WorldWideScience

Sample records for rats exhibited decreased

  1. RNaseT2 knockout rats exhibit hippocampal neuropathology and deficits in memory.

    Science.gov (United States)

    Sinkevicius, Kerstin W; Morrison, Thomas R; Kulkarni, Praveen; Cagliostro, Martha K Caffrey; Iriah, Sade; Malmberg, Samantha; Sabrick, Julia; Honeycutt, Jennifer A; Askew, Kim L; Trivedi, Malav; Ferris, Craig F

    2018-05-10

    RNASET2 deficiency in humans is associated with infant cystic leukoencephalopathy, which causes psychomotor impairment, spasticity, and epilepsy. A zebrafish mutant model suggests that loss of RNASET2 function leads to neurodegeneration due to the accumulation of non-degraded RNA in the lysosomes. The goal of this study was to characterize the first rodent model of RNASET2 deficiency. The brains of 3- and 12-month-old RNaseT2 knockout rats were studied using multiple magnetic resonance imaging modalities and behavioral tests. While T1 and T2 weighted images of RNaseT2 knockout rats exhibited no evidence of cystic lesions, the prefrontal cortex and hippocampal complex were enlarged in knockout animals. Diffusion weighted imaging showed altered anisotropy and putative gray matter changes in the hippocampal complex of the RNaseT2 knockout rats. Immunohistochemistry for glial fibrillary acidic protein (GFAP) showed the presence of hippocampal neuroinflammation. Decreased levels of lysosome-associated membrane protein 2 (LAMP2) and elevated acid phosphatase and β-N-Acetylglucosaminidase (NAG) activities indicated that the RNASET2 knockout rats likely had altered lysosomal function and potential defects in autophagy. Object recognition tests confirmed the RNaseT2 knockout rats exhibited memory deficits. However, the Barnes maze, and balance beam and rotarod tests, indicated there were no differences in spatial memory or motor impairments, respectively. Overall, patients with RNASET2 deficiency exhibited a more severe neurodegeneration phenotype than was observed in the RNaseT2 knockout rats. However, the vulnerability of the knockout rat hippocampus as evidenced by neuroinflammation, altered lysosomal function, and cognitive defects indicates this is still a useful in vivo model to study RNASET2 function. © 2018. Published by The Company of Biologists Ltd.

  2. Avastin exhibits therapeutic effects on collagen-induced arthritis in rat model.

    Science.gov (United States)

    Wang, Yong; Da, Gula; Li, Hongbin; Zheng, Yi

    2013-12-01

    Avastin is the monoclonal antibody for vascular endothelial growth factor (VEGF). This study aimed to investigate therapeutic effect of Avastin on type II collagen-induced arthritis. Type II chicken collagen was injected into the tails of Wistar rats, and 60 modeled female rats were randomly divided into three groups (n = 20): Avastin group, Etanercept group, and control group. Arthritis index and joint pad thickness were scored, and the pathology of back metapedes was analyzed. The results showed that compared to control group, the arthritis index, target-to-non-target ratio, synovial pathological injury index, serum levels of VEGF and tumor necrosis factor alpha, and VEGF staining were decreased significantly 14 days after Avastin or Etanercept treatment, but there were no significant differences between Avastin group and Etanercept group. These data provide evidence that Avastin exhibits similar effects to Etanercept to relieve rheumatoid arthritis in rat model and suggest that Avastin is a promising therapeutic agent for rheumatoid arthritis.

  3. Neonatal morphine enhances nociception and decreases analgesia in young rats.

    Science.gov (United States)

    Zhang, Guo Hua; Sweitzer, Sarah M

    2008-03-14

    The recognition of the impact of neonatal pain experience on subsequent sensory processing has led to the increased advocacy for the use of opioids for pain relief in infants. However, following long-term opioid exposure in intensive care units more than 48% of infants exhibited behaviors indicative of opioid abstinence syndrome, a developmentally equivalent set of behaviors to opioid withdrawal as seen in adults. Little is known about the long-term influence of repeated neonatal morphine exposure on nociception and analgesia. To investigate this, we examined mechanical and thermal nociception on postnatal days 11, 13, 15, 19, 24, 29, 39 and 48 following subcutaneous administration of morphine (3 mg/kg) once daily on postnatal days 1-9. The cumulative morphine dose-response was assessed on postnatal days 20 and 49, and stress-induced analgesia was assessed on postnatal days 29 and 49. Both basal mechanical and thermal nociception in neonatal, morphine-exposed rats were significantly lower than those in saline-exposed, handled-control rats and naive rats until P29. A rightward-shift of cumulative dose-response curves for morphine analgesia upon chronic neonatal morphine was observed both on P20 and P49. The swim stress-induced analgesia was significantly decreased in neonatal morphine-exposed rats on P29, but not on P49. These data indicate that morphine exposure equivalent to the third trimester of gestation produced prolonged pain hypersensitivity, decreased morphine antinociception, and decreased stress-induced analgesia. The present study illustrates the need to examine the long-term influence of prenatal morphine exposure on pain and analgesia in the human pediatric population.

  4. Decreased autophosphorylation of EGF receptor in insulin-deficient diabetic rats

    International Nuclear Information System (INIS)

    Okamoto, M.; Kahn, C.R.; Maron, R.; White, M.F.

    1988-01-01

    The authors have previously reported that despite an increase in receptor concentration, there is a decrease in autophosphorylation and tyrosine kinase activity of the insulin receptor in insulin-deficient diabetic rats. To determine if other tyrosine kinases might be altered, they have studied the epidermal growth factor (EGF) receptor kinase in wheat germ agglutinin-purified, Triton X-100-solubilized liver membranes from streptozotocin (STZ)-induced diabetic rats and the insulin-deficient BB rat. They find that autophosphorylation of EGF receptor is decreased in proportion to the severity of the diabetic state in STZ rats with a maximal decrease of 67%. A similar decrease in autophosphorylation was observed in diabetic BB rats that was partially normalized by insulin treatment. Separation of tryptic phosphopeptides by reverse-phase high-performance liquid chromatography revealed a decrease in labeling at all sites of autophosphorylation. A parallel decrease in EGF receptor phosphorylation was also found by immunoblotting with an antiphosphotyrosine antibody. EGF receptor concentration, determined by Scatchard analysis of 125 I-labeled EGF binding, was decreased by 39% in the STZ rat and 27% in the diabetic BB rat. Thus autophosphorylation of EGF receptor, like that of the insulin receptor, is decreased in insulin-deficient rat liver. In the case of EGF receptor, this is due in part to a decrease in receptor number and in part to a decrease in the specific activity of the kinase

  5. Decrease in Circulating Fatty Acids Is Associated with Islet Dysfunction in Chronically Sleep-Restricted Rats

    Directory of Open Access Journals (Sweden)

    Shanshan Zhan

    2016-12-01

    Full Text Available Previous studies have shown that sleep restriction-induced environmental stress is associated with abnormal metabolism, but the underlying mechanism is poorly understood. In the current study, we investigated the possible lipid and glucose metabolism patterns in chronically sleep-restricted rat. Without changes in food intake, body weight was decreased and energy expenditure was increased in sleep-restricted rats. The effects of chronic sleep disturbance on metabolites in serum were examined using 1H NMR metabolomics and GC-FID/MS analysis. Six metabolites (lipoproteins, triglycerides, isoleucine, valine, choline, and phosphorylcholine exhibited significant alteration, and all the fatty acid components were decreased, which suggested fatty acid metabolism was impaired after sleep loss. Moreover, increased blood glucose, reduced serum insulin, decreased glucose tolerance, and impaired glucose-stimulated insulin secretion of islets were also observed in sleep-restricted rats. The islet function of insulin secretion could be partially restored by increasing dietary fat to sleep-disturbed rats suggested that a reduction in circulating fatty acids was related to islet dysfunction under sleep deficiency-induced environmental stress. This study provides a new perspective on the relationship between insufficient sleep and lipid/glucose metabolism, which offers insights into the role of stressful challenges in a healthy lifestyle.

  6. Decreased in vitro fertility in male rats exposed to fluoride-induced oxidative stress damage and mitochondrial transmembrane potential loss

    International Nuclear Information System (INIS)

    Izquierdo-Vega, Jeannett A.; Sanchez-Gutierrez, Manuel; Razo, Luz Maria del

    2008-01-01

    Fluorosis, caused by drinking water contamination with inorganic fluoride, is a public health problem in many areas around the world. The aim of the study was to evaluate the effect of environmentally relevant doses of fluoride on in vitro fertilization (IVF) capacity of spermatozoa, and its relationship to spermatozoa mitochondrial transmembrane potential (ΔΨ m ). Male Wistar rats were administered at 5 mg fluoride/kg body mass/24 h, or deionized water orally for 8 weeks. We evaluated several spermatozoa parameters in treated and untreated rats: i) standard quality analysis, ii) superoxide dismutase (SOD) activity, iii) the generation of superoxide anion (O 2 ·- ), iv) lipid peroxidation concentration, v) ultrastructural analyses of spermatozoa using transmission electron microscopy, vi) ΔΨ m , vii) acrosome reaction, and viii) IVF capability. Spermatozoa from fluoride-treated rats exhibited a significant decrease in SOD activity (∼ 33%), accompanied with a significant increase in the generation of O 2 · (∼ 40%), a significant decrease in ΔΨ m (∼ 33%), and a significant increase in lipid peroxidation concentration (∼ 50%), relative to spermatozoa from the control group. Consistent with this finding, spermatozoa from fluoride-treated rats exhibited altered plasmatic membrane. In addition, the percentage of fluoride-treated spermatozoa capable of undergoing the acrosome reaction was decreased relative to control spermatozoa (34 vs. 55%), while the percentage fluoride-treated spermatozoa capable of oocyte fertilization was also significantly lower than the control group (13 vs. 71%). These observations suggest that subchronic exposure to fluoride causes oxidative stress damage and loss of mitochondrial transmembrane potential, resulting in reduced fertility

  7. High-sodium intake prevents pregnancy-induced decrease of blood pressure in the rat.

    Science.gov (United States)

    Beauséjour, Annie; Auger, Karine; St-Louis, Jean; Brochu, Michéle

    2003-07-01

    Despite an increase of circulatory volume and of renin-angiotensin-aldosterone system (RAAS) activity, pregnancy is paradoxically accompanied by a decrease in blood pressure. We have reported that the decrease in blood pressure was maintained in pregnant rats despite overactivation of RAAS following reduction in sodium intake. The purpose of this study was to evaluate the impact of the opposite condition, e.g., decreased activation of RAAS during pregnancy in the rat. To do so, 0.9% or 1.8% NaCl in drinking water was given to nonpregnant and pregnant Sprague-Dawley rats for 7 days (last week of gestation). Increased sodium intakes (between 10- and 20-fold) produced reduction of plasma renin activity and aldosterone in both nonpregnant and pregnant rats. Systolic blood pressure was not affected in nonpregnant rats. However, in pregnant rats, 0.9% sodium supplement prevented the decreased blood pressure. Moreover, an increase of systolic blood pressure was obtained in pregnant rats receiving 1.8% NaCl. The 0.9% sodium supplement did not affect plasma and fetal parameters. However, 1.8% NaCl supplement has larger effects during gestation as shown by increased plasma sodium concentration, hematocrit level, negative water balance, proteinuria, and intrauterine growth restriction. With both sodium supplements, decreased AT1 mRNA levels in the kidney and in the placenta were observed. Our results showed that a high-sodium intake prevents the pregnancy-induced decrease of blood pressure in rats. Nonpregnant rats were able to maintain homeostasis but not the pregnant ones in response to sodium load. Furthermore, pregnant rats on a high-sodium intake (1.8% NaCl) showed some physiological responses that resemble manifestations observed in preeclampsia.

  8. Environmental enrichment decreases asphyxia-induced neurobehavioral developmental delay in neonatal rats.

    Science.gov (United States)

    Kiss, Peter; Vadasz, Gyongyver; Kiss-Illes, Blanka; Horvath, Gabor; Tamas, Andrea; Reglodi, Dora; Koppan, Miklos

    2013-11-13

    Perinatal asphyxia during delivery produces long-term disability and represents a major problem in neonatal and pediatric care. Numerous neuroprotective approaches have been described to decrease the effects of perinatal asphyxia. Enriched environment is a popular strategy to counteract nervous system injuries. The aim of the present study was to investigate whether enriched environment is able to decrease the asphyxia-induced neurobehavioral developmental delay in neonatal rats. Asphyxia was induced in ready-to-deliver mothers by removing the pups by caesarian section after 15 min of asphyxia. Somatic and neurobehavioral development was tested daily and motor coordination weekly. Our results show that rats undergoing perinatal asphyxia had a marked developmental delay and worse performance in motor coordination tests. However, pups kept in enriched environment showed a decrease in the developmental delay observed in control asphyctic pups. Rats growing up in enriched environment did not show decrease in weight gain after the first week and the delay in reflex appearance was not as marked as in control rats. In addition, the development of motor coordination was not as strikingly delayed as in the control group. Short-term neurofunctional outcome are known to correlate with long-term deficits. Our results thus show that enriched environment could be a powerful strategy to decrease the deleterious developmental effects of perinatal asphyxia.

  9. Decreased allopregnanolone induced by hormonal contraceptives is associated with a reduction in social behavior and sexual motivation in female rats.

    Science.gov (United States)

    Santoru, Francesca; Berretti, Roberta; Locci, Andrea; Porcu, Patrizia; Concas, Alessandra

    2014-09-01

    Allopregnanolone is a neurosteroid involved in depression, memory, social, and sexual behavior. We have previously demonstrated that treatment with a combination of ethinylestradiol (EE) and levonorgestrel (LNG), two compounds frequently used in hormonal contraception, decreased brain allopregnanolone concentrations. These changes may contribute to some of the emotional and sexual disorders observed in hormonal contraceptive users. We thus examined whether the reduction in allopregnanolone concentrations induced by long-term EE/LNG administration was associated with altered emotional, learning, social, and sexual behaviors. Rats were orally treated with a combination of EE (0.030 mg) and LNG (0.125 mg) once a day for 4 weeks and were subjected to behavioral tests 24 h after the last administration. EE/LNG treatment reduced immobility behavior in the forced swim test, without affecting sucrose preference and spatial learning and memory. In the resident-intruder test, EE/LNG-treated rats displayed a decrease in dominant behaviors associated with a reduction in social investigation. In the paced mating test, EE/LNG treated rats showed a reduction in proceptive behaviors, while the lordosis quotient was not affected. Progesterone, but not estradiol, administration to EE/LNG-treated rats increased sexual activity and cerebrocortical allopregnanolone concentrations. Prior administration of finasteride decreased allopregnanolone concentrations and abolished the increase in proceptivity induced by progesterone administration. The decrease in brain allopregnanolone concentrations induced by EE/LNG treatment is associated with a reduction in social behavior and sexual motivation in female rats. These results might be relevant to the side effects sometimes exhibited by women taking hormonal contraceptives.

  10. Prostatic relaxation induced by agmatine is decreased in spontaneously hypertensive rats.

    Science.gov (United States)

    Lee, Liang-Ming; Tsai, Tsung-Chin; Chung, Hsien-Hui; Tong, Yat-Ching; Cheng, Juei-Tang

    2012-09-01

    What's known on the subject? and What does the study add? Neurotransmitters are known to control prostate contractility. Agmatine is one of them and induces relaxation through imidazoline receptors. The paper shows that the action of agmatine is reduced in hypertensive rats, and that this change is related to the decrease of ATP-sensitive potassium channels in the prostate. The findings can increase our understanding of the possible underlying mechanism for the development of clinical benign prostatic hyperplasia. To compare agmatine-induced prostatic relaxation in hypertensive and control rats. To investigate the responsible mechanism(s) and the role of the ATP-sensitive potassium channel. Prostate strips were isolated from male spontaneously hypertensive (SH) rats and normal Wistar-Kyoto (WKY) rats for measurement of isometric tension. The strips were precontracted with 1 µmol/L phenylephrine or 50 mmol/L KCl. Dose-dependent relaxation of the prostatic strips was studied by cumulative administration of agmatine, 1 to 100 µmol/L, into the organ bath. Effects of specific antagonists on agmatine-induced relaxation were studied. Western blotting analysis was used to measure the gene expression of the ATP-sensitive potassium channel in the rat prostate. Prostatic relaxation induced by agmatine was markedly reduced in SH rats compared with WKY rats. The relaxation caused by agmatine was abolished by BU224, a selective imidazoline I(2)-receptor antagonist, but was not modified by efaroxan at a dose sufficient to block imidazoline I(1)-receptors. The relaxation induced by diazoxide at a concentration sufficient to activate ATP-sensitive potassium channels was markedly reduced in the SH rat prostate. Expressions of ATP-sensitive potassium channel sulphonylurea receptor and inwardly rectifying potassium channel (Kir) 6.2 subunits were both decreased in the prostate of SH rats. The decrease of agmatine-induced prostatic relaxation in SH rats is related to the change in

  11. Sub-chronic lead exposure produces β1-adrenoceptor downregulation decreasing arterial pressure reactivity in rats.

    Science.gov (United States)

    Toscano, Cindy Medici; Simões, Maylla Ronacher; Alonso, Maria Jesus; Salaices, Mercedes; Vassallo, Dalton Valentim; Fioresi, Mirian

    2017-07-01

    Lead is considered a causative factor for hypertension and other cardiovascular diseases. To investigate the effects of sub-chronic lead exposure on blood pressure reactivity and cardiac β 1 -adrenoceptor activity and to evaluate whether the effects found in vitro are similar to those found in vivo. Male Wistar rats were randomly distributed into two groups: control rats (Ct) and rats administered drinking water containing 100ppm lead (Pb) for 30days. Blood pressure in the Pb rats increased starting from the first week of treatment until the end of the study [systolic blood pressure, Ct: 122±4 vs. Pb: 143±3mmHg; diastolic blood pressure, Ct: 63±4 vs. Pb: 84±4mmHg]. The heart rate was also increased (Ct: 299±11 vs. Pb: 365±11bpm), but the pressure reactivity to phenylephrine was decreased. Losartan and hexamethonium exhibited a greater reduction in blood pressure of Pb rats than in the Ct rats. Isoproterenol increased the left ventricular systolic and end-diastolic pressure, and heart rate only in Ct rats, suggesting that lead induced β 1 -adrenoceptor downregulation. Indomethacin reduced the blood pressure and heart rate in the Pb rats, suggesting the involvement of cyclooxygenase-derived products (which are associated with reduced nitric oxide bioavailability) in this process. These findings offer further evidence that the effects of sub-chronic lead exposure in vitro can be reproduced in vivo-even at low concentrations-thus triggering mechanisms for the development of hypertension. Therefore, lead should be considered an environmental risk factor for cardiovascular disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Soy compared with milk protein in a Western diet changes fecal microbiota and decreases hepatic steatosis in obese OLETF rats.

    Science.gov (United States)

    Panasevich, Matthew R; Schuster, Colin M; Phillips, Kathryn E; Meers, Grace M; Chintapalli, Sree V; Wankhade, Umesh D; Shankar, Kartik; Butteiger, Dustie N; Krul, Elaine S; Thyfault, John P; Rector, R Scott

    2017-08-01

    Soy protein is effective at preventing hepatic steatosis; however, the mechanisms are poorly understood. We tested the hypothesis that soy vs. dairy protein-based diet would alter microbiota and attenuate hepatic steatosis in hyperphagic Otsuka Long-Evans Tokushima fatty (OLETF) rats. Male OLETF rats were randomized to "Western" diets containing milk protein isolate (MPI), soy protein isolate (SPI) or 50:50 MPI/SPI (MS) (n=9-10/group; 21% kcal protein) for 16 weeks. SPI attenuated (Pcontent, and hepatic 16:1 n-7 and 18:1 n-7 PUFA concentrations) (Pbacterial 16S rRNA analysis revealed SPI-intake elicited increases (P<.05) in Lactobacillus and decreases (P<.05) in Blautia and Lachnospiraceae suggesting decreases in fecal secondary bile acids in SPI rats. SPI and MS exhibited greater (P<.05) hepatic Fxr, Fgfr4, Hnf4a, HmgCoA reductase and synthase mRNA expression compared with MPI. Overall, dietary SPI compared with MPI decreased hepatic steatosis and diacylglycerols, changed microbiota populations and altered bile acid signaling and cholesterol homeostasis in a rodent model of obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Intralipid decreases apolipoprotein M levels and insulin sensitivity in rats.

    Directory of Open Access Journals (Sweden)

    Lu Zheng

    Full Text Available BACKGROUND: Apolipoprotein M (ApoM is a constituent of high-density lipoproteins (HDL. It plays a crucial role in HDL-mediated reverse cholesterol transport. Insulin resistance is associated with decreased ApoM levels. AIMS: To assess the effects of increased free fatty acids (FFAs levels after short-term Intralipid infusion on insulin sensitivity and hepatic ApoM gene expression. METHODS: Adult male Sprague-Dawley (SD rats infused with 20% Intralipid solution for 6 h. Glucose infusion rates (GIR were determined by hyperinsulinemic-euglycemic clamp during Intralipid infusion and plasma FFA levels were measured by colorimetry. Rats were sacrificed after Intralipid treatment and livers were sampled. Human embryonic kidney 293T cells were transfected with a lentivirus mediated human apoM overexpression system. Goto-Kakizaki (GK rats were injected with the lentiviral vector and insulin tolerance was assessed. Gene expression was assessed by real-time RT-PCR and PCR array. RESULTS: Intralipid increased FFAs by 17.6 folds and GIR was decreased by 27.1% compared to the control group. ApoM gene expression was decreased by 40.4% after Intralipid infusion. PPARβ/δ expression was not changed by Intralipid. Whereas the mRNA levels of Acaca, Acox1, Akt1, V-raf murine sarcoma 3611 viral oncogene homolog, G6pc, Irs2, Ldlr, Map2k1, pyruvate kinase and RBC were significantly increased in rat liver after Intralipid infusion. The Mitogen-activated protein kinase 8 (MAPK8 was significantly down-regulated in 293T cells overexpressing ApoM. Overexpression of human ApoM in GK rats could enhance the glucose-lowering effect of exogenous insulin. CONCLUSION: These results suggest that Intralipid could decrease hepatic ApoM levels. ApoM overexpression may have a potential role in improving insulin resistance in vivo and modulating apoM expression might be a future therapeutic strategy against insulin resistance in type 2 diabetes.

  14. Glucose rapidly decreases plasma membrane GLUT4 content in rat skeletal muscle.

    Science.gov (United States)

    Marette, A; Dimitrakoudis, D; Shi, Q; Rodgers, C D; Klip, A; Vranic, M

    1999-02-01

    We have previously demonstrated that chronic hyperglycemia per se decreases GLUT4 glucose transporter expression and plasma membrane content in mildly streptozotocin- (STZ) diabetic rats (Biochem. J. 284, 341-348, 1992). In the present study, we investigated the effect of an acute rise in glycemia on muscle GLUT4 and GLUT1 protein contents in the plasma membrane, in the absence of insulin elevation. Four experimental groups of rats were analyzed in the postabsorptive state: 1. Control rats. 2. Hyperglycemic STZ-diabetic rats with moderately reduced fasting insulin levels. 3. STZ-diabetic rats made normoglycemic with phlorizin treatment. 4. Phlorizin-treated (normoglycemic) STZ-diabetic rats infused with glucose for 40 min. The uniqueness of the latter model is that glycemia can be rapidly raised without any concomitant increase in plasma insulin levels. Plasma membranes were isolated from hindlimb muscle and GLUT1 and GLUT4 proteins amounts determined by Western blot analysis. As predicted, STZ-diabetes caused a significant decrease in the abundance of GLUT4 in the isolated plasma membranes. Normalization of glycemia for 3 d with phlorizin treatment restored plasma membrane GLUT4 content in muscle of STZ-diabetic rats. A sudden rise in glycemia over a period of 40 min caused the GLUT4 levels in the plasma membrane fraction to decrease to those of nontreated STZ-diabetic rats. In contrast to the GLUT4 transporter, plasma membrane GLUT1 abundance was not changed by the acute glucose challenge. It is concluded that glucose can have regulatory effect by acutely reducing plasma membrane GLUT4 protein contents in rat skeletal muscle. We hypothesize that this glucose-induced downregulation of plasma membrane GLUT4 could represent a protective mechanism against excessive glucose uptake under hyperglycemic conditions accompanied by insulin resistance.

  15. BACHD rats expressing full-length mutant huntingtin exhibit differences in social behavior compared to wild-type littermates.

    Directory of Open Access Journals (Sweden)

    Giuseppe Manfré

    Full Text Available Huntington disease (HD is a devastating inherited neurodegenerative disorder characterized by progressive motor, cognitive, and psychiatric symptoms without any cure to slow down or stop the progress of the disease. The BACHD rat model for HD carrying the human full-length mutant huntingtin protein (mHTT with 97 polyQ repeats has been recently established as a promising model which reproduces several HD-like features. While motor and cognitive functions have been characterized in BACHD rats, little is known about their social phenotype.This study focuses especially on social behavior since evidence for social disturbances exists in human patients. Our objective was to compare social behavior in BACHD and wild-type (WT rats at different ages, using two different measures of sociability.Animals were tested longitudinally at the age of 2, 4 and 8 months in the social interaction test to examine different parameters of sociability. A separate cohort of 7 month old rats was tested in the three chamber social test to measure both sociability and social novelty. Gene expression analyses in 8 months old animals were performed by real time qRT-PCR to evaluate a potential involvement of D1 and D2 dopaminergic receptors and the contribution of Brain-derived neurotrophic factor (BDNF to the observed behavioral alterations.In the social interaction test, BACHD rats showed age-dependent changes in behaviour when they were-re introduced to their cagemate after a 24 hours-period of individual housing. The time spent on nape attacks increased with aging. Furthermore, a significant higher level of pinning at 2 months of age was shown in the BACHD rats compared to wild-types, followed by a reduction at 4 and 8 months. On the other hand, BACHD rats exhibited a decreased active social behaviour compared to wild-types, reflected by genotype-effects on approaching, following and social nose contact. In the three chamber social test, BACHD rats seemed to show a mild

  16. BACHD rats expressing full-length mutant huntingtin exhibit differences in social behavior compared to wild-type littermates.

    Science.gov (United States)

    Manfré, Giuseppe; Novati, Arianna; Faccini, Ilaria; Rossetti, Andrea C; Bosch, Kari; Molteni, Raffaella; Riva, Marco A; Van der Harst, Johanneke E; Nguyen, Huu Phuc; Homberg, Judith R

    2018-01-01

    Huntington disease (HD) is a devastating inherited neurodegenerative disorder characterized by progressive motor, cognitive, and psychiatric symptoms without any cure to slow down or stop the progress of the disease. The BACHD rat model for HD carrying the human full-length mutant huntingtin protein (mHTT) with 97 polyQ repeats has been recently established as a promising model which reproduces several HD-like features. While motor and cognitive functions have been characterized in BACHD rats, little is known about their social phenotype. This study focuses especially on social behavior since evidence for social disturbances exists in human patients. Our objective was to compare social behavior in BACHD and wild-type (WT) rats at different ages, using two different measures of sociability. Animals were tested longitudinally at the age of 2, 4 and 8 months in the social interaction test to examine different parameters of sociability. A separate cohort of 7 month old rats was tested in the three chamber social test to measure both sociability and social novelty. Gene expression analyses in 8 months old animals were performed by real time qRT-PCR to evaluate a potential involvement of D1 and D2 dopaminergic receptors and the contribution of Brain-derived neurotrophic factor (BDNF) to the observed behavioral alterations. In the social interaction test, BACHD rats showed age-dependent changes in behaviour when they were-re introduced to their cagemate after a 24 hours-period of individual housing. The time spent on nape attacks increased with aging. Furthermore, a significant higher level of pinning at 2 months of age was shown in the BACHD rats compared to wild-types, followed by a reduction at 4 and 8 months. On the other hand, BACHD rats exhibited a decreased active social behaviour compared to wild-types, reflected by genotype-effects on approaching, following and social nose contact. In the three chamber social test, BACHD rats seemed to show a mild deficit in

  17. BACHD rats expressing full-length mutant huntingtin exhibit differences in social behavior compared to wild-type littermates

    Science.gov (United States)

    Manfré, Giuseppe; Novati, Arianna; Faccini, Ilaria; Rossetti, Andrea C.; Bosch, Kari; Molteni, Raffaella; Riva, Marco A.; Van der Harst, Johanneke E.; Homberg, Judith R.

    2018-01-01

    Background Huntington disease (HD) is a devastating inherited neurodegenerative disorder characterized by progressive motor, cognitive, and psychiatric symptoms without any cure to slow down or stop the progress of the disease. The BACHD rat model for HD carrying the human full-length mutant huntingtin protein (mHTT) with 97 polyQ repeats has been recently established as a promising model which reproduces several HD-like features. While motor and cognitive functions have been characterized in BACHD rats, little is known about their social phenotype. Objective This study focuses especially on social behavior since evidence for social disturbances exists in human patients. Our objective was to compare social behavior in BACHD and wild-type (WT) rats at different ages, using two different measures of sociability. Methods Animals were tested longitudinally at the age of 2, 4 and 8 months in the social interaction test to examine different parameters of sociability. A separate cohort of 7 month old rats was tested in the three chamber social test to measure both sociability and social novelty. Gene expression analyses in 8 months old animals were performed by real time qRT-PCR to evaluate a potential involvement of D1 and D2 dopaminergic receptors and the contribution of Brain-derived neurotrophic factor (BDNF) to the observed behavioral alterations. Results In the social interaction test, BACHD rats showed age-dependent changes in behaviour when they were-re introduced to their cagemate after a 24 hours-period of individual housing. The time spent on nape attacks increased with aging. Furthermore, a significant higher level of pinning at 2 months of age was shown in the BACHD rats compared to wild-types, followed by a reduction at 4 and 8 months. On the other hand, BACHD rats exhibited a decreased active social behaviour compared to wild-types, reflected by genotype-effects on approaching, following and social nose contact. In the three chamber social test, BACHD rats

  18. Decreased Hippocampal 5-HT and DA Levels Following Sub-Chronic Exposure to Noise Stress: Impairment in both Spatial and Recognition Memory in Male Rats.

    Science.gov (United States)

    Haider, Saida; Naqvi, Fizza; Batool, Zehra; Tabassum, Saiqa; Perveen, Tahira; Saleem, Sadia; Haleem, Darakhshan Jabeen

    2012-01-01

    Mankind is exposed to a number of stressors, and among them noise is one which can cause intense stress. High levels of background noise can severely impair one's ability to concentrate. The present study was aimed to investigate the effect of sub-chronic noise stress on cognitive behavior and hippocampal monoamine levels in male rats. The study was performed on 12 male Wistar rats, divided into two groups; the control and noise-exposed. The rats in the test group were subjected to noise stress, 4h daily for 15 days. Cognitive testing was performed by the Elevated Plus Maze test (EPM) and Novel Object Recognition test (NOR). HPLC-EC was used to determine hippocampal monoamine levels and their metabolites. The data obtained revealed a significant decrease in hippocampal serotonin (5-hydroxytryptamine; 5-HT) and dopamine (DA) levels, whereas turnover ratios of 5-HT and DA were significantly increased compared to the controls. Rats exposed to noise exhibited a significant decrement in spatial memory. A significantly decreased recognition index of rats exposed to noise as compared to the control was also observed in the NOR test. Results of the present findings suggest the role of decreased hippocampal 5-HT and DA in the impairment of cognitive function following noise exposure.

  19. Piroxicam decreases postirradiation colonic neoplasia in the rat.

    Science.gov (United States)

    Northway, M G; Scobey, M W; Cassidy, K T; Geisinger, K R

    1990-12-01

    This study evaluated the effects of the nonsteroidal antiinflammatory agent piroxicam on chronic radiation proctitis in the rat. Forty female Wistar rats received a 2250-cGy dose of irradiation to the distal 2 cm of the colon. Twenty received piroxicam 8.0 mg/kg orally 30 minutes before exposure and 24 hours after exposure; 20 rats served as irradiated controls. All animals were evaluated by colonoscopy 1 and 3 weeks postexposure and every third week until death or killing at 1 year. At killing, colons were removed for light microscopic examination. One year postirradiation results showed no differences in mortality, vascular changes, acute inflammation, colitis cystica profunda, or rectal stricture between the control and piroxicam-treated groups. However, at 1 year postirradiation the control group demonstrated neoplasia in 15 of 19 animals compared with eight of 20 animals in the piroxicam-treated group. The first endoscopic appearance of colonic neoplasm occurred at 15 weeks postirradiation in one control irradiated rat whereas the first evidence of endoscopic neoplasm in the piroxicam-treated group did not occur until 36 weeks postirradiation. Histologic examination documented a tendency toward a greater presence of adenocarcinomas in the control group compared with the piroxicam-treated group. The authors conclude that piroxicam treatment significantly decreased the incidence of colonic neoplasia in general as well as delayed the endoscopic appearance of colonic neoplasia in rats after pelvic irradiation.

  20. Piroxicam decreases postirradiation colonic neoplasia in the rat

    International Nuclear Information System (INIS)

    Northway, M.G.; Scobey, M.W.; Cassidy, K.T.; Geisinger, K.R.

    1990-01-01

    This study evaluated the effects of the nonsteroidal antiinflammatory agent piroxicam on chronic radiation proctitis in the rat. Forty female Wistar rats received a 2250-cGy dose of irradiation to the distal 2 cm of the colon. Twenty received piroxicam 8.0 mg/kg orally 30 minutes before exposure and 24 hours after exposure; 20 rats served as irradiated controls. All animals were evaluated by colonoscopy 1 and 3 weeks postexposure and every third week until death or killing at 1 year. At killing, colons were removed for light microscopic examination. One year postirradiation results showed no differences in mortality, vascular changes, acute inflammation, colitis cystica profunda, or rectal stricture between the control and piroxicam-treated groups. However, at 1 year postirradiation the control group demonstrated neoplasia in 15 of 19 animals compared with eight of 20 animals in the piroxicam-treated group. The first endoscopic appearance of colonic neoplasm occurred at 15 weeks postirradiation in one control irradiated rat whereas the first evidence of endoscopic neoplasm in the piroxicam-treated group did not occur until 36 weeks postirradiation. Histologic examination documented a tendency toward a greater presence of adenocarcinomas in the control group compared with the piroxicam-treated group. The authors conclude that piroxicam treatment significantly decreased the incidence of colonic neoplasia in general as well as delayed the endoscopic appearance of colonic neoplasia in rats after pelvic irradiation. 41 references

  1. Piroxicam decreases postirradiation colonic neoplasia in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Northway, M.G.; Scobey, M.W.; Cassidy, K.T.; Geisinger, K.R. (Wake Forest Univ., Winston Salem, NC (USA))

    1990-12-01

    This study evaluated the effects of the nonsteroidal antiinflammatory agent piroxicam on chronic radiation proctitis in the rat. Forty female Wistar rats received a 2250-cGy dose of irradiation to the distal 2 cm of the colon. Twenty received piroxicam 8.0 mg/kg orally 30 minutes before exposure and 24 hours after exposure; 20 rats served as irradiated controls. All animals were evaluated by colonoscopy 1 and 3 weeks postexposure and every third week until death or killing at 1 year. At killing, colons were removed for light microscopic examination. One year postirradiation results showed no differences in mortality, vascular changes, acute inflammation, colitis cystica profunda, or rectal stricture between the control and piroxicam-treated groups. However, at 1 year postirradiation the control group demonstrated neoplasia in 15 of 19 animals compared with eight of 20 animals in the piroxicam-treated group. The first endoscopic appearance of colonic neoplasm occurred at 15 weeks postirradiation in one control irradiated rat whereas the first evidence of endoscopic neoplasm in the piroxicam-treated group did not occur until 36 weeks postirradiation. Histologic examination documented a tendency toward a greater presence of adenocarcinomas in the control group compared with the piroxicam-treated group. The authors conclude that piroxicam treatment significantly decreased the incidence of colonic neoplasia in general as well as delayed the endoscopic appearance of colonic neoplasia in rats after pelvic irradiation. 41 references.

  2. Taurine decreased uric acid levels in hyperuricemic rats and alleviated kidney injury.

    Science.gov (United States)

    Feng, Ying; Sun, Fang; Gao, Yongchao; Yang, Jiancheng; Wu, Gaofeng; Lin, Shumei; Hu, Jianmin

    2017-07-29

    Hyperuricemia can lead to direct kidney damage. Taurine participates in several renal physiological processes and has been shown as a renoprotective agent. It has been reported that taurine could reduce uric acid levels in diabetic rats, but to date there was no research on the effects of taurine on hyperuricemic rats with kidney injury. In present study, hyperuricemic rat models were induced by intragastric administration of adenine and ethambutol hydrochloride for 10 days, and taurine (1% or 2%) were added in the drinking water 7 days in advance for consecutively 17 days. The results showed that taurine alleviated renal morphological and pathological changes as well as kidney dysfunction in hyperuricemic rats. Taurine could efficiently decrease the elevated xanthine oxidase activities in hyperuricemic rats, indicating its effect on the regulation of uric acid formation. The reabsorption and secretion of uric acid are dependent on a number of urate transporters. Expressions of three urate transporters were significantly down-regulated in hyperuricemic rats, while taurine prevented the decrease of mRNA and protein expression levels of these urate transporters. The results indicate that taurine might play a role in the regulation of renal uric acid excretion. Therefore, taurine could be a promising agent for the treatment of hyperuricemia. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Decrease of Plasma Glucose by Hibiscus taiwanensis in Type-1-Like Diabetic Rats

    Science.gov (United States)

    Wang, Lin-Yu; Chung, Hsien-Hui

    2013-01-01

    Hibiscus taiwanensis (Malvaceae) is widely used as an alternative herb to treat disorders in Taiwan. In the present study, it is used to screen the effect on diabetic hyperglycemia in streptozotocin-induced diabetic rats (STZ-diabetic rats). The extract of Hibiscus taiwanensis showed a significant plasma glucose-lowering action in STZ-diabetic rats. Stems of Hibiscus taiwanensis are more effective than other parts to decrease the plasma glucose in a dose-dependent manner. Oral administration of Hibiscus taiwanensis three times daily for 3 days into STZ-diabetic rats increased the sensitivity to exogenous insulin showing an increase in insulin sensitivity. Moreover, similar repeated administration of Hibiscus taiwanensis for 3 days in STZ-diabetic rats produced a marked reduction of phosphoenolpyruvate carboxykinase (PEPCK) expression in liver and an increased expression of glucose transporter subtype 4 (GLUT 4) in skeletal muscle. Taken together, our results suggest that Hibiscus taiwanensis has the ability to lower plasma glucose through an increase in glucose utilization via elevation of skeletal GLUT 4 and decrease of hepatic PEPCK in STZ-diabetic rats. PMID:23690841

  4. Simvastatin decreases steroid production in the H295R cell line and decreases steroids and FSH in female rats

    DEFF Research Database (Denmark)

    Jensen, Anna Guldvang; Hansen, Cecilie Hurup; Weisser, Johan J

    2015-01-01

    .10-0.13μM for SV and from 0.019-0.055μM for SVA. In rats, SV decreased progestagens in ovaries, brain and plasma, and plasma FSH in the M (72.4% decrease) and H group (76.6% decrease). Because progestagens and gonadotropins are major players in fertility, administration of SV might exert negative effects...

  5. Decreased expression of caspase3 in penis and prostate tissues of rat after the treatment with buceng (Pimpinella alpina Molk & Euricoma longifolia Jack

    Directory of Open Access Journals (Sweden)

    Taufiqurrachman Taufiqurrachman

    2013-02-01

    Full Text Available Background: Buceng {combination of pasak bumi (Eurycoma longifolia Jack and purwoceng (Pimpinella alpine Molk} has been proven to increase testosterone (Te level and decrease apoptosis. Unfortunately, there is no evidence whether these effects are mediated by the declining of caspase3. Objective of this study was to evaluate whether buceng could decrease the expression of caspase3 of penis and prostate cells in Sprague Dawley male rats.Methods: Twenty four Sprague Dawley male rats weighing 300 g (90 days old were randomly assigned into 4 groups of 6 male rats. Group A, rats were castrated and received buceng 50 mg. Group B, rats were not castrated, sacrifices as positive control. Group C, rats were castrated and given 2 mL aquadest as negative control. Group D, rats were castrated and got of 6.75 mg mesterolone, dissolved in 2 mL water. MANOVA statistical analysis was adopted to examine the difference expression of caspase3 in all groups. The comparison of caspase3 expression between two groups exhibiting difference values were evaluated by Post Hoc test.Results: MANOVA revealed statistically significant differences in the expression of caspase3 of penis and prostate tissues among the four groups. Post Hoct test also indicated that expression of caspase3 in group A (buceng (33.56; 35.83 was significantly lower compared to group C (negative control (54.33; 60.07 and group D (mesterolone (51.91;56.21, p = 0.000, and higher compared than group B or normal rats (29.40; 27.72, but statistically not significant (p = 0.826.Conclusion: The treatment of 50 mg buceng/day for 30 consecutive days could decrease caspase3 expression in penis and prostate cells. (Med J Indones. 2013;22:2-8Keywords: Apoptosis, buceng (Pimpinella alpine Molk – Eurycoma longifolia Jack, caspase3 

  6. Peat Biomass Smoke Particle Exposure in Rats Decreases ...

    Science.gov (United States)

    Wildland fires, favored by prolonged drought and rising temperatures, generate significant amounts of ambient particulate matter (PM), which has been linked to adverse health outcomes. The eastern North Carolina peat fires of Pocosin Lake in 2008 and Pains Bay in 2011 were some of the more prominent recent wildland fires and were associated with increased cardiovascular hospitalizations. The biological impacts of peat biomass emissions and the specific mechanisms driving these responses are unclear. The purpose of this study was to investigate the cardiopulmonary responses of peat biomass smoke exposure in rats. We hypothesized that PM exposure would dose-dependently alter cardiopulmonary function. Male Sprague-Dawley rats were exposed to 30 µg (Lo PM) or 300 µg (Hi PM) of peat biomass smoke PM extracts suspended in 200 µL of saline, or saline vehicle alone by oropharyngeal aspiration (OA). Immediately following OA rats were placed in a whole-body plethysmograph and ventilatory data were recorded for 12 minutes. One day following OA, rats were anesthetized with isoflurane for ultrasound assessment of cardiovascular function. Hi PM caused decreases in expiratory timing as early as 4-6 minutes after exposure relative to Lo PM (p = 0.02) and Vehicle (p= 0.06), which resolved shortly thereafter. One day after OA, ultrasounds revealed that Hi PM exposure increased end diastolic volume (EDV) by 16% (p = 0.03) over Vehicle and 13% (p = 0.06) over Lo PM. In addition,

  7. Increased Arousal Levels and Decreased Sleep by Brain Music in Rats

    Institute of Scientific and Technical Information of China (English)

    Guang-Zhan Fang; Chun-Peng Zhang; Dan Wu; Yang Xia; Yong-Xiu Lai; De-Zhong Yao

    2009-01-01

    More and more studies have been reported on whether music and other types of auditory stimulation would improve the quality of sleep.Many of these studies have found significant results,but others argue that music is not significantly better than the tones or control conditions in improving sleep.For further understanding the relationship between music and sleep or music and arousal,the present study therefore examines the effects of brain music on sleep and arousal by means of biofeedback.The music is from the transformation of rapid eye movement (REM) sleep electroencephalogram (EEG) of rats using an algorithm in the Chengdu Brain Music (CBM) system.When the brain music was played back to rats,EEG data were recorded to assess the efficacy of music to induce or improve sleep,or increase arousal levels by sleep staging,etc.Our results demonstrate that exposure to the brain music increases arousal levels and decreases sleep in rats,and the underlying mechanism of decreased non-rapid eye movement (NREM) and REM sleep may be different.

  8. A Nori but not a Konbu, dietary supplement decreases the cholesterolaemia, liver fat infiltration and mineral bioavailability in hypercholesterolaemic growing Wistar rats.

    Science.gov (United States)

    Bocanegra, Arancha; Nieto, Ana; Bastida, Sara; Benedí, Juana; Sánchez-Muniz, Francisco J

    2008-02-01

    The nutritional consequences of algae consumption in young populations consuming hypercholesterolaemic diets have hardly been investigated. This study tests the effect of algae supplementation of cholesterol-enriched balanced diets on growth, dietary efficiency ratio, mineral intake and absorption, organ weight and structure and cholesterolaemia in growing Wistar rats. Three groups of ten rats each were fed for 3 weeks with experimental diets containing 93 % casein-soyabean oil base with 2.4 % cholesterol-raising agent and 7 % supplement. The control group received cellulose (35 %), group 2 consumed Nori (33.8 % fibre) and group 3 consumed Konbu (36.1 % fibre). Food intake and body weight gain were not significantly affected. Algae groups presented significantly higher dietary efficiency ratio values than control rats. Apparent absorption of several minerals appeared significantly affected, mainly in Nori-fed rats, with a significant decrease in the ratio of Zn and Cu intakes and apparent absorption. Nori diet significantly decreased plasma cholesterol. Algae supplement did not significantly affect organ size and structure. Control and Konbu rats showed severe liver fat infiltration, while Nori rats exhibited a significantly lower degree of lipid-like hepatocyte vacuolization but light to moderate leukocyte infiltration. Light to moderate scaling off of the epithelium and moderate submucosa oedema was observed in all groups. Although long-term studies are needed to check the possible extrapolation of these data to human subjects, it can be concluded that a Nori, but not a Konbu, dietary supplement reverses the negative effect of dietary cholesterol intake and also appears to be related to mineral availability in growing subjects.

  9. Dynamic resistance training decreases sympathetic tone in hypertensive ovariectomized rats

    Energy Technology Data Exchange (ETDEWEB)

    Shimojo, G.L.; Palma, R.K.; Brito, J.O.; Sanches, I.C. [Laboratório de Fisiologia Translacional, Programa de Ciências da Reabilitação, Universidade Nove de Julho, São Paulo, SP (Brazil); Irigoyen, M.C. [Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); De Angelis, K. [Laboratório de Fisiologia Translacional, Programa de Ciências da Reabilitação, Universidade Nove de Julho, São Paulo, SP (Brazil)

    2015-03-27

    The aim of this study was to investigate the effects of resistance exercise training on hemodynamics and cardiac autonomic control in ovariectomized spontaneously hypertensive rats. Female rats were divided into 4 groups: sedentary control (SC), sedentary hypertensive (SH), sedentary hypertensive ovariectomized (SHO), and resistance-trained hypertensive ovariectomized (RTHO). Resistance exercise training was performed on a vertical ladder (5 days/week, 8 weeks) at 40-60% maximal load. Direct arterial pressure was recorded. Vagal and sympathetic tones were measured by heart rate (HR) responses to methylatropine (3 mg/kg, iv) and propranolol (4 mg/kg, iv). Ovariectomy resulted in additional increases in blood pressure in hypertensive rats and was associated with decreased vagal tone. Resistance exercise trained rats had lower mean arterial pressure than untrained rats (RTHO: 159±2.2 vs SHO: 177±3.4 mmHg), as well as resting bradycardia (RTHO: 332±9.0 vs SHO: 356±5 bpm). Sympathetic tone was also lower in the trained group. Moreover, sympathetic tone was positively correlated with resting HR (r=0.7, P<0.05). The additional arterial pressure increase in hypertensive rats caused by ovarian hormone deprivation was attenuated by moderate-intensity dynamic resistance training. This benefit may be associated with resting bradycardia and reduced cardiac sympathetic tone after training, which suggests potential benefits of resistance exercise for the management of hypertension after ovarian hormone deprivation.

  10. Dynamic resistance training decreases sympathetic tone in hypertensive ovariectomized rats

    International Nuclear Information System (INIS)

    Shimojo, G.L.; Palma, R.K.; Brito, J.O.; Sanches, I.C.; Irigoyen, M.C.; De Angelis, K.

    2015-01-01

    The aim of this study was to investigate the effects of resistance exercise training on hemodynamics and cardiac autonomic control in ovariectomized spontaneously hypertensive rats. Female rats were divided into 4 groups: sedentary control (SC), sedentary hypertensive (SH), sedentary hypertensive ovariectomized (SHO), and resistance-trained hypertensive ovariectomized (RTHO). Resistance exercise training was performed on a vertical ladder (5 days/week, 8 weeks) at 40-60% maximal load. Direct arterial pressure was recorded. Vagal and sympathetic tones were measured by heart rate (HR) responses to methylatropine (3 mg/kg, iv) and propranolol (4 mg/kg, iv). Ovariectomy resulted in additional increases in blood pressure in hypertensive rats and was associated with decreased vagal tone. Resistance exercise trained rats had lower mean arterial pressure than untrained rats (RTHO: 159±2.2 vs SHO: 177±3.4 mmHg), as well as resting bradycardia (RTHO: 332±9.0 vs SHO: 356±5 bpm). Sympathetic tone was also lower in the trained group. Moreover, sympathetic tone was positively correlated with resting HR (r=0.7, P<0.05). The additional arterial pressure increase in hypertensive rats caused by ovarian hormone deprivation was attenuated by moderate-intensity dynamic resistance training. This benefit may be associated with resting bradycardia and reduced cardiac sympathetic tone after training, which suggests potential benefits of resistance exercise for the management of hypertension after ovarian hormone deprivation

  11. Psidium guajava leaves decrease arthritic symptoms in adjuvant-induced arthritic rats

    Directory of Open Access Journals (Sweden)

    Hanif Nasiatul Baroroh

    2016-04-01

    Psidium guajava leaf extract is effective in decreasing the inflammatory response and arthritic symptoms in rats with adjuvant-induced arthritis. Psidium guajava leaves can be developed into an alternative anti-arthritis treatment.

  12. Dietary treatment for decreasing 141Ce body burden in immature rats

    International Nuclear Information System (INIS)

    Kargacin, B.; Kostial, K.; Landeka, M.

    1987-01-01

    The purpose of this work was to evaluate the effect of prolonged (immediate or delayed) administration of dietary additives to suckling rats on the absorption and retention of radioactive cerium in the body. The experiment was performed on 6-day-old suckling rats. According to dietary treatment the animals were divided into three groups. Each group was artificially fed over 8 h for 6 or 12 days on one of the diets: the first group of animals was fed milk, the second group was given ingredients of rat diet and the third received milk during the first 2 days of the experiment and the ingredients of rat diet afterwards. At the end of the artificial feeding period the pups returned to their mothers and suckled overnight. On the 1st day of the experiment the food was labelled with 141 Ce. Whole body radioactivity was determined in a double crystal scintillation counter every 48 h over a 12-day period. Half of the animals from each group were killed 6 days after 141 Ce administration and the other half after 12 days. At these intervals retention was determined in the gut, liver, kidneys and femur. The early and delayed administration of rat diet ingredients - fish meal, sunflower meal, alfalfa, cane molasses and premix - greatly reduced whole body retention. The early treatment was more efficacious than the delayed one. The reduction was mostly due to decreased gut retention but organ retentions were also lower. The results obtained indicate that by prolonged (immediate or delayed) administration of some dietary means the retention of radioactive cerium in sucklings can be significantly decreased. (orig.)

  13. Decreased Endogenous Hydrogen Sulfide Generation in Penile Tissues of Diabetic Rats with Erectile Dysfunction.

    Science.gov (United States)

    Zhang, Yan; Yang, Jun; Wang, Tao; Wang, Shao-Gang; Liu, Ji-Hong; Yin, Chun-Ping; Ye, Zhang-Qun

    2016-03-01

    Hydrogen sulfide (H2S) is an endogenous gasotransmitter. The levels of H2S-generating enzyme expression and endogenous H2S production in diabetic rats with erectile dysfunction (ED) remain unknown. The aim of this study was to investigate the expression of the H2S-generating enzymes and endogenous production of H2S in penile tissues of diabetic ED rats. Experimental rats were randomly divided into normal control group, apomorphine (APO)-positive group and APO-negative group. Primary rat corpus cavernosum smooth muscle cells (CCSMCs) and aortic endothelial cells (AECs) were isolated and cultured in vitro under 3 different conditions: normal glucose (NG) condition, high glucose (HG) condition, and osmotic control (OC) condition. Erectile function; H2S concentrations in plasma or penile tissues; expression of H2S-generating enzymes and endogenous H2S production in penile tissues, CCSMCs, and AECs. Erectile function was significantly decreasedin the APO-negative group. In addition to significantly decreased expression of cysteine aminotransferase (CAT), d-amino acid oxidase (DAO), and 3-mercaptopyruvate sulfurtransferase (3-MST), the H2S concentrations in plasma and penile tissues and endogenous H2S production were significantly decreased in the APO-negative group. Endogenous H2S production by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) decreased to the same levels in the APO-negative and APO-positive groups as that in the normal control group. However, CBS and CSE expression remained unchanged in the 3 groups. Under HG conditions, H2S-generating enzyme expression in AECs did not change, while CAT, DAO, and 3-MST expression in CCSMCs was significantly decreased. In both cell types, H2S production by these enzymes was decreased in the HG group. Endogenous H2S production was significantly decreased in the diabetic ED rats' penile tissues due to downregulated expression of the CAT/3-MST and DAO/3-MST pathways and low activities of CBS and CSE

  14. Decreased erythrocyte CCS content is a biomarker of copper overload in rats.

    Science.gov (United States)

    Bertinato, Jesse; Sherrard, Lindsey; Plouffe, Louise J

    2010-07-02

    Copper (Cu) is an essential trace metal that is toxic in excess. It is therefore important to be able to accurately assess Cu deficiency or overload. Cu chaperone for Cu/Zn superoxide dismutase (CCS) protein expression is elevated in tissues of Cu-deficient animals. Increased CCS content in erythrocytes is particularly sensitive to decreased Cu status. Given the lack of a non-invasive, sensitive and specific biomarker for the assessment of Cu excess, we investigated whether CCS expression in erythrocytes reflects Cu overload. Rats were fed diets containing normal or high levels of Cu for 13 weeks. Diets contained 6.3 +/- 0.6 (Cu-N), 985 +/- 14 (Cu-1000) or 1944 +/- 19 (Cu-2000) mg Cu/kg diet. Rats showed a variable response to the high Cu diets. Some rats showed severe Cu toxicity, while other rats showed no visible signs of toxicity and grew normally. Also, some rats had high levels of Cu in liver, whereas others had liver Cu concentrations within the normal range. Erythrocyte CCS protein expression was 30% lower in Cu-2000 rats compared to Cu-N rats (P CCS (47% reduction, P CCS content is associated with Cu overload in rats and should be evaluated further as a potential biomarker for assessing Cu excess in humans.

  15. Wheel running decreases palatable diet preference in Sprague-Dawley rats.

    Science.gov (United States)

    Moody, Laura; Liang, Joy; Choi, Pique P; Moran, Timothy H; Liang, Nu-Chu

    2015-10-15

    Physical activity has beneficial effects on not only improving some disease conditions but also by preventing the development of multiple disorders. Experiments in this study examined the effects of wheel running on intakes of chow and palatable diet e.g. high fat (HF) or high sucrose (HS) diet in male and female Sprague-Dawley rats. Experiment 1 demonstrated that acute wheel running results in robust HF or HS diet avoidance in male rats. Although female rats with running wheel access initially showed complete avoidance of the two palatable diets, the avoidance of the HS diet was transient. Experiment 2 demonstrated that male rats developed decreased HF diet preferences regardless of the order of diet and wheel running access presentation. Running associated changes in HF diet preference in females, on the other hand, depended on the testing schedule. In female rats, simultaneous presentation of the HF diet and running access resulted in transient complete HF diet avoidance whereas running experience prior to HF diet access did not affect the high preference for the HF diet. Ovariectomy in females resulted in HF diet preference patterns that were similar to those in male rats during simultaneous exposure of HF and wheel running access but similar to intact females when running occurred before HF exposure. Overall, the results demonstrated wheel running associated changes in palatable diet preferences that were in part sex dependent. Furthermore, ovarian hormones play a role in some of the sex differences. These data reveal complexity in the mechanisms underlying exercise associated changes in palatable diet preference. Published by Elsevier Inc.

  16. Wheel running decreases palatable diet preference in Sprague-Dawley rats

    Science.gov (United States)

    Moody, Laura; Liang, Joy; Choi, Pique P.; Moran, Timothy H.; Liang, Nu-Chu

    2015-01-01

    Physical activity has beneficial effects on not only improving some disease conditions but also by preventing the development of multiple disorders. Experiments in this study examined the effects of wheel running on intakes of chow and palatable diet e.g. high fat (HF) or high sucrose (HS) diet in male and female Sprague Dawley rats. Experiment 1 demonstrated that acute wheel running results in robust HF or HS diet avoidance in male rats. Although female rats with running wheel access initially showed complete avoidance of the two palatable diets, the avoidance of the HS diet was transient. Experiment 2 demonstrated that male rats developed decreased HF diet preferences regardless of the order of diet and wheel running access presentation. Running associated changes in HF diet preference in females, on the other hand, depended on the testing schedule. In female rats, simultaneous presentation of the HF diet and running access resulted in transient complete HF diet avoidance whereas running experience prior to HF diet access did not affect the high preference for the HF diet. Ovariectomy in females resulted in HF diet preference patterns that were similar to those in male rats during simultaneous exposure of HF and wheel running access but similar to intact females when running occurred before HF exposure. Overall, the results demonstrated wheel running associated changes in palatable diet preferences that were in part sex dependent. Furthermore, ovarian hormones play a role in some of the sex differences. These data reveal complexity in the mechanisms underlying exercise associated changes in palatable diet preference. PMID:25791204

  17. Tualang honey improves memory performance and decreases depressive-like behavior in rats exposed to loud noise stress

    Directory of Open Access Journals (Sweden)

    Khairunnuur Fairuz Azman

    2015-01-01

    Full Text Available Recent evidence has exhibited dietary influence on the manifestation of different types of behavior induced by stressor tasks. The present study examined the effects of Tualang honey supplement administered with the goal of preventing or attenuating the occurrence of stress-related behaviors in male rats subjected to noise stress. Forty-eight adult male rats were randomly divided into the following four groups: i nonstressed with vehicle, ii nonstressed with Tualang honey, iii stressed with vehicle, and iv stressed with honey. The supplement was given once daily via oral gavage at 0.2 g/kg body weight. Two types of behavioral tests were performed, namely, the novel object recognition test to evaluate working memory and the forced swimming test to evaluate depressive-like behavior. Data were analyzed by a two-way analysis of variance (ANOVA using IBM SPSS 18.0. It was observed that the rats subjected to noise stress expressed higher levels of depressive-like behavior and lower memory functions compared to the unexposed control rats. In addition, our results indicated that the supplementation regimen successfully counteracted the effects of noise stress. The forced swimming test indicated that climbing and swimming times were significantly increased and immobility times significantly decreased in honey-supplemented rats, thereby demonstrating an antidepressant-like effect. Furthermore, cognitive function was shown to be intensely affected by noise stress, but the effects were counteracted by the honey supplement. These findings suggest that subchronic exposure to noise stress induces depressive-like behavior and reduces cognitive functions, and that these effects can be attenuated by Tualang honey supplementation. This warrants further studies to examine the role of Tulang honey in mediating such effects.

  18. [Effects of dietary wheat gluten level on decreasing plasma homocysteine concentration in rats].

    Science.gov (United States)

    Liu, Yiqun; Han, Feng; Sun, Licui; Lu, Jiaxi; Sugiyama, Kimio; Huang, Zhenwu

    2015-05-01

    To investigate the effects of different level of casein and wheat gluten on decreasing plasma homocysteine concentration in rats. 48 rats of the Wistar were fed with different level of casein (12.5%, 25% and 50%) and wheat gluten (14.5%, 29% and 58%) diets for 14 days, and they were killed by decapitation to obtain blood and livers was subject to analysis the concentration of homocysteine, cysteine and other amino acids, as well as BHMT and CBS activities. Body weight gain in rats fed wheat gluten dietary was significantly less than casein dietary, but food intake was significantly decreased in wheat gluten group with increasing of the protein content. The plasma homocysteine concentration in rats fed wheat gluten was marketly less than casein, however plasma cysteine concentration in wheat gluten was higher than casein group. The effects of wheat gluten on plasma homocysteine concentration are mainly depends on the low contents of methionine and high cysteine content, but the low contents of lyscine and threonine are not ignored. The mainly mechanism is that the increased cysteine concentration promot enzyme activities of homocystein metabolism, and increase the consumption of homocysteine.

  19. Decreased insulin secretion in pregnant rats fed a low protein diet.

    Science.gov (United States)

    Gao, Haijun; Ho, Eric; Balakrishnan, Meena; Yechoor, Vijay; Yallampalli, Chandra

    2017-10-01

    Low protein (LP) diet during pregnancy leads to reduced plasma insulin levels in rodents, but the underlying mechanisms remain unclear. Glucose is the primary insulin secretagogue, and enhanced glucose-stimulated insulin secretion (GSIS) in beta cells contributes to compensation for insulin resistance and maintenance of glucose homeostasis during pregnancy. In this study, we hypothesized that plasma insulin levels in pregnant rats fed LP diet are reduced due to disrupted GSIS of pancreatic islets. We first confirmed reduced plasma insulin levels, then investigated in vivo insulin secretion by glucose tolerance test and ex vivo GSIS of pancreatic islets in the presence of glucose at different doses, and KCl, glibenclamide, and L-arginine. Main findings include (1) plasma insulin levels were unaltered on day 10, but significantly reduced on days 14-22 of pregnancy in rats fed LP diet compared to those of control (CT) rats; (2) insulin sensitivity was unchanged, but glucose intolerance was more severe in pregnant rats fed LP diet; (3) GSIS in pancreatic islets was lower in LP rats compared to CT rats in the presence of glucose, KCl, and glibenclamide, and the response to L-arginine was abolished in LP rats; and (4) the total insulin content in pancreatic islets and expression of Ins2 were reduced in LP rats, but expression of Gcg was unaltered. These studies demonstrate that decreased GSIS in beta cells of LP rats contributes to reduced plasma insulin levels, which may lead to placental and fetal growth restriction and programs hypertension and other metabolic diseases in offspring. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Oxytocin decreases cocaine taking, cocaine seeking, and locomotor activity in female rats

    OpenAIRE

    Leong, Kah-Chung; Zhou, Luyi; Ghee, Shannon M.; See, Ronald E.; Reichel, Carmela M.

    2016-01-01

    Oxytocin has been shown to decrease cocaine taking and seeking in male rats, suggesting potential treatment efficacy for drug addiction. In the present study, we extended these findings to the assessment of cocaine seeking and taking in female rats. Further, we made direct comparisons of oxytocin’s impact on cocaine induced locomotor activity in both males and females. In females, systemic oxytocin (0.3, 1.0, 3.0 mg/kg) attenuated lever pressing for cocaine during self-administration and oxyt...

  1. Biobreeding rat islets exhibit reduced antioxidative defense and N-acetyl cysteine treatment delays type 1 diabetes

    Science.gov (United States)

    Bogdani, Marika; Henschel, Angela M.; Kansra, Sanjay; Fuller, Jessica M.; Geoffrey, Rhonda; Jia, Shuang; Kaldunski, Mary L.; Pavletich, Scott; Prosser, Simon; Chen, Yi-Guang; Lernmark, Åke; Hessner, Martin J.

    2014-01-01

    Islet-level oxidative stress has been proposed as a trigger for type 1 diabetes (T1D), and release of cytokines by infiltrating immune cells further elevates reactive oxygen species (ROS), exacerbating β cell duress. To identify genes/mechanisms involved with diabeto-genesis at the β cell level, gene expression profiling and targeted follow-up studies were used to investigate islet activity in the biobreeding (BB) rat. Forty-day-old spontaneously diabetic lymphopenic BB DRlyp/lyp rats (before T cell insulitis) as well as nondiabetic BB DR+/+ rats, nondiabetic but lymphopenic F344lyp/lyp rats, and healthy Fischer (F344) rats were examined. Gene expression profiles of BB rat islets were highly distinct from F344 islets and under-expressed numerous genes involved in ROS metabolism, including glutathione S-transferase (GST) family members (Gstm2, Gstm4, Gstm7, Gstt1, Gstp1, and Gstk1), superoxide dismutases (Sod2 and Sod3), peroxidases, and peroxiredoxins. This pattern of under-expression was not observed in brain, liver, or muscle. Compared with F344 rats, BB rat pancreata exhibited lower GST protein levels, while plasma GST activity was found significantly lower in BB rats. Systemic administration of the antioxidant N-acetyl cysteine to DRlyp/lyp rats altered abundances of peripheral eosinophils, reduced severity of insulitis, and significantly delayed but did not prevent diabetes onset. We find evidence of β cell dysfunction in BB rats independent of T1D progression, which includes lower expression of genes related to antioxidative defense mechanisms during the pre-onset period that may contribute to overall T1D susceptibility. PMID:23111281

  2. Dietary treatment for decreasing /sup 141/Ce body burden in immature rats

    Energy Technology Data Exchange (ETDEWEB)

    Kargacin, B; Kostial, K; Landeka, M

    1987-02-01

    The purpose of this work was to evaluate the effect of prolonged (immediate or delayed) administration of dietary additives to suckling rats on the absorption and retention of radioactive cerium in the body. The experiment was performed on 6-day-old suckling rats. According to dietary treatment the animals were divided into three groups. Each group was artificially fed over 8 h for 6 or 12 days on one of the diets: the first group of animals was fed milk, the second group was given ingredients of rat diet and the third received milk during the first 2 days of the experiment and the ingredients of rat diet afterwards. At the end of the artificial feeding period the pups returned to their mothers and suckled overnight. On the 1st day of the experiment the food was labelled with /sup 141/Ce. Whole body radioactivity was determined in a double crystal scintillation counter every 48 h over a 12-day period. Half of the animals from each group were killed 6 days after /sup 141/Ce administration and the other half after 12 days. At these intervals retention was determined in the gut, liver, kidneys and femur. The early and delayed administration of rat diet ingredients - fish meal, sunflower meal, alfalfa, cane molasses and premix - greatly reduced whole body retention. The early treatment was more efficacious than the delayed one. The reduction was mostly due to decreased gut retention but organ retentions were also lower. The results obtained indicate that by prolonged (immediate or delayed) administration of some dietary means the retention of radioactive cerium in sucklings can be significantly decreased.

  3. Hyperglycemia of Diabetic Rats Decreased by a Glucagon Receptor Antagonist

    Science.gov (United States)

    Johnson, David G.; Ulichny Goebel, Camy; Hruby, Victor J.; Bregman, Marvin D.; Trivedi, Dev

    1982-02-01

    The glucagon analog [l-Nα-trinitrophenylhistidine, 12-homoarginine]-glucagon (THG) was examined for its ability to lower blood glucose concentrations in rats made diabetic with streptozotocin. In vitro, THG is a potent antagonist of glucagon activation of the hepatic adenylate cyclase assay system. Intravenous bolus injections of THG caused rapid decreases (20 to 35 percent) of short duration in blood glucose. Continuous infusion of low concentrations of the inhibitor led to larger sustained decreases in blood glucose (30 to 65 percent). These studies demonstrate that a glucagon receptor antagonist can substantially reduce blood glucose levels in diabetic animals without addition of exogenous insulin.

  4. Effect of naftopidil on brain noradrenaline-induced decrease in arginine-vasopressin secretion in rats

    Directory of Open Access Journals (Sweden)

    Masaki Yamamoto

    2016-09-01

    Full Text Available Naftopidil, an α1-adrenoceptor antagonist, has been shown to inhibit nocturnal polyuria in patients with lower urinary tract symptom. However, it remains unclear how naftopidil decreases nocturnal urine production. Here, we investigated the effects of naftopidil on arginine-vasopressin (AVP plasma level and urine production and osmolality in rats centrally administered with noradrenaline (NA. NA (3 or 30 μg/kg was administered into the left ventricle (i.c.v. of male Wistar rats 3 h after naftopidil pretreatment (10 or 30 mg/kg, i.p.. Blood samples were collected from the inferior vena cava 1 h after NA administration or 4 h after peritoneal administration of naftopidil; plasma levels of AVP were assessed by ELISA. Voiding behaviors of naftopidil (30 mg/kg, i.p.-administered male Wistar rats were observed during separate light- and dark cycles. Administration of NA decreased plasma AVP levels and elevated urine volume, which were suppressed by systemic pretreatment with naftopidil (30 mg/kg, i.p.. Urine osmolality decreased 1 h after NA administration. However, naftopidil by itself had no effect on plasma AVP levels or urodynamic parameters during light- and dark cycles. Our findings suggest that systemic administration of naftopidil could prevent central noradrenergic nervous system-mediated decline in AVP secretion and increase in urine production in rats.

  5. OKN-007 decreases free radical levels in a preclinical F98 rat glioma model.

    Science.gov (United States)

    Coutinho de Souza, Patricia; Smith, Nataliya; Atolagbe, Oluwatomisin; Ziegler, Jadith; Njoku, Charity; Lerner, Megan; Ehrenshaft, Marilyn; Mason, Ronald P; Meek, Bill; Plafker, Scott M; Saunders, Debra; Mamedova, Nadezda; Towner, Rheal A

    2015-10-01

    Free radicals are associated with glioma tumors. Here, we report on the ability of an anticancer nitrone compound, OKN-007 [Oklahoma Nitrone 007; a disulfonyl derivative of α-phenyl-tert-butyl nitrone (PBN)] to decrease free radical levels in F98 rat gliomas using combined molecular magnetic resonance imaging (mMRI) and immunospin-trapping (IST) methodologies. Free radicals are trapped with the spin-trapping agent, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), to form DMPO macromolecule radical adducts, and then further tagged by immunospin trapping by an antibody against DMPO adducts. In this study, we combined mMRI with a biotin-Gd-DTPA-albumin-based contrast agent for signal detection with the specificity of an antibody for DMPO nitrone adducts (anti-DMPO probe), to detect in vivo free radicals in OKN-007-treated rat F98 gliomas. OKN-007 was found to significantly decrease (P free radical levels detected with an anti-DMPO probe in treated animals compared to untreated rats. Immunoelectron microscopy was used with gold-labeled antibiotin to detect the anti-DMPO probe within the plasma membrane of F98 tumor cells from rats administered anti-DMPO in vivo. OKN-007 was also found to decrease nuclear factor erythroid 2-related factor 2, inducible nitric oxide synthase, 3-nitrotyrosine, and malondialdehyde in ex vivo F98 glioma tissues via immunohistochemistry, as well as decrease 3-nitrotyrosine and malondialdehyde adducts in vitro in F98 cells via ELISA. The results indicate that OKN-007 effectively decreases free radicals associated with glioma tumor growth. Furthermore, this method can potentially be applied toward other types of cancers for the in vivo detection of macromolecular free radicals and the assessment of antioxidants. Copyright © 2015. Published by Elsevier Inc.

  6. Cardiosphere-Derived Cells Reverse Heart Failure With Preserved Ejection Fraction in Rats by Decreasing Fibrosis and Inflammation

    Directory of Open Access Journals (Sweden)

    Romain Gallet, MD

    2016-01-01

    Full Text Available The pathogenesis of heart failure with a preserved ejection fraction (HFpEF is unclear. Myocardial fibrosis, inflammation, and cardiac hypertrophy have been suggested to contribute to the pathogenesis of HFpEF. Cardiosphere-derived cells (CDCs are heart-derived cell products with antifibrotic and anti-inflammatory properties. This study tested whether rat CDCs were sufficient to decrease manifestations of HFpEF in hypertensive rats. Starting at 7 weeks of age, Dahl salt-sensitive rats were fed a high-salt diet for 6 to 7 weeks and randomized to receive intracoronary CDCs or placebo. Dahl rats fed normal chow served as controls. High-salt rats developed hypertension, left ventricular (LV hypertrophy, and diastolic dysfunction, without impairment of ejection fraction. Four weeks after treatment, diastolic dysfunction resolved in CDC-treated rats but not in placebo. The improved LV relaxation was associated with lower LV end-diastolic pressure, decreased lung congestion, and enhanced survival in CDC-treated rats. Histology and echocardiography revealed no decrease in cardiac hypertrophy after CDC treatment, consistent with the finding of sustained, equally-elevated blood pressure in CDC- and placebo-treated rats. Nevertheless, CDC treatment decreased LV fibrosis and inflammatory infiltrates. Serum inflammatory cytokines were likewise decreased after CDC treatment. Whole-transcriptome analysis revealed that CDCs reversed changes in numerous transcripts associated with HFpEF, including many involved in inflammation and/or fibrosis. These studies suggest that CDCs normalized LV relaxation and LV diastolic pressure while improving survival in a rat model of HFpEF. The benefits of CDCs occurred despite persistent hypertension and cardiac hypertrophy. By selectively reversing inflammation and fibrosis, CDCs may be beneficial in the treatment of HFpEF.

  7. Rats bred for helplessness exhibit positive reinforcement learning deficits which are not alleviated by an antidepressant dose of the MAO-B inhibitor deprenyl.

    Science.gov (United States)

    Schulz, Daniela; Henn, Fritz A; Petri, David; Huston, Joseph P

    2016-08-04

    Principles of negative reinforcement learning may play a critical role in the etiology and treatment of depression. We examined the integrity of positive reinforcement learning in congenitally helpless (cH) rats, an animal model of depression, using a random ratio schedule and a devaluation-extinction procedure. Furthermore, we tested whether an antidepressant dose of the monoamine oxidase (MAO)-B inhibitor deprenyl would reverse any deficits in positive reinforcement learning. We found that cH rats (n=9) were impaired in the acquisition of even simple operant contingencies, such as a fixed interval (FI) 20 schedule. cH rats exhibited no apparent deficits in appetite or reward sensitivity. They reacted to the devaluation of food in a manner consistent with a dose-response relationship. Reinforcer motivation as assessed by lever pressing across sessions with progressively decreasing reward probabilities was highest in congenitally non-helpless (cNH, n=10) rats as long as the reward probabilities remained relatively high. cNH compared to wild-type (n=10) rats were also more resistant to extinction across sessions. Compared to saline (n=5), deprenyl (n=5) reduced the duration of immobility of cH rats in the forced swimming test, indicative of antidepressant effects, but did not restore any deficits in the acquisition of a FI 20 schedule. We conclude that positive reinforcement learning was impaired in rats bred for helplessness, possibly due to motivational impairments but not deficits in reward sensitivity, and that deprenyl exerted antidepressant effects but did not reverse the deficits in positive reinforcement learning. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Prenatal Protein Malnutrition Decreases KCNJ3 and 2DG Activity in Rat Prefrontal Cortex

    Science.gov (United States)

    Amaral, A.C.; Jakovcevski, M.; McGaughy, J.A.; Calderwood, S.K.; Mokler, D.J.; Rushmore, R.J.; Galler, J.R.; Akbarian, S.A.; Rosene, D.L.

    2014-01-01

    Prenatal protein malnutrition (PPM) in rats causes enduring changes in brain and behavior including increased cognitive rigidity and decreased inhibitory control. A preliminary gene microarray screen of PPM rat prefrontal cortex (PFC) identified alterations in KCNJ3 (GIRK1/Kir3.1), a gene important for regulating neuronal excitability. Follow-up with polymerase chain reaction and Western blot showed decreased KCNJ3 expression in PFC, but not hippocampus or brainstem. To verify localization of the effect to the PFC, baseline regional brain activity was assessed with 14C-2-deoxyglucose. Results showed decreased activation in PFC but not hippocampus. Together these findings point to the unique vulnerability of the PFC to the nutritional insult during early brain development, with enduring effects in adulthood on KCNJ3 expression and baseline metabolic activity. PMID:25446346

  9. Age-related decreases in the concentration of Met- and Leu-enkephalin and neurotensin in the basal ganglia or rats

    International Nuclear Information System (INIS)

    Ceballos, M.L. de; Boyce, S.; Taylor, M.; Jenner, P.; Marsden, C.D.

    1987-01-01

    Previous studies using radioimmunoassay procedures have failed to show age-related changes in the concentration of Met-and Leu-enkephalin or neurotensin in rat basal ganglia. In contrast, using a combined high-pressure liquid chromatography (HLPC)- radioimmunoassay (RIA) technique we now report considerable decreases in the levels of these neuropeptides in areas of basal ganglia of 22 months-old compared to 3 months-old male Wistar rats. The concentration of Met-enkephalin was greatly reduced in the striatum and nucleus accumbens, but not in substantia nigra, of old compared to young animals. There was a similarly large decrease in Leu-enkephalin content in striatum of old rats with less marked decreases occurring in both the nucleus accumbens and substantia nigra. Neurotensin levels in the striatum and substantia nigra were greatly reduced in old rats, with a less marked decrease in the nucleus accumbens

  10. Age-related decreases in the concentration of Met- and Leu-enkephalin and neurotensin in the basal ganglia or rats

    Energy Technology Data Exchange (ETDEWEB)

    Ceballos, M.L. de; Boyce, S; Taylor, M; Jenner, P; Marsden, C D

    1987-03-20

    Previous studies using radioimmunoassay procedures have failed to show age-related changes in the concentration of Met-and Leu-enkephalin or neurotensin in rat basal ganglia. In contrast, using a combined high-pressure liquid chromatography (HLPC)- radioimmunoassay (RIA) technique we now report considerable decreases in the levels of these neuropeptides in areas of basal ganglia of 22 months-old compared to 3 months-old male Wistar rats. The concentration of Met-enkephalin was greatly reduced in the striatum and nucleus accumbens, but not in substantia nigra, of old compared to young animals. There was a similarly large decrease in Leu-enkephalin content in striatum of old rats with less marked decreases occurring in both the nucleus accumbens and substantia nigra. Neurotensin levels in the striatum and substantia nigra were greatly reduced in old rats, with a less marked decrease in the nucleus accumbens.

  11. Voluntary running-wheel exercise decreases the threshold for rewarding intracranial self-stimulation.

    Science.gov (United States)

    Morris, Michael J; Na, Elisa S; Johnson, Alan Kim

    2012-08-01

    Physical exercise has mood-enhancing and antidepressant properties although the mechanisms underlying these effects are not known. The present experiment investigated the effects of prolonged access to a running wheel on electrical self-stimulation of the lateral hypothalamus (LHSS), a measure of hedonic state, in rats. Rats with continuous voluntary access to a running wheel for either 2 or 5 weeks exhibited dramatic leftward shifts in the effective current 50 (ECu50; current value that supports half of maximum responding) of their LHSS current-response functions compared to their baselines, indicating a decrease in reward threshold, whereas control rats current-response functions after 2 or 5 weeks were not significantly different from baseline. An inverse correlation existed between the change in ECu50 from baseline and the amount an animal had run in the day prior to LHSS testing, indicating that animals that exhibited higher levels of running showed a more robust decrease in LHSS threshold. We conclude that long-term voluntary exercise increases sensitivity to rewarding stimuli, which may contribute to its antidepressant properties.

  12. Rats with decreased brain cholecystokinin levels show increased responsiveness to peripheral electrical stimulation-induced analgesia.

    Science.gov (United States)

    Zhang, L X; Li, X L; Wang, L; Han, J S

    1997-01-16

    Using the P77PMC strain of rat, which is genetically prone to audiogenic seizures, and also has decreased levels of cholecystokinin (CCK), we examined the analgesic response to peripheral electrical stimulation, which is, in part, opiate-mediated. A number of studies have suggested that CCK may function as an antagonist to endogenous opiate effects. Therefore, we hypothesized that the P77PMC animals would show an enhanced analgesic response based on their decreased CCK levels producing a diminished endogenous opiate antagonism. We found that the analgesic effect on tail flick latency produced by 100 Hz peripheral electrical stimulation was more potent and longer lasting in P77PMC rats than in control rats. Moreover, the potency of the stimulation-produced analgesia correlated with the vulnerability to audiogenic seizures in these rats. We were able to block the peripheral electrical stimulation-induced analgesia (PSIA) using a cholecystokinin octapeptide (CCK-8) administered parenterally. Radioimmunoassay showed that the content of CCK-8 in cerebral cortex, hippocampus and periaqueductal gray was much lower in P77PMC rat than in controls. These results suggest that low CCK-8 content in the central nervous system of the P77PMC rats may be related to the high analgesic response to peripheral electrical stimulation, and further support the notion that CCK may be endogenous opiate antagonist.

  13. Decreased resting functional connectivity after traumatic brain injury in the rat.

    Directory of Open Access Journals (Sweden)

    Asht Mangal Mishra

    Full Text Available Traumatic brain injury (TBI contributes to about 10% of acquired epilepsy. Even though the mechanisms of post-traumatic epileptogenesis are poorly known, a disruption of neuronal networks predisposing to altered neuronal synchrony remains a viable candidate mechanism. We tested a hypothesis that resting state BOLD-fMRI functional connectivity can reveal network abnormalities in brain regions that are connected to the lesioned cortex, and that these changes associate with functional impairment, particularly epileptogenesis. TBI was induced using lateral fluid-percussion injury in seven adult male Sprague-Dawley rats followed by functional imaging at 9.4T 4 months later. As controls we used six sham-operated animals that underwent all surgical operations but were not injured. Electroencephalogram (EEG-functional magnetic resonance imaging (fMRI was performed to measure resting functional connectivity. A week after functional imaging, rats were implanted with bipolar skull electrodes. After recovery, rats underwent pentyleneterazol (PTZ seizure-susceptibility test under EEG. For image analysis, four pairs of regions of interests were analyzed in each hemisphere: ipsilateral and contralateral frontal and parietal cortex, hippocampus, and thalamus. High-pass and low-pass filters were applied to functional imaging data. Group statistics comparing injured and sham-operated rats and correlations over time between each region were calculated. In the end, rats were perfused for histology. None of the rats had epileptiform discharges during functional imaging. PTZ-test, however revealed increased seizure susceptibility in injured rats as compared to controls. Group statistics revealed decreased connectivity between the ipsilateral and contralateral parietal cortex and between the parietal cortex and hippocampus on the side of injury as compared to sham-operated animals. Injured animals also had abnormal negative connectivity between the ipsilateral and

  14. Effect of and as probiotic on decreased absorption of cadmium in rat

    Directory of Open Access Journals (Sweden)

    M. Majlesi

    2016-08-01

    Full Text Available Cadmium is a wide-spread heavy metal that causes a wide range of health problems in animals and humans. Many reports showed the biosorption of heavy metals by bacteria. The objectives of this study were to evaluate the potency of probiotics bacteria of Lactobacillus plantarum and Bacillus coagulans against cadmium adsorption in rats. Twenty four male adult Wistar rats were randomly divided into six groups. Cadmium treated groups received 1 ml of 100 µg/ml CdCl2 and probiotics groups were administrated 1 ml of (109 CFU/ml of probiotics during 24 days by special gavage needle once daily. Levels of cadmium were determined by using graphite furnace atomic absorption spectrometry. Probiotics B. coagulans and L. plantarum caused 29.8% and 19.3% increasing in removal of cadmium through defecation and decreased 10.9 and 21.5 % of cadmium accumulation in kidney of Wistar rats. The results showed that oral administration of both probiotics offered a significant protective effect against cadmium adsorption in rats.

  15. A high-fat diet decreases GABA concentration in the frontal cortex and hippocampus of rats.

    Science.gov (United States)

    Sandoval-Salazar, Cuauhtemoc; Ramírez-Emiliano, Joel; Trejo-Bahena, Aurora; Oviedo-Solís, Cecilia I; Solís-Ortiz, Martha Silvia

    2016-02-29

    It has been proposed that the γ-aminobutyric acid (GABA) plays a key role in the regulation of food intake and body weight by controlling the excitability, plasticity and the synchronization of neuronal activity in the frontal cortex (FC). It has been also proposed that the high-fat diet (HFD) could disturb the metabolism of glutamate and consequently the GABA levels, but the mechanism is not yet clearly understood. Therefore, the aim of this study was to investigate the effect of a HFD on the GABA levels in the FC and hippocampus of rats. The HFD significantly increased weight gain and blood glucose levels, whereas decreased the GABA levels in the FC and hippocampus compared with standard diet-fed rats. HFD decreases GABA levels in the FC and hippocampus of rat, which likely disrupts the GABAergic inhibitory processes, underlying feeding behavior.

  16. Teneligliptin Decreases Uric Acid Levels by Reducing Xanthine Dehydrogenase Expression in White Adipose Tissue of Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Chihiro Moriya

    2016-01-01

    Full Text Available We investigated the effects of teneligliptin on uric acid metabolism in male Wistar rats and 3T3-L1 adipocytes. The rats were fed with a normal chow diet (NCD or a 60% high-fat diet (HFD with or without teneligliptin for 4 weeks. The plasma uric acid level was not significantly different between the control and teneligliptin groups under the NCD condition. However, the plasma uric acid level was significantly decreased in the HFD-fed teneligliptin treated rats compared to the HFD-fed control rats. The expression levels of xanthine dehydrogenase (Xdh mRNA in liver and epididymal adipose tissue of NCD-fed rats were not altered by teneligliptin treatment. On the other hand, Xdh expression was reduced significantly in the epididymal adipose tissue of the HFD-fed teneligliptin treated rats compared with that of HFD-fed control rats, whereas Xdh expression in liver did not change significantly in either group. Furthermore, teneligliptin significantly decreased Xdh expression in 3T3-L1 adipocytes. DPP-4 treatment significantly increased Xdh expression in 3T3-L1 adipocytes. With DPP-4 pretreatment, teneligliptin significantly decreased Xdh mRNA expression compared to the DPP-4-treated 3T3-L1 adipocytes. In conclusion, our studies suggest that teneligliptin reduces uric acid levels by suppressing Xdh expression in epididymal adipose tissue of obese subjects.

  17. The sap of Acer okamotoanum decreases serum alcohol levels after acute ethanol ingestion in rats.

    Science.gov (United States)

    Yoo, Yeong-Min; Jung, Eui-Man; Kang, Ha-Young; Choi, In-Gyu; Choi, Kyung-Chul; Jeung, Eui-Bae

    2011-10-01

    In the present study, we examined whether Acer okamotoanum (A. okamotoanum) sap decreased the serum alcohol and acetaldehyde levels after acute ethanol treatment in a rat model. Male rats were orally administered 25, 50 or 100% A. okamotoanum sap 30 min prior to oral challenge with 3 ml of ethanol (15 ml/kg of a 20% ethanol solution in water), and the blood concentrations of alcohol and acetaldehyde were analyzed up to 7 h after the treatment. Pre-treatment with the sap significantly decreased the blood ethanol and acetaldehyde concentrations after 5 h when compared with ethanol treatment alone (a negative control). The expression levels of liver alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) mRNA were increased significantly in animals pre-treated with A. okamotoanum sap when compared with negative and positive controls. The data suggest that sap pre-treatment enhanced the alcohol metabolism rate in the rat liver. To investigate the involvement of mitochondrial regulation in the ethanol-induced hepatocyte apoptosis, we carried out an immunohistochemical analysis of Bax and Bcl-2. Pre-treatment with sap significantly decreased Bax expression and increased Bcl-2 expression 7 h after ethanol administration when compared with the negative control. The data suggest that A. okamotoanum sap pre-treatment may reduce the alcohol-induced oxidative stress in the rat liver.

  18. Ketamine alters behavior and decreases BDNF levels in the rat brain as a function of time after drug administration

    Directory of Open Access Journals (Sweden)

    Daiane B. Fraga

    2013-09-01

    Full Text Available Objective: To evaluate behavioral changes and brain-derived neurotrophic factor (BDNF levels in rats subjected to ketamine administration (25 mg/kg for 7 days. Method: Behavioral evaluation was undertaken at 1 and 6 hours after the last injection. Results: We observed hyperlocomotion 1 hour after the last injection and a decrease in locomotion after 6 hours. Immobility time was decreased and climbing time was increased 6 hours after the last injection. BDNF levels were decreased in the prefrontal cortex and amygdala when rats were killed 6 hours after the last injection, compared to the saline group and to rats killed 1 hour after the last injection. BDNF levels in the striatum were decreased in rats killed 6 hours after the last ketamine injection, and BDNF levels in the hippocampus were decreased in the groups that were killed 1 and 6 hours after the last injection. Conclusion: These results suggest that the effects of ketamine on behavior and BDNF levels are related to the time at which they were evaluated after administration of the drug.

  19. Aerobic Swim Training Restores Aortic Endothelial Function by Decreasing Superoxide Levels in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Camila P. Jordão

    Full Text Available OBJECTIVE: We aimed to determine whether aerobic training decreases superoxide levels, increases nitric oxide levels, and improves endothelium-dependent vasodilation in the aortas of spontaneously hypertensive rats. METHODS: Spontaneously hypertensive rats (SHR and Wistar Kyoto rats (WKY were distributed into 2 groups: sedentary (SHRsd and WKYsd, n=10 each and swimming-trained (SHRtr, n=10 and WKYtr, n=10, respectively. The trained group participated in training sessions 5 days/week for 1 h/day with an additional work load of 4% of the animal’s body weight. After a 10-week sedentary or aerobic training period, the rats were euthanized. The thoracic aortas were removed to evaluate the vasodilator response to acetylcholine (10-10 to 10-4 M with or without preincubation with L-NG-nitro-L-arginine methyl ester hydrochloride (L-NAME; 10-4 M in vitro. The aortic tissue was also used to assess the levels of the endothelial nitric oxide synthase and nicotinamide adenine dinucleotide oxidase subunit isoforms 1 and 4 proteins, as well as the superoxide and nitrite contents. Blood pressure was measured using a computerized tail-cuff system. RESULTS: Aerobic training significantly increased the acetylcholine-induced maximum vasodilation observed in the SHRtr group compared with the SHRsd group (85.9±4.3 vs. 71.6±5.2%. Additionally, in the SHRtr group, superoxide levels were significantly decreased, nitric oxide bioavailability was improved, and the levels of the nicotinamide adenine dinucleotide oxidase subunit isoform 4 protein were decreased compared to the SHRsd group. Moreover, after training, the blood pressure of the SHRtr group decreased compared to the SHRsd group. Exercise training had no effect on the blood pressure of the WKYtr group. CONCLUSIONS: In SHR, aerobic swim training decreased vascular superoxide generation by nicotinamide adenine dinucleotide oxidase subunit isoform 4 and increased nitric oxide bioavailability, thereby improving

  20. A high-fat diet decreases GABA concentration in the frontal cortex and hippocampus of rats

    Directory of Open Access Journals (Sweden)

    Cuauhtemoc Sandoval-Salazar

    Full Text Available BACKGROUND: It has been proposed that the γ-aminobutyric acid (GABA plays a key role in the regulation of food intake and body weight by controlling the excitability, plasticity and the synchronization of neuronal activity in the frontal cortex (FC. It has been also proposed that the high-fat diet (HFD could disturb the metabolism of glutamate and consequently the GABA levels, but the mechanism is not yet clearly understood. Therefore, the aim of this study was to investigate the effect of a HFD on the GABA levels in the FC and hippocampus of rats RESULTS: The HFD significantly increased weight gain and blood glucose levels, whereas decreased the GABA levels in the FC and hippocampus compared with standard diet-fed rats CONCLUSIONS: HFD decreases GABA levels in the FC and hippocampus of rat, which likely disrupts the GABAergic inhibitory processes, underlying feeding behavior.

  1. Noise stimulation decreases the concentration of norepinephrine in the rat cochlea.

    Science.gov (United States)

    Vicente-Torres, M A; Gil-Loyzaga, P

    1999-05-14

    The present study was designed to analyze, by using high performance liquid chromatography (HPLC), the effect of acoustic stimulation on the cochlear concentration of norepinephrine (NE). Independently of the rat strain (Long-Evans or Wistar strains), NE concentration decreased about 18% when animals were exposed to white noise (90 dB SPL for 1 h). The same decrease was observed in animals perfused by aortic pathway to remove the blood, indicating that this decrease corresponds exclusively to a neurophysiological process. In fact, these findings could indicate that noise stimulation is involved in the NE release from sympathetic fibers innervating the cochlea. This likely release of NE supports that sympathetic fibers play a functional role in cochleae exposed to noisy situations.

  2. Decreases in renal functional reserve and proximal tubular fluid output in conscious oophorectomized rats

    DEFF Research Database (Denmark)

    Nielsen, Camilla Birch; Flyvbjerg, Allan; Bruun, Jens Meldgaard

    2003-01-01

    Age-dependent glomerulosclerosis with reduced GFR develops earlier among men than among women. Therefore, whether female sex hormones could prevent the age-dependent decrease in GFR was investigated. The kidney function in oophorectomized rats treated with placebo (OOX group), estrogen (OOX+E(2...... effects were prevented with administration of estrogen. Sham-operated rats demonstrated values for renal functional reserve and fractional lithium excretion that were between those observed for the OOX group and the groups treated with sex hormones....

  3. Administration of growth hormone in selectively protein-deprived rats decreases BMD and bone strength.

    Science.gov (United States)

    Ammann, Patrick; Brennan, Tara C; Mekraldi, Samia; Aubert, Michel L; Rizzoli, René

    2010-06-01

    Isocaloric protein undernutrition is associated with decreased bone mass and decreased bone strength, together with lower IGF-I levels. It remains unclear whether administration of growth hormone (GH) corrects these alterations in bone metabolism. Six-month-old female rats were fed isocaloric diets containing either 2.5% or 15% casein for 2 weeks. Bovine growth hormone (bGH, 0.5 or 2.5mg/kg of body weight) or vehicle was then administered as subcutaneous injections, twice daily, to rats on either diet for 4 weeks. At the proximal tibia, analysis of bone mineral density (BMD), maximal load and histomorphometry were performed. In addition, urinary deoxypyridinoline, plasma osteocalcin and IGF-I concentrations were measured. Weight was monitored weekly. bGH caused a dose-dependent increase in plasma IGF-I regardless of the dietary protein content. However, bGH dose-dependently decreased BMD and bone strength in rats fed the low-protein diet. There was no significant effect of bGH on BMD in rats fed the normal protein diet within this short-term treatment period, however bone formation as detected by histomorphometry was improved in this group but not the low-protein group. Osteoclast surface was increased in the low-protein bGH-treated animals only. Changes in bone turnover markers were detectable under both normal and low-protein diets. These results emphasize the major importance of dietary protein intake in the bone response to short-term GH administration, and highlight the need for further investigation into the effects of GH treatment in patients with reduced protein intake. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Social interaction reward decreases p38 activation in the nucleus accumbens shell of rats.

    Science.gov (United States)

    Salti, Ahmad; Kummer, Kai K; Sadangi, Chinmaya; Dechant, Georg; Saria, Alois; El Rawas, Rana

    2015-12-01

    We have previously shown that animals acquired robust conditioned place preference (CPP) to either social interaction alone or cocaine alone. Recently it has been reported that drugs of abuse abnormally activated p38, a member of mitogen-activated protein kinase family, in the nucleus accumbens. In this study, we aimed to investigate the expression of the activated form of p38 (pp38) in the nucleus accumbens shell and core of rats expressing either cocaine CPP or social interaction CPP 1 h, 2 h and 24 h after the CPP test. We hypothesized that cocaine CPP will increase pp38 in the nucleus accumbens shell/core as compared to social interaction CPP. Surprisingly, we found that 24 h after social interaction CPP, pp38 neuronal levels were decreased in the nucleus accumbens shell to the level of naïve rats. Control saline rats that received saline in both compartments of the CPP apparatus and cocaine CPP rats showed similar enhanced p38 activation as compared to naïve and social interaction CPP rats. We also found that the percentage of neurons expressing dopaminergic receptor D2R and pp38 was also decreased in the shell of the nucleus accumbens of social interaction CPP rats as compared to controls. Given the emerging role of p38 in stress/anxiety behaviors, these results suggest that (1) social interaction reward has anti-stress effects; (2) cocaine conditioning per se does not affect p38 activation and that (3) marginal stress is sufficient to induce p38 activation in the shell of the nucleus accumbens. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Density increment and decreased survival of rat red blood cells induced by cadmium

    International Nuclear Information System (INIS)

    Kunimoto, M.; Miura, T.

