WorldWideScience

Sample records for ratios spectral analysis

  1. Site Characterization in the Urban Area of Tijuana, B. C., Mexico by Means of: H/V Spectral Ratios, Spectral Analysis of Surface Waves, and Random Decrement Method

    Science.gov (United States)

    Tapia-Herrera, R.; Huerta-Lopez, C. I.; Martinez-Cruzado, J. A.

    2009-05-01

    Results of site characterization for an experimental site in the metropolitan area of Tijuana, B. C., Mexico are presented as part of the on-going research in which time series of earthquakes, ambient noise, and induced vibrations were processed with three different methods: H/V spectral ratios, Spectral Analysis of Surface Waves (SASW), and the Random Decrement Method, (RDM). Forward modeling using the wave propagation stiffness matrix method (Roësset and Kausel, 1981) was used to compute the theoretical SH/P, SV/P spectral ratios, and the experimental H/V spectral ratios were computed following the conventional concepts of Fourier analysis. The modeling/comparison between the theoretical and experimental H/V spectral ratios was carried out. For the SASW method the theoretical dispersion curves were also computed and compared with the experimental one, and finally the theoretical free vibration decay curve was compared with the experimental one obtained with the RDM. All three methods were tested with ambient noise, induced vibrations, and earthquake signals. Both experimental spectral ratios obtained with ambient noise as well as earthquake signals agree quite well with the theoretical spectral ratios, particularly at the fundamental vibration frequency of the recording site. Differences between the fundamental vibration frequencies are evident for sites located at alluvial fill (~0.6 Hz) and at sites located at conglomerate/sandstones fill (0.75 Hz). Shear wave velocities for the soft soil layers of the 4-layer discrete soil model ranges as low as 100 m/s and up to 280 m/s. The results with the SASW provided information that allows to identify low velocity layers, not seen before with the traditional seismic methods. The damping estimations obtained with the RDM are within the expected values, and the dominant frequency of the system also obtained with the RDM correlates within the range of plus-minus 20 % with the one obtained by means of the H/V spectral

  2. Spectral analysis software improves confidence in plant and soil water stable isotope analyses performed by isotope ratio infrared spectroscopy (IRIS).

    Science.gov (United States)

    West, A G; Goldsmith, G R; Matimati, I; Dawson, T E

    2011-08-30

    Previous studies have demonstrated the potential for large errors to occur when analyzing waters containing organic contaminants using isotope ratio infrared spectroscopy (IRIS). In an attempt to address this problem, IRIS manufacturers now provide post-processing spectral analysis software capable of identifying samples with the types of spectral interference that compromises their stable isotope analysis. Here we report two independent tests of this post-processing spectral analysis software on two IRIS systems, OA-ICOS (Los Gatos Research Inc.) and WS-CRDS (Picarro Inc.). Following a similar methodology to a previous study, we cryogenically extracted plant leaf water and soil water and measured the δ(2)H and δ(18)O values of identical samples by isotope ratio mass spectrometry (IRMS) and IRIS. As an additional test, we analyzed plant stem waters and tap waters by IRMS and IRIS in an independent laboratory. For all tests we assumed that the IRMS value represented the "true" value against which we could compare the stable isotope results from the IRIS methods. Samples showing significant deviations from the IRMS value (>2σ) were considered to be contaminated and representative of spectral interference in the IRIS measurement. Over the two studies, 83% of plant species were considered contaminated on OA-ICOS and 58% on WS-CRDS. Post-analysis, spectra were analyzed using the manufacturer's spectral analysis software, in order to see if the software correctly identified contaminated samples. In our tests the software performed well, identifying all the samples with major errors. However, some false negatives indicate that user evaluation and testing of the software are necessary. Repeat sampling of plants showed considerable variation in the discrepancies between IRIS and IRMS. As such, we recommend that spectral analysis of IRIS data must be incorporated into standard post-processing routines. Furthermore, we suggest that the results from spectral analysis be

  3. Site effects in Port-au-Prince (Haiti) from the analysis of spectral ratio and numerical simulations.

    Science.gov (United States)

    St. Fleur, Sadrac; Bertrand, Etienne; Courboulex, Francoise; Mercier de Lépinay, Bernard; Deschamps, Anne; Hough, Susan E.; Cultrera, Giovanna; Boisson, Dominique; Prepetit, Claude

    2016-01-01

    To provide better insight into seismic ground motion in the Port‐au‐Prince metropolitan area, we investigate site effects at 12 seismological stations by analyzing 78 earthquakes with magnitude smaller than 5 that occurred between 2010 and 2013. Horizontal‐to‐vertical spectral ratio on earthquake recordings and a standard spectral ratio were applied to the seismic data. We also propose a simplified lithostratigraphic map and use available geotechnical and geophysical data to construct representative soil columns in the vicinity of each station that allow us to compute numerical transfer functions using 1D simulations. At most of the studied sites, spectral ratios are characterized by weak‐motion amplification at frequencies above 5 Hz, in good agreement with the numerical transfer functions. A mismatch between the observed amplifications and simulated response at lower frequencies shows that the considered soil columns could be missing a deeper velocity contrast. Furthermore, strong amplification between 2 and 10 Hz linked to local topographic features is found at one station located in the south of the city, and substantial amplification below 5 Hz is detected near the coastline, which we attribute to deep and soft sediments as well as the presence of surface waves. We conclude that for most investigated sites in Port‐au‐Prince, seismic amplifications due to site effects are highly variable but seem not to be important at high frequencies. At some specific locations, however, they could strongly enhance the low‐frequency content of the seismic ground shaking. Although our analysis does not consider nonlinear effects, we thus conclude that, apart from sites close to the coast, sediment‐induced amplification probably had only a minor impact on the level of strong ground motion, and was not the main reason for the high level of damage in Port‐au‐Prince.

  4. Estimate of Small Stiffness and Damping Ratio in Residual Soil Using Spectral Analysis of Surface Wave Method

    Directory of Open Access Journals (Sweden)

    Bawadi Nor Faizah

    2016-01-01

    Full Text Available Research in the important parameters for modeling the dynamic behavior of soils has led to rapid development of the small strain stiffness and damping ratio for use in the seismic method. It is because, the experimental determination of the damping ratio is problematic, especially for hard soils sample. Many researchers have proved that the surface wave method is a reliable tool to determine shear wave velocity and damping ratio profiles at a site with very small strains level. Surface wave methods based on Rayleigh waves propagation and the resulting attenuation curve can become erroneous when higher modes contribute to the soil’s response. In this study, two approaches has been used to determine the shear strain amplitude and damping ratio of residual soils at small strain level using Spectral Analysis of Surface Wave (SASW method. One is to derive shear strain amplitude from the frequency-response curve and the other is to derive damping ratio from travel-time data. Then, the results are compared to the conventional method.

  5. Comparative Analysis of Alternative Spectral Bands of CO2 and O2 for the Sensing of CO2 Mixing Ratios

    Science.gov (United States)

    Pliutau, Denis; Prasad, Narasimha S.

    2013-01-01

    We performed comparative studies to establish favorable spectral regions and measurement wavelength combinations in alternative bands of CO2 and O2, for the sensing of CO2 mixing ratios (XCO2) in missions such as ASCENDS. The analysis employed several simulation approaches including separate layers calculations based on pre-analyzed atmospheric data from the modern-era retrospective analysis for research and applications (MERRA), and the line-byline radiative transfer model (LBLRTM) to obtain achievable accuracy estimates as a function of altitude and for the total path over an annual span of variations in atmospheric parameters. Separate layer error estimates also allowed investigation of the uncertainties in the weighting functions at varying altitudes and atmospheric conditions. The parameters influencing the measurement accuracy were analyzed independently and included temperature sensitivity, water vapor interferences, selection of favorable weighting functions, excitations wavelength stabilities and other factors. The results were used to identify favorable spectral regions and combinations of on / off line wavelengths leading to reductions in interferences and the improved total accuracy.

  6. Application of Microtremor Horizontal-to-Vertical Spectral Ratio (MHVSR) Analysis for Site Characterization: State of the Art

    Science.gov (United States)

    Molnar, S.; Cassidy, J. F.; Castellaro, S.; Cornou, C.; Crow, H.; Hunter, J. A.; Matsushima, S.; Sánchez-Sesma, F. J.; Yong, A.

    2018-03-01

    Nakamura (Q Rep Railway Tech Res Inst 30:25-33, 1989) popularized the application of the horizontal-to-vertical spectral ratio (HVSR) analysis of microtremor (seismic noise or ambient vibration) recordings to estimate the predominant frequency and amplification factor of earthquake shaking. During the following quarter century, popularity in the microtremor HVSR (MHVSR) method grew; studies have verified the stability of a site's MHVSR response over time and validated the MHVSR response with that of earthquake HVSR response. Today, MHVSR analysis is a popular reconnaissance tool used worldwide for seismic microzonation and earthquake site characterization in numerous regions, specifically, in the mapping of site period or fundamental frequency and inverted for shear-wave velocity depth profiles, respectively. However, the ubiquity of MHVSR analysis is predominantly a consequence of its ease in application rather than our full understanding of its theory. We present the state of the art in MHVSR analyses in terms of the development of its theoretical basis, current state of practice, and we comment on its future for applications in earthquake site characterization.

  7. Application of microtremor horizontal-to-vertical spectral ratio (MHVSR) analysis for site characterization: State of the art

    Science.gov (United States)

    Molnar, S.; Cassidy, J. F.; Castellaro, S.; Cornou, C.; Crow, H.; Hunter, J. A.; Matsushima, S.; Sanchez-Sesma, F. J.; Yong, Alan

    2018-01-01

    Nakamura (Q Rep Railway Tech Res Inst 30:25–33, 1989) popularized the application of the horizontal-to-vertical spectral ratio (HVSR) analysis of microtremor (seismic noise or ambient vibration) recordings to estimate the predominant frequency and amplification factor of earthquake shaking. During the following quarter century, popularity in the microtremor HVSR (MHVSR) method grew; studies have verified the stability of a site’s MHVSR response over time and validated the MHVSR response with that of earthquake HVSR response. Today, MHVSR analysis is a popular reconnaissance tool used worldwide for seismic microzonation and earthquake site characterization in numerous regions, specifically, in the mapping of site period or fundamental frequency and inverted for shear-wave velocity depth profiles, respectively. However, the ubiquity of MHVSR analysis is predominantly a consequence of its ease in application rather than our full understanding of its theory. We present the state of the art in MHVSR analyses in terms of the development of its theoretical basis, current state of practice, and we comment on its future for applications in earthquake site characterization.

  8. Dereplication of Natural Products Using GC-TOF Mass Spectrometry: Improved Metabolite Identification By Spectral Deconvolution Ratio Analysis

    Directory of Open Access Journals (Sweden)

    Fausto Carnevale Neto

    2016-09-01

    Full Text Available Dereplication based on hyphenated techniques has been extensively applied in plant metabolomics, avoiding re-isolation of known natural products. However, due to the complex nature of biological samples and their large concentration range, dereplication requires the use of chemometric tools to comprehensively extract information from the acquired data. In this work we developed a reliable GC-MS-based method for the identification of non-targeted plant metabolites by combining the Ratio Analysis of Mass Spectrometry deconvolution tool (RAMSY with Automated Mass Spectral Deconvolution and Identification System software (AMDIS. Plants species from Solanaceae, Chrysobalanaceae and Euphorbiaceae were selected as model systems due to their molecular diversity, ethnopharmacological potential and economical value. The samples were analyzed by GC-MS after methoximation and silylation reactions. Dereplication initiated with the use of a factorial design of experiments to determine the best AMDIS configuration for each sample, considering linear retention indices and mass spectral data. A heuristic factor (CDF, compound detection factor was developed and applied to the AMDIS results in order to decrease the false-positive rates. Despite the enhancement in deconvolution and peak identification, the empirical AMDIS method was not able to fully deconvolute all GC-peaks, leading to low MF values and/or missing metabolites. RAMSY was applied as a complementary deconvolution method to AMDIS to peaks exhibiting substantial overlap, resulting in recovery of low-intensity co-eluted ions. The results from this combination of optimized AMDIS with RAMSY attested to the ability of this approach as an improved dereplication method for complex biological samples such as plant extracts.

  9. Discrimination of periodontal diseases using diffuse reflectance spectral intensity ratios

    Science.gov (United States)

    Chandra Sekhar, Prasanth; Betsy, Joseph; Presanthila, Janam; Subhash, Narayanan

    2012-02-01

    This clinical study was to demonstrate the applicability of diffuse reflectance (DR) intensity ratio R620/R575 in the quantification and discrimination of periodontitis and gingivitis from healthy gingiva. DR spectral measurements were carried out with white-light illumination from 70 healthy sites in 30 healthy volunteers, and 63 gingivitis- and 58 periodontitis-infected sites in 60 patients. Clinical parameters such as probing pocket depth, clinical attachment level, and gingival index were recorded in patient population. Diagnostic accuracies for discrimination of gingivitis and periodontitis from healthy gingiva were determined by comparison of spectral signatures with clinical parameters. Divergence of average DR spectral intensity ratio between control and test groups was studied using analysis of variance. The mean DR spectrum on normalization at 620 nm showed marked differences between healthy tissue, gingivitis, and periodontitis. Hemoglobin concentration and apparent SO2 (oxygen saturation) were also calculated for healthy, gingivitis, and periodontitis sites. DR spectral intensities at 545 and 575 nm showed a decreasing trend with progression of disease. Among the various DR intensity ratios studied, the R620/R575 ratio provided a sensitivity of 90% and specificity of 94% for discrimination of healthy tissues from gingivitis and a sensitivity of 91% and specificity of 100% for discrimination of gingivitis from periodontitis.

  10. Time-varying spectral analysis revealing differential effects of sevoflurane anaesthesia: non-rhythmic-to-rhythmic ratio.

    Science.gov (United States)

    Lin, Y-T; Wu, H-T; Tsao, J; Yien, H-W; Hseu, S-S

    2014-02-01

    Heart rate variability (HRV) may reflect various physiological dynamics. In particular, variation of R-R peak interval (RRI) of electrocardiography appears regularly oscillatory in deeper levels of anaesthesia and less regular in lighter levels of anaesthesia. We proposed a new index, non-rhythmic-to-rhythmic ratio (NRR), to quantify this feature and investigated its potential to estimate depth of anaesthesia. Thirty-one female patients were enrolled in this prospective study. The oscillatory pattern transition of RRI was visualised by the time-varying power spectrum and quantified by NRR. The prediction of anaesthetic events, including skin incision, first reaction of motor movement during emergence period, loss of consciousness (LOC) and return of consciousness (ROC) by NRR were evaluated by serial prediction probability (PK ) analysis; the ability to predict the decrease of effect-site sevoflurane concentration was also evaluated. The results were compared with Bispectral Index (BIS). NRR well-predicted first reaction (PK  > 0.90) 30 s ahead, earlier than BIS and significantly better than HRV indices. NRR well-correlated with sevoflurane concentration, although its correlation was inferior to BIS, while HRV indices had no such correlation. BIS indicated LOC and ROC best. Our findings suggest that NRR provides complementary information to BIS regarding the differential effects of anaesthetics on the brain, especially the subcortical motor activity. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  11. Spectral analysis by correlation

    International Nuclear Information System (INIS)

    Fauque, J.M.; Berthier, D.; Max, J.; Bonnet, G.

    1969-01-01

    The spectral density of a signal, which represents its power distribution along the frequency axis, is a function which is of great importance, finding many uses in all fields concerned with the processing of the signal (process identification, vibrational analysis, etc...). Amongst all the possible methods for calculating this function, the correlation method (correlation function calculation + Fourier transformation) is the most promising, mainly because of its simplicity and of the results it yields. The study carried out here will lead to the construction of an apparatus which, coupled with a correlator, will constitute a set of equipment for spectral analysis in real time covering the frequency range 0 to 5 MHz. (author) [fr

  12. Radioactive anomaly discrimination from spectral ratios

    Science.gov (United States)

    Maniscalco, James; Sjoden, Glenn; Chapman, Mac Clements

    2013-08-20

    A method for discriminating a radioactive anomaly from naturally occurring radioactive materials includes detecting a first number of gamma photons having energies in a first range of energy values within a predetermined period of time and detecting a second number of gamma photons having energies in a second range of energy values within the predetermined period of time. The method further includes determining, in a controller, a ratio of the first number of gamma photons having energies in the first range and the second number of gamma photons having energies in the second range, and determining that a radioactive anomaly is present when the ratio exceeds a threshold value.

  13. Using H/V Spectral Ratio Analysis to Map Sediment Thickness and to Explain Macroseismic Intensity Variation of a Low-Magnitude Seismic Swarm in Central Belgium

    Science.gov (United States)

    Van Noten, K.; Lecocq, T.; Camelbeeck, T.

    2013-12-01

    Between 2008 and 2010, the Royal Observatory of Belgium received numerous ';Did You Feel It'-reports related to a 2-year lasting earthquake swarm at Court-Saint-Etienne, a small town in a hilly area 20 km SE of Brussels, Belgium. These small-magnitude events (-0.7 ≤ ML ≤ 3.2, n = c. 300 events) were recorded both by the permanent seismometer network in Belgium and by a locally installed temporary seismic network deployed in the epicentral area. Relocation of the hypocenters revealed that the seismic swarm can be related to the reactivation of a NW-SE strike-slip fault at 3 to 6 km depth in the basement rocks of the Lower Palaeozoic London-Brabant Massif. This sequence caused a lot of emotion in the region because more than 60 events were felt by the local population. Given the small magnitudes of the seismic swarm, most events were more often heard than felt by the respondents, which is indicative of a local high-frequency earthquake source. At places where the bedrock is at the surface or where it is covered by thin alluvial sediments ( 30 m). In those river valleys that have a considerable alluvial sedimentary cover, macroseismic intensities are again lower. To explain this variation in macroseismic intensity we present a macroseismic analysis of all DYFI-reports related to the 2008-2010 seismic swarm and a pervasive H/V spectral ratio (HVSR) analysis of ambient noise measurements to model the thickness of sediments covering the London-Brabant Massif. The HVSR method is a very powerful tool to map the basement morphology, particularly in regions of unknown subsurface structure. By calculating the soil's fundamental frequency above boreholes, we calibrated the power-law relationship between the fundamental frequency, shear wave velocity and the thickness of sediments. This relationship is useful for places where the sediment thickness is unknown and where the fundamental frequency can be calculated by H/V spectral ratio analysis of ambient noise. In a

  14. SPECTRAL ANALYSIS OF EXCHANGE RATES

    Directory of Open Access Journals (Sweden)

    ALEŠA LOTRIČ DOLINAR

    2013-06-01

    Full Text Available Using spectral analysis is very common in technical areas but rather unusual in economics and finance, where ARIMA and GARCH modeling are much more in use. To show that spectral analysis can be useful in determining hidden periodic components for high-frequency finance data as well, we use the example of foreign exchange rates

  15. Substitution dynamical systems spectral analysis

    CERN Document Server

    Queffélec, Martine

    2010-01-01

    This volume mainly deals with the dynamics of finitely valued sequences, and more specifically, of sequences generated by substitutions and automata. Those sequences demonstrate fairly simple combinatorical and arithmetical properties and naturally appear in various domains. As the title suggests, the aim of the initial version of this book was the spectral study of the associated dynamical systems: the first chapters consisted in a detailed introduction to the mathematical notions involved, and the description of the spectral invariants followed in the closing chapters. This approach, combined with new material added to the new edition, results in a nearly self-contained book on the subject. New tools - which have also proven helpful in other contexts - had to be developed for this study. Moreover, its findings can be concretely applied, the method providing an algorithm to exhibit the spectral measures and the spectral multiplicity, as is demonstrated in several examples. Beyond this advanced analysis, many...

  16. SPAM- SPECTRAL ANALYSIS MANAGER (UNIX VERSION)

    Science.gov (United States)

    Solomon, J. E.

    1994-01-01

    The Spectral Analysis Manager (SPAM) was developed to allow easy qualitative analysis of multi-dimensional imaging spectrometer data. Imaging spectrometers provide sufficient spectral sampling to define unique spectral signatures on a per pixel basis. Thus direct material identification becomes possible for geologic studies. SPAM provides a variety of capabilities for carrying out interactive analysis of the massive and complex datasets associated with multispectral remote sensing observations. In addition to normal image processing functions, SPAM provides multiple levels of on-line help, a flexible command interpretation, graceful error recovery, and a program structure which can be implemented in a variety of environments. SPAM was designed to be visually oriented and user friendly with the liberal employment of graphics for rapid and efficient exploratory analysis of imaging spectrometry data. SPAM provides functions to enable arithmetic manipulations of the data, such as normalization, linear mixing, band ratio discrimination, and low-pass filtering. SPAM can be used to examine the spectra of an individual pixel or the average spectra over a number of pixels. SPAM also supports image segmentation, fast spectral signature matching, spectral library usage, mixture analysis, and feature extraction. High speed spectral signature matching is performed by using a binary spectral encoding algorithm to separate and identify mineral components present in the scene. The same binary encoding allows automatic spectral clustering. Spectral data may be entered from a digitizing tablet, stored in a user library, compared to the master library containing mineral standards, and then displayed as a timesequence spectral movie. The output plots, histograms, and stretched histograms produced by SPAM can be sent to a lineprinter, stored as separate RGB disk files, or sent to a Quick Color Recorder. SPAM is written in C for interactive execution and is available for two different

  17. Deriving Light Interception and Biomass from Spectral Reflectance Ratio

    DEFF Research Database (Denmark)

    Christensen, Svend; Goudriaan, J.

    1993-01-01

    was calculated as the ratio between infrared (790–810 nm) and red (640–660 nm) reflectance. The cultivars form a different canopy structure. However, a regression analysis did not show any cultivar effect on the relation between RVI and fPAR The predicted fPAR from frequently measured RVI was used to calculate...... the product of daily fPAR and incoming PAR (cumulative PAR interception) in all spring barley cultivars grown in monoculture and in mixture with oil seed rape (Brassica napus). A regression analysis showed that the relation between cumulative intercepted PAR and total above ground biomass was the same in all...... monocultures and mixtures. The ratio α of incremental dry matter and intercepted PAR was normally 2.4 g MJ−1, but it declined below this value when temperatures fell below 12°C....

  18. Multitaper spectral analysis of atmospheric radar signals

    Directory of Open Access Journals (Sweden)

    V. K. Anandan

    2004-11-01

    Full Text Available Multitaper spectral analysis using sinusoidal taper has been carried out on the backscattered signals received from the troposphere and lower stratosphere by the Gadanki Mesosphere-Stratosphere-Troposphere (MST radar under various conditions of the signal-to-noise ratio. Comparison of study is made with sinusoidal taper of the order of three and single tapers of Hanning and rectangular tapers, to understand the relative merits of processing under the scheme. Power spectra plots show that echoes are better identified in the case of multitaper estimation, especially in the region of a weak signal-to-noise ratio. Further analysis is carried out to obtain three lower order moments from three estimation techniques. The results show that multitaper analysis gives a better signal-to-noise ratio or higher detectability. The spectral analysis through multitaper and single tapers is subjected to study of consistency in measurements. Results show that the multitaper estimate is better consistent in Doppler measurements compared to single taper estimates. Doppler width measurements with different approaches were studied and the results show that the estimation was better in the multitaper technique in terms of temporal resolution and estimation accuracy.

  19. Spectral analysis of bedform dynamics

    DEFF Research Database (Denmark)

    Winter, Christian; Ernstsen, Verner Brandbyge; Noormets, Riko

    Successive multibeam echo sounder surveys in tidal channels off Esbjerg (Denmark) on the North Sea coast reveal the dynamics of subaquatic compound dunes. Mainly driven by tidal currents, dune structures show complex migration patterns in all temporal and spatial scales. Common methods for the an....... The proposed method overcomes the above mentioned problems of common descriptive analysis as it is an objective and straightforward mathematical process. The spectral decomposition of superimposed dunes allows a detailed description and analysis of dune patterns and migration.......Successive multibeam echo sounder surveys in tidal channels off Esbjerg (Denmark) on the North Sea coast reveal the dynamics of subaquatic compound dunes. Mainly driven by tidal currents, dune structures show complex migration patterns in all temporal and spatial scales. Common methods...... allows the application of a procedure, which has been a standard for the analysis of water waves for long times: The bathymetric signal of a cross-section of subaquatic compound dunes is approximated by the sum of a set of harmonic functions, derived by Fourier transformation. If the wavelength...

  20. The stability of H/V spectral ratios from noise measurements in Armutlu Peninsula (Turkey)

    Energy Technology Data Exchange (ETDEWEB)

    Livaoğlu, Hamdullah, E-mail: hamdullah.livaoglu@kocaeli.edu.tr; Irmak, T. Serkan; Caka, Deniz; Yavuz, Evrim; Tunç, B.; Baris, S. [Faculty of Engineering, Department of Geophysics, Kocaeli University, 41380, Kocaeli (Turkey); Lühr, B. G.; Woith, H. [GFZ, German Research Centre for Geoscience, Postsdam (Germany)

    2016-04-18

    The horizontal to vertical spectral ratio (H/V) method has been successfully using in order to estimate the fundamental resonance frequency of the sedimentary cover, its thickness and amplification factor since at least 3 decades. There are numerous studies have been carried out on the stability of the H/V spectral ratios. Almost all studies showed that fundamental frequency is stable even measurements are repeated at different times. From this point of view, the results will show us an approach whether the stations are suitable for accurate estimate of earthquake studies and engineering purposes or not. Also we want to see if any effects of the amplification factor changing on the seismograms for Armutlu Seismic Network (ARNET) even though seismic stations are established far away from cultural noise and located on hard rock sites. It has been selected one hour recorded data of all stations during the most stationary times. The amplification and resonant frequency variations of H/V ratio were calculated to investigate temporal stability in time. There is a total harmony in fundamental frequencies values and H/V spectral ratio values in time-lagged periods. Some stations shows secondary minor peaks in high frequency band due to a shallow formation effect or cultural noises around. In the east side of the area ILYS station shows amplitude peak in lower fundamental frequency band from expected. This could compose a high amplification in lower frequencies and so that yield less reliable results in local earthquakes studies. By the experimental results from ambient noise analysis, it could be worked up for relocation of one station.

  1. Examination of Spectral Transformations on Spectral Mixture Analysis

    Science.gov (United States)

    Deng, Y.; Wu, C.

    2018-04-01

    While many spectral transformation techniques have been applied on spectral mixture analysis (SMA), few study examined their necessity and applicability. This paper focused on exploring the difference between spectrally transformed schemes and untransformed scheme to find out which transformed scheme performed better in SMA. In particular, nine spectrally transformed schemes as well as untransformed scheme were examined in two study areas. Each transformed scheme was tested 100 times using different endmember classes' spectra under the endmember model of vegetation- high albedo impervious surface area-low albedo impervious surface area-soil (V-ISAh-ISAl-S). Performance of each scheme was assessed based on mean absolute error (MAE). Statistical analysis technique, Paired-Samples T test, was applied to test the significance of mean MAEs' difference between transformed and untransformed schemes. Results demonstrated that only NSMA could exceed the untransformed scheme in all study areas. Some transformed schemes showed unstable performance since they outperformed the untransformed scheme in one area but weakened the SMA result in another region.

  2. Basic Functional Analysis Puzzles of Spectral Flow

    DEFF Research Database (Denmark)

    Booss-Bavnbek, Bernhelm

    2011-01-01

    We explain an array of basic functional analysis puzzles on the way to general spectral flow formulae and indicate a direction of future topological research for dealing with these puzzles.......We explain an array of basic functional analysis puzzles on the way to general spectral flow formulae and indicate a direction of future topological research for dealing with these puzzles....

