with thalamic functional connectivity in left STG. Increased functional connectivity between the bilateral thalamus and a set of regions were also observed. Conclusions: Chronic tinnitus patients have disrupted thalamocortical functional connectivity to selected brain regions which is associated with specific tinnitus characteristics. Resting-state thalamic functional connectivity disturbances may play an important role in

  6. Impairments of thalamic resting-state functional connectivity in patients with chronic tinnitus

    International Nuclear Information System (INIS)

    Zhang, Jian; Chen, Yu-Chen; Feng, Xu; Yang, Ming; Liu, Bin; Qian, Cheng; Wang, Jian; Salvi, Richard; Teng, Gao-Jun

    2015-01-01

    Highlights: • Tinnitus patients have aberrant thalamic connectivity to many brain regions. • Decreased thalamic connectivity is linked with tinnitus characteristics. • Thalamocortical connectivity disturbances can reflect tinnitus-related networks. - Abstract: Purpose: The phantom sound of tinnitus is believed to arise from abnormal functional coupling between the thalamus and cerebral cortex. To explore this hypothesis, we used resting-state functional magnetic resonance imaging (fMRI) to compare the degree of thalamocortical functional connectivity in chronic tinnitus patients and controls. Materials and methods: Resting-state fMRI scans were obtained from 31 chronic tinnitus patients and 33 well-matched healthy controls. Thalamocortical functional connectivity was characterized using a seed-based whole-brain correlation method. The resulting thalamic functional connectivity measures were correlated with other clinical data. Results: We found decreased functional connectivity between the seed region in left thalamus and right middle temporal gyrus (MTG), right middle orbitofrontal cortex, left middle frontal gyrus, right precentral gyrus, and bilateral calcarine cortex. Decreased functional connectivity was detected between the seed in the right thalamus and the left superior temporal gyrus (STG), left amygdala, right superior frontal gyrus, left precentral gyrus, and left middle occipital gyrus. Tinnitus distress correlated negatively with thalamic functional connectivity in right MTG; tinnitus duration correlated negatively with thalamic functional connectivity in left STG. Increased functional connectivity between the bilateral thalamus and a set of regions were also observed. Conclusions: Chronic tinnitus patients have disrupted thalamocortical functional connectivity to selected brain regions which is associated with specific tinnitus characteristics. Resting-state thalamic functional connectivity disturbances may play an important role in

  7. Increased bone calcium dissociation in lead-exposed rats

    Directory of Open Access Journals (Sweden)

    Eko Suhartono

    2012-12-01

    Full Text Available Background Lead is still a major environmental and occupational health hazard, since it is extensively used in the production of paints, gasoline and cosmetics. This causes the metal to be ubiquitous in the environment, being found in the air, soil, and water, from which it can enter the human body by inhalation or ingestion. Absorbed lead is capable of altering the calcium levels in bone. The aim of this study was to demonstrate the effect of lead on bone calcium levels by measuring the reaction constant, Gibbs free energy, and enthalpy. Methods This study was of pure experimental design using 100 male albino rats (Rattus norvegicus. The experimental animals were assigned by simple randomization to two groups, one group receiving lead acetate orally at a dosage of 100 mg/kgBW, while the other group did not receive lead acetate. The intervention was given for 4 weeks and the rats were observed weekly for measurement of bone calcium levels by the permanganometric method. Results This study found that k1 (hydroxyapatite dissociation rate constant was 0.90 x 10-3 dt-1, and that k2 (hydroxyapatite association rate constant was 6.16 x 10-3 dt-1 for the control group, whereas for the intervention group k1 = 26.20 x 10-3 dt-1 and k2 = 16.75 x 10-3 dt-1. Thermodynamically, the overall reaction was endergonic and endothermic (DG > 0 and DH > 0. ConclusionS Lead exposure results in increased dissociation rate of bone in comparison with its association rate. Overall, the reaction was endergonic and endothermic (DG > 0 and DH > 0.

  8. Increased bone calcium dissociation in lead-exposed rats

    Directory of Open Access Journals (Sweden)

    Eko Suhartono

    2015-12-01

    Full Text Available BACKGROUND Lead is still a major environmental and occupational health hazard, since it is extensively used in the production of paints, gasoline and cosmetics. This causes the metal to be ubiquitous in the environment, being found in the air, soil, and water, from which it can enter the human body by inhalation or ingestion. Absorbed lead is capable of altering the calcium levels in bone. The aim of this study was to demonstrate the effect of lead on bone calcium levels by measuring the reaction constant, Gibbs free energy, and enthalpy. METHODS This study was of pure experimental design using 100 male albino rats (Rattus norvegicus. The experimental animals were assigned by simple randomization to two groups, one group receiving lead acetate orally at a dosage of 100 mg/ kgBW, while the other group did not receive lead acetate. The intervention was given for 4 weeks and the rats were observed weekly for measurement of bone calcium levels by the permanganometric method. RESULTS This study found that k1 (hydroxyapatite dissociation rate constant was 0.90 x 10-3 dt-1, and that k2 (hydroxyapatite association rate constant was 6.16 x 10-3 dt-1 for the control group, whereas for the intervention group k1 = 26.20 x 10-3 dt-1 and k2 = 16.75 x 10-3 dt-1. Thermodynamically, the overall reaction was endergonic and endothermic (ΔG > 0 and ΔH > 0. CONCLUSIONS Lead exposure results in increased dissociation rate of bone in comparison with its association rate. Overall, the reaction was endergonic and endothermic (ΔG > 0 and ΔH > 0.

  9. Morphological Abnormalities of Thalamic Subnuclei in Migraine

    DEFF Research Database (Denmark)

    Magon, Stefano; May, Arne; Stankewitz, Anne

    2015-01-01

    UNLABELLED: The thalamus contains third-order relay neurons of the trigeminal system, and animal models as well as preliminary imaging studies in small cohorts of migraine patients have suggested a role of the thalamus in headache pathophysiology. However, larger studies using advanced imaging te...... is a disorder of the CNS in which not only is brain function abnormal, but also brain structure is undergoing significant remodeling....... a fully automated multiatlas approach. Deformation-based shape analysis was performed to localize surface abnormalities. Differences between patients with migraine and healthy subjects were assessed using an ANCOVA model. After correction for multiple comparisons, performed using the false discovery rate.......9) was observed in patients. This large-scale study indicates structural thalamic abnormalities in patients with migraine. The thalamic nuclei with abnormal volumes are densely connected to the limbic system. The data hence lend support to the view that higher-order integration systems are altered in migraine...

  10. Increased hepatic glycogen synthetase and decreased phosphorylase in trained rats

    DEFF Research Database (Denmark)

    Galbo, H; Saugmann, P; Richter, Erik

    1979-01-01

    Rats were either physically trained by a 12 wk swimming program or were freely eating or weight matched, sedentary controls. Trained rats had a higher relative liver weight and total hepatic glycogen synthetase (EC 2.4.1.11) activity and a lower phosphorylase (EC 2.4.1.1) activity than the other...

  11. Cerebral blood flow and cerebral oxygen metabolism in thalamic hemorrhage

    International Nuclear Information System (INIS)

    Yasui, Nobuyuki; Asakura, Ken

    1987-01-01

    Cerebral blood flow (CBF), cerebral oxygen consumption (CMRO 2 ), oxygen extraction fraction (OEF) and cerebral blood volume (CBV) were studied in 20 cases of thalamic hemorrhage using positron CT and 15 O labeled gas steady-state inhalation method. CBF reduction was limited around the thalamus in the small sized hematoma. CBF were significantly diminished in the mean cortical, parietal, temporal, basal ganglia and thalamic area ipsilateral and cerebellar cortex contralateral to the medium sized hematoma. There was bilateral and diffuse CBF reduction in the large sized hematoma which was caused by increased intracranial pressure. CMRO 2 value were similary changed as CBF. OEF change showed within normal limit. Diffuse CBV reduction was observed in the large sized hematoma. This reduction was the result of decreased vascular bed caused by mass effect of the hematoma and hydrocephalus. Effect of surgical treatment such as ventricular drainage and hematoma evacuation were also discussed in correlation to CBF in some case using positron and single photon ECT. (author)

  12. Neurological manifestations and PET studies of the thalamic vascular lesions

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Shinji; Kawamura, Mitsuru; Hirayama, Keizo [Chiba Univ. (Japan). School of Medicine

    1995-02-01

    We divided 38 patients with cerebrovascular disease of the thalamus into 5 groups according to the site of the thalamic lesions as confirmed by X-ray CT and/or MRI. In 16 patients, we examined the cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO{sub 2}) by positron emission tomography (PET). In the anteromedial thalamic lesion group, patients displayed disturbances of spontaneity, memory, reading and writing. CBF and CMRO{sub 2} were decreased in the frontal, parietal and temporal lobes on the side of the lesion. In the dorsolateral thalamic lesion group, ataxic hemiparesis was a characteristic symptom. CBF and CMRO{sub 2} were decreased in frontoparietal lobes on the side of the lesion. In the group with lesions confined to the nucleus ventralis posterioris thalami, the main symptoms were sensory disturbance, with cheiro-oral sensory syndrome being particularly evident. CBF and CMRO{sub 2} were decreased in the parietal lobe on the side of the lesion. In the group with posterolateral thalamic lesions without pulvinar involvement, patients exhibited thalamic syndrome without thalamic pain. CBF and CMRO{sub 2} were decreased in the frontoparietal and temporal lobes on the side of the lesion. In contrast, in the group with posterolateral thalamic lesions with pulvinar involvement, all patients showed thalamic pain. The decrease in CBF and CMRO{sub 2} extended to the inferomedial region of the temporal lobe in addition to the area of decreased CBF and CMRO{sub 2} observed in the group with posterolateral thalamic lesions without pulvinar involvement. Based on these results, we speculate that the neurological manifestations of thalamic vascular disease are associated with a decrease in cortical CBF and CMRO{sub 2} secondary to the thalamic lesions. (author).

  13. Neurological manifestations and PET studies of the thalamic vascular lesions

    International Nuclear Information System (INIS)

    Matsuda, Shinji; Kawamura, Mitsuru; Hirayama, Keizo

    1995-01-01

    We divided 38 patients with cerebrovascular disease of the thalamus into 5 groups according to the site of the thalamic lesions as confirmed by X-ray CT and/or MRI. In 16 patients, we examined the cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO 2 ) by positron emission tomography (PET). In the anteromedial thalamic lesion group, patients displayed disturbances of spontaneity, memory, reading and writing. CBF and CMRO 2 were decreased in the frontal, parietal and temporal lobes on the side of the lesion. In the dorsolateral thalamic lesion group, ataxic hemiparesis was a characteristic symptom. CBF and CMRO 2 were decreased in frontoparietal lobes on the side of the lesion. In the group with lesions confined to the nucleus ventralis posterioris thalami, the main symptoms were sensory disturbance, with cheiro-oral sensory syndrome being particularly evident. CBF and CMRO 2 were decreased in the parietal lobe on the side of the lesion. In the group with posterolateral thalamic lesions without pulvinar involvement, patients exhibited thalamic syndrome without thalamic pain. CBF and CMRO 2 were decreased in the frontoparietal and temporal lobes on the side of the lesion. In contrast, in the group with posterolateral thalamic lesions with pulvinar involvement, all patients showed thalamic pain. The decrease in CBF and CMRO 2 extended to the inferomedial region of the temporal lobe in addition to the area of decreased CBF and CMRO 2 observed in the group with posterolateral thalamic lesions without pulvinar involvement. Based on these results, we speculate that the neurological manifestations of thalamic vascular disease are associated with a decrease in cortical CBF and CMRO 2 secondary to the thalamic lesions. (author)

  14. Fear potentiated startle increases phospholipase D (PLD) expression/activity and PLD-linked metabotropic glutamate receptor mediated post-tetanic potentiation in rat amygdala.

    Science.gov (United States)

    Krishnan, Balaji; Scott, Michael T; Pollandt, Sebastian; Schroeder, Bradley; Kurosky, Alexander; Shinnick-Gallagher, Patricia

    2016-02-01

    Long-term memory (LTM) of fear stores activity dependent modifications that include changes in amygdala signaling. Previously, we identified an enhanced probability of release of glutamate mediated signaling to be important in rat fear potentiated startle (FPS), a well-established translational behavioral measure of fear. Here, we investigated short- and long-term synaptic plasticity in FPS involving metabotropic glutamate receptors (mGluRs) and associated downstream proteomic changes in the thalamic-lateral amygdala pathway (Th-LA). Aldolase A, an inhibitor of phospholipase D (PLD), expression was reduced, concurrent with significantly elevated PLD protein expression. Blocking the PLD-mGluR signaling significantly reduced PLD activity. While transmitter release probability increased in FPS, PLD-mGluR agonist and antagonist actions were occluded. In the unpaired group (UNP), blocking the PLD-mGluR increased while activating the receptor decreased transmitter release probability, consistent with decreased synaptic potentials during tetanic stimulation. FPS Post-tetanic potentiation (PTP) immediately following long-term potentiation (LTP) induction was significantly increased. Blocking PLD-mGluR signaling prevented PTP and reduced cumulative PTP probability but not LTP maintenance in both groups. These effects are similar to those mediated through mGluR7, which is co-immunoprecipitated with PLD in FPS. Lastly, blocking mGluR-PLD in the rat amygdala was sufficient to prevent behavioral expression of fear memory. Thus, our study in the Th-LA pathway provides the first evidence for PLD as an important target of mGluR signaling in amygdala fear-associated memory. Importantly, the PLD-mGluR provides a novel therapeutic target for treating maladaptive fear memories in posttraumatic stress and anxiety disorders. Published by Elsevier Inc.

  15. Relatedness decreases and reciprocity increases cooperation in Norway rats.

    Science.gov (United States)

    Schweinfurth, Manon K; Taborsky, Michael

    2018-03-14

    Kin selection and reciprocity are two mechanisms underlying the evolution of cooperation, but the relative importance of kinship and reciprocity for decisions to cooperate are yet unclear for most cases of cooperation. Here, we experimentally tested the relative importance of relatedness and received cooperation for decisions to help a conspecific in wild-type Norway rats ( Rattus norvegicus ). Test rats provided more food to non-kin than to siblings, and they generally donated more food to previously helpful social partners than to those that had refused help. The rats thus applied reciprocal cooperation rules irrespective of relatedness, highlighting the importance of reciprocal help for cooperative interactions among both related and unrelated conspecifics. © 2018 The Author(s).

  16. Improved appetite of pregnant rats and increased birth weight and ...

    African Journals Online (AJOL)

    Deux espèces probiotiques, le lactobacillus rhamnosus GR-1 et le Lactobacillus fermentumRC 14 ont été administé séparément comme supplément dans l\\'eau potable aux rats étudiés pendant 30 jours. La ration et le poids à la naissance des chiots ont été mesuré. Une amélioration significative d\\'appetit des rats dont le ...

  17. The neurobiology of thalamic amnesia: Contributions of medial thalamus and prefrontal cortex to delayed conditional discrimination.

    Science.gov (United States)

    Mair, Robert G; Miller, Rikki L A; Wormwood, Benjamin A; Francoeur, Miranda J; Onos, Kristen D; Gibson, Brett M

    2015-07-01

    Although medial thalamus is well established as a site of pathology associated with global amnesia, there is uncertainty about which structures are critical and how they affect memory function. Evidence from human and animal research suggests that damage to the mammillothalamic tract and the anterior, mediodorsal (MD), midline (M), and intralaminar (IL) nuclei contribute to different signs of thalamic amnesia. Here we focus on MD and the adjacent M and IL nuclei, structures identified in animal studies as critical nodes in prefrontal cortex (PFC)-related pathways that are necessary for delayed conditional discrimination. Recordings of PFC neurons in rats performing a dynamic delayed non-matching-to position (DNMTP) task revealed discrete populations encoding information related to planning, execution, and outcome of DNMTP-related actions and delay-related activity signaling previous reinforcement. Parallel studies recording the activity of MD and IL neurons and examining the effects of unilateral thalamic inactivation on the responses of PFC neurons demonstrated a close coupling of central thalamic and PFC neurons responding to diverse aspects of DNMTP and provide evidence that thalamus interacts with PFC neurons to give rise to complex goal-directed behavior exemplified by the DNMTP task. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Ingestion of guar gum hydrolysate, a soluble fiber, increases calcium absorption in totally gastrectomized rats.

    Science.gov (United States)

    Hara, H; Suzuki, T; Kasai, T; Aoyama, Y; Ohta, A

    1999-01-01

    Gastrectomy induces osteopenia. We examined the effects of feeding a diet containing soluble dietary fiber, guar gum hydrolysate (GGH, 50 g/kg diet), on intestinal calcium absorption and bone mineralization in totally gastrectomized (Roux-en-Y esophagojejunostomy) rats by comparing them with those in two control groups (laparotomized and bypassed rats). In the bypassed rats, chyme bypassed the duodenum and upper jejunum without gastrectomy. In a second separate experiment, we compared calcium absorption and bone mineralization in the gastrectomized rats fed diets containing soluble and insoluble calcium salts and in bypassed rats fed insoluble calcium. In Experiment 1, apparent absorption of calcium supplied as a water-insoluble salt was more than 50% lower in gastrectomized rats than in the intact (laparotomized) or bypassed rats 3 wk after the start of feeding the test diets (P Calcium absorption was higher (P Experiment 2, absorption of soluble calcium in the gastrectomized rats did not differ from the absorption of calcium from calcium carbonate by bypassed rats. The soluble calcium pool in the cecal contents was significantly lower in gastrectomized rats (Experiment 1) than in intact or bypassed control rats, and was higher (P calcium absorption correlated most closely (r = 0.787, P calcium content was significantly lower in gastrectomized rats fed insoluble calcium than in bypassed rats fed the same diet, but was partially restored in the rats fed soluble calcium (Experiment 2). Bone calcium was not increased by feeding GGH in gastrectomized rats (Experiment 1). We conclude that the severely diminished calcium absorption following total gastrectomy is totally due to a decrease in calcium solubilization, and feeding GGH partially restores calcium absorption. The decrease in bone calcium that occurs as a result of gastrectomy is mainly due to diminished intestinal calcium absorption.

  19. Cortically-controlled population stochastic facilitation as a plausible substrate for guiding sensory transfer across the thalamic gateway.

    Directory of Open Access Journals (Sweden)

    Sébastien Béhuret

    Full Text Available The thalamus is the primary gateway that relays sensory information to the cerebral cortex. While a single recipient cortical cell receives the convergence of many principal relay cells of the thalamus, each thalamic cell in turn integrates a dense and distributed synaptic feedback from the cortex. During sensory processing, the influence of this functional loop remains largely ignored. Using dynamic-clamp techniques in thalamic slices in vitro, we combined theoretical and experimental approaches to implement a realistic hybrid retino-thalamo-cortical pathway mixing biological cells and simulated circuits. The synaptic bombardment of cortical origin was mimicked through the injection of a stochastic mixture of excitatory and inhibitory conductances, resulting in a gradable correlation level of afferent activity shared by thalamic cells. The study of the impact of the simulated cortical input on the global retinocortical signal transfer efficiency revealed a novel control mechanism resulting from the collective resonance of all thalamic relay neurons. We show here that the transfer efficiency of sensory input transmission depends on three key features: i the number of thalamocortical cells involved in the many-to-one convergence from thalamus to cortex, ii the statistics of the corticothalamic synaptic bombardment and iii the level of correlation imposed between converging thalamic relay cells. In particular, our results demonstrate counterintuitively that the retinocortical signal transfer efficiency increases when the level of correlation across thalamic cells decreases. This suggests that the transfer efficiency of relay cells could be selectively amplified when they become simultaneously desynchronized by the cortical feedback. When applied to the intact brain, this network regulation mechanism could direct an attentional focus to specific thalamic subassemblies and select the appropriate input lines to the cortex according to the descending

  20. Increased sign-tracking behavior in adolescent rats.

    Science.gov (United States)

    DeAngeli, Nicole E; Miller, Sarah B; Meyer, Heidi C; Bucci, David J

    2017-11-01

    An autoshaping procedure was used to test the notion that conditioned stimuli (CSs) gain greater incentive salience during adolescence than young adulthood under conditions of social isolation rearing and food restriction. Rats were single-housed and placed on food restriction during 10 daily training sessions in which a lever (CS + ) was presented then followed immediately by a food unconditioned stimulus (US). A second lever (CS - ) was presented on intermixed trials and was not reinforced. Despite the fact that food delivery was not contingent on the rats' behavior, all rats exhibited behaviors directed towards the lever (i.e., sign-tracking). In the adolescent group, the rate of lever pressing and the percentage of trials with a lever press were higher than in young adults. Initially, group differences were observed when rats were retrained when the adolescents had reached young adulthood. These findings support the hypothesis that cues that come to predict reward become imbued with excessive motivational value in adolescents, perhaps contributing to the hyper-responsiveness to reward-related stimuli typically observed during this period of development. © 2017 Wiley Periodicals, Inc.

  1. Diabetes increases susceptibility of primary cultures of rat proximal tubular cells to chemically induced injury

    International Nuclear Information System (INIS)

    Zhong Qing; Terlecky, Stanley R.; Lash, Lawrence H.

    2009-01-01

    Diabetic nephropathy is characterized by increased oxidative stress and mitochondrial dysfunction. In the present study, we prepared primary cultures of proximal tubular (PT) cells from diabetic rats 30 days after an ip injection of streptozotocin and compared their susceptibility to oxidants (tert-butyl hydroperoxide, methyl vinyl ketone) and a mitochondrial toxicant (antimycin A) with that of PT cells isolated from age-matched control rats, to test the hypothesis that PT cells from diabetic rats exhibit more cellular and mitochondrial injury than those from control rats when exposed to these toxicants. PT cells from diabetic rats exhibited higher basal levels of reactive oxygen species (ROS) and higher mitochondrial membrane potential, demonstrating that the PT cells maintain the diabetic phenotype in primary culture. Incubation with either the oxidants or mitochondrial toxicant resulted in greater necrotic and apoptotic cell death, greater evidence of morphological damage, greater increases in ROS, and greater decreases in mitochondrial membrane potential in PT cells from diabetic rats than in those from control rats. Pretreatment with either the antioxidant N-acetyl-L-cysteine or a catalase mimetic provided equivalent protection of PT cells from both diabetic and control rats. Despite the greater susceptibility to oxidative and mitochondrial injury, both cytoplasmic and mitochondrial glutathione concentrations were markedly higher in PT cells from diabetic rats, suggesting an upregulation of antioxidant processes in diabetic kidney. These results support the hypothesis that primary cultures of PT cells from diabetic rats are a valid model in which to study renal cellular function in the diabetic state.

  2. Fish oil supplementation associated with decreased cellular degeneration and increased cellular proliferation 6 weeks after middle cerebral artery occlusion in the rat

    Directory of Open Access Journals (Sweden)

    Pascoe MC

    2015-01-01

    Full Text Available Michaela C Pascoe,1 David W Howells, 2David P Crewther,1 Leeanne M Carey,2,3 Sheila G Crewther4 1Brain Sciences Institute, Swinburne University, ²Florey Institute of Neuroscience and Mental Health, University of Melbourne, 3Department of Occupational Therapy, School of Allied Health La Trobe University, 4School of Psychological Science, La Trobe University, Melbourne, VIC, Australia Abstract: Anti-inflammatory long-chain omega-3 polyunsaturated fatty acids (n-3-LC-PUFAs are both neuroprotective and have antidepressive effects. However the influence of dietary supplemented n-3-LC-PUFAs on inflammation-related cell death and proliferation after middle cerebral artery occlusion (MCAo-induced stroke is unknown. We have previously demonstrated that anxiety-like and hyperactive locomotor behaviors are reduced in n-3-LC-PUFA-fed MCAo animals. Thus in the present study, male hooded Wistar rats were exposed to MCAo or sham surgeries and examined behaviorally 6 weeks later, prior to euthanasia and examination of lesion size, cell death and proliferation in the dentate gyrus, cornu ammonis region of the hippocampus of the ipsilesional hemispheres, and the thalamus of the ipsilesional and contralesional hemispheres. Markers of cell genesis and cell degeneration in the hippocampus or thalamus of the ipsilesional hemisphere did not differ between surgery and diet groups 6 weeks post MCAo. Dietary supplementation with n-3-LC-PUFA decreased cell degeneration and increased cell proliferation in the thalamic region of the contralesional hemisphere. MCAo–associated cell degeneration in the hippocampus and thalamus positively correlated with anxiety-like and hyperactive locomotor behaviors previously reported in these animals. These results suggest that anti-inflammatory n-3-LC-PUFA supplementation appears to have cellular protective effects after MCAo in the rat, which may affect behavioral outcomes. Keywords: apoptosis, polyunsaturated fatty acids

  3. Increased radiosensitivity of cerebral capillaries in neonatal Gunn rats as compared to Sprague-Dawley rats

    International Nuclear Information System (INIS)

    Landolt, R.; Arn, D.

    1979-01-01

    The extent of petechial haemorrhages of the cerebral cortex examined between 14 hours and 4 days after X-irradiation to the head was compared in Sprague-Dawley and homozygous Gunn rats with congenital hyperbilirubinaemia. Animals 1 to 2 days old received single doses of either 250, 500 or 750 rad. By means of a special scoring scale the degree of the damage to the micro vasculature was semi-quantitatively estimated. In both strains a significant difference in effect was obtained between 250 and 500 rad, but not between 500 and 750 rad. The shape of the dose-effect curve in Gunn rats was similar to that of Sprague-Dawley rats, but displaced upwards. In Gunn rats the effect of 250 rad was greater that that of 750 rad in Sprague-Dawley rats. Possible radiosensitizing mechanisms are discussed with reference to the literature and these results. (author)

  4. Increased uracil misincorporation in lymphocytes from folate-deficient rats

    OpenAIRE

    Duthie, S J; Grant, G; Narayanan, S

    2000-01-01

    The development of certain human cancers has been linked with inadequate intake of folates. The effects of folate deficiency in vivo on DNA stability (strand breakage, misincorporated uracil and oxidative base damage) in lymphocytes isolated from rats fed a diet deficient in folic acid was determined. Because the metabolic pathways of folate and other methyl donors are closely coupled, the effects of methionine and choline deficiency alone or in combination with folate deficiency were determi...

  5. Both hypothyroidism and hyperthyroidism increase plasma irisin levels in rats.

    Science.gov (United States)

    Atici, Emine; Mogulkoc, Rasim; Baltaci, Abdulkerim Kasim; Menevse, Esma

    2017-11-28

    Background A recently discovered hormone, irisin is accepted to be significantly involved in the regulation of body weight. Thyroid functions may be, directly or indirectly, associated with irisin. Aim The aim of the present study is to determine the effect of experimental thyroid dysfunction on irisin levels in rats. Methods The study registered 40 adult male Sprague-Dawley rats, which were allocated to groups as follows: 1. Control; 2. Hypothyroidism induced by injection of 10 mg/kg/day intraperitoneal propylthiouracil (PTU) for 3 weeks; 3. Hypothyroidism (PTU 2 weeks) + L-thyroxin (1.5 mg/kg/day for 1 week); 4. Hyperthyroidism induced in rats by 3-week thyroxin (0.3 mg/kg/day); 5. Hyperthyroidism + PTU. At the end of the study, blood samples were collected to quantify free triiodothyronine (FT3), free triiodothyronine (FT4) and irisin levels. Results FT3 and FT4 levels were reduced in hypothyroidism and were significantly elevated in hyperthyroidism (p hyperthyroidism groups (p hyperthyroidism, and that when hypothyroidism is corrected by thyroxin administration and hyperthyroidism by PTU injection, plasma irisin values go back to normal.

  6. Beer improves copper metabolism and increases longevity in Cu-deficient rats

    International Nuclear Information System (INIS)

    Moore, R.J.; Klevay, L.M.

    1989-01-01

    Moderate consumption of alcoholic beverages decreases risk of death from ischemic heart disease (IHD). Evidence suggests that Cu-deficiency is important in the etiology and pathophysiology of IHD. The effect of beer (25 ng Cu/ml) drinking on the severity of Cu-deficiency was examined in weanling, male Sprague-Dawley rats fed a low Cu diet (0.84 μg Cu/g). Beer drinking increased median longevity to 204 or 299 d from 62 or 42 d respectively in rats drinking water in two experiments (15 rats/group). In experiment 3, a single dose of 67 Cu (3.3 μCi as chloride) was added to 1 g of feed and given to 12-h fasted rats 30 d after the start of the experiment. Whole body counting over 13 d showed apparent Cu absorption and t 1/2 (biological) were greater in Cu-deficient rats drinking beer than in similar rats drinking water. Plasma cholesterol was lower but hematocrit and liver Cu were higher in surviving rats drinking beer than in rats drinking water. Body weight was not affected by beer in any experiment. In experiment 4, a 4% aqueous ethanol solution had no effect on longevity of copper deficient rats. A non-alcohol component of beer alters Cu metabolism and mitigates the severity of nutritional Cu-deficiency in rats

  7. Brainstem stimulation increases functional connectivity of basal forebrain-paralimbic network in isoflurane-anesthetized rats.

    Science.gov (United States)

    Pillay, Siveshigan; Liu, Xiping; Baracskay, Péter; Hudetz, Anthony G

    2014-09-01

    Brain states and cognitive-behavioral functions are precisely controlled by subcortical neuromodulatory networks. Manipulating key components of the ascending arousal system (AAS), via deep-brain stimulation, may help facilitate global arousal in anesthetized animals. Here we test the hypothesis that electrical stimulation of the oral part of the pontine reticular nucleus (PnO) under light isoflurane anesthesia, associated with loss of consciousness, leads to cortical desynchronization and specific changes in blood-oxygenation-level-dependent (BOLD) functional connectivity (FC) of the brain. BOLD signals were acquired simultaneously with frontal epidural electroencephalogram before and after PnO stimulation. Whole-brain FC was mapped using correlation analysis with seeds in major centers of the AAS. PnO stimulation produced cortical desynchronization, a decrease in δ- and θ-band power, and an increase in approximate entropy. Significant increases in FC after PnO stimulation occurred between the left nucleus Basalis of Meynert (NBM) as seed and numerous regions of the paralimbic network. Smaller increases in FC were present between the central medial thalamic nucleus and retrosplenium seeds and the left caudate putamen and NBM. The results suggest that, during light anesthesia, PnO stimulation preferentially modulates basal forebrain-paralimbic networks. We speculate that this may be a reflection of disconnected awareness.

  8. Monoamines and sexual function in rats bred for increased catatonic reactivity.

    Science.gov (United States)

    Klochkov, D V; Alekhina, T A; Kuznetsova, E G; Barykina, N N

    2009-07-01

    Body weight, ovary and uterus weight, the nature of estral cycles, and hypothalamus dopamine and noradrenaline levels and plasma testosterone levels were studied in female GC rats, bred for increased catatonic reactivity, at different stages of the estral cycle (estrus, proestrus). The outbred Wistar strain served as controls. On the background of decreased body weight, GC females showed impairments to the morphological cyclical changes in the ovaries and uterus, with a reduction in ovary weight in diestrus (p rats showed higher levels of these monoamines in estrus and lower levels in diestrus. Plasma testosterone levels in female GC rats were higher in diestrus than in estrus and in Wistar rats.

  9. Spatial cognitive deficits in an animal model of Wernicke-Korsakoff syndrome are related to changes in thalamic VDAC protein concentrations.

    Science.gov (United States)

    Bueno, K O; de Souza Resende, L; Ribeiro, A F; Dos Santos, D M; Gonçalves, E C; Vigil, F A B; de Oliveira Silva, I F; Ferreira, L F; de Castro Pimenta, A M; Ribeiro, A M

    2015-05-21

    Proteomic profiles of the thalamus and the correlation between the rats' performance on a spatial learning task and differential protein expression were assessed in the thiamine deficiency (TD) rat model of Wernicke-Korsakoff syndrome. Two-dimensional gel-electrophoresis detected 320 spots and a significant increase or decrease in seven proteins. Four proteins were correlated to rat behavioral performance in the Morris Water Maze. One of the four proteins was identified by mass spectrometry as Voltage-Dependent Anion Channels (VDACs). The association of VDAC is evident in trials in which the rats' performance was worst, in which the VDAC protein was reduced, as confirmed by Western blot. No difference was observed on the mRNA of Vdac genes, indicating that the decreased VDAC expression may be related to a post-transcriptional process. The results show that TD neurodegeneration involves changes in thalamic proteins and suggest that VDAC protein activity might play an important role in an initial stage of the spatial learning process. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Increased transient receptor potential canonical type 3 channels in vasculature from hypertensive rats

    DEFF Research Database (Denmark)

    Liu, Daoyan; Yang, Dachun; He, Hongbo

    2009-01-01

    We tested the hypothesis that transient receptor potential canonical type 3 (TRPC3) channels are increased in vascular smooth muscle cells and aortic tissue from spontaneously hypertensive rats (SHR) compared with normotensive Wistar Kyoto rats. Expression of TRPC3 was analyzed by immunohistochem...

  11. Pavlovian autoshaping procedures increase plasma corticosterone levels in rats.

    Science.gov (United States)

    Tomie, Arthur; Silberman, Yuval; Williams, Kayon; Pohorecky, Larissa A

    2002-06-01

    Pavlovian autoshaping conditioned responses (CRs) are complex sequences of conditioned stimulus (CS)-directed skeletal-motor responses that are elicited by CS objects predictive of food unconditioned stimulus (US). Autoshaping CRs are observed under conditions known to be conducive to elevations in plasma corticosterone levels, as, for example, in response to the eating of food as well as in response to signals predictive of food. Two experiments investigated the relationships between Pavlovian autoshaping procedures, the performance of Pavlovian autoshaping CRs, and plasma corticosterone levels in male Long-Evans rats. In Experiment 1, rats in the CS-US paired group (n=30) were given 20 daily sessions of Pavlovian autoshaping training wherein the insertion of a retractable lever CS was followed by the response-independent presentation of the food US. Tail blood samples obtained after the 20th autoshaping session revealed higher plasma corticosterone levels in the CS-US paired group than in the CS-US random control group (n=10). In Experiment 2, rats (n=35) were assessed for basal plasma corticosterone levels 2 weeks prior to autoshaping training. Plasma samples obtained immediately following the first autoshaping session, and prior to the acquisition of lever-press autoshaping CR performance, revealed higher plasma corticosterone levels in the CS-US paired group (n=24) relative to basal levels. This effect was not observed in the CS-US random control group (n=11). Data suggest that corticosterone release is a physiological endocrine Pavlovian CR induced by lever CS-food US pairings during Pavlovian autoshaping procedures, rather than a by-product of autoshaping CR performance. Implications of the link between autoshaping procedures and corticosterone release are discussed.

  12. Fatal thalamic abscess secondary to dental infection.

    Science.gov (United States)

    Basyuni, Shadi; Sharma, Valmiki; Santhanam, Vijay; Ferro, Ashley

    2015-12-17

    We present the case of poor neurological recovery and subsequent death secondary to a thalamic abscess in a 53-year-old man. This patient initially presented with sudden dysarthria and left hemiparesis while driving. Neuroimaging showed a multilobular abscess involving the right thalamus with oedema extending to the basal ganglionic region and brainstem. The source of the abscess was initially unknown and it required draining multiple times while the different causes were being explored. The patient's neurological state along with intubation made for a difficult and inconclusive oral examination. It was only after neuroimaging included tooth-bearing areas that it became evident that this patient had extensive periodontal disease with multiple areas of periapical radiolucencies. The patient underwent complete dental clearance alongside repeated drainage of the abscess. Despite initial postoperative improvement, the patient never recovered from the neurological damage and died 3 weeks later. 2015 BMJ Publishing Group Ltd.

  13. Isolated thalamic tuberculoma presenting as ataxic hemiparesis

    Science.gov (United States)

    Sahu, Ritesh; Patil, Tushar B; Kori, Prakash; Shukla, Rakesh

    2013-01-01

    Lacunar syndrome is a neurodeficit secondary to a deep cerebral lesion, usually because of microatheroma of small arteries. Ataxic hemiparesis (AH) is a lacunar syndrome with unilateral pyramidal weakness and ipsilateral ataxia. Thalamic tuberculoma, as a cause of AH, has not been previously described in the literature. We describe an elderly man who presented with left hemiparesis and ipsilateral ataxia. Clinical examination revealed upper motor neuron left facial paresis and left-sided hemiparesis. The patient had incoordination in left upper and lower limbs. Mantoux test was positive and erythrocyte sedimentation rate was elevated. MRI of brain showed a conglomerated hypointense lesion in the right thalamus with a peripheral hyperintensity on T1-weighted imaging and a hyperintense lesion in T2-weighted imaging with significant perilesional oedema, suggesting a tuberculoma. The patient was treated with antitubercular therapy and was symptomatically better at the 9 months follow-up. PMID:23580686

  14. CT classification of small thalamic hemorrhages

    International Nuclear Information System (INIS)

    Kawahara, Nobutaka; Kaneko, Mitsuo; Tanaka, Keisei; Muraki, Masaaki; Sato, Kengo

    1984-01-01

    The thalamus is located deep in the cerebral hemispheres, and most of its nuclei have reciprocal fiber connections with specific areas over the cerebral cortex. Localized lesions in the thalamus, therefore, can cause specific neurological deficits, depending on their locations. From this point of view, we reviewed 110 cases, admitted over the past 7 years, with thalamic hemorrhages 37 (34%) of which were small hematomas less than 2 cm in diameter. These small hematomas could be divided into 4 types depending on their locations as follows: antero-lateral type, postero-lateral type, medial type, and dorsal type. Each type had the peculiar clinical features described below: 1) Postero-lateral Type (PL type, 28 cases, 76%): The original symptom was a sudden onset of moderate to severe sensori-motor deficits in most cases. The patients were mostly alert or only slightly confused. 2) Antero-lateral Type (AL type, 4 cases, 11%): The patients of this type first presented with sensori-motor disturbance and prefrontal signs. Both were generally mild and often disappeared early. 3) Medial Type (M type, 3 cases, 8%): The main symptom at onset was either a disturbance of consciousness or dementia. 4) Dorsal Type (D type, 2 cases, 5%): One patient with a right thalamic hematoma of this type showed geographical agnosia and visuo-constructive apraxia. The other patient, with a left-sided hematoma, exhibited transient clumsiness of the right hand and mild dysphasia. In our experience, the above classification of small hematomas clearly delineated the clinical symptoms and neurological signs of the different types; therefore, the symptoms and signs in larger hematoma could be explained by a combination of those of each type. (J.P.N.)

  15. Increased Oxidative Stress and Mitochondrial Dysfunction in Zucker Diabetic Rat Liver and Brain

    Directory of Open Access Journals (Sweden)

    Haider Raza

    2015-02-01

    Full Text Available Background/Aims: The Zucker diabetic fatty (ZDF, FA/FA rat is a genetic model of type 2 diabetes, characterized by insulin resistance with progressive metabolic syndrome. We have previously demonstrated mitochondrial dysfunction and oxidative stress in the heart, kidneys and pancreas of ZDF rats. However, the precise molecular mechanism of disease progression is not clear. Our aim in the present study was to investigate oxidative stress and mitochondrial dysfunction in the liver and brain of ZDF rats. Methods: In this study, we have measured mitochondrial oxidative stress, bioenergetics and redox homeostasis in the liver and brain of ZDF rats. Results: Our results showed increased reactive oxygen species (ROS production in the ZDF rat brain compared to the liver, while nitric oxide (NO production was markedly increased both in the brain and liver. High levels of lipid and protein peroxidation were also observed in these tissues. Glutathione metabolism and mitochondrial respiratory functions were adversely affected in ZDF rats when compared to Zucker lean (ZL, +/FA control rats. Reduced ATP synthesis was also observed in the liver and brain of ZDF rats. Western blot analysis confirmed altered expression of cytochrome P450 2E1, iNOS, p-JNK, and IκB-a confirming an increase in oxidative and metabolic stress in ZDF rat tissues. Conclusions: Our data shows that, like other tissues, ZDF rat liver and brain develop complications associated with redox homeostasis and mitochondrial dysfunction. These results, thus, might have implications in understanding the etiology and pathophysiology of diabesity which in turn, would help in managing the disease associated complications.

  16. MRI of paramedian thalamic stroke with sleep disturbance

    International Nuclear Information System (INIS)

    Loevblad, K.O.; Bassetti, C.; Mathis, J.; Schroth, G.

    1997-01-01

    The paramedian thalamus is believed to play an important role in the regulation of sleep, and disturbances of sleep regulation are known to occur in paramedian thalamic stroke (PTS). We examined 12 consecutive patients with PTS and sleep disturbance by MRI. Two distinct groups of patients could be defined: six presenting with severe hypersomnia (group 1) and six with slight sleepiness (group 2). On MRI, all patients had ischaemic lesions involving the paramedian thalamic nuclei, the centre of the lesions being the dorsomedial and centromedial thalamic nuclei. In group 1 the lesions were bilateral, butterfly-shaped infarcts involving the paramedian nuclei (three cases), or unilateral with an extension into the subthalamic nuclei. In group 2 the lesions were unilateral and limited to the paramedian nuclei, mainly the dorsomedial nucleus. Bilateral lesions can be attributed to a common origin in some cases for both paramedian thalamic arteries and the mesencephalic arteries. (orig.). With 5 figs

  17. Increased activities of mitochondrial enzymes in white adipose tissue in trained rats

    DEFF Research Database (Denmark)

    Stallknecht, B; Vinten, J; Ploug, T

    1991-01-01

    of 8-12 rats were swim trained for 10 wk or served as either sedentary, sham swim-trained, or cold-stressed controls. White adipose tissue was removed, and the activities of the respiratory chain enzyme cytochrome-c oxidase (CCO) and of the enzyme malate dehydrogenase (MDH), which participates...... 0.05). In female rats the CCO activity expressed per milligram protein was increased 4.5-fold in the trained compared with the sedentary control rats (P less than 0.01). Neither cold stress nor sham swim training increased CCO or MDH activities in white adipose tissue (P greater than 0...

  18. Moderate High Fat Diet Increases Sucrose Self-Administration In Young Rats

    OpenAIRE

    Figlewicz, Dianne P.; Jay, Jennifer L.; Acheson, Molly A.; Magrisso, Irwin J.; West, Constance H.; Zavosh, Aryana; Benoit, Stephen C.; Davis, Jon F.

    2012-01-01

    We have previously reported that a moderately high fat diet increases motivation for sucrose in adult rats. In this study, we tested the motivational, neurochemical, and metabolic effects of the high fat diet in male rats transitioning through puberty, during 5-8 weeks of age. We observed that the high fat diet increased motivated responding for sucrose, which was independent of either metabolic changes or changes in catecholamine neurotransmitter metabolites in the nucleus accumbens. However...

  19. Increased concentration of vasopressin in plasma of essential fatty acid-deficient rats

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Jensen, B.; Warberg, J.

    1985-01-01

    The effect of essential fatty acid deficiency (EFA-D) on the plasma concentration of arginine-vasopressin (AVP) and the urinary AVP excretion was investigated. Weanling rats were fed a fat-free diet (FF-rats). Control rats received the same diet in which 6% by wt. of sucrose was replaced by arachis...... oil. After 4-6 weeks of feeding, urine and plasma were analysed for AVP, osmolality, sodium and potassium. When compared to control rats FF-rats had decreased urine volume (6.0 ± 1.6 ml/24 hr versus 11.7 ± 3.2 ml/24 hr), increased urine osmolality (2409 ± 691 mOsm/kg versus 1260 ± 434 m...

  20. Pontine and Thalamic Influences on Fluid Rewards: I. Operant Responding for Sucrose and Corn Oil

    Science.gov (United States)

    Liang, Nu-Chu; Freet, Christopher S.; Grigson, Patricia S; Norgren, Ralph

    2011-01-01

    The reward strength of orosensory sucrose and corn oil was measured using fixed and progressive ratio operant schedules. Because the orosensory effects of the stimuli were of interest, Experiment 1 compared operant responses for sucrose in sham and real feeding rats. The results demonstrated that rats would work for sucrose solutions without the accompanying postingestive effects. Furthermore, the break points for high concentrations of sucrose (1.0 M or 2.0 M) were significantly higher in sham feeding rats than in real feeding controls. Experiment 2 investigated the role of the parabrachial nucleus (PBN) and of the thalamic orosensory area (TOA) in sucrose and corn oil reward. During free access, rats with PBN lesions (PBNx) licked significantly less sucrose solution than their controls, but both groups ingested a similar volume of corn oil emulsion. When an operant was imposed, these same PBNx rats failed to respond for sucrose and continued only modestly for corn oil. In contrast, the TOA lesioned rats (TOAx) showed no impairment in responding for sucrose or corn oil during either the free access or operant sessions. Furthermore, rats with TOA lesions demonstrated significantly higher break points for sucrose than did their controls. Together, the data imply that the PBN but not the TOA is critical for the perception of, or responding to the reward value of sucrose and corn oil. PMID:21703290

  1. Increased susceptibility of post-weaning rats on high-fat diet to metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Hong Sheng Cheng

    2017-11-01

    Full Text Available The present study aimed to examine the effects of the types of high-calorie diets (high-fat and high-fat-high-sucrose diets and two different developmental stages (post-weaning and young adult on the induction of metabolic syndrome. Male, post-weaning and adult (3- and 8-week old, respectively Sprague Dawley rats were given control, high-fat (60% kcal, and high-fat-high-sucrose (60% kcal fat + 30% sucrose water diets for eight weeks (n = 6 to 7 per group. Physical, biochemical, and transcriptional changes as well as liver histology were noted. Post-weaning rats had higher weight gain, abdominal fat mass, fasting glucose, high density lipoprotein cholesterol, faster hypertension onset, but lower circulating advanced glycation end products compared to adult rats. This is accompanied by upregulation of peroxisome proliferator-activated receptor (PPAR α and γ in the liver and receptor for advanced glycation end products (RAGE in the visceral adipose tissue. Post-weaning rats on high-fat diet manifested all phenotypes of metabolic syndrome and increased hepatic steatosis, which are linked to increased hepatic and adipocyte PPARγ expression. Adult rats on high-fat-high-sucrose diet merely became obese and hypertensive within the same treatment duration. Thus, it is more effective and less time-consuming to induce metabolic syndrome in male post-weaning rats with high-fat diet compared to young adult rats. As male rats were selectively included into the study, the results may not be generalisable to all post-weaning rats and further investigation on female rats is required.

  2. Cold-increase in brown fat thyroxine 5'-monodeiodinase is attenuated in Zucker obese rat

    International Nuclear Information System (INIS)

    Wu, S.Y.; Stern, J.S.; Fisher, D.A.; Glick, Z.

    1987-01-01

    In this study the authors examined the possibility that the reduced brown adipose tissue (BAT) thermogenesis in the Zucker obese rat may result from a limited capacity for enzymic conversion of thyroxine (T 4 ) to triiodothyronine (T 3 ) in BAT. A total of 34 lean and obese rats, ∼4 mo old were divided into three treatment groups: group 1 (5 lean and 6 obese) was fed Purina rat chow for 21 days, and group two (5 lean and 6 obese) was fed a cafeteria diet for 21 days, and groups 3 (6 lean and 6 obese) was fed Purina rat chow and maintained in the cold (8 +/- 1 0 C) for 7 days. Activity of T 4 5'-deiodinase was determined as the rate of T 3 production from added T 4 under controlled in vitro conditions. Serum T 4 and T 3 were determined by radioimmunoassay. The rate of T 4 -to-T 3 conversion in BAT was similar in the lean and obese rats maintained at room temperature, whether fed rat chow or a cafeteria diet. However, expressed per scapular BAT depot, lean rats exposed to cold displayed about a fivefold increase in BAT T 3 production whereas only a small increase was observed in the cold-exposed obese rats. Serum T 3 levels tended to be reduced in the Zucker obese rats. The data indicate a reduced capacity for T 3 production of Zucker rat BAT exposed to cold. This defect may account for the reduced tolerance of the obese animals to cold, but it does not account for their reduced diet-induced BAT thermogenesis

  3. Increased serum erythropoietin activity in rats following intrarenal injection of nickel subsulfide

    International Nuclear Information System (INIS)

    Hopfer, S.M.; Sunderman, F.W. Jr.; Fredrickson, T.N.; Morse, E.E.

    1979-01-01

    To investigate the pathopysiologic mechanisms of nickel-induced erythocytosis, serum erythropoietin activities were measured in (a) pooled serum from rats at 2 wk after intrarenal injection of αNi 3 S 2 (5 mg/rat), and (b) pooled serum from control rats at 2 wk after intrarenal injection of sterile NaCl vehicle (0.4 ml/rat). A sensitive erythropoietin bioassay was employed, which entailed repetitive administration of test serums to post-hypoxic polycythemic mice in divided doses (12 s.c. injections of 0.5 ml of serum at 6 h intervals for 3 da; total dose = 6 ml of serum/mouse). The erythropoietin detection limit was approx. = 20 I.U./liter of serum. In mice which received pooled serum from αNi 3 S 2 -treated rats, erythrocyte 59 Fe-uptake averaged 28% (S.D. +- 5) (vs 3.7 +- 1.1% in control rats; P 3 S 2 -treated rats averaged 130 I.U./liter (S.D. +- 18) (vs 27 +- 6 I.U./liter in control rats; P 3 S 2 is mediated by increased serum erythropoietin activity

  4. Impaired visual short-term memory capacity is distinctively associated with structural connectivity of the posterior thalamic radiation and the splenium of the corpus callosum in preterm-born adults.

    Science.gov (United States)

    Menegaux, Aurore; Meng, Chun; Neitzel, Julia; Bäuml, Josef G; Müller, Hermann J; Bartmann, Peter; Wolke, Dieter; Wohlschläger, Afra M; Finke, Kathrin; Sorg, Christian

    2017-04-15

    Preterm birth is associated with an increased risk for lasting changes in both the cortico-thalamic system and attention; however, the link between cortico-thalamic and attention changes is as yet little understood. In preterm newborns, cortico-cortical and cortico-thalamic structural connectivity are distinctively altered, with increased local clustering for cortico-cortical and decreased integrity for cortico-thalamic connectivity. In preterm-born adults, among the various attention functions, visual short-term memory (vSTM) capacity is selectively impaired. We hypothesized distinct associations between vSTM capacity and the structural integrity of cortico-thalamic and cortico-cortical connections, respectively, in preterm-born adults. A whole-report paradigm of briefly presented letter arrays based on the computationally formalized Theory of Visual Attention (TVA) was used to quantify parameter vSTM capacity in 26 preterm- and 21 full-term-born adults. Fractional anisotropy (FA) of posterior thalamic radiations and the splenium of the corpus callosum obtained by diffusion tensor imaging were analyzed by tract-based spatial statistics and used as proxies for cortico-thalamic and cortico-cortical structural connectivity. The relationship between vSTM capacity and cortico-thalamic and cortico-cortical connectivity, respectively, was significantly modified by prematurity. In full-term-born adults, the higher FA in the right posterior thalamic radiation the higher vSTM capacity; in preterm-born adults this FA-vSTM-relationship was inversed. In the splenium, higher FA was correlated with higher vSTM capacity in preterm-born adults, whereas no significant relationship was evident in full-term-born adults. These results indicate distinct associations between cortico-thalamic and cortico-cortical integrity and vSTM capacity in preterm-and full-term-born adults. Data suggest compensatory cortico-cortical fiber re-organization for attention deficits after preterm delivery

  5. Interactions between thalamic and cortical rhythms during semantic memory recall in human

    Science.gov (United States)

    Slotnick, Scott D.; Moo, Lauren R.; Kraut, Michael A.; Lesser, Ronald P.; Hart, John, Jr.

    2002-04-01

    Human scalp electroencephalographic rhythms, indicative of cortical population synchrony, have long been posited to reflect cognitive processing. Although numerous studies employing simultaneous thalamic and cortical electrode recording in nonhuman animals have explored the role of the thalamus in the modulation of cortical rhythms, direct evidence for thalamocortical modulation in human has not, to our knowledge, been obtained. We simultaneously recorded from thalamic and scalp electrodes in one human during performance of a cognitive task and found a spatially widespread, phase-locked, low-frequency rhythm (7-8 Hz) power decrease at thalamus and scalp during semantic memory recall. This low-frequency rhythm power decrease was followed by a spatially specific, phase-locked, fast-rhythm (21-34 Hz) power increase at thalamus and occipital scalp. Such a pattern of thalamocortical activity reflects a plausible neural mechanism underlying semantic memory recall that may underlie other cognitive processes as well.

  6. Post-Weaning Protein Malnutrition Increases Blood Pressure and Induces Endothelial Dysfunctions in Rats

    Science.gov (United States)

    Siman, Fabiana D. M.; Silveira, Edna A.; Meira, Eduardo F.; da Costa, Carlos P.; Vassallo, Dalton V.; Padilha, Alessandra S.

    2012-01-01

    Malnutrition during critical periods in early life may increase the subsequent risk of hypertension and metabolic diseases in adulthood, but the underlying mechanisms are still unclear. We aimed to evaluate the effects of post-weaning protein malnutrition on blood pressure and vascular reactivity in aortic rings (conductance artery) and isolated-perfused tail arteries (resistance artery) from control (fed with Labina®) and post-weaning protein malnutrition rats (offspring that received a diet with low protein content for three months). Systolic and diastolic blood pressure and heart rate increased in the post-weaning protein malnutrition rats. In the aortic rings, reactivity to phenylephrine (10−10–3.10−4 M) was similar in both groups. Endothelium removal or L-NAME (10−4 M) incubation increased the response to phenylephrine, but the L-NAME effect was greater in the aortic rings from the post-weaning protein malnutrition rats. The protein expression of the endothelial nitric oxide isoform increased in the aortic rings from the post-weaning protein malnutrition rats. Incubation with apocynin (0.3 mM) reduced the response to phenylephrine in both groups, but this effect was higher in the post-weaning protein malnutrition rats, suggesting an increase of superoxide anion release. In the tail artery of the post-weaning protein malnutrition rats, the vascular reactivity to phenylephrine (0.001–300 µg) and the relaxation to acetylcholine (10−10–10−3 M) were increased. Post-weaning protein malnutrition increases blood pressure and induces vascular dysfunction. Although the vascular reactivity in the aortic rings did not change, an increase in superoxide anion and nitric oxide was observed in the post-weaning protein malnutrition rats. However, in the resistance arteries, the increased vascular reactivity may be a potential mechanism underlying the increased blood pressure observed in this model. PMID:22529948

  7. Long-Term Oral Feeding of Lutein-Fortified Milk Increases Voluntary Running Distance in Rats

    OpenAIRE

    Matsumoto, Megumi; Hagio, Masahito; Inoue, Ryo; Mitani, Tomohiro; Yajima, Masako; Hara, Hiroshi; Yajima, Takaji

    2014-01-01

    To evaluate the effects of lutein-fortified milk administration on running exercise, a voluntary wheel-running model was performed in rats. Four-week-old F344 rats were administered test milk (10 mL/kg) daily following a 4-h fasting period, and their running distances were measured each day for a 9-week period. Total weekly running distance significantly increased from the sixth week until the end of the test period in lutein-supplemented rats (lutein-fortified milk administered) compared wit...

  8. Intrauterine Growth Restriction Increases TNFα and Activates the Unfolded Protein Response in Male Rat Pups

    Directory of Open Access Journals (Sweden)

    Emily S. Riddle

    2014-01-01

    Full Text Available Intrauterine growth restriction (IUGR programs adult disease, including obesity and insulin resistance. Our group previously demonstrated that IUGR dysregulates adipose deposition in male, but not female, weanling rats. Dysregulated adipose deposition is often accompanied by the release of proinflammatory signaling molecules, such as tumor necrosis factor alpha (TNFα. TNFα contributes to adipocyte inflammation and impaired insulin signaling. TNFα has also been implicated in the activation of the unfolded protein response (UPR, which impairs insulin signaling. We hypothesized that, in male rat pups, IUGR would increase TNFα, TNFR1, and components of the UPR (Hspa5, ATF6, p-eIF2α, and Ddit3 prior to the onset of obesity. We further hypothesized that impaired glucose tolerance would occur after the onset of adipose dysfunction in male IUGR rats. To test this hypothesis, we used a well-characterized rat model of uteroplacental insufficiency-induced IUGR. Our primary findings are that, in male rats, IUGR (1 increased circulating and adipose TNFα, (2 increased mRNA levels of UPR components as well as p-eIF2a, and (3 impaired glucose tolerance after observed TNFα increased and after UPR activation. We speculate that programmed dysregulation of TNFα and UPR contributed to the development of glucose intolerance in male IUGR rats.

  9. Functional characterization and expression of thalamic GABA(B) receptors in a rodent model of Parkinson's disease

    NARCIS (Netherlands)

    de Groote, C; Wullner, U; Loschmann, PA; Luiten, PGM; Klockgether, T

    1999-01-01

    Increased GABAergic neurotransmission of the basal ganglia output nuclei projecting to the motor thalamus is thought to contribute to the pathophysiology of Parkinson's disease. We investigated the functional role of thalamic GABA(B) receptors in a rodent model of Parkinson's disease. First, we

  10. Long-term oral feeding of lutein-fortified milk increases voluntary running distance in rats.

    Directory of Open Access Journals (Sweden)

    Megumi Matsumoto

    Full Text Available To evaluate the effects of lutein-fortified milk administration on running exercise, a voluntary wheel-running model was performed in rats. Four-week-old F344 rats were administered test milk (10 mL/kg daily following a 4-h fasting period, and their running distances were measured each day for a 9-week period. Total weekly running distance significantly increased from the sixth week until the end of the test period in lutein-supplemented rats (lutein-fortified milk administered compared with control rats (vehicle administered. This increase was not apparent in rats administered lutein alone. In the lutein-fortified-milk exercise group compared with the sedentary control group, carnitine palitroyltransferase 1 (CPT-1, total AMP-activated protein kinase (tAMPK, and phosphorylated AMP-activated protein kinase (pAMPK contents were significantly increased in the gastrocnemius muscle, with a concomitant decrease in triglyceride and total cholesterol levels in the blood and liver. Furthermore, the lutein level in blood of lutein-administered rats significantly decreased with exercise. These results suggest that lutein-fortified milk may enhance the effect of exercise by effective utilization of lipids when combined with voluntary running.

  11. Long-term oral feeding of lutein-fortified milk increases voluntary running distance in rats.

    Science.gov (United States)

    Matsumoto, Megumi; Hagio, Masahito; Inoue, Ryo; Mitani, Tomohiro; Yajima, Masako; Hara, Hiroshi; Yajima, Takaji

    2014-01-01

    To evaluate the effects of lutein-fortified milk administration on running exercise, a voluntary wheel-running model was performed in rats. Four-week-old F344 rats were administered test milk (10 mL/kg) daily following a 4-h fasting period, and their running distances were measured each day for a 9-week period. Total weekly running distance significantly increased from the sixth week until the end of the test period in lutein-supplemented rats (lutein-fortified milk administered) compared with control rats (vehicle administered). This increase was not apparent in rats administered lutein alone. In the lutein-fortified-milk exercise group compared with the sedentary control group, carnitine palitroyltransferase 1 (CPT-1), total AMP-activated protein kinase (tAMPK), and phosphorylated AMP-activated protein kinase (pAMPK) contents were significantly increased in the gastrocnemius muscle, with a concomitant decrease in triglyceride and total cholesterol levels in the blood and liver. Furthermore, the lutein level in blood of lutein-administered rats significantly decreased with exercise. These results suggest that lutein-fortified milk may enhance the effect of exercise by effective utilization of lipids when combined with voluntary running.

  12. Long-term outcome of thalamic deep brain stimulation in two patients with Tourette syndrome.

    Science.gov (United States)

    Ackermans, Linda; Duits, Annelien; Temel, Yasin; Winogrodzka, Ania; Peeters, Frenk; Beuls, Emile A M; Visser-Vandewalle, Veerle

    2010-10-01

    Thalamic deep brain stimulation for intractable Tourette Syndrome was introduced in 1999 by Vandewalle et al. In this follow-up study, the authors report on the long-term (6 and 10 years) outcome in terms of tic reduction, cognition, mood and side effects of medial thalamic deep brain stimulation in two previously described Tourette patients. The authors compared the outcome of two patients at 6 and 10 years after surgery with their preoperative status and after 8 months and 5 years of treatment, respectively. Standardised video recordings were scored by three independent investigators. Both patients underwent (neuro)psychological assessment at all time points of follow-up. Tic improvement observed at 5 years in patient 1 (90.1%) was maintained at 10 years (92.6%). In patient 2, the tic improvement at 8 months (82%) was slightly decreased at 6 years (78%). During follow-up, case 1 revealed no changes in cognition, but case 2 showed a decrease in verbal fluency and learning which was in line with his subjective reports. Case 2 showed a slight decrease in depression, but overall psychopathology was still high at 6 years after surgery with an increase in anger and aggression together with difficulties in social adaptation. Besides temporary hardware-related complications, no distressing adverse effects were observed. Bilateral thalamic stimulation may provide sustained tic benefit after at least 6 years, but to maximise overall outcome, attention is needed for postoperative psychosocial adaptation, already prior to surgery.

  13. Ovariectomy increases the participation of hyperpolarizing mechanisms in the relaxation of rat aorta.

    Directory of Open Access Journals (Sweden)

    Ana Sagredo

    Full Text Available This study examines the downstream NO release pathway and the contribution of different vasodilator mediators in the acetylcholine-induced response in rat aorta 5-months after the loss of ovarian function. Aortic segments from ovariectomized and control female Sprague-Dawley rats were used to measure: the levels of superoxide anion, the superoxide dismutases (SODs activity, the cGMP formation, the cGMP-dependent protein kinase (PKG activity and the involvement of NO, cGMP, hydrogen peroxide and hyperpolarizing mechanisms in the ACh-induced relaxation. The results showed that ovariectomy did not alter ACh-induced relaxation; incubation with L-NAME, a NO synthase inhibitor, decreased the ACh-induced response to a lesser extent in aorta from ovariectomized than from control rats, while ODQ, a guanylate cyclase inhibitor, decreased that response to a similar extent; the blockade of hyperpolarizing mechanisms, by precontracting arteries with KCl, decreased the ACh-induced response to a greater extent in aortas from ovariectomized than those from control rats; catalase, that decomposes hydrogen peroxide, decreased the ACh-induced response only in aorta from ovariectomized rats. In addition, ovariectomy increased superoxide anion levels and SODs activity, decreased cGMP formation and increased PKG activity. Despite the increased superoxide anion and decreased cGMP in aorta from ovariectomized rats, ACh-induced relaxation is maintained by the existence of hyperpolarizing mechanisms in which hydrogen peroxide participates. The greater contribution of hydrogen peroxide in ACh-induced relaxation is due to increased SOD activity, in an attempt to compensate for increased superoxide anion formation. Increased PKG activity could represent a redundant mechanism to ensure vasodilator function in the aorta of ovariectomized rats.

  14. Variable Action Potential Backpropagation during Tonic Firing and Low-Threshold Spike Bursts in Thalamocortical But Not Thalamic Reticular Nucleus Neurons.

    Science.gov (United States)

    Connelly, William M; Crunelli, Vincenzo; Errington, Adam C

    2017-05-24

    Backpropagating action potentials (bAPs) are indispensable in dendritic signaling. Conflicting Ca 2+ -imaging data and an absence of dendritic recording data means that the extent of backpropagation in thalamocortical (TC) and thalamic reticular nucleus (TRN) neurons remains unknown. Because TRN neurons signal electrically through dendrodendritic gap junctions and possibly via chemical dendritic GABAergic synapses, as well as classical axonal GABA release, this lack of knowledge is problematic. To address this issue, we made two-photon targeted patch-clamp recordings from rat TC and TRN neuron dendrites to measure bAPs directly. These recordings reveal that "tonic"' and low-threshold-spike (LTS) "burst" APs in both cell types are always recorded first at the soma before backpropagating into the dendrites while undergoing substantial distance-dependent dendritic amplitude attenuation. In TC neurons, bAP attenuation strength varies according to firing mode. During LTS bursts, somatic AP half-width increases progressively with increasing spike number, allowing late-burst spikes to propagate more efficiently into the dendritic tree compared with spikes occurring at burst onset. Tonic spikes have similar somatic half-widths to late burst spikes and undergo similar dendritic attenuation. In contrast, in TRN neurons, AP properties are unchanged between LTS bursts and tonic firing and, as a result, distance-dependent dendritic attenuation remains consistent across different firing modes. Therefore, unlike LTS-associated global electrical and calcium signals, the spatial influence of bAP signaling in TC and TRN neurons is more restricted, with potentially important behavioral-state-dependent consequences for synaptic integration and plasticity in thalamic neurons. SIGNIFICANCE STATEMENT In most neurons, action potentials (APs) initiate in the axosomatic region and propagate into the dendritic tree to provide a retrograde signal that conveys information about the level of

  15. Increased DNA damage in blood cells of rat treated with lead as assessed by comet assay

    Directory of Open Access Journals (Sweden)

    Mohammad Arif

    2008-06-01

    Full Text Available A growing body of evidence suggests that oxidative stress is the key player in the pathogenesis of lead-induced toxicity. The present study investigated lead induced oxidative DNA damage, if any in rat blood cells by alkaline comet assay. Lead was administered intraperitoneally to rats at doses of 25, 50 and 100 mg/kg body weight for 5 days consecutively. Blood collected on day six from sacrificed lead-treated rats was used to assess the extent of DNA damage by comet assay which entailed measurement of comet length, olive tail moment, tail DNA (% and tail length. The results showed that treatment with lead significantly increased DNA damage in a dose-dependent manner. Therefore, our data suggests that lead treatment is associated with oxidative stress-induced DNA damage in rat blood cells which could be used as an early bio-marker of lead-toxicity.

  16. Cinnabar-Induced Subchronic Renal Injury Is Associated with Increased Apoptosis in Rats

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2015-01-01

    Full Text Available The aim of this study was to explore the role of apoptosis in cinnabar-induced renal injury in rats. To test this role, rats were dosed orally with cinnabar (1 g/kg/day for 8 weeks or 12 weeks, and the control rats were treated with 5% carboxymethylcellulose solution. Levels of urinary mercury (UHg, renal mercury (RHg, serum creatinine (SCr, and urine kidney injury molecule 1 (KIM-1 were assessed, and renal pathology was analyzed. Apoptotic cells were identified and the apoptotic index was calculated. A rat antibody array was used to analyze expression of cytokines associated with apoptosis. Results from these analyses showed that UHg, RHg, and urine KIM-1, but not SCr, levels were significantly increased in cinnabar-treated rats. Renal pathological changes in cinnabar-treated rats included vacuolization of tubular cells, formation of protein casts, infiltration of inflammatory cells, and increase in the number of apoptotic tubular cells. In comparison to the control group, expression of FasL, Fas, TNF-α, TRAIL, activin A, and adiponectin was upregulated in the cinnabar-treated group. Collectively, our results suggest that prolonged use of cinnabar results in kidney damage due to accumulation of mercury and that the underlying mechanism involves apoptosis of tubular cells via a death receptor-mediated pathway.

  17. Increased renal adrenomedullin expression in rats with ureteral obstruction

    DEFF Research Database (Denmark)

    Nørregaard, Rikke; Bødker, Tina; Jensen, Boye L

    2009-01-01

    Ureteral obstruction is characterized by decreased renal blood flow that is associated with hypoxia within the kidney. Adrenomedullin (AM) is a peptide hormone with tissue-protective capacity that is stimulated through hypoxia. We tested the hypothesis that ureteral obstruction stimulates...... increases in response to ureteral obstruction in agreement with expected oxygen gradients. Hypoxia acting through HIF-1alpha accumulation may be an important pathway for the renal response to ureteral obstruction....