    1986-01-01

    Male Wistar rats were injected with CdCl 2 subcutaneously to examine in vivo effects of Cd on density and survival of red blood cells. During the 7 days after administration of 1.0 mg Cd/kg, the following sequence of events occurred: (1) a progressive increase in the amount of more dense red blood cells concomitant with a decrease in that of light red blood cells from the first to the third day; (2) an increase in the spleen weight at the third day; (3) a decrease in the hematocrit value and an increase in the amount of light red blood cells at the fifth day; and (4) a recovery of the hematocrit value at the seventh day. Five days after administration, the hematocrit value decreased in a dose-dependent mode and the decrease was significant at the 1% level at 1.0 and 1.5 mg Cd/kg. A highly significant splenomegaly was also observed at 0.5 to 1.5 mg Cd/kg. In order to label red blood cells in vivo, [ 3 H] diisopropylfluorophosphate ([ 3 H]DFP) was injected into rats. At Day 11, Cd at either 0.5 or 1.0 mg/kg was administered to [ 3 H]DFP-prelabeled animals. Cd administration accelerated 3 H-labeled red cell clearance from the blood. Six days after Cd administration, the radioactivity of red blood cells was 76 and 68% of the control at 0.5 and 1.0 mg Cd/kg, respectively. In vitro treatment of rat red density and accelerated in vivo clearance of red blood cells from the recipient circulation. These results show that Cd at low dose can cause anemia by increasing red cell density and by accelerating red cell sequestration, presumably in the spleen

  6. Phenobarbital at Low Dose in the presence of Curcumin Decreases Progress of Cancer in Rats

    International Nuclear Information System (INIS)

    Mazen, G.M.A.

    2011-01-01

    This current investigation was conducted on male albino rats to elucidate the effects of curcumin alone or in the presence of phenobarbital at low dose to decrease the progress of hepato-gastrointestinal carcinogenesis induced by N-diethylnitrosoamine (DEN) in rats. As a result of cancer induction, the levels of serum tumour markers [carcino-embryonic antigen (CEA), alpha-fetoprotein (AFP) and cancer antigen (CA19.9)] were significantly elevated. On the other hand, glutathione (GSH) and glutathione peroxidase (GPx) were decreased significantly in blood, liver, stomach and intestine whereas the levels of malondialdehyde (MAD) in liver, stomach and intestine were significantly elevated in the cancer group of rats in comparison to their corresponding control group. The administration of curcumin alone or together with phenobarbital ameliorated all these alterations depending on the time of administration. The data of this study suggested that low dose of phenobarbital in the presence of curcumin may inhibit the development of hepato-gastrointestinal carcinogenesis initiated with DEN.

  7. Absorption of pentacaine from ulcerous rat stomach

    International Nuclear Information System (INIS)

    Tomcikova, O.; Babulova, A.; Durisova, M.; Trnovec, T.; Benes, L.

    1985-01-01

    Pentacaine is a local anaesthetic which exhibited positive effects on healing of model ulcers in the rat stomach. The in situ disappearance of pentacaine from the ulcerous and intact rat stomach was studied. Gastric ulcers were produced by oral administration of phenylbutazone (200 mg/kg) 3.5 h before absorption experiment. Pentacaine exhibited a biexponential decrease from the lumen of the stomach, the rate of which was essentially the same in both groups. The total amount of pentacaine absorbed was small because of extremly low absorption rate. (author)

  8. Former Abusers of Anabolic Androgenic Steroids Exhibit Decreased Testosterone Levels and Hypogonadal Symptoms Years after Cessation

    DEFF Research Database (Denmark)

    Rasmussen, Jon Jarløv; Selmer, Christian; Østergren, Peter Busch

    2016-01-01

    training. Reproductive hormones (FSH, LH, testosterone, inhibin B and anti-Müllerian hormone (AMH)) were measured using morning blood samples. Symptoms of hypogonadism (depressive symptoms, fatigue, decreased libido and erectile dysfunction) were recorded systematically. RESULTS: Former AAS abusers...... exhibited significantly lower median (25th -75th percentiles) total and free testosterone levels than control participants (total testosterone: 14.4 (11.9-17.7) nmol/l vs. 18.8 (16.6-22.0) nmol/l) (P testosterone levels below...... the lower reference limit (12.1 nmol/l) whereas no control participants exhibited testosterone below this limit (P

  9. Modulation of rat behaviour by using a rat-like robot

    International Nuclear Information System (INIS)

    Shi, Qing; Ishii, Hiroyuki; Kinoshita, Shinichi; Takanishi, Atsuo; Okabayashi, Satoshi; Iida, Naritoshi; Kimura, Hiroshi; Shibata, Shigenobu

    2013-01-01

    In this paper, we study the response of a rat to a rat-like robot capable of generating different types of behaviour (stressful, friendly, neutral). Experiments are conducted in an open-field where a rat-like robot called WR-4 is put together with live rats. The activity level of each rat subject is evaluated by scoring its locomotor activity and frequencies of performing rearing (rising up on its hind limbs) and body grooming (body cuddling and head curling) actions, whereas the degree of preference of that is indicated by the robot–rat distance and the frequency of contacting WR-4. The moving speed and behaviour of WR-4 are controlled in real-time based on the feedback from rat motion. The activity level and degree of preference of rats for each experimental condition are analysed and compared to understand the influence of robot behaviour. The results of this study show that the activity level and degree of preference of the rat decrease when exposed to a stressful robot, and increase when the robot exhibit friendly behaviour, suggesting that a rat-like robot can modulate rat behaviour in a controllable, predictable way. (paper)

  10. Exercise Increases Cystathionine-γ-lyase Expression and Decreases the Status of Oxidative Stress in Myocardium of Ovariectomized Rats.

    Science.gov (United States)

    Tang, Zhiping; Wang, Yujun; Zhu, Xiaoyan; Ni, Xin; Lu, Jianqiang

    2016-01-01

    Exercise could be a therapeutic approach for cardiovascular dysfunction induced by estrogen deficiency. Our previous study has shown that estrogen maintains cystathionine-γ-lyase (CSE) expression and inhibits oxidative stress in the myocardium of female rats. In the present study, we investigated whether exercise improves CSE expression and oxidative stress status and ameliorates isoproterenol (ISO)-induced cardiac damage in ovariectomized (OVX) rats. The results showed that treadmill training restored the ovariectomy-induced reduction of CSE and estrogen receptor (ER)α and decrease of total antioxidant capacity (T-AOC) and increase of malondialdehyde (MDA). The level of CSE was positively correlated to T-AOC and ERα while inversely correlated to MDA. OVX rats showed increases in the serum levels of creatine kinase (CK) and lactate dehydrogenase (LDH) and the percentage of TUNEL staining in myocardium upon ISO insult compared to sham rats. Exercise training significantly reduced the serum levels of LDH and CK and the percentage of TUNEL staining in myocardium upon ISO insult in OVX rats. In cultured cardiomyocytes, ISO treatment decreased cell viability and increased LDH release, while overexpression of CSE increased cell viability and decreased LDH release in the cells upon ISO insult. The results suggest that exercise training improves the oxidative stress status and ameliorates the cardiac damage induced by oxidative stress in OVX rats. The improvement of oxidative stress status by exercise might be at least partially due to upregulation of CSE/H2S signaling.

  11. Ileal Transposition Surgery Decreases Fat Mass and Improves Glucose Metabolism in Diabetic GK Rats: Possible Involvement of FGF21

    Directory of Open Access Journals (Sweden)

    Kemin Yan

    2018-03-01

    Full Text Available Objective: Ileal transposition (IT surgery has been reported to improve glucose and lipid metabolism, and fibroblast growth factor 21 (FGF21 is a powerful metabolic regulator. In the present study, we aimed to investigate the effects of IT surgery on metabolism and its possible relationship with the FGF21 signaling pathway in diabetic Goto-Kakizaki (GK rats.Methods: Ten-week-old male GK rats were subjected to IT surgery with translocation of a 10 cm ileal segment to the proximal jejunum (IT group or sham surgery without the ileum transposition (Sham-IT group. Rats in the no surgery group did not receive any surgical intervention. Six weeks later, body weight, fat mass, fasting blood glucose (FBG, and serum levels of FGF21 and leptin were measured. The expression of the FGF21 signaling pathway and white adipose tissue (WAT browning-related genes in the WAT and liver were evaluated by real-time reverse transcription polymerase chain reaction (RT-qPCR and western blot.Results: IT surgery significantly decreased the body weights and FBG levels and increased the insulin sensitivity of GK rats. The total WAT mass of the IT rats showed a 41.5% reduction compared with the Sham-IT rats, and serum levels of FGF21 and leptin of the IT rats decreased by 26.3 and 61.7%, respectively (all P < 0.05. The mRNA levels of fibroblast growth factor receptor 1 (FGFR1 and its co-receptor β klotho (KLB in the perirenal WAT (pWAT of the IT rats were 1.4- and 2.4-fold that of the Sham-IT rats, respectively, and the FGFR1 protein levels were 1.7-fold of the Sham-IT rats (all P < 0.05. In accordance with the pWAT, the protein levels of FGFR1 and KLB in the epididymal WAT (eWAT of the IT rats notably increased to 3.0- and 3.9-fold of the Sham-IT rats (P < 0.05. Furthermore, uncoupling protein 1 (UCP1 protein levels in the eWAT and pWAT of the IT rats also increased to 2.2- and 2.3-fold of the Sham-IT rats (P < 0.05. However, the protein levels of FGFR1 and KLB in the

  12. Quercetin Decreases Insulin Resistance in a Polycystic Ovary Syndrome Rat Model by Improving Inflammatory Microenvironment.

    Science.gov (United States)

    Wang, Zhenzhi; Zhai, Dongxia; Zhang, Danying; Bai, Lingling; Yao, Ruipin; Yu, Jin; Cheng, Wen; Yu, Chaoqin

    2017-05-01

    Insulin resistance (IR) is a clinical feature of polycystic ovary syndrome (PCOS). Quercetin, derived from Chinese medicinal herbs such as hawthorn, has been proven practical in the management of IR in diabetes. However, whether quercetin could decrease IR in PCOS is unknown. This study aims to observe the therapeutic effect of quercetin on IR in a PCOS rat model and explore the underlying mechanism. An IR PCOS rat model was established by subcutaneous injection with dehydroepiandrosterone. The body weight, estrous cycle, and ovary morphology of the quercetin-treated rats were observed. Serum inflammatory cytokines were analyzed using enzyme-linked immunosorbent assay. In ovarian tissues, the expression of key genes involved in the inflammatory signaling pathway was detected through Western blot, real-time polymerase chain reaction, or immunohistochemistry. The nuclear translocation of nuclear factor κB (NF-κB) was also observed by immunofluorescence. The estrous cycle recovery rate of the insulin-resistant PCOS model after quercetin treatment was 58.33%. Quercetin significantly reduced the levels of blood insulin, interleukin 1β, IL-6, and tumor necrosis factor α. Quercetin also significantly decreased the granulosa cell nuclear translocation of NF-κB in the insulin-resistant PCOS rat model. The treatment inhibited the expression of inflammation-related genes, including the nicotinamide adenine dinucleotide phosphate oxidase subunit p22phox, oxidized low-density lipoprotein, and Toll-like receptor 4, in ovarian tissue. Quercetin improved IR and demonstrated a favorable therapeutic effect on the PCOS rats. The underlying mechanism of quercetin potentially involves the inhibition of the Toll-like receptor/NF-κB signaling pathway and the improvement in the inflammatory microenvironment of the ovarian tissue of the PCOS rat model.

  13. Decreased α1-adrenergic receptor-mediated inositide hydrolysis in neurons from hypertensive rat brain

    International Nuclear Information System (INIS)

    Feldstein, J.B.; Gonzales, R.A.; Baker, S.P.; Sumners, C.; Crews, F.T.; Raizada, M.K.

    1986-01-01

    The expression of α 1 -adrenergic receptors and norepinephrine (NE)-stimulated hydrolysis of inositol phospholipid has been studied in neuronal cultures from the brains of normotensive (Wistar-Kyoto, WKY) and spontaneously hypertensive (SH) rats. Binding of 125 I-1-[β-(4-hydroxyphenyl)-ethyl-aminomethyl] tetralone (HEAT) to neuronal membranes was 68-85% specific and was rapid. Competition-inhibition experiments with various agonists and antagonists suggested that 125 I-HEAT bound selectively to α 1 -adrenergic receptors. Specific binding of 125 I-HEAT to neuronal membranes from SH rat brain cultures was 30-45% higher compared with binding in WKY normotensive controls. This increase was attributed to an increase in the number of α 1 -adrenergic receptors on SH rat brain neurons. Incubation of neuronal cultures of rat brain from both strains with NE resulted in a concentration-dependent stimulation of release of inositol phosphates, although neurons from SH rat brains were 40% less responsive compared with WKY controls. The decrease in responsiveness of SH rat brain neurons to NE, even though the α 1 -adrenergic receptors are increased, does not appear to be due to a general defect in membrane receptors and postreceptor signal transduction mechanisms. This is because neither the number of muscarinic-cholinergic receptors nor the carbachol-stimulated release of inositol phosphates is different in neuronal cultures from the brains of SH rats compared with neuronal cultures from the brains of WKY rats. These observations suggest that the increased expression of α 1 -adrenergic receptors does not parallel the receptor-mediated inositol phosphate hydrolysis in neuronal cultures from SH rat brain

  14. Vitamin E decreases extra-hepatic menaquinone-4 concentrations in rats fed menadione or phylloquinone.

    Science.gov (United States)

    Farley, Sherry M; Leonard, Scott W; Labut, Edwin M; Raines, Hannah F; Card, David J; Harrington, Dominic J; Mustacich, Debbie J; Traber, Maret G

    2012-06-01

    The mechanism for increased bleeding and decreased vitamin K status accompanying vitamin E supplementation is unknown. We hypothesized that elevated hepatic α-tocopherol (α-T) concentrations may stimulate vitamin K metabolism and excretion. Furthermore, α-T may interfere with the side chain removal of phylloquinone (PK) to form menadione (MN) as an intermediate for synthesis of tissue-specific menaquinone-4 (MK-4). In order to investigate these hypotheses, rats were fed phylloquinone (PK) or menadione (MN) containing diets (2 μmol/kg) for 2.5 weeks. From day 10, rats were given daily subcutaneous injections of either α-T (100 mg/kg) or vehicle and were sacrificed 24 h after the seventh injection. Irrespective of diet, α-T injections decreased MK-4 concentrations in brain, lung, kidney, and heart; and PK in lung. These decreases were not accompanied by increased excretion of urinary 5C- or 7C-aglycone vitamin K metabolites, however, the urinary α-T metabolite (α-CEHC) increased ≥ 100-fold. Moreover, α-T increases were accompanied by downregulation of hepatic cytochrome P450 expression and modified expression of tissue ATP-binding cassette transporters. Thus, in rats, high tissue α-T depleted tissue MK-4 without significantly increasing urinary vitamin K metabolite excretion. Changes in tissue MK-4 and PK levels may be a result of altered regulation of transporters. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Treatment with escitalopram but not desipramine decreases escape latency times in a learned helplessness model using juvenile rats.

    Science.gov (United States)

    Reed, Abbey L; Anderson, Jeffrey C; Bylund, David B; Petty, Frederick; El Refaey, Hesham; Happe, H Kevin

    2009-08-01

    The pharmacological treatment of depression in children and adolescents is different from that of adults due to the lack of efficacy of certain antidepressants in the pediatric age group. Our current understanding of why these differences occur is very limited. To develop more effective treatments, a juvenile animal model of depression was tested to validate it as a possible model to specifically study pediatric depression. Procedures for use with juvenile rats at postnatal day (PND) 21 and 28 were adapted from the adult learned helplessness model in which, 24 h after exposure to inescapable stress, animals are unable to remove themselves from an easily escapable stressor. Rats were treated for 7 days with either the selective serotonin reuptake inhibitor escitalopram at 10 mg/kg or the tricyclic antidepressant desipramine at 3, 10, or 15 mg/kg to determine if treatment could decrease escape latency times. Escitalopram treatment was effective at decreasing escape latency times in all ages tested. Desipramine treatment did not decrease escape latency times for PND 21 rats, but did decrease times for PND 28 and adult animals. The learned helplessness model with PND 21 rats predicts the efficacy of escitalopram and the lack of efficacy of desipramine seen in the treatment of pediatric depression. These findings suggest that the use of PND 21 rats in a modified learned helplessness procedure may be a valuable model of human pediatric depression that can predict pediatric antidepressant efficacy and be used to study antidepressant mechanisms involved in pediatric depression.

  16. Insulin-induced decrease in protein phosphorylation in rat adipocytes not explained by decreased A-kinase activity

    International Nuclear Information System (INIS)

    Egan, J.J.; Greenberg, A.S.; Chang, M.K.; Londos, C.

    1987-01-01

    In isolated rat adipocytes, insulin inhibits lipolysis to a greater extent than would be predicted by the decrease in (-/+)cAMP activity ratio of cAMP-dependent protein kinase [A-kinase], from which it was speculated that insulin promotes the dephosphorylation of hormone-sensitive lipase. They have examined the phosphorylation state of cellular proteins under conditions of varying A-kinase activities in the presence and absence of insulin. Protein phosphorylation was determined by SDS-PAGE electrophoresis of extracts from 32 P-loaded cells; glycerol and A-kinase activity ratios were measured in the cytosolic extracts from control, non-radioactive cells. Increased protein phosphorylation in general occurred over the same range of A-kinase activity ratios, 0.1-0.3, associated with increased glycerol release. The insulin-induced decrease in lipolysis was associated with a decrease in the 32 P content of several proteins, an effect not explained by the modest reduction in A-kinase activity by insulin. This effect of insulin on protein phosphorylation was lost as the A-kinase activity ratios exceeded 0.5. The results suggest that insulin promotes the dephosphorylation of those adipocyte proteins which are subject to phosphorylation by A-kinase

  17. Mitochondrial Respiration Is Decreased in Rat Kidney Following Fetal Exposure to a Maternal Low-Protein Diet

    Directory of Open Access Journals (Sweden)

    Sarah Engeham

    2012-01-01

    Full Text Available Maternal protein restriction in rat pregnancy is associated with impaired renal development and age-related loss of renal function in the resulting offspring. Pregnant rats were fed either control or low-protein (LP diets, and kidneys from their male offspring were collected at 4, 13, or 16 weeks of age. Mitochondrial state 3 and state 4 respiratory rates were decreased by a third in the LP exposed adults. The reduction in mitochondrial function was not explained by complex IV deficiency or altered expression of the complex I subunits that are typically associated with mitochondrial dysfunction. Similarly, there was no evidence that LP-exposure resulted in greater oxidative damage to the kidney, differential expression of ATP synthetase β-subunit, and ATP-ADP translocase 1. mRNA expression of uncoupling protein 2 was increased in adult rats exposed to LP in utero, but there was no evidence of differential expression at the protein level. Exposure to maternal undernutrition is associated with a decrease in mitochondrial respiration in kidneys of adult rats. In the absence of gross disturbances in respiratory chain protein expression, programming of coupling efficiency may explain the long-term impact of the maternal diet.

  18. Mu-opioid receptor inhibition decreases voluntary wheel running in a dopamine-dependent manner in rats bred for high voluntary running.

    Science.gov (United States)

    Ruegsegger, Gregory N; Brown, Jacob D; Kovarik, M Cathleen; Miller, Dennis K; Booth, Frank W

    2016-12-17

    The mesolimbic dopamine and opioid systems are postulated to influence the central control of physical activity motivation. We utilized selectively bred rats for high (HVR) or low (LVR) voluntary running behavior to examine (1) inherent differences in mu-opioid receptor (Oprm1) expression and function in the nucleus accumbens (NAc), (2) if dopamine-related mRNAs, wheel-running, and food intake are differently influenced by intraperitoneal (i.p.) naltrexone injection in HVR and LVR rats, and (3) if dopamine is required for naltrexone-induced changes in running and feeding behavior in HVR rats. Oprm1 mRNA and protein expression were greater in the NAc of HVR rats, and application of the Oprm1 agonist [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) to dissociated NAc neurons produced greater depolarizing responses in neurons from HVR versus LVR rats. Naltrexone injection dose-dependently decreased wheel running and food intake in HVR, but not LVR, rats. Naltrexone (20mg/kg) decreased tyrosine hydroxylase mRNA in the ventral tegmental area and Fos and Drd5 mRNA in NAc shell of HVR, but not LVR, rats. Additionally, lesion of dopaminergic neurons in the NAc with 6-hydroxydopamine (6-OHDA) ablated the decrease in running, but not food intake, in HVR rats following i.p. naltrexone administration. Collectively, these data suggest the higher levels of running observed in HVR rats, compared to LVR rats, are mediated, in part, by increased mesolimbic opioidergic signaling that requires downstream dopaminergic activity to influence voluntary running, but not food intake. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Chronic lead exposure decreases the vascular reactivity of rat aortas: the role of hydrogen peroxide.

    Directory of Open Access Journals (Sweden)

    Karolini Zuqui Nunes

    Full Text Available We investigated whether exposure to small concentrations of lead alters blood pressure and vascular reactivity. Male Wistar rats were sorted randomly into the following two groups: control (Ct and treatment with 100 ppm of lead (Pb, which was added to drinking water, for 30 days. Systolic blood pressure (BP was measured weekly. Following treatment, aortic ring vascular reactivity was assessed. Tissue samples were properly stored for further biochemical investigation. The lead concentration in the blood reached approximately 8 μg/dL. Treatment increased blood pressure and decreased the contractile responses of the aortic rings to phenylephrine (1 nM-100 mM. Following N-nitro-L arginine methyl ester (L-NAME administration, contractile responses increased in both groups but did not differ significantly between them. Lead effects on Rmax were decreased compared to control subjects following superoxide dismutase (SOD administration. Catalase, diethyldithiocarbamic acid (DETCA, and apocynin increased the vasoconstrictor response induced by phenylephrine in the aortas of lead-treated rats but did not increase the vasoconstrictor response in the aortas of untreated rats. Tetraethylammonium (TEA potentiated the vasoconstrictor response induced by phenylephrine in aortic segments in both groups, but these effects were greater in lead-treated rats. The co-incubation of TEA and catalase abolished the vasodilatory effect noted in the lead group. The present study is the first to demonstrate that blood lead concentrations well below the values established by international legislation increased blood pressure and decreased phenylephrine-induced vascular reactivity. The latter effect was associated with oxidative stress, specifically oxidative stress induced via increases in hydrogen peroxide levels and the subsequent effects of hydrogen peroxide on potassium channels.

  20. Effect of high dietary calcium on weight management in rats

    International Nuclear Information System (INIS)

    Mohamad, M.T.

    2012-01-01

    The present study was undertaken to find out a suitable dietary regime to maintain a lower prevalence of overweight or obesity by adjusting the diet components. Therefore, male Swiss albino rats were selected according to their ages and divided into two main groups, i.e., premature and mature groups. Each rat group was divided into 4 subgroups and each subgroup was fed on a diet of varied composition. Serum levels of lipids, calcium, phosphorous and testosterone were determined in addition to body weight measurement. The results indicate non-significant decrease of percentage of body weight gain in premature rats fed on high-calcium diets while significant decrease of percentage of body weight gain in mature rats fed on the same diet composition. The levels of serum HDL-C, LDL-C, triglycerides and testosterone were significantly decreased in premature rats fed high- calcium diets. In premature rats, only rat subgroup fed on high calcium from milk, showed a significant decrease in serum cholesterol levels. Calcium and phosphorus levels exhibited non- significant change between premature rats. In mature rats, LDL-C data demonstrate nonsignificant changes while cholesterol and triglyceride levels were significantly decreased in rats fed high -calcium diet compared to control. HDL-C level revealed a significant decrease in sera of mature rats fed on high calcium from milk. Serum testosterone levels were significantly decreased in mature rats fed low- fat diets or low fat diets supplemented with high- calcium level. In general, one would suggest to consume low fat diet (4%) supplemented with high calcium from dry skimmed milk fortified with hydroxyapatite as suitable dietary program to avoid overweight or obesity.

  1. Decreased duration of pentobarbital-induced narcosis in immature and adult female rats prenatally exposed to cimetidine

    International Nuclear Information System (INIS)

    Donnelly, D.A.; Iba, M.M.

    1986-01-01

    The effect of prenatal cimetidine exposure (PreCM) on the duration of pentobarbital-induced narcosis (DPN) was assessed in immature (14- and 28-day old) and adult (50-60-day old) male and female rats. PreCM exposure was accomplished by treating mothers with cimetidine (CM) (20 mg/kg, ip) daily for the last two days of gestation and then (0.01% in drinking water) throughout lactation. Pregnant mothers of untreated offspring (Con) received saline. PreCM decreased DPN to 505 +/- 33 min (from 611 +/- 23 min in Con) and 393 +/- 190 min (from 686 +/- 44 min in Con) in 14-day old male and female rats, respectively. Similarly, PreCM decreased DPN to 88 +/- 15 min (from 134 +/- 3 min in Con) and 102 +/- 19 min (from 171 +/- 44 min in Con) in 28-day old male and female rats, respectively. At 21 days, PreCM did not alter DPN in either sex. At 50-60 days, however, it decreased DPN to 144 +/- 41 min (from 238 +/- 7 min in Con) in females but had no effect in males; PreCM also increased the plasma clearance of administered 14 C-pentobarbital more in females than in males. The effects of PreCM, particularly the long-term effects, were most prominent in female rats and were the opposite of those of postnatal treatment with CM. The results together with those of studies with hepatic microsomes suggest that PreCM may have resulted in the induction of hepatic drug-metabolizing enzymes during the perinatal period

  2. ALLOPURINOL DOES NOT DECREASE BLOOD PRESSURE OR PREVENT THE DEVELOPMENT OF HYPERTENSION IN THE DOCA-SALT RAT MODEL

    Science.gov (United States)

    Szasz, Theodora; Linder, A. Elizabeth; Davis, Robert P.; Burnett, Robert; Fink, Gregory D.; Watts, Stephanie W.

    2010-01-01

    Reactive oxygen species (ROS) play an important role in the pathogenesis of hypertension, disease in which ROS levels and markers of oxidative stress are increased. Xanthine oxidase (XO) is a ROS-producing enzyme the activity of which may increase during hypertension. Studies on XO inhibition effects on BP have yielded controversial results. We hypothesized that XO inhibition would decrease BP or attenuate the development of DOCA-salt hypertension. We administered the XO inhibitor, allopurinol (50 mg/kg/day, orally) or its vehicle to rats during the established or development stages of DOCA-salt hypertension. We validated XO inhibition by HPLC measurements of XO metabolites in urine, serum and tissues demonstrating decrease in products, increase in substrates and detection of the active metabolite of allopurinol, oxypurinol. We monitored BP continuously via radiotelemetry and performed gross evaluations of target organs of hypertension. Allopurinol treatment did not impact the course of DOCA-salt hypertension, regardless of the timing of administration. Aside from a significant decrease in pulse pressure in allopurinol-treated rats, no positive differences were observed between the allopurinol and the vehicle-treated rats. We conclude that XO does not play an important role in the development or maintenance of hypertension in the rat DOCA-salt hypertension model. PMID:20881613

  3. The naked mole-rat exhibits an unusual cardiac myofilament protein profile providing new insights into heart function of this naturally subterranean rodent.

    Science.gov (United States)

    Grimes, Kelly M; Barefield, David Y; Kumar, Mohit; McNamara, James W; Weintraub, Susan T; de Tombe, Pieter P; Sadayappan, Sakthivel; Buffenstein, Rochelle

    2017-12-01

    The long-lived, hypoxic-tolerant naked mole-rat well-maintains cardiac function over its three-decade-long lifespan and exhibits many cardiac features atypical of similar-sized laboratory rodents. For example, they exhibit low heart rates and resting cardiac contractility, yet have a large cardiac reserve. These traits are considered ecophysiological adaptations to their dank subterranean atmosphere of low oxygen and high carbon dioxide levels and may also contribute to negligible declines in cardiac function during aging. We asked if naked mole-rats had a different myofilament protein signature to that of similar-sized mice that commonly show both high heart rates and high basal cardiac contractility. Adult mouse ventricles predominantly expressed α-myosin heavy chain (97.9 ± 0.4%). In contrast, and more in keeping with humans, β myosin heavy chain was the dominant isoform (79.0 ± 2.0%) in naked mole-rat ventricles. Naked mole-rat ventricles diverged from those of both humans and mice, as they expressed both cardiac and slow skeletal isoforms of troponin I. This myofilament protein profile is more commonly observed in mice in utero and during cardiomyopathies. There were no species differences in phosphorylation of cardiac myosin binding protein-C or troponin I. Phosphorylation of both ventricular myosin light chain 2 and cardiac troponin T in naked mole-rats was approximately half that observed in mice. Myofilament function was also compared between the two species using permeabilized cardiomyocytes. Together, these data suggest a cardiac myofilament protein signature that may contribute to the naked mole-rat's suite of adaptations to its natural subterranean habitat.

  4. Oxytocin decreases cocaine taking, cocaine seeking, and locomotor activity in female rats.

    Science.gov (United States)

    Leong, Kah-Chung; Zhou, Luyi; Ghee, Shannon M; See, Ronald E; Reichel, Carmela M

    2016-02-01

    Oxytocin has been shown to decrease cocaine taking and seeking in male rats, suggesting potential treatment efficacy for drug addiction. In the present study, we extended these findings to the assessment of cocaine seeking and taking in female rats. Further, we made direct comparisons of oxytocin's impact on cocaine induced locomotor activity in both males and females. In females, systemic oxytocin (0.3, 1.0, 3.0 mg/kg) attenuated lever pressing for cocaine during self-administration and oxytocin (1.0 mg/kg) attenuated cue-induced cocaine seeking following extinction. Cocaine increased baseline locomotor activity to a greater degree in females relative to males. Oxytocin (0.1, 0.3, 1.0, and 3.0 mg/kg) reduced cocaine-induced locomotor activity in females, but not significantly in males. These data illustrate sex similarities in oxytocin's attenuation of cocaine seeking, but sex differences in cocaine-induced locomotor effects. While reductions in cocaine seeking cannot be attributed to a reduction in locomotor activity in males, attenuation of locomotor function cannot be entirely ruled out as an explanation for a decrease in cocaine seeking in females suggesting that oxytocin's effect on cocaine seeking may be mediated by different mechanisms in male and females. PsycINFO Database Record (c) 2016 APA, all rights reserved.

  5. Decrease of Perivascular Adipose Tissue Browning Is Associated With Vascular Dysfunction in Spontaneous Hypertensive Rats During Aging

    Directory of Open Access Journals (Sweden)

    Ling-Ran Kong

    2018-04-01

    Full Text Available Functional perivascular adipose tissue (PVAT is necessary to maintain vascular physiology through both mechanical support and endocrine or paracrine ways. PVAT shows a brown adipose tissue (BAT-like feature and the browning level of PVAT is dependent on the anatomic location and species. However, it is not clear whether PVAT browning is involved in the vascular tone regulation in spontaneously hypertensive rats (SHRs. In the present study, we aimed to illustrate the effect of aging on PVAT browning and subsequent vasomotor reaction in SHRs. Herein we utilized histological staining and western blot to detect the characteristics of thoracic PVAT (tPVAT in 8-week-old and 16-week-old SHR and Wistar-Kyoto (WKY rats. We also detected vascular reactivity analysis to determine the effect of tPVAT on vasomotor reaction during aging. The results showed that tPVAT had a similar phenotype to BAT, including smaller adipocyte size and positive uncoupling protein-1 (UCP1 staining. Interestingly, the tPVAT of 8-week-old SHR showed increased BAT phenotypic marker expression compared to WKY, whereas the browning level of tPVAT had a more dramatic decrease from 8 to 16 weeks of age in SHR than age-matched WKY rats. The vasodilation effect of tPVAT on aortas had no significant difference in 8-week-old WKY and SHR, whereas this effect is obviously decreased in 16-week-old SHR compared to WKY. In contrast, tPVAT showed a similar vasoconstriction effect in 8- or 16-week-old WKY and SHR rats. Moreover, we identified an important vasodilator adenosine, which regulates adipocyte browning and may be a potential PVAT-derived relaxing factor. Adenosine is dramatically decreased from 8 to 16 weeks of age in the tPVAT of SHR. In summary, aging is associated with a decrease of tPVAT browning and adenosine production in SHR rats. These may result in attenuated vasodilation effect of the tPVAT in SHR during aging.

  6. Catechins decrease neurological severity score through apoptosis and neurotropic factor pathway in rat traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Retty Ratnawati

    2017-08-01

    Administration of catechins decreased NSS through inhibiting inflammation and apoptosis, as well as induced the neurotrophic factors in rat brain injury. Catechins may serve as a potential intervention for TBI.

  7. Sex-Specific Skeletal Muscle Fatigability and Decreased Mitochondrial Oxidative Capacity in Adult Rats Exposed to Postnatal Hyperoxia

    Directory of Open Access Journals (Sweden)

    Laura H. Tetri

    2018-03-01

    Full Text Available Premature birth affects more than 10% of live births, and is characterized by relative hyperoxia exposure in an immature host. Long-term consequences of preterm birth include decreased aerobic capacity, decreased muscular strength and endurance, and increased prevalence of metabolic diseases such as type 2 diabetes mellitus. Postnatal hyperoxia exposure in rodents is a well-established model of chronic lung disease of prematurity, and also recapitulates the pulmonary vascular, cardiovascular, and renal phenotype of premature birth. The objective of this study was to evaluate whether postnatal hyperoxia exposure in rats could recapitulate the skeletal and metabolic phenotype of premature birth, and to characterize the subcellular metabolic changes associated with postnatal hyperoxia exposure, with a secondary aim to evaluate sex differences in this model. Compared to control rats, male rats exposed to 14 days of postnatal hyperoxia then aged to 1 year demonstrated higher skeletal muscle fatigability, lower muscle mitochondrial oxidative capacity, more mitochondrial damage, and higher glycolytic enzyme expression. These differences were not present in female rats with the same postnatal hyperoxia exposure. This study demonstrates detrimental mitochondrial and muscular outcomes in the adult male rat exposed to postnatal hyperoxia. Given that young adults born premature also demonstrate skeletal muscle dysfunction, future studies are merited to determine whether this dysfunction as well as reduced aerobic capacity is due to reduced mitochondrial oxidative capacity and metabolic dysfunction.

  8. Decreased prothrombotic effects of pegylated recombinant human megakaryocyte growth and development factor in thrombocytopenic state in a rat thrombosis model.

    Science.gov (United States)

    Nishiyama, U; Kuwaki, T; Akahori, H; Kato, T; Ikeda, Y; Miyazaki, H

    2005-02-01

    Previous in vitro studies demonstrated that thrombopoietin (TPO) acts on platelets to activate a variety of intracellular signaling pathways and to enhance platelet sensitivity to multiple agonists. Little is known, however, about whether TPO exerts prothrombotic effects in vivo. The aim of this study was to examine the effects of pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF), a pegylated N-terminal domain of human TPO, in a rat model of venous thrombosis. A microthrombus was photochemically induced on the vessel wall of a mesenteric venule, but the vessel was not occluded by it. A single intravenous injection of PEG-rHuMGDF (3 microg kg(-1)) after the thrombus generation into normal rats enhanced the thrombus size, resulting in transient thrombotic occlusion in the majority of rats. Stimulatory effects on thrombus growth were also observed following administration of glycosylated recombinant human full-length TPO (6 microg kg(-1)). In rats rendered thrombocytopenic by total body irradiation, however, PEG-rHuMGDF, even at 300 microg kg(-1), did not induce a significant increase in thrombus size or thrombotic occlusion. Platelets from thrombocytopenic rats had decreased surface levels of c-Mpl and decreased sensitivity to PEG-rHuMGDF in an in vitro aggregation response. Thus, decreased prothrombotic effects of PEG-rHuMGDF in thrombocytopenic rats might be the result not only of low platelet counts but also of decreased platelet reactivity to PEG-rHuMGDF. These results indicate that PEG-rHuMGDF has little effect on venous thrombus formation in thrombocytopenic states associated with high endogenous TPO levels.

  9. Four-week dietary supplementation with 10- and/or 15-fold basal choline caused decreased body weight in Sprague Dawley rats.

    Science.gov (United States)

    Bagley, Bradford D; Chang, Shu-Ching; Ehresman, David J; Eveland, Alan; Parker, George A; Peters, Jeffrey M; Butenhoff, John L

    2017-10-01

    Choline is an essential nutrient utilized for phosphatidylcholine biosynthesis and lipoprotein packaging and secretion. Recently, choline supplementation has been used by athletes and the public for weight loss. However, the potential toxicological impact of choline dietary supplementation requires further investigation. This study examined the effects of choline dietary supplementation in Sprague Dawley rats for 4 weeks. Rats were fed diets containing basal choline levels (control) or 5-, 10-, or 15-fold (5×, 10×, or 15×) basal diet concentration. In groups fed choline-supplemented diets, there were no toxicologically relevant findings in clinical observations, food intake, clinical chemistry, liver weights, or liver histopathology. However, decreased mean body weights (8.5-10.2%) and body weight gains (24-31%) were noted for the 10× choline-supplemented (females only) and 15× choline-supplemented (both sexes) groups relative to the control groups from day 3 onward. These body weight effects were not related to a persistent reduction in average food intake. Serum cholesterol was increased in the 15× choline-supplemented male rats relative to the controls, an expected effect of choline supplementation; however, there were no changes in the serum cholesterol of female rats. Serum choline concentrations were increased in female rats relative to the male rats across all treatment groups. The maximum tolerated dose for male and female rats were the 15× and 10× choline supplements, respectively, based on decreased mean body weight and body weight gains. This study supported the conclusions of a clinical trial that showed a high choline diet can decrease body weight in humans.

  10. Former Abusers of Anabolic Androgenic Steroids Exhibit Decreased Testosterone Levels and Hypogonadal Symptoms Years after Cessation: A Case-Control Study

    Science.gov (United States)

    Selmer, Christian; Østergren, Peter Busch; Pedersen, Karen Boje; Schou, Morten; Gustafsson, Finn; Faber, Jens; Juul, Anders; Kistorp, Caroline

    2016-01-01

    Aims Abuse of anabolic androgenic steroids (AAS) is highly prevalent among male recreational athletes. The objective of this study was to investigate the impact of AAS abuse on reproductive hormone levels and symptoms suggestive of hypogonadism in current and former AAS abusers. Methods This study had a cross-sectional case-control design and involved 37 current AAS abusers, 33 former AAS abusers (mean (95%CI) elapsed duration since AAS cessation: 2.5 (1.7; 3.7) years) and 30 healthy control participants. All participants were aged 18–50 years and were involved in recreational strength training. Reproductive hormones (FSH, LH, testosterone, inhibin B and anti-Müllerian hormone (AMH)) were measured using morning blood samples. Symptoms of hypogonadism (depressive symptoms, fatigue, decreased libido and erectile dysfunction) were recorded systematically. Results Former AAS abusers exhibited significantly lower median (25th –75th percentiles) total and free testosterone levels than control participants (total testosterone: 14.4 (11.9–17.7) nmol/l vs. 18.8 (16.6–22.0) nmol/l) (P < 0.01). Overall, 27.2% (13.3; 45.5) of former AAS abusers exhibited plasma total testosterone levels below the lower reference limit (12.1 nmol/l) whereas no control participants exhibited testosterone below this limit (P < 0.01). Gonadotropins were significantly suppressed, and inhibin B and AMH were significantly decreased in current AAS abusers compared with former AAS abusers and control participants (P < 0.01). The group of former AAS abusers had higher proportions of participants with depressive symptoms ((24.2%) (11.1; 42.2)), erectile dysfunction ((27.3%) (13.3; 45.6)) and decreased libido ((40.1%) (23.2; 57.0)) than the other two groups (trend analyses: P < 0.05). Conclusions Former AAS abusers exhibited significantly lower plasma testosterone levels and higher frequencies of symptoms suggestive of hypogonadism than healthy control participants years after AAS cessation

  11. Former Abusers of Anabolic Androgenic Steroids Exhibit Decreased Testosterone Levels and Hypogonadal Symptoms Years after Cessation: A Case-Control Study.

    Directory of Open Access Journals (Sweden)

    Jon Jarløv Rasmussen

    Full Text Available Abuse of anabolic androgenic steroids (AAS is highly prevalent among male recreational athletes. The objective of this study was to investigate the impact of AAS abuse on reproductive hormone levels and symptoms suggestive of hypogonadism in current and former AAS abusers.This study had a cross-sectional case-control design and involved 37 current AAS abusers, 33 former AAS abusers (mean (95%CI elapsed duration since AAS cessation: 2.5 (1.7; 3.7 years and 30 healthy control participants. All participants were aged 18-50 years and were involved in recreational strength training. Reproductive hormones (FSH, LH, testosterone, inhibin B and anti-Müllerian hormone (AMH were measured using morning blood samples. Symptoms of hypogonadism (depressive symptoms, fatigue, decreased libido and erectile dysfunction were recorded systematically.Former AAS abusers exhibited significantly lower median (25th -75th percentiles total and free testosterone levels than control participants (total testosterone: 14.4 (11.9-17.7 nmol/l vs. 18.8 (16.6-22.0 nmol/l (P < 0.01. Overall, 27.2% (13.3; 45.5 of former AAS abusers exhibited plasma total testosterone levels below the lower reference limit (12.1 nmol/l whereas no control participants exhibited testosterone below this limit (P < 0.01. Gonadotropins were significantly suppressed, and inhibin B and AMH were significantly decreased in current AAS abusers compared with former AAS abusers and control participants (P < 0.01. The group of former AAS abusers had higher proportions of participants with depressive symptoms ((24.2% (11.1; 42.2, erectile dysfunction ((27.3% (13.3; 45.6 and decreased libido ((40.1% (23.2; 57.0 than the other two groups (trend analyses: P < 0.05.Former AAS abusers exhibited significantly lower plasma testosterone levels and higher frequencies of symptoms suggestive of hypogonadism than healthy control participants years after AAS cessation. Current AAS abusers exhibited severely decreased AMH

  12. Decreased Expression of Na+/K+-ATPase, NHE3, NBC1, AQP1 and OAT in Gentamicin-induced Nephropathy

    Science.gov (United States)

    Bae, Woo Kyun; Lee, JongUn; Park, Jeong Woo; Bae, Eun Hui; Ma, Seong Kwon; Kim, Suhn Hee

    2008-01-01

    The present study was aimed to determine whether there is an altered regulation of tubular transporters in gentamicin-induced nephropathy. Sprague-Dawley male rats (200~250 g) were subcutaneously injected with gentamicin (100 mg/kg per day) for 7 days, and the expression of tubular transporters was determined by immunoblotting and immunohistochemistry. The mRNA and protein expression of OAT was also determined. Gentamicin-treated rats exhibited significantly decreased creatinine clearance along with increased plasma creatinine levels. Accordingly, the fractional excretion of sodium increased. Urine volume was increased, while urine osmolality and free water reabsorption were decreased. Immunoblotting and immunohistochemistry revealed decreased expression of Na+/K+-ATPase, NHE3, NBC1, and AQP1 in the kidney of gentamicin-treated rats. The expression of OAT1 and OAT3 was also decreased. Gentamicin-induced nephropathy may at least in part be causally related with a decreased expression of Na+/K+-ATPase, NHE3, NBC1, AQP1 and OAT. PMID:19967075

  13. Dietary fructo-oligosaccharides and inulin decrease resistance of rats to salmonelle: protective role of calcium

    NARCIS (Netherlands)

    Bruggencate, ten S.J.M.; Bovee-Oudenhoven, I.M.J.; Lettink-Wissink, M.L.G.; Katan, M.B.; Meer, van der R.

    2004-01-01

    Background: We have shown recently that rapid fermentable fructo-oligosaccharides (FOS) decreased resistance of rats towards salmonella. It is not known whether inulin ( which is fermented more gradually) has similar effects or whether buffering nutrients can counteract the adverse effects of rapid

  14. 1200 nt rat liver mRNA identified by differential hybridization exhibits coordinate regulation with 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase

    International Nuclear Information System (INIS)

    Tanaka, R.D.; Clarke, C.F.; Fogelman, A.M.; Edwards, P.A.

    1986-01-01

    Differential hybridization has been used to identify genes in rat liver that encode transcripts which are increased by the drugs cholestyramine and mevinolin and are decreased by dietary cholesterol. This approach should prove useful in isolating and identifying coordinately regulated genes involved in the isoprene biosynthetic pathway. Rat liver poly (A) + RNA was isolated from animals fed diets supplemented with either cholestyramine and mevinolin or with cholesterol. Radiolabeled cDNAs generated from these two RNA preparations were used to screen a rat cDNAs library. A preliminary screen of 10,000 recombinants has led to the identification of a clone with an insert of 1200 bp that hybridizes to a mRNA species of about 1200 nt. The level of this RNA species in rat liver is elevated by the drugs cholestyramine and mevinolin and is decreased by cholesterol feeding. This RNA species is also decreased by mevalonate administration to rats. The regulation of this 1200 nt mRNA species mirrors that of HMG CoA reductase and HMG CoA synthase. It seems very likely that this 1200 nt mRNA encodes a polypeptide which is involved in the isoprene biosynthetic pathway

  15. Decrease of 5-Hydroxymethylcytosine in Rat Liver with Subchronic Exposure to Genotoxic Carcinogens Riddelliine and Aristolochic Acid

    Science.gov (United States)

    Lian, Christine Guo; Xu, Shuyun; Guo, Weimin; Yan, Jian; Frank, Maximilian Y M; Liu, Robert; Liu, Cynthia; Chen, Ying; Murphy, George F.; Chen, Tao

    2018-01-01

    The level of 5-hydroxymethylcytosine (5-hmC) converted by ten-eleven translocation (TET) family is decreased in cancers. However, whether 5-hmC level is perturbed in early stages of carcinogenesis caused by genotoxic carcinogens is not defined. 5-hmC levels and TET2 expression were measured in liver of rats treated with genotoxic carcinogens, riddelliine, or aristolochic acid. Levels of 5-hmC and TET2 expression decreased in the liver of the carcinogens-treated rats. Loss of 5-hmC correlates well with documented induction of genetic mutations by the carcinogens, suggesting that TET2-mediated 5-hydroxymethylation plays an epigenetic role in early state of carcinogenesis. PMID:25154389

  16. Paeoniflorin improves cardiac function and decreases adverse postinfarction left ventricular remodeling in a rat model of acute myocardial infarction

    Directory of Open Access Journals (Sweden)

    Chen H

    2018-04-01

    Full Text Available Hengwen Chen,* Yan Dong,* Xuanhui He, Jun Li, Jie Wang Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China *These authors contributed equally to this work Background: Paeoniflorin (PF is the active component of Paeonia lactiflora Pall. or Paeonia veitchii Lynch. This study was, therefore, aimed to evaluate the improvement and mechanism of the PF on ventricular remodeling in rats with acute myocardial infarction (AMI. Materials and methods: In this study, AMI model was established by ligating the anterior descending coronary artery in Wistar rats. After 4 weeks gavage of PF, the apparent signs and the left ventricle weight index of Wistar rats were observed. The left ventricular ejection fraction (LVEF was evaluated by Doppler ultrasonography. Changes in cardiac morphology were observed by pathologic examination, and apoptosis was observed by the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. In addition, enzyme-linked immunosorbent assay was used to detect the expression of tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6 interleukin-10 (IL-10 and brain natriuretic peptide (BNP. Immunohistochemistry and Western blot method were applied to detect Caspase-3 and Caspase-9. Results: Compared with the model control, the survival conditions of rats in all treatment groups were generally improved after PF treatment. LVEF was significantly increased, and both left ventricular end-diastolic inner diameter and left ventricular end-systolic inner diameter were significantly reduced. Moreover, pathologic examination showed that the myocardium degeneration of the rats treated with PF was decreased, including neater arrangement, more complete myofilament, more uniform gap and less interstitial collagen fibers. Furthermore, the mitochondrial structure of cardiomyocytes was significantly improved. The ultrastructure was clear, and the arrangement of myofilament was more regular. Also, the expression of

  17. Tetragonia tetragonioides (Pall.) Kuntze protects estrogen-deficient rats against disturbances of energy and glucose metabolism and decreases proinflammatory cytokines.

    Science.gov (United States)

    Ryuk, Jin Ah; Ko, Byoung-Seob; Lee, Hye Won; Kim, Da Sol; Kang, Suna; Lee, Yong Hyen; Park, Sunmin

    2017-03-01

    Tetragonia tetragonioides (Pall.) Kuntze (TTK) and JakYakGamCho-Tang (JGT) have been used for improving women's health and treating inflammatory diseases. We determined that the long-term consumption of these herbal extracts alleviates the progression of postmenopausal symptoms in high-fat-diet fed ovariectomized (OVX) rats, and further explored the mechanisms involved. Five groups of OVX rats were fed high fat diets that were supplemented with either 2% dextrin (control), 2% TTK (70% ethanol extract), 2% JGT (water extract), 1% JGT + 1% TTK (JGTT), or 30 µg/kg body weight/day of 17β-estradiol (positive control). After eight weeks of dietary intervention, the herbal treatments did not change the serum concentrations of 17β-estradiol or uterine weight in control rats, but they were higher in the positive-control group. TTK rats exhibited higher daily energy expenditure, particularly fat oxidation, without modifying the energy intake than the controls. TTK lowered the fat mass but lean body mass of the abdomen and leg were increased. JGT decreased periuterine fat mass and lean body mass more than the control but the decrease was not as much as TTK. TTK resulted in substantially lower serum concentrations of the proinflammatory cytokines, tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1, than the control and JGT had lesser effect than TTK. Insulin resistance, determined by homeostasis model assessment estimate for assessing insulin resistance (HOMA-IR) and insulin tolerance test, was reduced in the decreasing order of control, JGT, JGTT, and TTK and the HOMA-IR of TTK was similar to the positive control. TTK, but not JGT, enhanced glucose tolerance compared with the control, although the serum insulin levels in TTK were lower compared to the control. Interestingly, the β-cell masses were much greater in the TTK and JGTT groups than in the control, and they were comparable to the positive control. The increases in β-cell masses in TTK and

  18. Radioiron utilization and gossypol acetic acid in male rats

    International Nuclear Information System (INIS)

    Tone, J.N.; Jensen, D.R.

    1985-01-01

    The 24-h incorporation of 59 Fe into circulating red blood cells, bone marrow, urine, liver, spleen, and skeletal muscle was measured in splenectomized and sham-splenectomized rats which had received a daily, oral dose of gossypol acetic acid (20 mg GAA/kg body wt) for 91 days. A significant decrease in total body weight gain was observed in all GAA treated animals. Splenectomized rats dosed with GAA exhibited a significant decrease in hemoglobin concentration, hematocrit and erythrocyte count. A significant increase in 59 Fe incorporation by red blood cells and a decrease in hepatic incorporation of 59 Fe indicate a preferential utilization of iron in erythropoiesis among GAA treated animals

  19. Hindlimb unloading in rat decreases preosteoblast proliferation assessed in vivo with BrdU incorporation.

    Science.gov (United States)

    Barou, O; Palle, S; Vico, L; Alexandre, C; Lafage-Proust, M H

    1998-01-01

    Immobilization affects bone formation. However, the mechanisms regulating the decrease in osteoblast recruitment remain unclear. The aim of our study was to determine in vivo osteoblastic proliferation after short-term immobilization among the different bone compartments. Twelve Wistar 5-wk-old rats were assigned to two groups: six tail-suspended animals for 6 days and their six age-related controls. Osmotic minipumps, each containing 40 mg of bromodeoxyuridine (BrdU), were implanted intraperitoneally at day 4 until euthanasia. Histomorphometric measurements found a significantly lower bone volume in primary (ISP, -22%) and secondary spongiosa (IISP, -37%) in unloaded rats compared with their age-related controls. BrdU immunohistochemistry showed that the proliferation capacity of osteogenic precursors in ISP (-29%) and preosteoblasts in IISP (-80%) and in periosteum as well as bone marrow cells (-40%) was lowered by unloading. We demonstrated in vivo for the first time that 6-day tail suspension induced a significant decrease in proliferation of periosteal and trabecular preosteoblasts in ISP and IISP as well as in bone marrow cells.

  20. Piracetam and vinpocetine ameliorate rotenone-induced Parkinsonism in rats.

    Science.gov (United States)

    Zaitone, Sawsan A; Abo-Elmatty, Dina M; Elshazly, Shimaa M

    2012-01-01

    To evaluate the neuroprotective effect of the nootropic drugs, piracetam (PIR) and vinpocetine (VIN), in rotenone-induced Parkinsonism in rats. Sixty male rats were divided into 6 groups of 10 rats each. The groups were administered vehicle, control (rotenone, 1.5 mg/kg/48 h/6 doses, s.c.), PIR (100 and 200 mg/kg/day, p.o.) and VIN (3 and 6 mg/kg/day, p.o.). The motor performance of the rats was evaluated by the open field and pole test. Striatal dopamine level, malondialdehyde (MDA), reduced glutathione (GSH) and tumor necrosis factor-α (TNF-α) were assayed. Histopathological study of the substantia nigra was also done. Results showed that rotenone-treated rats exhibited bradykinesia and motor impairment in the open-field test. In addition, GSH level was decreased whereas MDA and TNF-α increased in striata of rotenone-treated rats as compared to vehicle-treated rats. Marked degeneration of the substantia nigra pars compacta (SNpc) neurons and depletion of striatal dopamine was also observed in the rotenone-treated rats. Treatment with PIR or VIN significantly reversed the locomotor deficits and increased striatal dopamine level. Treatment with VIN significantly (P<0.05) reduced the striatal level of MDA and GSH in comparison to rotenone group whereas TNF-α production was found to be significantly decreased in PIR group (P<0.05). VIN and PIR exhibit neuroprotective activity in rotenone-induced Parkinsonism. Hence, these nootropic agents may be considered as possible candidates in the treatment of Parkinson's disease.

  1. Neurosteroids exhibit anticonvulsant action in immature rats

    Czech Academy of Sciences Publication Activity Database

    Mareš, Pavel

    2005-01-01

    Roč. 46, č. S8 (2005), s. 115-116 ISSN 0013-9580. [Joint Annual Meeting of the American Epilepsy Society and American Clinical Neurophysiology Society. 02.12.2005-06.12.2005, Washington, DC] R&D Projects: GA AV ČR(CZ) IBS5011007 Institutional research plan: CEZ:AV0Z50110509 Keywords : neurosteroids * anticonvulsants * immature rats Subject RIV: ED - Physiology

  2. Gynura procumbens Merr. decreases blood pressure in rats by vasodilatation via inhibition of calcium channels

    Directory of Open Access Journals (Sweden)

    See-Ziau Hoe

    2011-01-01

    Full Text Available INTRODUCTION: Gynura procumbens has been shown to decrease blood pressure via inhibition of the angiotensinconverting enzyme. However, other mechanisms that may contribute to the hypotensive effect have not been studied. OBJECTIVES: To investigate the cardiovascular effects of a butanolic fraction of Gynura procumbens in rats. METHODS: Anaesthetized rats were given intravenous bolus injections of butanolic fraction at doses of 2.5-20 mg/kg in vivo. The effect of butanolic fraction on vascular reactivity was recorded in isolated rat aortic rings in vitro. RESULTS: Intravenous administrations of butanolic fraction elicited significant (p<0.001 and dose-dependent decreases in the mean arterial pressure. However, a significant (p<0.05 decrease in the heart rate was observed only at the higher doses (10 and 20 mg/kg. In isolated preparations of rat aortic rings, phenylephrine (1×10-6 M- or potassium chloride (8×10-2 M-precontracted endothelium-intact and -denuded tissue; butanolic fraction (1×10-6-1×10-1 g/ml induced similar concentration-dependent relaxation of the vessels. In the presence of 2.5×10-3 and 5.0×10-3 g/ml butanolic fraction, the contractions induced by phenylephrine (1×10-9-3×10-5 M and potassium chloride (1×10-2-8×10-2 M were significantly antagonized. The calcium-induced vasocontractions (1×10-4-1×10-2 M were antagonized by butanolic fraction concentration-dependently in calcium-free and high potassium (6×10-2 M medium, as well as in calcium- and potassium-free medium containing 1×10-6 M phenylephrine. However, the contractions induced by noradrenaline (1×10-6 M and caffeine (4.5×10-2 M were not affected by butanolic fraction. CONCLUSION: Butanolic fraction contains putative hypotensive compounds that appear to inhibit calcium influx via receptor-operated and/or voltage-dependent calcium channels to cause vasodilation and a consequent fall in blood pressure.

  3. The bidirectional effects of hypothyroidism and hyperthyroidism on anxiety- and depression-like behaviors in rats.

    Science.gov (United States)

    Yu, Dafu; Zhou, Heng; Yang, Yuan; Jiang, Yong; Wang, Tianchao; Lv, Liang; Zhou, Qixin; Yang, Yuexiong; Dong, Xuexian; He, Jianfeng; Huang, Xiaoyan; Chen, Jijun; Wu, Kunhua; Xu, Lin; Mao, Rongrong

    2015-03-01

    Thyroid hormone disorders have long been linked to depression, but the causal relationship between them remains controversial. To address this question, we established rat models of hypothyroidism using (131)iodine ((131)I) and hyperthyroidism using levothyroxine (LT4). Serum free thyroxine (FT4) and triiodothyronine (FT3) significantly decreased in the hypothyroid of rats with single injections of (131)I (5mCi/kg). These rats exhibited decreased depression-like behaviors in forced swimming test and sucrose preference tests, as well as decreased anxiety-like behaviors in an elevated plus maze. Diminished levels of brain serotonin (5-HT) and increased levels of hippocampal brain-derived neurotrophic factor (BDNF) were found in the hypothyroid rats compared to the control saline-vehicle administered rats. LT4 treatment reversed the decrease in thyroid hormones and depression-like behaviors. In contrast, hyperthyroidism induced by weekly injections of LT4 (15μg/kg) caused a greater than 10-fold increase in serum FT4 and FT3 levels. The hyperthyroid rats exhibited higher anxiety- and depression-like behaviors, higher brain 5-HT level, and lower hippocampal BDNF levels than the controls. Treatment with the antidepressant imipramine (15mg/kg) diminished serum FT4 levels as well as anxiety- and depression-like behaviors in the hyperthyroid rats but led to a further increase in brain 5-HT levels, compared with the controls or the hypothyroid rats. Together, our results suggest that hypothyroidism and hyperthyroidism have bidirectional effects on anxiety- and depression-like behaviors in rats, possibly by modulating hippocampal BDNF levels. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Magnesium absorption from mineral water decreases with increasing quantities of magnesium per serving in rats.

    Science.gov (United States)

    Nakamura, Eri; Tai, Hideyuki; Uozumi, Yoshinobu; Nakagawa, Koji; Matsui, Tohru

    2012-01-01

    It is hypothesized that magnesium (Mg) absorption from mineral water is affected by the concentration of Mg in the water, the consumption pattern, and the volume consumed per serving. The present study examined the effect of serving volume and consumption pattern of artificial mineral water (AMW) and Mg concentration on Mg absorption in rats. Magnesium in AMW was labeled with magnesium-25 as a tracer. Each group consisted of 6 or 7 rats. In experiment 1, the rats received 1 mL of AMW containing 200 mg Mg/L at 4 times, 400 mg Mg/L twice, or 800 mg Mg/L at 1 time. In experiment 2, the rats received 1 mL of AMW containing 200 mg Mg/L or 0.25 mL of AMW containing 800 mg Mg/L at 4 times or 1 mL of AMW containing 800 mg Mg/L at 1 time. The absorption of Mg decreased with increasing Mg concentrations in the same serving volume of AMW with different serving frequencies. When the AMW containing 800 mg Mg/L was portioned into 4 servings, Mg absorption increased to the level of absorption in the group exposed to AMW containing 200 mg Mg/L served at the same frequency. These results suggest that the Mg concentration and the volume of AMW do not affect Mg absorption per se, but Mg absorption from AMW decreases when the amount of Mg in each serving is increased. Thus, frequent consumption is preferable for mineral water rich in Mg when the total consumption of mineral water is the same. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Rat Pial Microvascular Changes During Cerebral Blood Flow Decrease and Recovery: Effects of Cyanidin Administration

    Directory of Open Access Journals (Sweden)

    Teresa Mastantuono

    2018-05-01

    Full Text Available The reactive oxygen species (ROS are known to play a major role in many pathophysiological conditions, such as ischemia and reperfusion injury. The present study was aimed to evaluate the in vivo cyanidin (anthocyanin effects on damages induced by rat pial microvascular hypoperfusion-reperfusion injury by cerebral blood flow decrease (CBFD and subsequent cerebral blood flow recovery (CBFR. In particular, the main purpose was to detect changes in ROS production after cyanidin administration. Rat pial microvasculature was investigated using fluorescence microscopy through a cranial window (closed; Strahler's method was utilized to define the geometric features of pial vessels. ROS production was investigated in vivo by 2′-7′-dichlorofluorescein-diacetate assay and neuronal damage was measured on isolated brain sections by 2,3,5-triphenyltetrazolium chloride staining. After 30 min of CBFD, induced by bilateral common carotid artery occlusion, and 60 min of CBFR, rats showed decrease of arteriolar diameter and capillary perfusion; furthermore, increase in microvascular leakage and leukocyte adhesion was observed. Conversely, cyanidin administration induced dose-related arteriolar dilation, reduction in microvascular permeability as well as leukocyte adhesion when compared to animals subjected to restriction of cerebral blood flow; moreover, capillary perfusion was protected. ROS generation increase and marked neuronal damage were detected in animals subjected to CBFD and CBFR. On the other hand, cyanidin was able to reduce ROS generation and neuronal damage. In conclusion, cyanidin treatment showed dose-related protective effects on rat pial microcirculation during CBFD and subsequent CBFR, inducing arteriolar dilation by nitric oxide release and inhibiting ROS formation, consequently preserving the blood brain barrier integrity.

  6. Omega-3 fatty acid deficient male rats exhibit abnormal behavioral activation in the forced swim test following chronic fluoxetine treatment: association with altered 5-HT1A and alpha2A adrenergic receptor expression.

    Science.gov (United States)

    Able, Jessica A; Liu, Yanhong; Jandacek, Ronald; Rider, Therese; Tso, Patrick; McNamara, Robert K

    2014-03-01

    Omega-3 fatty acid deficiency during development leads to enduing alterations in central monoamine neurotransmission in rat brain. Here we investigated the effects of omega-3 fatty acid deficiency on behavioral and neurochemical responses to chronic fluoxetine (FLX) treatment. Male rats were fed diets with (CON, n = 34) or without (DEF, n = 30) the omega-3 fatty acid precursor alpha-linolenic acid (ALA) during peri-adolescent development (P21-P90). A subset of CON (n = 14) and DEF (n = 12) rats were administered FLX (10 mg/kg/d) through their drinking water for 30 d beginning on P60. The forced swimming test (FST) was initiated on P90, and regional brain mRNA markers of serotonin and noradrenaline neurotransmission were determined. Dietary ALA depletion led to significant reductions in frontal cortex docosahexaenoic acid (DHA, 22:6n-3) composition in DEF (-26%, p = 0.0001) and DEF + FLX (-32%, p = 0.0001) rats. Plasma FLX and norfluoxetine concentrations did not different between FLX-treated DEF and CON rats. During the 15-min FST pretest, DEF + FLX rats exhibited significantly greater climbing behavior compared with CON + FLX rats. During the 5-min test trial, FLX treatment reduced immobility and increased swimming in CON and DEF rats, and only DEF + FLX rats exhibited significant elevations in climbing behavior. DEF + FLX rats exhibited greater midbrain, and lower frontal cortex, 5-HT1A mRNA expression compared with all groups including CON + FLX rats. DEF + FLX rats also exhibited greater midbrain alpha2A adrenergic receptor mRNA expression which was positively correlated with climbing behavior in the FST. These preclinical data demonstrate that low omega-3 fatty acid status leads to abnormal behavioral and neurochemical responses to chronic FLX treatment in male rats. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Allopurinol does not decrease blood pressure or prevent the development of hypertension in the deoxycorticosterone acetate-salt rat model.

    Science.gov (United States)

    Szasz, Theodora; Linder, A Elizabeth; Davis, Robert P; Burnett, Robert; Fink, Gregory D; Watts, Stephanie W

    2010-12-01

    Reactive oxygen species play an important role in the pathogenesis of hypertension, disease in which reactive oxygen species levels and markers of oxidative stress are increased. Xanthine oxidase (XO) is a reactive oxygen species-producing enzyme the activity of which may increase during hypertension. Studies on XO inhibition effects on blood pressure have yielded controversial results. We hypothesized that XO inhibition would decrease blood pressure or attenuate the development of deoxycorticosterone acetate (DOCA)-salt hypertension. We administered the XO inhibitor, allopurinol (50 mg/kg per day, orally) or its vehicle to rats during the established or development stages of DOCA-salt hypertension. We validated XO inhibition by high-performance liquid chromatography measurements of XO metabolites in urine, serum, and tissues demonstrating a decrease in products, increase in substrates, and detection of the active metabolite of allopurinol, oxypurinol. We monitored blood pressure continuously through radiotelemetry and performed gross evaluations of target organs of hypertension. Allopurinol treatment did not impact the course of DOCA-salt hypertension regardless of the timing of administration. Aside from a significant decrease in pulse pressure in allopurinol-treated rats, no positive differences were observed between the allopurinol and the vehicle-treated rats. We conclude that XO does not play an important role in the development or maintenance of hypertension in the rat DOCA-salt hypertension model.

  8. Dysbiosis of Intestinal Microbiota and Decreased Antimicrobial Peptide Level in Paneth Cells during Hypertriglyceridemia-Related Acute Necrotizing Pancreatitis in Rats

    Directory of Open Access Journals (Sweden)

    Chunlan Huang

    2017-05-01

    Full Text Available Hypertriglyceridemia (HTG aggravates the course of acute pancreatitis (AP. Intestinal barrier dysfunction is implicated in the pathogenesis of AP during which dysbiosis of intestinal microbiota contributes to the dysfunction in intestinal barrier. However, few studies focus on the changes in intestine during HTG-related acute necrotizing pancreatitis (ANP. Here, we investigated the changes in intestinal microbiota and Paneth cell antimicrobial peptides (AMPs in HTG-related ANP (HANP in rats. Rats fed a high-fat diet to induce HTG and ANP was induced by retrograde injection of 3.5% sodium taurocholate into biliopancreatic duct. Rats were sacrificed at 24 and 48 h, respectively. Pancreatic and ileal injuries were evaluated by histological scores. Intestinal barrier function was assessed by plasma diamine oxidase activity and D-lactate level. Systemic and intestinal inflammation was evaluated by tumor necrosis factor alpha (TNFα, interleukin (IL-1β, and IL-17A expression. 16S rRNA high throughput sequencing was used to investigate changes in intestinal microbiota diversity and structure. AMPs (α-defensin5 and lysozyme expression was measured by real-time polymerase chain reaction (PCR and immunofluorescence. The results showed that compared with those of normal-lipid ANP (NANP groups, the HANP groups had more severe histopathological injuries in pancreas and distal ileum, aggravated intestinal barrier dysfunction and increased TNFα, IL-1β, and IL-17A expression in plasma and distal ileum. Principal component analysis showed structural segregation between the HANP and NANP group. α-Diversity estimators in the HANP group revealed decreased microbiota diversity compared with that in NANP group. Taxonomic analysis showed dysbiosis of intestinal microbiota structure. In the HANP group, at phyla level, Candidatus_Saccharibacteria and Tenericutes decreased significantly, whereas Actinobacteria increased. At genus level, Allobaculum, Bifidobacterium

  9. Microarray analysis of thioacetamide-treated type 1 diabetic rats

    International Nuclear Information System (INIS)

    Devi, Sachin S.; Mehendale, Harihara M.

    2006-01-01

    It is well known that diabetes imparts high sensitivity to numerous hepatotoxicants. Previously, we have shown that a normally non-lethal dose of thioacetamide (TA, 300 mg/kg) causes 90% mortality in type 1 diabetic (DB) rats due to inhibited tissue repair allowing progression of liver injury. On the other hand, DB rats exposed to 30 mg TA/kg exhibit delayed tissue repair and delayed recovery from injury. The objective of this study was to investigate the mechanism of impaired tissue repair and progression of liver injury in TA-treated DB rats by using cDNA microarray. Gene expression pattern was examined at 0, 6, and 12 h after TA challenge, and selected mechanistic leads from microarray experiments were confirmed by real-time RT-PCR and further investigated at protein level over the time course of 0 to 36 h after TA treatment. Diabetic condition itself increased gene expression of proteases and decreased gene expression of protease inhibitors. Administration of 300 mg TA/kg to DB rats further elevated gene expression of proteases and suppressed gene expression of protease inhibitors, explaining progression of liver injury in DB rats after TA treatment. Inhibited expression of genes involved in cell division cycle (cyclin D1, IGFBP-1, ras, E2F) was observed after exposure of DB rats to 300 mg TA/kg, explaining inhibited tissue repair in these rats. On the other hand, DB rats receiving 30 mg TA/kg exhibit delayed expression of genes involved in cell division cycle, explaining delayed tissue repair in these rats. In conclusion, impaired cyclin D1 signaling along with increased proteases and decreased protease inhibitors may explain impaired tissue repair that leads to progression of liver injury initiated by TA in DB rats

  10. Influence of X-radiation on the renal function as studied in the unilaterally nephrectomized rat

    International Nuclear Information System (INIS)

    Sittner, A.

    1976-01-01

    The effects of X-ray radiation on the renal function was studied in 83 Wistar rats. The rats received either only whole-body irradiation or were exposed to whole-body irradiation at certain intervals after unilateral nephrectomy. When the interval between operation and irradiation was shortened from 10 to 2 days, early lethality increased, although it has not yet been established whether the operation or the lack of a kidney plays a greater role here. The weight behaviour of non-nephrectomized or unilaterally nephrectomized rats is a function of the radiation dose; inappetence, dehydration and decreased intestinal absorption are influencing factors. Animals that died had exhibited another loss of weight after the 10th day p.r. The non-nephrectomized rats having undergone whole-body irradiation exhibited a decrease in serum urea on the 2nd and 10th day p.r. Animals unilaterally nephrectomized and then exposed to whole-body irradiation exhibited an increase in serum urea which was the more pronounced the earlier irradiation had taken place after unilateral nephrectomy. This raised urea level in the nephrectomized animals may be attributed to the compensatory hypertrophy not yet existing and to the reduced filtrate. (orig.) [de

  11. Alcohol-induced decrease in muscle protein synthesis associated with increased binding of mTOR and raptor: Comparable effects in young and mature rats

    Directory of Open Access Journals (Sweden)

    Vary Thomas C

    2009-01-01

    Full Text Available Abstract Background Acute alcohol (EtOH intoxication decreases muscle protein synthesis via inhibition of mTOR-dependent translation initiation. However, these studies have been performed in relatively young rapidly growing rats in which muscle protein accretion is more sensitive to growth factor and nutrient stimulation. Furthermore, some in vivo-produced effects of EtOH vary in an age-dependent manner. The hypothesis tested in the present study was that young rats will show a more pronounced decrement in muscle protein synthesis than older mature rats in response to acute EtOH intoxication. Methods Male F344 rats were studied at approximately 3 (young or 12 (mature months of age. Young rats were injected intraperitoneally with 75 mmol/kg of EtOH, and mature rats injected with either 75 or 90 mmol/kg EtOH. Time-matched saline-injected control rats were included for both age groups. Gastrocnemius protein synthesis and the activity of the mTOR pathway were assessed 2.5 h after EtOH using [3H]-labeled phenylalanine and the phosphorylation of various protein factors known to regulate peptide-chain initiation. Results Blood alcohol levels (BALs were lower in mature rats compared to young rats after administration of 75 mmol/kg EtOH (154 ± 23 vs 265 ± 24 mg/dL. However, injection of 90 mmol/kg EtOH in mature rats produced BALs comparable to that of young rats (281 ± 33 mg/dL. EtOH decreased muscle protein synthesis similarly in both young and high-dose EtOH-treated mature rats. The EtOH-induced changes in both groups were associated with a concomitant reduction in 4E-BP1 phosphorylation, and redistribution of eIF4E between the active eIF4E·eIF4G and inactive eIF4E·4EBP1 complex. Moreover, EtOH increased the binding of mTOR with raptor in a manner which appeared to be AMPK- and TSC-independent. In contrast, although muscle protein synthesis was unchanged in mature rats given low-dose EtOH, compared to control values, the phosphorylation of rpS6

  12. Neuronal zinc-α2-glycoprotein is decreased in temporal lobe epilepsy in patients and rats.

    Science.gov (United States)

    Liu, Ying; Wang, Teng; Liu, Xi; Wei, Xin; Xu, Tao; Yin, Maojia; Ding, Xueying; Mo, Lijuan; Chen, Lifen

    2017-08-15

    Zinc-α2-glycoprotein (ZAG) is a 42-kDa protein encoded by the AZGP1 gene that is known as a lipid mobilizing factor and is highly homologous to major histocompatibility complex class I family molecules. Recently, transcriptomic research has shown that AZGP1 expression is reduced in the brain tissue of epilepsy patients. However, the cellular distribution and biological role of ZAG in the brain and epilepsy are unclear. Patients with refractory temporal lobe epilepsy (TLE) and brain trauma were included in this study, and pentylenetetrazole (PTZ)-kindled rats were also used. The existence and level of ZAG in the brain were identified using immunohistochemistry, double-labeled immunofluorescence and western blot, and the expression level of AZGP1 mRNA was determined with quantitative real-time polymerase chain reaction (qrt-PCR). To explore the potential biological role of ZAG in the brain, co-immunoprecipitation (Co-IP) of phosphorylated ERK (p-ERK), TGF-β1 and ZAG was also performed. ZAG was found in the cytoplasm of neurons in brain tissue from both patients and rats. The levels of AZGP1 mRNA and ZAG were lower in refractory TLE patients and PTZ-kindled rats than in controls. In addition, the ZAG level decreased as PTZ kindling continued. Co-IP identified direct binding between p-ERK, TGF-β1 and ZAG. ZAG was found to be synthesized in neurons, and both the AZGP1 mRNA and ZAG protein levels were decreased in epilepsy patients and rat models. The reduction in ZAG may participate in the pathogenesis and pathophysiology of epilepsy by interacting with p-ERK and TGF-β1, promoting inflammation, regulating the metabolism of ketone bodies, or affecting other epilepsy-related molecules. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Influence of Samarium on Learning and Memory Function of Rats

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Sixty-four Spraque-Dawley(SD)big rats with weaning weight of (195±15) g were randomly divided into 4 groups with 8 males and 8 females each group. One group drunk with de-ionized water served as control and was also used for analysis of the background. The other three groups rats were raised by de-ionized water containing low, middle and high concentrations of Sm for four months, then learning and memory tests were carried out in Y-electric maze. Compared with the control rats, the learning and memory of rats in low and middle groups shows a deterioration trend, exhibiting the function degradation of rats' brain. It may results from the rare earth elements through blood-brain barrier affecting the normal physiological functions of rats' brain. In addition, the activity of superoxide dismutase (SOD) in rats' brain decreases, while the content of malondialdehyde (MDA) concentration increases. The decreased SOD activity and the increased MDA mean the degeneration the ability of anti-oxidation in rats' brain, which are accordance with the degradation of learning and memory function of rats in low and middle Sm groups.

  14. Chronic high-fat diet-induced obesity decreased survival and increased hypertrophy of rats with experimental eccentric hypertrophy from chronic aortic regurgitation.

    Science.gov (United States)

    Dhahri, Wahiba; Drolet, Marie-Claude; Roussel, Elise; Couet, Jacques; Arsenault, Marie

    2014-09-24

    The composition of a diet can influence myocardial metabolism and development of left ventricular hypertrophy (LVH). The impact of a high-fat diet in chronic left ventricular volume overload (VO) causing eccentric LVH is unknown. This study examined the effects of chronic ingestion of a high-fat diet in rats with chronic VO caused by severe aortic valve regurgitation (AR) on LVH, function and on myocardial energetics and survival. Male Wistar rats were divided in four groups: Shams on control or high-fat (HF) diet (15 rats/group) and AR rats fed with the same diets (ARC (n = 56) and ARHF (n = 32)). HF diet was started one week before AR induction and the protocol was stopped 30 weeks later. As expected, AR caused significant LV dilation and hypertrophy and this was exacerbated in the ARHF group. Moreover, survival in the ARHF group was significantly decreased compared the ARC group. Although the sham animals on HF also developed significant obesity compared to those on control diet, this was not associated with heart hypertrophy. The HF diet in AR rats partially countered the expected shift in myocardial energy substrate preference usually observed in heart hypertrophy (from fatty acids towards glucose). Systolic function was decreased in AR rats but HF diet had no impact on this parameter. The response to HF diet of different fatty acid oxidation markers as well as the increase in glucose transporter-4 translocation to the plasma membrane compared to ARC was blunted in AR animals compared to those on control diet. HF diet for 30 weeks decreased survival of AR rats and worsened eccentric hypertrophy without affecting systolic function. The expected adaptation of myocardial energetics to volume-overload left ventricle hypertrophy in AR animals seemed to be impaired by the high-fat diet suggesting less metabolic flexibility.

  15. Dietary fructans, but not cellulose, decrease triglyceride accumulation in the liver of obese Zucker fa/fa rats.

    Science.gov (United States)

    Daubioul, Catherine; Rousseau, Nicolas; Demeure, Roger; Gallez, Bernard; Taper, Henryk; Declerck, Barbara; Delzenne, Nathalie

    2002-05-01

    This study was designed to compare the effects of dietary supplementation with nondigestible carbohydrates, differing in fermentability by colonic bacteria, on hepatic steatosis in growing obese Zucker rats. Male Zucker fa/fa rats were divided into three groups: a control group that received the basal diet, a fructan group that received 10 g highly fermented Synergy 1/100 g diet and a cellulose group that received 10 g poorly fermented Vivapur Microcrystalline cellulose/100 g diet. Rats consuming fructan had a lower energy intake, a lower body weight and less triacylglycerol accumulation in the liver as assessed in vivo by nuclear magnetic resonance (NMR) spectroscopy, and ex vivo by biochemical and histochemical analysis compared with the control and/or cellulose groups. The high fermentation of fructans compared with cellulose was reflected by greater cecal contents and by a twofold greater propionate concentration in the portal vein of rats fed fructan compared with those fed cellulose. By measuring the capacity of hepatocytes isolated from liver of Zucker rats to synthesize triglycerides or total lipids from different precursors, we showed that propionate, at the concentrations measured in the portal vein of rats treated with fructan, selectively decreased the incorporation of acetate into total lipids, a phenomenon that could contribute, along with the lower energy intake, to less triglyceride accumulation in the liver of obese Zucker rats fed dietary fructans.

  16. Growth hormone increases and maturation decreases glutamine synthetase turnover rate in rat liver

    International Nuclear Information System (INIS)

    Lin, C.K.

    1985-01-01

    An investigation was made of the effect of hypophysectomy and growth hormone (GH) replacement regimen (1 mg/100 g twice daily for 30 days); and maturation (from 25 up to 90 days) on the liver and brain glutamine synthetase (GS) mass and turnover rates in rats. The first order decay rate of enzyme 14 C radioactivity was determined between 1 and 4 days to obtain the half-life (T/sub 1/2/) of GS. The hepatic GS mass was determined by immunoassay. GS turnover (GS/sub s/) was calculated from T/sub 1/2/ and the GS mass (i.e., K = 0.693/T/sub 1/2/; GS/sub s/ = K x GS mass). It was concluded that: (1) GS specific activity is not decreased by hypophysectomy or increased by GH. These results suggested that observed endocrine induced changes in GS are due to changes in GS mass. (2) The liver GS turnover rate is significantly reduced by hypophysectomy and increased by GH replacement. It was proposed that GH specifically enhances synthesis of GS in the liver. (3) Maturation (25, 40, 60, and 90 days) decreases GS turnover rate in both liver and brain of normal rats. This similar effect of maturation suggests that the observed age induced decline in GS turnover rate is not related to GH in all tissues

  17. Decreasing Compensatory Ability of Concentric Ventricular Hypertrophy in Aortic-Banded Rat Hearts

    Directory of Open Access Journals (Sweden)

    Alexandre Lewalle

    2018-02-01

    Full Text Available The cardiac system compensates for variations in physiological and pathophysiological conditions through a dynamic remodeling at the organ, tissue, and intracellular levels in order to maintain function. However, on longer time scales following the onset of ventricular pressure overload, such remodeling may begin to inhibit physiological function and ultimately lead to heart failure. This progression from compensatory to decompensatory behavior is poorly understood, in particular owing to the absence of a unified perspective of the concomitantly remodeling subsystems. To address this issue, the present study investigates the evolution of compensatory mechanisms, in response to overload, by integrating diffusion-tensor MRI, echocardiography, and intracellular and hemodynamic measurements within consistent computational simulations of aortic-banded rat hearts. This approach allows a comparison of the relative leverage of different cardiac properties (geometry, passive mechanical stiffness, fiber configuration, diastolic and peak calcium concentrations, calcium-binding affinity, and aortic impedance to affect cardiac contraction. Measurements indicate that, following aortic banding, an ejection fraction (EF of 75% was maintained, relative to control rats, despite significant remodeling of the left-ventricular wall thickness (increasing by ~90% over 4 weeks. Applying our framework, we identified the left-ventricular wall thickness (concentric hypertrophy and the intracellular calcium dynamics as playing the dominant roles in preserving EF acutely, whereas the significance of hypertrophy decreased subsequently. This trend suggests an increasing reliance on intracellular mechanisms (average increase ~50%, rather than on anatomical features (average decrease ~60%, to achieve compensation of pump function in the early phase of heart failure.

  18. Antioxidant and Hypolipidemic Effects of Olive Oil in Normal and Diabetic Male Rats

    International Nuclear Information System (INIS)

    Alhazza, I. M.

    2007-01-01

    Diabetes mellitus manifests itself in a wide variety of complications and the symptoms of the disease are multifactorial. The lipid hydroperoxide level and lipid profile were investigated in plasma of normal and Alloxan-induced diabetic rats treated with olive oil for six weeks. Diabetic rats exhibited an increase in the levels of hydroperoxide, cholesterol, triglycerides and low density lipoprotein (LDL), and a decrease in the level of high density lipoprotein (HDL). The administration of olive oil showed a better profile in the lipid as well as decreases in the concentration of lipid hydroperoxides either in normal or diabetic rats. The results are discussed according to antioxidant property of olive oil. (author)

  19. Neuroprotective efficacy of curcumin in arsenic induced cholinergic dysfunctions in rats.

    Science.gov (United States)

    Yadav, Rajesh S; Chandravanshi, Lalit P; Shukla, Rajendra K; Sankhwar, Madhu L; Ansari, Reyaz W; Shukla, Pradeep K; Pant, Aditya B; Khanna, Vinay K

    2011-12-01

    Our recent studies have shown that curcumin protects arsenic induced neurotoxicity by modulating oxidative stress, neurotransmitter levels and dopaminergic system in rats. As chronic exposure to arsenic has been associated with cognitive deficits in humans, the present study has been carried out to implore the neuroprotective potential of curcumin in arsenic induced cholinergic dysfunctions in rats. Rats treated with arsenic (sodium arsenite, 20mg/kg body weight, p.o., 28 days) exhibited a significant decrease in the learning activity, assessed by passive avoidance response associated with decreased binding of (3)H-QNB, known to label muscarinic-cholinergic receptors in hippocampus (54%) and frontal cortex (27%) as compared to controls. Decrease in the activity of acetylcholinesterase in hippocampus (46%) and frontal cortex (33%), staining of Nissl body, immunoreactivity of choline acetyltransferase (ChAT) and expression of ChAT protein in hippocampal region was also observed in arsenic treated rats as compared to controls. Simultaneous treatment with arsenic and curcumin (100mg/kg body weight, p.o., 28 days) increased learning and memory performance associated with increased binding of (3)H-QNB in hippocampus (54%), frontal cortex (25%) and activity of acetylcholinesterase in hippocampus (41%) and frontal cortex (29%) as compared to arsenic treated rats. Increase in the expression of ChAT protein, immunoreactivity of ChAT and staining of Nissl body in hippocampal region was also observed in rats simultaneously treated with arsenic and curcumin as compared to those treated with arsenic alone. The results of the present study suggest that curcumin significantly modulates arsenic induced cholinergic dysfunctions in brain and also exhibits neuroprotective efficacy of curcumin. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. A High-Protein Diet Reduces Weight Gain, Decreases Food Intake, Decreases Liver Fat Deposition, and Improves Markers of Muscle Metabolism in Obese Zucker Rats

    Directory of Open Access Journals (Sweden)

    William W. French

    2017-06-01

    Full Text Available A primary factor in controlling and preventing obesity is through dietary manipulation. Diets higher in protein have been shown to improve body composition and metabolic health during weight loss. The objective of this study was to examine the effects of a high-protein diet versus a moderate-protein diet on muscle, liver and fat metabolism and glucose regulation using the obese Zucker rat. Twelve-week old, male, Zucker (fa/fa and lean control (Fa/fa rats were randomly assigned to either a high-protein (40% energy or moderate-protein (20% energy diet for 12 weeks, with a total of four groups: lean 20% protein (L20; n = 8, lean 40% protein (L40; n = 10, obese 20% protein (O20; n = 8, and obese 40% protein (O40; n = 10. At the end of 12 weeks, animals were fasted and euthanized. There was no difference in food intake between L20 and L40. O40 rats gained less weight and had lower food intake (p < 0.05 compared to O20. O40 rats had lower liver weight (p < 0.05 compared to O20. However, O40 rats had higher orexin (p < 0.05 levels compared to L20, L40 and O20. Rats in the L40 and O40 groups had less liver and muscle lipid deposition compared to L20 and L40 diet rats, respectively. O40 had decreased skeletal muscle mechanistic target of rapamycin complex 1 (mTORC1 phosphorylation and peroxisome proliferator-activated receptor gamma (PPARγ mRNA expression compared to O20 (p < 0.05, with no difference in 5′ AMP-activated protein kinase (AMPK, eukaryotic translation initiation factor 4E binding protein 1 (4EBP1, protein kinase B (Akt or p70 ribosomal S6 kinase (p70S6K phosphorylation. The data suggest that high-protein diets have the potential to reduce weight gain and alter metabolism, possibly through regulation of an mTORC1-dependent pathway in skeletal muscle.

  1. Flow and volume dependence of rat airway resistance during constant flow inflation and deflation.

    Science.gov (United States)

    Rubini, Alessandro; Carniel, Emanuele Luigi; Parmagnani, Andrea; Natali, Arturo Nicola

    2011-12-01

    The aim of this study was to measure the flow and volume dependence of both the ohmic and the viscoelastic pressure dissipations of the normal rat respiratory system separately during inflation and deflation. The study was conducted in the Respiratory Physiology Laboratory in our institution. Measurements were obtained for Seven albino Wistar rats of both sexes by using the flow interruption method during constant flow inflations and deflations. Measurements included anesthesia induction, tracheostomy and positioning of a tracheal cannula, positive pressure ventilation, constant flow respiratory system inflations and deflations at two different volumes and flows. The ohmic resistance exhibited volume and flow dependence, decreasing with lung volume and increasing with flow rate, during both inflation and deflation. The stress relaxation-related viscoelastic resistance also exhibited volume and flow dependence. It decreased with the flow rate at a constant lung volume during both inflation and deflation, but exhibited a different behavior with the lung volume at a constant flow rate (i.e., increased during inflations and decreased during deflations). Thus, stress relaxation in the rat lungs exhibited a hysteretic behavior. The observed flow and volume dependence of respiratory system resistance may be predicted by an equation derived from a model of the respiratory system that consists of two distinct compartments. The equation agrees well with the experimental data and indicates that the loading time is the critical parameter on which stress relaxation depends, during both lung inflation and deflation.

  2. Obesity decreases the oxidant stress induced by tobacco smoke in a rat model.

    Science.gov (United States)

    Montaño, Martha; Pérez-Ramos, J; Esquivel, A; Rivera-Rosales, R; González-Avila, G; Becerril, C; Checa, M; Ramos, C

    2016-09-01

    Obesity and emphysema are associated with low-grade systemic inflammation and oxidant stress. Assuming that the oxidant stress induced by emphysema would be decreased by obesity, we analyzed the oxidant/antioxidant state in a rat model combining both diseases simultaneously. Obesity was induced using sucrose, while emphysema by exposure to tobacco smoke. End-points evaluated were: body weight, abdominal fat, plasma dyslipidemia and malondialdehyde (MDA), insulin and glucose AUC, activities of Mn-superoxide dismutase (Mn-SOD), glutathione reductase (GR), glutathione transferase (GST) and glutathione peroxidase (GPx); lung MnSOD and 3-nitrotyrosine (3-NT) immunostaining, and expression of αV and β6 integrin subunits. In rats with obesity, the body weight, abdominal fat, plasma triglyceride levels, glucose AUC, insulin levels, GST activity, and αV and β6 integrin expressions were amplified. The rats with emphysema had lower values of body weight, abdominal fat, plasma insulin, triglycerides and glucose AUC but higher values of plasma MDA, GPx activity, and the lung expression of the αV and β6 integrins. The combination of obesity and emphysema compared to either condition alone led to diminished body weight, abdominal fat, plasma insulin MDA levels, GPx and GST activities, and αV and β6 integrin expressions; these parameters were all previously increased by obesity. Immunostaining for MnSOD augmented in all experimental groups, but the staining for 3-NT only increased in rats treated with tobacco alone or combined with sucrose. Results showed that obesity reduces oxidant stress and integrin expression, increasing antioxidant enzyme activities; these changes seem to partly contribute to a protective mechanism of obesity against emphysema development.

  3. Cobalamin Deficiency Results in Increased Production of Formate Secondary to Decreased Mitochondrial Oxidation of One-Carbon Units in Rats.

    Science.gov (United States)

    MacMillan, Luke; Tingley, Garrett; Young, Sara K; Clow, Kathy A; Randell, Edward W; Brosnan, Margaret E; Brosnan, John T

    2018-03-01

    Formate is produced in mitochondria via the catabolism of serine, glycine, dimethylglycine, and sarcosine. Formate produced by mitochondria may be incorporated into the cytosolic folate pool where it can be used for important biosynthetic reactions. Previous studies from our lab have shown that cobalamin deficiency results in increased plasma formate concentrations. Our goal was to determine the basis for elevated formate in vitamin B-12 deficiency. Male Sprague Dawley rats were randomly assigned to consume either a cobalamin-replete (50 μg cobalamin/kg diet) or -deficient (no added cobalamin) diet for 6 wk. Formate production was measured in vivo and in isolated liver mitochondria from a variety of one-carbon precursors. We also measured the oxidation of [3-14C]-l-serine to 14CO2 in isolated rat liver mitochondria and the expression of hepatic genes involved in one-carbon unit and formate metabolism. Cobalamin-deficient rats produce formate at a rate 55% higher than that of replete rats. Formate production from serine was increased by 60% and from dimethylglycine and sarcosine by ∼200% in liver mitochondria isolated from cobalamin-deficient rats compared with cobalamin-replete rats. There was a 26% decrease in the 14CO2 produced by mitochondria from cobalamin-deficient rats. Gene expression analysis showed that 10-formyltetrahydrofolate dehydrogenase-cytosolic (Aldh1l1) and mitochondrial (Aldh1l2) expression were decreased by 40% and 60%, respectively, compared to control, while 10-formyltetrahydrofolate synthetase, mitochondrial, monofunctional (Mthfd1l) expression was unchanged. We propose that a bifurcation in mitochondrial one-carbon metabolism is a key control mechanism in determining the fate of one-carbon units, to formate or CO2. During cobalamin deficiency in rats the disposition of 10-formyl-tetrahydrofolate carbon is shifted in favor of formate production. This may represent a mechanism to generate more one-carbon units for the replenishment of the S

  4. Radish juice and corn oil as adjuvants that decrease the destructive alterations in hypoglycemia rats subjected to gamma irradiation

    International Nuclear Information System (INIS)

    Hanafy, N.

    2007-01-01

    This study was performed to investigate the decrease in different biochemical and histopathological alterations that may occur following the oral administration of aqueous extract of radish at the dose level (50 mg/100 g body weight) and the addition of 10% corn oil to the diet of hypoglycemia rats and /or exposed to 6 Gy of gamma radiation. The experiment included normal male albino rats and hypoglycemia ones.The hypoglycemia rats divided into tow groups; the first group was treated with radish juice or radish juice with diet containing corn oil and the other group was hypoglycemia rats exposed to 6 Gy of gamma radiation then treated also with radish juice or radish juice with diet containing 10% corn oil. Biochemical analysis included levels of blood sugar, total lipids, cholesterol, total protein and albumin, in addition to the activity of AST and ALT were evaluated. The level of TBARs and the histopathological changes in liver and kidney were also investigated. Treatment of irradiated hypoglycemia rats with radish juice either alone or combined with a diet containing 10% corn oil reverse the serum fasting glucose level nearly to the control level. Amelioration in lipid profile was recorded after the treatment of the hypoglycemia rats or those hypoglycemia irradiated then treated with radish juice and fed on a diet containing 10% corn oil. Also, significant amelioration was occurred in liver transaminases, total proteins, albumin and creatinine levels as compared to those of hypoglycemia group. TBARs levels showed remarkable decrease in liver and kidney tissues in comparison with control and hypoglycemia rats and/or gamma irradiated levels when it is treated with radish juice and diet containing corn oil. Also, the histopathological changes of the same tissues revealed the same trend. From the different observations , it is possible to conclude that treatment of rats with radish juice in addition to feeding on diet containing 10% corn oil could reduce the

  5. Paradoxical sleep deprivation decreases serum testosterone and Leydig cells in male rats

    Directory of Open Access Journals (Sweden)

    Fitranto Arjadi

    2014-04-01

    Full Text Available Background Chronic stress increases glucocorticoid levels and accelerates reduction in Leydig cells functions and numbers. Chronic stress models in the working place comprise sleep deprivation, sedentary stress, and physical stress. The aim of this study was to evaluate the effect of various work stress models, such as stress from paradoxical sleep deprivation (PSD, immobilization, and footshock, on serum testosterone levels and number of Leydig cells in male albino rats. Methods This study was of experimental randomized post-test only with control group design using 24 male Wistar albino rats (Rattus norvegicus. The sample was divided into 4 groups: K1 (control, K2 (PSD, K3 (immobilization and K4 (footshock, receiving treatment for 25 days. Measured parameters were serum testosterone level and Leydig cell number. Analysis of variance (ANOVA was used for statistical analysis, followed by post hoc LSD. Results Mean serum testosterone levels (0.07 ± 0.08 ng/mL and Leydig cell numbers (4.22 ± l0.96 were lowest in the PSD stress model. Serum testosterone levels differed significantly between controls and PSD group (p=0.014, while there was a significant difference in numbers of Leydig cells between footshock stress and PSD (p=0.011 and between the three stress groups and controls (p=0.006. Conclusion This study demonstrated that PSD, immobilization and footshock stress significantly decreased serum testosterone levels and number of Leydig cells in male albino rats (Rattus norvegicus. The mechanism by which PSD affects serum testosterone is still unclear.

  6. Relatedness decreases and reciprocity increases cooperation in Norway rats.

    Science.gov (United States)

    Schweinfurth, Manon K; Taborsky, Michael

    2018-03-14

    Kin selection and reciprocity are two mechanisms underlying the evolution of cooperation, but the relative importance of kinship and reciprocity for decisions to cooperate are yet unclear for most cases of cooperation. Here, we experimentally tested the relative importance of relatedness and received cooperation for decisions to help a conspecific in wild-type Norway rats ( Rattus norvegicus ). Test rats provided more food to non-kin than to siblings, and they generally donated more food to previously helpful social partners than to those that had refused help. The rats thus applied reciprocal cooperation rules irrespective of relatedness, highlighting the importance of reciprocal help for cooperative interactions among both related and unrelated conspecifics. © 2018 The Author(s).

  7. Epidermal growth factor decreases PEPT2 transport capacity and expression in the rat kidney proximal tubule cell line SKPT0193 cl.2

    DEFF Research Database (Denmark)

    Bravo, Silvina A; Nielsen, Carsten Uhd; Amstrup, Jan

    2004-01-01

    by studies of apical uptake of [14C]glycylsarcosine, rPepT2 mRNA levels, and immunostaining of SKPT cells with a rPEPT2-specific antibody. On the contrary, apical uptake of glucose and lysine was increased in EGF-treated cells, indicating that EGF was not acting generally to decrease apical nutrient uptake...... mechanisms in the proximal tubule cells. Our findings indicate that EGF decreases rPEPT2 expression by lowering transcription of the rat PepT2 gene or by decreasing rat PepT2 mRNA stability. Previous investigators routinely used SKPT cell culture media with a high (10 ng/ml) EGF concentration. Our study...