  3. EXOPLANETARY DETECTION BY MULTIFRACTAL SPECTRAL ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Sahil; Wettlaufer, John S. [Program in Applied Mathematics, Yale University, New Haven, CT (United States); Sordo, Fabio Del [Department of Astronomy, Yale University, New Haven, CT (United States)

    2017-01-01

    Owing to technological advances, the number of exoplanets discovered has risen dramatically in the last few years. However, when trying to observe Earth analogs, it is often difficult to test the veracity of detection. We have developed a new approach to the analysis of exoplanetary spectral observations based on temporal multifractality, which identifies timescales that characterize planetary orbital motion around the host star and those that arise from stellar features such as spots. Without fitting stellar models to spectral data, we show how the planetary signal can be robustly detected from noisy data using noise amplitude as a source of information. For observation of transiting planets, combining this method with simple geometry allows us to relate the timescales obtained to primary and secondary eclipse of the exoplanets. Making use of data obtained with ground-based and space-based observations we have tested our approach on HD 189733b. Moreover, we have investigated the use of this technique in measuring planetary orbital motion via Doppler shift detection. Finally, we have analyzed synthetic spectra obtained using the SOAP 2.0 tool, which simulates a stellar spectrum and the influence of the presence of a planet or a spot on that spectrum over one orbital period. We have demonstrated that, so long as the signal-to-noise-ratio ≥ 75, our approach reconstructs the planetary orbital period, as well as the rotation period of a spot on the stellar surface.

  4. Estimation and analysis of spectral solar radiation over Cairo

    International Nuclear Information System (INIS)

    Abdel Wahab, M.M.; Omran, M.

    1994-05-01

    This work presents a methodology to estimate spectral diffuse and global radiation on horizontal surface. This method is validated by comparing with measured direct and global spectral radiation in four bands. The results show a good performance in cloudless conditions. The analysis of the ratio of surface values to extraterrestrial ones revealed an over-all depletion in the summer months. Also there was no evidence for any tendency for conversion of radiational components through different bands. The model presents excellent agreement with the measured values for (UV/G) ratio. (author). 7 refs, 4 figs, 3 tabs

  5. Spectral, stoichiometric ratio, physicochemical, polarity and photostability studies of newly synthesized chalcone dye in organized media

    International Nuclear Information System (INIS)

    Marwani, Hadi M.; Asiri, Abdullah M.; Khan, Salman A.

    2013-01-01

    The main focus of this study was to investigate spectroscopic properties, stoichiometric ratios, physicochemical parameters, polarity and photostability behaviors of newly synthesized chalcone dye in organized media. The chalcone dye, 1-(2,5-Dimethyl-thiophen-3-yl)-3-(9-etnyl-9H-carbazol-3-yl)-propenone (DTEP), was prepared by the reaction of carbazole aldehyde with 3-acetyl-2,5-dimethythiophene. Data obtained from FT-IR, 1 H-–NMR, 13 C-NMR and elemental analysis were consistent with chemical structure of newly prepared DTEP. Increases in fluorescence intensities of DTEP with cetyltrimethyl ammonium bromide (CTAB) were observed. In comparison of fluorescence intensities for DTEP with CTAB, reductions in fluorescence intensities for DTEP with sodium dodecyl sulfate (SDS) were noticed under the same experimental and instrumental conditions. Additionally, Benesi–Hildebrand method was applied to determine stoichiometric ratios and association constants of DTEP with CTAB and SDS. Stern–Volmer plot was used in order to further confirm the stoichiometric ratio and association constant of DTEP with SDS. Physicochemical parameters such as singlet absorption, molar absorptivity, oscillator strength, dipole moment and fluorescence quantum yield of DTEP were also determined. Fluorescence polarity study displayed that DTEP was sensitive to the polarity of the microenvironment provided by different solvents. Finally, fluorescence steady-state measurements revealed that DTEP has high photostability against photobleaching. -- Highlights: ► Mechanistic understanding of molecular structure of newly synthesized chalcone dye. ► Exploring spectral behaviors and physicochemical parameters of chalcone dye. ► Determination of stoichiometric ratios and association constants of chalcone dye. ► Determination of fluorescence quantum yield in different solvents. ► High photostability against photobleaching of chalcone dye was observed

  6. GPR attenuation analyses using spectral ratios of primary and multiple arrivals: examples from Welsh peat bogs

    Science.gov (United States)

    Booth, A.; Carless, D.; Kulessa, B.

    2014-12-01

    Ground penetrating radar (GPR) is widely applied to qualitative and quantitative interpretation of near-surface targets. Surface deployments of GPR most widely characterise physical properties in terms of some measure of GPR wavelet velocity. Wavelet amplitude is less-often considered, potentially due to difficulties in measuring this quantity: amplitudes are distorted by the anisotropic radiation pattern of antennas, and the ringy GPR wavelet can make successive events difficult to isolate. However, amplitude loss attributes could provide a useful means of estimating the physical properties of a target. GPR energy loss is described by the bandwidth-limited quality factor Q* which, for low-loss media, is proportional to the ratio of dielectric permittivity, ɛ, and electrical conductivity, σ. Comparing the frequency content of two arrivals yields an estimate of interval Q*, but only if they are sufficiently distinct. There may be sufficient separation between a primary reflection and its long-path multiple (i.e. a 'repeat path' of the primary reflection) therefore a dataset that is rich in multiples may be suitable for robust Q* analysis. The Q* between a primary and multiple arrival describes all frequency-dependent loss mechanisms in the interval between the free-surface and the multiple-generating horizon: assuming that all reflectivity is frequency-independent, Q* can be used to estimate ɛ and/or σ. We measure Q* according to the spectral ratio method, for synthetic and real GPR datasets. Our simulations are performed using the finite-difference algorithm GprMax, and represent our example data of GPR acquisitions over peat bogs. These data are a series of 100 MHz GPR acquisitions over sites in the Brecon Beacons National Park of South Wales. The base of the bogs (the basal peat/mineral soil contact) is often a strong multiple-generating horizon. As an example, data from Waun Ddu bog show these events lagging by ~75 ns: GPR velocity is measured here at 0

  7. The measurement and interpretation of Ne VII spectral line intensity ratios

    International Nuclear Information System (INIS)

    Lang, J.

    1983-03-01

    Results are presented for the measurement, using the branching ratios calibration method, of the spectral intensities of Ne VII lines emitted from a theta-pinch plasma whose electron temperature and density have been found by laser scattering and alternate techniques. (author)

  8. Using Ratio Analysis to Evaluate Financial Performance.

    Science.gov (United States)

    Minter, John; And Others

    1982-01-01

    The ways in which ratio analysis can help in long-range planning, budgeting, and asset management to strengthen financial performance and help avoid financial difficulties are explained. Types of ratios considered include balance sheet ratios, net operating ratios, and contribution and demand ratios. (MSE)

  9. A new method of organizing spectral line intensity ratio fluctuations of nightglow emissions

    International Nuclear Information System (INIS)

    Thelin, B.

    1986-02-01

    In this paper a new kind of linearization effect between the atmospheric night airglow emissions is presented. The same kind of linearization effect has previously been studied with spectrochemical light sources together with a spectrometer. A linear graph was obtained for atomic spectral lines and vibrational bandspectra when the spectral line intensity ratio fluctuations were plotted versus the photon energies of these emissions. To study this effect data from a number of different photometer investigations of night airglow emissions at different times and places have been used. (author)

  10. Functional analysis, spectral theory, and applications

    CERN Document Server

    Einsiedler, Manfred

    2017-01-01

    This textbook provides a careful treatment of functional analysis and some of its applications in analysis, number theory, and ergodic theory. In addition to discussing core material in functional analysis, the authors cover more recent and advanced topics, including Weyl’s law for eigenfunctions of the Laplace operator, amenability and property (T), the measurable functional calculus, spectral theory for unbounded operators, and an account of Tao’s approach to the prime number theorem using Banach algebras. The book further contains numerous examples and exercises, making it suitable for both lecture courses and self-study. Functional Analysis, Spectral Theory, and Applications is aimed at postgraduate and advanced undergraduate students with some background in analysis and algebra, but will also appeal to everyone with an interest in seeing how functional analysis can be applied to other parts of mathematics.

  11. Utilizing the ratio and the summation of two spectral lines for estimation of optical depth: Focus on thick plasmas

    Science.gov (United States)

    Rezaei, Fatemeh; Tavassoli, Seyed Hassan

    2016-11-01

    In this paper, a study is performed on the spectral lines of plasma radiations created from focusing of the Nd:YAG laser on Al standard alloys at atmospheric air pressure. A new theoretical method is presented to investigate the evolution of the optical depth of the plasma based on the radiative transfer equation, in LTE condition. This work relies on the Boltzmann distribution, lines broadening equations, and as well as the self-absorption relation. Then, an experimental set-up is devised to extract some of plasma parameters such as temperature from modified line ratio analysis, electron density from Stark broadening mechanism, line intensities of two spectral lines in the same order of ionization from similar species, and the plasma length from the shadowgraphy section. In this method, the summation and the ratio of two spectral lines are considered for evaluation of the temporal variations of the plasma parameters in a LIBS homogeneous plasma. The main advantage of this method is that it comprises the both of thin and thick laser induced plasmas without straight calculation of self-absorption coefficient. Moreover, the presented model can also be utilized for evaluation the transition of plasma from the thin condition to the thick one. The results illustrated that by measuring the line intensities of two spectral lines at different evolution times, the plasma cooling and the growth of the optical depth can be followed.

  12. SPAM- SPECTRAL ANALYSIS MANAGER (DEC VAX/VMS VERSION)

    Science.gov (United States)

    Solomon, J. E.

    1994-01-01

    The Spectral Analysis Manager (SPAM) was developed to allow easy qualitative analysis of multi-dimensional imaging spectrometer data. Imaging spectrometers provide sufficient spectral sampling to define unique spectral signatures on a per pixel basis. Thus direct material identification becomes possible for geologic studies. SPAM provides a variety of capabilities for carrying out interactive analysis of the massive and complex datasets associated with multispectral remote sensing observations. In addition to normal image processing functions, SPAM provides multiple levels of on-line help, a flexible command interpretation, graceful error recovery, and a program structure which can be implemented in a variety of environments. SPAM was designed to be visually oriented and user friendly with the liberal employment of graphics for rapid and efficient exploratory analysis of imaging spectrometry data. SPAM provides functions to enable arithmetic manipulations of the data, such as normalization, linear mixing, band ratio discrimination, and low-pass filtering. SPAM can be used to examine the spectra of an individual pixel or the average spectra over a number of pixels. SPAM also supports image segmentation, fast spectral signature matching, spectral library usage, mixture analysis, and feature extraction. High speed spectral signature matching is performed by using a binary spectral encoding algorithm to separate and identify mineral components present in the scene. The same binary encoding allows automatic spectral clustering. Spectral data may be entered from a digitizing tablet, stored in a user library, compared to the master library containing mineral standards, and then displayed as a timesequence spectral movie. The output plots, histograms, and stretched histograms produced by SPAM can be sent to a lineprinter, stored as separate RGB disk files, or sent to a Quick Color Recorder. SPAM is written in C for interactive execution and is available for two different

  13. Particulate characterization by PIXE multivariate spectral analysis

    International Nuclear Information System (INIS)

    Antolak, Arlyn J.; Morse, Daniel H.; Grant, Patrick G.; Kotula, Paul G.; Doyle, Barney L.; Richardson, Charles B.

    2007-01-01

    Obtaining particulate compositional maps from scanned PIXE (proton-induced X-ray emission) measurements is extremely difficult due to the complexity of analyzing spectroscopic data collected with low signal-to-noise at each scan point (pixel). Multivariate spectral analysis has the potential to analyze such data sets by reducing the PIXE data to a limited number of physically realizable and easily interpretable components (that include both spectral and image information). We have adapted the AXSIA (automated expert spectral image analysis) program, originally developed by Sandia National Laboratories to quantify electron-excited X-ray spectroscopy data, for this purpose. Samples consisting of particulates with known compositions and sizes were loaded onto Mylar and paper filter substrates and analyzed by scanned micro-PIXE. The data sets were processed by AXSIA and the associated principal component spectral data were quantified by converting the weighting images into concentration maps. The results indicate automated, nonbiased, multivariate statistical analysis is useful for converting very large amounts of data into a smaller, more manageable number of compositional components needed for locating individual particles-of-interest on large area collection media

  14. Spectral theory and nonlinear functional analysis

    CERN Document Server

    Lopez-Gomez, Julian

    2001-01-01

    This Research Note addresses several pivotal problems in spectral theory and nonlinear functional analysis in connection with the analysis of the structure of the set of zeroes of a general class of nonlinear operators. It features the construction of an optimal algebraic/analytic invariant for calculating the Leray-Schauder degree, new methods for solving nonlinear equations in Banach spaces, and general properties of components of solutions sets presented with minimal use of topological tools. The author also gives several applications of the abstract theory to reaction diffusion equations and systems.The results presented cover a thirty-year period and include recent, unpublished findings of the author and his coworkers. Appealing to a broad audience, Spectral Theory and Nonlinear Functional Analysis contains many important contributions to linear algebra, linear and nonlinear functional analysis, and topology and opens the door for further advances.

  15. Study of the spectral ratios derived from seismic refraction data for evaluation of the local seismic effects in six sites between south of Mizil and west of Giurgiu

    International Nuclear Information System (INIS)

    Raileanu, Victor

    2002-01-01

    An analysis of spectral ratios derived from seismic records along the seismic refraction line Vrancea 99 is performed for six sites located south of Mizil. Records generated by four big shots (300 - 900 Kg charge) are analyzed in each size and 24 curves of spectral ratios are obtained. A first sight shows that the spectral ratios depend not only on the local geological and physical conditions but also on epicentral distance from source to the site as well as the magnitude of the released energy by the seismic source. Nevertheless it is noticed that the frequency windows with the high spectral ratios are about the same regardless of the position and magnitude of the source which suggests the influence of the local conditions. Generally, the sites from the north of Bucharest city, namely Parepa Rusani, Gradistea and Pantelimon show low spectral ratios while the southern sites, Singureni, Stanesti and Gaujani present higher spectral ratios in the frequency window from 0.1 - 10 Hz. The northern group of sites presents a diminution of the spectral ratios from about 2 Hz (0.5 s) to 7 - 8 Hz ( 0.14 - 0.12 s). The southern group has the peaks of spectral ratios within a better individualized frequency window, 3-6 Hz (0.33 - 0.16 s). A secondary peak is around 12 - 13 Hz (∼ 0.08 s). Such quite high resonance frequencies are generated by the shallow layers with thicknesses from a few tens meters (0.08 s corresponds to 32 m thickness) to one - two hundred meters (0.16/0.33/0.5 s → 60, 120, 190 m thickness). (author)

  16. Terahertz Josephson spectral analysis and its applications

    Science.gov (United States)

    Snezhko, A. V.; Gundareva, I. I.; Lyatti, M. V.; Volkov, O. Y.; Pavlovskiy, V. V.; Poppe, U.; Divin, Y. Y.

    2017-04-01

    Principles of Hilbert-transform spectral analysis (HTSA) are presented and advantages of the technique in the terahertz (THz) frequency range are discussed. THz HTSA requires Josephson junctions with high values of characteristic voltages I c R n and dynamics described by a simple resistively shunted junction (RSJ) model. To meet these requirements, [001]- and [100]-tilt YBa2Cu3O7-x bicrystal junctions with deviations from the RSJ model less than 1% have been developed. Demonstrators of Hilbert-transform spectrum analyzers with various cryogenic environments, including integration into Stirling coolers, are described. Spectrum analyzers have been characterized in the spectral range from 50 GHz to 3 THz. Inside a power dynamic range of five orders, an instrumental function of the analyzers has been found to have a Lorentz form around a single frequency of 1.48 THz with a spectral resolution as low as 0.9 GHz. Spectra of THz radiation from optically pumped gas lasers and semiconductor frequency multipliers have been studied with these spectrum analyzers and the regimes of these radiation sources were optimized for a single-frequency operation. Future applications of HTSA will be related with quick and precise spectral characterization of new radiation sources and identification of substances in the THz frequency range.

  17. Spectral analysis of Floating Car Data

    OpenAIRE

    Gössel, F.; Michler, E.; Wrase, B.

    2003-01-01

    Floating Car Data (FCD) are one important data source in traffic telematic systems. The original variable in these systems is the vehicle velocity. The paper analyses the measured value “vehicle velocity" by methods of information technology. Consequences for processing, transmission and storage of FCD under condition of limited resources are discussed. Starting point of the investigation is the analysis of spectral characteristics of velocity-time-profiles. The spectra are determined by...

  18. A new method of organizing spectral line intensity ratio fluctuations of auroral emissions

    International Nuclear Information System (INIS)

    Thelin, B.

    1986-02-01

    In this paper a new kind of linearization effect between the atmospheric auroral emissions is presented. The same kind of linearization effect has previously been found in nightglow emissions from photometer measurements and in the spectrochemical field from studies of optical light sources. Linear graphs have been obtained for atomic spectral lines and vibrational bandspectra when the spectral line ratio fluctuations were plotted versus the photon energies of these emissions. This new effect has been studied with a spectrophotometer in auroral emissions, where linear graphs have been obtained on different auroral occasions. By doing such studies of auroral light it is possible to see the importance of the inelastic scattering cross section between electrons - atoms and electrons - molecules. In this way it has shown to be possible to determine the mean energy of the interacting thermal electrons that are active in the different auroral phases. (author)

  19. Financial Ratio Analysis Comes to Nonprofits.

    Science.gov (United States)

    Chabotar, Kent John

    1989-01-01

    To evaluate their financial health, a growing number of colleges, universities, and other nonprofit organizations are using financial ratio analysis, a technique used in business. The strengths and weaknesses of ratio analysis are assessed and suggestions are made on how nonprofits can use it most effectively. (Author/MLW)

  20. Multiple Spectral Ratio Analyses Reveal Earthquake Source Spectra of Small Earthquakes and Moment Magnitudes of Microearthquakes

    Science.gov (United States)

    Uchide, T.; Imanishi, K.

    2016-12-01

    Spectral studies for macroscopic earthquake source parameters are helpful for characterizing earthquake rupture process and hence understanding earthquake source physics and fault properties. Those studies require us mute wave propagation path and site effects in spectra of seismograms to accentuate source effect. We have recently developed the multiple spectral ratio method [Uchide and Imanishi, BSSA, 2016] employing many empirical Green's function (EGF) events to reduce errors from the choice of EGF events. This method helps us estimate source spectra more accurately as well as moment ratios among reference and EGF events, which are useful to constrain the seismic moment of microearthquakes. First, we focus on earthquake source spectra. The source spectra have generally been thought to obey the omega-square model with single corner-frequency. However recent studies imply the existence of another corner frequency for some earthquakes. We analyzed small shallow inland earthquakes (3.5 multiple spectral ratio analyses. For 20000 microearthquakes in Fukushima Hamadori and northern Ibaraki prefecture area, we found that the JMA magnitudes (Mj) based on displacement or velocity amplitude are systematically below Mw. The slope of the Mj-Mw relation is 0.5 for Mj 5. We propose a fitting curve for the obtained relationship as Mw = (1/2)Mj + (1/2)(Mjγ + Mcorγ)1/γ+ c, where Mcor is a corner magnitude, γ determines the sharpness of the corner, and c denotes an offset. We obtained Mcor = 4.1, γ = 5.6, and c = -0.47 to fit the observation. The parameters are useful for characterizing the Mj-Mw relationship. This non-linear relationship affects the b-value of the Gutenberg-Richter law. Quantitative discussions on b-values are affected by the definition of magnitude to use.

  1. Berkeley SuperNova Ia Program (BSNIP): Initial Spectral Analysis

    Science.gov (United States)

    Silverman, Jeffrey; Kong, J.; Ganeshalingam, M.; Li, W.; Filippenko, A. V.

    2011-01-01

    The Berkeley SuperNova Ia Program (BSNIP) has been observing nearby (z analysis of this dataset consists of accurately and robustly measuring the strength and position of various spectral features near maximum brightness. We determine the endpoints, pseudo-continuum, expansion velocity, equivalent width, and depth of each major feature observed in our wavelength range. For objects with multiple spectra near maximum brightness we investigate how these values change with time. From these measurements we also calculate velocity gradients and various flux ratios within a given spectrum which will allow us to explore correlations between spectral and photometric observables. Some possible correlations have been studied previously, but our dataset is unique in how self-consistent the data reduction and spectral feature measurements have been, and it is a factor of a few larger than most earlier studies. We will briefly summarize the contents of the full dataset as an introduction to our initial analysis. Some of our measurements of SN Ia spectral features, along with a few initial results from those measurements, will be presented. Finally, we will comment on our current progress and planned future work. We gratefully acknowledge the financial support of NSF grant AST-0908886, the TABASGO Foundation, and the Marc J. Staley Graduate Fellowship in Astronomy.

  2. Improving Spectral Image Classification through Band-Ratio Optimization and Pixel Clustering

    Science.gov (United States)

    O'Neill, M.; Burt, C.; McKenna, I.; Kimblin, C.

    2017-12-01

    The Underground Nuclear Explosion Signatures Experiment (UNESE) seeks to characterize non-prompt observables from underground nuclear explosions (UNE). As part of this effort, we evaluated the ability of DigitalGlobe's WorldView-3 (WV3) to detect and map UNE signatures. WV3 is the current state-of-the-art, commercial, multispectral imaging satellite; however, it has relatively limited spectral and spatial resolutions. These limitations impede image classifiers from detecting targets that are spatially small and lack distinct spectral features. In order to improve classification results, we developed custom algorithms to reduce false positive rates while increasing true positive rates via a band-ratio optimization and pixel clustering front-end. The clusters resulting from these algorithms were processed with standard spectral image classifiers such as Mixture-Tuned Matched Filter (MTMF) and Adaptive Coherence Estimator (ACE). WV3 and AVIRIS data of Cuprite, Nevada, were used as a validation data set. These data were processed with a standard classification approach using MTMF and ACE algorithms. They were also processed using the custom front-end prior to the standard approach. A comparison of the results shows that the custom front-end significantly increases the true positive rate and decreases the false positive rate.This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy. DOE/NV/25946-3283.

  3. Influence of spectral resolution, spectral range and signal-to-noise ratio of Fourier transform infra-red spectra on identification of high explosive substances

    Science.gov (United States)

    Banas, Krzysztof; Banas, Agnieszka M.; Heussler, Sascha P.; Breese, Mark B. H.

    2018-01-01

    In the contemporary spectroscopy there is a trend to record spectra with the highest possible spectral resolution. This is clearly justified if the spectral features in the spectrum are very narrow (for example infra-red spectra of gas samples). However there is a plethora of samples (in the liquid and especially in the solid form) where there is a natural spectral peak broadening due to collisions and proximity predominately. Additionally there is a number of portable devices (spectrometers) with inherently restricted spectral resolution, spectral range or both, which are extremely useful in some field applications (archaeology, agriculture, food industry, cultural heritage, forensic science). In this paper the investigation of the influence of spectral resolution, spectral range and signal-to-noise ratio on the identification of high explosive substances by applying multivariate statistical methods on the Fourier transform infra-red spectral data sets is studied. All mathematical procedures on spectral data for dimension reduction, clustering and validation were implemented within R open source environment.

  4. Inductive Sensor Performance in Partial Discharges and Noise Separation by Means of Spectral Power Ratios

    Directory of Open Access Journals (Sweden)

    Jorge Alfredo Ardila-Rey

    2014-02-01

    Full Text Available Partial discharge (PD detection is a standardized technique to qualify electrical insulation in machines and power cables. Several techniques that analyze the waveform of the pulses have been proposed to discriminate noise from PD activity. Among them, spectral power ratio representation shows great flexibility in the separation of the sources of PD. Mapping spectral power ratios in two-dimensional plots leads to clusters of points which group pulses with similar characteristics. The position in the map depends on the nature of the partial discharge, the setup and the frequency response of the sensors. If these clusters are clearly separated, the subsequent task of identifying the source of the discharge is straightforward so the distance between clusters can be a figure of merit to suggest the best option for PD recognition. In this paper, two inductive sensors with different frequency responses to pulsed signals, a high frequency current transformer and an inductive loop sensor, are analyzed to test their performance in detecting and separating the sources of partial discharges.

  5. A source representation of microseisms constrained by HV spectral ratio observations

    Science.gov (United States)

    Dreger, D.; Rhie, J.

    2006-12-01

    The microseisms are generated by pressure variation on the sea floor caused by incident and reflected ocean waves, and dominant background noises at short periods. The observations of microseism wave fields in deep sedimentary basins (e.g., Santa Clara Valley) show that the maximum period of the horizontal to vertical (H/V) spectral ratio correlates with basin thickness. A similar correlation has been found in teleseismic arrival times and P-wave amplitude as well as local-earthquake S-wave relative amplification [Dolenc et al., 2005]. This observation infers that a study of microseism wave field, combined with other seismic data sets, can probably be used to invert for the velocity structures of the deep basins. To make this inversion possible, it is necessary to understand the excitation and propagation characteristics of microseisms. We will perform forward computations of microseism wave fields for source representations such as CLVDs and single-forces with the USGS 3D velocity model. Various spatial extensions as well as the frequency content of the source will be tested to match observed shifts in dominant H/V spectral ratio. The optimal source representation of the microseisms will be the first step to accomplish inversions for 3D seismic velocity structure in sedimentary basins using microseisms.

  6. Semiclassical analysis spectral correlations in mesoscopic systems

    International Nuclear Information System (INIS)

    Argaman, N.; Imry, Y.; Smilansky, U.

    1991-07-01

    We consider the recently developed semiclassical analysis of the quantum mechanical spectral form factor, which may be expressed in terms of classically defiable properties. When applied to electrons whose classical behaviour is diffusive, the results of earlier quantum mechanical perturbative derivations, which were developed under a different set of assumptions, are reproduced. The comparison between the two derivations shows that the results depends not on their specific details, but to a large extent on the principle of quantum coherent superposition, and on the generality of the notion of diffusion. The connection with classical properties facilitates application to many physical situations. (author)

  7. Ratio Analysis: Where Investments Meet Mathematics.

    Science.gov (United States)

    Barton, Susan D.; Woodbury, Denise

    2002-01-01

    Discusses ratio analysis by which investments may be evaluated. Requires the use of fundamental mathematics, problem solving, and a comparison of the mathematical results within the framework of industry. (Author/NB)

  8. Spectral analysis of allogeneic hydroxyapatite powders

    Science.gov (United States)

    Timchenko, P. E.; Timchenko, E. V.; Pisareva, E. V.; Vlasov, M. Yu; Red'kin, N. A.; Frolov, O. O.

    2017-01-01

    In this paper we discuss the application of Raman spectroscopy to the in vitro analysis of the hydroxyapatite powder samples produced from different types of animal bone tissue during demineralization process at various acid concentrations and exposure durations. The derivation of the Raman spectrum of hydroxyapatite is attempted by the analysis of the pure powders of its known constituents. Were experimentally found spectral features of hydroxyapatite, based on analysis of the line amplitude at wave numbers 950-965 cm-1 ((PO4)3- (ν1) vibration) and 1065-1075 cm-1 ((CO3)2-(ν1) B-type replacement). Control of physicochemical properties of hydroxyapatite was carried out by Raman spectroscopy. Research results are compared with an infrared Fourier spectroscopy.