  18. Chronic Co-species Housing Mice and Rats Increased the Competitiveness of Male Mice.

    Science.gov (United States)

    Liu, Ying-Juan; Li, Lai-Fu; Zhang, Yao-Hua; Guo, Hui-Fen; Xia, Min; Zhang, Meng-Wei; Jing, Xiao-Yuan; Zhang, Jing-Hua; Zhang, Jian-Xu

    2017-03-01

    Rats are predators of mice in nature. Nevertheless, it is a common practice to house mice and rats in a same room in some laboratories. In this study, we investigated the behavioral and physiological responsively of mice in long-term co-species housing conditions. Twenty-four male mice were randomly assigned to their original raising room (control) or a rat room (co-species-housed) for more than 6 weeks. In the open-field and light-dark box tests, the behaviors of the co-species-housed mice and controls were not different. In a 2-choice test of paired urine odors [rabbit urine (as a novel odor) vs. rat urine, cat urine (as a natural predator-scent) vs. rabbit urine, and cat urine vs. rat urine], the co-species-housed mice were more ready to investigate the rat urine odor compared with the controls and may have adapted to it. In an encounter test, the rat-room-exposed mice exhibited increased aggression levels, and their urines were more attractive to females. Correspondingly, the levels of major urinary proteins were increased in the co-species-housed mouse urine, along with some volatile pheromones. The serum testosterone levels were also enhanced in the co-species-housed mice, whereas the corticosterone levels were not different. The norepinephrine, dopamine, and 5-HT levels in the right hippocampus and striatum were not different between the 2. Our findings indicate that chronic co-species housing results in adaptation in male mice; furthermore, it appears that long-term rat-odor stimuli enhance the competitiveness of mice, which suggests that appropriate predator-odor stimuli may be important to the fitness of prey animals. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Seizures and Sleep in the Thalamus: Focal Limbic Seizures Show Divergent Activity Patterns in Different Thalamic Nuclei.

    Science.gov (United States)

    Feng, Li; Motelow, Joshua E; Ma, Chanthia; Biche, William; McCafferty, Cian; Smith, Nicholas; Liu, Mengran; Zhan, Qiong; Jia, Ruonan; Xiao, Bo; Duque, Alvaro; Blumenfeld, Hal

    2017-11-22

    The thalamus plays diverse roles in cortical-subcortical brain activity patterns. Recent work suggests that focal temporal lobe seizures depress subcortical arousal systems and convert cortical activity into a pattern resembling slow-wave sleep. The potential simultaneous and paradoxical role of the thalamus in both limbic seizure propagation, and in sleep-like cortical rhythms has not been investigated. We recorded neuronal activity from the central lateral (CL), anterior (ANT), and ventral posteromedial (VPM) nuclei of the thalamus in an established female rat model of focal limbic seizures. We found that population firing of neurons in CL decreased during seizures while the cortex exhibited slow waves. In contrast, ANT showed a trend toward increased neuronal firing compatible with polyspike seizure discharges seen in the hippocampus. Meanwhile, VPM exhibited a remarkable increase in sleep spindles during focal seizures. Single-unit juxtacellular recordings from CL demonstrated reduced overall firing rates, but a switch in firing pattern from single spikes to burst firing during seizures. These findings suggest that different thalamic nuclei play very different roles in focal limbic seizures. While limbic nuclei, such as ANT, appear to participate directly in seizure propagation, arousal nuclei, such as CL, may contribute to depressed cortical function, whereas sleep spindles in relay nuclei, such as VPM, may interrupt thalamocortical information flow. These combined effects could be critical for controlling both seizure severity and impairment of consciousness. Further understanding of differential effects of seizures on different thalamocortical networks may lead to improved treatments directly targeting these modes of impaired function. SIGNIFICANCE STATEMENT Temporal lobe epilepsy has a major negative impact on quality of life. Previous work suggests that the thalamus plays a critical role in thalamocortical network modulation and subcortical arousal

  20. 17β Estradiol increases resilience and improves hippocampal synaptic function in helpless ovariectomized rats

    Science.gov (United States)

    Bredemann, Teruko M.; McMahon, Lori L.

    2014-01-01

    Summary Memory impairment is the most commonly reported cognitive symptom associated with major depressive disorder. Decreased hippocampal volume and neurogenesis in depression link hippocampal dysfunction with deficits in memory. Stress decreases hippocampal dendritic spine density and long-term potentiation (LTP) at glutamate synapses, a cellular correlate of learning and memory. However, elevated plasma levels of 17β estradiol (E2) during proestrus increase hippocampal structure and function, directly opposing the negative consequences of stress. In women, significant fluctuations in ovarian hormones likely increase vulnerability of hippocampal circuits to stress, potentially contributing to the greater incidence of depression compared to men. Using the learned helplessness model of depression and ovariectomized female rats, we investigated whether acquisition of helplessness and hippocampal synaptic dysfunction is differentially impacted by the presence or absence of plasma E2. We find that inescapable shock induces a greater incidence of helplessness in vehicle- versus E2-treated OVX rats. In the vehicle-treated group, LTP was absent at CA3-CA1 synapses in slices only from helpless rats, and CA1 spine density was decreased compared to resilient rats. In contrast, significant LTP was observed in slices from E2-treated helpless rats; importantly, spine density was not different between E2-treated helpless and resilient rats, dissociating spine density from the LTP magnitude. We also find that E2 replacement can reverse previously established helpless behavior. Thus, our results show that E2 replacement in OVX rats increases resilience and improves hippocampal plasticity, suggesting that E2 therapy may increase resilience to stress and preserve hippocampal function in women experiencing large fluctuations in plasma estrogen levels. PMID:24636504

  1. Maternal Docosahexaenoic Acid Increases Adiponectin and Normalizes IUGR-Induced Changes in Rat Adipose Deposition

    Directory of Open Access Journals (Sweden)

    Heidi N. Bagley

    2013-01-01

    Full Text Available Intrauterine growth restriction (IUGR predisposes to obesity and adipose dysfunction. We previously demonstrated IUGR-induced increased visceral adipose deposition and dysregulated expression of peroxisome proliferator activated receptor-γ2 (PPARγ2 in male adolescent rats, prior to the onset of obesity. In other studies, activation of PPARγ increases subcutaneous adiponectin expression and normalizes visceral adipose deposition. We hypothesized that maternal supplementation with docosahexaenoic acid (DHA, a PPARγ agonist, would normalize IUGR adipose deposition in association with increased PPARγ, adiponectin, and adiponectin receptor expression in subcutaneous adipose. To test these hypotheses, we used a well-characterized model of uteroplacental-insufficiency-(UPI- induced IUGR in the rat with maternal DHA supplementation. Our primary findings were that maternal DHA supplementation during rat pregnancy and lactation (1 normalizes IUGR-induced changes in adipose deposition and visceral PPARγ expression in male rats and (2 increases serum adiponectin, as well as adipose expression of adiponectin and adiponectin receptors in former IUGR rats. Our novel findings suggest that maternal DHA supplementation may normalize adipose dysfunction and promote adiponectin-induced improvements in metabolic function in IUGR.

  2. Maternal docosahexaenoic acid increases adiponectin and normalizes IUGR-induced changes in rat adipose deposition.

    Science.gov (United States)

    Bagley, Heidi N; Wang, Yan; Campbell, Michael S; Yu, Xing; Lane, Robert H; Joss-Moore, Lisa A

    2013-01-01

    Intrauterine growth restriction (IUGR) predisposes to obesity and adipose dysfunction. We previously demonstrated IUGR-induced increased visceral adipose deposition and dysregulated expression of peroxisome proliferator activated receptor- γ 2 (PPAR γ 2) in male adolescent rats, prior to the onset of obesity. In other studies, activation of PPAR γ increases subcutaneous adiponectin expression and normalizes visceral adipose deposition. We hypothesized that maternal supplementation with docosahexaenoic acid (DHA), a PPAR γ agonist, would normalize IUGR adipose deposition in association with increased PPAR γ , adiponectin, and adiponectin receptor expression in subcutaneous adipose. To test these hypotheses, we used a well-characterized model of uteroplacental-insufficiency-(UPI-) induced IUGR in the rat with maternal DHA supplementation. Our primary findings were that maternal DHA supplementation during rat pregnancy and lactation (1) normalizes IUGR-induced changes in adipose deposition and visceral PPAR γ expression in male rats and (2) increases serum adiponectin, as well as adipose expression of adiponectin and adiponectin receptors in former IUGR rats. Our novel findings suggest that maternal DHA supplementation may normalize adipose dysfunction and promote adiponectin-induced improvements in metabolic function in IUGR.

  3. Thalamic involvement in the regulation of alpha EEG activity in psychiatric patients

    International Nuclear Information System (INIS)

    Shirazi, S.P.; Pakula, J.; Young, I.J.; Crayton, J.W.; Konopka, L.M.; Rybak, M.

    2002-01-01

    Aim: The thalamus is considered to be an important sub-cortical system involved in modulation of cortical activities. A relationship between thalamic activity and surface EEG was recently reported. In this study we evaluated a group of patients with psychiatric disorders who presented with asymmetric perfusion of the thalamus based on brain SPECT HMPAO studies. We predicted that asymmetrical activity of the thalamus would have asymmetrically distributed surface qEEG activity patterns. Materials and Methods: Twenty-three male psychiatric patients (age 54±14) with a primary diagnosis of depression and co-morbid substance abuse (83%) were studied with qEEG and HMPAO brain SPECT. The HMPAO ligand was administered while the EEG activity was being recorded. The SPECT analysis was conducted by means of ROI and SPM. ROI regions were determined based on the Talairach atlas coordinate system. ROI locations were verified by the automated utility, Talairach Demon. QEEG data was analyzed by a standardized protocol involving the NxLink database. Correlations between SPECT findings and qEEG absolute power were calculated. Results: Patients were divided into two groups based on thalamic perfusion patterns. Group 1 (Gr 1) had decreased perfusion to the right thalamus whereas Group 2 (Gr 2) had decreased perfusion to the left thalamus. SPM comparison of the patient groups to normal control subjects indicated significant findings. Comparison of Gr 1 to controls showed increased activity in the left temporal lobe and vermis. Decreased activity was observed in the left and right medial frontal lobes (right Brodmann 9;left Brodmann 6) as well as the left (Brodmann 30) and right (Brodmann 24) cingulate. Gr 2 comparison showed increased activity in the right middle frontal gyrus (Brodmann 10) and left inferior parietal lobe. Decreased activity was found in the left inferior frontal lobe (Brodmann 47). A positive correlation between alpha power and thalamic perfusion was identified in Gr

  4. Moderate high fat diet increases sucrose self-administration in young rats.

    Science.gov (United States)

    Figlewicz, Dianne P; Jay, Jennifer L; Acheson, Molly A; Magrisso, Irwin J; West, Constance H; Zavosh, Aryana; Benoit, Stephen C; Davis, Jon F

    2013-02-01

    We have previously reported that a moderately high fat diet increases motivation for sucrose in adult rats. In this study, we tested the motivational, neurochemical, and metabolic effects of the high fat diet in male rats transitioning through puberty, during 5-8 weeks of age. We observed that the high fat diet increased motivated responding for sucrose, which was independent of either metabolic changes or changes in catecholamine neurotransmitter metabolites in the nucleus accumbens. However, AGRP mRNA levels in the hypothalamus were significantly elevated. We demonstrated that increased activation of AGRP neurons is associated with motivated behavior, and that exogenous (third cerebroventricular) AGRP administration resulted in significantly increased motivation for sucrose. These observations suggest that increased expression and activity of AGRP in the medial hypothalamus may underlie the increased responding for sucrose caused by the high fat diet intervention. Finally, we compared motivation for sucrose in pubertal vs. adult rats and observed increased motivation for sucrose in the pubertal rats, which is consistent with previous reports that young animals and humans have an increased preference for sweet taste, compared with adults. Together, our studies suggest that background diet plays a strong modulatory role in motivation for sweet taste in adolescent animals. Published by Elsevier Ltd.

  5. Resistance of essential fatty acid-deficient rats to endotoxin-induced increases in vascular permeability

    International Nuclear Information System (INIS)

    Li, E.J.; Cook, J.A.; Spicer, K.M.; Wise, W.C.; Rokach, J.; Halushka, P.V.

    1990-01-01

    Resistance to endotoxin in essential fatty acid-deficient (EFAD) rats is associated with reduced synthesis of certain arachidonic acid metabolites. It was hypothesized that EFAD rats would manifest decreased vascular permeability changes during endotoxemia as a consequence of reduced arachidonic acid metabolism. To test this hypothesis, changes in hematocrit (HCT) and mesenteric localization rate of technetium-labeled human serum albumin (99mTc-HSA) and red blood cells (99mTc-RBC) were assessed in EFAD and normal rats using gamma-camera imaging. Thirty minutes after Salmonella enteritidis endotoxin, EFAD rats exhibited less hemoconcentration as determined by % HCT than normal rats. Endotoxin caused a less severe change in permeability index in the splanchnic region in EFAD rats than in normal rats (1.2 +/- 0.6 x 10(-3)min-1 vs. 4.9 +/- 1.7 x 10(-3)min-1 respectively, P less than 0.05). In contrast to 99mTc-HSA, mesenteric localization of 99mTc-RBC was not changed by endotoxin in control or EFAD rats. Supplementation with ethyl-arachidonic acid did not enhance susceptibility of EFAD rats to endotoxin-induced splanchnic permeability to 99mTc-HSA. Leukotrienes have been implicated as mediators of increased vascular permeability in endotoxin shock. Since LTC3 formation has been reported to be increased in EFA deficiency, we hypothesized that LTC3 may be less potent than LTC4. Thus the effect of LTC3 on mean arterial pressure and permeability was compared to LTC4 in normal rats. LTC3-induced increases in peak mean arterial pressure were less than LTC4 at 10 micrograms/kg (39 +/- 5 mm Hg vs. 58 +/- 4 mm Hg respectively, P less than 0.05) and at 20 micrograms/kg (56 +/- 4 mm Hg vs. 75 +/- 2 mm Hg respectively, P less than 0.05). LY171883 (30 mg/kg), an LTD4/E4 receptor antagonist, attenuated the pressor effect of LTC4, LTD4, and LTC3

  6. Apelin-13 increased food intake with serum ghrelin and leptin levels in male rats.

    Science.gov (United States)

    Saral, S; Alkanat, M; Sumer, A; Canpolat, S

    2018-01-01

    In this study, we aimed to explain the role of apelin-13 on body weight, food and water intake with serum leptin, ghrelin, neuropeptid Y (NPY) and peptid YY (PYY) levels in male rat. Thirty-two Sprague-Dawley male rats were used for the study. The rats were injected SP (0.9 %) intraperitoneally (i.p) in the control group and 30 (AP30), 100 (AP100) and 300 (AP300) µg/kg apelin-13 in the study groups, respectively, 10 min before the transition to dark period, for 10 days. During the experimental period, with light and dark periods of food and water intake, body weights were recorded in rats. Rats were euthanized and serum samples were obtained. In serum samples leptin, ghrelin, NPY and PYY levels were measured with specific ELISA kit. Apelin-13 was increased body weights in all three (AP30, AP100 and AP300) groups compared with the control group. AP100 and AP300 groups had increased food intake in the dark and the cumulative period, but in the light period food intake values were not significantly increased (p > 0.05). As for the value of water intake, compared with the control group, all dose of apelin-13 increased water intake during the dark and the cumulative period. There was no significant change in water intake in the light period. On the other hand, compared with the control group, serum leptin levels were found to increase in the groups administered 100 and 300 µg/kg of apelin-13 (p Ghrelin levels were found high in all groups treated with apelin-13. Serum levels of NPY decreased only in the 300 µg/kg apelin-13 treated group (p 0.05). Apelin-13 increases body weight in rats as well as food and water intake (dark and cumulative period). Additionally, ghrelin can mediate the orexigenic effect of apelin-13 in the regulation of food intake (Fig. 4, Ref. 37).

  7. Recall deficits in stroke patients with thalamic lesions covary with damage to the parvocellular mediodorsal nucleus of the thalamus.

    Science.gov (United States)

    Pergola, Giulio; Güntürkün, Onur; Koch, Benno; Schwarz, Michael; Daum, Irene; Suchan, Boris

    2012-08-01

    The functional role of the mediodorsal thalamic nucleus (MD) and its cortical network in memory processes is discussed controversially. While Aggleton and Brown (1999) suggested a role for recognition and not recall, Van der Werf et al. (2003) suggested that this nucleus is functionally related to executive function and strategic retrieval, based on its connections to the prefrontal cortices (PFC). The present study used a lesion approach including patients with focal thalamic lesions to examine the functions of the MD, the intralaminar nuclei and the midline nuclei in memory processing. A newly designed pair association task was used, which allowed the assessment of recognition and cued recall performance. Volume loss in thalamic nuclei was estimated as a predictor for alterations in memory performance. Patients performed poorer than healthy controls on recognition accuracy and cued recall. Furthermore, patients responded slower than controls specifically on recognition trials followed by successful cued recall of the paired associate. Reduced recall of picture pairs and increased response times during recognition followed by cued recall covaried with the volume loss in the parvocellular MD. This pattern suggests a role of this thalamic region in recall and thus recollection, which does not fit the framework proposed by Aggleton and Brown (1999). The functional specialization of the parvocellular MD accords with its connectivity to the dorsolateral PFC, highlighting the role of this thalamocortical network in explicit memory (Van der Werf et al., 2003). Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Maternal Deprivation of Lewis Rat Pups Increases the Severity of Experi-mental Periodontitis in Adulthood.

    Science.gov (United States)

    Breivik, Torbjørn; Gundersen, Yngvar; Murison, Robert; Turner, Jonathan D; Muller, Claude P; Gjermo, Per; Opstad, Kristian

    2015-01-01

    Early life adverse events may influence susceptibility/resistance to chronic inflammatory diseases later in life by permanently dysregulating brain-controlled immune-regulatory systems. We have investigated the impact of infant-mother separation during early postnatal life on the severity of experimental periodontitis, as well as systemic stress and immune responses, in adulthood. Pups of periodontitis resistant Lewis rats were separated from their mothers for 3 h daily during postnatal days 2-14 (termed maternal deprivation; MD), separated for 15 min daily during the same time period (termed handling; HD), or left undisturbed. As adults, their behaviour was tested in a novel stressful situation, and ligature-induced periodontitis applied for 21 days. Two h before sacrifice all rats were exposed to a gram-negative bacterial lipopolysaccharide (LPS) challenge to induce a robust immune and stress response. Compared to undisturbed controls, MD rats developed significantly more periodontal bone loss as adults, whereas HD rats showed a tendency to less disease. MD and HD rats exhibited depression-like behaviour in a novel open field test, while MD rats showed higher glucocorticoid receptor (Gr) expression in the hippocampus, and HD rats had altered methylation of genes involved in the expression of hippocampal Gr. LPS provoked a significantly lower increase in circulating levels of the cytokine TGF-1β in MD and HD rats, but there were no significant differences in levels of the stress hormone corticosterone. Stressful environmental exposures in very early life may alter immune responses in a manner that influences susceptibility/resistance to periodontitis.

  9. Global suppression of electrocortical activity in unilateral perinatal thalamic stroke.

    LENUS (Irish Health Repository)

    Kharoshankaya, Liudmila

    2014-07-01

    We present an unusual case of persistent generalized electroencephalography (EEG) suppression and right-sided clonic seizures in a male infant born at 40(+2) weeks\\' gestation, birthweight 3240g, with an isolated unilateral thalamic stroke. The EEG at 13 hours after birth showed a generalized very low amplitude background pattern, which progressed to frequent electrographic seizures over the left hemisphere. The interictal background EEG pattern remained grossly abnormal over the next 48 hours, showing very low background amplitudes (<10μV). Magnetic resonance imaging revealed an isolated acute left-sided thalamic infarction. This is the first description of severe global EEG suppression caused by an isolated unilateral thalamic stroke and supports the role of the thalamus as the control centre for cortical electrical activity.

  10. Increased methylglyoxal formation with upregulation of renin angiotensin system in fructose fed Sprague Dawley rats.

    Directory of Open Access Journals (Sweden)

    Indu Dhar

    Full Text Available The current epidemic of obesity and type 2 diabetes is attributed to a high carbohydrate diet, containing mainly high fructose corn syrup and sucrose. More than two thirds of diabetic patients have hypertension. Methylglyoxal is a highly reactive dicarbonyl generated during glucose and fructose metabolism, and a major precursor of advanced glycation end products (AGEs. Plasma methylglyoxal levels are increased in hypertensive rats and diabetic patients. Our aim was to examine the levels of methylglyoxal, mediators of the renin angiotensin system and blood pressure in male Sprague-Dawley rats treated with a high fructose diet (60% of total calories for 4 months. The thoracic aorta and kidney were used for molecular studies, along with cultured vascular smooth muscle cells (VSMCs. HPLC, Western blotting and Q-PCR were used to measure methylglyoxal and reduced glutathione (GSH, proteins and mRNA, respectively. Fructose treated rats developed a significant increase in blood pressure. Methylglyoxal level and protein and mRNA for angiotensin II, AT1 receptor, adrenergic α1D receptor and renin were significantly increased, whereas GSH levels were decreased, in the aorta and/or kidney of fructose fed rats. The protein expression of the receptor for AGEs (RAGE and NF-κB were also significantly increased in the aorta of fructose fed rats. MG treated VSMCs showed increased protein for angiotensin II, AT1 receptor, and α1D receptor. The effects of methylglyoxal were attenuated by metformin, a methylglyoxal scavenger and AGEs inhibitor. In conclusion, we report a strong association between elevated levels of methylglyoxal, RAGE, NF-κB, mediators of the renin angiotensin system and blood pressure in high fructose diet fed rats.

  11. Increased methylglyoxal formation with upregulation of renin angiotensin system in fructose fed Sprague Dawley rats.

    Science.gov (United States)

    Dhar, Indu; Dhar, Arti; Wu, Lingyun; Desai, Kaushik M

    2013-01-01

    The current epidemic of obesity and type 2 diabetes is attributed to a high carbohydrate diet, containing mainly high fructose corn syrup and sucrose. More than two thirds of diabetic patients have hypertension. Methylglyoxal is a highly reactive dicarbonyl generated during glucose and fructose metabolism, and a major precursor of advanced glycation end products (AGEs). Plasma methylglyoxal levels are increased in hypertensive rats and diabetic patients. Our aim was to examine the levels of methylglyoxal, mediators of the renin angiotensin system and blood pressure in male Sprague-Dawley rats treated with a high fructose diet (60% of total calories) for 4 months. The thoracic aorta and kidney were used for molecular studies, along with cultured vascular smooth muscle cells (VSMCs). HPLC, Western blotting and Q-PCR were used to measure methylglyoxal and reduced glutathione (GSH), proteins and mRNA, respectively. Fructose treated rats developed a significant increase in blood pressure. Methylglyoxal level and protein and mRNA for angiotensin II, AT1 receptor, adrenergic α1D receptor and renin were significantly increased, whereas GSH levels were decreased, in the aorta and/or kidney of fructose fed rats. The protein expression of the receptor for AGEs (RAGE) and NF-κB were also significantly increased in the aorta of fructose fed rats. MG treated VSMCs showed increased protein for angiotensin II, AT1 receptor, and α1D receptor. The effects of methylglyoxal were attenuated by metformin, a methylglyoxal scavenger and AGEs inhibitor. In conclusion, we report a strong association between elevated levels of methylglyoxal, RAGE, NF-κB, mediators of the renin angiotensin system and blood pressure in high fructose diet fed rats.

  12. Intracellular postsynaptic cannabinoid receptors link thyrotropin-releasing hormone receptors to TRPC-like channels in thalamic paraventricular nucleus neurons.

    Science.gov (United States)

    Zhang, L; Kolaj, M; Renaud, L P

    2015-12-17

    In rat thalamic paraventricular nucleus of thalamus (PVT) neurons, activation of thyrotropin-releasing hormone (TRH) receptors enhances excitability via concurrent decrease in G protein-coupled inwardly-rectifying potassium (GIRK)-like and activation of transient receptor potential cation (TRPC)4/5-like cationic conductances. An exploration of intracellular signaling pathways revealed the TRH-induced current to be insensitive to phosphatidylinositol-specific phospholipase C (PI-PLC) inhibitors, but reduced by D609, an inhibitor of phosphatidylcholine-specific PLC (PC-PLC). A corresponding change in the I-V relationship implied suppression of the cationic component of the TRH-induced current. Diacylglycerol (DAG) is a product of the hydrolysis of PC. Studies focused on the isolated cationic component of the TRH-induced response revealed a reduction by RHC80267, an inhibitor of DAG lipase, the enzyme involved in the hydrolysis of DAG to the endocannabinoid 2-arachidonoylglycerol (2-AG). Further investigation revealed enhancement of the cationic component in the presence of either JZL184 or WWL70, inhibitors of enzymes involved in the hydrolysis of 2-AG. A decrease in the TRH-induced response was noted in the presence of rimonabant or SR144528, membrane permeable CB1 and CB2 receptor antagonists, respectively. A decrease in the TRH-induced current by intracellular, but not by bath application of the membrane impermeable peptide hemopressin, selective for CB1 receptors, suggests a postsynaptic intracellular localization of these receptors. The TRH-induced current was increased in the presence of arachidonyl-2'-chloroethylamide (ACEA) or JWH133, CB1 and CB2 receptor agonists, respectively. The PI3-kinase inhibitor LY294002, known to inhibit TRPC translocation, decreased the response to TRH. In addition, a TRH-induced enhancement of the low-threshold spike was prevented by both rimonabant, and SR144528. TRH had no influence on excitatory or inhibitory miniature

  13. Increased albumin permeation in eyes, aorta, and kidney of hypertensive rats fed galactose

    International Nuclear Information System (INIS)

    Tilton, R.G.; LaRose, L.; Chang, K.; Weigel, C.J.; Williamson, J.R.

    1986-01-01

    These experiments were undertaken to determine whether ingestion of galactose increases albumin permeation in the vasculature of hypertensive rats. 50% dextrin (control) or 50% galactose diets were fed to unilaterally nephrectomized, male Sprague-Dawley rats weighing 200 g. Hypertension (systolic pressure >175 mmHg) was induced by weekly IM injections of 25 mg/kg DOCA and 1% saline drinking water; 3 months later 125 I-albumin permeation was assessed in whole eyes, aorta and kidneys. 125 I-albumin permeation was significantly increased in all 3 tissues of hypertensive rats (n = 9) vs controls (n = 9): aorta (3.30 +/- 0.19 (SD) vs 2.87 +/- 0.14), eye (3.15 +/- 0.14 vs 2.59 +/- 0.11), and kidney (6.58 +/- 0.63 vs 3.85 +/- 0.50). Albumin permeation was increased still further in hypertensive rats fed the galactose diet (n = 8): aorta (3.75 +/- 0.38), eye (3.82 +/- 0.17), and kidney (10.74 +/- 3.13). Hypertension +/- galactose feeding had no effect on albumin permeation in lung, skin, or brain. These findings indicate that: (1) hypertension increases albumin permeation in vessels affected by diabetic vascular diseases, and 2) hypertension-induced increases in albumin permeation are increased still further by galactose ingestion, presumably mediated by imbalances in polyol/insitol metabolism (analogous to those induced by diabetes) independent of hyperglycemia and/or insulinopenia

  14. Response sensitivity of barrel neuron subpopulations to simulated thalamic input.

    Science.gov (United States)

    Pesavento, Michael J; Rittenhouse, Cynthia D; Pinto, David J

    2010-06-01

    Our goal is to examine the relationship between neuron- and network-level processing in the context of a well-studied cortical function, the processing of thalamic input by whisker-barrel circuits in rodent neocortex. Here we focus on neuron-level processing and investigate the responses of excitatory and inhibitory barrel neurons to simulated thalamic inputs applied using the dynamic clamp method in brain slices. Simulated inputs are modeled after real thalamic inputs recorded in vivo in response to brief whisker deflections. Our results suggest that inhibitory neurons require more input to reach firing threshold, but then fire earlier, with less variability, and respond to a broader range of inputs than do excitatory neurons. Differences in the responses of barrel neuron subtypes depend on their intrinsic membrane properties. Neurons with a low input resistance require more input to reach threshold but then fire earlier than neurons with a higher input resistance, regardless of the neuron's classification. Our results also suggest that the response properties of excitatory versus inhibitory barrel neurons are consistent with the response sensitivities of the ensemble barrel network. The short response latency of inhibitory neurons may serve to suppress ensemble barrel responses to asynchronous thalamic input. Correspondingly, whereas neurons acting as part of the barrel circuit in vivo are highly selective for temporally correlated thalamic input, excitatory barrel neurons acting alone in vitro are less so. These data suggest that network-level processing of thalamic input in barrel cortex depends on neuron-level processing of the same input by excitatory and inhibitory barrel neurons.

  15. Contractions but not AICAR increase FABPpm content in rat muscle sarcolemma

    DEFF Research Database (Denmark)

    Jeppesen, Jacob; Albers, Peter; Luiken, Joost J.

    2009-01-01

    FAT/CD36 and FABPpm protein expression, measured in lysates with western blotting, by either stimulus. AMPK thr172 and ERK1/2 thr202/204 phosphorylation were significantly increased with muscle contractions (P ...In the present study, it was investigated whether acute muscle contractions in rat skeletal muscle increased the protein content of FABPpm in the plasma membrane. Furthermore, the effect of AICAR stimulation on FAT/CD36 and FABPpm protein content in sarcolemma of rat skeletal muscle was evaluated....... METHODS: Male wistar rats (150 g) were anesthetized and either subjected to in situ electrically induced contractions (hindlimb muscles: 20 min, 10-20 V, 200 ms trains, 100 Hz) or stimulated with the pharmacological activator of AMPK, AICAR. To investigate changes in the content of FABPpm and FAT/CD36...

  16. File list: His.Neu.05.AllAg.Thalamic_Nuclei [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Thalamic_Nuclei hg19 Histone Neural Thalamic Nuclei SRX998288,SRX9...98287,SRX998286 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.05.AllAg.Thalamic_Nuclei.bed ...

  17. File list: ALL.Neu.10.AllAg.Thalamic_Nuclei [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Thalamic_Nuclei hg19 All antigens Neural Thalamic Nuclei SRX998288...,SRX998287,SRX998286 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.10.AllAg.Thalamic_Nuclei.bed ...

  18. File list: ALL.Neu.20.AllAg.Thalamic_Nuclei [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Thalamic_Nuclei hg19 All antigens Neural Thalamic Nuclei SRX998288...,SRX998287,SRX998286 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.20.AllAg.Thalamic_Nuclei.bed ...

  19. File list: His.Neu.10.AllAg.Thalamic_Nuclei [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.Thalamic_Nuclei hg19 Histone Neural Thalamic Nuclei SRX998288,SRX9...98287,SRX998286 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.10.AllAg.Thalamic_Nuclei.bed ...

  20. File list: ALL.Neu.05.AllAg.Thalamic_Nuclei [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Thalamic_Nuclei hg19 All antigens Neural Thalamic Nuclei SRX998288...,SRX998287,SRX998286 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.05.AllAg.Thalamic_Nuclei.bed ...

  1. File list: ALL.Neu.50.AllAg.Thalamic_Nuclei [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Thalamic_Nuclei hg19 All antigens Neural Thalamic Nuclei SRX998288...,SRX998287,SRX998286 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.50.AllAg.Thalamic_Nuclei.bed ...

  2. File list: His.Neu.50.AllAg.Thalamic_Nuclei [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.Thalamic_Nuclei hg19 Histone Neural Thalamic Nuclei SRX998288,SRX9...98287,SRX998286 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.50.AllAg.Thalamic_Nuclei.bed ...

  3. File list: His.Neu.20.AllAg.Thalamic_Nuclei [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Thalamic_Nuclei hg19 Histone Neural Thalamic Nuclei SRX998288,SRX9...98287,SRX998286 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.20.AllAg.Thalamic_Nuclei.bed ...

  4. Methylphenidate increases glucose uptake in the brain of young and adult rats.

    Science.gov (United States)

    Réus, Gislaine Z; Scaini, Giselli; Titus, Stephanie E; Furlanetto, Camila B; Wessler, Leticia B; Ferreira, Gabriela K; Gonçalves, Cinara L; Jeremias, Gabriela C; Quevedo, João; Streck, Emilio L

    2015-10-01

    Methylphenidate (MPH) is the drug of choice for pharmacological treatment of attention deficit hyperactivity disorder. Studies have pointed to the role of glucose and lactate as well as in the action mechanisms of drugs used to treat these neuropsychiatric diseases. Thus, this study aims to evaluate the effects of MPH administration on lactate release and glucose uptake in the brains of young and adult rats. MPH (1.0, 2.0 and 10.0mg/kg) or saline was injected in young and adult Wistar male rats either acutely (once) or chronically (once daily for 28 days). Then, the levels of lactate release and glucose uptake were assessed in the prefrontal cortex, hippocampus, striatum, cerebellum and cerebral cortex. Chronic MPH treatment increased glucose uptake at the dose of 10.0mg/kg in the prefrontal cortex and striatum, and at the dose of 2.0mg/kg in the cerebral cortex of young rats. In adult rats, an increase in glucose uptake was observed after acute administration of MPH at the dose of 10.0mg/kg in the prefrontal cortex. After chronic treatment, there was an increase in glucose uptake with MPH doses of 2.0 and 10.0mg/kg in the prefrontal cortex, and at an MPH dose of 2.0mg/kg in the striatum of adult rats. The lactate release did not change with either acute or chronic treatments in young or adult rats. These findings indicate that MPH increases glucose consumption in the brain, and that these changes are dependent on age and posology. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  5. Chronic ingestion of 2-deoxy-D-glucose induces cardiac vacuolization and increases mortality in rats

    International Nuclear Information System (INIS)

    Minor, Robin K.; Smith, Daniel L.; Sossong, Alex M.; Kaushik, Susmita; Poosala, Suresh; Spangler, Edward L.; Roth, George S.; Lane, Mark; Allison, David B.; Cabo, Rafael de; Ingram, Donald K.; Mattison, Julie A.

    2010-01-01

    Calorie restriction (CR), the purposeful reduction of energy intake with maintenance of adequate micronutrient intake, is well known to extend the lifespan of laboratory animals. Compounds like 2-deoxy-D-glucose (2DG) that can recapitulate the metabolic effects of CR are of great interest for their potential to extend lifespan. 2DG treatment has been shown to have potential therapeutic benefits for treating cancer and seizures. 2DG has also recapitulated some hallmarks of the CR phenotype including reduced body temperature and circulating insulin in short-term rodent trials, but one chronic feeding study in rats found toxic effects. The present studies were performed to further explore the long-term effects of 2DG in vivo. First we demonstrate that 2DG increases mortality of male Fischer-344 rats. Increased incidence of pheochromocytoma in the adrenal medulla was also noted in the 2DG treated rats. We reconfirm the cardiotoxicity of 2DG in a 6-week follow-up study evaluating male Brown Norway rats and a natural form of 2DG in addition to again examining effects in Fischer-344 rats and the original synthetic 2DG. High levels of both 2DG sources reduced weight gain secondary to reduced food intake in both strains. Histopathological analysis of the hearts revealed increasing vacuolarization of cardiac myocytes with dose, and tissue staining revealed the vacuoles were free of both glycogen and lipid. We did, however, observe higher expression of both cathepsin D and LC3 in the hearts of 2DG-treated rats which indicates an increase in autophagic flux. Although a remarkable CR-like phenotype can be reproduced with 2DG treatment, the ultimate toxicity of 2DG seriously challenges 2DG as a potential CR mimetic in mammals and also raises concerns about other therapeutic applications of the compound.

  6. Increased GABA(A) inhibition of the RVLM after hindlimb unloading in rats

    Science.gov (United States)

    Moffitt, Julia A.; Heesch, Cheryl M.; Hasser, Eileen M.

    2002-01-01

    Attenuated baroreflex-mediated increases in renal sympathetic nerve activity (RSNA) in hindlimb unloaded (HU) rats apparently are due to changes within the central nervous system. We hypothesized that GABA(A) receptor-mediated inhibition of the rostral ventrolateral medulla (RVLM) is increased after hindlimb unloading. Responses to bilateral microinjection of the GABA(A) antagonist (-)-bicuculline methiodide (BIC) into the RVLM were examined before and during caudal ventrolateral medulla (CVLM) inhibition in Inactin-anesthetized control and HU rats. Increases in mean arterial pressure (MAP), heart rate (HR), and RSNA in response to BIC in the RVLM were significantly enhanced in HU rats. Responses to bilateral CVLM blockade were not different. When remaining GABA(A) inhibition in the RVLM was blocked by BIC during CVLM inhibition, the additional increases in MAP and RSNA were significantly greater in HU rats. These data indicate that GABA(A) receptor-mediated inhibition of RVLM neurons is augmented after hindlimb unloading. Effects of input from the CVLM were unaltered. Thus, after cardiovascular deconditioning in rodents, the attenuated increase in sympathetic nerve activity in response to hypotension is associated with greater GABA(A) receptor-mediated inhibition of RVLM neurons originating at least in part from sources other than the CVLM.

  7. Cordycepin Increases Nonrapid Eye Movement Sleep via Adenosine Receptors in Rats.

    Science.gov (United States)

    Hu, Zhenzhen; Lee, Chung-Il; Shah, Vikash Kumar; Oh, Eun-Hye; Han, Jin-Yi; Bae, Jae-Ryong; Lee, Kinam; Chong, Myong-Soo; Hong, Jin Tae; Oh, Ki-Wan

    2013-01-01

    Cordycepin (3'-deoxyadenosine) is a naturally occurring adenosine analogue and one of the bioactive constituents isolated from Cordyceps militaris/Cordyceps sinensis, species of the fungal genus Cordyceps. It has traditionally been a prized Chinese folk medicine for the human well-being. Because of similarity of chemical structure of adenosine, cordycepin has been focused on the diverse effects of the central nervous systems (CNSs), like sleep regulation. Therefore, this study was undertaken to know whether cordycepin increases the natural sleep in rats, and its effect is mediated by adenosine receptors (ARs). Sleep was recorded using electroencephalogram (EEG) for 4 hours after oral administration of cordycepin in rats. Sleep architecture and EEG power spectra were analyzed. Cordycepin reduced sleep-wake cycles and increased nonrapid eye movement (NREM) sleep. Interestingly, cordycepin increased θ (theta) waves power density during NREM sleep. In addition, the protein levels of AR subtypes (A1, A2A, and A2B) were increased after the administration of cordycepin, especially in the rat hypothalamus which plays an important role in sleep regulation. Therefore, we suggest that cordycepin increases theta waves power density during NREM sleep via nonspecific AR in rats. In addition, this experiment can provide basic evidence that cordycepin may be helpful for sleep-disturbed subjects.

  8. Cordycepin Increases Nonrapid Eye Movement Sleep via Adenosine Receptors in Rats

    Directory of Open Access Journals (Sweden)

    Zhenzhen Hu

    2013-01-01

    Full Text Available Cordycepin (3′-deoxyadenosine is a naturally occurring adenosine analogue and one of the bioactive constituents isolated from Cordyceps militaris/Cordyceps sinensis, species of the fungal genus Cordyceps. It has traditionally been a prized Chinese folk medicine for the human well-being. Because of similarity of chemical structure of adenosine, cordycepin has been focused on the diverse effects of the central nervous systems (CNSs, like sleep regulation. Therefore, this study was undertaken to know whether cordycepin increases the natural sleep in rats, and its effect is mediated by adenosine receptors (ARs. Sleep was recorded using electroencephalogram (EEG for 4 hours after oral administration of cordycepin in rats. Sleep architecture and EEG power spectra were analyzed. Cordycepin reduced sleep-wake cycles and increased nonrapid eye movement (NREM sleep. Interestingly, cordycepin increased θ (theta waves power density during NREM sleep. In addition, the protein levels of AR subtypes (A1, A2A, and A2B were increased after the administration of cordycepin, especially in the rat hypothalamus which plays an important role in sleep regulation. Therefore, we suggest that cordycepin increases theta waves power density during NREM sleep via nonspecific AR in rats. In addition, this experiment can provide basic evidence that cordycepin may be helpful for sleep-disturbed subjects.

  9. Increased Body Weight Reduces Voluntary Movement to Maintain Energy Expenditure of Rats Exposed to Increases in Gravity

    Science.gov (United States)

    Wade, C. E.; Moran, M. M.; Stein, T. P.; Sin, Sidney (Technical Monitor)

    2001-01-01

    With the increase in obesity related diseases there is heightened interest in mechanisms regulating body weight. To assess the influence of increases in body weight on energy expenditure and intake in rats we employed variable levels of gravity. Our approach afforded the means to measure interactions of energy expenditure and intake in response to increases in body weight (body mass x gravity level). We found a dose relationship between rapid elevation of body weight and reduction of voluntary movement, such that the energy requirements for activity are unchanged, and total energy expenditure and intake maintained. Reduction of movement appears to be a response to increased body weight, rather than a contributing factor, suggesting a new regulatory pathway.

  10. Fluvastatin increases insulin-like growth factor-1 gene expression in rat model of metabolic syndrome

    International Nuclear Information System (INIS)

    Mansy, Wael H.; Sourour, Doaa A.; Shaker, Olfat G.; Mahfouz, Mahmoud M.

    2008-01-01

    Insulin-like growth factor-1 (IGF-1) was found to have a role in both glucose homeostasis and cardiovascular diseases. The present study was designed to compare the effects of fluvastatin and metformin on IGF-1 mRNA expression within the liver and other individual components of the metabolic syndrome induced in rats by high fructose feeding. Rats fed 60% fructose in diet for 6 weeks were treated daily with fluvastatin (3.75 mg/kg/day) during the last two weeks and were compared with untreated fructose fed group. Fasting levels of plasma cholesterol, triglyceride, glucose, insulin, nitric oxide products, IGF-1 mRNA within the liver as well as systolic blood pressure and body weight were determined. Compared to control rats, the fructose fed group developed hypertension, hyperlipidemia, hyperinsulinemia, hyperglycemia and endothelial dysfunction as well as decreased levels of plasma IGF-1 and its mRNA within the liver. Fructose fed rats treated with fluvastatin or metformin for 2 weeks showed significant decrease in plasma cholesterol, triglyceride, insulin and glucose levels compared to untreated fructose fed group. Also, both drugs increased significantly plasma levels of nitric oxide products and IGF-1 together with significant increase in IGF-1 mRNA within the liver. However, only metformin treated rats showed significant decrease in systolic blood pressure compared to fructose fed group. This study showed that in a rat model of insulin resistance, fluvastatin improves the metabolic profile and increases plasma level of IGF-1 and its gene expression as effective as metformin. (author)

  11. Connectivity derived thalamic segmentation in deep brain stimulation for tremor

    Directory of Open Access Journals (Sweden)

    Harith Akram

    Full Text Available The ventral intermediate nucleus (VIM of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS in the treatment of tremor in Parkinson's disease (PD and essential tremor (ET. It is centrally placed on a cerebello-thalamo-cortical network connecting the primary motor cortex, to the dentate nucleus of the contralateral cerebellum through the dentato-rubro-thalamic tract (DRT. The VIM is not readily visible on conventional MR imaging, so identifying the surgical target traditionally involved indirect targeting that relies on atlas-defined coordinates. Unfortunately, this approach does not fully account for individual variability and requires surgery to be performed with the patient awake to allow for intraoperative targeting confirmation. The aim of this study is to identify the VIM and the DRT using probabilistic tractography in patients that will undergo thalamic DBS for tremor. Four male patients with tremor dominant PD and five patients (three female with ET underwent high angular resolution diffusion imaging (HARDI (128 diffusion directions, 1.5 mm isotropic voxels and b value = 1500 preoperatively. Patients received VIM-DBS using an MR image guided and MR image verified approach with indirect targeting. Postoperatively, using parallel Graphical Processing Unit (GPU processing, thalamic areas with the highest diffusion connectivity to the primary motor area (M1, supplementary motor area (SMA, primary sensory area (S1 and contralateral dentate nucleus were identified. Additionally, volume of tissue activation (VTA corresponding to active DBS contacts were modelled. Response to treatment was defined as 40% reduction in the total Fahn-Tolosa-Martin Tremor Rating Score (FTMTRS with DBS-ON, one year from surgery. Three out of nine patients had a suboptimal, long-term response to treatment. The segmented thalamic areas corresponded well to anatomically known counterparts in the ventrolateral

  12. Subchronic mild noise stress increases HRP permeability in rat small intestine in vitro

    NARCIS (Netherlands)

    Bijlsma, P. B.; van Raaij, M. T.; Dobbe, C. J.; Timmerman, A.; Kiliaan, A. J.; Taminiau, J. A.; Groot, J. A.

    2001-01-01

    Recently we reported an increased trans- and paracellular protein permeability in rat small intestine after acute cold restraint stress. In the present study, we applied randomized 95- or 105-dB white noise pulses during 45 min/h, 12 h/day, duration 8 days, as a milder, but more chronic stressor to

  13. Increased ANF secretion after volume expansion is preserved in rats with heart failure

    International Nuclear Information System (INIS)

    Chien, Young Wei; Barbee, R.W.; MacPhee, A.L.; Frohlich, E.D.; Trippodo, N.C.

    1988-01-01

    To examine whether the failing heart has reached a maximal capacity to increase plasma atrial natriuretic factor (ANF) concentration, the change in plasma immunoreactive ANF, measured by radioimmunoassay level due to acute blood volume expansion was determined in conscious rats with chronic heart failure. Varying degrees of myocardial infarction and thus heart failure were induced by coronary artery ligation 3 wk before study. Compared with controls, infarcted rats had decreases in mean arterial pressure cardiac index, renal blood flow, and peak left ventricle-developed pressure after aortic occlusion, and increases in central venous pressure, left ventricular end-diastolic pressure, total peripheral resistance, plasma ANF level. Plasma ANF was correlated with infarct size, cardiac filling pressures, and left ventricle pressure-generating ability. At 5 min after 25% blood volume expansion, plasma ANF in rats with heart failure increased by 2,281 ± 345 pg/ml; the magnitude of the changes in circulating ANF and hemodynamic measurements was similar in controls. The results suggest that plasma ANF level can be used as a reliable index of the severity of heart failure, and that the capacity to increase plasma ANF concentration after acute volume expansion is preserved in rats with heart failure. There was no evidence of a relative deficiency of circulating ANF in this model of heart failure

  14. Hyperthyroidism results in increased glycolytic capacity in the rat heart. A 31P-NMR study.

    Science.gov (United States)

    Seymour, A M; Eldar, H; Radda, G K

    1990-11-12

    We have investigated the metabolic adaptations that occur in the thyroxine-treated rat heart. Rats were made hyperthyroid by daily intra-peritoneal injections of thyroxine (35 micrograms/100 g body weight) over seven days. 31P-NMR investigations of isolated glucose-perfused isometric hearts showed that thyroxine treatment caused an increase in Pi (from 4.9 mumols.(g dry wt.)-1 in control hearts to 11.7 mumols.(g dry wt.)-1 in hyperthyroid hearts), a decrease in phosphocreatine (from 36.5 mumols.(g dry wt.)-1 to 21.8 mumols.(g dry wt.)-1) with no change in ATP or ADP concentrations under the same conditions of cardiac work. The unidirectional exchange flux Pi----ATP was measured by saturation transfer NMR in hyperthyroid rat hearts. This exchange (which has been shown to contain a significant glycolytic component) increased by 2.2-fold in thyroxine-treated hearts in comparison to control hearts (to 3.6 mumols.(g dry wt.)-1.s-1, from 1.6 mumols.(g dry wt.)-1.s-1). In parallel experiments, NMR analysis of extracts from hyperthyroid rat hearts showed significantly elevated levels of glucose 6-phosphate, and fructose 6-phosphate. Measurements of enzyme activities isolated from hyperthyroid and control tissue showed a 40% increase in phosphofructokinase activity. These data together with the increased concentration of Pi show that both glycolytic and glycogenolytic fluxes are increased in the hyperthyroid rat heart. This metabolic adaptation may be necessary to cope with the increased number and activity of Na+/K(+)-ATPase pumps that occur in response to thyroxine treatment.

  15. Perineuronal nets increase inhibitory GABAergic currents during the critical period in rats

    Directory of Open Access Journals (Sweden)

    Zheng-Qin Yin

    2013-04-01

    Full Text Available AIM: To investigate inhibitory γ-aminobutyric acid (GABA ergic postsynaptic currents (IPSCs and postsynaptic currents (PSCs in layer IV of the rat visual cortex during the critical period and when plasticity was extended through dissolution of the perineuronal nets (PNNs.METHODS:We employed 24 normal Long-Evans rats to study GABAA-PSC characteristics of neurons within layer IV of the visual cortex during development. The animals were divided into six groups of four rats according to ages at recording:PW3 (P21-23d, PW4 (P28-30d, PW5 (P35-37d, PW6 (P42-44d, PW7 (P49-51d, and PW8 (56-58d. An additional 24 chondroitin sulfate proteoglycan (CSPG degradation rats (also Long-Evans were generated by making a pattern of injections of chondroitinase ABC (chABC into the visual cortex 1 week prior to recording at PW3, PW4, PW5, PW6, PW7, and PW8. Immunohistochemistry was used to identify the effect of chABC injection on CSPGs. PSCswere detected with whole-cell patch recordings, and GABAA receptor-mediated IPSCs were pharmacologically isolated.RESULTS:IPSC peak current showed a strong rise in the age-matched control group, peaked at PW5 and were maintained at a roughly constant value thereafter. Although there was a small increase in peak current for the chABC group with age, the peak currents continued to decrease with the delayed highest value at PW6, resulting in significantly different week-by-week comparison with normal development. IPSC decay time continued to increase until PW7 in the control group, while those in the chABC group were maintained at a stable level after an initial increase at PW4. Compared with normal rats, the decay times recorded in the chABC rats were always shorter, which differed significantly at each age. We did not observe any differences in IPSC properties between the age-matched control and penicillinase (P-ase group.However, the change in IPSCs after chABC treatment was not reflected in the total PSCs or in basic membrane

  16. Grape Polyphenols Increase the Activity of HDL Enzymes in Old and Obese Rats

    Directory of Open Access Journals (Sweden)

    Andriy L. Zagayko

    2013-01-01

    Full Text Available HDL particles are protein-rich particles that act as a vehicle for reverse cholesterol transport from tissues to the liver. The purpose of this study was to investigate age-dependent changes in the functional activity of HDL and the effect of high-energy diet on this index, as well as to correct it under the influence of grape polyphenols from “Enoant” obtained from Vitis vinifera grapes. We observed the age-dependent composition changes in HDL particle. It was shown that total lipids and triacylglycerol (TG levels were higher in 24-month-old animals. In obese rats, HDL total lipids and TG levels were higher in 24-month-old than in the 3-month-old and 12-month-old groups but did not differ from 24-month-old group. The plasma HDL paraoxonase (PON and lecithin:cholesterol acyltransferase (LCAT activity levels were decreased in old-aged rats, and cholesteryl ester transfer protein (CETP activity was higher in old rats. Keeping 12-month-old animals on high-fructose diet completely leveled the age differences in the data that have been measured between 12-month-old and 24-month-old rats. After “Enoant” administration, an increase of HDL PON and LCAT activity levels and a reduction of CETP activity were found in 24-month-old and obese rats.

  17. Rats with steroid-induced polycystic ovaries develop hypertension and increased sympathetic nervous system activity

    Directory of Open Access Journals (Sweden)

    Ploj Karolina

    2005-09-01

    Full Text Available Abstract Background Polycystic ovary syndrome (PCOS is a complex endocrine and metabolic disorder associated with ovulatory dysfunction, abdominal obesity, hyperandrogenism, hypertension, and insulin resistance. Methods Our objectives in this study were (1 to estimate sympathetic-adrenal medullary (SAM activity by measuring mean systolic blood pressure (MSAP in rats with estradiol valerate (EV-induced PCO; (2 to estimate alpha1a and alpha2a adrenoceptor expression in a brain area thought to mediate central effects on MSAP regulation and in the adrenal medulla; (3 to assess hypothalamic-pituitary-adrenal (HPA axis regulation by measuring adrenocorticotropic hormone (ACTH and corticosterone (CORT levels in response to novel-environment stress; and (4 to measure abdominal obesity, sex steroids, and insulin sensitivity. Results The PCO rats had significantly higher MSAP than controls, higher levels of alpha1a adrenoceptor mRNA in the hypothalamic paraventricular nucleus (PVN, and lower levels of alpha2a adrenoceptor mRNA in the PVN and adrenal medulla. After exposure to stress, PCO rats had higher ACTH and CORT levels. Plasma testosterone concentrations were lower in PCO rats, and no differences in insulin sensitivity or in the weight of intraabdominal fat depots were found. Conclusion Thus, rats with EV-induced PCO develop hypertension and increased sympathetic and HPA-axis activity without reduced insulin sensitivity, obesity, or hyperandrogenism. These findings may have implications for mechanisms underlying hypertension in PCOS.

  18. The oleic acid esterification of policosanol increases its bioavailability and hypocholesterolemic action in rats

    Energy Technology Data Exchange (ETDEWEB)

    Hain, D.; Valenzuela, A.; Branes, M. C.; Fuenzalida, M.; Videla, L. A.

    2012-07-01

    Policosanol comprises a mixture of long-chain aliphatic alcohols from sugarcane wax. More than 50 studies indicate that policosanol decreases serum cholesterol, while others failed to reproduce this effect. The objective of this investigation was to assess the bioavailability of esterified policosanol and non-esterified policosanol (NEP), in relation to their hypocholesterolemic effects. Sprague Dawley rats were given a daily oral dose of 100 mg/kg of NEP, 117 mg kg1 of butyric acid esterified policosanol (BAEP), or 164 mg kg1 of oleic acid esterified policosanol (OAEP). Policosanol absorption was evaluated in plasma between 0 and 3 hours after ingestion. To assess changes in total cholesterol, LDL-cholesterol, HDLcholesterol and triacylglycerols in plasma and liver 3-hydroxy- 3-methylglutaryl coenzyme A reductase (HMG- CoA red) phosphorylation, the rats were supplemented with nonesterified or esterified policosanol for 5 weeks. The results indicate that policosanol absorption was significantly greater in OAEP-treated rats than in those subjected to NEP or BAEP administration. OAEP significantly reduced plasma total and LDL-cholesterol in rats, in addition to a 5.6-fold increase (P < 0.05) in the hepatic content of phosphorylated HMG-CoA red over the control values. In conclusion, esterification of policosanol with oleic acid enhances policosanol bioavailability, and significantly improves the serum lipid profile in normocholesterolemic rats in association with the inactivation of HMG-CoA red controlling cholesterogenesis. (Author) 49 refs.

  19. Administration of cyclosporine a (CyA) to rats from birth: increased mortality and NK activity

    International Nuclear Information System (INIS)

    Clancy, J. Jr.; Tseng, G.; Kodali, S.; Love, S.

    1986-01-01

    Neonatal DA and LEW rats received 15, 7.5, and 3.75 mg/Kg of CyA or saline subcutaneously 3x each week for 1-12 weeks. In animals receiving 15 and 7.5 mg/Kg a significant (p 51 Cr release from YAC-1 target cells. Also, SPL cells stained with propidium iodide from the 3.75 mg/Kg group demonstrated a 1.5-2x increase in cells within the S phase of their cell cycle by flow cytometry. Thus, prolonged administration of CyA may have selective enhancing effects on certain lymphoid compartments and subpopulations of neonatal rats as well as a selective toxic effects on neonatal rat development

  20. Increased Autolysis of μ-Calpain in Skeletal Muscles of Chronic Alcohol-Fed Rats.

    Science.gov (United States)

    Gritsyna, Yulia V; Salmov, Nikolay N; Bobylev, Alexander G; Ulanova, Anna D; Kukushkin, Nikolay I; Podlubnaya, Zoya A; Vikhlyantsev, Ivan M

    2017-10-01

    Proteolysis can proceed via several distinct pathways such as the lysosomal, calcium-dependent, and ubiquitin-proteasome-dependent pathways. Calpains are the main proteases that cleave a large variety of proteins, including the giant sarcomeric proteins, titin and nebulin. Chronic ethanol feeding for 6 weeks did not affect the activities of μ-calpain and m-calpain in the m. gastrocnemius. In our research, changes in μ-calpain activity were studied in the m. gastrocnemius and m. soleus of chronically alcohol-fed rats after 6 months of alcohol intake. SDS-PAGE analysis was applied to detect changes in titin and nebulin contents. Titin phosphorylation analysis was performed using the fluorescent dye Pro-Q Diamond. Western blotting was used to determine μ-calpain autolysis as well as μ-calpain and calpastatin contents. The titin and nebulin mRNA levels were assessed by real-time PCR. The amounts of the autolysed isoform (78 kDa) of full-length μ-calpain (80 kDa) increased in the m. gastrocnemius and m. soleus of alcohol-fed rats. The calpastatin content increased in m. gastrocnemius. Decreased intact titin-1 (T1) and increased T2-proteolytic fragment contents were found in the m. gastrocnemius and m. soleus of the alcohol-fed rats. The nebulin content decreased in the rat gastrocnemius muscle of the alcohol-fed group. The phosphorylation levels of T1 and T2 were increased in the m. gastrocnemius and m. soleus, and decreased titin and nebulin mRNA levels were observed in the m. gastrocnemius. The nebulin mRNA level was increased in the soleus muscle of the alcohol-fed rats. In summary, our data suggest that prolonged chronic alcohol consumption for 6 months resulted in increased autolysis of μ-calpain in rat skeletal muscles. These changes were accompanied by reduced titin and nebulin contents, titin hyperphosphorylation, and development of hindlimb muscle atrophy in the alcohol-fed rats. Copyright © 2017 by the Research Society on Alcoholism.

  1. Activation of calcium-sensing receptor increases TRPC3 expression in rat cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shan-Li [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Sun, Ming-Rui [Department of Pharmacology, Qiqihaer Medical College, Qiqihaer 160001 (China); Li, Ting-Ting; Yin, Xin [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Xu, Chang-Qing [Department of Pathophysiology, Harbin Medical University, Harbin 150086 (China); Sun, Yi-Hua, E-mail: syh200415@126.com [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China)

    2011-03-11

    Research highlights: {yields} Calcium-sensing receptor (CaR) activation stimulates TRP channels. {yields} CaR promoted transient receptor potential C3 (TRPC3) expression. {yields} Adult rat ventricular myocytes display capacitative calcium entry (CCE), which was operated by TRPCs. {yields} TRPC channels activation induced by CaR activator sustained the increased [Ca{sup 2+}]{sub i} to evoke cardiomyocytes apoptosis. -- Abstract: Transient receptor potential (TRP) channels are expressed in cardiomyocytes, which gate a type of influx of extracellular calcium, the capacitative calcium entry. TRP channels play a role in mediating Ca{sup 2+} overload in the heart. Calcium-sensing receptors (CaR) are also expressed in rat cardiac tissue and promote the apoptosis of cardiomyocytes by Ca{sup 2+} overload. However, data about the link between CaR and TRP channels in rat heart are few. In this study, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were used to examine the expression of the TRP canonical proteins TRPC1 and TRPC3 in adult and neonatal rat cardiomyocytes. Laser scan confocal microscopy was used to detect intracellular [Ca{sup 2+}]{sub i} levels in isolated adult rat ventricular myocytes. The results showed that, in adult rat cardiomyocytes, the depletion of Ca{sup 2+} stores in the endoplasmic/sarcoplasmic reticulum (ER/SR) by thapsigargin induced a transient increase in [Ca{sup 2+}]{sub i} in the absence of [Ca{sup 2+}]{sub o} and the subsequent restoration of [Ca{sup 2+}]{sub o} sustained the increased [Ca{sup 2+}]{sub i} for a few minutes, whereas, the persisting elevation of [Ca{sup 2+}]{sub i} was reduced in the presence of the TRPC inhibitor SKF96365. The stimulation of CaR by its activator gadolinium chloride (GdCl{sub 3}) or spermine also resulted in the same effect and the duration of [Ca{sup 2+}]{sub i} increase was also shortened in the absence of [Ca{sup 2+}]{sub o}. In adult and neonatal rat cardiomyocytes, GdCl{sub 3

  2. Food restriction prevents an age-associated increase in rat liver beta-adrenergic receptors

    Energy Technology Data Exchange (ETDEWEB)

    Dax, E.M.; Ingram, D.K.; Partilla, J.S.; Gregerman, R.I.

    1989-05-01

    In male Wistar rats fed ad libitum (24% protein, 4.5 Kcal/gm), the (/sup 125/I)iodopindolol binding capacity of the beta-adrenergic receptors in liver of 24-month-old animals is 3-4 times greater than that of 6-month-old counterparts. In rats fed the same diet, on alternate days from weaning, the receptor capacity did not increase significantly between 6 and 24 months (10.20 +/- 0.55 vs 9.20 +/- 0.72 fmol/mg) or between 24 and 30 months. This was not due to acute dietary deprivation, as rats food-restricted for only 2 weeks, at 23.5 months of age, also showed elevated receptor capacities compared to 6-month-old ad libitum fed animals. Moreover, intermittent feeding produced no significant effects among 6-month-old animals, whether restricted since weaning or for two weeks prior to sacrifice. Many biochemical parameters that decrease with aging in rats fed ad libitum are prevented by dietary restriction. Our results demonstrate that a reproducible biochemical process that increases with aging is also prevented with dietary restriction. The age-related, liver beta-receptor increase may be a potentially reliable marker for studying biochemical perturbations that modify life span.

  3. Food restriction prevents an age-associated increase in rat liver beta-adrenergic receptors

    International Nuclear Information System (INIS)

    Dax, E.M.; Ingram, D.K.; Partilla, J.S.; Gregerman, R.I.

    1989-01-01

    In male Wistar rats fed ad libitum (24% protein, 4.5 Kcal/gm), the [ 125 I]iodopindolol binding capacity of the beta-adrenergic receptors in liver of 24-month-old animals is 3-4 times greater than that of 6-month-old counterparts. In rats fed the same diet, on alternate days from weaning, the receptor capacity did not increase significantly between 6 and 24 months (10.20 +/- 0.55 vs 9.20 +/- 0.72 fmol/mg) or between 24 and 30 months. This was not due to acute dietary deprivation, as rats food-restricted for only 2 weeks, at 23.5 months of age, also showed elevated receptor capacities compared to 6-month-old ad libitum fed animals. Moreover, intermittent feeding produced no significant effects among 6-month-old animals, whether restricted since weaning or for two weeks prior to sacrifice. Many biochemical parameters that decrease with aging in rats fed ad libitum are prevented by dietary restriction. Our results demonstrate that a reproducible biochemical process that increases with aging is also prevented with dietary restriction. The age-related, liver beta-receptor increase may be a potentially reliable marker for studying biochemical perturbations that modify life span

  4. Local injection of high-molecular hyaluronan promotes wound healing in old rats by increasing angiogenesis.

    Science.gov (United States)

    Huang, Luying; Wang, Yi; Liu, Hua; Huang, Jianhua

    2018-02-02

    Impaired angiogenesis contributes to delayed wound healing in aging. Hyaluronan (HA) has a close relationship with angiogenesis and wound healing. However, HA content decreases with age. In this study, we used high molecular weight HA (HMW-HA) (1650 kDa), and investigated its effects on wound healing in old rats by local injection. We found that HMW-HA significantly increases proliferation, migration and tube formation in endothelial cells, and protects endothelial cells against apoptosis. Local injection of HMW-HA promotes wound healing by increasing angiogenesis in old rats. HMW-HA increases the phosphorylation of Src, ERK and AKT, leading to increased angiogenesis, suggesting that local injection of HMW-HA promotes wound healing in elderly patients.

  5. Communication skills and thalamic lesion: Strategies of rehabilitation.

    Science.gov (United States)

    Amaddii, Luisa; Centorrino, Santi; Cambi, Jacopo; Passali, Desiderio

    2014-01-01

    To describe the speech rehabilitation history of patients with thalamic lesions. Thalamic lesions can affect speech and language according to diverse thalamic nuclei involved. Because of the strategic functional position of the thalamus within the cognitive networks, its lesion can also interfere with other cognitive processes, such as attention, memory and executive functions. Alterations of these cognitive domains contribute significantly to language deficits, leading to communicative inefficacy. This fact must be considered in the rehabilitation efforts. Whereas evaluation of cognitive functions and communicative efficiency is different from that of aphasic disorder, treatment should also be different. The treatment must be focused on specific cognitive deficits with belief in the regaining of communicative ability, as well as it occurs in therapy of pragmatic disorder in traumatic brain injury: attention process training, mnemotechnics and prospective memory training. According to our experience: (a) there is a close correlation between cognitive processes and communication skills; (b) alterations of attention, memory and executive functions cause a loss of efficiency in the language use; and (c) appropriate cognitive treatment improves pragmatic competence and therefore the linguistic disorder. For planning a speech-therapy it is important to consider the relationship between cognitive functions and communication. The cognitive/behavioral treatment confirms its therapeutic efficiency for thalamic lesions. Copyright © 2014 Polish Otorhinolaryngology - Head and Neck Surgery Society. Published by Elsevier Urban & Partner Sp. z.o.o. All rights reserved.

  6. Hypertensive thalamic hemorrhage. Clinical symptoms and outcomes in 40 cases

    Energy Technology Data Exchange (ETDEWEB)

    Munaka, Masahiro; Nishikawa, Michio; Hirai, Osamu; Kaneko, Takaaki; Watanabe, Syu; Fukuma, Jun; Handa, Hajime

    1988-12-01

    In the past six years, we have had experience with 40 patients with hypertensive thalamic hemorrhages, as verified by CT scan at our hospital within 24 hours. These patients were classified into the following three groups according to the location of the bleeding point and the size of the hematoma: (1) anteromedial (4 cases), (2) posterolateral (16 cases), and (3) massive (20 cases). The (1) and (2) hematomas were small (less than 3 cm in diameter), while those in (3) were large (more than 3 cm in diameter). Twenty cases (50% of all the thalamic hematomas) were small hematomas. The characteristic clinical symptoms of the anteromedial type were a mild disturbance of consciousness and thalamic dementia, while those of the posterolateral type were motor and sensory disturbance, and thalamic aphasia, respectively. Twenty cases (50%) were large hematomas. The clinical symptoms of these cases were mainly consciousness disturbance; 7 of them expired. Based on this experience, it may be considered that the patients whose hematoma size was larger than 3 cm had a poor prognosis and that the patients with the posterolateral type had a poor functional diagnosis.

  7. Thalamic control of sensory selection in divided attention.

    Science.gov (United States)

    Wimmer, Ralf D; Schmitt, L Ian; Davidson, Thomas J; Nakajima, Miho; Deisseroth, Karl; Halassa, Michael M

    2015-10-29

    How the brain selects appropriate sensory inputs and suppresses distractors is unknown. Given the well-established role of the prefrontal cortex (PFC) in executive function, its interactions with sensory cortical areas during attention have been hypothesized to control sensory selection. To test this idea and, more generally, dissect the circuits underlying sensory selection, we developed a cross-modal divided-attention task in mice that allowed genetic access to this cognitive process. By optogenetically perturbing PFC function in a temporally precise window, the ability of mice to select appropriately between conflicting visual and auditory stimuli was diminished. Equivalent sensory thalamocortical manipulations showed that behaviour was causally dependent on PFC interactions with the sensory thalamus, not sensory cortex. Consistent with this notion, we found neurons of the visual thalamic reticular nucleus (visTRN) to exhibit PFC-dependent changes in firing rate predictive of the modality selected. visTRN activity was causal to performance as confirmed by bidirectional optogenetic manipulations of this subnetwork. Using a combination of electrophysiology and intracellular chloride photometry, we demonstrated that visTRN dynamically controls visual thalamic gain through feedforward inhibition. Our experiments introduce a new subcortical model of sensory selection, in which the PFC biases thalamic reticular subnetworks to control thalamic sensory gain, selecting appropriate inputs for further processing.