  8. Attenuation of arsenic neurotoxicity by curcumin in rats

    International Nuclear Information System (INIS)

    Yadav, Rajesh S.; Sankhwar, Madhu Lata; Shukla, Rajendra K.; Chandra, Ramesh; Pant, Aditya B.; Islam, Fakhrul; Khanna, Vinay K.

    2009-01-01

    In view of continued exposure to arsenic and associated human health risk including neurotoxicity, neuroprotective efficacy of curcumin, a polyphenolic antioxidant, has been investigated in rats. A significant decrease in locomotor activity, grip strength (26%) and rota-rod performance (82%) was observed in rats treated with arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) as compared to controls. The arsenic treated rats also exhibited a decrease in the binding of striatal dopamine receptors (32%) and tyrosine hydroxylase (TH) immunoreactivity (19%) in striatum. Increased arsenic levels in corpus striatum (6.5 fold), frontal cortex (6.3 fold) and hippocampus (7.0 fold) associated with enhanced oxidative stress in these brain regions, as evident by an increase in lipid perioxidation, protein carbonyl and a decrease in the levels of glutathione and activity of superoxide dismutase, catalase and glutathione peroxidase with differential effects were observed in arsenic treated rats compared to controls. Simultaneous treatment with arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) and curcumin (100 mg/kg body weight, p.o., 28 days) caused an increase in locomotor activity and grip strength and improved the rota-rod performance in comparison to arsenic treated rats. Binding of striatal dopamine receptors and TH expression increased while arsenic levels and oxidative stress decreased in these brain regions in co-treated rats as compared to those treated with arsenic alone. No significant effect on any of these parameters was observed in rats treated with curcumin (100 mg/kg body weight, p.o., 28 days) alone compared to controls. A significant protection in behavioral, neurochemical and immunohistochemical parameters in rats simultaneously treated with arsenic and curcumin suggest the neuroprotective efficacy of curcumin.

  9. Standardized Environmental Enrichment Supports Enhanced Brain Plasticity in Healthy Rats and Prevents Cognitive Impairment in Epileptic Rats

    Science.gov (United States)

    Kouchi, Hayet Y.; Bodennec, Jacques; Morales, Anne; Georges, Béatrice; Bonnet, Chantal; Bouvard, Sandrine; Sloviter, Robert S.; Bezin, Laurent

    2013-01-01

    Environmental enrichment of laboratory animals influences brain plasticity, stimulates neurogenesis, increases neurotrophic factor expression, and protects against the effects of brain insult. However, these positive effects are not constantly observed, probably because standardized procedures of environmental enrichment are lacking. Therefore, we engineered an enriched cage (the Marlau™ cage), which offers: (1) minimally stressful social interactions; (2) increased voluntary exercise; (3) multiple entertaining activities; (4) cognitive stimulation (maze exploration), and (5) novelty (maze configuration changed three times a week). The maze, which separates food pellet and water bottle compartments, guarantees cognitive stimulation for all animals. Compared to rats raised in groups in conventional cages, rats housed in Marlau™ cages exhibited increased cortical thickness, hippocampal neurogenesis and hippocampal levels of transcripts encoding various genes involved in tissue plasticity and remodeling. In addition, rats housed in Marlau™ cages exhibited better performances in learning and memory, decreased anxiety-associated behaviors, and better recovery of basal plasma corticosterone level after acute restraint stress. Marlau™ cages also insure inter-experiment reproducibility in spatial learning and brain gene expression assays. Finally, housing rats in Marlau™ cages after severe status epilepticus at weaning prevents the cognitive impairment observed in rats subjected to the same insult and then housed in conventional cages. By providing a standardized enriched environment for rodents during housing, the Marlau™ cage should facilitate the uniformity of environmental enrichment across laboratories. PMID:23342033

  10. Standardized environmental enrichment supports enhanced brain plasticity in healthy rats and prevents cognitive impairment in epileptic rats.

    Directory of Open Access Journals (Sweden)

    Raafat P Fares

    Full Text Available Environmental enrichment of laboratory animals influences brain plasticity, stimulates neurogenesis, increases neurotrophic factor expression, and protects against the effects of brain insult. However, these positive effects are not constantly observed, probably because standardized procedures of environmental enrichment are lacking. Therefore, we engineered an enriched cage (the Marlau™ cage, which offers: (1 minimally stressful social interactions; (2 increased voluntary exercise; (3 multiple entertaining activities; (4 cognitive stimulation (maze exploration, and (5 novelty (maze configuration changed three times a week. The maze, which separates food pellet and water bottle compartments, guarantees cognitive stimulation for all animals. Compared to rats raised in groups in conventional cages, rats housed in Marlau™ cages exhibited increased cortical thickness, hippocampal neurogenesis and hippocampal levels of transcripts encoding various genes involved in tissue plasticity and remodeling. In addition, rats housed in Marlau™ cages exhibited better performances in learning and memory, decreased anxiety-associated behaviors, and better recovery of basal plasma corticosterone level after acute restraint stress. Marlau™ cages also insure inter-experiment reproducibility in spatial learning and brain gene expression assays. Finally, housing rats in Marlau™ cages after severe status epilepticus at weaning prevents the cognitive impairment observed in rats subjected to the same insult and then housed in conventional cages. By providing a standardized enriched environment for rodents during housing, the Marlau™ cage should facilitate the uniformity of environmental enrichment across laboratories.

  11. Decreasing Irradiated Rat Lung Volume Changes Dose-Limiting Toxicity From Early to Late Effects

    Energy Technology Data Exchange (ETDEWEB)

    Veen, Sonja J. van der; Faber, Hette; Ghobadi, Ghazaleh [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Brandenburg, Sytze [KVI Center for Advanced Radiation Research, University of Groningen, Groningen (Netherlands); Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Coppes, Robert P. [Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Luijk, Peter van, E-mail: p.van.luijk@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)

    2016-01-01

    Purpose: Technological developments in radiation therapy result in smaller irradiated volumes of normal tissue. Because the risk of radiation therapy-induced toxicity generally depends on irradiated volume, changing volume could change the dose-limiting toxicity of a treatment. Recently, in our rat model, we found that early radiation-induced lung dysfunction (RILD) was closely related to irradiated volume dependent vascular remodeling besides inflammation. The exact relationship between early and late RILD is still unknown. Therefore, in this preclinical study we investigated the dose-volume relationship of late RILD, assessed its dependence on early and late pathologies and studied if decreasing irradiated volume changed the dose-limiting toxicity. Methods and Materials: A volume of 25%, 32%, 50%, 63%, 88%, or 100% of the rat lung was irradiated using protons. Until 26 weeks after irradiation, respiratory rates were measured. Macrovascular remodeling, pulmonary inflammation, and fibrosis were assessed at 26 weeks after irradiation. For all endpoints dose-volume response curves were made. These results were compared to our previously published early lung effects. Results: Early vascular remodeling and inflammation correlated significantly with early RILD. Late RILD correlated with inflammation and fibrosis, but not with vascular remodeling. In contrast to the early effects, late vascular remodeling, inflammation and fibrosis showed a primarily dose but not volume dependence. Comparison of respiratory rate increases early and late after irradiation for the different dose-distributions indicated that with decreasing irradiated volumes, the dose-limiting toxicity changed from early to late RILD. Conclusions: In our rat model, different pathologies underlie early and late RILD with different dose-volume dependencies. Consequently, the dose-limiting toxicity changed from early to late dysfunction when the irradiated volume was reduced. In patients, early and late

  12. Decreased rate of protein synthesis, caspase-3 activity, and ubiquitin-proteasome proteolysis in soleus muscles from growing rats fed a low-protein, high-carbohydrate diet.

    Science.gov (United States)

    Batistela, Emanuele; Pereira, Mayara Peron; Siqueira, Juliany Torres; Paula-Gomes, Silvia; Zanon, Neusa Maria; Oliveira, Eduardo Brandt; Navegantes, Luiz Carlos Carvalho; Kettelhut, Isis C; Andrade, Claudia Marlise Balbinotti; Kawashita, Nair Honda; Baviera, Amanda Martins

    2014-06-01

    The aim of this study was to investigate the changes in the rates of both protein synthesis and breakdown, and the activation of intracellular effectors that control these processes in soleus muscles from growing rats fed a low-protein, high-carbohydrate (LPHC) diet for 15 days. The mass and the protein content, as well as the rate of protein synthesis, were decreased in the soleus from LPHC-fed rats. The availability of amino acids was diminished, since the levels of various essential amino acids were decreased in the plasma of LPHC-fed rats. Overall rate of proteolysis was also decreased, explained by reductions in the mRNA levels of atrogin-1 and MuRF-1, ubiquitin conjugates, proteasome activity, and in the activity of caspase-3. Soleus muscles from LPHC-fed rats showed increased insulin sensitivity, with increased levels of insulin receptor and phosphorylation levels of AKT, which probably explains the inhibition of both the caspase-3 activity and the ubiquitin-proteasome system. The fall of muscle proteolysis seems to represent an adaptive response that contributes to spare proteins in a condition of diminished availability of dietary amino acids. Furthermore, the decreased rate of protein synthesis may be the driving factor to the lower muscle mass gain in growing rats fed the LPHC diet.

  13. Balanites aegyptiaca ameliorates insulin secretion and decreases pancreatic apoptosis in diabetic rats: Role of SAPK/JNK pathway.

    Science.gov (United States)

    Hassanin, Kamel M A; Mahmoud, Mohamed O; Hassan, Hossam M; Abdel-Razik, Abdel-Razik H; Aziz, Lourin N; Rateb, Mostafa E

    2018-06-01

    SAPK-JNK pathway performs a significant role in the pathogenesis of type 2 diabetes. Balanites aegyptiaca (BA) is used as an anti-diabetic agent in folk medicine however its hypoglycemic mechanism is not fully elucidated. The current study aimed to evaluate the effect of crude extract, butanol, and dichloromethane fractions from BA on the stress-activated protein kinase/c-Jun N-terminal kinase (SAPK-JNK) pathway in experimental diabetic rats. Six groups of male Wistar rats were included: normal control, diabetic, diabetic rats treated with crude, butanol or dichloromethane fraction from BA (50 mg/kg BW) and diabetic rats treated with gliclazide as a reference drug for one month. Our results suggested a protective role of treatment of diabetic rats with BA against oxidative stress-induced SAPK-JNK pathway. Moreover, BA treatment produced a reduction in plasma glucose, HbA 1c , lactic acid, lipid profile, malondialdehyde levels and produced an increase in insulin, reduced glutathione levels, catalase and superoxide dismutase activities compared with untreated diabetic rats. Moreover, it decreased apoptosis signal-regulating kinase 1, c-Jun N-terminal kinase 1, protein 53 and increased insulin receptor substrate 1 in rat pancreas while it increased glucose transporter 4 in rat muscle. Analysis of BA extracts by LC-HRMS revealed the presence of different saponins with reported hypoglycemic effect. In conclusion, BA exerted hypoglycemic, hypolipidemic, insulinotropic and antioxidant effects. Additionally, it reduced apoptosis in pancreatic β-cells and increased glucose uptake in muscle. These results suggest that the hypoglycemic effect of BA is due to the inhibition of the SAPK-JNK pathway. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. Wheel running decreases palatable diet preference in Sprague-Dawley rats

    OpenAIRE

    Moody, Laura; Liang, Joy; Choi, Pique P.; Moran, Timothy H.; Liang, Nu-Chu

    2015-01-01

    Physical activity has beneficial effects on not only improving some disease conditions but also by preventing the development of multiple disorders. Experiments in this study examined the effects of wheel running on intakes of chow and palatable diet e.g. high fat (HF) or high sucrose (HS) diet in male and female Sprague Dawley rats. Experiment 1 demonstrated that acute wheel running results in robust HF or HS diet avoidance in male rats. Although female rats with running wheel...

  15. Opioid receptor subtypes mediating the noise-induced decreases in high-affinity choline uptake in the rat brain.

    Science.gov (United States)

    Lai, H; Carino, M A

    1992-07-01

    Acute (20 min) exposure to 100-dB white noise elicits a naltrexone-sensitive decrease in sodium-dependent high-affinity choline uptake in the frontal cortex and hippocampus of the rat. In the present study, the subtypes of opioid receptors involved were investigated by pretreating rats with microinjection of specific opioid-receptor antagonists into the lateral cerebroventricle before noise exposure. We found that the noise-induced decrease in high-affinity choline uptake in the hippocampus was blocked by pretreatment with either mu-, delta-, or kappa-opioid-receptor antagonists, whereas the effect of noise on frontal cortical high-affinity choline uptake was blocked by a mu- and delta- but not by a kappa-antagonist. These data further confirm the role of endogenous opioids in mediating the effects of noise on central cholinergic activity and indicate that different neural mechanisms are involved in the effects of noise on the frontal cortical and hippocampal cholinergic systems.

  16. Creatine kinase and alpha-actin mRNA levels decrease in diabetic rat hearts

    International Nuclear Information System (INIS)

    Popovich, B.; Barrieux, A.; Dillmann, W.H.

    1987-01-01

    Diabetic cardiomyopathy is associated with cardiac atrophy and isoenzyme redistribution. To determine if tissue specific changes occur in mRNAs coding for α-actin and creatine kinase (CK), they performed RNA blot analysis. Total ventricular RNA from control (C) and 4 wk old diabetic (D) rats were hybridized with 32 P cDNA probes for α-actin and CK. A tissue independent cDNA probe, CHOA was also used. Signal intensity was quantified by photodensitometry. D CK mRNA was 47 +/- 16% lower in D vs C. Insulin increases CK mRNA by 20% at 1.5 hs, and completely reverses the deficit after 4 wks. D α-actin mRNA is 66 +/- 18% lower in D vs C. Insulin normalized α-actin mRNA by 5 hs. CHOA mRNA is unchanged in D vs C, but D + insulin CHOA mRNA is 30 +/- 2% lower than C. In rats with diabetic cardiomyopathy, muscle specific CK and α-actin mRNAs are decreased. Insulin treatment reverses these changes

  17. Bromocriptine increased operant responding for high fat food but decreased chow intake in both obesity-prone and resistant rats

    Energy Technology Data Exchange (ETDEWEB)

    Thanos, P.K.; Wang, G.; Thanos, P.K.; Cho, J. Kim, R.; Michaelides, M.; Primeaux, S.; Bray, G.; Wang, G.-J.; Volkow, N.D.

    2010-10-27

    Dopamine (DA) and DAD{sub 2} receptors (D2R) have been implicated in obesity and are thought to be involved in the rewarding properties of food. Osborne-Mendel (OM) rats are susceptible to diet induced obesity (DIO) while S5B/P (S5B) rats are resistant when given a high-fat diet. Here we hypothesized that the two strains would differ in high-fat food self-administration (FSA) and that the D2R agonist bromocriptine (BC) would differently affect their behavior. Ad-libitum fed OM and S5B/P rats were tested in a FSA operant chamber and were trained to lever press for high-fat food pellets under a fixed-ratio (FR1) and a progressive ratio (PR) schedule. After sixteen days of PR sessions, rats were treated with three different doses of BC (1, 10 and 20 mg/kg). No significant differences were found between the two strains in the number of active lever presses. BC treatment (10 mg/kg and 20 mg/kg) increased the number of active lever presses (10 mg/kg having the strongest effect) whereas it decreased rat chow intake in the home cage with equivalent effects in both strains. These effects were not observed on the day of BC administration but on the day following its administration. Our results suggest that these two strains have similar motivation for procuring high fat food using this paradigm. BC increased operant responding for high-fat pellets but decreased chow intake in both strains, suggesting that D2R stimulation may have enhanced the motivational drive to procure the fatty food while correspondingly decreasing the intake of regular food. These findings suggest that susceptibility to dietary obesity (prior to the onset of obesity) may not affect operant motivation for a palatable high fat food and that differential susceptibility to obesity may be related to differential sensitivity to D2R stimulation.

  18. Alteration of NPY and Y1 receptor in dorsomedial and ventromedial areas of hypothalamus in anorectic tumor-bearing rats.

    Science.gov (United States)

    Chance, William T; Xiao, Chun; Dayal, Ramesh; Sheriff, Sulaiman

    2007-02-01

    Although previous studies have implicated NPY in the etiology of experimental cancer anorexia, the results have been difficult to interpret. Studies have suggested that although NPY level and message were decreased in the dorsomedial hypothalamic area (DMA), they were elevated in the ventromedial hypothalamic area (VMA). To better assess specific intra-area alterations of NPY, Y(1) receptor (Y(1) R), and agouti-related peptide (AgRP) in TB rats, we used radioimmunoassay, quantitative real-time RT-PCR, and immunohistochemistry. We found that NPY and AgRP mRNA were elevated significantly in whole hypothalamus of anorectic TB rats, while Y(1) R mRNA was decreased. Based on two replicates of four pooled samples each, both NPY and AgRP mRNA appeared to be elevated in the VMA of anorectic TB rats, while only AgRP exhibited a similar increase in the DMA. Levels of NPY were elevated in the VMA of both TB and pair-fed (PF) rats, but in the DMA only PF rats exhibited a significant NPY increase. NPY and Y(1) R immunohistochemistry revealed reduced NPY staining in PVN and ARC nucleus of TB and PF rats. Y(1) R immunostaining was also reduced in the ARC and PVN of TB rats, while PF rats exhibited elevated immunostaining in the PVN. These results continue to implicate dysfunction of NPY feeding systems in experimental cancer anorexia and suggest down-regulation of Y(1) R receptors as well as possible problems in NPY translation.

  19. Decreased expression of CD36 in circumvallate taste buds of high-fat diet induced obese rats.

    Science.gov (United States)

    Zhang, Xiao-Juan; Zhou, Li-Hong; Ban, Xiang; Liu, Dian-Xin; Jiang, Wei; Liu, Xiao-Min

    2011-10-01

    Mammals spontaneously prefer lipid rich foods. Overconsumption of high-fat diet leads to obesity and related diseases. Recent findings indicate that taste may participate in the orosensory perception of dietary lipids and the fatty taste may contribute to a preference for and excessive consumption of dietary fat. CD36, a trans-membrane glycoprotein, which is located in the taste buds of circumvallate papillae of rodents, appears to be a plausible receptor for this fatty taste. Obese subjects present a stronger preference for fatty foods, though the mechanisms involved are complex and are not fully investigated. Our data from immunofluorescence and real-time RT-PCR showed that the expression levels of CD36 in circumvallate taste buds were significantly lower in high-fat diet induced obese rats as compared with that of control rats fed a normal diet. These results suggest that decreased expression of CD36 in circumvallate taste buds of high-fat diet induced obese rats may be associated with diminished fatty taste sensitivity and in order to compensate the preference for dietary fat, rats consume more fatty foods. Therapeutic strategies designed to alter or manipulate CD36 expression or function in taste buds may have important implications in treating obesity and related diseases. Copyright © 2010 Elsevier GmbH. All rights reserved.

  20. Maternal protein restriction during pregnancy and lactation alters central leptin signalling, increases food intake, and decreases bone mass in 1 year old rat offspring.

    Science.gov (United States)

    Qasem, Rani J; Li, Jing; Tang, Hee Man; Pontiggia, Laura; D'mello, Anil P

    2016-04-01

    The effects of perinatal nutrition on offspring physiology have mostly been examined in young adult animals. Aging constitutes a risk factor for the progressive loss of metabolic flexibility and development of disease. Few studies have examined whether the phenotype programmed by perinatal nutrition persists in aging offspring. Persistence of detrimental phenotypes and their accumulative metabolic effects are important for disease causality. This study determined the effects of maternal protein restriction during pregnancy and lactation on food consumption, central leptin sensitivity, bone health, and susceptibility to high fat diet-induced adiposity in 1-year-old male offspring. Sprague-Dawley rats received either a control or a protein restricted diet throughout pregnancy and lactation and pups were weaned onto laboratory chow. One-year-old low protein (LP) offspring exhibited hyperphagia. The inability of an intraperitoneal (i.p.) leptin injection to reduce food intake indicated that the hyperphagia was mediated by decreased central leptin sensitivity. Hyperphagia was accompanied by lower body weight suggesting increased energy expenditure in LP offspring. Bone density and bone mineral content that are negatively regulated by leptin acting via the sympathetic nervous system (SNS), were decreased in LP offspring. LP offspring did not exhibit increased susceptibility to high fat diet induced metabolic effects or adiposity. The results presented here indicate that the programming effects of perinatal protein restriction are mediated by specific decreases in central leptin signalling to pathways involved in the regulation of food intake along with possible enhancement of different CNS leptin signalling pathways acting via the SNS to regulate bone mass and energy expenditure. © 2016 John Wiley & Sons Australia, Ltd.

  1. Efficacy of Ceftaroline against Methicillin-Susceptible Staphylococcus aureus Exhibiting the Cefazolin High-Inoculum Effect in a Rat Model of Endocarditis

    Science.gov (United States)

    Tran, Truc T.; Nannini, Esteban C.; Tam, Vincent H.; Arias, Cesar A.; Murray, Barbara E.

    2017-01-01

    ABSTRACT Certain Staphylococcus aureus strains exhibit an inoculum effect (InE) with cefazolin (CFZ) that has been associated with therapeutic failures in high-inoculum infections. We assessed the in vitro activities of ceftaroline (CPT), CFZ, and nafcillin (NAF) against 17 type A β-lactamase (βla)-producing, methicillin-susceptible S. aureus (MSSA) strains, including the previously reported TX0117, which exhibits the CFZ InE, and its βla-cured derivative, TX0117c. Additionally, we determined the pharmacokinetics of CPT in rats after single intramuscular doses of 20 and 40 mg/kg of body weight and evaluated the activities of CPT (40 mg/kg every 8 h [q8h]), CFZ, and NAF against TX0117 and TX0117c in a rat model of infective endocarditis. No InE was observed for CPT or NAF, whereas a marked InE was detected for CFZ (MIC, 8 to ≥128 μg/ml). CPT and NAF treatment against TX0117 resulted in mean bacterial counts of 2.3 and 2.1 log10 CFU/g in vegetations, respectively, compared to a mean of 5.9 log10 CFU/g in the CFZ-treated group (CPT and NAF versus CFZ, P = 0.001; CPT versus NAF, P = 0.9830). Both CFZ and CPT were efficacious against the βla-cured derivative, TX0117c, compared to time zero (t0) (P = <0.0001 and 0.0015, respectively). Our data reiterate the in vivo consequences of the CFZ InE and show that CPT is not affected by this phenomenon. CPT might be considered for high-inoculum infections caused by MSSA exhibiting the CFZ InE. PMID:28483961

  2. Efficacy of Ceftaroline against Methicillin-Susceptible Staphylococcus aureus Exhibiting the Cefazolin High-Inoculum Effect in a Rat Model of Endocarditis.

    Science.gov (United States)

    Singh, Kavindra V; Tran, Truc T; Nannini, Esteban C; Tam, Vincent H; Arias, Cesar A; Murray, Barbara E

    2017-07-01

    Certain Staphylococcus aureus strains exhibit an inoculum effect (InE) with cefazolin (CFZ) that has been associated with therapeutic failures in high-inoculum infections. We assessed the i n vitro activities of ceftaroline (CPT), CFZ, and nafcillin (NAF) against 17 type A β-lactamase (βla)-producing, methicillin-susceptible S. aureus (MSSA) strains, including the previously reported TX0117, which exhibits the CFZ InE, and its βla-cured derivative, TX0117c. Additionally, we determined the pharmacokinetics of CPT in rats after single intramuscular doses of 20 and 40 mg/kg of body weight and evaluated the activities of CPT (40 mg/kg every 8 h [q8h]), CFZ, and NAF against TX0117 and TX0117c in a rat model of infective endocarditis. No InE was observed for CPT or NAF, whereas a marked InE was detected for CFZ (MIC, 8 to ≥128 μg/ml). CPT and NAF treatment against TX0117 resulted in mean bacterial counts of 2.3 and 2.1 log 10 CFU/g in vegetations, respectively, compared to a mean of 5.9 log 10 CFU/g in the CFZ-treated group (CPT and NAF versus CFZ, P = 0.001; CPT versus NAF, P = 0.9830). Both CFZ and CPT were efficacious against the βla-cured derivative, TX0117c, compared to time zero ( t 0 ) ( P = InE and show that CPT is not affected by this phenomenon. CPT might be considered for high-inoculum infections caused by MSSA exhibiting the CFZ InE. Copyright © 2017 American Society for Microbiology.

  3. Decreased hepatic response to glucagon, adrenergic agonists, and cAMP in glycogenolysis, gluconeogenesis, and glycolysis in tumor-bearing rats.

    Science.gov (United States)

    Biazi, Giuliana R; Frasson, Isabele G; Miksza, Daniele R; de Morais, Hely; de Fatima Silva, Flaviane; Bertolini, Gisele L; de Souza, Helenir M

    2018-05-15

    The response to glucagon and adrenaline in cancer cachexia is poorly known. The aim of this study was to investigate the response to glucagon, adrenergic agonists (α and β) and cyclic adenosine monophosphate (cAMP) on glycogenolysis, gluconeogenesis, and glycolysis in liver perfusion of Walker-256 tumor-bearing rats with advanced cachexia. Liver ATP content was also investigated. Rats without tumor (healthy) were used as controls. Agonists α (phenylephrine) and β (isoproterenol) adrenergic, instead of adrenaline, and cAMP, the second messenger of glucagon and isoproterenol, were used in an attempt to identify mechanisms involved in the responses. Glucagon (1 nM) stimulated glycogenolysis and gluconeogenesis and inhibited glycolysis in the liver of healthy and tumor-bearing rats, but their effects were lower in tumor-bearing rats. Isoproterenol (20 µM) stimulated glycogenolysis, gluconeogenesis, and glycolysis in healthy rats and had virtually no effect in tumor-bearing rats. cAMP (9 µM) also stimulated glycogenolysis and gluconeogenesis and inhibited glycolysis in healthy rats but had practically no effect in tumor-bearing rats. Phenylephrine (2 µM) stimulated glycogenolysis and gluconeogenesis and inhibited glycolysis and these effects were also lower in tumor-bearing rats than in healthy. Liver ATP content was lower in tumor-bearing rats. In conclusion, tumor-bearing rats with advanced cachexia showed a decreased hepatic response to glucagon, adrenergic agonists (α and β), and cAMP in glycogenolysis, gluconeogenesis, and glycolysis, which may be due to a reduced rate of regulatory enzyme phosphorylation caused by the low ATP levels in the liver. © 2018 Wiley Periodicals, Inc.

  4. L-carnitine significantly decreased aging of rat adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Mobarak, Halimeh; Fathi, Ezzatollah; Farahzadi, Raheleh; Zarghami, Nosratollah; Javanmardi, Sara

    2017-03-01

    Mesenchymal stem cells are undifferentiated cells that have the ability to divide continuously and tissue regeneration potential during the transplantation. Aging and loss of cell survival, is one of the main problems in cell therapy. Since the production of free radicals in the aging process is effective, the use of antioxidant compounds can help in scavenging free radicals and prevent the aging of cells. The aim of this study is evaluate the effects of L-carnitine (LC) on proliferation and aging of rat adipose tissue-derived mesenchymal stem cells (rADSC). rADSCs were isolated from inguinal region of 5 male Rattus rats. Oil red-O, alizarin red-S and toluidine blue staining were performed to evaluate the adipogenic, osteogenic and chondrogenic differentiation of rADSCs, respectively. Flow cytometric analysis was done for investigating the cell surface markers. The methyl thiazol tetrazolium (MTT) method was used to determine the cell proliferation of rADSCs following exposure to different concentrations of LC. rADSCs aging was evaluated by beta-galactosidase staining. The results showed significant proliferation of rADSCs 48 h after treatment with concentrations of 0.2 mM LC. In addition, in the presence of 0.2 mM LC, rADSCs appeared to be growing faster than control group and 0.2 mM LC supplementation could significantly decrease the population doubling time and aging of rADSCs. It seems that LC would be a good antioxidant to improve lifespan of rADSCs due to the decrease in aging.

  5. DECREASED BILIRUBIN TRANSPORT IN THE PERFUSED LIVER OF ENDOTOXEMIC RATS

    NARCIS (Netherlands)

    ROELOFSEN, H; VANDERVEERE, CN; OTTENHOFF, R; SCHOEMAKER, B; JANSEN, PLM; ELFERINK, RPJO

    1994-01-01

    Background/Aims: Hyperbilirubinemia associated with sepsis is frequently observed in humans. In this study, an experimental rat model was developed to study bilirubin metabolism and transport during endotoxemia. Methods: Rats were injected intravenously with a single bolus of lipopolysaccharide (1

  6. Corticosterone, but not Glucose, Treatment Enables Fasted Adrenalectomized Rats to Survive Moderate Hemorrhage

    Science.gov (United States)

    Darlington, Daniel N.; Chew, Gordon; Ha, Taryn; Keil, Lanny C.; Dallman, Mary F.

    1990-01-01

    Fed adrenalectomized rats survive the stress of hemorrhage and hypovolemia, whereas fasted adrenalectomized rats become hypotensive and hypoglycemic after the first 90 min and die within 4 hours (h). We have studied the effects of glucose and corticosterone (B) infusions after hemorrhage as well as treatment with B at the time of adrenalectomy on the capacity of chronically prepared, conscious, fasted, adrenalectomized rats to survive hemorrhage. We have also measured the magnitudes of vasoactive hormone responses to hemorrhage. Maintenance of plasma glucose concentrations did not sustain life; however, treatment of rats at the time of adrenalectomy with B allowed 100 percent survival, and acute treatment of adrenalectomized rats at the time of hemorrhage allowed about 50 percent survival during the 5-h posthemorrhage observation period. Rats in the acute B infusion group that died exhibited significantly increased plasma B and significantly decreased plasma glucose concentrations by 2 h compared to the rats that lived. Plasma vasopressin, renin, and norepinephrine responses to hemorrhage were markedly augmented in the adrenalectomized rats not treated with B, and plasma vasopressin concentrations were significantly elevated at 1 and 2 h in all of the rats that subsequently died compared to values in those that lived. We conclude that: 1) death after hemorrhage in fasted adrenalectomized rats is not a result of lack of glucose; 2) chronic and, to an extent, acute treatment of fasted adrenalectomized rats with B enables survival; 3) fasted adrenalectomized rats exhibit strong evidence of hepatic insufficiency which is not apparent in either fed adrenalectomized rats or B-treated fasted adrenalectomized rats; 4) death after hemorrhage in fasted adrenalectomized rats may result from hepatic failure as a consequence of marked splanchnic vasoconstriction mediated bv the actions of extraordinarily high levels of vasoactive hormones after hemorrhage; and 5) B appears to

  7. Early Treatment of radiation-Induced Heart Damage in Rats by Caffeic acid phenethyl Ester

    International Nuclear Information System (INIS)

    Tawfik, S.S.; Mansour, H. H.

    2012-12-01

    The study designed to determine the therapeutic effect of caffeic acid phenethyl ester (CAPE) in minimising radiation-induced injuries in rats. Rats were exposed to 7 Gy γ-rays, 30 minutes later; rats were injected with CAPE (10μmol/ kg body, i.p.) for 7 consecutive days. Rats were sacrificed at 8 and 15 days after starting the experiment. Gamma-irradiation induced significant increase in malonaldehyde (MDA) level and xanthine oxidase (XO) and adenosine deaminase (ADA) activities, and significant decrease in total nitrate/nitrate (NO (x)) level and glutathione peroxidise (Gpx), superoxide dismutase (SOD)and catalase (CAT) activities in heart tissue and augmented activities of lactate dehydrogenase (LDH), creatine phosphokinase (CPK) and aspartate transaminase (AST) in serum. Irradiated rats early treated with CAPE showed significant decrease in MDA, XO and ADA and significant increase in group. Cardiac enzymes were restored. Conclusion, CAPE could exhibits curable effect on gamma irradiation-induced cardiac-oxidative impairment in rats. (Author)

  8. Decreased bilirubin transport in the perfused liver of endotoxemic rats

    NARCIS (Netherlands)

    Roelofsen, H.; van der Veere, C. N.; Ottenhoff, R.; Schoemaker, B.; Jansen, P. L.; Oude Elferink, R. P.

    1994-01-01

    Hyperbilirubinemia associated with sepsis is frequently observed in humans. In this study, an experimental rat model was developed to study bilirubin metabolism and transport during endotoxemia. Rats were injected intravenously with a single bolus of lipopolysaccharide (1 mg/kg); after 18 hours, the

  9. A High-Protein Diet Reduces Weight Gain, Decreases Food Intake, Decreases Liver Fat Deposition, and Improves Markers of Muscle Metabolism in Obese Zucker Rats.

    Science.gov (United States)

    French, William W; Dridi, Sami; Shouse, Stephanie A; Wu, Hexirui; Hawley, Aubree; Lee, Sun-Ok; Gu, Xuan; Baum, Jamie I

    2017-06-08

    A primary factor in controlling and preventing obesity is through dietary manipulation. Diets higher in protein have been shown to improve body composition and metabolic health during weight loss. The objective of this study was to examine the effects of a high-protein diet versus a moderate-protein diet on muscle, liver and fat metabolism and glucose regulation using the obese Zucker rat. Twelve-week old, male, Zucker (fa/fa) and lean control (Fa/fa) rats were randomly assigned to either a high-protein (40% energy) or moderate-protein (20% energy) diet for 12 weeks, with a total of four groups: lean 20% protein (L20; n = 8), lean 40% protein (L40; n = 10), obese 20% protein (O20; n = 8), and obese 40% protein (O40; n = 10). At the end of 12 weeks, animals were fasted and euthanized. There was no difference in food intake between L20 and L40. O40 rats gained less weight and had lower food intake ( p diet rats, respectively. O40 had decreased skeletal muscle mechanistic target of rapamycin complex 1 (mTORC1) phosphorylation and peroxisome proliferator-activated receptor gamma (PPARγ) mRNA expression compared to O20 ( p protein kinase (AMPK), eukaryotic translation initiation factor 4E binding protein 1 (4EBP1), protein kinase B (Akt) or p70 ribosomal S6 kinase (p70S6K) phosphorylation. The data suggest that high-protein diets have the potential to reduce weight gain and alter metabolism, possibly through regulation of an mTORC1-dependent pathway in skeletal muscle.

  10. Evolution of late blood damage from decreasing doses of 241Am following injection in the rat

    International Nuclear Information System (INIS)

    Maillard, M.J.; Boncorps, Janine.

    1982-04-01

    Rats were given intravenous or intramuscular injections of 241 Am at decreasing doses ranging from 7.5 μCi to 0.075 μCi per kg of body weight. Blood examinations showed that higher doses exerted an irreversible destructive effect on all blood cells. As the administered doses decreased, the destructive effect of 241 Am dropped and even became reversible for white cells. Proliferative disorders such as leukocytosis with myelemias, leukemias -chiefly acute or chronic granulocytic leukemias- were then demonstrated. Red cells only dropped but more and more slowly. At the lowest doses, life-span shortening was the most evident effect [fr

  11. [Curcumin improves learning and memory function through decreasing hippocampal TNF-α and iNOS levels after subarachnoid hemorrhage in rats].

    Science.gov (United States)

    Qiu, Zhenwei; Yue, Shuangzhu

    2016-03-01

    To investigate the effect of curcumin on learning and memory function of rats with subarachnoid hemorrhage (SAH) and the possible mechanism. A total of 30 male Sprague-Dawley rats were randomly divided into three groups: Sham group, SAH group and curcumin (Cur) therapy group. Experimental SAH rat models were established by injecting autologous blood into the cisterna magna. Neurological deficits of rats were examined at different time points. Spatial learning and memory abilities were tested by Morris water maze test. The hippocampal tumor necrosis factor-alpha (TNF-α) and inducible nitric oxide synthase (iNOS) were detected by ELISA. RESULTS Experimental SAH rat models were established successfully. Neurological scores of the SAH rats were significantly lower than those of the sham group. Curcumin therapy obviously improved the neurological deficits of rats compared with the SAH rats. Morris water maze test showed that SAH caused significant cognitive impairment with longer escape latency compared with the sham group. After treatment with curcumin for 4 weeks, the escape latency decreased significantly. The levels of TNF-α and iNOS in the curcumin-treated group were significantly lower than those of the SAH group. SAH can cause learning and memory impairment in rats. Curcumin can recover learning and memory function through down-regulating hippocampal TNF-α and iNOS levels.

  12. Bis(tributyltin)oxide (TBTO) decreases the food allergic response against peanut and ovalbumin in Brown Norway rats

    International Nuclear Information System (INIS)

    Jonge, Jonathan D. de; Ezendam, Janine; Knippels, Leon M.J.; Odink, Jennie; Pourier, Milanthy S.; Penninks, Andre H.; Pieters, Raymond; Loveren, Henk van

    2007-01-01

    Other factors than the allergen itself may be of importance in the development of food allergy. This report describes the influence of the immunosuppressive compound bis(tributyltin)oxide (TBTO), present in the food chain, on the development of food allergy to peanut or ovalbumin in Brown Norway (BN) rats. To study these effects BN rats were sensitized to either 1 or 10 mg peanut or ovalbumin by daily oral gavage and the TBTO-groups were fed a diet containing 80 mg TBTO per kg diet. Co-exposure to TBTO not only resulted in decreased general immunologic parameters such as weights of mesenteric lymph nodes and Peyer's patches, lymphocyte proliferation rates in splenocytes, but also on allergic parameters. In the peanut allergen-model TBTO decreased allergen-specific Th2 cytokine production by spleen cells, number of eosinophilic and basophilic granulocytes in the blood and production of mast cell protease II after oral food challenge. In the ovalbumin allergen-model TBTO decreased the number of eosinophilic and basophilic granulocytes, allergen-specific IgE and production of mast cell protease II after oral food challenge. The data imply that in the process of risk assessment of food allergy attention should be given to immunomodulating compounds present in the diet

  13. HIV-1 transgenic rat CD4+ T cells develop decreased CD28 responsiveness and suboptimal Lck tyrosine dephosphorylation following activation

    International Nuclear Information System (INIS)

    Yadav, Anjana; Pati, Shibani; Nyugen, Anhthu; Barabitskaja, Oxana; Mondal, Prosanta; Anderson, Michael; Gallo, Robert C.; Huso, David L.; Reid, William

    2006-01-01

    Impaired CD4+ T cell responses, resulting in dysregulated T-helper 1 (Th1) effector and memory responses, are a common result of HIV-1 infection. These defects are often preceded by decreased expression and function of the α/β T cell receptor (TCR)-CD3 complex and of co-stimulatory molecules including CD28, resulting in altered T cell proliferation, cytokine secretion and cell survival. We have previously shown that HIV Tg rats have defective development of T cell effector function and generation of specific effector/memory T cell subsets. Here we identify abnormalities in activated HIV-1 Tg rat CD4+ T cells that include decreased pY505 dephosphorylation of Lck (required for Lck activation), decreased CD28 function, reduced expression of the anti-apoptotic molecule Bcl-xL, decreased secretion of the mitogenic lympokine interleukin-2 (IL-2) and increased activation induced apoptosis. These events likely lead to defects in antigen-specific signaling and may help explain the disruption of Th1 responses and the generation of specific effector/memory subsets in transgenic CD4+ T cells

  14. Prolonged decrease of adipocyte size after rosiglitazone treatment in high- and low-fat-fed rats.

    Science.gov (United States)

    Johnson, Julia A; Trasino, Steven E; Ferrante, Anthony W; Vasselli, Joseph R

    2007-11-01

    The anti-diabetic thiazolidinediones (TZDs) stimulate adipocyte differentiation and decrease mean adipocyte size. However, whether these smaller, more insulin-sensitive adipocytes maintain their size after TZD therapy is discontinued has not been studied. Adult female Sprague-Dawley rats were fed a low-fat (10% fat) diet or, to elevate body weight (BW), a high-fat (HF) diet (45% fat) for 6 weeks. Rats were initially randomized to groups (n = 12) fed either low-fat or HF diets, with or without the TZD rosiglitazone (ROSI; 5 mg/kg per day), for 6 weeks. ROSI was then discontinued, and all animals were fed HF for another 6 weeks before sacrifice. Retroperitoneal (RP) adipose tissue morphology was determined from tissue collected by serial biopsies before and after 6 weeks of ROSI treatment and at sacrifice. Measures of BW and adiposity did not differ among groups 6 weeks after stopping ROSI treatment. However, during treatment, ROSI in both diets significantly decreased RP adipocyte size and increased RP DNA content, and these effects continued to be observed after discontinuing treatment. ROSI administration also decreased circulating insulin, leptin, and triglycerides and increased circulating adiponectin levels; however, these effects were reversed on stopping treatment. These results demonstrated that TZD-induced effects on adipocyte size and number were maintained after discontinuing treatment, even with consumption of an obesigenic diet. However, additional studies are needed to determine whether TZD-treated animals eventually achieve an adipocyte size similar to that of untreated animals at the expense of a higher BW.

  15. Estrogen replacement avoids the decrease of bladder innervations in ovariectomized adult virgin rats: in vivo stereological study.

    Science.gov (United States)

    de Fraga, Rogerio; Palma, Paulo; Dambros, Miriam; Riccetto, Cassio L Z; Mandarim-de-Lacerda, Carlos; Miyaoka, Ricardo

    2009-05-01

    The authors quantified the nerve fibers in the bladder wall of ovariectomized rats with and without estradiol replacement. This study was conducted on 40 Wistar rats (3 months old). Group 1: remained intact; Group 2: underwent bilateral ovariectomy, and after 30 days was started on subcutaneous sesame oil replacement (0.2 ml per day) for 90 days; Group 3: sham-operated, and after 30 days was started on subcutaneous sesame oil replacement (0.2 ml per day) for 90 days; Group 4: bilateral ovariectomy, and after 30 days was started on subcutaneous injection of 17β-estradiol (10 μg/kg body weight) for 90 days. S-100 was used to stain nerves myelinized fibers on paraffin rat bladder sections. The G-50 grid system was used to quantitatively analyze the fibers. Long-term estrogen deprivation caused significant changes in bladder innervations, which can be characterized by a decreased number of nerve fibers by 65% (p < 0.001).

  16. Effect of chronic ingestion of lead on gastrointestinal transit in rats

    International Nuclear Information System (INIS)

    Walsh, C.T.; Ryden, E.B.

    1984-01-01

    GI symptoms such as constipation and abdominal colic are signs of lead poisoning in man, but mechanisms of these effects have not been elucidated. To evaluate GI transit, male Wistar rats were dosed with 1% lead or 0.7% sodium acetate in their diet (AIN-76A). After 7 weeks, lead-treated animals exhibited decreased hematocrit, increased 24-hr urinary excretion of delta-ALA, increased kidney/body weight ratio, and decreased body weight. Blood-lead concentrations were elevated to 196 +/- 57 micrograms/dl. Lead treatment, however, did not result in change in GI transit of a nonabsorbable marker, 51Cr, 15 min or 6 hr after po administration. There was also no change in fecal percentage water content. Since in control animals the semipurified diet AIN-76A markedly decreased fecal excretion rate of 51Cr compared to a cereal-based diet, NIH-07, the latter was used in subsequent experiments. Rats fed 2 or 4% lead acetate in NIH-07 for 8 weeks exhibited renal and hematologic toxicity as in the initial experiment. Weight gain was impaired in the 4% group compared to pair-fed controls. No significant differences were observed in the 1-hr gastric emptying or the fecal excretion of 51Cr in the 2 or 4% lead-treated animals, although there was a trend for slower transit in rats receiving the higher dose. These observations indicate that concentrations of lead sufficient to induce renal and hematologic toxicity in rats do not substantially affect GI transit

  17. Decreased sexual motivation and heightened anxiety in male Long-Evans rats are correlated with the memory for a traumatic event.

    Science.gov (United States)

    Hawley, Wayne R; Grissom, Elin M; Belkin, Mark N; James, Thomas F; Dohanich, Gary P

    2013-05-01

    Individuals suffering from posttraumatic stress disorder (PTSD) frequently report disturbances in sexual functioning in addition to alterations in their affective behaviors. Notably, maladaptive cognitions and dysfunctional behaviors are perpetuated by the emergence of the intrusive thoughts that characterize the disorder. In rats, reminders of a traumatic event designed to simulate intrusive thoughts are associated with impairments in affective, social, and sexual behaviors. The current study examined the relationship between the memory for a traumatic event and changes in sexual and affective behaviors in male Long-Evans rats (N = 36). The trauma featured a combination stressor consisting of simultaneous exposure to a footshock and the odor of soiled cat litter. Memory for the trauma was reactivated by re-exposures to the context of the trauma in the absence of stressors and confirmed by assessing the percentage of time spent freezing. Following the second and final reminder, traumatized males exhibited reduced sexual motivation and increased anxiety, signified by longer latencies to achieve their first mount on a post-stress test of sexual behavior, and longer latencies to begin feeding in a novel environment, respectively. Correlational analyses revealed that decreased sexual motivation and heightened anxiety were predicted by the memory for the trauma as indicated by the time spent freezing during the re-exposures. The findings from the current study have implications for understanding the relationship between stress and sexual functioning and indicate that the impairments in sexual behavior that often occur in individuals with PTSD may be impacted by their memory for the trauma.

  18. Increased hepatic glycogen synthetase and decreased phosphorylase in trained rats

    DEFF Research Database (Denmark)

    Galbo, H; Saugmann, P; Richter, Erik

    1979-01-01

    Rats were either physically trained by a 12 wk swimming program or were freely eating or weight matched, sedentary controls. Trained rats had a higher relative liver weight and total hepatic glycogen synthetase (EC 2.4.1.11) activity and a lower phosphorylase (EC 2.4.1.1) activity than the other...

  19. Proliferation activity and radiosensitivity of CFU-S in their decreased compartments in continuously irradiated rats

    International Nuclear Information System (INIS)

    Kalina, I.; Vacek, A.; Brezani, P.

    1984-01-01

    Effects of the continuous irradiation (0.25 Gy/day) on proliferation activity and radiosensitivity (D 0 ) of CFU-S were studied in rats after accumulated doses of 1.75 Gy and 15 Gy, resp. The proliferation activity of CFU-S in continuously irradiated groups was increased 4 - 5 fold compared with the control group. D 0 values for CFU-S in their decreased compartments were not changed after long-term irradiation compared with the controls. (author)

  20. Spirulina vesicolor Improves Insulin Sensitivity and Attenuates Hyperglycemia-Mediated Oxidative Stress in Fructose-Fed Rats

    Directory of Open Access Journals (Sweden)

    Walaa Hozayen

    2016-03-01

    Full Text Available Aim: The current study aimed to investigate the anti-hyperglycemic, anti-hyperlipidemic and insulin sensitizing effects of the cyanobacterium Spirulina vesicolor extract in fructose-fed rats. Materials and Methods: Rats were fed 30% fructose solution in drinking water for 4 weeks. Animals exhibited hyperglycemia and hyperinsulinemia were selected for further investigations. Diabetic and control rats were orally supplemented with 50 mg/kg body weight S. vesicolor extract for 4 weeks. Results: At the end of 8 weeks, fructose-fed rats showed significant increase in serum glucose, insulin, cholesterol, triglycerides, cardiovascular risk indices and insulin resistance. Treatment of the fructose-fed rats with S. vesicolor extract improved this metabolic profile. Fructose feeding produced a significant increase in serum tumor necrosis factor alpha (TNF-α and a decrease in adiponectin levels. In addition, fructose-fed rats exhibited a significant increase in liver, kidney and heart lipid peroxidation levels, and declined antioxidant defenses. Supplementation of the fructose-fed rats with S. vesicolor extract reversed these alterations. Conclusion: S. vesicolor attenuates hyperglycemia-mediated oxidative stress and inflammation, and is thus effective in improving insulin sensitivity in fructose-fed rats. [J Complement Med Res 2016; 5(1.000: 57-64

  1. Modulation of Radiation Injury in Pregnant Rats by Bone Marrow Transplantation

    International Nuclear Information System (INIS)

    Hussein, E.M.; Abd Rabu, M.A.

    2011-01-01

    This Work aims to point out the influence of bone marrow transplantation (BMT) in protection of irradiated pregnant rats and suppression of oxidative stress. BMT was administered to rats, 1 h post gamma irradiation at the dose level of 2 Gy given at the 7th or 14th day of gestation. Rats were examined after 20 days from gestation to detect the physiological parameters of the mother and number of implantation sites and resorption as well as length of foetuses and tails. Pregnant rats irradiated at the 7th and 14th day of gestation showed reduction in live foetuses and length of foetuses and their tails and significant decrease in erythrocytes (RBCs), leucocytes (WBCs), haemoglobin content (Hb), and hematocrit percentage (Ht). Irradiation-induced an elevation in aldosterone and a drop in calcium (Ca). Glutathione levels showed significant decreases in blood while the content of serum thiobarbituric acid reactive substance (TBARS) showed significant increases. Lipid profile exhibited an increase in the concentrations of total cholesterol (TC), triglycerides (TG) and low lipoproteins cholesterol (LDL-C) with a significant decrease in high lipoproteins cholesterol (HDL-C) in both groups. BMT to irradiated pregnant rats induced significant amelioration in radiation- induced changes. BMT was shown to be effective in reducing physiological disorders and oxidative stress in pregnant rats reflected on minimizing embryonic injuries

  2. Leucine-rich repeat kinase 2 (LRRK2-deficient rats exhibit renal tubule injury and perturbations in metabolic and immunological homeostasis.

    Directory of Open Access Journals (Sweden)

    Daniel Ness

    Full Text Available Genetic evidence links mutations in the LRRK2 gene with an increased risk of Parkinson's disease, for which no neuroprotective or neurorestorative therapies currently exist. While the role of LRRK2 in normal cellular function has yet to be fully described, evidence suggests involvement with immune and kidney functions. A comparative study of LRRK2-deficient and wild type rats investigated the influence that this gene has on the phenotype of these rats. Significant weight gain in the LRRK2 null rats was observed and was accompanied by significant increases in insulin and insulin-like growth factors. Additionally, LRRK2-deficient rats displayed kidney morphological and histopathological alterations in the renal tubule epithelial cells of all animals assessed. These perturbations in renal morphology were accompanied by significant decreases of lipocalin-2, in both the urine and plasma of knockout animals. Significant alterations in the cellular composition of the spleen between LRRK2 knockout and wild type animals were identified by immunophenotyping and were associated with subtle differences in response to dual infection with rat-adapted influenza virus (RAIV and Streptococcus pneumoniae. Ontological pathway analysis of LRRK2 across metabolic and kidney processes and pathological categories suggested that the thioredoxin network may play a role in perturbing these organ systems. The phenotype of the LRRK2 null rat is suggestive of a complex biology influencing metabolism, immune function and kidney homeostasis. These data need to be extended to better understand the role of the kinase domain or other biological functions of the gene to better inform the development of pharmacological inhibitors.

  3. Effects of chronic ethanol administration on hepatic glycoprotein secretion in the rat

    International Nuclear Information System (INIS)

    Sorrell, M.F.; Nauss, J.M.; Donohue, T.M. Jr.; Tuma, D.J.

    1983-01-01

    The effects of chronic ethanol feeding on protein and glycoprotein synthesis and secretion were studied in rat liver slices. Liver slices from rats fed ethanol for 4-5 wk showed a decreased ability to incorporate [ 14 C]glucosamine into medium trichloracetic acid-precipitable proteins when compared to the pair-fed controls; however, the labeling of hepatocellular glycoproteins was unaffected by chronic ethanol treatment. Immunoprecipitation of radiolabeled secretory (serum) glycoproteins with antiserum against rat serum proteins showed a similar marked inhibition in the appearance of glucosamine-labeled proteins in the medium of slices from ethanol-fed rats. Minimal effects, however, were noted in the labeling of intracellular secretory glycoproteins. Protein synthesis, as determined by measuring [ 14 C]leucine incorporation into medium and liver proteins, was decreased in liver slices from ethanol-fed rats as compared to the pair-fed controls. This was the case for both total proteins as well as immunoprecipitable secretory proteins, although the labeling of secretory proteins retained in the liver slices was reduced to a lesser extent than total radiolabeled hepatic proteins. When the terminal sugar, [ 14 C]fucose, was employed as a precursor in order to more closely focus on the final steps of hepatic glycoprotein secretion, liver slices obtained from chronic ethanol-fed rats exhibited impaired secretion of fucose-labeled proteins into the medium. When ethanol (5 or 10 mM) was added to the incubation medium containing liver slices from the ethanol-fed rats, the alterations in protein and glycoprotein synthesis and secretion caused by the chronic ethanol treatment were further potentiated. The results of this study indicate that liver slices prepared from chronic ethanol-fed rats exhibit both impaired synthesis and secretion of proteins and glycoproteins, and these defects are further potentiated by acute ethanol administration

  4. Palmitoylated PrRP analog decreases body weight in DIO rats but not in ZDF rats

    Czech Academy of Sciences Publication Activity Database

    Holubová, M.; Zemenová, J.; Mikulášková, Barbora; Panajotová, V.; Stöhr, J.; Haluzík, M.; Kuneš, Jaroslav; Železná, B.; Maletínská, L.

    2016-01-01

    Roč. 229, č. 2 (2016), s. 85-96 ISSN 0022-0795 R&D Projects: GA TA ČR(CZ) TE01020028; GA ČR(CZ) GA15-08679S Institutional support: RVO:67985823 Keywords : prolactin-releasing peptide * lipidization * diet-induced obesity * ZDF rats * food intake rat Subject RIV: ED - Physiology Impact factor: 4.706, year: 2016

  5. Protein malnutrition during gestation and early life decreases neuronal size in the medial prefrontal cortex of post-pubertal rats

    Directory of Open Access Journals (Sweden)

    Roelf J. Cruz-Rizzolo

    2017-12-01

    Full Text Available Retrospective studies in human populations indicate that protein deprivation during pregnancy and early life (early protein malnutrition, EPM is associated with cognitive impairments, learning disabilities and may represent a risk factor for the late onset of some psychiatric disorders, fundamentally schizophrenia, a condition where the prefrontal cortex plays an important role. The purpose of this study was to analyze whether EPM affects structural aspects of the rat medial prefrontal cortex (mPFC, such as cortical volume, neuronal density and neuronal soma size, which seem altered in patients with schizophrenia. For this, a rat model of EPM (5% casein from conception to postnatal day 60 was adopted and the rat mPFC volume, total number of neurons and average neuronal volume were evaluated on postnatal day 60 (post-pubertal animals by histo- and immunohistochemical techniques using unbiased stereological analysis. EPM did not alter the number of NeuN+ neurons in the rat mPFC. However, a very significant decrease in mPFC volume and average neuronal size was observed in malnourished rats. Although the present study does not establish causal relationships between malnutrition and schizophrenia, our results may indicate a similar structural phenomenon in these two situations.

  6. Neuropeptide Y and nestin expression in the hippocampal CA3 region following restrained and inverted stress in rats

    Institute of Scientific and Technical Information of China (English)

    Guogang Sun; Ailing Li; Bo Chen; Guangbi Fan; Hongwen Xiao; Yue Chen; Jie Xu; Ye Nie; Bing Zhang; Lin Gong

    2011-01-01

    Our preliminary study demonstrated that neuropeptide Y (NPY)/nestin-positive cells exhibit a consistent spatial distribution in the hippocampus of normal adult rats. However, following severe acute and chronic stress-induced impaired learning and memory, synchronous decreased expression of nestin and NPY takes place in the hippocampus, and the underlying mechanisms remain unclear. In the present study, acute and chronic stress rat models were established using combined restrained and inverted stress. Results showed that learning and memory significantly decreased in acute and chronic stress rats. In addition, hippocampal cells were damaged, in particular in the acute stress rats, and nestin and NPY expression, as well as the number of NPY/nestin-positive cells in the CA3 region, significantly decreased. Furthermore, mature neurofilament 200-positive neurons were absent in the chronic stress rats. The NPY and cytoskeletal protein system equally contributed to stress-induced early learning and memory deficits, as well as sustained cerebral injury in the adult hippocampus.

  7. Rearing in enriched environment increases parvalbumin-positive small neurons in the amygdala and decreases anxiety-like behavior of male rats.

    Science.gov (United States)

    Urakawa, Susumu; Takamoto, Kouich; Hori, Etsuro; Sakai, Natsuko; Ono, Taketoshi; Nishijo, Hisao

    2013-01-25

    Early life experiences including physical exercise, sensory stimulation, and social interaction can modulate development of the inhibitory neuronal network and modify various behaviors. In particular, alteration of parvalbumin-expressing neurons, a gamma-aminobutyric acid (GABA)ergic neuronal subpopulation, has been suggested to be associated with psychiatric disorders. Here we investigated whether rearing in enriched environment could modify the expression of parvalbumin-positive neurons in the basolateral amygdala and anxiety-like behavior. Three-week-old male rats were divided into two groups: those reared in an enriched environment (EE rats) and those reared in standard cages (SE rats). After 5 weeks of rearing, the EE rats showed decreased anxiety-like behavior in an open field than the SE rats. Under another anxiogenic situation, in a beam walking test, the EE rats more quickly traversed an elevated narrow beam. Anxiety-like behavior in the open field was significantly and negatively correlated with walking time in the beam-walking test. Immunohistochemical tests revealed that the number of parvalbumin-positive neurons significantly increased in the basolateral amygdala of the EE rats than that of the SE rats, while the number of calbindin-D28k-positive neurons did not change. These parvalbumin-positive neurons had small, rounded soma and co-expressed the glutamate decarboxylase (GAD67). Furthermore, the number of parvalbumin-positive small cells in the basolateral amygdala tended to positively correlate with emergence in the center arena of the open field and negatively correlated with walking time in the beam walking test. Rearing in the enriched environment augmented the number of parvalbumin-containing specific inhibitory neuron in the basolateral amygdala, but not that of calbindin-containing neuronal phenotype. Furthermore, the number of parvalbumin-positive small neurons in the basolateral amygdala was negatively correlated with walking time in the

  8. Onset of decreased heart work is correlated with increased heart rate and shortened QT interval in high-carbohydrate fed overweight rats.

    Science.gov (United States)

    Durak, Aysegul; Olgar, Yusuf; Tuncay, Erkan; Karaomerlioglu, Irem; Kayki Mutlu, Gizem; Arioglu Inan, Ebru; Altan, Vecdi Melih; Turan, Belma

    2017-11-01

    Mechanical activity of the heart is adversely affected in metabolic syndrome (MetS) characterized by increased body mass and marked insulin resistance. Herein, we examined the effects of high carbohydrate intake on cardiac function abnormalities by evaluating in situ heart work, heart rate, and electrocardiograms (ECGs) in rats. MetS was induced in male Wistar rats by adding 32% sucrose to drinking water for 22-24 weeks and was confirmed by insulin resistance, increased body weight, increased blood glucose and serum insulin, and increased systolic and diastolic blood pressures in addition to significant loss of left ventricular integrity and increased connective tissue around myofibrils. Analysis of in situ ECG recordings showed a markedly shortened QT interval and decreased QRS amplitude with increased heart rate. We also observed increased oxidative stress and decreased antioxidant defense characterized by decreases in serum total thiol level and attenuated paraoxonase and arylesterase activities. Our data indicate that increased heart rate and a shortened QT interval concomitant with higher left ventricular developed pressure in response to β-adrenoreceptor stimulation as a result of less cyclic AMP release could be regarded as a natural compensation mechanism in overweight rats with MetS. In addition to the persistent insulin resistance and obesity associated with MetS, one should consider the decreased heart work, increased heart rate, and shortened QT interval associated with high carbohydrate intake, which may have more deleterious effects on the mammalian heart.

  9. Impairment of DNA synthesis in Gunn rat cerebellum.

    Science.gov (United States)

    Yamada, N; Sawasaki, Y; Nakajima, H

    1977-05-06

    Brain DNA synthesis was developmentally investigated in Gunn rat with marked cerebellar hypoplasia due to hereditary hyperbilirubinemia. In this mutant rat, the Purkinje cell was nearly selectively affected in the cerebellar cortex by bilirubin. The impaired DNA synthesis was observed in homozygous (jj) Gunn rat cerebellum, in which the DNA content and [3H]thymidine incorporation rate into DNA decreased after 10 days of age compared to those in the heterozygous (Jj)littermate. In contrast, these impairments were not found in the non-cerebellar parts of the brain and liver of jj Gunn rat. The activity of cerebellar thymidine kinase in jj Gunn rat decreased from a very early stae, being 80% of Jj rat at 6 days, and 50% at 10 days of age. The enzyme activity was not affected in the non-cerebellar parts of the brain. Although bilirubin competitively inhibited cerebellar thymidine kinase activity in vitro (15% at 10(-5) M), such bilirubin level was found to be about 1000-fold that in vivo. Moreover, photo-degradation of bilirubin in jj cerebellum exhibited no improvement in thymidine kinase activity, and the presence of an enzyme inactivator was not suggested in jj cerebellum. These results seem to indicate that the induction of thymidine kinase might be affected in jj Gunn rat cerebellum. The possibility that the impaired DNA synthesis in the external granular cells in jj cerebellum may be due to Purkinje cell damage is discussed.

  10. Deletion of Type 2 Metabotropic Glutamate Receptor Decreases Sensitivity to Cocaine Reward in Rats.

    Science.gov (United States)

    Yang, Hong-Ju; Zhang, Hai-Ying; Bi, Guo-Hua; He, Yi; Gao, Jun-Tao; Xi, Zheng-Xiong

    2017-07-11

    Cocaine users show reduced expression of the metabotropic glutamate receptor (mGluR2), but it is not clear whether this is a predisposing trait for addiction or a consequence of drug exposure. In this study, we found that a nonsense mutation at the mGluR2 gene decreased mGluR2 expression and altered the seeking and taking of cocaine. mGluR2 mutant rats show reduced sensitivity to cocaine reward, requiring more cocaine to reach satiation when it was freely available and ceasing their drug-seeking behavior sooner than controls when the response requirement was increased. mGluR2 mutant rats also show a lower propensity to relapse after a period of cocaine abstinence, an effect associated with reduced cocaine-induced dopamine and glutamate overflow in the nucleus accumbens. These findings suggest that mGluR2 polymorphisms or reduced availability of mGluR2 might be risk factors for the initial development of cocaine use but could actually protect against addiction by reducing sensitivity to cocaine reward. Published by Elsevier Inc.

  11. Magnesium sulfate treatment reverses seizure susceptibility and decreases neuroinflammation in a rat model of severe preeclampsia.

    Directory of Open Access Journals (Sweden)

    Abbie Chapman Johnson

    Full Text Available Eclampsia, defined as unexplained seizure in a woman with preeclampsia, is a life-threatening complication of pregnancy with unclear etiology. Magnesium sulfate (MgSO4 is the leading eclamptic seizure prophylactic, yet its mechanism of action remains unclear. Here, we hypothesized severe preeclampsia is a state of increased seizure susceptibility due to blood-brain barrier (BBB disruption and neuroinflammation that lowers seizure threshold. Further, MgSO4 decreases seizure susceptibility by protecting the BBB and preventing neuroinflammation. To model severe preeclampsia, placental ischemia (reduced uteroplacental perfusion pressure; RUPP was combined with a high cholesterol diet (HC to cause maternal endothelial dysfunction. RUPP+HC rats developed symptoms associated with severe preeclampsia, including hypertension, oxidative stress, endothelial dysfunction and fetal and placental growth restriction. Seizure threshold was determined by quantifying the amount of pentylenetetrazole (PTZ; mg/kg required to elicit seizure in RUPP + HC ± MgSO4 and compared to normal pregnant controls (n = 6/group; gestational day 20. RUPP+HC rats were more sensitive to PTZ with seizure threshold being ∼ 65% lower vs. control (12.4 ± 1.7 vs. 36.7 ± 3.9 mg/kg PTZ; p<0.05 that was reversed by MgSO4 (45.7 ± 8.7 mg/kg PTZ; p<0.05 vs. RUPP+HC. BBB permeability to sodium fluorescein, measured in-vivo (n = 5-7/group, was increased in RUPP+HC vs. control rats, with more tracer passing into the brain (15.9 ± 1.0 vs. 12.2 ± 0.3 counts/gram ×1000; p<0.05 and was unaffected by MgSO4 (15.6 ± 1.0 counts/gram ×1000; p<0.05 vs. controls. In addition, RUPP+HC rats were in a state of neuroinflammation, indicated by 35 ± 2% of microglia being active compared to 9 ± 2% in normal pregnancy (p<0.01; n = 3-8/group. MgSO4 treatment reversed neuroinflammation, reducing microglial activation to 6 ± 2% (p<0.01 vs. RUPP+HC. Overall, RUPP+HC rats were in a state of augmented

  12. Palmitoylated PrRP analog decreases body weight in DIO rats but not in ZDF rats

    Czech Academy of Sciences Publication Activity Database

    Holubová, Martina; Zemenová, Jana; Mikulášková, Barbora; Panajotová, V.; Stöhr, J.; Haluzík, M.; Kuneš, Jaroslav; Železná, Blanka; Maletínská, Lenka

    2016-01-01

    Roč. 229, č. 2 (2016), s. 85-96 ISSN 0022-0795 R&D Projects: GA ČR(CZ) GA15-08679S; GA TA ČR(CZ) TE01020028 Institutional support: RVO:61388963 Keywords : prolactin-releasing peptide * lipidization * diet-induced obesity * ZDF rats * food intake * rat Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 4.706, year: 2016

  13. Subtle Cardiovascular Dysfunction in the Unilateral 6-Hydroxydopamine-Lesioned Rat

    Directory of Open Access Journals (Sweden)

    K. Slack

    2010-01-01

    Full Text Available The present study evaluated whether the unilateral 6-hydroxydopamine (6-OHDA model of Parkinson's disease produces autonomic deficits. Autonomic parameters were assessed by implanting a small radiofrequency telemetry device which measured heart rate variability (HRV, diurnal rhythms of heart rate (HR, core body temperature (cBT and locomotor activity (LA. Rats then received 6-OHDA lesion or sham surgery. 6-OHDA lesioned rats exhibited head and body axis biases, defective sensorimotor function (“disengage” test, and prominent apomorphine rotation (all P<.05 versus controls. Diurnal rhythm of HR was lower for 6-OHDA lesioned rats (n=8 versus controls (n=6; P<.05. Whilst HR decreased similarly in both groups during the day, there was a greater decrease in HR for the 6-OHDA lesioned rats at night (by 38 b.p.m. relative to 17 b.p.m. for controls. LA and cBT did not differ between surgery groups. This study indicates the unilateral 6-OHDA model of PD shows subtle signs of cardiovascular autonomic dysfunction.

  14. Exhaustive Training Increases Uncoupling Protein 2 Expression and Decreases Bcl-2/Bax Ratio in Rat Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    W. Y. Liu

    2013-01-01

    Full Text Available This work investigates the effects of oxidative stress due to exhaustive training on uncoupling protein 2 (UCP2 and Bcl-2/Bax in rat skeletal muscles. A total of 18 Sprague-Dawley female rats were randomly divided into three groups: the control group (CON, the trained control group (TC, and the exhaustive trained group (ET. Malondialdehyde (MDA, superoxide dismutase (SOD, xanthine oxidase (XOD, ATPase, UCP2, and Bcl-2/Bax ratio in red gastrocnemius muscles were measured. Exhaustive training induced ROS increase in red gastrocnemius muscles, which led to a decrease in the cell antiapoptotic ability (Bcl-2/Bax ratio. An increase in UCP2 expression can reduce ROS production and affect mitochondrial energy production. Thus, oxidative stress plays a significant role in overtraining.

  15. Length dependence of force generation exhibit similarities between rat cardiac myocytes and skeletal muscle fibres.

    Science.gov (United States)

    Hanft, Laurin M; McDonald, Kerry S

    2010-08-01

    According to the Frank-Starling relationship, increased ventricular volume increases cardiac output, which helps match cardiac output to peripheral circulatory demand. The cellular basis for this relationship is in large part the myofilament length-tension relationship. Length-tension relationships in maximally calcium activated preparations are relatively shallow and similar between cardiac myocytes and skeletal muscle fibres. During twitch activations length-tension relationships become steeper in both cardiac and skeletal muscle; however, it remains unclear whether length dependence of tension differs between striated muscle cell types during submaximal activations. The purpose of this study was to compare sarcomere length-tension relationships and the sarcomere length dependence of force development between rat skinned left ventricular cardiac myocytes and fast-twitch and slow-twitch skeletal muscle fibres. Muscle cell preparations were calcium activated to yield 50% maximal force, after which isometric force and rate constants (k(tr)) of force development were measured over a range of sarcomere lengths. Myofilament length-tension relationships were considerably steeper in fast-twitch fibres compared to slow-twitch fibres. Interestingly, cardiac myocyte preparations exhibited two populations of length-tension relationships, one steeper than fast-twitch fibres and the other similar to slow-twitch fibres. Moreover, myocytes with shallow length-tension relationships were converted to steeper length-tension relationships by protein kinase A (PKA)-induced myofilament phosphorylation. Sarcomere length-k(tr) relationships were distinct between all three cell types and exhibited patterns markedly different from Ca(2+) activation-dependent k(tr) relationships. Overall, these findings indicate cardiac myocytes exhibit varied length-tension relationships and sarcomere length appears a dominant modulator of force development rates. Importantly, cardiac myocyte length

  16. Oxalic acid decreases calcium absorption in rats

    International Nuclear Information System (INIS)

    Weaver, C.M.; Martin, B.R.; Ebner, J.S.; Krueger, C.A.

    1987-01-01

    Calcium absorption from salts and foods intrinsically labeled with 45 Ca was determined in the rat model. Calcium bioavailability was nearly 10 times greater for low oxalate kale, CaCO 3 and CaCl 2 than from CaC 2 O 4 (calcium oxalate) and spinach (high in oxalates). Extrinsic and intrinsic labeling techniques gave a similar assessment of calcium bioavailability from kale but not from spinach

  17. The orexin-1 receptor antagonist SB-334867 decreases anxiety-like behavior and c-Fos expression in the hypothalamus of rats exposed to cat odor.

    Science.gov (United States)

    Vanderhaven, M W; Cornish, J L; Staples, L G

    2015-02-01

    Increasing evidence suggests that the orexin system is involved in modulating anxiety, and we have recently shown that cat odor-induced anxiety in rats is attenuated by the orexin receptor antagonist SB-334867. In the current experiment, c-Fos expression was used to map changes in neuronal activation following SB-334867 administration in the cat odor anxiety model. Male Wistar rats were exposed to cat odor with or without SB-334867 pre-treatment (10 mg/kg, i.p.). A naïve control group not exposed to cat odor was also used. Following cat odor exposure, brains were processed for c-Fos expression. Vehicle-treated rats showed an increase in anxiety-like behaviors (increased hiding and decreased approach toward the cat odor), and increased c-Fos expression in the posteroventral medial amygdala (MePV), paraventricular hypothalamus (PVN) and dorsal premammillary nucleus (PMd). In rats pretreated with SB-334867, approach scores increased and c-Fos expression decreased in the PVN and PMd. These results provide both behavioral and neuroanatomical evidence for the attenuation of cat odor-induced anxiety in rats via the orexin system. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  18. Decreased adrenoceptor stimulation in heart failure rats reduces NGF expression by cardiac parasympathetic neurons.

    Science.gov (United States)

    Hasan, Wohaib; Smith, Peter G

    2014-04-01

    Postganglionic cardiac parasympathetic and sympathetic nerves are physically proximate in atrial cardiac tissue allowing reciprocal inhibition of neurotransmitter release, depending on demands from central cardiovascular centers or reflex pathways. Parasympathetic cardiac ganglion (CG) neurons synthesize and release the sympathetic neurotrophin nerve growth factor (NGF), which may serve to maintain these close connections. In this study we investigated whether NGF synthesis by CG neurons is altered in heart failure, and whether norepinephrine from sympathetic neurons promotes NGF synthesis. NGF and proNGF immunoreactivity in CG neurons in heart failure rats following chronic coronary artery ligation was investigated. NGF immunoreactivity was decreased significantly in heart failure rats compared to sham-operated animals, whereas proNGF expression was unchanged. Changes in neurochemistry of CG neurons included attenuated expression of the cholinergic marker vesicular acetylcholine transporter, and increased expression of the neuropeptide vasoactive intestinal polypeptide. To further investigate norepinephrine's role in promoting NGF synthesis, we cultured CG neurons treated with adrenergic receptor (AR) agonists. An 82% increase in NGF mRNA levels was detected after 1h of isoproterenol (β-AR agonist) treatment, which increased an additional 22% at 24h. Antagonist treatment blocked isoproterenol-induced increases in NGF transcripts. In contrast, the α-AR agonist phenylephrine did not alter NGF mRNA expression. These results are consistent with β-AR mediated maintenance of NGF synthesis in CG neurons. In heart failure, a decrease in NGF synthesis by CG neurons may potentially contribute to reduced connections with adjacent sympathetic nerves. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Dynamics of myelin content decrease in the rat stroke model

    Science.gov (United States)

    Kisel, A.; Khodanovich, M.; Atochin, D.; Mustafina, L.; Yarnykh, V.

    2017-08-01

    The majority of studies were usually focused on neuronal death after brain ischemia; however, stroke affects all cell types including oligodendrocytes that form myelin sheath in the CNS. Our study is focused on the changes of myelin content in the ischemic core and neighbor structures in early terms (1, 3 and 10 days) after stroke. Stroke was modeled with middle cerebral artery occlusion (MCAo) in 15 male rats that were divided into three groups by time points after operation. Brain sections were histologically stained with Luxol Fast Blue (LFB) for myelin quantification. The significant demyelination was found in the ischemic core, corpus callosum, anterior commissure, whereas myelin content was increased in caudoputamen, internal capsule and piriform cortex compared with the contralateral hemisphere. The motor cortex showed a significant increase of myelin content on the 1st day and a significant decrease on the 3rd and 10th days after MCAo. These results suggest that stroke influences myelination not only in the ischemic core but also in distant structures.

  20. Differences in both glycosylation and binding properties between rat and mouse liver prolactin receptors.

    Science.gov (United States)

    Lascols, O; Cherqui, G; Munier, A; Picard, J; Capeau, J

    1994-05-01

    To investigate whether glycanic chains of prolactin receptors (PRL-R) play a role in hormone binding activity, comparison was made of rat and mouse liver solubilized receptors with respect to both their affinity for the hormone and their glycosylation properties. As compared with rat receptors, mouse receptors exhibited a 2-fold higher affinity for human growth hormone (hGH), the hormone being bound by both tissues with a lactogenic specificity. Along with this increased affinity, mouse receptors had a 2 lower M(r) relative to rat receptors (62 kDa versus 64 kDa as measured on hGH cross-linked receptors). These differences could be ascribed to different glycosylation properties of the receptors from the two species, as supported by the followings. 1) After treatment with endoglycosidase F (endo F), rat and mouse PRL-R no longer exhibited any difference in their M(r) (54 kDa for both cross-linked receptors). 2) Neuraminidase treatment increased by 37% the binding of hGH to mouse receptors, but was ineffective on the hormone-binding to rat receptors. Conversely, wheat germ agglutinin (WGA), another sialic acid specific probe, decreased hGH binding to rat receptors by 25%, but had no effect on this process for mouse ones. 3) Marked differences were observed in the recoveries of rat and mouse hormone-receptor (HR) complexes from ricin-1- (RCA1-), concanavalin A- (ConA-) and WGA-immobilized lectins. These differences were reduced (RCA1 and ConA) or abolished (WGA) after rat and mouse receptor desialylation by neuraminidase, a treatment which decreased the M(r) of both receptors by 2 kDa. Taken together, these results strongly suggest that the PRL-R from rat and mouse liver contain biantennary N-linked oligosaccharidic chains with distinct type of sialylation, which may account for their differential hormone-binding affinities.

  1. Intake of Moringa oleifera Leaf Extract Decreases IL-1 and TNF-α Levels in Dyslipidemic Wistar Rat Model

    Directory of Open Access Journals (Sweden)

    Sri Wahyuni

    2017-05-01

    Full Text Available Changes in consumption behavior to instant food cause various health problems, such as obesity, dislipidemia, and atherosclerosis. A study was conducted to investigate Moringa oleifera extract as an anti-inflammation product that decreases the levels of biochemical markers IL-1 and TNF-a. This experiment was done with randomized pre- and posttest control-group design, employing 40 Wistar rats separated into five groups: control group 0% M. oleifera leaf extract (P0, treatment group 1 with 10% M. oleifera leaf extract (P1, treatment group 2 with 15% M. oleifera leaf extract (P2, treatment group 3 with 20% M. oleifera leaf extract (P3, and treatment group 4 with 25% M. oleifera leaf extract (P4. This research observed that intake of 20% M. oleifera leaf extract results in the highest significant decrease of 15.42% of IL-1 level (134.64 ± 1.98 to 113.87 ± 4.30 pg/mL and decrease of 45.63% of TNF-α level (28.62 ± 1.25 to 15.56 ± 7.20 pg/mL. Therefore, it can be concluded that intake of M. oleifera leaf extract by Wistar rat has anti-inflammatory effects on chronic dyslipidemia through decrease of IL-1 and TNF-α levels and histopathology profile. Further research is required to determine whether the application of M. oleifera leaf extract (daun kelor in humans will have similar anti-inflammation effects.

  2. Effects of Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036 on hepatic steatosis in Zucker rats.

    Science.gov (United States)

    Plaza-Diaz, Julio; Gomez-Llorente, Carolina; Abadia-Molina, Francisco; Saez-Lara, Maria Jose; Campaña-Martin, Laura; Muñoz-Quezada, Sergio; Romero, Fernando; Gil, Angel; Fontana, Luis

    2014-01-01

    We have previously described the safety and immunomodulatory effects of Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036 in healthy volunteers. The scope of this work was to evaluate the effects of these probiotic strains on the hepatic steatosis of obese rats. We used the Zucker rat as a genetic model of obesity. Zucker-Lepr(fa/fa) rats received one of three probiotic strains, a mixture of L. paracasei CNCM I-4034 and B. breve CNCM I-4035, or a placebo for 30 days. An additional group of Zucker-lean+/fa rats received a placebo for 30 days. No alterations in intestinal histology, in the epithelial, lamina propria, muscular layers of the ileal or colonic mucosa, or the submucosae, were observed in any of the experimental groups. Triacylglycerol content decreased in the liver of Zucker-Lepr(fa/fa) rats that were fed L. rhamnosus, B. breve, or the mixture of B. breve and L. paracasei. Likewise, the area corresponding to neutral lipids was significantly smaller in the liver of all four groups of Zucker-Lepr(fa/fa) rats that received probiotics than in rats fed the placebo. Zucker-Lepr(fa/fa) rats exhibited significantly greater serum LPS levels than Zucker-lean+/fa rats upon administration of placebo for 30 days. In contrast, all four groups of obese Zucker-Lepr(fa/fa) rats that received LAB strains exhibited serum LPS concentrations similar to those of Zucker-lean+/fa rats. Serum TNF-α levels decreased in the Zucker-Lepr(fa/fa) rats that received B. breve, L. rhamnosus, or the mixture, whereas L. paracasei feeding decreased IL-6 levels in the serum of Zucker-Lepr(fa/fa) rats. In conclusion, the probiotic strains reduced hepatic steatosis in part by lowering serum LPS, and had an anti-inflammatory effect in obese Zucker rats.

  3. Effects of Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036 on hepatic steatosis in Zucker rats.

    Directory of Open Access Journals (Sweden)

    Julio Plaza-Diaz

    Full Text Available We have previously described the safety and immunomodulatory effects of Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036 in healthy volunteers. The scope of this work was to evaluate the effects of these probiotic strains on the hepatic steatosis of obese rats. We used the Zucker rat as a genetic model of obesity. Zucker-Lepr(fa/fa rats received one of three probiotic strains, a mixture of L. paracasei CNCM I-4034 and B. breve CNCM I-4035, or a placebo for 30 days. An additional group of Zucker-lean+/fa rats received a placebo for 30 days. No alterations in intestinal histology, in the epithelial, lamina propria, muscular layers of the ileal or colonic mucosa, or the submucosae, were observed in any of the experimental groups. Triacylglycerol content decreased in the liver of Zucker-Lepr(fa/fa rats that were fed L. rhamnosus, B. breve, or the mixture of B. breve and L. paracasei. Likewise, the area corresponding to neutral lipids was significantly smaller in the liver of all four groups of Zucker-Lepr(fa/fa rats that received probiotics than in rats fed the placebo. Zucker-Lepr(fa/fa rats exhibited significantly greater serum LPS levels than Zucker-lean+/fa rats upon administration of placebo for 30 days. In contrast, all four groups of obese Zucker-Lepr(fa/fa rats that received LAB strains exhibited serum LPS concentrations similar to those of Zucker-lean+/fa rats. Serum TNF-α levels decreased in the Zucker-Lepr(fa/fa rats that received B. breve, L. rhamnosus, or the mixture, whereas L. paracasei feeding decreased IL-6 levels in the serum of Zucker-Lepr(fa/fa rats. In conclusion, the probiotic strains reduced hepatic steatosis in part by lowering serum LPS, and had an anti-inflammatory effect in obese Zucker rats.

  4. Decrease in rat cardiac beta1- and beta2- adrenoceptors by training and endurance exercise

    International Nuclear Information System (INIS)

    Werle, E.O.; Strobel, G.; Weicker, H.

    1990-01-01

    The cardiac β-adrenoceptor adaptation to physical activity was investigated in rats which were subjected to a six-week endurance swimming training (ET; n=7) and a training of high intensity (MT; n=7). In addition, the effect of a single bout of endurance exercise without preceding training (EE; n=7) was evaluated. These groups were compared with a sedentary control group (C; n=9). Beta-adrenergic receptors in rat myocardial membranes were labelled using the high affinity antagonist radioligand (-) 125 iodocyanopindolol (ICYP). Computer modelling techniques provided estimates of the maximal binding capacity (B max ) and the dissociation constants (K D ). Tissue was constantly kept at temperatures of ≤4 degrees C and incubated at 4 degrees C for 18 h in buffer containing 100 μM GTP so as to prevent masking of β-adrenoceptors by endogenous norepinephrine. In comparison with the C group computerized coanalyses of saturation binding data of ET, MT, and EE revealed a 13.0%, 25.5%, and 16.6% decrease in B max , respectively, without significantly differing K D values. We provide the first evidence that acute exercise lowers the sarcolemmal β-adrenoceptor number in the rat heart. In the competition radioligand binding, CGP20712A and ICI118.551 were employed as subtype-selective antagonists of β 1 - and β 2 -adrenoceptors, respectively, to determine the relative proportions of the receptor subtypes

  5. Alteration in plasma corticosterone levels following long term oral administration of lead produces depression like symptoms in rats.

    Science.gov (United States)

    Haider, Saida; Saleem, Sadia; Tabassum, Saiqa; Khaliq, Saima; Shamim, Saima; Batool, Zehra; Parveen, Tahira; Inam, Qurat-ul-ain; Haleem, Darakhshan J

    2013-03-01

    Lead toxicity is known to induce a broad range of physiological, biochemical and behavioral dysfunctions that may result in adverse effects on several organs, including the central nervous system. Long-term exposure to low levels of lead (Pb(2+)) has been shown to produce behavioral deficits in rodents and humans by affecting hypothalamic-pituitary-adrenal (HPA) axis. These deficits are thought to be associated with altered brain monoamine neurotransmission and due to changes in glucocorticoids levels. This study was designed to investigate the effects of Pb(2+)exposure on growth rate, locomotor activity, anxiety, depression, plasma corticosterone and brain serotonin (5-HT) levels in rats. Rats were exposed to lead in drinking water (500 ppm; lead acetate) for 5 weeks. The assessment of depression was done using the forced swimming test (FST). Estimation of brain 5-HT was determined by high-performance liquid chromatography with electrochemical detection. Plasma corticosterone was determined by spectrofluorimetric method. The present study showed that long term exposure to Pb(2+) significantly decreased the food intake followed by the decrease in growth rate in Pb(2+)exposed rats as compared to control group. No significant changes in open field activity were observed following Pb(2+)exposure while significant increase in anxiogenic effect was observed. Increased plasma corticosterone and decreased 5-HT levels were exhibited by Pb(2+)exposed rats as compared to controls. A significant increase in depressive like symptoms was exhibited by Pb(2+)exposed rats as compared to control rats. The results are discussed in the context of Pb(2+) inducing a stress-like response in rats leading to changes in plasma corticosterone and brain 5-HT levels via altering tryptophan pyrrolase activity.

  6. Exogenous and endogenous angiotensin‐II decrease renal cortical oxygen tension in conscious rats by limiting renal blood flow

    Science.gov (United States)

    Emans, Tonja W.; Janssen, Ben J.; Pinkham, Maximilian I.; Ow, Connie P. C.; Evans, Roger G.; Joles, Jaap A.; Malpas, Simon C.; Krediet, C. T. Paul

    2016-01-01

    Key points Our understanding of the mechanisms underlying the role of hypoxia in the initiation and progression of renal disease remains rudimentary.We have developed a method that allows wireless measurement of renal tissue oxygen tension in unrestrained rats.This method provides stable and continuous measurements of cortical tissue oxygen tension (PO2) for more than 2 weeks and can reproducibly detect acute changes in cortical oxygenation.Exogenous angiotensin‐II reduced renal cortical tissue PO2 more than equi‐pressor doses of phenylephrine, probably because it reduced renal oxygen delivery more than did phenylephrine.Activation of the endogenous renin–angiotensin system in transgenic Cyp1a1Ren2 rats reduced cortical tissue PO2; in this model renal hypoxia precedes the development of structural pathology and can be reversed acutely by an angiotensin‐II receptor type 1 antagonist.Angiotensin‐II promotes renal hypoxia, which may in turn contribute to its pathological effects during development of chronic kidney disease. Abstract We hypothesised that both exogenous and endogenous angiotensin‐II (AngII) can decrease the partial pressure of oxygen (PO2) in the renal cortex of unrestrained rats, which might in turn contribute to the progression of chronic kidney disease. Rats were instrumented with telemeters equipped with a carbon paste electrode for continuous measurement of renal cortical tissue PO2. The method reproducibly detected acute changes in cortical oxygenation induced by systemic hyperoxia and hypoxia. In conscious rats, renal cortical PO2 was dose‐dependently reduced by intravenous AngII. Reductions in PO2 were significantly greater than those induced by equi‐pressor doses of phenylephrine. In anaesthetised rats, renal oxygen consumption was not affected, and filtration fraction was increased only in the AngII infused animals. Oxygen delivery decreased by 50% after infusion of AngII and renal blood flow (RBF) fell by 3.3 ml min−1

  7. Anthriscus nemorosa essential oil inhalation prevents memory impairment, anxiety and depression in scopolamine-treated rats.

    Science.gov (United States)

    Bagci, Eyup; Aydin, Emel; Ungureanu, Eugen; Hritcu, Lucian

    2016-12-01

    Anthriscus nemorosa (Bieb.) Sprengel is used for medicinal purposes in traditional medicine around the world, including Turkey. Ethnobotanical studies suggest that Anthriscus essential oil could improve memory in Alzheimer's disease. The current study was hypothesized to investigate the beneficial effects of inhaled Anthriscus nemorosa essential oil on memory, anxiety and depression in scopolamine-treated rats. Anthriscus nemorosa essential oil was administered by inhalation in the doses of 1% and 3% for 21 continuous days and scopolamine (0.7mg/kg) was injected intraperitoneally 30min before the behavioral testing. Y-maze and radial arm-maze tests were used for assessing memory processes. Also, the anxiety and depressive responses were studied by elevated plus-maze and forced swimming tests. As expected, the scopolamine alone-treated rats exhibited the following: decrease the percentage of the spontaneous alternation in Y-maze test, increase the number of working and reference memory errors in radial arm-maze test, decrease of the exploratory activity, the percentage of the time spent and the number of entries in the open arm within elevated plus-maze test and decrease of swimming time and increase of immobility time within forced swimming test. However, dual scopolamine and Anthriscus nemorosa essential oil-treated rats showed significant improvement of memory formation and exhibited anxiolytic- and antidepressant-like effects in scopolamine-treated rats. These results suggest that Anthriscus nemorosa essential oil inhalation can prevent scopolamine-induced memory impairment, anxiety and depression. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Acute stress exposure preceding transient global brain ischemia exacerbates the decrease in cortical remodeling potential in the rat retrosplenial cortex.

    Science.gov (United States)

    Kutsuna, Nobuo; Yamashita, Akiko; Eriguchi, Takashi; Oshima, Hideki; Suma, Takeshi; Sakatani, Kaoru; Yamamoto, Takamitsu; Yoshino, Atsuo; Katayama, Yoichi

    2014-01-01

    Doublecortin (DCX)-immunoreactive (-ir) cells are candidates that play key roles in adult cortical remodeling. We have previously reported that DCX-ir cells decrease after stress exposure or global brain ischemia (GBI) in the cingulate cortex (Cg) of rats. Herein, we investigate whether the decrease in DCX-ir cells is exacerbated after GBI due to acute stress exposure preconditioning. Twenty rats were divided into 3 groups: acute stress exposure before GBI (Group P), non-stress exposure before GBI (Group G), and controls (Group C). Acute stress or GBI was induced by a forced swim paradigm or by transient bilateral common carotid artery occlusion, respectively. DCX-ir cells were investigated in the anterior cingulate cortex (ACC) and retrosplenial cortex (RS). The number of DCX-ir cells per unit area (mm(2)) decreased after GBI with or without stress preconditioning in the ACC and in the RS (ANOVA followed by a Tukey-type test, P<0.001). Moreover, compared to Group G, the number in Group P decreased significantly in RS (P<0.05), though not significantly in ACC. Many of the DCX-ir cells were co-localized with the GABAergic neuronal marker parvalbumin. The present study indicates that cortical remodeling potential of GABAergic neurons of Cg decreases after GBI, and moreover, the ratio of the decrease is exacerbated by acute stress preconditioning in the RS. Copyright © 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  9. Chronic sucrose intake decreases concentrations of n6 fatty acids, but not docosahexaenoic acid in the rat brain phospholipids.

    Science.gov (United States)

    Mašek, Tomislav; Starčević, Kristina

    2017-07-13

    We investigated the influence of high sucrose intake, administered in drinking water, on the lipid profile of the brain and on the expression of SREBP1c and Δ-desaturase genes. Adult male rats received 30% sucrose solution for 20 weeks (Sucrose group), or plain water (Control group). After the 20th week of sucrose treatment, the Sucrose group showed permanent hyperglycemia. Sucrose treatment also increased the amount of total lipids and fatty acids in the brain. The brain fatty acid profile of total lipids as well as phosphatidylethanolamine, phosphatidylcholine and cardiolipin of the Sucrose group was extensively changed. The most interesting change was a significant decrease in n6 fatty acids, including the important arachidonic acid, whereas the content of oleic and docosahexaenoic acid remained unchanged. RT-qPCR revealed an increase in Δ-5-desaturase and SREBP1c gene expression. In conclusion, high sucrose intake via drinking water extensively changes rat brain fatty acid profile by decreasing n6 fatty acids, including arachidonic acid. In contrast, the content of docosahexaenoic acid remains constant in the brain total lipids as well as in phospholipids. Changes in the brain fatty acid profile reflect changes in the lipid metabolism of the rat lipogenic tissues and concentrations in the circulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. IGF-1 decreases portal vein endotoxin via regulating intestinal tight junctions and plays a role in attenuating portal hypertension of cirrhotic rats.

    Science.gov (United States)

    Zhao, Tian-Yu; Su, Li-Ping; Ma, Chun-Ye; Zhai, Xiao-Han; Duan, Zhi-Jun; Zhu, Ying; Zhao, Gang; Li, Chun-Yan; Wang, Li-Xia; Yang, Dong

    2015-07-08

    Intestinal barrier dysfunction is not only the consequence of liver cirrhosis, but also an active participant in the development of liver cirrhosis. Previous studies showed that external administration of insulin-like growth factor 1 (IGF-1) improved intestinal barrier function in liver cirrhosis. However, the mechanism of IGF-1 on intestinal barrier in liver cirrhosis is not fully elucidated. The present study aims to investigate the mechanisms of IGF-1 improving intestinal barrier function via regulating tight junctions in intestines. We used carbon tetrachloride induced liver cirrhotic rats to investigate the effect of IGF-1 on intestinal claudin-1 and occludin expressions, serum alanine transaminase (ALT) and aspartate transaminase (AST) levels, severity of liver fibrosis, portal pressures, enterocytic apoptosis and lipopolysaccharides (LPS) levels in portal vein. The changes of IGF-1 in serum during the development of rat liver cirrhosis were also evaluated. Additionally, we assessed the effect of IGF-1 on claudin-1 and occludin expressions, changes of transepithelial electrical resistance (TEER) and apoptosis in Caco-2 cells to confirm in vivo findings. Serum IGF-1 levels were decreased in the development of rat liver cirrhosis, and external administration of IGF-1 restored serum IGF-1 levels. External administration of IGF-1 reduced serum ALT and AST levels, severity of liver fibrosis, LPS levels in portal vein, enterocytic apoptosis and portal pressure in cirrhotic rats. External administration of IGF-1 increased the expressions of claudin-1 and occludin in enterocytes, and attenuated tight junction dysfunction in intestines of cirrhotic rats. LPS decreased TEER in Caco-2 cell monolayer. LPS also decreased claudin-1 and occludin expressions and increased apoptosis in Caco-2 cells. Furthermore, IGF-1 attenuated the effect of LPS on TEER, claudin-1 expression, occludin expression and apoptosis in Caco-2 cells. Tight junction dysfunction develops during the

  11. Decreased intracellular [Ca2+ ] coincides with reduced expression of Dhprα1s, RyR1, and diaphragmatic dysfunction in a rat model of sepsis.

    Science.gov (United States)

    Wang, Meng-Meng; Hao, Li-Ying; Guo, Feng; Zhong, Bin; Zhong, Xiao-Mei; Yuan, Jing; Hao, Yi-Fei; Zhao, Shuang; Sun, Xue-Fei; Lei, Ming; Jiao, Guang-Yu

    2017-12-01

    Sepsis can cause decreased diaphragmatic contractility. Intracellular calcium as a second messenger is central to diaphragmatic contractility. However, changes in intracellular calcium concentration ([Ca 2+ ]) and the distribution and co-localization of relevant calcium channels [dihydropyridine receptors, (DHPRα1s) and ryanodine receptors (RyR1)] remain unclear during sepsis. In this study we investigated the effect of changed intracellular [Ca 2+ ] and expression and distribution of DHPRα1s and RyR1 on diaphragm function during sepsis. We measured diaphragm contractility and isolated diaphragm muscle cells in a rat model of sepsis. The distribution and co-localization of DHPRα1s and RyR1 were determined using immunohistochemistry and immunofluorescence, whereas intracellular [Ca 2+ ] was measured by confocal microscopy and fluorescence spectrophotometry. Septic rat diaphragm contractility, expression of DHPRα1s and RyR1, and intracellular [Ca 2+ ] were significantly decreased in the rat sepsis model compared with controls. Decreased intracellular [Ca 2+ ] coincides with diaphragmatic contractility and decreased expression of DHPRα1s and RyR1 in sepsis. Muscle Nerve 56: 1128-1136, 2017. © 2017 Wiley Periodicals, Inc.

  12. Mexamine used to decrease radiation damage to Wistar rat embryogenesis

    International Nuclear Information System (INIS)

    Palyga, G.F.; Zakoshchikov, K.F.