  9. Spectral analysis of allogeneic hydroxyapatite powders

    International Nuclear Information System (INIS)

    Timchenko, P E; Timchenko, E V; Pisareva, E V; Vlasov, M Yu; Red’kin, N A; Frolov, O O

    2017-01-01

    In this paper we discuss the application of Raman spectroscopy to the in vitro analysis of the hydroxyapatite powder samples produced from different types of animal bone tissue during demineralization process at various acid concentrations and exposure durations. The derivation of the Raman spectrum of hydroxyapatite is attempted by the analysis of the pure powders of its known constituents. Were experimentally found spectral features of hydroxyapatite, based on analysis of the line amplitude at wave numbers 950-965 cm -1 ((PO 4 ) 3- (ν 1 ) vibration) and 1065-1075 cm -1 ((CO 3 ) 2- (ν 1 ) B-type replacement). Control of physicochemical properties of hydroxyapatite was carried out by Raman spectroscopy. Research results are compared with an infrared Fourier spectroscopy. (paper)

  10. Parametric image reconstruction using spectral analysis of PET projection data

    International Nuclear Information System (INIS)

    Meikle, Steven R.; Matthews, Julian C.; Cunningham, Vincent J.; Bailey, Dale L.; Livieratos, Lefteris; Jones, Terry; Price, Pat

    1998-01-01

    Spectral analysis is a general modelling approach that enables calculation of parametric images from reconstructed tracer kinetic data independent of an assumed compartmental structure. We investigated the validity of applying spectral analysis directly to projection data motivated by the advantages that: (i) the number of reconstructions is reduced by an order of magnitude and (ii) iterative reconstruction becomes practical which may improve signal-to-noise ratio (SNR). A dynamic software phantom with typical 2-[ 11 C]thymidine kinetics was used to compare projection-based and image-based methods and to assess bias-variance trade-offs using iterative expectation maximization (EM) reconstruction. We found that the two approaches are not exactly equivalent due to properties of the non-negative least-squares algorithm. However, the differences are small ( 1 and, to a lesser extent, VD). The optimal number of EM iterations was 15-30 with up to a two-fold improvement in SNR over filtered back projection. We conclude that projection-based spectral analysis with EM reconstruction yields accurate parametric images with high SNR and has potential application to a wide range of positron emission tomography ligands. (author)

  11. A spectral analysis of rice grains

    International Nuclear Information System (INIS)

    McIlvaine, M.S.; Cua, F.T.; Navarro, E.F.

    1976-06-01

    With the advent of extensive nuclear testing and the development and use of highly potent pesticides and fertilizers, the hazardous threats of radioactive contamination due to fallout and to the absorption of pesticide residues have been given due consideration. Among the many forms of life exposed to these threats are food crops and among these is rice. Several rice grain samples - Japanese rice samples ''A'' and ''B'' submitted by the National Grains Authority (NGA) for analysis, random samples of rice being sold to the public at local markets, and ''black rice'' which were picked from along the shores of a Mindoro town were subjected to spectral analysis. Results revealed the presence of trace elements normally found in plants, such as; K-42, I-124, Cl-38, Na-24, Br-82, and Mn-56. No mercury was detected in the sample specimen analyzed

  12. Spectral analysis of major heart tones

    Science.gov (United States)

    Lejkowski, W.; Dobrowolski, A. P.; Majka, K.; Olszewski, R.

    2018-04-01

    The World Health Organization (WHO) figures clearly indicate that cardiovascular disease is the most common cause of death and disability in the world. Early detection of cardiovascular pathologies may contribute to reducing such a high mortality rate. Auscultatory examination is one of the first and most important step in cardiologic diagnostics. Unfortunately, proper diagnosis is closely related to long-term practice and medical experience. The article presents the author's system of recording phonocardiograms and the way of saving data, as well as the outline of the analysis algorithm, which will allow to assign a case to a patient with heart failure or healthy voluntaries' with a certain high probability. The results of a pilot study of phonocardiographic signals were also presented as an introduction to further research aimed at the development of an efficient diagnostic algorithm based on spectral analysis of the heart tone.

  13. Spectral Analysis Methods of Social Networks

    Directory of Open Access Journals (Sweden)

    P. G. Klyucharev

    2017-01-01

    Full Text Available Online social networks (such as Facebook, Twitter, VKontakte, etc. being an important channel for disseminating information are often used to arrange an impact on the social consciousness for various purposes - from advertising products or services to the full-scale information war thereby making them to be a very relevant object of research. The paper reviewed the analysis methods of social networks (primarily, online, based on the spectral theory of graphs. Such methods use the spectrum of the social graph, i.e. a set of eigenvalues of its adjacency matrix, and also the eigenvectors of the adjacency matrix.Described measures of centrality (in particular, centrality based on the eigenvector and PageRank, which reflect a degree of impact one or another user of the social network has. A very popular PageRank measure uses, as a measure of centrality, the graph vertices, the final probabilities of the Markov chain, whose matrix of transition probabilities is calculated on the basis of the adjacency matrix of the social graph. The vector of final probabilities is an eigenvector of the matrix of transition probabilities.Presented a method of dividing the graph vertices into two groups. It is based on maximizing the network modularity by computing the eigenvector of the modularity matrix.Considered a method for detecting bots based on the non-randomness measure of a graph to be computed using the spectral coordinates of vertices - sets of eigenvector components of the adjacency matrix of a social graph.In general, there are a number of algorithms to analyse social networks based on the spectral theory of graphs. These algorithms show very good results, but their disadvantage is the relatively high (albeit polynomial computational complexity for large graphs.At the same time it is obvious that the practical application capacity of the spectral graph theory methods is still underestimated, and it may be used as a basis to develop new methods.The work

  14. Global Source Parameters from Regional Spectral Ratios for Yield Transportability Studies

    Science.gov (United States)

    Phillips, W. S.; Fisk, M. D.; Stead, R. J.; Begnaud, M. L.; Rowe, C. A.

    2016-12-01

    We use source parameters such as moment, corner frequency and high frequency rolloff as constraints in amplitude tomography, ensuring that spectra of well-studied earthquakes are recovered using the ensuing attenuation and site term model. We correct explosion data for path and site effects using such models, which allows us to test transportability of yield estimation techniques based on our best source spectral estimates. To develop a background set of source parameters, we applied spectral ratio techniques to envelopes of a global set of regional distance recordings from over 180,000 crustal events. Corner frequencies and moment ratios were determined via inversion using all event pairs within predetermined clusters, shifting to absolute levels using independently determined regional and teleseismic moments. The moment and corner frequency results can be expressed as stress drop, which has considerable scatter, yet shows dramatic regional patterns. We observe high stress in subduction zones along S. America, S. Mexico, the Banda Sea, and associated with the Yakutat Block in Alaska. We also observe high stress at the Himalayan syntaxes, the Pamirs, eastern Iran, the Caspian, the Altai-Sayan, and the central African rift. Low stress is observed along mid ocean spreading centers, the Afar rift, patches of convergence zones such as Nicaragua, the Zagros, Tibet, and the Tien Shan, among others. Mine blasts appear as low stress events due to their low corners and steep rolloffs. Many of these anomalies have been noted by previous studies, and we plan to compare results directly. As mentioned, these results will be used to constrain tomographic imaging, but can also be used in model validation procedures similar to the use of ground truth in location problems, and, perhaps most importantly, figure heavily in quality control of local and regional distance amplitude measurements.

  15. Spectral analysis and filter theory in applied geophysics

    CERN Document Server

    Buttkus, Burkhard

    2000-01-01

    This book is intended to be an introduction to the fundamentals and methods of spectral analysis and filter theory and their appli­ cations in geophysics. The principles and theoretical basis of the various methods are described, their efficiency and effectiveness eval­ uated, and instructions provided for their practical application. Be­ sides the conventional methods, newer methods arediscussed, such as the spectral analysis ofrandom processes by fitting models to the ob­ served data, maximum-entropy spectral analysis and maximum-like­ lihood spectral analysis, the Wiener and Kalman filtering methods, homomorphic deconvolution, and adaptive methods for nonstation­ ary processes. Multidimensional spectral analysis and filtering, as well as multichannel filters, are given extensive treatment. The book provides a survey of the state-of-the-art of spectral analysis and fil­ ter theory. The importance and possibilities ofspectral analysis and filter theory in geophysics for data acquisition, processing an...

  16. Spectral-ratio radon background correction method in airborne γ-ray spectrometry based on compton scattering deduction

    International Nuclear Information System (INIS)

    Gu Yi; Xiong Shengqing; Zhou Jianxin; Fan Zhengguo; Ge Liangquan

    2014-01-01

    γ-ray released by the radon daughter has severe impact on airborne γ-ray spectrometry. The spectral-ratio method is one of the best mathematical methods for radon background deduction in airborne γ-ray spectrometry. In this paper, an advanced spectral-ratio method was proposed which deducts Compton scattering ray by the fast Fourier transform rather than tripping ratios, the relationship between survey height and correction coefficient of the advanced spectral-ratio radon background correction method was studied, the advanced spectral-ratio radon background correction mathematic model was established, and the ground saturation model calibrating technology for correction coefficient was proposed. As for the advanced spectral-ratio radon background correction method, its applicability and correction efficiency are improved, and the application cost is saved. Furthermore, it can prevent the physical meaning lost and avoid the possible errors caused by matrix computation and mathematical fitting based on spectrum shape which is applied in traditional correction coefficient. (authors)

  17. Digital spectral analysis parametric, non-parametric and advanced methods

    CERN Document Server

    Castanié, Francis

    2013-01-01

    Digital Spectral Analysis provides a single source that offers complete coverage of the spectral analysis domain. This self-contained work includes details on advanced topics that are usually presented in scattered sources throughout the literature.The theoretical principles necessary for the understanding of spectral analysis are discussed in the first four chapters: fundamentals, digital signal processing, estimation in spectral analysis, and time-series models.An entire chapter is devoted to the non-parametric methods most widely used in industry.High resolution methods a

  18. Spectral analysis of noisy nonlinear maps

    International Nuclear Information System (INIS)

    Hirshman, S.P.; Whitson, J.C.

    1982-01-01

    A path integral equation formalism is developed to obtain the frequency spectrum of nonlinear mappings exhibiting chaotic behavior. The one-dimensional map, x/sub n+1/ = f(x/sub n/), where f is nonlinear and n is a discrete time variable, is analyzed in detail. This map is introduced as a paradigm of systems whose exact behavior is exceedingly complex, and therefore irretrievable, but which nevertheless possess smooth, well-behaved solutions in the presence of small sources of external noise. A Boltzmann integral equation is derived for the probability distribution function p(x,n). This equation is linear and is therefore amenable to spectral analysis. The nonlinear dynamics in f(x) appear as transition probability matrix elements, and the presence of noise appears simply as an overall multiplicative scattering amplitude. This formalism is used to investigate the band structure of the logistic equation and to analyze the effects of external noise on both the invariant measure and the frequency spectrum of x/sub n/ for several values of lambda epsilon [0,1

  19. Spectral analysis of underwater explosions in the Dead Sea

    Science.gov (United States)

    Gitterman, Y.; Ben-Avraham, Z.; Ginzburg, A.

    1998-08-01

    The present study utilizes the Israel Seismic Network (ISN) as a spatially distributed multichannel system for the discrimination of low-magnitude events (ML UWEs) and 16 earthquakes in the magnitude range ML = 1.6-2.8, within distances of 10-150 km, recorded by the ISN, were selected for the analysis. The analysis is based on a smoothed (0.5 Hz window) Fourier spectrum of the whole signal (defined by the signal-to-noise criterion), without picking separate wave phases. It was found that the classical discriminant of the seismic energy ratio between the relatively low-frequency (1-6 Hz) and high-frequency (6-11 Hz) bands, averaged over an ISN subnetwork, showed an overlap between UWEs and earthquakes and cannot itself provide reliable identification. We developed and tested a new multistation discriminant based on the low- frequency spectral modulation (LFSM) method. In our case the LFSM is associated with the bubbling effect in underwater explosions. The method demonstrates a distinct azimuth-invariant coherency of spectral shapes in the low-frequency range (1-12 Hz) of short-period seismometer systems. The coherency of the modulated spectra for different ISN stations was measured by semblance statistics commonly used in seismic prospecting for phase correlation in the time domain. The modified statistics provided an almost complete separation between earthquakes and underwater explosions.

  20. Noise analysis role in reactor safety, Spectral analysis (PSD)

    International Nuclear Information System (INIS)

    Jovanovic, S.; Velickovic, Lj.

    1967-11-01

    Spectral power density of a zero power reactor is frequency dependent and related to transfer function of the reactor and to spectral density of the input disturbance. Measurement of spectral power density of a critical system is used to obtain the ratio (β/l), β is the effective yield of delayed neutrons, and l is the effective mean neutron lifetime. When reactor is subcritical, if the effective yie ald of delayed neutrons, the effective mean neutron lifetime are known, the shutdown margin can be determined by relation α = (1 - k (1- β0)/l, k is the effective multiplication factor. Output neutron spectrum at the RB reactor in Vinca was measured for a few reactor core configurations and for a few levels of heavy water at subcritical state. Measured values were satisfactory when the reactor was critical, but the reactor noise of subcritical system was covered by the white noise of the detector and electronic equipment. The Ra-Be source was under the reactor vessel when measurements of subcritical system were done. More efficient detector or external random stimulus for increasing the intensity of neutron fluctuations would be needed to obtain results for subcritical system

  1. Archives of Astronomical Spectral Observations and Atomic/Molecular Databases for their Analysis

    Directory of Open Access Journals (Sweden)

    Ryabchikova T.

    2015-12-01

    Full Text Available We present a review of open-source data for stellar spectroscopy investigations. It includes lists of the main archives of medium-to-high resolution spectroscopic observations, with brief characteristics of the archive data (spectral range, resolving power, flux units. We also review atomic and molecular databases that contain parameters of spectral lines, cross-sections and reaction rates needed for a detailed analysis of high resolution, high signal-to-noise ratio stellar spectra.

  2. Spectral signature verification using statistical analysis and text mining

    Science.gov (United States)

    DeCoster, Mallory E.; Firpi, Alexe H.; Jacobs, Samantha K.; Cone, Shelli R.; Tzeng, Nigel H.; Rodriguez, Benjamin M.

    2016-05-01

    In the spectral science community, numerous spectral signatures are stored in databases representative of many sample materials collected from a variety of spectrometers and spectroscopists. Due to the variety and variability of the spectra that comprise many spectral databases, it is necessary to establish a metric for validating the quality of spectral signatures. This has been an area of great discussion and debate in the spectral science community. This paper discusses a method that independently validates two different aspects of a spectral signature to arrive at a final qualitative assessment; the textual meta-data and numerical spectral data. Results associated with the spectral data stored in the Signature Database1 (SigDB) are proposed. The numerical data comprising a sample material's spectrum is validated based on statistical properties derived from an ideal population set. The quality of the test spectrum is ranked based on a spectral angle mapper (SAM) comparison to the mean spectrum derived from the population set. Additionally, the contextual data of a test spectrum is qualitatively analyzed using lexical analysis text mining. This technique analyzes to understand the syntax of the meta-data to provide local learning patterns and trends within the spectral data, indicative of the test spectrum's quality. Text mining applications have successfully been implemented for security2 (text encryption/decryption), biomedical3 , and marketing4 applications. The text mining lexical analysis algorithm is trained on the meta-data patterns of a subset of high and low quality spectra, in order to have a model to apply to the entire SigDB data set. The statistical and textual methods combine to assess the quality of a test spectrum existing in a database without the need of an expert user. This method has been compared to other validation methods accepted by the spectral science community, and has provided promising results when a baseline spectral signature is

  3. Mapping a Part of Neuquén Basin in Argentina by Global-phase H/V Spectral Ratio

    NARCIS (Netherlands)

    Nishitsuji, Yohei; Ruigrok, E.N.; Gomez, M.; Draganov, Deyan

    2015-01-01

    We investigated the applicability of global phases (epicentral distances of ≥ 120° and ≥ 150°) for the H/V spectral ratio to identify the fundamental resonance frequency. We applied the method to delineate a part of Neuquén basin in Argentina without the need for active seismic sources. We obtained

  4. Mapping a part of Neuquen Basin in Argentina by global-phase H/V spectral ratio

    NARCIS (Netherlands)

    Nishitsuji, Y.; Ruigrok, E.; Gomez, M.; Draganov, D.S.

    2015-01-01

    We investigated the applicability of global phases (epicentral distances of ? 120° and ? 150°) for the H/V spectral ratio to identify the fundamental resonance frequency. We applied the method to delineate a part of Neuquén basin in Argentina without the need for active seismic sources. We obtained

  5. Estimation of Rayleigh-wave spectral ratio from microtremors using a three-component single-station seismograph; Itten sanseibun bido kansoku ni motozuita Rayleigh ha shinpukuhi no suitei

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H; Mizutani, K; Saito, t [Iwate University, Iwate (Japan). Faculty of Engineering

    1997-10-22

    Discussions were given on the possibility of estimating Rayleigh-wave spectral ratio utilizing phase difference between horizontal movements and vertical movements by using a three-component single-station seismograph. The test has selected as an observation point a location in the city of Kushiro where a pulp and paper mill generating microtremors is the focal point, and the underground structure at that point has been estimated by using the vertical array observation method. The observation system has used three components of a velocity type seismograph having a natural period of one second, an amplifier and an analog data recorder. As a result of the discussions, the following matters were made clear: the spectral ratio with a phase difference of 90 degrees agrees with the frequency at a peak trough of the theoretical Rayleigh-wave spectral ratio; the values of the spectral ratio at the phase difference of 90 degrees and the values of the theoretical Rayleigh-wave spectral ratio correspond well excepting in frequency bands of the peak trough; and these results suggest that the Rayleigh-wave spectral ratio may be estimated by utilizing the phase difference between horizontal movements and vertical movements. Estimation of the underground structure by using the inverse analysis of this Rayleigh-wave spectral ratio is expected in the future. 6 refs., 5 figs., tab.

  6. P-wave attenuation in the Pacific slab beneath northeastern Japan revealed by the spectral ratio of intraslab earthquakes

    Science.gov (United States)

    Shiina, Takahiro; Nakajima, Junichi; Matsuzawa, Toru

    2018-05-01

    We investigate P-wave attenuation, Qp-1, in the Pacific slab beneath northeastern (NE) Japan, adopting for the first time the spectral ratio technique for intraslab earthquakes. When seismograms of two earthquakes are recorded at a station and their ray paths to the station are largely overlapped, station-dependent amplification and structural effects on the overlapped rays can be canceled out from the ratio of the spectral amplitudes of the seismograms. Therefore, adopting the spectral ratio technique for intraslab earthquakes has a great advantage for the precise evaluation of Qp-1 in the slab because the structural effects above the slab, including the high-attenuation mantle wedge, are removed. For estimating the intraslab Qp-1, we determined corner frequency of the intraslab earthquakes using the S-coda wave spectral ratio as the first step. Then, we evaluated the inter-event path attenuation, Δt*, from the ratio of the spectral amplitudes of P waves. The obtained result shows that P-wave attenuation in the Pacific slab marks Qp-1 of 0.0015 (Qp of ∼670) at depths of 50-250 km. This indicates that the P-wave attenuation in the Pacific slab is weaker than that in the mantle wedge. The relatively high-Qp-1 is correlated with the distributions of intraslab earthquakes, suggesting that the P-wave amplitude is more attenuated around active seismicity zones in the slab. Therefore, our observations likely indicate the presence of fractures, hydrous minerals, and dehydrated fluid around seismogenic zones in the slab at intermediate depths.

  7. Spectral Analysis of Large Particle Systems

    DEFF Research Database (Denmark)

    Dahlbæk, Jonas

    2017-01-01

    that Schur complements, Feshbach maps and Grushin problems are three sides of the same coin, it seems to be a new observation that the smooth Feshbach method can also be formulated as a Grushin problem. Based on this, an abstract account of the spectral renormalization group is given....

  8. Spectral Analysis of Rich Network Topology in Social Networks

    Science.gov (United States)

    Wu, Leting

    2013-01-01

    Social networks have received much attention these days. Researchers have developed different methods to study the structure and characteristics of the network topology. Our focus is on spectral analysis of the adjacency matrix of the underlying network. Recent work showed good properties in the adjacency spectral space but there are few…

  9. Lunar near-surface shear wave velocities at the Apollo landing sites as inferred from spectral amplitude ratios

    Science.gov (United States)

    Horvath, P.; Latham, G. V.; Nakamura, Y.; Dorman, H. J.

    1980-01-01

    The horizontal-to-vertical amplitude ratios of the long-period seismograms are reexamined to determine the shear wave velocity distributions at the Apollo 12, 14, 15, and 16 lunar landing sites. Average spectral ratios, computed from a number of impact signals, were compared with spectral ratios calculated for the fundamental mode Rayleigh waves in media consisting of homogeneous, isotropic, horizontal layers. The shear velocities of the best fitting models at the different sites resemble each other and differ from the average for all sites by not more than 20% except for the bottom layer at station 14. The shear velocities increase from 40 m/s at the surface to about 400 m/s at depths between 95 and 160 m at the various sites. Within this depth range the velocity-depth functions are well represented by two piecewise linear segments, although the presence of first-order discontinuities cannot be ruled out.

  10. Nonlinear physical systems spectral analysis, stability and bifurcations

    CERN Document Server

    Kirillov, Oleg N

    2013-01-01

    Bringing together 18 chapters written by leading experts in dynamical systems, operator theory, partial differential equations, and solid and fluid mechanics, this book presents state-of-the-art approaches to a wide spectrum of new and challenging stability problems.Nonlinear Physical Systems: Spectral Analysis, Stability and Bifurcations focuses on problems of spectral analysis, stability and bifurcations arising in the nonlinear partial differential equations of modern physics. Bifurcations and stability of solitary waves, geometrical optics stability analysis in hydro- and magnetohydrodynam

  11. SpectralNET – an application for spectral graph analysis and visualization

    Directory of Open Access Journals (Sweden)

    Schreiber Stuart L

    2005-10-01

    Full Text Available Abstract Background Graph theory provides a computational framework for modeling a variety of datasets including those emerging from genomics, proteomics, and chemical genetics. Networks of genes, proteins, small molecules, or other objects of study can be represented as graphs of nodes (vertices and interactions (edges that can carry different weights. SpectralNET is a flexible application for analyzing and visualizing these biological and chemical networks. Results Available both as a standalone .NET executable and as an ASP.NET web application, SpectralNET was designed specifically with the analysis of graph-theoretic metrics in mind, a computational task not easily accessible using currently available applications. Users can choose either to upload a network for analysis using a variety of input formats, or to have SpectralNET generate an idealized random network for comparison to a real-world dataset. Whichever graph-generation method is used, SpectralNET displays detailed information about each connected component of the graph, including graphs of degree distribution, clustering coefficient by degree, and average distance by degree. In addition, extensive information about the selected vertex is shown, including degree, clustering coefficient, various distance metrics, and the corresponding components of the adjacency, Laplacian, and normalized Laplacian eigenvectors. SpectralNET also displays several graph visualizations, including a linear dimensionality reduction for uploaded datasets (Principal Components Analysis and a non-linear dimensionality reduction that provides an elegant view of global graph structure (Laplacian eigenvectors. Conclusion SpectralNET provides an easily accessible means of analyzing graph-theoretic metrics for data modeling and dimensionality reduction. SpectralNET is publicly available as both a .NET application and an ASP.NET web application from http://chembank.broad.harvard.edu/resources/. Source code is

  12. Spectral Analysis of Vector Magnetic Field Profiles

    Science.gov (United States)

    Parker, Robert L.; OBrien, Michael S.

    1997-01-01

    We investigate the power spectra and cross spectra derived from the three components of the vector magnetic field measured on a straight horizontal path above a statistically stationary source. All of these spectra, which can be estimated from the recorded time series, are related to a single two-dimensional power spectral density via integrals that run in the across-track direction in the wavenumber domain. Thus the measured spectra must obey a number of strong constraints: for example, the sum of the two power spectral densities of the two horizontal field components equals the power spectral density of the vertical component at every wavenumber and the phase spectrum between the vertical and along-track components is always pi/2. These constraints provide powerful checks on the quality of the measured data; if they are violated, measurement or environmental noise should be suspected. The noise due to errors of orientation has a clear characteristic; both the power and phase spectra of the components differ from those of crustal signals, which makes orientation noise easy to detect and to quantify. The spectra of the crustal signals can be inverted to obtain information about the cross-track structure of the field. We illustrate these ideas using a high-altitude Project Magnet profile flown in the southeastern Pacific Ocean.

  13. Spatially explicit spectral analysis of point clouds and geospatial data

    Science.gov (United States)

    Buscombe, Daniel D.

    2015-01-01

    The increasing use of spatially explicit analyses of high-resolution spatially distributed data (imagery and point clouds) for the purposes of characterising spatial heterogeneity in geophysical phenomena necessitates the development of custom analytical and computational tools. In recent years, such analyses have become the basis of, for example, automated texture characterisation and segmentation, roughness and grain size calculation, and feature detection and classification, from a variety of data types. In this work, much use has been made of statistical descriptors of localised spatial variations in amplitude variance (roughness), however the horizontal scale (wavelength) and spacing of roughness elements is rarely considered. This is despite the fact that the ratio of characteristic vertical to horizontal scales is not constant and can yield important information about physical scaling relationships. Spectral analysis is a hitherto under-utilised but powerful means to acquire statistical information about relevant amplitude and wavelength scales, simultaneously and with computational efficiency. Further, quantifying spatially distributed data in the frequency domain lends itself to the development of stochastic models for probing the underlying mechanisms which govern the spatial distribution of geological and geophysical phenomena. The software packagePySESA (Python program for Spatially Explicit Spectral Analysis) has been developed for generic analyses of spatially distributed data in both the spatial and frequency domains. Developed predominantly in Python, it accesses libraries written in Cython and C++ for efficiency. It is open source and modular, therefore readily incorporated into, and combined with, other data analysis tools and frameworks with particular utility for supporting research in the fields of geomorphology, geophysics, hydrography, photogrammetry and remote sensing. The analytical and computational structure of the toolbox is

  14. Spatially explicit spectral analysis of point clouds and geospatial data

    Science.gov (United States)

    Buscombe, Daniel

    2016-01-01

    The increasing use of spatially explicit analyses of high-resolution spatially distributed data (imagery and point clouds) for the purposes of characterising spatial heterogeneity in geophysical phenomena necessitates the development of custom analytical and computational tools. In recent years, such analyses have become the basis of, for example, automated texture characterisation and segmentation, roughness and grain size calculation, and feature detection and classification, from a variety of data types. In this work, much use has been made of statistical descriptors of localised spatial variations in amplitude variance (roughness), however the horizontal scale (wavelength) and spacing of roughness elements is rarely considered. This is despite the fact that the ratio of characteristic vertical to horizontal scales is not constant and can yield important information about physical scaling relationships. Spectral analysis is a hitherto under-utilised but powerful means to acquire statistical information about relevant amplitude and wavelength scales, simultaneously and with computational efficiency. Further, quantifying spatially distributed data in the frequency domain lends itself to the development of stochastic models for probing the underlying mechanisms which govern the spatial distribution of geological and geophysical phenomena. The software package PySESA (Python program for Spatially Explicit Spectral Analysis) has been developed for generic analyses of spatially distributed data in both the spatial and frequency domains. Developed predominantly in Python, it accesses libraries written in Cython and C++ for efficiency. It is open source and modular, therefore readily incorporated into, and combined with, other data analysis tools and frameworks with particular utility for supporting research in the fields of geomorphology, geophysics, hydrography, photogrammetry and remote sensing. The analytical and computational structure of the toolbox is described

  15. H/V spectral ratios technique application in the city of Bucharest: Can we get rid of source effect?

    International Nuclear Information System (INIS)

    Grecu, B.; Radulian, M.; Mandrescu, N.; Panza, G.F.