  8. Neuroanatomical considerations of isolated hearing loss in thalamic hemorrhage

    Directory of Open Access Journals (Sweden)

    Nitin Agarwal, M.D.

    2016-12-01

    Conclusion: Presumably, this neurological deficit was caused by a hypertensive hemorrhage in the posterior right thalamus. The following case and discussion will review the potential neuroanatomical pathways that we suggest could make isolated hearing loss be part of a “thalamic syndrome.”

  9. Lateral and Anterior Thalamic Lesions Impair Independent Memory Systems

    Science.gov (United States)

    Mitchell, Anna S.; Dalrymple-Alford, John C.

    2006-01-01

    Damage to the medial region of the thalamus, both in clinical cases (e.g., patients with infarcts or the Korsakoff's syndrome) and animal lesion models, is associated with variable amnesic deficits. Some studies suggest that many of these memory deficits rely on the presence of lateral thalamic lesions (LT) that include the intralaminar nuclei,…

  10. Visual Orientation and Directional Selectivity through Thalamic Synchrony

    Science.gov (United States)

    Stanley, Garrett B.; Jin, Jianzhong; Wang, Yushi; Desbordes, Gaëlle; Wang, Qi; Black, Michael J.; Alonso, Jose-Manuel

    2012-01-01

    Thalamic neurons respond to visual scenes by generating synchronous spike trains on the timescale of 10 – 20 ms that are very effective at driving cortical targets. Here we demonstrate that this synchronous activity contains unexpectedly rich information about fundamental properties of visual stimuli. We report that the occurrence of synchronous firing of cat thalamic cells with highly overlapping receptive fields is strongly sensitive to the orientation and the direction of motion of the visual stimulus. We show that this stimulus selectivity is robust, remaining relatively unchanged under different contrasts and temporal frequencies (stimulus velocities). A computational analysis based on an integrate-and-fire model of the direct thalamic input to a layer 4 cortical cell reveals a strong correlation between the degree of thalamic synchrony and the nonlinear relationship between cortical membrane potential and the resultant firing rate. Together, these findings suggest a novel population code in the synchronous firing of neurons in the early visual pathway that could serve as the substrate for establishing cortical representations of the visual scene. PMID:22745507

  11. Disrupted thalamic prefrontal pathways in patients with idiopathic dystonia

    NARCIS (Netherlands)

    Bonilha, Leonardo; de Vries, Paulien M.; Hurd, Mark W.; Rorden, Chris; Morgan, Paul S.; Besenski, Nada; Bergmann, Kenneth J.; Hinson, Vanessa K.

    There are quantifiable abnormalities in water diffusion properties of the white matter in thalamic and prefrontal areas in patients with idiopathic dystonia (ID). However, it is unclear which pathways are disrupted in these patients. Using probabilistic tractography of high resolution DTI, we

  12. Medial thalamic 18-FDG uptake following inescapable shock correlates with subsequent learned helpless behavior

    International Nuclear Information System (INIS)

    Mirrione, M.M.; Schulz, D.; Dewey, S.L.; Henn, F.A.

    2009-01-01

    The learned helplessness paradigm has been repeatedly shown to correlate with neurobiological aspects of depression in humans. In this model, rodents are exposed inescapable foot-shock in order to reveal susceptibility to escape deficit, defined as 'learned helplessness' (LH). Few methods are available to probe the neurobiological aspects underlying the differences in susceptibility in the living animal, thus far being limited to studies examining regional neurochemical changes with microdialysis. With the widespread implementation of small animal neuroimaging methods, including positron emission tomography (PET), it is now possible to explore the living brain on a systems level to define regional changes that may correlate with vulnerability to stress. In this study, 12 wild type Sprague-Dawley rats were exposed to 40 minutes of inescapable foot-shock followed by metabolic imaging using 2-deoxy-2[ 18 F]fluoro-D-glucose (18-FDG) 1 hour later. The escape test was performed on these rats 48 hours later (to accommodate radiotracer decay), where they were given the opportunity to press a lever to shut off the shock. A region of interest (ROI) analysis was used to investigate potential correlations (Pearson Regression Coefficients) between regional 18-FDG uptake following inescapable shock and subsequent learned helpless behavior (time to finish the test; number of successful lever presses within 20 seconds of shock onset). ROI analysis revealed a significant positive correlation between time to finish and 18-FDG uptake, and a negative correlation between lever presses and uptake, in the medial thalamic area (p=0.033, p=0.036). This ROI included the paraventricular thalamus, mediodorsal thalamus, and the habenula. In an effort to account for possible spillover artifact, the posterior thalamic area (including ventral medial and lateral portions) was also evaluated but did not reveal significant correlations (p=0.870, p=0.897). No other significant correlations were found

  13. Sleep onset uncovers thalamic abnormalities in patients with idiopathic generalised epilepsy

    Directory of Open Access Journals (Sweden)

    Andrew P. Bagshaw

    Full Text Available The thalamus is crucial for sleep regulation and the pathophysiology of idiopathic generalised epilepsy (IGE, and may serve as the underlying basis for the links between the two. We investigated this using EEG-fMRI and a specific emphasis on the role and functional connectivity (FC of the thalamus. We defined three types of thalamic FC: thalamocortical, inter-hemispheric thalamic, and intra-hemispheric thalamic. Patients and controls differed in all three measures, and during wakefulness and sleep, indicating disorder-dependent and state-dependent modification of thalamic FC. Inter-hemispheric thalamic FC differed between patients and controls in somatosensory regions during wakefulness, and occipital regions during sleep. Intra-hemispheric thalamic FC was significantly higher in patients than controls following sleep onset, and disorder-dependent alterations to FC were seen in several thalamic regions always involving somatomotor and occipital regions. As interactions between thalamic sub-regions are indirect and mediated by the inhibitory thalamic reticular nucleus (TRN, the results suggest abnormal TRN function in patients with IGE, with a regional distribution which could suggest a link with the thalamocortical networks involved in the generation of alpha rhythms. Intra-thalamic FC could be a more widely applicable marker beyond patients with IGE. Keywords: Functional connectivity, Generalised epilepsy, Sleep, Thalamic reticular nucleus thalamus

  14. Connectivity derived thalamic segmentation in deep brain stimulation for tremor.

    Science.gov (United States)

    Akram, Harith; Dayal, Viswas; Mahlknecht, Philipp; Georgiev, Dejan; Hyam, Jonathan; Foltynie, Thomas; Limousin, Patricia; De Vita, Enrico; Jahanshahi, Marjan; Ashburner, John; Behrens, Tim; Hariz, Marwan; Zrinzo, Ludvic

    2018-01-01

    The ventral intermediate nucleus (VIM) of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS) in the treatment of tremor in Parkinson's disease (PD) and essential tremor (ET). It is centrally placed on a cerebello-thalamo-cortical network connecting the primary motor cortex, to the dentate nucleus of the contralateral cerebellum through the dentato-rubro-thalamic tract (DRT). The VIM is not readily visible on conventional MR imaging, so identifying the surgical target traditionally involved indirect targeting that relies on atlas-defined coordinates. Unfortunately, this approach does not fully account for individual variability and requires surgery to be performed with the patient awake to allow for intraoperative targeting confirmation. The aim of this study is to identify the VIM and the DRT using probabilistic tractography in patients that will undergo thalamic DBS for tremor. Four male patients with tremor dominant PD and five patients (three female) with ET underwent high angular resolution diffusion imaging (HARDI) (128 diffusion directions, 1.5 mm isotropic voxels and b value = 1500) preoperatively. Patients received VIM-DBS using an MR image guided and MR image verified approach with indirect targeting. Postoperatively, using parallel Graphical Processing Unit (GPU) processing, thalamic areas with the highest diffusion connectivity to the primary motor area (M1), supplementary motor area (SMA), primary sensory area (S1) and contralateral dentate nucleus were identified. Additionally, volume of tissue activation (VTA) corresponding to active DBS contacts were modelled. Response to treatment was defined as 40% reduction in the total Fahn-Tolosa-Martin Tremor Rating Score (FTMTRS) with DBS-ON, one year from surgery. Three out of nine patients had a suboptimal, long-term response to treatment. The segmented thalamic areas corresponded well to anatomically known counterparts in the ventrolateral (VL

  15. Effect of propofol in the immature rat brain on short- and long-term neurodevelopmental outcome.

    Directory of Open Access Journals (Sweden)

    Tanja Karen

    Full Text Available BACKGROUND: Propofol is commonly used as sedative in newborns and children. Recent experimental studies led to contradictory results, revealing neurodegenerative or neuroprotective properties of propofol on the developing brain. We investigated neurodevelopmental short- and long-term effects of neonatal propofol treatment. METHODS: 6-day-old Wistar rats (P6, randomised in two groups, received repeated intraperitoneal injections (0, 90, 180 min of 30 mg/kg propofol or normal saline and sacrificed 6, 12 and 24 hrs following the first injection. Cortical and thalamic areas were analysed by Western blot and quantitative real-time PCR (qRT-PCR for expression of apoptotic and neurotrophin-dependent signalling pathways. Long-term effects were assessed by Open-field and Novel-Object-Recognition at P30 and P120. RESULTS: Western blot analyses revealed a transient increase of activated caspase-3 in cortical, and a reduction of active mitogen-activated protein kinases (ERK1/2, AKT in cortical and thalamic areas. qRT-PCR analyses showed a down-regulation of neurotrophic factors (BDNF, NGF, NT-3 in cortical and thalamic regions. Minor impairment in locomotive activity was observed in propofol treated adolescent animals at P30. Memory or anxiety were not impaired at any time point. CONCLUSION: Exposing the neonatal rat brain to propofol induces acute neurotrophic imbalance and neuroapoptosis in a region- and time-specific manner and minor behavioural changes in adolescent animals.

  16. Cocaine-associated odor cue re-exposure increases blood oxygenation level dependent signal in memory and reward regions of the maternal rat brain.

    Science.gov (United States)

    Caffrey, Martha K; Febo, Marcelo

    2014-01-01

    Cue triggered relapse during the postpartum period can negatively impact maternal care. Given the high reward value of pups in maternal rats, we designed an fMRI experiment to test whether offspring presence reduces the neural response to a cocaine associated olfactory cue. Cocaine conditioned place preference was carried out before pregnancy in the presence of two distinct odors that were paired with cocaine or saline (+Cue and -Cue). The BOLD response to +Cue and -Cue was measured in dams on postpartum days 2-4. Odor cues were delivered to dams in the absence and then the presence of pups. Our data indicate that several limbic and cognitive regions of the maternal rat brain show a greater BOLD signal response to a +Cue versus -Cue. These include dorsal striatum, prelimbic cortex, parietal cortex, habenula, bed nucleus of stria terminalis, lateral septum and the mediodorsal and the anterior thalamic nucleus. Of the aforementioned brain regions, only the parietal cortex of cocaine treated dams showed a significant modulatory effect of pup presence. In this area of the cortex, cocaine exposed maternal rats showed a greater BOLD activation in response to the +Cue in the presence than in the absence of pups. Specific regions of the cocaine exposed maternal rat brain are strongly reactive to drug associated cues. The regions implicated in cue reactivity have been previously reported in clinical imaging work, and previous work supports their role in various motivational and cognitive functions. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. COCAINE-ASSOCIATED ODOR CUE RE-EXPOSURE INCREASES BLOOD OXYGENATION LEVEL DEPENDENT SIGNAL IN MEMORY AND REWARD REGIONS OF THE MATERNAL RAT BRAIN*

    Science.gov (United States)

    Caffrey, Martha K.; Febo, Marcelo

    2013-01-01

    BACKGROUND Cue triggered relapse during the postpartum period can negatively impact maternal care. Given the high reward value of pups in maternal rats, we designed an fMRI experiment to test whether offspring presence reduces the neural response to a cocaine associated olfactory cue. METHODS Cocaine conditioned place preference was carried out before pregnancy in the presence of two distinct odors that were paired with cocaine or saline (+Cue and −Cue). The BOLD response to +Cue and −Cue was measured in dams on postpartum days 2–4. Odor cues were delivered to dams in the absence and then the presence of pups. RESULTS Our data indicate that several limbic and cognitive regions of the maternal rat brain show a greater BOLD signal response to a +Cue versus −Cue. These include dorsal striatum, prelimbic cortex, parietal cortex, habenula, bed nucleus of stria terminalis, lateral septum and the mediodorsal and the anterior thalamic nucleus. Of the aforementioned brain regions, only the parietal cortex of cocaine treated dams showed a significant modulatory effect of pup presence. In this area of the cortex, cocaine exposed maternal rats showed a greater BOLD activation in response to the +Cue in the presence than in the absence of pups. CONCLUSIONS Specific regions of the cocaine exposed maternal rat brain are strongly reactive to drug associated cues. The regions implicated in cue reactivity have been previously reported in clinical imaging work, and previous work supports their role in various motivational and cognitive functions. PMID:24183499

  18. Dim light at night increases immune function in Nile grass rats, a diurnal rodent.

    Science.gov (United States)

    Fonken, Laura K; Haim, Achikam; Nelson, Randy J

    2012-02-01

    With the widespread adoption of electrical lighting during the 20th century, human and nonhuman animals became exposed to high levels of light at night for the first time in evolutionary history. This divergence from the natural environment may have significant implications for certain ecological niches because of the important influence light exerts on the circadian system. For example, circadian disruption and nighttime light exposure are linked to changes in immune function. The majority of studies investigating the effects of light exposure and circadian disruption on the immune system use nocturnal rodents. In diurnal species, many hormones and immune parameters vary with secretion patterns 180° out of phase to those of nocturnal rodents. Thus, the authors investigated the effects of nighttime light exposure on immunocompetence in diurnal Nile grass rats (Arvicanthis niloticus). Rats were housed in either standard 14-h light (L):10-h dark (D) cycles with L ∼150 lux and D 0 lux or dim light at night (dLAN) cycles of LD 14:10 with L ∼150 lux and D 5 lux for 3 wks, then tested for plasma bactericidal capacity, as well as humoral and cell-mediated immune responses. Rats exposed to dLAN showed increased delayed-type hypersensitivity pinna swelling, which is consistent with enhanced cell-mediated immune function. dLAN rats similarly showed increased antibody production following inoculation with keyhole lymphocyte hemocyanin (KLH) and increased bactericidal capacity. Daytime corticosterone concentrations were elevated in grass rats exposed to nighttime dim light, which may have influenced immunological measures. Overall, these results indicate nighttime light affects immune parameters in a diurnal rodent.

  19. Remote effect in patients with thalamic stroke. A study using positron emission tomography

    International Nuclear Information System (INIS)

    Komaba, Yuichi; Kitamura, Shin; Terashi, Akiro

    1998-01-01

    The purpose of this study was to investigate the functional relation between the thalamus and other cortical regions in patients with thalamic stroke from the view of cerebral blood flow (CBF) and the cerebral metabolic rate of oxygen (CMRO 2 ) using positron emission tomography (PET). Twenty patients with thalamic stroke (right lesion=8, left lesion=12) and 7 normal controls were studied. Five patients were diagnosed as having thalamic infarction, and 15 (patients were diagnosed) as having thalamic hemorrhage by X-CT and/or MRI scan. Regional cerebral blood flow and cerebral metabolic rate of oxygen were measured by PET using C 15 O 2 and 15 O 2 steady state inhalation technique. In the left thalamic stroke group, CMRO 2 was significantly decreased in the left cingulate, superior frontal, superior temporal, middle temporal, medial occipital, and thalamic regions, compared with the normal control group. In the right thalamic stroke group, CMRO 2 was decreased in the left cingulate, medial occipital, right hippocampal, thalamic, and the bilateral cerebellar regions, compared with the normal control group. In the left thalamic stroke group, CBF was decreased significantly in the left cingulate, middle temporal, hippocampal, thalamic, and right cerebellar regions, compared with the normal control group. In the right thalamic stroke group, CBF was significantly decreased in the right hippocampal, thalamic and left cerebellar regions compared with the normal control group. These results indicate that CBF and CMRO 2 decrease in some distant regions from thalamic lesions, perhaps due to a disconnection of neuronal fiber. Especially in the left thalamic stroke group, CMRO 2 was decreased in the ipsilateral temporal regions. This result suggests that there are more intimate functional fiber connections between the thalamus and temporal cortex in the left hemisphere than in the right hemisphere. (author)

  20. Both experimental hypothyroidism and hyperthyroidism increase cardiac irisin levels in rats.

    Science.gov (United States)

    Atici, E; Menevse, E; Baltaci, A K; Mogulkoc, R

    2018-01-01

    Irisin is a newly discovered myokine and adipokine that increases total body energy expenditure. The aim of this study was to determine the effect of experimental hypothyroidism and hyperthyroidism on the levels of irisin in heart tissue in rats. The study was performed on the 40 male Sprague-Dawley rats. Experimental groups were designed as; Control, Hypothyroidism, Hypothyroidism+L-Thyroxine, Hyperthyroidism and Hyperthyroidism + PTU. Following 3 weeks experimental period, irisin levels were determined in heart tissues. Hypothyroidism group values of irisin were higher than in the control group, but lower than in the hyperthyroidism group. The hyperthyroidism group had the highest levels of cardiac irisin. The results of the study showed that the experimental hypothyroidism and hyperthyroidism increased the heart irisin levels, but the increase in the hyperthyroidism group was much higher than in the hypothyroidism group. However, treatment of hypothyroidism and hyperthyroidism corrected cardiac irisin levels (Fig. 1, Ref. 28).

  1. St. John's wort significantly increased the systemic exposure and toxicity of methotrexate in rats

    International Nuclear Information System (INIS)

    Yang, Shih-Ying; Juang, Shin-Hun; Tsai, Shang-Yuan; Chao, Pei-Dawn Lee; Hou, Yu-Chi

    2012-01-01

    St. John's wort (SJW, Hypericum perforatum) is one of the popular nutraceuticals for treating depression. Methotrexate (MTX) is an immunosuppressant with narrow therapeutic window. This study investigated the effect of SJW on MTX pharmacokinetics in rats. Rats were orally given MTX alone and coadministered with 300 and 150 mg/kg of SJW, and 25 mg/kg of diclofenac, respectively. Blood was withdrawn at specific time points and serum MTX concentrations were assayed by a specific monoclonal fluorescence polarization immunoassay method. The results showed that 300 mg/kg of SJW significantly increased the AUC 0−t and C max of MTX by 163% and 60%, respectively, and 150 mg/kg of SJW significantly increased the AUC 0−t of MTX by 55%. In addition, diclofenac enhanced the C max of MTX by 110%. The mortality of rats treated with SJW was higher than that of controls. In conclusion, coadministration of SJW significantly increased the systemic exposure and toxicity of MTX. The combined use of MTX with SJW would need to be with caution. -- Highlights: ► St. John's wort significantly increased the AUC 0−t and C max of methotrexate. ► Coadministration of St. John's wort increased the exposure and toxicity of methotrexate. ► The combined use of methotrexate with St. John's wort will need to be with caution.

  2. A grape-enriched diet increases bone calcium retention and cortical bone properties in ovariectomized rats.

    Science.gov (United States)

    Hohman, Emily E; Weaver, Connie M

    2015-02-01

    Grapes and their associated phytochemicals have been investigated for beneficial effects on cardiovascular health, cancer prevention, and other chronic diseases, but the effect of grape consumption on bone health has not been fully determined. We previously found short-term benefits of grape products on reducing bone turnover in ovariectomized rats. The objective of this study was to determine the long-term benefits of a grape-enriched diet on bone in ovariectomized rats. Rats were ovariectomized at 3 mo of age and were administered a single dose of (45)Ca to prelabel bones at 4 mo of age. After a 1-mo equilibration period, baseline urinary (45)Ca excretion was determined. Rats (n = 22/group) were then randomly assigned to a modified AIN93M diet containing 25% freeze-dried grape powder or to a control diet for 8 wk. Urinary (45)Ca excretion was monitored throughout the study to determine changes in bone (45)Ca retention. Calcium balance was assessed after 1 and 8 wk of consuming the experimental diets, and a calcium kinetic study was performed at 8 wk. After 8 wk, femurs were collected for micro-computed tomographic imaging, 3-point bending, and reference point indentation. Rats fed the grape-enriched diet had 44% greater net bone calcium retention than did rats fed the control diet. There were no differences in calcium balance due to diet at either week 1 or week 8, but there was a significant increase in net calcium absorption (10.6%) and retention (5.7%) from week 1 to week 8 in the grape-enriched diet group only. Grape-enriched diet-fed rats had 3% greater cortical thickness and 11% greater breaking strength. There were no differences in femur bone mineral density, trabecular microarchitecture, or reference point indentation variables due to diet. This study of ovariectomized rats indicates that the consumption of grape products may improve calcium utilization and suppress bone turnover, resulting in improvements in bone quality. © 2015 American Society for

  3. Increased hepatic nicotine elimination after phenobarbital induction in the conscious rat

    International Nuclear Information System (INIS)

    Foth, H.; Walther, U.I.; Kahl, G.F.

    1990-01-01

    Elimination parameters of [14C]nicotine in conscious rats receiving nicotine (0.3 mg/kg) either intravenously or orally were studied. The oral availability of unchanged nicotine, derived by comparison of the respective areas under the concentration vs time curves (AUC), was 89%, indicating low hepatic extraction ratios of about 10%. Pretreatment of rats with phenobarbital (PB) markedly increased hepatic first-pass extraction of nicotine. The oral availability of unchanged nicotine in plasma dropped to 1.4% of the corresponding values obtained from PB-treated rats receiving nicotine iv. After PB pretreatment, the clearance of iv nicotine was increased approximately twofold over controls, much less than the observed more than ninefold increase of hepatic first-pass extraction. It is assumed that extrahepatic metabolism contributed significantly to the rapid removal of nicotine from the plasma. The elimination of cotinine, originating from nicotine administered either po or iv, was significantly increased by PB pretreatment, as determined by the ratio of corresponding AUCs. The pattern of nicotine metabolites in urine also indicated an increase in the rate of cotinine metabolic turnover. The amount of norcotinine in the organic extract of urine paralleled PB microsomal enzyme induction. The ratio between urinary concentrations of the normetabolite and cotinine correlated strongly with the PB-induced state of rat liver. This may be a suitable indicator of PB-inducible hepatic cytochrome P450 isoenzyme(s). Since smoking habits in man are feedback-regulated by nicotine plasma concentrations, a similar increase of nicotine elimination by microsomal enzyme induction in man may be of relevance for tobacco consumption

  4. Exendin-4 reduces tau hyperphosphorylation in type 2 diabetic rats via increasing brain insulin level.

    Science.gov (United States)

    Yang, Yan; Ma, Delin; Xu, Weijie; Chen, Fuqiong; Du, Tingting; Yue, Wenzhu; Shao, Shiying; Yuan, Gang

    2016-01-01

    Type 2 diabetes (T2D) is a high risk factor for Alzheimer's disease (AD). Our previous study identified that hyperphosphorylation of tau protein, which is one of the pathophysiologic hallmarks of AD, also occurred in T2D rats' brain; while glucagon-like peptide-1 (GLP-1) mimetics, a type of drug used in T2D, could decrease the phosphorylation of tau, probably via augmenting insulin signaling pathway. The purpose of this study was to further explore the mechanisms that underlie the effect of exendin-4 (ex-4, a GLP-1 receptor agonist) in reducing tau phosphorylation. We found that peripheral ex-4 injection in T2D rats reduced hyperphosphorylation of tau protein in rat hippocampus, probably via increasing hippocampal insulin which activated insulin signaling. Furthermore, we found that ex-4 could neither activate insulin signaling, nor reduce tau phosphorylation in HT22 neuronal cells in the absence of insulin. These results suggested that insulin is required in reduction of tau hyperphosphorylation by ex-4 in brain rats with T2D. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Oxidized fish oil in rat pregnancy causes high newborn mortality and increases maternal insulin resistance.

    Science.gov (United States)

    Albert, Benjamin B; Vickers, Mark H; Gray, Clint; Reynolds, Clare M; Segovia, Stephanie A; Derraik, José G B; Lewandowski, Paul A; Garg, Manohar L; Cameron-Smith, David; Hofman, Paul L; Cutfield, Wayne S

    2016-09-01

    Fish oil is commonly taken by pregnant women, and supplements sold at retail are often oxidized. Using a rat model, we aimed to assess the effects of supplementation with oxidized fish oil during pregnancy in mothers and offspring, focusing on newborn viability and maternal insulin sensitivity. Female rats were allocated to a control or high-fat diet and then mated. These rats were subsequently randomized to receive a daily gavage treatment of 1 ml of unoxidized fish oil, a highly oxidized fish oil, or control (water) throughout pregnancy. At birth, the gavage treatment was stopped, but the same maternal diets were fed ad libitum throughout lactation. Supplementation with oxidized fish oil during pregnancy had a marked adverse effect on newborn survival at day 2, leading to much greater odds of mortality than in the control (odds ratio 8.26) and unoxidized fish oil (odds ratio 13.70) groups. In addition, maternal intake of oxidized fish oil during pregnancy led to increased insulin resistance at the time of weaning (3 wks after exposure) compared with control dams (HOMA-IR 2.64 vs. 1.42; P = 0.044). These data show that the consumption of oxidized fish oil is harmful in rat pregnancy, with deleterious effects in both mothers and offspring. Copyright © 2016 the American Physiological Society.

  6. Brain SERT Expression of Male Rats Is Reduced by Aging and Increased by Testosterone Restitution

    Directory of Open Access Journals (Sweden)

    José Jaime Herrera-Pérez

    2013-01-01

    Full Text Available In preclinical and clinical studies aging has been associated with a deteriorated response to antidepressant treatment. We hypothesize that such impairment is explained by an age-related decrease in brain serotonin transporter (SERT expression associated with low testosterone (T levels. The objectives of this study were to establish (1 if brain SERT expression is reduced by aging and (2 if the SERT expression in middle-aged rats is increased by T-restitution. Intact young rats (3–5 months and gonad-intact middle-aged rats with or without T-restitution were used. The identification of the brain SERT expression was done by immunofluorescence in prefrontal cortex, lateral septum, hippocampus, and raphe nuclei. An age-dependent reduction of SERT expression was observed in all brain regions examined, while T-restitution recovered the SERT expression only in the dorsal raphe of middle-aged rats. This last action seems relevant since dorsal raphe plays an important role in the antidepressant action of selective serotonin reuptake inhibitors. All data suggest that this mechanism accounts for the T-replacement usefulness to improve the response to antidepressants in the aged population.

  7. Downregulation of natriuretic peptide system and increased steroidogenesis in rat polycystic ovary.

    Science.gov (United States)

    Pereira, Virginia M; Honorato-Sampaio, Kinulpe; Martins, Almir S; Reis, Fernando M; Reis, Adelina M

    2014-10-01

    Atrial natriuretic peptide (ANP) is known to regulate ovarian functions, such as follicular growth and steroid hormone production. The aim of the present study was to investigate the natriuretic peptide system in a rat model of chronic anovulation, the rat polycystic ovary. Adult female Wistar rats received a single subcutaneous injection of 2mg estradiol valerate to induce polycystic ovaries, while the control group received vehicle injection. Two months later, their ovaries were quickly removed and analyzed. Polycystic ovaries exhibited marked elevation of testosterone and estradiol levels compared to control ovaries. The levels of ANP and the expression of ANP mRNA were highly reduced in the polycystic ovaries compared to controls. By immunohistochemistry, polycystic ovaries showed weaker ANP staining in stroma, theca cells and oocytes compared to controls. Polycystic ovaries also had increased activity of neutral endopeptidase, the main proteolytic enzyme that degrades natriuretic peptides. ANP receptor C mRNA was reduced and ANP binding to this receptor was absent in polycystic ovaries. Collectively, these results indicate a downregulation of the natriuretic peptide system in rat polycystic ovary, an established experimental model of anovulation with high ovarian testosterone and estradiol levels. Together with previous evidence demonstrating that ANP inhibits ovarian steroidogenesis, these findings suggest that low ovarian ANP levels may contribute to the abnormal steroid hormone balance in polycystic ovaries. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Fermented soymilk increases voluntary wheel running activity and sexual behavior in male rats.

    Science.gov (United States)

    Sato, Takuya; Shinohara, Yasutomo; Kaneko, Daisuke; Nishimura, Ikuko; Matsuyama, Asahi

    2010-12-01

    Wheel running by rodents is thought to reflect voluntary exercise in humans. The present study examined the effect of fermented soymilk (FSM) on voluntary wheel running in rats. FSM was prepared from soymilk (SM) using the bacteria Leuconostoc pseudomesenteroides. The rats were fed a normal diet for 3 weeks followed by a 3-week administration of diet containing FSM or SM (5% w/w), and then the diets were switched back to a normal diet for 3 weeks. The voluntary wheel running activity was increased by FSM administration, although no changes were observed by SM administration. This effect was observed 2 weeks after FSM administration and lasted 1 week after deprivation of FSM. Then we evaluated the effect of FSM on sexual behavior in male rats. FSM administration for 10 days significantly increased the number of mounts. The protein expression of tyrosine hydroxylase (TH) increased in the hippocampus by FSM administration and it is suggested that FSM may change norepinephrine or dopamine signaling in the brain. Our study provides the first evidence that FSM increases voluntary wheel running activity and sexual behavior and suggests that TH may be involved in these effects.

  9. Roux-en-Y gastric bypass increases intravenous ethanol self-administration in dietary obese rats.

    Directory of Open Access Journals (Sweden)

    James E Polston

    Full Text Available Roux-en-Y gastric bypass surgery (RYGB is an effective treatment for severe obesity. Clinical studies however have reported susceptibility to increased alcohol use after RYGB, and preclinical studies have shown increased alcohol intake in obese rats after RYGB. This could reflect a direct enhancement of alcohol's rewarding effects in the brain or an indirect effect due to increased alcohol absorption after RGYB. To rule out the contribution that changes in alcohol absorption have on its rewarding effects, here we assessed the effects of RYGB on intravenously (IV administered ethanol (1%. For this purpose, high fat (60% kcal from fat diet-induced obese male Sprague Dawley rats were tested ~2 months after RYGB or sham surgery (SHAM using both fixed and progressive ratio schedules of reinforcement to evaluate if RGYB modified the reinforcing effects of IV ethanol. Compared to SHAM, RYGB rats made significantly more active spout responses to earn IV ethanol during the fixed ratio schedule, and achieved higher breakpoints during the progressive ratio schedule. Although additional studies are needed, our results provide preliminary evidence that RYGB increases the rewarding effects of alcohol independent of its effects on alcohol absorption.

  10. The increased concentration of 2,3-diphosphoglycerate in red blood cells of spontaneously hypertensive rats.

    Science.gov (United States)

    Przybylski, J; Skotnicka-Fedorowicz, B; Lisiecka, A; Siński, M; Abramczyk, P

    1997-12-01

    It has been recognised that high haemoglobin oxygen capacity is essential for the development of high blood pressure in spontaneously hypertensive rats. In the present study we have found increased concentration of 2,3 diphosphoglycerate (2,3-DPG) in red blood cells of spontaneously hypertensive rats (SHR) of Okamoto-Aoki strain. As 2,3-DPG is the major factor decreasing haemoglobin affinity to oxygen, our finding suggests that at given value of pO2 oxygen delivery to the tissue of SHR would be increased. Therefore increased concentration of 2,3-DPG in red blood cells of SHR would be of the pathophysiological meaning by promoting autoregulatory increase in total vascular resistance in this strain of rats. The mechanism responsible for enhanced synthesis of 2,3-DPG in SHR remains unclear. Intracellular alkalosis due to either hypocapnia and/or an enhanced activity of Na+/H+ antiporter occurring in SHR are the most plausible explanations for the above finding.

  11. Pathological activity in mediodorsal thalamus of rats with spinal cord injury pain.

    Science.gov (United States)

    Whitt, Jessica L; Masri, Radi; Pulimood, Nisha S; Keller, Asaf

    2013-02-27

    Spinal cord injury (SCI) results not only in motor deficits, but produces, in many patients, excruciating chronic pain (SCI pain). We have previously shown, in a rodent model, that SCI causes suppression of activity in the GABAergic nucleus, the zona incerta (ZI), and concomitant increased activity in one of its main targets, the posterior nucleus of the thalamus (PO); the increased PO activity is correlated with the maintenance and expression of hyperalgesia after SCI. Here, we test the hypothesis that SCI causes a similar pathological increase in other thalamic nuclei regulated by the ZI, specifically the mediodorsal thalamus (MD), which is involved in the emotional-affective aspects of pain. We recorded single and multiunit activity from MD of either anesthetized or awake rats, and compared data from rats with SCI with data from sham-operated controls (anesthetized experiments) or with data from the same animals prelesion (awake experiments). Consistent with our hypothesis, MD neurons from rats with SCI show significant increases in spontaneous firing rates and in the magnitude and duration of responses to noxious stimuli. In a subset of anesthetized animals, similar changes in activity of MD neurons were produced by pharmacologically inactivating ZI in naive rats, suggesting that the changes in the MD after SCI are related to suppressed inhibition from the ZI. These data support our hypothesis that SCI pain results, at least in part, from a loss of inhibition to thalamic nuclei associated with both the sensory-discriminative and emotional-affective components of pain.

  12. Increased oral AUC of baicalin in streptozotocin-induced diabetic rats due to the increased activity of intestinal beta-glucuronidase.

    Science.gov (United States)

    Liu, Li; Deng, Yuan-Xiong; Liang, Yan; Pang, Xiao-Yan; Liu, Xiao-Dong; Liu, Yao-Wu; Yang, Jian-Song; Xie, Lin; Wang, Guang-Ji

    2010-01-01

    The purpose of the study was to investigate the pharmacokinetics of baicalin, a major bioactive component of Scutellariae radix, in diabetic conditions. The 4-week diabetic rats were induced by intraperitoneal administration of streptozotocin. Plasma concentrations of baicalin were measured following oral (200 mg/kg) or intravenous (12 mg/kg) administration. Everted intestinal transport, intestinal mucosal metabolism of baicalin and intestinal beta-glucuronidase activity were also investigated. It was found that the diabetic condition significantly increased the exposure of baicalin following oral doses (AUC 100.77 +/- 4.16 microg x h/mL in diabetic rats vs. 48.48 +/- 7.94 microg x h/mL in normal rats). In contrast, the diabetic condition significantly decreased the exposure of baicalin following intravenous doses (AUC 11.20 +/- 2.28 microg x h/mL in diabetic rats vs. 18.02 +/- 3.45 microg x h/mL in normal rats). We also found lower apparent permeability coefficients of baicalin in the ileum of diabetic rats (8.43 x 10 (-6) +/- 2.40 x 10 (-6) cm/s in diabetic rats vs. 5.21 x 10 (-5) +/- 1.55 x 10 (-5) cm/s in normal rats). Further studies showed that the diabetic condition enhanced the hydrolysis of baicalin to baicalein in intestinal mucosal, accompanied by an increase of beta-glucuronidase activity. All these results suggested that the higher oral exposure of baicalin in diabetic rats did not result from the decreased hepatic metabolism or increased intestinal absorption of baicalin. The enhancement of intestinal beta-glucuronidase activity may partly account for the higher exposure of baicalin in diabetic rats after oral administration. Copyright Georg Thieme Verlag KG Stuttgart . New York.

  13. Acute hyperammonemia and systemic inflammation is associated with increased extracellular brain adenosine in rats

    DEFF Research Database (Denmark)

    Bjerring, Peter Nissen; Dale, Nicholas; Larsen, Fin Stolze

    2015-01-01

    ) and cerebral blood flow (CBF). We measured the adenosine concentration with biosensors in rat brain slices exposed to ammonia and in a rat model with hyperammonemia and systemic inflammation. Exposure to ammonia in concentrations from 0.15-10 mM led to increases in the cortical adenosine concentration up to 18......Acute liver failure (ALF) can lead to brain edema, cerebral hyperperfusion and intracranial hypertension. These complications are thought to be mediated by hyperammonemia and inflammation leading to altered brain metabolism. As increased levels of adenosine degradation products have been found...... in brain tissue of patients with ALF we investigated whether hyperammonemia could induce adenosine release in brain tissue. Since adenosine is a potent vasodilator and modulator of cerebral metabolism we furthermore studied the effect of adenosine receptor ligands on intracranial pressure (ICP...

  14. A self-medication hypothesis for increased vulnerability to drug abuse in prenatally restraint stressed rats.

    Science.gov (United States)

    Reynaert, Marie-Line; Marrocco, Jordan; Gatta, Eleonora; Mairesse, Jérôme; Van Camp, Gilles; Fagioli, Francesca; Maccari, Stefania; Nicoletti, Ferdinando; Morley-Fletcher, Sara

    Stress-related events that occur in the perinatal period can permanently change brain and behavior of the developing individual and there is increasing evidence that early-life adversity is a contributing factor in the etiology of drug abuse and mood disorders. Neural adaptations resulting from early-life stress may mediate individual differences in novelty responsiveness and in turn contribute to drug abuse vulnerability. Prenatal restraint stress (PRS) in rats is a well-documented model of early stress known to induce long-lasting neurobiological and behavioral alterations including impaired feedback mechanisms of the HPA axis, enhanced novelty seeking, and increased sensitiveness to psychostimulants as well as anxiety/depression-like behavior. Together with the HPA axis, functional alterations of the mesolimbic dopamine system and of the metabotropic glutamate receptors system appear to be involved in the addiction-like profile of PRS rats.

  15. Thalamic functional connectivity predicts seizure laterality in individual TLE patients: application of a biomarker development strategy.

    Science.gov (United States)

    Barron, Daniel S; Fox, Peter T; Pardoe, Heath; Lancaster, Jack; Price, Larry R; Blackmon, Karen; Berry, Kristen; Cavazos, Jose E; Kuzniecky, Ruben; Devinsky, Orrin; Thesen, Thomas

    2015-01-01

    Noninvasive markers of brain function could yield biomarkers in many neurological disorders. Disease models constrained by coordinate-based meta-analysis are likely to increase this yield. Here, we evaluate a thalamic model of temporal lobe epilepsy that we proposed in a coordinate-based meta-analysis and extended in a diffusion tractography study of an independent patient population. Specifically, we evaluated whether thalamic functional connectivity (resting-state fMRI-BOLD) with temporal lobe areas can predict seizure onset laterality, as established with intracranial EEG. Twenty-four lesional and non-lesional temporal lobe epilepsy patients were studied. No significant differences in functional connection strength in patient and control groups were observed with Mann-Whitney Tests (corrected for multiple comparisons). Notwithstanding the lack of group differences, individual patient difference scores (from control mean connection strength) successfully predicted seizure onset zone as shown in ROC curves: discriminant analysis (two-dimensional) predicted seizure onset zone with 85% sensitivity and 91% specificity; logistic regression (four-dimensional) achieved 86% sensitivity and 100% specificity. The strongest markers in both analyses were left thalamo-hippocampal and right thalamo-entorhinal cortex functional connection strength. Thus, this study shows that thalamic functional connections are sensitive and specific markers of seizure onset laterality in individual temporal lobe epilepsy patients. This study also advances an overall strategy for the programmatic development of neuroimaging biomarkers in clinical and genetic populations: a disease model informed by coordinate-based meta-analysis was used to anatomically constrain individual patient analyses.

  16. Regulation of renal Na+-K-ATPase in the rat: role of increased potassium transport

    International Nuclear Information System (INIS)

    Mujais, S.K.; Chekal, M.A.; Hayslett, J.P.; Katz, A.I.

    1986-01-01

    The purpose of this study was to characterize the alterations in collecting tubule Na + -K + -ATPase activity produced by sustained increments in dietary potassium in the rat and to evaluate the role of aldosterone in their generation. In adrenal-intact animals, feeding a high-potassium diet or administration of a high physiological dose of aldosterone, which simulates the delivery rate of this hormone during potassium loading, caused marked increments in Na + -K + -ATPase activity in the cortical collecting tubule (CCT) but had no effect on the enzyme in the inner stripe of the medullary collecting tubule (MCT). A significant increase in enzyme activity was also observed after smaller dietary potassium increments and after 4 days of dietary potassium load. In adrenalectomized rats provided with physiological replacement doses of corticosterone and aldosterone, Na + -K + -ATPase activity in both CCT and MCT was similar to that of adrenal-intact controls but remained unchanged after 7 days on the potassium-enriched (10-fold) diet. In contrast, adrenalectomized animals receiving the high physiological dose of aldosterone displayed an increase in Na + -K + -ATPase activity of CCT comparable with that of adrenal-intact animals, whereas the enzyme activity in the MCT was unaffected. In conclusion, 1) following chronic potassium loading Na + -K + -ATPase activity increases significantly in the CCT with no change in its activity in the inner stripe of the MCT; 2) this increase in enzyme activity occurs in a time-dependent fashion and in proportion to the potassium load; and 3) the stimulation of Na + -K + -ATPase activity in adrenal-replaced rats is facilitated by augmented levels of aldosterone, such as those actually observed in adrenal-intact rats subjected to chronic potassium loading

  17. Acute resistance exercise reduces increased gene expression in muscle atrophy of ovariectomised arthritic rats

    Directory of Open Access Journals (Sweden)

    Roberto Furlanetto Jr

    2017-02-01

    Full Text Available Objective: We studied the effect of resistance exercise (RE on mRNA levels of atrogin-1, MuRF-1, and myostatin in the gastrocnemius muscle of arthritic rats after loss of ovarian function (LOF. Material and methods : Thirty female Wistar rats (nine weeks old, 195.3 ±17.4 grams were randomly allocated into five groups: control group (CT-Sham; n = 6; group with rheumatoid arthritis (RA; n = 6; group with rheumatoid arthritis subjected to RE (RAEX; n = 6; ovariectomy group with rheumatoid arthritis (RAOV; n = 6; and an ovariectomy group with rheumatoid arthritis subjected to RE (RAOVEX; n = 6. After 15 days of intra-articular injections with Met-BSA the animals were subjected to RE and six hours after workout were euthanised. Results : The rheumatoid arthritis provoked reduction in the cross-sectional area (CSA of muscle fibres, but the CSA was lower in the RAOV when compared to the RA groups. Skeletal muscle atrogin-1 mRNA level was increased in arthritic rats (RA and RAOV, but the atrogin-1 level was higher in RAOV group when compared to other arthritic groups. The Muscle MuRF-1 mRNA level was also increased in the RAOV group. The increased atrogin-1 and MuRF-1 mRNA levels were lower in the RAOVEX group than in the RAOV group. The myostatin mRNA level was similar in all groups, except for the RAOVEX group, in which it was lower than the other groups. Conclusions : LOF results in increased loss of skeletal muscle-related ubiquitin ligases (atrogin-1 and MuRF-1. However, the RE reduces the atrogin-1, MuRF-1, and myostatin mRNA levels in muscle of arthritic rats affected by LOF.

  18. Increased paracellular permeability in intrahepatic cholestasis induced by carmustine (BCNU) in rats

    International Nuclear Information System (INIS)

    Krell, H.; Fromm, H.; Larson, R.E.

    1991-01-01

    Carmustine [i.e., 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU)] is a drug with cholestatic potency both in experimental animals and in humans. To study the mechanisms involved in the development of the hepatic lesions, early changes in liver function in rats pretreated with the drug were investigated. Dosages and sampling times that did not result in hepatocellular injury, as indicated by release of marker enzymes, were applied. In isolated perfused livers from pretreated rats, bile flow and maximal secretion rate of taurocholate were decreased. An increase in biliary 14 Csucrose clearance suggested enhanced permeability of the bile tract and was correlated with increased inorganic phosphate concentration in bile. To assess the contribution of paracellular and transcellular pathways of sucrose, 14 Csucrose access into bile was analyzed by biliary off-kinetics after omission of the radioactive marker from the perfusion medium. An improved method was developed to quantitate the permeability of the bile tract by applying the classical flow equation to the paracellular portion of biliary sucrose clearance. With this method it was shown that pretreatment of rats with BCNU resulted in an increase in both diffusion and convection of paracellular sucrose from perfusate into bile. Accordingly, the fast access of horseradish peroxidase from perfusate into bile was facilitated in isolated perfused livers of BCNU-treated rats. The results indicate that an increase in paracellular permeability is an early alteration that may contribute to the development of hepatotoxic lesions caused by BCNU. It is shown that inert solute clearance can be used to assess paracellular permeability if the paracellular fraction is determined

  19. Regulation of renal Na -K-ATPase in the rat: role of increased potassium transport

    Energy Technology Data Exchange (ETDEWEB)

    Mujais, S.K.; Chekal, M.A.; Hayslett, J.P.; Katz, A.I.

    1986-08-01

    The purpose of this study was to characterize the alterations in collecting tubule Na -K -ATPase activity produced by sustained increments in dietary potassium in the rat and to evaluate the role of aldosterone in their generation. In adrenal-intact animals, feeding a high-potassium diet or administration of a high physiological dose of aldosterone, which simulates the delivery rate of this hormone during potassium loading, caused marked increments in Na -K -ATPase activity in the cortical collecting tubule (CCT) but had no effect on the enzyme in the inner stripe of the medullary collecting tubule (MCT). A significant increase in enzyme activity was also observed after smaller dietary potassium increments and after 4 days of dietary potassium load. In adrenalectomized rats provided with physiological replacement doses of corticosterone and aldosterone, Na -K -ATPase activity in both CCT and MCT was similar to that of adrenal-intact controls but remained unchanged after 7 days on the potassium-enriched (10-fold) diet. In contrast, adrenalectomized animals receiving the high physiological dose of aldosterone displayed an increase in Na -K -ATPase activity of CCT comparable with that of adrenal-intact animals, whereas the enzyme activity in the MCT was unaffected. In conclusion, 1) following chronic potassium loading Na -K -ATPase activity increases significantly in the CCT with no change in its activity in the inner stripe of the MCT; 2) this increase in enzyme activity occurs in a time-dependent fashion and in proportion to the potassium load; and 3) the stimulation of Na -K -ATPase activity in adrenal-replaced rats is facilitated by augmented levels of aldosterone, such as those actually observed in adrenal-intact rats subjected to chronic potassium loading.

  20. Acute administration of fenproporex increased acetylcholinesterase activity in brain of young rats.

    Science.gov (United States)

    Teodorak, Brena P; Ferreira, Gabriela K; Scaini, Giselli; Wessler, Letícia B; Heylmann, Alexandra S; Deroza, Pedro; Valvassori, Samira S; Zugno, Alexandra I; Quevedo, João; Streck, Emilio L

    2015-08-01

    Fenproporex is the second most commonly amphetamine-based anorectic consumed worldwide; this drug is rapidly converted into amphetamine, in vivo, and acts by increasing dopamine levels in the synaptic cleft. Considering that fenproporex effects on the central nervous system are still poorly known and that acetylcholinesterase is a regulatory enzyme which is involved in cholinergic synapses and may indirectly modulate the release of dopamine, the present study investigated the effects of acute administration of fenproporex on acetylcholinesterase activity in brain of young rats. Young male Wistar rats received a single injection of fenproporex (6.25, 12.5 or 25mg/kg i.p.) or vehicle (2% Tween 80). Two hours after the injection, the rats were killed by decapitation and the brain was removed for evaluation of acetylcholinesterase activity. Results showed that fenproporex administration increased acetylcholinesterase activity in the hippocampus and posterior cortex, whereas in the prefrontal cortex, striatum and cerebellum the enzyme activity was not altered. In conclusion, in the present study we demonstrated that acute administration of fenproporex exerts an effect in the cholinergic system causing an increase in the activity of acetylcholinesterase in a dose-dependent manner in the hippocampus and posterior cortex. Thus, we suggest that the imbalance in cholinergic homeostasis could be considered as an important pathophysiological mechanism underlying the brain damage observed in patients who use amphetamines such as fenproporex.

  1. Naked mole-rat mortality rates defy Gompertzian laws by not increasing with age

    Science.gov (United States)

    Ruby, J Graham; Smith, Megan

    2018-01-01

    The longest-lived rodent, the naked mole-rat (Heterocephalus glaber), has a reported maximum lifespan of >30 years and exhibits delayed and/or attenuated age-associated physiological declines. We questioned whether these mouse-sized, eusocial rodents conform to Gompertzian mortality laws by experiencing an exponentially increasing risk of death as they get older. We compiled and analyzed a large compendium of historical naked mole-rat lifespan data with >3000 data points. Kaplan-Meier analyses revealed a substantial portion of the population to have survived at 30 years of age. Moreover, unlike all other mammals studied to date, and regardless of sex or breeding-status, the age-specific hazard of mortality did not increase with age, even at ages 25-fold past their time to reproductive maturity. This absence of hazard increase with age, in defiance of Gompertz’s law, uniquely identifies the naked mole-rat as a non-aging mammal, confirming its status as an exceptional model for biogerontology. PMID:29364116

  2. Acute administration of fenproporex increased acetylcholinesterase activity in brain of young rats

    Directory of Open Access Journals (Sweden)

    BRENA P. TEODORAK

    2015-08-01

    Full Text Available Fenproporex is the second most commonly amphetamine-based anorectic consumed worldwide; this drug is rapidly converted into amphetamine, in vivo, and acts by increasing dopamine levels in the synaptic cleft. Considering that fenproporex effects on the central nervous system are still poorly known and that acetylcholinesterase is a regulatory enzyme which is involved in cholinergic synapses and may indirectly modulate the release of dopamine, the present study investigated the effects of acute administration of fenproporex on acetylcholinesterase activity in brain of young rats. Young male Wistar rats received a single injection of fenproporex (6.25, 12.5 or 25mg/kg i.p. or vehicle (2% Tween 80. Two hours after the injection, the rats were killed by decapitation and the brain was removed for evaluation of acetylcholinesterase activity. Results showed that fenproporex administration increased acetylcholinesterase activity in the hippocampus and posterior cortex, whereas in the prefrontal cortex, striatum and cerebellum the enzyme activity was not altered. In conclusion, in the present study we demonstrated that acute administration of fenproporex exerts an effect in the cholinergic system causing an increase in the activity of acetylcholinesterase in a dose-dependent manner in the hippocampus and posterior cortex. Thus, we suggest that the imbalance in cholinergic homeostasis could be considered as an important pathophysiological mechanism underlying the brain damage observed in patients who use amphetamines such as fenproporex.

  3. Gestational Protein Restriction Increases Cardiac Connexin 43 mRNA levels in male adult rat offspring

    Science.gov (United States)

    Rossini, Kamila Fernanda; de Oliveira, Camila Andrea; Rebelato, Hércules Jonas; Esquisatto, Marcelo Augusto Marreto; Catisti, Rosana

    2017-01-01

    Background The dietary limitation during pregnancy influences the growth and development of the fetus and offspring and their health into adult life. The mechanisms underlying the adverse effects of gestational protein restriction (GPR) in the development of the offspring hearts are not well understood. Objectives The aim of this study was to evaluate the effects of GPR on cardiac structure in male rat offspring at day 60 after birth (d60). Methods Pregnant Wistar rats were fed a normal-protein (NP, 17% casein) or low-protein (LP, 6% casein) diet. Blood pressure (BP) values from 60-day-old male offspring were measured by an indirect tail-cuff method using an electro sphygmomanometer. Hearts (d60) were collected for assessment of connexin 43 (Cx43) mRNA expression and morphological and morphometric analysis. Results LP offspring showed no difference in body weight, although they were born lighter than NP offspring. BP levels were significantly higher in the LP group. We observed a significant increase in the area occupied by collagen fibers, a decrease in the number of cardiomyocytes by 104 µm2, and an increase in cardiomyocyte area associated with an increased Cx43 expression. Conclusion GPR changes myocardial levels of Cx43 mRNA in male young adult rats, suggesting that this mechanism aims to compensate the fibrotic process by the accumulation of collagen fibers in the heart interstitium. PMID:28678925

  4. Combination of aerobic exercise and Hibiscus sabdariffa Linn. increased nitric oxide in rats

    Directory of Open Access Journals (Sweden)

    Donna Adriani Kusumadewi Muhammad

    2017-08-01

    Full Text Available Background Hypertension and myocardial infarction account for the high rate of mortality globally. Hibiscus sabdariffa (HS Linn. is rich in antioxidants and previous studies have demonstrated its anti-hypertensive effects. Several studies show that regular physical activity is an important component to reduce cardiovascular mortality. The objective of this study was to evaluate the effects of a combination of aerobic exercise and HS extract on nitric oxide (NO and endothelin-1 (ET-1 in rats.   Methods An experimental study was conducted on 36 male Wistar rats, aged 4 weeks and 60-70 g in weight. The interventions were aerobic exercises and HS at 400 mg/kg BW/day administered for 4, 8 and 12 weeks. The rats were randomized into 12 groups: 3 control groups (C4, C8, C12, 3 aerobic exercise groups (A4, A8, A12, 3 HS groups (H4, H8, H12, and 3 combination groups [aerobic exercise and HS] (HA4, HA8, HA12. After 4, 8, and 12 weeks, the rats were sacrificed and their abdominal aorta was collected for determination of nitric oxide and ET-1 concentrations. One way ANOVA was used to analyze the data.   Results There was a significant difference in NO levels between all groups, with the 4-week aerobic exercise group (A4 showing the highest NO levels compared to the other eleven groups (p<0.05. In contrast, the ET-1 levels were not significantly different between all groups.   Conclusions This study demonstrated that the combination of HS supplementation and aerobic exercise increases NO in rats, and provided further evidence to the traditional use of the plant as an antioxidants agent.

  5. Lamotrigine increases the number of BrdU-labeled cellsinthe rat hippocampus

    DEFF Research Database (Denmark)

    Kondziella, Daniel; Strandberg, Joakim; Lindquist, Catarina

    2010-01-01

    Antidepressant medication and electroconvulsive therapy stabilize mood symptoms and increase hippocampal neurogenesis. We examined whether lamotrigine, suggested to give rise to mood-stabilizing and antidepressant effects in addition to its antiepileptic properties, also increases the number of n...... in the granule cell layer of the dentate gyrus showed an increased number of newborn cells in rats receiving lamotrigine (42.6±3.5 cells/slice) compared with valproate (31.6±2.8) and controls (32.2±3.1; P...

  6. Lamotrigine increases the number of BrdU-labeled cells in the rat hippocampus

    DEFF Research Database (Denmark)

    Kondziella, Daniel; Strandberg, Joakim; Lindquist, Catarina

    2011-01-01

    Antidepressant medication and electroconvulsive therapy stabilize mood symptoms and increase hippocampal neurogenesis. We examined whether lamotrigine, suggested to give rise to mood-stabilizing and antidepressant effects in addition to its antiepileptic properties, also increases the number of n...... in the granule cell layer of the dentate gyrus showed an increased number of newborn cells in rats receiving lamotrigine (42.6 ± 3.5 cells/slice) compared with valproate (31.6 ± 2.8) and controls (32.2 ± 3.1; P...

  7. Increased arterial smooth muscle Ca2+ signaling, vasoconstriction, and myogenic reactivity in Milan hypertensive rats

    Science.gov (United States)

    Linde, Cristina I.; Karashima, Eiji; Raina, Hema; Zulian, Alessandra; Wier, Withrow G.; Hamlyn, John M.; Ferrari, Patrizia; Blaustein, Mordecai P.

    2012-01-01

    The Milan hypertensive strain (MHS) rats are a genetic model of hypertension with adducin gene polymorphisms linked to enhanced renal tubular Na+ reabsorption. Recently we demonstrated that Ca2+ signaling is augmented in freshly isolated mesenteric artery myocytes from MHS rats. This is associated with greatly enhanced expression of Na+/Ca2+ exchanger-1 (NCX1), C-type transient receptor potential (TRPC6) protein, and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2) compared with arteries from Milan normotensive strain (MNS) rats. Here, we test the hypothesis that the enhanced Ca2+ signaling in MHS arterial smooth muscle is directly reflected in augmented vasoconstriction [myogenic and phenylephrine (PE)-evoked responses] in isolated mesenteric small arteries. Systolic blood pressure was higher in MHS (145 ± 1 mmHg) than in MNS (112 ± 1 mmHg; P arteries from MHS rats had significantly augmented myogenic tone and reactivity and enhanced constriction to low-dose (1–100 nM) PE. Isolated MHS arterial myocytes exhibited approximately twofold increased peak Ca2+ signals in response to 5 μM PE or ATP in the absence and presence of extracellular Ca2+. These augmented responses are consistent with increased vasoconstrictor-evoked sarcoplasmic reticulum (SR) Ca2+ release and increased Ca2+ entry, respectively. The increased SR Ca2+ release correlates with a doubling of inositol 1,4,5-trisphosphate receptor type 1 and tripling of SERCA2 expression. Pressurized MHS arteries also exhibited a ∼70% increase in 100 nM ouabain-induced vasoconstriction compared with MNS arteries. These functional alterations reveal that, in a genetic model of hypertension linked to renal dysfunction, multiple mechanisms within the arterial myocytes contribute to enhanced Ca2+ signaling and myogenic and vasoconstrictor-induced arterial constriction. MHS rats have elevated plasma levels of endogenous ouabain, which may initiate the protein upregulation and enhanced Ca2+ signaling. These

  8. Blockage of High-Affinity Choline Transporter Increases Visceral Hypersensitivity in Rats with Chronic Stress

    Directory of Open Access Journals (Sweden)

    Chen Zhao

    2018-01-01

    Full Text Available Background. Visceral hypersensitivity is a common feature of irritable bowel syndrome. Cholinergic system involves in the development of visceral hypersensitivity, and high-affinity choline transporter (CHT1 is of crucial importance in choline uptake system. However, involvement of CHT1 in visceral hypersensitivity remains unknown. The research aimed to study the CHT1 expression in dorsal root ganglions (DRGs and the role of CHT1 in visceral hypersensitivity. Methods. Repetitive water avoidance stress (WAS was used to induce visceral hypersensitivity in rats. Colorectal distension (CRD was determined, and the abdominal withdrawal reflex (AWR and threshold intensity data were recorded to measure the visceral sensitivity. After intraperitoneal injection of hemicholinium-3 (HC-3, the specific inhibitor of CHT1, CRD data were also recorded. The CHT1 expression of DRGs was investigated by Western blotting, immunohistochemistry, and quantitative RT-PCR. Acetylcholine levels in the DRGs were detected by the assay kit. Results. Repetitive WAS increased the AWR score of CRD at high distension pressure and decreased the mean threshold of rats. The CHT1 expression and acetylcholine concentration of DRG were significantly increased in WAS rats. After the administration of HC-3, the AWR score in WAS group was significantly increased at higher distension pressure while the threshold intensity was significantly reduced compared to the normal saline group. Acetylcholine concentration was significantly lower than the normal saline rats. Conclusion. Our research firstly reports that CHT1 is overexpressed in noninflammatory visceral hypersensitivity, and blockage of CHT1 can enhance the visceral hypersensitivity. CHT1 may play an inhibitory role in visceral hypersensitivity.

  9. Blockage of High-Affinity Choline Transporter Increases Visceral Hypersensitivity in Rats with Chronic Stress

    Science.gov (United States)

    2018-01-01

    Background Visceral hypersensitivity is a common feature of irritable bowel syndrome. Cholinergic system involves in the development of visceral hypersensitivity, and high-affinity choline transporter (CHT1) is of crucial importance in choline uptake system. However, involvement of CHT1 in visceral hypersensitivity remains unknown. The research aimed to study the CHT1 expression in dorsal root ganglions (DRGs) and the role of CHT1 in visceral hypersensitivity. Methods Repetitive water avoidance stress (WAS) was used to induce visceral hypersensitivity in rats. Colorectal distension (CRD) was determined, and the abdominal withdrawal reflex (AWR) and threshold intensity data were recorded to measure the visceral sensitivity. After intraperitoneal injection of hemicholinium-3 (HC-3), the specific inhibitor of CHT1, CRD data were also recorded. The CHT1 expression of DRGs was investigated by Western blotting, immunohistochemistry, and quantitative RT-PCR. Acetylcholine levels in the DRGs were detected by the assay kit. Results Repetitive WAS increased the AWR score of CRD at high distension pressure and decreased the mean threshold of rats. The CHT1 expression and acetylcholine concentration of DRG were significantly increased in WAS rats. After the administration of HC-3, the AWR score in WAS group was significantly increased at higher distension pressure while the threshold intensity was significantly reduced compared to the normal saline group. Acetylcholine concentration was significantly lower than the normal saline rats. Conclusion Our research firstly reports that CHT1 is overexpressed in noninflammatory visceral hypersensitivity, and blockage of CHT1 can enhance the visceral hypersensitivity. CHT1 may play an inhibitory role in visceral hypersensitivity. PMID:29849603

  10. Clofibric acid increases the formation of oleic acid in endoplasmic reticulum of the liver of rats.

    Science.gov (United States)

    Hirose, Akihiko; Yamazaki, Tohru; Sakamoto, Takeshi; Sunaga, Katsuyoshi; Tsuda, Tadashi; Mitsumoto, Atsushi; Kudo, Naomi; Kawashima, Yoichi

    2011-01-01

    The effects of 2-(4-chlorophenoxy)-2-methylpropionic acid (clofibric acid) on the formation of oleic acid (18:1) from stearic acid (18:0) and utilization of the 18:1 formed for phosphatidylcholine (PC) formation in endoplasmic reticulum in the liver of rats were studied in vivo. [¹⁴C]18:0 was intravenously injected into control Wistar male rats and rats that had been fed on a diet containing 0.5% (w/w) clofibric acid for 7 days; and the distribution of radiolabeled fatty acids among subcellular organelles, microsomes, peroxisomes, and mitochondria, was estimated on the basis of correction utilizing the yields from homogenates of marker enzymes for these organelles. The radioactivity was mostly localized in microsomes and the radiolabeled fatty acids present in microsomes were significantly increased by the treatment of rats with clofibric acid. The formation of radiolabeled 18:1 in microsomes markedly increased and incorporations of the formed [¹⁴C]18:1 into PC and phosphatidylethanolamine in microsomes were augmented in response to clofibric acid. The [¹⁴C]18:1 incorporated into PC was mostly located at the C-2 position, but not the C-1 position, of PC, and the radioactivity in 18:1 at the C-2 position of PC was strikingly increased by clofibric acid. These results obtained from the in vivo experiments directly link the findings that clofibric acid treatment induces microsomal stearoyl-CoA desaturase and 1-acylglycerophosphocholine acyltransferase in the liver and the findings that the treatment with the drug elevated absolute mass and mass proportion of 18:1 at the C-2 position, but not the C-1 position, of PC in the liver together.

  11. Magnesium absorption from mineral water decreases with increasing quantities of magnesium per serving in rats.

    Science.gov (United States)

    Nakamura, Eri; Tai, Hideyuki; Uozumi, Yoshinobu; Nakagawa, Koji; Matsui, Tohru

    2012-01-01

    It is hypothesized that magnesium (Mg) absorption from mineral water is affected by the concentration of Mg in the water, the consumption pattern, and the volume consumed per serving. The present study examined the effect of serving volume and consumption pattern of artificial mineral water (AMW) and Mg concentration on Mg absorption in rats. Magnesium in AMW was labeled with magnesium-25 as a tracer. Each group consisted of 6 or 7 rats. In experiment 1, the rats received 1 mL of AMW containing 200 mg Mg/L at 4 times, 400 mg Mg/L twice, or 800 mg Mg/L at 1 time. In experiment 2, the rats received 1 mL of AMW containing 200 mg Mg/L or 0.25 mL of AMW containing 800 mg Mg/L at 4 times or 1 mL of AMW containing 800 mg Mg/L at 1 time. The absorption of Mg decreased with increasing Mg concentrations in the same serving volume of AMW with different serving frequencies. When the AMW containing 800 mg Mg/L was portioned into 4 servings, Mg absorption increased to the level of absorption in the group exposed to AMW containing 200 mg Mg/L served at the same frequency. These results suggest that the Mg concentration and the volume of AMW do not affect Mg absorption per se, but Mg absorption from AMW decreases when the amount of Mg in each serving is increased. Thus, frequent consumption is preferable for mineral water rich in Mg when the total consumption of mineral water is the same. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Increased risk of cataract development in WNIN-obese rats due to accumulation of intralenticular sorbitol.

    Science.gov (United States)

    Reddy, Paduru Yadagiri; Giridharan, Nappan Veettil; Balakrishna, Nagalla; Validandi, Vakdevi; Pullakhandam, Raghu; Reddy, Geereddy Bhanuprakash

    2013-05-01

    Epidemiological studies have reported an association between obesity and increased incidence of ocular complications including cataract, yet the underlying biochemical and molecular mechanisms remained unclear. Previously we had demonstrated accumulation of sorbitol in the lens of obese rats (WNIN/Ob) and more so in a related strain with impaired glucose tolerance (WNIN/GR-Ob). However, only a few (15-20%) WNIN/Ob and WNIN/GR-Ob rats develop cataracts spontaneously with age. To gain further insights, we investigated the susceptibility of eye lens proteins of these obese rat strains to heat- and UV-induced aggregation in vitro, lens opacification upon glucose-mediated sorbitol accumulation ex vivo, and onset and progression of cataract was followed by galactose feeding and streptozotocin (STZ) injection. The results indicated increased susceptibility toward heat- or UV-induced aggregation of lens proteins in obese animals compared to their littermate lean controls. Further, in organ culture studies glucose-induced sorbitol accumulation was found to be higher and thus the lens opacification was faster in obese animals compared to their lean littermates. Also, the onset and progression of galactose- or STZ-induced cataractogenesis was faster in obese animals compared to lean control. These results together with our previous observations suggest that obesity status could lead to hyperaccumulation of sorbitol in eye lens, predisposing them to cataract, primarily by increasing their susceptibility to environmental and/or physiological factors. Further, intralenticular sorbitol accumulation beyond a threshold level could lead to cataract in WNIN/Ob and WNIN/GR-Ob rats. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  13. Alcohol drinking during adolescence increases consumptive responses to alcohol in adulthood in Wistar rats

    Science.gov (United States)

    Amodeo, Leslie R.; Kneiber, Diana; Wills, Derek N.; Ehlers, Cindy L.

    2017-01-01

    Binge drinking and the onset of alcohol use disorders usually peak during the transition between late adolescence and early adulthood, and early adolescent onset of alcohol consumption has been demonstrated to increase the risk for alcohol dependence in adulthood. In the present study we describe an animal model of early adolescent alcohol consumption where animals drink unsweetened and unflavored ethanol in high concentrations (20%). Using this model we investigated the influence of drinking on alcohol-related appetitive behavior and alcohol consumption levels in early adulthood. Further, we also sought to investigate whether differences in alcohol-related drinking behaviors were specific to exposure in adolescence versus exposure in adulthood. Male Wistar rats were given a 2-bottle choice between 20% ethanol and water in one group and between two water bottles in another group during their adolescence (Postnatal Day (PD) PD26-59) to model voluntary drinking in adolescent humans. As young adults (PD85), rats were trained in a paradigm that provided free access to 20% alcohol for 25 min after completing up to a fixed ratio (FR) 16-lever press response. A set of young adult male Wistar rats was exposed to the same paradigm using the same time course beginning at PD92. The results indicate that adolescent exposure to alcohol increased consumption of alcohol in adulthood. Furthermore, when investigating differences between adolescent high and low adolescent drinkers in adulthood, high consumers continued to drink more alcohol, had fewer FR failures, and had faster completion of FR schedules in adulthood whereas the low consumers were no different than controls. Rats exposed to ethanol in young adulthood also increased future intake but there were no differences in any other components of drinking behavior. Both adolescent- and adult-exposed rats did not exhibit an increase in lever pressing during the appetitive challenge session. These data indicate that adolescent

  14. Tributyltin chloride disrupts aortic vascular reactivity and increases reactive oxygen species production in female rats.