    1987-01-01

    In experiments with 330 Wistar rats experiencing their pregnancy and 1430 neonatal rats of the first generation a study was made on the toxicity and radioprotective efficiency of a single subcutaneous injection of 10 mg/kg mexamine on days 3, 11 and 19 pregnancy. The agent caused various abnormalities in pregnancy, delivery and postnatal development of the offspring of nonirradiated animals, and it was almost ineffective when used for the prevention of radiation damages during the anrnatal ontogenesis

  13. Gelam honey attenuates carrageenan-induced rat paw inflammation via NF-κB pathway.

    Directory of Open Access Journals (Sweden)

    Saba Zuhair Hussein

    Full Text Available The activation of nuclear factor kappa B (NF-κB plays a major role in the pathogenesis of a number of inflammatory diseases. In this study, we investigated the anti-inflammatory mechanism of Gelam honey in inflammation induced rats via NF-κB signalling pathway. Rats paw edema was induced by subplantar injection of 1% carrageenan into the right hind paw. Rats were pre-treated with Gelam honey at different doses (1 or 2 g/kg, p.o. and NSAID Indomethacin (10 mg/kg, p.o., in two time points (1 and 7 days. Our results showed that Gelam honey at both concentrations suppressed the gene expressions of NF-κB (p65 & p50 and IκBα in inflamed rats paw tissues. In addition, Gelam honey inhibited the nuclear translocation and activation of NF-κB and decreased the cytosolic degradation of IκBα dose dependently in inflamed rats paw tissues. The immunohistochemical expressions of pro-inflammatory mediators COX-2 and TNF-α were also decreased in inflamed rats paw tissues when treated with Gelam honey. The results of our findings suggest that Gelam honey exhibits its inhibitory effects by attenuating NF-κB translocation to the nucleus and inhibiting IκBα degradation, with subsequent decrease of inflammatory mediators COX-2 and TNF-α.

  14. Acupuncture Attenuates Anxiety-Like Behavior by Normalizing Amygdaloid Catecholamines during Ethanol Withdrawal in Rats

    Directory of Open Access Journals (Sweden)

    Zheng Lin Zhao

    2011-01-01

    Full Text Available Previously, we demonstrated acupuncture at acupoint HT7 (Shen-Men attenuated ethanol withdrawal syndrome by normalizing the dopamine release in nucleus accumbens shell. In the present study, we investigated the effect of acupuncture on anxiety-like behavior in rats and its relevant mechanism by studying neuro-endocrine parameters during ethanol withdrawal. Rats were treated with 3 g kg−1day−1 of ethanol (20%, w/v or saline by intraperitoneal injections for 28 days. The rats undergoing ethanol withdrawal exhibited anxiety-like behavior 72 h after the last dose of ethanol characterized by the decrease of time spent in the open arms of the elevated plus maze compared with the saline-treated rats (P < .05. Radioimmunoassay exhibited there were notably increased concentrations of plasma corticosterone in ethanol-withdrawn rats compared with saline-treated rats (P < .05. Additionally, high performance liquid chromatography analysis also showed the levels of norepinephrine and 3-methoxy-4-hydroxy-phenylglycol were markedly increased while the levels of dopamine and 3,4-dihydroxyphenylacetic acid were significantly decreased in the central nucleus of the amygdala of ethanol-withdrawn rats compared with saline-treated rats (P < .01. Acupuncture groups were treated with acupuncture at acupoint HT7 or PC6 (Nei-Guan. Acupuncture at HT7 but not PC6 greatly attenuated the anxiety-like behavior during ethanol withdrawal as evidenced by significant increases in the percentage of time spent in open arms (P < .05. In the meantime, acupuncture at HT7 also markedly inhibited the alterations of neuro-endocrine parameters induced by ethanol withdrawal (P < .05. These results suggest that acupuncture may attenuate anxiety-like behavior during ethanol withdrawal through regulation of neuro-endocrine system.

  15. Effects of tamoxifen on vaginal blood flow and epithelial morphology in the rat

    Directory of Open Access Journals (Sweden)

    Goldstein Irwin

    2006-09-01

    Full Text Available Abstract Background Tamoxifen, a selective estrogen receptor modulator with both estrogenic and anti-estrogenic activity, is widely used as adjuvant therapy in breast cancer patients. Treatment with tamoxifen is associated with sexual side effects, such as increased vaginal dryness and pain/discomfort during sexual activity. There have been limited investigations of the effect of tamoxifen on estrogen-dependent peripheral genital arousal responses. The objective of this study was to investigate the effects of tamoxifen on vaginal physiology in the rat. Methods Female Sprague-Dawley rats were subjected to sham surgery or bilateral ovariectomy. After 2 weeks, sham-operated rats were implanted with subcutaneous osmotic infusion pumps containing vehicle (control or tamoxifen (150 μg/day. Ovariectomized rats were similarly infused with vehicle. After an additional 2 weeks, vaginal blood flow responses to pelvic nerve stimulation were measured by laser Doppler flowmetry and vaginal tissue was collected for histological and biochemical assay. Results Tamoxifen treatment did not change plasma estradiol concentrations relative to control animals, while ovariectomized rats exhibited a 60% decrease in plasma estradiol. Tamoxifen treatment caused a significant decrease in mean uterine weight, but did not alter mean vaginal weight. Vaginal blood flow was significantly decreased in tamoxifen-infused rats compared to controls. Similar to ovariectomized animals, estrogen receptor binding was increased and arginase enzyme activity was decreased in tamoxifen-infused rats. However, different from control and ovariectomized animals, the vaginal epithelium in tamoxifen-infused rats appeared highly mucified. Periodic acid-Schiff staining confirmed a greater production of carbohydrate-rich compounds (e.g. mucin, glycogen by the vaginal epithelium of tamoxifen-infused rats. Conclusion The observations suggest that tamoxifen exerts both anti-estrogenic and pro

  16. The sensitivity of male rat reproductive organs to monosodium glutamate

    Directory of Open Access Journals (Sweden)

    Sitthichai Iamsaard

    2014-05-01

    Full Text Available Objective. This study aimed to investigate the sensitivity of the testis, epididymis, seminal vesicle, and sperm acrosome reaction (AR to monosodium L- glutamate (MSG in rats. Materials and methods. Rats were divided into four groups and fed with non-acidic MSG at 0.25, 3 or 6 g/kg body weight for 30 days or without MSG. The morphological changes in the reproductive organs were studied. The plasma testosterone level, epididymal sperm concentration, and sperm AR status were assayed. Results. Compared to the control, no significant changes were discerned in the morphology and weight of the testes, or the histological structures of epididymis, vas deferens and seminal vesicle. In contrast, significant decreases were detected in the weight of the epididymis, testosterone levels, and sperm concentration of rats treated with 6 g/kg body weight of MSG. The weight loss was evident in the seminal vesicle in MSG-administered rats. Moreover, rats treated with MSG 3 and 6 g/kg exhibited partial testicular damage, characterized by sloughing of spermatogenic cells into the seminiferous tubular lumen, and their plasma testosterone levels were significantly decreased. In the 6 g/kg MSG group, the sperm concentration was significantly decreased compared with the control or two lower dose MSG groups. In AR assays, there was no statistically significant difference between MSG-rats and normal rats. Conclusion. Testicular morphological changes, testosterone level, and sperm concentration were sensitive to high doses of MSG while the rate of AR was not affected. Therefore, the consumption of high dose MSG must be avoided because it may cause partial infertility in male.

  17. [Change of character of intersystemic interactions in newborn rat pups under conditions of a decrease of central influences (urethane anesthesia)].

    Science.gov (United States)

    Kuznetsov, S V; Sizonov, V A; Dmitrieva, L E

    2014-01-01

    On newborn rat pups, for the first day after birth, there was studied the character of mutual influences between the slow-wave rhythmical components of the cardiac, respiratory, and motor activities reflecting interactions between the main functional systems of the developing organism. The study was carried out in norm and after pharmacological depression of the spontaneous periodical motor activity (SPMA) performed by narcotization of rat pups with urethane at low (0.5 g/kg, i/p) and maximal (1 g/kg, i/p) doses. Based on the complex of our obtained data, it is possible to conclude that after birth in rat pups the intersystemic interactions are realized mainly by the slow-wave oscillations of the near- and manyminute diapason. The correlational interactions mediated by rhythms of the decasecond diapason do not play essential role in integrative processes. Injection to the animals of urethane producing selective suppression of reaction of consciousness, but not affecting activating influences of reticular formation on cerebral cortex does not cause marked changes of autonomous parameters, but modulates structure and expression of spontaneous periodical motor activity. There occurs an essential decrease of mutual influences between motor and cardiovascular systems. In the case of preservation of motor activity bursts, a tendency for enhancement of correlational relations between the modulating rhythms of motor and somatomotor systems is observed. The cardiorespiratory interactions, more pronounced in intact rat pups in the near- and many-minute modulation diapason, under conditions of urethane, somewhat decrease, whereas the rhythmical components of the decasecond diapason--are weakly enhanced.

  18. Decrease of glucose-induced insulin secretion of rat pancreatic islets after irradiation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Heinzmann, D; Nadrowitz, R; Besch, W; Schmidt, W; Hahn, H J [Zentralinstitut fuer Diabetes, Karlsburg (German Democratic Republic); Ernst-Moritz-Arndt-Universitaet, Greifswald (German Democratic Republic). Radiologische Klinik)

    1983-01-01

    In vitro irradiation of rat pancreatic islets up to a dose of 2.5 Gy did neither alter glucose- nor isobutylmethyl xanthine (IBMX)-induced insulin secretion. Insulin as well as glucagon content of irradiated islets corresponded to that of the control tissue. So it was in islets irradiated with 25 Gy which were characterized by a decreased insulin secretion in the presence of glucose and IBMX, respectively. There was no indication of an enhanced hormone output in the radiation medium and it is to be suggested that higher radiation doses affect the insulin release of pancreatic islets in vitro. This must be taken into consideration for radioimmunosuppression experiments.

  19. Neuroprotective effect of curcumin in arsenic-induced neurotoxicity in rats.

    Science.gov (United States)

    Yadav, Rajesh S; Shukla, Rajendra K; Sankhwar, Madhu Lata; Patel, Devendra K; Ansari, Reyaz W; Pant, Aditya B; Islam, Fakhrul; Khanna, Vinay K

    2010-09-01

    Our recent studies have shown that arsenic-induced neurobehavioral toxicity is protected by curcumin by modulating oxidative stress and dopaminergic functions in rats. In addition, the neuroprotective effect of curcumin has been investigated on arsenic-induced alterations in biogenic amines, their metabolites and nitric oxide (NO), which play an important role in neurotransmission process. Decrease in the levels of dopamine (DA, 28%), norepinephrine (NE, 54%), epinephrine (EPN, 46%), serotonin (5-HT, 44%), 3,4-dihydroxyphenylacetic acid (DOPAC, 20%) and homovanillic acid (HVA, 31%) in corpus striatum; DA (51%), NE (22%), EPN (47%), 5-HT (25%), DOPAC (34%) and HVA (41%) in frontal cortex and DA (35%), NE (35%), EPN (29%), 5-HT (54%), DOPAC (37%) and HVA (46%) in hippocampus, observed in arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) treated rats exhibited a trend of recovery in rats simultaneously treated with arsenic and curcumin (100 mg/kg body weight, p.o., 28 days). Increased levels of NO in corpus striatum (2.4-fold), frontal cortex (6.1-fold) and hippocampus (6.2-fold) in arsenic-treated rats were found decreased in rats simultaneously treated with arsenic and curcumin. It is evident that curcumin modulates levels of brain biogenic amines and NO in arsenic-exposed rats and these results further strengthen its neuroprotective efficacy. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Rats exposed to 2.45GHz of non-ionizing radiation exhibit behavioral changes with increased brain expression of apoptotic caspase 3.

    Science.gov (United States)

    Varghese, Rini; Majumdar, Anuradha; Kumar, Girish; Shukla, Amit

    2018-03-01

    In recent years there has been a tremendous increase in use of Wi-Fi devices along with mobile phones, globally. Wi-Fi devices make use of 2.4GHz frequency. The present study evaluated the impact of 2.45GHz radiation exposure for 4h/day for 45days on behavioral and oxidative stress parameters in female Sprague Dawley rats. Behavioral tests of anxiety, learning and memory were started from day 38. Oxidative stress parameters were estimated in brain homogenates after sacrificing the rats on day 45. In morris water maze, elevated plus maze and light dark box test, the 2.45GHz radiation exposed rats elicited memory decline and anxiety behavior. Exposure decreased activities of super oxide dismutase, catalase and reduced glutathione levels whereas increased levels of brain lipid peroxidation was encountered in the radiation exposed rats, showing compromised anti-oxidant defense. Expression of caspase 3 gene in brain samples were quantified which unraveled notable increase in the apoptotic marker caspase 3 in 2.45GHz radiation exposed group as compared to sham exposed group. No significant changes were observed in histopathological examinations and brain levels of TNF-α. Analysis of dendritic arborization of neurons showcased reduction in number of dendritic branching and intersections which corresponds to alteration in dendritic structure of neurons, affecting neuronal signaling. The study clearly indicates that exposure of rats to microwave radiation of 2.45GHz leads to detrimental changes in brain leading to lowering of learning and memory and expression of anxiety behavior in rats along with fall in brain antioxidant enzyme systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Metformin increases liver accumulation of vitamin B12 - An experimental study in rats

    DEFF Research Database (Denmark)

    Greibe, E; Miller, J W; Foutouhi, S H

    2013-01-01

    AIMS/HYPOTHESIS: Patients treated with metformin exhibit low levels of plasma vitamin B(12) (B(12)), and are considered at risk for developing B(12) deficiency. In this study, we investigated the effect of metformin treatment on B(12) uptake and distribution in rats. METHODS: Sprague Dawley rats (n...... that metformin has no decreasing effect on the B(12) absorption. CONCLUSIONS/INTERPRETATION: These results show that metformin treatment increases liver accumulation of B(12), thereby resulting in decreases in circulating B(12) and kidney accumulation of the vitamin. Our data questions whether the low plasma B......(12) observed in patients treated with metformin reflects impaired B(12) status, and rather suggests altered tissue distribution and metabolism of the vitamin....

  2. Centrally administered urocortin 2 decreases gorging on high-fat diet in in both diet induced obesity-prone and -resistant rats

    Science.gov (United States)

    Cottone, Pietro; Sabino, Valentina; Nagy, Tim R.; Coscina, Donald V.; Levin, Barry E.; Zorrilla, Eric P.

    2013-01-01

    Objective Obesity is a costly, deadly public health problem for which new treatments are needed. Individual differences in meal pattern have been proposed to play a role in obesity risk. The present study tested the hypothesis that i) the microstructure of chronic high-fat diet intake differs between genetically selected Diet-Induced Obesity (DIO) and Diet Resistant (DR) rats, and ii) central administration of urocortin 2 (Ucn 2), a corticotropin-releasing factor type 2 (CRF2) agonist, decreases high-fat diet intake not only in lean DR rats, but also in obese DIO rats. Design Male, selectively bred DIO and DR rats (n=10/genotype) were chronically fed a high-fat diet. Food and water intake as well as ingestion microstructure were then compared under baseline conditions and following third intracerebroventricular injection of Ucn 2 (0, 0.1, 0.3, 1, 3 µg). Results Irrespective of genotype, Ucn 2 reduced nocturnal food intake with a minimum effective dose of 0.3 µg, suppressing high-fat diet intake by ~40% at the 3 µg dose. Ucn 2 also made rats of both genotypes eat smaller and briefer meals, including at doses that did not reduce drinking. Obese DIO rats ate fewer but larger meals than DR rats, which they ate more quickly and consumed with 2/3rd less water. Conclusions Unlike leptin and insulin, Ucn 2 retains its full central anorectic efficacy to reduce high-fat diet intake even in obese, genetically-prone DIO rats, which otherwise show a “gorging” meal pattern. These results open new opportunities of investigation towards treating some forms of diet-induced obesity. PMID:23478425

  3. ß-N-Methylamino-L-alanine (BMAA Toxicity Is Gender and Exposure-Age Dependent in Rats

    Directory of Open Access Journals (Sweden)

    Laura Louise Scott

    2017-12-01

    Full Text Available Cyanobacterial β-N-methylamino-L-alanine (BMAA has been suggested as a causative or contributory factor in the development of several neurodegenerative diseases. However, no BMAA animal model has adequately shown clinical or behavioral symptoms that correspond to those seen in either Alzheimer’s Disease (AD, Amyotrophic Lateral Sclerosis (ALS or Parkinson’s Disease (PD. We present here the first data that show that when neonatal rats were exposed to BMAA on postnatal days 3, 4 and 5, but not on gestational day 14 or postnatally on days 7 or 10, several AD and/or PD-related behavioral, locomotor and cognitive deficits developed. Male rats exhibited severe unilateral hindlimb splay while whole body tremors could be observed in exposed female rats. BMAA-exposed rats failed to identify and discriminate a learned odor, an early non-motor symptom of PD, and exhibited decreased locomotor activity, decreased exploration and increased anxiety in the open field test. Alterations were also observed in the rats’ natural passive defense mechanism, and potential memory deficits and changes to the rat’s natural height avoidance behavior could be observed as early as PND 30. Spatial learning, short-term working, reference and long-term memory were also impaired in 90-day-old rats that had been exposed to a single dose of BMAA on PND 3–7. These data suggest that BMAA is a developmental neurotoxin, with specific target areas in the brain and spinal cord.

  4. Prenatal Dexamethasone and Postnatal High-Fat Diet Decrease Interferon Gamma Production through an Age-Dependent Histone Modification in Male Sprague-Dawley Rats

    Science.gov (United States)

    Yu, Hong-Ren; Tain, You-Lin; Sheen, Jiunn-Ming; Tiao, Mao-Meng; Chen, Chih-Cheng; Kuo, Ho-Chang; Hung, Pi-Lien; Hsieh, Kai-Sheng; Huang, Li-Tung

    2016-01-01

    Overexposure to prenatal glucocorticoid (GC) disturbs hypothalamic-pituitary-adrenocortical axis-associated neuroendocrine metabolism and susceptibility to metabolic syndrome. A high-fat (HF) diet is a major environmental factor that can cause metabolic syndrome. We aimed to investigate whether prenatal GC plus a postnatal HF diet could alter immune programming in rat offspring. Pregnant Sprague-Dawley rats were given intraperitoneal injections of dexamethasone or saline at 14–21 days of gestation. Male offspring were then divided into four groups: vehicle, prenatal dexamethasone exposure, postnatal HF diet (VHF), and prenatal dexamethasone exposure plus a postnatal HF diet (DHF). The rats were sacrificed and adaptive immune function was evaluated. Compared to the vehicle, the DHF group had lower interferon gamma (IFN-γ) production by splenocytes at postnatal day 120. Decreases in H3K9 acetylation and H3K36me3 levels at the IFN-γ promoter correlated with decreased IFN-γ production. The impaired IFN-γ production and aberrant site-specific histone modification at the IFN-γ promoter by prenatal dexamethasone treatment plus a postnatal HF diet resulted in resilience at postnatal day 180. Prenatal dexamethasone and a postnatal HF diet decreased IFN-γ production through a site-specific and an age-dependent histone modification. These findings suggest a mechanism by which prenatal exposure to GC and a postnatal environment exert effects on fetal immunity programming. PMID:27669212

  5. Prenatal Dexamethasone and Postnatal High-Fat Diet Decrease Interferon Gamma Production through an Age-Dependent Histone Modification in Male Sprague-Dawley Rats

    Directory of Open Access Journals (Sweden)

    Hong-Ren Yu

    2016-09-01

    Full Text Available Overexposure to prenatal glucocorticoid (GC disturbs hypothalamic-pituitary-adrenocortical axis-associated neuroendocrine metabolism and susceptibility to metabolic syndrome. A high-fat (HF diet is a major environmental factor that can cause metabolic syndrome. We aimed to investigate whether prenatal GC plus a postnatal HF diet could alter immune programming in rat offspring. Pregnant Sprague-Dawley rats were given intraperitoneal injections of dexamethasone or saline at 14–21 days of gestation. Male offspring were then divided into four groups: vehicle, prenatal dexamethasone exposure, postnatal HF diet (VHF, and prenatal dexamethasone exposure plus a postnatal HF diet (DHF. The rats were sacrificed and adaptive immune function was evaluated. Compared to the vehicle, the DHF group had lower interferon gamma (IFN-γ production by splenocytes at postnatal day 120. Decreases in H3K9 acetylation and H3K36me3 levels at the IFN-γ promoter correlated with decreased IFN-γ production. The impaired IFN-γ production and aberrant site-specific histone modification at the IFN-γ promoter by prenatal dexamethasone treatment plus a postnatal HF diet resulted in resilience at postnatal day 180. Prenatal dexamethasone and a postnatal HF diet decreased IFN-γ production through a site-specific and an age-dependent histone modification. These findings suggest a mechanism by which prenatal exposure to GC and a postnatal environment exert effects on fetal immunity programming.

  6. Exogenous and endogenous angiotensin-II decrease renal cortical oxygen tension in conscious rats by limiting renal blood flow.

    Science.gov (United States)

    Emans, Tonja W; Janssen, Ben J; Pinkham, Maximilian I; Ow, Connie P C; Evans, Roger G; Joles, Jaap A; Malpas, Simon C; Krediet, C T Paul; Koeners, Maarten P

    2016-11-01

    Our understanding of the mechanisms underlying the role of hypoxia in the initiation and progression of renal disease remains rudimentary. We have developed a method that allows wireless measurement of renal tissue oxygen tension in unrestrained rats. This method provides stable and continuous measurements of cortical tissue oxygen tension (PO2) for more than 2 weeks and can reproducibly detect acute changes in cortical oxygenation. Exogenous angiotensin-II reduced renal cortical tissue PO2 more than equi-pressor doses of phenylephrine, probably because it reduced renal oxygen delivery more than did phenylephrine. Activation of the endogenous renin-angiotensin system in transgenic Cyp1a1Ren2 rats reduced cortical tissue PO2; in this model renal hypoxia precedes the development of structural pathology and can be reversed acutely by an angiotensin-II receptor type 1 antagonist. Angiotensin-II promotes renal hypoxia, which may in turn contribute to its pathological effects during development of chronic kidney disease. We hypothesised that both exogenous and endogenous angiotensin-II (AngII) can decrease the partial pressure of oxygen (PO2) in the renal cortex of unrestrained rats, which might in turn contribute to the progression of chronic kidney disease. Rats were instrumented with telemeters equipped with a carbon paste electrode for continuous measurement of renal cortical tissue PO2. The method reproducibly detected acute changes in cortical oxygenation induced by systemic hyperoxia and hypoxia. In conscious rats, renal cortical PO2 was dose-dependently reduced by intravenous AngII. Reductions in PO2 were significantly greater than those induced by equi-pressor doses of phenylephrine. In anaesthetised rats, renal oxygen consumption was not affected, and filtration fraction was increased only in the AngII infused animals. Oxygen delivery decreased by 50% after infusion of AngII and renal blood flow (RBF) fell by 3.3 ml min -1 . Equi-pressor infusion of

  7. Antioxidant Properties and Cardioprotective Mechanism of Malaysian Propolis in Rats

    Science.gov (United States)

    Ahmed, Romana; Hossen, Md. Sakib; Ahmmed, Istiyak; Rumpa, Nur-E-Noushin; Sulaiman, Siti Amrah

    2017-01-01

    Propolis contains high concentrations of polyphenols, flavonoids, tannins, ascorbic acid, and reducing sugars and proteins. Malaysian Propolis (MP) has been reported to exhibit high 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and ferric reducing antioxidant power (FRAP) values. Herein, we report the antioxidant properties and cardioprotective properties of MP in isoproterenol- (ISO-) induced myocardial infarction in rats. Male Wistar rats (n = 32) were pretreated orally with an ethanol extract of MP (100 mg/kg/day) for 30 consecutive days. Subcutaneous injection of ISO (85 mg/kg in saline) for two consecutive days caused a significant increase in serum cardiac marker enzymes and cardiac troponin I levels and altered serum lipid profiles. In addition significantly increased lipid peroxides and decreased activities of cellular antioxidant defense enzymes were observed in the myocardium. However, pretreatment of ischemic rats with MP ameliorated the biochemical parameters, indicating the protective effect of MP against ISO-induced ischemia in rats. Histopathological findings obtained for the myocardium further confirmed the biochemical findings. It is concluded that MP exhibits cardioprotective activity against ISO-induced oxidative stress through its direct cytotoxic radical-scavenging activities. It is also plausible that MP contributed to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation. PMID:28261310

  8. Antioxidant Properties and Cardioprotective Mechanism of Malaysian Propolis in Rats

    Directory of Open Access Journals (Sweden)

    Romana Ahmed

    2017-01-01

    Full Text Available Propolis contains high concentrations of polyphenols, flavonoids, tannins, ascorbic acid, and reducing sugars and proteins. Malaysian Propolis (MP has been reported to exhibit high 1,1-diphenyl-2-picrylhydrazyl (DPPH radical-scavenging activity and ferric reducing antioxidant power (FRAP values. Herein, we report the antioxidant properties and cardioprotective properties of MP in isoproterenol- (ISO- induced myocardial infarction in rats. Male Wistar rats (n=32 were pretreated orally with an ethanol extract of MP (100 mg/kg/day for 30 consecutive days. Subcutaneous injection of ISO (85 mg/kg in saline for two consecutive days caused a significant increase in serum cardiac marker enzymes and cardiac troponin I levels and altered serum lipid profiles. In addition significantly increased lipid peroxides and decreased activities of cellular antioxidant defense enzymes were observed in the myocardium. However, pretreatment of ischemic rats with MP ameliorated the biochemical parameters, indicating the protective effect of MP against ISO-induced ischemia in rats. Histopathological findings obtained for the myocardium further confirmed the biochemical findings. It is concluded that MP exhibits cardioprotective activity against ISO-induced oxidative stress through its direct cytotoxic radical-scavenging activities. It is also plausible that MP contributed to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation.

  9. Renal sodium retention in cirrhotic rats depends on glucocorticoid-mediated activation of mineralocorticoid receptor due to decreased renal 11beta-HSD-2 activity

    DEFF Research Database (Denmark)

    Thiesson, Helle; Jensen, Boye L; Bistrup, Claus

    2007-01-01

    Downregulation of the renal glucocorticoid-metabolizing enzyme 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD-2) during liver cirrhosis may allow activation of the mineralocorticoid receptor (MR) by glucocorticoids and contribute to sodium retention. We tested this hypothesis in male Wistar...... rats with decompensated liver cirrhosis and ascites 7 wk after bile duct ligation (BDL). Renal 11beta-HSD-2 mRNA, protein, and activity were significantly decreased in decompensated rats. The urinary Na(+)/K(+) ratio was reduced by 40%. Renal epithelial sodium channel (ENaC) mRNA and immunostaining...... were only slightly affected. Complete metabolic studies, including fecal excretion, showed that the BDL rats had avid renal sodium retention. Treatment of the BDL rats with dexamethasone suppressed endogenous glucocorticoid production, normalized total sodium balance and renal sodium excretion...

  10. XANTHINE OXYDASE INHIBITION OF KOMBUCHA TEA IN HYPERURICEMIA INDUCED WISTAR RAT: decrease of uric acid, malondialdehyde, and 8-hydroxy-2'-deoxyguanosine

    Directory of Open Access Journals (Sweden)

    I D. M. Sukrama

    2015-04-01

    Full Text Available Background: Hyperuricemia is a condition of high level of uric acid in the body due to distortion of purine nucleoside metabolism through hipoxanthin, xanthin, and guanin of basic purine. Objective: to find a cure of hyperuricemia base on the utilization of kombucha tea. Methods: This is a true experimental study by applying posttest only control group design to determine whether kombucha tea inhibit xanthine oxidase in hyperuricemic induced rat reveales by decrease of uric acid, malondialdehyde (MDA, and 8-hydroxy-2’-deoxyguanosine (8-OHdG. In this study, hyperuricemia rat was achieved by intake of high purine diet. Rats were fed with a mixture of 4 g/kg BW of Gnetum gnemon with 50 mL/kg BW of chicken liver ad libitum for 9 days. Treatments in this research are combination of fermentation time of Kombucha tea and volume of this tea, i.e fermentation time 4, 8, and 12 days and the volume are 1 mL and 4 mL. Therefore, there would be seven groups of treatment including control group. ANOVA was then applied to determine the treatment effect with p < 0.05 was concidered significant. Results: This study indicates that kombucha tea has an ability to inhibit xanthine oxidase in hyperuricemic induced rat and decrease uric acid, MDA, and 8-OHdG. This ability was achieved with combination treatment of 12 days fermentation and 4 mL of kombucha intake. Xanthine oxidase, uric acid, MDA, and 8-OHdG levels by this treatment were obtained significantly lower compare to control group. Conclusion: This study proved that kombucha tea was potent to cure hyperuricemia of wistar rat via inhibition of xanthine oxidase produced.

  11. Curcumin loaded solid lipid nanoparticles ameliorate adjuvant-induced arthritis in rats.

    Science.gov (United States)

    Arora, R; Kuhad, A; Kaur, I P; Chopra, K

    2015-08-01

    Rheumatoid arthritis (RA), a chronic and systemic inflammation, results in destruction of joints and cartilages. Effectiveness of curcumin has been established in a wide variety of inflammatory disorders, but its utility as a therapeutic agent is limited by its poor absorption, rapid metabolism and fast systemic elimination. To apprehend these limitations, we propose to use highly bioavailable curcumin loaded solid lipid nanoparticles (C-SLNs) for the treatment of RA. In the present study, the protective effect of curcumin and its SLNs was evaluated in complete Freund's adjuvant (CFA)-induced arthritis in rats. Arthritic rats exhibited marked decrease in paw withdrawal threshold in Randall-Selitto and von Frey hair test along with decreased reaction time in hot plate. Arthritic rats also showed significant joint hyperalgesia, joint stiffness and increased paw volume along with marked decrease in mobility score. Arthritic rats showed a significant increase in blood leukocyte count, oxidative-nitrosative stress, tumour necrosis factor-α, C-reactive protein, cyclic citrullinated peptide antibody levels and radiological alterations in tibiotarsal joint. C-SLN administration (10 and 30 mg/kg), when compared with free curcumin (10 and 30 mg/kg), significantly and dose dependently ameliorated various symptoms of arthritis in rats, improved biochemical markers and preserved radiological alterations in joints of arthritic rats. The current findings suggest the protective potential of curcumin-SLNs in ameliorating CFA-induced arthritis in rats through attenuation of oxido-inflammatory and immunomodulatory cascade. Further, the results emphasize that SLNs are a novel approach to deliver curcumin into the inflamed joints and improve its biopharmaceutical performance. © 2014 European Pain Federation - EFIC®

  12. Inhibition of Glutathione Synthesis Induced by Exhaustive Running Exercise via the Decreased Influx Rate of L-Cysteine in Rat Erythrocytes.

    Science.gov (United States)

    Xiong, Yanlian; Xiong, Yanlei; Zhou, Shuai; Yu, Zhenhai; Zhao, Dongmei; Wang, Zhiqiang; Li, Yuling; Yan, Jingtong; Cai, Yu; Zhang, Wenqian

    2016-01-01

    The main purpose of this study was to investigate the effect of exhaustive exercise on L-cysteine uptake and its effect on erythrocyte glutathione (GSH) synthesis and metabolism. Rats were divided into three groups: sedentary control (C), exhaustive running exercise (ERE) and moderate running exercise (MRE) (n=12 rats/group). We determined the L-cysteine efflux and influx in vitro in rat erythrocytes and its relationship with GSH synthesis. Total anti-oxidant potential of plasma was measured in terms of the ferric reducing ability of plasma (FRAP) values for each exercise group. In addition, the glucose metabolism enzyme activity of erythrocytes was also measured under in vitro incubation conditions. Biochemical studies confirmed that exhaustive running exercise significantly increased oxidative damage parameters in thiobarbituric acid reactive substances (TBARS) and methemoglobin levels. Pearson correlation analysis suggested that L-cysteine influx was positively correlated with erythrocyte GSH synthesis and FRAP values in both the control and exercise groups. In vitro oxidation incubation significantly decreased the level of glucose metabolism enzyme activity in the control group. We presented evidence of the exhaustive exercise-induced inhibition of GSH synthesis due to a dysfunction in L-cysteine transport. In addition, oxidative stress-induced changes in glucose metabolism were the driving force underlying decreased L-cysteine uptake in the exhaustive exercise group. © 2016 The Author(s) Published by S. Karger AG, Basel.

  13. Tualang Honey Attenuates Noise Stress-Induced Memory Deficits in Aged Rats.

    Science.gov (United States)

    Azman, Khairunnuur Fairuz; Zakaria, Rahimah; Abdul Aziz, Che Badariah; Othman, Zahiruddin

    2016-01-01

    Ageing and stress exposure may lead to memory impairment while oxidative stress is thought to be one of the underlying mechanisms involved. This study aimed to investigate the potential protective effects of Tualang honey supplementation on memory performance in aged rats exposed to noise stress. Tualang honey supplementation was given orally, 200 mg/kg body weight for 28 days. Rats in the stress group were subjected to loud noise, 100 dB(A), 4 hours daily for 14 days. All rats were subjected to novel object recognition test for evaluation of memory performance. It was observed that the rats subjected to noise stress exhibited significantly lower memory performance and higher oxidative stress as evident by elevated malondialdehyde and protein carbonyl levels and reduction of antioxidant enzymes activities compared to the nonstressed rats. Tualang honey supplementation was able to improve memory performance, decrease oxidative stress levels, increase brain-derived neurotrophic factor (BDNF) concentration, decrease acetylcholinesterase activity, and enhance neuronal proliferation in the medial prefrontal cortex (mPFC) and hippocampus. In conclusion, Tualang honey protects against memory decline due to stress exposure and/or ageing via enhancement of mPFC and hippocampal morphology possibly secondary to reduction in brain oxidative stress and/or upregulation of BDNF concentration and cholinergic system.

  14. Decrease of glucose-induced insulin secretion of pancreatic rat islets after irradiation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Heinzmann, D; Nadrowitz, R; Besch, W; Schmidt, W; Hahn, H J

    1983-01-01

    Irradiation of pancreatic rat islets up to a dose of 2.5 Gy did neither alter glucose-nor IBMX-induced insulin secretion studied in vitro. The insulin as well as glucagon content of irradiated islets were similar as in the control tissue. This was also true in islets irradiated with 25 Gy which were characterized by a decreased insulin secretion in the presence of glucose and IBMX, respectively. Since we did not find indications of an enhanced hormone output in the radiation medium, we want to suggest that higher irradiation doses affect insulin release of pancreatic islets in vitro. This observation has to be taken into account for application of radioimmunosuppression for transplantation.

  15. Decreased ipsilateral [123I]iododexetimide binding to cortical muscarinic receptors in unilaterally 6-hydroxydopamine lesioned rats

    International Nuclear Information System (INIS)

    Knol, Remco J.J.; Bruin, Kora de; Opmeer, Brent; Voorn, Pieter; Jonker, Allert J.; Eck-Smit, Berthe L.F. van; Booij, Jan

    2014-01-01

    Introduction: Dysfunction of the cholinergic neurotransmitter system is present in Parkinson’s disease, Parkinson’s disease related dementia and dementia with Lewy bodies, and is thought to contribute to cognitive deficits in these patients. In vivo imaging of the cholinergic system in these diseases may be of value to monitor central cholinergic disturbances and to select cases in which treatment with cholinesterase inhibitors could be beneficial. The muscarinic receptor tracer [ 123 I]iododexetimide, predominantly reflecting M 1 receptor binding, may be an appropriate tool for imaging of the cholinergic system by means of SPECT. In this study, we used [ 123 I]iododexetimide to study the effects of a 6-hydroxydopamine lesion (an animal model of Parkinson’s disease) on the muscarinic receptor availability in the rat brain. Methods: Rats (n = 5) were injected in vivo at 10–13 days after a confirmed unilateral 6-hydroxydopamine lesion. Muscarinic receptor availability was measured bilaterally in multiple brain areas on storage phosphor images by region of interest analysis. Results: Autoradiography revealed a consistent and statistically significant lower [ 123 I]iododexetimide binding in all examined neocortical areas on the ipsilateral side of the lesion as compared to the contralateral side. In hippocampal and subcortical areas, such asymmetry was not detected. Conclusions: This study suggests that evaluation of muscarinic receptor availability in dopamine depleted brains using [ 123 I]iododexetimide is feasible. We conclude that 6-hydroxydopamine lesions induce a decrease of neocortical muscarinic receptor availability. We hypothesize that this arises from down regulation of muscarinic postsynaptic M 1 receptors due to hyperactivation of the cortical cholinergic system in response to dopamine depletion. Advances in knowledge: In rats, dopamine depletion provokes a decrease in neocortical muscarinic receptor availability, which is evaluable by [ 123 I

  16. Abnormal bone collagen morphology and decreased bone strength in growth hormone-deficient rats

    DEFF Research Database (Denmark)

    Lange, Martin; Qvortrup, Klaus; Svendsen, Ole Lander

    2004-01-01

    collagen morphology and bone mineralisation in cortical bone as well as bone strength in GHD rats to try to clarify the explanation for the increased fracture rate. The Dw-4 rat was used as a model for GHD. This strain of rats has an autosomal recessive disorder, reducing GH synthesis to approximately 10...

  17. Major depressive disorder mediates accelerated aging in rats subjected to chronic mild stress.

    Science.gov (United States)

    Xie, Xiaoxian; Chen, Yangyang; Ma, Lingyan; Shen, Qichen; Huang, Liangfeng; Zhao, Binggong; Wu, Tao; Fu, Zhengwei

    2017-06-30

    Major depressive disorder (MDD) has a complex etiology and is characterized by a change in mood and psychophysiological state. MDD has been shown to mediate accelerated biological aging in patients, although the underlying mechanism is not well understood. In the present study, we used a chronic mild stress (CMS) paradigm to induce anhedonia, one of the main symptoms of MDD. CMS induced depression-like symptoms in rats, including reduced sucrose preference and increased immobility time in the forced swim test. Moreover, stressed rats travelled a shorter total distance, had fewer grid line crossings, and spent less time in the outer zone in the open field test than controls. CMS altered the levels of 5-hydroxytryptophan, dopamine, and corticosterone in the serum and hippocampus (P<0.05); these rats also exhibited impaired liver function, decreased telomerase activity, and telomere shortening, which was associated with increased oxidative damage along with decreased superoxide dismutase and glutathione reductase activities. Mitochondria in CMS-treated rats showed ultrastructural damage as well as reduced DNA content and integrity. These findings provide physiological and cellular evidence that the MDD can mediate accelerated aging in rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Reduced expression of Nogo-A leads to motivational deficits in rats

    Directory of Open Access Journals (Sweden)

    Thomas eEnkel

    2014-01-01

    Full Text Available Nogo-A is an important neurite growth-regulatory protein in the adult and developing nervous system. Mice lacking Nogo-A, or rats with neuronal Nogo-A deficiency, exhibit behavioral abnormalities such as impaired short-term memory, decreased prepulse inhibition and behavioral inflexibility. In the current study we extended the behavioral profile of the Nogo-A deficient rat line with respect to reward sensitivity and motivation and determined the concentrations of the monoamines dopamine and serotonin in the prefrontal cortex, dorsal striatum and nucleus accumbens. Using a limited access consumption task, we found similar intake of a sweet condensed milk solution following ad libitum or restricted feeding in wild-type and Nogo-A deficient rats, indicating normal reward sensitivity and translation of hunger into feeding behavior. When tested for motivation in a spontaneous progressive ratio task, Nogo-A rats exhibited lower break points and tended to have lower ‘highest completed ratios’. Further, under extinction conditions responding ceased substantially earlier in these rats. Finally, in the prefrontal cortex we found increased tissue levels of serotonin, while dopamine was unaltered. Dopamine and serotonin levels were also unaltered in the dorsal striatum and the nucleus accumbens. In summary, these results suggest a role for Nogo-A regulated processes in motivated behavior and related neurochemistry. The behavioral pattern observed resembles aspects of the negative symptomatology of schizophrenia.

  19. Biochemical and neurochemical effects in rats following Iow-level chronic moniliformin mycotoxin treatment

    International Nuclear Information System (INIS)

    Adam, Y.M.; Abdel-Kader, S.M.

    2000-01-01

    An investigation was conducted to study the biochemical and neurochemical effects of moniliformin mycotoxins in rats. Moniliformin was extracted from fusarium oxysporum and injected intraperitoneally to male albino rats at a dose level 225 magaa g/kg (1/220 LD 5 0) daily for three weeks. The results. The results revealed a decrease in body weight of treated animals, in addition to alteration in the weights of some selected organs. A significant increase of serum ALT, AST and ALP were observed, indicating changes in liver function. Kidney function of treated rats as determined by alteration creatinine and blood urea also was affected. On the other hand the data obtained revealed a dramatic decrease in brain acetylcholinesterase activity. In addition, moniliformin exhibited alteration in the total content of catecholamines, dopamine (DA), norepinephrine (NE), serotonine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), free inorganic phosphate (Pi) and gamma-aminobutyric acid (GABA) in rat brain of treated animals. Also, profound decline in serum testosterone level was observed. No pathological changes were detected. Hormonal assays were performed using radioimmunoassay techniques

  20. Antidepressant-Like Effects of Lindera obtusiloba Extracts on the Immobility Behavior of Rats in the Forced Swim Test

    Directory of Open Access Journals (Sweden)

    Dong Wook Lim

    2016-02-01

    Full Text Available Lindera obtusiloba extracts are commonly used as an alternative medicine due to its numerous health benefits in Korea. However, the antidepressant-like effects of L. obtusiloba extracts have not been fully elucidated. In this study, we aimed to determine whether L. obtusiloba extracts exhibited antidepressant-like activity in rats subjected to forced swim test (FST-induced depression. Acute treatment of rats with L. obtusiloba extracts (200 mg/kg, p.o. significantly reduced immobility time and increased swimming time without any significant change in climbing. Rats treated with L. obtusiloba extracts also exhibited a decrease in the limbic hypothalamic-pituitary-adrenal (HPA axis response to the FST, as indicated by attenuation of the corticosterone response and decreased c-Fos immunoreactivity in the hippocampus CA3 region. In addition, L. obtusiloba extracts, at concentrations that were not affected by cell viability, significantly decreased luciferase activity in response to cortisol in a concentration-dependent manner by the glucocorticoid binding assay in HeLa cells. Our findings suggested that the antidepressant-like effects of L. obtusiloba extracts were likely mediated via the glucocorticoid receptor (GR. Further studies are needed to evaluate the potential of L. obtusiloba extracts as an alternative therapeutic approach for the treatment of depression.

  1. Ascorbic acid deficiency decreases hepatic cytochrome P-450, especially CYP2B1/2B2, and simultaneously induces heme oxygenase-1 gene expression in scurvy-prone ODS rats.

    Science.gov (United States)

    Kobayashi, Misato; Hoshinaga, Yukiko; Miura, Natsuko; Tokuda, Yuki; Shigeoka, Shigeru; Murai, Atsushi; Horio, Fumihiko

    2014-01-01

    The mechanisms underlying the decrease in hepatic cytochrome P-450 (CYP) content in ascorbic acid deficiency was investigated in scurvy-prone ODS rats. First, male ODS rats were fed a diet containing sufficient ascorbic acid (control) or a diet without ascorbic acid (deficient) for 18 days, with or without the intraperitoneal injection of phenobarbital. Ascorbic acid deficiency decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial cytochrome oxidase (COX) complex IV subunit I protein, and simultaneously increased heme oxygenase-1 protein in microsomes and mitochondria. Next, heme oxygenase-1 inducers, that is lipopolysaccharide and hemin, were administered to phenobaribital-treated ODS rats fed sufficient ascorbic acid. The administration of these inducers decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial COX complex IV subunit I protein. These results suggested that the stimulation of hepatic heme oxygenase-1 expression by ascorbic acid deficiency caused the decrease in CYP content in liver.

  2. Blockade of NMDA receptors decreased spinal microglia activation in bee venom induced acute inflammatory pain in rats.

    Science.gov (United States)

    Li, Li; Wu, Yongfang; Bai, Zhifeng; Hu, Yuyan; Li, Wenbin

    2017-03-01

    Microglial cells in spinal dorsal horn can be activated by nociceptive stimuli and the activated microglial cells release various cytokines enhancing the nociceptive transmission. However, the mechanisms underlying the activation of spinal microglia during nociceptive stimuli have not been well understood. In order to define the role of NMDA receptors in the activation of spinal microglia during nociceptive stimuli, the present study was undertaken to investigate the effect of blockade of NMDA receptors on the spinal microglial activation induced by acute peripheral inflammatory pain in rats. The acute inflammatory pain was induced by subcutaneous bee venom injection to the plantar surface of hind paw of rats. Spontaneous pain behavior, thermal withdrawal latency and mechanical withdrawal threshold were rated. The expression of specific microglia marker CD11b/c was assayed by immunohistochemistry and western blot. After bee venom treatment, it was found that rats produced a monophasic nociception characterized by constantly lifting and licking the injected hind paws, decreased thermal withdrawal latency and mechanical withdrawal threshold; immunohistochemistry displayed microglia with enlarged cell bodies, thickened, extended cellular processes with few ramifications, small spines, and intensive immunostaining; western blot showed upregulated expression level of CD11b/c within the period of hyperalgesia. Prior intrathecal injection of MK-801, a selective antagonist of NMDA receptors, attenuated the pain behaviors and suppressed up-regulation of CD11b/c induced by bee venom. It can be concluded that NMDA receptors take part in the mediation of spinal microglia activation in bee venom induced peripheral inflammatory pain and hyperalgesia in rats.

  3. Anxiogenic effects of chronic exposure to nandrolone decanoate (ND) at supraphysiological dose in rats: a brief report.

    Science.gov (United States)

    Rosic, Gvozden; Joksimovic, Jovana; Selakovic, Dragica; Milovanovic, Dragan; Jakovljevic, Vladimir

    2014-01-01

    Nandrolone decanoate (ND) is frequently used anabolic androgenic steroid (AAS) among the athletes. Despite the health risks, there is significant increase in prevalence of AAS abuse. The aim of this study was to investigate the effects of chronic exposure to ND at supraphysiological dose (to mimic the doses for human AAS abusers) on anxiety levels in adult rats. We performed several behavioral tests (open field test, elevated plus maze test, beam-walking test, evoked beam-walking test and tail suspension test) for estimation of anxiety in rats. Adult rats received 20 mg/kg intraperitoneal injection of ND weekly for four weeks. Behavioral test were performed on the seventh day after the last dose of ND. Anxiogenic-like pattern of behavior was clearly observed in several behavioral tests, such as open field test (decrease of total distance moved and cumulative duration of moving, decrease of an average velocity of the animals, decrease of frequency and total time in centre zone); elevated plus maze (decreased total time spent in open arms and the number of entries in open arms of the elevated plus maze); evoked beam-walking test (decreased time to cross the beam) and tail suspension test (increased latency to first immobility and decreased total duration of immobility). Results of this study show that four-week treatment with the supraphysiological dose of ND produced anxiogenic effects in sedentary male rats. Our results show that rats after chronic treatment with a supraphysiological dose of ND exhibited anxiety-like behavior.

  4. Characterization of Diabetic Neuropathy in the Zucker Diabetic Sprague-Dawley Rat: A New Animal Model for Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Eric P. Davidson

    2014-01-01

    Full Text Available Recently a new rat model for type 2 diabetes the Zucker diabetic Sprague-Dawley (ZDSD/Pco was created. In this study we sought to characterize the development of diabetic neuropathy in ZDSD rats using age-matched Sprague-Dawley rats as a control. Rats were examined at 34 weeks of age 12 weeks after the onset of hyperglycemia in ZDSD rats. At this time ZDSD rats were severely insulin resistant with slowing of both motor and sensory nerve conduction velocities. ZDSD rats also had fatty livers, elevated serum free fatty acids, triglycerides, and cholesterol, and elevated sciatic nerve nitrotyrosine levels. The corneas of ZDSD rats exhibited a decrease in subbasal epithelial corneal nerves and sensitivity. ZDSD rats were hypoalgesic but intraepidermal nerve fibers in the skin of the hindpaw were normal compared to Sprague-Dawley rats. However, the number of Langerhans cells was decreased. Vascular reactivity of epineurial arterioles, blood vessels that provide circulation to the sciatic nerve, to acetylcholine and calcitonin gene-related peptide was impaired in ZDSD rats. These data indicate that ZDSD rats develop many of the neural complications associated with type 2 diabetes and are a good animal model for preclinical investigations of drug development for diabetic neuropathy.

  5. Decreased gastric emptying and gastrointestinal and intestinal transits of liquid after complete spinal cord transection in awake rats

    Directory of Open Access Journals (Sweden)

    Gondim F. de-A.A.

    1998-01-01

    Full Text Available We studied the effect of complete spinal cord transection (SCT on gastric emptying (GE and on gastrointestinal (GI and intestinal transits of liquid in awake rats using the phenol red method. Male Wistar rats (N = 65 weighing 180-200 g were fasted for 24 h and complete SCT was performed between C7 and T1 vertebrae after a careful midline dorsal incision. GE and GI and intestinal transits were measured 15 min, 6 h or 24 h after recovery from anesthesia. A test meal (0.5 mg/ml phenol red in 5% glucose solution was administered intragastrically (1.5 ml and the animals were sacrificed by an iv thiopental overdose 10 min later to evaluate GE and GI transit. For intestinal transit measurements, 1 ml of the test meal was administered into the proximal duodenum through a cannula inserted into a gastric fistula. GE was inhibited (P<0.05 by 34.3, 23.4 and 22.7%, respectively, at 15 min, 6 h and 24 h after SCT. GI transit was inhibited (P<0.05 by 42.5, 19.8 and 18.4%, respectively, at 15 min, 6 h and 24 h after SCT. Intestinal transit was also inhibited (P<0.05 by 48.8, 47.2 and 40.1%, respectively, at 15 min, 6 h and 24 h after SCT. Mean arterial pressure was significantly decreased (P<0.05 by 48.5, 46.8 and 41.5%, respectively, at 15 min, 6 h and 24 h after SCT. In summary, our report describes a decreased GE and GI and intestinal transits in awake rats within the first 24 h after high SCT.

  6. Protective effects of piperine on lead acetate induced-nephrotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Sri Agus Sudjarwo

    2017-11-01

    Full Text Available Objective(s: In this study, we investigated the protective effects of piperine on lead acetate-induced renal damage in rat kidney tissue. Materials and Methods: Forty male rats were divided into 5 groups: negative control (rats were given aquadest daily, positive control (rats were given lead acetate 30 mg/kg BW orally once a day for 60 days, and the treatment group (rats were given piperine 50 mg; 100 mg and 200 mg/kg BW orally once a day for 65 days, and on 5th day, were given lead acetate 30 mg/kg BW one hr after piperine administration for 60 days. On day 65 levels of blood urea nitrogen (BUN, creatinine, malondialdehyde (MDA, Superoxide Dismutase (SOD, and Glutathione Peroxidase (GPx were measured. Also, kidney samples were collected for histopathological studies. Results: The results revealed that lead acetate toxicity induced a significant increase in the levels of BUN, creatinine, and MDA; moreover, a significant decrease in SOD and GPx. Lead acetate also altered kidney histopathology (kidney damage, necrosis of tubules compared to the negative control. However, administration of piperine significantly improved the kidney histopathology, decreased the levels of BUN, creatinine, and MDA, and also significantly increased the SOD and GPx in the kidney of lead acetate-treated rats. Conclusion: From the results of this study it was concluded that piperine could be a potent natural herbal product exhibiting nephroprotective effect against lead acetate induced nephrotoxicity in rats.

  7. Effect of endotoxin preparations (LPS) with irradiation decreased toxicity on the immune response of normal and irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Elekes, E; Bertok, L [Orszagos Frederic Joliot-Curie Sugarbiologiai es Sugaregeszsegugyi Kutato Intezet, Budapest (Hungary)

    1979-03-01

    A comparison of the immunostimulating effect of parent and radiodetoxified with 50, 100, 150 and 200 kGy (5, 10, 15 and 20 Mrad) /sup 60/Co ..gamma..-rays endotoxin preparations in normal and irradiated rats is given. By increasing the dose of irradiation the immunostimulating effect decreased. The preparations detoxified even with the highest (200 kGy) dose is characterized by a pronounced adjuvant effect in irradiated animals.

  8. High fat feeding results in a decrease in insulin responsiveness of isolated solei

    International Nuclear Information System (INIS)

    Grundleger, M.L.; Preves, D.M.

    1986-01-01

    The relationship between diet and insulin responsiveness was examined in isolated solei from 6 week old female Sprague-Dawley rats. Weanling rats were fed either a high fat (HF) (67%kcal) or a high carbohydrate diet (HC) (67% kcal) for 21 days. A significant decrease in plasma insulin (I) but not glucose was observed in the HF fed rats. Insulin stimulated (IS) glucose (G) metabolism was examined using a maximal concentration of I (20 mU/m1). G uptake was estimated using 14 C-2 deoxyglucose (2DG). Basal and IS 2DG uptake decreased in HF rats. However, I sensitivity but not responsiveness remained intact in the HF rats. Total G utilization (GU) was estimated by the sum of the rate of formation of: 3 H 2 O from 5- 3 H-glucose [glycolysis- (GL)] and 3 H-glycogen (GLY). IS GU decreased in HF versus HC fed rats. I failed to stimulate GL while GLY remained sensitive. Glucose oxidation (GO) was measured by 14 CO 2 . I failed to stimulated GO. Intracellular metabolite concentrations (IC) were measured in solei from HF and HC fed rats. IS IC-G6P decreased in HF compared to HC fed rats. Basal IC-F6P but not IC-F 1.6 BP increased in HF compared to HC fed rats. I failed to stimulate an increase in IC-F 1,6BP concentrations. Glycolytic activators were determined. HF produced a significant decrease in F2, 6BP concentration when compared to HC rats. Prostaglandins (PG) have been implicated in mediating insulin action. HF produced a significant decrease in basal and insulin stimulated PGE 2 . These data demonstrate that postreceptor - postmembrane alterations are in part responsible for the decreased insulin responsiveness observed after HF feeding

  9. SIRT3 Expression Decreases with Reactive Oxygen Species Generation in Rat Cortical Neurons during Early Brain Injury Induced by Experimental Subarachnoid Hemorrhage

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2016-01-01

    Full Text Available Sirtuin3 (SIRT3 is an important protein deacetylase which predominantly presents in mitochondria and exhibits broad bioactivities including regulating energy metabolism and counteracting inflammatory effect. Since inflammatory cascade was proved to be critical for pathological damage following subarachnoid hemorrhage (SAH, we investigated the overall expression and cell-specific distribution of SIRT3 in the cerebral cortex of Sprague-Dawley rats with experimental SAH induced by internal carotid perforation. Results suggested that SIRT3 was expressed abundantly in neurons and endothelia but rarely in gliocytes in normal cerebral cortex. After experimental SAH, mRNA and protein expressions of SIRT3 decreased significantly as early as 8 hours and dropped to the minimum value at 24 h after SAH. By contrast, SOD2 expression increased slowly as early as 12 hours after experimental SAH, rose up sharply at the following 12 hours, and then was maintained at a higher level. In conclusion, attenuated SIRT3 expression in cortical neurons was associated closely with enhanced reactive oxygen species generation and cellular apoptosis, implying that SIRT3 might play an important neuroprotective role during early brain injury following SAH.

  10. Co-ordinate decrease in the expression of the mitochondrial genome and nuclear genes for mitochondrial proteins in the lactation-induced mitochondrial hypotrophy of rat brown fat.

    Science.gov (United States)

    Martin, I; Giralt, M; Viñas, O; Iglesias, R; Mampel, T; Villarroya, F

    1995-01-01

    The relative abundance of the mitochondrial-encoded mRNAs for cytochrome c oxidase subunit II and NADH dehydrogenase subunit I was lower in brown adipose tissue (BAT) from lactating rats than in virgin controls. This decrease was in parallel with a significant decrease in mitochondrial 16 S rRNA levels and in the relative content of mitochondrial DNA in the tissue. BAT from lactating rats showed lowered mRNA expression of the nuclear-encoded genes for the mitochondrial uncoupling protein, subunit IV of cytochrome c oxidase and the adenine nucleotide translocase isoforms ANT1 and ANT2, whereas mRNA levels for the ATP synthase beta-subunit were unchanged. However, the relative content of this last protein was lower in BAT mitochondria from lactating rats than in virgin controls. It is concluded that lactation-induced mitochondrial hypotrophy in BAT is associated with a co-ordinate decrease in the expression of the mitochondrial genome and nuclear genes for mitochondrial proteins. This decrease is caused by regulatory events acting at different levels, including pre- and post-transcriptional regulation. BAT appears to be a useful model with which to investigate the molecular mechanisms involved in the co-ordination of the expression of the mitochondrial and nuclear genomes during mitochondrial biogenesis. Images Figure 1 Figure 2 PMID:8948428

  11. The Effects of Inhaled Pimpinella peregrina Essential Oil on Scopolamine-Induced Memory Impairment, Anxiety, and Depression in Laboratory Rats.

    Science.gov (United States)

    Aydin, Emel; Hritcu, Lucian; Dogan, Gulden; Hayta, Sukru; Bagci, Eyup

    2016-11-01

    In the present study, we identified the effects of inhaled Pimpinella peregrina essential oil (1 and 3 %, for 21 continuous days) on scopolamine-induced memory impairment, anxiety, and depression in laboratory rats. Y-maze and radial arm-maze tests were used for assessing memory processes. Also, the anxiety and depressive responses were studied by means of the elevated plus-maze and forced swimming tests. The scopolamine alone-treated rats exhibited the following: decrease of the spontaneous alternation percentage in Y-maze test, increase of the number of working and reference memory errors in radial arm-maze test, along with decrease of the exploratory activity, the percentage of the time spent and the number of entries in the open arm within elevated plus-maze test and decrease of swimming time and increase of immobility time within forced swimming test. Inhalation of the P. peregrina essential oil significantly improved memory formation and exhibited anxiolytic- and antidepressant-like effects in scopolamine-treated rats. Our results suggest that the P. peregrina essential oil inhalation ameliorates scopolamine-induced memory impairment, anxiety, and depression. Moreover, studies on the P. peregrina essential oil may open a new therapeutic window for the prevention of neurological abnormalities closely related to Alzheimer's disease.

  12. Administration of caffeine inhibited adenosine receptor agonist-induced decreases in motor performance, thermoregulation, and brain neurotransmitter release in exercising rats.

    Science.gov (United States)

    Zheng, Xinyan; Hasegawa, Hiroshi

    2016-01-01

    We examined the effects of an adenosine receptor agonist on caffeine-induced changes in thermoregulation, neurotransmitter release in the preoptic area and anterior hypothalamus, and endurance exercise performance in rats. One hour before the start of exercise, rats were intraperitoneally injected with either saline alone (SAL), 10 mg kg(-1) caffeine and saline (CAF), a non-selective adenosine receptor agonist (5'-N-ethylcarboxamidoadenosine [NECA]: 0.5 mg kg(-1)) and saline (NECA), or the combination of caffeine and NECA (CAF+NECA). Rats ran until fatigue on the treadmill with a 5% grade at a speed of 18 m min(-1) at 23 °C. Compared to the SAL group, the run time to fatigue (RTTF) was significantly increased by 52% following caffeine administration and significantly decreased by 65% following NECA injection (SAL: 91 ± 14.1 min; CAF: 137 ± 25.8 min; NECA: 31 ± 13.7 min; CAF+NECA: 85 ± 11.8 min; pcaffeine injection inhibited the NECA-induced decreases in the RTTF, Tcore, heat production, heat loss, and extracellular DA release. Neither caffeine nor NECA affected extracellular noradrenaline or serotonin release. These results support the findings of previous studies showing improved endurance performance and overrides in body limitations after caffeine administration, and imply that the ergogenic effects of caffeine may be associated with the adenosine receptor blockade-induced increases in brain DA release. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Developmental hyperoxia alters CNS mechanisms underlying hypoxic ventilatory depression in neonatal rats.

    Science.gov (United States)

    Hill, Corey B; Grandgeorge, Samuel H; Bavis, Ryan W

    2013-12-01

    Newborn mammals exhibit a biphasic hypoxic ventilatory response (HVR), but the relative contributions of carotid body-initiated CNS mechanisms versus central hypoxia on ventilatory depression during the late phase of the HVR are not well understood. Neonatal rats (P4-5 or P13-15) were treated with a nonselective P2 purinergic receptor antagonist (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid, or PPADS; 125mgkg(-1), i.p.) to pharmacologically denervate the peripheral chemoreceptors. At P4-5, rats reared in normoxia showed a progressive decline in ventilation during a 10-min exposure to 12% O2 (21-28% decrease from baseline). No hypoxic ventilatory depression was observed in the older group of neonatal rats (i.e., P13-15), suggesting that the contribution of central hypoxia to hypoxic ventilatory depression diminishes with age. In contrast, rats reared in moderate hyperoxia (60% O2) from birth exhibited no hypoxic ventilatory depression at either age studied. Systemic PPADS had no effect on the ventilatory response to 7% CO2, suggesting that the drug did not cross the blood-brain barrier. These findings indicate that (1) CNS hypoxia depresses ventilation in young, neonatal rats independent of carotid body activation and (2) hyperoxia alters the development of CNS pathways that modulate the late phase of the hypoxic ventilatory response. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Electroacupuncture decreases the progression of ovarian hyperstimulation syndrome in a rat model.

    Science.gov (United States)

    Chen, Li; Sun, Hai-Xiang; Xia, You-Bing; Sui, Liu-Cai; Zhou, Ji; Huang, Xuan; Zhou, Jing-Wei; Shao, Yi-Dan; Shen, Tao; Sun, Qin; Liang, Yuan-Jiao; Yao, Bing

    2016-05-01

    This study aimed to elucidate the effect of electroacupuncture treatment on preventing early ovarian hyperstimulation syndrome (OHSS) and the potential mechanisms involved using an induced rat model. The ovarian response was examined by measuring ovary weight, vascular permeability, levels of inflammation (interleukin-6), tumour necrosis factor alpha, chemokine ligand 2 (also known as monocyte chemoactic protein 1), vascular endothelial growth factor and hormone concentrations (oestradiol, progesterone, testosterone and prolactin). Sprague-Dawley female rats underwent ovarian stimulation to induce OHSS. Hyperstimulated rats received consecutive electroacupuncture treatment from 3 days before the beginning of pregnant mare serum gonadotrophin treatment or the time point of pregnant mare serum gonadotrophin treatment respectively, and last until 3 days after HCG administration. Electroacupuncture treatment reduced ovary weight and vascular permeability in hyperstimulated rats. Electroacupuncture treatment also reduced the levels of serum steroid hormones (progesterone and testosterone), inflammatory cytokines (interleukin-6, tumour necrosis factor alpha and monocyte chemotactic protein 1 and vascular endothelial growth factor in hyperstimulated rats. The results indicate that electroacupuncture can modulate endocrine hormone secretion and affect the secretion of inflammatory cytokines and vascular endothelial growth factor, and thus prevent the progress of OHSS. Electroacupuncture may provide a simple and effective method for the prevention and treatment of OHSS. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Antidiabetic and Antioxidant Properties of Triticum aestivum in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Yogesha Mohan

    2013-01-01

    Full Text Available The antidiabetic and antioxidant potential of Triticum aestivum were evaluated by using in vivo methods in normal and streptozotocin-induced diabetic rats. Diabetes was induced in the Wistar strain albino rats by injecting streptozotocin at a dose of 55 mg/kg body weight. Ethanolic extracts of Triticum aestivum at doses of 100 mg/kg body weight were administered orally for 30 days. Various parameters were studied and the treatment group with the extract showed a significant increase in the liver glycogen and a significant decrease in fasting blood glucose, glycosylated hemoglobin levels, and serum marker enzyme levels. The total cholesterol and serum triglycerides levels, low density lipoprotein, and very low density lipoprotein were also significantly reduced and the high density lipoprotein level was significantly increased upon treatment with the Triticum aestivum ethanol extract. A significant decrease in the levels of lipid peroxides, superoxide dismutase, and glutathione peroxidise and increase in the levels of vitamin E, catalase, and reduced glutathione were observed in Triticum aestivum treated diabetic rats. Thus, from this study we conclude that ethanolic extract of Triticum aestivum exhibited significant antihyperglycemic, hypolipidemic, and antioxidant activities in streptozotocin-induced diabetic rats.

  16. Diabetes increases susceptibility of primary cultures of rat proximal tubular cells to chemically induced injury

    International Nuclear Information System (INIS)

    Zhong Qing; Terlecky, Stanley R.; Lash, Lawrence H.

    2009-01-01

    Diabetic nephropathy is characterized by increased oxidative stress and mitochondrial dysfunction. In the present study, we prepared primary cultures of proximal tubular (PT) cells from diabetic rats 30 days after an ip injection of streptozotocin and compared their susceptibility to oxidants (tert-butyl hydroperoxide, methyl vinyl ketone) and a mitochondrial toxicant (antimycin A) with that of PT cells isolated from age-matched control rats, to test the hypothesis that PT cells from diabetic rats exhibit more cellular and mitochondrial injury than those from control rats when exposed to these toxicants. PT cells from diabetic rats exhibited higher basal levels of reactive oxygen species (ROS) and higher mitochondrial membrane potential, demonstrating that the PT cells maintain the diabetic phenotype in primary culture. Incubation with either the oxidants or mitochondrial toxicant resulted in greater necrotic and apoptotic cell death, greater evidence of morphological damage, greater increases in ROS, and greater decreases in mitochondrial membrane potential in PT cells from diabetic rats than in those from control rats. Pretreatment with either the antioxidant N-acetyl-L-cysteine or a catalase mimetic provided equivalent protection of PT cells from both diabetic and control rats. Despite the greater susceptibility to oxidative and mitochondrial injury, both cytoplasmic and mitochondrial glutathione concentrations were markedly higher in PT cells from diabetic rats, suggesting an upregulation of antioxidant processes in diabetic kidney. These results support the hypothesis that primary cultures of PT cells from diabetic rats are a valid model in which to study renal cellular function in the diabetic state.

  17. NS309 decreases rat detrusor smooth muscle membrane potential and phasic contractions by activating SK3 channels

    Science.gov (United States)

    Parajuli, Shankar P; Hristov, Kiril L; Soder, Rupal P; Kellett, Whitney F; Petkov, Georgi V

    2013-01-01

    Background and Purpose Overactive bladder (OAB) is often associated with abnormally increased detrusor smooth muscle (DSM) contractions. We used NS309, a selective and potent opener of the small or intermediate conductance Ca2+-activated K+ (SK or IK, respectively) channels, to evaluate how SK/IK channel activation modulates DSM function. Experimental Approach We employed single-cell RT-PCR, immunocytochemistry, whole cell patch-clamp in freshly isolated rat DSM cells and isometric tension recordings of isolated DSM strips to explore how the pharmacological activation of SK/IK channels with NS309 modulates DSM function. Key Results We detected SK3 but not SK1, SK2 or IK channels expression at both mRNA and protein levels by RT-PCR and immunocytochemistry in DSM single cells. NS309 (10 μM) significantly increased the whole cell SK currents and hyperpolarized DSM cell resting membrane potential. The NS309 hyperpolarizing effect was blocked by apamin, a selective SK channel inhibitor. NS309 inhibited the spontaneous phasic contraction amplitude, force, frequency, duration and tone of isolated DSM strips in a concentration-dependent manner. The inhibitory effect of NS309 on spontaneous phasic contractions was blocked by apamin but not by TRAM-34, indicating no functional role of the IK channels in rat DSM. NS309 also significantly inhibited the pharmacologically and electrical field stimulation-induced DSM contractions. Conclusions and Implications Our data reveal that SK3 channel is the main SK/IK subtype in rat DSM. Pharmacological activation of SK3 channels with NS309 decreases rat DSM cell excitability and contractility, suggesting that SK3 channels might be potential therapeutic targets to control OAB associated with detrusor overactivity. PMID:23145946

  18. Benazepril hydrochloride improves diabetic nephropathy and decreases proteinuria by decreasing ANGPTL-4 expression.

    Science.gov (United States)

    Xue, Lingyu; Feng, Xiaoqing; Wang, Chuanhai; Zhang, Xuebin; Sun, Wenqiang; Yu, Kebo

    2017-10-04

    This study aimed to investigate the effects of benazepril hydrochloride (BH) on proteinuria and ANGPTL-4 expression in a diabetic nephropathy (DN) rat model. A total of 72 Wistar male rats were randomly divided into three groups: normal control (NC), DN group and BH treatment (BH) groups. The DN model was induced by streptozotocin (STZ). Weight, glucose, proteinuria, biochemical indicators and the kidney weight index were examined at 8, 12 and 16 weeks. In addition, ANGPTL-4 protein and mRNA expressions were assessed by immunohistochemistry and qRT-PCR, respectively. Relationships between ANGPTL-4 and biochemical indicators were investigated using Spearman analysis. Weight was significantly lower but glucose levels were significantly higher in both the DN and BH groups than in the NC group (P Benazepril hydrochloride improves DN and decreases proteinuria by decreasing ANGPTL-4 expression.

  19. PGC-1α mRNA Level and Oxidative Capacity of the Plantaris Muscle in Rats with Metabolic Syndrome, Hypertension, and Type 2 Diabetes

    International Nuclear Information System (INIS)

    Nagatomo, Fumiko; Fujino, Hidemi; Kondo, Hiroyo; Gu, Ning; Takeda, Isao; Ishioka, Noriaki; Tsuda, Kinsuke; Ishihara, Akihiko

    2011-01-01

    We examined the fiber profiles and the mRNA levels of peroxisome proliferator-activated receptors (PPARα and PPARδ/β) and of the PPARγ coactivator-1α (PGC-1α) in the plantaris muscles of 15-week-old control (WR), metabolic syndrome (CP), hypertensive (SHR), and type 2 diabetic (GK) rats. The deep regions in the muscles of SHR and GK rats exhibited lower percentages of high-oxidative type I and IIA fibers and higher percentages of low-oxidative type IIB fibers compared with WR and CP rats. The surface regions in the muscles of CP, SHR, and GK rats exhibited lower percentages of high-oxidative type IIA fibers and higher percentages of low-oxidative type IIB fibers compared with WR rats. The muscles of SHR and GK rats had lower oxidative enzyme activity compared with WR rats. The muscles of SHR rats had the lowest PPARδ/β mRNA level. In addition, the muscles of SHR and GK rats had lower PGC-1α mRNA level compared with WR and CP rats. We concluded that the plantaris muscles of rats with hypertension and type 2 diabetes have lower oxidative capacity, which is associated with the decreased level of PGC-1α mRNA

  20. No sign of decreased burrowing behavior in the genetically depressive flinders rats

    DEFF Research Database (Denmark)

    Baastrup, C. S.; Wegener, Gregers; Finnerup, N. B.

    2012-01-01

    outcome. Rats were trained in the procedure for 3 consecutive days. In a randomly allocated balanced cross-over design the rats were treated with saline 0.9% w/w, imipramin 15 mg/kg or citalopram-S 10 mg/kg 24, 6 and 1 hours before test start. A 2 day wash-out period were allowed between administrations...

  1. Neural Mobilization Treatment Decreases Glial Cells and Brain-Derived Neurotrophic Factor Expression in the Central Nervous System in Rats with Neuropathic Pain Induced by CCI in Rats

    Directory of Open Access Journals (Sweden)

    Aline Carolina Giardini

    2017-01-01

    Full Text Available Background. Glial cells are implicated in the development of chronic pain and brain-derived neurotropic factor (BDNF released from activated microglia contributes to the nociceptive transmission. Neural mobilization (NM technique is a method clinically effective in reducing pain sensitivity. Here we examined the involvement of glial cells and BDNF expression in the thalamus and midbrain after NM treatment in rats with chronic constriction injury (CCI. CCI was induced and rats were subsequently submitted to 10 sessions of NM, every other day, beginning 14 days after CCI. Thalamus and midbrain were analyzed for glial fibrillary acidic protein (GFAP, microglial cell OX-42, and BDNF using Immunohistochemistry and Western blot assays. Results. Thalamus and midbrain of CCI group showed increases in GFAP, OX-42, and BDNF expression compared with control group and, in contrast, showed decreases in GFAP, OX-42, and BDNF after NM when compared with CCI group. The decreased immunoreactivity for GFAP, OX-42, and BDNF in ventral posterolateral nucleus in thalamus and the periaqueductal gray in midbrain was shown by immunohistochemistry. Conclusions. These findings may improve the knowledge about the involvement of astrocytes, microglia, and BDNF in the chronic pain and show that NM treatment, which alleviates neuropathic pain, affects glial cells and BDNF expression.

  2. Anti-diabetic effect of dietary mango (Mangifera indica L.) peel in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Gondi, Mahendranath; Basha, Shaik Akbar; Bhaskar, Jamuna J; Salimath, Paramahans V; Rao, Ummiti J S Prasada

    2015-03-30

    In the present study, the composition of mango peel powder (MPP) collected from the mango pulp industry was determined and the effect of MPP on ameliorating diabetes and its associated complications was studied. Mango peel was rich in polyphenols, carotenoids and dietary fibre. Peel extract contained various bioactive compounds and was found to be rich in soluble dietary fibre. Peel extract exhibited antioxidant properties and protected against DNA damage. Therefore, the effect of peel on ameliorating diabetes was investigated in a rat model of diabetes. A significant increase in urine sugar, urine volume, fasting blood glucose, total cholesterol, triglycerides and low density lipoprotein, and decrease in high density lipoprotein were observed in the rats; however, these parameters were ameliorated in diabetic rats fed with diet supplemented with mango peel at 5% and 10% levels in basal diet. Treatment of diabetic rats with MPP increased antioxidant enzyme activities and decreased lipid peroxidation in plasma, kidney and liver compared to untreated diabetic rats. Glomerular filtration rate and microalbuminuria levels were ameliorated in MPP treated diabetic group. Mango peel, a by-product, can be used as an ingredient in functional and therapeutic foods. © 2014 Society of Chemical Industry.

  3. Blood pressure regulation and 45Ca flux in aging Zucker rats

    International Nuclear Information System (INIS)

    Zemel, M.B.; Shehin, S.E.; Chiou, S.Y.; Sowers, J.R.

    1990-01-01

    The authors have previously reported that Zucker obese rats exhibit significant hypertension associated with an impairment in vascular smooth muscle Ca 2+ efflux compared to their lean controls. To further investigate this phenomenon, the authors measured direct intra-arterial blood pressure in previously cannulated, unrestrained, conscious Zucker lean and obese rats at 10 weeks of age and 60 weeks of age. The animals were sacrificed and replicate aortic strips from each were loaded with 45 Ca and 45 Ca efflux was evaluated. Results show that both young and old obese rats exhibit systolic and diastolic hypertension and impaired Ca 2+ efflux, and these defects were exaggerated in the old animals. Further, the old lean animals exhibited diastolic hypertension and impaired Ca 2+ efflux comparable to that found in the young obese animals. This suggests that old Zucker lean rats exhibit the same defects in Ca 2+ efflux comparable to that found in the young obese animals. This suggests that old Zucker lean rats exhibit the same defects in Ca 2+ metabolism previously observed in young Zucker obese rats, possibly due to latent gene expression of the Fa gene in heterozygous lean rats

  4. Protective role of antioxidant vitamin E and catechin on idarubicin-induced cardiotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Kalender S.

    2002-01-01

    Full Text Available Idarubicin is an anthracycline antibiotic extensively used in acute leukemia. In the present study we investigated whether vitamin E and catechin can reduce the toxic effects of idarubicin. Vitamin E (200 IU kg-1 week-1, catechin (200 mg kg-1 week-1, idarubicin (5 mg kg-1 week-1, idarubicin + vitamin E (200 IU kg-1 week-1, and idarubicin + catechin (200 mg kg-1 week-1 combinations were given to male Sprague-Dawley rats weighing 210 to 230 g (N = 6/group. Idarubicin-treated animals exhibited a decrease in body and heart weight, a decrease in myocardial contractility, and changes in ECG parameters (P<0.01. Catechin + idarubicin- and vitamin E + idarubicin-treated groups exhibited similar alterations, but changes were attenuated in comparison to those in cardiac muscle of idarubicin-treated rats (P<0.05. Superoxide dismutase and catalase activity was reduced in the idarubicin-treated group (P<0.05. Glutathione peroxidase levels were decreased in the idarubicin-treated group (P<0.05 and reached maximum concentrations in the catechin- and catechin + idarubicin-treated groups compared to control (P<0.01. Malondialdehyde activity was decreased in the catechin + idarubicin-treated groups compared to control and increased in the other groups, reaching maximum concentrations in the vitamin E-treated group (P<0.01. In electron microscopy studies, swelling of the mitochondria and dilatation of the sarcoplasmic reticulum of myocytes were observed in the idarubicin-treated groups. In groups that were given idarubicin + vitamin E and idarubicin + catechin, the only morphological change was a weak dilatation of the sarcoplasmic reticulum. We conclude that catechin and vitamin E significantly reduce idarubicin-induced cardiotoxicity in rats.

  5. Long-term exposure to electromagnetic radiation from mobile phones and Wi-Fi devices decreases plasma prolactin, progesterone, and estrogen levels but increases uterine oxidative stress in pregnant rats and their offspring.

    Science.gov (United States)

    Yüksel, Murat; Nazıroğlu, Mustafa; Özkaya, Mehmet Okan

    2016-05-01

    We investigated the effects of mobile phone (900 and 1800 MHz)- and Wi-Fi (2450 MHz)-induced electromagnetic radiation (EMR) exposure on uterine oxidative stress and plasma hormone levels in pregnant rats and their offspring. Thirty-two rats and their forty newborn offspring were divided into the following four groups according to the type of EMR exposure they were subjected to: the control, 900, 1800, and 2450 MHz groups. Each experimental group was exposed to EMR for 60 min/day during the pregnancy and growth periods. The pregnant rats were allowed to stand for four generations (total 52 weeks) before, plasma and uterine samples were obtained. During the 4th, 5th, and 6th weeks of the experiment, plasma and uterine samples were also obtained from the developing rats. Although uterine lipid peroxidation increased in the EMR groups, uterine glutathione peroxidase activity (4th and 5th weeks) and plasma prolactin levels (6th week) in developing rats decreased in these groups. In the maternal rats, the plasma prolactin, estrogen, and progesterone levels decreased in the EMR groups, while the plasma total oxidant status, and body temperatures increased. There were no changes in the levels of reduced glutathione, total antioxidants, or vitamins A, C, and E in the uterine and plasma samples of maternal rats. In conclusion, although EMR exposure decreased the prolactin, estrogen, and progesterone levels in the plasma of maternal rats and their offspring, EMR-induced oxidative stress in the uteri of maternal rats increased during the development of offspring. Mobile phone- and Wi-Fi-induced EMR may be one cause of increased oxidative uterine injury in growing rats and decreased hormone levels in maternal rats. TRPV1 cation channels are the possible molecular pathways responsible for changes in the hormone, oxidative stress, and body temperature levels in the uterus of maternal rats following a year-long exposure to electromagnetic radiation exposure from mobile phones and

  6. The effect of different milk diets upon strontium-85 absorption in young rats

    International Nuclear Information System (INIS)

    Gruden, N.; Mataushicj, S.

    1988-01-01

    Radiostrontium absorption and distribution in selected tissues was studied in young white rats which were fed, for one or four days, on plain cow's milk or on one of the following experimental diets: yogurt, sour milk, or acidophilus milk. The yogurt diet exhibited a slight, but statistically significant, decreasing effect upon radiostrontium deposition in the carcass and femur of neonatals and in the body, carcass, femur and brain of the weanling rats receiving the four day treatment. There was an inhibitory effect on strontium deposition in the weanling's brain to sour milk, and none to acidophilus milk. (author). 12 refs.; 1 tab

  7. Edaravone protects rats against oxidative stress and apoptosis in experimentally induced myocardial infarction: Biochemical and ultrastructural evidence.

    Science.gov (United States)

    Hassan, Md Quamrul; Akhtar, Md Sayeed; Akhtar, M; Ali, Javed; Haque, Syed Ehtaishamul; Najmi, Abul Kalam

    2015-01-01

    The present study was designed to evaluate the cardioprotective potential of edaravone on oxidative stress, anti-apoptotic, anti-inflammatory and ultrastructure findings in isoproterenol (ISO) induced myocardial infarction (MI) in rats. Rats were pretreated with edaravone (1, 3, 10 mg/kg body weight-1 day-1) intraperitoneally. MI was induced by subcutaneous administration of ISO (85 mg/kg body weight-1) at two doses with 24h interval. ISO treated rats showed significant increase in the levels of thiobarbituric acid reactive substances (TBARS) and decreased levels of reduced glutathione, glutathione perdoxidase, glutathione reductase and glutathione-S- transferase in the cardiac tissues. Moreover, significant increase in the levels of lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB), C--reactive protein and caspase-3 activity was observed in ISO treated group. Pretreatment of ISO intoxicated rats with edaravone showed significant decrease in the level of TBARS, increased activities of antioxidant enzymes and significantly decreased levels of LDH and CK-MB. Moreover, results also showed decreased C-reactive protein level, caspase-3 activity and maintained ultrastructure of the myocardial cells. Our study suggests that edaravone possess strong cardioprotective potential. Edaravone may have exhibited cardioprotective effects by restoring antioxidant defense mechanism, maintaining integrity of myocardial cell membrane, reducing apoptosis and inflammation against ISO induced MI and associated oxidative stress.

  8. Chronic Hyperinsulinaemic Hypoglycaemia in Rats Is Accompanied by Increased Body Weight, Hyperleptinaemia, and Decreased Neuronal Glucose Transporter Levels in the Brain.

    Science.gov (United States)

    Jensen, Vivi F H; Mølck, Anne-Marie; Chapman, Melissa; Alifrangis, Lene; Andersen, Lene; Lykkesfeldt, Jens; Bøgh, Ingrid B

    2017-01-01

    The brain is vulnerable to hypoglycaemia due to a continuous need of energy substrates to meet its high metabolic demands. Studies have shown that severe acute insulin-induced hypoglycaemia results in oxidative stress in the rat brain, when neuroglycopenia cannot be evaded despite increased levels of cerebral glucose transporters. Compensatory measures in the brain during chronic insulin-induced hypoglycaemia are less well understood. The present study investigated how the brain of nondiabetic rats copes with chronic insulin-induced hypoglycaemia for up to eight weeks. Brain level of different substrate transporters and redox homeostasis was evaluated. Hyperinsulinaemia for 8 weeks consistently lowered blood glucose levels by 30-50% (4-6 mM versus 7-9 mM in controls). The animals had increased food consumption, body weights, and hyperleptinaemia. During infusion, protein levels of the brain neuronal glucose transporter were decreased, whereas levels of lipid peroxidation products were unchanged. Discontinued infusion was followed by transient systemic hyperglycaemia and decreased food consumption and body weight. After 4 weeks, plasma levels of lipid peroxidation products were increased, possibly as a consequence of hyperglycaemia-induced oxidative stress. The present data suggests that chronic moderate hyperinsulinaemic hypoglycaemia causes increased body weight and hyperleptinaemia. This is accompanied by decreased neuronal glucose transporter levels, which may be leptin-induced.

  9. Acupuncture Alters Expression of Insulin Signaling Related Molecules and Improves Insulin Resistance in OLETF Rats

    Directory of Open Access Journals (Sweden)

    Xin-Yu Huang

    2016-01-01

    Full Text Available To determine effect of acupuncture on insulin resistance in Otsuka Long-Evans Tokushima Fatty (OLETF rats and to evaluate expression of insulin signaling components. Rats were divided into three groups: Sprague-Dawley (SD rats, OLETF rats, and acupuncture+OLETF rats. Acupuncture was subcutaneously applied to Neiguan (PC6, Zusanli (ST36, and Sanyinjiao (SP6; in contrast, acupuncture to Shenshu (BL23 was administered perpendicularly. For Neiguan (PC6 and Zusanli (ST36, needles were connected to an electroacupuncture (EA apparatus. Fasting blood glucose (FPG was measured by glucose oxidase method. Plasma fasting insulin (FINS and serum C peptide (C-P were determined by ELISA. Protein and mRNA expressions of insulin signaling molecules were determined by Western blot and real-time RT-PCR, respectively. OLETF rats exhibit increased levels of FPG, FINS, C-P, and homeostasis model assessment-estimated insulin resistance (HOMA-IR, which were effectively decreased by acupuncture treatment. mRNA expressions of several insulin signaling related molecules IRS1, IRS2, Akt2, aPKCζ, and GLUT4 were decreased in OLETF rats compared to SD controls. Expression of these molecules was restored back to normal levels upon acupuncture administration. PI3K-p85α was increased in OLETF rats; this increase was also reversed by acupuncture treatment. Acupuncture improves insulin resistance in OLETF rats, possibly via regulating expression of key insulin signaling related molecules.

  10. Prenatal androgen excess programs metabolic derangements in pubertal female rats.

    Science.gov (United States)

    Yan, Xiaonan; Dai, Xiaonan; Wang, Jing; Zhao, Nannan; Cui, Yugui; Liu, Jiayin

    2013-04-01

    Owing to the heterogeneity in the clinical symptoms of polycystic ovary syndrome (PCOS), the early pathophysiological mechanisms of PCOS remain unclear. Clinical, experimental, and genetic evidence supports an interaction between genetic susceptibility and the influence of maternal environment in the pathogenesis of PCOS. To determine whether prenatal androgen exposure induced PCOS-related metabolic derangements during pubertal development, we administrated 5α-dihydrotestosterone (DHT) in pregnant rats and observed their female offspring from postnatal 4 to 8 weeks. The prenatally androgenized (PNA) rats exhibited more numerous total follicles, cystic follicles, and atretic follicles than the controls. Fasting glucose, insulin, leptin levels, and homeostatic model assessment for insulin resistance were elevated in the PNA rats at the age of 5-8 weeks. Following intraperitoneal glucose tolerance tests, glucose and insulin levels did not differ between two groups; however, the PNA rats showed significantly higher 30- and 60-min glucose levels than the controls after insulin stimulation during 5-8 weeks. In addition, prenatal DHT treatment significantly decreased insulin-stimulated phosphorylation of AKT in the skeletal muscles of 6-week-old PNA rats. The abundance of IR substrate 1 (IRS1) and IRS2 was decreased in the skeletal muscles and liver after stimulation with insulin in the PNA group, whereas phosphorylation of insulin-signaling proteins was unaltered in the adipose tissue. These findings validate the contribution of prenatal androgen excess to metabolic derangements in pubertal female rats, and the impaired insulin signaling through IRS and AKT may result in the peripheral insulin resistance during pubertal development.

  11. Cuprizone decreases intermediate and late-stage progenitor cells in hippocampal neurogenesis of rats in a framework of 28-day oral dose toxicity study

    International Nuclear Information System (INIS)

    Abe, Hajime; Tanaka, Takeshi; Kimura, Masayuki; Mizukami, Sayaka; Saito, Fumiyo; Imatanaka, Nobuya; Akahori, Yumi; Yoshida, Toshinori; Shibutani, Makoto

    2015-01-01

    Developmental exposure to cuprizone (CPZ), a demyelinating agent, impairs intermediate-stage neurogenesis in the hippocampal dentate gyrus of rat offspring. To investigate the possibility of alterations in adult neurogenesis following postpubertal exposure to CPZ in a framework of general toxicity studies, CPZ was orally administered to 5-week-old male rats at 0, 120, or 600 mg/kg body weight/day for 28 days. In the subgranular zone (SGZ), 600 mg/kg CPZ increased the number of cleaved caspase-3 + apoptotic cells. At ≥ 120 mg/kg, the number of SGZ cells immunoreactive for TBR2, doublecortin, or PCNA was decreased, while that for SOX2 was increased. In the granule cell layer, CPZ at ≥ 120 mg/kg decreased the number of postmitotic granule cells immunoreactive for NEUN, CHRNA7, ARC or FOS. In the dentate hilus, CPZ at ≥ 120 mg/kg decreased phosphorylated TRKB + interneurons, although the number of reelin + interneurons was unchanged. At 600 mg/kg, mRNA levels of Bdnf and Chrna7 were decreased, while those of Casp4, Casp12 and Trib3 were increased in the dentate gyrus. These data suggest that CPZ in a scheme of 28-day toxicity study causes endoplasmic reticulum stress-mediated apoptosis of granule cell lineages, resulting in aberrations of intermediate neurogenesis and late-stage neurogenesis and following suppression of immediate early gene-mediated neuronal plasticity. Suppression of BDNF signals to interneurons caused by decreased cholinergic signaling may play a role in these effects of CPZ. The effects of postpubertal CPZ on neurogenesis were similar to those observed with developmental exposure, except for the lack of reelin response, which may contribute to a greater decrease in SGZ cells. - Highlights: • Effect of 28-day CPZ exposure on hippocampal neurogenesis was examined in rats. • CPZ suppressed intermediate neurogenesis and late-stage neurogenesis in the dentate gyrus. • CPZ suppressed BDNF signals to interneurons by decrease of cholinergic

  12. Cuprizone decreases intermediate and late-stage progenitor cells in hippocampal neurogenesis of rats in a framework of 28-day oral dose toxicity study

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hajime; Tanaka, Takeshi; Kimura, Masayuki; Mizukami, Sayaka [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Saito, Fumiyo; Imatanaka, Nobuya; Akahori, Yumi [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Yoshida, Toshinori [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Shibutani, Makoto, E-mail: mshibuta@cc.tuat.ac.jp [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan)

    2015-09-15

    Developmental exposure to cuprizone (CPZ), a demyelinating agent, impairs intermediate-stage neurogenesis in the hippocampal dentate gyrus of rat offspring. To investigate the possibility of alterations in adult neurogenesis following postpubertal exposure to CPZ in a framework of general toxicity studies, CPZ was orally administered to 5-week-old male rats at 0, 120, or 600 mg/kg body weight/day for 28 days. In the subgranular zone (SGZ), 600 mg/kg CPZ increased the number of cleaved caspase-3{sup +} apoptotic cells. At ≥ 120 mg/kg, the number of SGZ cells immunoreactive for TBR2, doublecortin, or PCNA was decreased, while that for SOX2 was increased. In the granule cell layer, CPZ at ≥ 120 mg/kg decreased the number of postmitotic granule cells immunoreactive for NEUN, CHRNA7, ARC or FOS. In the dentate hilus, CPZ at ≥ 120 mg/kg decreased phosphorylated TRKB{sup +} interneurons, although the number of reelin{sup +} interneurons was unchanged. At 600 mg/kg, mRNA levels of Bdnf and Chrna7 were decreased, while those of Casp4, Casp12 and Trib3 were increased in the dentate gyrus. These data suggest that CPZ in a scheme of 28-day toxicity study causes endoplasmic reticulum stress-mediated apoptosis of granule cell lineages, resulting in aberrations of intermediate neurogenesis and late-stage neurogenesis and following suppression of immediate early gene-mediated neuronal plasticity. Suppression of BDNF signals to interneurons caused by decreased cholinergic signaling may play a role in these effects of CPZ. The effects of postpubertal CPZ on neurogenesis were similar to those observed with developmental exposure, except for the lack of reelin response, which may contribute to a greater decrease in SGZ cells. - Highlights: • Effect of 28-day CPZ exposure on hippocampal neurogenesis was examined in rats. • CPZ suppressed intermediate neurogenesis and late-stage neurogenesis in the dentate gyrus. • CPZ suppressed BDNF signals to interneurons by decrease of

  13. Effect of acute alloxan diabetes on ischemic and reperfusion arrhythmias in rats with different activity of nitric oxide system.

    Science.gov (United States)

    Belkina, L M; Terekhina, O L; Smirnova, E A; Usacheva, M A; Kruglov, S V; Saltykova, V A

    2011-01-01

    Similar degree of glycemia (28-31 mmol/liter) and similar mortality (37-42%) were revealed in August rats exhibiting enhanced activity of NO system and in Wistar rats 3 weeks after alloxan treatment. Under conditions of myocardial ischemia caused by 10-min coronary artery ligation, the intensity of arrhythmias did not differ from the control in Wistar rats with diabetes mellitus and increased in August rats. Under conditions of reperfusion, diabetes produced an antiarrhythmic effect in Wistar rats and did not affect arrhythmia in August rats. Plasma concentrations of nitrates and nitrites in Wistar and August rats increased by 82 and 143%, respectively, compared to the control. The level of hemoxygenase-1 (hsp32) in the myocardium remained unchanged in Wistar rats and decreased by 26% in August rats. Thus, the absence of antiarrhythmic effect of acute diabetes in August rats is probably related to elevated NO content and reduced antioxidant activity.

  14. Decreased synaptic plasticity in the medial prefrontal cortex underlies short-term memory deficits in 6-OHDA-lesioned rats.

    Science.gov (United States)

    Matheus, Filipe C; Rial, Daniel; Real, Joana I; Lemos, Cristina; Ben, Juliana; Guaita, Gisele O; Pita, Inês R; Sequeira, Ana C; Pereira, Frederico C; Walz, Roger; Takahashi, Reinaldo N; Bertoglio, Leandro J; Da Cunha, Cláudio; Cunha, Rodrigo A; Prediger, Rui D

    2016-03-15

    Parkinson's disease (PD) is characterized by motor dysfunction associated with dopaminergic degeneration in the dorsolateral striatum (DLS). However, motor symptoms in PD are often preceded by short-term memory deficits, which have been argued to involve deregulation of medial prefrontal cortex (mPFC). We now used a 6-hydroxydopamine (6-OHDA) rat PD model to explore if alterations of synaptic plasticity in DLS and mPFC underlie short-term memory impairments in PD prodrome. The bilateral injection of 6-OHDA (20μg/hemisphere) in the DLS caused a marked loss of dopaminergic neurons in the substantia nigra (>80%) and decreased monoamine levels in the striatum and PFC, accompanied by motor deficits evaluated after 21 days in the open field and accelerated rotarod. A lower dose of 6-OHDA (10μg/hemisphere) only induced a partial degeneration (about 60%) of dopaminergic neurons in the substantia nigra with no gross motor impairments, thus mimicking an early premotor stage of PD. Notably, 6-OHDA (10μg)-lesioned rats displayed decreased monoamine levels in the PFC as well as short-term memory deficits evaluated in the novel object discrimination and in the modified Y-maze tasks; this was accompanied by a selective decrease in the amplitude of long-term potentiation in the mPFC, but not in DLS, without changes of synaptic transmission in either brain regions. These results indicate that the short-term memory dysfunction predating the motor alterations in the 6-OHDA model of PD is associated with selective changes of information processing in PFC circuits, typified by persistent changes of synaptic plasticity. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The role of nesfatin-1 expression in letrozole-induced polycystic ovaries in the rat.

    Science.gov (United States)

    Xu, Yingqiao; Zhang, Hua; Li, Qingchun; Lao, Kaixue; Wang, Yanlin

    2017-06-01

    Polycystic ovary syndrome (PCOS) is a complex and heterogeneous endocrine disorder, generally exhibiting the characteristic features of hyperandrogenemia, insulin resistance (IR) and obesity. Nesfatin-1 is derived from the precursor nucleobindin2 (NUCB2), and plays an active role in energy balance, glucose metabolism and most likely gonadal function. In order to explore the role of nesfatin-1, we employed a rat model that uses letrozole to induce PCOS. The PCOS rats exhibited increased body weight, irregular cycles, polycystic ovaries characterized by cysts formed from atretic follicles, and a diminished granulosa layer. The expression of both nesfatin-1 mRNA and protein in the ovarian tissues of PCOS group decreased significantly compared to the control group (p < 0.05). Nesfatin-1 expression in peripheral blood also decreased in the PCOS group, in contrast with the control group. Furthermore, we found that nesfatin-1 had a positive correlation with FSH, E 2 and P, whereas it had a negative correlation with LH, and total T (p < 0.05). When taken together, these data indicated that the decrease in nesfatin-1 may contribute to the mechanism governing PCOS, and might provide a new potential target for therapies aimed at treating PCOS.

  16. Decrease in Activities of Selected Rat Liver Enzymes following ...

    African Journals Online (AJOL)

    The effects of the chemical effluent from Soap and Detergent Industry on some rat liver enzymes were investigated. Chemical analyses of both the effluent and tap water which served as the control were carried out before various concentrations of the effluent (5%v/v, 25%v/v, 50%v/v and 100%v/v) were made. The effluent ...