    2006-06-01

    The main issue of this paper is to show that, contrary to many examples of monitored strong earthquakes in different urban areas, the intensity and spectral characteristics of the strong ground motion induced in the Bucharest area, by Vrancea intermediate- depth earthquakes, is controlled by the coupled source-site properties rather than by the local site conditions alone. Our results have important implications on the strategy to follow when assessing the seismic microzoning for Bucharest city: we recommend the application of deterministic approaches rather than empirical techniques, like H/V spectral ratios. However, when applied to noise data, the H/V spectral technique succeeds in reproducing the predominant frequency response characteristic for the sedimentary cover beneath the city and the relatively uniform distribution of this structure over the city area. Our results strongly disagree with any strategy of extrapolation from small and moderate earthquakes to strong earthquakes for microzoning purposes. (author)

  16. Evaluation of Fourier integral. Spectral analysis of seismic events

    International Nuclear Information System (INIS)

    Chitaru, Cristian; Enescu, Dumitru

    2003-01-01

    Spectral analysis of seismic events represents a method for great earthquake prediction. The seismic signal is not a sinusoidal signal; for this, it is necessary to find a method for best approximation of real signal with a sinusoidal signal. The 'Quanterra' broadband station allows the data access in numerical and/or graphical forms. With the numerical form we can easily make a computer program (MSOFFICE-EXCEL) for spectral analysis. (authors)

  17. Alpha spectral analysis via artificial neural networks

    International Nuclear Information System (INIS)

    Kangas, L.J.; Hashem, S.; Keller, P.E.; Kouzes, R.T.; Troyer, G.L.

    1994-10-01

    An artificial neural network system that assigns quality factors to alpha particle energy spectra is discussed. The alpha energy spectra are used to detect plutonium contamination in the work environment. The quality factors represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with a quality factor by an expert and used in training the artificial neural network expert system. The investigation shows that the expert knowledge of alpha spectra quality factors can be transferred to an ANN system

  18. Spectral response analysis of PVDF capacitive sensors

    Science.gov (United States)

    Reyes-Ramírez, B.; García-Segundo, C.; García-Valenzuela, A.

    2013-06-01

    We investigate the spectral response to ultrasound waves in water of low-noise capacitive sensors based on PVDF polymer piezoelectric films. First, we analyze theoretically the mechanical-to-electrical transduction as a function of the frequency of ultrasonic signals and derive an analytic expression of the sensor's transfer function. Then we present experimental results of the frequency response of a home-made PDVF in water to test signals from 1 to 20 MHz induced by a commercial hydrophone powered by a signal generator and compare with our theoretical model.

  19. Emissivity compensated spectral pyrometry—algorithm and sensitivity analysis

    International Nuclear Information System (INIS)

    Hagqvist, Petter; Sikström, Fredrik; Christiansson, Anna-Karin; Lennartson, Bengt

    2014-01-01

    In order to solve the problem of non-contact temperature measurements on an object with varying emissivity, a new method is herein described and evaluated. The method uses spectral radiance measurements and converts them to temperature readings. It proves to be resilient towards changes in spectral emissivity and tolerates noisy spectral measurements. It is based on an assumption of smooth changes in emissivity and uses historical values of spectral emissivity and temperature for estimating current spectral emissivity. The algorithm, its constituent steps and accompanying parameters are described and discussed. A thorough sensitivity analysis of the method is carried out through simulations. No rigorous instrument calibration is needed for the presented method and it is therefore industrially tractable. (paper)

  20. A spectral analysis of ablating meteors

    Science.gov (United States)

    Bloxam, K.; Campbell-Brown, M.

    2017-09-01

    Meteor ablation features in the spectral lines occurring at 394, 436, 520, and 589 nm were observed using a four-camera spectral system between September and December 2015. In conjunction with this multi-camera system the Canadian Automated Meteor Observatory was used to observe the orbital parameters and fragmentation of these meteors. In total, 95 light curves with complete data in the 520 and 589 nm filters were analyzed; some also had partial or complete data in the 394 nm filter, but no usable data was collected with the 436 nm filter. Of the 95 events, 70 exhibited some degree of differential ablation, and in all except 3 of these 70 events the 589 nm filter started or ended sooner compared with the 520 nm filter, indicating early ablation at the 589 nm wavelength. In the majority of cases the meteor showed evidence of fragmentation regardless of the type of ablation (differential or uniform). A surprising result was the lack of correlation found concerning the KB parameter, linked to meteoroid strength, and differential ablation. In addition, 22 shower-associated meteors were observed; Geminids showed mainly slight differential ablation, while Taurids were more likely to ablate uniformly.

  1. Branching Ratios and Spectral Functions of $\\tau$ Decays final ALEPH measurements and physics implications

    CERN Document Server

    Schael, S.; Bruneliere, R.; De Bonis, I.; Decamp, D.; Goy, C.; Jezequel, S.; Lees, J.-P.; Martin, F.; Merle, E.; Minard, M.-N.; Pietrzyk, B.; Trocme, B.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Martinez, M.; Pacheco, A.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Barklow, T.; Buchmuller, O.; Cattaneo, M.; Clerbaux, B.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Hansen, J.B.; Harvey, J.; Hutchcroft, D.E.; Janot, P.; Jost, B.; Kado, M.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, L.; Schlatter, D.; Teubert, F.; Valassi, A.; Videau, I.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Jousset, J.; Michel, B.; Monteil, S.; Pallin, D.; Pascolo, J.M.; Perret, P.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Kraan, A.C.; Nilsson, B.S.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J.-C.; Machefert, F.; Rouge, A.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bossi, F.; Capon, G.; Cerutti, F.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, G.P.; Passalacqua, L.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Thompson, A.S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Putzer, A.; Stenzel, H.; Tittel, K.; Wunsch, M.; Phys., Kirchhoff Inst.; Beuselinck, R.; Cameron, W.; Davies, G.; Dornan, P.J.; Girone, M.; Marinelli, N.; Nowell, J.; Rutherford, S.A.; Sedgbeer, J.K.; Thompson, J.C.; White, R.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Pearson, M.R.; Robertson, N.A.; Smizanska, M.; van der Aa, O.; Delaere, C.; Leibenguth, G.; Lemaitre, V.; Blumenschein, U.; Holldorfer, F.; Jakobs, K.; Kayser, F.; Muller, A.-S.; Renk, B.; Sander, H.-G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Payre, P.; Tilquin, A.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Manner, W.; Moser, H.-G.; Settles, R.; Villegas, M.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Hocker, Andreas; Jacholkowska, A.; Serin, L.; Veillet, J.-J.; Yuan, C.Z.; Zhang, Z.Q.; Azzurri, P.; Bagliesi, Giuseppe; Boccali, T.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Spagnolo, P.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Awunor, O.; Blair, G.A.; Cowan, G.; Garcia-Bellido, A.; Green, M.G.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Ward, J.J.; Bloch-Devaux, Brigitte; Boumediene, D.; Colas, P.; Fabbro, B.; Lancon, E.; Lemaire, M.-C.; Locci, E.; Perez, P.; Rander, J.; Tuchming, B.; Vallage, G.; Litke, A.M.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Bohrer, A.; Brandt, S.; Grupen, C.; Hess, J.; Ngac, A.; Prange, G.; Borean, C.; Giannini, G.; He, H.; Putz, J.; Rothberg, J.; Armstrong, S.R.; Berkelman, Karl; Cranmer, K.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Pan, Y.B.; von Wimmersperg-Toeller, J.H.; Wiedenmann, W.; Wu, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.; Dissertori, G.

    2005-01-01

    The full LEP-1 data set collected with the ALEPH detector at the $Z$ pole during 1991-1995 is analysed in order to measure the $\\tau$ decay branching fractions. The analysis follows the global method used in the published study based on 1991-1993 data, but several improvements are introduced, especially concerning the treatment of photons and $\\pi^0$'s. Extensive systematic studies are performed, in order to match the large statistics of the data sample corresponding to over 300\\,000 measured and identified $\\tau$ decays. Branching fractions are obtained for the two leptonic channels and eleven hadronic channels defined by their respective numbers of charged particles and $\\pi^0$'s. Using previously published ALEPH results on final states with charged and neutral kaons, corrections are applied to the hadronic channels to derive branching ratios for exclusive final states without kaons. Thus the analyses of the full LEP-1 ALEPH data are combined to yield a complete description of $\\tau$ decays, encompassing 22...

  2. Spectral analysis, death and coronary anatomy following cardiac catheterisation.

    Science.gov (United States)

    Moore, Roger K G; Newall, Nick; Groves, David G; Barlow, Pauline E; Stables, Rodney H; Jackson, Mark; Ramsdale, David R

    2007-05-16

    To establish the associations and prognostic utility of angiographic, clinical and HRV parameters in a large cohort of patients undergoing diagnostic cardiac catheterisation (CC). Patients undergoing CC as elective day cases were enrolled at a single tertiary center from September 2001 to January 2003. Patient data, serum biochemistry, current drug therapy, catheter reports and five minute high resolution electrocardiograph (ECG) recordings were prospectively recorded and validated in an electronic archive. ECG recordings were used to generate time domain (SDNN (standard deviation of NN intervals)) and spectral HRV parameters (low frequency (LF) and high frequency (HF) power). Significant associations between dichotomized HRV variables and covariates were investigated using binary logistic regression. The independent prognostic ability of clinical markers was evaluated using the Cox proportional hazard model. 841 consecutive consenting patients of mean age 61+/-10 years were recruited into the study with a mean follow-up period of 690+/-436 days. In multivariate analysis decreasing LF spectral power was independently associated with proximal right coronary stenosis OR (odds ratio)=1.65 (95% CI=1.16-2.36), P=0.006 and to all cause mortality OR=5.01 (95% CI=1.47-17.01), P=0.010. Increasing LF power was also independently associated with normal coronary angiograms in patients investigated suspected coronary disease without a confirmed prior history of a coronary ischaemic event OR=2.16 (95% CI=1.26-3.73), P=0.002. Reduced LF power independently predicts all cause mortality in a large cohort of patients receiving medical therapy after elective CC. LF power was also independently associated with >75% proximal RCA stenosis.

  3. Corporate prediction models, ratios or regression analysis?

    NARCIS (Netherlands)

    Bijnen, E.J.; Wijn, M.F.C.M.

    1994-01-01

    The models developed in the literature with respect to the prediction of a company s failure are based on ratios. It has been shown before that these models should be rejected on theoretical grounds. Our study of industrial companies in the Netherlands shows that the ratios which are used in

  4. Comprehensive spectral analysis of Cyg X-1 using RXTE data

    International Nuclear Information System (INIS)

    Shahid, Rizwan; Jaaffrey, S. N. A.; Misra, Ranjeev

    2012-01-01

    We analyze a large number (> 500) of pointed Rossi X-Ray Timing Explorer (RXTE) observations of Cyg X-1 and model the spectrum of each one. A subset of the observations for which there is a simultaneous reliable measure of the hardness ratio by the All Sky Monitor shows that the sample covers nearly all the spectral shapes of Cyg X-1. Each observation is fitted with a generic empirical model consisting of a disk black body spectrum, a Comptonized component whose input photon shape is the same as the disk emission, a Gaussian to represent the iron line and a reflection feature. The relative strength, width of the iron line and the reflection parameter are in general correlated with the high energy photon spectral index Γ. This is broadly consistent with a geometry where for the hard state (low Γ ∼ 1.7) there is a hot inner Comptonizing region surrounded by a truncated cold disk. The inner edge of the disk moves inwards as the source becomes softer till finally in the soft state (high Γ > 2.2) the disk fills the inner region and active regions above the disk produce the Comptonized component. However, the reflection parameter shows non-monotonic behavior near the transition region (Γ ∼ 2), which suggests a more complex geometry or physical state of the reflector. In addition, the inner disk temperature, during the hard state, is on average higher than in the soft one, albeit with large scatter. These inconsistencies could be due to limitations in the data and the empirical model used to fit them. The flux of each spectral component is well correlated with Γ, which shows that unlike some other black hole systems, Cyg X-1 does not show any hysteresis behavior. In the soft state, the flux of the Comptonized component is always similar to the disk one, which confirms that the ultra-soft state (seen in other brighter black hole systems) is not exhibited by Cyg X-1. The rapid variation of the Compton amplification factor with Γ naturally explains the absence of

  5. Depth Discrimination Using Rg-to-Sg Spectral Amplitude Ratios for Seismic Events in Utah Recorded at Local Distances

    Energy Technology Data Exchange (ETDEWEB)

    Tibi, Rigobert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Koper, Keith D. [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Geology and Geophysics; Pankow, Kristine L. [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Geology and Geophysics; Young, Christopher J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-03-20

    Short-period fundamental-mode Rayleigh waves (Rg) are commonly observed on seismograms of anthropogenic seismic events and shallow, naturally occurring tectonic earthquakes (TEs) recorded at local distances. In the Utah region, strong Rg waves traveling with an average group velocity of about 1.8 km/s are observed at ~1 Hz on waveforms from shallow events ( depth<10 km ) recorded at distances up to about 150 km. At these distances, Sg waves, which are direct shear waves traveling in the upper crust, are generally the dominant signals for TEs. Here in this study, we leverage the well-known notion that Rg amplitude decreases dramatically with increasing event depth to propose a new depth discriminant based on Rg-to-Sg spectral amplitude ratios. The approach is successfully used to discriminate shallow events (both earthquakes and anthropogenic events) from deeper TEs in the Utah region recorded at local distances ( <150 km ) by the University of Utah Seismographic Stations (UUSS) regional seismic network. Using Mood’s median test, we obtained probabilities of nearly zero that the median Rg-to-Sg spectral amplitude ratios are the same between shallow events on the one hand (including both shallow TEs and anthropogenic events), and deeper earthquakes on the other, suggesting that there is a statistically significant difference in the estimated Rg-to-Sg ratios between the two populations. We also observed consistent disparities between the different types of shallow events (e.g., mining blasts vs. mining-induced earthquakes), implying that it may be possible to separate the subpopulations that make up this group. Lastly, this suggests that using local distance Rg-to-Sg spectral amplitude ratios one can not only discriminate shallow events from deeper events but may also be able to discriminate among different populations of shallow events.

  6. Antepartum Fetal Monitoring and Spectral Analysis of Preterm Birth Risk

    Science.gov (United States)

    Păsăricără, Alexandru; Nemescu, Dragoş; Arotăriţei, Dragoş; Rotariu, Cristian

    2017-11-01

    The monitoring and analysis of antepartum fetal and maternal recordings is a research area of notable interest due to the relatively high value of preterm birth. The interest stems from the improvement of devices used for monitoring. The current paper presents the spectral analysis of antepartum heart rate recordings conducted during a study in Romania at the Cuza Voda Obstetrics and Gynecology Clinical Hospital from Iasi between 2010 and 2014. The study focuses on normal and preterm birth risk subjects in order to determine differences between these two types or recordings in terms of spectral analysis.

  7. Robust and transferable quantification of NMR spectral quality using IROC analysis

    Science.gov (United States)

    Zambrello, Matthew A.; Maciejewski, Mark W.; Schuyler, Adam D.; Weatherby, Gerard; Hoch, Jeffrey C.

    2017-12-01

    Non-Fourier methods are increasingly utilized in NMR spectroscopy because of their ability to handle nonuniformly-sampled data. However, non-Fourier methods present unique challenges due to their nonlinearity, which can produce nonrandom noise and render conventional metrics for spectral quality such as signal-to-noise ratio unreliable. The lack of robust and transferable metrics (i.e. applicable to methods exhibiting different nonlinearities) has hampered comparison of non-Fourier methods and nonuniform sampling schemes, preventing the identification of best practices. We describe a novel method, in situ receiver operating characteristic analysis (IROC), for characterizing spectral quality based on the Receiver Operating Characteristic curve. IROC utilizes synthetic signals added to empirical data as "ground truth", and provides several robust scalar-valued metrics for spectral quality. This approach avoids problems posed by nonlinear spectral estimates, and provides a versatile quantitative means of characterizing many aspects of spectral quality. We demonstrate applications to parameter optimization in Fourier and non-Fourier spectral estimation, critical comparison of different methods for spectrum analysis, and optimization of nonuniform sampling schemes. The approach will accelerate the discovery of optimal approaches to nonuniform sampling experiment design and non-Fourier spectrum analysis for multidimensional NMR.

  8. Hydrogen quasienergies from spectral analysis of wavepackets

    International Nuclear Information System (INIS)

    Dondera, M.; Muller, H.G.; Gavrila, M.

    2002-01-01

    Quasienergies (qe) are calculated traditionally by solving the time-independent Floquet system of differential equations. A number of such calculations have been carried out successfully in the past for atomic hydrogen, albeit not at the frequencies of operation of current super intense lasers. We now present a method for calculating qe based on the evolution of a wave packet of the Schroedinger equation with a time-periodic Hamiltonian, that is an extension of the well known 'spectral method' for obtaining (real) eigenenergies of a time-independent Hamiltonian. The present method is based on propagating a wave packet Ψ(t) with an appropriately chosen initial condition Ψ(0) in a periodic field of constant amplitude, and then Fourier analyzing the autocorrelation function A(t) = . The Fourier transform of the autocorrelation function displays a set of lines, whose location and widths are related to the complex qe of the Floquet states present in the expansion of the wave packet. When these lines are non-overlapping, standard fitting techniques allow the extraction of the real and imaginary parts of the qe. For the case of overlapping lines, we apply the more elaborate technique of 'filter diagonalization'. Our method was tested by comparison with qe obtained from other sources, e.g., the solution of the system of differential equations. We apply the method to 3D hydrogen in a laser field of linear polarization, at the frequently used photon energy ω = 1.55 eV (wavelength 800 nm). We consider Floquet states belonging to several symmetry manifolds m. The field amplitude is varied from zero to several a.u. We thus obtain a 'Floquet map' for the real part of the qe of the lower states, and separately, the imaginary parts (widths) of the qe. The Floquet map displays interesting pseudo-crossings. We interpret the results in terms of avoided crossings of trajectories of the qe in the complex energy plane, and discuss their physical significance. (authors)

  9. Cloud Masking for Remotely Sensed Data Using Spectral and Principal Components Analysis

    Directory of Open Access Journals (Sweden)

    A. Ahmad

    2012-06-01

    Full Text Available Two methods of cloud masking tuned to tropical conditions have been developed, based on spectral analysis and Principal Components Analysis (PCA of Moderate Resolution Imaging Spectroradiometer (MODIS data. In the spectral approach, thresholds were applied to four reflective bands (1, 2, 3, and 4, three thermal bands (29, 31 and 32, the band 2/band 1 ratio, and the difference between band 29 and 31 in order to detect clouds. The PCA approach applied a threshold to the first principal component derived from the seven quantities used for spectral analysis. Cloud detections were compared with the standard MODIS cloud mask, and their accuracy was assessed using reference images and geographical information on the study area.

  10. X-ray dual energy spectral parameter optimization for bone Calcium/Phosphorus mass ratio estimation

    International Nuclear Information System (INIS)

    Sotiropoulou, P I; Martini, N D; Koukou, V N; Nikiforidis, G C; Fountos, G P; Michail, C M; Valais, I G; Kandarakis, I S

    2015-01-01

    Calcium (Ca) and Phosphorus (P) bone mass ratio has been identified as an important, yet underutilized, risk factor in osteoporosis diagnosis. The purpose of this simulation study is to investigate the use of effective or mean mass attenuation coefficient in Ca/P mass ratio estimation with the use of a dual-energy method. The investigation was based on the minimization of the accuracy of Ca/P ratio, with respect to the Coefficient of Variation of the ratio. Different set-ups were examined, based on the K-edge filtering technique and single X-ray exposure. The modified X-ray output was attenuated by various Ca/P mass ratios resulting in nine calibration points, while keeping constant the total bone thickness. The simulated data were obtained considering a photon counting energy discriminating detector. The standard deviation of the residuals was used to compare and evaluate the accuracy between the different dual energy set-ups. The optimum mass attenuation coefficient for the Ca/P mass ratio estimation was the effective coefficient in all the examined set-ups. The variation of the residuals between the different set-ups was not significant. (paper)

  11. Multi-spectral Image Analysis for Astaxanthin Coating Classification

    DEFF Research Database (Denmark)

    Ljungqvist, Martin Georg; Ersbøll, Bjarne Kjær; Nielsen, Michael Engelbrecht

    2011-01-01

    Industrial quality inspection using image analysis on astaxanthin coating in aquaculture feed pellets is of great importance for automatic production control. In this study multi-spectral image analysis of pellets was performed using LDA, QDA, SNV and PCA on pixel level and mean value of pixels...

  12. Spectral analysis of the structure of ultradispersed diamonds

    Science.gov (United States)

    Uglov, V. V.; Shimanski, V. I.; Rusalsky, D. P.; Samtsov, M. P.

    2008-07-01

    The structure of ultradispersed diamonds (UDD) is studied by spectral methods. The presence of diamond crystal phase in the UDD is found based on x-ray analysis and Raman spectra. The Raman spectra also show sp2-and sp3-hybridized carbon. Analysis of IR absorption spectra suggests that the composition of functional groups present in the particles changes during the treatment.

  13. Analysis of spectral methods for the homogeneous Boltzmann equation

    KAUST Repository

    Filbet, Francis

    2011-04-01

    The development of accurate and fast algorithms for the Boltzmann collision integral and their analysis represent a challenging problem in scientific computing and numerical analysis. Recently, several works were devoted to the derivation of spectrally accurate schemes for the Boltzmann equation, but very few of them were concerned with the stability analysis of the method. In particular there was no result of stability except when the method was modified in order to enforce the positivity preservation, which destroys the spectral accuracy. In this paper we propose a new method to study the stability of homogeneous Boltzmann equations perturbed by smoothed balanced operators which do not preserve positivity of the distribution. This method takes advantage of the "spreading" property of the collision, together with estimates on regularity and entropy production. As an application we prove stability and convergence of spectral methods for the Boltzmann equation, when the discretization parameter is large enough (with explicit bound). © 2010 American Mathematical Society.

  14. Analysis of spectral methods for the homogeneous Boltzmann equation

    KAUST Repository

    Filbet, Francis; Mouhot, Clé ment

    2011-01-01

    The development of accurate and fast algorithms for the Boltzmann collision integral and their analysis represent a challenging problem in scientific computing and numerical analysis. Recently, several works were devoted to the derivation of spectrally accurate schemes for the Boltzmann equation, but very few of them were concerned with the stability analysis of the method. In particular there was no result of stability except when the method was modified in order to enforce the positivity preservation, which destroys the spectral accuracy. In this paper we propose a new method to study the stability of homogeneous Boltzmann equations perturbed by smoothed balanced operators which do not preserve positivity of the distribution. This method takes advantage of the "spreading" property of the collision, together with estimates on regularity and entropy production. As an application we prove stability and convergence of spectral methods for the Boltzmann equation, when the discretization parameter is large enough (with explicit bound). © 2010 American Mathematical Society.

  15. Assessment of soil-structure interaction on a 51-story building from the spectral ratio of earthquake recordings

    Directory of Open Access Journals (Sweden)

    Liu Kun-Sung

    2017-01-01

    Full Text Available The soil-structure interaction (SSI can significantly alter the characteristics of recorded motions in buildings. The ratio of Fourier amplitude spectrum of the top-story accelerations to that of the foundation accelerations permits the identification of the natural frequency of the fixed-base building. In this study, records of the Chi-Chi earthquake and the 1226 Hengchun earthquake doublet from the structural array in a 51-story highrise building are used to obtain the dynamic characteristics of the buildings by the transfer function (TF method. As a result, the acceleration amplification of seismic excitation on the 47th storey of buildings is 4.24, in the horizontal component, from the Chi-Chi earthquake data greater than those of the 1226 Hengchun earthquake doublet with a value of 2.82 and 2.06, respectively. In addition, from the spectral ratio of the accelerations (47th floor/basement, together with the Fourier Amplitude Spectrum (FAS of the 47th floor and basement accelerations, it is noted that the peaks of the 47th floor FAS and the spectral ratio appear to coincide with each other from the records of 1226 Hengchun earthquake doublet, suggesting that there is no significant SSI effects in both the longitudinal and transverse directions.

  16. Spectral Analysis of Moderately Charged Rare-Gas Atoms

    Directory of Open Access Journals (Sweden)

    Jorge Reyna Almandos

    2017-03-01

    Full Text Available This article presents a review concerning the spectral analysis of several ions of neon, argon, krypton and xenon, with impact on laser studies and astrophysics that were mainly carried out in our collaborative groups between Argentina and Brazil during many years. The spectra were recorded from the vacuum ultraviolet to infrared regions using pulsed discharges. Semi-empirical approaches with relativistic Hartree–Fock and Dirac-Fock calculations were also included in these investigations. The spectral analysis produced new classified lines and energy levels. Lifetimes and oscillator strengths were also calculated.

  17. Spectral theory and nonlinear analysis with applications to spatial ecology

    CERN Document Server

    Cano-Casanova, S; Mora-Corral , C

    2005-01-01

    This volume details some of the latest advances in spectral theory and nonlinear analysis through various cutting-edge theories on algebraic multiplicities, global bifurcation theory, non-linear Schrödinger equations, non-linear boundary value problems, large solutions, metasolutions, dynamical systems, and applications to spatial ecology. The main scope of the book is bringing together a series of topics that have evolved separately during the last decades around the common denominator of spectral theory and nonlinear analysis - from the most abstract developments up to the most concrete applications to population dynamics and socio-biology - in an effort to fill the existing gaps between these fields.

  18. HYPERSPECTRAL HYPERION IMAGERY ANALYSIS AND ITS APPLICATION USING SPECTRAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    W. Pervez

    2015-03-01

    Full Text Available Rapid advancement in remote sensing open new avenues to explore the hyperspectral Hyperion imagery pre-processing techniques, analysis and application for land use mapping. The hyperspectral data consists of 242 bands out of which 196 calibrated/useful bands are available for hyperspectral applications. Atmospheric correction applied to the hyperspectral calibrated bands make the data more useful for its further processing/ application. Principal component (PC analysis applied to the hyperspectral calibrated bands reduced the dimensionality of the data and it is found that 99% of the data is held in first 10 PCs. Feature extraction is one of the important application by using vegetation delineation and normalized difference vegetation index. The machine learning classifiers uses the technique to identify the pixels having significant difference in the spectral signature which is very useful for classification of an image. Supervised machine learning classifier technique has been used for classification of hyperspectral image which resulted in overall efficiency of 86.6703 and Kappa co-efficient of 0.7998.

  19. Automated spectral and timing analysis of AGNs

    Science.gov (United States)

    Munz, F.; Karas, V.; Guainazzi, M.

    2006-12-01

    % We have developed an autonomous script that helps the user to automate the XMM-Newton data analysis for the purposes of extensive statistical investigations. We test this approach by examining X-ray spectra of bright AGNs pre-selected from the public database. The event lists extracted in this process were studied further by constructing their energy-resolved Fourier power-spectrum density. This analysis combines energy distributions, light-curves, and their power-spectra and it proves useful to assess the variability patterns present is the data. As another example, an automated search was based on the XSPEC package to reveal the emission features in 2-8 keV range.

  20. Light and spectral properties as determinants of C:N:P-ratios in phytoplankton

    Science.gov (United States)

    Hessen, Dag O.; Leu, Eva; Færøvig, Per J.; Falk Petersen, Stig

    2008-10-01

    Light is a major determinant not only for carbon (C)-fixation in autotrophs, but also for the cellular proportions of major elements like C, nitrogen (N) and phosphorus (P). High intensities of photosynthetically active radiation (PAR) increase C:P-ratios in experiments with arctic marine and freshwater phytoplankton species. While high levels of PAR promote high autotrophic productivity, the increased C:P may invoke a "paradox of enrichment" effect since this means lower stoichiometric food quality for herbivores. In contrast, exposure to ultraviolet radiation (UVR) gave reduced cellular C:P-ratios (and N:P) in phytoplankton. This was partly owing to a strong reduction in C-fixation under UVR, but also due to enhanced uptake of P, presumably in response to increased demands for nucleotide repair under UVR stress. The net outcome of these opposing effects will depend on optical properties and mixing depth in the water column. These stoichiometric responses could cause deviations from Redfield ratio in phytoplankton as well as affecting biogeochemical cycling and trophic transfer efficiency in aquatic food-webs.