    Science.gov (United States)

    Ximenes, Carolina Falcão; Rodrigues, Samya Mere Lima; Podratz, Priscila Lang; Merlo, Eduardo; de Araújo, Julia Fernandez Puñal; Rodrigues, Lívia Carla Melo; Coitinho, Juliana Barbosa; Vassallo, Dalton Valentim; Graceli, Jones Bernardes; Stefanon, Ivanita

    2017-11-01

    Organotin compounds, such as tributyltin (TBT), are environment contaminants that induce bioaccumulation and have potential toxic effects on marine species and mammals. TBT have been banned by the International Maritime Organization in 2003. However, the assessment of butyltin and metal contents in marine sediments has demonstrated high residual levels of TBT in some cases exceeding 7000 ng Sn g -1 . The acceptable daily intake (ADI) level for TBT established by the World Health Organization is 0.5 μg/kg bw/day is based on genotoxicity, reproduction, teratogenicity, immunotoxicity, and mainly neurotoxicity. However, their effect on the cardiovascular system is not well understood. In this study, female rats were exposed to 0.5 μg/kg/day of TBT for 15 days with the goal of understanding the effect of TBT on vascular function. Female Wistar rats were treated daily by gavage and divided into control (n = 10) and TBT (n = 10) groups. The aortic rings were incubated with phenylephrine in both the presence and absence of endothelium. The phenylephrine concentration-response curves were generated by exposing endothelium-intact samples to N G -nitro-L-arginine methyl ester (L-NAME), apocynin, superoxide dismutase (SOD), catalase, tiron, and allopurinol. Acetylcholine (ACh) and sodium nitroprusside (SNP) were used to evaluate the relaxation response. Exposure to TBT reduced serum 17β-estradiol E 2 levels and increased vascular reactivity. After incubation with L-NAME, the vascular reactivity to phenylephrine was significantly higher. Apocynin, SOD, catalase, and tiron decreased the vascular reactivity to phenylephrine to a significantly greater extent in TBT-treated rats than in the control rat. The relaxation induced by ACh and SNP was significantly reduced in TBT rats. Exposure to TBT induced aortic wall atrophy and increased superoxide anion production and collagen deposition. These results provide evidence that exposing rats to the current ADI for TBT (0.5

  15. iNOS-dependent increase in colonic mucus thickness in DSS-colitic rats.

    Directory of Open Access Journals (Sweden)

    Olof Schreiber

    Full Text Available AIM: To investigate colonic mucus thickness in vivo in health and during experimental inflammatory bowel disease. METHODS: Colitis was induced with 5% DSS in drinking water for 8 days prior to experiment, when the descending colonic mucosa of anesthetized rats was studied using intravital microscopy. Mucus thickness was measured with micropipettes attached to a micromanipulator. To assess the contributions of NOS and prostaglandins in the regulation of colonic mucus thickness, the non-selective NOS-inhibitor L-NNA (10 mg/kg bolus followed by 3 mg/kg/h, the selective iNOS-inhibitor L-NIL (10 mg/kg bolus followed by 3 mg/kg/h and the non-selective COX-inhibitor diclofenac (5 mg/kg were administered intravenously prior to experiment. To further investigate the role of iNOS in the regulation of colonic mucus thickness, iNOS -/- mice were used. RESULTS: Colitic rats had a thicker firmly adherent mucus layer following 8 days of DSS treatment than untreated rats (88±2 µm vs 76±1 µm. During induction of colitis, the thickness of the colonic mucus layer initially decreased but was from day 3 significantly thicker than in untreated rats. Diclofenac reduced the mucus thickness similarly in colitic and untreated rats (-16±5 µm vs -14±2 µm. While L-NNA had no effect on colonic mucus thickness in DSS or untreated controls (+3±2 µm vs +3±1 µm, L-NIL reduced the mucus thickness significantly more in colitic rats than in controls (-33±4 µm vs -10±3 µm. The importance of iNOS in regulating the colonic mucus thickness was confirmed in iNOS-/- mice, which had thinner colonic mucus than wild-type mice (35±3 µm vs 50±2 µm, respectively. Furthermore, immunohistochemistry revealed increased levels of iNOS in the colonic surface epithelium following DSS treatment. CONCLUSION: Both prostaglandins and nitric oxide regulate basal colonic mucus thickness. During onset of colitis, the thickness of the mucus layer is initially reduced followed by an i

  16. Parasympathetic denervation increases responses to VIP in isolated rat parotid acini

    International Nuclear Information System (INIS)

    McMillian, M.K.; Talamo, B.R.

    1989-01-01

    Vasoactive intestinal peptide (VIP) is a putative neurotransmitter found in the salivary glands of many species, including the rat parotid gland. Parasympathetic denervation has been reported to deplete VIP in the rat parotid gland and to lead to supersensitivity to this peptide in vivo. We have compared the effects of VIP on acini isolated from parasympathetically denervated and unoperated parotid glands to examine possible supersensitivity to the peptide in vitro. VIP normally produced responses similar to those obtained with a low concentration of the beta adrenergic agonist isoproterenol (ISO), but strikingly different from the effects obtained with the muscarinic agonist carbachol (CARB). In parotid membrane preparations, VIP stimulated adenylate cyclase activity. Dissociated acini treated with VIP showed increases in cAMP accumulation and amylase release which were potentiated by forskolin and also by inhibition of phosphodiesterase. After parasympathetic denervation, maximal effects of VIP on adenylate cyclase, cAMP accumulation and amylase release in intact cells were increased two- to five-fold over contralateral control (or unoperated) parotid responses. The increase in adenylate cyclase-mediated responses after denervation was specific to VIP; there was no increased response nor increased sensitivity of any of these responses to ISO. Specific [125I]VIP binding to parotid acini increased two-fold per gland and three-fold per mg of protein after denervation; this probably explains the observed increases in the response to VIP

  17. Increased Dietary Leucine Reduces Doxorubicin-Associated Cardiac Dysfunction in Rats

    Directory of Open Access Journals (Sweden)

    Thiago M. Fidale

    2018-01-01

    Full Text Available Cardiotoxicity is one of the most significant adverse effects of the oncologic treatment with doxorubicin, which is responsible for a substantial morbid and mortality. The occurrence of heart failure with ventricular dysfunction may lead to severe cardiomyopathy and ultimately to death. Studies have focused on the effects of leucine supplementation as a strategy to minimize or revert the clinical condition of induced proteolysis by several clinical onsets. However, the impact of leucine supplementation in heart failure induced by doxorubicin is unknown. Therefore, the objective of this work is to evaluate the effects of leucine supplementation on the cardiotoxicity in the heart of rats treated with doxorubicin. Rats treated with a 7.5 mg/kg cumulative dose of doxorubicin for 14 days presented a dilatation of the left ventricle (LV, and a reduction of the ejection fraction (FE. The 5% supplementation of leucine in the rats' food prevented the malfunctioning of the LV when administered with doxorubicin. Some alterations in the extracellular matrix remodeling were confirmed by the increase of collagen fibers in the doxorubicin group, which did not increase when the treatment was associated with leucine supplementation. Leucine attenuates heart failure in this experimental model with doxorubicin. Such protection is followed by the maintenance of interstitial collagen fibers.

  18. Increased Arousal Levels and Decreased Sleep by Brain Music in Rats

    Institute of Scientific and Technical Information of China (English)

    Guang-Zhan Fang; Chun-Peng Zhang; Dan Wu; Yang Xia; Yong-Xiu Lai; De-Zhong Yao

    2009-01-01

    More and more studies have been reported on whether music and other types of auditory stimulation would improve the quality of sleep.Many of these studies have found significant results,but others argue that music is not significantly better than the tones or control conditions in improving sleep.For further understanding the relationship between music and sleep or music and arousal,the present study therefore examines the effects of brain music on sleep and arousal by means of biofeedback.The music is from the transformation of rapid eye movement (REM) sleep electroencephalogram (EEG) of rats using an algorithm in the Chengdu Brain Music (CBM) system.When the brain music was played back to rats,EEG data were recorded to assess the efficacy of music to induce or improve sleep,or increase arousal levels by sleep staging,etc.Our results demonstrate that exposure to the brain music increases arousal levels and decreases sleep in rats,and the underlying mechanism of decreased non-rapid eye movement (NREM) and REM sleep may be different.

  19. Acetaldehyde binding increases the catabolism of rat serum low-density lipoproteins

    International Nuclear Information System (INIS)

    Savolainen, M.J.; Baraona, E.; Lieber, C.S.

    1987-01-01

    Acetaldehyde was found to form adducts with rat serum lipoproteins. The binding of [ 14 C]acetaldehyde to lipoproteins was studied at low concentrations which are known to exist during ethanol oxidation. The amount of lipoprotein adducts was a linear function of acetaldehyde concentration up to 250 μM. Incubation of rat plasma low-density lipoproteins (LDL) with 200 μM acetaldehyde increased the disappearance rate of the 3 H-label from the cholesterol ester moiety of LDL injected into normal rats. The data show that even low concentrations of acetaldehyde are capable of affecting LDL metabolism. These findings may provide an explanation for the low concentrations of serum LDL in alcoholics. The alcohol-induced hyperlipidemia includes either a lack of increase or a decrease in the low-density lipoprotein (LDL) concentration, but the underlying mechanism is not known. It has been shown previously, that the acetylation of lysine residues of LDL apoprotein (apoB) by acetanhydride leads to rapid uptake of LDL particles by macrophages through a non-LDL receptor pathway. Since acetaldehyde, the first toxic metabolite of ethanol, is a chemically reactive compound capable of binding to proteins, they tested whether acetaldehyde forms adducts with serum lipoproteins and subsequently alters the catabolism of LDL. 19 references, 2 figures, 1 table

  20. Desipramine increases cardiac parasympathetic activity via α2-adrenergic mechanism in rats.

    Science.gov (United States)

    Kawada, Toru; Akiyama, Tsuyoshi; Shimizu, Shuji; Fukumitsu, Masafumi; Kamiya, Atsunori; Sugimachi, Masaru

    2017-07-01

    Desipramine (DMI) is a blocker of neuronal norepinephrine (NE) uptake transporter. Although intravenous DMI has been shown to cause centrally-mediated sympathoinhibition and peripheral NE accumulation, its parasympathetic effect remains to be elucidated. We hypothesized that intravenous DMI activates the cardiac vagal nerve via an α 2 -adrenergic mechanism. Using a cardiac microdialysis technique, changes in myocardial interstitial acetylcholine (ACh) levels in the left ventricular free wall in response to intravenous DMI (1mg·kg -1 ) were examined in anesthetized rats. In rats with intact vagi (n=7), intravenous DMI increased ACh from 1.67±0.43 to 2.48±0.66nM (Padrenergic stimulation in experimental settings in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Metformin increases liver accumulation of vitamin B12 - An experimental study in rats

    DEFF Research Database (Denmark)

    Greibe, E; Miller, J W; Foutouhi, S H

    2013-01-01

    AIMS/HYPOTHESIS: Patients treated with metformin exhibit low levels of plasma vitamin B(12) (B(12)), and are considered at risk for developing B(12) deficiency. In this study, we investigated the effect of metformin treatment on B(12) uptake and distribution in rats. METHODS: Sprague Dawley rats (n...... that metformin has no decreasing effect on the B(12) absorption. CONCLUSIONS/INTERPRETATION: These results show that metformin treatment increases liver accumulation of B(12), thereby resulting in decreases in circulating B(12) and kidney accumulation of the vitamin. Our data questions whether the low plasma B......(12) observed in patients treated with metformin reflects impaired B(12) status, and rather suggests altered tissue distribution and metabolism of the vitamin....

  2. Increased numbers of orexin/hypocretin neurons in a genetic rat depression model

    DEFF Research Database (Denmark)

    Mikrouli, Elli; Wörtwein, Gitta; Soylu, Rana

    2011-01-01

    The Flinders Sensitive Line (FSL) rat is a genetic animal model of depression that displays characteristics similar to those of depressed patients including lower body weight, decreased appetite and reduced REM sleep latency. Hypothalamic neuropeptides such as orexin/hypocretin, melanin......-concentrating hormone (MCH) and cocaine and amphetamine regulated transcript (CART), that are involved in the regulation of both energy metabolism and sleep, have recently been implicated also in depression. We therefore hypothesized that alterations in these neuropeptide systems may play a role in the development...... of the FSL phenotype with both depressive like behavior, metabolic abnormalities and sleep disturbances. In this study, we first confirmed that the FSL rats displayed increased immobility in the Porsolt forced swim test compared to their control strain, the Flinders Resistant Line (FRL), which is indicative...

  3. Ebselen increases cytosolic free Ca2+ concentration, stimulates glutamate release and increases GFAP content in rat hippocampal astrocytes

    International Nuclear Information System (INIS)

    Salazar, Miguel; Pariente, Jose Antonio; Salido, Gines Maria; Gonzalez, Antonio

    2008-01-01

    We have investigated the effect of the seleno-organic compound and radical scavenger ebselen on rat hippocampal astrocytes in culture. Throughout our study we carried out determinations of [Ca 2+ ] c in fura-2-loaded cells by single cell imaging, glutamate secretion employing an enzymatic-based assay and GFAP expression, which was monitorized by immunocytochemistry and confocal microscopy. Our results show that ebselen (1-20 μM) dose dependently increases [Ca 2+ ] c , stimulates glutamate release and increases GFAP content, a hallmark of astrocyte reactivity. Ebselen did not alter significantly cell viability as assayed by determination of LDH release into the extracellular medium. Ebselen-evoked glutamate release and increase in GFAP content were Ca 2+ -dependent, because incubation of astrocytes in the absence of extracellular Ca 2+ (medium containing 0.5 mM EGTA) and in the presence of the intracellular Ca 2+ chelator BAPTA (10 μM) significantly reduced ebselen-evoked changes in these parameters. The effects of ebselen we have observed may underline various signalling pathways which are important for cell proliferation, differentiation and function. However, aberrations in astroglial physiology could significantly compromise brain function, due to their role as modulators of neuron activity. Therefore, we consider that careful attention should be paid when employing ebselen as a prophylactic agent against brain damage

  4. Decoding thalamic afferent input using microcircuit spiking activity.

    Science.gov (United States)

    Sederberg, Audrey J; Palmer, Stephanie E; MacLean, Jason N

    2015-04-01

    A behavioral response appropriate to a sensory stimulus depends on the collective activity of thousands of interconnected neurons. The majority of cortical connections arise from neighboring neurons, and thus understanding the cortical code requires characterizing information representation at the scale of the cortical microcircuit. Using two-photon calcium imaging, we densely sampled the thalamically evoked response of hundreds of neurons spanning multiple layers and columns in thalamocortical slices of mouse somatosensory cortex. We then used a biologically plausible decoder to characterize the representation of two distinct thalamic inputs, at the level of the microcircuit, to reveal those aspects of the activity pattern that are likely relevant to downstream neurons. Our data suggest a sparse code, distributed across lamina, in which a small population of cells carries stimulus-relevant information. Furthermore, we find that, within this subset of neurons, decoder performance improves when noise correlations are taken into account. Copyright © 2015 the American Physiological Society.

  5. Dopamine, fronto-striato-thalamic circuits and risk for psychosis.

    Science.gov (United States)

    Dandash, Orwa; Pantelis, Christos; Fornito, Alex

    2017-02-01

    A series of parallel, integrated circuits link distinct regions of prefrontal cortex with specific nuclei of the striatum and thalamus. Dysfunction of these fronto-striato-thalamic systems is thought to play a major role in the pathogenesis of psychosis. In this review, we examine evidence from human and animal investigations that dysfunction of a specific dorsal fronto-striato-thalamic circuit, linking the dorsolateral prefrontal cortex, dorsal (associative) striatum, and mediodorsal nucleus of the thalamus, is apparent across different stages of psychosis, including prior to the onset of a first episode, suggesting that it represents a candidate risk biomarker. We consider how abnormalities at distinct points in the circuit may give rise to the pattern of findings seen in patient populations, and how these changes relate to disruptions in dopamine, glutamate and GABA signaling. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Holmes' tremor as a delayed complication of thalamic stroke.

    Science.gov (United States)

    Martins, William Alves; Marrone, Luiz Carlos Porcello; Fussiger, Helena; Vedana, Viviane Maria; Cristovam, Rafael do Amaral; Taietti, Marjorye Z; Marrone, Antonio Carlos Huf

    2016-04-01

    Movement disorders are not commonly associated with stroke. Accordingly, thalamic strokes have rarely been associated with tremor, pseudo-athetosis and dystonic postures. We present a 75-year-old man who developed a disabling tremor 1 year after a posterolateral thalamic stroke. This tremor had low frequency (3-4 Hz), did not disappear on focus and was exacerbated by maintaining a static posture and on target pursuit, which made it very difficult to perform basic functions. MRI demonstrated an old ischemic lesion at the left posterolateral thalamus. Treatment with levodopa led to symptom control. Lesions in the midbrain, cerebellum and thalamus may cause Holmes' tremor. Delayed onset of symptoms is usually seen, sometimes appearing 2 years after the original injury. This may be due to maturation of a complex neuronal network, leading to slow dopaminergic denervation. Further studies are needed to improve our understanding of this unique disconnection syndrome. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Subchronic mild noise stress increases HRP permeability in rat small intestine in vitro.

    Science.gov (United States)

    Bijlsma, P B; van Raaij, M T; Dobbe, C J; Timmerman, A; Kiliaan, A J; Taminiau, J A; Groot, J A

    2001-05-01

    Recently we reported an increased trans- and paracellular protein permeability in rat small intestine after acute cold restraint stress. In the present study, we applied randomized 95- or 105-dB white noise pulses during 45 min/h, 12 h/day, duration 8 days, as a milder, but more chronic stressor to male rats. At 8 days before the noise experiments, 50% of the animals were cannulated in the vena cava for blood sampling during the experimental period. The other 50% of the animals were sacrificed at Day 9, segments of ileum were mounted in Ussing chambers and perfused at 37 degrees C. Horseradish peroxidase (HRP) was added mucosally, serosal appearance was detected enzymatically and tissues were fixed for electron microscopy. In the animals exposed to 95-dB noise, plasma corticosterone levels were enhanced twofold compared to controls, and ileal HRP flux was enhanced twofold. Electron micrographs of tissue from stressed or control animals showed no detectable paracellular staining of HRP. Quantification of HRP-containing endosomes in enterocytes revealed a twofold increase in endosome number in the animals exposed to 95-db noise indicating that the increased HRP permeability was primarily due to increased endocytosis. In contrast to the animals exposed to 95-dB noise, rats exposed to 105-dB noise showed no increase in corticosterone levels and ileal HRP fluxes were not significantly different from controls. We conclude that mild subchronic noise stress may cause a decrease in intestinal barrier function by increased transcytosis of luminal antigens.

  8. Effects of increased low-level diode laser irradiation time on extraction socket healing in rats.

    Science.gov (United States)

    Park, Joon Bong; Ahn, Su-Jin; Kang, Yoon-Goo; Kim, Eun-Cheol; Heo, Jung Sun; Kang, Kyung Lhi

    2015-02-01

    In our previous studies, we confirmed that low-level laser therapy (LLLT) with a 980-nm gallium-aluminum-arsenide diode laser was beneficial for the healing of the alveolar bone in rats with systemic disease. However, many factors can affect the biostimulatory effects of LLLT. Thus, we attempted to investigate the effects of irradiation time on the healing of extraction sockets by evaluating the expressions of genes and proteins related to bone healing. The left and right first maxillary molars of 24 rats were extracted. Rats were randomly divided into four groups in which extraction sockets were irradiated for 0, 1, 2, or 5 min each day for 3 or 7 days. Specimens containing the sockets were examined using quantitative real-time reverse transcription polymerase chain reaction and western blotting. LLLT increased the expressions of all tested genes, Runx2, collagen type 1, osteocalcin, platelet-derived growth factor-B, and vascular endothelial growth factor, in a time-dependent manner. The highest levels of gene expressions were in the 5-min group after 7 days. Five minutes of irradiation caused prominent increases of the expression of all tested proteins after both 3 and 7 days. The expression level of each protein in group 4 was higher by almost twofold compared with group 1 after 7 days. Laser irradiation for 5 min caused the highest expressions of genes and proteins related to bone healing. In conclusion, LLLT had positive effects on the early stages of bone healing of extraction sockets in rats, which were irradiation time-dependent.

  9. Effects of increased occlusal vertical dimension on the jaw-opening reflex in adult rats.

    Science.gov (United States)

    Makiguchi, Mio; Funaki, Yukiha; Kato, Chiho; Okihara, Hidemasa; Ishida, Takayoshi; Yabushita, Tadachika; Kokai, Satoshi; Ono, Takashi

    2016-12-01

    Malocclusion with deep overbite and facial esthetics improve when facial height is intentionally increased during orthodontic extrusion of the posterior teeth. Thus, a better understanding of post-treatment stability of increased occlusal vertical dimension (iOVD) in adult patients is important. We focused on the jaw-opening reflex (JOR), which plays an important role in the control of jaw movements during mastication, and investigated the effects of iOVD on the JOR in rats with an electrophysiological technique. One hundred and twenty 13-week-old male Wistar rats were randomly divided into control and experimental groups. Rats in the experimental group received a 2-mm buildup of composite resin on the maxillary molars at 13 weeks of age. The JOR was induced by low-intensity electrical stimulation of the left inferior alveolar nerve. The electromyographic responses were recorded from the digastric muscle at 13, 14, 15, 17, 19, and 23 weeks of age. JOR properties including latency, duration, and peak-to-peak amplitude were measured and compared between the groups. The latency of the JOR was significantly longer and the peak-to-peak amplitude was significantly smaller in the experimental group than in the control group from 14 to 19 weeks of age, while the reflex duration was not significantly different. Intra-group comparisons of the latency and peak-to-peak amplitudes among rats 14-19 weeks of age were significantly different between the experimental group and the control group. iOVD affected the latency and amplitude of the JOR but not the duration. The JOR adapted after 10 weeks of iOVD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Role of thalamic projection in NMDA receptor-induced disruption of cortical slow oscillation and short-term plasticity

    Directory of Open Access Journals (Sweden)

    Tamás eKiss

    2011-04-01

    Full Text Available NMDA receptor (NMDAR antagonists, such as phencyclidine, ketamine or dizocilpine (MK-801 are commonly used in psychiatric drug discovery in order to model several symptoms of schizophrenia, including psychosis and impairments in working memory. In spite of the widespread use of NMDAR antagonists in preclinical and clinical studies, our understanding of the mode of action of these drugs on brain circuits and neuronal networks is still limited. In the present study spontaneous local field potential (LFP, multi- (MUA and single unit activity, and evoked potential, including paired-pulse facilitation (PPF in response to electrical stimulation of the ipsilateral subiculum were carried out in the medial prefrontal cortex (mPFC in urethane anesthetized rats. Systemic administration of MK-801 (0.05~mg/kg, i.v. decreased overall MUA, with a diverse effect on single unit activity, including increased, decreased or unchanged firing, and in line with our previous findings shifted delta frequency power of the LFP and disrupted PPF (Kiss et al., Int J Neuropsychopharmacol. 2010. In order to provide further insight to the mechanisms of action of NMDAR antagonists, MK-801 was administered intracranially into the mPFC and mediodorsal nucleus of the thalamus (MD. Microinjections of MK-801, but not physiological saline, localized into the MD evoked changes in both LFP parameters and PPF similar to the effects of systemically administered MK-801. Local microinjection of MK-801 into the mPFC was without effect on these parameters. Our findings indicate that the primary site of the action of systemic administration of NMDA receptor antagonists is unlikely to be the cortex. We presume that multiple neuronal networks, involving thalamic nuclei contribute to disrupted behavior and cognition following NMDA receptor blockade.

  11. Food restriction increases acquisition, persistence and drug prime-induced expression of a cocaine-conditioned place preference in rats.

    Science.gov (United States)

    Zheng, Danielle; Cabeza de Vaca, Soledad; Carr, Kenneth D

    2012-01-01

    Cocaine conditioned place preference (CPP) is more persistent in food-restricted than ad libitum fed rats. This study assessed whether food restriction acts during conditioning and/or expression to increase persistence. In Experiment 1, rats were food-restricted during conditioning with a 7.0 mg/kg (i.p.) dose of cocaine. After the first CPP test, half of the rats were switched to ad libitum feeding for three weeks, half remained on food restriction, and this was followed by CPP testing. Rats tested under the ad libitum feeding condition displayed extinction by the fifth test. Their CPP did not reinstate in response to overnight food deprivation or a cocaine prime. Rats maintained on food restriction displayed a persistent CPP. In Experiment 2, rats were ad libitum fed during conditioning with the 7.0 mg/kg dose. In the first test only a trend toward CPP was displayed. Rats maintained under the ad libitum feeding condition did not display a CPP during subsequent testing and did not respond to a cocaine prime. Rats tested under food-restriction also did not display a CPP, but expressed a CPP following a cocaine prime. In Experiment 3, rats were ad libitum fed during conditioning with a 12.0 mg/kg dose. After the first test, half of the rats were switched to food restriction for three weeks. Rats that were maintained under the ad libitum condition displayed extinction by the fourth test. Their CPP was not reinstated by a cocaine prime. Rats tested under food-restriction displayed a persistent CPP. These results indicate that food restriction lowers the threshold dose for cocaine CPP and interacts with a previously acquired CPP to increase its persistence. In so far as CPP models Pavlovian conditioning that contributes to addiction, these results suggest the importance of diet and the physiology of energy balance as modulatory factors. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Case of herpes simplex encephalitis(HSE) with a thalamic lesion

    Energy Technology Data Exchange (ETDEWEB)

    Fujimori, K; Koike, R; Yuasa, T; Miyatake, T; Ito, J

    1987-02-01

    A case of herpes simplex encephalitis (HSE) with thalamic involvement was reported. The patient, a 27-year-old man, was admitted because of abnormal behavior and fever. He exhibited a disturbance of consciousness, meningial signs, and hyperreflexia. A CT scan of the head revealed diffuse brain edema. Acute encephalitis, especially HSE, was suspected, and so the intravenous administration of acyclovir and steroid therapy were started. The titer of herpes simplex Type 1 virus, as measured by CF and ELISA, was found to have increased amounts of serum and cerebrospinal fluid. 5 days after the onset, his consciousness worsened. He could not tell his name and scarely opened his eyes upon pain stimulation. A CT scan at this time showed low-density lesions in the left thalamus, cingulate gyrus, and the posterior portion of the putamen. About 5 days later, his consciousness level was increased, but he was mute. This symptom was thought to be thalamic aphasia, which might be correlative with the low-density lesions shown in the left thalamus by the CT scan. About 30 days after the onset of the disease, his speech became normal, and a CT scan at 51 hospital days showed no abnormality. The etiology of low-density lesions of the left thalamus in the CT scan is speculated to be as follows: firstly, vascular damage of circulation disturbance, and secondly a special affinity of herpes simplex Type 1 virus to the thalamus.

  13. A case of herpes simplex encephalitis(HSE) with a thalamic lesion

    International Nuclear Information System (INIS)

    Fujimori, Katsuya; Koike, Ryoko; Yuasa, Tatsuhiko; Miyatake, Tadashi; Ito, Jusuke.

    1987-01-01

    A case of herpes simplex encephalitis (HSE) with thalamic involvement was reported. The patient, a 27-year-old man, was admitted because of abnormal behavior and fever. He exhibited a disturbance of consciousness, meningial signs, and hyperreflexia. A CT scan of the head revealed diffuse brain edema. Acute encephalitis, especially HSE, was suspected, and so the intravenous administration of acyclovir and steroid therapy were started. The titer of herpes simplex Type 1 virus, as measured by CF and ELISA, was found to have increased amounts of serum and cerebrospinal fluid. 5 days after the onset, his consciousness worsened. He could not tell his name and scarely opened his eyes upon pain stimulation. A CT scan at this time showed low-density lesions in the left thalamus, cingulate gyrus, and the posterior portion of the putamen. About 5 days later, his consciousness level was increased, but he was mute. This symptom was thought to be thalamic aphasia, which might be correlative with the low-density lesions shown in the left thalamus by the CT scan. About 30 days after the onset of the disease, his speech became normal, and a CT scan at 51 hospital days showed no abnormality. The etiology of low-density lesions of the left thalamus in the CT scan is speculated to be as follows: firstly, vascular damage of circulation disturbance, and secondly a special affinity of herpes simplex Type 1 virus to the thalamus. (author)

  14. Escitalopram reduces increased hippocampal cytogenesis in a genetic rat depression model

    DEFF Research Database (Denmark)

    Petersén, Asa; Wörtwein, Gitta; Gruber, Susanne H M

    2008-01-01

    to stressors, but, so far, not in models of depression. Here we report that the number of BrdU positive cells in hippocampus was (1) significantly higher in a rat model of depression, the Flinders Sensitive Line (FSL) compared to control FRL, (2) increased in both FSL and FRL following maternal separation, (3......) reduced by escitalopram treatment in maternally separated animals to the level found in non-separated animals. These results argue against the prevailing hypothesis that adult cytogenesis is reduced in depression and that the common mechanism underlying antidepressant treatments is to increase adult...

  15. Prenatal alcohol exposure increases postnatal acceptability of nicotine odor and taste in adolescent rats.

    Directory of Open Access Journals (Sweden)

    Nicole M Mantella

    Full Text Available Human studies indicate that alcohol exposure during gestation not only increases the chance for later alcohol abuse, but also nicotine dependence. The flavor attributes of both alcohol and nicotine can be important determinants of their initial acceptance and they both share the component chemosensory qualities of an aversive odor, bitter taste and oral irritation. There is a growing body of evidence demonstrating epigenetic chemosensory mechanisms through which fetal alcohol exposure increases adolescent alcohol acceptance, in part, by decreasing the aversion to alcohol's bitter and oral irritation qualities, as well as its odor. Given that alcohol and nicotine have noteworthy chemosensory qualities in common, we investigated whether fetal exposure to alcohol increased the acceptability of nicotine's odor and taste in adolescent rats. Study rats were alcohol-exposed during fetal development via the dams' liquid diet. Control animals received ad lib access to an iso-caloric, iso-nutritive diet throughout gestation. Odorant-induced innate behavioral responses to nicotine odor (Experiment 1 or orosensory-mediated responses to nicotine solutions (Experiment 2 were obtained, using whole-body plethysmography and brief access lick tests, respectively. Compared to controls, rats exposed to fetal alcohol showed an enhanced nicotine odor response that was paralleled by increased oral acceptability of nicotine. Given the common aversive component qualities imbued in the flavor profiles of both drugs, our findings demonstrate that like postnatal alcohol avidity, fetal alcohol exposure also influences nicotine acceptance, at a minimum, by decreasing the aversion of both its smell and taste. Moreover, they highlight potential chemosensory-based mechanism(s by which fetal alcohol exposure increases the later initial risk for nicotine use, thereby contributing to the co-morbid expression with enhanced alcohol avidity. Where common chemosensory mechanisms are

  16. Trans fatty acids increase nitric oxide levels and pancreatic beta-cell necrosis in rats

    Directory of Open Access Journals (Sweden)

    Kusmiyati Tjahjono DK

    2013-04-01

    Full Text Available Background The prevalence of diabetes in Indonesia is increasing due to various factors, including life style changes such as trans fatty acid (TFA intake. High TFA intake is known to be related to blood lipid profile changes resulting in cardiovascular disorders. This study was to identify the effect of TFA on nitric oxide (NO production and on necrosis of pancreatic beta cells. Methods A study of randomized pre-test post–test design with control group. Thirty Sprague Dawley rats were divided into 3 groups, i.e. group K (control, group P1 receiving a diet with 5% TFA, and P2 receiving 10% TFA. The intervention was performed for 8 weeks. NO level and pancreatic beta-cell necrosis were analyzed using Pearson’s chi square test. Results After 4 weeks of treatment there was no change in NO levels in group K, but increased NO in P2 (2.6-3.8 ìM. At 8 weeks after treatment, NO levels in groups P1 and P2 increased to 2.6-3.4 ìM and 4.2-14.3 ìM, respectively, while in group K only 2 rats had increased NO levels of 2.8-2.9 ìM. With Pearson’s chi-square test, there was a signifant difference in the proportions of necrotic pancreatic beta cells after 4 weeks and 8 weeks (p=0.000. No necrosis of beta cells was found in group K, mild necrosis in group P1 (1-25% and moderate necrosis in group P2 (26-50%. Conclusion TFA consumption significantly increases NO levels in Sprague Dawley rats and also results in moderate grades of necrosis of pancreatic beta cells.

  17. Trans fatty acids increase nitric oxide levels and pancreatic beta-cell necrosis in rats

    Directory of Open Access Journals (Sweden)

    Kusmiyati Tjahjono DK

    2015-12-01

    Full Text Available BACKGROUND The prevalence of diabetes in Indonesia is increasing due to various factors, including life style changes such as trans fatty acid (TFA intake. High TFA intake is known to be related to blood lipid profile changes resulting in cardiovascular disorders. This study was to identify the effect of TFA on nitric oxide (NO production and on necrosis of pancreatic beta cells. METHODS A study of randomized pre-test post–test design with control group. Thirty Sprague Dawley rats were divided into 3 groups, i.e. group K (control, group P1 receiving a diet with 5% TFA, and P2 receiving 10% TFA. The intervention was performed for 8 weeks. NO level and pancreatic beta-cell necrosis were analyzed using Pearson’s chi square test. RESULTS After 4 weeks of treatment there was no change in NO levels in group K, but increased NO in P2 (2.6-3.8 ìM. At 8 weeks after treatment, NO levels in groups P1 and P2 increased to 2.6-3.4 ìM and 4.2-14.3 ìM, respectively, while in group K only 2 rats had increased NO levels of 2.8-2.9 ìM. With Pearson’s chi-square test, there was a signifant difference in the proportions of necrotic pancreatic beta cells after 4 weeks and 8 weeks (p= 0.000. No necrosis of beta cells was found in group K, mild necrosis in group P1 (1-25% and moderate necrosis in group P2 (26-50%. CONCLUSION TFA consumption significantly increases NO levels in Sprague Dawley rats and also results in moderate grades of necrosis of pancreatic beta cells

  18. Prenatal alcohol exposure increases postnatal acceptability of nicotine odor and taste in adolescent rats.

    Science.gov (United States)

    Mantella, Nicole M; Youngentob, Steven L

    2014-01-01

    Human studies indicate that alcohol exposure during gestation not only increases the chance for later alcohol abuse, but also nicotine dependence. The flavor attributes of both alcohol and nicotine can be important determinants of their initial acceptance and they both share the component chemosensory qualities of an aversive odor, bitter taste and oral irritation. There is a growing body of evidence demonstrating epigenetic chemosensory mechanisms through which fetal alcohol exposure increases adolescent alcohol acceptance, in part, by decreasing the aversion to alcohol's bitter and oral irritation qualities, as well as its odor. Given that alcohol and nicotine have noteworthy chemosensory qualities in common, we investigated whether fetal exposure to alcohol increased the acceptability of nicotine's odor and taste in adolescent rats. Study rats were alcohol-exposed during fetal development via the dams' liquid diet. Control animals received ad lib access to an iso-caloric, iso-nutritive diet throughout gestation. Odorant-induced innate behavioral responses to nicotine odor (Experiment 1) or orosensory-mediated responses to nicotine solutions (Experiment 2) were obtained, using whole-body plethysmography and brief access lick tests, respectively. Compared to controls, rats exposed to fetal alcohol showed an enhanced nicotine odor response that was paralleled by increased oral acceptability of nicotine. Given the common aversive component qualities imbued in the flavor profiles of both drugs, our findings demonstrate that like postnatal alcohol avidity, fetal alcohol exposure also influences nicotine acceptance, at a minimum, by decreasing the aversion of both its smell and taste. Moreover, they highlight potential chemosensory-based mechanism(s) by which fetal alcohol exposure increases the later initial risk for nicotine use, thereby contributing to the co-morbid expression with enhanced alcohol avidity. Where common chemosensory mechanisms are at play, our

  19. Increased anxiety-like behavior is associated with the metabolic syndrome in non-stressed rats

    Science.gov (United States)

    Díaz, Daniel; Rico-Rosillo, Guadalupe; Vega-Robledo, Gloria Bertha; Zambrano, Elena

    2017-01-01

    Metabolic syndrome (MS) is a cluster of signs that increases the risk to develop diabetes mellitus type 2 and cardiovascular disease. In the last years, a growing interest to study the relationship between MS and psychiatric disorders, such as depression and anxiety, has emerged obtaining conflicting results. Diet-induced MS rat models have only examined the effects of high-fat or mixed cafeteria diets to a limited extent. We explored whether an anxiety-like behavior was associated with MS in non-stressed rats chronically submitted to a high-sucrose diet (20% sucrose in drinking water) using three different anxiety paradigms: the shock-probe/burying test (SPBT), the elevated plus-maze (EPM) and the open-field test (OFT). Behaviorally, the high-sucrose diet group showed an increase in burying behavior in the SPBT. Also, these animals displayed both avoidance to explore the central part of the arena and a significant increase in freezing behavior in the OFT and lack of effects in the EPM. Also, high-sucrose diet group showed signs of an MS-like condition: significant increases in body weight and body mass index, abdominal obesity, hypertension, hyperglycemia, hyperinsulinemia, and dyslipidemia. Plasma leptin and resistin levels were also increased. No changes in plasma corticosterone levels were found. These results indicate that rats under a 24-weeks high-sucrose diet develop an MS associated with an anxiety-like behavior. Although the mechanisms underlying this behavioral outcome remain to be investigated, the role of leptin is emphasized. PMID:28463967

  20. Hippocampal low-frequency stimulation inhibits afterdischarge and increases GABA (A) receptor expression in amygdala-kindled pharmacoresistant epileptic rats.

    Science.gov (United States)

    Wu, Guofeng; Wang, Likun; Hong, Zhen; Ren, Siying; Zhou, Feng

    2017-08-01

    The purpose of the present study was to observe the effects of hippocampal low-frequency stimulation (Hip-LFS) on amygdala afterdischarge and GABA (A) receptor expression in pharmacoresistant epileptic (PRE) rats. A total of 110 healthy adult male Wistar rats were used to generate a model of epilepsy by chronic stimulation of the amygdala. Sixteen PRE rats were selected from 70 amygdala-kindled rats by testing their response to Phenytoin and Phenobarbital, and they were randomly assigned to a pharmacoresistant stimulation group (PRS group, 8 rats) or a pharmacoresistant control group (PRC group, 8 rats). A stimulation electrode was implanted into the hippocampus of all of the rats. Hip-LFS was administered twice per day in the PRS group for two weeks. Simultaneously, amygdala stimulus-induced seizures and afterdischarge were recorded. After the hippocampal stimulation was terminated, the brain tissues were obtained to determine the GABA (A) receptors by a method of immumohistochemistry and a real-time polymerase chain reaction. The stages and duration of the amygdala stimulus-induced epileptic seizures were decreased in the PRS group. The afterdischarge threshold was increased and the duration as well as the afterdischarge frequency was decreased. Simultaneously, the GABA (A) expression was significantly increased in the PRS group. Hip-LFS may inhibit amygdala stimulus-induced epileptic seizures and up-regulate GABA (A) receptor expression in PRE rats. The antiepileptic effects of hippocampal stimulation may be partly achieved by increasing the GABA (A) receptor.

  1. The increase elimination rate of tritium after administration of furosemide in rats

    International Nuclear Information System (INIS)

    Chirovici, Maria; Jiquidi, Luminita; Reviu, Eugen

    2001-01-01

    It is well known that tritium has certain characteristics that present serious problems for dosimetry and health risk assessment. National Council on Radiation Protection recommends for persons contaminated with tritium oral intake of fluid (e.g. water, fruit juice, tea, coffee or beer), or instillation with 5 % glucose under a doctor's care, together with daily urinary monitoring. This paper tries to follow up the increase elimination rate of tritium in contaminated rats after administration of furosemide, a diuretic used in medical practice. The experiments has been realized on the Wistar rats divided into two groups. First, the control group was contaminated with 3 HHO by intraperitoneal (i.p.) inoculation. The second group was treated with 3 doses of 5.70 mg furosemide (i.p.) body weight at 2, 6 and 12 hours after i.p. inoculation with 3 HHO. Following exposure, the tritium elimination in excreta was monitored 18 days and blood, liver, muscle and kidney were extracted from rats at 1, 2, 4, 7, 11, 18 days after contamination. The excreta and tissues were analyzed with specific tritium radiochemical methods and the samples radioactivity was measured by liquid scintillation technique. Efficiency of treatment was about 30 %. (authors)

  2. What does a comparison of the alcoholic Korsakoff syndrome and thalamic infarction tell us about thalamic amnesia?

    Science.gov (United States)

    Kopelman, Michael D

    2015-07-01

    In this review, the clinical, neuropsychological, and neuroimaging findings in the alcoholic Korsakoff syndrome and in thalamic amnesia, resulting from focal infarction, are compared. In both disorders, there is controversy over what is the critical site for anterograde amnesia to occur-damage to the anterior thalamus/mammillo-thalamic tract has most commonly been cited, but damage to the medio-dorsal nuclei has also been advocated. Both syndromes show 'core' features of an anterograde amnesic syndrome; but retrograde amnesia is generally much more extensive (going back many years or decades) in the Korsakoff syndrome. Likewise, spontaneous confabulation occurs more commonly in the Korsakoff syndrome, although seen in only a minority of chronic cases. These differences are attributed to the greater prevalence of frontal atrophy and frontal damage in Korsakoff cases. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.

  3. Does maternal exposure to artificial food coloring additives increase oxidative stress in the skin of rats?

    Science.gov (United States)

    Başak, K; Başak, P Y; Doğuç, D K; Aylak, F; Oğuztüzün, S; Bozer, B M; Gültekin, F

    2017-10-01

    Glutathione-S-transferase (GST) and cytochrome P450 family 1 subfamily A polypeptide 1 (CYP1A1) metabolize and detoxify carcinogens, drugs, environmental pollutants, and reactive oxygen species. Changes of GST expression in tissues and gene mutations have been reported in association with many neoplastic skin diseases and dermatoses. Widely used artificial food coloring additives (AFCAs) also reported to effect primarily behavioral and cognitive function and cause neoplastic diseases and several inflammatory skin diseases. We aimed to identify the changes in expression of GSTs, CYP1A1, and vascular endothelial growth factor (VEGF) in rat skin which were maternally exposed AFCAs. A rat model was designed to evaluate the effects of maternal exposure of AFCAs on skin in rats. "No observable adverse effect levels" of commonly used AFCAs as a mixture were given to female rats before and during gestation. Immunohistochemical expression of GSTs, CYP1A1, and VEGF was evaluated in their offspring. CYP1A1, glutathione S-transferase pi (GSTP), glutathione S-transferase alpha (GSTA), glutathione S-transferase mu (GSTM), glutathione S-transferase theta (GSTT), and VEGF were expressed by epidermal keratinocytes, dermal fibroblasts, sebaceous glands, hair follicle, and subcutaneous striated muscle in the normal skin. CYP1A1, GSTA, and GSTT were expressed at all microanatomical sites of skin in varying degrees. The expressions of CYP1A1, GSTA, GSTT, and VEGF were decreased significantly, while GSTM expression on sebaceous gland and hair follicle was increased. Maternal exposure of AFCAs apparently effects expression of the CYP1A1, GSTs, and VEGF in the skin. This prominent change of expressions might play role in neoplastic and nonneoplastic skin diseases.

  4. Extract of mangosteen increases high density lipoprotein levels in rats fed high lipid

    Directory of Open Access Journals (Sweden)

    Dwi Laksono Adiputro

    2013-04-01

    Full Text Available Background In cardiovascular medicine, Garcinia mangostana has been used as an antioxidant to inhibit oxidation of low density lipoproteins and as an antiobesity agent. The effect of Garcinia mangostana on hyperlipidemia is unknown. The aim of this study was to evaluate the effect of an ethanolic extract of Garcinia mangostana pericarp on lipid profile in rats fed a high lipid diet. Methods A total of 40 rats were divided into five groups control, high lipid diet, and high lipid diet + ethanolic extract of Garcinia mangostana pericarp at dosages of 200, 400, and 800 mg/kg body weight. The control group received a standard diet for 60 days. The high lipid diet group received standard diet plus egg yolk, goat fat, cholic acid, and pig fat for 60 days with or without ethanolic extract of Garcinia mangostana pericarp by the oral route. After 60 days, rats were anesthesized with ether for collection of blood by cardiac puncture. Analysis of blood lipid profile comprised colorimetric determination of cholesterol, triglyceride, low density lipoprotein (LDL, and high density lipoprotein (HDL. Results From the results of one-way ANOVA it was concluded that there were significant between-group differences in cholesterol, trygliceride, LDL, and HDL levels (p=0.000. Ethanolic extract of Garcinia mangostana pericarp significantly decreased cholesterol, trygliceride, and LDL levels, starting at 400 mg/kg body weight (p=0.000. Ethanolic extract of Garcinia mangostana pericarp significantly increased HDL level starting at 200 mg/kg body weight (p=0.000. Conclusion Ethanolic extract of Garcinia mangostana pericarp has a beneficial effect on lipid profile in rats on a high lipid diet.

  5. Fructose increases corticosterone production in association with NADPH metabolism alterations in rat epididymal white adipose tissue.

    Science.gov (United States)

    Prince, Paula D; Santander, Yanina A; Gerez, Estefania M; Höcht, Christian; Polizio, Ariel H; Mayer, Marcos A; Taira, Carlos A; Fraga, Cesar G; Galleano, Monica; Carranza, Andrea

    2017-08-01

    Metabolic syndrome is an array of closely metabolic disorders that includes glucose intolerance/insulin resistance, central obesity, dyslipidemia, and hypertension. Fructose, a highly lipogenic sugar, has profound metabolic effects in adipose tissue, and has been associated with the etiopathology of many components of the metabolic syndrome. In adipocytes, the enzyme 11 β-HSD1 amplifies local glucocorticoid production, being a key player in the pathogenesis of central obesity and metabolic syndrome. 11 β-HSD1 reductase activity is dependent on NADPH, a cofactor generated by H6PD inside the endoplasmic reticulum. Our focus was to explore the effect of fructose overload on epididymal white adipose tissue (EWAT) machinery involved in glucocorticoid production and NADPH and oxidants metabolism. Male Sprague-Dawley rats fed with a fructose solution (10% (w/v) in tap water) during 9 weeks developed some characteristic features of metabolic syndrome, such as hypertriglyceridemia, and hypertension. In addition, high levels of plasma and EWAT corticosterone were detected. Activities and expressions of H6PD and 11 β-HSD1, NAPDH content, superoxide anion production, expression of NADPH oxidase 2 subunits, and indicators of oxidative metabolism were measured. Fructose overloaded rats showed an increased potential in oxidant production respect to control rats. In parallel, in EWAT from fructose overloaded rats we found higher expression/activity of H6PD and 11 β-HSD1, and NADPH/NADP + ratio. Our in vivo results support that fructose overload installs in EWAT conditions favoring glucocorticoid production through higher H6PD expression/activity supplying NADPH for enhanced 11 β-HSD1 expression/activity, becoming this tissue a potential extra-adrenal source of corticosterone under these experimental conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Extract of mangosteen increases high density lipoprotein levels in rats fed high lipid

    Directory of Open Access Journals (Sweden)

    Dwi Laksono Adiputro

    2015-12-01

    Full Text Available BACKGROUND In cardiovascular medicine, Garcinia mangostana has been used as an antioxidant to inhibit oxidation of low density lipoproteins and as an antiobesity agent. The effect of Garcinia mangostana on hyperlipidemia is unknown. The aim of this study was to evaluate the effect of an ethanolic extract of Garcinia mangostana pericarp on lipid profile in rats fed a high lipid diet. METHODS A total of 40 rats were divided into five groups control, high lipid diet, and high lipid diet + ethanolic extract of Garcinia mangostana pericarp at dosages of 200, 400, and 800 mg/kg body weight. The control group received a standard diet for 60 days. The high lipid diet group received standard diet plus egg yolk, goat fat, cholic acid, and pig fat for 60 days with or without ethanolic extract of Garcinia mangostana pericarp by the oral route. After 60 days, rats were anesthesized with ether for collection of blood by cardiac puncture. Analysis of blood lipid profile comprised colorimetric determination of cholesterol, triglyceride, low density lipoprotein (LDL, and high density lipoprotein (HDL. RESULTS From the results of one-way ANOVA it was concluded that there were significant between-group differences in cholesterol, trygliceride, LDL, and HDL levels (p=0.000. Ethanolic extract of Garcinia mangostana pericarp significantly decreased cholesterol, trygliceride, and LDL levels, starting at 400 mg/kg body weight (p=0.000. Ethanolic extract of Garcinia mangostana pericarp significantly increased HDL level starting at 200 mg/kg body weight (p=0.000. CONCLUSION Ethanolic extract of Garcinia mangostana pericarp has a beneficial effect on lipid profile in rats on a high lipid diet.

  7. Chronic exposure to zinc oxide nanoparticles increases ischemic-reperfusion injuries in isolated rat hearts

    Energy Technology Data Exchange (ETDEWEB)

    Milivojević, Tamara; Drobne, Damjana; Romih, Tea; Mali, Lilijana Bizjak [University of Ljubljana, Department of Biology, Biotechnical Faculty (Slovenia); Marin, Irena; Lunder, Mojca; Drevenšek, Gorazd, E-mail: gorazd.drevensek@mf.uni-lj.si [University of Ljubljana, Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine (Slovenia)

    2016-10-15

    The use of zinc oxide nanoparticles (ZnO NPs) in numerous products is increasing, although possible negative implications of their long-term consumption are not known yet. Our aim was to evaluate the chronic, 6-week oral exposure to two different concentrations of ZnO NPs on isolated rat hearts exposed to ischemic-reperfusion injury and on small intestine morphology. Wistar rats of both sexes (n = 18) were randomly divided into three groups: (1) 4 mg/kg ZnO NPs, (2) 40 mg/kg ZnO NPs, and (3) control. After 6 weeks of treatment, the hearts were isolated, the left ventricular pressure (LVP), the coronary flow (CF), the duration of arrhythmias and the lactate dehydrogenase release rate (LDH) were measured. A histological investigation of the small intestine was performed. Chronic exposure to ZnO NPs acted cardiotoxic dose-dependently. ZnO NPs in dosage 40 mg/kg maximally decreased LVP (3.3-fold) and CF (2.5-fold) and increased the duration of ventricular tachycardia (all P < 0.01) compared to control, whereas ZnO NPs in dosage 4 mg/kg acted less cardiotoxic. Goblet cells in the small intestine epithelium of rats, treated with 40 mg ZnO NPs/kg, were enlarged, swollen and numerous, the intestinal epithelium width was increased. Unexpectedly, ZnO NPs in both dosages significantly decreased LDH. A 6-week oral exposure to ZnO NPs dose-dependently increased heart injuries and caused irritation of the intestinal mucosa. A prolonged exposure to ZnO NPs might cause functional damage to the heart even with exposures to the recommended daily doses, which should be tested in future studies.

  8. Increased Hypothalamic Inflammation Associated with the Susceptibility to Obesity in Rats Exposed to High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Xiaoke Wang

    2012-01-01

    Full Text Available Inflammation has been implicated in the hypothalamic leptin and insulin resistance resulting defective food intake during high fat diet period. To investigate hypothalamic inflammation in dietary induced obesity (DIO and obesity resistant (DIO-R rats, we established rat models of DIO and DIO-R by feeding high fat diet for 10 weeks. Then we switched half of DIO and DIO-R rats to chow food and the other half to high fat diet for the following 8 weeks to explore hypothalamic inflammation response to the low fat diet intervention. Body weight, caloric intake, HOMA-IR, as well as the mRNA expression of hypothalamic TLR4, NF-κB, TNF-α, IL-1β, and IL-6 in DIO/HF rats were significantly increased compared to DIO-R/HF and CF rats, whereas IL-10 mRNA expression was lower in both DIO/HF and DIO-R/HF rats compared with CF rats. Switching to chow food from high fat diet reduced the body weight and improved insulin sensitivity but not affecting the expressions of studied inflammatory genes in DIO rats. Take together, upregulated hypothalamic inflammation may contribute to the overeating and development of obesity susceptibility induced by high fat diet. Switching to chow food had limited role in correcting hypothalamic inflammation in DIO rats during the intervention period.

  9. Sleep spindles are related to schizotypal personality traits and thalamic glutamine/glutamate in healthy subjects.

    Science.gov (United States)

    Lustenberger, Caroline; O'Gorman, Ruth L; Pugin, Fiona; Tüshaus, Laura; Wehrle, Flavia; Achermann, Peter; Huber, Reto

    2015-03-01

    Schizophrenia is a severe mental disorder affecting approximately 1% of the worldwide population. Yet, schizophrenia-like experiences (schizotypy) are very common in the healthy population, indicating a continuum between normal mental functioning and the psychosis found in schizophrenic patients. A continuum between schizotypy and schizophrenia would be supported if they share the same neurobiological origin. Two such neurobiological markers of schizophrenia are: (1) a reduction of sleep spindles (12-15 Hz oscillations during nonrapid eye movement sleep), likely reflecting deficits in thalamo-cortical circuits and (2) increased glutamine and glutamate (Glx) levels in the thalamus. Thus, this study aimed to investigate whether sleep spindles and Glx levels are related to schizotypal personality traits in healthy subjects. Twenty young male subjects underwent 2 all-night sleep electroencephalography recordings (128 electrodes). Sleep spindles were detected automatically. After those 2 nights, thalamic Glx levels were measured by magnetic resonance spectroscopy. Subjects completed a magical ideation scale to assess schizotypy. Sleep spindle density was negatively correlated with magical ideation (r = -.64, P .1). The common relationship of sleep spindle density with schizotypy and thalamic Glx levels indicates a neurobiological overlap between nonclinical schizotypy and schizophrenia. Thus, sleep spindle density and magical ideation may reflect the anatomy and efficiency of the thalamo-cortical system that shows pronounced impairment in patients with schizophrenia. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Clinical appraisal of stereotactic hematoma aspiration surgery for hypertensive thalamic hemorrhage

    International Nuclear Information System (INIS)

    Sasaki, Koji; Matsumoto, Keizo

    1992-01-01

    Three hundred and four patients with hypertensive thalamic hemorrhage were managed by medical treatment, ventricular drainage, or CT-controlled stereotactic aspiration surgery (AS). The therapeutic results of the 6-month outcome were analyzed and correlated with the volume of the hematoma. A hematoma volume of 20 ml was thought to be the critical size in determining whether the outcome would be favorable or unfavorable. Indications for AS are suggested as follows. In patients with a small-sized hematoma having a volume of less than 10 ml use of AS should be restricted to patients with severe paralysis or other neurological complications and the elderly (aged 70 years or older). For patients with a medium-sized hematoma having a volume between 10 ml and 20 ml, AS is indicated for patients having severe paralysis and disturbances of consciousness. For patients with a large-sized hematoma having a volume of 20 ml or more, AS increases not only the survival rate of patients but also reduces the number of bedridden patients. We conclude that AS opens up a new avenue of surgical treatment for hypertensive thalamic hemorrhage, which has been no indication for hematoma evacuation by conventional craniotomy. (author)

  11. Persistence of disturbed thalamic glucose metabolism in a case of Wernicke-Korsakoff syndrome.

    Science.gov (United States)

    Fellgiebel, Andreas; Scheurich, Armin; Siessmeier, Thomas; Schmidt, Lutz G; Bartenstein, Peter

    2003-10-30

    We report the case of a 40-year-old alcoholic male patient, hospitalized with an acute ataxia of stance and gait, ocular muscle weakness with nystagmus and a global apathetic-confusional state. After admission, an amnestic syndrome with confabulation was also observed and diagnosis of Wernicke-Korsakoff syndrome was made. Under treatment with intravenous thiamine, the patient recovered completely from gaze weakness and ataxia, whereas a severe amnestic syndrome persisted. Fluorodeoxyglucose (FDG) positron emission tomography (PET) showed bilateral thalamic and severe bilateral temporal-parietal hypometabolism resembling a pattern typical for Alzheimer's disease. Longitudinal assessment of the alcohol-abstinent and thiamine-substituted patient revealed improvements of clinical state and neuropsychological performance that were paralleled by recovered cerebral glucose metabolism. In contrast to metabolic rates that increased between 7.1% (anterior cingulate, left) and 23.5% (parietal, left) in cortical areas during a 9-month remission period, thalamic glucose metabolism remained severely disturbed over time (change: left +0.2%, right +0.3%).

  12. Dynamics of action potential initiation in the GABAergic thalamic reticular nucleus in vivo.

    Science.gov (United States)

    Muñoz, Fabián; Fuentealba, Pablo

    2012-01-01

    Understanding the neural mechanisms of action potential generation is critical to establish the way neural circuits generate and coordinate activity. Accordingly, we investigated the dynamics of action potential initiation in the GABAergic thalamic reticular nucleus (TRN) using in vivo intracellular recordings in cats in order to preserve anatomically-intact axo-dendritic distributions and naturally-occurring spatiotemporal patterns of synaptic activity in this structure that regulates the thalamic relay to neocortex. We found a wide operational range of voltage thresholds for action potentials, mostly due to intrinsic voltage-gated conductances and not synaptic activity driven by network oscillations. Varying levels of synchronous synaptic inputs produced fast rates of membrane potential depolarization preceding the action potential onset that were associated with lower thresholds and increased excitability, consistent with TRN neurons performing as coincidence detectors. On the other hand the presence of action potentials preceding any given spike was associated with more depolarized thresholds. The phase-plane trajectory of the action potential showed somato-dendritic propagation, but no obvious axon initial segment component, prominent in other neuronal classes and allegedly responsible for the high onset speed. Overall, our results suggest that TRN neurons could flexibly integrate synaptic inputs to discharge action potentials over wide voltage ranges, and perform as coincidence detectors and temporal integrators, supported by a dynamic action potential threshold.

  13. Hypertensive thalamic hematoma treated by CT stereotactic evacuation (with two cases reports)

    International Nuclear Information System (INIS)

    Wang Hongsheng; Zhu Fengqing

    2002-01-01

    Objective: To investigate new surgical method to treat hypertensive thalamic hematoma. Methods: Two medial-degree coma patients with hypertensive thalamic hematoma were treated by CT stereotactic evacuation. Results: One week after operation the two patients regained consciousness. The function of paraplegic appendage restored partly, and one patient could take care of himself. Conclusion: CT stereotactic evacuation to treat hypertensive thalamic hematoma has the advantages of small trauma, little complication and good clinical results. The authors suggest that it be selected firstly in treating hypertensive thalamic hematoma

  14. Rapid eye movement sleep deprivation induces an increase in acetylcholinesterase activity in discrete rat brain regions

    Directory of Open Access Journals (Sweden)

    Benedito M.A.C.

    2001-01-01

    Full Text Available Some upper brainstem cholinergic neurons (pedunculopontine and laterodorsal tegmental nuclei are involved in the generation of rapid eye movement (REM sleep and project rostrally to the thalamus and caudally to the medulla oblongata. A previous report showed that 96 h of REM sleep deprivation in rats induced an increase in the activity of brainstem acetylcholinesterase (Achase, the enzyme which inactivates acetylcholine (Ach in the synaptic cleft. There was no change in the enzyme's activity in the whole brain and cerebrum. The components of the cholinergic synaptic endings (for example, Achase are not uniformly distributed throughout the discrete regions of the brain. In order to detect possible regional changes we measured Achase activity in several discrete rat brain regions (medulla oblongata, pons, thalamus, striatum, hippocampus and cerebral cortex after 96 h of REM sleep deprivation. Naive adult male Wistar rats were deprived of REM sleep using the flower-pot technique, while control rats were left in their home cages. Total, membrane-bound and soluble Achase activities (nmol of thiocholine formed min-1 mg protein-1 were assayed photometrically. The results (mean ± SD obtained showed a statistically significant (Student t-test increase in total Achase activity in the pons (control: 147.8 ± 12.8, REM sleep-deprived: 169.3 ± 17.4, N = 6 for both groups, P<0.025 and thalamus (control: 167.4 ± 29.0, REM sleep-deprived: 191.9 ± 15.4, N = 6 for both groups, P<0.05. Increases in membrane-bound Achase activity in the pons (control: 171.0 ± 14.7, REM sleep-deprived: 189.5 ± 19.5, N = 6 for both groups, P<0.05 and soluble enzyme activity in the medulla oblongata (control: 147.6 ± 16.3, REM sleep-deprived: 163.8 ± 8.3, N = 6 for both groups, P<0.05 were also observed. There were no statistically significant differences in the enzyme's activity in the other brain regions assayed. The present findings show that the increase in Achase activity

  15. Plasma insulin levels are increased by sertraline in rats under oral glucose overload

    Directory of Open Access Journals (Sweden)

    Gomez R.

    2001-01-01

    Full Text Available Recognition and control of depression symptoms are important to increase patient compliance with treatment and to improve the quality of life of diabetic patients. Clinical studies indicate that selective serotonin reuptake inhibitors (SSRI are better antidepressants for diabetic patients than other drugs. However, preclinical trials have demonstrated that not all SSRI reduce plasma glucose levels. In fact, fluoxetine increases and sertraline decreases glycemia in diabetic and non-diabetic rats. In the present study we evaluated plasma insulin levels during fasting and after glucose overload after treatment with sertraline. Adult male Wistar rats were fasted and treated with saline or 30 mg/kg sertraline and submitted or not to glucose overload (N = 10. Blood was collected and plasma insulin was measured. The mean insulin levels were: fasting group: 25.9 ± 3.86, sertraline + fasting group: 31.10 ± 2.48, overload group: 34.1 ± 3.40, and overload + sertraline group: 43.73 ± 5.14 µU/ml. Insulinemia was significantly increased in the overload + sertraline group. There were no differences between the other groups. No difference in glucose/insulin ratios could be detected between groups. The overload + sertraline group was the only one in which a significant number of individuals exceeded the upper confidence limit of insulin levels. This study demonstrates that sertraline increases glucose-stimulated insulin secretion without any change in peripheral insulin sensitivity.

  16. Increased proteoglycan synthesis by the cardiovascular system of coarctation hypertensive rats

    International Nuclear Information System (INIS)

    Lipke, D.W.; Couchman, J.R.

    1991-01-01

    Proteoglycan (PG) synthesis in the cardiovascular system of coarctation hypertensive rats was examined by in vivo and in vitro labeling of glycosaminoglycans with 35SO4 in rats made hypertensive for short (4 days) and longer (14 days) durations. With in vivo labeling, only tissues directly exposed to elevated pressure (left ventricle, LV and aorta above the clip, AOR increases) exhibited elevated PG synthesis after 4 days of hypertension. By 14 days, tissues both exposed to (LV and AOR increases) and protected from elevated pressure (right ventricle and kidney) exhibited elevated PG synthetic rates. Slight elevations in the proportion of galactosaminoglycans were observed with a concurrent proportional decrease in heparan sulfate PGs. Using the in vitro labeling procedure, no significant increases in PG synthesis were observed in any tissue at either 4 days or 14 days of hypertension. These data indicate that: (1) coarctation hypertension stimulates PG production that is dependent initially on increased pressure and later, on additional non-pressure related factors, (2) these other factors are responsible for enhanced PG production in tissues not directly exposed to pressure overload, (3) pressure and/or these other factors are essential for enhanced PG production in coarctation hypertension, and (4) synthesis of all GAG types appears to be affected

  17. Intraoperative neurophysiological responses in epileptic patients submitted to hippocampal and thalamic deep brain stimulation.

    Science.gov (United States)

    Cukiert, Arthur; Cukiert, Cristine Mella; Argentoni-Baldochi, Meire; Baise, Carla; Forster, Cássio Roberto; Mello, Valeria Antakli; Burattini, José Augusto; Lima, Alessandra Moura

    2011-12-01

    Deep brain stimulation (DBS) has been used in an increasing frequency for treatment of refractory epilepsy. Acute deep brain macrostimulation intraoperative findings were sparsely published in the literature. We report on our intraoperative macrostimulation findings during thalamic and hippocampal DBS implantation. Eighteen patients were studied. All patients underwent routine pre-operative evaluation that included clinical history, neurological examination, interictal and ictal EEG, high resolution 1.5T MRI and neuropsychological testing. Six patients with temporal lobe epilepsy were submitted to hippocampal DBS (Hip-DBS); 6 patients with focal epilepsy were submitted to anterior thalamic nucleus DBS (AN-DBS) and 6 patients with generalized epilepsy were submitted to centro-median thalamic nucleus DBS (CM-DBS). Age ranged from 9 to 40 years (11 males). All patients were submitted to bilateral quadripolar DBS electrode implantation in a single procedure, under general anesthesia, and intraoperative scalp EEG monitoring. Final electrode's position was checked postoperatively using volumetric CT scanning. Bipolar stimulation using the more proximal and distal electrodes was performed. Final standard stimulation parameters were 6Hz, 4V, 300μs (low frequency range: LF) or 130Hz, 4V, 300μs (high frequency range: HF). Bilateral recruiting response (RR) was obtained after unilateral stimulation in all patients submitted to AN and CM-DBS using LF stimulation. RR was widespread but prevailed over the fronto-temporal region bilaterally, and over the stimulated hemisphere. HF stimulation led to background slowing and a DC shift. The mean voltage for the appearance of RR was 4V (CM) and 3V (AN). CM and AN-DBS did not alter inter-ictal spiking frequency or morphology. RR obtained after LF Hip-DBS was restricted to the stimulated temporal lobe and no contralateral activation was noted. HF stimulation yielded no visually recognizable EEG modification. Mean intensity for initial

  18. Schizophrenia-Related Microdeletion Impairs Emotional Memory through MicroRNA-Dependent Disruption of Thalamic Inputs to the Amygdala

    Directory of Open Access Journals (Sweden)

    Tae-Yeon Eom

    2017-05-01

    Full Text Available Individuals with 22q11.2 deletion syndrome (22q11DS are at high risk of developing psychiatric diseases such as schizophrenia. Individuals with 22q11DS and schizophrenia are impaired in emotional memory, anticipating, recalling, and assigning a correct context to emotions. The neuronal circuits responsible for these emotional memory deficits are unknown. Here, we show that 22q11DS mouse models have disrupted synaptic transmission at thalamic inputs to the lateral amygdala (thalamo-LA projections. This synaptic deficit is caused by haploinsufficiency of the 22q11DS gene Dgcr8, which is involved in microRNA processing, and is mediated by the increased dopamine receptor Drd2 levels in the thalamus and by reduced probability of glutamate release from thalamic inputs. This deficit in thalamo-LA synaptic transmission is sufficient to cause fear memory deficits. Our results suggest that dysregulation of the Dgcr8–Drd2 mechanism at thalamic inputs to the amygdala underlies emotional memory deficits in 22q11DS.

  19. Schizophrenia-Related Microdeletion Impairs Emotional Memory through MicroRNA-Dependent Disruption of Thalamic Inputs to the Amygdala.