  17. Reduction of lns-1 gene expression and tissue insulin levels in n5-STZ rats

    Directory of Open Access Journals (Sweden)

    Belinda Vargas Guerrero

    2013-01-01

    Full Text Available Objective: The high global incidence of type 2 diabetes has challenged researchers to establish animal models that resemble the chronic stage observed in type 2 diabetes patients. One such model is induced by neonatal streptozotocin (n-STZ administration to rat pups at 0, 2, or 5 days after birth. In this study, we assessed lns-1 gene expression and tissue insulin levels as well as serum concentration of glucose and insulin, insulin resistance, and histological changes of the islets of Langerhans in n5-STZ rats after 20-weeks post-induction. Methods: Wistar rat pups were randomly distributed into a control group and a streptozotocin-induced group. Experimental induction involved a single intraperitoneal injection of streptozotocin (150 mg/kg into neonates at five days after birth. Results: At 20 weeks post-induction, streptozotocin-induced rats exhibited increased serum glucose levels, reduced serum insulin levels, impaired glucose metabolism and insulin resistance compared to control rats. Histologically, streptozotocin-induced rats exhibited atrophic islets, vacuolization, and significantly fewer insulin-positive cells. lns-1 gene expression was significantly decreased in n5-STZ rats in comparison to the control group. Conclusion: Our findings support that the n5-STZ model 20 weeks post-induction represents an appropriate experimental tool to study T2D and to evaluate novel therapeutic agents and targets that involve insulin gene expression and secretion, as well as complications caused by chronic diabetes.

  18. Activity of the hypothalamo-pituitary ovarian axis in hypothyroid rats with or without triiodothyronine replacement

    International Nuclear Information System (INIS)

    Ortega, E.; Rodriguez, E.; Ruiz, E.; Osorio, C.

    1990-01-01

    The hypothalamic pituitary ovarian axis in adult female rats with 131-I induced hypothyroidism was studied before and after triiodothyronine (T3) replacement. Forty days after 131-I, hypothyroid (H) rats showed irregular cycles with predominantly diestrous vaginal smears, atrophied and underweight ovaries, and decreased serum T3, T4, LH and estradiol (E 2 ). T3 replacement restored normal cycles and ovary weight and increased serum E 2 levels above control values, while LH levels remained below the limit of detection of the RIA. The GnRH stimulation test performed on the day that the rats exhibited diestrous vaginal smears elicited a greater increase in FSH than in LH in H rats and a greater increase in LH than in FSH in both H-T3 treated and control rats. The data suggest that the lack of thyroid hormones in adult female rats seems to produce a reversion of sexual hormones to a prepubertal pattern, while T3 treatment restored normal estrous cycles and ovarian function

  19. Long-term Western diet fed apolipoprotein E-deficient rats exhibit only modest early atherosclerotic characteristics

    DEFF Research Database (Denmark)

    Rune, Ida; Rolin, Bidda; Lykkesfeldt, Jens

    2018-01-01

    In the apolipoprotein E-deficient mouse, the gut microbiota has an impact on the development of atherosclerosis, but whether such correlations are also present in rats requires investigation. Therefore, we studied female SD-Apoe tm1sage (Apoe -/-) rats fed either a Western diet or a low-fat control...

  20. White matter damage and glymphatic dysfunction in a model of vascular dementia in rats with no prior vascular pathologies.

    Science.gov (United States)

    Venkat, Poornima; Chopp, Michael; Zacharek, Alex; Cui, Chengcheng; Zhang, Li; Li, Qingjiang; Lu, Mei; Zhang, Talan; Liu, Amy; Chen, Jieli

    2017-02-01

    We investigated cognitive function, axonal/white matter (WM) changes and glymphatic function of vascular dementia using a multiple microinfarction (MMI) model in retired breeder (RB) rats. The MMI model induces significant (p rats subjected to MMI exhibit significant axonal/WM damage identified by decreased myelin thickness, oligodendrocyte progenitor cell numbers, axon density, synaptic protein expression in the cortex and striatum, cortical neuronal branching, and dendritic spine density in the cortex and hippocampus compared with age-matched controls. MMI evokes significant dilation of perivascular spaces as well as water channel dysfunction indicated by decreased Aquaporin-4 expression around blood vessels. MMI-induced glymphatic dysfunction with delayed cerebrospinal fluid penetration into the brain parenchyma via paravascular pathways as well as delayed waste clearance from the brain. The MMI model in RB rats decreases Aquaporin-4 and induces glymphatic dysfunction which may play an important role in MMI-induced axonal/WM damage and cognitive deficits. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Disturbances of perinatal carbohydrate metabolism in rats exposed to methylmercury in utero

    Energy Technology Data Exchange (ETDEWEB)

    Snell, K; Ashby, S L; Barton, S J

    1977-12-01

    Pregnant rats were given a single subcutaneous injection of methylmercuric chloride (at 4 or 8 mg/kg) on the ninth day of gestation. Fetal (2 days prenatal), newborn and postnatal (6 days post partum) animals from the methylmercury-treated mothers were investigated with respect to parameters of carbohydrate metabolism. In the absence of any physical abnormalities, fetal rats exposed to methylmercury in utero showed diminished concentrations of plasma glucose and liver glycogen concentrations and a lower hepatic glucose-6-phosphatase activity compared to control animals. Newborn rats from the methylmercury-treated mothers showed an impairment in glycogen mobilization in the first hours of extra-uterine life which was accompanied by a severe and protracted hypoglycemic response. Postnatal rats exposed to methylmercury in utero exhibited higher liver glycogen concentration and decreased body weights compared to control rats. The results point to a derangement of perinatal carbohydrate metabolism in the offspring of pregnant rats exposed briefly to low doses of methylmercury during gestation (''metabolic teratogenesis''). The postnatal hypoglycemic episode in exposed rats may contribute to the pathogenesis of the neurological disturbances revealed by these animals in later life.

  2. Rapid decrease in brain enkephalin content after low-dose whole-body X-irradiation of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Miyachi, Yukihisa (Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.); Ogawa, Norio; Mori, Akitane

    1992-03-01

    Methionine-eckephalin (ME) contents in the hypothalamus and other rat brain structures were measured immediately after 10 or 20 cGy whole-body X-irradiation. The ME contents of homogenates of the striatum, hypothalamus, midbrain + thalamus, hindbrain and pituitary were assayed radioimmunologically with {sup 125}I. The contents of all the structure, except the pituitary, decreased significantly after 20 cGy irradiation. The reduction in the hypothalamus was transient, ME content gradually recovering with time. These results suggest that the central nervous system of mammals is one of the most radiosensitive organs as judged by changes in stress-induced mediators such as ME. (author).

  3. Neuroinflammation and Behavior in HIV-1 Transgenic Rats Exposed to Chronic Adolescent Stress.

    Science.gov (United States)

    Rowson, Sydney A; Harrell, Constance S; Bekhbat, Mandakh; Gangavelli, Apoorva; Wu, Matthew J; Kelly, Sean D; Reddy, Renuka; Neigh, Gretchen N

    2016-01-01

    Highly active antiretroviral therapy (HAART) has improved prognosis for people living with HIV (PLWH) and dramatically reduced the incidence of AIDS. However, even when viral load is controlled, PLWH develop psychiatric and neurological disorders more frequently than those living without HIV. Adolescents with HIV are particularly susceptible to the development of psychiatric illnesses and neurocognitive impairments. While both psychiatric and neurocognitive disorders have been found to be exacerbated by stress, the extent to which chronic stress and HIV-1 viral proteins interact to impact behavior and relevant neuroinflammatory processes is unknown. Determination of the individual contributions of stress and HIV to neuropsychiatric disorders is heavily confounded in humans. In order to isolate the influence of HIV-1 proteins and chronic stress on behavior and neuroinflammation, we employed the HIV-1 transgenic (Tg) rat model, which expresses HIV-1 proteins with a gag and pol deletion, allowing for viral protein expression without viral replication. This Tg line has been characterized as a model of HAART-controlled HIV-1 infection due to the lack of viral replication but continued presence of HIV-1 proteins. We exposed male and female adolescent HIV-1 Tg rats to a mixed-modality chronic stress paradigm consisting of isolation, social defeat and restraint, and assessed behavior, cerebral vascularization, and neuroinflammatory endpoints. Stress, sex, and presence of the HIV-1 transgene impacted weight gain in adolescent rats. Female HIV-1 Tg rats showed decreases in central tendency during the light cycle in the open field regardless of stress exposure. Both male and female HIV-1 Tg rats exhibited decreased investigative behavior in the novel object recognition task, but no memory impairments. Adolescent stress had no effect on the tested behaviors. Microglia in female HIV-1 Tg rats exhibited a hyper-ramified structure, and gene expression of complement factor B was

  4. Eating high fat chow decreases dopamine clearance in adolescent and adult male rats but selectively enhances the locomotor stimulating effects of cocaine in adolescents.

    Science.gov (United States)

    Baladi, Michelle G; Horton, Rebecca E; Owens, William A; Daws, Lynette C; France, Charles P

    2015-03-24

    Feeding conditions can influence dopamine neurotransmission and impact behavioral and neurochemical effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters the locomotor effects of cocaine and dopamine transporter activity in adolescent (postnatal day 25) and adult (postnatal day 75) male Sprague-Dawley rats. Dose-response curves for cocaine-induced locomotor activity were generated in rats with free access to either standard or high fat chow or restricted access to high fat chow (body weight matched to rats eating standard chow). Compared with eating standard chow, eating high fat chow increased the sensitivity of adolescent, but not adult, rats to the acute effects of cocaine. When tested once per week, sensitization to the locomotor effects of cocaine was enhanced in adolescent rats eating high fat chow compared with adolescent rats eating standard chow. Sensitization to cocaine was not different among feeding conditions in adults. When adolescent rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. As measured by chronoamperometry, dopamine clearance rate in striatum was decreased in both adolescent and adult rats eating high fat chow compared with age-matched rats eating standard chow. These results suggest that high fat diet-induced reductions in dopamine clearance rate do not always correspond to increased sensitivity to the locomotor effects of cocaine, suggesting that mechanisms other than dopamine transporter might play a role. Moreover, in adolescent but not adult rats, eating high fat chow increases sensitivity to cocaine and enhances the sensitization that develops to cocaine. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  5. Swimming reduces the severity of physical and psychological dependence and voluntary morphine consumption in morphine dependent rats.

    Science.gov (United States)

    Fadaei, Atefeh; Gorji, Hossein Miladi; Hosseini, Shahrokh Makvand

    2015-01-15

    Previous studies have indicated that voluntary exercise decreases the severity of the anxiogenic-like behaviors in both morphine-dependent and withdrawn rats. This study examined the effects of regular swimming exercise during the development of dependency and spontaneous morphine withdrawal on the anxiety-depression profile and voluntary morphine consumption in morphine dependent rats. The rats were chronically treated with bi-daily doses (10 mg/kg, at 12h intervals) of morphine over a period of 14 days. The exercising rats were allowed to swim (45 min/d, five days per a week, for 14 or 21 days) during the development of morphine dependence and withdrawal. Then, rats were tested for the severity of morphine dependence, the elevated plus-maze (EPM), sucrose preference test (SPT) and voluntary morphine consumption using a two-bottle choice paradigm in animal models of craving. The results showed that withdrawal signs were decreased in swimmer morphine dependent rats than sedentary rats (Pmorphine-dependent and withdrawn rats exhibited an increase in EPM open arm time and entries (Pmorphine was less in the swimmer morphine-withdrawn rats than the sedentary groups during four periods of the intake of drug (Pmorphine dependence and voluntary morphine consumption with reducing anxiety and depression in morphine-dependent and withdrawn rats. Thus, swimming exercise may be a potential method to ameliorate some of the deleterious behavioral consequences of morphine dependence. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Nootropic and hypophagic effects following long term intake of almonds (Prunus amygdalus) in rats.

    Science.gov (United States)

    Haider, S; Batool, Z; Haleem, D J

    2012-01-01

    Over a period of time researchers have become more interested in finding out the potential of various foods to maintain the general health and to treat diseases. Almonds are a very good source of many nutrients which may help to sharpen the memory and to reduce cardiovascular risk factors. The present study was conducted to evaluate the nootropic effects of almonds. Effect of oral intake of almond was also monitored on food intake and plasma cholesterol levels. Rats were given almond paste orally with the help of feeding tube for 28 days. Memory function in rats was assessed by Elevated Plus Maze (EPM) and Radial Arm Maze (RAM). Brain tryptophan, 5-HT and 5-HIAA were estimated at the end of the treatment by HPLC-EC method. A significant improvement in learning and memory of almond treated rats compared to controls was observed. Almond treated rats also exhibited a significant decrease in food intake and plasma cholesterol levels while the change in growth rate (in terms of percentage) remained comparable between the two groups. Analysis of brain tryptophan (TRP) monoamines exhibited enhanced TRP levels and serotonergic turnover in rat brain following oral intake of almonds. The findings show that almonds possess significant hypophagic and nootropic effects. Results are discussed in context of enhanced 5-HT metabolism following almond administration.

  7. Prenatal exposure to nanosized zinc oxide in rats: neurotoxicity and postnatal impaired learning and memory ability.

    Science.gov (United States)

    Xiaoli, Feng; Junrong, Wu; Xuan, Lai; Yanli, Zhang; Limin, Wei; Jia, Liu; Longquan, Shao

    2017-04-01

    To examine the neurotoxicity of prenatal exposure to ZnO nanoparticles on rat offspring. Pregnant Sprague-Dawley rats were exposed to ZnO nanoparticles (NPs) by gavage. Toxicity was assessed including zinc biodistribution, cerebral histopathology, antioxidant status and learning and memory capability. A significantly elevated concentration of zinc was detected in offspring brains. Transmission electron microscope observations showed abnormal neuron ultrastructures. Histopathologic changes such as decreased proliferation and higher apoptotic death were observed. An obvious imbalanced antioxidant status occurred in brains. Adult experimental offspring exhibited impaired learning and memory behavior in the Morris water maze test compared with control groups. These adverse effects on offspring brain may cause impaired learning and memory capabilities in adulthood, particularly in female rats.

  8. Neonatal citalopram exposure decreases serotonergic fiber density in the olfactory bulb of male but not female adult rats

    Directory of Open Access Journals (Sweden)

    Junlin eZhang

    2013-05-01

    Full Text Available Manipulation of serotonin (5HT during early development has been shown to induce long-lasting morphological changes within the raphe nuclear complex and serotonergic circuitry throughout the brain. Recent studies have demonstrated altered raphe-derived 5HT transporter (SERT immunoreactive axonal expression in several cortical target sites after brief perinatal exposure to selective 5HT reuptake inhibitors such as citalopram (CTM. Since the serotonergic raphe nuclear complex projects to the olfactory bulb (OB and perinatal 5HT disruption has been shown to disrupt olfactory behaviors, the goal of this study was to further investigate such developmental effects in the OB of CTM exposed animals. Male and female rat pups were exposed to CTM from postnatal day 8-21. After animals reach adulthood (>90 days, OB tissue sections were processed immunohistochemically for SERT antiserum. Our data revealed that the density of the SERT immunoreactive fibers decreased ~40% in the OB of CTM exposed male rats, but not female rats. Our findings support a broad and long-lasting change throughout most of the 5HT system, including the OB, after early manipulation of 5HT. Because dysfunction of the early 5HT system has been implicated in the etiology of neurodevelopmental disorders such as autism spectrum disorders (ASDs, these new findings may offer insight into the abnormal olfactory perception often noted in patients with ASD.

  9. Chronic Hyperinsulinaemic Hypoglycaemia in Rats Is Accompanied by Increased Body Weight, Hyperleptinaemia, and Decreased Neuronal Glucose Transporter Levels in the Brain

    Directory of Open Access Journals (Sweden)

    Vivi F. H. Jensen

    2017-01-01

    Full Text Available The brain is vulnerable to hypoglycaemia due to a continuous need of energy substrates to meet its high metabolic demands. Studies have shown that severe acute insulin-induced hypoglycaemia results in oxidative stress in the rat brain, when neuroglycopenia cannot be evaded despite increased levels of cerebral glucose transporters. Compensatory measures in the brain during chronic insulin-induced hypoglycaemia are less well understood. The present study investigated how the brain of nondiabetic rats copes with chronic insulin-induced hypoglycaemia for up to eight weeks. Brain level of different substrate transporters and redox homeostasis was evaluated. Hyperinsulinaemia for 8 weeks consistently lowered blood glucose levels by 30–50% (4–6 mM versus 7–9 mM in controls. The animals had increased food consumption, body weights, and hyperleptinaemia. During infusion, protein levels of the brain neuronal glucose transporter were decreased, whereas levels of lipid peroxidation products were unchanged. Discontinued infusion was followed by transient systemic hyperglycaemia and decreased food consumption and body weight. After 4 weeks, plasma levels of lipid peroxidation products were increased, possibly as a consequence of hyperglycaemia-induced oxidative stress. The present data suggests that chronic moderate hyperinsulinaemic hypoglycaemia causes increased body weight and hyperleptinaemia. This is accompanied by decreased neuronal glucose transporter levels, which may be leptin-induced.

  10. Soluble Fermentable Dietary Fibre (Pectin) Decreases Caloric Intake, Adiposity and Lipidaemia in High-Fat Diet-Induced Obese Rats

    Science.gov (United States)

    Adam, Clare L.; Thomson, Lynn M.; Williams, Patricia A.; Ross, Alexander W.

    2015-01-01

    Consumption of a high fat diet promotes obesity and poor metabolic health, both of which may be improved by decreasing caloric intake. Satiety-inducing ingredients such as dietary fibre may be beneficial and this study investigates in diet-induced obese (DIO) rats the effects of high or low fat diet with or without soluble fermentable fibre (pectin). In two independently replicated experiments, young adult male DIO rats that had been reared on high fat diet (HF; 45% energy from fat) were given HF, low fat diet (LF; 10% energy from fat), HF with 10% w/w pectin (HF+P), or LF with 10% w/w pectin (LF+P) ad libitum for 4 weeks (n = 8/group/experiment). Food intake, body weight, body composition (by magnetic resonance imaging), plasma hormones, and plasma and liver lipid concentrations were measured. Caloric intake and body weight gain were greatest in HF, lower in LF and HF+P, and lowest in the LF+P group. Body fat mass increased in HF, was maintained in LF, but decreased significantly in LF+P and HF+P groups. Final plasma leptin, insulin, total cholesterol and triglycerides were lower, and plasma satiety hormone PYY concentrations were higher, in LF+P and HF+P than in LF and HF groups, respectively. Total fat and triglyceride concentrations in liver were greatest in HF, lower in LF and HF+P, and lowest in the LF+P group. Therefore, the inclusion of soluble fibre in a high fat (or low fat) diet promoted increased satiety and decreased caloric intake, weight gain, adiposity, lipidaemia, leptinaemia and insulinaemia. These data support the potential of fermentable dietary fibre for weight loss and improving metabolic health in obesity. PMID:26447990

  11. Oxytocin decreases colonic motility of cold water stressed rats via oxytocin receptors.

    Science.gov (United States)

    Yang, Xiao; Xi, Tao-Fang; Li, Yu-Xian; Wang, Hai-Hong; Qin, Ying; Zhang, Jie-Ping; Cai, Wen-Ting; Huang, Meng-Ting; Shen, Ji-Qiao; Fan, Xi-Min; Shi, Xuan-Zheng; Xie, Dong-Ping

    2014-08-21

    To investigate whether cold water intake into the stomach affects colonic motility and the involvement of the oxytocin-oxytocin receptor pathway in rats. Female Sprague Dawley rats were used and some of them were ovariectomized. The rats were subjected to gastric instillation with cold (0-4 °C, cold group) or room temperature (20-25 °C, control group) saline for 14 consecutive days. Colon transit was determined with a bead inserted into the colon. Colonic longitudinal muscle strips were prepared to investigate the response to oxytocin in vitro. Plasma concentration of oxytocin was detected by ELISA. Oxytocin receptor expression was investigated by Western blot analysis. Immunohistochemistry was used to locate oxytocin receptors. Colon transit was slower in the cold group than in the control group (P cold water intake (0.69 ± 0.08 vs 0.88 ± 0.16, P receptors were located in the myenteric plexus, and their expression was up-regulated in the cold group (P Cold water intake increased blood concentration of oxytocin, but this effect was attenuated in ovariectomized rats (286.99 ± 83.72 pg/mL vs 100.56 ± 92.71 pg/mL, P Cold water intake inhibits colonic motility partially through oxytocin-oxytocin receptor signaling in the myenteric nervous system pathway, which is estrogen dependent.

  12. Selective activation of estrogen receptors, ERα and GPER-1, rapidly decreases food intake in female rats.

    Science.gov (United States)

    Butler, Michael J; Hildebrandt, Ryan P; Eckel, Lisa A

    2018-05-25

    Many of estradiol's behavioral effects are mediated, at least partially, via extra-nuclear estradiol signaling. Here, we investigated whether two estrogen receptor (ER) agonists, targeting ERα and G protein-coupled ER-1 (GPER-1), can promote rapid anorexigenic effects. Food intake was measured in ovariectomized (OVX) rats at 1, 2, 4, and 22 h following subcutaneous (s.c.) injection of an ERα agonist (PPT; 0-200 μg/kg), a GPER-1 agonist (G-1; 0-1600 μg/kg), and a GPER-1 antagonist (G-36; 0-80 μg/kg). To investigate possible cross-talk between ERα and GPER-1, we examined whether GPER-1 blockade affects the anorexigenic effect of PPT. Feeding was monitored in OVX rats that received s.c. injections of vehicle or 40 μg/kg G-36 followed 30 min later by s.c. injections of vehicle or 200 μg/kg PPT. Selective activation of ERα and GPER-1 alone decreased food intake within 1 h of drug treatment, and feeding remained suppressed for 22 h following PPT treatment and 4 h following G-1 treatment. Acute administration of G-36 alone did not suppress feeding at any time point. Blockade of GPER-1 attenuated PPT's rapid (within 1 h) anorexigenic effect, but did not modulate PPT's ability to suppress food intake at 2, 4 and 22 h. These findings demonstrate that selective activation of ERα produces a rapid (within 1 h) decrease in food intake that is best explained by a non-genomic signaling pathway and thus implicates the involvement of extra-nuclear ERα. Our findings also provide evidence that activation of GPER-1 is both sufficient to suppress feeding and necessary for PPT's rapid anorexigenic effect. Copyright © 2017. Published by Elsevier Inc.

  13. The petit rat (pet/pet), a new semilethal mutant dwarf rat with thymic and testicular anomalies.

    Science.gov (United States)

    Chiba, Junko; Suzuki, Katsushi; Suzuki, Hiroetsu

    2008-12-01

    The petit rat (pet/pet) is a recently discovered semilethal mutant dwarf. The neonatal pet/pet rats had a low body weight and small thymus and testis. During the first 3 d after birth, 50% of the male and 80% of the female pet/pet pups were lost or found dead. Surviving pet/pet rats showed marked retardation of postnatal growth, and their body weights were 41% (female rats) and 32% (male rats) of those of normal rats at the adult stage. The pet/pet rats exhibited proportional dwarfism, and their longitudinal bones were shorter than those of controls without skeletal malformations. Most organs of male pet/pet rats, especially the thymus, testis, adipose tissue surrounding the kidney, and accessory sex organs, weighed markedly less at 140 d of age than did those of their normal counterparts. The thymus of pet/pet rats was small with abnormal thymic follicles. Testes from pet/pet rats exhibited 2 patterns of abnormal histology. Spermatogenesis was present in testes that were only slightly anomalous, but the seminiferous tubules were reduced in diameter. In severely affected testes, most of the seminiferous tubules showed degeneration, and interstitial tissue was increased. Plasma growth hormone concentrations did not differ between pet/pet and normal male rats. The dwarf phenotype of pet/pet rats was inherited as an autosomal recessive trait. These results indicate that the pet/pet rat has a semilethal growth-hormone-independent dwarf phenotype that is accompanied by thymic and testicular anomalies and low birth weight.

  14. Preventive and Therapeutic Effects of Propolis in Gamma Irradiated Rats

    International Nuclear Information System (INIS)

    Hamza, R.G.; El-Shahat, A.N.

    2011-01-01

    Ionizing radiation is known to stimulate the generation of oxygen radicals which destabilize organic molecules resulting in a decrease of the system's antioxidant potential. Propolis (bee glue) is a complex mixture of natural substances that exhibits a broad spectrum of biological activities. As the possibility exists that it may exert a radio protections role, the present study aimed to examine the preventive and therapeutic effects of propolis on the gamma irradiation-induced changes in antioxidant status and certain biochemical parameters. HPLC chromatography for analysis of propolis showed that the number of identified phenols was 6 compounds (natural antioxidants). Male albino rats were exposed to 6 Gy of gamma radiation. The efficiency of propolis was evaluated when propolis was administered orally to rats at a dose of 200 mg/kg as follow: non-irradiated rats received orally propolis extract for 6 weeks (positive control) and rats received orally propolis extract for 3 weeks before or after gamma irradiation. The obtained results revealed that propolis given to rats before gamma irradiation protect the hazardous effects of gamma irradiation. In addition, administration of propolis to gamma irradiated rats caused significant enhancement in hepatic antioxidant enzymes (glutathion reductase; GR and catalase; CAT) and total antioxidant capacity associated with a remarkable decrease in the level of lipid peroxidation (TBARS). Also, it significantly reduced the changes induced by gamma irradiation in the serum levels of glucose and liver enzymes; aminotransferases (AST, ALT) and alkaline phosphatase (ALP). In addition, a significant improvement was observed in the serum levels of total cholesterol (TC), triglycerides (TG), low density lipoprotein- cholesterol (LDL-C) and high density lipoprotein-cholesterol (HDL-C). In conclusion, the positive results obtained in the gamma irradiated rats given propolis indicated that propolis could be considered as effective

  15. Phyllanthus Niruri Standardized Extract Alleviates the Progression of Non-Alcoholic Fatty Liver Disease and Decreases Atherosclerotic Risk in Sprague–Dawley Rats

    Directory of Open Access Journals (Sweden)

    Raghdaa Hamdan Al Zarzour

    2017-07-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is one of the major global health issues, strongly correlated with insulin resistance, obesity and oxidative stress. The current study aimed to evaluate anti-NAFLD effects of three different extracts of Phyllanthus niruri (P. niruri. NAFLD was induced in male Sprague–Dawley rats using a special high-fat diet (HFD. A 50% methanolic extract (50% ME exhibited the highest inhibitory effect against NAFLD progression. It significantly reduced hepatomegaly (16% and visceral fat weight (22%, decreased NAFLD score, prevented fibrosis, and reduced serum total cholesterol (TC (48%, low-density lipoprotein (LDL (65%, free fatty acids (FFAs (25%, alanine aminotransferase (ALT (45%, alkaline phosphatase (ALP (38%, insulin concentration (67%, homeostatic model assessment of insulin resistance (HOMA-IR (73%, serum atherogenic ratios TC/high-density lipoprotein (HDL (29%, LDL/HDL (66% and (TC–HDL/HDL (64%, hepatic content of cholesterol (43%, triglyceride (29% and malondialdehyde (MDA (40% compared to a non-treated HFD group. In vitro, 50% ME of P. niruri inhibited α-glucosidase, pancreatic lipase enzymes and cholesterol micellization. It also had higher total phenolic and total flavonoid contents compared to other extracts. Ellagic acid and phyllanthin were identified as major compounds. These results suggest that P. niruri could be further developed as a novel natural hepatoprotective agent against NAFLD and atherosclerosis.

  16. Effect of x-irradiation in rats bearing walker-256-carcinosarcoma and normal rats

    International Nuclear Information System (INIS)

    Ehara, Kazuhiko

    1978-01-01

    Serum protein fractions and total proteins were studied with bloods obtained from the rats exposed each to the partial-, whole-bodies and the transplanted tumors (Walker-256-carcinosarcoma transplanted in the right hind leg). The electrophoretic variation induced in the sera of tumor-bearing rats (Group II), and the content of total proteins decreased. Early irradiation to the tumor part of rats less induced the variations of the electrophoretic pattern and the decrease of the amount of serum total proteins. When the distant metastasis appeared during irradiation treatment, the electrophoretic patterns and content of total proteins changed proportionally to the variation in sera of Group II. On the other hand, the γ-globulin (G) fraction increased in the long-term survival rat. The separation of the rat serum β-G into two peaks of β 1 - and β 2 -G was shown only in Group IV (late irradiation to the right hind leg). This finding supposed that some factors involve in the sera of rats with transplanted primary tumor grown up to a fixed size and guessed the appearance of the distant metastasis during x-irradiation. The percentages of the albumin and γ-G decreased slightly and those of the α 1 -, α 2 - and β-G increased slightly in the rats with 300 rad partial-body (the right hind leg) x-irradiation daily for 20 days. The remarkable decrease of the albumin and γ-G, the increase of the α 1 - and β-G, the marked increase of the α 2 -G and the decrease of serum total proteins were demonstrated for the sera of rats with 1,000 rad whole-body x-irradiation at a time. These phenomena seem to be related to the destructive and reticuloendothelial injury by the exposure. (auth.)

  17. Placental oxidative stress and decreased global DNA methylation are corrected by copper in the Cohen diabetic rat

    Energy Technology Data Exchange (ETDEWEB)

    Ergaz, Zivanit, E-mail: zivanit@hadassah.org.il [Hebrew University Hadassah Medical School, Jerusalem (Israel); Guillemin, Claire [Department of Pharmacology and Therapeutics, McGill University, Montreal (Canada); Neeman-azulay, Meytal; Weinstein-Fudim, Liza [Hebrew University Hadassah Medical School, Jerusalem (Israel); Stodgell, Christopher J.; Miller, Richard K. [Department of Obstetrics and Gynecology, University of Rochester, Rochester (United States); Szyf, Moshe [Department of Pharmacology and Therapeutics, McGill University, Montreal (Canada); Ornoy, Asher [Hebrew University Hadassah Medical School, Jerusalem (Israel)

    2014-05-01

    Fetal Growth Restriction (FGR) is a leading cause for long term morbidity. The Cohen diabetic sensitive rats (CDs), originating from Wistar, develop overt diabetes when fed high sucrose low copper diet (HSD) while the original outbred Sabra strain do not. HSD induced FGR and fetal oxidative stress, more prominent in the CDs, that was alleviated more effectively by copper than by the anti-oxidant vitamins C and E. Our aim was to evaluate the impact of copper or the anti-oxidant Tempol on placental size, protein content, oxidative stress, apoptosis and total DNA methylation. Animals were mated following one month of HSD or regular chow diet and supplemented throughout pregnancy with either 0, 1 or 2 ppm of copper sulfate or Tempol in their drinking water. Placental weight on the 21st day of pregnancy decreased in dams fed HSD and improved upon copper supplementation. Placental/fetal weight ratio increased among the CDs. Protein content decreased in Sabra but increased in CDs fed HSD. Oxidative stress biochemical markers improved upon copper supplementation; immunohistochemistry for oxidative stress markers was similar between strains and diets. Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. Placental global DNA methylation was decreased only among the CDs dams fed HSD. We conclude that FGR in this model is associated with smaller placentae, reduced DNA placental methylation, and increased oxidative stress that normalized with copper supplementation. DNA hypomethylation makes our model a unique method for investigating genes associated with growth, oxidative stress, hypoxia and copper. - Highlights: • Sensitive Cohen diabetic rats (CDs) had small placentae and growth restricted fetuses. • CDs dams fed high sucrose low copper diet had placental global DNA hypomethylation. • Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. • Oxidative stress parameters improved by Tempol and resolved by copper

  18. Placental oxidative stress and decreased global DNA methylation are corrected by copper in the Cohen diabetic rat

    International Nuclear Information System (INIS)

    Ergaz, Zivanit; Guillemin, Claire; Neeman-azulay, Meytal; Weinstein-Fudim, Liza; Stodgell, Christopher J.; Miller, Richard K.; Szyf, Moshe; Ornoy, Asher

    2014-01-01

    Fetal Growth Restriction (FGR) is a leading cause for long term morbidity. The Cohen diabetic sensitive rats (CDs), originating from Wistar, develop overt diabetes when fed high sucrose low copper diet (HSD) while the original outbred Sabra strain do not. HSD induced FGR and fetal oxidative stress, more prominent in the CDs, that was alleviated more effectively by copper than by the anti-oxidant vitamins C and E. Our aim was to evaluate the impact of copper or the anti-oxidant Tempol on placental size, protein content, oxidative stress, apoptosis and total DNA methylation. Animals were mated following one month of HSD or regular chow diet and supplemented throughout pregnancy with either 0, 1 or 2 ppm of copper sulfate or Tempol in their drinking water. Placental weight on the 21st day of pregnancy decreased in dams fed HSD and improved upon copper supplementation. Placental/fetal weight ratio increased among the CDs. Protein content decreased in Sabra but increased in CDs fed HSD. Oxidative stress biochemical markers improved upon copper supplementation; immunohistochemistry for oxidative stress markers was similar between strains and diets. Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. Placental global DNA methylation was decreased only among the CDs dams fed HSD. We conclude that FGR in this model is associated with smaller placentae, reduced DNA placental methylation, and increased oxidative stress that normalized with copper supplementation. DNA hypomethylation makes our model a unique method for investigating genes associated with growth, oxidative stress, hypoxia and copper. - Highlights: • Sensitive Cohen diabetic rats (CDs) had small placentae and growth restricted fetuses. • CDs dams fed high sucrose low copper diet had placental global DNA hypomethylation. • Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. • Oxidative stress parameters improved by Tempol and resolved by copper

  19. Protective effect of lemongrass oil against dexamethasone induced hyperlipidemia in rats: possible role of decreased lecithin cholesterol acetyl transferase activity.

    Science.gov (United States)

    Kumar, V R Santhosh; Inamdar, Md Naseeruddin; Nayeemunnisa; Viswanatha, G L

    2011-08-01

    To evaluate the anti-hyperlipidemic activity of lemongrass oil against in dexamethasone induced hyperlipidemia in rats. Administration of dexamethasone was given at 10 mg/kg, sc. to the adult rats for 8 d induces hyperlipidemia characterized by marked increase in serum cholesterol and triglyceride levels along with increase in atherogenic index. Lemongrass oil (100 and 200 mg/kg, po.) treatment has showed significant inhibition against dexamethasone hyperlipidemia by maintaining the serum levels of cholesterol, triglycerides and atherogenic index near to the normal levels and the antihyperlipidemic effect of the lemongross oil was comparable with atorvastatin 10 mg/kg, po. The possible mechanism may be associated with decrease in lecithin cholesterol acetyl transferase (LCAT) activity. These results suggested that Lemon gross oil possess significant anti-hyperlipidemic activity. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  20. Tangzhining exhibits a protective effect against cognitive dysfunction in diabetic rats

    OpenAIRE

    Song, Xiaomei; Wang, Wei; Kang, Yaguo; Zhang, Xin; Jiang, Yi; Yue, Zhenggang; Tang, Zhishu

    2015-01-01

    Previous studies have suggested that diabetes significantly impairs the cognitive function. Tangzhining (TZN), as a kind of Traditional Chinese Medicine (TCM), has been widely used to treat diabetes in China. However, the effect of TZN on treatment of diabetes-induced learning and memory deficits has not been well documented. The present study was to investigate the effect of TZN on diabetes-induced learning and memory deficits and delineate the underlying molecular mechanism. Diabetic rats w...

  1. Knocking down amygdalar PTP1B in diet-induced obese rats improves insulin signaling/action, decreases adiposity and may alter anxiety behavior.

    Science.gov (United States)

    Mendes, Natalia Ferreira; Castro, Gisele; Guadagnini, Dioze; Tobar, Natalia; Cognuck, Susana Quiros; Elias, Lucila Leico Kagohara; Boer, Patricia Aline; Prada, Patricia Oliveira

    2017-05-01

    Protein tyrosine phosphatase 1B (PTP1B) has been extensively implicated in the regulation of body weight, food intake, and energy expenditure. The role of PTP1B appears to be cell and brain region dependent. Herein, we demonstrated that chronic high-fat feeding enhanced PTP1B expression in the central nucleus of the amygdala (CeA) of rats compared to rats on chow. Knocking down PTP1B with oligonucleotide antisense (ASO) decreased its expression and was sufficient to improve the anorexigenic effect of insulin through IR/Akt signaling in the CeA. ASO treatment reduces body weight, fat mass, serum leptin levels, and food intake and also increases energy expenditure, without altering ambulatory activity. These changes were explained, at least in part, by the improvement of insulin sensitivity in the CeA, decreasing NPY and enhancing oxytocin expression. There was a slight decline in fasting blood glucose and serum insulin levels possibly due to leanness in rats treated with ASO. Surprisingly, the elevated plus maze test revealed an anxiolytic behavior after reduction of PTP1B in the CeA. Thus, the present study highlights the deleterious role that the amygdalar PTP1B has on energy homeostasis in obesity states. The reduction of PTP1B in the CeA may be a strategy for the treatment of obesity, insulin resistance and anxiety disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Rats with congenital learned helplessness respond less to sucrose but show no deficits in activity or learning.

    Science.gov (United States)

    Vollmayr, Barbara; Bachteler, Daniel; Vengeliene, Valentina; Gass, Peter; Spanagel, Rainer; Henn, Fritz

    2004-04-02

    Inbred rat strains for congenital learned helplessness (cLH) and for congenital resistance to learned helplessness (cNLH) were investigated as a model to study genetic predisposition to major depression. Congenitally helpless rats respond less to sucrose under a progressive ratio schedule. This is not confounded by locomotor hypoactivity: in contrast, cLH rats show a slight hyperactivity during the first 5 min of an open field test. cLH rats acquire operant responding to sucrose as readily as cNLH rats and exhibit normal memory acquisition and retrieval in the Morris water maze, thus ruling out general learning deficits as the cause of the decreased response to sucrose. Reduced total responses and reduced breaking points for sucrose in the cLH strain argue for anhedonia, which is an analogue to loss of pleasure essential for the diagnosis of major depressive episodes, and thus confirm the validity of congenitally learned helpless rats as a model of major depression.

  3. Mild Moxibustion Decreases the Expression of Prokineticin 2 and Prokineticin Receptor 2 in the Colon and Spinal Cord of Rats with Irritable Bowel Syndrome

    Directory of Open Access Journals (Sweden)

    Cili Zhou

    2014-01-01

    Full Text Available It has been proven that prokineticin 2 (PK2 and its receptor PKR2 play an important role in hyperalgesia, while mild moxibustion can relieve visceral hypersensitivity in a rat model of irritable bowel syndrome (IBS. The goal of the present study was to determine the effects of mild moxibustion on the expression of PK2 and PKR2 in colon and spinal cord in IBS rat model, which was induced by colorectal distension using inflatable balloons. After mild moxibustion treatment, abdominal withdrawal reflex (AWR scores were assessed by colorectal distension; protein and mRNA expression of PK2 and PKR2 in rat colon and spinal cord was determined by immunohistochemistry and fluorescence quantitative PCR. Compared with normal rats, the AWR scores of rats and the expressions of PK2/PKR2 proteins and mRNAs in colon and spinal cord tissue were significantly increased in the model group; compared with the model group, the AWR scores of rats and the expressions of PK2/PKR2 proteins and mRNAs in colon and spinal cord tissue were significantly decreased in the mild moxibustion group. These findings suggest that the analgesia effect of mild moxibustion may be associated with the reduction of the abnormally increased expression of the PK2/PKR2 proteins and mRNAs in the colon and spinal cord.

  4. Intraperitoneal curcumin decreased lung, renal and heart injury in abdominal aorta ischemia/reperfusion model in rat.

    Science.gov (United States)

    Aydin, Mehmet Salih; Caliskan, Ahmet; Kocarslan, Aydemir; Kocarslan, Sezen; Yildiz, Ali; Günay, Samil; Savik, Emin; Hazar, Abdussemet; Yalcin, Funda

    2014-01-01

    Previous studies have demonstrated that curcumin (CUR) has protective effects against ischemia reperfusion injury to various organs. We aimed to determine whether CUR has favorable effects on tissues and oxidative stress in abdominal aorta ischemia-reperfusion injury. Thirty rats were divided into three groups as sham, control and treatment (CUR) group. Control and CUR groups underwent abdominal aorta ischemia for 60 min followed by a 120 min period of reperfusion. In the CUR group, CUR was given 5 min before reperfusion at a dose of 200 mg/kg via an intraperitoneal route. Total antioxidant capacity (TAC), total oxidative status (TOS), and oxidative stress index (OSI) in blood serum were measured, and lung, renal and heart tissue histopathology were evaluated with light microscopy. TOS and OSI activity in blood samples were statistically decreased in sham and CUR groups compared to the control group (p OSI). Renal, lung, heart injury scores of sham and CUR groups were statistically decreased compared to control group (p model. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  5. Rhynchophylla total alkaloid rescues autophagy, decreases oxidative stress and improves endothelial vasodilation in spontaneous hypertensive rats.

    Science.gov (United States)

    Li, Chao; Jiang, Feng; Li, Yun-Lun; Jiang, Yue-Hua; Yang, Wen-Qing; Sheng, Jie; Xu, Wen-Juan; Zhu, Qing-Jun

    2018-03-01

    Autophagy plays an important role in alleviating oxidative stress and stabilizing atherosclerotic plaques. However, the potential role of autophagy in endothelial vasodilation function has rarely been studied. This study aimed to investigate whether rhynchophylla total alkaloid (RTA) has a positive role in enhancing autophagy through decreasing oxidative stress, and improving endothelial vasodilation. In oxidized low-density lipoprotein (ox-LDL)-treated human umbilical vein endothelial cells (HUVECs), RTA (200 mg/L) significantly suppressed ox-LDL-induced oxidative stress through rescuing autophagy, and decreased cell apoptosis. In spontaneous hypertensive rats (SHR), administration of RTA (50 mg·kg -1 ·d -1 , ip, for 6 weeks) improved endothelin-dependent vasodilation of thoracic aorta rings. Furthermore, RTA administration significantly increased the antioxidant capacity and alleviated oxidative stress through enhancing autophagy in SHR. In ox-LDL-treated HUVECs, we found that the promotion of autophagy by RTA resulted in activation of the AMP-activated protein kinase (AMPK) signaling pathway. Our results show that RTA treatment rescues the ox-LDL-induced autophagy impairment in HUVECs and improves endothelium-dependent vasodilation function in SHR.

  6. Long-term AICAR administration reduces metabolic disturbances and lowers blood pressure in rats displaying features of the insulin resistance syndrome

    DEFF Research Database (Denmark)

    Buhl, Esben Selmer; Jessen, Niels; Pold, Rasmus

    2002-01-01

    , upregulate mitochondrial enzymes in skeletal muscles, and decrease the content of intra-abdominal fat. Furthermore, acute AICAR exposure has been found to reduce sterol and fatty acid synthesis in rat hepatocytes incubated in vitro as well as suppress endogenous glucose production in rats under euglycemic......-treated animals exhibited a tendency toward decreased intra-abdominal fat content. Furthermore, AICAR administration normalized the oral glucose tolerance test and decreased fasting concentrations of glucose and insulin close to the level of the lean animals. Finally, in line with previous findings, AICAR...... treatment was also found to enhance GLUT4 protein expression and to increase maximally insulin-stimulated glucose transport in primarily white fast-twitch muscles. Our data provide strong evidence that long-term administration of AICAR improves glucose tolerance, improves the lipid profile, and reduces...

  7. Wheel running decreases the positive reinforcing effects of heroin.

    Science.gov (United States)

    Smith, Mark A; Pitts, Elizabeth G

    2012-01-01

    The purpose of this study was to examine the effects of voluntary wheel running on the positive reinforcing effects of heroin in rats with an established history of drug self-administration. Rats were assigned to sedentary (no wheel) and exercise (wheel) conditions and trained to self-administer cocaine under positive reinforcement contingencies. Rats acquiring cocaine self-administration were then tested with various doses of heroin during daily test sessions. Sedentary rats self-administered more heroin than exercising rats, and this effect was greatest at low and moderate doses of heroin. These data suggest that voluntary wheel running decreases the positive reinforcing effects of heroin.

  8. [CHANGE OF CHARACTER OF INTERSYSTEMIC INTERACTIONS IN NEWBORN RAT PUPS UNDER CONDITIONS OF A DECREASE OF MOTOR ACTIVITY].

    Science.gov (United States)

    Sizonov, V A; Dmitrieva, L E; Kuznetsov, S V

    2015-01-01

    Interaction of slow-wave.rhythmic components of cardiac, respiratory.and motor activity was investigated in newborn rat pups on the first day after birth under normal conditions and after pharmacological depression of spontaneous periodic motor activity (SPMA) produced by injecting myocuran (myanesin) at low (100 mg/pg, i/p) and maximal (235 mg/pg, i/p) dosages. The data obtained allow to infer that in rat pups after birth the intersystemic interactions are realized mainly via slow-wave oscillations of about-one- and many-minute ranges whereas the rhythms of decasecond range do not play a significant role in integrative processes. Injection of miocuran at a dose causing no muscle relaxation and no inhibition of motor activity produces changes of the cardiac and respiratory rhythms as well as a transitory decrease of the magnitude of coordinate relations mediated by the rhythms of about-one- and many-minute ranges. The consequences of muscle relaxant injection were found to be more significant for intersystemic interactions with participation of the respiratory system. An increase of the dosage and, correspondingly, the total inhibition of SPMA is accompanied by reduction of the slow-wave components from the pattern of cardiac and respiratory rhythms. The cardiorespiratory interactions, more expressed in intact rat pups, are reduced in the about-one- and many-minute ranges of modulation whereas in the decasecond range of modulation they are slightly increased. Key words: early ontogenesis, intersystemic interactions, cardiac rhythm, respiration, motor activity, myocuran (myanesin).

  9. Effect of whole-body gamma radiation on tissue sulfhydryl contents in experimental rats

    International Nuclear Information System (INIS)

    Sarkar, S.R.; Singh, L.R.; Uniyal, B.P.

    1985-01-01

    It has been postulated that vital constituents of cell membranes concerned with the maintenance of cellular integrity are affected by ionizing radiation. Sulfhydryl contents, which form an integral component of cell membranes play vital roles in maintaining cellular integrity. The purpose was to evaluate non-protein and protein sulfhydryl contents in tissues of irradiated rats. Adult male Sprague Dawley rats were exposed to whole-body gamma irradiation of 4 Gy and 10 Gy and non-protein and protein sulfhydryl contents of blood, heart and spleen were studied on postirradiation day 1, 3 and 6. Both groups of experimental rats exhibited unchanged blood non-protein sulfhydryl contents on first day after irradiation with significant diminution subsequently. In contrast, blood protein sulfhydryl groups of both groups of rats were increased on first day post exposure, which became normal on sixth day. Myocardial non-protein and protein sulfhydryl contents of both groups of rats remained unchanged in the initial stage of radiation exposure indicating radioresistance nature of rat heart. Both groups of rats demonstrated biphasic nature of non-protein sulfhydryl contents in spleen, asrevealed by initial increase with subsequent decrease. Protein sulfhydryl contents of rats of 4 Gy group showed significant diminution post exposure throughout, while the same of 10 Gy behaved in opposite way. (author)

  10. Social structure predicts genital morphology in African mole-rats.

    Directory of Open Access Journals (Sweden)

    Marianne L Seney

    2009-10-01

    Full Text Available African mole-rats (Bathyergidae, Rodentia exhibit a wide range of social structures, from solitary to eusocial. We previously found a lack of sex differences in the external genitalia and morphology of the perineal muscles associated with the phallus in the eusocial naked mole-rat. This was quite surprising, as the external genitalia and perineal muscles are sexually dimorphic in all other mammals examined. We hypothesized that the lack of sex differences in naked mole-rats might be related to their unusual social structure.We compared the genitalia and perineal muscles in three African mole-rat species: the naked mole-rat, the solitary silvery mole-rat, and the Damaraland mole-rat, a species considered to be eusocial, but with less reproductive skew than naked mole-rats. Our findings support a relationship between social structure, mating system, and sexual differentiation. Naked mole-rats lack sex differences in genitalia and perineal morphology, silvery mole-rats exhibit sex differences, and Damaraland mole-rats are intermediate.The lack of sex differences in naked mole-rats is not an attribute of all African mole-rats, but appears to have evolved in relation to their unusual social structure and reproductive biology.

  11. Social structure predicts genital morphology in African mole-rats.

    Science.gov (United States)

    Seney, Marianne L; Kelly, Diane A; Goldman, Bruce D; Sumbera, Radim; Forger, Nancy G

    2009-10-15

    African mole-rats (Bathyergidae, Rodentia) exhibit a wide range of social structures, from solitary to eusocial. We previously found a lack of sex differences in the external genitalia and morphology of the perineal muscles associated with the phallus in the eusocial naked mole-rat. This was quite surprising, as the external genitalia and perineal muscles are sexually dimorphic in all other mammals examined. We hypothesized that the lack of sex differences in naked mole-rats might be related to their unusual social structure. We compared the genitalia and perineal muscles in three African mole-rat species: the naked mole-rat, the solitary silvery mole-rat, and the Damaraland mole-rat, a species considered to be eusocial, but with less reproductive skew than naked mole-rats. Our findings support a relationship between social structure, mating system, and sexual differentiation. Naked mole-rats lack sex differences in genitalia and perineal morphology, silvery mole-rats exhibit sex differences, and Damaraland mole-rats are intermediate. The lack of sex differences in naked mole-rats is not an attribute of all African mole-rats, but appears to have evolved in relation to their unusual social structure and reproductive biology.

  12. Perinatal methadone exposure produces physical dependence and altered behavioral development in the rat.

    Science.gov (United States)

    Kunko, P M; Smith, J A; Wallace, M J; Maher, J R; Saady, J J; Robinson, S E

    1996-06-01

    Pregnant rats were implanted with osmotic minipumps containing either methadone hydrochloride (9 mg/kg/day) or sterile water. Their offspring were cross-fostered so that the following prenatal/postnatal exposure groups were obtained: water/water, methadone/water, water/methadone and methadone/methadone. Methadone slightly reduced litter size, particularly the number of male offspring, and reduced litter birth weight. The induction or maintenance of physical dependence in the postnatal methadone exposure groups was confirmed by an experiment in which PD19 pups were challenged with naloxone (1 mg/kg, s.c.). Methadone concentrations were assayed in pup brain on postnatal days 4, 10 and 22. Postnatal exposure to methadone via maternal milk produced measurable levels of methadone which decreased with age. Neuromuscular and physical development were assessed. Exposure to methadone accelerated acquisition of the righting reflex, but tended to delay the acquisition of the negative geotaxic response. Postnatal exposure to methadone was associated with decreased somatic growth as measured through postnatal day 21. The older pups (postnatal day 21) exposed to methadone exhibited variations in activity levels: pups exposed to methadone both prenatally and postnatally exhibited the least amount of spontaneous locomotor activity and pups exposed only postnatally exhibited the most activity. Therefore, it is possible to induce and/or maintain physical dependence via lactation in rat pups fostered to methadone-treated dams. Perinatal exposure to methadone by this route produces several subtle disruptions of pup development in the absence of gross maternal or fetal toxicity.

  13. Biofabricated Structures Reconstruct Functional Urinary Bladders in Radiation-injured Rat Bladders.

    Science.gov (United States)

    Imamura, Tetsuya; Shimamura, Mitsuru; Ogawa, Teruyuki; Minagawa, Tomonori; Nagai, Takashi; Silwal Gautam, Sudha; Ishizuka, Osamu

    2018-05-08

    The ability to repair damaged urinary bladders through the application of bone marrow-derived cells is in the earliest stages of development. We investigated the application of bone marrow-derived cells to repair radiation-injured bladders. We used a three-dimensional (3D) bioprinting robot system to biofabricate bone marrow-derived cell structures. We then determined if the biofabricated structures could restore the tissues and functions of radiation-injured bladders. The bladders of female 10-week-old Sprague-Dawley (SD) rats were irradiated with 2-Gy once a week for 5 weeks. Adherent and proliferating bone marrow-derived cells harvested from the femurs of male 17-week-old green fluorescence protein-transfected Tg-SD rats were cultured in collagen-coated flasks. Bone marrow-derived cell spheroids were formed in 96-well plates. Three layers of spheroids were assembled by the bioprinter onto a 9x9 microneedle array. The assembled spheroids were perfusion cultured for 7 days, and then the microneedle array was removed. Two weeks after the last radiation treatment, the biofabricated structures were transplanted into an incision on the anterior wall of the bladders (n=10). Control rats received the same surgery but without the biofabricated structures (sham-structure, n=12). At 2 and 4 weeks after surgery, the sham-structure control bladder tissues exhibited disorganized smooth muscle layers, decreased nerve cells, and significant fibrosis with increased presence of fibrosis-marker P4HB-positive cells and hypoxia-marker HIF1α-positive cells. The transplanted structures survived within the recipient tissues, and blood vessels extended within them from the recipient tissues. The bone marrow-derived cells in the structures differentiated into smooth muscle cells and formed smooth muscle clusters. The recipient tissues near the transplanted structures had distinct smooth muscle layers and reconstructed nerve cells, and only minimal fibrosis with decreased presence of P4

  14. Cannabinoid CB1 receptor agonists do not decrease, but may increase, acoustic trauma-induced tinnitus in rats

    Directory of Open Access Journals (Sweden)

    Yiwen eZheng

    2015-03-01

    Full Text Available Tinnitus has been suggested to arise from neuronal hyperactivity in auditory areas of the brain and anti-epileptic drugs are sometimes used to provide relief from tinnitus. Recently, the anti-epileptic properties of the cannabinoid drugs have gained increasing interest; however, the use of cannabinoids as a form of treatment for tinnitus is controversial. In the present study, we tested whether a combination of delta-9-tetrahydrocannabinol (delta-9-THC and cannabidiol (CBD, delivered in a 1:1 ratio, could affect tinnitus perception in a rat model of acoustic trauma-induced tinnitus. Following sham treatment or acoustic trauma, the animals were divided into the following groups: 1 sham (i.e. no acoustic trauma with vehicle treatment; 2 sham with drug treatment (i.e. delta-9-THC + CBD; 3 acoustic trauma-exposed exhibiting tinnitus, with drug treatment; and 4 acoustic trauma-exposed exhibiting no tinnitus, with drug treatment. The animals received either the vehicle or the cannabinoid drugs every day, 30 min before the tinnitus behavioural testing. Acoustic trauma caused a significant increase in the auditory brainstem response (ABR thresholds in the exposed animals, indicating hearing loss; however, there was a partial recovery over 6 months. Acoustic trauma did not always result in tinnitus; however among those that did exhibit tinnitus, some of them had tinnitus at multiple frequencies while others had it only at a single frequency. The cannabinoids significantly increased the number of tinnitus animals in the exposed-tinnitus group, but not in the sham group. The results suggest that cannabinoids may promote the development of tinnitus, especially when there is pre-existing hearing damage.

  15. The decrease in silicon concentration of the connective tissues with age in rats is a marker of connective tissue turnover.

    Science.gov (United States)

    Jugdaohsingh, Ravin; Watson, Abigail I E; Pedro, Liliana D; Powell, Jonathan J

    2015-06-01

    Silicon may be important for bone and connective tissue health. Higher concentrations of silicon are suggested to be associated with bone and the connective tissues, compared with the non-connective soft tissues. Moreover, in connective tissues it has been suggested that silicon levels may decrease with age based upon analyses of human aorta. These claims, however, have not been tested under controlled conditions. Here connective and non-connective tissues were collected and analysed for silicon levels from female Sprague-Dawley rats of different ages (namely, 3, 5, 8, 12, 26 and 43 weeks; n=8-10 per age group), all maintained on the same feed source and drinking water, and kept in the same environment from weaning to adulthood. Tissues (696 samples) were digested in nitric acid and analysed by inductively coupled plasma optical emission spectrometry for total silicon content. Fasting serum samples were also collected, diluted and analysed for silicon. Higher concentrations of silicon (up to 50-fold) were found associated with bone and the connective tissues compared with the non-connective tissues. Although total silicon content increased with age in all tissues, the highest connective tissue silicon concentrations (up to 9.98 μg/g wet weight) were found in young weanling rats, decreasing thereafter with age (by 2-6 fold). Fasting serum silicon concentrations reflected the pattern of connective tissue silicon concentrations and, both measures, when compared to collagen data from a prior experiment in Sprague-Dawley rats, mirrored type I collagen turnover with age. Our findings confirm the link between silicon and connective tissues and would imply that young growing rats have proportionally higher requirements for dietary silicon than mature adults, for bone and connective tissue development, although this was not formally investigated here. However, estimation of total body silicon content suggested that actual Si requirements may be substantially lower than

  16. The decrease in silicon concentration of the connective tissues with age in rats is a marker of connective tissue turnover☆

    Science.gov (United States)

    Jugdaohsingh, Ravin; Watson, Abigail I.E.; Pedro, Liliana D.; Powell, Jonathan J.

    2015-01-01

    Silicon may be important for bone and connective tissue health. Higher concentrations of silicon are suggested to be associated with bone and the connective tissues, compared with the non-connective soft tissues. Moreover, in connective tissues it has been suggested that silicon levels may decrease with age based upon analyses of human aorta. These claims, however, have not been tested under controlled conditions. Here connective and non-connective tissues were collected and analysed for silicon levels from female Sprague–Dawley rats of different ages (namely, 3, 5, 8, 12, 26 and 43 weeks; n = 8–10 per age group), all maintained on the same feed source and drinking water, and kept in the same environment from weaning to adulthood. Tissues (696 samples) were digested in nitric acid and analysed by inductively coupled plasma optical emission spectrometry for total silicon content. Fasting serum samples were also collected, diluted and analysed for silicon. Higher concentrations of silicon (up to 50-fold) were found associated with bone and the connective tissues compared with the non-connective tissues. Although total silicon content increased with age in all tissues, the highest connective tissue silicon concentrations (up to 9.98 μg/g wet weight) were found in young weanling rats, decreasing thereafter with age (by 2–6 fold). Fasting serum silicon concentrations reflected the pattern of connective tissue silicon concentrations and, both measures, when compared to collagen data from a prior experiment in Sprague–Dawley rats, mirrored type I collagen turnover with age. Our findings confirm the link between silicon and connective tissues and would imply that young growing rats have proportionally higher requirements for dietary silicon than mature adults, for bone and connective tissue development, although this was not formally investigated here. However, estimation of total body silicon content suggested that actual Si requirements may be substantially

  17. Extremely decreased release of prostaglandin E-like activity from chopped lung of ethyl linolenate-supplemented rats

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Jensen, B.; Fjalland, B.

    1983-01-01

    Three groups of weanling male rats were reared on a fat-free diet for 13 weeks. One group received only the fat-free diet (FF rats), the other 2 groups received the fat-free diet and a daily supplement of 2 energy% ethyl linoleate ([n-6] rats), or 2 energy% ethyl linolenate ([n-3] rats). The chop......). The chopped lung preparation was used to illustrate an in vitro prostaglandin formation. PGE-like activity was quantified on rat stomach strip. The release of PGE-like activity expressed as ng PGE-equivalent per g lung tissue (mean±SD) was 23±7,...

  18. Role of hypothalamic cannabinoid receptors in post-stroke depression in rats.

    Science.gov (United States)

    Wang, Shanshan; Sun, Hong; Liu, Sainan; Wang, Ting; Guan, Jinqun; Jia, Jianjun

    2016-03-01

    One of the most common psychological consequences of stroke is post-stroke depression (PSD). While more than 30 percent of stroke patients eventually develop PSD, the neurobiological mechanisms underlying such a phenomenon have not been well investigated. Given the critical involvement of hypothalamic-pituitary-adrenal axis and endocannabinoid system in response to stressful stimuli, we evaluated the hypothesis that cannabinoid receptors in the hypothalamus are critical for modulation of post-stroke depression-like behaviors in rats. To this end, rats were treated with middle cerebral artery occlusion (MCAO) followed by chronic unpredictable mild stress (CUMS) treatment procedure. We then assessed the expression of CB1 and CB2 receptors in the hypothalamus, and evaluated the effects of pharmacological stimulations of CB1 or CB2 receptors on the expression and development of depression-like behaviors in PSD rats. We found that PSD rats exhibited decreased the expression of CB1 receptor, but not CB2 receptor, in the ventral medial hypothalamus (VMH). Such an effect was not observed in the dorsally adjacent brain regions. Furthermore, intra-VMH injections of CB2 receptor agonist, but not CB1 receptor agonist, attenuated the expression of depression-like behaviors in PSD rats. Finally, repeated intraperitoneal injections of CB1 or CB2 receptor agonists during CUMS treatment inhibited the development of depression-like behaviors in PSD rats. Taken together, these results suggest that decreased CB1 receptor expression is likely associated with the development of post-stroke depression, and CB2 receptor may be a potential therapeutic target for the treatment post-stroke depressive disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Taurine Supplementation Improves Erectile Function in Rats with Streptozotocin-induced Type 1 Diabetes via Amelioration of Penile Fibrosis and Endothelial Dysfunction.

    Science.gov (United States)

    Ruan, Yajun; Li, Mingchao; Wang, Tao; Yang, Jun; Rao, Ke; Wang, Shaogang; Yang, Weiming; Liu, Jihong; Ye, Zhangqun

    2016-05-01

    For patients with diabetes, erectile dysfunction (ED) is common and greatly affects quality of life. However, these patients often exhibit a poor response to first-line oral phosphodiesterase type 5 inhibitors. To investigate whether taurine, a sulfur-containing amino acid, affects diabetic ED (DED). Type 1 diabetes mellitus was induced in male rats by using streptozotocin. After 12 weeks, an apomorphine test was conducted to confirm DED. Only rats with DED were administered taurine or vehicle for 4 weeks. Age-matched nondiabetic rats were administered saline intraperitoneally for 4 weeks. Erectile function was evaluated by electrical stimulation of the cavernous nerve. Histologic and molecular alterations of the corpus cavernosum also were analyzed. Erectile function was significantly reduced in the diabetic rats compared with in the nondiabetic rats, and was improved in the diabetic rats treated with taurine. The corpus cavernosum of the rats with DED exhibited severe fibrosis and decreased smooth muscle content. Deposition of extracellular matrix proteins was increased in the diabetic rats, while expression of endothelial nitric oxide synthase/cyclic guanosine monophosphate/nitric oxide pathway-related proteins was reduced. Taurine supplementation ameliorated erectile response as well as histologic and molecular alterations. Taurine supplementation improves erectile function in rats with DED probably by potential antifibrotic activity. This finding provides evidence for a potential new therapy for DED. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  20. Insoluble glycogen, a metabolizable internal adsorbent, decreases the lethality of endotoxin shock in rats

    Directory of Open Access Journals (Sweden)

    S. Sipka

    1997-01-01

    Full Text Available Insoluble glycogen is an enzymatically modified form of naturally occurring soluble glycogen with a great adsorbing capacity. It can be metabolized by phagocytes to glucose. In this study we used insoluble glycogen intravenously in the experimental endotoxin shock of rats. Wistar male rats were sensitized to endotoxin by Pb acetate. The survival of rats were compared in groups of animals endotoxin shock treated and non-treated with insoluble glycogen. Furthermore, we have determined in vitro the binding capacity of insoluble glycogen for endotoxin, tumour necrosis factor alpha, interleukin-1 and secretable phospholipase A2. Use of 10 mg/kg dose of insoluble glycogen could completely prevent the lethality of shock induced by LD50 quantity of endotoxin in rats. All animals treated survived. Insoluble glycogen is a form of ‘metabolizable internal adsorbents’. It can potentially be used for treatment of septic shock.

  1. Morphine decreases social interaction of adult male rats, while THC does not affect it.

    Science.gov (United States)

    Šlamberová, R; Mikulecká, A; Macúchová, E; Hrebíčková, I; Ševčíková, M; Nohejlová, K; Pometlová, M

    2016-12-22

    The aim of the present study was to compare effect of three low doses of morphine (MOR) and delta9-tetrahydrocannabinol (THC) on social behavior tested in Social interaction test (SIT). 45 min prior to testing adult male rats received one of the drugs or solvents: MOR (1; 2.5; 5 mg/kg); saline as a solvent for MOR; THC (0.5; 1; 2 mg/kg); ethanol as a solvent for THC. Occurrence and time spent in specific patterns of social interactions (SI) and non-social activities (locomotion and rearing) was video-recorded for 5 min and then analyzed. MOR in doses of 1 and 2.5 mg/kg displayed decreased SI in total. Detailed analysis of specific patterns of SI revealed decrease in mutual sniffing and allo-grooming after all doses of MOR. The highest dose (5 mg/kg) of MOR decreased following and increased genital investigation. Rearing activity was increased by lower doses of MOR (1 and 2.5 mg/kg). THC, in each of the tested doses, did not induce any specific changes when compared to matching control group (ethanol). However, an additional statistical analysis showed differences between all THC groups and their ethanol control group when compared to saline controls. There was lower SI in total, lower mutual sniffing and allo-grooming, but higher rearing in THC and ethanol groups than in saline control group. Thus, changes seen in THC and ethanol groups are seemed to be attributed mainly to the effect of the ethanol. Based on the present results we can assume that opioids affect SI more than cannabinoid.

  2. Glutamate microinjection in the medial septum of rats decreases paradoxical sleep and increases slow wave sleep.

    Science.gov (United States)

    Mukherjee, Didhiti; Kaushik, Mahesh K; Jaryal, Ashok Kumar; Kumar, Velayudhan Mohan; Mallick, Hruda Nanda

    2012-05-09

    The role of the medial septum in suppressing paradoxical sleep and promoting slow wave sleep was suggested on the basis of neurotoxic lesion studies. However, these conclusions need to be substantiated with further experiments, including chemical stimulation studies. In this report, the medial septum was stimulated in adult male rats by microinjection of L-glutamate. Sleep-wakefulness was electrophysiologically recorded, through chronically implanted electrodes, for 2 h before the injection and 4 h after the injection. There was a decrease in paradoxical sleep during the first hour and an increase in slow wave sleep during the second hour after the injection. The present findings not only supported the lesion studies but also showed that the major role of the medial septum is to suppress paradoxical sleep.

  3. Obestatin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats

    Directory of Open Access Journals (Sweden)

    Aleksandra Matuszyk

    2016-01-01

    Full Text Available Obestatin, a 23-amino acid peptide derived from the proghrelin, has been shown to exhibit some protective and therapeutic effects in the gut. The aim of present study was to determine the effect of obestatin administration on the course of acetic acid-induced colitis in rats. Materials and Methods. Studies have been performed on male Wistar rats. Colitis was induced by a rectal enema with 3.5% acetic acid solution. Obestatin was administered intraperitoneally twice a day at a dose of 8 nmol/kg, starting 24 h after the induction of colitis. Seven or 14 days after the induction of colitis, the healing rate of the colon was evaluated. Results. Treatment with obestatin after induction of colitis accelerated the healing of colonic wall damage and this effect was associated with a decrease in the colitis-evoked increase in mucosal activity of myeloperoxidase and content of interleukin-1β. Moreover, obestatin administration significantly reversed the colitis-evoked decrease in mucosal blood flow and DNA synthesis. Conclusion. Administration of exogenous obestatin exhibits therapeutic effects in the course of acetic acid-induced colitis and this effect is related, at least in part, to the obestatin-evoked anti-inflammatory effect, an improvement of local blood flow, and an increase in cell proliferation in colonic mucosa.

  4. Treadmill exercise attenuates the severity of physical dependence, anxiety, depressive-like behavior and voluntary morphine consumption in morphine withdrawn rats receiving methadone maintenance treatment.

    Science.gov (United States)

    Alizadeh, Maryam; Zahedi-Khorasani, Mahdi; Miladi-Gorji, Hossein

    2018-05-30

    This study was designed to examine whether treadmill exercise would attenuate the severity of physical dependence, methadone-induced anxiety, depression and voluntary morphine consumption in morphine withdrawn rats receiving methadone maintenance treatment (MMT). The rats were chronically treated with bi-daily doses (10 mg/kg, at 12 h intervals) of morphine for 14 days. The exercising rats receiving MMT were forced to run on a motorized treadmill for 30 days during morphine withdrawal. Then, rats were tested for the severity of morphine dependence, the elevated plus-maze (EPM), sucrose preference test (SPT) and voluntary morphine consumption using a two-bottle choice (TBC) paradigm. The results showed that naloxone- precipitated opioid withdrawal signs were decreased in exercising morphine-dependent rats receiving MMT than sedentary rats. Also, the exercising morphine-dependent rats receiving MMT exhibited an increased time on open arms, preference for sucrose and a lower morphine preference ratio than sedentary rats. We conclude that treadmill exercise decreased the severity of physical dependence, anxiety/depressive-like behaviors and also the voluntary morphine consumption in morphine withdrawn rats receiving MMT. Thus, exercise may benefit in the treatment of addicts during MMT. Copyright © 2018. Published by Elsevier B.V.

  5. Antioxidant supplementation decreases the cell death rate in the prostatic stromal tissue of long-term castrated rats

    Directory of Open Access Journals (Sweden)

    Guilherme Fartes

    2012-06-01

    Full Text Available OBJECTIVE: The purpose of this study was to compare the effects of castration on cell death rate of the adult rat prostates and to evaluate the benefic action of alpha tocopherol supplementation to avoid apoptosis post-orchiectomy. MATERIAL AND METHODS: Thirty male Wistar rats weighing 250-300g were divided into three groups: group I - they were subjected to bilateral orchiectomy and sacrificed eight weeks after the procedure; group II - subjected to bilateral orchiectomy and alpha-tocopherol supplementation for four weeks preceding the procedure; and group III - subjected to bilateral orchiectomy and alpha-tocopherol supplementation for four weeks preceding the procedure and for eight weeks afterwards. At the end of the experiment, the prostatectomy was performed in all rats. The presence of oxidative stress was determined by assaying the blood level of 8-isoprostane and the occurrence of apoptosis was evaluated by identification of active caspase-3 through immunohistochemical analysis. RESULTS: The statistic analysis of active caspase-3 showed that in the long-term castrated group the detection was higher than in groups were the alpha-tocopherol was supplemented (p=0.007. Analysis of 8-isoprostane levels showed higher concentrations of reactive oxygen species in group I compared to other groups (p<0.05. Groups II and III presented active caspase-3 lower than in group I (p<0.05. CONCLUSION: Our exploratory analyses demonstrate a method to study the aging process and its influence on oxidative stress of prostatic tissue and cells death rate. Based on our results we can suggest that alpha tocopherol supplementation can decrease the apoptotic process as well as the oxidative stress levels induced by androgen deprivation of the prostate gland.

  6. Genomic and metabolic disposition of non-obese type 2 diabetic rats to increased myocardial fatty acid metabolism.

    Directory of Open Access Journals (Sweden)

    Sriram Devanathan

    Full Text Available Lipotoxicity of the heart has been implicated as a leading cause of morbidity in Type 2 Diabetes Mellitus (T2DM. While numerous reports have demonstrated increased myocardial fatty acid (FA utilization in obese T2DM animal models, this diabetic phenotype has yet to be demonstrated in non-obese animal models of T2DM. Therefore, the present study investigates functional, metabolic, and genomic differences in myocardial FA metabolism in non-obese type 2 diabetic rats. The study utilized Goto-Kakizaki (GK rats at the age of 24 weeks. Each rat was imaged with small animal positron emission tomography (PET to estimate myocardial blood flow (MBF and myocardial FA metabolism. Echocardiograms (ECHOs were performed to assess cardiac function. Levels of triglycerides (TG and non-esterified fatty acids (NEFA were measured in both plasma and cardiac tissues. Finally, expression profiles for 168 genes that have been implicated in diabetes and FA metabolism were measured using quantitative PCR (qPCR arrays. GK rats exhibited increased NEFA and TG in both plasma and cardiac tissue. Quantitative PET imaging suggests that GK rats have increased FA metabolism. ECHO data indicates that GK rats have a significant increase in left ventricle mass index (LVMI and decrease in peak early diastolic mitral annular velocity (E' compared to Wistar rats, suggesting structural remodeling and impaired diastolic function. Of the 84 genes in each the diabetes and FA metabolism arrays, 17 genes in the diabetes array and 41 genes in the FA metabolism array were significantly up-regulated in GK rats. Our data suggest that GK rats' exhibit increased genomic disposition to FA and TG metabolism independent of obesity.

  7. Lifespan extension in the spontaneous dwarf rat and enhanced resistance to hyperoxia-induced mortality.

    Science.gov (United States)

    Sasaki, Toru; Tahara, Shoichi; Shinkai, Tadashi; Kuramoto, Kazunao; Matsumoto, Shigenobu; Yanabe, Makoto; Takagi, Shohei; Kondo, Hiroshi; Kaneko, Takao

    2013-05-01

    Lifespan extension has been demonstrated in dwarfism mouse models relative to their wild-type. The spontaneous dwarf rat (SDR) was isolated from a closed colony of Sprague-Dawley (SD) rats. Growth hormone deficiencies have been indicated to be responsible for dwarfism in SDR. Survival time, the markers of oxidative stress, antioxidant enzymes, and resistance to hyperoxia were compared between SDR and SD rats, to investigate whether SDR, a dwarfism rat model, also extends lifespan and has an enhanced resistance to oxidative stress. SDRs lived 38% longer than SD rats on average. This is the first report to show that dwarf rats exhibit lifespan extensions similar to Ames and Snell mice. Decreased 8-oxo-2'-deoxyguanosine (8-oxodG) content, a marker of oxidative DNA damage, indicated suppressed oxidative stress in the liver, kidney, and lung of SDRs. Increased glutathione peroxidase enzyme activity was consistent with decreased 8-oxodG content in the same tissues. The heart and brain showed a similar tendency, but this was not significant. However, the catalase and superoxide dismutase enzyme activities of SDRs were not different from those of SD rats in any tissue. This was not what the original null hypothesis predicted. SDRs had potent resistance to the toxicity associated with high O2 (85%) exposure. The mean survival time in SDRs was more than 147% that of SD rats with 168h O2 exposure. These results suggest that the enhanced resistance to oxidative stress of SDRs associated with enhanced hydrogen peroxide elimination may support its potential role in lifespan extension. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Fear Expression Suppresses Medial Prefrontal Cortical Firing in Rats.

    Directory of Open Access Journals (Sweden)

    Thomas F Giustino

    Full Text Available The medial prefrontal cortex (mPFC plays a crucial role in emotional learning and memory in rodents and humans. While many studies suggest a differential role for the prelimbic (PL and infralimbic (IL subdivisions of mPFC, few have considered the relationship between neural activity in these two brain regions recorded simultaneously in behaving animals. Importantly, how concurrent PL and IL activity relate to conditioned freezing behavior is largely unknown. Here we used single-unit recordings targeting PL and IL in awake, behaving rats during the acquisition and expression of conditioned fear. On Day 1, rats received either signaled or unsignaled footshocks in the recording chamber; an auditory conditioned stimulus (CS preceded signaled footshocks. Twenty-four hours later, animals were returned to the recording chamber (modified to create a novel context where they received 5 CS-alone trials. After fear conditioning, both signaled and unsignaled rats exhibited high levels of post-shock freezing that was associated with an enduring suppression of mPFC spontaneous firing, particularly in the IL of signaled rats. Twenty-four hours later, CS presentation produced differential conditioned freezing in signaled and unsignaled rats: freezing increased in rats that had received signaled shocks, but decreased in animals in the unsignaled condition (i.e., external inhibition. This group difference in CS-evoked freezing was mirrored in the spontaneous firing rate of neurons in both PL and IL. Interestingly, differences in PL and IL firing rate highly correlated with freezing levels. In other words, in the signaled group IL spontaneous rates were suppressed relative to PL, perhaps limiting IL-mediated suppression of fear and allowing PL activity to dominate performance, resulting in high levels of freezing. This was not observed in the unsignaled group, which exhibited low freezing. These data reveal that the activity of mPFC neurons is modulated by both

  9. Subacute stress and chronic stress interact to decrease intestinal barrier function in rats.

    Science.gov (United States)

    Lauffer, Adriana; Vanuytsel, Tim; Vanormelingen, Christophe; Vanheel, Hanne; Salim Rasoel, Shadea; Tóth, Joran; Tack, Jan; Fornari, Fernando; Farré, Ricard

    2016-01-01

    Psychological stress increases intestinal permeability, potentially leading to low-grade inflammation and symptoms in functional gastrointestinal disorders. We assessed the effect of subacute, chronic and combined stress on intestinal barrier function and mast cell density. Male Wistar rats were allocated to four experimental groups (n = 8/group): 1/sham; 2/subacute stress (isolation and limited movement for 24 h); 3/chronic crowding stress for 14 days and 4/combined subacute and chronic stress. Jejunum and colon were collected to measure: transepithelial electrical resistance (TEER; a measure of epithelial barrier function); gene expression of tight junction molecules; mast cell density. Plasma corticosterone concentration was increased in all three stress conditions versus sham, with highest concentrations in the combined stress condition. TEER in the jejunum was decreased in all stress conditions, but was significantly lower in the combined stress condition than in the other groups. TEER in the jejunum correlated negatively with corticosterone concentration. Increased expression of claudin 1, 5 and 8, occludin and zonula occludens 1 mRNAs was detected after subacute stress in the jejunum. In contrast, colonic TEER was decreased only after combined stress, and the expression of tight junction molecules was unaltered. Increased mast cell density was observed in the chronic and combined stress condition in the colon only. In conclusion, our data show that chronic stress sensitizes the gastrointestinal tract to the effects of subacute stress on intestinal barrier function; different underlying cellular and molecular alterations are indicated in the small intestine versus the colon.

  10. Trpv4 involvement in the sex differences in blood pressure regulation in spontaneously hypertensive rats.

    Science.gov (United States)

    Onishi, Makiko; Yamanaka, Ko; Miyamoto, Yasunori; Waki, Hidefumi; Gouraud, Sabine

    2018-04-01

    Arterial pressure (AP) is lower in premenopausal women than in men of a similar age. Premenopausal women exhibit a lower sympathetic activity and a greater baroreceptor reflex; however, mechanisms controlling sex differences in blood pressure regulation are not well understood. We hypothesized that different neuronal functions in the cardiovascular centers of the brains of men and women may contribute to the sex difference in cardiovascular homeostasis. Our previous studies on male spontaneously hypertensive rats (SHRs) and their normotensive counterparts, Wistar Kyoto (WKY) rats, revealed that the gene-expression profile of the nucleus tractus solitarius (NTS), a region of the medulla oblongata that is pivotal for regulating the set point of AP, is strongly associated with AP. Thus, we hypothesized that gene-expression profiles in the rat NTS are related to sex differences in AP regulation. Because female SHRs clearly exhibit lower AP than their male counterparts of a similar age, we investigated whether SHR NTS exhibits sex differences in gene expression by using microarray and RT-qPCR experiments. The transcript for transient receptor potential cation channel subfamily V member 4 ( Trpv4) was found to be upregulated in SHR NTS in females compared with that in males. The channel was expressed in neurons and glial cells within NTS. The TRPV4 agonist 4-alpha-phorbol-12,13-didecanoate (4α-PDD) decreased blood pressure when injected into NTS of rats. These findings suggest that altered TRPV4 expression might be involved in the sex differences in blood pressure regulation.

  11. Perinatal exposure to BDE-99 causes decreased protein levels of cyclin D1 via GSK3β activation and increased ROS production in rat pup livers.

    Science.gov (United States)

    Blanco, Jordi; Mulero, Miquel; Domingo, Jose L; Sanchez, Domènec J

    2014-02-01

    We here examined the potential liver toxicity in rat pups from dams exposed during the gestational and lactation periods to 2,2',4,4',5-pentabromodiphenyl ether (BDE-99). Dams were exposed to 0, 1, and 2mg/kg/day of BDE-99 from gestation day 6 to postnatal day 21. When the pups were weaning, the liver from 1 pup of each litter was excised to evaluate oxidative stress markers and the messenger RNA (mRNA) expression of multiple cytochrome P450 (CYP) isoforms. To determine whether thyroid hormone (TH) was disrupted, the protein and mRNA expressions of several TH receptor (TR) isoforms, as well as the protein levels of cyclin D1 and the phosphorylated protein kinases Akt and glycogen synthase kinase 3 beta (GSK3β), were evaluated. Perinatal exposure to BDE-99 produced decreased levels of cyclin D1 in rat pup livers. A decrease in the active form of Akt and an increase in the active form of GSK3β were observed. The decreased Akt pathway may be due to a potential disruption of the nongenomic actions of TH by BDE-99 and its metabolites. This possible TH disruption was noted as a decrease in TR isoforms expression. By contrast, we observed an upregulation of CYP2B1 gene expression, which is correlated with an increase in reactive oxygen species production. This outcome indicates activation of the nuclear constitutive androstane receptor, which could induce the expression of other enzymes capable of metabolizing TH. The present findings support the hypothesis that perinatal exposure to PBDEs, at levels found in humans, may have serious implications for metabolic processes in rat pup livers.

  12. Zinc oxide nanoparticles decrease the expression and activity of plasma membrane calcium ATPase, disrupt the intracellular calcium homeostasis in rat retinal ganglion cells.

    Science.gov (United States)

    Guo, Dadong; Bi, Hongsheng; Wang, Daoguang; Wu, Qiuxin

    2013-08-01

    Zinc oxide nanoparticle is one of the most important materials with diverse applications. However, it has been reported that zinc oxide nanoparticles are toxic to organisms, and that oxidative stress is often hypothesized to be an important factor in cytotoxicity mediated by zinc oxide nanoparticles. Nevertheless, the mechanism of toxicity of zinc oxide nanoparticles has not been completely understood. In this study, we investigated the cytotoxic effect of zinc oxide nanoparticles and the possible molecular mechanism involved in calcium homeostasis mediated by plasma membrane calcium ATPase in rat retinal ganglion cells. Real-time cell electronic sensing assay showed that zinc oxide nanoparticles could exert cytotoxic effect on rat retinal ganglion cells in a concentration-dependent manner; flow cytometric analysis indicated that zinc oxide nanoparticles could lead to cell damage by inducing the overproduction of reactive oxygen species. Furthermore, zinc oxide nanoparticles could also apparently decrease the expression level and their activity of plasma membrane calcium ATPase, which finally disrupt the intracellular calcium homeostasis and result in cell death. Taken together, zinc oxide nanoparticles could apparently decrease the plasma membrane calcium ATPase expression, inhibit their activity, cause the elevated intracellular calcium ion level and disrupt the intracellular calcium homeostasis. Further, the disrupted calcium homeostasis will trigger mitochondrial dysfunction, generate excessive reactive oxygen species, and finally initiate cell death. Thus, the disrupted calcium homeostasis is involved in the zinc oxide nanoparticle-induced rat retinal ganglion cell death. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Interferon-gamma (IFN-gamma) treatment decreases the inflammatory response in chronic Pseudomonas aeruginosa pneumonia in rats

    DEFF Research Database (Denmark)

    Johansen, H K; Hougen, H P; Rygaard, J

    1996-01-01

    In a rat model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis (CF), we studied whether the inflammatory response could be altered by intraperitoneal treatment with recombinant rat interferon-gamma (rrIFN-gamma). Rats were treated either before or after intratracheal ch...

  14. Schedule-induced polydipsia: a rat model of obsessive-compulsive disorder.

    Science.gov (United States)

    Platt, Brian; Beyer, Chad E; Schechter, Lee E; Rosenzweig-Lipson, Sharon

    2008-04-01

    Obsessive-compulsive disorder (OCD) is difficult to model in animals due to the involvement of both mental (obsessions) and physical (compulsions) symptoms. Due to limitations of using animals to evaluate obsessions, OCD models are limited to evaluation of the compulsive and repetitive behaviors of animals. Of these, models of adjunctive behaviors offer the most value in regard to predicting efficacy of anti-OCD drugs in the clinic. Adjunctive behaviors are those that are maintained indirectly by the variables that control another behavior, rather than directly by their own typical controlling variables. Schedule-induced polydipsia (SIP) is an adjunctive model in which rats exhibit exaggerated drinking behavior (polydipsia) when presented with food pellets under a fixed-time schedule. The polydipsic response is an excessive manifestation of a normal behavior (drinking), providing face validity to the model. Furthermore, clinically effective drugs for the treatment of OCD decrease SIP. This protocol describes a rat SIP model of OCD and provides preclinical data for drugs that decrease polydipsia and are clinically effective in the treatment of OCD.

  15. Tryptophan depletion affects compulsive behaviour in rats

    DEFF Research Database (Denmark)

    Merchán, A; Navarro, S V; Klein, A B

    2017-01-01

    investigated whether 5-HT manipulation, through a tryptophan (TRP) depletion by diet in Wistar and Lister Hooded rats, modulates compulsive drinking in schedule-induced polydipsia (SIP) and locomotor activity in the open-field test. The levels of dopamine, noradrenaline, serotonin and its metabolite were......-depleted HD Wistar rats, while the LD Wistar and the Lister Hooded rats did not exhibit differences in SIP. In contrast, the TRP-depleted Lister Hooded rats increased locomotor activity compared to the non-depleted rats, while no differences were found in the Wistar rats. Serotonin 2A receptor binding...

  16. Excessive endoplasmic reticulum stress and decreased neuroplasticity-associated proteins in prefrontal cortex of obese rats and the regulatory effects of aerobic exercise.

    Science.gov (United States)

    Li, Feng; Liu, Bei Bei; Cai, Ming; Li, Jing Jing; Lou, Shu-Jie

    2018-04-06

    Studies have shown high fat diet induced obesity may cause cognition impairment and down-regulation of neuroplasticity-associated proteins, while aerobic exercise could improve that damage. Endoplasmic reticulum stress (ERS) has been reported to play a key role in regulating neuroplasticity-associated proteins expression, folding and post-translational modification in hippocampus of obese rodent models, however, the effects of ERS on neuroplasticity-associated proteins and possible underlying mechanisms in prefrontal cortex are not fully clear. In order to clarify changes of neuroplasticity-associated proteins and ERS in the prefrontal cortex of obese rats, male SD rats were fed on high fat diet for 8 weeks to establish the obese model. Then, 8 weeks of aerobic exercise treadmill intervention was arranged for the obese rats. Results showed that high fat diet induced obesity caused hyperlipidemia, and significantly promoted FATP1 expression in the prefrontal cortex, meanwhile, we found up-regulation of GRP78, p-PERK, p-eIF2α, caspase-12, CHOP, and Bax/Bcl-2, reflecting the activation of ERS and ERS-mediated apoptosis. Moreover, reduced BDNF and SYN was found in obese rats. However, FATP1, GRP78, p-PERK, p-eIF2α, caspase-12, CHOP, and Bax/Bcl-2 expressions were obviously reversed by aerobic exercise intervention. These results suggested that dietary obesity could induce Prefrontal ERS in SD rats and excessive ERS may play a critical role in decreasing the levels of neuroplasticity-associated proteins. Moreover, aerobic exercise could relieve ERS, thus promoted the expression of neuroplasticity-associated proteins. Copyright © 2018. Published by Elsevier Inc.

  17. Characterization of biliary conjugates of 4,4'-methylenedianiline in male versus female rats

    International Nuclear Information System (INIS)

    Chen, Kan; Cole, Richard B.; Santa Cruz, Vicente; Blakeney, Ernest W.; Kanz, Mary F.; Dugas, Tammy R.

    2008-01-01

    4,4'-Methylenedianiline (4,4'-diaminodiphenylmethane; DAPM) is an aromatic diamine used in the production of numerous polyurethane foams and epoxy resins. Previous studies in rats revealed that DAPM initially injures biliary epithelial cells of the liver, that the toxicity is greater in female than in male rats, and that the toxic metabolites of DAPM are excreted into bile. Since male and female rats exhibit differences in the expression of both phase I and phase II enzymes, our hypothesis was that female rats either metabolize DAPM to more toxic metabolites or have a decreased capacity to conjugate metabolites to less toxic intermediates. Our objective was thus to isolate, characterize, and quantify DAPM metabolites excreted into bile in both male and female bile duct-cannulated Sprague Dawley rats. The rats were gavaged with [ 14 C]-DAPM, and the collected bile was subjected to reversed-phase HPLC with radioisotope detection. Peaks eluting from HPLC were collected and analyzed using electrospray MS and NMR spectroscopy. HPLC analysis indicated numerous metabolites in both sexes, but male rats excreted greater amounts of glutathione and glucuronide conjugates than females. Electrospray MS and NMR spectra of HPLC fractions revealed that the most prominent metabolite found in bile of both sexes was a glutathione conjugate of an imine metabolite of a 4'-nitroso-DAPM. Seven other metabolites were identified, including acetylated, cysteinyl-glycine, glutamyl-cysteine, glycine, and glucuronide conjugates. While our prior studies demonstrated increased covalent binding of DAPM in the liver and bile of female compared to male rats, in these studies, SDS-PAGE with autoradiography revealed 4-5 radiolabeled protein bands in the bile of rats treated with [ 14 C]-DAPM. In addition, these bands were much more prominent in female than in male rats. These studies thus suggest that a plausible mechanism for the increased sensitivity of female rats to DAPM toxicity may be decreased

  18. Socially isolated rats exhibit changes in dopamine homeostasis pertinent to schizophrenia

    DEFF Research Database (Denmark)

    Fabricius, Katrine; Steiniger-Brach, Björn; Helboe, Lone

    2011-01-01

    Post-weaning social isolation of rats produces an array of behavioral and neurochemical changes indicative of altered dopamine function. It has therefore been suggested that post-weaning social isolation mimics some aspects of schizophrenia. Here we replicate and extent these findings to include...... dopamine levels in the nucleus accumbens, it did cause a significant reduction of basal dopamine release in the prefrontal cortex. In addition, social isolation lead to a significantly larger dopamine response to an amphetamine challenge, in both the nucleus accumbens and the prefrontal cortex compared...

  19. Maternal protein restriction compromises myocardial contractility in the young adult rat by changing proteins involved in calcium handling.

    Science.gov (United States)

    de Belchior, Aucelia C S; Freire, David D; da Costa, Carlos P; Vassallo, Dalton V; Padilha, Alessandra S; Dos Santos, Leonardo

    2016-02-01

    Maternal protein restriction (MPR) during pregnancy is associated with increased cardiovascular risk in the offspring in adulthood. In this study we evaluated the cardiac function of young male rats born from mothers subjected to MPR during pregnancy, focusing on the myocardial mechanics and calcium-handling proteins. After weaning, rats received normal diet until 3 mo old, when the following parameters were assessed: arterial and left ventricular hemodynamics and in vitro cardiac contractility in isolated papillary muscles. The body weight was lower and arterial pressure higher in the MPR group compared with young adult offspring of female rats that received standard diet (controls); and left ventricle time derivatives increased in the MPR group. The force developed by the cardiac muscle was similar; but time to peak and relaxation time were longer, and the derivatives of force were depressed in the MPR. In addition, MPR group exhibited decreased post-pause potentiation of force, suggesting reduced reuptake function of the sarcoplasmic reticulum. Corroborating, the myocardial content of SERCA-2a and phosphorylated PLB-Ser16/total PLB ratio was decreased and sodium-calcium exchanger was increased in the MPR group. The contraction dependent on transsarcolemmal influx of calcium was higher in MPR if compared with the control group. In summary, young rats born from mothers subjected to protein restriction during pregnancy exhibit changes in the myocardial mechanics with altered expression of calcium-handling proteins, reinforcing the hypothesis that maternal malnutrition is related to increased cardiovascular risk in the offspring, not only for hypertension, but also cardiac dysfunction. Copyright © 2016 the American Physiological Society.

  20. Piracetam Facilitates the Anti-Amnesic but not Anti-Diabetic Activity of Metformin in Experimentally Induced Type-2 Diabetic Encephalopathic Rats.

    Science.gov (United States)

    Pandey, Shruti; Garabadu, Debapriya

    2017-07-01

    Piracetam exhibits anti-amnesic activity in several animal models of dementia. However, its anti-amnesic potential has yet to be evaluated in type-2 diabetes mellitus (T2DM)-induced encephalopathy. Therefore, in the present study, piracetam (25, 50 and 100 mg/kg) was screened for anti-amnesic and anti-diabetic activity in T2DM-induced encephalopathic male rats. Subsequently, anti-amnesic and anti-diabetic activities were evaluated for piracetam, metformin and their combination in T2DM-induced encephalopathic animals. Rats received streptozotocin (45 mg/kg) and nicotinamide (110 mg/kg) injections on day-1 (D-1) of the experimental schedule and were kept undisturbed for 35 days to exhibit T2DM-induced encephalopathy. All drug treatments were continued from D-7 to D-35 in both experiments. Piracetam (100 mg/kg) attenuated loss in learning and memory in terms of increase in escape latency on D-4 (D-34) and decrease in time spent in the target quadrant on D-5 (D-35) of Morris water maze test protocol, and spatial memory in terms of reduced spontaneous alternation behavior in Y-maze test of encephalopathic rats. Additionally, piracetam attenuated altered levels of fasting plasma glucose and insulin, HOMA-IR and HOMA-B in encephalopathic animals, comparatively lesser than metformin. In the next experiment, combination of piracetam and metformin exhibited better anti-amnesic but not anti-diabetic activity than respective monotherapies in encephalopathic rats. Further, the combination attenuated reduced acetylcholine level and increased acetylcholinesterase activity, increased glycogen synthase kinase-3β level and decreased brain-derived neurotropic factor level in hippocampus and pre-frontal cortex of encephalopathic animals. Thus, piracetam could be used as an adjuvant to metformin in the management of dementia in T2DM-induced encephalopathy.

  1. Hepatoprotective Effects of Chinese Medicine Herbs Decoction on Liver Cirrhosis in Rats

    Directory of Open Access Journals (Sweden)

    Nor Aziyah Mat-Rahim

    2017-01-01

    Full Text Available Hepatoprotective and curative activities of aqueous extract of decoction containing 10 Chinese medicinal herbs (HPE-XA-08 were evaluated in Sprague–Dawley albino rats with liver damage induced by thioacetamide (TAA. These activities were assessed by investigating the liver enzymes level and also histopathology investigation. Increases in alkaline phosphatase (ALP and gamma-glutamyl transferase (GGT levels were observed in rats with cirrhotic liver. No significant alterations of the liver enzymes were observed following treatment with HPE-XA-08. Histopathology examination of rats treated with HPE-XA-08 at 250 mg/kg body weight, however, exhibited moderate liver protective effects. Reduced extracellular matrix (ECM proteins within the hepatocytes were noted in comparison to the cirrhotic liver. The curative effects of HPE-XA-08 were observed with marked decrease in the level of ALP (more than 3x and level of GGT (more than 2x in cirrhotic rat treated with 600 mg/kg body weight HPE-XA-08 in comparison to cirrhotic rat treated with just water diluent. Reversion of cirrhotic liver to normal liver condition in rats treated with HPE-XA-08 was observed. Results from the present study suggest that HPE-XA-08 treatment assisted in the protection from liver cirrhosis and improved the recovery of cirrhotic liver.

  2. Mechanical ventilation with high tidal volumes attenuates myocardial dysfunction by decreasing cardiac edema in a rat model of LPS-induced peritonitis

    Directory of Open Access Journals (Sweden)

    Smeding Lonneke

    2012-03-01

    Full Text Available Abstract Background Injurious mechanical ventilation (MV may augment organ injury remote from the lungs. During sepsis, myocardial dysfunction is common and increased endothelial activation and permeability can cause myocardial edema, which may, among other factors, hamper myocardial function. We investigated the effects of MV with injuriously high tidal volumes on the myocardium in an animal model of sepsis. Methods Normal rats and intraperitoneal (i.p. lipopolysaccharide (LPS-treated rats were ventilated with low (6 ml/kg and high (19 ml/kg tidal volumes (Vt under general anesthesia. Non-ventilated animals served as controls. Mean arterial pressure (MAP, central venous pressure (CVP, cardiac output (CO and pulmonary plateau pressure (Pplat were measured. Ex vivo myocardial function was measured in isolated Langendorff-perfused hearts. Cardiac expression of endothelial vascular cell adhesion molecule (VCAM-1 and edema were measured to evaluate endothelial inflammation and leakage. Results MAP decreased after LPS-treatment and Vt-dependently, both independent of each other and with interaction. MV Vt-dependently increased CVP and Pplat and decreased CO. LPS-induced peritonitis decreased myocardial function ex vivo but MV attenuated systolic dysfunction Vt-dependently. Cardiac endothelial VCAM-1 expression was increased by LPS treatment independent of MV. Cardiac edema was lowered Vt-dependently by MV, particularly after LPS, and correlated inversely with systolic myocardial function parameters ex vivo. Conclusion MV attenuated LPS-induced systolic myocardial dysfunction in a Vt-dependent manner. This was associated with a reduction in cardiac edema following a lower transmural coronary venous outflow pressure during LPS-induced coronary inflammation.