  1. [Infrared spectral analysis for calcined borax].

    Science.gov (United States)

    Zhao, Cui; Ren, Li-Li; Wang, Dong; Zhou, Ping; Zhang, Qian; Wang, Bo-Tao

    2011-08-01

    To valuate the quality of calcined borax which is sold in the market, 18 samples of calcined borax were studied using the Fourier transform infrared, and samples with different water content were selected and analyzed. Then, the results of analysis were used to evaluate the quality of calcined borax. Results show that the infrared spectra of calcined borax include OH vibration, BO3(-3) vibration and BO4(5-) vibration absorption bands. The position and width of OH vibration absorption band depend on the level of water content, and the more the water content, the wider the absorption band. The number of BO3(3-) vibration and BO4(5-) vibration bands also depend on the level of water content, and the more the water content, and the stronger the hydrogen bond and the lower the symmetry of B atoms, the more the number of infrared absorption peaks. It was concluded that because the quality of calcined borax has direct correlation with water content, the infrared spectroscopy is an express and objective approach to quality analysis and evaluation of calcined borax.

  2. Spectral Electroencephalogram Analysis for the Evaluation of Encephalopathy Grade in Children With Acute Liver Failure.

    Science.gov (United States)

    Press, Craig A; Morgan, Lindsey; Mills, Michele; Stack, Cynthia V; Goldstein, Joshua L; Alonso, Estella M; Wainwright, Mark S

    2017-01-01

    Spectral electroencephalogram analysis is a method for automated analysis of electroencephalogram patterns, which can be performed at the bedside. We sought to determine the utility of spectral electroencephalogram for grading hepatic encephalopathy in children with acute liver failure. Retrospective cohort study. Tertiary care pediatric hospital. Patients between 0 and 18 years old who presented with acute liver failure and were admitted to the PICU. None. Electroencephalograms were analyzed by spectral analysis including total power, relative δ, relative θ, relative α, relative β, θ-to-Δ ratio, and α-to-Δ ratio. Normal values and ranges were first derived using normal electroencephalograms from 70 children of 0-18 years old. Age had a significant effect on each variable measured (p liver failure were available for spectral analysis. The median age was 4.3 years, 14 of 33 were male, and the majority had an indeterminate etiology of acute liver failure. Neuroimaging was performed in 26 cases and was normal in 20 cases (77%). The majority (64%) survived, and 82% had a good outcome with a score of 1-3 on the Pediatric Glasgow Outcome Scale-Extended at the time of discharge. Hepatic encephalopathy grade correlated with the qualitative visual electroencephalogram scores assigned by blinded neurophysiologists (rs = 0.493; p encephalopathy was correlated with a total power of less than or equal to 50% of normal for children 0-3 years old, and with a relative θ of less than or equal to 50% normal for children more than 3 years old (p > 0.05). Spectral electroencephalogram classification correlated with outcome (p encephalopathy and correlates with outcome. Spectral electroencephalogram may allow improved quantitative and reproducible assessment of hepatic encephalopathy grade in children with acute liver failure.

  3. Characteristic vector analysis of inflection ratio spectra: New technique for analysis of ocean color data

    Science.gov (United States)

    Grew, G. W.

    1985-01-01

    Characteristic vector analysis applied to inflection ratio spectra is a new approach to analyzing spectral data. The technique applied to remote data collected with the multichannel ocean color sensor (MOCS), a passive sensor, simultaneously maps the distribution of two different phytopigments, chlorophyll alpha and phycoerythrin, the ocean. The data set presented is from a series of warm core ring missions conducted during 1982. The data compare favorably with a theoretical model and with data collected on the same mission by an active sensor, the airborne oceanographic lidar (AOL).

  4. PCLOOK: an interactive code for spectral analysis

    International Nuclear Information System (INIS)

    Macchiavelli, A.O.; Tomasi, D.

    1993-01-01

    The present work describes an interactive programme for the analysis of spectra developed to run in a PC platform. PCLOOK has a graphic interface that allows the user to get access to different functions using the mouse or directly typing commands. In this way one can switch to a suitable required environment to manage the histograms reassembling in this way a spectrum calculator.The PCLOOK programme was mainly developed to use in nuclear physics applications, but it is also possible to modify it with relative little effort to adapt it to other applications. It was written in Microsoft's BASIC 7.1 installed in a 33MHz 486 Everex PC. For a proper operation an ordinary VGA display and mouse are needed. The memory requirements depend on the size and number of the user defined spectra; for instance, for twenty 2048 channels spectra the available memory space must be 320 KBytes. (author). 5 figs

  5. Flutter analysis of low aspect ratio wings

    Science.gov (United States)

    Parnell, L. A.

    1986-01-01

    Several very low aspect ratio flat plate wing configurations are analyzed for their aerodynamic instability (flutter) characteristics. All of the wings investigated are delta planforms with clipped tips, made of aluminum alloy plate and cantilevered from the supporting vehicle body. Results of both subsonic and supersonic NASTRAN aeroelastic analyses as well as those from another version of the program implementing the supersonic linearized aerodynamic theory are presented. Results are selectively compared with the experimental data; however, supersonic predictions of the Mach Box method in NASTRAN are found to be erratic and erroneous, requiring the use of a separate program.

  6. PIXE-quantified AXSIA: Elemental mapping by multivariate spectral analysis

    International Nuclear Information System (INIS)

    Doyle, B.L.; Provencio, P.P.; Kotula, P.G.; Antolak, A.J.; Ryan, C.G.; Campbell, J.L.; Barrett, K.

    2006-01-01

    Automated, nonbiased, multivariate statistical analysis techniques are useful for converting very large amounts of data into a smaller, more manageable number of chemical components (spectra and images) that are needed to describe the measurement. We report the first use of the multivariate spectral analysis program AXSIA (Automated eXpert Spectral Image Analysis) developed at Sandia National Laboratories to quantitatively analyze micro-PIXE data maps. AXSIA implements a multivariate curve resolution technique that reduces the spectral image data sets into a limited number of physically realizable and easily interpretable components (including both spectra and images). We show that the principal component spectra can be further analyzed using conventional PIXE programs to convert the weighting images into quantitative concentration maps. A common elemental data set has been analyzed using three different PIXE analysis codes and the results compared to the cases when each of these codes is used to separately analyze the associated AXSIA principal component spectral data. We find that these comparisons are in good quantitative agreement with each other

  7. Euler deconvolution and spectral analysis of regional aeromagnetic ...

    African Journals Online (AJOL)

    Existing regional aeromagnetic data from the south-central Zimbabwe craton has been analysed using 3D Euler deconvolution and spectral analysis to obtain quantitative information on the geological units and structures for depth constraints on the geotectonic interpretation of the region. The Euler solution maps confirm ...

  8. Spectral Depth Analysis of some Segments of the Bida Basin ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2017-12-16

    Dec 16, 2017 ... ABSTRACT: Spectral depth analysis was carried out on ten (10) of the 2009 total magnetic field intensity data sheets covering some segments of the Bida basin, to determine the depth to magnetic basement within the basin. The data was ... groundwater lie concealed beneath the earth surface and the ...

  9. Tomato sorting using independent component analysis on spectral images

    NARCIS (Netherlands)

    Polder, G.; Heijden, van der G.W.A.M.; Young, I.T.

    2003-01-01

    Independent Component Analysis is one of the most widely used methods for blind source separation. In this paper we use this technique to estimate the most important compounds which play a role in the ripening of tomatoes. Spectral images of tomatoes were analyzed. Two main independent components

  10. Curie depth and geothermal gradient from spectral analysis of ...

    African Journals Online (AJOL)

    The resent (2009) aeromagnetic data covering lower part of Benue and upper part of Anambra basins was subjected to one dimensional spectral analysis with the aim of estimating the curie depth and subsequently evaluating both the geothermal gradient and heat flow for the area. Curie point depth estimate obtained were ...

  11. MEM spectral analysis for predicting influenza epidemics in Japan.

    Science.gov (United States)

    Sumi, Ayako; Kamo, Ken-ichi

    2012-03-01

    The prediction of influenza epidemics has long been the focus of attention in epidemiology and mathematical biology. In this study, we tested whether time series analysis was useful for predicting the incidence of influenza in Japan. The method of time series analysis we used consists of spectral analysis based on the maximum entropy method (MEM) in the frequency domain and the nonlinear least squares method in the time domain. Using this time series analysis, we analyzed the incidence data of influenza in Japan from January 1948 to December 1998; these data are unique in that they covered the periods of pandemics in Japan in 1957, 1968, and 1977. On the basis of the MEM spectral analysis, we identified the periodic modes explaining the underlying variations of the incidence data. The optimum least squares fitting (LSF) curve calculated with the periodic modes reproduced the underlying variation of the incidence data. An extension of the LSF curve could be used to predict the incidence of influenza quantitatively. Our study suggested that MEM spectral analysis would allow us to model temporal variations of influenza epidemics with multiple periodic modes much more effectively than by using the method of conventional time series analysis, which has been used previously to investigate the behavior of temporal variations in influenza data.

  12. An introduction to random vibrations, spectral & wavelet analysis

    CERN Document Server

    Newland, D E

    2005-01-01

    One of the first engineering books to cover wavelet analysis, this classic text describes and illustrates basic theory, with a detailed explanation of the workings of discrete wavelet transforms. Computer algorithms are explained and supported by examples and a set of problems, and an appendix lists ten computer programs for calculating and displaying wavelet transforms.Starting with an introduction to probability distributions and averages, the text examines joint probability distributions, ensemble averages, and correlation; Fourier analysis; spectral density and excitation response relation

  13. Dichotomous classification of black-colored metal using spectral analysis

    Directory of Open Access Journals (Sweden)

    Abramovich A.O.

    2017-05-01

    Full Text Available The task of detecting metal objects in different environments has always been important. To solve it metal detectors are used. They are designed to detect and identify objects that in their electric or magnetic properties different from the environment in which they are located. The most common among them are the metal detectors of the «detection of very low frequency» type (Very Low Frequency (VLF detectors. They use eddy current testing for detecting metal targets, which solves the problem of dichotomous distinction, that is a problem of splitting (or set into two parts (subsets: black or colored target. The target distinction is performed by a threshold level of the received signal. However, this approach does not allow to identify the type of target, if two samples of different metals are nearby. To overcome the above described limitations we propose another way of distinction based on the use of spectral analysis, which occurs in the metal detector antenna by Foucault current. We show that the problem of dichotomous distinction can be solved in just a measurement of width and area by the envelope of amplitude spectrum (hereinafter spectrum of the received signal. In this regard the laboratory model using eddy current metal detector will combat withdrawal from two samples – steel and copper, located along and calculate its range. The task of distinguishing between metal targets reduced to determining the hit spectra of reference samples obtained spectrum. The ratio between the areas is measured and reference spectra indicates the percentage of specific metals (e.g. two identical samples of different metals lying side by side. Signal processing is performed by specially designed program that compares two spectra along posted samples of black and colored metals with base.

  14. Power spectral analysis of heart rate in hyperthyroidism.

    Science.gov (United States)

    Cacciatori, V; Bellavere, F; Pezzarossa, A; Dellera, A; Gemma, M L; Thomaseth, K; Castello, R; Moghetti, P; Muggeo, M

    1996-08-01

    The aim of the present study was to evaluate the impact of hyperthyroidism on the cardiovascular system by separately analyzing the sympathetic and parasympathetic influences on heart rate. Heart rate variability was evaluated by autoregressive power spectral analysis. This method allows a reliable quantification of the low frequency (LF) and high frequency (HF) components of the heart rate power spectral density; these are considered to be under mainly sympathetic and pure parasympathetic control, respectively. In 10 newly diagnosed untreated hyperthyroid patients with Graves' disease, we analyzed power spectral density of heart rate cyclic variations at rest, while lying, and while standing. In addition, heart rate variations during deep breathing, lying and standing, and Valsalva's maneuver were analyzed. The results were compared to those obtained from 10 age-, sex-, and body mass index-matched control subjects. In 8 hyperthyroid patients, the same evaluation was repeated after the induction of stable euthyroidism by methimazole. Heart rate power spectral analysis showed a sharp reduction of HF components in hyperthyroid subjects compared to controls [lying, 13.3 +/- 4.1 vs. 32.0 +/- 5.6 normalized units (NU; P hyperthyroid subjects while both lying (11.3 +/- 4.5 vs. 3.5 +/- 1.1; P hyperthyroid patients than in controls (1.12 +/- 0.03 vs. 1.31 +/- 0.04; P activity and, thus, a relative hypersympathetic tone.

  15. [The radial velocity measurement accuracy of different spectral type low resolution stellar spectra at different signal-to-noise ratio].

    Science.gov (United States)

    Wang, Feng-Fei; Luo, A-Li; Zhao, Yong-Heng

    2014-02-01

    The radial velocity of the star is very important for the study of the dynamics structure and chemistry evolution of the Milky Way, is also an useful tool for looking for variable or special objects. In the present work, we focus on calculating the radial velocity of different spectral types of low-resolution stellar spectra by adopting a template matching method, so as to provide effective and reliable reference to the different aspects of scientific research We choose high signal-to-noise ratio (SNR) spectra of different spectral type stellar from the Sloan Digital Sky Survey (SDSS), and add different noise to simulate the stellar spectra with different SNR. Then we obtain theradial velocity measurement accuracy of different spectral type stellar spectra at different SNR by employing a template matching method. Meanwhile, the radial velocity measurement accuracy of white dwarf stars is analyzed as well. We concluded that the accuracy of radial velocity measurements of early-type stars is much higher than late-type ones. For example, the 1-sigma standard error of radial velocity measurements of A-type stars is 5-8 times as large as K-type and M-type stars. We discuss the reason and suggest that the very narrow lines of late-type stars ensure the accuracy of measurement of radial velocities, while the early-type stars with very wide Balmer lines, such as A-type stars, become sensitive to noise and obtain low accuracy of radial velocities. For the spectra of white dwarfs stars, the standard error of radial velocity measurement could be over 50 km x s(-1) because of their extremely wide Balmer lines. The above conclusion will provide a good reference for stellar scientific study.

  16. Polarization modeling and predictions for DKIST part 3: focal ratio and thermal dependencies of spectral polarization fringes and optic retardance

    Science.gov (United States)

    Harrington, David M.; Sueoka, Stacey R.

    2018-01-01

    Data products from high spectral resolution astronomical polarimeters are often limited by fringes. Fringes can skew derived magnetic field properties from spectropolarimetric data. Fringe removal algorithms can also corrupt the data if the fringes and object signals are too similar. For some narrow-band imaging polarimeters, fringes change the calibration retarder properties and dominate the calibration errors. Systems-level engineering tools for polarimetric instrumentation require accurate predictions of fringe amplitudes, periods for transmission, diattenuation, and retardance. The relevant instabilities caused by environmental, thermal, and optical properties can be modeled and mitigation tools developed. We create spectral polarization fringe amplitude and temporal instability predictions by applying the Berreman calculus and simple interferometric calculations to optics in beams of varying F/ number. We then apply the formalism to superachromatic six-crystal retarders in converging beams under beam thermal loading in outdoor environmental conditions for two of the world's largest observatories: the 10-m Keck telescope and the Daniel K. Inouye Solar Telescope (DKIST). DKIST will produce a 300-W optical beam, which has imposed stringent requirements on the large diameter six-crystal retarders, dichroic beamsplitters, and internal optics. DKIST retarders are used in a converging beam with F/ ratios between 8 and 62. The fringe spectral periods, amplitudes, and thermal models of retarder behavior assisted DKIST optical designs and calibration plans with future application to many astronomical spectropolarimeters. The Low Resolution Imaging Spectrograph with polarimetry instrument at Keck also uses six-crystal retarders in a converging F / 13 beam in a Cassegrain focus exposed to summit environmental conditions providing observational verification of our predictions.

  17. On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data

    OpenAIRE

    Huang, Norden E.; Hu, Kun; Yang, Albert C. C.; Chang, Hsing-Chih; Jia, Deng; Liang, Wei-Kuang; Yeh, Jia Rong; Kao, Chu-Lan; Juan, Chi-Hung; Peng, Chung Kang; Meijer, Johanna H.; Wang, Yung-Hung; Long, Steven R.; Wu, Zhauhua

    2016-01-01

    The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert–Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through c...

  18. Spectral analysis of full field digital mammography data

    International Nuclear Information System (INIS)

    Heine, John J.; Velthuizen, Robert P.

    2002-01-01

    The spectral content of mammograms acquired from using a full field digital mammography (FFDM) system are analyzed. Fourier methods are used to show that the FFDM image power spectra obey an inverse power law; in an average sense, the images may be considered as 1/f fields. Two data representations are analyzed and compared (1) the raw data, and (2) the logarithm of the raw data. Two methods are employed to analyze the power spectra (1) a technique based on integrating the Fourier plane with octave ring sectioning developed previously, and (2) an approach based on integrating the Fourier plane using rings of constant width developed for this work. Both methods allow theoretical modeling. Numerical analysis indicates that the effects due to the transformation influence the power spectra measurements in a statistically significant manner in the high frequency range. However, this effect has little influence on the inverse power law estimation for a given image regardless of the data representation or the theoretical analysis approach. The analysis is presented from two points of view (1) each image is treated independently with the results presented as distributions, and (2) for a given representation, the entire image collection is treated as an ensemble with the results presented as expected values. In general, the constant ring width analysis forms the foundation for a spectral comparison method for finding spectral differences, from an image distribution sense, after applying a nonlinear transformation to the data. The work also shows that power law estimation may be influenced due to the presence of noise in the higher frequency range, which is consistent with the known attributes of the detector efficiency. The spectral modeling and inverse power law determinations obtained here are in agreement with that obtained from the analysis of digitized film-screen images presented previously. The form of the power spectrum for a given image is approximately 1/f 2

  19. Multivariate spectral-analysis of movement-related EEG data

    International Nuclear Information System (INIS)

    Andrew, C. M.

    1997-01-01

    The univariate method of event-related desynchronization (ERD) analysis, which quantifies the temporal evolution of power within specific frequency bands from electroencephalographic (EEG) data recorded during a task or event, is extended to an event related multivariate spectral analysis method. With this method, time courses of cross-spectra, phase spectra, coherence spectra, band-averaged coherence values (event-related coherence, ERCoh), partial power spectra and partial coherence spectra are estimated from an ensemble of multivariate event-related EEG trials. This provides a means of investigating relationships between EEG signals recorded over different scalp areas during the performance of a task or the occurrence of an event. The multivariate spectral analysis method is applied to EEG data recorded during three different movement-related studies involving discrete right index finger movements. The first study investigates the impact of the EEG derivation type on the temporal evolution of interhemispheric coherence between activity recorded at electrodes overlying the left and right sensorimotor hand areas during cued finger movement. The question results whether changes in coherence necessarily reflect changes in functional coupling of the cortical structures underlying the recording electrodes. The method is applied to data recorded during voluntary finger movement and a hypothesis, based on an existing global/local model of neocortical dynamics, is formulated to explain the coherence results. The third study applies partial spectral analysis too, and investigates phase relationships of, movement-related data recorded from a full head montage, thereby providing further results strengthening the global/local hypothesis. (author)

  20. Spectral map-analysis: a method to analyze gene expression data

    OpenAIRE

    Bijnens, Luc J.M.; Lewi, Paul J.; Göhlmann, Hinrich W.; Molenberghs, Geert; Wouters, Luc

    2004-01-01

    bioinformatics; biplot; correspondence factor analysis; data mining; data visualization; gene expression data; microarray data; multivariate exploratory data analysis; principal component analysis; Spectral map analysis

  1. Fission products determination in high activity waste solution by wavelength dispersive X-ray fluorescence spectral interference correction by intensity ratio

    International Nuclear Information System (INIS)

    Sato, I.M.

    1988-01-01

    Fission products Se, Rb, Y, Zr, Mo, Ru, Rh, Pd, Te, Cd, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu and Gd were determined in simulated high activity radioactive waste solution by wavelength dispersive X-ray fluorescence spectrometry without chemical separation. Thin layer technique was employed for the sample preparation. For the L spectral lines, the absorption effect was verified by Rasberry-Heinrich, Lucas Tooth-Pyne and Lachance-Trail relations. This effect was quantified and corrected accordingly. The spectral interferences of Kα and/or Lα lines of Y, Zr, Mo, La, Ce, Pr, Nd, Sm, Eu and Gd elements were eliminated by the intensity ratio method. The overlapping of up to three analytical lines was corrected by applying this method. The concentration influence of the interfering element on the intensity ratio values as well the efficiency of the correction method were investigated in order to assure that no systematic or residual error, resulting from the correction, affect the actual fluorescent intensity determination. The results is compared with the data obtained from measurements of free lines of spectral interference and also with those obtained by the linear equation system. Fission products determination presented a precision in the range of 0.1 to 5.0% and an accuracy of up to ± 7.0% the results are compared with those obtained by neutron activation analysis and inductively coupled plasma - atomic emission spectrometry. Leaching data, when radioactive waste is incorporated in cement matrix, were attempted by X-ray fluorescence technique. For two years leaching period, leaching rate and diffusion coefficient data of cesium were determined. The results obtained agree with those obtained by γ-spectromety. (author) [pt

  2. Effective approach to spectroscopy and spectral analysis techniques using Matlab

    Science.gov (United States)

    Li, Xiang; Lv, Yong

    2017-08-01

    With the development of electronic information, computer and network, modern education technology has entered new era, which would give a great impact on teaching process. Spectroscopy and spectral analysis is an elective course for Optoelectronic Information Science and engineering. The teaching objective of this course is to master the basic concepts and principles of spectroscopy, spectral analysis and testing of basic technical means. Then, let the students learn the principle and technology of the spectrum to study the structure and state of the material and the developing process of the technology. MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment and fourth-generation programming language. A proprietary programming language developed by MathWorks, MATLAB allows matrix manipulations, plotting of functions and data, Based on the teaching practice, this paper summarizes the new situation of applying Matlab to the teaching of spectroscopy. This would be suitable for most of the current school multimedia assisted teaching

  3. Leak detection in pipelines through spectral analysis of pressure signals

    Directory of Open Access Journals (Sweden)

    Souza A.L.

    2000-01-01

    Full Text Available The development and test of a technique for leak detection in pipelines is presented. The technique is based on the spectral analysis of pressure signals measured in pipeline sections where the formation of stationary waves is favoured, allowing leakage detection during the start/stop of pumps. Experimental tests were performed in a 1250 m long pipeline for various operational conditions of the pipeline (liquid flow rate and leakage configuration. Pressure transients were obtained by four transducers connected to a PC computer. The obtained results show that the spectral analysis of pressure transients, together with the knowledge of reflection points provide a simple and efficient way of identifying leaks during the start/stop of pumps in pipelines.

  4. Outlier Detection with Space Transformation and Spectral Analysis

    DEFF Research Database (Denmark)

    Dang, Xuan-Hong; Micenková, Barbora; Assent, Ira

    2013-01-01

    which rely on notions of distances or densities, this approach introduces a novel concept based on local quadratic entropy for evaluating the similarity of a data object with its neighbors. This information theoretic quantity is used to regularize the closeness amongst data instances and subsequently......Detecting a small number of outliers from a set of data observations is always challenging. In this paper, we present an approach that exploits space transformation and uses spectral analysis in the newly transformed space for outlier detection. Unlike most existing techniques in the literature...... benefits the process of mapping data into a usually lower dimensional space. Outliers are then identified by spectral analysis of the eigenspace spanned by the set of leading eigenvectors derived from the mapping procedure. The proposed technique is purely data-driven and imposes no assumptions regarding...

  5. Difference of Horizontal-to-Vertical (H/V) Spectral Ratios of Microtremors and Earthquake Motions: Theory and Observation

    Science.gov (United States)

    Kawase, H.; Nagashima, F.; Matsushima, S.; Sanchez-Sesma, F. J.

    2013-05-01

    Horizontal-to-vertical spectral ratios (HVRs) of microtremors have been traditionally interpreted theoretically as representing the Rayleigh wave ellipticity or just utilized a convenient tool to extract predominant periods of ground. However, based on the diffuse field theory (Sánchez-Sesma et al., 2011) the microtremor H/V spectral ratios (MHVRs) correspond to the square root of the ratio of the imaginary part of horizontal displacement for a horizontally applied unit harmonic load and the imaginary part of vertical displacement for a vertically applied unit load. The same diffuse field concept leads us to derive a simple formula for earthquake HVRs (EHVRs), that is, the ratio of the horizontal motion on the surface for a vertical incidence of S wave divided by the vertical motion on the surface for a vertical incidence of P wave with a fixed coefficient (Kawase et al., 2011). The difference for EHVRs comes from the fact that primary contribution of earthquake motions would be of plane body waves. Traditionally EHVRs are interpreted as the responses of inclined SV wave incidence only for their S wave portions. Without these compact theoretical solutions, EHVRs and MHVRs are either considered to be very similar/equivalent, or totally different in the previous studies. With these theoretical solutions we need to re-focus our attention on the difference of HVRs. Thus we have compared here HVRs at several dozens of strong motion stations in Japan. When we compared observed HVRs we found that EHVRs tend to be higher in general than the MHVRs, especially around their peaks. As previously reported, their general shapes share the common features. Especially their fundamental peak and trough frequencies show quite a good match to each other. However, peaks in EHVRs in the higher frequency range would not show up in MHVRs. When we calculated theoretical HVRs separately at these target sites, their basic characteristics correspond to these observed differences. At this

  6. Fast analysis of spectral data using neural networks

    International Nuclear Information System (INIS)

    Roach, C.M.

    1992-01-01

    Fast analysis techniques are highly desirable in experiments where measurements are recorded at high rates. In fusion experiments the processing required to obtain plasma parameters is usually orders of magnitude slower than the data acquisition. Spectroscopic diagnostics suffer greatly from this problem. The extraction of plasma parameters from a measured spectrum typically corresponds to a nonlinear mapping between distinct multi-dimensional spaces. Where no analytic expression for the mapping exists, conventional analysis methods (e.g. least squares) are usually iterative and therefore slow. With this concern in mind a fast spectral analysis method involving neural networks has been investigated. (author) 6 refs., 3 figs

  7. [Analysis of sensitive spectral bands for burning status detection using hyper-spectral images of Tiangong-01].

    Science.gov (United States)

    Qin, Xian-Lin; Zhu, Xi; Yang, Fei; Zhao, Kai-Rui; Pang, Yong; Li, Zeng-Yuan; Li, Xu-Zhi; Zhang, Jiu-Xing

    2013-07-01

    To obtain the sensitive spectral bands for detection of information on 4 kinds of burning status, i. e. flaming, smoldering, smoke, and fire scar, with satellite data, analysis was conducted to identify suitable satellite spectral bands for detection of information on these 4 kinds of burning status by using hyper-spectrum images of Tiangong-01 (TG-01) and employing a method combining statistics and spectral analysis. The results show that: in the hyper-spectral images of TG-01, the spectral bands differ obviously for detection of these 4 kinds of burning status; in all hyper-spectral short-wave infrared channels, the reflectance of flaming is higher than that of all other 3 kinds of burning status, and the reflectance of smoke is the lowest; the reflectance of smoke is higher than that of all other 3 kinds of burning status in the channels corresponding to hyper-spectral visible near-infrared and panchromatic sensors. For spectral band selection, more suitable spectral bands for flaming detection are 1 000.0-1 956.0 and 2 020.0-2 400.0 nm; the suitable spectral bands for identifying smoldering are 930.0-1 000.0 and 1 084.0-2 400.0 nm; the suitable spectral bands for smoke detection is in 400.0-920.0 nm; for fire scar detection, it is suitable to select bands with central wavelengths of 900.0-930.0 and 1 300.0-2 400.0 nm, and then to combine them to construct a detection model.