    Science.gov (United States)

    Eom, Tae-Yeon; Bayazitov, Ildar T; Anderson, Kara; Yu, Jing; Zakharenko, Stanislav S

    2017-05-23

    Individuals with 22q11.2 deletion syndrome (22q11DS) are at high risk of developing psychiatric diseases such as schizophrenia. Individuals with 22q11DS and schizophrenia are impaired in emotional memory, anticipating, recalling, and assigning a correct context to emotions. The neuronal circuits responsible for these emotional memory deficits are unknown. Here, we show that 22q11DS mouse models have disrupted synaptic transmission at thalamic inputs to the lateral amygdala (thalamo-LA projections). This synaptic deficit is caused by haploinsufficiency of the 22q11DS gene Dgcr8, which is involved in microRNA processing, and is mediated by the increased dopamine receptor Drd2 levels in the thalamus and by reduced probability of glutamate release from thalamic inputs. This deficit in thalamo-LA synaptic transmission is sufficient to cause fear memory deficits. Our results suggest that dysregulation of the Dgcr8-Drd2 mechanism at thalamic inputs to the amygdala underlies emotional memory deficits in 22q11DS. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Chronic social instability increases anxiety-like behavior and ethanol preference in male Long Evans rats.

    Science.gov (United States)

    Roeckner, Alyssa R; Bowling, Alexandra; Butler, Tracy R

    2017-05-01

    Chronic stress during adolescence is related to increased prevalence of anxiety disorders and alcohol use disorders in humans. This phenotype has been consistently recapitulated in animal models with male subjects, but models using female subjects are fewer. The aim of these studies was to test the hypothesis that chronic social instability (CSI) during adolescence engenders increased anxiety-like behavior, increased corticosterone, and greater ethanol intake and/or preference than control groups in male and female rats. A chronic social instability (CSI) procedure was conducted in separate cohorts of female and male adolescent Long Evans rats. CSI included daily social isolation for 1h, and then pair housing with a novel cage mate for 23h until the next 1h isolation period from PND 30-46. Control groups included social stability (SS), chronic isolation (ISO), and acute social instability (aSI). At PND 49-50, anxiety-like behavior was assessed on the elevated plus maze, and on PND 51 tails bloods were obtained for determination of corticosterone (CORT) levels. This was followed by 4weeks of ethanol drinking in a home cage intermittent access ethanol drinking paradigm (PND 55-81 for males, PND 57-83 for females). Planned contrast testing showed that the male CSI group had greater anxiety-like behavior compared controls, but group differences were not apparent for CORT. CSI males had significantly higher levels of ethanol preference during drinking weeks 2-3 compared to all other groups and compared to SS and ISO groups in week 4. For the female cohort, we did not observe consistent group differences in anxiety-like behavior, CORT levels were unexpectedly lower in the ISO group only compared to the other groups, and group differences were not apparent for ethanol intake/preference. In conclusion, chronic stress during adolescence in the form of social instability increases anxiety-like behavior and ethanol preference in male rats, consistent with other models of

  1. Arachidonate metabolism increases as rat alveolar type II cells differentiate in vitro

    International Nuclear Information System (INIS)

    Lipchik, R.J.; Chauncey, J.B.; Paine, R.; Simon, R.H.; Peters-Golden, M.

    1990-01-01

    Rat type II alveolar epithelial cells are known to undergo morphological and functional changes when maintained in culture for several days. Having previously demonstrated that these cells can deacylate free arachidonic acid (AA) and metabolize it to products of the cyclooxygenase pathway, the present study was undertaken to determine whether in vitro differentiation was accompanied by alterations in the availability and metabolism of AA. We assessed the constitutive and ionophore A23187-induced deacylation and metabolism of endogenous AA, as well as the metabolism of exogenously supplied AA, in primary cultures of rat type II cells at days 2, 4, and 7 after isolation. Levels of free endogenous AA were increased at day 4, whereas eicosanoid synthesis, predominantly prostaglandin E2 and prostacyclin, increased markedly only at day 7. A similar time course of augmentation of prostanoid release was seen in response to exogenous AA. Type II cells cultured on fibronectin, intended to hasten cell flattening and spreading, demonstrated accelerated increases in available free AA in response to A23187; cells cultured on basement membrane derived from Engelbreth-Holm-Swarm mouse sarcoma, known to maintain the type II phenotype, exhibited diminished levels of available free AA. From these findings, we conclude that alterations in arachidonate metabolism are linked to alterations in cellular phenotype. The potentiation of eicosanoid synthesis accompanying in vitro differentiation suggests a possible role for the alveolar epithelium in the modulation of inflammation and fibrosis in the distal lung

  2. Genomic and metabolic disposition of non-obese type 2 diabetic rats to increased myocardial fatty acid metabolism.

    Directory of Open Access Journals (Sweden)

    Sriram Devanathan

    Full Text Available Lipotoxicity of the heart has been implicated as a leading cause of morbidity in Type 2 Diabetes Mellitus (T2DM. While numerous reports have demonstrated increased myocardial fatty acid (FA utilization in obese T2DM animal models, this diabetic phenotype has yet to be demonstrated in non-obese animal models of T2DM. Therefore, the present study investigates functional, metabolic, and genomic differences in myocardial FA metabolism in non-obese type 2 diabetic rats. The study utilized Goto-Kakizaki (GK rats at the age of 24 weeks. Each rat was imaged with small animal positron emission tomography (PET to estimate myocardial blood flow (MBF and myocardial FA metabolism. Echocardiograms (ECHOs were performed to assess cardiac function. Levels of triglycerides (TG and non-esterified fatty acids (NEFA were measured in both plasma and cardiac tissues. Finally, expression profiles for 168 genes that have been implicated in diabetes and FA metabolism were measured using quantitative PCR (qPCR arrays. GK rats exhibited increased NEFA and TG in both plasma and cardiac tissue. Quantitative PET imaging suggests that GK rats have increased FA metabolism. ECHO data indicates that GK rats have a significant increase in left ventricle mass index (LVMI and decrease in peak early diastolic mitral annular velocity (E' compared to Wistar rats, suggesting structural remodeling and impaired diastolic function. Of the 84 genes in each the diabetes and FA metabolism arrays, 17 genes in the diabetes array and 41 genes in the FA metabolism array were significantly up-regulated in GK rats. Our data suggest that GK rats' exhibit increased genomic disposition to FA and TG metabolism independent of obesity.

  3. THE CANNABINOID RECEPTOR ANTAGONIST AM251 INCREASES PARAOXON AND CHLORPYRIFOS OXON TOXICITY IN RATS

    Science.gov (United States)

    Liu, Jing; Pope, Carey

    2014-01-01

    Organophosphorus anticholinesterases (OPs) elicit acute toxicity by inhibiting acetylcholinesterase (AChE), leading to acetylcholine accumulation and overstimulation of cholinergic receptors. Endocannabinoids (eCBs, e.g., arachidonoyl ethanolamide [AEA] and 2-arachidonoyl glycerol [2-AG]) are neuromodulators that regulate neurotransmission by reducing neurotransmitter release. The eCBs are degraded by the enzymes fatty acid amide hydrolase (FAAH, primarily involved in hydrolysis of AEA) and monoacylglycerol lipase (MAGL, primarily responsible for metabolism of 2-AG). We previously reported that the cannabinoid receptor agonist WIN 55,212-2 reduced cholinergic toxicity after paraoxon exposure. This study compared the effects of the cannabinoid receptor antagonist AM251 on acute toxicity following either paraoxon (PO) or chlorpyrifos oxon (CPO). CPO was more potent in vitro than PO at inhibiting AChE (≈ 2 fold), FAAH (≈ 8 fold), and MAGL (≈ 19 fold). Rats were treated with vehicle, PO (0.3 and 0.6 mg/kg, sc.) or CPO (6 and 12 mg/kg, sc.) and subsets treated with AM251 (3 mg/kg, ip; 30 min after OP). Signs of toxicity were recorded for four hours and rats were then sacrificed. OP-treated rats showed dose-related involuntary movements, with AM251 increasing signs of toxicity with the lower dosages. PO and CPO elicited excessive secretions, but AM251 had no apparent effect with either OP. Lethality was increased by AM251 with the higher dosage of PO, but no lethality was noted with either dosage of CPO, with or without AM251. Both OPs caused extensive inhibition of hippocampal AChE and FAAH (>80–90%), but only CPO inhibited MAGL (37–50%). These results provide further evidence that eCB signaling can influence acute OP toxicity. The selective in vivo inhibition of MAGL by CPO may be important in the differential lethality noted between PO and CPO with AM251 co-administration. PMID:25447325

  4. Vildagliptin increases butyrate-producing bacteria in the gut of diabetic rats.

    Science.gov (United States)

    Zhang, Qian; Xiao, Xinhua; Li, Ming; Yu, Miao; Ping, Fan; Zheng, Jia; Wang, Tong; Wang, Xiaojing

    2017-01-01

    Emerging evidence supports a key role for the gut microbiota in metabolic diseases, including type 2 diabetes (T2D) and obesity. The dipeptidyl peptidase-4 inhibitor vildagliptin is highly efficacious in treating T2D. However, whether vildagliptin can alter the gut microbiome is still unclear. This study aimed to identify whether vildagliptin modifies the gut microbiota structure during T2D treatment. Diabetic Sprague-Dawley (SD) rats were induced by a high-fat diet and streptozotocin injection (HFD/STZ). Diabetic rats were orally administered a low dose of vildagliptin (LV, 0.01 g/kg/d vildagliptin), high dose of vildagliptin (HV, 0.02 g/kg/d vildagliptin), or normal saline for 12 weeks. Fasting blood glucose, blood glucose after glucose loading, and serum insulin levels were significantly reduced in the LV and HV groups compared with those in the T2D group. The serum GLP-1 level increased more in the vildagliptin-treated group than in the T2D group. Pyrosequencing of the V3-V4 regions of 16S rRNA genes revealed that vildagliptin significantly altered the gut microbiota. The operational taxonomic units (OTUs) and community richness (Chao1) index were significantly reduced in the vildagliptin and diabetic groups compared with those in the control group. At the phylum level, a higher relative abundance of Bacteroidetes, lower abundance of Firmicutes, and reduced ratio of Fimicutes/Bacteroidetes were observed in the vildagliptin-treated group. Moreover, vildagliptin treatment increased butyrate-producing bacteria, including Baceroides and Erysipelotrichaeae, in the diabetic rats. Moreover, Lachnospira abundance was significantly negatively correlated with fasting blood glucose levels. In conclusion, vildagliptin treatment could benefit the communities of the gut microbiota.

  5. Vildagliptin increases butyrate-producing bacteria in the gut of diabetic rats.

    Directory of Open Access Journals (Sweden)

    Qian Zhang

    Full Text Available Emerging evidence supports a key role for the gut microbiota in metabolic diseases, including type 2 diabetes (T2D and obesity. The dipeptidyl peptidase-4 inhibitor vildagliptin is highly efficacious in treating T2D. However, whether vildagliptin can alter the gut microbiome is still unclear. This study aimed to identify whether vildagliptin modifies the gut microbiota structure during T2D treatment. Diabetic Sprague-Dawley (SD rats were induced by a high-fat diet and streptozotocin injection (HFD/STZ. Diabetic rats were orally administered a low dose of vildagliptin (LV, 0.01 g/kg/d vildagliptin, high dose of vildagliptin (HV, 0.02 g/kg/d vildagliptin, or normal saline for 12 weeks. Fasting blood glucose, blood glucose after glucose loading, and serum insulin levels were significantly reduced in the LV and HV groups compared with those in the T2D group. The serum GLP-1 level increased more in the vildagliptin-treated group than in the T2D group. Pyrosequencing of the V3-V4 regions of 16S rRNA genes revealed that vildagliptin significantly altered the gut microbiota. The operational taxonomic units (OTUs and community richness (Chao1 index were significantly reduced in the vildagliptin and diabetic groups compared with those in the control group. At the phylum level, a higher relative abundance of Bacteroidetes, lower abundance of Firmicutes, and reduced ratio of Fimicutes/Bacteroidetes were observed in the vildagliptin-treated group. Moreover, vildagliptin treatment increased butyrate-producing bacteria, including Baceroides and Erysipelotrichaeae, in the diabetic rats. Moreover, Lachnospira abundance was significantly negatively correlated with fasting blood glucose levels. In conclusion, vildagliptin treatment could benefit the communities of the gut microbiota.

  6. Melatonin attenuates prenatal dexamethasone-induced blood pressure increase in a rat model.

    Science.gov (United States)

    Tain, You-Lin; Chen, Chih-Cheng; Sheen, Jiunn-Ming; Yu, Hong-Ren; Tiao, Mao-Meng; Kuo, Ho-Chang; Huang, Li-Tung

    2014-04-01

    Although antenatal corticosteroid is recommended to accelerate fetal lung maturation, prenatal dexamethasone exposure results in hypertension in the adult offspring. Since melatonin is a potent antioxidant and has been known to regulate blood pressure, we examined the beneficial effects of melatonin therapy in preventing prenatal dexamethasone-induced programmed hypertension. Male offspring of Sprague-Dawley rats were assigned to four groups (n = 12/group): control, dexamethasone (DEX), control + melatonin, and DEX + melatonin. Pregnant rats received intraperitoneal dexamethasone (0.1 mg/kg) from gestational day 16 to 22. In the melatonin-treatment groups, rats received 0.01% melatonin in drinking water during their entire pregnancy and lactation. Blood pressure was measured by an indirect tail-cuff method. Gene expression and protein levels were analyzed by real-time quantitative polymerase chain reaction and Western blotting, respectively. At 16 weeks of age, the DEX group developed hypertension, which was partly reversed by maternal melatonin therapy. Reduced nephron numbers due to prenatal dexamethasone exposure were prevented by melatonin therapy. Renal superoxide and NO levels were similar in all groups. Prenatal dexamethasone exposure led to increased mRNA expression of renin and prorenin receptor and up-regulated histone deacetylase (HDAC)-1 expression in the kidneys of 4-month-old offspring. Maternal melatonin therapy augmented renal Mas protein levels in DEX + melatonin group, and increased renal mRNA expression of HDAC-1, HDAC-2, and HDAC-8 in control and DEX offspring. Melatonin attenuated prenatal DEX-induced hypertension by restoring nephron numbers, altering RAS components, and modulating HDACs. Copyright © 2014 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  7. Insufficient insulin administration to diabetic rats increases substrate utilization and maintains lactate production in the kidney

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Lipsø, Hans Kasper Wigh; Østergaard, Jakob Appel

    2014-01-01

    with insulin, resulting in poor glycemic control, has an additional effect on progression of late diabetic complications, than poor glycemic control on its own. We therefore compared renal metabolic alterations during conditions of poor glycemic control with and without suboptimal insulin administration, which...... administration increased pyruvate utilization and metabolic flux via both anaerobic and aerobic pathways in diabetic rats even though insulin did not affect kidney oxygen availability, HbA1c, or oxidative stress. These results imply direct effects of insulin in the regulation of cellular substrate utilization...... and metabolic fluxes during conditions of poor glycemic control. The study demonstrates that poor glycemic control in combination with suboptimal insulin administration accelerates metabolic alterations by increasing both anaerobic and aerobic metabolism resulting in increased utilization of energy substrates...

  8. Increased Oxidative Stress and Imbalance in Antioxidant Enzymes in the Brains of Alloxan-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Luciane B. Ceretta

    2012-01-01

    Full Text Available Diabetes Mellitus (DM is associated with pathological changes in the central nervous system (SNC as well as alterations in oxidative stress. Thus, the main objective of this study was to evaluate the effects of the animal model of diabetes induced by alloxan on memory and oxidative stress. Diabetes was induced in Wistar rats by using a single injection of alloxan (150 mg/kg, and fifteen days after induction, the rats memory was evaluated through the use of the object recognition task. The oxidative stress parameters and the activity of antioxidant enzymes, superoxide dismutase (SOD, and catalase (CAT were measured in the rat brain. The results showed that diabetic rats did not have alterations in their recognition memory. However, the results did show that diabetic rats had increases in the levels of superoxide in the prefrontal cortex, and in thiobarbituric acid reactive species (TBARS production in the prefrontal cortex and in the amygdala in submitochondrial particles. Also, there was an increase in protein oxidation in the hippocampus and striatum, and in TBARS oxidation in the striatum and amygdala. The SOD activity was decreased in diabetic rats in the striatum and amygdala. However, the CAT activity was increased in the hippocampus taken from diabetic rats. In conclusion, our findings illustrate that the animal model of diabetes induced by alloxan did not cause alterations in the animals’ recognition memory, but it produced oxidants and an imbalance between SOD and CAT activities, which could contribute to the pathophysiology of diabetes.

  9. Voluntary resistance running induces increased hippocampal neurogenesis in rats comparable to load-free running.

    Science.gov (United States)

    Lee, Min Chul; Inoue, Koshiro; Okamoto, Masahiro; Liu, Yu Fan; Matsui, Takashi; Yook, Jang Soo; Soya, Hideaki

    2013-03-14

    Recently, we reported that voluntary resistance wheel running with a resistance of 30% of body weight (RWR), which produces shorter distances but higher work levels, enhances spatial memory associated with hippocampal brain-derived neurotrophic factor (BDNF) signaling compared to wheel running without a load (WR) [17]. We thus hypothesized that RWR promotes adult hippocampal neurogenesis (AHN) as a neuronal substrate underlying this memory improvement. Here we used 10-week-old male Wistar rats divided randomly into sedentary (Sed), WR, and RWR groups. All rats were injected intraperitoneally with the thymidine analogue 5-Bromo-2'-deoxuridine (BrdU) for 3 consecutive days before wheel running. We found that even when the average running distance decreased by about half, the average work levels significantly increased in the RWR group, which caused muscular adaptation (oxidative capacity) for fast-twitch plantaris muscle without causing any negative stress effects. Additionally, immunohistochemistry revealed that the total BrdU-positive cells and newborn mature cells (BrdU/NeuN double-positive) in the dentate gyrus increased in both the WR and RWR groups. These results provide new evidence that RWR has beneficial effects on AHN comparable to WR, even with short running distances. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Biochemical and functional correlates of an increased membrane density of caveolae in hypertrophic rat urinary bladder.

    Science.gov (United States)

    Shakirova, Yulia; Swärd, Karl; Uvelius, Bengt; Ekman, Mari

    2010-12-15

    Organ hypertrophy is often found to be associated with changes in the expression of caveolins and altered density of caveolae in the membrane. A plethora of signalling intermediaries are associated with caveolae and loss of caveolae has profound effects on contractility of the urinary bladder. We hypothesized that smooth muscle hypertrophy caused by bladder outflow obstruction (BOO) might lead to an altered caveola density with consequences for contractile regulation. Rat BOO for 6 weeks caused a 2.56-fold increase in the number of smooth muscle caveolae per μm membrane. No changes in the expression of caveolin-1 or cavin-1, normalized to β-actin were seen, but membrane area per unit muscle volume dropped to 0.346. Hypertrophy was associated with altered contraction in response to carbachol. The effect on contraction of cholesterol desorption, which disrupts lipid rafts and caveolae, was however not changed. Contraction in response to bradykinin resisted mβcd in control destrusor, but was inhibited by it after 6 weeks of obstruction. It is concluded that rat detrusor hypertrophy leads to an increased number of caveolae per unit membrane area. This change is due to a reduction of membrane area per volume muscle and it does not play a role for cholinergic activation, but promotes contraction in response to bradykinin after long-term obstruction. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Increased expression of EMMPRIN and VEGF in the rat brain after gamma irradiation.

    Science.gov (United States)

    Wei, Ming; Li, Hong; Huang, Huiling; Xu, Desheng; Zhi, Dashi; Liu, Dong; Zhang, Yipei

    2012-03-01

    The extracellular matrix metalloproteinase inducer (EMMPRIN) has been known to play a key regulatory role in pathological angiogenesis. A elevated activation of vascular endothelial growth factor (VEGF) following radiation injury has been shown to mediate blood-brain barrier (BBB) breakdown. However, the roles of EMMPRIN and VEGF in radiation-induced brain injury after gamma knife surgery (GKS) are not clearly understood. In this study, we investigated EMMPRIN changes in a rat model of radiation injury following GKS and examined potential associations between EMMPRIN and VEGF expression. Adult male rats were subjected to cerebral radiation injury by GKS under anesthesia. We found that EMMPRIN and VEGF expression were markedly upregulated in the target area at 8-12 weeks after GKS compared with the control group by western blot, immunohistochemistry, and RT-PCR analysis. Immunofluorescent double staining demonstrated that EMMPRIN signals colocalized with caspase-3 and VEGF-positive cells. Our data also demonstrated that increased EMMPRIN expression was correlated with increased VEGF levels in a temporal manner. This is the first study to show that EMMPRIN and VEGF may play a role in radiation injuries of the central nervous system after GKS.

  12. Increased CD147 (EMMPRIN) expression in the rat brain following traumatic brain injury.

    Science.gov (United States)

    Wei, Ming; Li, Hong; Shang, Yanguo; Zhou, Ziwei; Zhang, Jianning

    2014-10-17

    The extracellular matrix metalloproteinase inducer (EMMPRIN), or CD147, has been known to play a key regulatory role in vascular permeability and leukocyte activation by inducing the expression of matrix metalloproteinases (MMPs). The effects of traumatic brain injury on the expression of EMMPRIN remain poorly understood. In this study, we investigated changes in EMMPRIN expression in a rat model of fluid percussion injury (FPI) and examined the potential association between EMMPRIN and MMP-9 expression. Adult male rats were subjected to FPI. EMMPRIN expression was markedly up-regulated in the brain tissue surrounding the injured region 6-48 h after TBI, as measured by immunoblot and immunohistochemistry. EMMPRIN expression was localized to inflammatory cells. The increase in EMMPRIN expression was temporally correlated with an increase in MMP-9 levels. These data demonstrate, for the first time, changes in CD147 and MMP-9 expression following TBI. These data also suggest that CD147 and MMP-9 may play a role in vascular injuries after TBI. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Increased Nerve Growth Factor Signaling in Sensory Neurons of Early Diabetic Rats Is Corrected by Electroacupuncture

    Directory of Open Access Journals (Sweden)

    Stefania Lucia Nori

    2013-01-01

    Full Text Available Diabetic polyneuropathy (DPN, characterized by early hyperalgesia and increased nerve growth factor (NGF, evolves in late irreversible neuropathic symptoms with reduced NGF support to sensory neurons. Electroacupuncture (EA modulates NGF in the peripheral nervous system, being effective for the treatment of DPN symptoms. We hypothesize that NGF plays an important pathogenic role in DPN development, while EA could be useful in the therapy of DPN by modulating NGF expression/activity. Diabetes was induced in rats by streptozotocin (STZ injection. One week after STZ, EA was started and continued for three weeks. NGF system and hyperalgesia-related mediators were analyzed in the dorsal root ganglia (DRG and in their spinal cord and skin innervation territories. Our results show that four weeks long diabetes increased NGF and NGF receptors and deregulated intracellular signaling mediators of DRG neurons hypersensitization; EA in diabetic rats decreased NGF and NGF receptors, normalized c-Jun N-terminal and p38 kinases activation, decreased transient receptor potential vanilloid-1 ion channel, and possibly activated the nuclear factor kappa-light-chain-enhancer of activated B cells (Nf-κB. In conclusion, NGF signaling deregulation might play an important role in the development of DPN. EA represents a supportive tool to control DPN development by modulating NGF signaling in diabetes-targeted neurons.

  14. Growth hormone increases and maturation decreases glutamine synthetase turnover rate in rat liver

    International Nuclear Information System (INIS)

    Lin, C.K.

    1985-01-01

    An investigation was made of the effect of hypophysectomy and growth hormone (GH) replacement regimen (1 mg/100 g twice daily for 30 days); and maturation (from 25 up to 90 days) on the liver and brain glutamine synthetase (GS) mass and turnover rates in rats. The first order decay rate of enzyme 14 C radioactivity was determined between 1 and 4 days to obtain the half-life (T/sub 1/2/) of GS. The hepatic GS mass was determined by immunoassay. GS turnover (GS/sub s/) was calculated from T/sub 1/2/ and the GS mass (i.e., K = 0.693/T/sub 1/2/; GS/sub s/ = K x GS mass). It was concluded that: (1) GS specific activity is not decreased by hypophysectomy or increased by GH. These results suggested that observed endocrine induced changes in GS are due to changes in GS mass. (2) The liver GS turnover rate is significantly reduced by hypophysectomy and increased by GH replacement. It was proposed that GH specifically enhances synthesis of GS in the liver. (3) Maturation (25, 40, 60, and 90 days) decreases GS turnover rate in both liver and brain of normal rats. This similar effect of maturation suggests that the observed age induced decline in GS turnover rate is not related to GH in all tissues

  15. Euglycemia in Diabetic Rats Leads to Reduced Liver Weight via Increased Autophagy and Apoptosis through Increased AMPK and Caspase-3 and Decreased mTOR Activities

    Directory of Open Access Journals (Sweden)

    Jun-Ho Lee

    2015-01-01

    Full Text Available Euglycemia is the ultimate goal in diabetes care to prevent complications. However, the benefits of euglycemia in type 2 diabetes are controversial because near-euglycemic subjects show higher mortality than moderately hyperglycemic subjects. We previously reported that euglycemic-diabetic rats on calorie-control lose a critical liver weight (LW compared with hyperglycemic rats. Here, we elucidated the molecular mechanisms underlying the loss of LW in euglycemic-diabetic rats and identified a potential risk in achieving euglycemia by calorie-control. Sprague-Dawley diabetic rats generated by subtotal-pancreatectomy were fed a calorie-controlled diet for 7 weeks to achieve euglycemia using 19 kcal% (19R or 6 kcal% (6R protein-containing chow or fed ad libitum (19AL. The diet in both R groups was isocaloric/kg body weight to the sham-operated group (19S. Compared with 19S and hyperglycemic 19AL, both euglycemic R groups showed lower LWs, increased autophagy, and increased AMPK and caspase-3 and decreased mTOR activities. Though degree of insulin deficiency was similar among the diabetic rats, Akt activity was lower, and PTEN activity was higher in both R groups than in 19AL whose signaling patterns were similar to 19S. In conclusion, euglycemia achieved by calorie-control is deleterious in insulin deficiency due to increased autophagy and apoptosis in the liver via AMPK and caspase-3 activation.

  16. Glucagon infusion increases rate of purine synthesis de novo in rat liver

    International Nuclear Information System (INIS)

    Itakura, Mitsuo; Maeda, Noriaki; Tsuchiya, Masami; Yamashita, Kamejiro

    1987-01-01

    Based on the parallel increases of glucagon, the second peak of hepatic cAMP, and the rate of purine synthesis de novo in the prereplicative period in regenerating rate liver after a 70% hepatectomy, it was hypothesized that glucagon is responsible for the increased rate of purine synthesis de novo. To test this hypothesis, the effect of glucagon or dibutyryl cAMP infusion on the rate of purine synthesis de novo in rat liver was studied. Glucagon infusion but not insulin or glucose infusion increased the rate of purine synthesis de novo, which was assayed by [ 14 C]glycine or [ 14 C]formate incorporation, by 2.7- to 4.3-fold. Glucagon infusion increased cAMP concentrations by 4.9-fold and 5-phosphoribosyl-1-pyrophosphate concentrations by 1.5-fold in liver but did not change the specific activity of amidophosphoribosyltransferase or purine ribonucleotide concentrations. Dibutyryl cAMP infusion also increased the rate of purine synthesis de novo by 2.2- to 4.0-fold. Because glucagon infusion increased the rate of purine synthesis de novo in the presence of unchanged purine ribonucleotide concentrations, it is concluded that glucagon after infusion or in animals after a 70% hepatectomy is playing an anabolic role to increase the rate of purine synthesis de novo by increasing cAMP and 5-phosphoribosyl-1-pyrophosphate concentrations

  17. Intracerebroventricular Injection of Lipopolysaccharide Increases Gene Expression of Connexin32 Gap Junction in Rat Hippocampus

    Directory of Open Access Journals (Sweden)

    Mohammad Abbasian

    2013-11-01

    Full Text Available Introduction: Gap junctions are intercellular membrane channels that provide direct cytoplasmic continuity between adjacent cells. This communication can be affected by changes in expression of gap junctional subunits called Connexins (Cx. Changes in the expression and function of connexins are associated with number of brain neurodegenerative diseases. Neuroinflammation is a hallmark of various central nervous system (CNS diseases, like multiple sclerosis, Alzheimer's disease and epilepsy. Neuroinflammation causes change in Connexins expression. Hippocampus, one of the main brain regions with a wide network of Gap junctions between different neural cell types, has particular vulnerability to damage and consequent inflammation. Cx32 – among Connexins– is expressed in hippocampal Olygodandrocytes and some neural subpopulations. Although multiple lines of evidence indicate that there is an association between neuroinflammation and the expression of connexin, the direct effect of neuroinflammation on the expression of connexins has not been well studied. In the present study, the effect of neuroinflammation induced by the Lipopolysaccharide (LPS on Cx32 gene and protein expressions in rat hippocampus is evaluated. Methods: LPS (2.5μg/rat was infused into the rat cerebral ventricles for 14 days. Cx32 mRNA and protein levels were measured by Real Time PCR and Western Blot after 1st, 7th and 14th injection of LPS in the hippocampus. Results: Significant increase in Cx32 mRNA expression was observed after 7th injection of LPS (P<0.001. However, no significant change was observed in Cx32 protein level. Conclusion: LPS seems to modify Cx32 GJ communication in the hippocampus at transcription level but not at translation or post-translation level. In order to have a full view concerning modification of Cx32 GJ communication, effect of LPS on Cx32 channel gating should also be determined.

  18. Centella asiatica increases B-cell lymphoma 2 expression in rat prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Kuswati

    2015-04-01

    Full Text Available Background Stress is one of the factors that cause apoptosis in neuronal cells. Centella asiatica has a neuroprotective effect that can inhibit apoptosis. This study aimed to examine the effect of Centella asiatica ethanol extract on B-cell lymphoma 2 (Bcl-2 protein expression in the prefrontal cortex of rats. Methods An experimental study was conducted on 34 brain tissue samples from male Sprague Dawley rats exposed to chronic restraint stress for 21 days. The samples were taken from following groups: non-stress group K, negative control group P1 (stress + arabic gum powder, P2 (stress + C.asiatica at 150 mg/kgBW, P3 (stress + C.asiatica at 300 mg/kg BW, P4 (stress + C.asiatica at 600 mg/kg body weight and positive control group P5 (stress + fluoxetine at 10 mg/kgBW. The samples were made into sections that were stained immunohistochemically using Bcl-2 antibody to determine the percentage of cells expressing Bcl-2. Data were analyzed using one way ANOVA test followed by a post - hoc test. Results There were significant differences in mean Bcl-2 expression between the groups receiving Centella asiatica compared with the non-stress group and stress-only group (negative control group (p<0.05. The results were comparable to those of the fluoxetine treatment group. Conclusion The Centella asiatica ethanol extract was able to increase Bcl-2 expression in the prefrontal cortex of Sprague Dawley rats exposed to restraint stress. This study suggests that Centella asiatica may be useful in the treatment of cerebral stress.

  19. Effects of neonatal excitotoxic lesions in ventral thalamus on social interaction in the rat.

    Science.gov (United States)

    Wolf, Rainer; Dobrowolny, Henrik; Nullmeier, Sven; Bogerts, Bernhard; Schwegler, Herbert

    2017-03-30

    The role of the thalamus in schizophrenia has increasingly been studied in recent years. Deficits in the ventral thalamus have been described in only few postmortem and neuroimaging studies. We utilised our previously introduced neurodevelopmental animal model, the neonatal excitotoxic lesion of the ventral thalamus of Sprague-Dawley rats (Wolf et al., Pharmacopsychiatry 43:99-109, 22). At postnatal day (PD7), male pubs received bilateral thalamic infusions with ibotenic acid (IBA) or artificial cerebrospinal fluid (control). In adulthood, social interaction of two animals not familiar to each other was studied by a computerised video tracking system. This study displays clear lesion effects on social interaction of adult male rats. The significant reduction of total contact time and the significant increase in distance between the animals in the IBA group compared to controls can be interpreted as social withdrawal modelling a negative symptom of schizophrenia. The significant increase of total distance travelled in the IBA group can be hypothesised as agitation modelling a positive symptom of schizophrenia. Using a triple concept of social interaction, the percentage of no social interaction (Non-SI%) was significantly larger, and inversely, the percentage of passive social interaction (SI-passive%) was significantly smaller in the IBA group when compared to controls. In conclusion, on the background of findings in schizophrenic patients, the effects of neonatal ventral thalamic IBA lesions in adult male rats support the hypothesis of face and construct validity as animal model of schizophrenia.

  20. Tributyltin chloride increases phenylephrine-induced contraction and vascular stiffness in mesenteric resistance arteries from female rats

    International Nuclear Information System (INIS)

    Ribeiro Júnior, Rogério Faustino; Marques, Vinicius Bermond; Nunes, Dieli Oliveira; Ronconi, Karoline de Sousa; Araújo, Julia F.P. de; Rodrigues, Paula Lopes; Padilha, Alessandra Simão; Vassallo, Dalton Valentim; Graceli, Jones B.; Stefanon, Ivanita

    2016-01-01

    Tributyltin chloride (TBT) is an organotin compound that reduces estrogen levels in female rats. We aimed to investigate the effects of TBT exposure on vascular tonus and vascular remodelling in the resistance arteries of female rats. Rats were treated daily with TBT (500 ng/kg) for 15 days. TBT did not change arterial blood pressure but did modify some morpho-physiological parameters of third-order mesenteric resistance arteries in the following ways: (1) decreased lumen and external diameters; (2) increased wall/lm ratio and wall thickness; (3) decreased distensibility and increased stiffness; (4) increased collagen deposition; and (5) increased pulse wave velocity. TBT exposure increased the phenylephrine-induced contractile response in mesenteric resistance arteries. However, vasodilatation responses induced by acetylcholine and sodium nitroprusside were not modified by TBT. It is suggested that TBT exposure reduces vascular nitric oxide (NO) production, because:(1) L-NAME incubation did not cause a leftward shift in the concentration–response curve for phenylephrine; (2) both eNOS protein expression; (3) in situ NO production were reduced. Incubation with L-NAME; and (4) SOD shifted the phenylephrine response curve to the left in TBT rats. Tiron, catalase, ML-171 and VAS2870 decreased vascular reactivity to phenylephrine only in TBT rats. Moreover, increased superoxide anion production was observed in the mesenteric resistance arteries of TBT rats accompanied by an increase in gp91phox, catalase, AT 1 receptor and total ERK1/2 protein expression. In conclusion, these findings show that TBT induced alterations are most likely due to a reduction of NO production combined with increased O 2 − production derived from NADPH oxidase and ERK1/2 activation. These findings offer further evidence that TBT is an environmental risk factor for cardiovascular disease. - Highlights: • Tributyltin chloride reduces estrogen levels in female rats. • Treatment with TBT

  1. Persistent increase in oxygen consumption and impaired neurovascular coupling after spreading depression in rat neocortex

    DEFF Research Database (Denmark)

    Hansen, Henning Piilgaard; Lauritzen, Martin

    2009-01-01

    trauma. Here we tested the hypothesis that single episodes of CSD induced acute hypoxia, and prolonged impairment of neurovascular and neurometabolic coupling. Cortical spreading depression was induced in rat frontal cortex, whereas cortical electrical activity and local field potentials (LFPs) were......Cortical spreading depression (CSD) is associated with a dramatic failure of brain ion homeostasis and increased energy metabolism. There is strong clinical and experimental evidence to suggest that CSD is the mechanism of migraine, and involved in progressive neuronal injury in stroke and head...... recorded by glass microelectrodes, cerebral blood flow (CBF) by laser-Doppler flowmetry, and tissue oxygen tension (tpO(2)) with polarographic microelectrodes. Cortical spreading depression increased cerebral metabolic rate of oxygen (CMRO(2)) by 71%+/-6.7% and CBF by 238%+/-48.1% for 1 to 2 mins...

  2. [Light pollution increases morbidity and mortality rate from different causes in male rats].

    Science.gov (United States)

    Bukalev, A V; Vinogradova, I A; Zabezhinskiĭ, M A; Semenchenko, A V; Anisimov, V N

    2012-01-01

    The influence of different light regimes (constant light--LL; constant darkness--DD; standard light regime--LD, 12 hours light 12 hours darkness; natural lightening of the North-West of Russia--NL) on the dynamics of life's morbidity rate, spontaneous tumorigenesis and frequency of some kinds of non-tumor pathology revealed at the post-mortem examination of male rats was studied. It was found out that the maintenance of animals at LL and NL conditions led to the increase of the number of infectious diseases, substantially faster development of spontaneous tumors and the increase of non-tumor diseases in comparison with the animals kept at LD (standard light) regime. Light deprivation (DD) led to substantial reduction of development of new growth, of non-tumor and infectious diseases in comparison with the similar parameters in standard light regime.

  3. Altered feeding patterns in rats exposed to a palatable cafeteria diet: increased snacking and its implications for development of obesity.

    Directory of Open Access Journals (Sweden)

    Sarah I Martire

    Full Text Available BACKGROUND: Rats prefer energy-rich foods over chow and eat them to excess. The pattern of eating elicited by this diet is unknown. We used the behavioral satiety sequence to classify an eating bout as a meal or snack and compared the eating patterns of rats fed an energy rich cafeteria diet or chow. METHODS: Eight week old male Sprague Dawley rats were exposed to lab chow or an energy-rich cafeteria diet (plus chow for 16 weeks. After 5, 10 and 15 weeks, home-cage overnight feeding behavior was recorded. Eating followed by grooming then resting or sleeping was classified as a meal; whereas eating not followed by the full sequence was classified as a snack. Numbers of meals and snacks, their duration, and waiting times between feeding bouts were compared between the two conditions. RESULTS: Cafeteria-fed rats ate more protein, fat and carbohydrate, consistently ingesting double the energy of chow-fed rats, and were significantly heavier by week 4. Cafeteria-fed rats tended to take multiple snacks between meals and ate fewer meals than chow-fed rats. They also ate more snacks at 5 weeks, were less effective at compensating for snacking by reducing meals, and the number of snacks in the majority of the cafeteria-fed rats was positively related to terminal body weights. CONCLUSIONS: Exposure to a palatable diet had long-term effects on feeding patterns. Rats became overweight because they initially ate more frequently and ultimately ate more of foods with higher energy density. The early increased snacking in young cafeteria-fed rats may represent the establishment of eating habits that promote weight gain.

  4. Pre-stimulus thalamic theta power predicts human memory formation.

    Science.gov (United States)

    Sweeney-Reed, Catherine M; Zaehle, Tino; Voges, Jürgen; Schmitt, Friedhelm C; Buentjen, Lars; Kopitzki, Klaus; Richardson-Klavehn, Alan; Hinrichs, Hermann; Heinze, Hans-Jochen; Knight, Robert T; Rugg, Michael D

    2016-09-01

    Pre-stimulus theta (4-8Hz) power in the hippocampus and neocortex predicts whether a memory for a subsequent event will be formed. Anatomical studies reveal thalamus-hippocampal connectivity, and lesion, neuroimaging, and electrophysiological studies show that memory processing involves the dorsomedial (DMTN) and anterior thalamic nuclei (ATN). The small size and deep location of these nuclei have limited real-time study of their activity, however, and it is unknown whether pre-stimulus theta power predictive of successful memory formation is also found in these subcortical structures. We recorded human electrophysiological data from the DMTN and ATN of 7 patients receiving deep brain stimulation for refractory epilepsy. We found that greater pre-stimulus theta power in the right DMTN was associated with successful memory encoding, predicting both behavioral outcome and post-stimulus correlates of successful memory formation. In particular, significant correlations were observed between right DMTN theta power and both frontal theta and right ATN gamma (32-50Hz) phase alignment, and frontal-ATN theta-gamma cross-frequency coupling. We draw the following primary conclusions. Our results provide direct electrophysiological evidence in humans of a role for the DMTN as well as the ATN in memory formation. Furthermore, prediction of subsequent memory performance by pre-stimulus thalamic oscillations provides evidence that post-stimulus differences in thalamic activity that index successful and unsuccessful encoding reflect brain processes specifically underpinning memory formation. Finally, the findings broaden the understanding of brain states that facilitate memory encoding to include subcortical as well as cortical structures. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Ketamine coadministration attenuates morphine tolerance and leads to increased brain concentrations of both drugs in the rat

    Science.gov (United States)

    Lilius, T O; Jokinen, V; Neuvonen, M S; Niemi, M; Kalso, E A; Rauhala, P V

    2015-01-01

    Background and Purpose The effects of ketamine in attenuating morphine tolerance have been suggested to result from a pharmacodynamic interaction. We studied whether ketamine might increase brain morphine concentrations in acute coadministration, in morphine tolerance and morphine withdrawal. Experimental Approach Morphine minipumps (6 mg·day–1) induced tolerance during 5 days in Sprague–Dawley rats, after which s.c. ketamine (10 mg·kg–1) was administered. Tail flick, hot plate and rotarod tests were used for behavioural testing. Serum levels and whole tissue brain and liver concentrations of morphine, morphine-3-glucuronide, ketamine and norketamine were measured using HPLC-tandem mass spectrometry. Key Results In morphine-naïve rats, ketamine caused no antinociception whereas in morphine-tolerant rats there was significant antinociception (57% maximum possible effect in the tail flick test 90 min after administration) lasting up to 150 min. In the brain of morphine-tolerant ketamine-treated rats, the morphine, ketamine and norketamine concentrations were 2.1-, 1.4- and 3.4-fold, respectively, compared with the rats treated with morphine or ketamine only. In the liver of morphine-tolerant ketamine-treated rats, ketamine concentration was sixfold compared with morphine-naïve rats. After a 2 day morphine withdrawal period, smaller but parallel concentration changes were observed. In acute coadministration, ketamine increased the brain morphine concentration by 20%, but no increase in ketamine concentrations or increased antinociception was observed. Conclusions and Implications The ability of ketamine to induce antinociception in rats made tolerant to morphine may also be due to increased brain concentrations of morphine, ketamine and norketamine. The relevance of these findings needs to be assessed in humans. PMID:25297798

  6. The Dietary Furocoumarin Imperatorin Increases Plasma GLP-1 Levels in Type 1-Like Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Lin-Yu Wang

    2017-10-01

    Full Text Available Imperatorin, a dietary furocoumarin, is found not only in medicinal plants, but also in popular culinary herbs, such as parsley and fennel. Recently, imperatorin has been shown to activate GPR119 in cells. Another GPR, GPR131, also called TGR5 or G-protein-coupled bile acid receptor 1 (GPBAR1, is known to regulate glucose metabolism. Additionally, TGR5 activation increases glucagon-like peptide (GLP-1 secretion to lower blood sugar levels in animals. Therefore, the present study aims to determine whether the effects of imperatorin on GLP-1 secretion are mediated by TGR5. First, we transfected cultured Chinese hamster ovary cells (CHO-K1 cells with the TGR5 gene. Glucose uptake was confirmed in the transfected cells using a fluorescent indicator. Moreover, NCI-H716 cells, which secrete GLP-1, were used to investigate the changes in calcium concentrations and GLP-1 levels. In addition, streptozotocin (STZ-induced type 1-like diabetic rats were used to identify the effects of imperatorin in vivo. Imperatorin dose-dependently increased glucose uptake in CHO-K1 cells expressing TGR5. In STZ diabetic rats, similar to the results in NCI-H716 cells, imperatorin induced a marked increase of GLP-1 secretion that was reduced, but not totally abolished, by a dose of triamterene that inhibited TGR5. Moreover, increases in GLP-1 secretion induced by imperatorin and GPR119 activation were shown in NCI-H716 cells. We demonstrated that imperatorin induced GLP-1 secretion via activating TGR5 and GPR119. Therefore, imperatorin shall be considered as a TGR5 and GPR119 agonist.

  7. EGF increases expression and activity of PAs in preimplantation rat embryos and their implantation rate

    Directory of Open Access Journals (Sweden)

    Har-Vardi Iris

    2007-01-01

    Full Text Available Abstract Background Embryo implantation plays a major role in embryogenesis and the outcome of pregnancy. Plasminogen activators (PAs have been implicated in mammalian fertilization, early stages of development and embryo implantation. As in-vitro developing embryos resulted in lower implantation rate than those developed in-vivo we assume that a reduced PAs activity may be involved. In the present work we studied the effect of EGF on PAs activity, quantity and embryo implantation. Methods Zygotes were flushed from rat oviducts on day one of pregnancy and grown in-vitro in R1ECM supplemented with EGF (10 ng/ml and were grown up to the blastocyst stage. The control groups were grown in the same medium without EGF. The distribution and quantity of the PAs were examined using fluorescence immunohistochemistry followed by measurement of PAs activity using the chromogenic assay. Implantation rate was studied using the embryo donation model. Results PAs distribution in the embryos was the same in EGF treated and untreated embryos. Both PAs were localized in the blastocysts' trophectoderm, supporting the assumption that PAs play a role in the implantation process in rats. EGF increased the quantity of uPA at all stages studied but the 8-cell stage as compared with controls. The tissue type PA (tPA content was unaffected except the 8-cell stage, which was increased. The activity of uPA increased gradually towards the blastocyst stage and more so due to the presence of EGF. The activity of tPA did not vary with the advancing developmental stages although it was also increased by EGF. The presence of EGF during the preimplantation development doubled the rate of implantation of the treated group as compared with controls.

  8. Atrial natriuretic peptide (ANP) increases urinary albumin excretion (UAE) in intact and uninephrectomized (UNX) rats

    International Nuclear Information System (INIS)

    Valentin, J.P.; Ribstein, J.; Mimran, A.

    1990-01-01

    Previous experimental observations have suggested that ANP increases the transcapillary shift of water and albumin. The present studies were conducted in anesthetized euvolemic rats 6 weeks after UNX or sham operation. The effect of iv infusion of 103-126 hANP was assessed on GFR and ERPF ( 99 Tc.DTPA and 131 I-hippuran clearances), and UAE (nephelemetric method). ANP infusion was associated with no change in mean arterial pressure during the low dose (LD) and a 30 mm Hg decrease during the high dose (HD). ANP induced a dose-dependent and reversible increase in UNaV. Both proximal (as assessed by lithium excretion) and distal reabsorption of sodium were decreased by ANP. GFR was altered whereas ERPF decreased only during HD-AMP; filtration fraction (FF) dose-dependently increased in response to ANP. UAE increased dose-dependently and to a similar extent in both groups in response to ANP. The increase in UAE was readily reversible after discontinuation of ANP. There was a positive correlation between changes in UAE and changes in FF induced by ANP. These results indicate that ANP has a potent albuminuric effect. The simultaneous increase in UAE and FF, which could explain the effect of ANP on proximal tubular handling of sodium, may result from an ANP-induced rise in intraglomerular capillary pressure and/or an increase in glomerular permeability to albumin

  9. Multicentre European study of thalamic stimulation in parkinsonian and essential tremor

    NARCIS (Netherlands)

    Limousin, P.; Speelman, J. D.; Gielen, F.; Janssens, M.

    1999-01-01

    Thalamic stimulation has been proposed to treat disabling tremor. The aims of this multicentre study were to evaluate the efficacy and the morbidity of thalamic stimulation in a large number of patients with parkinsonian or essential tremor. One hundred and eleven patients were included in the study

  10. Glucose intolerance develops prior to increased adiposity and accelerated cessation of estrous cyclicity in female growth-restricted rats

    Science.gov (United States)

    Intapad, Suttira; Dasinger, John Henry; Brown, Andrew D.; Fahling, Joel M.; Esters, Joyee; Alexander, Barbara T.

    2015-01-01

    Background The incidence of metabolic disease increases in early menopause. Low birth weight influences the age at menopause. Thus, this study tested the hypothesis that intrauterine growth restriction programs early reproductive aging and impaired glucose homeostasis in female rats. Methods Estrous cyclicity, body composition, and glucose homeostasis were determined in female control and growth-restricted rats at 6 and 12 months of age; sex steroids at 12 months. Results Glucose intolerance was present at 6 months of age prior to cessation of estrous cyclicity and increased adiposity in female growth-restricted rats. However, female growth-restricted rats exhibited persistent estrus and a significant increase in adiposity, fasting glucose and testosterone at 12 months of age (Pgrowth-restricted rats (Pgrowth programmed glucose intolerance that developed prior to early estrous acyclicity; yet, fasting glucose levels were elevated in conjunction with increased adiposity, accelerated cessation of estrous cyclicity and a shift towards testosterone excess at 12 months of age in female growth-restricted rats. PMID:26854801

  11. Increased in vivo glucose utilization in 30-day-old obese Zucker rat: Role of white adipose tissue

    International Nuclear Information System (INIS)

    Krief, S.; Bazin, R.; Dupuy, F.; Lavau, M.

    1988-01-01

    In vivo whole-body glucose utilization and uptake in multiple individual tissues were investigated in conscious 30-day-old Zucker rats, which when obese are hyperphagic, hyperinsulinemic, and normoglycemic. Whole-body glucose metabolism (assessed by [3- 3 H]glucose) was 40% higher in obese (fa/fa) than in lean (Fa/fa) rats, suggesting that obese rats were quite responsive to their hyperinsulinemia. In obese compared with lean rats, tissue glucose uptake was increased by 15, 12, and 6 times in dorsal, inguinal, perigonadal white depots, respectively; multiplied by 2.5 in brown adipose tissue; increased by 50% in skin from inguinal region but not in that from cranial, thoracic, or dorsal area; and increased twofold in diaphragm but similar in heart in proximal intestine, and in total muscular mass of limbs. The data establish that in young obese rats the hypertrophied white adipose tissue was a major glucose-utilizing tissue whose capacity for glucose disposal compared with that of half the muscular mass. Adipose tissue could therefore play an important role in the homeostasis of glucose in obese rats in the face of their increased carbohydrate intake

  12. Exercise Increases Cystathionine-γ-lyase Expression and Decreases the Status of Oxidative Stress in Myocardium of Ovariectomized Rats.

    Science.gov (United States)

    Tang, Zhiping; Wang, Yujun; Zhu, Xiaoyan; Ni, Xin; Lu, Jianqiang

    2016-01-01

    Exercise could be a therapeutic approach for cardiovascular dysfunction induced by estrogen deficiency. Our previous study has shown that estrogen maintains cystathionine-γ-lyase (CSE) expression and inhibits oxidative stress in the myocardium of female rats. In the present study, we investigated whether exercise improves CSE expression and oxidative stress status and ameliorates isoproterenol (ISO)-induced cardiac damage in ovariectomized (OVX) rats. The results showed that treadmill training restored the ovariectomy-induced reduction of CSE and estrogen receptor (ER)α and decrease of total antioxidant capacity (T-AOC) and increase of malondialdehyde (MDA). The level of CSE was positively correlated to T-AOC and ERα while inversely correlated to MDA. OVX rats showed increases in the serum levels of creatine kinase (CK) and lactate dehydrogenase (LDH) and the percentage of TUNEL staining in myocardium upon ISO insult compared to sham rats. Exercise training significantly reduced the serum levels of LDH and CK and the percentage of TUNEL staining in myocardium upon ISO insult in OVX rats. In cultured cardiomyocytes, ISO treatment decreased cell viability and increased LDH release, while overexpression of CSE increased cell viability and decreased LDH release in the cells upon ISO insult. The results suggest that exercise training improves the oxidative stress status and ameliorates the cardiac damage induced by oxidative stress in OVX rats. The improvement of oxidative stress status by exercise might be at least partially due to upregulation of CSE/H2S signaling.

  13. Increased caries-incidence by oral inoculation of cariogenic bacteria in rats after dietary fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Clark, W.B.; Kreitzman, S.N.; Howell, T.H.

    1976-04-01

    The authors had previously observed that dietary NaF administered to rats during the formative and eruptive stages of tooth development does not significantly reduce the enamel solubility in acid buffer solution. They hypothesized that NaF reduces the cariogenicity of the bacterial flora. In order to test this hypothesis, rats from the same litter were divided into three groups all of which received a cariogenic diet. Group one received no fluoride. Groups two and three were supplemented with 50 ppm NaF, from day 1 to day 21. In the first study, one of the 21-day-old NaF-supplemented groups was inoculated by smears of fecal material from the control animals that did not receive NaF supplement. The second NaF group was not inoculated and served as control. In a second study, cariogenic Strep. mutans 6715 was used as the inoculum in place of the fecal smear. In both studies, the inoculation of a NaF group increased the caries to about 70% of the control group, while the mean scores on the non-inoculated NaF group were about 50% of the control group. These results indicate that alteration of the transmissible flora may be an important factor in the cariostatic action of dietary fluoride in experimental animals. This observation supports the suggestion that fluoride may alter the cariogenic flora.

  14. Increased CD147 and MMP-9 expression in the normal rat brain after gamma irradiation

    International Nuclear Information System (INIS)

    Li Hong; Wei Ming; Li Shenghui; Zhou Ziwei; Xu Desheng

    2013-01-01

    Radiation-induced vascular injury is a major complication of Gamma knife surgery (GKS). Previous studies have shown that CD147 and MMP-9 are closely associated with vascular remodeling and pathological angiogenesis. Thus, we analysed changes in CD147 and MMP-9 expression in the cerebral cortex to investigate the correlation between CD147 and MMP-9 in the rat following GKS. Adult male Wistar rats were subjected to GKS at a maximum dose of 75 Gy and then euthanized 1 to 12 weeks later. Using immunohistochemistry and western blot analysis, we found that CD147 and MMP-9 expression were markedly upregulated in the target area 8-12 weeks after GKS when compared with the control group. Immunofluorescent double staining demonstrated that CD147 signals colocalized with CD31, GFAP and MMP-9-positive cells. Importantly, CD147 levels correlated with increased MMP-9 expression in irradiated brain tissue. For the first time, these data demonstrate a potential relationship between CD147 and MMP-9 following GKS. In addition, our study also suggests that CD147 and MMP-9 may play a role in vascular injury after GKS. (author)

  15. Intake of Meat Proteins Substantially Increased the Relative Abundance of Genus Lactobacillus in Rat Feces.

    Directory of Open Access Journals (Sweden)

    Yingying Zhu

    Full Text Available Diet has been shown to have a critical influence on gut bacteria and host health, and high levels of red meat in diet have been shown to increase colonic DNA damage and thus be harmful to gut health. However, previous studies focused more on the effects of meat than of meat proteins. In order to investigate whether intake of meat proteins affects the composition and metabolic activities of gut microbiota, feces were collected from growing rats that were fed with either meat proteins (from beef, pork or fish or non-meat proteins (casein or soy for 14 days. The resulting composition of gut microbiota was profiled by sequencing the V4-V5 region of the 16S ribosomal RNA genes and the short chain fatty acids (SCFAs were analyzed using gas chromatography. The composition of gut microbiota and SCFA levels were significantly different between the five diet groups. At a recommended dose of 20% protein in the diet, meat protein-fed rats had a higher relative abundance of the beneficial genus Lactobacillus, but lower levels of SCFAs and SCFA-producing bacteria including Fusobacterium, Bacteroides and Prevotella, compared with the soy protein-fed group. Further work is needed on the regulatory pathways linking dietary protein intake to gut microbiota.

  16. Intake of Meat Proteins Substantially Increased the Relative Abundance of Genus Lactobacillus in Rat Feces.

    Science.gov (United States)

    Zhu, Yingying; Lin, Xisha; Li, He; Li, Yingqiu; Shi, Xuebin; Zhao, Fan; Xu, Xinglian; Li, Chunbao; Zhou, Guanghong

    2016-01-01

    Diet has been shown to have a critical influence on gut bacteria and host health, and high levels of red meat in diet have been shown to increase colonic DNA damage and thus be harmful to gut health. However, previous studies focused more on the effects of meat than of meat proteins. In order to investigate whether intake of meat proteins affects the composition and metabolic activities of gut microbiota, feces were collected from growing rats that were fed with either meat proteins (from beef, pork or fish) or non-meat proteins (casein or soy) for 14 days. The resulting composition of gut microbiota was profiled by sequencing the V4-V5 region of the 16S ribosomal RNA genes and the short chain fatty acids (SCFAs) were analyzed using gas chromatography. The composition of gut microbiota and SCFA levels were significantly different between the five diet groups. At a recommended dose of 20% protein in the diet, meat protein-fed rats had a higher relative abundance of the beneficial genus Lactobacillus, but lower levels of SCFAs and SCFA-producing bacteria including Fusobacterium, Bacteroides and Prevotella, compared with the soy protein-fed group. Further work is needed on the regulatory pathways linking dietary protein intake to gut microbiota.

  17. Intake of Meat Proteins Substantially Increased the Relative Abundance of Genus Lactobacillus in Rat Feces

    Science.gov (United States)

    Zhu, Yingying; Lin, Xisha; Li, He; Li, Yingqiu; Shi, Xuebin; Zhao, Fan; Xu, Xinglian; Li, Chunbao; Zhou, Guanghong

    2016-01-01

    Diet has been shown to have a critical influence on gut bacteria and host health, and high levels of red meat in diet have been shown to increase colonic DNA damage and thus be harmful to gut health. However, previous studies focused more on the effects of meat than of meat proteins. In order to investigate whether intake of meat proteins affects the composition and metabolic activities of gut microbiota, feces were collected from growing rats that were fed with either meat proteins (from beef, pork or fish) or non-meat proteins (casein or soy) for 14 days. The resulting composition of gut microbiota was profiled by sequencing the V4-V5 region of the 16S ribosomal RNA genes and the short chain fatty acids (SCFAs) were analyzed using gas chromatography. The composition of gut microbiota and SCFA levels were significantly different between the five diet groups. At a recommended dose of 20% protein in the diet, meat protein-fed rats had a higher relative abundance of the beneficial genus Lactobacillus, but lower levels of SCFAs and SCFA-producing bacteria including Fusobacterium, Bacteroides and Prevotella, compared with the soy protein-fed group. Further work is needed on the regulatory pathways linking dietary protein intake to gut microbiota. PMID:27042829

  18. Increased BOLD activation to predator stressor in subiculum and midbrain of amphetamine-sensitized maternal rats.

    Science.gov (United States)

    Febo, Marcelo; Pira, Ashley S

    2011-03-25

    Amphetamine, which is known to cause sensitization, potentiates the hormonal and neurobiological signatures of stress and may also increase sensitivity to stress-inducing stimuli in limbic areas. Trimethylthiazoline (5μL TMT) is a chemical constituent of fox feces that evokes innate fear and activates the neuronal and hormonal signatures of stress in rats. We used blood oxygen level dependent (BOLD) MRI to test whether amphetamine sensitization (1mg/kg, i.p. ×3days) in female rats has a lasting effect on the neural response to a stress-evoking stimulus, the scent of a predator, during the postpartum period. The subiculum and dopamine-enriched midbrain VTA/SN of amphetamine-sensitized but not control mothers showed a greater BOLD signal response to predator odor than a control putrid scent. The greater responsiveness of these two brain regions following stimulant sensitization might impact neural processing in response to stressors in the maternal brain. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Prior stress exposure increases pain behaviors in a rat model of full thickness thermal injury.

    Science.gov (United States)

    Nyland, Jennifer E; McLean, Samuel A; Averitt, Dayna L

    2015-12-01

    Thermal burns among individuals working in highly stressful environments, such as firefighters and military Service Members, are common. Evidence suggests that pre-injury stress may exaggerate pain following thermal injury; however current animal models of burn have not evaluated the potential influence of pre-burn stress. This sham-controlled study evaluated the influence of prior stress exposure on post-burn thermal and mechanical sensitivity in male Sprague-Dawley rats. Rats were exposed to 20 min of inescapable swim stress or sham stress once per day for three days. Exposure to inescapable swim stress (1) increased the intensity and duration of thermal hyperalgesia after subsequent burn and (2) accelerated the onset of thermal hyperalgesia and mechanical allodynia after subsequent burn. This stress-induced exacerbation of pain sensitivity was reversed by pretreatment and concurrent treatment with the serotonin-norepinephrine reuptake inhibitor (SNRI) duloxetine. These data suggest a better understanding of mechanisms by which prior stress augments pain after thermal burn may lead to improved pain treatments for burn survivors. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  20. Treatment with acarbose, an alpha-glucosidase inhibitor, reduces increased albumin excretion in streptozotocin-diabetic rats.

    Science.gov (United States)

    Cohen, M P; Vasselli, J R; Neuman, R G; Witt, J

    1995-10-01

    1. We examined the effect of the alpha-glucosidase inhibitor acarbose on urinary albumin excretion (UAE) in streptozotocin diabetic rats. 2. Treatment with acarbose for 8 weeks after induction of diabetes prevented the significant increase in UAE observed in untreated diabetic rats relative to nondiabetic controls. 3. Acarbose significantly reduced integrated glycemia, which correlated with albumin excretion rates, and exerts a salutary effect on diabetic renal dysfunction.

  1. Maternal obesity increases inflammation and exacerbates damage following neonatal hypoxic-ischaemic brain injury in rats.

    Science.gov (United States)

    Teo, Jonathan D; Morris, Margaret J; Jones, Nicole M

    2017-07-01

    In humans, maternal obesity is associated with an increase in the incidence of birth related difficulties. However, the impact of maternal obesity on the severity of brain injury in offspring is not known. Recent studies have found evidence of increased glial response and inflammatory mediators in the brains as a result of obesity in humans and rodents. We hypothesised that hypoxic-ischaemic (HI) brain injury is greater in neonatal offspring from obese rat mothers compared to lean controls. Female Sprague Dawley rats were randomly allocated to high fat (HFD, n=8) or chow (n=4) diet and mated with lean male rats. On postnatal day 7 (P7), male and female pups were randomly assigned to HI injury or control (C) groups. HI injury was induced by occlusion of the right carotid artery followed by 3h exposure to 8% oxygen, at 37°C. Control pups were removed from the mother for the same duration under ambient conditions. Righting behaviour was measured on day 1 and 7 following HI. The extent of brain injury was quantified in brain sections from P14 pups using cresyl violet staining and the difference in volume between brain hemispheres was measured. Before mating, HFD mothers were 11% heavier than Chow mothers (pmaternal weight. Similar observations were made with neuronal staining showing a greater loss of neurons in the brain of offspring from HFD-mothers following HI compared to Chow. Astrocytes appeared to more hypertrophic and a greater number of microglia were present in the injured hemisphere in offspring from mothers on HFD. HI caused an increase in the proportion of amoeboid microglia and exposure to maternal HFD exacerbated this response. In the contralateral hemisphere, offspring exposed to maternal HFD displayed a reduced proportion of ramified microglia. Our data clearly demonstrate that maternal obesity can exacerbate the severity of brain damage caused by HI in neonatal offspring. Given that previous studies have shown enhanced inflammatory responses in

  2. Sexual activity increases the number of newborn cells in the accessory olfactory bulb of male rats.

    Directory of Open Access Journals (Sweden)

    Wendy ePortillo

    2012-07-01

    Full Text Available In rodents, sexual behavior depends on the adequate detection of sexually relevant stimuli. The olfactory bulb (OB is a region of the adult mammalian brain undergoing constant cell renewal by continuous integration of new granular and periglomerular neurons in the accessory (AOB and main (MOB olfactory bulbs. The proliferation, migration, survival, maturation, and integration of these new cells to the OB depend on the stimulus that the subjects received. We have previously shown that 15 days after females control (paced the sexual interaction an increase in the number of cells is observed in the AOB. No changes are observed in the number of cells when females are not allowed to control the sexual interaction. In the present study we investigated if in male rats sexual behavior increases the number of new cells in the OB. Male rats were divided in five groups: 1 males that did not receive any sexual stimulation, 2 males that were exposed to female odors, 3 males that mated for 1 h and could not pace their sexual interaction, 4 males that paced their sexual interaction and ejaculated 1 time and 5 males that paced their sexual interaction and ejaculated 3 times. All males received three injections of the DNA synthesis marker bromodeoxyuridine at 1h intervals, starting 1h before the beginning of the behavioral test. Fifteen days later, males were sacrificed and the brains were processed to identify new cells and to evaluate if they differentiated into neurons. The number of newborn cells increased in the granular cell layer (also known as the internal cell layer of the AOB in males that ejaculated one or three times controlling (paced the rate of the sexual interaction. Some of these new cells were identified as neurons. In contrast, no significant differences were found in the mitral cell layer (also known as the external cell layer and glomerular cell layer of the AOB. In addition, no significant differences were found between groups in the MOB in

  3. Intrahepatic upregulation of MRTF-A signaling contributes to increased hepatic vascular resistance in cirrhotic rats with portal hypertension.

    Science.gov (United States)

    Zheng, Lei; Qin, Jun; Sun, Longci; Gui, Liang; Zhang, Chihao; Huang, Yijun; Deng, Wensheng; Huang, An; Sun, Dong; Luo, Meng

    2017-06-01

    Portal hypertension in cirrhosis is mediated, in part, by increased intrahepatic resistance, reflecting massive structural changes associated with fibrosis and intrahepatic vasoconstriction. Activation of the Rho/MRTF/SRF signaling pathway is essential for the cellular regulatory network of fibrogenesis. The aim of this study was to investigate MRTF-A-mediated regulation of intrahepatic fibrogenesis in cirrhotic rats. Portal hypertension was induced in rats via an injection of CCl 4 oil. Hemodynamic measurements were obtained using a polyethylene PE-50 catheter and pressure transducers. Expression of hepatic fibrogenesis was measured using histological staining. Expression of protein was measured using western blotting. Upregulation of MRTF-A protein expression in the livers of rats with CCl 4 -induced cirrhosis was relevant to intrahepatic resistance and hepatic fibrogenesis in portal hypertensive rats with increased modeling time. Inhibition of MRTF-A by CCG-1423 decelerated hepatic fibrosis, decreased intrahepatic resistance and portal pressure, and alleviated portal hypertension. Increased intrahepatic resistance in rats with CCl 4 -induced portal hypertension is associated with an upregulation of MRTF-A signaling. Inhibition of this pathway in the liver can decrease hepatic fibrosis and intrahepatic resistance, as well as reduce portal pressure in cirrhotic rats with CCl 4 -induced portal hypertension. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Exhaustive physical exercise increases the number of colonic preneoplastic lesions in untrained rats treated with a chemical carcinogen.

    Science.gov (United States)

    Demarzo, Marcelo Marcos Piva; Garcia, Sérgio Britto

    2004-12-08

    Aberrant crypt foci (ACF) have been used for early detection of factors that influence colorectal carcinogenesis in rats. It has been observed that exhaustive exercise increases free radical DNA oxidative damage and depresses immune function, events also related to the increased risk for cancer development. Fifteen days after a single exhaustive swimming bout in untrained rats treated with a colon carcinogen, we observed a statistically significant increased number of ACF when compared to the non-exercised group. Thus, we concluded that exhaustive exercise increased the susceptibility for colon cancer in rats. From our finding and literature data, we hypothesize that, similarly to the suggested relationship between exercise and infections, exercise could be protective against cancer or it could increase the risk for this disease depending on its type, dose and duration.

  5. Isoproterenol attenuates high vascular pressure-induced permeability increases in isolated rat lungs.

    Science.gov (United States)

    Parker, J C; Ivey, C L

    1997-12-01

    To separate the contributions of cellular and basement membrane components of the alveolar capillary barrier to the increased microvascular permeability induced by high pulmonary venous pressures (Ppv), we subjected isolated rat lungs to increases in Ppv, which increased capillary filtration coefficient (Kfc) without significant hemorrhage (31 cmH2O) and with obvious extravasation of red blood cells (43 cmH2O). Isoproterenol (20 microM) was infused in one group (Iso) to identify a reversible cellular component of injury, and residual blood volumes were measured to assess extravasation of red blood cells through ruptured basement membranes. In untreated lungs (High Ppv group), Kfc increased 6.2 +/- 1.3 and 38.3 +/- 15.2 times baseline during the 31 and 43 cmH2O Ppv states. In Iso lungs, Kfc was 36.2% (P Kfc increases at moderate Ppv, possibly because of an endothelial effect, but it did not affect red cell extravasation at higher vascular pressures.