  3. Moxonidine-induced central sympathoinhibition improves prognosis in rats with hypertensive heart failure.

    Science.gov (United States)

    Honda, Nobuhiro; Hirooka, Yoshitaka; Ito, Koji; Matsukawa, Ryuichi; Shinohara, Keisuke; Kishi, Takuya; Yasukawa, Keiji; Utsumi, Hideo; Sunagawa, Kenji

    2013-11-01

    Enhanced central sympathetic outflow is an indicator of the prognosis of heart failure. Although the central sympatholytic drug moxonidine is an established therapeutic strategy for hypertension, its benefits for hypertensive heart failure are poorly understood. In the present study, we investigated the effects of central sympathoinhibition by intracerebral infusion of moxonidine on survival in a rat model of hypertensive heart failure and the possible mechanisms involved. As a model of hypertensive heart failure, we fed Dahl salt-sensitive rats an 8% NaCl diet from 7 weeks of age. Intracerebroventricular (ICV) infusion of moxonidine (moxonidine-ICV-treated group [Mox-ICV]) or vehicle (vehicle-ICV-treated group [Veh-ICV]) was performed at 14-20 weeks of age, during the increased heart failure phase. Survival rates were examined, and sympathetic activity, left ventricular function and remodelling, and brain oxidative stress were measured. Hypertension and left ventricular hypertrophy were established by 13 weeks of age. At around 20 weeks of age, Veh-ICV rats exhibited overt heart failure concomitant with increased urinary norepinephrine (uNE) excretion as an index of sympathetic activity, dilated left ventricle, decreased percentage fractional shortening, and myocardial fibrosis. Survival rates at 21 weeks of age (n = 28) were only 23% in Veh-ICV rats, and 76% (n = 17) in Mox-ICV rats with concomitant decreases in uNE, myocardial fibrosis, collagen type I/III ratio, brain oxidative stress, and suppressed left ventricular dysfunction. Moxonidine-induced central sympathoinhibition attenuated brain oxidative stress, prevented cardiac dysfunction and remodelling, and improved the prognosis in rats with hypertensive heart failure. Central sympathoinhibition can be effective for the treatment of hypertensive heart failure.

  4. Administration of an oxytocin receptor antagonist attenuates sexual motivation in male rats.

    Science.gov (United States)

    Blitzer, D S; Wells, T E; Hawley, W R

    2017-08-01

    In male rats, oxytocin impacts both sexual arousal and certain types of consummatory sexual behaviors. However, the role of oxytocin in the motivational aspects of sexual behavior has received limited attention. Given the role that oxytocin signaling plays in consummatory sexual behaviors, it was hypothesized that pharmacological attenuation of oxytocin signaling would reduce sexual motivation in male rats. Sexually experienced Long-Evans male rats were administered either an oxytocin receptor antagonist (L368,899 hydrochloride; 1mg/kg) or vehicle control into the intraperitoneal cavity 40min prior to placement into the center chamber of a three-chambered arena designed to assess sexual motivation. During the 20-minute test, a sexually experienced stimulus male rat and a sexually receptive stimulus female rat were separately confined to smaller chambers that were attached to the larger end chambers of the arena. However, physical contact between test and stimulus rats was prevented by perforated dividers. Immediately following the sexual motivation test, test male rats were placed with a sexually receptive female to examine consummatory sexual behaviors. Although both drug and vehicle treated rats exhibited a preference for the female, treatment with an oxytocin receptor antagonist decreased the amount of time spent with the female. There were no differences between drug and vehicle treated rats in either general activity, exploratory behaviors, the amount of time spent near the stimulus male rat, or consummatory sexual behaviors. Extending previous findings, these results indicate that oxytocin receptors are involved in sexual motivation in male rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The Effects of Spaceflight on the Rat Circadian Timing System

    Science.gov (United States)

    Fuller, Charles A.; Murakami, Dean M.; Hoban-Higgins, Tana M.; Fuller, Patrick M.; Robinson, Edward L.; Tang, I.-Hsiung

    2003-01-01

    Two fundamental environmental influences that have shaped the evolution of life on Earth are gravity and the cyclic changes occurring over the 24-hour day. Light levels, temperature, and humidity fluctuate over the course of a day, and organisms have adapted to cope with these variations. The primary adaptation has been the evolution of a biological timing system. Previous studies have suggested that this system, named the circadian (circa - about; dies - a day) timing system (CTS), may be sensitive to changes in gravity. The NASA Neurolab spaceflight provided a unique opportunity to evaluate the effects of microgravity on the mammalian CTS. Our experiment tested the hypotheses that microgravity would affect the period, phasing, and light sensitivity of the CTS. Twenty-four Fisher 344 rats were exposed to 16 days of microgravity on the Neurolab STS-90 mission, and 24 Fisher 344 rats were also studied on Earth as one-G controls. Rats were equipped with biotelemetry transmitters to record body temperature (T(sub b)) and heart rate (HR) continuously while the rats moved freely. In each group, 18 rats were exposed to a 24-hour light-dark (LD 12:12) cycle, and six rats were exposed to constant dim red-light (LL). The ability of light to induce a neuronal activity marker (c-fos) in the circadian pacemaker of the brain, the suprachiasmatic nucleus (SCN), was examined in rats studied on flight days two (FD2) and 14 (FD14), and postflight days two (R+1) and 14 (R+13). The flight rats in LD remained synchronized with the LD cycle. However, their T(sub b), rhythm was markedly phase-delayed relative to the LD cycle. The LD flight rats also had a decreased T(sub b) and a change in the waveform of the T(sub b) rhythm compared to controls. Rats in LL exhibited free-running rhythms of T(sub b), and HR; however, the periods were longer in microgravity. Circadian period returned to preflight values after landing. The internal phase angle between rhythms was different in flight than

  6. Brain Metabolism Alterations Induced by Pregnancy Swimming Decreases Neurological Impairments Following Neonatal Hypoxia-Ischemia in Very Immature Rats

    Directory of Open Access Journals (Sweden)

    Eduardo F. Sanches

    2018-06-01

    Full Text Available Introduction: Prematurity, through brain injury and altered development is a major cause of neurological impairments and can result in motor, cognitive and behavioral deficits later in life. Presently, there are no well-established effective therapies for preterm brain injury and the search for new strategies is needed. Intra-uterine environment plays a decisive role in brain maturation and interventions using the gestational window have been shown to influence long-term health in the offspring. In this study, we investigated whether pregnancy swimming can prevent the neurochemical metabolic alterations and damage that result from postnatal hypoxic-ischemic brain injury (HI in very immature rats.Methods: Female pregnant Wistar rats were divided into swimming (SW or sedentary (SE groups. Following a period of adaptation before mating, swimming was performed during the entire gestation. At postnatal day (PND3, rat pups from SW and SE dams had right common carotid artery occluded, followed by systemic hypoxia. At PND4 (24 h after HI, the early neurochemical profile was measured by 1H-magnetic resonance spectroscopy. Astrogliosis, apoptosis and neurotrophins protein expression were assessed in the cortex and hippocampus. From PND45, behavioral testing was performed. Diffusion tensor imaging and neurite orientation dispersion and density imaging were used to evaluate brain microstructure and the levels of proteins were quantified.Results: Pregnancy swimming was able to prevent early metabolic changes induced by HI preserving the energetic balance, decreasing apoptotic cell death and astrogliosis as well as maintaining the levels of neurotrophins. At adult age, swimming preserved brain microstructure and improved the performance in the behavioral tests.Conclusion: Our study points out that swimming during gestation in rats could prevent prematurity related brain damage in progeny with high translational potential and possibly interesting cost

  7. The cardiovascular and endocrine responses to voluntary and forced diving in trained and untrained rats

    Science.gov (United States)

    DiNovo, Karyn. M.; Connolly, Tiffanny M.

    2010-01-01

    The mammalian diving response, consisting of apnea, bradycardia, and increased total peripheral resistance, can be modified by conscious awareness, fear, and anticipation. We wondered whether swim and dive training in rats would 1) affect the magnitude of the cardiovascular responses during voluntary and forced diving, and 2) whether this training would reduce or eliminate any stress due to diving. Results indicate Sprague-Dawley rats have a substantial diving response. Immediately upon submersion, heart rate (HR) decreased by 78%, from 453 ± 12 to 101 ± 8 beats per minute (bpm), and mean arterial pressure (MAP) decreased 25%, from 143 ± 1 to 107 ± 5 mmHg. Approximately 4.5 s after submergence, MAP had increased to a maximum 174 ± 3 mmHg. Blood corticosterone levels indicate trained rats find diving no more stressful than being held by a human, while untrained rats find swimming and diving very stressful. Forced diving is stressful to both trained and untrained rats. The magnitude of bradycardia was similar during both voluntary and forced diving, while the increase in MAP was greater during forced diving. The diving response of laboratory rats, therefore, appears to be dissimilar from that of other animals, as most birds and mammals show intensification of diving bradycardia during forced diving compared with voluntary diving. Rats may exhibit an accentuated antagonism between the parasympathetic and sympathetic branches of the autonomic nervous system, such that in the autonomic control of HR, parasympathetic activity overpowers sympathetic activity. Additionally, laboratory rats may lack the ability to modify the degree of parasympathetic outflow to the heart during an intense cardiorespiratory response (i.e., the diving response). PMID:19923359

  8. Pressure overload stimulated cardiac hypertrophy leads to a rapid decrease in the mRNA for creatine kinase

    International Nuclear Information System (INIS)

    Boheler, K.; Popovich, B.; Dillmann, W.H.

    1987-01-01

    Cardiac hypertrophy (CH) leads to a decrease in creatine kinase (CK) enzymatic activity. To determine if the mRNA for CK also decreases with CH, they performed the following studies. Cardiac RNA was isolated from rats subjected to either abdominal aortic stenosis (AS) or sham surgery. Through Northern blot analysis, total cardiac RNA was quantitated with a CK specific 32 P-labelled cDNA clone. At 3 and 8 days post-constriction, the mRNA for CK decreases by 54.6 +/- 7% and 65.3 +/- 18% respectively, whereas the heart weight increases by 19% and 37% relative to controls. Further studies indicate that CK mRNA also decreases by 41.8% in hypothyroid rats (Tx) but decreases by a total of 68.1% in Tx rats subjected to 8 days of AS. Pressure overload stimulated CH leads to a rapid decrease in CK mRNA in normal and Tx rats. This CK mRNA decrease may account for the decreased efficiency of contraction seen in CH

  9. Hypocholesterolaemic effect of whole-grain highland hull-less barley in rats fed a high-fat diet.

    Science.gov (United States)

    Xia, Xuejuan; Li, Guannan; Song, Jiaxin; Zheng, Jiong; Kan, Jianquan

    2018-05-01

    Whole-grain highland hull-less barley (WHLB) contains high amounts of bioactive compounds that potentially exhibit cholesterol-lowering effects. This study investigated the hypocholesterolaemic effect of WHLB. A total of seventy-two male Sprague-Dawley rats were divided into four groups and were fed with the normal control diet, high-fat diet (HFD) and HFD containing low or high dose (10 or 48·95 %) of WHLB. High dose of WHLB significantly decreased the organ indexes of liver and abdominal fat and lipid levels of plasma and liver in HFD rats. The lipid regulation effect of WHLB, which was reconfirmed through hepatocyte morphologic observation, was accompanied by a large excretion of bile acids in the small intestinal contents and the faeces. Real-time PCR analyses, which were further reconfirmed through Western blot analyses, revealed that a high dose of WHLB significantly enhanced the hepatic expressions of AMP-activated protein kinase α, cholesterol 7α-hydroxylase, LDL receptor, liver X receptor, and PPARα and decreased the expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase. It also enhanced the ileal expression of farnesoid X receptor and resulted in the decrease of expression of apical sodium-dependent bile acid transporter. WHLB exhibited hypocholesterolaemic effects mainly by inhibiting cholesterol synthesis, cholesterol accumulation in peripheral tissue, and bile acid reabsorption and by stimulating bile acid synthesis.

  10. Intrahippocampal administration of an androgen receptor antagonist, flutamide, can increase anxiety-like behavior in intact and DHT-replaced male rats.

    Science.gov (United States)

    Edinger, Kassandra L; Frye, Cheryl A

    2006-08-01

    Testosterone (T) and its 5alpha-reduced metabolite, dihydrotestosterone (DHT), can decrease anxiety-like behavior; however, the mechanisms underlying these effects have not been established. First, we hypothesized that if T reduces anxiety-like behavior through actions of its 5alpha-reduced metabolite, DHT, then gonadectomy (GDX) would increase anxiety-like behavior, an effect which would be reversed by systemic administration of DHT. Second, we hypothesized that if T and DHT reduce anxiety-like behavior in part through actions at intracellular androgen receptors in the hippocampus, then administration of an androgen receptor antagonist, flutamide, directly to the hippocampus should increase anxiety-like behavior of intact and DHT-replaced, but not GDX, male rats. Inserts that were empty or contained flutamide were applied directly to the dorsal hippocampus of intact, GDX, or GDX and DHT-replaced rats 2 h prior to testing in the open field, elevated plus maze, or defensive freezing tasks. GDX rats exhibited significantly more anxiety-like behaviors than intact or DHT-replaced rats. Intact and DHT-replaced rats administered flutamide to the hippocampus showed significantly more anxiety-like behavior than did intact and DHT-replaced controls. However, flutamide alone did not increase anxiety-like behavior of GDX rats. Together, these findings suggest that androgens can decrease anxiety-like behavior of male rats in part through DHT's actions at androgen receptors in the hippocampus.

  11. Hypercholesterolemia downregulates autophagy in the rat heart.

    Science.gov (United States)

    Giricz, Zoltán; Koncsos, Gábor; Rajtík, Tomáš; Varga, Zoltán V; Baranyai, Tamás; Csonka, Csaba; Szobi, Adrián; Adameová, Adriana; Gottlieb, Roberta A; Ferdinandy, Péter

    2017-03-23

    We have previously shown that efficiency of ischemic conditioning is diminished in hypercholesterolemia and that autophagy is necessary for cardioprotection. However, it is unknown whether isolated hypercholesterolemia disturbs autophagy or the mammalian target of rapamycin (mTOR) pathways. Therefore, we investigated whether isolated hypercholesterolemia modulates cardiac autophagy-related pathways or programmed cell death mechanisms such as apoptosis and necroptosis in rat heart. Male Wistar rats were fed either normal chow (NORM; n = 9) or with 2% cholesterol and 0.25% cholic acid-enriched diet (CHOL; n = 9) for 12 weeks. CHOL rats exhibited a 41% increase in plasma total cholesterol level over that of NORM rats (4.09 mmol/L vs. 2.89 mmol/L) at the end of diet period. Animals were sacrificed, hearts were excised and briefly washed out. Left ventricles were snap-frozen for determination of markers of autophagy, mTOR pathway, apoptosis, and necroptosis by Western blot. Isolated hypercholesterolemia was associated with a significant reduction in expression of cardiac autophagy markers such as LC3-II, Beclin-1, Rubicon and RAB7 as compared to controls. Phosphorylation of ribosomal S6, a surrogate marker for mTOR activity, was increased in CHOL samples. Cleaved caspase-3, a marker of apoptosis, increased in CHOL hearts, while no difference in the expression of necroptotic marker RIP1, RIP3 and MLKL was detected between treatments. This is the first comprehensive analysis of autophagy and programmed cell death pathways of apoptosis and necroptosis in hearts of hypercholesterolemic rats. Our data show that isolated hypercholesterolemia suppresses basal cardiac autophagy and that the decrease in autophagy may be a result of an activated mTOR pathway. Reduced autophagy was accompanied by increased apoptosis, while cardiac necroptosis was not modulated by isolated hypercholesterolemia. Decreased basal autophagy and elevated apoptosis may be responsible for the

  12. Enteral intestinal alkaline phosphatase administration in newborns decreases iNOS expression in a neonatal necrotizing enterocolitis rat model.

    Science.gov (United States)

    Rentea, Rebecca M; Liedel, Jennifer L; Fredrich, Katherine; Pritchard, Kirkwood; Oldham, Keith T; Simpson, Pippa M; Gourlay, David M

    2013-01-01

    To determine if intestinal alkaline phosphatase (IAP) decreases intestinal injury resulting from experimentally induced necrotizing enterocolitis (NEC). We hypothesized that IAP administration prevents the initial development of NEC related intestinal inflammation. Pre- and full-term newborn Sprague-Dawley rat pups were sacrificed on day 1 of life. Pre-term pups were exposed to intermittent hypoxia and formula containing LPS to induce NEC. Select NEC pups were given 40, 4 or 0.4 units/kg of bovine IAP (NEC+IAP40u, IAP4u or IAP0.4u) enterally, once daily. Ileal sections were evaluated by real-time PCR (qRT-PCR) for IAP, iNOS, IL-1β, IL-6, and TNF-α mRNA and immunofluorescence for 3-nitrotyrosine (3-NT). Experimentally induced NEC decreased IAP mRNA expression by 66% (p ≤ 0.001). IAP supplementation increased IAP mRNA expression to control. Supplemental enteral IAP decreased nitrosative stress as measured by iNOS mRNA expression and 3-NT staining in the NEC stressed pups (p ≤ 0.01), as well as decreased intestinal TNF-α mRNA expression. In addition, IAP decreased LSP translocation into the serum in the treated pups. We conclude that enterally administered IAP prevents NEC-related intestinal injury and inflammation. Enteral IAP may prove a useful strategy in the prevention of NEC in preterm neonates. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Hypothyroidism in the rat results in decreased soleus motoneurone soma size

    NARCIS (Netherlands)

    Bakels, R; Nijenhuis, Albertine; Mast, L; Kernell, D

    1998-01-01

    Adult female rats were thyroidectomized. After an average of 17 weeks, horseradish peroxidase (HRP) was injected into the right side soleus muscle. Two days later, left side soleus muscle properties were recorded and muscles and spinal cord were removed for further histological measurements. Soleus

  14. Genetic profiling of two phenotypically distinct outbred rats derived from a colony of the Zucker fatty rats maintained at Tokyo Medical University

    Science.gov (United States)

    Nakanishi, Satoshi; Kuramoto, Takashi; Kashiwazaki, Naomi; Yokoi, Norihide

    2016-01-01

    The Zucker fatty (ZF) rat is an outbred rat and a well-known model of obesity without diabetes, harboring a missense mutation (fatty, abbreviated as fa) in the leptin receptor gene (Lepr). Slc:Zucker (Slc:ZF) outbred rats exhibit obesity while Hos:ZFDM-Leprfa (Hos:ZFDM) outbred rats exhibit obesity and type 2 diabetes. Both outbred rats have been derived from an outbred ZF rat colony maintained at Tokyo Medical University. So far, genetic profiles of these outbred rats remain unknown. Here, we applied a simple genotyping method using Ampdirect reagents and FTA cards (Amp-FTA) in combination with simple sequence length polymorphisms (SSLP) markers to determine genetic profiles of Slc:ZF and Hos:ZFDM rats. Among 27 SSLP marker loci, 24 loci (89%) were fixed for specific allele at each locus in Slc:ZF rats and 26 loci (96%) were fixed in Hos:ZFDM rats, respectively. This indicates the low genetic heterogeneity in both colonies of outbred rats. Nine loci (33%) showed different alleles between the two outbred rats, suggesting considerably different genetic profiles between the two outbred rats in spite of the same origin. Additional analysis using 72 SSLP markers further supported these results and clarified the profiles in detail. This study revealed that genetic profiles of the Slc:ZF and Hos:ZFDM outbred rats are different for about 30% of the SSLP marker loci, which is the underlying basis for the phenotypic difference between the two outbred rats. PMID:27795491

  15. Dietary Caprylic Acid (C8:0) Does Not Increase Plasma Acylated Ghrelin but Decreases Plasma Unacylated Ghrelin in the Rat

    Science.gov (United States)

    Lemarié, Fanny; Beauchamp, Erwan; Dayot, Stéphanie; Duby, Cécile; Legrand, Philippe; Rioux, Vincent

    2015-01-01

    Focusing on the caprylic acid (C8:0), this study aimed at investigating the discrepancy between the formerly described beneficial effects of dietary medium chain fatty acids on body weight loss and the C8:0 newly reported effect on food intake via ghrelin octanoylation. During 6 weeks, Sprague-Dawley male rats were fed with three dietary C8:0 levels (0, 8 and 21% of fatty acids) in three experimental conditions (moderate fat, caloric restriction and high fat). A specific dose-response enrichment of the stomach tissue C8:0 was observed as a function of dietary C8:0, supporting the hypothesis of an early preduodenal hydrolysis of medium chain triglycerides and a direct absorption at the gastric level. However, the octanoylated ghrelin concentration in the plasma was unchanged in spite of the increased C8:0 availability. A reproducible decrease in the plasma concentration of unacylated ghrelin was observed, which was consistent with a decrease in the stomach preproghrelin mRNA and stomach ghrelin expression. The concomitant decrease of the plasma unacylated ghrelin and the stability of its acylated form resulted in a significant increase in the acylated/total ghrelin ratio which had no effect on body weight gain or total dietary consumption. This enhanced ratio measured in rats consuming C8:0 was however suspected to increase (i) growth hormone (GH) secretion as an increase in the GH-dependent mRNA expression of the insulin like growth Factor 1 (IGF-1) was measured (ii) adipocyte diameters in subcutaneous adipose tissue without an increase in the fat pad mass. Altogether, these results show that daily feeding with diets containing C8:0 increased the C8:0 level in the stomach more than all the other tissues, affecting the acylated/total ghrelin plasma ratio by decreasing the concentration of circulating unacylated ghrelin. However, these modifications were not associated with increased body weight or food consumption. PMID:26196391

  16. Impaired mitochondrial metabolism and protein synthesis in streptozotocin diabetic rat hepatocytes

    International Nuclear Information System (INIS)

    Memon, R.A.; Bessman, S.P.; Mohan, C.

    1990-01-01

    Isolated hepatocytes prepared from control, streptozotocin diabetic rats were incubated at 30 degrees C in Krebs-Henseleit bicarbonate buffer, pH 7.4, containing 0.5 mM concentration of each of the 20 natural amino acids. Effect of insulin on the oxidation of 2,3- 14 C and 1,4- 14 C succinate (suc) carbons and their incorporation into hepatocyte protein, lipid and various metabolic intermediates was studied. Mitochondrial oxidation of suc carbons and their incorporation into protein and lipid was significantly lower in diabetic and insulin treated diabetic rats. Diabetic rats failed to exhibit any significant insulin effect on the oxidation of either 2,3 or 1,4- 14 C suc carbons. Amphibolic channeling of 2,3- 14 C suc carbons into amino acids was significantly reduced in hepatocytes of diabetic rats, however, more of these carbons were diverted into the gluconeogenesis pathway. Diabetes caused a far greater decrease in the oxidation of 2,3- 14 C suc carbons as compared to 1,4- 14 C suc. Based on an earlier report that insulin stimulates only the intramitochondrial Krebs cycle reactions, the authors conclude that the diminished level of anabolic activities in the diabetic rat hepatocytes is due to the subsequent reduction in amphibolic channeling of metabolic intermediates

  17. Fish oil, but not soy bean or olive oil enriched infusion decreases histopathological severity of acute pancreatitis in rats without affecting eicosanoid synthesis.

    Science.gov (United States)

    Kilian, Maik; Heukamp, Ina; Gregor, Ja Ilja; Schimke, Ingolf; Kristiansen, Glen; Wenger, Frank Axel

    2011-12-01

    Different dietary fatty acids affect eicosanoid metabolism in different ways, thus influencing the pro- and anti-inflammatory balance of prostaglandins and leukotrienes. Therefore, we analyzed the impact of [n-3], [n-6], and [n-9] fatty acids on eicosanoid metabolism and histopathology in acute pancreatitis in rats. Seventy-five male Sprague-Dawley rats were randomized into five groups (n = 15). Group 1 underwent only laparotomy, while in groups, 2-5 pancreatitis was induced. Groups 1 and 2 were then given saline infusion, groups 3-5 received fat emulsion (group 3: rich in [n-6], group 4: rich in [n-9], group 5: rich in [n-3] fatty acids) for another 18 h. Infusion rich in [n-3] fatty acids significantly decreased histopathological severity of pancreatitis, compared to all other groups. There was no difference concerning the concentrations of prostaglandins and leukotrienes between all groups. Parenteral infusion rich in [n-3] fatty acids reduced histopathological severity of acute pancreatitis in rats without changing eicosanoid metabolism at the endpoint.

  18. Perinatal nicotine treatment induces transient increases in NACHO protein levels in the rat frontal cortex

    DEFF Research Database (Denmark)

    Wichern, Franziska; Jensen, Majbrit M; Christensen, Ditte Z

    2017-01-01

    The nicotinic acetylcholine receptor (nAChR) regulator chaperone (NACHO) was recently identified as an important regulator of nAChR maturation and surface expression. Here we show that NACHO levels decrease during early postnatal development in rats. This decrease occurs earlier and to a greater...... degree in the frontal cortex (FC) compared with the hippocampus (HIP). We further show that rats exposed to nicotine during pre- and postnatal development exhibit significantly higher NACHO levels in the FC at postnatal day (PND) 21, but not at PND60. Repeated exposure to nicotine selectively during...... a single exposure to a combination of nicotine and the type II α7 nAChR positive allosteric modulator (PAM) PNU-120596, but not the type I PAM AVL-3288. These findings suggest that exposure to nAChR agonism affects NACHO protein levels, and that this effect is more pronounced during pre- or early postnatal...

  19. Vitamin A decreases pre-receptor amplification of glucocorticoids in obesity: study on the effect of vitamin A on 11beta-hydroxysteroid dehydrogenase type 1 activity in liver and visceral fat of WNIN/Ob obese rats

    Directory of Open Access Journals (Sweden)

    Ayyalasomayajula Vajreswari

    2011-06-01

    Full Text Available Abstract Background 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1 catalyzes the conversion of inactive glucocorticoids to active glucocorticoids and its inhibition ameliorates obesity and metabolic syndrome. So far, no studies have reported the effect of dietary vitamin A on 11β-HSD1 activity in visceral fat and liver under normal and obese conditions. Here, we studied the effect of chronic feeding of vitamin A-enriched diet (129 mg/kg diet on 11β-HSD1 activity in liver and visceral fat of WNIN/Ob lean and obese rats. Methods Male, 5-month-old, lean and obese rats of WNIN/Ob strain (n = 16 for each phenotype were divided into two subgroups consisting of 8 rats of each phenotype. Control groups received stock diet containing 2.6 mg vitamin A/kg diet, where as experimental groups received diet containing 129 mg vitamin A/Kg diet for 20 weeks. Food and water were provided ad libitum. At the end of the experiment, tissues were collected and 11β-HSD1 activity was assayed in liver and visceral fat. Results Vitamin A supplementation significantly decreased body weight, visceral fat mass and 11β-HSD1 activity in visceral fat of WNIN/Ob obese rats. Hepatic 11β-HSD1 activity and gene expression were significantly reduced by vitamin A supplementation in both the phenotypes. CCAAT/enhancer binding protein α (C/EBPα, the main transcription factor essential for the expression of 11β-HSD1, decreased in liver of vitamin A fed-obese rats, but not in lean rats. Liver × receptor α (LXRα, a nuclear transcription factor which is known to downregulate 11β-HSD1 gene expression was significantly increased by vitamin A supplementation in both the phenotypes. Conclusions This study suggests that chronic consumption of vitamin A-enriched diet decreases 11β-HSD1 activity in liver and visceral fat of WNIN/Ob obese rats. Decreased 11β-HSD1 activity by vitamin A may result in decreased levels of active glucocorticoids in adipose tissue and possibly

  20. Curcumin decreases astrocytic reaction after gliotoxic injury in the rat brainstem

    Directory of Open Access Journals (Sweden)

    Eduardo Bondan

    Full Text Available ABSTRACT Recent studies have demonstrated that curcumin (Cur has antioxidant, anti-inflammatory and anti-fibrotic effects. Ethidium bromide (EB injections into the central nervous system (CNS are known to induce local oligodendroglial and astrocytic loss, resulting in primary demyelination and neuroinflammation. Peripheral astrogliosis is seen around the injury site with increased immunoreactivity to glial fibrillary acidic protein (GFAP. This investigation aimed to evaluate the effect of Cur administration on astrocytic response following gliotoxic injury. Wistar rats were injected with EB into the cisterna pontis and treated, or not, with Cur (100 mg/kg/day, intraperitoneal route during the experimental period. Brainstem sections were collected at 15, 21 and 31 days after EB injection and processed for GFAP immunohistochemical staining. Astrocytic reactivity was measured in a computerized system for image analysis. In Cur-treated rats, the GFAP-stained area around the lesion was significantly smaller in all periods after EB injection compared to untreated animals, showing that Cur reduces glial scar development following injury.

  1. Insulin binding to brain capillaries is reduced in genetically obese, hyperinsulinemic Zucker rats

    International Nuclear Information System (INIS)

    Schwartz, M.W.; Figlewicz, D.F.; Kahn, S.E.; Baskin, D.G.; Greenwood, M.R.; Porte, D. Jr.

    1990-01-01

    In order to study the role of plasma insulin in regulating the binding of insulin to the endothelium of the blood-brain barrier (BBB), insulin binding to a purified preparation of brain capillaries was measured in both genetically obese Zucker rats and lean Zucker controls. We found a reduction of 65% in brain capillary insulin binding site number in the obese compared to lean rats with no change in receptor affinity. Furthermore, specific insulin binding to brain capillaries was negatively correlated (p less than 0.05) to the plasma insulin level, suggesting a role for plasma insulin in regulating insulin binding. A similar relationship was observed between insulin receptor number in liver membranes and the plasma insulin level. We conclude that obese, hyperinsulinemic Zucker rats exhibit a reduction in the number of BBB insulin receptors, which parallels the reduction seen in other peripheral tissues. Since insulin receptors have been hypothesized to participate in the transport of insulin across the BBB, the reduction observed in the obese rats may account for the decrease in cerebrospinal fluid insulin uptake previously demonstrated in these animals

  2. Hormone-induced protection against mammary tumorigenesis is conserved in multiple rat strains and identifies a core gene expression signature induced by pregnancy.

    Science.gov (United States)

    Blakely, Collin M; Stoddard, Alexander J; Belka, George K; Dugan, Katherine D; Notarfrancesco, Kathleen L; Moody, Susan E; D'Cruz, Celina M; Chodosh, Lewis A

    2006-06-15

    Women who have their first child early in life have a substantially lower lifetime risk of breast cancer. The mechanism for this is unknown. Similar to humans, rats exhibit parity-induced protection against mammary tumorigenesis. To explore the basis for this phenomenon, we identified persistent pregnancy-induced changes in mammary gene expression that are tightly associated with protection against tumorigenesis in multiple inbred rat strains. Four inbred rat strains that exhibit marked differences in their intrinsic susceptibilities to carcinogen-induced mammary tumorigenesis were each shown to display significant protection against methylnitrosourea-induced mammary tumorigenesis following treatment with pregnancy levels of estradiol and progesterone. Microarray expression profiling of parous and nulliparous mammary tissue from these four strains yielded a common 70-gene signature. Examination of the genes constituting this signature implicated alterations in transforming growth factor-beta signaling, the extracellular matrix, amphiregulin expression, and the growth hormone/insulin-like growth factor I axis in pregnancy-induced alterations in breast cancer risk. Notably, related molecular changes have been associated with decreased mammographic density, which itself is strongly associated with decreased breast cancer risk. Our findings show that hormone-induced protection against mammary tumorigenesis is widely conserved among divergent rat strains and define a gene expression signature that is tightly correlated with reduced mammary tumor susceptibility as a consequence of a normal developmental event. Given the conservation of this signature, these pathways may contribute to pregnancy-induced protection against breast cancer.

  3. Metabolism of UV-filter benzophenone-3 by rat and human liver microsomes and its effect on endocrine-disrupting activity

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Yoko, E-mail: y-watanabe@nichiyaku.ac.jp [Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553 (Japan); Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Saitama 362-0806 (Japan); Kojima, Hiroyuki; Takeuchi, Shinji [Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo 060-0819 (Japan); Uramaru, Naoto [Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Saitama 362-0806 (Japan); Sanoh, Seigo [Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553 (Japan); Sugihara, Kazumi [Faculty of Pharmaceutical Science, Hiroshima International University, Koshingai 5-1-1, Kure, Hiroshima 737-0112 (Japan); Kitamura, Shigeyuki [Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Saitama 362-0806 (Japan); Ohta, Shigeru [Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553 (Japan)

    2015-01-15

    Benzophenone-3 (2-hydroxy-4-methoxybenzophenone; BP-3) is widely used as sunscreen for protection of human skin and hair from damage by ultraviolet (UV) radiation. In this study, we examined the metabolism of BP-3 by rat and human liver microsomes, and the estrogenic and anti-androgenic activities of the metabolites. When BP-3 was incubated with rat liver microsomes in the presence of NADPH, 2,4,5-trihydroxybenzophenone (2,4,5-triOH BP) and 3-hydroxylated BP-3 (3-OH BP-3) were newly identified as metabolites, together with previously detected metabolites 5-hydroxylated BP-3 (5-OH BP-3), a 4-desmethylated metabolite (2,4-diOH BP) and 2,3,4-trihydroxybenzophenone (2,3,4-triOH BP). In studies with recombinant rat cytochrome P450, 3-OH BP-3 and 2,4,5-triOH BP were mainly formed by CYP1A1. BP-3 was also metabolized by human liver microsomes and CYP isoforms. In estrogen reporter (ER) assays using estrogen-responsive CHO cells, 2,4-diOH BP exhibited stronger estrogenic activity, 2,3,4-triOH BP exhibited similar activity, and 5-OH BP-3, 2,4,5-triOH BP and 3-OH BP-3 showed lower activity as compared to BP-3. Structural requirements for activity were investigated in a series of 14 BP-3 derivatives. When BP-3 was incubated with liver microsomes from untreated rats or phenobarbital-, 3-methylcholanthrene-, or acetone-treated rats in the presence of NADPH, estrogenic activity was increased. However, liver microsomes from dexamethasone-treated rats showed decreased estrogenic activity due to formation of inactive 5-OH BP-3 and reduced formation of active 2,4-diOH BP. Anti-androgenic activity of BP-3 was decreased after incubation with liver microsomes. - Highlights: • Metabolic modification of the endocrine-disrupting activity of BP-3 was examined. • 2,4,5-TriOH BP and 3-OH BP-3 were identified as new BP-3 metabolites. • 2,4-DiOH BP and 2,3,4-triOH BP exhibited high or similar estrogenic activities. • Estrogenic activity of BP-3 was enhanced by incubation with rat liver

  4. Olanzapine promotes fat accumulation in male rats by decreasing physical activity, repartitioning energy and increasing adipose tissue lipogenesis while impairing lipolysis.

    Science.gov (United States)

    Albaugh, V L; Judson, J G; She, P; Lang, C H; Maresca, K P; Joyal, J L; Lynch, C J

    2011-05-01

    Olanzapine and other atypical antipsychotics cause metabolic side effects leading to obesity and diabetes; although these continue to be an important public health concern, their underlying mechanisms remain elusive. Therefore, an animal model of these side effects was developed in male Sprague-Dawley rats. Chronic administration of olanzapine elevated fasting glucose, impaired glucose and insulin tolerance, increased fat mass but, in contrast to female rats, did not increase body weight or food intake. Acute studies were conducted to delineate the mechanisms responsible for these effects. Olanzapine markedly decreased physical activity without a compensatory decline in food intake. It also acutely elevated fasting glucose and worsened oral glucose and insulin tolerance, suggesting that these effects are adiposity independent. Hyperinsulinemic-euglycemic clamp studies measuring (14)C-2-deoxyglucose uptake revealed tissue-specific insulin resistance. Insulin sensitivity was impaired in skeletal muscle, but either unchanged or increased in adipose tissue depots. Consistent with the olanzapine-induced hyperglycemia, there was a tendency for increased (14)C-2-deoxyglucose uptake into fat depots of fed rats and, surprisingly, free fatty acid (FFA) uptake into fat depots was elevated approximately twofold. The increased glucose and FFA uptake into adipose tissue was coupled with increased adipose tissue lipogenesis. Finally, olanzapine lowered fasting plasma FFA, and as it had no effect on isoproterenol-stimulated rises in plasma glucose, it blunted isoproterenol-stimulated in vivo lipolysis in fed rats. Collectively, these results suggest that olanzapine exerts several metabolic effects that together favor increased accumulation of fuel into adipose tissue, thereby increasing adiposity.

  5. Radio-Protective Effects of Melatonin on Subventricular Zone in Irradiated Rat: Decrease in Apoptosis and Upregulation of Nestin.

    Science.gov (United States)

    Naseri, Shafigheh; Moghahi, Seyed Mohammad Hossein Noori; Mokhtari, Tahmineh; Roghani, Mehrdad; Shirazi, Ali Reza; Malek, Fatemeh; Rastegar, Tayebeh

    2017-10-01

    Neural stem cells are self-renewing, multipotent cells that can be found in subventricular (SVZ) and subgranular (SGZ) zones of the brain. These zones are susceptible to irradiation-induced apoptosis and oxidative stress. Melatonin (MLT) is a natural protector of neural cells against toxicity. The aim of this study was to evaluate the effects of MLT as a radio-protective material effective in reducing tissue lesions in the SVZ of the brain and changing local apoptotic potential in rats. Twenty-five Gray irradiation was applied on adult rat brain for this study. One hour before irradiation, 100 mg/kg/IP MLT was injected, and 6 h later, the animals were sacrificed. The antioxidant enzymes and MDA activity levels were measured post-sacrifice. Also, the expression level of Nestin and caspase 3 were studied by immunohistochemistry. Spectrophotometric analysis showed significant increases in the amount of malondialdehyde (MDA) levels in the irradiation-exposed (RAD) group compared to that of the control (Co) group (P < 0.05). Pre-treatment with MLT (100 mg/kg) ameliorates the harmful effects of the aforementioned 25 Gy irradiation by increasing antioxidant enzyme activity and decreasing MDA levels. A significant reduction in apoptotic cells was observed in rats treated with MLT 1 h before exposure (P < 0.001). Nestin-positive cells were also reduced in the RAD group (P < 0.001). Our results confirm the anti-apoptotic and antioxidant role of MLT. The MLT concentration used may serve as a threshold for significant protection against 25 Gy gamma irradiations on neural stem cells in SVZ.

  6. Variability in Zucker diabetic fatty rats: differences in disease progression in hyperglycemic and normoglycemic animals

    Directory of Open Access Journals (Sweden)

    Wang X

    2014-11-01

    faster in hyperglycemic animals. The most marked difference between the two groups of ZDF animals was in insulin output. Although the two ZDF populations had very similar elevated plasma insulin concentrations for the first 10 weeks, after that time, plasma insulin decreased markedly in the animals that became hyperglycemic, whereas it remained high in the normoglycemic ZDF rats. Thus, hyperglycemic ZDF animals exhibit both insulin resistance and progressive beta cell failure, whereas normoglycemic ZDF rats exhibit a lesser degree of insulin resistance that does not progress to beta cell failure. In these respects, the normoglycemic ZDF rats appear to revert back to a phenotype that strongly resembles that of nondiabetic Zucker fatty rats from which they were derived. Keywords: type 2 diabetes, ZDF rats, animal models

  7. Characterization of the Prediabetic State in a Novel Rat Model of Type 2 Diabetes, the ZFDM Rat.

    Science.gov (United States)

    Gheni, Ghupurjan; Yokoi, Norihide; Beppu, Masayuki; Yamaguchi, Takuro; Hidaka, Shihomi; Kawabata, Ayako; Hoshino, Yoshikazu; Hoshino, Masayuki; Seino, Susumu

    2015-01-01

    We recently established a novel animal model of obese type 2 diabetes (T2D), the Zucker fatty diabetes mellitus (ZFDM) rat strain harboring the fatty mutation (fa) in the leptin receptor gene. Here we performed a phenotypic characterization of the strain, focusing mainly on the prediabetic state. At 6-8 weeks of age, fa/fa male rats exhibited mild glucose intolerance and severe insulin resistance. Although basal insulin secretion was remarkably high in the isolated pancreatic islets, the responses to both glucose stimulation and the incretin GLP-1 were retained. At 10-12 weeks of age, fa/fa male rats exhibited marked glucose intolerance as well as severe insulin resistance similar to that at the earlier age. In the pancreatic islets, the insulin secretory response to glucose stimulation was maintained but the response to the incretin was diminished. In nondiabetic Zucker fatty (ZF) rats, the insulin secretory responses to both glucose stimulation and the incretin in the pancreatic islets were similar to those of ZFDM rats. As islet architecture was destroyed with age in ZFDM rats, a combination of severe insulin resistance, diminished insulin secretory response to incretin, and intrinsic fragility of the islets may cause the development of T2D in this strain.

  8. Ameliorating effects of goby fish protein hydrolysates on high-fat-high-fructose diet-induced hyperglycemia, oxidative stress and deterioration of kidney function in rats.

    Science.gov (United States)

    Nasri, Rim; Abdelhedi, Ola; Jemil, Ines; Daoued, Ines; Hamden, Khaled; Kallel, Choumous; Elfeki, Abdelfattah; Lamri-Senhadji, Myriem; Boualga, Ahmed; Nasri, Moncef; Karra-Châabouni, Maha

    2015-12-05

    This study investigated the therapeutic potential of undigested goby fish (Zosterisessor ophiocephalus) muscle proteins (UGP) and their hydrolysates on high-fat-high-fructose diet (HFFD)-fed rats. HFFD induced hyperglycemia, manifested by a significant increase in the levels of glucose and glycogen as well as α-amylase activity when compared to normal rats. The administration of GPHs to HFFD-fed rats significantly decreased α-amylase activity and the contents of blood glucose and hepatic glycogen. By contrast, the UGP increased the glucose metabolic disorders in HFFD-fed rats. Furthermore, HFFD-fed rats showed oxidative stress, as evidenced by decreased antioxidant enzyme activities and glutathione (GSH) levels and increased concentration of the lipid peroxidation product malondialdehyde in liver and kidney. Interestingly, the daily gavage of UGP and GPHs improved the redox status in liver and kidney of HFFD-rats by ameliorating or reversing the above-mentioned changes. Moreover, GPHs exhibited a renal protective role by reversing the HFFD-induced decease of uric acid and increase of creatinine levels in serum and preventing some HFFD-induced changes in kidney architecture. The results demonstrate that GPHs contain bioactive peptides that possess significant hypoglycemic and antioxidant properties, and ameliorate renal damage in rats fed hypercaloric diet. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Combined Effect of food deprivation and serotonin injection on plasma prolactin and glucose levels in irradiated rats

    International Nuclear Information System (INIS)

    Girgis, R.B.; Abdel-Fattah, K.I.; Khamis, F.I.; Abu Zaid, N.M.

    2004-01-01

    The present study aims to investigate the role of serotonin (5-HT) on the homeostasis of plasma prolactin and glucose in rats induced by gamma irradiation and food deprivation. Animals were divided into seven groups; control, irradiated at a dose level of 6 Gy, injected with 500 mg/kg b.wt. 5-HT intra-peritoneally, injected with 5-HT before irradiation food deprived for 48 hrs then irradiated, food deprived then injected with 5-HT, and food deprived then injected with 5-HT before whole body irradiation. Samples were collected at 1,3, 7 and 14 days post irradiation. The results showed that gamma irradiation firstly elevated prolactin (PRL) levels in plasma (1 and 3 days) then the levels decreased after 7 and 14 days as compared to control values. Rats received serotonin before irradiation exhibited an increased level of PRL after 14 days post irradiation compared to control value, while the level decreased after 1, 3, 7 days post irradiation. Food deprivation for 48 hrs altered the effect of serotonin and /or irradiation on PRL levels in plasma. Rats injected with serotonin showed a decreased level of plasma prolactin in food deprived rats, 3 days post injection. The obtained results showed that serotonin causes variable effects on plasma prolactin compared to control values. Glucose plasma levels were increased in both irradiated and serotonin injected rats before irradiation, and also in serotonin injected rats as compared to control values. Irradiation of rats after 48 hrs food deprivation induced an increase in plasma glucose levels measured throughout the different experimental periods. Injection of serotonin to rats after 48 hrs food deprivation before irradiation increased plasma glucose levels after 1, 3, 7 and 14 days compared to control value. Also, injection of serotonin to 48 hrs food deprived rats increased glucose levels during all examined days of experiment.It could be concluded that serotonin may have a variable mechanism controlling prolactin

  10. Neonatal manipulation of oxytocin prevents lipopolysaccharide-induced decrease in gene expression of growth factors in two developmental stages of the female rat.

    Science.gov (United States)

    Bakos, Jan; Lestanova, Zuzana; Strbak, Vladimir; Havranek, Tomas; Bacova, Zuzana

    2014-10-01

    Oxytocin production and secretion is important for early development of the brain. Long-term consequences of manipulation of oxytocin system might include changes in markers of brain plasticity - cytoskeletal proteins and neurotrophins. The aim of the present study was (1) to determine whether neonatal oxytocin administration affects gene expression of nestin, microtubule-associated protein-2 (MAP-2), brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the brain of two developmental stages of rat and (2) to evaluate whether neonatal oxytocin administration protects against lipopolysaccharide (LPS) induced inflammation. Neonatal oxytocin did not prevent a decrease of body weight in the LPS treated animals. Oxytocin significantly increased gene expression of BDNF in the right hippocampus in 21-day and 2-month old rats of both sexes. Gene expression of NGF and MAP-2 significantly increased in males treated with oxytocin. Both, growth factors and intermediate filament-nestin mRNA levels, were reduced in females exposed to LPS. Oxytocin treatment prevented a decrease in the gene expression of only growth factors. In conclusion, neonatal manipulation of oxytocin has developmental and sex-dependent effect on markers of brain plasticity. These results also indicate, that oxytocin may be protective against inflammation particularly in females. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Lack of evidence for increased tolerance of rat spinal cord with decreasing fraction doses below 2 Gy

    International Nuclear Information System (INIS)

    Ang, K.K.; van der Kogel, A.J.; van der Schueren, E.

    1985-01-01

    The radiation tolerance of the spinal cord, both in man and in rats, has been shown to depend strongly on the size of the dose per fraction. With fraction doses down to about 2 Gy, the spinal cord tolerance can be predicted by a modified Ellis formula. More recently alternative isoeffect formulas were based on the linear-quadratic (LQ) model of cell survival where the effect of dose fractionation is characterized by the ratio α/β which varies from tissue to tissue. For the spinal cord, as well as for other late responding tissues, the ratio α/β is small, in contrast to most acutely responding tissues. Both the Ellis-type formula, and to a lesser extent the LQ-model, predict a continuously increasing tolerance dose with decreasing fraction size. From previous experiments on the rat cervical spinal cord with doses per fraction down to about 2 Gy, the ratio α/β was determined to be 1.7 Gy, and the LQ-model would predict a rise in tolerance with a reduction in fraction size to far below 2 Gy. Based on these predictions clinical studies have been initiated assuming a significantly increased tolerance by reduction of fraction size to about 1 Gy. However, in the present experiments no evidence was found for such an increase in tolerance with fraction sizes below 2 Gy

  12. Effects of herbal mixture extracts on obesity in rats fed a high-fat diet

    Directory of Open Access Journals (Sweden)

    Mei-Yin Chien

    2016-07-01

    Full Text Available The aim of this study was to investigate and compare the effects of three herbal mixture extracts on obesity induced by high-fat diet (HFD in rats. The prescriptions—Pericarpium citri reticulatae and Fructus crataegi—were used as matrix components and mixed with Ampelopsis grossedentata, Salvia miltiorrhiza, and epigallocatechin-3-gallate (EGCG to form T1, T2, and T3 complexes, respectively. Results revealed that HFD feeding significantly increased body weight gain, fat deposition, plasma lipid profiles, hepatic lipid accumulation, and hepatic vacuoles formation, but decreased plasma levels of adiponectin in rats. Only the T1 complex showed the tendency, although not significantly so, for decreased HFD-induced body weight gain. T1 and T3 complexes significantly reduced HFD-induced fat deposition, and plasma levels of triglyceride, total cholesterol, and low-density lipoprotein cholesterol. Only the T1 complex significantly increased HFD-reduced adiponectin levels in plasma, but decreased HFD-increased triglyceride content in liver tissues. All complexes effectively inhibited HFD-induced vacuoles formation. The content of dihydromyricetin, salvianolic acid B, and EGCG in T1, T2, and T3 complexes was 18.25 ± 0.07%, 22.20 ± 0.10%, and 18.86 ± 0.04%, respectively. In summary, we demonstrated that herbal mixture extracts, especially T1 complex, exhibit antiobesity activity in HFD-fed rats.

  13. Dichloroacetate Decreases Cell Health and Activates Oxidative Stress Defense Pathways in Rat Alveolar Type II Pneumocytes

    Directory of Open Access Journals (Sweden)

    Alexis Valauri-Orton

    2015-01-01

    Full Text Available Dichloroacetate (DCA is a water purification byproduct that is known to be hepatotoxic and hepatocarcinogenic and to induce peripheral neuropathy and damage macrophages. This study characterizes the effects of the haloacetate on lung cells by exposing rat alveolar type II (L2 cells to 0–24 mM DCA for 6–24 hours. Increasing DCA concentration and the combination of increasing DCA concentration plus longer exposures decrease measures of cellular health. Length of exposure has no effect on oxidative stress biomarkers, glutathione, SOD, or CAT. Increasing DCA concentration alone does not affect total glutathione or its redox ratio but does increase activity in the SOD/CAT oxidative stress defense pathway. These data suggest that alveolar type II cells rely on SOD and CAT more than glutathione to combat DCA-induced stress.

  14. Decrease in the number of rat brain dopamine and muscarinic receptors after chronic alcohol intake

    International Nuclear Information System (INIS)

    Syvaelahti, E.K.G.; Hietala, J.; Roeyttae, M.; Groenroos, J.

    1988-01-01

    The effect of 32 weeks' alcohol treatment on the number and affinity of dopamine and muscarinic receptor sites in rat striatum were measured using 3 H-spiperone and 3 H-quinuclidinylbenzilate ( 3 H-QNB) as radioligans. The number of dopamine receptor sites was 38 per cent and the number of muscarinic receptor sites 36 per cent lower in the alcohol group than in control rats. The differences in receptor affinities were less marked. In conclusion, a long-term alcohol intake with rather moderate doses seems to induce a pronounced down-regulation in dopamine and muscarinic receptor systems in rat striatum. (author)

  15. Antidepressant-Like Effect of Lipid Extract of Channa striatus in Chronic Unpredictable Mild Stress Model of Depression in Rats

    Directory of Open Access Journals (Sweden)

    Mohamed Saleem Abdul Shukkoor

    2016-01-01

    Full Text Available This study evaluated the antidepressant-like effect of lipid extract of C. striatus in chronic unpredictable mild stress (CUMS model of depression in male rats and its mechanism of action. The animals were subjected to CUMS for six weeks by using variety of stressors. At the end of CUMS protocol, animals were subjected to forced swimming test (FST and open field test followed by biochemical assay. The CUMS protocol produced depressive-like behavior in rats by decreasing the body weight, decreasing the sucrose preference, and increasing the duration of immobility in FST. The CUMS protocol increased plasma corticosterone and decreased hippocampal and prefrontal cortex levels of monoamines (serotonin, noradrenaline, and dopamine and brain-derived neurotrophic factor. Further, the CUMS protocol increased interleukin-6 (in hippocampus and prefrontal cortex and nuclear factor-kappa B (in prefrontal cortex but not in hippocampus. The lipid extract of C. striatus (125, 250, and 500 mg/kg significantly (p<0.05 reversed all the above parameters in rats subjected to CUMS, thus exhibiting antidepressant-like effect. The mechanism was found to be mediated through decrease in plasma corticosterone, increase in serotonin levels in prefrontal cortex, increase in dopamine and noradrenaline levels in hippocampus and prefrontal cortex, increase in BDNF in hippocampus and prefrontal cortex, and decrease in IL-6 and NF-κB in prefrontal cortex.

  16. Anti-Inflammatory Effect of Red Piper Crocatum Leaves Extract Decrease TNF-α and IL-6 Levels in Wistar Rat with Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Sri Wahjuni

    2016-05-01

    Full Text Available Background: This research aims to find a cure for anti-inflammation, based on the utilization of red piper crocatum. The research was started with descriptive study to explore active components of red piper crocatum leaf and followed by experimental study to investigate red piper crocatum activity of the leaf extract in anti-inflammation induced Wistar rat. In this research observed three dominant components: caryophyllene bicyclo [5.2.0] none,2 methylene-4,8,8-trimethyl-4-vinyl; phytol; 5,9-propano-5H-benzocycloheptene,6,7,8,9-tetrahydro-7,11-bis(methylene; 4,4-ethynedioxy-2-hexadecen-15-15 olide 1,4,9-trioxaspiro [4,15] eic os-6-en-8-one, 10 methyl; 1H-1,2,4-triazole-5(H-thione,4-allyl-3-(3-furyl; Benzofuran,2,3-dihydro-2-methyl-7-phenyl which are possibly active to inhibit anti-inflammation to atherosclerosis. Bad eating habits also can cause various health problems, such as obesity, dyslipidemia, inflammation to atherosclerosis. This study was conducted to investigate of red piper crocatum leaves extract as an anti-inflammation through decrease of biochemistry markers TNF-α and IL-6 levels. Method: This is a true experimental with randomized pre-test and post-test control group design, using 50 Wistar rats that are divided into 5 groups: control group using 0 mg/kg BW red piper crocatum leaves extract, treatment group 1 using 50 mg/kg BW red piper crocatum leaves extract, treatment group 2 using 100 mg/kg BW red piper crocatum leaves extract, treatment group 3 using 150 mg/kg BW red piper crocatum leaves extract, and treatment group 4 200mg/kg BW red piper crocatum leaves extract. Results: It was observed that intake of 150 mg/BW red piper crocatum leaves extract results in the highest significance decrease of 45.63% of TNF-α levels from (28.62 ± 1.25 to 15.56 ± 7.20 рg/mL and a significance decrease of 15.42% of IL-6 level from (134.64 ± 1.98 to 113.87 ± 4.30 рg/mL. Conclusion: It can be concluded that intake of red piper crocatum

  17. The Effect of Hindlimb Suspension on the Reproductive System of Young Male Rats

    Science.gov (United States)

    Tou, Janet; Grindeland, R.; Baer, L.; Guran, G.; Fung, C.; Wade, C.; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    Colonization of space requires the ability to reproduce in reduced gravity. Following spaceflight, astronauts and male rats exhibit decreased testosterone (T). This has important implications as T effects the testes and accessory sex glands. To our knowledge no studies have examined the effects of spaceflight on accessory sex glands. Due to the rarity of spaceflight opportunities, ground models have been used to simulate weightlessness. The objective of this study was to determine the effect of long-term (21 d) weightlessness on the reproductive system of male rats. Weightlessness was simulated using the Morey-Holton hindlimb suspension (HLS) model. Age 10 week old, male Sprague-Dawley rats weighing (209.0 +9.7g) were randomly assigned (n=10/group) to either HLS or ambulatory control. In HLS rats, testes mass was 33% lower (pmale rats. This discrepancy may have been due to the age of animal and timing of sampling. T levels vary dramatically during testes development as well as within normal diurnal cycles. In young HLS rats, testes weight was reduced but not plasma T. Subsequently there was no effect on accessory sex glands. However, this may not be the case in older rats. More studies using standardized methods are needed to gain a better understanding of male reproduction function and capability in weightlessness. Funding provided by NASA.

  18. Toxicokinetic comparison of 14C-monocrotaline and 14C-senecionine in the rat

    International Nuclear Information System (INIS)

    Estep, J.E.; Lame', M.W.; Morin, D.; Segall, H.J.; Wilson, D.W.

    1990-01-01

    Two commonly studied macrocyclic pyrrolizidine alkaloids (PAs) are monocrotaline (MCT) and senecionine (SEN). Both PAs exhibit hepatic, renal and pulmonary toxicity, but SEN primarily causes centrol lobular necrosis of the liver while MCT promotes the development of pulmonary hypertension with decreased liver necrosis. Previous work in our laboratory has shown that MCT (60mg/kg IV) is sequestered in the red blood cell (RBC). To determine if this retention could play a role in MCT pulmonary toxicity, we compared the toxicokinetics of MCT with SEN. Both compounds exhibited a similar decline in plasma concentration (as measured by carbon 14) by the end of seven hours. The decrease in radioactivity associated with RBC's differed significantly with MCT declining from 144.34 to 81.46 nmol MCT-equivalents/gm of RBC's, while SEN decreased from 108.55 to 26.18 nmol SEN-equivalents/gm. Fortyfour versus 12 percent of the radioactivity was excreted in the bile for SEN and MCT dosed rats, respectively. In the absence of bile duct cannulation, plasma and RBC levels of radioactivity were identical to cannulated animals receiving MCT while SEN dosed animals exhibited almost twice the radioactivity associated with the RBC's, suggesting enterohepatic recirculation. The results of these studies suggest that the RBC-MCT complex is involved in MCT pulmonary toxicity

  19. Hypo glycemic and Hypolipidaemic Effect of cinnamon Extract in Diabetic and irradiated Rats

    International Nuclear Information System (INIS)

    Mohamed, E.T.

    2013-01-01

    This study was made to investigate the antidiabetic and hypolipidemic potential of cinnamon against radiation and/or streptozotocin (STZ) induced diabetes in rats. In the experiment, a total of 36 rats were used and the rats were divided into six groups each of six rats: group 1, normal untreated rats; group 2, animals received only cinnamon (200 mg/kg/day) for 30 consecutive days; group 3, animals exposed to 4 Gy whole body gamma radiation as a single shot dose; group 4, animals were injected intraperitoneally with a freshly prepared solution of streptozotocin (45 mg/kg) in 0.1 M citrate buffer, ph 4.5; group 5, rats were injected intraperitoneally with a freshly prepared solution of streptozotocin (45 mg/kg), followed by irradiation at a dose level of 4 Gy; and group 6, rats were given orally cinnamon (200 mg/kg/day) for 30 days then injected intraperitoneally with a freshly prepared solution of streptozotocin followed by irradiation at a dose level of 4 Gy. Blood samples were collected from all groups for the determination of serum fasting blood sugar (FBG), glycidate hemoglobin (HbA1c), plasma insulin, serum C-peptide, serum total cholesterol (TC), Serum triglyceride (TG), high density lipoprotein-cholesterol (HDL-C) and low density lipoprotein-cholesterol (LDL-C). In diabetic and irradiated groups there was a highly significant increase in the percentage of (HbA1c) and concentration of FBG, TC, TG, LDL-C and a significant decrease in the level of HDL-C, plasma insulin and C-peptide compared to those of control group. Treatment of the diabetic irradiated rats with cinnamon caused a significant decrease in the percentage of HbA1c and concentration of FBG, TC, TG, LDL-C and significant increase in the level of HDL-C, plasma insulin and C-peptide compared to the diabetic irradiated rats. On the basis of these results, one could conclude that cinnamon exhibit hypo glycemic and hypolipidaemic properties and could be considered a promising agent for diabetes

  20. Euglycemia in Diabetic Rats Leads to Reduced Liver Weight via Increased Autophagy and Apoptosis through Increased AMPK and Caspase-3 and Decreased mTOR Activities

    Directory of Open Access Journals (Sweden)

    Jun-Ho Lee

    2015-01-01

    Full Text Available Euglycemia is the ultimate goal in diabetes care to prevent complications. However, the benefits of euglycemia in type 2 diabetes are controversial because near-euglycemic subjects show higher mortality than moderately hyperglycemic subjects. We previously reported that euglycemic-diabetic rats on calorie-control lose a critical liver weight (LW compared with hyperglycemic rats. Here, we elucidated the molecular mechanisms underlying the loss of LW in euglycemic-diabetic rats and identified a potential risk in achieving euglycemia by calorie-control. Sprague-Dawley diabetic rats generated by subtotal-pancreatectomy were fed a calorie-controlled diet for 7 weeks to achieve euglycemia using 19 kcal% (19R or 6 kcal% (6R protein-containing chow or fed ad libitum (19AL. The diet in both R groups was isocaloric/kg body weight to the sham-operated group (19S. Compared with 19S and hyperglycemic 19AL, both euglycemic R groups showed lower LWs, increased autophagy, and increased AMPK and caspase-3 and decreased mTOR activities. Though degree of insulin deficiency was similar among the diabetic rats, Akt activity was lower, and PTEN activity was higher in both R groups than in 19AL whose signaling patterns were similar to 19S. In conclusion, euglycemia achieved by calorie-control is deleterious in insulin deficiency due to increased autophagy and apoptosis in the liver via AMPK and caspase-3 activation.

  1. Grooming behavior of spontaneously hypertensive rats

    NARCIS (Netherlands)

    Buuse, M. van den; Jong, Wybren de

    1987-01-01

    In an open field spontaneously hypertensive rats (SHR) exhibited lower scores for grooming when compared to their normotensive controls, the Wistar Kyoto rats (WKY). After i.c.v. injection of 1 μg ACTH1–24 cumulative 50-min grooming scores were lower in SHR. Analysis of subscores indicated that the

  2. Curcumin protects against tartrazine-mediated oxidative stress and hepatotoxicity in male rats.

    Science.gov (United States)

    El-Desoky, G E; Abdel-Ghaffar, A; Al-Othman, Z A; Habila, M A; Al-Sheikh, Y A; Ghneim, H K; Giesy, J P; Aboul-Soud, M A M

    2017-02-01

    Synthetic dyes have been reported to exert detrimental effects on the health of humans. This study evaluated the effects of a diet containing tartrazine (Tz) on rats which included: i) biochemical parameters including hepatic enzymes, kidney functions and profiles of lipids; ii) markers of oxidative stress in cells by measuring concentrations of malondialdehyde (MDA) and glutathione (GSH); iii) activities of selected, key hepatic antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx); iv) pathologies of liver. Also, protective effects of three doses of curcumin (CUR), a natural food coloring agent, on these parameters in rats that had been co-exposed to Tz. Fifty Wistar male albino rats were randomly divided into five groups: Group I, control, where rats were fed a normal diet; Group II, rats were fed normal diets containing 7.5 mg Tz/kg diet, dry mass (dm); In Groups III, IV and V, rats were fed diets containing Tz plus 1.0, 2.0 or 4.0 g CUR/kg diet, dm, respectively. Whole blood was collected after 90 d of exposure, homogenates of liver were prepared and the above analyses were conducted. Exposure to Tz in the diet caused statistically significant (peffects on functions of liver and kidney and the profile of relative concentrations of lipids. CUR significantly (peffects on enzymatic and non-enzymatic antioxidant and indicators of oxidative stress about rats fed Tz (Group II) to values in control rats. However, co-administration of 1.0 g CUR with Tz (Group III) exhibited a negligible effect on those parameters. The results of this study suggest benefits of the use of CUR, as a promising natural food additive to counteract oxidative stress caused by dietary exposure to the synthetic dye Tz due to potent protective antioxidant activity. Blending some natural food additives, such as CUR with diets containing synthetic dyes, could moderate potential effects of these artificial dyes. Decreasing or removing toxins in

  3. UVB-induced decreased resistance to Trichinella spiralis in the rat is related to impaired cellular immunity

    International Nuclear Information System (INIS)

    Goettsch, W.; Garssen, J.; Loveren, H. van; Gruijl, F.R. de

    1996-01-01

    Our laboratory has demonstrated in preliminary experiments that UVB exposure using the Kromayer lamp can induce increased numbers of Trichinella spiralis larvae in carcasses of infected Wistar rats, without affecting specific antibody titers to this parasite. In this study, orally T.spiralis-infected Wistar rats were exposed to subery-thermal doses of UVB radiation using FS40 lamps during different time periods before or after infection. A significant increase in the number of T. spiralis larvae was found in the carcasses of rats that were UVB irradiated daily for 7 consecutive days in the second week after infection. Additionally, increased numbers of larvae were also detected histologically in the tongue of rats that were exposed the first and the second week after infection. Lymphocyte stimulation assays using mesenteral lymph node cells indicated that UVB exposure also impaired the specific lymphocyte response to T. spiralis. Moreover, DTH responses to T. spiralis were severely impaired in rats that were UVB irradiated daily for 7 consecutive days in the second week after infection. Thus, these data combined with the data of the Kromayer study indicate that exposure of rats to FS40 irradiation following oral infection with T. spiralis leads to increased numbers of larvae in systemic sites and impaired T-cell immunity to the parasite. (Author)

  4. Local application of SCH 39166 reversibly and dose-dependently decreases acetylcholine release in the rat striatum.

    Science.gov (United States)

    Acquas, E; Di Chiara, G

    1999-11-03

    The effect of local application by reverse dialysis of the dopamine D(1) receptor antagonist (-)-trans-6,7,7a,8,9, 13b-exahydro-3-chloro-2-hydroxy-N-methyl-5H-benzo-[d]-nap hto-[2, 1b]-azepine hydrochloride (SCH 39166) on acetylcholine release was studied in awake, freely moving rats implanted with concentric microdialysis probes in the dorsal striatum. In these experiments, the reversible acetylcholine esterase inhibitor, neostigmine, was added to the perfusion solution at two different concentrations, 0.01 and 0.1 microM. SCH 39166 (1, 5 and 10 microM), in the presence of 0.01 microM neostigmine, reversibly decreased striatal acetylcholine release (1 microM SCH 39166 by 8+/-4%; 5 microM SCH 39166 by 24+/-5%; 10 microM SCH 39166 by 27+/-7%, from basal). Similarly, SCH 39166, applied in the presence of a higher neostigmine concentration (0.1 microM), decreased striatal acetylcholine release by 14+/-4% at 1 microM, by 28+/-8% at 5 microM and by 30+/-5% at 10 microM, in a dose-dependent and time-dependent manner. These results are consistent with the existence of a facilitatory tone of dopamine on striatal acetylcholine transmission mediated by dopamine D(1) receptors located on striatal cholinergic interneurons.

  5. Secondhand Smoke Exposure Reduced the Compensatory Effects of IGF-I Growth Signaling in the Aging Rat Hearts.

    Science.gov (United States)

    Wu, Jia-Ping; Hsieh, Dennis Jine-Yuan; Kuo, Wei-Wen; Han, Chien-Kuo; Pai, Peiying; Yeh, Yu-Lan; Lin, Chien-Chung; Padma, V Vijaya; Day, Cecilia Hsuan; Huang, Chih-Yang

    2015-01-01

    Secondhand smoke (SHS) exposure is associated with increased risk of cardiovascular disease. Aging is a physiological process that involves progressive impairment of normal heart functions due to increased vulnerability to damage. This study examines secondhand smoke exposure in aging rats to determine the age-related death-survival balance. Rats were placed into a SHS exposure chamber and exposed to smog. Old age male Sprague-Dawley rats were exposed to 10 cigarettes for 30 min, day and night, continuing for one week. After 4 weeks the rats underwent morphological and functional studies. Left ventricular sections were stained with hematoxylin-eosin for histopathological examination. TUNEL detected apoptosis cells and protein expression related death and survival pathway were analyzed using western blot. Death receptor-dependent apoptosis upregulation pathways and the mitochondria apoptosis proteins were apparent in young SHS exposure and old age rats. These biological markers were enhanced in aging SHS-exposed rats. The survival pathway was found to exhibit compensation only in young SHS-exposed rats, but not in the aging rats. Further decrease in the activity of this pathway was observed in aging SHS-exposed rats. TUNEL apoptotic positive cells were increased in young SHS-exposed rats, and in aging rats with or without SHS-exposure. Aging reduces IGF-I compensated signaling with accelerated cardiac apoptotic effects from second-hand smoke.

  6. Intraportal nicotine infusion in rats decreases hepatic blood flow through endothelin-1 and both endothelin A and endothelin B receptors

    International Nuclear Information System (INIS)

    Hashimoto, Takashi; Yoneda, Masashi; Shimada, Tadahito; Kurosawa, Mieko; Terano, Akira

    2004-01-01

    Smoking has been demonstrated to aggravate liver injury. Nicotine, a major pharmacological component of tobacco smoke, affects a multitude of functions. Smoking and nicotine induce synthesis of endothelin (ET)-1. The effect of intraportal infusion of nicotine on hepatic circulation and an involvement of ET-1 and ET receptor in the action of nicotine were investigated in rats. Nicotine (0-100 μg/kg/h) was infused into the portal vein of urethane-anesthetized rats, and changes of hepatic blood flow were evaluated. Intraportal infusion of nicotine dose-dependently decreased hepatic blood flow and increased portal pressure without any alteration of heart rate or arterial blood pressure. This action of intraportal nicotine was completely abolished by pretreatment of ET-1 antibody. Either BQ485 (ET A receptor antagonist) or BQ788 (ET B receptor antagonist) partially reversed the effect of nicotine, and combination of BQ788 and BQ485 completely abolished it. These findings suggest that nicotine inhibits hepatic circulation through ET-1, and ET A and ET B receptor

  7. Effects of Kefir on the Cardiac Autonomic Tones and Baroreflex Sensitivity in Spontaneously Hypertensive Rats.

    Science.gov (United States)

    Klippel, Brunella F; Duemke, Licia B; Leal, Marcos A; Friques, Andreia G F; Dantas, Eduardo M; Dalvi, Rodolfo F; Gava, Agata L; Pereira, Thiago M C; Andrade, Tadeu U; Meyrelles, Silvana S; Campagnaro, Bianca P; Vasquez, Elisardo C

    2016-01-01

    It has been previously shown that the probiotic kefir (a symbiotic matrix containing acid bacteria and yeasts) attenuated the hypertension and the endothelial dysfunction in spontaneously hypertensive rats (SHR). In the present study, the effect of chronic administration of kefir on the cardiac autonomic control of heart rate (HR) and baroreflex sensitivity (BRS) in SHR was evaluated. SHR were treated with kefir (0.3 mL/100 g body weight) for 60 days and compared with non-treated SHR and with normotensive Wistar-Kyoto rats. Cardiac autonomic vagal (VT) and sympathetic (ST) tones were estimated through the blockade of the cardiac muscarinic receptors (methylatropine) and the blockade of β1-adrenoceptor (atenolol). The BRS was evaluated by the tachycardia and bradycardia responses to vasoactive drug-induced decreases and increases in arterial blood pressure (BP), respectively. Additionally, spontaneous BRS was estimated by autoregressive spectral analysis. Kefir-treated SHR exhibited significant attenuation of basal BP, HR, and cardiac hypertrophy compared to non-treated SHR (12, 13, and 21%, respectively). Cardiac VT and ST were significantly altered in the SHR (~40 and ~90 bpm) compared with Wistar rats (~120 and ~30 bpm) and were partially recovered in SHR-kefir (~90 and ~25 bpm). SHR exhibited an impaired bradycardic BRS (~50%) compared with Wistar rats, which was reduced to ~40% in the kefir-treated SHR and abolished by methylatropine in all groups. SHR also exhibited a significant impairment of the tachycardic BRS (~23%) compared with Wistar rats and this difference was reduced to 8% in the SHR-kefir. Under the action of atenolol the residual reflex tachycardia was smaller in SHR than in Wistar rats and kefir attenuated this abnormality. Spectral analysis revealed increased low frequency components of BP (~3.5-fold) and pulse interval (~2-fold) compared with Wistar rats and these differences were reduced by kefir-treatment to ~1.6- and ~1.5-fold, respectively

  8. Effects of Kefir on the Cardiac Autonomic Tones and Baroreflex Sensitivity in Spontaneously Hypertensive Rats

    Science.gov (United States)

    Klippel, Brunella F.; Duemke, Licia B.; Leal, Marcos A.; Friques, Andreia G. F.; Dantas, Eduardo M.; Dalvi, Rodolfo F.; Gava, Agata L.; Pereira, Thiago M. C.; Andrade, Tadeu U.; Meyrelles, Silvana S.; Campagnaro, Bianca P.; Vasquez, Elisardo C.

    2016-01-01

    Aims: It has been previously shown that the probiotic kefir (a symbiotic matrix containing acid bacteria and yeasts) attenuated the hypertension and the endothelial dysfunction in spontaneously hypertensive rats (SHR). In the present study, the effect of chronic administration of kefir on the cardiac autonomic control of heart rate (HR) and baroreflex sensitivity (BRS) in SHR was evaluated. Methods: SHR were treated with kefir (0.3 mL/100 g body weight) for 60 days and compared with non-treated SHR and with normotensive Wistar-Kyoto rats. Cardiac autonomic vagal (VT) and sympathetic (ST) tones were estimated through the blockade of the cardiac muscarinic receptors (methylatropine) and the blockade of β1−adrenoceptor (atenolol). The BRS was evaluated by the tachycardia and bradycardia responses to vasoactive drug-induced decreases and increases in arterial blood pressure (BP), respectively. Additionally, spontaneous BRS was estimated by autoregressive spectral analysis. Results: Kefir-treated SHR exhibited significant attenuation of basal BP, HR, and cardiac hypertrophy compared to non-treated SHR (12, 13, and 21%, respectively). Cardiac VT and ST were significantly altered in the SHR (~40 and ~90 bpm) compared with Wistar rats (~120 and ~30 bpm) and were partially recovered in SHR-kefir (~90 and ~25 bpm). SHR exhibited an impaired bradycardic BRS (~50%) compared with Wistar rats, which was reduced to ~40% in the kefir-treated SHR and abolished by methylatropine in all groups. SHR also exhibited a significant impairment of the tachycardic BRS (~23%) compared with Wistar rats and this difference was reduced to 8% in the SHR-kefir. Under the action of atenolol the residual reflex tachycardia was smaller in SHR than in Wistar rats and kefir attenuated this abnormality. Spectral analysis revealed increased low frequency components of BP (~3.5-fold) and pulse interval (~2-fold) compared with Wistar rats and these differences were reduced by kefir-treatment to ~1

  9. Antidepressant-Like Effects of Sanggenon G, Isolated from the Root Bark of Morus alba, in Rats: Involvement of the Serotonergic System.

    Science.gov (United States)

    Lim, Dong Wook; Jung, Jae-Woo; Park, Ji-Hae; Baek, Nam-In; Kim, Yun Tai; Kim, In-Ho; Han, Daeseok

    2015-01-01

    The root bark of Morus alba is commonly used as an alternative medicine due to its numerous health benefits in humans. However, the antidepressant effects of various active components from M. alba have not been fully elucidated. In this study, we aimed to determine whether sanggenon G, an active compound isolated from the root bark of M. alba, exhibited antidepressant-like activity in rats subjected to forced swim test (FST)-induced depression. Acute treatment of rats with sanggenon G (30 mg/kg, intraperitoneally (i.p.)) significantly reduced immobility time and increased swimming time without any significant change in climbing. Rats treated with sanggenon G also exhibited a decrease in the limbic hypothalamic-pituitary-adrenal (HPA) axis response to the FST, as indicated by attenuation of the corticosterone response and decreased c-Fos immunoreactivity in the hypothalamic paraventricular nucleus (PVN). In addition, the antidepressant-like effects of sanggenon G were significantly inhibited by WAY100635 (1 mg/kg, i.p.; a selective 5-hydroxytryptamine1A (5-HT1A) receptor antagonist), but not SCH23390 (0.05 mg/kg, i.p.; a dopamine D1 receptor antagonist). Our findings suggested that the antidepressant-like effects of sanggenon G were mediated by an interaction with the serotonergic system. Further studies are needed to evaluate the potential of sanggenon G as an alternative therapeutic approach for the treatment of depression.

  10. Prenatal iron deficiency causes sex-dependent mitochondrial dysfunction and oxidative stress in fetal rat kidneys and liver.

    Science.gov (United States)

    Woodman, Andrew G; Mah, Richard; Keddie, Danae; Noble, Ronan M N; Panahi, Sareh; Gragasin, Ferrante S; Lemieux, Hélène; Bourque, Stephane L

    2018-06-01

    Prenatal iron deficiency alters fetal developmental trajectories, which results in persistent changes in organ function. Here, we studied the effects of prenatal iron deficiency on fetal kidney and liver mitochondrial function. Pregnant Sprague-Dawley rats were fed partially or fully iron-restricted diets to induce a state of moderate or severe iron deficiency alongside iron-replete control rats. We assessed mitochondrial function via high-resolution respirometry and reactive oxygen species generation via fluorescence microscopy on gestational d 21. Hemoglobin levels were reduced in dams in the moderate (-31%) and severe groups (-54%) compared with controls, which was accompanied by 55% reductions in fetal hemoglobin levels in both moderate and severe groups versus controls. Male iron-deficient kidneys exhibited globally reduced mitochondrial content and respiration, as well as increased cytosolic superoxide and decreased NO. Female iron-deficient kidneys exhibited complex II down-regulation and increased mitochondrial oxidative stress. Male iron-deficient livers exhibited reduced complex IV respiration and increased cytosolic superoxide, whereas female liver tissues exhibited no alteration in oxidant levels or mitochondrial function. These findings indicate that prenatal iron deficiency causes changes in mitochondrial content and function as well as oxidant status in a sex- and organ-dependent manner, which may be an important mechanism that underlies the programming of cardiovascular disease.-Woodman, A. G., Mah, R., Keddie, D., Noble, R. M. N., Panahi, S., Gragasin, F. S., Lemieux, H., Bourque, S. L. Prenatal iron deficiency causes sex-dependent mitochondrial dysfunction and oxidative stress in fetal rat kidneys and liver.

  11. Red Cabbage (Brassica oleracea Ameliorates Diabetic Nephropathy in Rats

    Directory of Open Access Journals (Sweden)

    Hazem A. H. Kataya

    2008-01-01

    Full Text Available The protective action against oxidative stress of red cabbage (Brassica oleracea extract was investigated. Diabetes was induced in male Wistar rats using streptozotocin (60 mg/kg body weight. Throughout the experimental period (60 days, diabetic rats exhibited many symptoms including loss of body weight, hyperglycemia, polyuria, polydipsia, renal enlargement and renal dysfunction. Significant increase in malondialdehyde, a lipid peroxidation marker, was observed in diabetic kidney. This was accompanied by a significant increase in reduced glutathione and superoxide dismutase activity and a decrease in catalase activity and in the total antioxidant capacity of the kidneys. Daily oral ingestion (1 g/kg body weight of B. oleracea extract for 60 days reversed the adverse effect of diabetes in rats. B. oleracea extract lowered blood glucose levels and restored renal function and body weight loss. In addition, B. oleracea extract attenuated the adverse effect of diabetes on malondialdehyde, glutathione and superoxide dismutase activity as well as catalase activity and total antioxidant capacity of diabetic kidneys. In conclusion, the antioxidant and antihyperglycemic properties of B. oleracea extract may offer a potential therapeutic source for the treatment of diabetes.

  12. Black seed oil ameliorates allergic airway inflammation by inhibiting T-cell proliferation in rats.

    Science.gov (United States)

    Shahzad, Muhammad; Yang, Xudong; Raza Asim, M B; Sun, Qingzhu; Han, Yan; Zhang, Fujun; Cao, Yongxiao; Lu, Shemin

    2009-02-01

    The black seeds, from the Ranunculaceae family, have been traditionally used by various cultures as a natural remedy for several ailments. In this study, we examined the effect of black seed oil as an immunomodulator in a rat model of allergic airway inflammation. Rats sensitized to ovalbumin and challenged intranasally with ovalbumin to induce an allergic inflammatory response were compared to ovalbumin-sensitized, intranasally ovalbumin-exposed rats pretreated with intraperitoneally administered black seed oil and to control rats. The levels of IgE, IgG1 and ova-specific T-cell proliferation in spleen were measured by ELISA. The pro-inflammatory cytokine IL-4, IL-5, IL-6 and TGF-beta1 mRNA expression levels were measured by reverse transcription polymerase chain reaction. The intraperitoneal administration of black seed oil inhibited the Th2 type immune response in rats by preventing inflammatory cell infiltration and pathological lesions in the lungs. It significantly decreased the nitric oxide production in BALF, total serum IgE, IgG1 and OVA-specific IgG1 along with IL-4, IL-5, IL-6 and TGF-beta1 mRNA expression. Black seed oil treatment resulted in decreased T-cell response evident by lesser delayed type hypersensitivity and lower T-cell proliferation in spleen. In conclusion, black seed oil exhibited a significant reduction in all the markers of allergic inflammation mainly by inhibiting the delayed type hypersensitivity and T-cell proliferation. The data suggests that inhibition of T-cell response may be responsible for immunomodulatory effect of black seed oil in the rat model of allergic airway inflammation.

  13. Curcuma longa (curcumin) decreases in vivo cisplatin-induced ototoxicity through heme oxygenase-1 induction.

    Science.gov (United States)

    Fetoni, Anna R; Eramo, Sara L M; Paciello, Fabiola; Rolesi, Rolando; Podda, Maria Vittoria; Troiani, Diana; Paludetti, Gaetano

    2014-06-01

    To investigate whether curcumin may have in vivo protective effects against cisplatin ototoxicity by its direct scavenger activity and/or by curcumin-mediated upregulation of HO-1. Cisplatin-induced ototoxicity is a major dose-limiting side effect in anticancer chemotherapy. A protective approach to decrease cisplatin ototoxicity without compromising its therapeutic efficacy remains a critical goal for anticancer therapy. Recent evidences indicate that curcumin exhibits antioxidant, anti-inflammatory, and chemosensitizer activities. In male adult Wistar rats, a curcumin dose of 200 mg/kg, selected from a dose-response curve, was injected 1 hour before cisplatin administration and once daily for the following 3 days. A single dose of cisplatin (16 mg/kg) was administered intraperitoneally. Rats were divided as follows: 1) control, 2) curcumin control, 3) vehicle control, 4) cisplatin, 5) cisplatin+ vehicle, and 6) curcumin+cisplatin. ABRs were measured before and at Days 3 and 5 after cisplatin administration. Rhodamine-phalloidin staining, 4-hydroxy-2-nonenal and heme-oxigenase-1 immunostainings, and Western blot analyses were performed to assess and quantify OHC loss, lipid peroxidation, and the endogenous response to cisplatin-induced damage and to curcumin protection. Curcumin treatment attenuated hearing loss induced by cisplatin, increased OHC survival, decreased 4-HNE expression, and increased HO-1 expression. This preclinical study demonstrates that systemic curcumin attenuates ototoxicity and provides molecular evidence for a role of HO-1 as an additional mediator in attenuating cisplatin-induced damage.

  14. The γ-aminobutyric acid type B (GABAB) receptor agonist baclofen inhibits morphine sensitization by decreasing the dopamine level in rat nucleus accumbens.

    Science.gov (United States)

    Fu, Zhenyu; Yang, Hongfa; Xiao, Yuqiang; Zhao, Gang; Huang, Haiyan

    2012-07-10

    Repeated morphine exposure can induce behavioral sensitization. There are evidences have shown that central gamma-aminobutyric acid (GABA) system is involved in morphine dependence. However, the effect of a GABAB receptor agonist baclofen on morphine-induced behavioral sensitization in rats is unclear. We used morphine-induced behavioral sensitization model in rat to investigate the effects of baclofen on behavioral sensitization. Moreover, dopamine release in the shell of the nucleus accumbens was evaluated using microdialysis assay in vivo. The present study demonstrated that morphine challenge (3 mg/kg, s.c.) obviously enhanced the locomotor activity following 4-day consecutive morphine administration and 3-day withdrawal period, which indicated the expression of morphine sensitization. In addition, chronic treatment with baclofen (2.5, 5 mg/kg) significantly inhibited the development of morphine sensitization. It was also found that morphine challenge 3 days after repeated morphine administration produced a significant increase of extracellular dopamine release in nucleus accumbens. Furthermore, chronic treatment with baclofen decreased the dopamine release induced by morphine challenge. Our results indicated that gamma-aminobutyric acid system plays an important role in the morphine sensitization in rat and suggested that behavioral sensitization is a promising model to study the mechanism underlying drug abuse.

  15. Decreased liver triglyceride content in adult rats exposed to protein restriction during gestation and lactation: role of hepatic triglyceride utilization.

    Science.gov (United States)

    Qasem, Rani J; Li, Jing; Tang, Hee Man; Browne, Veron; Mendez-Garcia, Claudia; Yablonski, Elizabeth; Pontiggia, Laura; D'Mello, Anil P

    2015-04-01

    We have previously demonstrated that protein restriction throughout gestation and lactation reduces liver triglyceride content in adult rat offspring. However, the mechanisms mediating the decrease in liver triglyceride content are not understood. The aim of the current study was to use a new group of pregnant animals and their offspring and determine the contribution of increased triglyceride utilization via the hepatic fatty-acid oxidation and triglyceride secretory pathways to the reduction in liver triglyceride content. Pregnant Sprague-Dawley rats received either a control or a low protein diet throughout pregnancy and lactation. Pups were weaned onto laboratory chow on day 28 and killed on day 65. Liver triglyceride content was reduced in male, but not female, low-protein offspring, both in the fed and fasted states. The reduction was accompanied by a trend towards higher liver carnitine palmitoyltransferase-1a activity, suggesting increased fatty-acid transport into the mitochondrial matrix. However, medium-chain acyl coenzyme A dehydrogenase activity within the mitochondrial matrix, expression of nuclear peroxisome proliferator activated receptor-α, and plasma levels of β-hydroxybutyrate were similar between low protein and control offspring, indicating a lack of change in fatty-acid oxidation. Hepatic triglyceride secretion, assessed by blocking peripheral triglyceride utilization and measuring serum triglyceride accumulation rate, and the activity of microsomal transfer protein, were similar between low protein and control offspring. Because enhanced triglyceride utilization is not a significant contributor, the decrease in liver triglyceride content in male low-protein offspring is likely due to alterations in liver fatty-acid transport or triglyceride biosynthesis. © 2015 Wiley Publishing Asia Pty Ltd.

  16. Protective effect of Xingnaojia formulation on rats with brain and liver damage caused by chronic alcoholism.

    Science.gov (United States)

    Li, Shuang; Wang, S U; Guo, Zhi-Gang; Huang, Ning; Zhao, Fan-Rong; Zhu, Mo-Li; Ma, Li-Juan; Liang, Jin-Ying; Zhang, Yu-Lin; Huang, Zhong-Lin; Wan, Guang-Rui

    2015-11-01

    The aim of this study was to observe the effect of a formulation of traditional Chinese medicine extracts known as Xingnaojia (XNJ) on the liver function, learning ability and memory of rats with chronic alcoholism and to verify the mechanism by which it protects the brain and liver. A rat model of chronic alcoholism was used in the study. The spatial learning ability and memory of the rats were tested. The rats were then sacrificed and their brains and hepatic tissues were isolated. The activity of superoxide dismutase (SOD) and levels of glutamate (Glu), N-methyl D-aspartate receptor subtype 2B (NR2B), cyclin-dependent kinase 5 (CDK5) and cannabinoid receptor 1 (CB1) in the hippocampus were analyzed. The ultrastructure of the hepatic tissue was observed by electron microscopy. In addition, the activities of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in serum were tested and the levels of low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TG) and total cholesterol (TCHOL) were analyzed. XNJ enhanced the learning and memory of rats with chronic alcoholism. Treatment with XNJ increased the activity of SOD, and decreased the expression levels of NR2B mRNA and NR2B, CB1 and CDK5 proteins in the brain tissues compared with those in the model rats. It also increased the activity of ALDH in the serum and liver, decreased the serum levels of LDL, TG and TCHOL and increased the serum level of HDL. These results indicate that XNJ exhibited a protective effect against brain and liver damage in rats with chronic alcoholism.

  17. Cardioprotective effects of benazepril, an angiotensin-converting enzyme inhibitor, in an ischaemia-reperfusion model of myocardial infarction in rats.

    Science.gov (United States)

    Charan Sahoo, Kanhei; Arora, Sachin; Goyal, Sameer; Kishore, Kamal; Ray, Ruma; Chandra Nag, Tapas; Singh Arya, Dharamvir

    2009-12-01

    The present study evaluated the effects of benazepril, an angiotensin-converting enzyme inhibitor on haemodynamic, biochemical, and immunohistochemical (Bax and Bcl-2 protein) indices in ischaemia and reperfusion (IR) injury. Male Wistar albino rats were divided into three groups and were orally administered saline once daily (IR-sham and IR-control) or benazepril (30 mg/kg/day; IR-benazepril) for 14 days. On the 15(th) day, in the IR-control and IR-benazepril groups, rats were subjected to left anterior descending coronary artery occlusion for 45 minutes followed by a one-hour reperfusion. Haemodynamic parameters were recorded and rats were sacrificed; hearts were isolated for biochemical estimation and immunohistochemistry. In the IR-control group, significant ventricular dysfunctions (pBenazepril pretreatment significantly improved mean arterial pressure (pbenazepril treatment significantly decreased the level of thiobarbituric acid reactive substances and restored the activity of lactate dehydrogenase towards normal value (pbenazepril upregulated Bcl-2 protein and decreased Bax protein expression, thus exhibiting anti-apoptotic effects. These beneficial effects of benazepril will have an important implication in the therapeutic use of benazepril in ischaemic heart disease.

  18. Hypolipidemic action of curcumin, the active principle of turmeric (Curcuma longa) in streptozotocin induced diabetic rats.

    Science.gov (United States)

    Babu, P S; Srinivasan, K

    1997-01-01

    Streptozotocin-induced diabetic rats were maintained on 0.5% curcumin containing diet for 8 weeks. Blood cholesterol was lowered significantly by dietary curcumin in these diabetic animals. Cholesterol decrease was exclusively from LDL-VLDL fraction. Significant decrease in blood triglyceride and phospholipids was also brought about by dietary curcumin in diabetic rats. In a parallel study, wherein diabetic animals were maintained on a high cholesterol diet, the extents of hypercholesterolemia and phospholipidemia were still higher compared to those maintained on control diet. Curcumin exhibited lowering of cholesterol and phospholipid in these animals also. Liver cholesterol, triglyceride and phospholipid contents were elevated under diabetic conditions. Dietary curcumin showed a distinct tendency to counter these changes in lipid fractions of liver. This effect of curcumin was also seen in diabetic animals maintained on high cholesterol diet. Dietary curcumin also showed significant countering of renal cholesterol and triglycerides elevated in diabetic rats. In order to understand the mechanism of hypocholesterolemic action of dietary curcumin, activities of hepatic cholesterol-7a-hydroxylase and HMG CoA reductase were measured. Hepatic cholesterol-7a-hydroxylase activity was markedly higher in curcumin fed diabetic animals suggesting a higher rate of cholesterol catabolism.

  19. A Chinese Herbal Medicine, Jia-Wei-Xiao-Yao-San, Prevents Dimethylnitrosamine-Induced Hepatic Fibrosis in Rats

    Directory of Open Access Journals (Sweden)

    Shu-Chen Chien

    2014-01-01

    Full Text Available Jia-wei-xiao-yao-san (JWXYS is a traditional Chinese herbal medicine that is widely used to treat neuropsychological disorders. Only a few of the hepatoprotective effects of JWXYS have been studied. The aim of this study was to investigate the hepatoprotective effects of JWXYS on dimethylnitrosamine- (DMN- induced chronic hepatitis and hepatic fibrosis in rats and to clarify the mechanism through which JWXYS exerts these effects. After the rats were treated with DMN for 3 weeks, serum glutamic oxaloacetic transaminase (SGOT and serum glutamic pyruvic transaminase (SGPT levels were significantly elevated, whereas the albumin level decreased. Although DMN was continually administered, after the 3 doses of JWXYS were orally administered, the SGOT and SGPT levels significantly decreased and the albumin level was significantly elevated. In addition, JWXYS treatment prevented liver fibrosis induced by DMN. JWXYS exhibited superoxide-dismutase-like activity and dose-dependently inhibited DMN-induced lipid peroxidation and xanthine oxidase activity in the liver of rats. Our findings suggest that JWXYS exerts antifibrotic effects against DMN-induced chronic hepatic injury. The possible mechanism is at least partially attributable to the ability of JWXYS to inhibit reactive-oxygen-species-induced membrane lipid peroxidation.

  20. Chronic administration of thiamine pyrophosphate decreases age-related histological atrophic testicular changes and improves sexual behavior in male Wistar rats.

    Science.gov (United States)

    Hernández-Montiel, H L; Vásquez López, C M; González-Loyola, J G; Vega-Anaya, G C; Villagrán-Herrera, M E; Gallegos-Corona, M A; Saldaña, C; Ramos Gómez, M; García Horshman, P; García Solís, P; Solís-S, J C; Robles-Osorio, M L; Ávila Morales, J; Varela-Echavarría, A; Paredes Guerrero, R

    2014-06-01

    Aging is a multifactorial universal process and constitutes the most important risk factor for chronic-degenerative diseases. Although it is a natural process, pathological aging arises when these changes occur quickly and the body is not able to adapt. This is often associated with the generation of reactive oxygen species (ROS), inflammation, and a decrease in the endogenous antioxidant systems, constituting a physiopathological state commonly found in chronic-degenerative diseases. At the testicular level, aging is associated with tissue atrophy, decreased steroidogenesis and spermatogenesis, and sexual behavior disorders. This situation, in addition to the elevated generation of ROS in the testicular steroidogenesis, provides a critical cellular environment causing oxidative damage at diverse cellular levels. To assess the effects of a reduction in the levels of ROS, thiamine pyrophosphate (TPP) was chronically administered in senile Wistar rats. TPP causes an activation of intermediate metabolism routes, enhancing cellular respiration and decreasing the generation of ROS. Our results show an overall decrease of atrophic histological changes linked to aging, with higher levels of serum testosterone, sexual activity, and an increase in the levels of endogenous antioxidant enzymes in TPP-treated animals. These results suggest that TPP chronic administration decreases the progression of age-related atrophic changes by improving the intermediate metabolism, and by increasing the levels of antioxidant enzymes.

  1. Effect of radiation on rat skin collagen

    International Nuclear Information System (INIS)

    Nogami, Akira

    1980-01-01

    I. Albino male rats were exposed for 16 weeks to ultraviolet light (UVL) which has principle emission at 305 nm. There were no significant changes between control and UVL-exposed skins in the total hydroxyproline content. However, a little increase of citrate-soluble collagen, a little decrease of insoluble collagen and a decrease of aldehyde content in soluble collagen were observed with UVL exposure. Total acid glycosaminoglycan in skin increased 30% or more from control. These results show that the effect of UVL on rat skin in vivo was merely inflammation phenomenon and that the 'aging' process of skin was not caused in our experimental conditions. II. The effects of radiation on the solubility of rat skin collagen were examined under various conditions. 1) When intact rats were exposed to a single dose of radiation from 43 kVp X-ray source, the solubility in skin collagen did not change at 4,000 R dosage, while in irradiation of 40,000 R a decreased solubility in collagen was observed. When rats were given 400 R a week for 12 weeks, there was no changes in the solubility of collagen during experimental period. 2) In vitro exposure to skins, an irradiation of 40,000 R from 43 kVp X-ray source caused a decrease in the solubility of collagen. While an irradiation of 40,000 R of dosage from 200 kVp X-ray source resulted in the increase in soluble collagen and the decrease in insoluble collagen. 3) When intact rats were given a single dose of 40,000 R from 60 Co- gamma -ray, insoluble collagen decreased in both young and adult rats. Similar changes in collagen solubility were observed in vitro gamma -irradiation. (author)

  2. Endothelin-1-induced focal cerebral ischemia in the growth hormone/IGF-1 deficient Lewis Dwarf rat.

    Science.gov (United States)

    Yan, Han; Mitschelen, Matthew; Toth, Peter; Ashpole, Nicole M; Farley, Julie A; Hodges, Erik L; Warrington, Junie P; Han, Song; Fung, Kar-Ming; Csiszar, Anna; Ungvari, Zoltan; Sonntag, William E

    2014-11-01

    Aging is a major risk factor for cerebrovascular disease. Growth hormone (GH) and its anabolic mediator, insulin-like growth factor (IGF)-1, decrease with advancing age and this decline has been shown to promote vascular dysfunction. In addition, lower GH/IGF-1 levels are associated with higher stroke mortality in humans. These results suggest that decreased GH/IGF-1 level is an important factor in increased risk of cerebrovascular diseases. This study was designed to assess whether GH/IGF-1-deficiency influences the outcome of cerebral ischemia. We found that endothelin-1-induced middle cerebral artery occlusion resulted in a modest but nonsignificant decrease in cerebral infarct size in GH/IGF-1 deficient dw/dw rats compared with control heterozygous littermates and dw/dw rats with early-life GH treatment. Expression of endothelin receptors and endothelin-1-induced constriction of the middle cerebral arteries were similar in the three experimental groups. Interestingly, dw/dw rats exhibited reduced brain edema and less astrocytic infiltration compared with their heterozygous littermates and this effect was reversed by GH-treatment. Because reactive astrocytes are critical for the regulation of poststroke inflammatory processes, maintenance of the blood-brain barrier and neural repair, further studies are warranted to determine the long-term functional consequences of decreased astrocytic activation in GH/IGF-1 deficient animals after cerebral ischemia. Published by Oxford University Press on behalf of the Gerontological Society of America 2014.