  8. Spectral Envelopes and Additive + Residual Analysis/Synthesis

    Science.gov (United States)

    Rodet, Xavier; Schwarz, Diemo

    The subject of this chapter is the estimation, representation, modification, and use of spectral envelopes in the context of sinusoidal-additive-plus-residual analysis/synthesis. A spectral envelope is an amplitude-vs-frequency function, which may be obtained from the envelope of a short-time spectrum (Rodet et al., 1987; Schwarz, 1998). [Precise definitions of such an envelope and short-time spectrum (STS) are given in Section 2.] The additive-plus-residual analysis/synthesis method is based on a representation of signals in terms of a sum of time-varying sinusoids and of a non-sinusoidal residual signal [e.g., see Serra (1989), Laroche et al. (1993), McAulay and Quatieri (1995), and Ding and Qian (1997)]. Many musical sound signals may be described as a combination of a nearly periodic waveform and colored noise. The nearly periodic part of the signal can be viewed as a sum of sinusoidal components, called partials, with time-varying frequency and amplitude. Such sinusoidal components are easily observed on a spectral analysis display (Fig. 5.1) as obtained, for instance, from a discrete Fourier transform.

  9. Ratio analysis specifics of the family dairies' financial statements

    OpenAIRE

    Mitrović Aleksandra; Knežević Snežana; Veličković Milica

    2015-01-01

    The subject of this paper is the evaluation of the financial analysis specifics of the dairy enterprises with a focus on the implementation of the ratio analysis of financial statements. The ratio analysis is a central part of financial analysis, since it is based on investigating the relationship between logically related items in the financial statements to assess the financial position of the observed enterprise and its earning capacity. Speaking about the reporting of financial performanc...

  10. Detecting and monitoring water stress states in maize crops using spectral ratios obtained in the photosynthetic domain

    Science.gov (United States)

    Baranoski, Gladimir V. G.; Van Leeuwen, Spencer R.

    2017-07-01

    The reliable detection and monitoring of changes in the water status of crops composed of plants like maize, a highly adaptable C4 species in large demand for both food and biofuel production, are longstanding remote sensing goals. Existing procedures employed to achieve these goals rely predominantly on the spectral signatures of plant leaves in the infrared domain where the light absorption within the foliar tissues is dominated by water. It has been suggested that such procedures could be implemented using subsurface reflectance to transmittance ratios obtained in the visible (photosynthetic) domain with the assistance of polarization devices. However, the experiments leading to this proposition were performed on detached maize leaves, which were not influenced by the whole (living) plant's adaptation mechanisms to water stress. In this work, we employ predictive simulations of light-leaf interactions in the photosynthetic domain to demonstrate that the living specimens' physiological responses to dehydration stress should be taken into account in this context. Our findings also indicate that a reflectance to transmittance ratio obtained in the photosynthetic domain at a lower angle of incidence without the use of polarization devices may represent a cost-effective alternative for the assessment of water stress states in maize crops.

  11. Explorations in statistics: the analysis of ratios and normalized data.

    Science.gov (United States)

    Curran-Everett, Douglas

    2013-09-01

    Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This ninth installment of Explorations in Statistics explores the analysis of ratios and normalized-or standardized-data. As researchers, we compute a ratio-a numerator divided by a denominator-to compute a proportion for some biological response or to derive some standardized variable. In each situation, we want to control for differences in the denominator when the thing we really care about is the numerator. But there is peril lurking in a ratio: only if the relationship between numerator and denominator is a straight line through the origin will the ratio be meaningful. If not, the ratio will misrepresent the true relationship between numerator and denominator. In contrast, regression techniques-these include analysis of covariance-are versatile: they can accommodate an analysis of the relationship between numerator and denominator when a ratio is useless.

  12. Analyzing availability using transfer function models and cross spectral analysis

    International Nuclear Information System (INIS)

    Singpurwalla, N.D.

    1980-01-01

    The paper shows how the methods of multivariate time series analysis can be used in a novel way to investigate the interrelationships between a series of operating (running) times and a series of maintenance (down) times of a complex system. Specifically, the techniques of cross spectral analysis are used to help obtain a Box-Jenkins type transfer function model for the running times and the down times of a nuclear reactor. A knowledge of the interrelationships between the running times and the down times is useful for an evaluation of maintenance policies, for replacement policy decisions, and for evaluating the availability and the readiness of complex systems

  13. Spectral Analysis Of Business Cycles In The Visegrad Group Countries

    Directory of Open Access Journals (Sweden)

    Kijek Arkadiusz

    2017-06-01

    Full Text Available This paper examines the business cycle properties of Visegrad group countries. The main objective is to identify business cycles in these countries and to study the relationships between them. The author applies a modification of the Fourier analysis to estimate cycle amplitudes and frequencies. This allows for a more precise estimation of cycle characteristics than the traditional approach. The cross-spectral analysis of GDP cyclical components for the Czech Republic, Hungary, Poland and Slovakia makes it possible to assess the degree of business cycle synchronization between the countries.

  14. Ratio analysis specifics of the family dairies' financial statements

    Directory of Open Access Journals (Sweden)

    Mitrović Aleksandra

    2015-01-01

    Full Text Available The subject of this paper is the evaluation of the financial analysis specifics of the dairy enterprises with a focus on the implementation of the ratio analysis of financial statements. The ratio analysis is a central part of financial analysis, since it is based on investigating the relationship between logically related items in the financial statements to assess the financial position of the observed enterprise and its earning capacity. Speaking about the reporting of financial performance in family dairies, the basis is created for displaying techniques of financial analysis, with a special indication on the specifics of their application in agricultural enterprises focusing on companies engaged in dairying. Applied in the paper is ratio analysis on the example of a dairy enterprise, i.e. a family dairy operating in Serbia. The ratio indicators are the basis for identifying relationships based on which by comparing the actual performance and certain business standards differences or variations are identified.

  15. Combined slope ratio analysis and linear-subtraction: An extension of the Pearce ratio method

    Science.gov (United States)

    De Waal, Sybrand A.

    1996-07-01

    A new technique, called combined slope ratio analysis, has been developed by extending the Pearce element ratio or conserved-denominator method (Pearce, 1968) to its logical conclusions. If two stoichiometric substances are mixed and certain chemical components are uniquely contained in either one of the two mixing substances, then by treating these unique components as conserved, the composition of the substance not containing the relevant component can be accurately calculated within the limits allowed by analytical and geological error. The calculated composition can then be subjected to rigorous statistical testing using the linear-subtraction method recently advanced by Woronow (1994). Application of combined slope ratio analysis to the rocks of the Uwekahuna Laccolith, Hawaii, USA, and the lavas of the 1959-summit eruption of Kilauea Volcano, Hawaii, USA, yields results that are consistent with field observations.

  16. [Applications of spectral analysis technique to monitoring grasshoppers].

    Science.gov (United States)

    Lu, Hui; Han, Jian-guo; Zhang, Lu-da

    2008-12-01

    Grasshopper monitoring is of great significance in protecting environment and reducing economic loss. However, how to predict grasshoppers accurately and effectively is a difficult problem for a long time. In the present paper, the importance of forecasting grasshoppers and its habitat is expounded, and the development in monitoring grasshopper populations and the common arithmetic of spectral analysis technique are illustrated. Meanwhile, the traditional methods are compared with the spectral technology. Remote sensing has been applied in monitoring the living, growing and breeding habitats of grasshopper population, and can be used to develop a forecast model combined with GIS. The NDVI values can be analyzed throughout the remote sensing data and be used in grasshopper forecasting. Hyper-spectra remote sensing technique which can be used to monitor grasshoppers more exactly has advantages in measuring the damage degree and classifying damage areas of grasshoppers, so it can be adopted to monitor the spatial distribution dynamic of rangeland grasshopper population. Differentialsmoothing can be used to reflect the relations between the characteristic parameters of hyper-spectra and leaf area index (LAI), and indicate the intensity of grasshopper damage. The technology of near infrared reflectance spectroscopy has been employed in judging grasshopper species, examining species occurrences and monitoring hatching places by measuring humidity and nutrient of soil, and can be used to investigate and observe grasshoppers in sample research. According to this paper, it is concluded that the spectral analysis technique could be used as a quick and exact tool in monitoring and forecasting the infestation of grasshoppers, and will become an important means in such kind of research for their advantages in determining spatial orientation, information extracting and processing. With the rapid development of spectral analysis methodology, the goal of sustainable monitoring

  17. The role of the computer in automated spectral analysis

    International Nuclear Information System (INIS)

    Rasmussen, S.E.

    This report describes how a computer can be an extremely valuable tool for routine analysis of spectra, which is a time consuming process. A number of general-purpose algorithms that are available for the various phases of the analysis can be implemented, if these algorithms are designed to cope with all the variations that may occur. Since this is basically impossible, one must find a compromise between obscure error and program complexity. This is usually possible with human interaction at critical points. In spectral analysis this is possible if the user scans the data on an interactive graphics terminal, makes the necessary changes and then returns control to the computer for completion of the analysis

  18. Explorations in Statistics: The Analysis of Ratios and Normalized Data

    Science.gov (United States)

    Curran-Everett, Douglas

    2013-01-01

    Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This ninth installment of "Explorations in Statistics" explores the analysis of ratios and normalized--or standardized--data. As researchers, we compute a ratio--a numerator divided by a denominator--to compute a…

  19. Monitoring urban greenness dynamics using multiple endmember spectral mixture analysis.

    Directory of Open Access Journals (Sweden)

    Muye Gan

    Full Text Available Urban greenness is increasingly recognized as an essential constituent of the urban environment and can provide a range of services and enhance residents' quality of life. Understanding the pattern of urban greenness and exploring its spatiotemporal dynamics would contribute valuable information for urban planning. In this paper, we investigated the pattern of urban greenness in Hangzhou, China, over the past two decades using time series Landsat-5 TM data obtained in 1990, 2002, and 2010. Multiple endmember spectral mixture analysis was used to derive vegetation cover fractions at the subpixel level. An RGB-vegetation fraction model, change intensity analysis and the concentric technique were integrated to reveal the detailed, spatial characteristics and the overall pattern of change in the vegetation cover fraction. Our results demonstrated the ability of multiple endmember spectral mixture analysis to accurately model the vegetation cover fraction in pixels despite the complex spectral confusion of different land cover types. The integration of multiple techniques revealed various changing patterns in urban greenness in this region. The overall vegetation cover has exhibited a drastic decrease over the past two decades, while no significant change occurred in the scenic spots that were studied. Meanwhile, a remarkable recovery of greenness was observed in the existing urban area. The increasing coverage of small green patches has played a vital role in the recovery of urban greenness. These changing patterns were more obvious during the period from 2002 to 2010 than from 1990 to 2002, and they revealed the combined effects of rapid urbanization and greening policies. This work demonstrates the usefulness of time series of vegetation cover fractions for conducting accurate and in-depth studies of the long-term trajectories of urban greenness to obtain meaningful information for sustainable urban development.

  20. Spectral analysis in thin tubes with axial heterogeneities

    KAUST Repository

    Ferreira, Rita; Mascarenhas, M. Luí sa; Piatnitski, Andrey

    2015-01-01

    In this paper, we present the 3D-1D asymptotic analysis of the Dirichlet spectral problem associated with an elliptic operator with axial periodic heterogeneities. We extend to the 3D-1D case previous 3D-2D results (see [10]) and we analyze the special case where the scale of thickness is much smaller than the scale of the heterogeneities and the planar coefficient has a unique global minimum in the periodic cell. These results are of great relevance in the comprehension of the wave propagation in nanowires showing axial heterogeneities (see [17]).

  1. On asymptotic analysis of spectral problems in elasticity

    Directory of Open Access Journals (Sweden)

    S.A. Nazarov

    Full Text Available The three-dimensional spectral elasticity problem is studied in an anisotropic and inhomogeneous solid with small defects, i.e., inclusions, voids, and microcracks. Asymptotics of eigenfrequencies and the corresponding elastic eigenmodes are constructed and justified. New technicalities of the asymptotic analysis are related to variable coefficients of differential operators, vectorial setting of the problem, and usage of intrinsic integral characteristics of defects. The asymptotic formulae are developed in a form convenient for application in shape optimization and inverse problems.

  2. A financial Ratio Analysis of Commercial Bank Performance in ...

    African Journals Online (AJOL)

    A financial Ratio Analysis of Commercial Bank Performance in South Africa. ... Journal Home > Vol 2, No 1 (2010) >. Log in or ... This paper investigates the performance of South Africa's commercial banking sector for the period 2005- 2009.

  3. Framework for Financial Ratio Analysis of Audited Federal Financial Reports

    Science.gov (United States)

    1999-12-01

    this period were conducted on the statistical validity of the ratio method in financial analysis. McDonald and Morris conducted a study on the... franchising operations, allowing them to lower costs and share administrative support services with other agencies. [Ref. 60:sec. 402-403] The GMRA also...Press, Washington, D.C., 1955). 21. McDonald , Bill and Morris, Michael H., "The Statistical Validity of the Ratio Method in Financial Analysis: An

  4. Overlapping communities detection based on spectral analysis of line graphs

    Science.gov (United States)

    Gui, Chun; Zhang, Ruisheng; Hu, Rongjing; Huang, Guoming; Wei, Jiaxuan

    2018-05-01

    Community in networks are often overlapping where one vertex belongs to several clusters. Meanwhile, many networks show hierarchical structure such that community is recursively grouped into hierarchical organization. In order to obtain overlapping communities from a global hierarchy of vertices, a new algorithm (named SAoLG) is proposed to build the hierarchical organization along with detecting the overlap of community structure. SAoLG applies the spectral analysis into line graphs to unify the overlap and hierarchical structure of the communities. In order to avoid the limitation of absolute distance such as Euclidean distance, SAoLG employs Angular distance to compute the similarity between vertices. Furthermore, we make a micro-improvement partition density to evaluate the quality of community structure and use it to obtain the more reasonable and sensible community numbers. The proposed SAoLG algorithm achieves a balance between overlap and hierarchy by applying spectral analysis to edge community detection. The experimental results on one standard network and six real-world networks show that the SAoLG algorithm achieves higher modularity and reasonable community number values than those generated by Ahn's algorithm, the classical CPM and GN ones.

  5. Spectral analysis of mammographic images using a multitaper method

    International Nuclear Information System (INIS)

    Wu Gang; Mainprize, James G.; Yaffe, Martin J.

    2012-01-01

    Purpose: Power spectral analysis in radiographic images is conventionally performed using a windowed overlapping averaging periodogram. This study describes an alternative approach using a multitaper technique and compares its performance with that of the standard method. This tool will be valuable in power spectrum estimation of images, whose content deviates significantly from uniform white noise. The performance of the multitaper approach will be evaluated in terms of spectral stability, variance reduction, bias, and frequency precision. The ultimate goal is the development of a useful tool for image quality assurance. Methods: A multitaper approach uses successive data windows of increasing order. This mitigates spectral leakage allowing one to calculate a reduced-variance power spectrum. The multitaper approach will be compared with the conventional power spectrum method in several typical situations, including the noise power spectra (NPS) measurements of simulated projection images of a uniform phantom, NPS measurement of real detector images of a uniform phantom for two clinical digital mammography systems, and the estimation of the anatomic noise in mammographic images (simulated images and clinical mammograms). Results: Examination of spectrum variance versus frequency resolution and bias indicates that the multitaper approach is superior to the conventional single taper methods in the prevention of spectrum leakage and variance reduction. More than four times finer frequency precision can be achieved with equivalent or less variance and bias. Conclusions: Without any shortening of the image data length, the bias is smaller and the frequency resolution is higher with the multitaper method, and the need to compromise in the choice of regions of interest size to balance between the reduction of variance and the loss of frequency resolution is largely eliminated.

  6. GBTIDL: Reduction and Analysis of GBT Spectral Line Data

    Science.gov (United States)

    Marganian, P.; Garwood, R. W.; Braatz, J. A.; Radziwill, N. M.; Maddalena, R. J.

    2013-03-01

    GBTIDL is an interactive package for reduction and analysis of spectral line data taken with the Robert C. Byrd Green Bank Telescope (GBT). The package, written entirely in IDL, consists of straightforward yet flexible calibration, averaging, and analysis procedures (the "GUIDE layer") modeled after the UniPOPS and CLASS data reduction philosophies, a customized plotter with many built-in visualization features, and Data I/O and toolbox functionality that can be used for more advanced tasks. GBTIDL makes use of data structures which can also be used to store intermediate results. The package consumes and produces data in GBT SDFITS format. GBTIDL can be run online and have access to the most recent data coming off the telescope, or can be run offline on preprocessed SDFITS files.

  7. Modeling and inversion of the microtremor H/ V spectral ratio: physical basis behind the diffuse field approach

    Science.gov (United States)

    Sánchez-Sesma, Francisco J.

    2017-07-01

    Microtremor H/ V spectral ratio (MHVSR) has gained popularity to assess the dominant frequency of soil sites. It requires measurement of ground motion due to seismic ambient noise at a site and a relatively simple processing. Theory asserts that the ensemble average of the autocorrelation of motion components belonging to a diffuse field at a given receiver gives the directional energy densities (DEDs) which are proportional to the imaginary parts of the Green's function components when both source and receiver are the same point and the directions of force and response coincide. Therefore, the MHVSR can be modeled as the square root of 2 × Im G 11/Im G 33, where Im G 11 and Im G 33 are the imaginary parts of Green's functions at the load point for the horizontal (sub-index 1) and vertical (sub-index 3) components, respectively. This connection has physical implications that emerge from the duality DED force and allows understanding the behavior of the MHVSR. For a given model, the imaginary parts of the Green's functions are integrals along a radial wavenumber. To deal with these integrals, we have used either the popular discrete wavenumber method or the Cauchy's residue theorem at the poles that account for surface waves normal modes giving the contributions due to Rayleigh and Love waves. For the retrieval of the velocity structure, one can minimize the weighted differences between observations and calculated values using the strategy of an inversion scheme. In this research, we used simulated annealing but other optimization techniques can be used as well. This last approach allows computing separately the contributions of different wave types. An example is presented for the mouth of Andarax River at Almería, Spain. [Figure not available: see fulltext.

  8. Representing the Past by Solid Modeling + Golden Ratio Analysis

    Science.gov (United States)

    Ding, Suining

    2008-01-01

    This paper describes the procedures of reconstructing ancient architecture using solid modeling with geometric analysis, especially the Golden Ratio analysis. In the past the recovery and reconstruction of ruins required bringing together fragments of evidence and vast amount of measurements from archaeological site. Although researchers and…

  9. Financial-Ratio Analysis and Medical School Management.

    Science.gov (United States)

    Eastaugh, Steven R.

    1980-01-01

    The value of a uniform program of financial assistance to medical education and research is questioned. Medical schools have an uneven ability to compensate for declining federal capitation and research grants. Financial-ratio analysis and cluster analysis are utilized to suggest four adaptive responses to future financial pressures. (Author/MLW)

  10. Spectral Analysis Related to Bare-Metal and Drug-Eluting Coronary Stent Implantation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Rose Mary Ferreira Lisboa da, E-mail: roselisboa@cardiol.br [Faculdade de Medicina da UFMG, Divinópolis, MG (Brazil); Silva, Carlos Augusto Bueno [Faculdade de Medicina da UFMG, Divinópolis, MG (Brazil); Belo Horizonte, Hospital São João de Deus, Divinópolis, MG (Brazil); Greco, Otaviano José [Belo Horizonte, Hospital São João de Deus, Divinópolis, MG (Brazil); Moreira, Maria da Consolação Vieira [Faculdade de Medicina da UFMG, Divinópolis, MG (Brazil)

    2014-08-15

    The autonomic nervous system plays a central role in cardiovascular regulation; sympathetic activation occurs during myocardial ischemia. To assess the spectral analysis of heart rate variability during stent implantation, comparing the types of stent. This study assessed 61 patients (mean age, 64.0 years; 35 men) with ischemic heart disease and indication for stenting. Stent implantation was performed under Holter monitoring to record the spectral analysis of heart rate variability (Fourier transform), measuring the low-frequency (LF) and high-frequency (HF) components, and the LF/HF ratio before and during the procedure. Bare-metal stent was implanted in 34 patients, while the others received drug-eluting stents. The right coronary artery was approached in 21 patients, the left anterior descending, in 28, and the circumflex, in 9. As compared with the pre-stenting period, all patients showed an increase in LF and HF during stent implantation (658 versus 185 ms2, p = 0.00; 322 versus 121, p = 0.00, respectively), with no change in LF/HF. During stent implantation, LF was 864 ms2 in patients with bare-metal stents, and 398 ms2 in those with drug-eluting stents (p = 0.00). The spectral analysis of heart rate variability showed no association with diabetes mellitus, family history, clinical presentation, beta-blockers, age, and vessel or its segment. Stent implantation resulted in concomitant sympathetic and vagal activations. Diabetes mellitus, use of beta-blockers, and the vessel approached showed no influence on the spectral analysis of heart rate variability. Sympathetic activation was lower during the implantation of drug-eluting stents.

  11. Business sustainability performance measurement: Eco-ratio analysis

    Directory of Open Access Journals (Sweden)

    Collins C. Ngwakwe

    2016-12-01

    Full Text Available Eco-aware customers and stakeholders are demanding for a measurement that links environmental performance with other business operations. To bridge this seemingly measurement gap, this paper suggests ‘Eco-Ratio Analysis’ and proposes an approach for conducting eco-ratio analysis. It is argued that since accounting ratios function as a tool for evaluating corporate financial viability by management and investors, eco-ratio analysis should be brought to the fore to provide a succinct measurement about the linkage between environmental performance and conventional business performance. It is hoped that this suggestion will usher in a nuance debate and approach in the teaching, research and practice of environmental management and sustainability accounting

  12. ANALYSIS OF CAMOUFLAGE COVER SPECTRAL CHARACTERISTICS BY IMAGING SPECTROMETER

    Directory of Open Access Journals (Sweden)

    A. Y. Kouznetsov

    2016-03-01

    Full Text Available Subject of Research.The paper deals with the problems of detection and identification of objects in hyperspectral imagery. The possibility of object type determination by statistical methods is demonstrated. The possibility of spectral image application for its data type identification is considered. Method. Researching was done by means of videospectral equipment for objects detection at "Fregat" substrate. The postprocessing of hyperspectral information was done with the use of math model of pattern recognition system. The vegetation indexes TCHVI (Three-Channel Vegetation Index and NDVI (Normalized Difference Vegetation Index were applied for quality control of object recognition. Neumann-Pearson criterion was offered as a tool for determination of objects differences. Main Results. We have carried out analysis of the spectral characteristics of summer-typecamouflage cover (Germany. We have calculated the density distribution of vegetation indexes. We have obtained statistical characteristics needed for creation of mathematical model for pattern recognition system. We have shown the applicability of vegetation indices for detection of summer camouflage cover on averdure background. We have presented mathematical model of object recognition based on Neumann-Pearson criterion. Practical Relevance. The results may be useful for specialists in the field of hyperspectral data processing for surface state monitoring.

  13. [Quantitative Analysis of Heavy Metals in Water with LIBS Based on Signal-to-Background Ratio].

    Science.gov (United States)

    Hu, Li; Zhao, Nan-jing; Liu, Wen-qing; Fang, Li; Zhang, Da-hai; Wang, Yin; Meng, De Shuo; Yu, Yang; Ma, Ming-jun

    2015-07-01

    There are many influence factors in the precision and accuracy of the quantitative analysis with LIBS technology. According to approximately the same characteristics trend of background spectrum and characteristic spectrum along with the change of temperature through in-depth analysis, signal-to-background ratio (S/B) measurement and regression analysis could compensate the spectral line intensity changes caused by system parameters such as laser power, spectral efficiency of receiving. Because the measurement dates were limited and nonlinear, we used support vector machine (SVM) for regression algorithm. The experimental results showed that the method could improve the stability and the accuracy of quantitative analysis of LIBS, and the relative standard deviation and average relative error of test set respectively were 4.7% and 9.5%. Data fitting method based on signal-to-background ratio(S/B) is Less susceptible to matrix elements and background spectrum etc, and provides data processing reference for real-time online LIBS quantitative analysis technology.

  14. System and method for high precision isotope ratio destructive analysis

    Science.gov (United States)

    Bushaw, Bruce A; Anheier, Norman C; Phillips, Jon R

    2013-07-02

    A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).

  15. Neutrophil/lymphocyte ratio and platelet/lymphocyte ratio in mood disorders: A meta-analysis.

    Science.gov (United States)

    Mazza, Mario Gennaro; Lucchi, Sara; Tringali, Agnese Grazia Maria; Rossetti, Aurora; Botti, Eugenia Rossana; Clerici, Massimo

    2018-06-08

    The immune and inflammatory system is involved in the etiology of mood disorders. Neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR) and monocyte/lymphocyte ratio (MLR) are inexpensive and reproducible biomarkers of inflammation. This is the first meta-analysis exploring the role of NLR and PLR in mood disorder. We identified 11 studies according to our inclusion criteria from the main Electronic Databases. Meta-analyses were carried out generating pooled standardized mean differences (SMDs) between index and healthy controls (HC). Heterogeneity was estimated. Relevant sensitivity and meta-regression analyses were conducted. Subjects with bipolar disorder (BD) had higher NLR and PLR as compared with HC (respectively SMD = 0.672; p analysis evidenced an influence of bipolar phase on the overall estimate whit studies including subjects in manic and any bipolar phase showing a significantly higher NLR and PLR as compared with HC whereas the effect was not significant among studies including only euthymic bipolar subjects. Meta-regression showed that age and sex influenced the relationship between BD and NLR but not the relationship between BD and PLR. Meta-analysis was not carried out for MLR because our search identified only one study when comparing BD to HC, and only one study when comparing MDD to HC. Subjects with major depressive disorder (MDD) had higher NLR as compared with HC (SMD = 0.670; p = 0.028; I 2  = 89.931%). Heterogeneity-based sensitivity analyses and meta-regression confirmed these findings. Our meta-analysis supports the hypothesis that an inflammatory activation occurs in mood disorders and NLR and PLR may be useful to detect this activation. More researches including comparison of NLR, PLR and MLR between different bipolar phases and between BD and MDD are needed. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Scaling relationship between corner frequencies and seismic moments of ultra micro earthquakes estimated with coda-wave spectral ratio -the Mponeng mine in South Africa

    Science.gov (United States)

    Wada, N.; Kawakata, H.; Murakami, O.; Doi, I.; Yoshimitsu, N.; Nakatani, M.; Yabe, Y.; Naoi, M. M.; Miyakawa, K.; Miyake, H.; Ide, S.; Igarashi, T.; Morema, G.; Pinder, E.; Ogasawara, H.

    2011-12-01

    Scaling relationship between corner frequencies, fc, and seismic moments, Mo is an important clue to understand the seismic source characteristics. Aki (1967) showed that Mo is proportional to fc-3 for large earthquakes (cubic law). Iio (1986) claimed breakdown of the cubic law between fc and Mo for smaller earthquakes (Mw law holds even for micro earthquakes (-1 4) by using high quality data observed at a deep borehole (Abercrombie, 1995; Ogasawara et al., 2001; Hiramatsu et al., 2002; Yamada et al., 2007). In order to clarify the scaling relationship for smaller earthquakes (Mw Africa. We used 4 tri-axial accelerometers of three-component that have a flat response up to 25 kHz. They were installed to be 10 to 30 meters apart from each other at 3,300 meters deep. During the period from 2008/10/14 to 2008/10/30 (17 days), 8,927 events were recorded. We estimated fc and Mo for 60 events (-3 Common practice is using direct waves from adjacent events. However, there were only 5 event pairs with the distance between them less than 20 meters and Mw difference over one. In addition, the observation array is very small (radius less than 30 m), which means that effects of directivity and radiation pattern on direct waves are similar at all stations. Hence, we used spectral ratio of coda waves, since these effects are averaged and will be effectively reduced (Mayeda et al., 2007; Somei et al., 2010). Coda analysis was attempted only for relatively large 20 events (we call "coda events" hereafter) that have coda energy large enough for analysis. The results agree with those of the direct S-wave analysis for the same events, though the latter showed more scattering in fc-Mo trend. So, we combine the results from the both analyses to examine the fc-Mo trend down to very small events. Therefore, we adopted fc and (relative) Mo estimated from coda spectral ratios for coda events, while we adopted them from direct spectra for other events despite of their lower reliability. We

  17. Joint Spectral Analysis for Early Bright X-ray Flares of γ-Ray Bursts ...

    Indian Academy of Sciences (India)

    Abstract. A joint spectral analysis for early bright X-ray flares that were simultaneously observed with Swift BAT and XRT are present. Both BAT and XRT lightcurves of these flares are correlated. Our joint spectral anal- ysis shows that the radiations in the two energy bands are from the same spectral component, which can ...