  6. Effect of increased magnesium intake on plasma cholesterol, triglyceride and oxidative stress in alloxan-diabetic rats.

    Science.gov (United States)

    Olatunji, L A; Soladoye, A O

    2007-06-01

    Cardiovascular disorders are the primary causes of morbidity and mortality in patients with diabetes mellitus (DM). Agents that improve lipid profile and reduce oxidative stress have been shown to reduce the ensuing risk factors. In the present study, we investigated whether increased magnesium intake could improve hyperglycaemia, dyslipidaemia, and reduce oxidative stress in alloxan-induced diabetic rats. Male Wistar rats were divided into non-diabetic (ND), diabetic (DM) and diabetic fed on a high magnesium diet (DM-Mg) groups. Plasma concentrations of thiobarbituric acid reactive substances (TBARS) were used as markers of oxidative stress. Plasma levels of ascorbic acid, magnesium and calcium were also determined. Diabetes was induced by injecting alloxan (100 mg/kg B.W). The fasting blood glucose levels were significantly lower in the DM-Mg rats than in the DM rats. Plasma total cholesterol, triglyceride, TBARS levels were significantly higher while plasma HDL-cholesterol, HDL-cholesterol/total cholesterol ratio, ascorbic acid levels were significantly lowered in DM rats compared with the ND rats. Increased intake of magnesium significantly abrogated these alterations. There were no significant differences in the plasma levels of magnesium and calcium between the DM and ND groups. However, plasma levels of magnesium but not calcium were significantly elevated in DM-Mg rats when compared with other groups. In conclusion, these results suggest that diet rich in magnesium could exert cardioprotective effect through reduced plasma total cholesterol, triglyceride, oxidative stress and ameliorated HDL-cholesterol/total cholesterol ratio as well as increased plasma ascorbic acid and magnesium in diabetic rats.

  7. Systemic administration of lipopolysaccharide increases the expression of aquaporin-4 in the rat anterior pituitary gland.

    Science.gov (United States)

    Kuwahara-Otani, Sachi; Maeda, Seishi; Tanaka, Koichi; Hayakawa, Tetsu; Seki, Makoto

    2013-01-01

    We investigated the effects of lipopolysaccharide (LPS)-induced endotoxemia on the expression of aquaporin-4 (AQP4) in the rat anterior pituitary gland, using the real-time polymerase chain reaction and immunohistochemistry. After intraperitoneal injection of LPS, the level of AQP4 mRNA doubled at 2, 4 and 8 hr. Immunohistochemical analysis showed an increase with time in AQP4 immunostaining in folliculo-stellate cells following LPS injection; the intensity of immunoreactivity peaked at 8 hr. At the same time, some cyst-like structures, formed by AQP4-positive cells, were observed. These findings indicate that LPS induces the expression of AQP4 in the anterior pituitary gland. The present results should provide an important key to elucidate the pathogenesis of the anterior pituitary gland during endotoxemia.

  8. Glutamate microinjection in the medial septum of rats decreases paradoxical sleep and increases slow wave sleep.

    Science.gov (United States)

    Mukherjee, Didhiti; Kaushik, Mahesh K; Jaryal, Ashok Kumar; Kumar, Velayudhan Mohan; Mallick, Hruda Nanda

    2012-05-09

    The role of the medial septum in suppressing paradoxical sleep and promoting slow wave sleep was suggested on the basis of neurotoxic lesion studies. However, these conclusions need to be substantiated with further experiments, including chemical stimulation studies. In this report, the medial septum was stimulated in adult male rats by microinjection of L-glutamate. Sleep-wakefulness was electrophysiologically recorded, through chronically implanted electrodes, for 2 h before the injection and 4 h after the injection. There was a decrease in paradoxical sleep during the first hour and an increase in slow wave sleep during the second hour after the injection. The present findings not only supported the lesion studies but also showed that the major role of the medial septum is to suppress paradoxical sleep.

  9. Maternal omega-3 supplementation increases fat mass in male and female rat offspring

    Directory of Open Access Journals (Sweden)

    Beverly Sara Muhlhausler

    2011-07-01

    Full Text Available Adipogenesis and lipogenesis are highly sensitive to the nutritional environment in utero and in early postnatal life. Omega-3 long chain polyunsaturated fatty acids (LCPUFA inhibit adipogenesis and lipogenesis in adult rats, however it is not known whether supplementing the maternal diet with omega-3 LCPUFA results in reduced fat deposition in the offspring. Female Albino Wistar rats were fed either a standard chow (Control, n=10 or chow designed to provide ~15mg/kg/day of omega-3 LCPUFA, chiefly as docosahexaenoic acid (DHA, throughout pregnancy and lactation (Omega-3, n=11 and all pups were weaned onto a commercial rat chow. Blood and tissues were collected from pups at 3wks and 6wks of age and weights of visceral and subcutaneous fat depots recorded. The expression of adipogenic and lipogenic genes in the subcutaneous and visceral fat depots were determined using qRT-PCR. Birth weight and postnatal growth were not different between groups. At 6 weeks of age, total percentage body fat was significantly increased in both male (5.09 ± 0.32% vs 4.56 ± 0.2%, P<0.04 and female (5.15 ± 0.37% vs 3.89 ± 0.36%, P<0.04 offspring of omega-3 dams compared to controls. The omega-3 LCPUFA content of erythrocyte phospholipids (as a % of total fatty acids was higher in omega-3 offspring (6.7 ± 0.2 % vs 5.6 ± 0.2%, P<0.001. There was no effect of maternal omega-3 LCPUFA supplementation on the expression of adipogenic or lipogenic genes in the offspring in either the visceral or subcutaneous fat depots. We have therefore established that an omega-3 rich environment during pregnancy and lactation in a rodent model increases fat accumulation in both male and female offspring, particularly in subcutaneous depots, but that this effect is not mediated via upregulation adipogenic/lipogenic gene transcription. These data suggest that maternal n-3 LCPUFA supplementation during pregnancy/lactation may not be an effective strategy for reducing fat deposition in

  10. Rats

    Directory of Open Access Journals (Sweden)

    Alexey Kondrashov

    2012-01-01

    Full Text Available We aimed to perform a chemical analysis of both Alibernet red wine and an alcohol-free Alibernet red wine extract (AWE and to investigate the effects of AWE on nitric oxide and reactive oxygen species production as well as blood pressure development in normotensive Wistar Kyoto (WKY and spontaneously hypertensive rats (SHRs. Total antioxidant capacity together with total phenolic and selected mineral content was measured in wine and AWE. Young 6-week-old male WKY and SHR were treated with AWE (24,2 mg/kg/day for 3 weeks. Total NOS and SOD activities, eNOS and SOD1 protein expressions, and superoxide production were determined in the tissues. Both antioxidant capacity and phenolic content were significantly higher in AWE compared to wine. The AWE increased NOS activity in the left ventricle, aorta, and kidney of SHR, while it did not change NOS activity in WKY rats. Similarly, increased SOD activity in the plasma and left ventricle was observed in SHR only. There were no changes in eNOS and SOD1 expressions. In conclusion, phenolics and minerals included in AWE may contribute directly to increased NOS and SOD activities of SHR. Nevertheless, 3 weeks of AWE treatment failed to affect blood pressure of SHR.

  11. Peripheral administration of oxytocin increases social affiliation in the naked mole-rat (Heterocephalus glaber).

    Science.gov (United States)

    Mooney, Skyler J; Douglas, Natasha R; Holmes, Melissa M

    2014-04-01

    The neuropeptide oxytocin regulates a wide variety of social behaviors across diverse species. However, the types of behaviors that are influenced by this hormone are constrained by the species in question and the social organization that a particular species exhibits. Therefore, the present experiments investigated behaviors regulated by oxytocin in a eusocial mammalian species by using the naked mole-rat (Heterocephalus glaber). In Experiment 1, adult non-breeding mole-rats were given intraperitoneal injections of either oxytocin (1mg/kg or 10mg/kg) or saline on alternate days. Animals were then returned to their colony and behavior was recorded for minutes 15-30 post-injection. Both doses of oxytocin increased huddling behavior during this time period. In Experiment 2, animals received intraperitoneal injections of either oxytocin (1mg/kg), an oxytocin-receptor antagonist (0.1mg/kg), a cocktail of oxytocin and the antagonist, or saline across 4 testing days in a counterbalanced design. Animals were placed in either a 2-chamber arena with a familiar conspecific or in a small chamber with 1week old pups from their home colony and behaviors were recorded for minutes 15-30 post-injection. Oxytocin increased investigation of, and time spent in close proximity to, a familiar conspecific; these effects were blocked by the oxytocin antagonist. No effects were seen on pup-directed behavior. These data suggest that oxytocin is capable of modulating affiliative-like behavior in this eusocial species. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Prognosis of thalamic hemorrhage evaluated by computed tomography

    International Nuclear Information System (INIS)

    Takahashi, Shinichiro; Sonobe, Makoto; Sugita, Kyoichi; Kuwayama, Naoya

    1984-01-01

    The present authors have analyzed the correlation between the clinical features and the CT findings in 66 cases of thalamic hemorrhage. Hitachi CT-H and CT-HF apparatuses (256 x 256 matrix) were used at an angle parallel to the OM line. Of the 48 patients with hematoma less than 20 ml, only four died; however, of the 18 patients with hematoma larger than 20 ml, five died. An analysis has been made of the correlation between the occurrence of brain edema in the acute stage and high density in the subthalamic area. The hematoma extending to the subthalamic area was diagnosed by means of high density at the level of 35 mm above the OM line. Of the 13 cases with hematoma in the subthalamic area, acute brain edema occurred in 9 cases. On the other hand, of the 53 cases without hematoma at the subthalamic area, brain edema occurred in only one case. It was concluded that high density in the subthalamic area is a significant index for the occurrence of acute brain edema in a thalamic hemorrhage. (author)

  13. Thalamic, brainstem, and cerebellar glucose metabolism in the hemiplegic monkey

    Energy Technology Data Exchange (ETDEWEB)

    Shimoyama, I.; Dauth, G.W.; Gilman, S.; Frey, K.A.; Penney, J.B. Jr.

    1988-12-01

    Unilateral ablation of cerebral cortical areas 4 and 6 of Brodmann in the macaque monkey results in a contralateral hemiplegia that resolves partially with time. During the phase of dense hemiplegia, local cerebral metabolic rate for glucose (1CMRG1c) is decreased significantly in most of the thalamic nuclei ipsilateral to the ablation, and there are slight contralateral decreases. The lCMRGlc is reduced bilaterally in most of the brainstem nuclei and bilaterally in the deep cerebellar nuclei, but only in the contralateral cerebellar cortex. During the phase of partial motor recovery, lCMRGlc is incompletely restored in many of the thalamic nuclei ipsilateral to the ablation and completely restored in the contralateral nuclei. In the brainstem and deep cerebellar nuclei, poor to moderate recovery occurs bilaterally. Moderate recovery occurs in the contralateral cerebellar cortex. The findings demonstrate that a unilateral cerebral cortical lesion strongly affects lCMRGlc in the thalamus ipsilaterally and in the cerebellar cortex contralaterally, but in the brainstem bilaterally. Partial recovery of lCMRGlc accompanies the progressive motor recovery. The structures affected include those with direct, and also those with indirect, connections to the areas ablated.

  14. Serotonin gating of cortical and thalamic glutamate inputs onto principal neurons of the basolateral amygdala.

    Science.gov (United States)

    Guo, Ji-Dong; O'Flaherty, Brendan M; Rainnie, Donald G

    2017-11-01

    The basolateral amygdala (BLA) is a key site for crossmodal association of sensory stimuli and an important relay in the neural circuitry of emotion. Indeed, the BLA receives substantial glutamatergic inputs from multiple brain regions including the prefrontal cortex and thalamic nuclei. Modulation of glutamatergic transmission in the BLA regulates stress- and anxiety-related behaviors. Serotonin (5-HT) also plays an important role in regulating stress-related behavior through activation of both pre- and postsynaptic 5-HT receptors. Multiple 5-HT receptors are expressed in the BLA, where 5-HT has been reported to modulate glutamatergic transmission. However, the 5-HT receptor subtype mediating this effect is not yet clear. The aim of this study was to use patch-clamp recordings from BLA neurons in an ex vivo slice preparation to examine 1) the effect of 5-HT on extrinsic sensory inputs, and 2) to determine if any pathway specificity exists in 5-HT regulation of glutamatergic transmission. Two independent input pathways into the BLA were stimulated: the external capsule to mimic cortical input, and the internal capsule to mimic thalamic input. Bath application of 5-HT reversibly reduced the amplitude of evoked excitatory postsynaptic currents (eEPSCs) induced by stimulation of both pathways. The decrease was associated with an increase in the paired-pulse ratio and coefficient of variation of eEPSC amplitude, suggesting 5-HT acts presynaptically. Moreover, the effect of 5-HT in both pathways was mimicked by the selective 5-HT 1B receptor agonist CP93129, but not by the 5-HT 1A receptor agonist 8-OH DPAT. Similarly the effect of exogenous 5-HT was blocked by the 5-HT 1B receptor antagonist GR55562, but not affected by the 5-HT 1A receptor antagonist WAY 100635 or the 5-HT 2 receptor antagonists pirenperone and MDL 100907. Together these data suggest 5-HT gates cortical and thalamic glutamatergic inputs into the BLA by activating presynaptic 5-HT 1B receptors

  15. Long-term aerobic exercise increases redox-active iron through nitric oxide in rat hippocampus.

    Science.gov (United States)

    Chen, Qian; Xiao, De-Sheng

    2014-01-30

    Adult hippocampus is highly vulnerable to iron-induced oxidative stress. Aerobic exercise has been proposed to reduce oxidative stress but the findings in the hippocampus are conflicting. This study aimed to observe the changes of redox-active iron and concomitant regulation of cellular iron homeostasis in the hippocampus by aerobic exercise, and possible regulatory effect of nitric oxide (NO). A randomized controlled study was designed in the rats with swimming exercise treatment (for 3 months) and/or an unselective inhibitor of NO synthase (NOS) (L-NAME) treatment. The results from the bleomycin-detectable iron assay showed additional redox-active iron in the hippocampus by exercise treatment. The results from nonheme iron content assay, combined with the redox-active iron content, showed increased storage iron content by exercise treatment. NOx (nitrate plus nitrite) assay showed increased NOx content by exercise treatment. The results from the Western blot assay showed decreased ferroportin expression, no changes of TfR1 and DMT1 expressions, increased IRP1 and IRP2 expression, increased expressions of eNOS and nNOS rather than iNOS. In these effects of exercise treatment, the increased redox-active iron content, storage iron content, IRP1 and IRP2 expressions were completely reversed by L-NAME treatment, and decreased ferroportin expression was in part reversed by L-NAME. L-NAME treatment completely inhibited increased NOx and both eNOS and nNOS expression in the hippocampus. Our findings suggest that aerobic exercise could increase the redox-active iron in the hippocampus, indicating an increase in the capacity to generate hydroxyl radicals through the Fenton reactions, and aerobic exercise-induced iron accumulation in the hippocampus might mainly result from the role of the endogenous NO. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Presynaptic Glycine Receptors Increase GABAergic Neurotransmission in Rat Periaqueductal Gray Neurons

    Directory of Open Access Journals (Sweden)

    Kwi-Hyung Choi

    2013-01-01

    Full Text Available The periaqueductal gray (PAG is involved in the central regulation of nociceptive transmission by affecting the descending inhibitory pathway. In the present study, we have addressed the functional role of presynaptic glycine receptors in spontaneous glutamatergic transmission. Spontaneous EPSCs (sEPSCs were recorded in mechanically dissociated rat PAG neurons using a conventional whole-cell patch recording technique under voltage-clamp conditions. The application of glycine (100 µM significantly increased the frequency of sEPSCs, without affecting the amplitude of sEPSCs. The glycine-induced increase in sEPSC frequency was blocked by 1 µM strychnine, a specific glycine receptor antagonist. The results suggest that glycine acts on presynaptic glycine receptors to increase the probability of glutamate release from excitatory nerve terminals. The glycine-induced increase in sEPSC frequency completely disappeared either in the presence of tetrodotoxin or Cd2+, voltage-gated Na+, or Ca2+ channel blockers, suggesting that the activation of presynaptic glycine receptors might depolarize excitatory nerve terminals. The present results suggest that presynaptic glycine receptors can regulate the excitability of PAG neurons by enhancing glutamatergic transmission and therefore play an important role in the regulation of various physiological functions mediated by the PAG.

  17. Stimulation of the sensory pudendal nerve increases bladder capacity in the rat.

    Science.gov (United States)

    Hokanson, James A; Langdale, Christopher L; Sridhar, Arun; Grill, Warren M

    2018-04-01

    Pudendal nerve stimulation is a promising treatment approach for lower urinary tract dysfunction, including symptoms of overactive bladder. Despite some promising clinical studies, there remain many unknowns as to how best to stimulate the pudendal nerve to maximize therapeutic efficacy. We quantified changes in bladder capacity and voiding efficiency during single-fill cystometry in response to electrical stimulation of the sensory branch of the pudendal nerve in urethane-anesthetized female Wistar rats. Increases in bladder capacity were dependent on both stimulation amplitude and rate. Stimulation that produced increases in bladder capacity also led to reductions in voiding efficiency. Also, there was a stimulation carryover effect, and increases in bladder capacity persisted during several nonstimulated trials following stimulated trials. Intravesically administered PGE 2 reduced bladder capacity, producing a model of overactive bladder (OAB), and sensory pudendal nerve stimulation again increased bladder capacity but also reduced voiding efficiency. This study serves as a basis for future studies that seek to maximize the therapeutic efficacy of sensory pudendal nerve stimulation for the symptoms of OAB.

  18. Tributyltin chloride increases phenylephrine-induced contraction and vascular stiffness in mesenteric resistance arteries from female rats.

    Science.gov (United States)

    Ribeiro Júnior, Rogério Faustino; Marques, Vinicius Bermond; Nunes, Dieli Oliveira; Ronconi, Karoline de Sousa; de Araújo, Julia F P; Rodrigues, Paula Lopes; Padilha, Alessandra Simão; Vassallo, Dalton Valentim; Graceli, Jones B; Stefanon, Ivanita

    2016-03-15

    Tributyltin chloride (TBT) is an organotin compound that reduces estrogen levels in female rats. We aimed to investigate the effects of TBT exposure on vascular tonus and vascular remodelling in the resistance arteries of female rats. Rats were treated daily with TBT (500 ng/kg) for 15 days. TBT did not change arterial blood pressure but did modify some morpho-physiological parameters of third-order mesenteric resistance arteries in the following ways: (1) decreased lumen and external diameters; (2) increased wall/lm ratio and wall thickness; (3) decreased distensibility and increased stiffness; (4) increased collagen deposition; and (5) increased pulse wave velocity. TBT exposure increased the phenylephrine-induced contractile response in mesenteric resistance arteries. However, vasodilatation responses induced by acetylcholine and sodium nitroprusside were not modified by TBT. It is suggested that TBT exposure reduces vascular nitric oxide (NO) production, because:(1) L-NAME incubation did not cause a leftward shift in the concentration-response curve for phenylephrine; (2) both eNOS protein expression; (3) in situ NO production were reduced. Incubation with L-NAME; and (4) SOD shifted the phenylephrine response curve to the left in TBT rats. Tiron, catalase, ML-171 and VAS2870 decreased vascular reactivity to phenylephrine only in TBT rats. Moreover, increased superoxide anion production was observed in the mesenteric resistance arteries of TBT rats accompanied by an increase in gp91phox, catalase, AT1 receptor and total ERK1/2 protein expression. In conclusion, these findings show that TBT induced alterations are most likely due to a reduction of NO production combined with increased O2(-) production derived from NADPH oxidase and ERK1/2 activation. These findings offer further evidence that TBT is an environmental risk factor for cardiovascular disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Repeated mild traumatic brain injury in female rats increases lipid peroxidation in neurons.

    Science.gov (United States)

    Yates, Nathanael J; Lydiard, Stephen; Fehily, Brooke; Weir, Gillian; Chin, Aaron; Bartlett, Carole A; Alderson, Jacqueline; Fitzgerald, Melinda

    2017-07-01

    Negative outcomes of mild traumatic brain injury (mTBI) can be exacerbated by repeated insult. Animal models of repeated closed-head mTBI provide the opportunity to define acute pathological mechanisms as the number of mTBI increases. Furthermore, little is known about the effects of mTBI impact site, and how this may affect brain function. We use a closed head, weight drop model of mTBI that allows head movement following impact, in adult female rats to determine the role of the number and location of mTBI on brain pathology and behaviour. Biomechanical assessment of two anatomically well-defined mTBI impact sites were used, anterior (bregma) and posterior (lambda). Location of the impact had no significant effect on impact forces (450 N), and the weight impact locations were on average 5.4 mm from the desired impact site. No between location vertical linear head kinematic differences were observed immediately following impact, however, in the 300 ms post-impact, significantly higher mean vertical head displacement and velocity were observed in the mTBI lambda trials. Breaches of the blood brain barrier were observed with three mTBI over bregma, associated with immunohistochemical indicators of damage. However, an increased incidence of hairline fractures of the skull and macroscopic haemorrhaging made bregma an unsuitable impact location to model repeated mTBI. Repeated mTBI over lambda did not cause skull fractures and were examined more comprehensively, with outcomes following one, two or three mTBI or sham, delivered at 1 day intervals, assessed on days 1-4. We observe a mild behavioural phenotype, with subtle deficits in cognitive function, associated with no identifiable neuroanatomical or inflammatory changes. However, an increase in lipid peroxidation in a subset of cortical neurons following two mTBI indicates increasing oxidative damage with repeated injury in female rats, supported by increased amyloid precursor protein immunoreactivity with three m

  20. Synergistic co-activation increases the extent of mechanical interaction between rat ankle plantar-flexors

    Directory of Open Access Journals (Sweden)

    Chris Tijs

    2016-09-01

    Full Text Available Force transmission between rat ankle plantar-flexors has been found for physiological muscle lengths and relative positions, but only with all muscles maximally activated. The aims of this study were to assess intermuscular mechanical interactions between ankle plantar-flexors during (i fully passive conditions, (ii excitation of soleus (SO, (iii excitation of lateral gastrocnemius (LG, and (iv during co-activation of SO and LG (SO&LG. We assessed effects of proximal lengthening of LG and plantaris (PL muscles (i.e. simulating knee extension on forces exerted at the distal SO tendon (FSO and on the force difference between the proximal and distal LG+PL tendons (ΔFLG+PL of the rat. LG+PL lengthening increased FSO to a larger extent (p=0.017 during LG excitation (0.0026 N/mm than during fully passive conditions (0.0009 N/mm. Changes in FSO in response to LG+PL lengthening were lower (p=0.002 during SO only excitation (0.0056 N/mm than during SO&LG excitation (0.0101 N/mm. LG+PL lengthening changed ∆FLG+PL to a larger extent (p=0.007 during SO excitation (0.0211 N/mm than during fully passive conditions (0.0157 N/mm. In contrast, changes in ∆FLG+PL in response to LG+PL lengthening during LG excitation (0.0331 N/mm were similar (p=0.161 to that during SO&LG excitation (0.0370 N/mm. In all conditions, changes of FSO were lower than those of ∆FLG+PL. This indicates that muscle forces were transmitted not only between LG+PL and SO, but also between LG+PL and other surrounding structures. In addition, epimuscular myofascial force transmission between rat ankle plantar-flexors was enhanced by muscle activation. However, the magnitude of this interaction was limited.

  1. From Parkinsonian thalamic activity to restoring thalamic relay using deep brain stimulation: new insights from computational modeling

    Science.gov (United States)

    Meijer, H. G. E.; Krupa, M.; Cagnan, H.; Lourens, M. A. J.; Heida, T.; Martens, H. C. F.; Bour, L. J.; van Gils, S. A.

    2011-10-01

    We present a computational model of a thalamocortical relay neuron for exploring basal ganglia thalamocortical loop behavior in relation to Parkinson's disease and deep brain stimulation (DBS). Previous microelectrode, single-unit recording studies demonstrated that oscillatory interaction within and between basal ganglia nuclei is very often accompanied by synchronization at Parkinsonian rest tremor frequencies (3-10 Hz). These oscillations have a profound influence on thalamic projections and impair the thalamic relaying of cortical input by generating rebound action potentials. Our model describes convergent inhibitory input received from basal ganglia by the thalamocortical cells based on characteristics of normal activity, and/or low-frequency oscillations (activity associated with Parkinson's disease). In addition to simulated input, we also used microelectrode recordings as inputs for the model. In the resting state, and without additional sensorimotor input, pathological rebound activity is generated for even mild Parkinsonian input. We have found a specific stimulation window of amplitudes and frequencies for periodic input, which corresponds to high-frequency DBS, and which also suppresses rebound activity for mild and even more prominent Parkinsonian input. When low-frequency pathological rebound activity disables the thalamocortical cell's ability to relay excitatory cortical input, a stimulation signal with parameter settings corresponding to our stimulation window can restore the thalamocortical cell's relay functionality.

  2. Increased response to insulin of glucose metabolism in the 6-day unloaded rat soleus muscle

    Science.gov (United States)

    Henriksen, Erik J.; Tischler, Marc E.; Johnson, David G.

    1986-01-01

    Hind leg muscles of female rats were unloaded by tail cast suspension for 6 days. In the fresh-frozen unloaded soleus, the significantly greater concentration of glycogen correlated with a lower activity ratio of glycogen phosphorylase (p less than 0.02). The activity ratio of glycogen synthase also was lower (p less than 0.001), possibly due to the higher concentration of glycogen. In isolated unloaded soleus, insulin (0.1 milliunit/ml) increased the oxidation of D(U-C-14) glucose, release of lactate and pyruvate, incorporation of D-(U-C-14) glucose into glycogen, and the concentration of glucose 6-phosphate more (p less than 0.05) than in the weight-bearing soleus. At physiological doses of insulin, the percent of maximal uptake of 2-deoxy-D-(1,2-H-3) glucose/muscle also was greater in the unloaded soleus. Unloading of the soleus increased, by 50 percent the concentration of insuling receptors, due to no decrease in total receptor number during muscle atrophy. This increase may account for the greater response of glucose metabolism to insulin in this muscle. The extensor digitorum longus, which generally shows little response to unloading, displayed no differential response of glucose metabolism to insulin.

  3. Proton Pump Inhibition Increases Rapid Eye Movement Sleep in the Rat

    Directory of Open Access Journals (Sweden)

    Munazah Fazal Qureshi

    2014-01-01

    Full Text Available Increased bodily CO2 concentration alters cellular pH as well as sleep. The proton pump, which plays an important role in the homeostatic regulation of cellular pH, therefore, may modulate sleep. We investigated the effects of the proton pump inhibitor “lansoprazole” on sleep-wakefulness. Male Wistar rats were surgically prepared for chronic polysomnographic recordings. Two different doses of lansoprazole (low: 1 mg/kg; high: 10 mg/kg were injected intraperitoneally in the same animal (n=7 and sleep-wakefulness was recorded for 6 hrs. The changes in sleep-wakefulness were compared statistically. Percent REM sleep amount in the vehicle and lansoprazole low dose groups was 9.26±1.03 and 9.09±0.54, respectively, which increased significantly in the lansoprazole high dose group by 31.75% (from vehicle and 34.21% (from low dose. Also, REM sleep episode numbers significantly increased in lansoprazole high dose group. Further, the sodium-hydrogen exchanger blocker “amiloride” (10 mg/kg; i.p. (n=5 did not alter sleep-wake architecture. Our results suggest that the proton pump plays an important role in REM sleep modulation and supports our view that REM sleep might act as a sentinel to help maintain normal CO2 level for unperturbed sleep.

  4. Acute isoproterenol induces anxiety-like behavior in rats and increases plasma content of extracellular vesicles.

    Science.gov (United States)

    Leo, Giuseppina; Guescini, Michele; Genedani, Susanna; Stocchi, Vilberto; Carone, Chiara; Filaferro, Monica; Sisti, Davide; Marcoli, Manuela; Maura, Guido; Cortelli, Pietro; Guidolin, Diego; Fuxe, Kjell; Agnati, Luigi Francesco

    2015-04-01

    Several clinical observations have demonstrated a link between heart rate and anxiety or panic disorders. In these patients, β-adrenergic receptor function was altered. This prompted us to investigate whether the β-adrenergic receptor agonist isoproterenol, at a dose that stimulates peripheral β-adrenergic system but has no effects at the central nervous system, can induce anxiety-like behavior in rats. Moreover, some possible messengers involved in the peripheral to brain communication were investigated. Our results showed that isoproterenol (5 mg kg(-1) i.p.) increased heart rate, evoked anxiety-like behavior, did not result in motor impairments and increased extracellular vesicle content in the blood. Plasma corticosterone level was unmodified as well as vesicular Hsp70 content. Vesicular miR-208 was also unmodified indicating a source of increased extracellular vesicles different from cardiomyocytes. We can hypothesize that peripheral extracellular vesicles might contribute to the β-adrenergic receptor-evoked anxiety-like behavior, acting as peripheral signals in modulating the mental state. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Dietary Crude Lecithin Increases Systemic Availability of Dietary Docosahexaenoic Acid with Combined Intake in Rats.

    Science.gov (United States)

    van Wijk, Nick; Balvers, Martin; Cansev, Mehmet; Maher, Timothy J; Sijben, John W C; Broersen, Laus M

    2016-07-01

    Crude lecithin, a mixture of mainly phospholipids, potentially helps to increase the systemic availability of dietary omega-3 polyunsaturated fatty acids (n-3 PUFA), such as docosahexaenoic acid (DHA). Nevertheless, no clear data exist on the effects of prolonged combined dietary supplementation of DHA and lecithin on RBC and plasma PUFA levels. In the current experiments, levels of DHA and choline, two dietary ingredients that enhance neuronal membrane formation and function, were determined in plasma and red blood cells (RBC) from rats after dietary supplementation of DHA-containing oils with and without concomitant dietary supplementation of crude lecithin for 2-3 weeks. The aim was to provide experimental evidence for the hypothesized additive effects of dietary lecithin (not containing any DHA) on top of dietary DHA on PUFA levels in plasma and RBC. Dietary supplementation of DHA-containing oils, either as vegetable algae oil or as fish oil, increased DHA, eicosapentaenoic acid (EPA), and total n-3 PUFA, and decreased total omega-6 PUFA levels in plasma and RBC, while dietary lecithin supplementation alone did not affect these levels. However, combined dietary supplementation of DHA and lecithin increased the changes induced by DHA supplementation alone. Animals receiving a lecithin-containing diet also had a higher plasma free choline concentration as compared to controls. In conclusion, dietary DHA-containing oils and crude lecithin have synergistic effects on increasing plasma and RBC n-3 PUFA levels, including DHA and EPA. By increasing the systemic availability of dietary DHA, dietary lecithin may increase the efficacy of DHA supplementation when their intake is combined.

  6. Control of Somatosensory Cortical Processing by Thalamic Posterior Medial Nucleus: A New Role of Thalamus in Cortical Function.

    Directory of Open Access Journals (Sweden)

    Carlos Castejon

    Full Text Available Current knowledge of thalamocortical interaction comes mainly from studying lemniscal thalamic systems. Less is known about paralemniscal thalamic nuclei function. In the vibrissae system, the posterior medial nucleus (POm is the corresponding paralemniscal nucleus. POm neurons project to L1 and L5A of the primary somatosensory cortex (S1 in the rat brain. It is known that L1 modifies sensory-evoked responses through control of intracortical excitability suggesting that L1 exerts an influence on whisker responses. Therefore, thalamocortical pathways targeting L1 could modulate cortical firing. Here, using a combination of electrophysiology and pharmacology in vivo, we have sought to determine how POm influences cortical processing. In our experiments, single unit recordings performed in urethane-anesthetized rats showed that POm imposes precise control on the magnitude and duration of supra- and infragranular barrel cortex whisker responses. Our findings demonstrated that L1 inputs from POm imposed a time and intensity dependent regulation on cortical sensory processing. Moreover, we found that blocking L1 GABAergic inhibition or blocking P/Q-type Ca2+ channels in L1 prevents POm adjustment of whisker responses in the barrel cortex. Additionally, we found that POm was also controlling the sensory processing in S2 and this regulation was modulated by corticofugal activity from L5 in S1. Taken together, our data demonstrate the determinant role exerted by the POm in the adjustment of somatosensory cortical processing and in the regulation of cortical processing between S1 and S2. We propose that this adjustment could be a thalamocortical gain regulation mechanism also present in the processing of information between cortical areas.

  7. Eating high-fat chow increases the sensitivity of rats to quinpirole-induced discriminative stimulus effects and yawning.

    Science.gov (United States)

    Baladi, Michelle G; France, Charles P

    2010-10-01

    Discriminative stimulus effects of direct acting dopamine receptor agonists (e.g. quinpirole) appear to be mediated by D3 receptors in free-feeding rats. Free access to high-fat chow increases sensitivity to quinpirole-induced yawning, and this study examined whether eating high-fat chow increases sensitivity to the discriminative stimulus effects of quinpirole. Five rats discriminated between 0.032 mg/kg quinpirole and vehicle while responding under a continuous reinforcement schedule of stimulus shock termination. When rats had free access to high-fat chow (discrimination training was suspended), the quinpirole discrimination dose-response curve shifted leftward, possibly indicating enhanced sensitivity at D3 receptors. In the same rats, both the ascending (mediated by D3 receptors) and descending (mediated by D2 receptors) limbs of the dose-response curve for quinpirole-induced yawning shifted leftward. When rats had free access to a standard chow (discrimination training was suspended), the quinpirole discrimination and yawning dose-response curves did not change. Together with published data showing that the discriminative stimulus effects of quinpirole in free-feeding rats are mediated by D3 receptors and the insensitivity of this effect of quinpirole to food restriction (shown to increase sensitivity to D2 but not D3-mediated effects), these results suggest that the leftward shift of the discrimination dose-response curve when rats eat high-fat chow is likely because of enhanced sensitivity at D3 receptors. Thus, eating high-fat food enhances drug effects in a manner that might impact clinical effects of drugs or vulnerability to drug abuse.

  8. Eating high fat chow increases the sensitivity of rats to quinpirole-induced discriminative stimulus effects and yawning

    Science.gov (United States)

    Baladi, Michelle G; France, Charles P

    2010-01-01

    Discriminative stimulus effects of directly-acting dopamine receptor agonists (e.g. quinpirole) appear to be mediated by D3 receptors in free-feeding rats. Free access to high fat chow increases sensitivity to quinpirole-induced yawning and the current study examined whether eating high fat chow increases sensitivity to the discriminative stimulus effects of quinpirole. Five rats discriminated between 0.032 mg/kg quinpirole and vehicle while responding under a continuous reinforcement schedule of stimulus shock termination. When rats had free access to high fat chow (discrimination training was suspended), the quinpirole discrimination dose-response curve shifted leftward, possibly indicating enhanced sensitivity at D3 receptors. In the same rats, both the ascending (mediated by D3 receptors) and descending (mediated by D2 receptors) limbs of the dose- response curve for quinpirole-induced yawning shifted leftward. When rats had free access to a standard chow (discrimination training was suspended), the quinpirole discrimination and yawning dose-response curves did not change. Together with published data showing that the discriminative stimulus effects of quinpirole in free- feeding rats are mediated by D3 receptors and the insensitivity of this effect of quinpirole to food restriction (shown to increase sensitivity to D2 but not D3-mediated effects), these results suggest that the leftward shift of the discrimination dose-response curve when rats eat high fat chow is likely due to enhanced sensitivity at D3 receptors. Thus, eating high fat food enhances drug effects in a manner that might impact clinical effects of drugs or vulnerability to drug abuse. PMID:20729718

  9. Buriti oil (Mauritia flexuosa L.) negatively impacts somatic growth and reflex maturation and increases retinol deposition in young rats.

    Science.gov (United States)

    Medeiros, Maria C; Aquino, Jailane S; Soares, Juliana; Figueiroa, Edigleide B; Mesquita, Hanni M; Pessoa, Debora C; Stamford, Tania M

    2015-11-01

    Buriti oil contains nutrients such as essential fatty acids and vitamins, which are directly involved with neonates' development. However, the refining process of this oil can change its nutrient profile. This study investigated the effects of maternal consumption of Buriti oil (crude or refined), on reflex and somatic development and retinol levels in neonatal rats. Thirty-six Wistar male neonate rats born from mothers who consumed diet with 7% lipids during gestation and lactation were used. Rats were randomized into three groups: rats receiving diet added of soybean oil (control-CG), crude Buriti oil (CB) and refined Buriti oil (RB). Offspring weight, tail length, reflex ontogeny and somatic maturation were assessed during lactation. At the end of the experiment, serum and liver retinol concentrations were measured. Animals from CB and RB groups showed delayed onset of palm grasp, righting reflex and cliff avoidance reflexes compared to the control group (CG). However, animals from RB group showed anticipation of auditory startle compared to those from BC group. Regarding somatic maturation indicators, animals from RB group showed delayed eye opening and eruption of superior and inferior incisors in relation to control and anticipation in the auditory conduit opening in relation to CB group. Rats from CB and RB groups showed higher serum and liver vitamin A contents. Buriti oil delays physical parameters and reflex maturation and increases serum and liver retinol deposition among neonatal rats. Copyright © 2015. Published by Elsevier Ltd.

  10. Unified thalamic model generates multiple distinct oscillations with state-dependent entrainment by stimulation.

    Directory of Open Access Journals (Sweden)

    Guoshi Li

    2017-10-01

    Full Text Available The thalamus plays a critical role in the genesis of thalamocortical oscillations, yet the underlying mechanisms remain elusive. To understand whether the isolated thalamus can generate multiple distinct oscillations, we developed a biophysical thalamic model to test the hypothesis that generation of and transition between distinct thalamic oscillations can be explained as a function of neuromodulation by acetylcholine (ACh and norepinephrine (NE and afferent synaptic excitation. Indeed, the model exhibited four distinct thalamic rhythms (delta, sleep spindle, alpha and gamma oscillations that span the physiological states corresponding to different arousal levels from deep sleep to focused attention. Our simulation results indicate that generation of these distinct thalamic oscillations is a result of both intrinsic oscillatory cellular properties and specific network connectivity patterns. We then systematically varied the ACh/NE and input levels to generate a complete map of the different oscillatory states and their transitions. Lastly, we applied periodic stimulation to the thalamic network and found that entrainment of thalamic oscillations is highly state-dependent. Our results support the hypothesis that ACh/NE modulation and afferent excitation define thalamic oscillatory states and their response to brain stimulation. Our model proposes a broader and more central role of the thalamus in the genesis of multiple distinct thalamo-cortical rhythms than previously assumed.

  11. Vasopressin-related peptides increase the hippocampal corticosterone receptor capacity of diabetes insipidus (Brattleboro) rats

    NARCIS (Netherlands)

    Veldhuis, H D; de Kloet, E R

    The binding of [3H]corticosterone to receptors in cytosol of several brain regions and of [3H]dexamethasone to receptors in pituitary cytosol was measured after chronic treatment of homozygous diabetes insipidus rats (Ho-Di) with various neuropeptides. All rats were adrenalectomized 24 h before

  12. Short-term isolation increases social interactions of male rats: A parametric analysis

    NARCIS (Netherlands)

    Niesink, R.J.M.; Ree, J.M. van

    1982-01-01

    Frequencies of social interactions were higher in pairs of short-term individually housed male Wistar rats as compared to group-housed animals. This was most pronounced when an individually housed rat and a group-housed conspecific were tested together in the morning under red light conditions.

  13. The effects of honey (Apis dorsata) supplements on increased bone strength in ovariectomized rat as animal model of osteoporosis

    Science.gov (United States)

    Yudaniayanti, Ira Sari; Primarizky, Hardany; Nangoi, Lianny

    2018-04-01

    Osteoporosis is a chronic skeletal disease characterized by low bone mass and microarchitectural deterioration with a consequent increase in bone fragility and fracture risk. The aim of the study was to evaluate the effects of honey (Apis dorsata) supplements on increased bone strength in ovariectomized rat as animal models of osteoporosis. Twenty female rats at 3 months of age, weighing 150-200 g were used in the study. The rats were divided into five groups (n=4) : Sham operation group (SH); ovariectomy group no treatment(OVX); ovariectomy with treatment Apis dorsata 1g/Kg BW (AD-1); ovariectomy with treatment Apis dorsata 2g/Kg BW (AD-2); ovariectomy with treatment Apis dorsata 4g/Kg BW (AD-3). The treatment started to be given the next day after ovariectomy operation for 12 weeks. The Rats were sacrified within 12 weeks, and then the right femur were taken bone strength test. Based on the statistical analysis of the bone strength test, the greatest score belongs to the Sham operation group (SH) that have significant difference (p0,05). In conclusion, honey (Apis dorsata) supplements has the effect of increasing bone strength in ovariectomized rat as animal models of osteoporosis, so that honey (Apis dorsata) supplements has the potential to be used as an alternative treatment for osteoporosis.

  14. High sodium intake during postnatal phases induces an increase in arterial blood pressure in adult rats.

    Science.gov (United States)

    Moreira, M C S; da Silva, E F; Silveira, L L; de Paiva, Y B; de Castro, C H; Freiria-Oliveira, A H; Rosa, D A; Ferreira, P M; Xavier, C H; Colombari, E; Pedrino, Gustavo R

    2014-12-28

    Epigenetic studies suggest that diseases that develop in adulthood are related to certain conditions to which the individual is exposed during the initial stages of life. Experimental evidence has demonstrated that offspring born to mothers maintained on high-Na diets during pregnancy have higher mean arterial pressure (MAP) in adulthood. Although these studies have demonstrated the importance of prenatal phases to hypertension development, no evidence regarding the role of high Na intake during postnatal phases in the development of this pathology has been reported. Therefore, in the present study, the effects of Na overload during childhood on induced water and Na intakes and on cardiovascular parameters in adulthood were evaluated. Experiments were carried out in two groups of 21-d-old rats: experimental group, maintained on hypertonic saline (0.3 m-NaCl) solution and food for 60 d, and control group, maintained on tap water and food. Later, both groups were given water and food for 15 d (recovery period). After the recovery period, chronic cannulation of the right femoral artery was performed in unanaesthetised rats to record baseline MAP and heart rate (HR). The experimental group was found to have increased basal MAP (98.6 (sem 2.6) v. 118.3 (sem 2.7) mmHg, P< 0.05) and HR (365.4 (sem 12.2) v. 398.2 (sem 7.5) beats per min, P< 0.05). There was a decrease in the baroreflex index in the experimental group when compared with that in the control group. A water and Na intake test was performed using furosemide. Na depletion was found to induce an increase in Na intake in both the control and experimental groups (12.1 (sem 0.6) ml and 7.8 (sem 1.1), respectively, P< 0.05); however, this increase was of lower magnitude in the experimental group. These results demonstrate that postnatal Na overload alters behavioural and cardiovascular regulation in adulthood.

  15. Thalamic metabolic abnormalities in patients with Huntington's disease measured by magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Casseb, R.F.; Castellano, G., E-mail: gabriela@ifi.unicamp.br [Cooperacao Interinstitucional de Apoio a Pesquisas sobre o Cerebro (Programa CInAPCe), Sao Paulo, SP (Brazil); Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Fisica Gleb Wataghin. Dept. de Raios Cosmicos e Cronologia; D' Abreu, A.; Cendes, F. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Dept. de Neurologia. Lab. de Neuroimagem; Cooperacao Interinstitucional de Apoio a Pesquisas sobre o Cerebro (Programa CInAPCe), Sao Paulo, SP (Brazil); Ruocco, H.H. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Ciencias Medicas. Dept. de Neurologia. Lab. de Neuroimagem; Lopes-Cendes, I., E-mail: seixas.fk@gmail.com [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Ciencias Medicas. Dept. de Genetica Medica; Cooperacao Interinstitucional de Apoio a Pesquisas sobre o Cerebro (Programa CInAPCe), Sao Paulo, SP (Brazil)

    2013-08-15

    Huntington's disease (HD) is a neurologic disorder that is not completely understood; its fundamental physiological mechanisms and chemical effects remain somewhat unclear. Among these uncertainties, we can highlight information about the concentrations of brain metabolites, which have been widely discussed. Concentration differences in affected, compared to healthy, individuals could lead to the development of useful tools for evaluating the progression of disease, or to the advance of investigations of different/alternative treatments. The aim of this study was to compare the thalamic concentration of metabolites in HD patients and healthy individuals using magnetic resonance spectroscopy. We used a 2.0-Tesla magnetic field, repetition time of 1500 ms, and echo time of 135 ms. Spectra from 40 adult HD patients and 26 control subjects were compared. Quantitative analysis was performed using the LCModel method. There were statistically significant differences between HD patients and controls in the concentrations of N-acetylaspartate+N-acetylaspartylglutamate (NAA+NAAG; t-test, P,0.001), and glycerophosphocholine+phosphocholine (GPC+PCh; t-test, P=0.001) relative to creatine+phosphocreatine (Cr+PCr). The NAA+NAAG/Cr+PCr ratio was decreased by 9% and GPC+PCh/Cr+PCr increased by 17% in patients compared with controls. There were no correlations between the concentration ratios and clinical features. Although these results could be caused by T1 and T2 changes, rather than variations in metabolite concentrations given the short repetition time and long echo time values used, our findings point to thalamic dysfunction, corroborating prior evidence. (author)

  16. Thalamic metabolic abnormalities in patients with Huntington's disease measured by magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Casseb, R.F.; Castellano, G.; Ruocco, H.H.

    2013-01-01

    Huntington's disease (HD) is a neurologic disorder that is not completely understood; its fundamental physiological mechanisms and chemical effects remain somewhat unclear. Among these uncertainties, we can highlight information about the concentrations of brain metabolites, which have been widely discussed. Concentration differences in affected, compared to healthy, individuals could lead to the development of useful tools for evaluating the progression of disease, or to the advance of investigations of different/alternative treatments. The aim of this study was to compare the thalamic concentration of metabolites in HD patients and healthy individuals using magnetic resonance spectroscopy. We used a 2.0-Tesla magnetic field, repetition time of 1500 ms, and echo time of 135 ms. Spectra from 40 adult HD patients and 26 control subjects were compared. Quantitative analysis was performed using the LCModel method. There were statistically significant differences between HD patients and controls in the concentrations of N-acetylaspartate+N-acetylaspartylglutamate (NAA+NAAG; t-test, P,0.001), and glycerophosphocholine+phosphocholine (GPC+PCh; t-test, P=0.001) relative to creatine+phosphocreatine (Cr+PCr). The NAA+NAAG/Cr+PCr ratio was decreased by 9% and GPC+PCh/Cr+PCr increased by 17% in patients compared with controls. There were no correlations between the concentration ratios and clinical features. Although these results could be caused by T1 and T2 changes, rather than variations in metabolite concentrations given the short repetition time and long echo time values used, our findings point to thalamic dysfunction, corroborating prior evidence. (author)

  17. Strategic lesions in the anterior thalamic radiation and apathy in early Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Mario Torso

    Full Text Available Behavioural disorders and psychological symptoms of Dementia (BPSD are commonly observed in Alzheimer's disease (AD, and strongly contribute to increasing patients' disability. Using voxel-lesion-symptom mapping (VLSM, we investigated the impact of white matter lesions (WMLs on the severity of BPSD in patients with amnestic mild cognitive impairment (a-MCI.Thirty-one a-MCI patients (with a conversion rate to AD of 32% at 2 year follow-up and 26 healthy controls underwent magnetic resonance imaging (MRI examination at 3T, including T2-weighted and fluid-attenuated-inversion-recovery images, and T1-weighted volumes. In the patient group, BPSD was assessed using the Neuropsychiatric Inventory-12. After quantitative definition of WMLs, their distribution was investigated, without an a priori anatomical hypothesis, against patients' behavioural symptoms. Unbiased regional grey matter volumetrics was also used to assess the contribution of grey matter atrophy to BPSD.Apathy, irritability, depression/dysphoria, anxiety and agitation were shown to be the most common symptoms in the patient sample. Despite a more widespread anatomical distribution, a-MCI patients did not differ from controls in WML volumes. VLSM revealed a strict association between the presence of lesions in the anterior thalamic radiations (ATRs and the severity of apathy. Regional grey matter atrophy did not account for any BPSD.This study indicates that damage to the ATRs is strategic for the occurrence of apathy in patients with a-MCI. Disconnection between the prefrontal cortex and the mediodorsal and anterior thalamic nuclei might represent the pathophysiological substrate for apathy, which is one of the most common psychopathological symptoms observed in dementia.

  18. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes

    OpenAIRE

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-01-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-J...

  19. Increased corticosterone in peripubertal rats leads to long-lasting alterations in social exploration and aggression

    Directory of Open Access Journals (Sweden)

    Vandana eVeenit

    2013-04-01

    Full Text Available Stress during childhood and adolescence enhances the risk of psychopathology later in life. We have previously shown that subjecting male rats to stress during the peripubertal period induces long-lasting effects on emotion and social behaviors. As corticosterone is increased by stress and known to exert important programming effects, we reasoned that increasing corticosterone might mimic the effects of peripubertal stress. To this end, we injected corticosterone (5 mg/kg on 7 scattered days during the peripuberty period (P28-P30, P34, P36, P40 and P42, following the same experimental schedule as for stress administration in our peripubertal paradigm. We measured play behavior in the homecage and, at adulthood, the corticosterone response to novelty and behavioral responses in tests for anxiety- and depression-like behaviors, aggression and social exploration. As compared to vehicle, corticosterone-treated animals exhibit more aggressive play behavior during adolescence, increased aggressive behavior in a resident-intruder test while reduced juvenile exploration and corticosterone reactivity at adulthood. Whereas the corticosterone treatment mimicked alterations induced by the peripuberty stress protocol in the social domain, it did not reproduce previously observed effects of peripuberty stress on increasing anxiety-like and depression-like behaviors, respectively evaluated in the elevated plus maze and the forced swim tests. Our findings indicate that increasing corticosterone levels during peripuberty might be instrumental to program alterations in the social domain observed following stress, whereas other factors might need to be recruited for the programming of long-term changes in emotionality. Our study opens the possibility that individual differences on the degree of glucocorticoid activation during peripuberty might be central to defining differences in vulnerability to develop psychopathological disorders coursing with alterations in

  20. Phospholipase D1 increases Bcl-2 expression during neuronal differentiation of rat neural stem cells.

    Science.gov (United States)

    Park, Shin-Young; Ma, Weina; Yoon, Sung Nyo; Kang, Min Jeong; Han, Joong-Soo

    2015-01-01

    We studied the possible role of phospholipase D1 (PLD1) in the neuronal differentiation, including neurite formation of neural stem cells. PLD1 protein and PLD activity increased during neuronal differentiation. Bcl-2 also increased. Downregulation of PLD1 by transfection with PLD1 siRNA or a dominant-negative form of PLD1 (DN-PLD1) inhibited both neurite outgrowth and Bcl-2 expression. PLD activity was dramatically reduced by a PLCγ (phospholipase Cγ) inhibitor (U73122), a Ca(2+)chelator (BAPTA-AM), and a PKCα (protein kinase Cα) inhibitor (RO320432). Furthermore, treatment with arachidonic acid (AA) which is generated by the action of PLA2 (phospholipase A2) on phosphatidic acid (a PLD1 product), increased the phosphorylation of p38 MAPK and CREB, as well as Bcl-2 expression, indicating that PLA2 is involved in the differentiation process resulting from PLD1 activation. PGE2 (prostaglandin E2), a cyclooxygenase product of AA, also increased during neuronal differentiation. Moreover, treatment with PGE2 increased the phosphorylation of p38 MAPK and CREB, as well as Bcl-2 expression, and this effect was inhibited by a PKA inhibitor (Rp-cAMP). As expected, inhibition of p38 MAPK resulted in loss of CREB activity, and when CREB activity was blocked with CREB siRNA, Bcl-2 production also decreased. We also showed that the EP4 receptor was required for the PKA/p38MAPK/CREB/Bcl-2 pathway. Taken together, these observations indicate that PLD1 is activated by PLCγ/PKCα signaling and stimulate Bcl-2 expression through PLA2/Cox2/EP4/PKA/p38MAPK/CREB during neuronal differentiation of rat neural stem cells.

  1. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.C. [Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Zheng, G.F. [Department of Vascular Surgery, The People' s Hospital of Ganzhou, Ganzhou (China); Wu, L.; Ou Yang, L.Y.; Li, W.X. [Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China)

    2014-08-08

    Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs) expressing human basic fibroblast growth factor (hbFGF). After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC), MSCs expressing hbFGF (hbFGF-MSC), MSC controls, and phosphate-buffered saline (PBS) controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF) expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001); however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008) and microvessel density (P<0.001). Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease.

  2. Food consumption and activity levels increase in rats following intranasal Hypocretin-1.

    Science.gov (United States)

    Dhuria, Shyeilla V; Fine, Jared M; Bingham, Deborah; Svitak, Aleta L; Burns, Rachel B; Baillargeon, Amanda M; Panter, Scott S; Kazi, Abdul N; Frey, William H; Hanson, Leah R

    2016-08-03

    Hypocretin-1 (HC, orexin-A) is a neuropeptide involved in regulating physiological functions of sleep, appetite and arousal, and it has been shown that intranasal (IN) administration can target HC to the brain. Recent clinical studies have shown that IN HC has functional effects in human clinical trials. In this study, we use rats to determine whether IN HC has an immediate effect on food consumption and locomotor activity, whether distribution in the brain after IN delivery is dose-dependent, and whether MAPK and PDK1 are affected after IN delivery. Food intake and wheel-running activity were quantified for 24h after IN delivery. Biodistribution was determined 30min after IN delivery of both a high and low dose of 125I-radiolabelled HC throughout the brain and other bodily tissues, while Western blots were used to quantify changes in cell signaling pathways (MAPK and PDK1) in the brain. Intranasal HC significantly increased food intake and wheel activity within 4h after delivery, but balanced out over the course of 24h. The distribution studies showed dose-dependent delivery in the CNS and peripheral tissues, while PDK1 was significantly increased in the brain 30min after IN delivery of HC. This study adds to the growing body of evidence that IN administration of HC is a promising strategy for treatment of HC related behaviors. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Enhancement of rat bladder contraction by artificial sweeteners via increased extracellular Ca2+ influx

    International Nuclear Information System (INIS)

    Dasgupta, Jaydip; Elliott, Ruth A.; Doshani, Angie; Tincello, Douglas G.

    2006-01-01

    Introduction: Consumption of carbonated soft drinks has been shown to be independently associated with the development of overactive bladder symptoms (OR 1.62, 95% CI 1.18, 2.22) [Dallosso, H.M., McGrother, C.W., Matthews, R.J., Donaldson, M.M.K., 2003. The association of diet and other lifestyle factors with overactive bladder and stress incontinence: a longitudinal study in women. BJU Int. 92, 69-77]. We evaluated the effects of three artificial sweeteners, acesulfame K, aspartame and sodium saccharin, on the contractile response of isolated rat detrusor muscle strips. Methods: Strips of detrusor muscle were placed in an organ bath and stimulated with electrical field stimulation (EFS) in the absence and presence of atropine, and with α,β methylene ATP, potassium, calcium and carbachol. Results: Sweeteners 10 -7 M to 10 -2 M enhanced the contractile response to 10 Hz EFS compared to control (p -6 M, aspartame 10 -7 M and sodium saccharin 10 -7 M. Acesulfame K 10 -6 M increased the maximum contractile response to α,β methylene ATP by 35% (± 9.6%) (p -6 M increased the log EC 5 from -2.79 (± 0.037) to -3.03 (± 0.048, p -7 M from -2.74 (± 0.03) to 2.86 (± 0.031, p +2 channels

  4. Persistent increase in oxygen consumption and impaired neurovascular coupling after spreading depression in rat neocortex.

    Science.gov (United States)

    Piilgaard, Henning; Lauritzen, Martin

    2009-09-01

    Cortical spreading depression (CSD) is associated with a dramatic failure of brain ion homeostasis and increased energy metabolism. There is strong clinical and experimental evidence to suggest that CSD is the mechanism of migraine, and involved in progressive neuronal injury in stroke and head trauma. Here we tested the hypothesis that single episodes of CSD induced acute hypoxia, and prolonged impairment of neurovascular and neurometabolic coupling. Cortical spreading depression was induced in rat frontal cortex, whereas cortical electrical activity and local field potentials (LFPs) were recorded by glass microelectrodes, cerebral blood flow (CBF) by laser-Doppler flowmetry, and tissue oxygen tension (tpO(2)) with polarographic microelectrodes. Cortical spreading depression increased cerebral metabolic rate of oxygen (CMRO(2)) by 71%+/-6.7% and CBF by 238%+/-48.1% for 1 to 2 mins. For the following 2 h, basal tpO(2) and CBF were reduced whereas basal CMRO(2) was persistently elevated by 8.1%+/-2.9%. In addition, within first hour after CSD we found impaired neurovascular coupling (LFP versus CBF), whereas neurometabolic coupling (LFP versus CMRO(2)) remained unaffected. Impaired neurovascular coupling was explained by both reduced vascular reactivity and suppressed function of cortical inhibitory interneurons. The protracted effects of CSD on basal CMRO(2) and neurovascular coupling may contribute to cellular dysfunction in patients with migraine and acutely injured cerebral cortex.

  5. Bone marrow mesenchymal stem cells overexpressing human basic fibroblast growth factor increase vasculogenesis in ischemic rats

    Directory of Open Access Journals (Sweden)

    J.C. Zhang

    2014-10-01

    Full Text Available Administration or expression of growth factors, as well as implantation of autologous bone marrow cells, promote in vivo angiogenesis. This study investigated the angiogenic potential of combining both approaches through the allogenic transplantation of bone marrow-derived mesenchymal stem cells (MSCs expressing human basic fibroblast growth factor (hbFGF. After establishing a hind limb ischemia model in Sprague Dawley rats, the animals were randomly divided into four treatment groups: MSCs expressing green fluorescent protein (GFP-MSC, MSCs expressing hbFGF (hbFGF-MSC, MSC controls, and phosphate-buffered saline (PBS controls. After 2 weeks, MSC survival and differentiation, hbFGF and vascular endothelial growth factor (VEGF expression, and microvessel density of ischemic muscles were determined. Stable hbFGF expression was observed in the hbFGF-MSC group after 2 weeks. More hbFGF-MSCs than GFP-MSCs survived and differentiated into vascular endothelial cells (P<0.001; however, their differentiation rates were similar. Moreover, allogenic transplantation of hbFGF-MSCs increased VEGF expression (P=0.008 and microvessel density (P<0.001. Transplantation of hbFGF-expressing MSCs promoted angiogenesis in an in vivo hind limb ischemia model by increasing the survival of transplanted cells that subsequently differentiated into vascular endothelial cells. This study showed the therapeutic potential of combining cell-based therapy with gene therapy to treat ischemic disease.

  6. Small-for-Size Liver Transplantation Increases Pulmonary Injury in Rats: Prevention by NIM811

    Directory of Open Access Journals (Sweden)

    Qinlong Liu

    2012-01-01

    Full Text Available Pulmonary complications after liver transplantation (LT often cause mortality. This study investigated whether small-for-size LT increases acute pulmonary injury and whether NIM811 which improves small-for-size liver graft survival attenuates LT-associated lung injury. Rat livers were reduced to 50% of original size, stored in UW-solution with and without NIM811 (5 μM for 6 h, and implanted into recipients of the same or about twice the donor weight, resulting in half-size (HSG and quarter-size grafts (QSG, respectively. Liver injury increased and regeneration was suppressed after QSG transplantation as expected. NIM811 blunted these alterations >75%. Pulmonary histological alterations were minimal at 5–18 h after LT. At 38 h, neutrophils and monocytes/macrophage infiltration, alveolar space exudation, alveolar septal thickening, oxidative/nitrosative protein adduct formation, and alveolar epithelial cell/capillary endothelial apoptosis became overt in the lungs of QSG recipients, but these alterations were mild in full-size and HSG recipients. Liver pretreatment with NIM811 markedly decreased pulmonary injury in QSG recipients. Hepatic TNFα and IL-1β mRNAs and pulmonary ICAM-1 expression were markedly higher after QSG transplantation, which were all decreased by NIM811. Together, dysfunctional small-for-size grafts produce toxic cytokines, leading to lung inflammation and injury. NIM811 decreased toxic cytokine formation, thus attenuating pulmonary injury after small-for-size LT.

  7. Fourth ventricular thyrotropin induces satiety and increases body temperature in rats.

    Science.gov (United States)

    Smedh, Ulrika; Scott, Karen A; Moran, Timothy H

    2018-05-01

    Besides its well-known action to stimulate thyroid hormone release, thyrotropin mRNA is expressed within the brain, and thyrotropin and its receptor have been shown to be present in brain areas that control feeding and gastrointestinal function. Here, the hypothesis that thyrotropin acts on receptors in the hindbrain to alter food intake and/or gastric function was tested. Fourth ventricular injections of thyrotropin (0.06, 0.60, and 6.00 µg) were given to rats with chronic intracerebroventricular cannulas aimed at the fourth ventricle. Thyrotropin produced an acute reduction of sucrose intake (30 min). The highest dose of thyrotropin caused inhibition of overnight solid food intake (22 h). In contrast, subcutaneous administration of corresponding thyrotropin doses had no effect on nutrient intake. The highest effective dose of fourth ventricular thyrotropin (6 µg) did not produce a conditioned flavor avoidance in a standardized two-bottle test, nor did it affect water intake or gastric emptying of glucose. Thyrotropin injected in the fourth ventricle produced a small but significant increase in rectal temperature and lowered plasma levels of tri-iodothyronin but did not affect plasma levels of thyroxine. In addition, there was a tendency toward a reduction in blood glucose 2 h after fourth ventricular thyrotropin injection ( P = 0.056). In conclusion, fourth ventricular thyrotropin specifically inhibits food intake, increases core temperature, and lowers plasma levels of tri-iodothyronin but does not affect gastromotor function.

  8. Gestational Protein Restriction Increases Cardiac Connexin 43 mRNA levels in male adult rat offspring.

    Science.gov (United States)

    Rossini, Kamila Fernanda; Oliveira, Camila Andrea de; Rebelato, Hércules Jonas; Esquisatto, Marcelo Augusto Marreto; Catisti, Rosana

    2017-07-01

    The dietary limitation during pregnancy influences the growth and development of the fetus and offspring and their health into adult life. The mechanisms underlying the adverse effects of gestational protein restriction (GPR) in the development of the offspring hearts are not well understood. The aim of this study was to evaluate the effects of GPR on cardiac structure in male rat offspring at day 60 after birth (d60). Pregnant Wistar rats were fed a normal-protein (NP, 17% casein) or low-protein (LP, 6% casein) diet. Blood pressure (BP) values from 60-day-old male offspring were measured by an indirect tail-cuff method using an electro sphygmomanometer. Hearts (d60) were collected for assessment of connexin 43 (Cx43) mRNA expression and morphological and morphometric analysis. LP offspring showed no difference in body weight, although they were born lighter than NP offspring. BP levels were significantly higher in the LP group. We observed a significant increase in the area occupied by collagen fibers, a decrease in the number of cardiomyocytes by 104 µm2, and an increase in cardiomyocyte area associated with an increased Cx43 expression. GPR changes myocardial levels of Cx43 mRNA in male young adult rats, suggesting that this mechanism aims to compensate the fibrotic process by the accumulation of collagen fibers in the heart interstitium. A limitação dietética durante a gravidez influencia o crescimento e desenvolvimento do feto e da prole e sua saúde na vida adulta. Os mecanismos subjacentes dos efeitos adversos da restrição proteica gestacional (RPG) no desenvolvimento dos corações da prole não são bem compreendidos. Avaliar os efeitos da RPG sobre a estrutura cardíaca em filhotes machos de ratas aos 60 dias após o nascimento (d60). Ratos fêmeas Wistar grávidas foram alimentadas com uma dieta de proteína normal (PN, 17% caseína) ou de baixa proteína (BP, caseína 6%). Os valores de pressão arterial (PA) de descendentes do sexo masculino de

  9. Low vagally-mediated heart rate variability and increased susceptibility to ventricular arrhythmias in rats bred for high anxiety.

    Science.gov (United States)

    Carnevali, Luca; Trombini, Mimosa; Graiani, Gallia; Madeddu, Denise; Quaini, Federico; Landgraf, Rainer; Neumann, Inga D; Nalivaiko, Eugene; Sgoifo, Andrea

    2014-04-10

    In humans, there is a documented association between anxiety disorders and cardiovascular disease. Putative underlying mechanisms may include an impairment of the autonomic nervous system control of cardiac function. The primary objective of the present study was to characterize cardiac autonomic modulation and susceptibility to arrhythmias in genetic lines of rats that differ largely in their anxiety level. To reach this goal, electrocardiographic recordings were performed in high-anxiety behavior (HAB, n=10) and low-anxiety behavior (LAB, n=10) rats at rest, during stressful stimuli and under autonomic pharmacological manipulations, and analyzed by means of time- and frequency-domain indexes of heart rate variability. During resting conditions, HAB rats displayed a reduced heart rate variability, mostly in terms of lower parasympathetic (vagal) modulation compared to LAB rats. In HAB rats, this relatively low cardiac vagal control was associated with smaller heart rate responsiveness to acute stressors compared to LAB counterparts. In addition, beta-adrenergic pharmacological stimulation induced a larger incidence of ventricular tachyarrhythmias in HABs compared to LABs. At sacrifice, a moderate increase in heart-body weight ratio was observed in HAB rats. We conclude that high levels of anxiety-related behavior in rats are associated with signs of i) impaired autonomic modulation of heart rate (low vagally-mediated heart rate variability), ii) poor adaptive heart rate responsiveness to stressful stimuli, iii) increased arrhythmia susceptibility, and iv) cardiac hypertrophy. These results highlight the utility of the HAB/LAB model for investigating the mechanistic basis of the comorbidity between anxiety disorders and cardiovascular disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Effects of donepezil on behavioural manifestations of thalamic infarction: a single case observation

    Directory of Open Access Journals (Sweden)

    Rodrigo eRiveros

    2011-03-01

    Full Text Available Objective: To examine the effect of donepezil for the treatment of cognitive and behavioural disorders associated with thalamic lesions in a 45 years old male who suffered an infarct in the left thalamus. Background: Recent studies suggest that donepezil may improve executive functions impairments due to subcortical ischemic lesionsMethod: The crossover effects of donepezil were analyzed in a single case of thalamic infarction with cognitive and behavioural alterations. Results: Significant behavioural modifications related to improved performances in executive functions were observed with the treatment. Conclusions: The results suggest that donepezil may have significant effect on executive functions that can alter behavioural outcomes after thalamic infarctions

  11. Low thalamic NAA-concentration corresponds to strong neural activation in working memory in Kleine-Levin syndrome.

    Science.gov (United States)

    Vigren, Patrick; Tisell, Anders; Engström, Maria; Karlsson, Thomas; Leinhard Dahlqvist, Olof; Lundberg, Peter; Landtblom, Anne-Marie

    2013-01-01

    Kleine Levin Syndrome (KLS) is a rare disorder of periodic hypersomnia and behavioural disturbances in young individuals. It has previously been shown to be associated with disturbances of working memory (WM), which, in turn, was associated with higher activation of the thalamus with increasing WM load, demonstrated with functional magnetic resonance imaging (fMRI). In this study we aimed to further elucidate how these findings are related to the metabolism of the thalamus. fMRI and magnetic resonance spectroscopy were applied while performing a WM task. Standard metabolites were examined: n-acetylaspartate (NAA), myo-inositol, choline, creatine and glutamate-glutamine. Fourteen KLS-patients and 15 healthy controls participated in the study. The patients with active disease were examined in asymptomatic periods. There was a statistically significant negative correlation between thalamic fMRI-activation and thalamic NAA, i.e., high fMRI-activation corresponded to low NAA-levels. This correlation was not seen in healthy controls. Thalamic levels of NAA in patients and controls showed no significant differences between the groups. None of the other metabolites showed any co-variation with fMRI-activation. This study shows negative correlation between NAA-levels and fMRI-activity in the left thalamus of KLS-patients while performing a WM task. This correlation could not be found in healthy control subjects, primarily interpreted as an effect of increased effort in the patient group upon performing the task. It might indicate a disturbance in the neuronal networks responsible for WM in KLS patients, resulting in higher effort at lower WM load, compared with healthy subjects. The general relationship between NAA and BOLD-signal is also discussed in the article.