  3. CD44+CD24+ subset of PANC-1 cells exhibits radiation resistance via decreased levels of reactive oxygen species.

    Science.gov (United States)

    Wang, Lei; Li, Pengping; Hu, Wei; Xia, Youyou; Hu, Chenxi; Liu, Liang; Jiang, Xiaodong

    2017-08-01

    Emerging evidence has suggested that pancreatic adenocarcinoma is sustained by pancreatic cancer stem cells. The present study aimed to investigate the expression patterns of the pancreatic cancer stem cell surface markers cluster of differentiation CD44 and CD24 in a pancreatic adenocarcinoma cell line, and to investigate the possible mechanisms for their radiation resistance. Flow cytometry was used to analyze the expression patterns of CD44 and CD24 in the pancreatic adenocarcinoma PANC-1 cell line. In addition, a multi-target click model was used to fit cell survival curves and determine the sensitizer enhancement ratio. The apoptosis and cycle distribution of the four cell subsets was determined using flow cytometry, and the level of reactive oxygen species (ROS) was determined using the 2',7'-dichlorofluorescin diacetate probe. The present results identified that the ratios of CD44 + and CD24 + in the sorted PANC-1 cell line were 92.0 and 4.7%, respectively. Prior to radiation, no statistically significant differences were observed among the four groups. Following treatment with 6 MV of X-rays, the rate of apoptosis was decreased in the CD44 + CD24 + group compared with other subsets. The percentage of G0/G1 cells was highest in the CD44 + CD24 + group compared with the three other groups, which exhibited increased radiosensitivity. In addition, the level of ROS in the CD44 + CD24 + group was reduced compared with the other groups. In summary, the results of the present study indicated that CD44 + CD24 + exhibited stem cell properties. The lower level of ROS and apoptosis in CD44 + CD24 + cells may contribute to their resistance to radiation in pancreatic adenocarcinoma.

  4. Structure of the vitreoretinal border region in spontaneously diabetic BB rats

    DEFF Research Database (Denmark)

    Heegaard, S

    1993-01-01

    The morphology of the vitreoretinal border region, also termed the inner limiting membrane, was examined in spontaneously diabetic rats (BB rats), in non-diabetes-prone rats (WB rats) and in Buffalo rats (BUF rats) by scanning electron microscopy (SEM) and transmission electron microscopy (TEM......). This was performed in order to visualize a possible increase in thickness of the lamina densa or in the whole vitreoretinal border region complex with duration of diabetes. The median thickness of the lamina densa in the three groups varied between 34 and 68 nm. In BB rats the thickness decreased with age...... and duration of diabetes. In WB rats the lamina densa thickened up to the 9th month and then decreased to the level of the young rats. In BUF rats the lamina densa decreased in thickness with age. The median thickness of the whole vitreoretinal border region varied between: BB rats: 84 and 126 nm (SEM) and 68...

  5. Chicken collagen type II reduces articular cartilage destruction in a model of osteoarthritis in rats.

    Science.gov (United States)

    Xu, D; Shen, W

    2007-06-01

    To evaluate the therapeutic effects of domestic chicken collagen type II (CCII) on rat osteoarthritis (OA) and analyze concomitant changes in the level of Matrix metalloproteinase (MMP)-13, MMP-9, Cathepsin K and their mRNA as well as the tissue inhibitor of matrix metalloproteinase (TIMP)-1 mRNA in articular cartilage of osteoarthritic rats. Osteoarthritis models were surgically induced. Morphology of articular cartilage was done by haematoxylin and eosin staining and Mankin score was calculated, immunohistochemistry of MMP-13, MMP-9 and Cathepsin K was done by ABC method while the mRNA level for MMP-13, MMP-9, cathepsin K as well as TIMP-1 was evaluated by RT-PCR method. Oral administration of CCII reduced the morphological changes of osteoarthritic cartilage (shown by Mankin score), decreased levels of MMP-13, MMP-9, cathepsin K as well as their mRNA in articular cartilage from osteoarthritic rats while it exhibited no effect on TIMP-1 mRNA. Oral CCII reduced articular cartilage degradation of osteoarthritic rats and may probably be a potent drug candidate for OA treatment.

  6. Distribution of /sup 125/I-thyroxine in different organs and tissues of dietically obese rats

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, K.; Voss, C.; Huebner, G. (Ernst-Moritz-Arndt-Universitaet, Greifswald (German Democratic Republic)); Weber, A. (Ernst-Moritz-Arndt-Universitaet, Greifswald (German Democratic Republic). Radiologische Klinik)

    1985-04-01

    The distribution of /sup 125/I-thyroxine (% dose/g tissue; tissue/plasma radioactivity ratio) was investigated in different tissues of 28-week-old obese Wistar rats. Obesity was induced by high-fat diet (HFD) and confirmed by carcass analysis; in heavy obese animals the relative and absolute fat content is increased twofold and threefold, respectively, compared to control rats fed on a low-fat diet (LFD). Heavy HFD rats exhibit diminished /sup 125/I-T/sub 4/ distribution in the 'slow pool' (fat tissue, muscle) and unchanged values in the 'fast pool' (liver, kidneys) in comparison with LFD rats with low body weight. The differences in distribution presented here are not caused by the diet per se, but they are the consequence of the obesity of the animal, because no differences in the /sup 125/I-T/sub 4/ distribution were found in the /sup 125/I-T/sub 4/ between HFD and LFD rats with relatively equal body weight and body composition. The reduced T/sub 4/ distribution in the fat tissue of obese rats is discussed in connection with possibly decreased lipolysis in this tissue and possible causal participation in the beginning of obesity.

  7. OFD1, as a Ciliary Protein, Exhibits Neuroprotective Function in Photoreceptor Degeneration Models.

    Directory of Open Access Journals (Sweden)

    Juan Wang

    Full Text Available Ofd1 is a newly identified causative gene for Retinitis pigmentosa (RP, a photoreceptor degenerative disease. This study aimed to examine Ofd1 localization in retina and further to investigate its function in photoreceptor degeneration models. Ofd1 localization in rat retina was examined using immunofluorescence. N-methyl-N-nitrosourea (MNU-induced rats and Royal College of Surgeons (RCS rats were used as photoreceptor degeneration models. The expression pattern of Ofd1, other ciliary associated genes and Wnt signaling pathway genes were examined in rat models. Furthermore, pEGFP-Ofd1-CDS and pSUPER-Ofd1-shRNA were constructed to overexpress and knockdown the expression level in 661W and R28 cells. MNU was also used to induce cell death. Cilia formation was observed using immunocytochemistry (ICC. Reactive oxygen species (ROS were detected using the 2', 7'-Dichlorofluorescin diacetate (DCFH-DA assay. Apoptosis genes expression was examined using qRT-PCR, Western blotting and fluorescence-activated cell sorting (FACS. Ofd1 localized to outer segments of rat retina photoreceptors. Ofd1 and other ciliary proteins expression levels increased from the 1st and 4th postnatal weeks and decreased until the 6th week in the RCS rats, while their expression consistently decreased from the 1st and 7th day in the MNU rats. Moreover, Wnt signaling pathway proteins expression was significantly up-regulated in both rat models. Knockdown of Ofd1 expression resulted in a smaller population, shorter length of cell cilia, and lower cell viability. Ofd1 overexpression partially attenuated MNU toxic effects by reducing ROS levels and mitigating apoptosis. To the best of our knowledge, this is the first study demonstrating Ofd1 localization and its function in rat retina and in retinal degeneration rat models. Ofd1 plays a role in controlling photoreceptor cilium length and number. Importantly, it demonstrates a neuroprotective function by protecting the photoreceptor

  8. Vasopressin infusion into the lateral septum of adult male rats rescues progesterone induced impairment in social recognition

    Science.gov (United States)

    Bychowski, Meaghan E.; Mena, Jesus D.; Auger, Catherine J.

    2013-01-01

    It is well established that social recognition memory is mediated, in part, by arginine vasopressin (AVP). AVP cells within the bed nucleus of the stria terminalis (BST) and medial amygdala (MeA) send AVP-ergic projections to the lateral septum (LS). We have demonstrated that progesterone treatment decreases AVP immunoreactivity within the BST, the MeA and the LS, and that progesterone treatment impairs social recognition. These data suggested that progesterone may impair social recognition memory by decreasing AVP. In the present experiment, we hypothesized that infusions of AVP into the LS would rescue the progesterone induced impairment in social recognition within adult male rats. One week after adult male rats underwent cannula surgery, they were given systemic injections of either a physiological dose of progesterone or oil control for three days. Four hours after the last injection, we tested social recognition memory using the social discrimination paradigm, a two-trial test that is based on the natural propensity for rats to be highly motivated to investigate novel conspecifics. Immediately after the first exposure to a juvenile, each animal received bilateral infusions of either AVP or artificial CSF (aCSF) into the LS. Our results show that, as expected, control animals exhibited normal social discrimination. In corroboration with our previous results, animals given progesterone have impaired social discrimination. Interestingly, animals treated with progesterone and AVP exhibited normal social discrimination, suggesting that AVP treatment rescued the impairment in social recognition caused by progesterone. These data also further support a role for progesterone in modulating vasopressin dependent behavior within the male brain. PMID:23639881

  9. Hepatoprotective Activity of Methanolic Extract of Bauhinia purpurea Leaves against Paracetamol-Induced Hepatic Damage in Rats

    Directory of Open Access Journals (Sweden)

    F. Yahya

    2013-01-01

    Full Text Available In an attempt to further establish the pharmacological properties of Bauhinia purpurea (Fabaceae, hepatoprotective potential of methanol extract of B. purpurea leaves (MEBP was investigated using the paracetamol- (PCM- induced liver toxicity in rats. Five groups of rats (n=6 were used and administered orally once daily with 10% DMSO (negative control, 200 mg/kg silymarin (positive control, or MEBP (50, 250, and 500 mg/kg for 7 days, followed by the hepatotoxicity induction using paracetamol (PCM. The blood samples and livers were collected and subjected to biochemical and microscopical analysis. The extract was also subjected to antioxidant study using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging assay with the total phenolic content (TPC also determined. From the histological observation, lymphocyte infiltration and marked necrosis were observed in PCM-treated groups (negative control, whereas maintenance of the normal hepatic structural was observed in group pretreated with silymarin and MEBP. Hepatotoxic rats pretreated with silymarin or MEBP exhibited significant decrease (P<0.05 in ALT and AST enzyme level. Moreover, the extract also exhibited antioxidant activity and contained high TPC. In conclusion, MEBP exerts potential hepatoprotective activity that could be partly attributed to its antioxidant activity and high phenolic content and thus warrants further investigation.

  10. Curcumin Attenuates Gamma Radiation Induced Intestinal Damage in Rats

    International Nuclear Information System (INIS)

    EI-Tahawy, N.A.

    2009-01-01

    Small Intestine exhibits numerous morphological and functional alterations during radiation exposure. Oxidative stress, a factor implicated in the intestinal injury may contribute towards some of these alterations. The present work was designed to evaluate the efficacy of curcumin, a yellow pigment of turmeric on y-radiation-induced oxidative damage in the small intestine by measuring alterations in the level of thiobarbituric acid reactive substances (TSARS), serotonin metabolism, catecholamine levels, and monoamine oxidase (MAO) activity in parallel to changes in the architecture of intestinal tissues. In addition, monoamine level, MAO activity and TSARS level were determined in the serum. Curcumin was supplemented orally via gavages, to rats at a dose of (45 mg/ Kg body wt/ day) for 2 weeks pre-irradiation and the last supplementation was 30 min pre exposure to 6.5 Gy gamma radiations (applied as one shot dose). Animals were sacrificed on the 7th day after irradiation. The results demonstrated that, whole body exposure of rats to ionizing radiation has induced oxidative damage in small intestine obvious by significant increases of TSARS content, MAO activity and 5-hydroxy indole acetic acid (5-HIAA) and by significant decreases of serotonin (5-HT), dopamine (DA), norepinephrine (NE) and epinephrine (EPI) levels. In parallel histopathological studies of the small intestine of irradiated rats through light microscopic showed significant decrease in the number of villi, villus height, mixed sub mucosa layer with more fibres and fibroblasts. Intestinal damage was in parallel to significant alterations of serum MAO activity, TBARS, 5-HT, DA, NE and EPI levels. Administration of curcumin before irradiation has significantly improved the levels of monoamines in small intestine and serum of irradiated rats, which was associated with significant amelioration in MAO activity and TBARS contents

  11. Curcumin Induces Nrf2 Nuclear Translocation and Prevents Glomerular Hypertension, Hyperfiltration, Oxidant Stress, and the Decrease in Antioxidant Enzymes in 5/6 Nephrectomized Rats

    Directory of Open Access Journals (Sweden)

    Edilia Tapia

    2012-01-01

    Full Text Available Renal injury resulting from renal ablation induced by 5/6 nephrectomy (5/6NX is associated with oxidant stress, glomerular hypertension, hyperfiltration, and impaired Nrf2-Keap1 pathway. The purpose of this work was to know if the bifunctional antioxidant curcumin may induce nuclear translocation of Nrf2 and prevents 5/6NX-induced oxidant stress, renal injury, decrease in antioxidant enzymes, and glomerular hypertension and hyperfiltration. Four groups of rats were studied: (1 control, (2 5/6NX, (3 5/6NX +CUR, and (4 CUR (n=8–10. Curcumin was given by gavage to NX5/6 +CUR and CUR groups (60 mg/kg/day starting seven days before surgery. Rats were studied 30 days after NX5/6 or sham surgery. Curcumin attenuated 5/6NX-induced proteinuria, systemic and glomerular hypertension, hyperfiltration, glomerular sclerosis, interstitial fibrosis, interstitial inflammation, and increase in plasma creatinine and blood urea nitrogen. This protective effect was associated with enhanced nuclear translocation of Nrf2 and with prevention of 5/6NX-induced oxidant stress and decrease in the activity of antioxidant enzymes. It is concluded that the protective effect of curcumin against 5/6NX-induced glomerular and systemic hypertension, hyperfiltration, renal dysfunction, and renal injury was associated with the nuclear translocation of Nrf2 and the prevention of both oxidant stress and the decrease of antioxidant enzymes.

  12. Protein- and tryptophan-restricted diets induce changes in rat gonadal hormone levels.

    Science.gov (United States)

    Del Angel-Meza, A R.; Feria-Velasco, A; Ontiveros-Martínez, L; Gallardo, L; Gonzalez-Burgos, I; Beas-Zárate, C

    2001-04-01

    The release of gonadotrophic hormones starts at puberty and, along with the subsequent estral cyclicity, is subject to hormonal feedback systems and to the action of diverse neuroactive substances such as gamma amino butyric acid and catecholamines. This study shows the effect of the administration during 40 days of protein-restricted and corn-based (tryptophan- and lysine-deficient) diets on the serotonin concentration in medial hypothalamic fragments as well as in follicle-stimulating luteinizing hormones, 17-beta-estradiol and progesterone serum levels, and estral cyclicity in 60- and 100-day-old rats (young, mature, and in gestation). In young rats, a delay in vaginal aperture development, and a lengthening of the estral cycle to a continuous anestral state was observed, mainly in the group fed corn. This group showed a 25% decrease in the serotonin concentration compared with the protein-restricted group, which exhibited an increase of 9% over the control group. Luteinizing hormone levels decreased in 16% and 13%, whereas follicle-stimulating hormone increased in 13% and 5% in the young animals of restricted groups, respectively, compared with the control group. Serum progesterone levels decreased only in young restricted versus control animals, and no differences were seen among adult and gestational rats. Serum levels of 17-beta-estradiol in restricted animals showed different concentration patterns, mainly in the corn group, which was higher at the 20th gestational day, falling drastically postpartum. The results obtained in this study show serotonin to be a very important factor in the release of gonadotrophic hormones and the start of puberty.

  13. Perinatal BPA Exposure Induces Hyperglycemia, Oxidative Stress and Decreased Adiponectin Production in Later Life of Male Rat Offspring

    Directory of Open Access Journals (Sweden)

    Shunzhe Song

    2014-04-01

    Full Text Available The main object of the present study was to explore the effect of perinatal bisphenol A (BPA exposure on glucose metabolism in early and later life of male rat offspring, and to establish the potential mechanism of BPA-induced dysglycemia. Pregnant rats were treated with either vehicle or BPA by drinking water at concentrations of 1 and 10 µg/mL BPA from gestation day 6 through the end of lactation. We measured the levels of fasting serum glucose, insulin, adiponectin and parameters of oxidative stress on postnatal day (PND 50 and PND100 in male offspring, and adiponectin mRNA and protein expression in adipose tissue were also examined. Our results showed that perinatal exposure to 1 or 10 µg/mL BPA induced hyperglycemia with insulin resistance on PND100, but only 10 µg/mL BPA exposure had similar effects as early as PND50. In addition, increased oxidative stress and decreased adiponectin production were also observed in BPA exposed male offspring. Our findings indicated that perinatal exposure to BPA resulted in abnormal glucose metabolism in later life of male offspring, with an earlier and more exacerbated effect at higher doses. Down-regulated expression of adiponectin gene and increased oxidative stress induced by BPA may be associated with insulin resistance.

  14. Effects of sleeve gastrectomy in neonatally streptozotocin-induced diabetic rats.

    Directory of Open Access Journals (Sweden)

    Yan Wang

    Full Text Available BACKGROUND: Sleeve gastrectomy (SG has emerged recently as a stand-alone bariatric procedure to treat morbid obesity and enhance glucose homeostasis. The aim of the study was to evaluate its effects in neonatally streptozotocin (STZ-induced diabetic rats (n-STZ diabetic rats. METHODOLOGY AND PRINCIPAL FINDINGS: To induce diabetes, STZ (90 mg/kg was administered intraperitoneally to 2-day-old male pups. When 12 weeks old, diabetic rats were randomized into sleeve operation group (SLG, n = 6 and sham operation group (SOG, n = 6. Body weights were monitored weekly, and daily consumption of water and food were followed for eight consecutive weeks postoperatively. Serum glucose levels were measured periodically at the 4th and 8th week after surgery. Insulin, ghrelin, glucose-dependent insulinotropic polypeptide (GIP and Glucagon-like peptide-1 (GLP-1 levels were assayed at the end of the study. Our data showed that SLG rats exhibited significantly lower body weight gain in addition to reduced food and water intakes postoperatively compared to their sham-operation counterparts. However, resolution of diabetes was not observed in our study. Correspondingly, there were no significant differences between SOG rats and SLG rats in glucose metabolism-associated hormones, including insulin, GIP and GLP-1. In contrast, ghrelin level significantly decreased (P<0.01 in SLG group (58.01 ± 3.75 pg/ml after SG surgery compared to SOG group (76.36 ± 3.51 pg/ml. CONCLUSIONS: These observations strongly suggest that SG is effective in controlling body weight. However, SG did not achieve resolution or improvement of diabetes in n-STZ diabetic rats.

  15. Cartap and carbofuran induced alterations in serum lipid profile of Wistar rats.

    Science.gov (United States)

    Rai, Devendra K; Rai, Prashant Kumar; Gupta, Aradhna; Watal, Geeta; Sharma, Bechan

    2009-04-01

    Wistar rats of 6-8 weeks in age weighing between 120-150 g were exposed to the fixed doses of each of the carbamate pesticides such as cartap (50% LD(50)) and carbofuran (50% LD(50)) as well as a combination of these two with 25% LD(50) of each for one week. The effect of treatments was studied in terms of serum lipid parameters such as high-density lipoprotein, total cholesterol, triglyceride, low-density lipoprotein and very low-density lipoprotein. Treatment with individual doses of carbofuran (50% LD(50)) and cartap (50 % LD(50)) caused significant alterations in the levels of serum lipid parameters. The pesticides treatment resulted in marked decrease in the level of serum high-density lipoprotein where as that of other lipids got significantly elevated. Further, the rats exhibited relatively higher impact of pesticides when treated with the compounds in combination (25 % LD(50) of each). The results indicated that these compounds when used together may exert enhanced effect on the levels of serum lipids in rat.

  16. hematological and biochemical studies on the effect of some natural antioxidants pre-injection in irradiated rats

    International Nuclear Information System (INIS)

    Ashour, S.E.S.

    2011-01-01

    The present work was carried out in order to evaluate the biological activities of some natural antioxidants such as ziziphus and olive leaves extract as radioprotective agents on male albino rats treated with gamma irradiation. The results showed that the ethanolic extract of ziziphus and olive leaves have high content of phenolic and flavonoid compound. GC-MS showed that ethanolic extracts of ziziphus and olive leaves contains some important phenolic compounds include (Catechin, Chlorogenic,Zizyphine F, Luteolin and Succinylsulfathiazol), (Caffeic acid, Quercetin, Rutin, Diosmetine, Luteolin-7-glucoside and Oleuropein) respectively. γ-irradiation caused a significant decrease in body weight after 2 weeks as compared with control group. Administration of ethanolic extracts of olive and ziziphus leaves to normal rats exhibited a decrease in body weight after 2 weeks as compared with control group.The determination of different biological parameters showed a significant high level of ALT, AST, ALP, creatinine and urea in rat serum treated with gamma radiation. A significant depression in Hb, RBCs, HCT, MCV, WBC and PLT in rats after exposure to gamma radiation was noticed. The ethanolic extracts of ziziphus leaves and olive leaves application have been found to regulate the hematological parameters with narrow range around the normal level. A depressive effect of radiation was noticed on total protein, and albumin. Ethanolic extracts of olive and ziziphus leaves enhanced the accumulation of protein fraction.

  17. Very low-carbohydrate versus isocaloric high-carbohydrate diet in dietary obese rats.

    Science.gov (United States)

    Axen, Kathleen V; Axen, Kenneth

    2006-08-01

    The effects of a very low-carbohydrate (VLC), high-fat (HF) dietary regimen on metabolic syndrome were compared with those of an isocaloric high-carbohydrate (HC), low-fat (LF) regimen in dietary obese rats. Male Sprague-Dawley rats, made obese by 8 weeks ad libitum consumption of an HF diet, developed features of the metabolic syndrome vs. lean control (C) rats, including greater visceral, subcutaneous, and hepatic fat masses, elevated plasma cholesterol levels, impaired glucose tolerance, and fasting and post-load insulin resistance. Half of the obese rats (VLC) were then fed a popular VLC-HF diet (Weeks 9 and 10 at 5% and Weeks 11 to 14 at 15% carbohydrate), and one-half (HC) were pair-fed an HC-LF diet (Weeks 9 to 14 at 60% carbohydrate). Energy intakes of pair-fed VLC and HC rats were less than C rats throughout Weeks 9 to 14. Compared with HC rats, VLC rats exhibited impaired insulin and glycemic responses to an intraperitoneal glucose load at Week 10 and lower plasma triacylglycerol levels but retarded loss of hepatic, retroperitoneal, and total body fat at Week 14. VLC, HC, and C rats no longer differed in body weight, plasma cholesterol, glucose tolerance, or fasting insulin resistance at Week 14. Progressive decreases in fasting insulin resistance in obese groups paralleled concomitant reductions in hepatic, retroperitoneal, and total body fat. When energy intake was matched, the VLC-HF diet provided no advantage in weight loss or in improving those components of the metabolic syndrome induced by dietary obesity and may delay loss of hepatic and visceral fat as compared with an HC-LF diet.

  18. Chronic ethanol tolerance as a result of free-choice drinking in alcohol-preferring rats of the WHP line.

    Science.gov (United States)

    Dyr, Wanda; Taracha, Ewa

    2012-01-01

    The development of tolerance to alcohol with chronic consumption is an important criterion for an animal model of alcoholism and may be an important component of the genetic predisposition to alcoholism. The aim of this study was to determine whether the selectively bred Warsaw High Preferring (WHP) line of alcohol-preferring rats would develop behavioral and metabolic tolerance during the free-choice drinking of ethanol. Chronic tolerance to ethanol-induced sedation was tested. The loss of righting reflex (LRR) paradigm was used to record sleep duration in WHP rats. Ethanol (EtOH)-naive WHP rats received a single intraperitoneal (i.p.) injection of 5.0 g ethanol/kg body weight (b.w.), and sleep duration was measured. Subsequently, rats had access to a 10% ethanol solution under a free-choice condition with water and food for 12 weeks. After 12 weeks of the free-choice intake of ethanol, the rats received another single i.p. injection of 5.0 g ethanol/kg b.w., and sleep duration was reassessed. The blood alcohol content (BAC) for each rat was determined after an i.p. injection of 5 g/kg of ethanol in naive rats and again after chronic alcohol drinking at the time of recovery of the righting reflex (RR). The results showed that the mean ethanol intake was 9.14 g/kg/24 h, and both sleep duration and BAC were decreased after chronic ethanol intake. In conclusion, WHP rats exposed to alcohol by free-choice drinking across 12 weeks exhibited increased alcohol elimination rates. Studies have demonstrated that WHP rats after chronic free-choice drinking (12 weeks) of alcohol develop metabolic tolerance. Behavioral tolerance to ethanol was demonstrated by reduced sleep duration, but this decrease in sleep duration was not significant.

  19. Decreased n-6/n-3 polyunsaturated fatty acid ratio reduces chronic reflux esophagitis in rats.

    Science.gov (United States)

    Wei, Jing-Jing; Tang, Du-Peng; Xie, Jing-Jing; Yang, Li-Yong; Zhuang, Ze-Hao

    2016-09-01

    To investigate the effect of dietary ratio of n-6/n-3 PUFAs on chronic reflux esophagitis (RE) and lipid peroxidation. Rat RE model were established and then fed on a diet contained different n-6/n-3 PUFA ratios (1:1.5, 5:1, 10:1) or received pure n-6 PUFA diet for 14 days. Esophageal pathological changes were evaluated using macroscopic examination and hematoxyline-eosin staining. IL-1β, IL-8, and TNFα mRNA and protein levels of were determined using RT-PCR and Western blotting, respectively. Malondialdehyde (MDA) and superoxide dismutase (SOD) levels were determined using ELISA. The severity of esophagitis was lowest in the PUFA(1:1.5) group (P<0.05). IL-1β, IL-8, and TNFα mRNA and protein and MDA levels were significantly increased in model groups with the increasing n-6/n-3 PUFA ratios. SOD levels were significantly decreased in all RE PUFA groups (P<0.05). Esophageal injury and lipid peroxidation appeared to be ameliorated by increased n-3 PUFAs intake. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Subpopulations of Bone Marrow Mesenchymal Stem Cells Exhibit Differential Effects in Delaying Retinal Degeneration.

    Science.gov (United States)

    Li, P; Tian, H; Li, Z; Wang, L; Gao, F; Ou, Q; Lian, C; Li, W; Jin, C; Zhang, J; Xu, J-Y; Wang, J; Zhang, J; Wang, F; Lu, L; Xu, G-T

    2016-01-01

    Bone marrow mesenchymal stem cells (BMSCs) have a therapeutic role in retinal degeneration (RD). However, heterogeneity of BMSCs may be associated with differential therapeutic effects in RD. In order to confirm this hypothesis, two subsets of rat BMSCs, termed rBMSC1 and rBMSC2, were obtained, characterized and functionally evaluated in the treatment of RD of Royal College of Surgeons (RCS) rats. Both subpopulations expressed mesenchymal stem cells (MSC) markers CD29 and CD90, but were negative for hemacyte antigen CD11b and CD45 expression. In comparison with rBMSC2, rBMSC1 showed higher rate of proliferation, stronger colony formation, and increased adipogenic potential, whereas rBMSC2 exhibited higher osteogenic potential. Microarray analysis showed differential gene expression patterns between rBMSC1 and rBMSC2, including functions related to proliferation, differentiation, immunoregulation, stem cell maintenance and division, survival and antiapoptosis. After subretinal transplantation in RCS rats, rBMSC1 showed stronger rescue effect than rBMSC2, including increased b-wave amplitude, restored retinal nuclear layer thickness, and decreased number of apoptotic photoreceptors, whereas the rescue function of rBMSC2 was essentially not better than the control. Histological analysis also demonstrated that rBMSC1 possessed a higher survival rate than rBMSC2 in subretinal space. In addition, treatment of basic fibroblast growth factor, an accompanying event in subretinal injection, triggered more robust increase in secretion of growth factors by rBMSC1 as compared to rBMSC2. Taken together, these results have suggested that the different therapeutic functions of BMSC subpopulations are attributed to their distinct survival capabilities and paracrine functions. The underlying mechanisms responsible for the different functions of BMSC subpopulation may lead to a new strategy for the treatment of RD.

  1. Effect of Using Aqueous Extract of Salvia officinalis L. Leaves on Some Antioxidants Status in Irradiated Rats

    International Nuclear Information System (INIS)

    Abd El Fattah, S.M.; Fahim, Th.M.; El-Fatih, N.M.

    2013-01-01

    SAGE (Salvia officinalis L) is an aromatic and medicinal plant of Mediterranean origin with antioxidant properties. This study was dedicated to determine the modulatory protective effect of sage water extract against oxidative stress due to radiation exposure injury in male albino rats. Irradiation was performed as fractionated dose of 6 Grays (Gy) γ-irradiation delivered as 1.5 Gy two times a week for 2 weeks. Sage leaves water extract was given orally to rats at a dose level of 1mg/ kg body wt for 14 successive days during and in between exposure to γ-rays and continued for 7 successive days post irradiation of the rats. Rats were sacrificed at 7 and 10 days after the last dose of radiation. In irradiated rats group, the results revealed a significant increase of thiobarbituric acid reactive substances (TBARS) while, there was a significant decrease in the activity of reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) activities. In treated-irradiated rats group, water extractable sage leaves application induced a significant improvement in all these tested parameters It was concluded that the traditional use of sage as an antioxidant is safe and may provide some beneficial effects; and could exhibit modulatory effects on γ-rays-induced oxidative damage in rats.

  2. Spirulina exhibits hepatoprotective effects against lead induced oxidative injury in newborn rats.

    Science.gov (United States)

    Gargouri, M; Ben Saad, H; Ben Amara, I; Magné, C; El Feki, A

    2016-08-31

    Lead is a toxic metal that induces a wide range of biochemical and physiological effects. The present investigation was designed at evaluating the toxic effects of a prenatal exposure to lead of mothers on hepatic tissue of newborn rats, and potent protective effects of spirulina. Female rats were randomly divided into 4 groups which were given a normal diet (control),a diet enriched with spirulina (S), lead acetate administered through drinking water (Pb), or a diet enriched with spirulina and lead contaminated water (S Pb), respectively. The duration of treatments was from the 5th day of gestation to 14 days postpartum. Lead toxicity was assessed by measuring body and liver weights, blood and stomach lead levels, hepatic DNA, RNA and protein amounts, blood enzyme activities (AST and ALT), as well as lipid peroxidation level and activities of antioxidant enzymes in hepatic tissues of neonates. Lead intoxication of mothers caused reduction of liver weight as well as of hepatic DNA, mRNA and protein levels in newborns. Moreover, oxidative stress and changes in antioxidant enzyme activities were recorded. Conversely, supplementation of mothers with spirulina mitigated these effects induced by lead. These results substantiated the potential hepatoprotective and antioxidant activity of spirulina.

  3. Strain differences of cadmium-induced hepatotoxicity in Wistar-Imamichi and Fischer 344 rats: involvement of cadmium accumulation

    International Nuclear Information System (INIS)

    Shimada, Hideaki; Takamure, Yasutaka; Shimada, Akinori; Yasutake, Akira; Waalkes, Michael P.; Imamura, Yorishige

    2004-01-01

    We previously reported that Wistar-Imamichi (WI) rats have a strong resistance to cadmium (Cd)-induced lethality compared to other strains such as Fischer 344 (Fischer) rats. The present study was designed to establish biochemical and histological differences in Cd toxicity in WI and Fischer rats, and to clarify the mechanistic basis of these strain differences. A single Cd (4.5 mg/kg, s.c.) treatment caused a significant increase in serum alanine aminotransferase activity, indicative of hepatotoxicity, in Fischer rats, but did not in WI rats. This difference in hepatotoxic response to Cd was supported by pathological analysis. After treatment with Cd at doses of 3.0, 3.5 and 4.5 mg/kg, the hepatic and renal accumulation of Cd was significantly lower in the WI rats than in the Fischer rats, indicating a kinetic mechanism for the observed strain differences in Cd toxicity. Thus, the remarkable resistance to Cd-induced hepatotoxicity in WI rats is associated, at least in part, with a lower tissue accumulation of the metal. Hepatic and renal zinc (Zn) contents after administration were similarly lower in WI than in Fischer rats. When Zn was administered in combination with Cd to Fischer rats, it decreased Cd contents in the liver and kidney, and exhibited a significant protective effect against the toxicity of Cd. We propose the possibility that Zn transporter plays an important role in the strain difference of Cd toxicity in WI and Fischer rats

  4. Elevated Levels of Peripheral Kynurenine Decrease Bone Strength in Rats with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Bartlomiej Kalaska

    2017-10-01

    Full Text Available The diagnosis and treatment of bone disorders in patients with chronic kidney disease (CKD represent a clinical challenge. CKD leads to mineral and bone complications starting early in the course of renal failure. Recently, we have observed the positive relationship between intensified central kynurenine turnover and bone strength in rats with subtotal 5/6 nephrectomy (5/6 Nx-induced CKD. The aim of the present study was to determine the association between peripheral kynurenine pathway metabolites and bone strength in rats with 5/6 Nx-induced CKD. The animals were sacrificed 1 and 3 months after 5/6 Nx or sham operation. Nephrectomized rats presented higher concentrations of serum creatinine, urea nitrogen, and parathyroid hormone both 1 and 3 months after nephrectomy. These animals revealed higher concentrations of kynurenine and 3-hydroxykynurenine in the serum and higher gene expression of aryl hydrocarbon receptor (AhR as a physiological receptor for kynurenine and AhR-dependent cytochrome in the bone tissue. Furthermore, nephrectomy significantly increased the number of osteoclasts in the bone without affecting their resorptive activity measured in serum. These changes were particularly evident in rats 1 month after 5/6 Nx. The main bone biomechanical parameters of the tibia were unchanged between nephrectomized and sham-operated rats but were significantly increased in older compared to younger animals. A similar trend was observed for geometrical parameters measured with calipers, bone mineral density based on Archimedes' method and image of bone microarchitecture obtained from micro-computed tomography analyses of tibial cortical bone. In nephrectomized animals, peripheral kynurenine levels correlated negatively with the main parameters of bone biomechanics, bone geometry, and bone mineral density values. In conclusion, our data suggest that CKD-induced elevated levels of peripheral kynurenine cause pathological changes in bone

  5. Curcumin, the active principle of turmeric (Curcuma longa), ameliorates diabetic nephropathy in rats.

    Science.gov (United States)

    Sharma, Sameer; Kulkarni, Shrinivas K; Chopra, Kanwaljit

    2006-10-01

    Chronic hyperglycaemia in diabetes leads to the overproduction of free radicals and evidence is increasing that these contribute to the development of diabetic nephropathy. Among the spices, turmeric (Curcuma longa) is used as a flavouring and colouring agent in the indian diet every day and is known to possess anti-oxidant properties. The present study was designed to examine the effect of curcumin, a yellow pigment of turmeric, on renal function and oxidative stress in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced by a single intraperitoneal injection of STZ (65 mg/kg) in rats. Four weeks after STZ injection, rats were divided into four groups, namely control rats, diabetic rats and diabetic rats treated with curcumin (15 and 30 mg/kg, p.o.) for 2 weeks. Renal function was assessed by creatinine, blood urea nitrogen, creatinine and urea clearance and urine albumin excretion. Oxidative stress was measured by renal malonaldehyde, reduced glutathione and the anti-oxidant enzymes superoxide dismutase and catalase. Streptozotocin-injected rats showed significant increases in blood glucose, polyuria and a decrease in bodyweight compared with age-matched control rats. After 6 weeks, diabetic rats also exhibited renal dysfunction, as evidenced by reduced creatinine and urea clearance and proteinuria, along with a marked increase in oxidative stress, as determined by lipid peroxidation and activities of key anti-oxidant enzymes. Chronic treatment with curcumin significantly attenuated both renal dysfunction and oxidative stress in diabetic rats. These results provide confirmatory evidence of oxidative stress in diabetic nephropathy and point towards the possible anti-oxidative mechanism being responsible for the nephroprotective action of curcumin.

  6. Repeated light-dark phase shifts modulate voluntary ethanol intake in male and female high alcohol-drinking (HAD1) rats.

    Science.gov (United States)

    Clark, James W; Fixaris, Michael C; Belanger, Gabriel V; Rosenwasser, Alan M

    2007-10-01

    Chronic disruption of sleep and other circadian biological rhythms, such as occurs in shift work or in frequent transmeridian travel, appears to represent a significant source of allostatic load, leading to the emergence of stress-related physical and psychological illness. Recent animal experiments have shown that these negative health effects may be effectively modeled by exposure to repeated phase shifts of the daily light-dark (LD) cycle. As chronobiological disturbances are thought to promote relapse in abstinent alcoholics, and may also be associated with increased risk of subsequent alcohol abuse in nonalcoholic populations, the present experiment was designed to examine the effects of repeated LD phase shifts on voluntary ethanol intake in rats. A selectively bred, high alcohol-drinking (HAD1) rat line was utilized to increase the likelihood of excessive alcoholic-like drinking. Male and female rats of the selectively bred HAD1 rat line were maintained individually under a LD 12:12 cycle with both ethanol (10% v/v) and water available continuously. Animals in the experimental group were subjected to repeated 6-hour LD phase advances at 3 to 4 week intervals, while control rats were maintained under a stable LD cycle throughout the study. Contact-sensing drinkometers were used to monitor circadian lick patterns, and ethanol and water intakes were recorded weekly. Control males showed progressively increasing ethanol intake and ethanol preference over the course of the study, but males exposed to chronic LD phase shifts exhibited gradual decreases in ethanol drinking. In contrast, control females displayed decreasing ethanol intake and ethanol preference over the course of the experiment, while females exposed to experimental LD phase shifts exhibited a slight increase in ethanol drinking. Chronic circadian desynchrony induced by repeated LD phase shifts resulted in sex-specific modulation of voluntary ethanol intake, reducing ethanol intake in males while

  7. Boron Deprivation Decreases Liver S-Adenosylmethionine and Spermidine and Increases Plasma Homocysteine and Cysteine in Rats

    Science.gov (United States)

    Two experiments were conducted with weanling Sprague-Dawley rats to determine whether changes in S-adenosylmethionine utilization or metabolism contribute to the diverse responses to boron deprivation. In both experiments, four treatment groups of 15 male rats were fed ground corn-casein based diets...

  8. Statins and PPARα agonists induce myotoxicity in differentiated rat skeletal muscle cultures but do not exhibit synergy with co-treatment

    International Nuclear Information System (INIS)

    Johnson, Timothy E.; Zhang, Xiaohua; Shi, Shu; Umbenhauer, Diane R.

    2005-01-01

    Statins and fibrates (weak PPARα agonists) are prescribed for the treatment of lipid disorders. Both drugs cause myopathy, but with a low incidence, 0.1-0.5%. However, combined statin and fibrate therapy can enhance myopathy risk. We tested the myotoxic potential of PPAR subtype selective agonists alone and in combination with statins in a differentiated rat myotube model. A pharmacologically potent experimental PPARα agonist, Compound A, induced myotoxicity as assessed by TUNEL staining at a minimum concentration of 1 nM, while other weaker PPARα compounds, for example, WY-14643, Gemfibrozil and Bezafibrate increased the percentage of TUNEL-positive nuclei at micromolar concentrations. In contrast, the PPARγ agonist Rosiglitazone caused little or no cell death at up to 10 μM and the PPARδ ligand GW-501516 exhibited comparatively less myotoxicity than that seen with Compound A. An experimental statin (Compound B) and Atorvastatin also increased the percentage of TUNEL-positive nuclei and co-treatment with WY-14643, Gemfibrozil or Bezafibrate had less than a full additive effect on statin-induced cell killing. The mechanism of PPARα agonist-induced cell death was different from that of statins. Unlike statins, Compound A and WY-14643 did not activate caspase 3/7. In addition, mevalonate and geranylgeraniol reversed the toxicity caused by statins, but did not prevent the cell killing induced by WY-14643. Furthermore, unlike statins, Compound A did not inhibit the isoprenylation of rab4 or rap1a. Interestingly, Compound A and Compound B had differential effects on ATP levels. Taken together, these observations support the hypothesis that in rat myotube cultures, PPARα agonism mediates in part the toxicity response to PPARα compounds. Furthermore, PPARα agonists and statins cause myotoxicity through distinct and independent pathways

  9. Generation of muscular dystrophy model rats with a CRISPR/Cas system.

    Science.gov (United States)

    Nakamura, Katsuyuki; Fujii, Wataru; Tsuboi, Masaya; Tanihata, Jun; Teramoto, Naomi; Takeuchi, Shiho; Naito, Kunihiko; Yamanouchi, Keitaro; Nishihara, Masugi

    2014-07-09

    Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disorder caused by mutations in the Dmd gene encoding Dystrophin. DMD model animals, such as mdx mice and canine X-linked muscular dystrophy dogs, have been widely utilized in the development of a treatment for DMD. Here, we demonstrate the generation of Dmd-mutated rats using a clustered interspaced short palindromic repeats (CRISPR)/Cas system, an RNA-based genome engineering technique that is also adaptive to rats. We simultaneously targeted two exons in the rat Dmd gene, which resulted in the absence of Dystrophin expression in the F0 generation. Dmd-mutated rats exhibited a decline in muscle strength, and the emergence of degenerative/regenerative phenotypes in the skeletal muscle, heart, and diaphragm. These mutations were heritable by the next generation, and F1 male rats exhibited similar phenotypes in their skeletal muscles. These model rats should prove to be useful for developing therapeutic methods to treat DMD.

  10. Low Dietary Protein Status Potentiating Risk of Health Hazard in Whole Body Gamma Irradiated Rats

    International Nuclear Information System (INIS)

    El-Gawish, M.A.M.; Yousri, R.M.; Roushdy, H.M.; Abdel-Reheem, K.A.; Al-Mossallamy, N.A.

    1998-01-01

    Investigations were planned to assess the changes in certain biochemical parameters as affected by the synergistic effect of exposure to fractionated doses of rays and / or feeding on different protein levels. The date showed that animals kept on normal or low protein diet exhibited a significant decrease in serum total protein and glucose. Also , a significant increase was recorded in insulin level in rats exposed at the radiation dose level of 20 Gy. Exposure to cumulative doses of irradiation has aggrevated the hyperglycemic effect of high protein diet with a significant and marked increase of insulin at all the applied doses. Animals fed normal high or low protein diet were found to exert significant decreases in T3, T4 while a significant increase in TSH of high protein group occurred as a result of exposure to cumulative doses of gamma-irradiation. Rats kept on low protein diet exhibited losses in body weight, hypercholesterolemia, low levels of phospholipids and triglycerides as compared with the normal protein diet group. In contrast high protein diet group showed no serious effects. Irradiation has potentiated body weight losses, hypotriglyceridemia and hypercholesterolemia in animal group fed low protein diet with a significant increase in serum phospholipids due to the higher radiation dose of 20 Gy. Protein deficiency acted synergistically with gamma irradiation and increased the susceptibility of body organs to radiation damage. Such findings contributed to the knowledge which stimulated the decrease of the internationally recognized occupational dose limits from 50 down to 20 m Sv (ICRP 1991)

  11. Arginine, N-carbamylglutamate, and glutamine exert protective effects against oxidative stress in rat intestine

    Directory of Open Access Journals (Sweden)

    Liang Xiao

    2016-09-01

    Full Text Available The objective of the current study is to evaluate the effects of dietary supplementation with arginine (ARG, N-carbamylglutamate (NCG, and glutamine (GLN on rat intestinal morphology and antioxidant status under oxidative stress. Rats were fed for 30 d with one of the following iso-nitrogenous diets: basal diet (BD, BD plus 1% ARG, BD plus 0.1% NCG, and BD plus 1% GLN. On day 28, half of the rats fed BD were intraperitoneally injected with 12 mg/kg body weight of diquat (DT; i.e., the DT group and the other half was intraperitoneally injected with sterile solution (i.e., the control group. The other diet groups were intraperitoneally injected with 12 mg/kg body weight of DT (i.e., DT + 1% GLN [DT + GLN], DT + 1% ARG [DT + ARG], and DT + 0.1% NCG [DT + NCG]. Rat jejunum samples obtained at 48 h after DT injection were analyzed. Results showed that DT significantly decreased catalase (CAT activity and glutathione (GSH content by 58.25% and 56.57%, respectively, and elevated malondialdehyde (MDA content and crypt depth (CD by 19.39% and 22.13%, respectively, in the jejunum (P < 0.05, relative to the control group. Compared with the DT group, the DT + GLN group exhibited significantly improved villus height (VH, villus width (VW, villus surface area (VSA, CD and total antioxidant capacity (T-AOC activity (P < 0.05; the DT + ARG group exhibited significantly increased the ratio of VH to CD (H:D and T-AOC activity (P < 0.05; the DT + GLN, DT + ARG and DT + NCG groups exhibited significantly enhanced CAT activity and GSH content as well as decreased MDA content (P < 0.05. Moreover, VH, VW, VSA, CD and GSH content in the DT + GLN group were higher whereas MDA content was lower compared with the corresponding values observed in both the DT + ARG and the DT + NCG groups (P < 0.05. The H:D ratio in the DT + ARG group significantly increased compared with that in the DT + NCG and DT + GLN groups (P < 0

  12. Effect of clofibric acid on desmin and vimentin contents in rat myocardiocytes.

    Science.gov (United States)

    Sampayo-Reyes, Adriana; Narro-Juárez, Antonio; Saíd-Fernández, Salvador; Lozano-Garza, Héctor G; Vargas-Villarreal, Javier; Mata-Cárdenas, Benito D; Morales-Aguilera, Antonio; González-Garza, María Teresa; Cortés-Gutiérrez, Elva I; Cerda-Flores, Ricardo M; Martínez-Rodríguez, Herminia G

    2006-01-01

    The aim of this experimental study was to analyze in vitro effects of clofibric acid on vimentin and desmin contents in rat myocardiocytes, which was carried out in primary myocardiocyte cells that were treated only with clofibric acid at 0.1 mM. The measurement of vimentin and desmin were done by Western blotting and densitometry. This study showed that myocardiocytes exposed to clofibric acid exhibit a 26.3% decrease in vimentin and a 42.1% decrease in desmin. Considering the role that these intermediate filaments play in the anchorage and cellular organization of myocardiocytes, the decrease of desmin and vimentin observed in cells treated with clofibric acid may be partially responsible for the adverse effects observed in patients. In conclusion, the alteration of cytoskeletal proteins may be a cause of cardiopathy in patients treated with these compounds.

  13. Antidiabetic effects of scoparic acid D isolated from Scoparia dulcis in rats with streptozotocin-induced diabetes.

    Science.gov (United States)

    Latha, Muniappan; Pari, Leelavinothan; Ramkumar, Kunga Mohan; Rajaguru, Palanisamy; Suresh, Thangaraj; Dhanabal, Thangavel; Sitasawad, Sandhya; Bhonde, Ramesh

    2009-01-01

    We evaluated the antihyperglycaemic effect of scoparic acid D (SAD), a diterpenoid isolated from the ethanol extract of Scoparia dulcis in streptozotocin (STZ)-induced diabetic male Wistar rats. SAD was administered orally at a dose of 10, 20 and 40 mg kg(-1) bodyweight for 15 days. At the end of the experimental period, the SAD-treated STZ diabetic rats showed decreased levels of glucose as compared with diabetic control rats. The improvement in blood glucose levels of SAD-treated rats was associated with a significant increase in plasma insulin levels. SAD at a dose of 20 mg kg(-1) bodyweight exhibited a significant effect when compared with other doses. Further, the effect of SAD was tested on STZ-treated rat insulinoma cell lines (RINm5F cells) and isolated islets in vitro. SAD at a dose of 20 microg mL(-1) evoked two-fold stimulation of insulin secretion from isolated islets, indicating its insulin secretagogue activity. Further, SAD protected STZ-mediated cytotoxicity and nitric oxide (NO) production in RINm5F cells. The present study thus confirms the antihyperglycaemic effect of SAD and also demonstrated the consistently strong cytoprotective properties of SAD.

  14. Fullerenol C{sub 60}(OH){sub 24} nanoparticles decrease relaxing effects of dimethyl sulfoxide on rat uterus spontaneous contraction

    Energy Technology Data Exchange (ETDEWEB)

    Slavic, Marija, E-mail: marija17@ibiss.bg.ac.rs [University of Belgrade, Department for Physiology, Institute for Biological Research ' Sinisa Stankovic' (IBISS) (Serbia); Djordjevic, Aleksandar [University of Novi Sad, Department of Chemistry, Biochemistry and the Environment, Faculty of Sciences (Serbia); Radojicic, Ratko [University of Belgrade, Faculty of Biology (Serbia); Milovanovic, Slobodan [University of East Sarajevo, Department of Pharmacology, Faculty of Medicine at Foca (Bosnia and Herzegowina); Orescanin-Dusic, Zorana [University of Belgrade, Department for Physiology, Institute for Biological Research ' Sinisa Stankovic' (IBISS) (Serbia); Rakocevic, Zlatko [University of Belgrade, Institute for Nuclear Sciences ' Vinca' (Serbia); Spasic, Mihajlo B.; Blagojevic, Dusko [University of Belgrade, Department for Physiology, Institute for Biological Research ' Sinisa Stankovic' (IBISS) (Serbia)

    2013-05-15

    Dimethyl sulfoxide (DMSO) is a widely used solvent and cryoprotectant that can cause impaired blood flow, reduction in intracranial pressure, tissue edema, inflammatory reactions, inhibition of vascular smooth muscle cell migration and proliferation, processes which can lead to atherosclerosis of the coronary, peripheral and cerebral circulation. Although the adverse effects are rare when DMSO is administered in clinically established concentrations, there is no safe antagonist for an overdose. In this work, we treated isolated spontaneous and calcium-induced contractile active rat uteri (Wistar, virgo intacta), with DMSO and fullerenol C{sub 60}(OH){sub 24} nanoparticle (FNP) in DMSO. FNP is a water-soluble derivative of fullerene C{sub 60}. Its size is a 1.1 nm in diameter and is a very promising candidate for a drug carrier in nanomedicine. FNP also displays free radical scavenging activity. DMSO decreased both spontaneous and calcium-induced contractions. In contrast, FNP only decreased spontaneous contraction. FNP decreased copper-zinc superoxide dismutase activity and prevented the DMSO-induced increase in glutathione reductase activity. Atomic force microscopy detected that FNP aggregated with calcium ions. Our results indicate that FNP has properties that make it a good candidate to be a modulator of DMSO activity which could minimize side effects of the latter.

  15. Chicken type II collagen induced immune tolerance of mesenteric lymph node lymphocytes by enhancing beta2-adrenergic receptor desensitization in rats with collagen-induced arthritis.

    Science.gov (United States)

    Zhao, Wei; Tong, Tong; Wang, Ling; Li, Pei-Pei; Chang, Yan; Zhang, Ling-Ling; Wei, Wei

    2011-01-01

    Chicken type II collagen (CCII) is a protein extracted from the cartilage of chicken breast and exhibits intriguing possibilities for the treatment of autoimmune diseases by inducing oral tolerance. In this study, we investigated the effects of CCII on inflammatory and immune responses to the mesenteric lymph node lymphocytes (MLNLs) and the mechanisms by which CCII regulates beta2-adrenergic receptor (beta2-AR) signal transduction in collagen-induced arthritis (CIA) rats. The onset of secondary arthritis in rats appeared around day 14 after injection of CCII emulsion. Remarkable secondary inflammatory response and lymphocytes proliferation were observed in CIA rats. The administration of CCII (10, 20, 40μgkg(-1)day(-1), days 15-22) could significantly reduce synovial hyperplasia, lymphatic follicle hyperplasia, inflammatory cells infiltration of MLNLs in CIA rats. CCII (10, 20, 40μgkg(-1)day(-1), days 15-22) restored the previously decreased level of cAMP of MLNLs of CIA rats. Meanwhile, CCII increased total protein expressions of beta2-AR, GRK2 and decreased that of beta-arrestin1, 2 of MLNLs in CIA rats but had an slight effect on GRK3. CCII further increased plasmatic protein expressions of GRK2, G(α)s and decreased that of beta-arrestin1, 2, beta2-AR, and increased membrane protein expressions of beta2-AR, GRK2, G(α)s and decreased that of beta-arrestin1, 2 of MLNLs in CIA rats. These results demonstrate that the mechanisms of CCII on beta2-AR desensitization and beta2-AR-AC-cAMP transmembrane signal transduction of MLNLs play crucial roles in pathogenesis of this disease. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Leptin Intake at Physiological Doses Throughout Lactation in Male Wistar Rats Normalizes the Decreased Density of Tyrosine Hydroxylase-Immunoreactive Fibers in the Stomach Caused by Mild Gestational Calorie Restriction

    Directory of Open Access Journals (Sweden)

    Nara Szostaczuk

    2018-03-01

    Full Text Available Introduction: Gestational under nutrition in rats has been shown to decrease expression of sympathetic innervation markers in peripheral tissues of offspring, including the stomach. This has been linked to lower gastric secretion and decreased circulating levels of ghrelin. Considering the critical role of leptin intake during lactation in preventing obesity and reversing adverse developmental programming effects, we aimed to find out whether leptin supplementation may reverse the above mentioned alterations caused by mild gestational calorie restriction.Methods: Three groups of male rats were studied at a juvenile age (25 days old and during adulthood (3 and 6 months old: the offspring of ad libitum fed dams (controls, the offspring of dams that were diet restricted (20% from days 1 to 12 of gestation (CR, and CR rats supplemented with a daily oral dose of leptin (equivalent to 5 times the average amount they could receive each day from maternal milk throughout lactation (CR-Leptin. The density of TyrOH-immunoreactive (TyrOH+ fibers and the levels of Tyrosine hydroxylase (TyrOH—used as potential markers of functional sympathetic innervation—were measured in stomach. Plasma leptin and ghrelin levels were also determined.Results: Twenty five-day-old CR rats, but not CR-Leptin rats, displayed lower density of TyrOH+ fibers (−46% and TyrOH levels (−47% in stomach compared to controls. Alterations in CR animals were mitigated at 6 months of age, and differences were not significant. Adult CR-Leptin animals showed higher plasma ghrelin levels than CR animals, particularly at 3 months (+16%, and a lower leptin/ghrelin ratio (−28 and −37% at 3 and 6 months, respectively.Conclusion: Leptin intake during lactation is able to reverse the alterations in the density of TyrOH+ fibers in the stomach and normalize the increased leptin/ghrelin ratio linked to a mild gestational calorie restriction in rats, supporting the relevance of leptin as an

  17. [Open-field behavioral study in rat hyperlipidemia combined with chronic unpredictable mild stress model].

    Science.gov (United States)

    Hu, Hua; Zhang, Yingchun; Xu, Yeqing; Liu, Chunfeng; Wang, Liwei

    2015-06-16

    To investigate behavioral changes in a rat hyperlipidemia model induced by high lipid feed combined with depression by Chronic Unpredictable Mild Stress (CUMS). A total of 40 rats were randomly divided into control (CON), control feed for 9 weeks followed by CUMS for 4 weeks (CON + CUMS), high fat diet (HFD) and high lipid feed for 9 weeks followed by CUMS for 4 weeks (HFD + CUMS) (n = 10 each). Open-field test was individually measured at baseline, week 9 and week 13. (1) Serum lipids: total cholesterol [(2.67 ± 0.04) mmol/L, (2.68 ± 0.02) mmol/L] and low density lipoprotein [(1.08 ± 0.03) mmol/L, (1.06 ± 0.01) mmol/L] of HFD and HFD + CUMS were both significantly higher than those of CON and CON + CUMS [(1.78 ± 0.12) mmol/L, (0.79 ± 0.04) mmol/L; (1.76 ± 0.09) mmol/L, (0.76 ± 0.06) mmol/L, all P Open-field test: at week 13, compared to CON rats, CON + CUMS rats exhibited enhanced locomotor activity during the first minute, reduced activity in the center squares and rearing, and increased the number of grooming and defecation (all P < 0.05). In comparison to the CON rats, a decrease in total squares in 5 min, central squares and peripheral squares was observed in HFD rats at week 13 (all P < 0.05). However, compared with HFD, CON, CON + CUMS rats, when high lipid feed for 9 weeks combined with depression, significant decrease activities in total squares in 5 min, central squares and peripheral squares were observed in HFD + CUMS rats at week 13. Besides these, the number of rearing was reduced, however, locomotor activity during the first minute and the number of grooming and defecation was significantly increased (all P < 0.001). Under uncontrolled hyperlipidemia, severe depressive symptoms will present more early once exposure to a series of chronic stressors followed by significant autonomic nervous dysfunctional symptoms.

  18. Role of spared pathways in locomotor recovery after body-weight-supported treadmill training in contused rats.

    Science.gov (United States)

    Singh, Anita; Balasubramanian, Sriram; Murray, Marion; Lemay, Michel; Houle, John

    2011-12-01

    Body-weight-supported treadmill training (BWSTT)-related locomotor recovery has been shown in spinalized animals. Only a few animal studies have demonstrated locomotor recovery after BWSTT in an incomplete spinal cord injury (SCI) model, such as contusion injury. The contribution of spared descending pathways after BWSTT to behavioral recovery is unclear. Our goal was to evaluate locomotor recovery in contused rats after BWSTT, and to study the role of spared pathways in spinal plasticity after BWSTT. Forty-eight rats received a contusion, a transection, or a contusion followed at 9 weeks by a second transection injury. Half of the animals in the three injury groups were given BWSTT for up to 8 weeks. Kinematics and the Basso-Beattie-Bresnahan (BBB) test assessed behavioral improvements. Changes in Hoffmann-reflex (H-reflex) rate depression property, soleus muscle mass, and sprouting of primary afferent fibers were also evaluated. BWSTT-contused animals showed accelerated locomotor recovery, improved H-reflex properties, reduced muscle atrophy, and decreased sprouting of small caliber afferent fibers. BBB scores were not improved by BWSTT. Untrained contused rats that received a transection exhibited a decrease in kinematic parameters immediately after the transection; in contrast, trained contused rats did not show an immediate decrease in kinematic parameters after transection. This suggests that BWSTT with spared descending pathways leads to neuroplasticity at the lumbar spinal level that is capable of maintaining locomotor activity. Discontinuing training after the transection in the trained contused rats abolished the improved kinematics within 2 weeks and led to a reversal of the improved H-reflex response, increased muscle atrophy, and an increase in primary afferent fiber sprouting. Thus continued training may be required for maintenance of the recovery. Transected animals had no effect of BWSTT, indicating that in the absence of spared pathways this

  19. Hypoxic-ischemic injury decreases anxiety-like behavior in rats when associated with loss of tyrosine-hydroxylase immunoreactive neurons of the substantia nigra

    International Nuclear Information System (INIS)

    Hei, Ming-Yan; Luo, Ya-Li; Zhang, Xiao-Chun; Liu, Hong; Gao, Ru; Wu, Jing-Jiang

    2011-01-01

    Neonatal Sprague-Dawley rats were randomly divided into normal control, mild hypoxia-ischemia (HI), and severe HI groups (N = 10 in each group at each time) on postnatal day 7 (P7) to study the effect of mild and severe HI on anxiety-like behavior and the expression of tyrosine hydroxylase (TH) in the substantia nigra (SN). The mild and severe HI groups were exposed to hypoxia (8% O 2 /92% N 2 ) for 90 and 150 min, respectively. The elevated plus-maze (EPM) test was performed to assess anxiety-like behavior by measuring time spent in the open arms (OAT) and OAT%, and immunohistochemistry was used to determine the expression of TH in the SN at P14, P21, and P28. OAT and OAT% in the EPM were significantly increased in both the mild (1.88-, 1.99-, and 2.04-fold, and 1.94-, 1.51-, and 1.46-fold) and severe HI groups (1.69-, 1.68-, and 1.87-fold, and 1.83-, 1.43-, and 1.39-fold, respectively; P < 0.05). The percent of TH-positive cells occupying the SN area was significantly and similarly decreased in both the mild (17.7, 40.2, and 47.2%) and severe HI groups (16.3, 32.2, and 43.8%, respectively; P < 0.05). The decrease in the number of TH-positive cells in the SN and the level of protein expression were closely associated (Pearson correlation analysis: r = 0.991, P = 0.000 in the mild HI group and r = 0.974, P = 0.000 in the severe HI group) with the impaired anxiety-like behaviors. We conclude that neonatal HI results in decreased anxiety-like behavior during the juvenile period of Sprague-Dawley rats, which is associated with the decreased activity of TH in the SN. The impairment of anxiety and the expression of TH are not likely to be dependent on the severity of HI

  20. Hypoxic-ischemic injury decreases anxiety-like behavior in rats when associated with loss of tyrosine-hydroxylase immunoreactive neurons of the substantia nigra

    Directory of Open Access Journals (Sweden)

    Hei Ming-Yan

    2012-01-01

    Full Text Available Neonatal Sprague-Dawley rats were randomly divided into normal control, mild hypoxia-ischemia (HI, and severe HI groups (N = 10 in each group at each time on postnatal day 7 (P7 to study the effect of mild and severe HI on anxiety-like behavior and the expression of tyrosine hydroxylase (TH in the substantia nigra (SN. The mild and severe HI groups were exposed to hypoxia (8% O2/92% N2 for 90 and 150 min, respectively. The elevated plus-maze (EPM test was performed to assess anxiety-like behavior by measuring time spent in the open arms (OAT and OAT%, and immunohistochemistry was used to determine the expression of TH in the SN at P14, P21, and P28. OAT and OAT% in the EPM were significantly increased in both the mild (1.88-, 1.99-, and 2.04-fold, and 1.94-, 1.51-, and 1.46-fold and severe HI groups (1.69-, 1.68-, and 1.87-fold, and 1.83-, 1.43-, and 1.39-fold, respectively; P < 0.05. The percent of TH-positive cells occupying the SN area was significantly and similarly decreased in both the mild (17.7, 40.2, and 47.2% and severe HI groups (16.3, 32.2, and 43.8%, respectively; P < 0.05. The decrease in the number of TH-positive cells in the SN and the level of protein expression were closely associated (Pearson correlation analysis: r = 0.991, P = 0.000 in the mild HI group and r = 0.974, P = 0.000 in the severe HI group with the impaired anxiety-like behaviors. We conclude that neonatal HI results in decreased anxiety-like behavior during the juvenile period of Sprague-Dawley rats, which is associated with the decreased activity of TH in the SN. The impairment of anxiety and the expression of TH are not likely to be dependent on the severity of HI.

  1. Estrogen induces rapid decrease in dendritic thorns of CA3 pyramidal neurons in adult male rat hippocampus

    International Nuclear Information System (INIS)

    Tsurugizawa, Tomokazu; Mukai, Hideo

    2005-01-01

    Modulation of hippocampal synaptic plasticity by estrogen has been attracting much attention. Thorns of thorny excrescences of CA3 hippocampal neurons are post-synaptic regions whose presynaptic partners are mossy fiber terminals. Here we demonstrated the rapid effect of estradiol on the density of thorns of thorny excrescences, by imaging Lucifer Yellow-injected CA3 neurons in adult male rat hippocampal slices. The application of 1 nM estradiol induced rapid decrease in the density of thorns on pyramidal neurons within 2 h. The estradiol-mediated decrease in the density of thorns was blocked by CNQX (AMPA receptor antagonist) and PD98059 (MAP kinase inhibitor), but not by MK-801 (NMDA receptor antagonist). ERα agonist PPT induced the same suppressive effect as that induced by estradiol on the density of thorns, but ERβ agonist DPN did not affect the density of thorns. Note that a 1 nM estradiol treatment did not affect the density of spines in the stratum radiatum and stratum oriens. A search for synaptic ERα was performed using purified RC-19 antibody. The localization of ERα (67 kDa) in the CA3 mossy fiber terminals and thorns was demonstrated using immunogold electron microscopy. These results imply that estradiol drives the signaling pathway including ERα and MAP kinase

  2. Intrathecal huperzine A increases thermal escape latency and decreases flinching behavior in the formalin test in rats.

    Science.gov (United States)

    Park, Paula; Schachter, Steven; Yaksh, Tony

    2010-02-05

    Huperzine A (HupA) is an alkaloid isolated from the Chinese club moss Huperzia serrata and has been used for improving memory, cognitive and behavioral function in patients with Alzheimer's disease in China. It has NMDA antagonist and anticholinesterase activity and has shown anticonvulsant and antinociceptive effects in preliminary studies when administered intraperitoneally to mice. To better characterize the antinociceptive effects of HupA at the spinal level, Holtzman rats were implanted with intrathecal catheters to measure thermal escape latency using Hargreaves thermal escape testing system and flinching behavior using the formalin test. Intrathecal (IT) administration of HupA showed a dose-dependent increase in thermal escape latency with an ED50 of 0.57 microg. Atropine reversed the increase in thermal escape latency produced by 10 microg HupA, indicating an antinociceptive mechanism through muscarinic cholinergic receptors. The formalin test showed that HupA decreased flinching behavior in a dose-dependent manner. Atropine also reversed the decrease in flinching behavior caused by 10 microg HupA. A dose-dependent increase of side effects including scratching, biting, and chewing tails was observed, although antinociceptive effects were observed in doses that did not produce any adverse effects. (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  3. Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Pranay [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India); Yadav, Rajesh S. [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India); Department of Crimnology and Forensic Science, Harisingh Gour University, Sagar 470 003 (India); Chandravanshi, Lalit P.; Shukla, Rajendra K.; Dhuriya, Yogesh K.; Chauhan, Lalit K.S. [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India); Dwivedi, Hari N. [Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 227 015 (India); Pant, Aditiya B. [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India); Khanna, Vinay K., E-mail: vkkhanna1@gmail.com [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India)

    2014-09-15

    Earlier, we found that arsenic induced cholinergic deficits in rat brain could be protected by curcumin. In continuation to this, the present study is focused to unravel the molecular mechanisms associated with the protective efficacy of curcumin in arsenic induced cholinergic deficits. Exposure to arsenic (20 mg/kg body weight, p.o) for 28 days in rats resulted to decrease the expression of CHRM2 receptor gene associated with mitochondrial dysfunctions as evident by decrease in the mitochondrial membrane potential, activity of mitochondrial complexes and enhanced apoptosis both in the frontal cortex and hippocampus in comparison to controls. The ultrastructural images of arsenic exposed rats, assessed by transmission electron microscope, exhibited loss of myelin sheath and distorted cristae in the mitochondria both in the frontal cortex and hippocampus as compared to controls. Simultaneous treatment with arsenic (20 mg/kg body weight, p.o) and curcumin (100 mg/kg body weight, p.o) for 28 days in rats was found to protect arsenic induced changes in the mitochondrial membrane potential and activity of mitochondrial complexes both in frontal cortex and hippocampus. Alterations in the expression of pro- and anti-apoptotic proteins and ultrastructural damage in the frontal cortex and hippocampus following arsenic exposure were also protected in rats simultaneously treated with arsenic and curcumin. The data of the present study reveal that curcumin could protect arsenic induced cholinergic deficits by modulating the expression of pro- and anti-apoptotic proteins in the brain. More interestingly, arsenic induced functional and ultrastructural changes in the brain mitochondria were also protected by curcumin. - Highlights: • Neuroprotective mechanism of curcumin in arsenic induced cholinergic deficits studied • Curcumin protected arsenic induced enhanced expression of stress markers in rat brain • Arsenic compromised mitochondrial electron transport chain protected

  4. Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats

    International Nuclear Information System (INIS)

    Srivastava, Pranay; Yadav, Rajesh S.; Chandravanshi, Lalit P.; Shukla, Rajendra K.; Dhuriya, Yogesh K.; Chauhan, Lalit K.S.; Dwivedi, Hari N.; Pant, Aditiya B.; Khanna, Vinay K.

    2014-01-01

    Earlier, we found that arsenic induced cholinergic deficits in rat brain could be protected by curcumin. In continuation to this, the present study is focused to unravel the molecular mechanisms associated with the protective efficacy of curcumin in arsenic induced cholinergic deficits. Exposure to arsenic (20 mg/kg body weight, p.o) for 28 days in rats resulted to decrease the expression of CHRM2 receptor gene associated with mitochondrial dysfunctions as evident by decrease in the mitochondrial membrane potential, activity of mitochondrial complexes and enhanced apoptosis both in the frontal cortex and hippocampus in comparison to controls. The ultrastructural images of arsenic exposed rats, assessed by transmission electron microscope, exhibited loss of myelin sheath and distorted cristae in the mitochondria both in the frontal cortex and hippocampus as compared to controls. Simultaneous treatment with arsenic (20 mg/kg body weight, p.o) and curcumin (100 mg/kg body weight, p.o) for 28 days in rats was found to protect arsenic induced changes in the mitochondrial membrane potential and activity of mitochondrial complexes both in frontal cortex and hippocampus. Alterations in the expression of pro- and anti-apoptotic proteins and ultrastructural damage in the frontal cortex and hippocampus following arsenic exposure were also protected in rats simultaneously treated with arsenic and curcumin. The data of the present study reveal that curcumin could protect arsenic induced cholinergic deficits by modulating the expression of pro- and anti-apoptotic proteins in the brain. More interestingly, arsenic induced functional and ultrastructural changes in the brain mitochondria were also protected by curcumin. - Highlights: • Neuroprotective mechanism of curcumin in arsenic induced cholinergic deficits studied • Curcumin protected arsenic induced enhanced expression of stress markers in rat brain • Arsenic compromised mitochondrial electron transport chain protected

  5. Renoprotective effect of lansoprazole in streptozotocin-induced diabetic nephropathy in wistar rats.

    Science.gov (United States)

    Kaur, Rupinder; Sodhi, Rupinder Kaur; Aggarwal, Neha; Kaur, Jaspreet; Jain, Upendra K

    2016-01-01

    Proton pump inhibitors (PPIs) have exhibited glucose lowering action in animal models of diabetes; however, their potential in diabetes-related complications has not yet been evaluated. Hence, the present study has been undertaken to investigate the renoprotective potential of lansoprazole in streptozotocin-induced diabetic nephropathy in wistar rats. Diabetic nephropathy was induced with a single injection of streptozotocin (STZ, 45 mg/kg, i.p.). Lansoprazole (40 mg/kg; 80 mg/kg, p.o.; 4 weeks) was administered to diabetic rats after 4 weeks of STZ treatment. A battery of biochemical tests such as serum glucose, glycated hemoglobin, blood urea nitrogen (BUN), serum creatinine, albumin, and kidney weight/body weight (%) ratio were performed to evaluate the renal functions. Oxidative stress was determined by estimating renal thiobarbituric acid reactive species (TBARS) and reduced glutathione (GSH) levels. Lipid profile was assessed by determining serum cholesterol (TC), triglyceride (TG), and high-density lipoprotein (HDL). The STZ-treated rats demonstrated deleterious alterations in kidney functions, enhanced oxidative stress, and disturbed lipid profile. Administration of lansoprazole to diabetic rats significantly reduced serum glucose, glycated hemoglobin, BUN, creatinine, albumin levels, and oxidative stress. Serum lipids like TC and TG were decreased, and HDL was enhanced in lansoprazole-treated STZ rats. The findings of our study indicate that renoprotective effects of lansoprazole may be attributed to its glucose-lowering, lipid-lowering, and antioxidative potential.

  6. Obesity does not aggravate osteoporosis or osteoblastic insulin resistance in orchiectomized rats.

    Science.gov (United States)

    Potikanond, Saranyapin; Rattanachote, Pinyada; Pintana, Hiranya; Suntornsaratoon, Panan; Charoenphandhu, Narattaphol; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2016-02-01

    The present study aimed to test the hypothesis that testosterone deprivation impairs osteoblastic insulin signaling, decreases osteoblast survival, reduces bone density, and that obesity aggravates those deleterious effects in testosterone-deprived rats. Twenty four male Wistar rats underwent either a bilateral orchiectomy (O, n=12) or a sham operation (S, n=12). Then the rats in each group were further divided into two subgroups fed with either a normal diet (ND) or a high-fat diet (HF) for 12 weeks. At the end of the protocol, blood samples were collected to determine metabolic parameters and osteocalcin ratios. The tibiae were collected to determine bone mass using microcomputed tomography and for osteoblast isolation. The results showed that rats fed with HF (sham-operated HF-fed rats (HFS) and ORX HF-fed rats (HFO)) developed peripheral insulin resistance and had decreased trabecular bone density. In ND-fed rats, only the ORX ND-fed rats (NDO) group had decreased trabecular bone density. In addition, osteoblastic insulin resistance, as indicated by a decrease in tyrosine phosphorylation of the insulin receptor and Akt, were observed in all groups except the sham-operated ND-fed rats (NDS) rats. Those groups, again with the exception of the NDS rats, also had decreased osteoblastic survival. No differences in the levels of osteoblastic insulin resistance and osteoblastic survival were found among the NDO, HFS, and HFO groups. These findings suggest that either testosterone deprivation or obesity alone can impair osteoblastic insulin signaling and decrease osteoblastic survival leading to the development of osteoporosis. However, obesity does not aggravate those deleterious effects in the bone of testosterone-deprived rats. © 2016 Society for Endocrinology.

  7. Inhibition of neutral sphingomyelinase decreases elevated levels of inducible nitric oxide synthase and apoptotic cell death in ocular hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Aslan, Mutay, E-mail: mutayaslan@akdeniz.edu.tr [Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya (Turkey); Basaranlar, Goksun [Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya (Turkey); Unal, Mustafa [Department of Ophthalmology, Akdeniz University Faculty of Medicine, Antalya (Turkey); Ciftcioglu, Akif [Department of Pathology, Akdeniz University Faculty of Medicine, Antalya (Turkey); Derin, Narin [Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya (Turkey); Mutus, Bulent [Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario (Canada)

    2014-11-01

    Endoplasmic reticulum (ER) stress and excessive nitric oxide production via induction of inducible nitric oxide synthase (NOS2) have been implicated in the pathogenesis of neuronal retinal cell death in ocular hypertension. Neutral sphingomyelinase (N-SMase)/ceramide pathway can regulate NOS2 expression, hence this study determined the role of selective neutral sphingomyelinase (N-SMase) inhibition on retinal NOS2 levels, ER stress, apoptosis and visual evoked potentials (VEPs) in a rat model of elevated intraocular pressure (EIOP). NOS2 expression and retinal protein nitration were significantly greater in EIOP and significantly decreased with N-SMase inhibition. A significant increase was observed in retinal ER stress markers pPERK, CHOP and GRP78 in EIOP, which were not significantly altered by N-SMase inhibition. Retinal TUNEL staining showed increased apoptosis in all EIOP groups; however N-SMase inhibition significantly decreased the percent of apoptotic cells in EIOP. Caspase-3, -8 and -9 activities were significantly increased in EIOP and returned to baseline levels following N-SMase inhibition. Latencies of all VEP components were significantly prolonged in EIOP and shortened following N-SMase inhibition. Data confirm the role of nitrative injury in EIOP and highlight the protective effect of N-SMase inhibition in EIOP via down-regulation of NOS2 levels and nitrative stress. - Highlights: • Inhibition of N-SMase decreases NOS2 levels in ocular hypertension. • Inhibition of N-SMase decreases protein nitration in ocular hypertension. • Inhibition of N-SMase decreases caspase activation in ocular hypertension. • Inhibition of N-SMase decreases apoptosis in ocular hypertension.

  8. Chronic ethanol exposure decreases CB1 receptor function at GABAergic synapses in the rat central amygdala

    DEFF Research Database (Denmark)

    Varodayan, Florence P.; Soni, Neeraj; Bajo, Michal

    2016-01-01

    release, and GABAergic dysregulation in the central nucleus of the amygdala (CeA) is critical in the transition to alcohol dependence. We investigated possible disruptions in CB1 signaling of rat CeA GABAergic transmission following intermittent ethanol exposure. In the CeA of alcohol-naive rats, CB1...

  9. The Labdane Ent-3-Acetoxy-Labda-8(17), 13-Dien-15-Oic Decreases Blood Pressure In Hypertensive Rats

    Energy Technology Data Exchange (ETDEWEB)

    Simplicio, Janaina A. [Programa de Pós-Graduação em Farmacologia - Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP (Brazil); Departamento de Enfermagem Psiquiátrica e Ciências Humanas - Laboratório de Farmacologia - Escola de Enfermagem de Ribeirão Preto (USP), Ribeirão Preto, SP (Brazil); Simão, Marilia R.; Ambrosio, Sergio R. [Núcleo de Pesquisa em Ciências e Tecnologia - Universidade de Franca (UNIFRAN), Franca, SP (Brazil); Tirapelli, Carlos R., E-mail: crtirapelli@eerp.usp.br [Departamento de Enfermagem Psiquiátrica e Ciências Humanas - Laboratório de Farmacologia - Escola de Enfermagem de Ribeirão Preto (USP), Ribeirão Preto, SP (Brazil)

    2016-06-15

    Labdane-type diterpenes induce lower blood pressure via relaxation of vascular smooth muscle; however, there are no studies describing the effects of labdanes in hypertensive rats. The present study was designed to investigate the cardiovascular actions of the labdane-type diterpene ent-3-acetoxy-labda-8(17), 13-dien-15-oic acid (labda-15-oic acid) in two-kidney 1 clip (2K-1C) renal hypertension. Vascular reactivity experiments were performed in aortic rings isolated from 2K-1C and normotensive (2K) male Wistar rats. Nitrate/nitrite (NOx) measurement was performed in aortas by colorimetric assay. Blood pressure measurements were performed in conscious rats. Labda-15-oic acid (0.1-300 µmol/l) and forskolin (0.1 nmol/l - 1 µmol/l) relaxed endothelium-intact and endothelium-denuded aortas from both 2K-1C and 2K rats. Labda-15-oic acid was more effective at inducing relaxation in endothelium-intact aortas from 2K pre-contracted with phenylephrine when compared to the endothelium-denuded ones. Forskolin was more potent than labda-15-oic acid at inducing vascular relaxation in arteries from both 2K and 2K-1C rats. Labda-15-oic acid-induced increase in NOx levels was lower in arteries from 2K-1C rats when compared to 2K rats. Intravenous administration of labda-15-oic acid (0.3-3 mg/kg) or forskolin (0.1-1 mg/kg) induced hypotension in conscious 2K-1C and 2K rats. The present findings show that labda-15-oic acid induces vascular relaxation and hypotension in hypertensive rats.

  10. Selenium, but not lycopene or vitamin E, decreases growth of transplantable dunning R3327-H rat prostate tumors.

    Directory of Open Access Journals (Sweden)

    Brian L Lindshield

    Full Text Available BACKGROUND: Lycopene, selenium, and vitamin E are three micronutrients commonly consumed and supplemented by men diagnosed with prostate cancer. However, it is not clear whether consumption of these compounds, alone or in combination, results in improved outcomes. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated the effects of dietary lycopene (250 mg/kg diet, selenium (methylselenocysteine, 1 mg/kg diet, and vitamin E (gamma-tocopherol, 200 mg/kg diet alone and in combination on the growth of androgen-dependent Dunning R3327-H rat prostate adenocarcinomas in male, Copenhagen rats. AIN-93G diets containing these micronutrients were prefed for 4 to 6 weeks prior to tumor implantation by subcutaneous injection. Tumors were allowed to grow for approximately 18 weeks. Across diet groups, methylselenocysteine consumption decreased final tumor area (P = 0.003, tumor weight (P = 0.003, and the tumor weight/body weight ratio (P = 0.003, but lycopene and gamma-tocopherol consumption intake did not alter any of these measures. There were no significant interactions among nutrient combinations on tumor growth. Methylselenocysteine consumption also led to small, but significant decreases in body weight (P = 0.007, food intake (P = 0.012, and body weight gain/food intake ratio (P = 0.022. However, neither body weight nor gain/food intake ratio was correlated with tumor weight. Methylselenocysteine, lycopene, and gamma-tocopherol consumed alone and in combination did not alter serum testosterone or dihydrotestosterone concentrations; tumor proliferation or apoptosis rates. In addition, the diets also did not alter tumor or prostate androgen receptor, probasin, selenoprotein 15, selenoprotein P, or selenium binding protein 2 mRNA expression. However, using castration and finasteride-treated tissues from a previous study, we found that androgen ablation altered expression of these selenium-associated proteins. CONCLUSIONS: Of the three micronutrients tested, only

  11. Some pharmacological effects of cinnamon and ginger herbs in obese diabetic rats

    Science.gov (United States)

    Shalaby, Mostafa Abbas; Saifan, Hamed Yahya

    2014-01-01

    Aims: The present study was designed to assess some pharmacological effects of cinnamon (CAE) and ginger (GAE) aqueous extracts in obese diabetic rats, and to elucidate the potential mechanisms. Materials and Methods: Forty-two Sprague-Dawley rats were randomized into 6 equal groups. Group 1 was a negative control and the other groups were rendered obese by feeding rats on high-fat diet for 4 weeks. The obese rats were subcutaneously injected with alloxan for 5*days to induce diabetes. Group 2 was a positive control, and Groups 3, 4, 5 and 6 were orally given CAE in doses 200 and 400 mg/kg and GAE in the same doses, respectively for 6 weeks. Blood samples were collected for serum biochemical analyses. Kidneys were dissected out to assay activity of tissue antioxidant enzymes: Superoxide dismutase, glutathione peroxidase and catalase. Results: CAE and GAE significantly reduced body weight and body fat mass; normalized serum levels of liver enzymes; improved lipid profile; decreased blood glucose and leptin and increased insulin serum levels in obese diabetic rats. Both extracts also increased activity of kidney antioxidant enzymes. Conclusion: CAE and GAE exhibit anti-obesity, hepatoprotective, hypolipidemic, antidiabetic and anti-oxidant effects in obese diabetic rats. These results confirm the previous reports on both extracts. The potential mechanisms underlying these effects are fully discussed and clarified. Our results affirm the traditional use of cinnamon and ginger for treating patients suffering from obesity and diabetes. The obese diabetic rat model used in this study is a novel animal model used in pharmacology researches. PMID:26401364

  12. Increased proteoglycan synthesis by the cardiovascular system of coarctation hypertensive rats

    International Nuclear Information System (INIS)

    Lipke, D.W.; Couchman, J.R.

    1991-01-01

    Proteoglycan (PG) synthesis in the cardiovascular system of coarctation hypertensive rats was examined by in vivo and in vitro labeling of glycosaminoglycans with 35SO4 in rats made hypertensive for short (4 days) and longer (14 days) durations. With in vivo labeling, only tissues directly exposed to elevated pressure (left ventricle, LV and aorta above the clip, AOR increases) exhibited elevated PG synthesis after 4 days of hypertension. By 14 days, tissues both exposed to (LV and AOR increases) and protected from elevated pressure (right ventricle and kidney) exhibited elevated PG synthetic rates. Slight elevations in the proportion of galactosaminoglycans were observed with a concurrent proportional decrease in heparan sulfate PGs. Using the in vitro labeling procedure, no significant increases in PG synthesis were observed in any tissue at either 4 days or 14 days of hypertension. These data indicate that: (1) coarctation hypertension stimulates PG production that is dependent initially on increased pressure and later, on additional non-pressure related factors, (2) these other factors are responsible for enhanced PG production in tissues not directly exposed to pressure overload, (3) pressure and/or these other factors are essential for enhanced PG production in coarctation hypertension, and (4) synthesis of all GAG types appears to be affected

  13. Crocin improved locomotor function and mechanical behavior in the rat model of contused spinal cord injury through decreasing calcitonin gene related peptide (CGRP).

    Science.gov (United States)

    Karami, Masoume; Bathaie, S Zahra; Tiraihi, Taqi; Habibi-Rezaei, Mehran; Arabkheradmand, Jalil; Faghihzadeh, Soghrat

    2013-12-15

    Various approaches have been offered to alleviate chronic pain resulting from spinal cord injuries (SCIs). Application of herbs and natural products, with potentially lower adverse effects, to cure diseases has been recommended in both traditional and modern medicines. Here, the effect of crocin on chronic pain induced by spinal cord contusion was investigated in an animal model. Female Wistar rats were randomly divided into five groups (5 rats in each); three groups were contused at the L1 level. One group was treated with crocin (150mg/kg) two weeks after spinal cord injury; the second group, control, was treated with vehicle only; and the third group was treated with ketoprofen. Two normal groups were also considered with or without crocin treatment. The mechanical behavioral test, the locomotor recovery test and the thermal behavioral test were applied weekly to evaluate the injury and recovery of rats. Significant improvements (plocomotor recovery tests were seen in the rats treated with crocin. Thermal behavioral test did not show any significant changes due to crocin treatment. Plasma concentration of calcitonin-gene related peptide (CGRP) changed from 780.2±2.3 to 1140.3±4.5pg/ml due to SCI and reached 789.1±2.7pg/ml after crocin treatment. These changes were significant at the level of p<0.05. The present study shows the beneficial effects of crocin treatment on chronic pain induced by SCI, through decreasing CGRP as an important mediator of inflammation and pain. Copyright © 2013 Elsevier GmbH. All rights reserved.

  14. Improved leptin sensitivity as a potential candidate responsible for the spontaneous food restriction of the Lou/C rat.

    Directory of Open Access Journals (Sweden)

    Christelle Veyrat-Durebex

    Full Text Available The Lou/C rat, an inbred strain of Wistar origin, was described as a model of resistance to age- and diet-induced obesity. Although such a resistance involves many metabolic parameters described in our previous studies, Lou/C rats also exhibit a spontaneous food restriction due to decreased food consumption during the nocturnal period. We then attempted to delineate the leptin sensitivity and mechanisms implicated in this strain, using different protocols of acute central and peripheral leptin administration. A first analysis of the meal patterns revealed that Lou/C rats eat smaller meals, without any change in meal number compared to age-matched Wistar animals. Although the expression of the recognized leptin transporters (leptin receptors and megalin measured in the choroid plexus was normal in Lou/C rats, the decreased triglyceridemia observed in these animals is compatible with an increased leptin transport across the blood brain barrier. Improved hypothalamic leptin signaling in Lou/C rats was also suggested by the higher pSTAT3/STAT3 (signal transducer and activator of transcription 3 ratio observed following acute peripheral leptin administration, as well as by the lower hypothalamic mRNA expression of the suppressor of cytokine signaling 3 (SOCS3, known to downregulate leptin signaling. To conclude, spontaneous hypophagia of Lou/C rats appears to be related to improved leptin sensitivity. The main mechanism underlying such a phenomenon consists in improved leptin signaling through the Ob-Rb leptin receptor isoform, which seems to consequently lead to overexpression of brain-derived neurotrophic factor (BDNF and thyrotropin-releasing hormone (TRH.

  15. Molecular Dynamics Simulations of the STAS Domains of Rat Prestin and Human Pendrin Reveal Conformational Motions in Conserved Flexible Regions

    Directory of Open Access Journals (Sweden)

    Alok K. Sharma

    2014-02-01

    Full Text Available Background: Molecular dynamics (MD simulations provide valuable information on the conformational changes that accompany time-dependent motions in proteins. The reported crystal structure of rat prestin (PDB 3LLO is remarkable for an α1-α2 inter-helical angle that differs substantially from those observed in bacterial STAS domains of SulP anion transporters and anti-sigma factor antagonists. However, NMR data on the rat prestin STAS domain in solution suggests dynamic features at or near the α1-α2 helical region (Pasqualetto et al JMB, 2010. We therefore performed a 100 ns 300K MD simulation study comparing the STAS domains of rat prestin and (modeled human pendrin, to explore possible conformational flexibility in the region of the α1 and α2 helices. Methods: The conformation of the loop missing in the crystal structure of rat prestin STAS (11 amino acids between helix α1 and strand β3 was built using Modeller. MD simulations were performed with GROMACSv4.6 using GROMOS96 53a6 all-atom force field. Results: A subset of secondary structured elements of the STAS domains exhibits significant conformational changes during the simulation time course. The conformationally perturbed segments include the majority of loop regions, as well as the α1 and α2 helices. A significant decrease in the α1-α2 inter-helical angle observed across the simulation trajectory leads to closer helical packing at their C-termini. The end-simulation conformations of the prestin and pendrin STAS domains, including their decreased α1-α2 inter-helical angles, resemble more closely the packing of corresponding helices in the STAS structures of bacterial SulP transporters Rv1739c and ychM, as well as those of the anti-sigma factor antagonists. Several structural segments of the modeled human pendrin STAS domain exhibit larger atomic motions and greater conformational deviations than the corresponding regions of rat prestin, predicting that the human pendrin STAS

  16. Decreased ERp57 Expression in WAG/Rij Rats Thalamus and Cortex; Possible Correlation with Absence Epilepsy.

    Science.gov (United States)

    Sahin, Deniz; Karadenizli, Sabriye; Kasap, Murat; Oztas, Berrin; Kir, Hale Maral; Akpinar, Gurler; Ates, Nurbay

    2018-02-06

    The role of intracellular proteins in the pathogenesis of absence epilepsy were mentioned. These proteins are thought to be related to energy generation, signal transduction, inflammation processes and membrane conductance. The investigation of protein profile of the genetically epileptic rat brains was the main subject of this study. For this, a 2D-gel electrophoresis based comparative proteome analysis was performed using thalamus tissue of genetic absence epileptic WAG/Rij and age matched Wistar rats. Regulated spots displaying differences in their abundance were identified using MALDI-TOF/TOF. Among the six spots (DHRS9, BR44, HINT1, CREM, SPRE and PDIA3/ERp57) the highest mascot score was attributed to ERp57 a neuroprotective/neurodegenerative system associated protein. Western Blot analyses were performed to validate changes occurring at ERp57 in thalamus and also identify changes in fronto-parietal cortex. Reductions in the expression levels of ERp57 were detected in the thalamic and the fronto-parietal brain regions of the WAG/Rij rats in comparison to Wistar rats. Such difference might be associated with the pathogenic mechanisms dictating the absence epilepsy. Lower levels of ERp57 may be playing an important role in the development of spontaneous seizures activity seen in the absence epileptic WAG/Rij rats strain. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Curcumin inhibits endoplasmic reticulum stress induced by cerebral ischemia-reperfusion injury in rats

    Science.gov (United States)

    Zhu, Haiying; Fan, Yanxia; Sun, Hongyu; Chen, Liyan; Man, Xiao

    2017-01-01

    The aim of the present study was to observe the dynamic changes of the growth arrest and DNA damage-inducible 153 (GADD153) gene and caspase-12 in the brain tissue of rats with cerebral ischemia-reperfusion injury (CIRI) and the impact of curcumin pretreatment. A total of 60 rats were randomly divided into the normal group (N), the sham operation group (S), the dimethyl sulfoxide control group (D) and the curcumin treatment group (C). For group D and C, 12 (T1), 24 (T2) and 72 h (T3) of reperfusion were performed after 2 h ischemia. The expression levels of GADD153 and caspase-12 in the brain tissue were detected and compared among the groups by immunohistochemistry, immunofluorescence double staining and western blotting. The expression levels of GADD153 and caspase-12 were increased at T1compared with groups N and S, and the expression of caspase-12 peaked at T2 in group D, while GADD153 was increased until T3 in group D. Compared with group D, the expression levels of GADD153 and caspase-12 in group C at T2 and T3 were significantly decreased (P<0.05). Endoplasmic reticulum stress is involved in the pathological process of CIRI. Curcumin may decrease the expression levels of the above two factors, thus exhibiting protective effects against CIRI in rats. PMID:29067098

  18. Effects of β-estradiol on cold-sensitive receptor channel TRPM8 in ovariectomized rats.

    Science.gov (United States)

    Kubo, Takuro; Tsuji, Shunichiro; Amano, Tsukuru; Yoshino, Fumi; Niwa, Yoko; Kasahara, Kyoko; Yoshida, Saori; Mukaisho, Ken-Ichi; Sugihara, Hiroyuki; Tanaka, Sachiko; Kimura, Fuminori; Takahashi, Kentaro; Murakami, Takashi

    2017-10-30

    Transient receptor potential cation channel subfamily M member 8 (TRPM8) is associated with sensitivity to cold sensation in mammals. A previous study demonstrated that TRPM8 was overexpressed in the skin of ovariectomized (OVX) rats due to the loss of estrogen. In the present study, we investigated whether estrogen replacement restricts overexpression of the TRPM8 channel in the skin of OVX rats. We divided 15 Sprague Dawley rats into three groups: a non-operated group (NON-OPE), an ovariectomy group (OVX), and a group subjected to estrogen replacement during 4 weeks beginning 7 days after ovariectomy (OVX + E2). Five weeks later, TRPM8 channel mRNA and protein in lumbar skin were quantified by real-time RT-PCR, protein ELISA, and immunohistochemistry. The OVX + E2 group exhibited a trend for decreased expression of the TRPM8 channel in the lumbar skin in comparison with the OVX group, whereas ELISA data and immunohistochemistry data and immunohistochemistry graphs relating to TRPM8 protein did not show any obvious differences between the OVX group and the OVX + E2 group. Estrogen replacement may restrict the overexpression of TRPM8 in the dermis of OVX rats.

  19. Changes in Ghrelin-Related Factors in Gastroesophageal Reflux Disease in Rats

    Directory of Open Access Journals (Sweden)

    Miwa Nahata

    2013-01-01

    Full Text Available To examine gastrointestinal hormone profiles and functional changes in gastroesophageal reflux disease (GERD, blood levels of the orexigenic hormone ghrelin were measured in rats with experimentally induced GERD. During the experiment, plasma acyl ghrelin levels in GERD rats were higher than those in sham-operated rats, although food intake was reduced in GERD rats. Although plasma levels of the appetite-suppressing hormone leptin were significantly decreased in GERD rats, no changes were observed in cholecystokinin levels. Repeated administration of rat ghrelin to GERD rats had no effect on the reduction in body weight or food intake. Therefore, these results suggest that aberrantly increased secretion of peripheral ghrelin and decreased ghrelin responsiveness may occur in GERD rats. Neuropeptide Y and agouti-related peptide mRNA expression in the hypothalamus of GERD rats was significantly increased, whereas proopiomelanocortin mRNA expression was significantly decreased compared to that in sham-operated rats. However, melanin-concentrating hormone (MCH and prepro-orexin mRNA expression in the hypothalamus of GERD rats was similar to that in sham-operated rats. These results suggest that although GERD rats have higher plasma ghrelin levels, ghrelin signaling in GERD rats may be suppressed due to reduced MCH and/or orexin synthesis in the hypothalamus.