  18. IR spectral analysis for the diagnostics of crust earthquake precursors

    Directory of Open Access Journals (Sweden)

    R. M. Umarkhodgaev

    2012-11-01

    Full Text Available Some possible physical processes are analysed that cause, under the condition of additional ionisation in a pre-breakdown electric field, emissions in the infrared (IR interval. The atmospheric transparency region of the IR spectrum at wavelengths of 7–15 μm is taken into account. This transparency region corresponds to spectral lines of small atmospheric constituents like CH4, CO2, N2O, NO2, NO, and O3. The possible intensities of the IR emissions observable in laboratories and in nature are estimated. The acceleration process of the electrons in the pre-breakdown electrical field before its adhesion to the molecules is analyzed. For daytime conditions, modifications of the adsorption spectra of the scattered solar emissions are studied; for nighttime, variations of emission spectra may be used for the analysis.

  19. Spectral analysis methods for vehicle interior vibro-acoustics identification

    Science.gov (United States)

    Hosseini Fouladi, Mohammad; Nor, Mohd. Jailani Mohd.; Ariffin, Ahmad Kamal

    2009-02-01

    Noise has various effects on comfort, performance and health of human. Sound are analysed by human brain based on the frequencies and amplitudes. In a dynamic system, transmission of sound and vibrations depend on frequency and direction of the input motion and characteristics of the output. It is imperative that automotive manufacturers invest a lot of effort and money to improve and enhance the vibro-acoustics performance of their products. The enhancement effort may be very difficult and time-consuming if one relies only on 'trial and error' method without prior knowledge about the sources itself. Complex noise inside a vehicle cabin originated from various sources and travel through many pathways. First stage of sound quality refinement is to find the source. It is vital for automotive engineers to identify the dominant noise sources such as engine noise, exhaust noise and noise due to vibration transmission inside of vehicle. The purpose of this paper is to find the vibro-acoustical sources of noise in a passenger vehicle compartment. The implementation of spectral analysis method is much faster than the 'trial and error' methods in which, parts should be separated to measure the transfer functions. Also by using spectral analysis method, signals can be recorded in real operational conditions which conduce to more consistent results. A multi-channel analyser is utilised to measure and record the vibro-acoustical signals. Computational algorithms are also employed to identify contribution of various sources towards the measured interior signal. These achievements can be utilised to detect, control and optimise interior noise performance of road transport vehicles.

  20. Investigation of a glottal related harmonics-to-noise ratio and spectral tilt as indicators of glottal noise in synthesized and human voice signals.

    LENUS (Irish Health Repository)

    Murphy, Peter J

    2008-03-01

    The harmonics-to-noise ratio (HNR) of the voiced speech signal has implicitly been used to infer information regarding the turbulent noise level at the glottis. However, two problems exist for inferring glottal noise attributes from the HNR of the speech wave form: (i) the measure is fundamental frequency (f0) dependent for equal levels of glottal noise, and (ii) any deviation from signal periodicity affects the ratio, not just turbulent noise. An alternative harmonics-to-noise ratio formulation [glottal related HNR (GHNR\\')] is proposed to overcome the former problem. In GHNR\\' a mean over the spectral range of interest of the HNRs at specific harmonic\\/between-harmonic frequencies (expressed in linear scale) is calculated. For the latter issue [(ii)] two spectral tilt measures are shown, using synthesis data, to be sensitive to glottal noise while at the same time being comparatively insensitive to other glottal aperiodicities. The theoretical development predicts that the spectral tilt measures reduce as noise levels increase. A conventional HNR estimator, GHNR\\' and two spectral tilt measures are applied to a data set of 13 pathological and 12 normal voice samples. One of the tilt measures and GHNR\\' are shown to provide statistically significant differentiating power over a conventional HNR estimator.

  1. Spectral analysis of a class of Schrodinger operators exhibiting a parameter-dependent spectral transition

    Czech Academy of Sciences Publication Activity Database

    Barseghyan, Diana; Exner, Pavel; Khrabustovskyi, A.; Tater, Miloš

    2016-01-01

    Roč. 49, č. 16 (2016), s. 165302 ISSN 1751-8113 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : Schrodinger operator * eigenvalue estimates * spectral transition Subject RIV: BE - Theoretical Physics Impact factor: 1.857, year: 2016

  2. Application of a simplified calculation for full-wave microtremor H/ V spectral ratio based on the diffuse field approximation to identify underground velocity structures

    Science.gov (United States)

    Wu, Hao; Masaki, Kazuaki; Irikura, Kojiro; Sánchez-Sesma, Francisco José

    2017-12-01

    Under the diffuse field approximation, the full-wave (FW) microtremor H/ V spectral ratio ( H/ V) is modeled as the square root of the ratio of the sum of imaginary parts of the Green's function of the horizontal components to that of the vertical one. For a given layered medium, the FW H/ V can be well approximated with only surface waves (SW) H/ V of the "cap-layered" medium which consists of the given layered medium and a new larger velocity half-space (cap layer) at large depth. Because the contribution of surface waves can be simply obtained by the residue theorem, the computation of SW H/ V of cap-layered medium is faster than that of FW H/ V evaluated by discrete wavenumber method and contour integration method. The simplified computation of SW H/ V was then applied to identify the underground velocity structures at six KiK-net strong-motion stations. The inverted underground velocity structures were used to evaluate FW H/ Vs which were consistent with the SW H/ Vs of corresponding cap-layered media. The previous study on surface waves H/ Vs proposed with the distributed surface sources assumption and a fixed Rayleigh-to-Love waves amplitude ratio for horizontal motions showed a good agreement with the SW H/ Vs of our study. The consistency between observed and theoretical spectral ratios, such as the earthquake motions of H/ V spectral ratio and spectral ratio of horizontal motions between surface and bottom of borehole, indicated that the underground velocity structures identified from SW H/ V of cap-layered medium were well resolved by the new method.[Figure not available: see fulltext.

  3. Development of spectral analysis math models and software program and spectral analyzer, digital converter interface equipment design

    Science.gov (United States)

    Hayden, W. L.; Robinson, L. H.

    1972-01-01

    Spectral analyses of angle-modulated communication systems is studied by: (1) performing a literature survey of candidate power spectrum computational techniques, determining the computational requirements, and formulating a mathematical model satisfying these requirements; (2) implementing the model on UNIVAC 1230 digital computer as the Spectral Analysis Program (SAP); and (3) developing the hardware specifications for a data acquisition system which will acquire an input modulating signal for SAP. The SAP computational technique uses extended fast Fourier transform and represents a generalized approach for simple and complex modulating signals.

  4. Analysis of cirrus cloud spectral signatures in the far infrared

    International Nuclear Information System (INIS)

    Maestri, T.; Rizzi, R.; Tosi, E.; Veglio, P.; Palchetti, L.; Bianchini, G.; Di Girolamo, P.; Masiello, G.; Serio, C.; Summa, D.

    2014-01-01

    This paper analyses high spectral resolution downwelling radiance measurements in the far infrared in the presence of cirrus clouds taken by the REFIR-PAD interferometer, deployed at 3500 m above the sea level at the Testa Grigia station (Italy), during the Earth COoling by WAter vapouR emission (ECOWAR) campaign. Atmospheric state and cloud geometry are characterised by the co-located millimeter-wave spectrometer GBMS and by radiosonde profile data, an interferometer (I-BEST) and a Raman lidar system deployed at a nearby location (Cervinia). Cloud optical depth and effective diameter are retrieved from REFIR-PAD data using a limited number of channels in the 820–960 cm −1 interval. The retrieved cloud parameters are the input data for simulations covering the 250–1100 cm −1 band in order to test our ability to reproduce the REFIR-PAD spectra in the presence of ice clouds. Inverse and forward simulations are based on the same radiative transfer code. A priori information concerning cloud ice vertical distribution is used to better constrain the simulation scheme and an analysis of the degree of approximation of the phase function within the radiative transfer codes is performed to define the accuracy of computations. Simulation-data residuals over the REFIR-PAD spectral interval show an excellent agreement in the window region, but values are larger than total measurement uncertainties in the far infrared. Possible causes are investigated. It is shown that the uncertainties related to the water vapour and temperature profiles are of the same order as the sensitivity to the a priori assumption on particle habits for an up-looking configuration. In case of a down-looking configuration, errors due to possible incorrect description of the water vapour profile would be drastically reduced. - Highlights: • We analyze down-welling spectral radiances in the far infrared (FIR) spectrum. • Discuss the scattering in the fir and the ice crystals phase function

  5. Quantitative method to assess caries via fluorescence imaging from the perspective of autofluorescence spectral analysis

    International Nuclear Information System (INIS)

    Chen, Q G; Xu, Y; Zhu, H H; Chen, H; Lin, B

    2015-01-01

    A quantitative method to discriminate caries lesions for a fluorescence imaging system is proposed in this paper. The autofluorescence spectral investigation of 39 teeth samples classified by the International Caries Detection and Assessment System levels was performed at 405 nm excitation. The major differences in the different caries lesions focused on the relative spectral intensity range of 565–750 nm. The spectral parameter, defined as the ratio of wavebands at 565–750 nm to the whole spectral range, was calculated. The image component ratio R/(G + B) of color components was statistically computed by considering the spectral parameters (e.g. autofluorescence, optical filter, and spectral sensitivity) in our fluorescence color imaging system. Results showed that the spectral parameter and image component ratio presented a linear relation. Therefore, the image component ratio was graded as <0.66, 0.66–1.06, 1.06–1.62, and >1.62 to quantitatively classify sound, early decay, established decay, and severe decay tissues, respectively. Finally, the fluorescence images of caries were experimentally obtained, and the corresponding image component ratio distribution was compared with the classification result. A method to determine the numerical grades of caries using a fluorescence imaging system was proposed. This method can be applied to similar imaging systems. (paper)

  6. Quantitative method to assess caries via fluorescence imaging from the perspective of autofluorescence spectral analysis

    Science.gov (United States)

    Chen, Q. G.; Zhu, H. H.; Xu, Y.; Lin, B.; Chen, H.

    2015-08-01

    A quantitative method to discriminate caries lesions for a fluorescence imaging system is proposed in this paper. The autofluorescence spectral investigation of 39 teeth samples classified by the International Caries Detection and Assessment System levels was performed at 405 nm excitation. The major differences in the different caries lesions focused on the relative spectral intensity range of 565-750 nm. The spectral parameter, defined as the ratio of wavebands at 565-750 nm to the whole spectral range, was calculated. The image component ratio R/(G + B) of color components was statistically computed by considering the spectral parameters (e.g. autofluorescence, optical filter, and spectral sensitivity) in our fluorescence color imaging system. Results showed that the spectral parameter and image component ratio presented a linear relation. Therefore, the image component ratio was graded as 1.62 to quantitatively classify sound, early decay, established decay, and severe decay tissues, respectively. Finally, the fluorescence images of caries were experimentally obtained, and the corresponding image component ratio distribution was compared with the classification result. A method to determine the numerical grades of caries using a fluorescence imaging system was proposed. This method can be applied to similar imaging systems.

  7. Chebyshev super spectral viscosity method for water hammer analysis

    Directory of Open Access Journals (Sweden)

    Hongyu Chen

    2013-09-01

    Full Text Available In this paper, a new fast and efficient algorithm, Chebyshev super spectral viscosity (SSV method, is introduced to solve the water hammer equations. Compared with standard spectral method, the method's advantage essentially consists in adding a super spectral viscosity to the equations for the high wave numbers of the numerical solution. It can stabilize the numerical oscillation (Gibbs phenomenon and improve the computational efficiency while discontinuities appear in the solution. Results obtained from the Chebyshev super spectral viscosity method exhibit greater consistency with conventional water hammer calculations. It shows that this new numerical method offers an alternative way to investigate the behavior of the water hammer in propellant pipelines.

  8. Spectral analysis for evaluation of myocardial tracers for medical imaging

    International Nuclear Information System (INIS)

    Huesman, Ronald H.; Reutter, Bryan W.; Marshall, Robert C.

    2000-01-01

    Kinetic analysis of dynamic tracer data is performed with the goal of evaluating myocardial radiotracers for cardiac nuclear medicine imaging. Data from experiments utilizing the isolated rabbit heart model are acquired by sampling the venous blood after introduction of a tracer of interest and a reference tracer. We have taken the approach that the kinetics are properly characterized by an impulse response function which describes the difference between the reference molecule (which does not leave the vasculature) and the molecule of interest which is transported across the capillary boundary and is made available to the cell. Using this formalism we can model the appearance of the tracer of interest in the venous output of the heart as a convolution of the appearance of the reference tracer with the impulse response. In this work we parameterize the impulse response function as the sum of a large number of exponential functions whose predetermined decay constants form a spectrum, and each is required only to have a nonnegative coefficient. This approach, called spectral analysis, has the advantage that it allows conventional compartmental analysis without prior knowledge of the number of compartments which the physiology may require or which the data will support

  9. Spectral Unmixing Analysis of Time Series Landsat 8 Images

    Science.gov (United States)

    Zhuo, R.; Xu, L.; Peng, J.; Chen, Y.

    2018-05-01

    Temporal analysis of Landsat 8 images opens up new opportunities in the unmixing procedure. Although spectral analysis of time series Landsat imagery has its own advantage, it has rarely been studied. Nevertheless, using the temporal information can provide improved unmixing performance when compared to independent image analyses. Moreover, different land cover types may demonstrate different temporal patterns, which can aid the discrimination of different natures. Therefore, this letter presents time series K-P-Means, a new solution to the problem of unmixing time series Landsat imagery. The proposed approach is to obtain the "purified" pixels in order to achieve optimal unmixing performance. The vertex component analysis (VCA) is used to extract endmembers for endmember initialization. First, nonnegative least square (NNLS) is used to estimate abundance maps by using the endmember. Then, the estimated endmember is the mean value of "purified" pixels, which is the residual of the mixed pixel after excluding the contribution of all nondominant endmembers. Assembling two main steps (abundance estimation and endmember update) into the iterative optimization framework generates the complete algorithm. Experiments using both simulated and real Landsat 8 images show that the proposed "joint unmixing" approach provides more accurate endmember and abundance estimation results compared with "separate unmixing" approach.

  10. Uncertainty importance analysis using parametric moment ratio functions.

    Science.gov (United States)

    Wei, Pengfei; Lu, Zhenzhou; Song, Jingwen

    2014-02-01

    This article presents a new importance analysis framework, called parametric moment ratio function, for measuring the reduction of model output uncertainty when the distribution parameters of inputs are changed, and the emphasis is put on the mean and variance ratio functions with respect to the variances of model inputs. The proposed concepts efficiently guide the analyst to achieve a targeted reduction on the model output mean and variance by operating on the variances of model inputs. The unbiased and progressive unbiased Monte Carlo estimators are also derived for the parametric mean and variance ratio functions, respectively. Only a set of samples is needed for implementing the proposed importance analysis by the proposed estimators, thus the computational cost is free of input dimensionality. An analytical test example with highly nonlinear behavior is introduced for illustrating the engineering significance of the proposed importance analysis technique and verifying the efficiency and convergence of the derived Monte Carlo estimators. Finally, the moment ratio function is applied to a planar 10-bar structure for achieving a targeted 50% reduction of the model output variance. © 2013 Society for Risk Analysis.

  11. Progressive-Ratio Schedules and Applied Behavior Analysis

    Science.gov (United States)

    Poling, Alan

    2010-01-01

    Establishing appropriate relations between the basic and applied areas of behavior analysis has been of long and persistent interest to the author. In this article, the author illustrates that there is a direct relation between how hard an organism will work for access to an object or activity, as indexed by the largest ratio completed under a…

  12. Predicting the effect of spectral subtraction on the speech recognition threshold based on the signal-to-noise ratio in the envelope domain

    DEFF Research Database (Denmark)

    Jørgensen, Søren; Dau, Torsten

    2011-01-01

    rarely been evaluated perceptually in terms of speech intelligibility. This study analyzed the effects of the spectral subtraction strategy proposed by Berouti at al. [ICASSP 4 (1979), 208-211] on the speech recognition threshold (SRT) obtained with sentences presented in stationary speech-shaped noise....... The SRT was measured in five normal-hearing listeners in six conditions of spectral subtraction. The results showed an increase of the SRT after processing, i.e. a decreased speech intelligibility, in contrast to what is predicted by the Speech Transmission Index (STI). Here, another approach is proposed......, denoted the speech-based envelope power spectrum model (sEPSM) which predicts the intelligibility based on the signal-to-noise ratio in the envelope domain. In contrast to the STI, the sEPSM is sensitive to the increased amount of the noise envelope power as a consequence of the spectral subtraction...

  13. Spectral analysis of linear relations and degenerate operator semigroups

    International Nuclear Information System (INIS)

    Baskakov, A G; Chernyshov, K I

    2002-01-01

    Several problems of the spectral theory of linear relations in Banach spaces are considered. Linear differential inclusions in a Banach space are studied. The construction of the phase space and solutions is carried out with the help of the spectral theory of linear relations, ergodic theorems, and degenerate operator semigroups

  14. Spectral Efficiency Analysis for Multicarrier Based 4G Systems

    DEFF Research Database (Denmark)

    Silva, Nuno; Rahman, Muhammad Imadur; Frederiksen, Flemming Bjerge

    2006-01-01

    In this paper, a spectral efficiency definition is proposed. Spectral efficiency for multicarrier based multiaccess techniques, such as OFDMA, MC-CDMA and OFDMA-CDM, is analyzed. Simulations for different indoor and outdoor scenarios are carried out. Based on the simulations, we have discussed ho...

  15. Nonlinear Finite Element Analysis of Shells with Large Aspect Ratio

    Science.gov (United States)

    Chang, T. Y.; Sawamiphakdi, K.

    1984-01-01

    A higher order degenerated shell element with nine nodes was selected for large deformation and post-buckling analysis of thick or thin shells. Elastic-plastic material properties are also included. The post-buckling analysis algorithm is given. Using a square plate, it was demonstrated that the none-node element does not have shear locking effect even if its aspect ratio was increased to the order 10 to the 8th power. Two sample problems are given to illustrate the analysis capability of the shell element.

  16. Evaluation of abrasive waterjet produced titan surfaces topography by spectral analysis techniques

    Directory of Open Access Journals (Sweden)

    D. Kozak

    2012-01-01

    Full Text Available Experimental study of a titan grade 2 surface topography prepared by abrasive waterjet cutting is performed using methods of the spectral analysis. Topographic data are acquired by means of the optical profilometr MicroProf®FRT. Estimation of the areal power spectral density of the studied surface is carried out using the periodogram method combined with the Welch´s method. Attention is paid to a structure of the areal power spectral density, which is characterized by means of the angular power spectral density. This structure of the areal spectral density is linked to the fine texture of the surface studied.

  17. Selective laser ionization for mass-spectral isotopic analysis

    International Nuclear Information System (INIS)

    Miller, C.M.; Nogar, N.S.; Downey, S.W.

    1983-01-01

    Resonant enhancement of the ionization process can provide a high degree of elemental selectivity, thus eliminating or drastically reducing the interference problem. In addition, extension of this method to isotopically selective ionization has the potential for greatly increasing the range of isotope ratios that can be determined experimentally. This gain can be realized by reducing or eliminating the tailing of the signal from the high-abundance isotope into that of the low-abundance isotope, augmenting the dispersion of the mass spectrometer. We briefly discuss the hardware and techniques used in both our pulsed and cw RIMS experiments. Results are presented for both cw ionization experiments on Lu/Yb mixtures, and spectroscopic studies of multicolor RIMS of Tc. Lastly, we discuss practical limits of cw RIMS analysis in terms of detection limits and measurable isotope ratios

  18. Estimation of the soil heat flux/net radiation ratio based on spectral vegetation indexes in high-latitude Arctic areas

    International Nuclear Information System (INIS)

    Jacobsen, A.; Hansen, B.U.

    1999-01-01

    The vegetation communities in the Arctic environment are very sensitive to even minor climatic variations and therefore the estimation of surface energy fluxes from high-latitude vegetated areas is an important subject to be pursued. This study was carried out in July-August and used micro meteorological data, spectral reflectance signatures, and vegetation biomass to establish the relation between the soil heat flux/net radiation (G / Rn) ratio and spectral vegetation indices (SVIs). Continuous measurements of soil temperature and soil heat flux were used to calculate the surface ground heat flux by use of conventional methods, and the relation to surface temperature was investigated. Twenty-seven locations were established, and six samples per location, including the measurement of the surface temperature and net radiation to establish the G/Rn ratio and simultaneous spectral reflectance signatures and wet biomass estimates, were registered. To obtain regional reliability, the locations were chosen in order to represent the different Arctic vegetation communities in the study area; ranging from dry tundra vegetation communities (fell fields and dry dwarf scrubs) to moist/wet tundra vegetation communities (snowbeds, grasslands and fens). Spectral vegetation indices, including the simple ratio vegetation index (RVI) and the normalized difference vegetation index (NDVI), were calculated. A comparison of SVIs to biomass proved that RVI gave the best linear expression, and NDVI the best exponential expression. A comparison of SVIs and the surface energy flux ratio G / Rn proved that NDVI gave the best linear expression. SPOT HRV images from July 1989 and 1992 were used to map NDVI and G / Rn at a regional scale. (author)

  19. Results of Am isotopic ratio analysis in irradiated MOX fuels

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Shin-ichi; Osaka, Masahiko; Mitsugashira, Toshiaki; Konno, Koichi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center; Kajitani, Mikio

    1997-04-01

    For analysis of a small quantity of americium, it is necessary to separate from curium which has similar chemical property. As a chemical separation method for americium and curium, the oxidation of americium with pentavalent bismuth and subsequent co-precipitation of trivalent curium with BIP O{sub 4} were applied to analyze americium in irradiated MOX fuels which contained about 30wt% plutonium and 0.9wt% {sup 241}Am before irradiation and were irradiated up to 26.2GWd/t in the experimental fast reactor Joyo. The purpose of this study is to measure isotopic ratio of americium and to evaluate the change of isotopic ratio with irradiation. Following results are obtained in this study. (1) The isotopic ratio of americium ({sup 241}Am, {sup 242m}Am and {sup 243}Am) can be analyzed in the MOX fuels by isolating americium. The isotopic ratio of {sup 242m}Am and {sup 243}Am increases up to 0.62at% and 0.82at% at maximum burnup, respectively, (2) The results of isotopic analysis indicates that the contents of {sup 241}Am decreases, whereas {sup 242m}Am, {sup 243}Am increase linearly with increasing burnup. (author)

  20. Technical progress report: Completion of spectral rotating shadowband radiometers and analysis of atmospheric radiation measurement spectral shortwave data

    Energy Technology Data Exchange (ETDEWEB)

    Michalsky, J.; Harrison, L. [State Univ. of New York, Albany, NY (United States)

    1996-04-01

    Our goal in the Atmospheric Radiation Measurement (ARM) Program is the improvement of radiation models used in general circulation models (GCMs), especially in the shortwave, (1) by providing improved shortwave radiometric measurements for the testing of models and (2) by developing methods for retrieving climatologically sensitive parameters that serve as input to shortwave and longwave models. At the Atmospheric Sciences Research Center (ASRC) in Albany, New York, we are acquiring downwelling direct and diffuse spectral irradiance, at six wavelengths, plus downwelling broadband longwave, and upwelling and downwelling broadband shortwave irradiances that we combine with National Weather Service surface and upper air data from the Albany airport as a test data set for ARM modelers. We have also developed algorithms to improve shortwave measurements made at the Southern Great Plains (SGP) ARM site by standard thermopile instruments and by the multifilter rotating shadowband radiometer (MFRSR) based on these Albany data sets. Much time has been spent developing techniques to retrieve column aerosol, water vapor, and ozone from the direct beam spectral measurements of the MFRSR. Additionally, we have had success in calculating shortwave surface albedo and aerosol optical depth from the ratio of direct to diffuse spectral reflectance.

  1. Spectral analysis of the gravity and topography of Mars

    Science.gov (United States)

    Bills, Bruce G.; Frey, Herbert V.; Kiefer, Walter S.; Nerem, R. Steven; Zuber, Maria T.

    1993-01-01

    New spherical harmonic models of the gravity and topography of Mars place important constraints on the structure and dynamics of the interior. The gravity and topography models are significantly phase coherent for harmonic degrees n less than 30 (wavelengths greater than 700 km). Loss of coherence below that wavelength is presumably due to inadequacies of the models, rather than a change in behavior of the planet. The gravity/topography admittance reveals two very different spectral domains: for n greater than 4, a simple Airy compensation model, with mean depth of 100 km, faithfully represents the observed pattern; for degrees 2 and 3, the effective compensation depths are 1400 and 550 km, respectively, strongly arguing for dynamic compensation at those wavelengths. The gravity model has been derived from a reanalysis of the tracking data for Mariner 9 and the Viking Orbiters, The topography model was derived by harmonic analysis of the USGS digital elevation model of Mars. Before comparing gravity and topography for internal structure inferences, we must ensure that both are consistently referenced to a hydrostatic datum. For the gravity, this involves removal of hydrostatic components of the even degree zonal coefficients. For the topography, it involves adding the degree 4 equipotential reference surface, to get spherically referenced values, and then subtracting the full degree 50 equipotential. Variance spectra and phase coherence of orthometric heights and gravity anomalies are addressed.

  2. Spectral analysis of HIV seropositivity among migrant workers entering Kuwait

    Directory of Open Access Journals (Sweden)

    Mohammad Hameed GHH

    2008-03-01

    Full Text Available Abstract Background There is paucity of published data on human immunodeficiency virus (HIV seroprevalence among migrant workers entering Middle-East particularly Kuwait. We took advantage of the routine screening of migrants for HIV infection, upon arrival in Kuwait from the areas with high HIV prevalence, to 1 estimate the HIV seroprevalence among migrant workers entering Kuwait and to 2 ascertain if any significant time trend or changes had occurred in HIV seroprevalence among these migrants over the study period. Methods The monthly aggregates of daily number of migrant workers tested and number of HIV seropositive were used to generate the monthly series of proportions of HIV seropositive (per 100,000 migrants over a period of 120 months from January 1, 1997 to December 31, 2006. We carried out spectral analysis of these time series data on monthly proportions (per 100,000 of HIV seropositive migrants. Results Overall HIV seroprevalence (per 100,000 among the migrants was 21 (494/2328582 (95% CI: 19 -23, ranging from 11 (95% CI: 8 – 16 in 2003 to 31 (95% CI: 24 -41 in 1998. There was no discernable pattern in the year-specific proportions of HIV seropositive migrants up to 2003; in subsequent years there was a slight but consistent increase in the proportions of HIV seropositive migrants. However, the Mann-Kendall test showed non-significant (P = 0.741 trend in de-seasonalized data series of proportions of HIV seropositive migrants. The spectral density had a statistically significant (P = 0.03 peak located at a frequency (radians 2.4, which corresponds to a regular cycle of three-month duration in this study. Auto-correlation function did not show any significant seasonality (correlation coefficient at lag 12 = – 0.025, P = 0.575. Conclusion During the study period, overall a low HIV seroprevalence (0.021% was recorded. Towards the end of the study, a slight but non-significant upward trend in the proportions of HIV seropositive

  3. Studying soil properties using visible and near infrared spectral analysis

    Science.gov (United States)

    Moretti, S.; Garfagnoli, F.; Innocenti, L.; Chiarantini, L.