  12. Stress during adolescence increases novelty seeking and risk taking behavior in male and female rats

    Directory of Open Access Journals (Sweden)

    Maria eToledo

    2011-04-01

    Full Text Available Adolescence is a period of major physical, hormonal and psychological change. It is also characterized by a significant increase in the incidence of psychopathologies and this increase is gender-specific. Likewise, stress during adolescence is associated with the development of psychiatric disorders later in life. Previously, using a rat model of psychogenic stress (exposure to predator odor followed by placement on an elevated platform during the pre-pubertal period (postnatal days 28-30, we reported sex-specific effects on auditory and contextual fear conditioning. Here, we study the short-term impact of psychogenic stress before and during puberty (postnatal days 28-42 on behavior (novelty seeking, risk taking, anxiety and depression and hypothalamus-pituitary-adrenocortical (HPA axis activation during late adolescence (postnatal days 45-51. Peri-pubertal stress decreased anxiety-like behavior and increased risk taking and novelty seeking behaviors during late adolescence (measured with the elevated plus maze, open field and exposure to novel object tests and intake of chocopop pellets before or immediate after stress. Finally neither depressive-like behavior (measured at the forced swim test nor HPA response to stress (blood corticosterone and glucose were affected by peri-pubertal stress. Nevertheless, when controlling for the basal anxiety of the mothers, animals exposed to peri-pubertal stress showed a significant decrease in corticosterone levels immediate after an acute stressor. The results from this study suggest that exposure to mild stressors during the peri-pubertal period induces a broad spectrum of behavioral changes in late adolescence, which may exacerbate the independence-building behaviors naturally happening during this transitional period (increase in curiosity, sensation-seeking and risk taking behaviors.

  13. Dexamethasone Treatment Reverses Cognitive Impairment but Increases Brain Oxidative Stress in Rats Submitted to Pneumococcal Meningitis

    Directory of Open Access Journals (Sweden)

    Tatiana Barichello

    2011-01-01

    Full Text Available Pneumococcal meningitis is associated with a significant mortality rate and neurologic sequelae. The animals received either 10 μL of saline or a S. pneumoniae suspension and were randomized into different groups: sham: placebo with dexamethasone 0.7 mg/kg/1 day; placebo with dexamethasone 0.2 mg/kg/7 days; meningitis groups: dexamethasone 0.7 mg/kg/1 day and dexamethasone 0.2 mg/kg/7 days. Ten days after induction we evaluated memory and oxidative stress parameters in hippocampus and cortex. In the step-down inhibitory avoidance task, we observed memory impairment in the meningitis group with dexamethasone 0.2 mg/kg/7 days. The lipid peroxidation was increased in hippocampus in the meningitis groups with dexamethasone and in cortex only in the meningitis group with dexamethasone 0.2 mg/kg/7 days. The protein carbonyl was increased in hippocampus in the meningitis groups with dexamethasone and in cortex in the meningitis groups with and without dexamethasone. There was a decrease in the proteins integrity in hippocampus in all groups receiving treatment with dexamethasone and in cortex in all groups with dexamethasone (0.7 mg/kg/1 day. The mitochondrial superoxide was increased in the hippocampus and cortex in the meningitis group with dexamethasone 0.2 mg/kg/7 days. Our findings demonstrate that dexamethasone reverted cognitive impairment but increased brain oxidative stress in hippocampus and cortex in Wistar rats ten days after pneumococcal meningitis induction.

  14. Increased transfer of 45Ca into brain and cerebrospinal fluid from plasma during chronic hypocalcemia in rats.

    Science.gov (United States)

    Murphy, V A; Rapoport, S I

    1988-06-28

    Recent studies have shown regulation of central nervous system [Ca] after chronic hypo- and hypercalcemia. To investigate the mechanism of this regulation, 3-week-old rats were fed diets for 8 weeks that contained low or normal levels of Ca. Plasma [Ca] was 40% less in rats fed the low Ca diet than in animals fed normal diet. Unidirectional transfer coefficients for Ca (KCa) and Cl (KCl) into cerebrospinal fluid (CSF) and brain were determined from the 10 min uptake of intravenously injected 45Ca and 36Cl in awake animals. KCa for CSF was 68% greater in low-Ca rats than in normal rats. Likewise, the values of KCa for brain regions with areas adjacent to the ventricles like the hippocampus and pons-medulla were 50% higher than in normal animals. On the other hand, KCas for parietal cortex, a brain region distant from the choroid plexus and not expected to be influenced by Ca entry into CSF, were similar between the groups. Comparison of the regional ratios of KCa/KCl revealed that a selective increase of Ca transport occurred into CSF and all brain regions except the parietal cortex in Ca-deficient rats. The results suggest that Ca homeostasis of CSF and brain [Ca] during chronic hypocalcemia is due to increased transfer of Ca from blood to brain, and that the regulation occurs via the CSF, possibly at the choroid plexus, but not via the cerebral capillaries.

  15. Thalamic Ventral Intermediate Nucleus Deep Brain Stimulation for Orthostatic Tremor

    Directory of Open Access Journals (Sweden)

    Alexander C. Lehn

    2017-07-01

    Full Text Available Background: Orthostatic tremor (OT was first described in 1977. It is characterized by rapid tremor of 13–18 Hz and can be recorded in the lower limbs and trunk muscles. OT remains difficult to treat, although some success has been reported with deep brain stimulation (DBS.Case Report: We report a 68-year-old male with OT who did not improve significantly after bilateral thalamic stimulation.Discussion: Although some patients were described who improved after DBS surgery, more information is needed about the effect of these treatment modalities on OT, ideally in the form of randomized trial data. 

  16. Haloperidol and Rimonabant Increase Delay Discounting in Rats Fed High-Fat and Standard-Chow Diets

    Science.gov (United States)

    Boomhower, Steven R.; Rasmussen, Erin B.

    2016-01-01

    The dopamine and endocannabinoid neurotransmitter systems have been implicated in delay discounting, a measure of impulsive choice, and obesity. The current study was designed to determine the extent to which haloperidol and rimonabant affected delay discounting in rats fed standard-chow and high-fat diets. Sprague-Dawley rats were allowed to free-feed under a high-fat diet (4.73 kcal/g) or a standard-chow diet (3.0 kcal/g) for three months. Then, operant sessions began in which rats (n = 9 standard chow; n = 10 high-fat) chose between one sucrose pellet delivered immediately vs. three sucrose pellets after a series of delays. In another condition, carrot-flavored pellets replaced sucrose pellets. After behavior stabilized, acute injections of rimonabant (0.3-10 mg/kg) and haloperidol (0.003-0.1 mg/kg) were administered i.p. before some choice sessions in both pellet conditions. Haloperidol and rimonabant increased discounting in both groups of rats by decreasing percent choice for the larger reinforcer and area-under-the-curve (AUC) values. Rats in the high-fat diet condition demonstrated increased sensitivity to haloperidol compared to chow-fed controls: haloperidol increased discounting in both dietary groups in the sucrose condition,, but only in the high-fat-fed rats in the carrot-pellet condition. These findings indicate that blocking D2 and CB1 receptors results in increased delay discounting, and that a high-fat diet may alter sensitivity to dopaminergic compounds using the delay-discounting task. PMID:25000488

  17. Thalamic Volume Is Reduced in Cervical and Laryngeal Dystonias.

    Science.gov (United States)

    Waugh, Jeff L; Kuster, John K; Levenstein, Jacob M; Makris, Nikos; Multhaupt-Buell, Trisha J; Sudarsky, Lewis R; Breiter, Hans C; Sharma, Nutan; Blood, Anne J

    2016-01-01

    Dystonia, a debilitating movement disorder characterized by abnormal fixed positions and/or twisting postures, is associated with dysfunction of motor control networks. While gross brain lesions can produce secondary dystonias, advanced neuroimaging techniques have been required to identify network abnormalities in primary dystonias. Prior neuroimaging studies have provided valuable insights into the pathophysiology of dystonia, but few directly assessed the gross volume of motor control regions, and to our knowledge, none identified abnormalities common to multiple types of idiopathic focal dystonia. We used two gross volumetric segmentation techniques and one voxelwise volumetric technique (voxel based morphometry, VBM) to compare regional volume between matched healthy controls and patients with idiopathic primary focal dystonia (cervical, n = 17, laryngeal, n = 7). We used (1) automated gross volume measures of eight motor control regions using the FreeSurfer analysis package; (2) blinded, anatomist-supervised manual segmentation of the whole thalamus (also gross volume); and (3) voxel based morphometry, which measures local T1-weighted signal intensity and estimates gray matter density or volume at the level of single voxels, for both whole-brain and thalamus. Using both automated and manual gross volumetry, we found a significant volume decrease only in the thalamus in two focal dystonias. Decreases in whole-thalamic volume were independent of head and brain size, laterality of symptoms, and duration. VBM measures did not differ between dystonia and control groups in any motor control region. Reduced thalamic gross volume, detected in two independent analyses, suggests a common anatomical abnormality in cervical dystonia and spasmodic dysphonia. Defining the structural underpinnings of dystonia may require such complementary approaches.

  18. Thalamic Volume Is Reduced in Cervical and Laryngeal Dystonias.

    Directory of Open Access Journals (Sweden)

    Jeff L Waugh

    Full Text Available Dystonia, a debilitating movement disorder characterized by abnormal fixed positions and/or twisting postures, is associated with dysfunction of motor control networks. While gross brain lesions can produce secondary dystonias, advanced neuroimaging techniques have been required to identify network abnormalities in primary dystonias. Prior neuroimaging studies have provided valuable insights into the pathophysiology of dystonia, but few directly assessed the gross volume of motor control regions, and to our knowledge, none identified abnormalities common to multiple types of idiopathic focal dystonia.We used two gross volumetric segmentation techniques and one voxelwise volumetric technique (voxel based morphometry, VBM to compare regional volume between matched healthy controls and patients with idiopathic primary focal dystonia (cervical, n = 17, laryngeal, n = 7. We used (1 automated gross volume measures of eight motor control regions using the FreeSurfer analysis package; (2 blinded, anatomist-supervised manual segmentation of the whole thalamus (also gross volume; and (3 voxel based morphometry, which measures local T1-weighted signal intensity and estimates gray matter density or volume at the level of single voxels, for both whole-brain and thalamus.Using both automated and manual gross volumetry, we found a significant volume decrease only in the thalamus in two focal dystonias. Decreases in whole-thalamic volume were independent of head and brain size, laterality of symptoms, and duration. VBM measures did not differ between dystonia and control groups in any motor control region.Reduced thalamic gross volume, detected in two independent analyses, suggests a common anatomical abnormality in cervical dystonia and spasmodic dysphonia. Defining the structural underpinnings of dystonia may require such complementary approaches.

  19. Thalamic Volume Is Reduced in Cervical and Laryngeal Dystonias

    Science.gov (United States)

    Waugh, Jeff L.; Kuster, John K.; Levenstein, Jacob M.; Makris, Nikos; Multhaupt-Buell, Trisha J.; Sudarsky, Lewis R.; Breiter, Hans C.; Sharma, Nutan; Blood, Anne J.

    2016-01-01

    Background Dystonia, a debilitating movement disorder characterized by abnormal fixed positions and/or twisting postures, is associated with dysfunction of motor control networks. While gross brain lesions can produce secondary dystonias, advanced neuroimaging techniques have been required to identify network abnormalities in primary dystonias. Prior neuroimaging studies have provided valuable insights into the pathophysiology of dystonia, but few directly assessed the gross volume of motor control regions, and to our knowledge, none identified abnormalities common to multiple types of idiopathic focal dystonia. Methods We used two gross volumetric segmentation techniques and one voxelwise volumetric technique (voxel based morphometry, VBM) to compare regional volume between matched healthy controls and patients with idiopathic primary focal dystonia (cervical, n = 17, laryngeal, n = 7). We used (1) automated gross volume measures of eight motor control regions using the FreeSurfer analysis package; (2) blinded, anatomist-supervised manual segmentation of the whole thalamus (also gross volume); and (3) voxel based morphometry, which measures local T1-weighted signal intensity and estimates gray matter density or volume at the level of single voxels, for both whole-brain and thalamus. Results Using both automated and manual gross volumetry, we found a significant volume decrease only in the thalamus in two focal dystonias. Decreases in whole-thalamic volume were independent of head and brain size, laterality of symptoms, and duration. VBM measures did not differ between dystonia and control groups in any motor control region. Conclusions Reduced thalamic gross volume, detected in two independent analyses, suggests a common anatomical abnormality in cervical dystonia and spasmodic dysphonia. Defining the structural underpinnings of dystonia may require such complementary approaches. PMID:27171035

  20. Sensory disturbance, CT, and somatosensory evoked potentials in thalamic hemorrhages

    International Nuclear Information System (INIS)

    Koga, Hisanobu; Miyazaki, Takayoshi; Miyazaki, Hisaya

    1985-01-01

    Thalamic hemorrhages often lead to sensory disturbances. However, no effective method for the evaluation of their prognoses has yet been clinically utilized. The somatosensory evoked potential (SEP) has been reported as an effective method, but it remains controversial. A CT scan is eminently suitable for determining the size and position of the hemorrhage. However, the correlation between the localization of the hematoma on the CT scan and the sensory distrubance has not been investigated fully. The authors selected 20 cases with the chronic stage of a thalamic hemorrhage. Each one was clinically evaluated as to sensory disturbance; they were then classified into the following five groups: Group 1: no sensory deficit (3 cases); Group 2: complete recovery from initial deficit (2 cases); Group 3: mild hypesthesia (5 cases); Group 4: severe hypesthesia (5 cases), and Group 5: paresthesia or dysesthesia (5 cases). Also, the CT scan was investigated with regard to the localization of the hematoma and the SEP. We could thus find a characteristic pattern in each group. The results may be summarized as follows. 1. The correlation between the degree of the sensory disturbance and the size and expansion of the hematoma was clearly detected. Especially, the most severe sensory disturbance was found in the hematoma extending to the lateral nuclear and ventral nuclear regions. 2. In Group 1 and 2, each SEP component (N 1 N 2 N 3 ) was shown to be normal. In Group 3, SEP components could be detected, but not completely. In Group 4, no components at all could be found. 3. In Group 5, all cases were small hematoma localized in the lateral nuclear region of the thalamus, while the N 3 components were prolonged on the SEP findings. The authors demonstrate the results and discuss the correlation between the sensory disturbance and the CT or SEP findings. (author)

  1. Clofibric Acid Increases the Formation of Oleic Acid in Endoplasmic Reticulum of the Liver of Rats

    OpenAIRE

    広瀬, 明彦; 山崎, 研; 坂本, 武史; 須永, 克佳; 津田, 整; 光本, 篤史; 工藤, なをみ; 川嶋, 洋一

    2011-01-01

    The effects of 2-(4-chlorophenoxy)-2-methylpropionic acid (clofibric acid) on the formation of oleic acid (18:1) from stearic acid (18:0) and utilization of the 18:1 formed for phosphatidylcholine (PC) formation in endoplasmic reticulum in the liver of rats were studied in vivo. [14C]18:0 was intravenously injected into control Wistar male rats and rats that had been fed on a diet containing 0.5% (w/w) clofibric acid for 7 days; and the distribution of radiolabeled fatty acids among subcellul...

  2. Tributyltin chloride increases phenylephrine-induced contraction and vascular stiffness in mesenteric resistance arteries from female rats

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro Júnior, Rogério Faustino, E-mail: rogeriofaustinoribeiro@hotmail.com [Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES (Brazil); Marques, Vinicius Bermond; Nunes, Dieli Oliveira; Ronconi, Karoline de Sousa [Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES (Brazil); Araújo, Julia F.P. de [Department of Morphology, Federal University of Espírito Santo (Brazil); Rodrigues, Paula Lopes; Padilha, Alessandra Simão; Vassallo, Dalton Valentim [Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES (Brazil); Graceli, Jones B. [Department of Morphology, Federal University of Espírito Santo (Brazil); Stefanon, Ivanita [Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES (Brazil)

    2016-03-15

    Tributyltin chloride (TBT) is an organotin compound that reduces estrogen levels in female rats. We aimed to investigate the effects of TBT exposure on vascular tonus and vascular remodelling in the resistance arteries of female rats. Rats were treated daily with TBT (500 ng/kg) for 15 days. TBT did not change arterial blood pressure but did modify some morpho-physiological parameters of third-order mesenteric resistance arteries in the following ways: (1) decreased lumen and external diameters; (2) increased wall/lm ratio and wall thickness; (3) decreased distensibility and increased stiffness; (4) increased collagen deposition; and (5) increased pulse wave velocity. TBT exposure increased the phenylephrine-induced contractile response in mesenteric resistance arteries. However, vasodilatation responses induced by acetylcholine and sodium nitroprusside were not modified by TBT. It is suggested that TBT exposure reduces vascular nitric oxide (NO) production, because:(1) L-NAME incubation did not cause a leftward shift in the concentration–response curve for phenylephrine; (2) both eNOS protein expression; (3) in situ NO production were reduced. Incubation with L-NAME; and (4) SOD shifted the phenylephrine response curve to the left in TBT rats. Tiron, catalase, ML-171 and VAS2870 decreased vascular reactivity to phenylephrine only in TBT rats. Moreover, increased superoxide anion production was observed in the mesenteric resistance arteries of TBT rats accompanied by an increase in gp91phox, catalase, AT{sub 1} receptor and total ERK1/2 protein expression. In conclusion, these findings show that TBT induced alterations are most likely due to a reduction of NO production combined with increased O{sub 2}{sup −} production derived from NADPH oxidase and ERK1/2 activation. These findings offer further evidence that TBT is an environmental risk factor for cardiovascular disease. - Highlights: • Tributyltin chloride reduces estrogen levels in female rats.

  3. Enduring increases in anxiety-like behavior and rapid nucleus accumbens dopamine signaling in socially isolated rats.

    Science.gov (United States)

    Yorgason, Jordan T; España, Rodrigo A; Konstantopoulos, Joanne K; Weiner, Jeffrey L; Jones, Sara R

    2013-03-01

    Social isolation (SI) rearing, a model of early life stress, results in profound behavioral alterations, including increased anxiety-like behavior, impaired sensorimotor gating and increased self-administration of addictive substances. These changes are accompanied by alterations in mesolimbic dopamine function, such as increased dopamine and metabolite tissue content, increased dopamine responses to cues and psychostimulants, and increased dopamine neuron burst firing. Using voltammetric techniques, we examined the effects of SI rearing on dopamine transporter activity, vesicular release and dopamine D2-type autoreceptor activity in the nucleus accumbens core. Long-Evans rats were housed in group (GH; 4/cage) or SI (1/cage) conditions from weaning into early adulthood [postnatal day (PD) 28-77]. After this initial housing period, rats were assessed on the elevated plus-maze for an anxiety-like phenotype, and then slice voltammetry experiments were performed. To study the enduring effects of SI rearing on anxiety-like behavior and dopamine terminal function, another cohort of similarly reared rats was isolated for an additional 4 months (until PD 174) and then tested. Our findings demonstrate that SI rearing results in lasting increases in anxiety-like behavior, dopamine release and dopamine transporter activity, but not D2 activity. Interestingly, GH-reared rats that were isolated as adults did not develop the anxiety-like behavior or dopamine changes seen in SI-reared rats. Together, our data suggest that early life stress results in an anxiety-like phenotype, with lasting increases in dopamine terminal function. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  4. Chronic lithium treatment increased intracellular S100ß levels in rat primary neuronal culture.

    Directory of Open Access Journals (Sweden)

    Masoumeh Emamghoreishi

    2015-02-01

    Full Text Available S100ß a neurotrophic factor mainly released by astrocytes, has been implicated in the pathogenesis of bipolar disorder. Thus, lithium may exert its neuroprotective effects to some extent through S100ß. Furthermore, the possible effects of lithium on astrocytes as well as on interactions between neurons and astrocytes as a part of its mechanisms of actions are unknown. This study was undertaken to determine the effect of lithium on S100β in neurons, astrocytes and a mixture of neurons and astrocytes. Rat primary astrocyte, neuronal and mixed neuro-astroglia cultures were prepared from cortices of 18-day's embryos. Cell cultures were exposed to lithium (1mM or vehicle for 1day (acute or 7 days (chronic. RT-PCR and ELISA determined S100β mRNA and intra- and extracellular protein levels. Chronic lithium treatment significantly increased intracellular S100β in neuronal and neuro-astroglia cultures in comparison to control cultures (P<0.05. Acute and chronic lithium treatments exerted no significant effects on intracellular S100β protein levels in astrocytes, and extracellular S100β protein levels in three studied cultures as compared to control cultures. Acute and chronic lithium treatments did not significantly alter S100β mRNA levels in three studied cultures, compared to control cultures. Chronic lithium treatment increased intracellular S100ß protein levels in a cell-type specific manner which may favor its neuroprotective action. The findings of this study suggest that lithium may exert its neuroprotective action, at least partly, by increasing neuronal S100ß level, with no effect on astrocytes or interaction between neurons and astrocytes.

  5. Catalase increases ethanol oxidation through the purine catabolism in rat liver.

    Science.gov (United States)

    Villalobos-García, Daniel; Hernández-Muñoz, Rolando

    2017-08-01

    Hepatic ethanol oxidation increases according to its concentration and is raised to near-saturation levels of alcohol dehydrogenase (ADH); therefore, re-oxidation of NADH becomes rate limiting in ethanol metabolism by the liver. Adenosine is able to increase liver ethanol oxidation in both in vivo and in vitro conditions; the enhancement being related with the capacity of the nucleoside to accelerate the transport of cytoplasmic reducing equivalents to mitochondria, by modifying the subcellular distribution of the malate-aspartate shuttle components. In the present study, we explored the putative effects of adenosine and other purines on liver ethanol oxidation mediated by non-ADH pathways. Using the model of high precision-cut rat liver slices, a pronounced increase of ethanol oxidation was found in liver slices incubated with various intermediates of the purine degradation pathway, from adenosine to uric acid (175-230%, over controls). Of these, urate had the strongest (230%), whereas xanthine had the less pronounced effect (178% over controls). The enhancement was not abolished by 4-methylpyrazole, indicating that the effect was independent of alcohol dehydrogenase. Conversely, aminotriazole, a catalase inhibitor, completely abolished the effect, pointing out that this enhanced ethanol oxidation is mediated by catalase activity. It is concluded that the H 2 O 2 needed for catalase activity is derived from the oxidation of (hypo)xanthine by xanthine oxidase and the oxidation of urate by uricase. The present and previous data led us to propose that, depending on the metabolic conditions, adenosine might be able to stimulate the metabolism of ethanol through different pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Hypoxia-induced increases in serotonin-immunoreactive nerve fibers in the medulla oblongata of the rat.

    Science.gov (United States)

    Morinaga, Ryosuke; Nakamuta, Nobuaki; Yamamoto, Yoshio

    2016-10-01

    Hypoxia induces respiratory responses in mammals and serotonergic neurons in the medulla oblongata participate in respiratory control. However, the morphological changes in serotonergic neurons induced by hypoxia have not yet been examined and respiratory controls of serotonergic neurons have not been clarified. We herein investigated the distribution of immunoreactivity for serotonin (5-hydroxytryptamine; 5-HT) in the medulla oblongata of control rats and rats exposed to 1-6h of hypoxia (10% O 2 ). We also examined the medulla oblongata by multiple immunofluorescence labeling for 5-HT, neurokinin 1 receptors (NK1R), a marker for some respiratory neurons in the pre-Bötzinger complex (PBC), and dopamine β-hydroxylase (DBH), a marker for catecholaminergic neurons. The number of 5-HT-immunoreactive nerve cell bodies in the raphe nuclei was higher in rats exposed to hypoxia than in control rats. The number of 5-HT-immunoreactive nerve fibers significantly increased in the rostral ventrolateral medulla of rats exposed to 1-6h of hypoxia, caudal ventrolateral medulla of rats exposed to 2-6h of hypoxia, and lateral part of the nucleus of the solitary tract and dorsal motor nucleus of the vagus nerve of rats exposed to 1-2h of hypoxia. Multiple immunofluorescence labeling showed that 5-HT-immunoreactive nerve fibers were close to NK1R-immunoreactive neurons in ventrolateral medulla and to DBH-immunoreactive neurons in the medulla. These results suggest that serotonergic neurons partly regulate respiratory control under hypoxic conditions by modulating the activity of NK1R-expressing and catecholaminergic neurons. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Increased Sensitivity to Binge Alcohol-Induced Gut Leakiness and Inflammatory Liver Disease in HIV Transgenic Rats.

    Directory of Open Access Journals (Sweden)

    Atrayee Banerjee

    Full Text Available The mechanisms of alcohol-mediated advanced liver injury in HIV-infected individuals are poorly understood. Thus, this study was aimed to investigate the effect of binge alcohol on the inflammatory liver disease in HIV transgenic rats as a model for simulating human conditions. Female wild-type (WT or HIV transgenic rats were treated with three consecutive doses of binge ethanol (EtOH (3.5 g/kg/dose oral gavages at 12-h intervals or dextrose (Control. Blood and liver tissues were collected at 1 or 6-h following the last dose of ethanol or dextrose for the measurements of serum endotoxin and liver pathology, respectively. Compared to the WT, the HIV rats showed increased sensitivity to alcohol-mediated gut leakiness, hepatic steatosis and inflammation, as evidenced with the significantly elevated levels of serum endotoxin, hepatic triglycerides, histological fat accumulation and F4/80 staining. Real-time PCR analysis revealed that hepatic levels of toll-like receptor-4 (TLR4, leptin and the downstream target monocyte chemoattractant protein-1 (MCP-1 were significantly up-regulated in the HIV-EtOH rats, compared to all other groups. Subsequent experiments with primary cultured cells showed that both hepatocytes and hepatic Kupffer cells were the sources of the elevated MCP-1 in HIV-EtOH rats. Further, TLR4 and MCP-1 were found to be upregulated by leptin. Collectively, these results show that HIV rats, similar to HIV-infected people being treated with the highly active anti-retroviral therapy (HAART, are more susceptible to binge alcohol-induced gut leakiness and inflammatory liver disease than the corresponding WT, possibly due to additive or synergistic interaction between binge alcohol exposure and HIV infection. Based on these results, HIV transgenic rats can be used as a surrogate model to study the molecular mechanisms of many disease states caused by heavy alcohol intake in HIV-infected people on HAART.

  8. Huperzine A prophylaxis against pentylenetetrazole-induced seizures in rats is associated with increased cortical inhibition.

    Science.gov (United States)

    Gersner, R; Ekstein, D; Dhamne, S C; Schachter, S C; Rotenberg, A

    2015-11-01

    Huperzine A (HupA) is a naturally occurring compound found in the firmoss Huperzia serrata. While HupA is a potent acetylcholinesterase inhibitor, its full pharmacologic profile is incompletely described. Since previous works suggested a capacity for HupA to prophylax against seizures, we tested the HupA antiepileptic potential in pentylenetetrazole (PTZ) rat epilepsy model and explored its mechanism of action by spectral EEG analysis and by paired-pulse transcranial magnetic stimulation (ppTMS), a measure of GABA-mediated intracortical inhibition. We tested whether HupA suppresses seizures in the rat PTZ acute seizure model, and quantified latency to first myoclonus and to generalized tonic-clonic seizure, and spike frequency on EEG. Additionally, we measured power in the EEG gamma frequency band which is associated with GABAergic cortical interneuron activation. Then, as a step toward further examining the HupA antiepileptic mechanism of action, we tested long-interval intracortical inhibition (LICI) using ppTMS coupled with electromyography to assess whether HupA augments GABA-mediated paired-pulse inhibition of the motor evoked potential. We also tested whether the HupA effect on paired-pulse inhibition was central or peripheral by comparison of outcomes following administration of HupA or the peripheral acetylcholinesterase inhibitor pyridostigmine. We also tested whether the HupA effect was dependent on central muscarinic or GABAA receptors by co-administration of HupA and atropine or PTZ, respectively. In tests of antiepileptic potential, HupA suppressed seizures and epileptic spikes on EEG. Spectral EEG analysis also revealed enhanced gamma frequency band power with HupA treatment. By ppTMS we found that HupA increases intracortical inhibition and blocks PTZ-induced cortical excitation. Atropine co-administration with HupA did not alter HupA-induced intracortical inhibition suggesting independent of muscarinic acetylcholine receptors mechanism in this model

  9. Low-protein, high-carbohydrate diet increases glucose uptake and fatty acid synthesis in brown adipose tissue of rats.

    Science.gov (United States)

    Aparecida de França, Suélem; Pavani Dos Santos, Maísa; Nunes Queiroz da Costa, Roger Vinícius; Froelich, Mendalli; Buzelle, Samyra Lopes; Chaves, Valéria Ernestânia; Giordani, Morenna Alana; Pereira, Mayara Peron; Colodel, Edson Moleta; Marlise Balbinotti Andrade, Cláudia; Kawashita, Nair Honda

    2014-04-01

    The aim of this study was to evaluate glucose uptake and the contribution of glucose to fatty acid (FA) synthesis and the glycerol-3-phosphate (G3P) of triacylglycerol synthesis by interscapular brown adipose tissue (IBAT) of low-protein, high-carbohydrate (LPHC) diet-fed rats. LPHC (6% protein; 74% carbohydrate) or control (17% protein; 63% carbohydrate) diets were administered to rats (∼ 100 g) for 15 d. Total FA and G3P synthesis and the synthesis of FA and G3P from glucose were evaluated in vivo by (3)H2O and (14)C-glucose. Sympathetic neural contribution for FA synthesis was evaluated by comparing the synthesis in denervated (7 d before) IBAT with that of the contralateral innervated side. The insulin signaling and β3 adrenergic receptor (β3-AR) contents, as well as others, were determined by Western blot (Student's t test or analysis of variance; P ≤ 0.05). Total FA synthesis in IBAT was 133% higher in the LPHC group and was reduced 85% and 70% by denervation for the LPHC and control groups, respectively. Glucose uptake was 3.5-fold higher in the IBAT of LPHC rats than in that of the control rats, and the contribution of glucose to the total FA synthesis increased by 12% in control rats compared with 18% in LPHC rats. The LPHC diet increased the G3P generation from glucose by 270% and the insulin receptor content and the p-AKT insulin stimulation in IBAT by 120% and reduced the β3-AR content by 50%. The LPHC diet stimulated glucose uptake, both the total rates and the rates derived from glucose-dependent FA and G3P synthesis, by increasing the insulin sensitivity and the sympathetic flux, despite a reduction in the β3-AR content. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. The oleic acid esterification of policosanol increases its bioavailability and hypocholesterolemic action in rats

    Directory of Open Access Journals (Sweden)

    Haim, D.

    2012-10-01

    Full Text Available Policosanol comprises a mixture of long-chain aliphatic alcohols from sugarcane wax. More than 50 studies indicate that policosanol decreases serum cholesterol, while others failed to reproduce this effect. The objective of this investigation was to assess the bioavailability of esterified policosanol and non-esterified policosanol (NEP, in relation to their hypocholesterolemic effects. Sprague Dawley rats were given a daily oral dose of 100 mg/kg of NEP, 117 mg kg–1 of butyric acid esterified policosanol (BAEP, or 164 mg kg–1 of oleic acid esterified policosanol (OAEP. Policosanol absorption was evaluated in plasma between 0 and 3 hours after ingestion. To assess changes in total cholesterol, LDL-cholesterol, HDLcholesterol and triacylglycerols in plasma and liver 3-hydroxy- 3-methylglutaryl coenzyme A reductase (HMG- CoA red phosphorylation, the rats were supplemented with nonesterified or esterified policosanol for 5 weeks. The results indicate that policosanol absorption was significantly greater in OAEP-treated rats than in those subjected to NEP or BAEP administration. OAEP significantly reduced plasma total and LDL-cholesterol in rats, in addition to a 5.6-fold increase (P < 0.05 in the hepatic content of phosphorylated HMG-CoA red over the control values. In conclusion, esterification of policosanol with oleic acid enhances policosanol bioavailability, and significantly improves the serum lipid profile in normocholesterolemic rats in association with the inactivation of HMG-CoA red controlling cholesterogenesis.

    Los Policosanoles están formados por una mezcla de alcoholes alifáticos de cadena larga y se obtienen de las ceras de la caña de azúcar. Más de cincuenta estudios indican que los policosanoles reducen el colesterol sérico, mientras que otros no logran reproducir este efecto. El objetivo de esta investigación fue evaluar la biodisponibilidad de policosanoles esterificados y no esterificados

  11. Sign-tracking predicts increased choice of cocaine over food in rats.

    Science.gov (United States)

    Tunstall, Brendan J; Kearns, David N

    2015-03-15

    The purpose of this study was to determine whether the tendency to sign-track to a food cue was predictive of rats' choice of cocaine over food. First, rats were trained on a procedure where insertion of a retractable lever was paired with food. A sub-group of rats - sign-trackers - primarily approached and contacted the lever, while another sub-group - goal-trackers - approached the site of food delivery. Rats were then trained on a choice task where they could choose between an infusion of cocaine (1.0 mg/kg) and a food pellet (45 mg). Sign-trackers chose cocaine over food significantly more often than did goal-trackers. These results support the incentive-salience theory of addiction and add to a growing number of studies which suggest that sign-trackers may model an addiction-prone phenotype. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Increased number of anaerobic bacteria in the infected root canal in type 2 diabetic rats.

    Science.gov (United States)

    Iwama, Akihiro; Morimoto, Taisuke; Tsuji, Masahito; Nakamura, Koki; Higuchi, Naoya; Imaizumi, Ichiro; Shibata, Naoki; Yamasaki, Masahiro; Nakamura, Hiroshi

    2006-05-01

    The purpose of this study was to investigate the relationship between type 2 diabetes mellitus and anaerobic bacteria detected in infected root canals. Normal Wistar rats (control) received a standard laboratory diet with water (group A), and GK rats (type 2 diabetes mellitus rats) a normal laboratory diet with water (group B) or a 30% sucrose solution (group C). Chemotaxis assay was conducted on polymorphonuclear leukocytes from the 3 groups, and the numbers of anaerobic bacteria in infected root canals were determined. In the chemotaxis assay on the polymorphonuclear leukocytes, the chemotactic response of cells in group C was lower than that for groups A and B (P obligate anaerobic bacteria which stained gram negative, were significantly more numerous in group C (P < .01) than in groups A and B. The metabolic condition produced by type 2 diabetes mellitus in rats might lower the general host resistance against bacterial infection.

  13. Visuomotor signals for reaching movements in the rostro-dorsal sector of the monkey thalamic reticular nucleus.

    Science.gov (United States)

    Saga, Yosuke; Nakayama, Yoshihisa; Inoue, Ken-Ichi; Yamagata, Tomoko; Hashimoto, Masashi; Tremblay, Léon; Takada, Masahiko; Hoshi, Eiji

    2017-05-01

    The thalamic reticular nucleus (TRN) collects inputs from the cerebral cortex and thalamus and, in turn, sends inhibitory outputs to the thalamic relay nuclei. This unique connectivity suggests that the TRN plays a pivotal role in regulating information flow through the thalamus. Here, we analyzed the roles of TRN neurons in visually guided reaching movements. We first used retrograde transneuronal labeling with rabies virus, and showed that the rostro-dorsal sector of the TRN (TRNrd) projected disynaptically to the ventral premotor cortex (PMv). In other experiments, we recorded neurons from the TRNrd or PMv while monkeys performed a visuomotor task. We found that neurons in the TRNrd and PMv showed visual-, set-, and movement-related activity modulation. These results indicate that the TRNrd, as well as the PMv, is involved in the reception of visual signals and in the preparation and execution of reaching movements. The fraction of neurons that were non-selective for the location of visual signals or the direction of reaching movements was greater in the TRNrd than in the PMv. Furthermore, the fraction of neurons whose activity increased from the baseline was greater in the TRNrd than in the PMv. The timing of activity modulation of visual-related and movement-related neurons was similar in TRNrd and PMv neurons. Overall, our data suggest that TRNrd neurons provide motor thalamic nuclei with inhibitory inputs that are predominantly devoid of spatial selectivity, and that these signals modulate how these nuclei engage in both sensory processing and motor output during visually guided reaching behavior. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Soybean oil increases SERCA2a expression and left ventricular contractility in rats without change in arterial blood pressure

    Directory of Open Access Journals (Sweden)

    Vassallo Dalton

    2010-05-01

    Full Text Available Abstract Background Our aim was to evaluate the effects of soybean oil treatment for 15 days on arterial and ventricular pressure, myocardial mechanics and proteins involved in calcium handling. Methods Wistar rats were divided in two groups receiving 100 μL of soybean oil (SB or saline (CT i.m. for 15 days. Ventricular performance was analyzed in male 12-weeks old Wistar rats by measuring left ventricle diastolic and systolic pressure in isolated perfused hearts according to the Langendorff technique. Protein expression was measured by Western blot analysis. Results Systolic and diastolic arterial pressures did not differ between CT and SB rats. However, heart rate was reduced in the SB group. In the perfused hearts, left ventricular isovolumetric systolic pressure was higher in the SB hearts. The inotropic response to extracellular Ca2+ and isoproterenol was higher in the soybean-treated animals than in the control group. Myosin ATPase and Na+-K+ATPase activities, the expression of sarcoplasmic reticulum calcium pump (SERCA2a and sodium calcium exchanger (NCX were increased in the SB group. Although the phosfolamban (PLB expression did not change, its phosphorylation at Ser16 was reduced while the SERCA2a/PLB ratio was increased. Conclusions In summary, soybean treatment for 15 days in rats increases the left ventricular performance without affecting arterial blood pressure. These changes might be associated with an increase in the myosin ATPase activity and SERCA2a expression.

  15. Fentanyl increases dopamine release in rat nucleus accumbens: involvement of mesolimbic mu- and delta-2-opioid receptors

    NARCIS (Netherlands)

    Yoshida, Y.; Koide, S.; Hirose, N.; Takada, K.; Tomiyama, K; Koshikawa, N.; Cools, A.R.

    1999-01-01

    The effects of the u-receptor agonist fentanyl on extracellular levels of dopamine in rat nucleus accumbens were studied in awake animals by in vivo brain microdialysis. Fentanyl dosedependently increased the levels of dopamine when given intravenously (ug/kg) or via a microdialysis probe placed

  16. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes.

    Science.gov (United States)

    Jeong, Yeon-Hui; Park, Jin-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2014-11-01

    In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes.

  17. L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats

    NARCIS (Netherlands)

    Legrand, Matthieu; Almac, Emre; Mik, Egbert G.; Johannes, Tanja; Kandil, Asli; Bezemer, Rick; Payen, Didier; Ince, Can

    2009-01-01

    Legrand M, Almac E, Mik EG, Johannes T, Kandil A, Bezemer R, Payen D, Ince C. L-NIL prevents renal microvascular hypoxia and increase of renal oxygen consumption after ischemia-reperfusion in rats. Am J Physiol Renal Physiol 296: F1109-F1117, 2009. First published February 18, 2009;

  18. Post-stroke gaseous hypothermia increases vascular density but not neurogenesis in the ischemic penumbra of aged rats

    DEFF Research Database (Denmark)

    Sandu, Raluca Elena; Uzoni, Adriana; Ciobanu, Ovidiu

    2016-01-01

    of several genes involved in protein degradation, thereby leading to better preservation of infarcted tissue. Further, hypothermia increased the density of newly formed blood vessels in the peri-lesional cortex did not enhance neurogenesis in the infarcted area of aged rats. Likewise, there was improved......-PCR and immunofluorescence, we assessed infarct size, vascular density, neurogenesis and as well as the expression of genes coding for proteasomal proteins as well as in post-stroke aged Sprague-Dawley rats exposed to H2S- induced hypothermia. Results: Two days exposure to mild hypothermia diminishes the expression...

  19. Rats with decreased brain cholecystokinin levels show increased responsiveness to peripheral electrical stimulation-induced analgesia.

    Science.gov (United States)

    Zhang, L X; Li, X L; Wang, L; Han, J S

    1997-01-16

    Using the P77PMC strain of rat, which is genetically prone to audiogenic seizures, and also has decreased levels of cholecystokinin (CCK), we examined the analgesic response to peripheral electrical stimulation, which is, in part, opiate-mediated. A number of studies have suggested that CCK may function as an antagonist to endogenous opiate effects. Therefore, we hypothesized that the P77PMC animals would show an enhanced analgesic response based on their decreased CCK levels producing a diminished endogenous opiate antagonism. We found that the analgesic effect on tail flick latency produced by 100 Hz peripheral electrical stimulation was more potent and longer lasting in P77PMC rats than in control rats. Moreover, the potency of the stimulation-produced analgesia correlated with the vulnerability to audiogenic seizures in these rats. We were able to block the peripheral electrical stimulation-induced analgesia (PSIA) using a cholecystokinin octapeptide (CCK-8) administered parenterally. Radioimmunoassay showed that the content of CCK-8 in cerebral cortex, hippocampus and periaqueductal gray was much lower in P77PMC rat than in controls. These results suggest that low CCK-8 content in the central nervous system of the P77PMC rats may be related to the high analgesic response to peripheral electrical stimulation, and further support the notion that CCK may be endogenous opiate antagonist.

  20. Mild prenatal protein malnutrition increases alpha 2C-adrenoceptor expression in the rat cerebral cortex during postnatal life.

    Science.gov (United States)

    Sierralta, Walter; Hernández, Alejandro; Valladares, Luis; Pérez, Hernán; Mondaca, Mauricio; Soto-Moyano, Rubén

    2006-05-15

    Mild reduction in the protein content in the diet of pregnant rats from 25 to 8% casein, calorically compensated by carbohydrates, does not alter body and brain weights of rat pups at birth, but results in significant changes of the concentration and release of cortical noradrenaline during postnatal life, together with impaired long-term potentiation and memory formation. Since some central noradrenergic receptors are critically involved in neuroplasticity, the present study evaluated, by utilizing immunohistochemical methods, the effect of mild prenatal protein malnutrition on the alpha 2C-adrenoceptor expression in the frontal and occipital cortices of 8- and 60-day-old rats. At day 8 of postnatal age, prenatally malnourished rats exhibited a three-fold increase of alpha 2C-adrenoceptor expression in both the frontal and the occipital cortices, as compared to well-nourished controls. At 60 days of age, prenatally malnourished rats showed normal expression levels scores of alpha 2C-adrenoceptor in the neocortex. Results suggest that overexpression of neocortical alpha 2C-adrenoceptors during early postnatal life, subsequent to mild prenatal protein malnutrition, could in part be responsible for neural and behavioral disturbances showing prenatally malnourished animals during the postnatal life.

  1. Eating high fat chow increases the sensitivity of rats to 8-OH-DPAT-induced lower lip retraction.

    Science.gov (United States)

    Li, Jun-Xu; Ju, Shutian; Baladi, Michelle G; Koek, Wouter; France, Charles P

    2011-12-01

    Eating high fat food can alter sensitivity to drugs acting on dopamine systems; this study examined whether eating high fat food alters sensitivity to a drug acting on serotonin (5-HT) systems. Sensitivity to (+)-8-hydroxy-2-(dipropylamino) tetralin hydrobromide (8-OH-DPAT; 5-HT1A receptor agonist)-induced lower lip retraction was examined in separate groups (n=8-9) of rats with free access to standard (5.7% fat) or high fat (34.3% fat) chow; sensitivity to quinpirole (dopamine D3/D2 receptor agonist)-induced yawning was also examined. Rats eating high fat chow gained more body weight than rats eating standard chow and, after 6 weeks of eating high fat chow, they were more sensitive to 8-OH-DPAT (0.01-0.1 mg/kg)-induced lower lip retraction and quinpirole (0.0032-0.32 mg/kg)-induced yawning. These changes were not reversed when rats that previously ate high fat chow were switched to eating standard chow and sensitivity to 8-OH-DPAT and quinpirole increased when rats that previously ate standard chow ate high fat chow. These data extend previous results showing changes in sensitivity to drugs acting on dopamine systems in animals eating high fat chow to a drug acting at 5-HT1A receptors and they provide support for the notion that eating certain foods impacts sensitivity to drugs acting on monoamine systems.

  2. Tramadol Pretreatment Enhances Ketamine-Induced Antidepressant Effects and Increases Mammalian Target of Rapamycin in Rat Hippocampus and Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Chun Yang

    2012-01-01

    Full Text Available Several lines of evidence have demonstrated that acute administration of ketamine elicits fast-acting antidepressant effects. Moreover, tramadol also has potential antidepressant effects. The aim of this study was to investigate the effects of pretreatment with tramadol on ketamine-induced antidepressant activity and was to determine the expression of mammalian target of rapamycin (mTOR in rat hippocampus and prefrontal cortex. Rats were intraperitoneally administrated with ketamine at the dose of 10 mg/kg or saline 1 h before the second episode of the forced swimming test (FST. Tramadol or saline was intraperitoneally pretreated 30 min before the former administration of ketamine or saline. The locomotor activity and the immobility time of FST were both measured. After that, rats were sacrificed to determine the expression of mTOR in hippocampus and prefrontal cortex. Tramadol at the dose of 5 mg/kg administrated alone did not elicit the antidepressant effects. More importantly, pretreatment with tramadol enhanced the ketamine-induced antidepressant effects and upregulated the expression of mTOR in rat hippocampus and prefrontal cortex. Pretreatment with tramadol enhances the ketamine-induced antidepressant effects, which is associated with the increased expression of mTOR in rat hippocampus and prefrontal cortex.

  3. Increased preference for ethanol in the infant rat after prenatal ethanol exposure, expressed on intake and taste reactivity tests.

    Science.gov (United States)

    Arias, Carlos; Chotro, M Gabriela

    2005-03-01

    Previous studies have shown that prenatal exposure during gestational days 17 to 20 to low or moderate doses of ethanol (1 or 2 g/kg) increases alcohol intake in infant rats. Taking into account that higher consumption does not necessarily suggest a preference for alcohol, in the present study, the hedonic nature of the prenatal experience was analyzed further with the use of a taste reactivity test. General activity, wall climbing, passive drips, paw licking, and mouthing in response to intraoral infusions of alcohol, water, and a sucrose-quinine solution (which resembles alcohol taste in rats) were tested in 161 preweanling 14-day-old rat pups that were prenatally exposed to 0, 1, or 2 g/kg of alcohol during gestational days 17 to 20. Consumption of those substances was measured during the taste reactivity test and on postnatal day 15. Pups that were prenatally exposed to both doses of ethanol displayed lower levels of general activity and wall climbing than controls in response to ethanol. Infant rats that were treated prenatally with both doses of ethanol showed higher intake of the drug and also more mouthing and paw licking in response to ethanol taste. Only pups that were exposed to the higher ethanol dose in utero generalized those responses to the sucrose-quinine compound. These results seem to indicate that for the infant rat, the palatability of ethanol is enhanced after exposure to the drug during the last days of gestation.

  4. Increased androgen levels in rats impair glucose-stimulated insulin secretion through disruption of pancreatic beta cell mitochondrial function.

    Science.gov (United States)

    Wang, Hongdong; Wang, Xiaping; Zhu, Yunxia; Chen, Fang; Sun, Yujie; Han, Xiao

    2015-11-01

    Although insulin resistance is recognized to contribute to the reproductive and metabolic phenotypes of polycystic ovary syndrome (PCOS), pancreatic beta cell dysfunction plays an essential role in the progression from PCOS to the development of type 2 diabetes. However, the role of insulin secretory abnormalities in PCOS has received little attention. In addition, the precise changes in beta cells and the underlying mechanisms remain unclear. In this study, we therefore attempted to elucidate potential mechanisms involved in beta cell alterations in a rat model of PCOS. Glucose-induced insulin secretion was measured in islets isolated from DHT-treated and control rats. Oxygen consumption rate (OCR), ATP production, and mitochondrial copy number were assayed to evaluate mitochondrial function. Glucose-stimulated insulin secretion is significantly decreased in islets from DHT-treated rats. On the other hand, significant reductions are observed in the expression levels of several key genes involved in mitochondrial biogenesis and in mitochondrial OCR and ATP production in DHT-treated rat islets. Meanwhile, we found that androgens can directly impair beta cell function by inducing mitochondrial dysfunction in vitro in an androgen receptor dependent manner. For the first time, our study demonstrates that increased androgens in female rats can impair glucose-stimulated insulin secretion partly through disruption of pancreatic beta cell mitochondrial function. This work has significance for hyperandrogenic women with PCOS: excess activation of the androgen receptor by androgens may provoke beta cell dysfunction via mitochondrial dysfunction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A Chronic Autoimmune Dry Eye Rat Model with Increase in Effector Memory T Cells in Eyeball Tissue.

    Science.gov (United States)

    Hou, Aihua; Bose, Tanima; Chandy, K George; Tong, Louis

    2017-06-07

    Dry eye disease is a very common condition that causes morbidity and healthcare burden and decreases the quality of life. There is a need for a suitable dry eye animal model to test novel therapeutics to treat autoimmune dry eye conditions. This protocol describes a chronic autoimmune dry eye rat model. Lewis rats were immunized with an emulsion containing lacrimal gland extract, ovalbumin, and complete Freund's adjuvant. A second immunization with the same antigens in incomplete Freund's adjuvant was administered two weeks later. These immunizations were administered subcutaneously at the base of the tail. To boost the immune response at the ocular surface and lacrimal glands, lacrimal gland extract and ovalbumin were injected into the forniceal subconjunctiva and lacrimal glands 6 weeks after the first immunization. The rats developed dry eye features, including reduced tear production, decreased tear stability, and increased corneal damage. Immune profiling by flow cytometry showed a preponderance of CD3 + effector memory T cells in the eyeball.

  6. Prenatal Stress Produces Sex Specific Changes in Depression-like Behavior in Rats: Implications for Increased Vulnerability in Females

    DEFF Research Database (Denmark)

    Sickmann, Helle Mark; Arentzen, Tine S; Dyrby, Tim

    2015-01-01

    Stress during rat gestation can elicit depression-like physiological and behavioral responses in the offspring. However, human clinical depression is more prevalent among females than males. Accordingly, we examined how repeated variable prenatal stress (PS) alters rat anxiety- and depression...... and measured anxiety- (elevated plus maze, EPM) and depression-like (forced swim test, FST) behaviors in the offspring at a young adult age. As a stressful event later in life (in addition to PS) may be needed to actually trigger an episode of clinical depression, half of the animals were exposed to an acute...... affected in control animals after acute stressor exposure, however, this response was blunted in PS offspring. Moreover, FST immobility, as an indicator of depressive-like behavior, was increased in female but not male PS rats. Altogether, our results identify both sex- and circadian phase-specific effects...

  7. Caffeine increases the motivation to obtain non-drug reinforcers in rats

    Science.gov (United States)

    Sheppard, A. Brianna; Gross, Skyler C.; Pavelka, Sarah A.; Hall, Melanie J.; Palmatier, Matthew I.

    2012-01-01

    BACKGROUND Caffeine is widely considered to be a reinforcer in humans, but this effect is difficult to measure in non-human animals. We hypothesized that caffeine may have dual reinforcing effects comparable to nicotine - limited primary reinforcing effects, but potent reinforcement enhancing effects. The present studies tested this hypothesis by investigating the effect of caffeine on responding for non-drug rewards. METHODS In two experiments, rats were shaped to respond on a progressive ratio (PR) schedule for sucrose solution (20% w/v; Experiment 1) or a fixed ratio 2 (FR2) schedule for a moderately reinforcing visual stimulus (VS; Experiment 2). Pretreatment with various doses of caffeine (0–50 mg/kg, intraperitoneal injection) were administered prior to tests over successive week days (M-F). In Experiment 1, acute administration of low-moderate caffeine doses (6.25–25 mg/kg) increased responding for sucrose under the PR schedule. This effect of caffeine declined over the initial 15 test days. In Experiment 2, only acute pretreatment with 12.5 mg/kg caffeine increased responding for the visual stimulus and complete tolerance to this effect of caffeine was observed over the 15 days of testing. In follow up tests we found that abstinence periods of 4 and 8 days resulted in incomplete recovery of the enhancing effects of caffeine. CONCLUSION The findings suggest that caffeine enhances the reinforcing effects of non-drug stimuli, but that the pharmacological profile of these effects may differ from other psychomotor stimulants. PMID:22336397

  8. Permeability enhancers dramatically increase zanamivir absolute bioavailability in rats: implications for an orally bioavailable influenza treatment.

    Directory of Open Access Journals (Sweden)

    Eric H Holmes

    Full Text Available We have demonstrated that simple formulations composed of the parent drug in combination with generally regarded as safe (GRAS permeability enhancers are capable of dramatically increasing the absolute bioavailability of zanamivir. This has the advantage of not requiring modification of the drug structure to promote absorption, thus reducing the regulatory challenges involved in conversion of an inhaled to oral route of administration of an approved drug. Absolute bioavailability increases of up to 24-fold were observed when Capmul MCM L8 (composed of mono- and diglycerides of caprylic/capric acids in glycerol was mixed with 1.5 mg of zanamivir and administered intraduodenally to rats. Rapid uptake (t(max of 5 min and a C(max of over 7200 ng/mL was achieved. Variation of the drug load or amount of enhancer demonstrated a generally linear variation in absorption, indicating an ability to optimize a formulation for a desired outcome such as a targeted C(max for enzyme saturation. No absorption enhancement was observed when the enhancer was given 2 hr prior to drug administration, indicating, in combination with the observed tmax, that absorption enhancement is temporary. This property is significant and aligns well with therapeutic applications to limit undesirable drug-drug interactions, potentially due to the presence of other poorly absorbed polar drugs. These results suggest that optimal human oral dosage forms of zanamivir should be enteric-coated gelcaps or softgels for intraduodenal release. There continues to be a strong need and market for multiple neuraminidase inhibitors for influenza treatment. Creation of orally available formulations of inhibitor drugs that are currently administered intravenously or by inhalation would provide a significant improvement in treatment of influenza. The very simple GRAS formulation components and anticipated dosage forms would require low manufacturing costs and yield enhanced convenience. These results

  9. Impaired barrier function by dietary fructo-oligosaccharides (FOS in rats is accompanied by increased colonic mitochondrial gene expression

    Directory of Open Access Journals (Sweden)

    Kramer Evelien

    2008-03-01

    Full Text Available Abstract Background Dietary non-digestible carbohydrates stimulate the gut microflora and are therefore presumed to improve host resistance to intestinal infections. However, several strictly controlled rat infection studies showed that non-digestible fructo-oligosaccharides (FOS increase, rather than decrease, translocation of Salmonella towards extra-intestinal sites. In addition, it was shown that FOS increases intestinal permeability already before infection. The mechanism responsible for this adverse effect of FOS is unclear. Possible explanations are altered mucosal integrity due to changes in tight junctions or changes in expression of defense molecules such as antimicrobials and mucins. To examine the mechanisms underlying weakening of the intestinal barrier by FOS, a controlled dietary intervention study was performed. Two groups of 12 rats were adapted to a diet with or without FOS. mRNA was collected from colonic mucosa and changes in gene expression were assessed for each individual rat using Agilent rat whole genome microarrays. Results Among the 997 FOS induced genes we observed less mucosal integrity related genes than expected with the clear permeability changes. FOS did not induce changes in tight junction genes and only 8 genes related to mucosal defense were induced by FOS. These small effects are unlikely the cause for the clear increase in intestinal permeability that is observed. FOS significantly increased expression of 177 mitochondria-related genes. More specifically, induced expression of genes involved in all five OXPHOS complexes and the TCA cycle was observed. These results indicate that dietary FOS influences intestinal mucosal energy metabolism. Furthermore, increased expression of 113 genes related to protein turnover, including proteasome genes, ribosomal genes and protein maturation related genes, was seen. FOS upregulated expression of the peptide hormone proglucagon gene, in agreement with previous studies, as

  10. Global demethylation of rat chondrosarcoma cells after treatment with 5-aza-2'-deoxycytidine results in increased tumorigenicity.

    Directory of Open Access Journals (Sweden)

    Christopher A Hamm

    Full Text Available Abnormal patterns of DNA methylation are observed in several types of human cancer. While localized DNA methylation of CpG islands has been associated with gene silencing, the effect that genome-wide loss of methylation has on tumorigenesis is not completely known. To examine its effect on tumorigenesis, we induced DNA demethylation in a rat model of human chondrosarcoma using 5-aza-2-deoxycytidine. Rat specific pyrosequencing assays were utilized to assess the methylation levels in both LINEs and satellite DNA sequences following 5-aza-2-deoxycytidine treatment. Loss of DNA methylation was accompanied by an increase in invasiveness of the rat chondrosarcoma cells, in vitro, as well as by an increase in tumor growth in vivo. Subsequent microarray analysis provided insight into the gene expression changes that result from 5-aza-2-deoxycytidine induced DNA demethylation. In particular, two genes that may function in tumorigenesis, sox-2 and midkine, were expressed at low levels in control cells but upon 5-aza-2-deoxycytidine treatment these genes became overexpressed. Promoter region DNA analysis revealed that these genes were methylated in control cells but became demethylated following 5-aza-2-deoxycytidine treatment. Following withdrawal of 5-aza-2-deoxycytidine, the rat chondrosarcoma cells reestablished global DNA methylation levels that were comparable to that of control cells. Concurrently, invasiveness of the rat chondrosarcoma cells, in vitro, decreased to a level indistinguishable to that of control cells. Taken together these experiments demonstrate that global DNA hypomethylation induced by 5-aza-2-deoxycytidine may promote specific aspects of tumorigenesis in rat chondrosarcoma cells.

  11. Cerebellar Ataxia from Multiple Potential Causes: Hypothyroidism, Hashimoto's Thyroiditis, Thalamic Stimulation, and Essential Tremor

    OpenAIRE

    Shneyder, Natalya; Lyons, Mark K.; Driver-dunckley, Erika; Evidente, Virgilio Gerald H.

    2012-01-01

    Background: Both hypothyroidism and Hashimoto's thyroiditis (HT) can rarely be associated with cerebellar ataxia. Severe essential tremor (ET) as well as bilateral thalamic deep brain stimulation (DBS) may lead to subtle cerebellar signs. Case Report: We report a 74-year-old male with hypothyroidism and a 20-year history of ET who developed cerebellar ataxia after bilateral thalamic DBS. Extensive workup revealed elevated thyroid stimulating hormone and thyroperoxidase antibody titers c...

  12. Grey matter volume patterns in thalamic nuclei are associated with familial risk for schizophrenia.

    Science.gov (United States)

    Pergola, Giulio; Trizio, Silvestro; Di Carlo, Pasquale; Taurisano, Paolo; Mancini, Marina; Amoroso, Nicola; Nettis, Maria Antonietta; Andriola, Ileana; Caforio, Grazia; Popolizio, Teresa; Rampino, Antonio; Di Giorgio, Annabella; Bertolino, Alessandro; Blasi, Giuseppe

    2017-02-01

    Previous evidence suggests reduced thalamic grey matter volume (GMV) in patients with schizophrenia (SCZ). However, it is not considered an intermediate phenotype for schizophrenia, possibly because previous studies did not assess the contribution of individual thalamic nuclei and employed univariate statistics. Here, we hypothesized that multivariate statistics would reveal an association of GMV in different thalamic nuclei with familial risk for schizophrenia. We also hypothesized that accounting for the heterogeneity of thalamic GMV in healthy controls would improve the detection of subjects at familial risk for the disorder. We acquired MRI scans for 96 clinically stable SCZ, 55 non-affected siblings of patients with schizophrenia (SIB), and 249 HC. The thalamus was parceled into seven regions of interest (ROIs). After a canonical univariate analysis, we used GMV estimates of thalamic ROIs, together with total thalamic GMV and premorbid intelligence, as features in Random Forests to classify HC, SIB, and SCZ. Then, we computed a Misclassification Index for each individual and tested the improvement in SIB detection after excluding a subsample of HC misclassified as patients. Random Forests discriminated SCZ from HC (accuracy=81%) and SIB from HC (accuracy=75%). Left anteromedial thalamic volumes were significantly associated with both multivariate classifications (p<0.05). Excluding HC misclassified as SCZ improved greatly HC vs. SIB classification (Cohen's d=1.39). These findings suggest that multivariate statistics identify a familial background associated with thalamic GMV reduction in SCZ. They also suggest the relevance of inter-individual variability of GMV patterns for the discrimination of individuals at familial risk for the disorder. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Thalamic physiology of intentional essential tremor is more like cerebellar tremor than postural essential tremor

    OpenAIRE

    Zakaria, R; Lenz, FA; Hua, S; Avin, BH; Liu, CC; Mari, Z

    2013-01-01

    The neuronal physiological correlates of clinical heterogeneity in human essential tremor are unknown. We now test the hypothesis that thalamic neuronal and EMG activities during intention essential tremor are similar to those of the intention tremor which is characteristic of cerebellar lesions. Thalamic neuronal firing was studied in a cerebellar relay nucleus (ventral intermediate, Vim) and in a pallidal relay nucleus (ventral oral posterior, Vop) during stereotactic surgery for the treatm...

  14. Acupuncture attenuates cognitive deficits and increases pyramidal neuron number in hippocampal CA1 area of vascular dementia rats.

    Science.gov (United States)

    Li, Fang; Yan, Chao-Qun; Lin, Li-Ting; Li, Hui; Zeng, Xiang-Hong; Liu, Yi; Du, Si-Qi; Zhu, Wen; Liu, Cun-Zhi

    2015-04-28

    Decreased cognition is recognized as one of the most severe and consistent behavioral impairments in dementia. Experimental studies have reported that acupuncture may improve cognitive deficits, relieve vascular dementia (VD) symptoms, and increase cerebral perfusion and electrical activity. Multi-infarction dementia was modeled in rats with 3% microemboli saline suspension. Two weeks after acupuncture at Zusanli (ST36), all rats were subjected to a hidden platform trial to test their 3-day spatial memory using the Morris water maze test. To estimate the numbers of pyramidal neuron, astrocytes, and synaptic boutons in hippocampal CA1 area, we adopted an unbiased stereology method to accurately sample and measure the size of cells. We found that acupuncture at ST36 significantly decreased the escape latency of VD rats. In addition, acupuncture significantly increased the pyramidal neuron number in hippocampal CA1 area (P area in any of the groups (P > 0.05). These findings suggest that acupuncture may improve cognitive deficits and increase pyramidal neuron number of hippocampal CA1 area in VD rats.

  15. Acute intermittent hypoxia induced phrenic long-term facilitation despite increased SOD1 expression in a rat model of ALS.

    Science.gov (United States)

    Nichols, Nicole L; Satriotomo, Irawan; Harrigan, Daniel J; Mitchell, Gordon S

    2015-11-01

    Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease characterized by motor neuron death. Since most ALS patients succumb to ventilatory failure from loss of respiratory motor neurons, any effective ALS treatment must preserve and/or restore breathing capacity. In rats over-expressing mutated super-oxide dismutase-1 (SOD1(G93A)), the capacity to increase phrenic motor output is decreased at disease end-stage, suggesting imminent ventilatory failure. Acute intermittent hypoxia (AIH) induces phrenic long-term facilitation (pLTF), a form of spinal respiratory motor plasticity with potential to restore phrenic motor output in clinical disorders that compromise breathing. Since pLTF requires NADPH oxidase activity and reactive oxygen species (ROS) formation, it is blocked by NADPH oxidase inhibition and SOD mimetics in normal rats. Thus, we hypothesized that SOD1(G93A) (mutant; MT) rats do not express AIH-induced pLTF due to over-expression of active mutant superoxide dismutase-1. AIH-induced pLTF and hypoglossal (XII) LTF were assessed in young, pre-symptomatic and end-stage anesthetized MT rats and age-matched wild-type littermates. Contrary to predictions, pLTF and XII LTF were observed in MT rats at all ages; at end-stage, pLTF was actually enhanced. SOD1 levels were elevated in young and pre-symptomatic MT rats, yet superoxide accumulation in putative phrenic motor neurons (assessed with dihydroethidium) was unchanged; however, superoxide accumulation significantly decreased at end-stage. Thus, compensatory mechanisms appear to maintain ROS homoeostasis until late in disease progression, preserving AIH-induced respiratory plasticity. Following intrathecal injections of an NADPH oxidase inhibitor (apocynin; 600 μM; 12 μL), pLTF was abolished in pre-symptomatic, but not end-stage MT rats, demonstrating that pLTF is NADPH oxidase dependent in pre-symptomatic, but NADPH oxidase independent in end-stage MT rats. Mechanisms

  16. Increase of ATP-sensitive potassium (KATP channels in the heart of type-1 diabetic rats

    Directory of Open Access Journals (Sweden)

    Chen Zhih-Cherng

    2012-01-01

    Full Text Available Abstract Background An impairment of cardiovascular function in streptozotocin (STZ-diabetic rats has been mentioned within 5 days-to-3 months of induction. ATP-sensitive potassium (KATP channels are expressed on cardiac sarcolemmal membranes. It is highly responsive to metabolic fluctuations and can have effects on cardiac contractility. The present study attempted to clarify the changes of cardiac KATP channels in diabetic disorders. Methods Streptozotocin-induced diabetic rats and neonatal rat cardiomyocytes treated with a high concentration of glucose (a D-glucose concentration of 30 mM was used and cells were cultured for 24 hr were used to examine the effect of hyperglycemia on cardiac function and the expression of KATP channels. KATP channels expression was found to be linked to cardiac tonic dysfunction, and we evaluated the expression levels of KATP channels by Western blot and Northern blot analysis. Results The result shows diazoxide produced a marked reduction of heart rate in control group. Furthermore, the methods of Northern blotting and Western blotting were employed to identify the gene expression of KATP channel. Two subunits of cardiac KATP channel (SUR2A and kir 6.2 were purchased as indicators and showed significantly decreased in both diabetic rats and high glucose treated rat cardiac myocytes. Correction of hyperglycemia by insulin or phlorizin restored the gene expression of cardiac KATP in these diabetic rats. Conclusions Both mRNA and protein expression of cardiac KATP channels are decreased in diabetic rats induced by STZ for 8 weeks. This phenomenon leads to result in desensitization of some KATP channel drugs.