  20. Developmental programming of vascular dysfunction by prenatal and postnatal zinc deficiency in male and female rats.

    Science.gov (United States)

    Mendes Garrido Abregú, Facundo; Gobetto, María Natalia; Juriol, Lorena Vanesa; Caniffi, Carolina; Elesgaray, Rosana; Tomat, Analía Lorena; Arranz, Cristina

    2018-06-01

    Micronutrient malnutrition during intrauterine and postnatal growth may program cardiovascular diseases in adulthood. We examined whether moderate zinc restriction in male and female rats throughout fetal life, lactation and/or postweaning growth induces alterations that can predispose to the onset of vascular dysfunction in adulthood. Female Wistar rats were fed low- or control zinc diets from pregnancy to offspring weaning. After weaning, offspring were fed either a low- or a control zinc diet until 81 days. We evaluated systolic blood pressure (SBP), thoracic aorta morphology, nitric oxide (NO) system and vascular reactivity in 6- and/or 81-day-old offspring. At day 6, zinc-deficient male and female offspring showed a decrease in aortic NO synthase (NOS) activity accompanied by an increase in oxidative stress. Zinc-deficient 81-day-old male rats exhibited an increase in collagen deposition in tunica media, as well as lower activity of endothelial NOS (eNOS) that could not be reversed with an adequate zinc diet during postweaning life. Zinc deficiency programmed a reduction in eNOS protein expression and higher SBP only in males. Adult zinc-deficient rats of both sexes showed reduced vasodilator response dependent on eNOS activity and impaired aortic vasoconstrictor response to angiotensin-II associated with alterations in intracellular calcium mobilization. Female rats were less sensitive to the effects of zinc deficiency and exhibited higher eNOS activity and/or expression than males, without alterations in SBP or aortic histology. This work strengthens the importance of a balanced intake of micronutrients during perinatal growth to ensure adequate vascular function in adult life. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. High physiological prolactin induced by pituitary transplantation decreases BMD and BMC in the femoral metaphysis, but not in the diaphysis of adult female rats.

    Science.gov (United States)

    Thongchote, Kanogwun; Charoenphandhu, Narattaphol; Krishnamra, Nateetip

    2008-02-01

    High physiological prolactin (PRL) stimulated intestinal calcium absorption and renal calcium uptake in mammals. Previous histomorphometric study revealed a significant increase in bone turnover in the trabecular part of the PRL-exposed long (cortical) bone; however, whole-bone densitometric analysis was unable to demonstrate such effect. We therefore studied differential changes in bone mineral density (BMD) and contents (BMC) of the femoral diaphysis and metaphysis in adult female rats exposed to high PRL induced by anterior pituitary (AP) transplantation. The estrogen-dependent effects of PRL on the femur were also investigated. We found that chronic exposure to PRL had no effect on BMD or BMC of the femoral diaphysis, which represented the cortical part of the long bone. It is interesting that 7 weeks after an AP transplantation, BMD and BMC of the femoral metaphysis were significantly decreased by 8% and 14%, respectively. Ovariectomy (Ovx) for 2, 5, and 7 weeks also decreased BMD and BMC in the femoral metaphysis, but not in the diaphysis. However, the AP transplantation plus Ovx (AP+Ovx) produced no additive effects. Nevertheless, 2.5 microg/kg 17beta-estradiol (E2) supplementation abolished the osteopenic effects of both Ovx and AP+Ovx on the femur. As for the L5-6 vertebrae, BMD and BMC were not affected by PRL exposure, but were significantly decreased by Ovx and AP+Ovx, and such decreases were completely prevented by E2 supplementation. It could be concluded that high physiological PRL induced a significant osteopenia in the trabecular part, i.e., the metaphysis, of the femora of adult female rats in an estrogen-dependent manner. Since PRL had no detectable effect on the vertebrae, the effects of PRL on bone appeared to be site-specific.

  2. Alterations in the neural circuits from peripheral afferents to the spinal cord: possible implications for diabetic polyneuropathy in streptozotocin-induced type 1 diabetic rats

    Directory of Open Access Journals (Sweden)

    Zhen-Zhen eKou

    2014-01-01

    Full Text Available Diabetic polyneuropathy (DPN presents as a wide variety of sensorimotor symptoms and affects approximately 50% of diabetic patients. Changes in the neural circuits may occur in the early stages in diabetes and are implicated in the development of DPN. Therefore, we aimed to detect changes in the expression of isolectin B4 (IB4, the marker for nonpeptidergic unmyelinated fibers and their cell bodies and calcitonin gene-related peptide (CGRP, the marker for peptidergic fibers and their cell bodies in the dorsal root ganglion (DRG and spinal cord of streptozotocin (STZ-induced type 1 diabetic rats showing alterations in sensory and motor function. We also used cholera toxin B subunit (CTB to show the morphological changes of the myelinated fibers and motor neurons. STZ-induced diabetic rats exhibited hyperglycemia, decreased body weight gain, mechanical allodynia and impaired locomotor activity. In the DRG and spinal dorsal horn, IB4-labeled structures decreased, but both CGRP immunostaining and CTB labeling increased from day 14 to day 28 in diabetic rats. In spinal ventral horn, CTB labeling decreased in motor neurons in diabetic rats. Treatment with intrathecal injection of insulin at the early stages of DPN could alleviate mechanical allodynia and impaired locomotor activity in diabetic rats. The results suggest that the alterations of the neural circuits between spinal nerve and spinal cord via the DRG and ventral root might be involved in DPN.

  3. Social modulation of risky decision-making in rats (Rattus norvegicus) and tufted capuchin monkeys (Sapajus spp.).

    Science.gov (United States)

    Zoratto, F; Oddi, G; Gori, E; Micucci, A; De Petrillo, F; Paglieri, F; Adriani, W; Laviola, G; Addessi, E

    2018-02-24

    Both human and non-human animals frequently deal with risky decisions in a social environment. Nevertheless, the influence of the social context on decision-making has been scarcely investigated. Here, we evaluated for the first time whether the presence of a conspecific influences risk preferences in rats and in tufted capuchin monkeys. Subjects received a series of choices between a constant, safe option and a variable, risky option, both alone (Alone condition) and when paired with a conspecific (Paired condition). The average payoff of the risky option was always lower than that of the safe option. Overall, the two species differed in their attitude towards risk: whereas rats were indifferent between options, capuchins exhibited a preference for the safe option. In both species, risk preferences changed in the Paired condition compared to the Alone condition, although in an opposite way. Whereas rats increased their risk preferences over time when paired with a conspecific, capuchins chose the risky option less in the Paired condition than in the Alone condition. Moreover, whereas anxiety-like behaviours decreased across sessions in rats, these behaviours where more represented in the Paired condition than in the Alone condition in capuchins. Thus, our findings extends to two distantly-related non-human species the evidence, so far available for human beings, that a decrease in anxiety corresponds to an increase in risk preferences, and vice versa. This suggests that the modulation of risk preferences by social influences observed in rats and capuchin monkeys may rely on a common, evolutionarily ancient, mechanism. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Enhanced anastomotic healing by Daikenchuto (TJ-100) in rats.

    Science.gov (United States)

    Wada, Toshiaki; Kawada, Kenji; Hirai, Kenjiro; Toda, Kosuke; Iwamoto, Masayoshi; Hasegawa, Suguru; Sakai, Yoshiharu

    2018-01-18

    Daikenchuto (DKT), a traditional Japanese medicine, is widely used to treat various gastrointestinal disorders. This study aimed to investigate whether DKT could promote the anastomotic healing in a rat model. Pedicled colonic segments were made in left colon by ligation of the feeding arteries, and then intestinal continuity was restored. Colonic blood flow was analyzed by using ICG fluorescence imaging: Fmax, Tmax, T1/2, and Slope were calculated. Anastomotic leakage (AL) was found in 6 of 19 rats (31.6%) in the control group, whereas in 1 of 16 rats (6.2%) in the DKT group. The Fmax and Slope of DKT group were significantly higher than those of control group. DKT could promote the anastomotic healing, with the higher bursting pressure on postoperative day (POD) 2 and 5, the larger granulation thickness on POD 5, and neoangiogenesis on POD 5. Histological examination showed DKT exhibited a decreased inflammatory cell infiltration, enhanced fibroblast infiltration, and enhanced collagen density on POD 5. In the DKT group, the levels of TGFβ1 on POD 2 and VEGFα on POD5 were significantly higher, whereas the level of TNFα on POD 2 was significantly lower. Therefore, DKT could be effective for the prevention of AL following colorectal surgery.

  5. Testosterone supplementation restores vasopressin innervation in the senescent rat brain

    NARCIS (Netherlands)

    Goudsmit, E.; Fliers, E.; Swaab, D. F.

    1988-01-01

    The vasopressin (AVP) innervation in the male rat brain is decreased in senescence. This decrease is particularly pronounced in brain regions where AVP fiber density is dependent on plasma levels of sex steroids. Since plasma testosterone levels decrease progressively with age in the rat, the

  6. A well-balanced diet combined or not with exercise induces fat mass loss without any decrease of bone mass despite bone micro-architecture alterations in obese rat.

    Science.gov (United States)

    Gerbaix, Maude; Metz, Lore; Mac-Way, Fabrice; Lavet, Cédric; Guillet, Christelle; Walrand, Stéphane; Masgrau, Aurélie; Vico, Laurence; Courteix, Daniel

    2013-04-01

    The association of a well-balanced diet with exercise is a key strategy to treat obesity. However, weight loss is linked to an accelerated bone loss. Furthermore, exercise is known to induce beneficial effects on bone. We investigated the impact of a well-balanced isoenergetic reducing diet (WBR) and exercise on bone tissue in obese rats. Sixty male rats had previously been fed with a high fat/high sucrose diet (HF/HS) for 4months to induce obesity. Then, 4 regimens were initiated for 2months: HF/HS diet plus exercise (treadmill: 50min/day, 5days/week), WBR diet plus exercise, HF/HS diet plus inactivity and WBR diet plus inactivity. Body composition and total BMD were assessed using DXA and visceral fat mass was weighed. Tibia densitometry was assessed by Piximus. Bone histomorphometry was performed on the proximal metaphysis of tibia and on L2 vertebrae (L2). Trabecular micro-architectural parameters were measured on tibia and L2 by 3D microtomography. Plasma concentration of osteocalcin and CTX were measured. Both WBR diet and exercise had decreased global weight, global fat and visceral fat mass (pdiet alone failed to alter total and tibia bone mass and BMD. However, Tb.Th, bone volume density and degree of anisotropy of tibia were decreased by the WBR diet (pdiet had involved a significant lower MS/BS and BFR/BS in L2 (pdiet inducing weight and fat mass losses did not affected bone mass and BMD of obese rats despite alterations of their bone micro-architecture. The moderate intensity exercise performed had improved the tibia BMD of obese rats without any trabecular and cortical adaptation. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Enoxacin elevates microRNA levels in rat frontal cortex and prevents learned helplessness

    Directory of Open Access Journals (Sweden)

    Neil R Smalheiser

    2014-02-01

    Full Text Available Major depressive disorder (MDD is a major public health concern. Despite tremendous advancement, the pathogenic mechanisms associated with MDD are still unclear. Moreover, a significant number of MDD subjects do not respond to the currently available medication. MicroRNAs (miRNAs are a class of small non-coding RNAs that control gene expression by modulating translation, mRNA degradation or stability of mRNA targets. The role of miRNAs in disease pathophysiology is emerging rapidly. Recently, we reported that miRNA expression is down-regulated in frontal cortex of depressed suicide subjects, and that rats exposed to repeated inescapable shock show differential miRNA changes depending on whether they exhibited normal adaptive responses or learned helpless behavior. Enoxacin, a fluoroquinolone used clinically as an antibacterial compound, enhances the production of miRNAs in vitro and in peripheral tissues in vivo, but has not yet been tested as an experimental tool to study the relation of miRNA expression to neural functions or behavior. Treatment of rats with 10 or 25 mg/kg enoxacin for one week increased the expression of miRNAs in frontal cortex and decreased the proportion of rats exhibiting learned helpless behavior following inescapable shock. Further studies are warranted to learn whether enoxacin may ameliorate depressive behavior in other rodent paradigms and in human clinical situations, and if so whether its mechanism is due to upregulation of miRNAs.

  8. Aluminium induced oxidative stress results in decreased mitochondrial biogenesis via modulation of PGC-1α expression

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Deep Raj; Sunkaria, Aditya; Wani, Willayat Yousuf; Sharma, Reeta Kumari; Kandimalla, Ramesh J.L. [Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012 (India); Bal, Amanjit [Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh (India); Gill, Kiran Dip, E-mail: kdgill2002@yahoo.co.in [Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012 (India)

    2013-12-01

    The present investigation was carried out to elucidate a possible molecular mechanism related to the effects of aluminium-induced oxidative stress on various mitochondrial respiratory complex subunits with special emphasis on the role of Peroxisome proliferator activated receptor gamma co-activator 1α (PGC-1α) and its downstream targets i.e. Nuclear respiratory factor-1(NRF-1), Nuclear respiratory factor-2(NRF-2) and Mitochondrial transcription factor A (Tfam) in mitochondrial biogenesis. Aluminium lactate (10 mg/kg b.wt./day) was administered intragastrically to rats for 12 weeks. After 12 weeks of exposure, we found an increase in ROS levels, mitochondrial DNA oxidation and decrease in citrate synthase activity in the Hippocampus (HC) and Corpus striatum (CS) regions of rat brain. On the other hand, there was a decrease in the mRNA levels of the mitochondrial encoded subunits–NADH dehydrogenase (ND) subunits i.e. ND1, ND2, ND3, Cytochrome b (Cytb), Cytochrome oxidase (COX) subunits i.e. COX1, COX3, ATP synthase (ATPase) subunit 6 along with reduced expression of nuclear encoded subunits COX4, COX5A, COX5B of Electron transport chain (ETC). Besides, a decrease in mitochondrial DNA copy number and mitochondrial content in both regions of rat brain was observed. The PGC-1α was down-regulated in aluminium treated rats along with NRF-1, NRF-2 and Tfam, which act downstream from PGC-1α in aluminium treated rats. Electron microscopy results revealed a significant increase in the mitochondrial swelling, loss of cristae, chromatin condensation and decreases in mitochondrial number in case of aluminium treated rats as compared to control. So, PGC-1α seems to be a potent target for aluminium neurotoxicity, which makes it an almost ideal target to control or limit the damage that has been associated with the defective mitochondrial function seen in neurodegenerative diseases. - Highlights: • Aluminium decreases the mRNA levels of mitochondrial and nuclear encoded

  9. Nicotinic receptor blockade decreases fos immunoreactivity within orexin/hypocretin-expressing neurons of nicotine-exposed rats.

    Science.gov (United States)

    Simmons, Steven J; Gentile, Taylor A; Mo, Lili; Tran, Fionya H; Ma, Sisi; Muschamp, John W

    2016-11-01

    Tobacco smoking is the leading cause of preventable death in the United States. Nicotine is the principal psychoactive ingredient in tobacco that causes addiction. The structures governing nicotine addiction, including those underlying withdrawal, are still being explored. Nicotine withdrawal is characterized by negative affective and cognitive symptoms that enhance relapse susceptibility, and suppressed dopaminergic transmission from ventral tegmental area (VTA) to target structures underlies behavioral symptoms of nicotine withdrawal. Agonist and partial agonist therapies help 1 in 4 treatment-seeking smokers at one-year post-cessation, and new targets are needed to more effectively aid smokers attempting to quit. Hypothalamic orexin/hypocretin neurons send excitatory projections to dopamine (DA)-producing neurons of VTA and modulate mesoaccumbal DA release. The effects of nicotinic receptor blockade, which is commonly used to precipitate withdrawal, on orexin neurons remain poorly investigated and present an attractive target for intervention. The present study sought to investigate the effects of nicotinic receptor blockade on hypothalamic orexin neurons using mecamylamine to precipitate withdrawal in rats. Separate groups of rats were treated with either chronic nicotine or saline for 7-days at which point effects of mecamylamine or saline on somatic signs and anxiety-like behavior were assessed. Finally, tissue from rats was harvested for immunofluorescent analysis of Fos within orexin neurons. Results demonstrate that nicotinic receptor blockade leads to reduced orexin cell activity, as indicated by lowered Fos-immunoreactivity, and suggest that this underlying cellular activity may be associated with symptoms of nicotine withdrawal as effects were most prominently observed in rats given chronic nicotine. We conclude from this study that orexin transmission becomes suppressed in rats upon nicotinic receptor blockade, and that behavioral symptoms associated

  10. Decreased C-reactive protein induces abnormal vascular structure in a rat model of liver dysfunction induced by bile duct ligation

    Directory of Open Access Journals (Sweden)

    Ji Hye Jun

    2016-09-01

    Full Text Available Background/Aims Chronic liver disease leads to liver fibrosis, and although the liver does have a certain regenerative capacity, this disease is associated with dysfunction of the liver vessels. C-reactive protein (CRP is produced in the liver and circulated from there for metabolism. CRP was recently shown to inhibit angiogenesis by inducing endothelial cell dysfunction. The objective of this study was to determine the effect of CRP levels on angiogenesis in a rat model of liver dysfunction induced by bile duct ligation (BDL. Methods The diameter of the hepatic vein was analyzed in rat liver tissues using hematoxylin and eosin (H&E staining. The expression levels of angiogenic factors, albumin, and CRP were analyzed by real-time PCR and Western blotting. A tube formation assay was performed to confirm the effect of CRP on angiogenesis in human umbilical vein endothelial cells (HUVECs treated with lithocholic acid (LCA and siRNA-CRP. Results The diameter of the hepatic portal vein increased significantly with the progression of cirrhosis. The expression levels of angiogenic factors were increased in the cirrhotic liver. In contrast, the expression levels of albumin and CRP were significantly lower in the liver tissue obtained from the BDL rat model than in the normal liver. The CRP level was correlated with the expression of albumin in hepatocytes treated with LCA and siRNA-CRP. Tube formation was significantly decreased in HUVECs when they were treated with LCA or a combination of LCA and siRNA-CRP. Conclusion CRP seems to be involved in the abnormal formation of vessels in hepatic disease, and so it could be a useful diagnostic marker for hepatic disease.

  11. Decreased C-reactive protein induces abnormal vascular structure in a rat model of liver dysfunction induced by bile duct ligation.

    Science.gov (United States)

    Jun, Ji Hye; Choi, Jong Ho; Bae, Si Hyun; Oh, Seh Hoon; Kim, Gi Jin

    2016-09-01

    Chronic liver disease leads to liver fibrosis, and although the liver does have a certain regenerative capacity, this disease is associated with dysfunction of the liver vessels. C-reactive protein (CRP) is produced in the liver and circulated from there for metabolism. CRP was recently shown to inhibit angiogenesis by inducing endothelial cell dysfunction. The objective of this study was to determine the effect of CRP levels on angiogenesis in a rat model of liver dysfunction induced by bile duct ligation (BDL). The diameter of the hepatic vein was analyzed in rat liver tissues using hematoxylin and eosin (H&E) staining. The expression levels of angiogenic factors, albumin, and CRP were analyzed by real-time PCR and Western blotting. A tube formation assay was performed to confirm the effect of CRP on angiogenesis in human umbilical vein endothelial cells (HUVECs) treated with lithocholic acid (LCA) and siRNA-CRP. The diameter of the hepatic portal vein increased significantly with the progression of cirrhosis. The expression levels of angiogenic factors were increased in the cirrhotic liver. In contrast, the expression levels of albumin and CRP were significantly lower in the liver tissue obtained from the BDL rat model than in the normal liver. The CRP level was correlated with the expression of albumin in hepatocytes treated with LCA and siRNA-CRP. Tube formation was significantly decreased in HUVECs when they were treated with LCA or a combination of LCA and siRNA-CRP. CRP seems to be involved in the abnormal formation of vessels in hepatic disease, and so it could be a useful diagnostic marker for hepatic disease.

  12. Long-term inhibition of xanthine oxidase by febuxostat does not decrease blood pressure in deoxycorticosterone acetate (DOCA-salt hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Theodora Szasz

    Full Text Available Xanthine oxidase and its products, uric acid and ROS, have been implicated in the pathogenesis of cardiovascular disease, such as hypertension. We have previously reported that allopurinol inhibition of XO does not alter the progression of deoxycorticosterone acetate (DOCA-salt hypertension in rats. However other researchers have observed a reduction in blood pressure after allopurinol treatment in the same model. To resolve this controversy, in this study we used the newer and more effective XO inhibitor febuxostat, and hypothesized that a more complete XO blockade might impair hypertension development and its end-organ consequences. We used DOCA-salt hypertensive rats and administered vehicle (salt water or febuxostat (orally, 5 mg/kg/day in salt water in a short-term "reversal" experiment (2 weeks of treatment 3 weeks after DOCA-salt beginning and a long-term "prevention" experiment (treatment throughout 4 weeks of DOCA-salt. We confirmed XO inhibition by febuxostat by measuring circulating and tissue levels of XO metabolites. We found an overall increase in hypoxanthine (XO substrate and decrease in uric acid (XO product levels following febuxostat treatment. However, despite a trend for reduced blood pressure in the last week of long-term febuxostat treatment, no statistically significant difference in hemodynamic parameters was observed in either study. Additionally, no change was observed in relative heart and kidney weight. Aortic media/lumen ratio was minimally improved by long-term febuxostat treatment. Additionally, febuxostat incubation in vitro did not modify contraction of aorta or vena cava to norepinephrine, angiotensin II or endothelin-1. We conclude that XO inhibition is insufficient to attenuate hypertension in the rat DOCA-salt model, although beneficial vascular effects are possible.

  13. Long-term inhibition of xanthine oxidase by febuxostat does not decrease blood pressure in deoxycorticosterone acetate (DOCA)-salt hypertensive rats.

    Science.gov (United States)

    Szasz, Theodora; Davis, Robert Patrick; Garver, Hannah S; Burnett, Robert J; Fink, Gregory D; Watts, Stephanie W

    2013-01-01

    Xanthine oxidase and its products, uric acid and ROS, have been implicated in the pathogenesis of cardiovascular disease, such as hypertension. We have previously reported that allopurinol inhibition of XO does not alter the progression of deoxycorticosterone acetate (DOCA)-salt hypertension in rats. However other researchers have observed a reduction in blood pressure after allopurinol treatment in the same model. To resolve this controversy, in this study we used the newer and more effective XO inhibitor febuxostat, and hypothesized that a more complete XO blockade might impair hypertension development and its end-organ consequences. We used DOCA-salt hypertensive rats and administered vehicle (salt water) or febuxostat (orally, 5 mg/kg/day in salt water) in a short-term "reversal" experiment (2 weeks of treatment 3 weeks after DOCA-salt beginning) and a long-term "prevention" experiment (treatment throughout 4 weeks of DOCA-salt). We confirmed XO inhibition by febuxostat by measuring circulating and tissue levels of XO metabolites. We found an overall increase in hypoxanthine (XO substrate) and decrease in uric acid (XO product) levels following febuxostat treatment. However, despite a trend for reduced blood pressure in the last week of long-term febuxostat treatment, no statistically significant difference in hemodynamic parameters was observed in either study. Additionally, no change was observed in relative heart and kidney weight. Aortic media/lumen ratio was minimally improved by long-term febuxostat treatment. Additionally, febuxostat incubation in vitro did not modify contraction of aorta or vena cava to norepinephrine, angiotensin II or endothelin-1. We conclude that XO inhibition is insufficient to attenuate hypertension in the rat DOCA-salt model, although beneficial vascular effects are possible.

  14. Solid-state dependent dissolution and oral bioavailability of piroxicam in rats.

    Science.gov (United States)

    Lust, Andres; Laidmäe, Ivo; Palo, Mirja; Meos, Andres; Aaltonen, Jaakko; Veski, Peep; Heinämäki, Jyrki; Kogermann, Karin

    2013-01-23

    The aim of this study was to gain understanding about the effects of different solid-state forms of a poorly water-soluble piroxicam on drug dissolution and oral bioavailability in rats. Three different solid-state forms of piroxicam were studied: anhydrate I (AH), monohydrate (MH), and amorphous form in solid dispersion (SD). In addition, the effect of a new polymeric excipient Soluplus® (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer) on oral bioavailability of piroxicam was investigated. Significant differences in the dissolution and oral bioavailability were found between the solid-state forms of piroxicam. Amorphous piroxicam in SD showed the fastest dissolution in vitro and a solid-state transformation to MH in the dissolution medium. Despite the presence of solid-state transformation, SD exhibited the highest rate and extent of oral absorption in rats. Oral bioavailability of other two solid-state forms decreased in the order AH and MH. The use of Soluplus® was found to enhance the dissolution and oral bioavailability of piroxicam in rats. The present study shows the importance of solid-state form selection for oral bioavailability of a poorly water-soluble drug. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Consumption of resistant starch decreases postprandial lipogenesis in white adipose tissue of the rat

    Directory of Open Access Journals (Sweden)

    Brown Marc A

    2006-09-01

    Full Text Available Abstract Chronic consumption of diets high in resistant starch (RS leads to reduced fat cell size compared to diets high in digestible starch (DS in rats and increases total and meal fat oxidation in humans. The aim of the present study was to examine the rate of lipogenesis in key lipogenic organs following a high RS or DS meal. Following an overnight fast, male Wistar rats ingested a meal with an RS content of 2% or 30% of total carbohydrate and were then administered an i.p bolus of 50 μCi 3H2O either immediately or 1 hour post-meal. One hour following tracer administration, rats were sacrificed, a blood sample collected, and the liver, white adipose tissue (WAT, and gastrocnemius muscle excised and frozen until assayed for total 3H-lipid and 3H-glycogen content. Plasma triglyceride and NEFA concentrations and 3H-glycogen content did not differ between groups. In all tissues, except the liver, there was a trend for the rate of lipogenesis to be higher in the DS group than the RS group which reached significance only in WAT at 1 h (p

  16. Analysis of Maceaene and Macamide Contents of Petroleum Ether Extract of Black, Yellow, and Purple Lepidium Meyenii (Maca and Their Antioxidant Effect on Diabetes Mellitus Rat Model

    Directory of Open Access Journals (Sweden)

    Congyang Qiu

    Full Text Available ABSTRACT Maceaene and macamide contents as well as antioxidant effect of petroleum ether extract of black maca (BM, yellow maca (YM, and purple maca (PM on diabetes mellitus (DM rats were investigated. The results showed that seven, six, and five analogues of macamides were identified from the petroleum ether extracts of BM, YM, and PM, respectively. BM extract exhibited the highest contents of total macamides. Comparatively, the PM extract has the lowest macamide quantity. The maceaene contents in all the extracts showed no significant difference (p>0.05. Macamide contents in maca with the same color were not statistically different. Pharmacological results showed that 60-day oral administration of the petroleum ether extract of maca (100 mg/kg.d can significantly decrease lipid oxidation as indicated by the decreased thiobarbituric acid reactive substances (TBARS and carbonylated proteins (CP concentrations on DM rat model (P<0.05. Among them, oral administration of PM extract showed the lowest TBRAS and CP concentrations. All maca extracts can enhance antioxidant enzyme (SOD, superoxide dismutase; CAT, catalase activity of liver and red blood cells (RBC of DM rat. However, only oral administration of PM extract can increase SOD and CAT activity of both RBC and liver. The glutathion (GSH contents in plasma were significantly increased in DM rats treated with PM extract (p<0.05. But, oral administration of BM and YM extracts did not enhance GSH levels. Take together, the data suggested that PM extract exhibited the most potent antioxidant activity on DM rat model. And, maceaene and macamide in maca extract was not correlated with its antioxidant ability.

  17. Aluminum exposure for one hour decreases vascular reactivity in conductance and resistance arteries in rats

    International Nuclear Information System (INIS)

    Schmidt, Patrícia Medeiros; Escobar, Alyne Goulart; Torres, João Guilherme Dini; Martinez, Caroline Silveira; Rizzetti, Danize Aparecida; Kunz, Simone Noremberg; Vassallo, Dalton Valentim; Alonso, María Jesús; Peçanha, Franck Maciel; Wiggers, Giulia Alessandra

    2016-01-01

    Aims: Aluminum (Al) is an important environmental contaminant; however, there are not enough evidences of Al-induced cardiovascular dysfunction. We investigated the effects of acute exposure to aluminum chloride (AlCl 3 ) on blood pressure, vascular reactivity and oxidative stress. Methods and results: Male Wistar rats were divided into two groups: Untreated: vehicle (ultrapure water, ip) and AlCl 3 : single dose of AlCl 3 (100 mg/kg,ip). Concentration-response curves to phenylephrine in the absence and presence of endothelium, the nitric oxide synthase inhibitor L-NAME, the potassium channel blocker tetraethylammonium, and the NADPH oxidase inhibitor apocynin were performed in segments from aortic and mesenteric resistance arteries. NO released was assessed in aorta and reactive oxygen species (ROS), malondialdehyde, non-protein thiol levels, antioxidant capacity and enzymatic antioxidant activities were investigated in plasma, aorta and/or mesenteric arteries. After one hour of AlCl 3 exposure serum Al levels attained 147.7 ± 25.0 μg/L. Al treatment: 1) did not affect blood pressure, heart rate and vasodilator responses induced by acetylcholine or sodium nitroprusside; 2) decreased phenylephrine-induced vasoconstrictor responses; 3) increased endothelial modulation of contractile responses, NO release and vascular ROS production from NADPH oxidase; 4) increased plasmatic, aortic and mesenteric malondialdehyde and ROS production, and 5) decreased antioxidant capacity and affected the antioxidant biomarkers non-protein thiol levels, glutathione peroxidase, glutathione-S-transferase, superoxide dismutase and catalase enzymatic activities. Conclusion: AlCl 3 -acute exposure reduces vascular reactivity. This effect is associated with increased NO production, probably acting on K + channels, which seems to occur as a compensatory mechanism against Al-induced oxidative stress. Our results suggest that Al exerts toxic effects to the vascular system. - Highlights:

  18. Aluminum exposure for one hour decreases vascular reactivity in conductance and resistance arteries in rats

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Patrícia Medeiros; Escobar, Alyne Goulart; Torres, João Guilherme Dini; Martinez, Caroline Silveira; Rizzetti, Danize Aparecida; Kunz, Simone Noremberg [Postgraduate Program in Biochemistry, Universidade Federal do Pampa, Uruguaiana, Rio Grande do Sul (Brazil); Vassallo, Dalton Valentim [Department of Physiological Sciences, Universidade Federal do Espírito Santo, Espirito Santo (Brazil); Alonso, María Jesús [Department of Basic Health Sciences, Universidad Rey Juan Carlos, Alcorcón (Spain); Peçanha, Franck Maciel [Postgraduate Program in Biochemistry, Universidade Federal do Pampa, Uruguaiana, Rio Grande do Sul (Brazil); Wiggers, Giulia Alessandra, E-mail: giuliawp@gmail.com [Postgraduate Program in Biochemistry, Universidade Federal do Pampa, Uruguaiana, Rio Grande do Sul (Brazil)

    2016-12-15

    Aims: Aluminum (Al) is an important environmental contaminant; however, there are not enough evidences of Al-induced cardiovascular dysfunction. We investigated the effects of acute exposure to aluminum chloride (AlCl{sub 3}) on blood pressure, vascular reactivity and oxidative stress. Methods and results: Male Wistar rats were divided into two groups: Untreated: vehicle (ultrapure water, ip) and AlCl{sub 3}: single dose of AlCl{sub 3} (100 mg/kg,ip). Concentration-response curves to phenylephrine in the absence and presence of endothelium, the nitric oxide synthase inhibitor L-NAME, the potassium channel blocker tetraethylammonium, and the NADPH oxidase inhibitor apocynin were performed in segments from aortic and mesenteric resistance arteries. NO released was assessed in aorta and reactive oxygen species (ROS), malondialdehyde, non-protein thiol levels, antioxidant capacity and enzymatic antioxidant activities were investigated in plasma, aorta and/or mesenteric arteries. After one hour of AlCl{sub 3} exposure serum Al levels attained 147.7 ± 25.0 μg/L. Al treatment: 1) did not affect blood pressure, heart rate and vasodilator responses induced by acetylcholine or sodium nitroprusside; 2) decreased phenylephrine-induced vasoconstrictor responses; 3) increased endothelial modulation of contractile responses, NO release and vascular ROS production from NADPH oxidase; 4) increased plasmatic, aortic and mesenteric malondialdehyde and ROS production, and 5) decreased antioxidant capacity and affected the antioxidant biomarkers non-protein thiol levels, glutathione peroxidase, glutathione-S-transferase, superoxide dismutase and catalase enzymatic activities. Conclusion: AlCl{sub 3}-acute exposure reduces vascular reactivity. This effect is associated with increased NO production, probably acting on K{sup +} channels, which seems to occur as a compensatory mechanism against Al-induced oxidative stress. Our results suggest that Al exerts toxic effects to the vascular

  19. Effects of 2-AG on the reinforcing properties of wheel activity in obese and lean Zucker rats.

    Science.gov (United States)

    Smith, Shilo L; Rasmussen, Erin B

    2010-07-01

    The endocannabinoid system plays a role in obesity, primarily by its role in food reward. Activity, also involved in obesity, seems to be at least partially controlled by the endocannabinoid system, but the relevant behavioral and neurochemical mechanisms have not been well established. This study represents an attempt to begin elucidating these mechanisms by examining the effects of an endogenous cannabinoid ligand, 2-arachidonoylglycerol (2-AG), on the reinforcing properties of exercise reinforcement in lean and obese Zucker rats. Ten obese and 10 lean Zucker rats pressed a locked door under a progressive ratio schedule of reinforcement that, when unlocked, provided access to a running wheel for 2-min periods. After baseline breakpoints were established, doses of 2-AG (0.3-3 mg/kg) were administered before experimental sessions. Obese rats exhibited lower breakpoints for wheel activity, lower response rates, and fewer revolutions compared with lean rats. 2-AG decreased breakpoints, response rates, and revolutions for obese rats, and revolutions only for lean rats. These data suggest that 2-AG may reduce the reinforcing properties of activity, and that obese Zuckers may show a greater sensitivity to 2-AG. The data also suggest that endocannabinoids may play a role in the reinforcing properties of exercise.

  20. Dendrobium chrysotoxum Lindl. Alleviates Diabetic Retinopathy by Preventing Retinal Inflammation and Tight Junction Protein Decrease

    Science.gov (United States)

    Yu, Zengyang; Gong, Chenyuan; Lu, Bin; Yang, Li; Sheng, Yuchen; Ji, Lili; Wang, Zhengtao

    2015-01-01

    Diabetic retinopathy (DR) is a serious complication of diabetes mellitus. This study aimed to observe the alleviation of the ethanol extract of Dendrobium chrysotoxum Lindl. (DC), a traditional Chinese herbal medicine, on DR and its engaged mechanism. After DC (30 or 300 mg/kg) was orally administrated, the breakdown of blood retinal barrier (BRB) in streptozotocin- (STZ-) induced diabetic rats was attenuated by DC. Decreased retinal mRNA expression of tight junction proteins (including occludin and claudin-1) in diabetic rats was also reversed by DC. Western blot analysis and retinal immunofluorescence staining results further confirmed that DC reversed the decreased expression of occludin and claudin-1 proteins in diabetic rats. DC reduced the increased retinal mRNA expressions of intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor α (TNFα), interleukin- (IL-) 6, and IL-1β in diabetic rats. In addition, DC alleviated the increased 1 and phosphorylated p65, IκB, and IκB kinase (IKK) in diabetic rats. DC also reduced the increased serum levels of TNFα, interferon-γ (IFN-γ), IL-6, IL-1β, IL-8, IL-12, IL-2, IL-3, and IL-10 in diabetic rats. Therefore, DC can alleviate DR by inhibiting retinal inflammation and preventing the decrease of tight junction proteins, such as occludin and claudin-1. PMID:25685822

  1. A blueberry-enriched diet attenuates nephropathy in a rat model of hypertension via reduction in oxidative stress.

    Directory of Open Access Journals (Sweden)

    Carrie M Elks

    Full Text Available To assess renoprotective effects of a blueberry-enriched diet in a rat model of hypertension. Oxidative stress (OS appears to be involved in the development of hypertension and related renal injury. Pharmacological antioxidants can attenuate hypertension and hypertension-induced renal injury; however, attention has shifted recently to the therapeutic potential of natural products as antioxidants. Blueberries (BB have among the highest antioxidant capacities of fruits and vegetables.Male spontaneously hypertensive rats received a BB-enriched diet (2% w/w or an isocaloric control diet for 6 or 12 weeks or 2 days. Compared to controls, rats fed BB-enriched diet for 6 or 12 weeks exhibited lower blood pressure, improved glomerular filtration rate, and decreased renovascular resistance. As measured by electron paramagnetic resonance spectroscopy, significant decreases in total reactive oxygen species (ROS, peroxynitrite, and superoxide production rates were observed in kidney tissues in rats on long-term dietary treatment, consistent with reduced pathology and improved function. Additionally, measures of antioxidant status improved; specifically, renal glutathione and catalase activities increased markedly. Contrasted to these observations indicating reduced OS in the BB group after long-term feeding, similar measurements made in rats fed the same diet for only 2 days yielded evidence of increased OS; specifically, significant increases in total ROS, peroxynitrite, and superoxide production rates in all tissues (kidney, brain, and liver assayed in BB-fed rats. These results were evidence of "hormesis" during brief exposure, which dissipated with time as indicated by enhanced levels of catalase in heart and liver of BB group.Long-term feeding of BB-enriched diet lowered blood pressure, preserved renal hemodynamics, and improved redox status in kidneys of hypertensive rats and concomitantly demonstrated the potential to delay or attenuate development

  2. Spermidine decreases Na⁺,K⁺-ATPase activity through NMDA receptor and protein kinase G activation in the hippocampus of rats.

    Science.gov (United States)

    Carvalho, Fabiano B; Mello, Carlos F; Marisco, Patricia C; Tonello, Raquel; Girardi, Bruna A; Ferreira, Juliano; Oliveira, Mauro S; Rubin, Maribel A

    2012-06-05

    Spermidine is an endogenous polyamine with a polycationic structure present in the central nervous system of mammals. Spermidine regulates biological processes, such as Ca(2+) influx by glutamatergic N-methyl-d-aspartate receptor (NMDA receptor), which has been associated with nitric oxide synthase (NOS) and cGMP/PKG pathway activation and a decrease of Na(+),K(+)-ATPase activity in rats' cerebral cortex synaptosomes. Na(+),K(+)-ATPase establishes Na(+) and K(+) gradients across membranes of excitable cells and by this means maintains membrane potential and controls intracellular pH and volume. However, it has not been defined whether spermidine modulates Na(+),K(+)-ATPase activity in the hippocampus. In this study we investigated whether spermidine alters Na(+),K(+)-ATPase activity in slices of hippocampus from rats, and possible underlying mechanisms. Hippocampal slices and homogenates were incubated with spermidine (0.05-10 μM) for 30 min. Spermidine (0.5 and 1 μM) decreased Na(+),K(+)-ATPase activity in slices, but not in homogenates. MK-801 (100 and 10 μM), a non-competitive antagonist of NMDA receptor, arcaine (0.5μM), an antagonist of the polyamine binding site at the NMDA receptor, and L-NAME (100μM), a NOS inhibitor, prevented the inhibitory effect of spermidine (0.5 μM). ODQ (10 μM), a guanylate cyclase inhibitor, and KT5823 (2 μM), a protein kinase G inhibitor, also prevented the inhibitory effect of spermidine on Na(+),K(+)-ATPase activity. Spermidine (0.5 and 1.0 μM) increased NO(2) plus NO(3) (NOx) levels in slices, and MK-801 (100 μM) and arcaine (0.5 μM) prevented the effect of spermidine (0.5 μM) on the NOx content. These results suggest that spermidine-induced decrease of Na(+),K(+)-ATPase activity involves NMDA receptor/NOS/cGMP/PKG pathway. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Cerveau isolé and pretrigeminal rat preparations.

    Science.gov (United States)

    Zernicki, B; Gandolfo, G; Glin, L; Gottesmann, C

    1985-01-01

    Cortical and hippocampal EEG activity was analysed in cerveau isolé and and pretrigeminal rats. In the acute stage, waking EEG patterns were absent in the cerveau isolé, whereas sleep EGG patterns were absent in the preparations. However, already on the second day the EEG waking sleep cycle recovered in the majority of rats. Paradoxically, stimuli directed to the caudal part of the preparations evoked stronger cortical and hippocampal EEG arousal than olfactory and visual stimuli. The rats exhibited some locomotor and grooming behaviour and could be fed orally. It is concluded that the activity of the isolated cerebrum of the rat is similar to that of cat preparations, but that functions of the caudal neuraxis are superior in rats.

  4. Mitigating potential of Ginkgo biloba extract and melatonin against hepatic and nephrotoxicity induced by Bisphenol A in male rats

    Directory of Open Access Journals (Sweden)

    Mayssaa M. Wahby

    2017-12-01

    Full Text Available Bisphenol A is one of the anthropogenic chemicals produced worldwide, currently released into the environment and causes endocrine-disruption. The largest environmental compartments of BPA are abiotic associated with water and suspended solids that becomes an integrated part of the food chain. The present study aimed to examine the possible protective role of Ginkgo biloba extract (GBE, melatonin and their combination against BPA-induced liver and kidney toxicity of male rats. Fifty rats were divided into five equal groups: control, BPA, BPA plus GBE, BPA plus melatonin and BPA plus GBE plus melatonin. The elevated activities of plasma ALT and AST in addition to increased levels of urea and creatinine concomitant with the decreased total plasma protein could reflect the injurious effect of BPA. Liver and kidney levels of TBARS were significantly increased, while GSH, SOD and GPX were decreased in BPA-treated rats. Also, CAT and GST activities were significantly disrupted in the liver and kidney of rats treated with BPA. Moreover, BPA significantly increased the proinflammatory cytokine TNF-α in the liver and kidney tissues. The histopathological analysis confirmed these results. All the previous alterations in the liver and kidney could be ameliorated when BPA-treated rats were co-administrated either with GBE, melatonin or their combination. These natural substances could exhibit protective effects against BPA-induced hepato- and nephrotoxicity owing to their antioxidative and anti-inflammatory potentials. Keywords: Bisphenol A, Ginkgo biloba extract, Melatonin, Lipid peroxidation, Antioxidant enzymes, Histopathological analysis

  5. Vasopressin infusion into the lateral septum of adult male rats rescues progesterone-induced impairment in social recognition.

    Science.gov (United States)

    Bychowski, M E; Mena, J D; Auger, C J

    2013-08-29

    It is well established that social recognition memory is mediated, in part, by arginine vasopressin (AVP). AVP cells within the bed nucleus of the stria terminalis (BST) and medial amygdala (MeA) send AVP-ergic projections to the lateral septum (LS). We have demonstrated that progesterone treatment decreases AVP immunoreactivity within the BST, the MeA and the LS, and that progesterone treatment impairs social recognition. These data suggested that progesterone may impair social recognition memory by decreasing AVP. In the present experiment, we hypothesized that infusions of AVP into the LS would rescue the progesterone-induced impairment in social recognition within adult male rats. One week after adult male rats underwent cannula surgery, they were given systemic injections of either a physiological dose of progesterone or oil control for 3 days. Four hours after the last injection, we tested social recognition memory using the social discrimination paradigm, a two-trial test that is based on the natural propensity for rats to be highly motivated to investigate novel conspecifics. Immediately after the first exposure to a juvenile, each animal received bilateral infusions of either AVP or artificial cerebrospinal fluid into the LS. Our results show that, as expected, control animals exhibited normal social discrimination. In corroboration with our previous results, animals given progesterone have impaired social discrimination. Interestingly, animals treated with progesterone and AVP exhibited normal social discrimination, suggesting that AVP treatment rescued the impairment in social recognition caused by progesterone. These data also further support a role for progesterone in modulating vasopressin-dependent behavior within the male brain. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. A physiological increase of insulin in the olfactory bulb decreases detection of a learned aversive odor and abolishes food odor-induced sniffing behavior in rats.

    Directory of Open Access Journals (Sweden)

    Pascaline Aimé

    Full Text Available Insulin is involved in multiple regulatory mechanisms, including body weight and food intake, and plays a critical role in metabolic disorders such as obesity and diabetes. An increasing body of evidence indicates that insulin is also involved in the modulation of olfactory function. The olfactory bulb (OB contains the highest level of insulin and insulin receptors (IRs in the brain. However, a role for insulin in odor detection and sniffing behavior remains to be elucidated. Using a behavioral paradigm based on conditioned olfactory aversion (COA to isoamyl-acetate odor, we demonstrated that an intracerebroventricular (ICV injection of 14 mU insulin acutely decreased olfactory detection of fasted rats to the level observed in satiated animals. In addition, whereas fasted animals demonstrated an increase in respiratory frequency upon food odor detection, this effect was absent in fasted animals receiving a 14 mU insulin ICV injection as well as in satiated animals. In parallel, we showed that the OB and plasma insulin levels were increased in satiated rats compared to fasted rats, and that a 14 mU insulin ICV injection elevated the OB insulin level of fasted rats to that of satiated rats. We further quantified insulin receptors (IRs distribution and showed that IRs are preferentially expressed in the caudal and lateral parts of the main OB, with the highest labeling found in the mitral cells, the main OB projection neurons. Together, these data suggest that insulin acts on the OB network to modulate olfactory processing and demonstrate that olfactory function is under the control of signals involved in energy homeostasis regulation and feeding behaviors.

  7. Sulfur amino acids metabolism in magnesium deficient rats

    Energy Technology Data Exchange (ETDEWEB)

    Tojo, H.; Kosokawa, Y.; Yamaguchi, K.

    1984-01-01

    Effect of magnesium (Mg) deficiency on sulfur amino acid metabolism was investigated in rats. Young male rats were fed on the diet containing either 2.26 (deficient rats) or 63.18 mg Mg/100g diet (control and low protein rats) for 2 weeks. A remarkable decrease of body weight gain, serum Mg contents and a slight decreases in the hematological parameters such as Hb, Ht and RBC was observed, while the hepatic Mg and Ca was not significantly changed. Erythema and cramps were observed 5 days after feeding on the Mg-depleted diet. The hepatic glutathione and cysteine contents increased in Mg-deficient rats. However, no significant change of cysteine dioxygenase (CDO) activity and taurine content in Mg-deficient rat liver was observed. These results suggest that Mg deficiency affects the utilization and biosynthesis of hepatic glutathione but not the cysteine catabolism.

  8. The gastroprotective effects of hydroalcoholic extract of Monolluma quadrangula against ethanol-induced gastric mucosal injuries in Sprague Dawley rats

    Directory of Open Access Journals (Sweden)

    Ibrahim IAA

    2015-12-01

    Full Text Available Ibrahim Abdel Aziz Ibrahim,1 Mahmood Ameen Abdulla,2 Maryam Hajrezaie,2 Ammar Bader,3 Naiyer Shahzad,1 Saeed S Al-Ghamdi,1 Ahmad S Gushash,4 Mohadeseh Hasanpourghadi5 1Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia; 2Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; 3Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 4College of Arts and Science in Baljurashi, Albaha University, Baljurashi, Saudi Arabia; 5Cell Biology and Drug Discovery Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia Abstract: Monolluma quadrangula (Forssk. Plowes is used in Saudi traditional medicines to treat gastric ulcers. The hydroalcoholic extract of M. quadrangula (MHAE was used in an in vivo model to investigate its gastroprotective effects against ethanol-induced acute gastric lesions in rats. Five groups of Sprague Dawley rats were used. The first group was treated with 10% Tween 20 as a control. The other four groups included rats treated with absolute ethanol (5 mL/kg to induce an ulcer, rats treated with 20 mg/kg omeprazole as a reference drug, and rats treated with 150 or 300 mg/kg MHAE. One hour later, the rats were administered absolute ethanol (5 mL/kg orally. Animals fed with MHAE exhibited a significantly increased pH, gastric wall mucus, and flattening of the gastric mucosa, as well as a decreased area of gastric mucosal damage. Histology confirmed the results; extensive destruction of the gastric mucosa was observed in the ulcer control group, and the lesions penetrated deep into the gastric mucosa with leukocyte infiltration of the submucosal layer and edema. However, gastric protection was observed in the rats pre-fed with plant extracts. Periodic acid–Schiff staining of the gastric wall revealed a remarkably intensive uptake of magenta color in the

  9. cAMP and forskolin decrease γ-aminobutyric acid-gated chloride flux in rat brain synaptoneurosomes

    International Nuclear Information System (INIS)

    Heuschneider, G.; Schwartz, R.D.

    1989-01-01

    The effects of the cyclic nucleotide cAMP on γ-aminobutyric acid-gated chloride channel function were investigated. The membrane-permeant cAMP analog N 6 , O 2' -dibutyryladenosine 3',5'-cyclic monophosphate inhibited muscimol-induced 36 Cl - uptake into rat cerebral cortical synaptoneurosomes in a concentration-dependent manner. The inhibition was due to a decrease in the maximal effect of muscimol, with no change in potency. Similar effects were observed with 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate, 8-bromoadenosine 3',5'-cyclic monophosphate, and the phosphodiesterase inhibitor isobutylmethylxanthine. The effect of endogenous cAMP accumulation on the γ-aminobutyric acid-gated Cl - channel was studied with forskolin, an activator of adenylate cyclase. Under identical conditions, in the intact synaptoneurosomes, forskolin inhibited muscimol-induced 36 Cl - uptake and generated cAMP with similar potencies. Surprisingly, 1,9-dideoxyforskolin, which does not activate adenylate cyclase, also inhibited the muscimol response, suggesting that forskolin and its lipophilic derivatives may interact with the Cl - channel directly. The data suggest that γ-aminobutyric acid (GABA A ) receptor function in brain can be regulated by cAMP-dependent phosphorylation

  10. Grape powder intake prevents ovariectomy-induced anxiety-like behavior, memory impairment and high blood pressure in female Wistar rats.

    Directory of Open Access Journals (Sweden)

    Gaurav Patki

    Full Text Available Diminished estrogen influence at menopause is reported to be associated with cognitive decline, heightened anxiety and hypertension. While estrogen therapy is often prescribed to overcome these behavioral and physiological deficits, antioxidants which have been shown beneficial are gaining nutritional intervention and popularity. Therefore, in the present study, utilizing the antioxidant properties of grapes, we have examined effect of 3 weeks of grape powder (GP; 15 g/L dissolved in tap water treatment on anxiety-like behavior, learning-memory impairment and high blood pressure in ovariectomized (OVX rats. Four groups of female Wistar rats were used; sham control, sham-GP treated, OVX and OVX+GP treated. We observed a significant increase in systolic and diastolic blood pressure in OVX rats as compared to sham-controls. Furthermore, ovariectomy increased anxiety-like behavior and caused learning and memory impairment in rats as compared to sham-controls. Interestingly, providing grape powder treated water to OVX rats restored both systolic and diastolic blood pressure, decreased anxiety-like behavior and improved memory function. Moreover, OVX rats exhibited an impaired long term potentiation which was restored with grape powder treatment. Furthermore, ovariectomy increased oxidative stress in the brain, serum and urine, selectively decreasing antioxidant enzyme, glyoxalase-1 protein expression in the hippocampus but not in the cortex and amygdala of OVX rats, while grape powder treatment reversed these effects. Other antioxidant enzyme levels, including manganese superoxide dismutase (SOD and Cu/Zn SOD remained unchanged. We suggest that grape powder by regulating oxidative stress mechanisms exerts its protective effect on blood pressure, learning-memory and anxiety-like behavior. Our study is the first to examine behavioral, biochemical, physiological and electrophysiological outcome of estrogen depletion in rats and to test protective role

  11. Argirein alleviates stress-induced and diabetic hypogonadism in rats via normalizing testis endothelin receptor A and connexin 43.

    Science.gov (United States)

    Xu, Ming; Hu, Chen; Khan, Hussein-hamed; Shi, Fang-hong; Cong, Xiao-dong; Li, Qing; Dai, Yin; Dai, De-zai

    2016-02-01

    Argirein (rhein-arginine) is a derivative of rhein isolated from Chinese rhubarb (Rheum Officinale Baill.) that exhibits antioxidant and anti-inflammatory activities. In the present study we investigated the effects of argirein on stress-induced (hypergonadotrophic) and diabetic (hypogonadotrophic) hypogonadism in male rats. Stress-induced and diabetic hypogonadism was induced in male rats via injection of isoproterenol (ISO) or streptozotocin (STZ). ISO-injected rats were treated with argirein (30 mg·kg(-1)·d(-1), po) or testosterone replacement (0.5 mg·kg(-1)·d(-1), sc) for 5 days, and STZ-injected rats were treated with argirein (40-120 mg·kg(-1)·d(-1), po) or aminoguanidine (100 mg·kg(-1)·d(-1), po) for 4 weeks. After the rats were euthanized, blood samples and testes were collected. Serum hormone levels were measured, and the expression of endothelin receptor A (ETA), connexin 43 (Cx43) and other proteins in testes was detected. For in vitro experiments, testis homogenate was prepared from normal male rats, and incubated with ISO (1 μmol/L) or high glucose (27 mmol/L). ISO injection induced hyper-gonadotrophic hypogonadism characterized by low testosterone and high FSH and LH levels in the serum, whereas STZ injection induced hypogonadotrophic hypogonadism as evidenced by low testosterone and low FSH and LH levels in the serum. In the testes of ISO- and STZ-injected rats, the expression of ETA, MMP-9, NADPH oxidase and pPKCε was significantly increased, and the expression of Cx43 was decreased. Administration of argirein attenuated both the abnormal serum hormone levels and the testis changes in ISO- and STZ-injected rats, and aminoguanidine produced similar actions in STZ-injected rats; testosterone replacement reversed the abnormal serum hormone levels, but did not affect the testis changes in ISO-injected rats. Argirein (0.3-3 μmol/L) exerted similar effects in testis homogenate incubated with ISO or high glucose in vitro. Two types of

  12. Meloxicam blocks neuroinflammation, but not depressive-like behaviors, in HIV-1 transgenic female rats.

    Directory of Open Access Journals (Sweden)

    Christina L Nemeth

    Full Text Available Adolescents living with human immunodeficiency virus (HIV comprise approximately 12% of the HIV-positive population worldwide. HIV-positive adolescents experience a higher rate of clinical depression, a greater risk of sexual and drug abuse behaviors, and a decreased adherence to highly active antiretroviral therapies (HAART. Using adolescent HIV-1 transgenic rats (HIV-1 tg that display related immune response alterations and pathologies, this study tested the hypothesis that developmental expression of HIV-1-related proteins induces a depressive-like phenotype that parallels a decrease in hippocampal cell proliferation and an increase in pro-inflammatory cytokine expression in the hippocampus. Consistent with this hypothesis, adolescent HIV-1 tg rats demonstrated a depressive-like behavioral phenotype, had decreased levels of cell proliferation, and exhibited elevated expression of monocyte chemotactic protein-1 (Mcp-1 in the hippocampus relative to controls. Subsequently, we tested the ability of meloxicam, a selective COX-2 inhibitor, to attenuate behavioral deficits via inflammatory mechanisms. Daily meloxicam treatments did not alter the behavioral profile despite effectively reducing hippocampal inflammatory gene expression. Together, these data support a biological basis for the co-morbid manifestation of depression in HIV-positive patients as early as in adolescence and suggest that modifications in behavior manifest independent of inflammatory activity in the hippocampus.

  13. Evaluation of Anti-ulcer Activity of Echinops Persicus on Experimental Gastric Ulcer Models in Rats

    Directory of Open Access Journals (Sweden)

    Ahmad Farajzadeh-Sheikh

    2010-12-01

    Full Text Available Extract of Echinops persicus is traditionally used for a long time in Iran for treatment of cough and constipation. This extract is produced by activity of bug (Situphilus spp. on the plant. We documented its anti-tussive effect in rats in our previous study.The aim of this study was to assess the anti-ulcer effect of Echinops persicus in an animal model. In this study we evaluated anti-ulcer effect of Echinops persicus by Shay's method in rats. In 3 groups of rats, pylorus was ligatured under anesthesia. The rats were euthanized after 19 hours later and number and level of ulcer in stomach was measured. In group 2 the extract was orally administered 45 minutes before pyloric ligature, and in group 3, it was administered intraperitoneally 20 minutes before pyloric ligature. The number of ulcers in stomach was significantly low in group 2 (P = 0.01 and 3 (P = 0.037 in comparison with group 1. The level of ulcer was significantly decreased in group 2 (P = 0.047 with comparison to group 1. We conclude that, Echinops extract can exhibit potentially cytoprotective and anti-ulcer activity.

  14. Effect of rat ovary irradiation or OVX on the expression of COLI and TGF-β1 mRNA in the rat bone

    International Nuclear Information System (INIS)

    Gao Yanhong; Gao Jianjun; Jin Weifang; Wang Hongfu

    2003-01-01

    To observe the effects of exposure of rat ovary to radiation or OVX on the expression of TGF-β 1 and COLI in the rat bone. The mRNA levels of TGF-β 1 and COLI in rat tibiae were measured with RT-PCR after the rat ovaries were irradiated by 50 Gy of 137 Cs γ-rays or OVX. For both the radiation group and the OVX group, the COLI mRNA level in the rat bone increased, whereas the TGF-β 1 decreased. Irradiation of ovary and OVX affect the expression of COLI and TGF-β 1 mRNA in bone probably in a similar way which is related to estrogen decrease

  15. Differential responsiveness of obese (fa/fa) and lean (Fa/Fa) Zucker rats to cytokine-induced anorexia.

    Science.gov (United States)

    Plata-Salamán, C R; Vasselli, J R; Sonti, G

    1997-01-01

    Pathophysiological and pharmacological concentrations of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1 beta) in the cerebrospinal fluid (CSF) induce anorexia in normal rats. Obesity in humans and rodents is associated with increased TNF-alpha messenger RNA and protein levels in various cell types. This suggests that obese individuals may have differential regulation of cytokine production and dissimilar responsiveness to cytokines. In the present study, we investigated the effects of the intracerebroventricular (ICV) microinfusion of TNF-alpha (50, 100, and 500 ng/rat), IL-1 beta (1.0, 4.0, and 8.0 ng), and TNF-alpha (100 ng) plus IL-1 beta (1.0 ng) on obese (fa/fa) and lean (Fa/Fa) Zucker rats. The results show that: TNF-alpha and IL-1 beta, and the concomitant administration of TNF-alpha and IL-1 beta decreased the short-term (4 hours), nighttime (12 hours), and total daily food intakes in obese and lean rats; IL-1 beta was more potent relative to TNF-alpha; obese rats showed greater responsiveness to IL-1 beta: 8.0 ng IL-1 beta, for example, decreased the 12-hour food intake by 52% in obese and 22% in lean rats. On the other hand, obese and lean rats did not exhibit a significantly different responsiveness to the anorexia induced by 50, 100, or 500 ng TNF-alpha at the 4-hour period; and the concomitant ICV administration of TNF-alpha and IL-1 beta induced anorexia with additive (4-hour period) or synergistic (12-hour and 24-hour periods) effects in obese rats. The effect of TNF-alpha plus IL-1 beta in lean rats was greater than additive for the 12-hour and 24-hour periods. The difference in suppression of total daily food intake by TNF-alpha plus IL-1 beta in obese (-43%) versus lean (-23%) rats was significantly different (p < 0.01). The results show that obese (fa/fa) and lean (Fa/Fa) Zucker rats have differential responsiveness to the ICV microinfusion of two different classes of cytokines.

  16. Retrospective revaluation and its neural circuit in rats.

    Science.gov (United States)

    San-Galli, Aurore; Marchand, Alain R; Decorte, Laurence; Di Scala, Georges

    2011-10-01

    Contingency learning is essential for establishing predictive or causal judgements. Retrospective revaluation captures essential aspects of the updating of this knowledge, according to new experience. In the present study, retrospective revaluation and its neural substrate was investigated in a rat conditioned magazine approach. One element of a previously food-reinforced Tone-Light compound stimulus was either further reinforced (inflation) or extinguished (extinction). These treatments affected the predictive value of the alternate stimulus (target), but only when the target was a weakly salient stimulus such as a Light, and the inflation/extinction procedure concerned the more salient element, that is the Tone. As the predictive value of the Light was decreased in comparison with a relevant control group, this revaluation was interpreted as backward blocking, and not unovershadowing. This observation challenges retrospective revaluation models focused on acquisition and prediction error detection, and is better accounted for by retrieval-based associative theories such as the comparator model (Miller and Matzel) [5]. Immunohistochemical detection of the Fos protein after the test phase revealed activation of the orbitofrontal and infralimbic cortices as well as nucleus accumbens core and shell, in rats that exhibited retrospective revaluation. Our results suggest that rats integrate successive experiences at the retrieval stage of retrospective revaluation, and that prefronto-accumbal interactions are involved in this function. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. N-acetylcysteine ameliorates contrast‑induced kidney injury in rats with unilateral hydronephrosis.

    Science.gov (United States)

    Xia, Qiang; Liu, Chunxiao; Zheng, Xia

    2018-02-01

    The aim of the present study was to investigate the protective effects of N‑acetylcysteine (NAC) on contrast‑induced acute kidney injury in rats with unilateral hyronephrosis. Eighty‑two male Sprague Dawley rats were randomized to undergo sham operation (n=14) or unilateral ureteral obstruction (UUO) (n=68). After 3 weeks, the UUO animals were randomized to three groups: NAC gastric perfusion, UUO+iohexol+NAC (n=24); normal saline perfusion, UUO+iohexol (n=24); and controls, UUO (n=20). After 3 days, UUO+iohexol+NAC and UUO+iohexol rats were injected with iohexol. One day after contrast, half of the rats were sacrificed to assess the pathological changes to the kidneys, serum creatinine, serum neutrophil gelatinase‑associated lipocalin (NGAL), renal cell apoptosis rate and expression of apoptosis regulators Bcl‑2/Bax. The remaining rats underwent obstruction relief and were analyzed 3 weeks later. Compared with the controls, serum NGAL levels were high in UUO+iohexol rats 1 day following injection and 3 weeks after obstruction relief, but UUO+iohexol+NAC rats exhibited lower serum NGAL levels compared with UUO+iohexol rats (all Pmodeling, UUO+iohexol rats exhibited a significantly higher apoptosis rate of renal tubular cells, higher expression of Bax mRNA, and lower ratio of Bcl‑2/Bax (all Prelief, UUO+iohexol+NAC rats exhibited a lower apoptosis rate, lower Bax mRNA expression, higher expression of Bcl‑2 mRNA and higher ratio of Bcl‑2/Bax (all P<0.05) compared with day 1 following drug administration. The prophylactic use of NAC reduced the apoptotic rate of renal tubular cells following contrast exposition, which was accompanied by changes in the expression of Bcl‑2/Bax mRNA.

  18. Pistacia chinensis: A Potent Ameliorator of CCl4 Induced Lung and Thyroid Toxicity in Rat Model

    Directory of Open Access Journals (Sweden)

    Kiran Naz

    2014-01-01

    Full Text Available In the current study protective effect of ethanol extract of Pistacia chinensis bark (PCEB was investigated in rats against CCl4 induced lung and thyroid injuries. PCEB dose dependently inhibited the rise of thiobarbituric acid-reactive substances, hydrogen peroxide, nitrite, and protein content and restored the levels of antioxidant enzymes, that is, catalase, peroxidase, superoxide dismutase, glutathione-S-transferase, glutathione reductase, glutathione peroxidase, γ-glutamyl transpeptidase, and quinone reductase in both lung and thyroid tissues of CCl4 treated rats. Decrease in number of leukocytes, neutrophils, and hemoglobin and T3 and T4 content as well as increase in monocytes, eosinophils, and lymphocytes count with CCl4 were restored to normal level with PCEB treatment. Histological study of CCl4 treated rats showed various lung injuries like rupture of alveolar walls and bronchioles, aggregation of fibroblasts, and disorganized Clara cells. Similarly, histology of CCl4 treated thyroid tissues displayed damaged thyroid follicles, hypertrophy, and colloidal depletion. However, PCEB exhibited protective behaviour for lungs and thyroid, with improved histological structure in a dose dependant manner. Presence of three known phenolic compounds, that is, rutin, tannin, and gallic acid, and three unknown compounds was verified in thin layer chromatographic assessment of PCEB. In conclusion, P. chinensis exhibited antioxidant activity by the presence of free radical quenching constituents.

  19. Statins and PPAR{alpha} agonists induce myotoxicity in differentiated rat skeletal muscle cultures but do not exhibit synergy with co-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Timothy E [Department of Safety Assessment, Merck Research Laboratories, WP45-319, Merck Research Laboratories, West Point, PA 19486 (United States); Zhang, Xiaohua [Department of Biometrics Research, Merck Research Laboratories, West Point, PA 19486 (United States); Shi, Shu [Department of Safety Assessment, Merck Research Laboratories, WP45-319, Merck Research Laboratories, West Point, PA 19486 (United States); Umbenhauer, Diane R [Department of Safety Assessment, Merck Research Laboratories, WP45-319, Merck Research Laboratories, West Point, PA 19486 (United States)

    2005-11-01

    Statins and fibrates (weak PPAR{alpha} agonists) are prescribed for the treatment of lipid disorders. Both drugs cause myopathy, but with a low incidence, 0.1-0.5%. However, combined statin and fibrate therapy can enhance myopathy risk. We tested the myotoxic potential of PPAR subtype selective agonists alone and in combination with statins in a differentiated rat myotube model. A pharmacologically potent experimental PPAR{alpha} agonist, Compound A, induced myotoxicity as assessed by TUNEL staining at a minimum concentration of 1 nM, while other weaker PPAR{alpha} compounds, for example, WY-14643, Gemfibrozil and Bezafibrate increased the percentage of TUNEL-positive nuclei at micromolar concentrations. In contrast, the PPAR{gamma} agonist Rosiglitazone caused little or no cell death at up to 10 {mu}M and the PPAR{delta} ligand GW-501516 exhibited comparatively less myotoxicity than that seen with Compound A. An experimental statin (Compound B) and Atorvastatin also increased the percentage of TUNEL-positive nuclei and co-treatment with WY-14643, Gemfibrozil or Bezafibrate had less than a full additive effect on statin-induced cell killing. The mechanism of PPAR{alpha} agonist-induced cell death was different from that of statins. Unlike statins, Compound A and WY-14643 did not activate caspase 3/7. In addition, mevalonate and geranylgeraniol reversed the toxicity caused by statins, but did not prevent the cell killing induced by WY-14643. Furthermore, unlike statins, Compound A did not inhibit the isoprenylation of rab4 or rap1a. Interestingly, Compound A and Compound B had differential effects on ATP levels. Taken together, these observations support the hypothesis that in rat myotube cultures, PPAR{alpha} agonism mediates in part the toxicity response to PPAR{alpha} compounds. Furthermore, PPAR{alpha} agonists and statins cause myotoxicity through distinct and independent pathways.

  20. Lipid metabolism disturbances contribute to insulin resistance and decrease insulin sensitivity by malathion exposure in Wistar rat.

    Science.gov (United States)

    Lasram, Mohamed Montassar; Bouzid, Kahena; Douib, Ines Bini; Annabi, Alya; El Elj, Naziha; El Fazaa, Saloua; Abdelmoula, Jaouida; Gharbi, Najoua

    2015-04-01

    Several studies showed that organophosphorus pesticides disturb glucose homeostasis and can increase incidence of metabolic disorders and diabetes via insulin resistance. The current study investigates the influence of malathion on glucose metabolism regulation, in vivo, during subchronic exposure. Malathion was administered orally (200 mg/kg), once a day for 28 consecutive days. Plasma glucose, insulin and Glycated hemoglobin levels were significantly increased while hepatic glycogen content was decreased in intoxicated animals compared with the control group. Furthermore, there was a significant disturbance of lipid content in subchronic treated and post-treated rats deprived of malathion for one month. In addition, we used the homeostasis model assessment (HOMA) to assess insulin resistance (HOMA-IR) and pancreatic β-cell function (HOMA-β). Our results show that malathion increases insulin resistance biomarkers and decreases insulin sensitivity indices. Statistical analysis demonstrates that there was a positive and strong significant correlation between insulin level and insulin resistance indices, HOMA-IR, HOMA-β. Similarly, a negative and significant correlation was also found between insulin level and insulin sensitivity indices. For the first time, we demonstrate that malathion induces insulin resistance in vivo using homeostasis model assessment and these changes were detectable one month after the end of exposure. To explain insulin resistance induced by malathion we focus on lipid metabolism disturbances and their interaction with many proteins involved in insulin signaling pathways.

  1. Effects of chronic social isolation on Wistar rat behavior and brain plasticity markers.

    Science.gov (United States)

    Djordjevic, Jelena; Djordjevic, Ana; Adzic, Miroslav; Radojcic, Marija B

    2012-01-01

    Chronic stress is a contributing risk factor in the development of psychiatric illnesses, including depressive disorders. The mechanisms of their psychopathology are multifaceted and include, besides others, alterations in the brain plasticity. Previously, we investigated the effects of chronic social stress in the limbic brain structures of Wistar rats (hippocampus, HIPPO, and prefrontal cortex, PFC) and found multiple characteristics that resembled alterations described in some clinical studies of depression. We extended our investigations and followed the behavior of stressed animals by the open field test (OFT) and forced swimming test (FST), and the expression and polysialylation of synaptic plasticity markers, neural cell adhesion molecule (NCAM) and L1, in the HIPPO and PFC. We also determined the adrenal gland mass and plasma corticosterone (CORT) as a terminal part of the hypothalamic-pituitary-adrenal axis activity. Our data indicated that stressed animals avoided the central zone in the OFT and displayed decreased swimming, but prolonged immobility in the FST. The animals exhibited marked hypertrophy of the adrenal gland cortex, in spite of decreased serum CORT. Simultaneously, the stressed animals exhibited an increase in NCAM mRNA expression in the HIPPO, but not in the PFC. The synaptosomal NCAM of the HIPPO was markedly polysialylated, while cortical PSA-NCAM was significantly decreased. The results showed that chronic social isolation of Wistar rats causes both anxiety-like and depression-like behavior. These alterations are parallel with molecular changes in the limbic brain, including diminished NCAM sialylation in the PFC. Together with our previous results, the current observations suggest that a chronic social isolation model may potentially be used to study molecular mechanisms that underlie depressive symptomatology. Copyright © 2012 S. Karger AG, Basel.

  2. Early decrease in total hemolytic complement activity (CH100) after fasting or intestinal bypass in the rat.

    Science.gov (United States)

    Montanari, M; Violi, V; Muri, M; Roncoroni, L; Mora, G; Ronzoni, M

    1986-01-01

    An evaluation of total hemolytic complement activity (CH100) after fasting or intestinal bypass was performed in rats. The experiment lasted 6 days. Three groups, of 5 animals each, were studied. On the 1st day, basal values of total complement (TC), albumin and body weight were determined. Group A received normal, ad libitum feeding, group B started on a 'water only' diet, group C underwent intestinal bypass. On the 4th and 6th day the parameters were assessed. TC mean values were significantly lower in groups B and C, as compared to group A, on the 4th as well as on the 6th day (p less than 0.01 by Mann-Whitney's U test). Body weight showed a similar trend. Differences in albumin were never statistically significant. Limitations of the analytical method are discussed. The data show that fasting or bypass-induced malabsorption may determine an early decrease in total hemolytic complement activity, though a development of an immune deficiency is not proved.

  3. Astrocytes from adult Wistar rats aged in vitro show changes in glial functions.

    Science.gov (United States)

    Souza, Débora Guerini; Bellaver, Bruna; Raupp, Gustavo Santos; Souza, Diogo Onofre; Quincozes-Santos, André

    2015-11-01

    Astrocytes, the most versatile cells of the central nervous system, play an important role in the regulation of neurotransmitter homeostasis, energy metabolism, antioxidant defenses and the anti-inflammatory response. Recently, our group characterized cortical astrocyte cultures from adult Wistar rats. In line with that work, we studied glial function using an experimental in vitro model of aging astrocytes (30 days in vitro after reaching confluence) from newborn (NB), adult (AD) and aged (AG) Wistar rats. We evaluated metabolic parameters, such as the glucose uptake, glutamine synthetase (GS) activity, and glutathione (GSH) content, as well as the GFAP, GLUT-1 and xCT expression. AD and AG astrocytes take up less glucose than NB astrocytes and had decreased GLUT1 expression levels. Furthermore, AD and AG astrocytes exhibited decreased GS activity compared to NB cells. Simultaneously, AD and AG astrocytes showed an increase in GSH levels, along with an increase in xCT expression. NB, AD and AG astrocytes presented similar morphology; however, differences in GFAP levels were observed. Taken together, these results improve the knowledge of cerebral senescence and represent an innovative tool for brain studies of aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effects of transplantation and resection of a radiation-induced rat insulinoma on glucose homeostasis and the endocrine pancreas

    International Nuclear Information System (INIS)

    Flatt, P.R.; Tan, K.S.; Powell, C.J.; Swanston-Flatt, S.K.; Marks, V.; Bailey, C.J.

    1986-01-01

    Twenty-one days after s.c. subscapular transplantation of a radiation-induced insulinoma, male NEDH rats exhibited hyperinsulinaemia and hypoglycaemia. These features were associated with islet atrophy, degenerative changes in pancreatic A and B cells, and decreases in the pancreatic contents of insulin, glucagon and somatostatin. The immunoreactive glucagon and somatostatin contents of extrapancreatic tissues of insulinoma-bearing rats were unchanged. Surgical resection of the tumour resulted in an immediate fall of plasma insulin, attaining concentrations similar to those of anaesthetised control rats by 10 min. The estimated half-life of insulin was 3.5 min. Hypoglycaemia persisted until 60 min after resection, followed by hyperglycaemia of 1-2 days duration. Glucose tolerance was impaired 1 day after tumour resection despite the coexistence of raised insulin concentrations. Evidence for abnormal pancreatic B cell function was gained by injection of arginine which failed to evoke a plasma insulin response in the resected rats. Two days after resection, plasma glucose and insulin concentrations were similar to those of control rats. Plasma glucose and insulin responses to glucose and arginine were suggestive of tumour recurrence by 12 days. A single large encapsulated tumour was eventually observed in each rat, with resection giving a 17-56 day prolongation of life. (author)

  5. Mechanism of Restoration of Forelimb Motor Function after Cervical Spinal Cord Hemisection in Rats: Electrophysiological Verification

    Directory of Open Access Journals (Sweden)

    Takumi Takeuchi

    2017-01-01

    Full Text Available The objective of this study was to electrophysiologically assess the corticospinal tracts of adult rats and the recovery of motor function of their forelimbs after cervical cord hemisection. Of 39 adult rats used, compound muscle action potentials (CMAPs of the forelimbs of 15 rats were evaluated, before they received left C5 segmental hemisection of the spinal cord, by stimulating the pyramid of the medulla oblongata on one side using an exciting microelectrode. All 15 rats exhibited contralateral electrical activity, but their CMAPs disappeared after hemisection. The remaining 24 rats received hemisection first, and CMAPs of 12 rats were assessed over time to study their recovery time. All of them exhibited electrical activity of the forelimbs in 4 weeks after surgery. The remaining 12 rats received additional right C2 segmental hemisection, and variation of CMAPs between before and after surgery was examined. The right side of the 12 rats that received the additional hemisection exhibited no electrical activity in response to the stimulation of the pyramids on both sides. These results suggest that changes in path between the resected and healthy sides, activation of the ventral corticospinal tracts, and propriospinal neurons were involved in the recovery of motor function after cervical cord injury.

  6. Dietary sardine protein lowers insulin resistance, leptin and TNF-α and beneficially affects adipose tissue oxidative stress in rats with fructose-induced metabolic syndrome.

    Science.gov (United States)

    Madani, Zohra; Louchami, Karim; Sener, Abdullah; Malaisse, Willy J; Ait Yahia, Dalila

    2012-02-01

    The present study aims at exploring the effects of sardine protein on insulin resistance, plasma lipid profile, as well as oxidative and inflammatory status in rats with fructose-induced metabolic syndrome. Rats were fed sardine protein (S) or casein (C) diets supplemented or not with high-fructose (HF) for 2 months. Rats fed the HF diets had greater body weight and adiposity and lower food intake as compared to control rats. Increased plasma glucose, insulin, HbA1C, triacylglycerols, free fatty acids and impaired glucose tolerance and insulin resistance was observed in HF-fed rats. Moreover, a decline in adipose tissues antioxidant status and a rise in lipid peroxidation and plasma TNF-α and fibrinogen were noted. Rats fed sardine protein diets exhibited lower food intake and fat mass than those fed casein diets. Sardine protein diets diminished plasma insulin and insulin resistance. Plasma triacylglycerol and free fatty acids were also lower, while those of α-tocopherol, taurine and calcium were enhanced as compared to casein diets. Moreover, S-HF diet significantly decreased plasma glucose and HbA1C. Sardine protein consumption lowered hydroperoxide levels in perirenal and brown adipose tissues. The S-HF diet, as compared to C-HF diet decreased epididymal hydroperoxides. Feeding sardine protein diets decreased brown adipose tissue carbonyls and increased glutathione peroxidase activity. Perirenal and epididymal superoxide dismutase and catalase activities and brown catalase activity were significantly greater in S-HF group than in C-HF group. Sardine protein diets also prevented hyperleptinemia and reduced inflammatory status in comparison with rats fed casein diets. Taken together, these results support the beneficial effect of sardine protein in fructose-induced metabolic syndrome on such variables as hyperglycemia, insulin resistance, hyperlipidemia and oxidative and inflammatory status, suggesting the possible use of sardine protein as a protective

  7. Biochemical response of normal albino rats to the addition of ...

    African Journals Online (AJOL)

    Experiments were conducted to determine the biochemical effect of Hibiscus cannabinus and Murraya koenigii extracts on normal albino rats using standard methods. Analyses carried out indicated that the aqueous leaf extract of H. cannabinus and M. koenigii exhibited significant hypolipideamic activity in normal rats.

  8. Enriched environment palliates nicotine-induced addiction and associated neurobehavioral deficits in rats.

    Science.gov (United States)

    Nawaz, Amber; Batool, Zehra; Ahmed, Saara; Tabassum, Saiqa; Khaliq, Saima; Mehdi, Bushra Jabeen; Sajid, Irfan; Ahmad, Shoaib; Saleem, Sadia; Naqvi, Fizza; Naqvi, Faizan; Haider, Saida

    2017-11-01

    This study was designed to investigate the role of enriched environment in preventing and/or reducing the neurobehavioral deficits produced after nicotine administration in albino Wistar rats. Equal numbers of rat in two groups were either placed in social environment (control group) or social along with physically enriched environment for four weeks before the administration of nicotine. Exposure to different environmental conditions was followed by the intraperitoneal injection of nicotine at the dose of 0.6 mg/kg for seven consecutive days during which addictive behavior was monitored using conditioned placed preference paradigm. Behavioral responses to locomotor activity, anxiety and retention of short term memory were investigated in control and nicotine injected groups exposed to different environments. Results of this study showed that the rats pre-exposed to physical along with social enrichment exhibited a decrease in drug seeking behavior, hyper locomotion, anxiogenic effects along with improvement of working memory as compared to control and nicotine injected groups that were kept in social environment alone. This behavioral study suggests that the exposure to physical enrichment along with socialization in young age can later reduce the chances of compulsive dependence on nicotine and related neurobehavioral deficits.

  9. Suppressed histamine release from rat peritoneal mast cells by ultraviolet B irradiation: decreased diacylglycerol formation as a possible mechanism

    International Nuclear Information System (INIS)

    Danno, K.; Fujii, K.; Tachibana, T.; Toda, K.; Horio, T.

    1988-01-01

    This study was designed to investigate the effect of ultraviolet B (UVB) irradiation on mast cell functions. Purified mast cells obtained from rat peritoneal cavity were irradiated with UVB and subsequently exposed to a degranulator, compound 48/80, or the calcium ionophore A-23187. The amount of histamine released from mast cells measured by the enzyme isotopic assay was significantly decreased by UVB irradiation (100-400 mJ/cm2). Within this dose range, UVB alone was not cytotoxic to the cells because it did not induce histamine release. The suppression was observed when mast cells were subjected to degranulation without intervals after UVB irradiation, and even after 5 h postirradiation. The wavelength of 300 nm from a monochromatic light source showed the maximum effect. When mast cells prelabeled with [ 3 H]arachidonate were irradiated and challenged by compound 48/80, label accumulation in diacylglycerol produced by the phosphatidylinositol cycle was considerably decreased by UVB irradiation. From these results, we hypothesize that, within an adequate irradiation dose, UVB irradiation suppresses histamine release from mast cells, probably by causing noncytotoxic damage to the membrane phospholipid metabolism, which is tied to the degranulation mechanisms

  10. Cocaine enhances resistance to extinction of responding for brain-stimulation reward in adult prenatally stressed rats.

    Science.gov (United States)

    Gao, Shuibo; Suenaga, Toshiko; Oki, Yutaka; Yukie, Masao; Nakahara, Daiichiro

    2011-10-01

    The present experiment assessed whether prenatal stress (PS) can alter the ability of acute and chronic cocaine administration to increase and decrease the rewarding effectiveness of the medial forebrain bundle (MFB) using intracranial self-stimulation (ICSS), and also whether PS can affect the extinction of the MFB stimulation response. Adult male offspring of female rats that received PS or no PS (nPS) were implanted with MFB stimulating electrodes, and were then tested in ICSS paradigms. In both nPS and PS offspring, acute cocaine injection decreased ICSS thresholds dose-dependently. However, the threshold-lowering effects at any dose were not significantly different between groups. There was also no group-difference in the threshold-elevating effects of chronic cocaine administration. Nevertheless, chronically drug-administered PS rats exhibited a resistance to the extinguishing of the response for brain-stimulation reward when acutely treated with cocaine, as compared to extinction without cocaine treatment. The results suggest that PS may weaken the ability for response inhibition under cocaine loading in male adult offspring. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. High-fat diet enhanced retinal dehydrogenase activity, but suppressed retinol dehydrogenase activity in liver of rats

    Directory of Open Access Journals (Sweden)

    Mian Zhang

    2015-04-01

    Full Text Available Evidence has shown that hyperlipidemia is associated with retinoid dyshomeostasis. In liver, retinol is mainly oxidized to retinal by retinol dehydrogenases (RDHs and alcohol dehydrogenases (ADHs, further converted to retinoic acid by retinal dehydrogenases (RALDHs. The aim of this study was to investigate whether high-fat diet (HFD induced hyperlipidemia affected activity and expression of hepatic ADHs/RDHs and RALDHs in rats. Results showed that retinol levels in liver, kidney and adipose tissue of HFD rats were significantly increased, while plasma retinol and hepatic retinal levels were markedly decreased. HFD rats exhibited significantly downregulated hepatic ADHs/RDHs activity and Adh1, Rdh10 and Dhrs9 expression. Oppositely, hepatic RALDHs activity and Raldh1 expression were upregulated in HFD rats. In HepG2 cells, treatment of HFD rat serum inhibited ADHs/RDHs activity and induced RALDHs activity. Among the tested abnormally altered components in HFD rat serum, cholesterol reduced ADHs/RDHs activity and RDH10 expression, while induced RALDHs activity and RALDH1 expression in HepG2 cells. Contrary to the effect of cholesterol, cholesterol-lowering agent pravastatin upregulated ADHs/RDHs activity and RDH10 expression, while suppressed RALDHs activity and RALDH1 expression. In conclusion, hyperlipidemia oppositely altered activity and expression of hepatic ADHs/RDHs and RALDHs, which is partially due to the elevated cholesterol levels.

  12. Ascorbic acid deficiency aggravates stress-induced gastric mucosal lesions in genetically scorbutic ODS rats.

    Science.gov (United States)

    Ohta, Y; Chiba, S; Imai, Y; Kamiya, Y; Arisawa, T; Kitagawa, A

    2006-12-01

    We examined whether ascorbic acid (AA) deficiency aggravates water immersion restraint stress (WIRS)-induced gastric mucosal lesions in genetically scorbutic ODS rats. ODS rats received scorbutic diet with either distilled water containing AA (1 g/l) or distilled water for 2 weeks. AA-deficient rats had 12% of gastric mucosal AA content in AA-sufficient rats. AA-deficient rats showed more severe gastric mucosal lesions than AA-sufficient rats at 1, 3 or 6 h after the onset of WIRS, although AA-deficient rats had a slight decrease in gastric mucosal AA content, while AA-sufficient rats had a large decrease in that content. AA-deficient rats had more decreased gastric mucosal nonprotein SH and vitamin E contents and increased gastric mucosal lipid peroxide content than AA-sufficient rats at 1, 3 or 6 h of WIRS. These results indicate that AA deficiency aggravates WIRS-induced gastric mucosal lesions in ODS rats by enhancing oxidative damage in the gastric mucosa.

  13. The effect of continuous gamma-irradiation at exponentially decreased dose rates on the nucleic acid content of haemopoietic organs and blood of rats

    International Nuclear Information System (INIS)

    Mishurova, E.; Kropachova, K.; Reksa, R.

    1992-01-01

    The effect of continuous gamma-irradiation at exponentially decreased dose rates on the nucleic acid content of rat hemopoietic tissues and blood was followed up. We have found that the dynamics of the changes seems to be similar to that observed after acute exposure, and the hemopoiesis recovery starts just at the time of irradiation. In evaluating the damage and recovery extent after accidental irradiation, we consider it expedient to complement the biological dosimetry with the indices studied work including the determination of DNA and RNA concentrations in blood of irradiated human beings

  14. Minocycline restores cognitive-relative altered proteins in young bile duct-ligated rat prefrontal cortex.

    Science.gov (United States)

    Li, Shih-Wen; Chen, Yu-Chieh; Sheen, Jiunn-Ming; Hsu, Mei-Hsin; Tain, You-Lin; Chang, Kow-Aung; Huang, Li-Tung

    2017-07-01

    Bile duct ligation (BDL) model is used to study hepatic encephalopathy accompanied by cognitive impairment. We employed the proteomic analysis approach to evaluate cognition-related proteins in the prefrontal cortex of young BDL rats and analyzed the effect of minocycline on these proteins and spatial memory. BDL was induced in young rats at postnatal day 17. Minocycline as a slow-release pellet was implanted into the peritoneum. Morris water maze test and two-dimensional liquid chromatography-tandem mass spectrometry were used to evaluate spatial memory and prefrontal cortex protein expression, respectively. We used 2D/LC-MS/MS to analyze for affected proteins in the prefrontal cortex of young BDL rats. Results were verified with Western blotting, immunohistochemistry, and quantitative real-time PCR. The effect of minocycline in BDL rats was assessed. BDL induced spatial deficits, while minocycline rescued it. Collapsin response mediator protein 2 (CRMP2) and manganese-dependent superoxide dismutase (MnSOD) were upregulated and nucleoside diphosphate kinase B (NME2) was downregulated in young BDL rats. BDL rats exhibited decreased levels of brain-derived neurotrophic factor (BDNF) mRNA as compared with those by the control. However, minocycline treatment restored CRMP2 and NME2 protein expression, BDNF mRNA level, and MnSOD activity to control levels. We demonstrated that BDL altered the expression of CRMP2, NME2, MnSOD, and BDNF in the prefrontal cortex of young BDL rats. However, minocycline treatment restored the expression of the affected mediators that are implicated in cognition. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Individually reared rats

    International Nuclear Information System (INIS)

    Kraeuchi, K.; Gentsch, C.; Feer, H.

    1981-01-01

    The influence of social isolation in rats on postsynaptic alpha 1 - and beta-adrenergic receptors, on the cAMP generating system and on the presynaptic uptake mechanism in the central noradrenergic system was examined in different brain regions. Rearing rats in isolation from the 19th day of life for 12 weeks leads in all regions to a general tendency for a reduction in 3 H-DHA binding, to an enhanced 3 H-WB4101 binding and to a decreased responsiveness of the noradrenaline sensitive cAMP generating system. These changes reach significance only in the pons-medulla-thallamusregion. Isolated rats showed an increased synaptosomal uptake of noradrenaline, most pronounced and significant in the hypothalamus. Our data provide further support for a disturbance in central noradrenergic function in isolated rats. (author)

  16. Inhalative cadmium effects in pregnant and fetal rats

    Energy Technology Data Exchange (ETDEWEB)

    Prigge, E.

    1978-01-01

    Pregnant and non-pregnant rats were continuously exposed for 21 days to an aerosol containing 0.2, 0.4, and 0.6 mg cadmium/m/sup 3/ air. Pregnant and non-pregnant rats exposed to clean air served as controls. The aerosol was generated by an ultrasonic nebulizer and was carried into inhalation chambers. The median aerodynamic diameters were on the order of 0.6 ..mu..m. After inhalation of cadmium aerosols, serum iron levels were not lowered significantly in adult rats. A polycythaemic response of non-pregnant rats was observed due to a direct stimulatory effect of cadmium on erythropoiesis. Polycythaemia was less marked in pregnancy, presumably due to iron loss to placenta and fetus. Disturbances of pulmonary gas exchange or decreased plasma volumes were excluded as causative mechanisms of polycythaemia. In pregnant rats there was a marked dose dependent decrease of the activity of the alkaline phosphatase after cadmium inhalation, while there was no effect in exposed non-pregnant rats. This decreased enzyme activity, together with slowed growth rates and hemolytic effect indicate a higher sensitivity to cadmium in pregnancy. Proteinuria was not found in neither pregnant nor non-pregnant rats. Therefore, it is concluded that in this respect cadmium intoxication by inhalation does not resemble human toxemia of pregnancy, as discussed in the literature.

  17. Chronic ethanol increases calcium/calmodulin-dependent protein kinaseIIδ gene expression and decreases monoamine oxidase amount in rat heart muscles: Rescue effect of Zingiber officinale (ginger) extract.

    Science.gov (United States)

    Heshmati, Elaheh; Shirpoor, Alireza; Kheradmand, Fatemeh; Alizadeh, Mohammad; Gharalari, Farzaneh Hosseini

    2018-01-01

    Association between chronic alcohol intake and cardiac abnormality is well known; however, the precise underlying molecular mediators involved in ethanol-induced heart abnormalities remain elusive. This study investigated the effect of chronic ethanol exposure on calcium/calmodulin-dependent protein kinase IIδ (CaMKIIδ) gene expression and monoamine oxidase (MAO) levels and histological changes in rat heart. It was also planned to find out whether Zingiber officinale (ginger) extract mitigated the abnormalities induced by ethanol in rat heart. Male wistar rats were divided into three groups of eight animals each: control, ethanol, and ginger extract treated-ethanol (GETE) groups. After 6 weeks of treatment, the results revealed a significant increase in CaMKIIδtotal and isoforms δ2 and δ3 of CaMKIIδ gene expression as well as a significant decrease in the MAO levels in the ethanol group compared to that in the control group. Moreover, compared to the control group, the ethanol group showed histological changes, such as fibrosis, heart muscle cells proliferation, myocyte hypertrophy, vacuolization, and focal lymphocytic infiltration. Consumption of ginger extract along with ethanol ameliorated CaMKIIδtotal. In addition, compared to the ethanol group, isoforms gene expression changed and increased the reduced MAO levels and mitigated heart structural changes. These findings indicate that ethanol-induced heart abnormalities may, in part, be associated with Ca 2+ homeostasis changes mediated by overexpression of CaMKIIδ gene and the decrease of MAO levels and that these effects can be alleviated by using ginger extract as an antioxidant and anti-inflammatory agent.

  18. Histomorphological changes in induced benign prostatic hyperplasia with exogenous testosterone and estradiol in adult male rats treated with aqueous ethanol extract of Secamone afzelii

    Directory of Open Access Journals (Sweden)

    Godwin Mbaka

    2017-03-01

    Full Text Available Secamone afzelii (S. afzelii used locally to manage benign prostatic hyperplasia (BPH was used to treat exogenously induced BPH in adult male Wister rats. Male rats weighing 200 ± 10 g kg−1 had exogenous administration of testosterone and estradiol in staggered doses (three times weekly for three weeks. The induced animals were in five groups (6 rats per group. Groups 1 and 2 received extract at 200 and 400 mg kg−1 body weight (bwt by gavages for thirty days; group 3, finasteride (0.1 mg kg−1; group 4, untreated for thirty days; group 5, negative control, which was sacrificed twenty-one days after induction. Group 6 received extract (400 mg kg−1 and steroid hormones simultaneously; group 7, normal control. The extract caused marked decrease in prostate weight of BPH induced rats with the photomicrograph of the prostate showing extensive shrinkage of glandular tissue whereas glandular hyperplasia occurred in the negative control. Prostate specific antigen (PSA level significantly (p < 0.05 decreased in the treated groups compared to negative control. Treatment with the extract/finasteride caused significant decrease in testosterone to a level comparable to normal. The BPH induced rats treated with S. afzelii/finasteride recorded marked increase in the levels of antioxidant enzymes compared to the negative control. S. afzelii effectively ameliorated prostatic hyperplasia exogenously induced by causing extensive shrinkage of glands and stroma. It also exhibited antioxidant properties and showed to be a good prophylaxis.

  19. GABAergic mechanism mediated via D receptors in the rat periaqueductal gray participates in the micturition reflex: an in vivo microdialysis study.

    Science.gov (United States)

    Kitta, Takeya; Matsumoto, Machiko; Tanaka, Hiroshi; Mitsui, Takahiko; Yoshioka, Mitsuhiro; Nonomura, Katsuya

    2008-06-01

    The periaqueductal gray (PAG) is critically involved in the micturition reflex, but little is known about the neuronal mechanisms involved. The present study elucidated dynamic changes in dopamine (DA), glutamate and gamma-aminobutyric acid (GABA) in the rat PAG during the micturition reflex, with a focus on dopaminergic modulation using in vivo microdialysis combined with cystometrography. Extracellular levels of DA and glutamate increased, whereas levels of GABA decreased, in parallel with the micturition reflex. Application of a D(1) receptor antagonist into the PAG produced increases in maximal voiding pressure (MVP) and decreases in intercontraction interval (ICI), suggesting that the micturition reflex was facilitated by D(1) receptor blockade. The D(1) receptor antagonist prevented micturition-induced decreases in GABA efflux but had no effect on DA or glutamate. Neither a D(2) receptor antagonist nor a D(1)/D(2) receptor agonist affected these neurochemical and physiological parameters. Micturition-induced inhibition of GABA was not observed in 6-hydroxydopamine (6-OHDA)-lesioned rats, an animal model of Parkinson's disease. 6-OHDA-lesioned rats exhibited bladder hyperactivity evaluated by increases in MVP and decreases in ICI, mimicking facilitation of the micturition reflex induced by D(1) receptor blockade. These findings suggest that the micturition reflex is under tonic dopaminergic regulation through D(1) receptors, in which a GABAergic mechanism is involved. Bladder hyperactivity observed in 6-OHDA-lesioned rats may be caused by dysfunction of GABAergic regulation underlying the micturition reflex. The present findings contribute to our understanding not only of the neurophysiology of the micturition reflex but also of the pathophysiology of lower urinary tract dysfunction in patients with Parkinson's disease.

  20. Hepatoprotective activity of Rhus oxyacantha root cortex extract against DDT-induced liver injury in rats.

    Science.gov (United States)

    Ben Miled, Hanène; Barka, Zaineb Ben; Hallègue, Dorsaf; Lahbib, Karima; Ladjimi, Mohamed; Tlili, Mounira; Sakly, Mohsen; Rhouma, Khémais Ben; Ksouri, Riadh; Tebourbi, Olfa

    2017-06-01

    The present investigation aimed to study the antioxidant activity and hepatoprotective effects of ethyl acetate extract of R. oxyacantha root cortex (RE) against DDT-induced liver injury in male rats. The RE exhibited high total phenolic, flavonoid and condensed tannins contents. The antioxidant activity in vitro systems showed a significant potent free radical scavenging activity of the extract. The HPLC finger print of R. oxyacantha active extract showed the presence of five phenolic compounds with higher amounts of catechol and gallic acid. The in vivo results showed that a single intraperitoneal administration of DDT enhanced levels of hepatic markers (ALT, AST and LDH) in serum of experimental animals. It also increased the oxidative stress markers resulting in increased levels of the lipid peroxidation with a significant induction of SOD and GPx, metallothioneins (MTs) and a concomitant decrease of non protein thiols (NPSH) in liver. However, pretreatment of rats with RE at a dose of 150 and 300mg/kg body weight significantly lowered serum transaminases and LDH in treated rats. A significant reduction in hepatic thiobarbituric reactive substances and a decrease in antioxidant enzymes activities and hepatic MTs levels by treatment with plant extract against DDT, were observed. These biochemical changes were consistent with histopathological observations, suggesting marked hepatoprotective effect of RE with the two doses used. These results strongly suggest that treatment with ethyl acetate extract normalizes various biochemical parameters and protects the liver against DDT-induced oxidative damage in rats and thus help in evaluation of traditional claim on this plant. Copyright © 2017 Elsevier Masson SAS. All rights reserved.