  17. Blood in the gastric lumen increases splanchnic blood flow and portal pressure in portal-hypertensive rats.

    Science.gov (United States)

    Chen, L; Groszmann, R J

    1996-10-01

    In portal-hypertensive humans, portal blood flow and pressure increase after a meal. These hemodynamic changes may increase variceal rupture risk. The aim of this study was to determine whether blood in the stomach lumen increases splanchnic flow and portal pressure (PP) in portal-hypertensive rats. superior mesenteric artery flow and PP were measured in conscious, unrestrained, fasted partial portal vein-ligated rats with chronically implanted Doppler flow probes or portal vein catheters before and after gavage with heparinized, warmed blood from donor rats, air, standard meal, or empty tube. Percentage of changes in flow and pressure from baseline were significantly greater after gavage with blood (an increase of 22.6% +/- 3.5% and an increase of 16.4% +/- 3.1%, respectively) than empty tube (an increase of 3.4% +/- 0.6% and a decrease of 5.4% +/- 3.5%, respectively) (P empty tube (P calories probably contributes to these hemodynamic changes. In patients with variceal hemorrhage, blood in the stomach may increase the risk of persistent variceal bleeding or rebleeding.

  18. Photic induction of Fos in the suprachiasmatic nucleus of African mole-rats: responses to increasing irradiance.

    Science.gov (United States)

    Oosthuizen, Maria K; Bennett, Nigel C; Cooper, Howard M

    2010-09-01

    African mole-rats (family Bathyergidae) are strictly subterranean rodent species that are rarely exposed to environmental light. Morphological and physiological adaptations to the underground environment include a severely reduced eye size and regressed visual system. Responses of the circadian system to light, however, appear to be intact, since mole-rats are able to entrain their circadian activity rhythms to the light-dark cycle and light induces Fos expression in the suprachiasmatic nucleus (SCN). Social organization varies from solitary species to highly elaborated eusocial structures, characterized by a distinct division of labor and in which one reproductive female regulates the behavior and reproductive physiology of other individuals in the colony. The authors studied light-induced Fos expression in the SCN to increasing light intensities in four mole-rat species, ranging from strictly solitary to highly social. In the solitary Cape mole-rat, light induces significant Fos expression in the SCN, and the number of Fos-immunopositive cells increases with increasing light intensity. In contrast, Fos induction in the SCN of social species was slightly greater than, but not statistically different from, the dark-control animals as is typical of most rodents. One species showed a trend for an increase in expression with increased light, whereas a second species showed no trend in expression. In the naked mole-rat, Fos expression appeared higher in the dark-controls than in the animals exposed to light, although the differences in Fos expression were not significant. These results suggest a gradient in the sensitivity of the circadian system to light in mole-rats, with a higher percentage of individuals that are unresponsive to light in correlation with the degree of sociality. In highly social species, such as the naked mole-rat that live in a relatively stable subterranean milieu in terms of food availability, temperature, constant darkness, and devoid of 24-h

  19. Fasting and exercise increase plasma cannabinoid levels in THC pre-treated rats: an examination of behavioural consequences.

    Science.gov (United States)

    Wong, Alexander; Keats, Kirily; Rooney, Kieron; Hicks, Callum; Allsop, David J; Arnold, Jonathon C; McGregor, Iain S

    2014-10-01

    Δ(9)-Tetrahydrocannabinol (THC), the main psychoactive constituent of cannabis, accumulates in fat tissue where it can remain for prolonged periods. Under conditions of increased fat utilisation, blood cannabinoid concentrations can increase. However, it is unclear whether this has behavioural consequences. Here, we examined whether rats pre-treated with multiple or single doses of THC followed by a washout would show elevated plasma cannabinoids and altered behaviour following fasting or exercise manipulations designed to increase fat utilisation. Behavioural impairment was measured as an inhibition of spontaneous locomotor activity or a failure to successfully complete a treadmill exercise session. Fat utilisation was indexed by plasma free fatty acid (FFA) levels with plasma concentrations of THC and its terminal metabolite (-)-11-nor-9-carboxy-∆(9)-tetrahydrocannabinol (THC-COOH) also measured. Rats given daily THC (10 mg/kg) for 5 days followed by a 4-day washout showed elevated plasma THC-COOH when fasted for 24 h relative to non-fasted controls. Fasted rats showed lower locomotor activity than controls suggesting a behavioural effect of fat-released THC. However, rats fasted for 20 h after a single 5-mg/kg THC injection did not show locomotor suppression, despite modestly elevated plasma THC-COOH. Rats pre-treated with THC (5 mg/kg) and exercised 20 h later also showed elevated plasma THC-COOH but did not differ from controls in their likelihood of completing 30 min of treadmill exercise. These results confirm that fasting and exercise can increase plasma cannabinoid levels. Behavioural consequences are more clearly observed with pre-treatment regimes involving repeated rather than single THC dosing.

  20. Dietary selenomethionine increases exon-specific DNA methylation of the p53 gene in rat liver and colon mucosa.

    Science.gov (United States)

    Zeng, Huawei; Yan, Lin; Cheng, Wen-Hsing; Uthus, Eric O

    2011-08-01

    The regulation of site-specific DNA methylation of tumor suppressor genes has been considered as a leading mechanism by which certain nutrients exert their anticancer property. This study was to investigate whether selenium (Se) affects the methylation of globe genomic DNA and the exon-specific p53 gene. Three groups of rats (n = 6-7/group) were fed the AIN-93G basal diet supplemented with 0 [Se deficient (D)], 0.15 [Se adequate (A)], or 4 mg [Se supranutritional (S)] (Se as l-selenomethionine)/kg diet for 104 d, respectively. Rats fed the A or S diet had greater plasma and liver glutathione peroxidase activity, liver thioredoxin reductase activity, and plasma homocysteine concentration than those fed the D diet. However, compared with the A diet, rats fed the S diet did not further increase these Se-dependent enzyme activities or homocysteine concentration. In contrast, Se concentrations in kidney, liver, gastrocnemius muscle, and plasma were increased in a Se-dose-dependent manner. Interestingly, rats fed the S diet had significantly less global liver genomic DNA methylation than those fed the D diet. However, the S diet significantly increased the methylation of the p53 gene (exons 5-8) but not the β-actin gene (exons 2-3) DNA in liver and colon mucosa compared with those fed the D diet. Taken together, long-term Se consumption not only affects selenoprotein enzyme activities, homocysteine, tissue Se concentrations, and global genomic DNA methylation but also increases exon-specific DNA methylation of the p53 gene in a Se-dose-dependent manner in rat liver and colon mucosa.

  1. Increased periodontal bone loss in temporarily B lymphocyte-deficient rats

    DEFF Research Database (Denmark)

    Klausen, B; Hougen, H P; Fiehn, N E

    1989-01-01

    In order to study the role of T lymphocytes and B lymphocytes in the development of marginal periodontitis, experiments were performed on specific-pathogen-free (SPF) rats with various immunologic profiles. The study comprised nude (congenitally T lymphocyte-deficient), thymus-grafted nude (T-lym......-lymphocyte deficiency did not interfere with the development of periodontal disease in this model, whereas a temporary and moderate reduction in B-lymphocyte numbers seemed to predispose for aggravation of periodontal bone loss.......In order to study the role of T lymphocytes and B lymphocytes in the development of marginal periodontitis, experiments were performed on specific-pathogen-free (SPF) rats with various immunologic profiles. The study comprised nude (congenitally T lymphocyte-deficient), thymus-grafted nude (T...... had significantly less periodontal bone support than controls. Anti-mu treated inoculated rats had significantly less periodontal bone support than nude and normal rats, whereas no difference was found between normal, nude, and thymus-grafted rats. It is concluded that permanent T...

  2. Cobalamin Deficiency Results in Increased Production of Formate Secondary to Decreased Mitochondrial Oxidation of One-Carbon Units in Rats.

    Science.gov (United States)

    MacMillan, Luke; Tingley, Garrett; Young, Sara K; Clow, Kathy A; Randell, Edward W; Brosnan, Margaret E; Brosnan, John T

    2018-03-01

    Formate is produced in mitochondria via the catabolism of serine, glycine, dimethylglycine, and sarcosine. Formate produced by mitochondria may be incorporated into the cytosolic folate pool where it can be used for important biosynthetic reactions. Previous studies from our lab have shown that cobalamin deficiency results in increased plasma formate concentrations. Our goal was to determine the basis for elevated formate in vitamin B-12 deficiency. Male Sprague Dawley rats were randomly assigned to consume either a cobalamin-replete (50 μg cobalamin/kg diet) or -deficient (no added cobalamin) diet for 6 wk. Formate production was measured in vivo and in isolated liver mitochondria from a variety of one-carbon precursors. We also measured the oxidation of [3-14C]-l-serine to 14CO2 in isolated rat liver mitochondria and the expression of hepatic genes involved in one-carbon unit and formate metabolism. Cobalamin-deficient rats produce formate at a rate 55% higher than that of replete rats. Formate production from serine was increased by 60% and from dimethylglycine and sarcosine by ∼200% in liver mitochondria isolated from cobalamin-deficient rats compared with cobalamin-replete rats. There was a 26% decrease in the 14CO2 produced by mitochondria from cobalamin-deficient rats. Gene expression analysis showed that 10-formyltetrahydrofolate dehydrogenase-cytosolic (Aldh1l1) and mitochondrial (Aldh1l2) expression were decreased by 40% and 60%, respectively, compared to control, while 10-formyltetrahydrofolate synthetase, mitochondrial, monofunctional (Mthfd1l) expression was unchanged. We propose that a bifurcation in mitochondrial one-carbon metabolism is a key control mechanism in determining the fate of one-carbon units, to formate or CO2. During cobalamin deficiency in rats the disposition of 10-formyl-tetrahydrofolate carbon is shifted in favor of formate production. This may represent a mechanism to generate more one-carbon units for the replenishment of the S

  3. Regional gray matter volume increases following 7days of voluntary wheel running exercise: a longitudinal VBM study in rats.

    Science.gov (United States)

    Sumiyoshi, Akira; Taki, Yasuyuki; Nonaka, Hiroi; Takeuchi, Hikaru; Kawashima, Ryuta

    2014-09-01

    The effects of physical exercise on brain morphology in rodents have been well documented in histological studies. However, to further understand when and where morphological changes occur in the whole brain, a noninvasive neuroimaging method allowing an unbiased, comprehensive, and longitudinal investigation of brain morphology should be used. In this study, we investigated the effects of 7days of voluntary wheel running exercise on regional gray matter volume (rGMV) using longitudinal voxel-based morphometry (VBM) in rats. Eighteen pairs of adult male naïve Wistar rats were randomized to the exercise or control condition (one rat for each condition from each pair). Each rat was scanned in a 7.0-T MRI scanner at three time points: before exercise, after 7days of exercise, and after 7days of follow-up. The T2-weighted MRI images were segmented using the rat brain tissue priors that were recently published by our laboratory, and the intra- and inter-subject template creation steps were followed. Longitudinal VBM analysis revealed significant increases in rGMV in the motor, somatosensory, association, and visual cortices in the exercise group. Among these brain regions, rGMV changes in the motor cortex were positively correlated with the total distance that was run during the 7days of exercise. In addition, the effects of 7days of exercise on rGMV persisted after 7days of follow-up. These results support the utility of a longitudinal VBM study in rats and provide new insights into experience-dependent structural brain plasticity in naïve adult animals. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Sweet taste of saccharin induces weight gain without increasing caloric intake, not related to insulin-resistance in Wistar rats.

    Science.gov (United States)

    Foletto, Kelly Carraro; Melo Batista, Bruna Aparecida; Neves, Alice Magagnin; de Matos Feijó, Fernanda; Ballard, Cíntia Reis; Marques Ribeiro, Maria Flávia; Bertoluci, Marcello Casaccia

    2016-01-01

    In a previous study, we showed that saccharin can induce weight gain when compared with sucrose in Wistar rats despite similar total caloric intake. We now question whether it could be due to the sweet taste of saccharin per se. We also aimed to address if this weight gain is associated with insulin-resistance and to increases in gut peptides such as leptin and PYY in the fasting state. In a 14 week experiment, 16 male Wistar rats received either saccharin-sweetened yogurt or non-sweetened yogurt daily in addition to chow and water ad lib. We measured daily food intake and weight gain weekly. At the end of the experiment, we evaluated fasting leptin, glucose, insulin, PYY and determined insulin resistance through HOMA-IR. Cumulative weight gain and food intake were evaluated through linear mixed models. Results showed that saccharin induced greater weight gain when compared with non-sweetened control (p = 0.027) despite a similar total caloric intake. There were no differences in HOMA-IR, fasting leptin or PYY levels between groups. We conclude that saccharin sweet taste can induce mild weight gain in Wistar rats without increasing total caloric intake. This weight gain was not related with insulin-resistance nor changes in fasting leptin or PYY in Wistar rats. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Genistein induces estrogen-like effects in ovariectomized rats but fails to increase cardiac GLUT4 and oxidative stress.

    Science.gov (United States)

    Al-Nakkash, Layla; Markus, Brandon; Batia, Lyn; Prozialeck, Walter C; Broderick, Tom L

    2010-12-01

    This study aimed to determine whether a 2-week genistein treatment induced estrogen-like effects in ovariectomized (OVX) Sprague-Dawley rats, after 2 weeks of subcutaneous genistein injections (250 mg/kg of body weight/day). Uterine weight, uterine-to-body weight ratio, femur weight, and femur-to-body weight ratio were all significantly increased with genistein in OVX rats. Body weight was significantly decreased with genistein in OVX rats. Genistein had no effect on the weights of heart, heart-to-body ratio, and fat pad but significantly decreased heart rate and pulse pressure. Genistein had no effect on cardiac GLUT4 protein, oxidative stress, plasma glucose, nonesterified fatty acids, or low-density lipoprotein levels; however, plasma insulin levels were significantly increased. Our results show that a 2-week genistein treatment produced favorable estrogen-like effects on some physical and physiological characteristics in OVX rats. However, based on our experimental conditions, the effects of genistein were not associated with changes in cardiac GLUT4 or oxidative stress.

  6. Red palm oil supplementation does not increase blood glucose or serum lipids levels in Wistar rats with different thyroid status.

    Science.gov (United States)

    Rauchová, H; Vokurková, M; Pavelka, S; Vaněčková, I; Tribulová, N; Soukup, T

    2018-01-05

    Red palm oil (RPO) is a rich natural source of antioxidant vitamins, namely carotenes, tocopherols and tocotrienols. However, it contains approximately 50 % saturated fatty acids the regular consumption of which could negatively modify lipid profile. The aim of our study was to test whether 7 weeks of RPO supplementation (1 g/kg body weight/day) would affect blood glucose and lipid metabolism in adult male Wistar rats with altered thyroid status. We induced hypothyroidism and hyperthyroidism in rats by oral administration of either methimazole or mixture of thyroid hormones. Different thyroid status (EU - euthyroid, HY - hypothyroid and HT - hyperthyroid) was characterized by different serum thyroid hormones levels (total and free thyroxine and triiodothyronine), changes in the activity of a marker enzyme of thyroid status - liver mitochondrial glycerol-3-phosphate dehydrogenase, and altered absolute and relative heart weights. Fasting blood glucose levels were higher in HT rats in comparison with EU and HY rats, but the changes caused by RPO supplementation were not significant. The achievement of the HY status significantly increased serum levels of total cholesterol, as well as with high-density lipoprotein-cholesterol and low-density lipoprotein-cholesterol: 2.43+/-0.15, 1.48+/-0.09, 0.89+/-0.08 mmol/l, compared to EU: 1.14+/-0.06, 0.77+/-0.06, 0.34+/-0.05 mmol/l and HT: 1.01+/-0.06, 0.69+/-0.04, 0.20+/-0.03 mmol/l, respectively. RPO supplementation did not increase significantly levels of blood lipids but tended to increase glutathione levels in the liver. In conclusion, RPO supplementation did not induce the presumed deterioration of glucose and lipid metabolism in rats with three well-characterized alterations in thyroid status.

  7. Increased Expression of Intercellular Adhesion Molecule-1, Vascular Cellular Adhesion Molecule-1 and Leukocyte Common Antigen in Diabetic Rat Retina

    Institute of Scientific and Technical Information of China (English)

    Ningyan Bai; Shibo Tang; Jing Ma; Yan Luo; Shaofeng Lin

    2003-01-01

    Purpose: To understand the expression and distribution of intercellular adhesion molecule- 1(ICAM- 1),vascular cellular adhesion molecule- 1 (VCAM- 1)and CD45 (Leukocyte Common Antigen) in the control nondiabetic and various courses of diabetic rats retina. To explore the role of adhesion molecules (Ams) and the adhesion of leukocytes to vascular endothelial cells via Ams in diabetic retinopathy(DR).Methods: Sixty healthy adult male Wistar rats were randomly divided into diabetic groups(induced by Streptozotocin, STZ) and normal control groups. Rats in these two groups were further randomly divided into 3, 7, 14, 30, 90 and 180 days-group,including 5 rats respectively. The immunohistochemical studies of ICAM-1, VCAM-1 and CD45 were carried out in the retinal digest preparations or retinal paraffin sections, and the results were analyzed qualitatively, semi-quantitatively.Results: No positive reaction of VCAM-1 was found, and weak reactions of ICAM-1,CD45 were found in nondiabetic rats retina. The difference of 6 control groups had no statistical significance(P > 0.05). The increased ICAM-1 and CD45 staining pattern were detectable 3 days after diabetes induction, and a few VCAM-1 positive cells were observed in the retinal blood capillaries. The difference of diabetes and control is significant( P < 0.05).Following the course, the expressions of ICAM-1, VCAM-1 and CD45 were increasingly enhanced, reaching a peak at the 14th day.Conclusion: Increased expression of ICAM-1, VCAM-1 and leukocytes adhering and stacking in retinal capillaries are the very early events in DR. Coherence of expression and distribution of the three further accounts for it is the key point for the onset of DR that Ams mediates leukocytes adhesion and endothelial cell injury.

  8. Coadministration of Atorvastatin and Amiodarone Increases the Risk of Pulmonary Fibrosis in Rats

    OpenAIRE

    Nasri, Hamid-Reza; Joukar, Siyavash; Kheradmand, Hamid; Poursalehi, Hamid-Reza; Dabiri, Shahriar

    2015-01-01

    Objective The purpose of this study was to evaluate the effect of atorvastatin administration on amiodarone-induced pulmonary fibrosis in rats. Materials and Methods Thirty-six male Wistar rats were randomly divided into 4 groups. The control group (CTL) received distilled water (0.3 ml intratracheally on days 0 and 2 and 0.5 ml orally from day 0 for 3 weeks). The atorvastatin group (AT), in addition to intratracheal distilled water, received 1 mg/kg of atorvastatin orally from day 0 for 3 we...

  9. Endothelial dysfunction in high fructose containing diet fed rats: Increased nitric oxide and decreased endothelin-1 levels in liver tissue

    Directory of Open Access Journals (Sweden)

    Zeki Arı

    2010-09-01

    Full Text Available Objectives: Dietary high fructose consumption which is closely associated with endothelial dysfunction via insulin re-sistance has recently increased in developed countries. Insulin resistance has a promoter effect on many metabolic disorders such as syndrome X, polycystic ovary syndrome, Type 2 diabetes mellitus etc. Our aim in this study is to understand the impact of increased fructose intake on metabolisms of glucose, insulin and endothelial dysfunction by measuring nitric oxide (NO and endothelin-1 (ET-1 levels in hepatic tissue which is crucial in fructose metabolism.Materials and Methods: We designed an animal study to understand increased fructose intake on hepatic endothe-lium. Twenty adult male albino rats were divided into two groups; the study group (group 1, n=10 received isocaloric fructose enriched diet (fructose-fed rats, containing 18.3% protein, 60.3% fructose and 5.2% fat while the control group received purified regular chow (group 2, n=10 for 2 weeks. After feeding period, blood and hepatic tissue samples were collected and glucose, insulin, NO and ET-1 levels were analysed.Results: We found increased fasting glucose and insulin levels and impaired glucose tolerance in fructose fed rats. Higher NO and lower ET–1 levels were also detected in hepatic tissue samples of the group 1.Conclusion: Increased fructose consumption has deleterious effects on glucose tolerance, insulin resistance and may cause to endothelial dysfunction.

  10. Increased intrinsic excitability of muscle vasoconstrictor preganglionic neurons may contribute to the elevated sympathetic activity in hypertensive rats.

    Science.gov (United States)

    Briant, Linford J B; Stalbovskiy, Alexey O; Nolan, Matthew F; Champneys, Alan R; Pickering, Anthony E

    2014-12-01

    Hypertension is associated with pathologically increased sympathetic drive to the vasculature. This has been attributed to increased excitatory drive to sympathetic preganglionic neurons (SPN) from brainstem cardiovascular control centers. However, there is also evidence supporting increased intrinsic excitability of SPN. To test this hypothesis, we made whole cell recordings of muscle vasoconstrictor-like (MVClike) SPN in the working-heart brainstem preparation of spontaneously hypertensive (SH) and normotensive Wistar-Kyoto (WKY) rats. The MVClike SPN have a higher spontaneous firing frequency in the SH rat (3.85 ± 0.4 vs. 2.44 ± 0.4 Hz in WKY; P = 0.011) with greater respiratory modulation of their activity. The action potentials of SH SPN had smaller, shorter afterhyperpolarizations (AHPs) and showed diminished transient rectification indicating suppression of an A-type potassium conductance (IA). We developed mathematical models of the SPN to establish if changes in their intrinsic properties in SH rats could account for their altered firing. Reduction of the maximal conductance density of IA by 15-30% changed the excitability and output of the model from the WKY to a SH profile, with increased firing frequency, amplified respiratory modulation, and smaller AHPs. This change in output is predominantly a consequence of altered synaptic integration. Consistent with these in silico predictions, we found that intrathecal 4-aminopyridine (4-AP) increased sympathetic nerve activity, elevated perfusion pressure, and augmented Traube-Hering waves. Our findings indicate that IA acts as a powerful filter on incoming synaptic drive to SPN and that its diminution in the SH rat is potentially sufficient to account for the increased sympathetic output underlying hypertension. Copyright © 2014 the American Physiological Society.

  11. Glutamine-enriched enteral diet increases splanchnic blood flow in the rat

    NARCIS (Netherlands)

    Houdijk, A. P.; van Leeuwen, P. A.; Boermeester, M. A.; van Lambalgen, T.; Teerlink, T.; FLINKERBUSCH, E. L.; Sauerwein, H. P.; Wesdorp, R. I.

    1994-01-01

    The hemodynamic consequences of glutamine (Gln)-enriched nutrition have not been investigated. This study investigates the effects of a Gln-enriched enteral diet on organ blood flows and systemic hemodynamics. Male Fischer 344 rats (n = 24) were randomized to a group that received a 12.5% (wt/wt)

  12. Does exercise deprivation increase the tendency towards morphine dependence in rats?

    Science.gov (United States)

    Nakhaee, Mohammad Reza; Sheibani, Vahid; Ghahraman Tabrizi, Kourosh; Marefati, Hamid; Bahreinifar, Sareh; Nakhaee, Nouzar

    2010-01-01

    Exercise deprivation has been concluded to have some negative effectson psychological well-being. This study was conducted to find outwhether exercise deprivation may lead to morphine dependence in rats. Forty male Wistar rats weighing 162 ± 9 g were housed in clear plasticcages in groups of two under standard laboratory conditions. The studyhad two phases. In phase I, the animals were randomly divided intoexercised (E) and unexercised (UE) groups (n = 20 each) and treadmillrunning was performed based on a standard protocol for three weeks. Atthe end of the training period, plasma β-endorphin levels weredetermined in four rats from each group. In phase II, the animals wereprovided with two bottles, one containing tap water and the other 25mg/l morphine sulfate in tap water for a total of 12 weeks. At the end ofthis phase naloxone was injected intraperitoneally to precipitatemorphine withdrawal. THERE WAS NO SIGNIFICANT DIFFERENCE BETWEEN UE AND E GROUPS INMORPHINE CONSUMPTION (MG/KG/WK) [ F(1,14) = 0.2, P = 0.690; time:F(11,154) =18.72, P exercise does not increasethe tendency of morphine dependence in rats.

  13. Increasing intake of soybean protein or casein, but not cod meal, reduces nephrocalcinosis in female rats.

    NARCIS (Netherlands)

    Zhang, X.; Beynen, A.C.

    1992-01-01

    Female weanling rats were fed diets with soybean protein, casein or cod meal at 171, 342 or 513 mmol nitrogen/100 g for 3 wk. The diets were isonitrogenous and balanced for fat, cholesterol, calcium, magnesium and phosphorus. Cod meal feeding at 171 and 342 mmol nitrogen/100 g diet produced lower

  14. Combined exposure to anti-androgens causes markedly increased frequencies of hypospadias in the rat

    DEFF Research Database (Denmark)

    Christiansen, Sofie; Scholze, M.; Petersen, Marta Axelstad

    2008-01-01

    of several anti-androgenic chemicals. In a mixture (MIX) study with three androgen receptor antagonists, vinclozolin, flutamide and procymidone, rats were gavaged during gestation and lactation with several doses of a MIX of the three chemicals or the chemicals alone. External malformations of the male...

  15. Alcohol in combination with malnutrition causes increased liver fibrosis in rats

    NARCIS (Netherlands)

    Bosma, A.; Seifert, W.F.; Thiel van - Ruiter, G.C.F. de; Leeuwen, R.E.W. van; Blauw, B.; Roholl, P.; Knook, D.L.; Brouwer, A.

    1994-01-01

    Rats were malnourished for 12 months with a highly inadequate fat-rich, calorie-sufficient but otherwise poly-deficient liquid diet composed of mashed potatoes with mayonnaise, comparable with the nutritional intake of many chronic alcoholics. When alcohol was incorporated into this diet,

  16. Selective central activation of somatostatin receptor 2 increases food intake, grooming behavior and rectal temperature in rats.

    Science.gov (United States)

    Stengel, A; Goebel, M; Wang, L; Rivier, J; Kobelt, P; Monnikes, H; Tache, Y

    2010-08-01

    The consequences of selective activation of brain somatostatin receptor-2 (sst2) were assessed using the sst2 agonist, des-AA(1,4-6,11-13)-[DPhe(2),Aph7(Cbm),DTrp(8)]-Cbm-SST-Thr-NH2. Food intake (FI) was monitored in ad libitum fed rats chronically implanted with an intracerebroventricular (i.c.v.) cannula. The sst(2) agonist injected i.c.v. at 0.1 and 1 microg/rat dose-dependently increased light phase FI from 2 to 6 hours post injection (2.3+/-0.5 and 7.5+/-1.2 respectively vs. vehicle: 0.2+/-0.2 g/300 g bw, P<0.001). Peptide action was reversed by i.c.v. injection of the sst2 antagonist, des-AA(1,4-6,11-13)-[pNO(2)-Phe(2),DCys(3),Tyr(7),DAph(Cbm)8]-SST-2Nal-NH(2) and not reproduced by intraperitoneal injection (30 microg/rat). The sst(2) antagonist alone i.c.v. significantly decreased the cumulative 14-hours dark phase FI by 29.5%. Other behaviors, namely grooming, drinking and locomotor activity were also increased by the sst(2) agonist (1 microg/rat, i.c.v.) as monitored during the 2(nd) hour post injection while gastric emptying of solid food was unaltered. Rectal temperature rose 1 hour after the sst(2) agonist (1 microg/rat, i.c.v.) with a maximal response maintained from 1 to 4 hours post injection. These data show that selective activation of the brain sst(2) receptor induces a feeding response in the light phase not associated with changes in gastric emptying. The food intake reduction following sst(2) receptor blockade suggests a role of this receptor in the orexigenic drive during the dark phase.

  17. High-fructose diet during periadolescent development increases depressive-like behavior and remodels the hypothalamic transcriptome in male rats

    Science.gov (United States)

    Harrell, Constance S.; Burgado, Jillybeth; Kelly, Sean D.; Johnson, Zachary P.; Neigh, Gretchen N.

    2015-01-01

    Fructose consumption, which promotes insulin resistance, hypertension, and dyslipidemia, has increased by over 25% since the 1970s. In addition to metabolic dysregulation, fructose ingestion stimulates the hypothalamic-pituitary-adrenal (HPA) axis leading to elevations in glucocorticoids. Adolescents are the greatest consumers of fructose, and adolescence is a critical period for maturation of the HPA axis. Repeated consumption of high levels of fructose during adolescence has the potential to promote long-term dysregulation of the stress response. Therefore, we determined the extent to which consumption of a diet high in fructose affected behavior, serum corticosterone, and hypothalamic gene expression using a whole-transcriptomics approach. In addition, we examined the potential of a high-fructose diet to interact with exposure to chronic adolescent stress. Male Wistar rats fed the periadolescent high-fructose diet showed increased anxiety-like behavior in the elevated plus maze and depressive-like behavior in the forced swim test in adulthood, irrespective of stress history. Periadolescent fructose-fed rats also exhibited elevated basal corticosterone concentrations relative to their chow-fed peers. These behavioral and hormonal responses to the high-fructose diet did not occur in rats fed fructose during adulthood only. Finally, rats fed the high-fructose diet throughout development underwent marked hypothalamic transcript expression remodeling, with 966 genes (5.6%) significantly altered and a pronounced enrichment of significantly altered transcripts in several pathways relating to regulation of the HPA axis. Collectively, the data presented herein indicate that diet, specifically one high in fructose, has the potential to alter behavior, HPA axis function, and the hypothalamic transcriptome in male rats. PMID:26356038

  18. Bromocriptine increased operant responding for high fat food but decreased chow intake in both obesity-prone and resistant rats

    Energy Technology Data Exchange (ETDEWEB)

    Thanos, P.K.; Wang, G.; Thanos, P.K.; Cho, J. Kim, R.; Michaelides, M.; Primeaux, S.; Bray, G.; Wang, G.-J.; Volkow, N.D.

    2010-10-27

    Dopamine (DA) and DAD{sub 2} receptors (D2R) have been implicated in obesity and are thought to be involved in the rewarding properties of food. Osborne-Mendel (OM) rats are susceptible to diet induced obesity (DIO) while S5B/P (S5B) rats are resistant when given a high-fat diet. Here we hypothesized that the two strains would differ in high-fat food self-administration (FSA) and that the D2R agonist bromocriptine (BC) would differently affect their behavior. Ad-libitum fed OM and S5B/P rats were tested in a FSA operant chamber and were trained to lever press for high-fat food pellets under a fixed-ratio (FR1) and a progressive ratio (PR) schedule. After sixteen days of PR sessions, rats were treated with three different doses of BC (1, 10 and 20 mg/kg). No significant differences were found between the two strains in the number of active lever presses. BC treatment (10 mg/kg and 20 mg/kg) increased the number of active lever presses (10 mg/kg having the strongest effect) whereas it decreased rat chow intake in the home cage with equivalent effects in both strains. These effects were not observed on the day of BC administration but on the day following its administration. Our results suggest that these two strains have similar motivation for procuring high fat food using this paradigm. BC increased operant responding for high-fat pellets but decreased chow intake in both strains, suggesting that D2R stimulation may have enhanced the motivational drive to procure the fatty food while correspondingly decreasing the intake of regular food. These findings suggest that susceptibility to dietary obesity (prior to the onset of obesity) may not affect operant motivation for a palatable high fat food and that differential susceptibility to obesity may be related to differential sensitivity to D2R stimulation.

  19. Levodopa-induced dyskinesia is associated with increased thyrotropin releasing hormone in the dorsal striatum of hemi-parkinsonian rats.

    Directory of Open Access Journals (Sweden)

    Ippolita Cantuti-Castelvetri

    2010-11-01

    Full Text Available Dyskinesias associated with involuntary movements and painful muscle contractions are a common and severe complication of standard levodopa (L-DOPA, L-3,4-dihydroxyphenylalanine therapy for Parkinson's disease. Pathologic neuroplasticity leading to hyper-responsive dopamine receptor signaling in the sensorimotor striatum is thought to underlie this currently untreatable condition.Quantitative real-time polymerase chain reaction (PCR was employed to evaluate the molecular changes associated with L-DOPA-induced dyskinesias in Parkinson's disease. With this technique, we determined that thyrotropin releasing hormone (TRH was greatly increased in the dopamine-depleted striatum of hemi-parkinsonian rats that developed abnormal movements in response to L-DOPA therapy, relative to the levels measured in the contralateral non-dopamine-depleted striatum, and in the striatum of non-dyskinetic control rats. ProTRH immunostaining suggested that TRH peptide levels were almost absent in the dopamine-depleted striatum of control rats that did not develop dyskinesias, but in the dyskinetic rats, proTRH immunostaining was dramatically up-regulated in the striatum, particularly in the sensorimotor striatum. This up-regulation of TRH peptide affected striatal medium spiny neurons of both the direct and indirect pathways, as well as neurons in striosomes.TRH is not known to be a key striatal neuromodulator, but intrastriatal injection of TRH in experimental animals can induce abnormal movements, apparently through increasing dopamine release. Our finding of a dramatic and selective up-regulation of TRH expression in the sensorimotor striatum of dyskinetic rat models suggests a TRH-mediated regulatory mechanism that may underlie the pathologic neuroplasticity driving dopamine hyper-responsivity in Parkinson's disease.

  20. Chronic high-sodium diet increases aortic wall endothelin-1 expression in a blood pressure-independent fashion in rats.

    Science.gov (United States)

    Tsai, Yu-Hwai; Ohkita, Mamoru; Gariepy, Cheryl E

    2006-06-01

    Vascular endothelin (ET)-1 is upregulated in several forms of salt-induced hypertension. It is unclear to what extent these effects are primary or secondary to endothelial damage. We hypothesized that a high-sodium diet (HNa) increases vascular ET-1 production independent of arterial blood pressure changes. We investigated the effect of chronic HNa with and without ET(A) blockade on circulating and aortic ET-1 protein levels as well as aortic expression of ET-1 and ET(A) messenger RNA (mRNA) in inbred Wistar-Kyoto (WKY) and congenic ET(B)-deficient rats. Comparing WKY rats fed a low-sodium diet (LNa) with those fed HNa for 3 weeks, aortic wall ET-1 protein is significantly increased in response to HNa (331 +/- 43 pg/g tissue for LNa vs. 557 +/- 34 pg/gm tissue for HNa). HNa also increased aortic wall ET-1 mRNA levels by 40%, as determined by quantitative reverse transcriptase polymerase chain reaction. We then compared rats chronically treated with the ET(A)-selective antagonist, ABT-627, while receiving either LNa or HNa. There were no differences in arterial blood pressure (mean arterial pressure 89 +/- 1 mm Hg for WKY on LNa; 90 +/- 3 for WKY on HNa; 91 +/- 2 for ET(B)-deficient/ABT-627-treated on HNa) or heart rate. However, aortic wall ET-1 protein levels were 4-fold higher in the HNa group. Further, HNa increased aortic wall ET-1 mRNA (approximately 1.5- to 3-fold) and ET(A) mRNA (approximately 2- to 7-fold), independent of activation of ET(B). Therefore, the expression of ET-1 mRNA by the aortic wall is increased in response to chronic high dietary sodium in WKY rats in the absence of changes in arterial blood pressure.

  1. Clinical appraisal of stereotactic hematoma aspiration surgery for hypertensive thalamic hemorrhage; With respect to volume of the hematoma

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Koji; Matsumoto, Keizo (Tokushima Univ. (Japan). School of Medicine)

    1992-06-01

    Three hundred and four patients with hypertensive thalamic hemorrhage were managed by medical treatment, ventricular drainage, or CT-controlled stereotactic aspiration surgery (AS). The therapeutic results of the 6-month outcome were analyzed and correlated with the volume of the hematoma. A hematoma volume of 20 ml was thought to be the critical size in determining whether the outcome would be favorable or unfavorable. Indications for AS are suggested as follows. In patients with a small-sized hematoma having a volume of less than 10 ml use of AS should be restricted to patients with severe paralysis or other neurological complications and the elderly (aged 70 years or older). For patients with a medium-sized hematoma having a volume between 10 ml and 20 ml, AS is indicated for patients having severe paralysis and disturbances of consciousness. For patients with a large-sized hematoma having a volume of 20 ml or more, AS increases not only the survival rate of patients but also reduces the number of bedridden patients. We conclude that AS opens up a new avenue of surgical treatment for hypertensive thalamic hemorrhage, which has been no indication for hematoma evacuation by conventional craniotomy. (author).

  2. Lack of increased immediate early gene expression in rats reinstating cocaine-seeking behavior to discrete sensory cues.

    Directory of Open Access Journals (Sweden)

    Matthew D Riedy

    Full Text Available Drug-seeking behavior elicited by drug-associated cues contributes to relapse in addiction; however, whether relapse elicited by drug-associated conditioned reinforcers (CR versus discriminative stimuli (DS involves distinct or overlapping neuronal populations is unknown. To address this question, we developed a novel cocaine self-administration and cue-induced reinstatement paradigm that exposed the same rats to distinct cocaine-associated CR and DS. Rats were trained to self-administer cocaine in separate sessions. In one, a DS signaled cocaine availability; in the other, cocaine delivery was paired with a different CR. After extinction training and reinstatement testing, where both cues were presented in separate sessions, rats were sacrificed and processed for cellular analysis of temporal activity by fluorescent in situ hybridization (CatFISH for activity regulated cytoskeleton-associated protein (Arc mRNA and for radioactive in situ hybridization for Arc and zif268 mRNAs. CatFISH did not reveal significant changes in Arc mRNA expression. Similar results were obtained with radioactive in situ hybridization. We have shown that while rats reinstate drug seeking in response to temporally discrete presentations of distinct drug-associated cues, such reinstatement is not associated with increased transcriptional activation of Arc or zif268 mRNAs, suggesting that expression of these genes may not be necessary for cue-induced reinstatement of drug-seeking behavior.

  3. Ethanol extract of Oenanthe javanica increases cell proliferation and neuroblast differentiation in the adolescent rat dentate gyrus

    Directory of Open Access Journals (Sweden)

    Bai Hui Chen

    2015-01-01

    Full Text Available Oenanthe javanica is an aquatic perennial herb that belongs to the Oenanthe genus in Apiaceae family, and it displays well-known medicinal properties such as protective effects against glutamate-induced neurotoxicity. However, few studies regarding effects of Oenanthe javanica on neurogenesis in the brain have been reported. In this study, we examined the effects of a normal diet and a diet containing ethanol extract of Oenanthe javanica on cell proliferation and neuroblast differentiation in the subgranular zone of the hippocampal dentate gyrus of adolescent rats using Ki-67 (an endogenous marker for cell proliferation and doublecortin (a marker for neuroblast. Our results showed that Oenanthe javanica extract significantly increased the number of Ki-67-immunoreactive cells and doublecortin-immunoreactive neuroblasts in the subgranular zone of the dentate gyrus in the adolescent rats. In addition, the immunoreactivity of brain-derived neurotrophic factor was significantly increased in the dentate gyrus of the Oenanthe javanica extract-treated group compared with the control group. However, we did not find that vascular endothelial growth factor expression was increased in the Oenanthe javanica extract-treated group compared with the control group. These results indicate that Oenanthe javanica extract improves cell proliferation and neuroblast differentiation by increasing brain-derived neurotrophic factor immunoreactivity in the rat dentate gyrus.

  4. Apelin-APJ system is responsible for stress-induced increase in atrial natriuretic peptide expression in rat heart.

    Science.gov (United States)

    Izgut-Uysal, Vecihe Nimet; Acar, Nuray; Birsen, Ilknur; Ozcan, Filiz; Ozbey, Ozlem; Soylu, Hakan; Avci, Sema; Tepekoy, Filiz; Akkoyunlu, Gokhan; Yucel, Gultekin; Ustunel, Ismail

    2018-04-01

    The cardiovascular system is a primary target of stress and stress is the most important etiologic factor in cardiovascular diseases. Stressors increase expressions of atrial natriuretic peptide (ANP) and apelin in cardiac tissue. The aim of the present study was to investigate whether stress-induced apelin has an effect on the expression of ANP in the right atrium of rat heart. The rats were divided into the control, stress and F13A+stress groups. In the stress and F13A+stress groups, the rats were subjected to water immersion and restraint stress (WIRS) for 6h. In the F13A+stress group, apelin receptor antagonist F13A, was injected intravenously immediately before application of WIRS. The plasma samples were obtained for the measurement of corticosterone and atrial natriuretic peptide. The atrial samples were used for immunohistochemistry and western blot analysis. F13A administration prevented the rise of plasma corticosterone and ANP levels induced by WIRS. While WIRS application increased the expressions of apelin, HIF-1α and ANP in atrial tissue, while F13A prevented the stress-induced increase in the expression of HIF-1α and ANP. Stress-induced apelin induces ANP expression in atrial tissue and may play a role in cardiovascular homeostasis by increasing ANP expression under WIRS conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Reduced thalamic and pontine connectivity in Kleine-Levin syndrome

    Directory of Open Access Journals (Sweden)

    Maria eEngström

    2014-04-01

    Full Text Available The Kleine-Levin syndrome is a rare sleep disorder, characterized by exceptionally long sleep episodes. The neuropathology of the syndrome is unknown and treatment is often inadequate. The aim of the study was to improve understanding of the underlying neuropathology, related to cerebral networks, in Kleine-Levin syndrome during sleep episodes. One patient with Kleine-Levin syndrome and congenital nystagmus, was investigated by resting state functional Magnetic Resonance Imaging during both asymptomatic and hypersomnic periods. Fourteen healthy subjects were also investigated as control samples. Functional connectivity was assessed from seed regions of interest in the thalamus and the dorsal pons. Thalamic connectivity was normal in the asymptomatic patient whereas the connectivity between the brain stem, including dorsal pons, and the thalamus was diminished during hypersomnia. These results suggest that the patient’s nystagmus and hypersomnia might have their pathological origin in adjacent dorsal pontine regions. This finding provides additional knowledge of the cerebral networks involved in the neuropathology of this disabling disorder. Furthermore, these findings regarding a rare syndrome have broad implications and results could be of interest to researchers and clinicians in the whole field of sleep medicine.

  6. Thalamic and parietal brain morphology predicts auditory category learning.

    Science.gov (United States)

    Scharinger, Mathias; Henry, Molly J; Erb, Julia; Meyer, Lars; Obleser, Jonas

    2014-01-01

    Auditory categorization is a vital skill involving the attribution of meaning to acoustic events, engaging domain-specific (i.e., auditory) as well as domain-general (e.g., executive) brain networks. A listener's ability to categorize novel acoustic stimuli should therefore depend on both, with the domain-general network being particularly relevant for adaptively changing listening strategies and directing attention to relevant acoustic cues. Here we assessed adaptive listening behavior, using complex acoustic stimuli with an initially salient (but later degraded) spectral cue and a secondary, duration cue that remained nondegraded. We employed voxel-based morphometry (VBM) to identify cortical and subcortical brain structures whose individual neuroanatomy predicted task performance and the ability to optimally switch to making use of temporal cues after spectral degradation. Behavioral listening strategies were assessed by logistic regression and revealed mainly strategy switches in the expected direction, with considerable individual differences. Gray-matter probability in the left inferior parietal lobule (BA 40) and left precentral gyrus was predictive of "optimal" strategy switch, while gray-matter probability in thalamic areas, comprising the medial geniculate body, co-varied with overall performance. Taken together, our findings suggest that successful auditory categorization relies on domain-specific neural circuits in the ascending auditory pathway, while adaptive listening behavior depends more on brain structure in parietal cortex, enabling the (re)direction of attention to salient stimulus properties. © 2013 Published by Elsevier Ltd.

  7. The thalamic reticular nucleus: structure, function and concept.

    Science.gov (United States)

    Pinault, Didier

    2004-08-01

    On the basis of theoretical, anatomical, psychological and physiological considerations, Francis Crick (1984) proposed that, during selective attention, the thalamic reticular nucleus (TRN) controls the internal attentional searchlight that simultaneously highlights all the neural circuits called on by the object of attention. In other words, he submitted that during either perception, or the preparation and execution of any cognitive and/or motor task, the TRN sets all the corresponding thalamocortical (TC) circuits in motion. Over the last two decades, behavioural, electrophysiological, anatomical and neurochemical findings have been accumulating, supporting the complex nature of the TRN and raising questions about the validity of this speculative hypothesis. Indeed, our knowledge of the actual functioning of the TRN is still sprinkled with unresolved questions. Therefore, the time has come to join forces and discuss some recent cellular and network findings concerning this diencephalic GABAergic structure, which plays important roles during various states of consciousness. On the whole, the present critical survey emphasizes the TRN's complexity, and provides arguments combining anatomy, physiology and cognitive psychology.

  8. Cerebral blood flow in patients with thalamic hemorrhage, 2

    International Nuclear Information System (INIS)

    Ueda, Mikiya; Matsumoto, Yukihiro; Omiya, Nobuyuki; Mikami, Junichi; Sato, Hiroyuki; Inoue, Yoshitoshi; Okawara, Shuji; Matsuoka, Takahiro; Takeda, Satoshi.

    1989-01-01

    In twenty-nine patients with thalamic hemorrhage, single photon emission CT (SPECT) and CT were performed in the acute stage. Measurement of cerebral blood flow (CBF) was performed by the 133-Xe inhalation method using SPECT (Tomomatic 64). CT findings such as hematoma volume, involvement of internal capsule, ventricular hematoma and topographical localization of hematoma were investigated. We studied etiological analysis of decreased CBF in the acute stage. CBF values in the group of large-volume hematoma (≥10 ml) decreased moderately on the hematoma side and mildly on the nonhematoma side. CBF values in the group of small-volume hematoma (<10 ml) decreased mildly on the hematoma side but didn't decrease on the nonhematoma side. CBF values of the former on the hematoma side decreased significantly compared with the latter. Linear correlation between hematoma volume and CBF was significant. As to topographical localization, CBF values of the group which involved medial thalamus decreased significantly compared with the other group. Factors of involvement of internal capsule and ventricular hematoma didn't affect CBF values. In conclusion, major factors which affected decreased CBF in the acute stage were hematoma volume and tomographical localization. (author)

  9. Getting signals into the brain: visual prosthetics through thalamic microstimulation.

    Science.gov (United States)

    Pezaris, John S; Eskandar, Emad N

    2009-07-01

    Common causes of blindness are diseases that affect the ocular structures, such as glaucoma, retinitis pigmentosa, and macular degeneration, rendering the eyes no longer sensitive to light. The visual pathway, however, as a predominantly central structure, is largely spared in these cases. It is thus widely thought that a device-based prosthetic approach to restoration of visual function will be effective and will enjoy similar success as cochlear implants have for restoration of auditory function. In this article the authors review the potential locations for stimulation electrode placement for visual prostheses, assessing the anatomical and functional advantages and disadvantages of each. Of particular interest to the neurosurgical community is placement of deep brain stimulating electrodes in thalamic structures that has shown substantial promise in an animal model. The theory of operation of visual prostheses is discussed, along with a review of the current state of knowledge. Finally, the visual prosthesis is proposed as a model for a general high-fidelity machine-brain interface.

  10. Exhaustive Training Increases Uncoupling Protein 2 Expression and Decreases Bcl-2/Bax Ratio in Rat Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    W. Y. Liu

    2013-01-01

    Full Text Available This work investigates the effects of oxidative stress due to exhaustive training on uncoupling protein 2 (UCP2 and Bcl-2/Bax in rat skeletal muscles. A total of 18 Sprague-Dawley female rats were randomly divided into three groups: the control group (CON, the trained control group (TC, and the exhaustive trained group (ET. Malondialdehyde (MDA, superoxide dismutase (SOD, xanthine oxidase (XOD, ATPase, UCP2, and Bcl-2/Bax ratio in red gastrocnemius muscles were measured. Exhaustive training induced ROS increase in red gastrocnemius muscles, which led to a decrease in the cell antiapoptotic ability (Bcl-2/Bax ratio. An increase in UCP2 expression can reduce ROS production and affect mitochondrial energy production. Thus, oxidative stress plays a significant role in overtraining.

  11. Red Wine Inhibits Aggregation and Increases ATP-diphosphohydrolase (CD39) Activity of Rat Platelets in Vitro.

    Science.gov (United States)

    Caiazzo, Elisabetta; Tedesco, Idolo; Spagnuolo, Carmela; Russo, Gian Luigi; Ialenti, Armando; Cicala, Carla

    2016-06-01

    Moderate consumption of red wine has been shown to exert a peculiar cardioprotective effect compared with other alcoholic beverages; inhibition of platelet aggregation seems to be one of the mechanisms underlying this beneficial effect. CD39/ATP-diphosphohydrolase is an integral membrane glycoprotein metabolizing ATP and ADP to AMP; in concert with CD73/ecto-5'-nucleotidase, it contributes to extracellular adenosine accumulation. CD39 is considered a key modulator of thrombus formation; it inhibits platelet aggregation by promoting ADP hydrolysis. There is evidence that red wine consumption increases CD39 activity in platelets from streptozotocin-induced diabetic rats. Here we show that two kinds of Aglianico red wines inhibit aggregation and increase ATP--and ADPase activity in rat platelets.

  12. Reduced effectiveness of escitalopram in the forced swimming test is associated with increased serotonin clearance rate in food restricted rats

    Science.gov (United States)

    France, CP; Li, J-X; Owens, WA; Koek, W; Toney, GM; Daws, LC

    2012-01-01

    Efficacy of antidepressant drugs is often limited. One of the limiting factors may be diet. This study shows that the effect of escitalopram in the forced swimming test is diminished in rats by food restriction that decreased body weight by 8%. The primary target for escitalopram is the serotonin (5-HT) transporter. Using high-speed chronoamperometry to measure 5-HT clearance in vivo in rats fed the same food restricted diet, the rate of 5-HT clearance from extracellular fluid in brain was dramatically increased. Increased 5-HT transporter function under conditions of dietary restriction might contribute to the decreased effect of escitalopram. These results suggest that diet plays an integral role in determining efficacy of antidepressant drugs, and might well generalize to other psychoactive drugs that impinge upon the 5-HT transporter. PMID:19419596

  13. Increased ghrelin but low ghrelin-reactive immunoglobulins in a rat model of methotrexate chemotherapy-induced anorexia

    Directory of Open Access Journals (Sweden)

    Marie François

    2016-07-01

    Full Text Available Background and aims: Cancer chemotherapy is commonly accompanied by mucositis, anorexia, weight loss and anxiety independently from cancer-induced anorexia-cachexia, further aggravating clinical outcome. Ghrelin is a peptide hormone produced in gastric mucosa that reaches the brain to stimulate appetite. In plasma, ghrelin is protected from degradation by ghrelin-reactive immunoglobulins (Ig. To analyze possible involvement of ghrelin in the chemotherapy-induced anorexia and anxiety, gastric ghrelin expression, plasma levels of ghrelin and ghrelin-reactive IgG were studied in rats treated with methotrexate (MTX.Methods: Rats received MTX (2.5 mg/kg, S.C. for three consecutive days and were killed 3 days later, at the peak of anorexia and weight loss. Control rats received phosphate-buffered saline. Preproghrelin mRNA expression in the stomach was analyzed by in situ hybridization. Plasma levels of ghrelin and ghrelin-reactive IgG were measured by immunoenzymatic assays and IgG affinity kinetics by surface plasmon resonance. Anxiety- and depression-like behaviors in MTX-treated anorectic and in control rats were evaluated in the elevated plus-maze and the forced-swim test, respectively.Results: In MTX-treated anorectic rats the number of preproghrelin mRNA-producing cells was found increased (by 51.3%, p<0.001 as well were plasma concentrations of both ghrelin and des-acyl-ghrelin (by 70.4%, p<0.05 and 98.3%, p<0.01, respectively. In contrast, plasma levels of total IgG reactive with ghrelin and des-acyl-ghrelin were drastically decreased (by 87.2% and 88.4%, respectively, both p<0.001, and affinity kinetics of these IgG were characterized by increased small and big Kd, respectively. MTX-treated rats displayed increased anxiety- but not depression-like behavior.Conclusion: MTX-induced anorexia, weight loss and anxiety are accompanied by increased ghrelin production and by a decrease of ghrelin-reactive IgG levels and affinity binding properties

  14. Increased trabecular bone and improved biomechanics in an osteocalcin-null rat model created by CRISPR/Cas9 technology

    Directory of Open Access Journals (Sweden)

    Laura J. Lambert

    2016-10-01

    Full Text Available Osteocalcin, also known as bone γ-carboxyglutamate protein (Bglap, is expressed by osteoblasts and is commonly used as a clinical marker of bone turnover. A mouse model of osteocalcin deficiency has implicated osteocalcin as a mediator of changes to the skeleton, endocrine system, reproductive organs and central nervous system. However, differences between mouse and human osteocalcin at both the genome and protein levels have challenged the validity of extrapolating findings from the osteocalcin-deficient mouse model to human disease. The rat osteocalcin (Bglap gene locus shares greater synteny with that of humans. To further examine the role of osteocalcin in disease, we created a rat model with complete loss of osteocalcin using the CRISPR/Cas9 system. Rat osteocalcin was modified by injection of CRISPR/Cas9 mRNA into the pronuclei of fertilized single cell Sprague-Dawley embryos, and animals were bred to homozygosity and compound heterozygosity for the mutant alleles. Dual-energy X-ray absorptiometry (DXA, glucose tolerance testing (GTT, insulin tolerance testing (ITT, microcomputed tomography (µCT, and a three-point break biomechanical assay were performed on the excised femurs at 5 months of age. Complete loss of osteocalcin resulted in bones with significantly increased trabecular thickness, density and volume. Cortical bone volume and density were not increased in null animals. The bones had improved functional quality as evidenced by an increase in failure load during the biomechanical stress assay. Differences in glucose homeostasis were observed between groups, but there were no differences in body weight or composition. This rat model of complete loss of osteocalcin provides a platform for further understanding the role of osteocalcin in disease, and it is a novel model of increased bone formation with potential utility in osteoporosis and osteoarthritis research.

  15. INCREASES IN ANXIETY-LIKE BEHAVIOR INDUCED BY ACUTE STRESS ARE REVERSED BY ETHANOL IN ADOLESCENT BUT NOT ADULT RATS

    OpenAIRE

    Varlinskaya, Elena I.; Spear, Linda P.

    2011-01-01

    Repeated exposure to stressors has been found to increase anxiety-like behavior in laboratory rodents, with the social anxiety induced by repeated restraint being extremely sensitive to anxiolytic effects of ethanol in both adolescent and adult rats. No studies, however, have compared social anxiogenic effects of acute stress or the capacity of ethanol to reverse this anxiety in adolescent and adult animals. Therefore, the present study was designed to investigate whether adolescent [postnata...

  16. The short- and long-term proteomic effects of sleep deprivation on the cortical and thalamic synapses.

    Science.gov (United States)

    Simor, Attila; Györffy, Balázs András; Gulyássy, Péter; Völgyi, Katalin; Tóth, Vilmos; Todorov, Mihail Ivilinov; Kis, Viktor; Borhegyi, Zsolt; Szabó, Zoltán; Janáky, Tamás; Drahos, László; Juhász, Gábor; Kékesi, Katalin Adrienna

    2017-03-01

    Acute total sleep deprivation (SD) impairs memory consolidation, attention, working memory and perception. Structural, electrophysiological and molecular experimental approaches provided evidences for the involvement of sleep in synaptic functions. Despite the wide scientific interest on the effects of sleep on the synapse, there is a lack of systematic investigation of sleep-related changes in the synaptic proteome. We isolated parietal cortical and thalamic synaptosomes of rats after 8h of total SD by gentle handling and 16h after the end of deprivation to investigate the short- and longer-term effects of SD on the synaptic proteome, respectively. The SD efficiency was verified by electrophysiology. Protein abundance alterations of the synaptosomes were analyzed by fluorescent two-dimensional differential gel electrophoresis and by tandem mass spectrometry. As several altered proteins were found to be involved in synaptic strength regulation, our data can support the synaptic homeostasis hypothesis function of sleep and highlight the long-term influence of SD after the recovery sleep period, mostly on cortical synapses. Furthermore, the large-scale and brain area-specific protein network change in the synapses may support both ideas of sleep-related synaptogenesis and molecular maintenance and reorganization in normal rat brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Ghrelin treatment causes increased food intake and retention of lean body mass in a rat model of cancer cachexia.

    Science.gov (United States)

    DeBoer, Mark D; Zhu, Xin Xia; Levasseur, Peter; Meguid, Michael M; Suzuki, Susumu; Inui, Akio; Taylor, John E; Halem, Heather A; Dong, Jesse Z; Datta, Rakesh; Culler, Michael D; Marks, Daniel L

    2007-06-01

    Cancer cachexia is a debilitating syndrome of anorexia and loss of lean body mass that accompanies many malignancies. Ghrelin is an orexigenic hormone with a short half-life that has been shown to improve food intake and weight gain in human and animal subjects with cancer cachexia. We used a rat model of cancer cachexia and administered human ghrelin and a synthetic ghrelin analog BIM-28131 via continuous infusion using sc osmotic minipumps. Tumor-implanted rats receiving human ghrelin or BIM-28131 exhibited a significant increase in food consumption and weight gain vs. saline-treated animals. We used dual-energy x-ray absorptiometry scans to show that the increased weight was due to maintenance of lean mass vs. a loss of lean mass in saline-treated animals. Also, BIM-28131 significantly limited the loss of fat mass normally observed in tumor-implanted rats. We further performed real-time PCR analysis of the hypothalami and brainstems and found that ghrelin-treated animals exhibited a significant increase in expression of orexigenic peptides agouti-related peptide and neuropeptide Y in the hypothalamus and a significant decrease in the expression of IL-1 receptor-I transcript in the hypothalamus and brainstem. We conclude that ghrelin and a synthetic ghrelin receptor agonist improve weight gain and lean body mass retention via effects involving orexigenic neuropeptides and antiinflammatory changes.

  18. Shift Work in Rats Results in Increased Inflammatory Response after Lipopolysaccharide Administration: A Role for Food Consumption.

    Science.gov (United States)

    Guerrero-Vargas, Natalí N; Guzmán-Ruiz, Mara; Fuentes, Rebeca; García, Joselyn; Salgado-Delgado, Roberto; Basualdo, María del Carmen; Escobar, Carolina; Markus, Regina P; Buijs, Ruud M

    2015-08-01

    The suprachiasmatic nucleus (SCN) drives circadian rhythms in behavioral and physiological variables, including the inflammatory response. Shift work is known to disturb circadian rhythms and is associated with increased susceptibility to develop disease. In rodents, circadian disruption due to shifted light schedules (jet lag) induced increased innate immune responses. To gain more insight into the influence of circadian disruption on the immune response, we characterized the inflammatory response in a model of rodent shift work and demonstrated that circadian disruption affected the inflammatory response to lipopolysaccharide (LPS) both in vivo and in vitro. Since food consumption is a main disturbing element in the shift work schedule, we also evaluated the inflammatory response to LPS in a group of rats that had no access to food during their working hours. Our results demonstrated that the shift work schedule decreased basal TNF-α levels in the liver but not in the circulation. Despite this, we observed that shift work induced increased cytokine response after LPS stimulation in comparison to control rats. Also, Kupffer cells (liver macrophages) isolated from shift work rats produced more TNF-α in response to in vitro LPS stimulation, suggesting important effects of circadian desynchronization on the functionality of this cell type. Importantly, the effects of shift work on the inflammatory response to LPS were prevented when food was not available during the working schedule. Together, these results show that dissociating behavior and food intake from the synchronizing drive of the SCN severely disturbs the immune response. © 2015 The Author(s).

  19. A new method to model electroconvulsive therapy in rats with increased construct validity and enhanced translational value.

    Science.gov (United States)

    Theilmann, Wiebke; Löscher, Wolfgang; Socala, Katarzyna; Frieling, Helge; Bleich, Stefan; Brandt, Claudia

    2014-06-01

    Electroconvulsive therapy is the most effective therapy for major depressive disorder (MDD). The remission rate is above 50% in previously pharmacoresistant patients but the mechanisms of action are not fully understood. Electroconvulsive stimulation (ECS) in rodents mimics antidepressant electroconvulsive therapy (ECT) in humans and is widely used to investigate the underlying mechanisms of ECT. For the translational value of findings in animal models it is essential to establish models with the highest construct, face and predictive validity possible. The commonly used model for ECT in rodents does not meet the demand for high construct validity. For ECT, cortical surface electrodes are used to induce therapeutic seizures whereas ECS in rodents is exclusively performed by auricular or corneal electrodes. However, the stimulation site has a major impact on the type and spread of the induced seizure activity and its antidepressant effect. We propose a method in which ECS is performed by screw electrodes placed above the motor cortex of rats to closely simulate the clinical situation and thereby increase the construct validity of the model. Cortical ECS in rats induced reliably seizures comparable to human ECT. Cortical ECS was more effective than auricular ECS to reduce immobility in the forced swim test. Importantly, auricular stimulation had a negative influence on the general health condition of the rats with signs of fear during the stimulation sessions. These results suggest that auricular ECS in rats is not a suitable ECT model. Cortical ECS in rats promises to be a valid method to mimic ECT. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Formoterol attenuates increased oxidative stress and myosin protein loss in respiratory and limb muscles of cancer cachectic rats

    Directory of Open Access Journals (Sweden)

    Anna Salazar-Degracia

    2017-12-01

    Full Text Available Muscle mass loss and wasting are characteristic features of patients with chronic conditions including cancer. Therapeutic options are still scarce. We hypothesized that cachexia-induced muscle oxidative stress may be attenuated in response to treatment with beta2-adrenoceptor-selective agonist formoterol in rats. In diaphragm and gastrocnemius of tumor-bearing rats (108 AH-130 Yoshida ascites hepatoma cells inoculated intraperitoneally with and without treatment with formoterol (0.3 mg/kg body weight/day for seven days, daily subcutaneous injection, redox balance (protein oxidation and nitration and antioxidants and muscle proteins (1-dimensional immunoblots, carbonylated proteins (2-dimensional immunoblots, inflammatory cells (immunohistochemistry, and mitochondrial respiratory chain (MRC complex activities were explored. In the gastrocnemius, but not the diaphragm, of cancer cachectic rats compared to the controls, protein oxidation and nitration levels were increased, several functional and structural proteins were carbonylated, and in both study muscles, myosin content was reduced, inflammatory cell counts were greater, while no significant differences were seen in MRC complex activities (I, II, and IV. Treatment of cachectic rats with formoterol attenuated all the events in both respiratory and limb muscles. In this in vivo model of cancer-cachectic rats, the diaphragm is more resistant to oxidative stress. Formoterol treatment attenuated the rise in oxidative stress in the limb muscles, inflammatory cell infiltration, and the loss of myosin content seen in both study muscles, whereas no effects were observed in the MRC complex activities. These findings have therapeutic implications as they demonstrate beneficial effects of the beta2 agonist through decreased protein oxidation and inflammation in cachectic muscles, especially the gastrocnemius.

  1. Increased cellular proliferation in rat skeletal muscle and tendon in response to exercise

    DEFF Research Database (Denmark)

    Skovgaard, Dorthe; Bayer, Monika L; Mackey, Abigail

    2010-01-01

    PURPOSE: The purpose of this study is to investigate exercise-induced cellular proliferation in rat skeletal muscle/tendon with the use of 3'-[F-18]fluoro-3'deoxythymidine (FLT) and to quantitatively study concomitant changes in the proliferation-associated factor, Ki67. PROCEDURES: Wistar rats (...... = 13) performed 3 days of treadmill running. Cellular proliferation was investigated 3 days before and 48 h after the running exercise with the use of FLT and positron emission tomography/computed tomography (PET/CT). Results were compared to a sedentary control group (n = 10). Image......-derived results were supported by a correlation in calf muscle to Ki67 (protein and mRNA level), while this coherence was not found in tendon. CONCLUSION: FLT-PET seems to be a promising tool for imaging of exercise-induced cellular proliferation in musculo-tendinous tissue....

  2. Perinatal nicotine treatment induces transient increases in NACHO protein levels in the rat frontal cortex

    DEFF Research Database (Denmark)

    Wichern, Franziska; Jensen, Majbrit M; Christensen, Ditte Z

    2017-01-01

    The nicotinic acetylcholine receptor (nAChR) regulator chaperone (NACHO) was recently identified as an important regulator of nAChR maturation and surface expression. Here we show that NACHO levels decrease during early postnatal development in rats. This decrease occurs earlier and to a greater...... degree in the frontal cortex (FC) compared with the hippocampus (HIP). We further show that rats exposed to nicotine during pre- and postnatal development exhibit significantly higher NACHO levels in the FC at postnatal day (PND) 21, but not at PND60. Repeated exposure to nicotine selectively during...... a single exposure to a combination of nicotine and the type II α7 nAChR positive allosteric modulator (PAM) PNU-120596, but not the type I PAM AVL-3288. These findings suggest that exposure to nAChR agonism affects NACHO protein levels, and that this effect is more pronounced during pre- or early postnatal...

  3. The effect of increased ozone concentrations in the air on selected aspects of rat reproduction.

    Science.gov (United States)

    Jedlińska-Krakowska, M; Gizejewski, Z; Dietrich, G J; Jakubowski, K; Glogowski, J; Penkowski, A

    2006-01-01

    Five-month-old male rates were exposed to 0.5 ppm ozone for 50 days, 5 hours a day. A week before the completion of ozone exposure, a biological test was performed to determine the fertilization rate and the survival rate of newborns in both ozone-exposed and control animals. After 50 days, the rats were sacrificed with an overdose of halotane, and testes were collected to assess the morphology and motility of spermatozoa. Neither the morphology of spermatozoa nor motility parameters determined by the CASA (computer-assisted sperm analysis) system showed statistically significant differences between ozone-exposed and control males. The number of successful matings and the survival rate of newborns per litter within one year postpartum were also similar in both groups. However, sperm concentration was by 17% lower in ozone-exposed rats, compared with the control animals.

  4. Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants.

    Directory of Open Access Journals (Sweden)

    Laura Musazzi

    2010-01-01

    Full Text Available Behavioral stress is recognized as a main risk factor for neuropsychiatric diseases. Converging evidence suggested that acute stress is associated with increase of excitatory transmission in certain forebrain areas. Aim of this work was to investigate the mechanism whereby acute stress increases glutamate release, and if therapeutic drugs prevent the effect of stress on glutamate release.Rats were chronically treated with vehicle or drugs employed for therapy of mood/anxiety disorders (fluoxetine, desipramine, venlafaxine, agomelatine and then subjected to unpredictable footshock stress. Acute stress induced marked increase in depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex in superfusion, and the chronic drug treatments prevented the increase of glutamate release. Stress induced rapid increase in the circulating levels of corticosterone in all rats (both vehicle- and drug-treated, and glutamate release increase was blocked by previous administration of selective antagonist of glucocorticoid receptor (RU 486. On the molecular level, stress induced accumulation of presynaptic SNARE complexes in synaptic membranes (both in vehicle- and drug-treated rats. Patch-clamp recordings of pyramidal neurons in the prefrontal cortex revealed that stress increased glutamatergic transmission through both pre- and postsynaptic mechanisms, and that antidepressants may normalize it by reducing release probability.Acute footshock stress up-regulated depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex. Stress-induced increase of glutamate release was dependent on stimulation of glucocorticoid receptor by corticosterone. Because all drugs employed did not block either elevation of corticosterone or accumulation of SNARE complexes, the dampening action of the drugs on glutamate release must be downstream of these processes. This novel effect of antidepressants on the response to stress

  5. Biochemical and functional correlates of an increased membrane density of caveolae in hypertrophic rat urinary bladder.

    OpenAIRE

    Shakirova, Yulia; Swärd, Karl; Uvelius, Bengt; Ekman, Mari

    2010-01-01

    Organ hypertrophy is often found to be associated with changes in the expression of caveolins and altered density of caveolae in the membrane. A plethora of signalling intermediaries are associated with caveolae and loss of caveolae has profound effects on contractility of the urinary bladder. We hypothesized that smooth muscle hypertrophy caused by bladder outflow obstruction (BOO) might lead to an altered caveola density with consequences for contractile regulation. Rat BOO for 6weeks cause...