    2009-04-01

    This research is carried out inside the DIGISOIL Project, whose purposes are the integration and improvement of in situ and proximal measurement technologies, for the assessment of soil properties and soil degradation indicators, going form the sensing technologies to their integration and their application in digital soil mapping. The study area is located in the Virginio river basin, about 30 km south of Firenze, in the Chianti area, where soils with agricultural suitability have a high economic value connected to the production of internationally famous wines and olive oils. The most common soil threats, such as erosion and landslide, may determine huge economic losses, which must be considered in farming management practices. This basin has a length of about 23 km for a basin area of around 60,3 Km2. Geological formations outcropping in the area are Pliocene to Pleistocene marine and lacustrine sediments in beds with almost horizontal bedding. Vineyards, olive groves and annual crops are the main types of land use. A typical Mediterranean climate prevails with a dry summer followed by intense and sometimes prolonged rainfall in autumn, decreasing in winter. In this study, three types of VNIR and SWIR techniques, operating at different scales and in different environments (laboratory spectroscopy, portable field spectroscopy) are integrated to rapidly quantify various soil characteristics, in order to acquire data for assessing the risk of occurrence for typically agricultural practice-related soil threats (swelling, compaction, erosion, landslides, organic matter decline, ect.) and to collect ground data in order to build up a spectral library to be used in image analysis from air-borne and satellite sensors. Difficulties encountered in imaging spectroscopy, such as influence of measurements conditions, atmospheric attenuation, scene dependency and sampling representation are investigated and mathematical pre-treatments, using proper algorithms, are applied and

  4. Spectral and morphological analysis of the remnant of supernova 1987A with ALMA and ATCA

    Energy Technology Data Exchange (ETDEWEB)

    Zanardo, Giovanna; Staveley-Smith, Lister [International Centre for Radio Astronomy Research (ICRAR), M468, University of Western Australia, Crawley, WA 6009 (Australia); Indebetouw, Remy; Chevalier, Roger A. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Matsuura, Mikako; Barlow, Michael J. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Gaensler, Bryan M. [Australian Research Council, Centre of Excellence for All-sky Astrophysics (CAASTRO) (Australia); Fransson, Claes; Lundqvist, Peter [Department of Astronomy, Oskar Klein Center, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Manchester, Richard N. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia); Baes, Maarten [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Kamenetzky, Julia R. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Lakićević, Maša [Institute for the Environment, Physical Sciences and Applied Mathematics, Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG (United Kingdom); Marcaide, Jon M. [Departamento de Astronomía, Universidad de Valencia, C/Dr. Moliner 50, E-46100 Burjassot (Spain); Martí-Vidal, Ivan [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala (Sweden); Meixner, Margaret [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Ng, C.-Y. [Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong (China); Park, Sangwook, E-mail: giovanna.zanardo@gmail.com [Department of Physics, University of Texas at Arlington, 108 Science Hall, Box 19059, Arlington, TX 76019 (United States); and others

    2014-12-01

    We present a comprehensive spectral and morphological analysis of the remnant of supernova (SN) 1987A with the Australia Telescope Compact Array (ATCA) and the Atacama Large Millimeter/submillimeter Array (ALMA). The non-thermal and thermal components of the radio emission are investigated in images from 94 to 672 GHz (λ 3.2 mm to 450 μm), with the assistance of a high-resolution 44 GHz synchrotron template from the ATCA, and a dust template from ALMA observations at 672 GHz. An analysis of the emission distribution over the equatorial ring in images from 44 to 345 GHz highlights a gradual decrease of the east-to-west asymmetry ratio with frequency. We attribute this to the shorter synchrotron lifetime at high frequencies. Across the transition from radio to far infrared, both the synchrotron/dust-subtracted images and the spectral energy distribution (SED) suggest additional emission beside the main synchrotron component (S {sub ν}∝ν{sup –0.73}) and the thermal component originating from dust grains at T ∼ 22 K. This excess could be due to free-free flux or emission from grains of colder dust. However, a second flat-spectrum synchrotron component appears to better fit the SED, implying that the emission could be attributed to a pulsar wind nebula (PWN). The residual emission is mainly localized west of the SN site, as the spectral analysis yields –0.4 ≲ α ≲ –0.1 across the western regions, with α ∼ 0 around the central region. If there is a PWN in the remnant interior, these data suggest that the pulsar may be offset westward from the SN position.

  5. Bistable flow spectral analysis. Repercussions on jet pumps

    International Nuclear Information System (INIS)

    Gavilan Moreno, C.J.

    2011-01-01

    Highlights: → The most important thing in this paper, is the spectral characterization of the bistable flow in a Nuclear Power Plant. → This paper goes deeper in the effect of the bistable flow over the jet pump and the induced vibrations. → The jet pump frequencies are very close to natural jet pump frequencies, in the 3rd and 6th mode. - Abstract: There have been many attempts at characterizing and predicting bistable flow in boiling water reactors (BWRs). Nevertheless, in most cases the results have only managed to develop models that analytically reproduce the phenomenon (). Modeling has been forensic in all cases, while the capacity of the model focus on determining the exclusion areas on the recirculation flow map. The bistability process is known by its effects given there is no clear definition of its causal process. In the 1980s, Hitachi technicians () managed to reproduce bistable flow in the laboratory by means of pipe geometry, similar to that which is found in recirculation loops. The result was that the low flow pattern is formed by the appearance of a quasi stationary, helicoidal vortex in the recirculation collector's branches. This vortex creates greater frictional losses than regions without vortices, at the same discharge pressure. Neither the behavior nor the dynamics of these vortices were characterized in this paper. The aim of this paper is to characterize these vortices in such a way as to enable them to provide their own frequencies and their later effect on the jet pumps. The methodology used in this study is similar to the one used previously when analyzing the bistable flow in tube arrays with cross flow (). The method employed makes use of the power spectral density function. What differs is the field of application. We will analyze a Loop B with a bistable flow and compare the high and low flow situations. The same analysis will also be carried out on the loop that has not developed the bistable flow (Loop A) at the same moments

  6. Spectral Analysis and Dirichlet Forms on Barlow-Evans Fractals

    OpenAIRE

    Steinhurst, Benjamin; Teplyaev, Alexander

    2012-01-01

    We show that if a Barlow-Evans Markov process on a vermiculated space is symmetric, then one can study the spectral properties of the corresponding Laplacian using projective limits. For some examples, such as the Laakso spaces and a Spierpinski P\\^ate \\`a Choux, one can develop a complete spectral theory, including the eigenfunction expansions that are analogous to Fourier series. Also, one can construct connected fractal spaces isospectral to the fractal strings of Lapidus and van Frankenhu...

  7. Ratio of slopes method for quantitative analysis in ceramic bodies

    International Nuclear Information System (INIS)

    Zainal Arifin Ahmad; Ahmad Fauzi Mohd Noor; Radzali Othman; Messer, P.F.

    1996-01-01

    A quantitative x-ray diffraction analysis technique developed at University of Sheffield was adopted, rather than the previously widely used internal standard method, to determine the amount of the phases present in a reformulated whiteware porcelain and a BaTiO sub 3 electrochemical material. This method, although still employs an internal standard, was found to be very easy and accurate. The required weight fraction of a phase in the mixture to be analysed is determined from the ratio of slopes of two linear plots, designated as the analysis and reference lines, passing through their origins using the least squares method

  8. Use of new spectral analysis methods in gamma spectra deconvolution

    International Nuclear Information System (INIS)

    Pinault, J.L.

    1991-01-01

    A general deconvolution method applicable to X and gamma ray spectrometry is proposed. Using new spectral analysis methods, it is applied to an actual case: the accurate on-line analysis of three elements (Ca, Si, Fe) in a cement plant using neutron capture gamma rays. Neutrons are provided by a low activity (5 μg) 252 Cf source; the detector is a BGO 3 in.x8 in. scintillator. The principle of the methods rests on the Fourier transform of the spectrum. The search for peaks and determination of peak areas are worked out in the Fourier representation, which enables separation of background and peaks and very efficiently discriminates peaks, or elements represented by several peaks. First the spectrum is transformed so that in the new representation the full width at half maximum (FWHM) is independent of energy. Thus, the spectrum is arranged symmetrically and transformed into the Fourier representation. The latter is multiplied by a function in order to transform original Gaussian into Lorentzian peaks. An autoregressive filter is calculated, leading to a characteristic polynomial whose complex roots represent both the location and the width of each peak, provided that the absolute value is lower than unit. The amplitude of each component (the area of each peak or the sum of areas of peaks characterizing an element) is fitted by the weighted least squares method, taking into account that errors in spectra are independent and follow a Poisson law. Very accurate results are obtained, which would be hard to achieve by other methods. The DECO FORTRAN code has been developed for compatible PC microcomputers. Some features of the code are given. (orig.)

  9. PIXEL ANALYSIS OF PHOTOSPHERIC SPECTRAL DATA. I. PLASMA DYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Rasca, Anthony P.; Chen, James [Plasma Physics Division, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Pevtsov, Alexei A., E-mail: anthony.rasca.ctr@nrl.navy.mil [National Solar Observatory, Sunspot, NM 88349 (United States)

    2016-11-20

    Recent observations of the photosphere using high spatial and temporal resolution show small dynamic features at or below the current resolving limits. A new pixel dynamics method has been developed to analyze spectral profiles and quantify changes in line displacement, width, asymmetry, and peakedness of photospheric absorption lines. The algorithm evaluates variations of line profile properties in each pixel and determines the statistics of such fluctuations averaged over all pixels in a given region. The method has been used to derive statistical characteristics of pixel fluctuations in observed quiet-Sun regions, an active region with no eruption, and an active region with an ongoing eruption. Using Stokes I images from the Vector Spectromagnetograph (VSM) of the Synoptic Optical Long-term Investigations of the Sun (SOLIS) telescope on 2012 March 13, variations in line width and peakedness of Fe i 6301.5 Å are shown to have a distinct spatial and temporal relationship with an M7.9 X-ray flare in NOAA 11429. This relationship is observed as stationary and contiguous patches of pixels adjacent to a sunspot exhibiting intense flattening in the line profile and line-center displacement as the X-ray flare approaches peak intensity, which is not present in area scans of the non-eruptive active region. The analysis of pixel dynamics allows one to extract quantitative information on differences in plasma dynamics on sub-pixel scales in these photospheric regions. The analysis can be extended to include the Stokes parameters and study signatures of vector components of magnetic fields and coupled plasma properties.

  10. Hurricane coastal flood analysis using multispectral spectral images

    Science.gov (United States)

    Ogashawara, I.; Ferreira, C.; Curtarelli, M. P.

    2013-12-01

    Flooding is one of the main hazards caused by extreme events such as hurricanes and tropical storms. Therefore, flood maps are a crucial tool to support policy makers, environmental managers and other government agencies for emergency management, disaster recovery and risk reduction planning. However traditional flood mapping methods rely heavily on the interpolation of hydrodynamic models results, and most recently, the extensive collection of field data. These methods are time-consuming, labor intensive, and costly. Efficient and fast response alternative methods should be developed in order to improve flood mapping, and remote sensing has been proved as a valuable tool for this application. Our goal in this paper is to introduce a novel technique based on spectral analysis in order to aggregate knowledge and information to map coastal flood areas. For this purpose we used the Normalized Diference Water Index (NDWI) which was derived from two the medium resolution LANDSAT/TM 5 surface reflectance product from the LANDSAT climate data record (CDR). This product is generated from specialized software called Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS). We used the surface reflectance products acquired before and after the passage of Hurricane Ike for East Texas in September of 2008. We used as end member a classification of estimated flooded area based on the United States Geological Survey (USGS) mobile storm surge network that was deployed for Hurricane Ike. We used a dataset which consisted of 59 water levels recording stations. The estimated flooded area was delineated interpolating the maximum surge in each location using a spline with barriers method with high tension and a 30 meter Digital Elevation Model (DEM) from the National Elevation Dataset (NED). Our results showed that, in the flooded area, the NDWI values decreased after the hurricane landfall on average from 0.38 to 0.18 and the median value decreased from 0.36 to 0.2. However

  11. Analysis of wheezes using wavelet higher order spectral features.

    Science.gov (United States)

    Taplidou, Styliani A; Hadjileontiadis, Leontios J

    2010-07-01

    Wheezes are musical breath sounds, which usually imply an existing pulmonary obstruction, such as asthma and chronic obstructive pulmonary disease (COPD). Although many studies have addressed the problem of wheeze detection, a limited number of scientific works has focused in the analysis of wheeze characteristics, and in particular, their time-varying nonlinear characteristics. In this study, an effort is made to reveal and statistically analyze the nonlinear characteristics of wheezes and their evolution over time, as they are reflected in the quadratic phase coupling of their harmonics. To this end, the continuous wavelet transform (CWT) is used in combination with third-order spectra to define the analysis domain, where the nonlinear interactions of the harmonics of wheezes and their time variations are revealed by incorporating instantaneous wavelet bispectrum and bicoherence, which provide with the instantaneous biamplitude and biphase curves. Based on this nonlinear information pool, a set of 23 features is proposed for the nonlinear analysis of wheezes. Two complementary perspectives, i.e., general and detailed, related to average performance and to localities, respectively, were used in the construction of the feature set, in order to embed trends and local behaviors, respectively, seen in the nonlinear interaction of the harmonic elements of wheezes over time. The proposed feature set was evaluated on a dataset of wheezes, acquired from adult patients with diagnosed asthma and COPD from a lung sound database. The statistical evaluation of the feature set revealed discrimination ability between the two pathologies for all data subgroupings. In particular, when the total breathing cycle was examined, all 23 features, but one, showed statistically significant difference between the COPD and asthma pathologies, whereas for the subgroupings of inspiratory and expiratory phases, 18 out of 23 and 22 out of 23 features exhibited discrimination power, respectively

  12. Experimental determination of spectral ratios and of neutrons energy spectrum in the fuel of the IPEN/MB-01 nuclear reactor

    International Nuclear Information System (INIS)

    Nunes, Beatriz Guimaraes

    2012-01-01

    This study aims to determine the spectral ratios and the neutron energy spectrum inside the fuel of IPEN/MB-01 Nuclear Reactor. These parameters are of great importance to accurately determine spectral physical parameters of nuclear reactors like reaction rates, fuel lifetime and also security parameters such as reactivity. For the experiment, activation detectors in the form of thin metal foils were introduced in a collapsible fuel rod. Then the rod was placed in the central position of the core which has a standard rectangular configuration of 26 x 28 fuel rods. There were used activation detectors from different elements such Au-197, U-238, Sc-45, Ni-58, Mg-24, Ti-47 and In-115 to cover a large range of the neutron energy spectrum. After the irradiation, the activation detectors were submitted to gamma spectrometry using a counting system with high purity Germanium, to obtain the reaction rates (saturation activity) per target nucleus. The spectral ratios were compared with calculated values obtained by the Monte Carlo method using the MCNP-4C code. The neutron energy spectrum was obtained inside the fuel rod using the SANDBP code with an input spectrum obtained by the MCNP-4C code, based on the saturation activity per target nucleus values of the activation detectors irradiated. (author)

  13. Estimation of sub-pixel water area on Tibet plateau using multiple endmembers spectral mixture spectral analysis from MODIS data

    Science.gov (United States)

    Cui, Qian; Shi, Jiancheng; Xu, Yuanliu

    2011-12-01

    Water is the basic needs for human society, and the determining factor of stability of ecosystem as well. There are lots of lakes on Tibet Plateau, which will lead to flood and mudslide when the water expands sharply. At present, water area is extracted from TM or SPOT data for their high spatial resolution; however, their temporal resolution is insufficient. MODIS data have high temporal resolution and broad coverage. So it is valuable resource for detecting the change of water area. Because of its low spatial resolution, mixed-pixels are common. In this paper, four spectral libraries are built using MOD09A1 product, based on that, water body is extracted in sub-pixels utilizing Multiple Endmembers Spectral Mixture Analysis (MESMA) using MODIS daily reflectance data MOD09GA. The unmixed result is comparing with contemporaneous TM data and it is proved that this method has high accuracy.

  14. Rotating shadowband radiometer development and analysis of spectral shortwave data

    Energy Technology Data Exchange (ETDEWEB)

    Michalsky, J.; Harrison, L.; Min, Q. [State Univ. of New York, Albany, NY (United States)] [and others

    1996-04-01

    Our goals in the Atmospheric Radiation Measurement (ARM) Program are improved measurements of spectral shortwave radiation and improved techniques for the retrieval of climatologically sensitive parameters. The multifilter rotating shadowband radiometer (MFRSR) that was developed during the first years of the ARM program has become a workhorse at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site, and it is widely deployed in other climate programs. We have spent most of our effort this year developing techniques to retrieve column aerosol, water vapor, and ozone from direct beam spectral measurements of the MFRSR. Additionally, we have had some success in calculating shortwave surface diffuse spectral irradiance. Using the surface albedo and the global irradiance, we have calculated cloud optical depths. From cloud optical depth and liquid water measured with the microwave radiometer, we have calculated effective liquid cloud particle radii. The rest of the text will provide some detail regarding each of these efforts.

  15. Spectral analysis of the turbulent mixing of two fluids

    Energy Technology Data Exchange (ETDEWEB)

    Steinkamp, M.J.

    1996-02-01

    The authors describe a spectral approach to the investigation of fluid instability, generalized turbulence, and the interpenetration of fluids across an interface. The technique also applies to a single fluid with large variations in density. Departures of fluctuating velocity components from the local mean are far subsonic, but the mean Mach number can be large. Validity of the description is demonstrated by comparisons with experiments on turbulent mixing due to the late stages of Rayleigh-Taylor instability, when the dynamics become approximately self-similar in response to a constant body force. Generic forms for anisotropic spectral structure are described and used as a basis for deriving spectrally integrated moment equations that can be incorporated into computer codes for scientific and engineering analyses.

  16. EEG spectral analysis of attention in ADHD: implications for neurofeedback training?

    Directory of Open Access Journals (Sweden)

    Hartmut eHeinrich

    2014-08-01

    Full Text Available Objective: In children with attention-deficit/hyperactivity disorder (ADHD, an increased theta/beta ratio in the resting EEG typically serves as a rationale to conduct theta/beta neurofeedback training. However, this finding is increasingly challenged. As neurofeedback may rather target an active than a passive state, we studied the EEG in a condition that requires attention.Methods: In children with ADHD of the DSM-IV combined type (ADHD-C; N=15 and of the predominantly inattentive type (ADHD-I; N=9 and in typically developing children (N=19, EEG spectral analysis was conducted for segments during the attention network test without processing of stimuli and overt behavior. Frontal (F3, Fz, F4, central (C3, Cz, C4 and parietal (P3, Pz, P4 electrodes were included in the statistical analysis. To investigate if EEG spectral parameters are related to performance measures, correlation coefficients were calculated.Results: Particularly in the ADHD-C group, higher theta and alpha activity was found with the most prominent effect in the upper-theta/lower-alpha (5.5-10.5 Hz range. In the ADHD-I group, a significantly higher theta/beta ratio was observed at single electrodes (F3, Fz and a tendency for a higher theta/beta ratio when considering all electrodes (large effect size. Higher 5.5-10.5 Hz activity was associated with higher reaction time variability with the effect most prominent in the ADHD-C group. A higher theta/beta ratio was associated with higher reaction times, particularly in the ADHD-I group.Conclusions: 1. In an attention demanding period, children with ADHD are characterized by an underactivated state in the EEG with subtype-specific differences. 2. The functional relevance of related EEG parameters is indicated by associations with performance (reaction time measures. 3. Findings provide a rationale for applying NF protocols targeting theta (and alpha activity and the theta/beta ratio in subgroups of children with ADHD.

  17. Two-body threshold spectral analysis, the critical case

    DEFF Research Database (Denmark)

    Skibsted, Erik; Wang, Xue Ping

    We study in dimension $d\\geq2$ low-energy spectral and scattering asymptotics for two-body $d$-dimensional Schrödinger operators with a radially symmetric potential falling off like $-\\gamma r^{-2},\\;\\gamma>0$. We consider angular momentum sectors, labelled by $l=0,1,\\dots$, for which $\\gamma......>(l+d/2 -1)^2$. In each such sector the reduced Schrödinger operator has infinitely many negative eigenvalues accumulating at zero. We show that the resolvent has a non-trivial oscillatory behaviour as the spectral parameter approaches zero in cones bounded away from the negative half-axis, and we derive...

  18. Deferred tax analysis and impact on firm's economic efficiency ratios

    Directory of Open Access Journals (Sweden)

    Hana Bohušová

    2005-01-01

    Full Text Available Category of deferred income tax is a complex topic including the whole accounting system and the income tax. Calculation method can be time-consuming and demanding a high quality system of analytical evidence and a system of valuation and demanding the high level of accountants' knowledge. The aim in the theoretical level was to analyze process of calculation and recording of deferred tax. Importance of recording of deferred tax and the impact on financial analysis ratios was analyzed. Fourteen business entities were examined. Deferred tax recording is a legal way to reduce retained earnings a to protect of its careless alocation.

  19. Methodology for diagnosing of skin cancer on images of dermatologic spots by spectral analysis.

    Science.gov (United States)

    Guerra-Rosas, Esperanza; Álvarez-Borrego, Josué

    2015-10-01

    In this paper a new methodology for the diagnosing of skin cancer on images of dermatologic spots using image processing is presented. Currently skin cancer is one of the most frequent diseases in humans. This methodology is based on Fourier spectral analysis by using filters such as the classic, inverse and k-law nonlinear. The sample images were obtained by a medical specialist and a new spectral technique is developed to obtain a quantitative measurement of the complex pattern found in cancerous skin spots. Finally a spectral index is calculated to obtain a range of spectral indices defined for skin cancer. Our results show a confidence level of 95.4%.

  20. Statistical Analysis of Spectral Properties and Prosodic Parameters of Emotional Speech

    Science.gov (United States)

    Přibil, J.; Přibilová, A.

    2009-01-01

    The paper addresses reflection of microintonation and spectral properties in male and female acted emotional speech. Microintonation component of speech melody is analyzed regarding its spectral and statistical parameters. According to psychological research of emotional speech, different emotions are accompanied by different spectral noise. We control its amount by spectral flatness according to which the high frequency noise is mixed in voiced frames during cepstral speech synthesis. Our experiments are aimed at statistical analysis of cepstral coefficient values and ranges of spectral flatness in three emotions (joy, sadness, anger), and a neutral state for comparison. Calculated histograms of spectral flatness distribution are visually compared and modelled by Gamma probability distribution. Histograms of cepstral coefficient distribution are evaluated and compared using skewness and kurtosis. Achieved statistical results show good correlation comparing male and female voices for all emotional states portrayed by several Czech and Slovak professional actors.

  1. Convergence analysis of spectral element method for electromechanical devices

    NARCIS (Netherlands)

    Curti, M.; Jansen, J.W.; Lomonova, E.A.

    2017-01-01

    This paper concerns the comparison of the performance of the Spectral Element Method (SEM) and the Finite Element Method (FEM) for a magnetostatic problem. The convergence of the vector magnetic potential, the magnetic flux density, and the total stored energy in the system is compared with the

  2. Ultra-wideband spectral analysis using S2 technology

    International Nuclear Information System (INIS)

    Krishna Mohan, R.; Chang, T.; Tian, M.; Bekker, S.; Olson, A.; Ostrander, C.; Khallaayoun, A.; Dollinger, C.; Babbitt, W.R.; Cole, Z.; Reibel, R.R.; Merkel, K.D.; Sun, Y.; Cone, R.; Schlottau, F.; Wagner, K.H.

    2007-01-01

    This paper outlines the efforts to develop an ultra-wideband spectrum analyzer that takes advantage of the broad spectral response and fine spectral resolution (∼25 kHz) of spatial-spectral (S2) materials. The S2 material can process the full spectrum of broadband microwave transmissions, with adjustable time apertures (down to 100 μs) and fast update rates (up to 1 kHz). A cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm is used as the core for the spectrum analyzer. Efforts to develop novel component technologies that enhance the performance of the system and meet the application requirements are discussed, including an end-to-end device model for parameter optimization. We discuss the characterization of new ultra-wide bandwidth S2 materials. Detection and post-processing module development including the implementation of a novel spectral recovery algorithm using field programmable gate array technology (FPGA) is also discussed

  3. Detecting gallbladders in chicken livers using spectral analysis

    DEFF Research Database (Denmark)

    Jørgensen, Anders; Mølvig Jensen, Eigil; Moeslund, Thomas B.

    2015-01-01

    This paper presents a method for detecting gallbladders attached to chicken livers using spectral imaging. Gallbladders can contaminate good livers, making them unfit for human consumption. A data set consisting of chicken livers with and without gallbladders, has been captured using 33 wavelengths...

  4. Ultra-wideband spectral analysis using S2 technology

    Energy Technology Data Exchange (ETDEWEB)

    Krishna Mohan, R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States)]. E-mail: krishna@spectrum.montana.edu; Chang, T. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Tian, M. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Bekker, S. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Olson, A. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Ostrander, C. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Khallaayoun, A. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Dollinger, C. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Babbitt, W.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Cole, Z. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); S2 Corporation, Bozeman, MT 59718 (United States); Reibel, R.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); S2 Corporation, Bozeman, MT 59718 (United States); Merkel, K.D. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); S2 Corporation, Bozeman, MT 59718 (United States); Sun, Y. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Cone, R. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Schlottau, F. [University of Colorado, Boulder, CO 80309 (United States); Wagner, K.H. [University of Colorado, Boulder, CO 80309 (United States)

    2007-11-15

    This paper outlines the efforts to develop an ultra-wideband spectrum analyzer that takes advantage of the broad spectral response and fine spectral resolution ({approx}25 kHz) of spatial-spectral (S2) materials. The S2 material can process the full spectrum of broadband microwave transmissions, with adjustable time apertures (down to 100 {mu}s) and fast update rates (up to 1 kHz). A cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm is used as the core for the spectrum analyzer. Efforts to develop novel component technologies that enhance the performance of the system and meet the application requirements are discussed, including an end-to-end device model for parameter optimization. We discuss the characterization of new ultra-wide bandwidth S2 materials. Detection and post-processing module development including the implementation of a novel spectral recovery algorithm using field programmable gate array technology (FPGA) is also discussed.

  5. Analysis of visible spectral lines in LHD helium discharge

    International Nuclear Information System (INIS)

    Wan, B.N.; Goto, M.; Morita, S.

    1999-06-01

    In this study, visible spectral lines in LHD helium discharges are analyzed and it was found that they could be well fitted with gaussian profile. The results reveal a simple mechanism of helium atom recycling. Ion temperatures were also derived from the fitting. A typical value of the ion temperature obtained was about 6 eV. (author)

  6. Convergence analysis of spectral element method for magnetic devices

    NARCIS (Netherlands)

    Curti, M.; Jansen, J.W.; Lomonova, E.A.

    2018-01-01

    This paper concerns the comparison of the performance of the Spectral Element Method (SEM) and the Finite Element Method (FEM) for modeling a magnetostatic problem. The convergence of the vector magnetic potential, the magnetic flux density, and the total stored energy in the system is compared with

  7. Improved target detection and bearing estimation utilizing fast orthogonal search for real-time spectral analysis

    International Nuclear Information System (INIS)

    Osman, Abdalla; El-Sheimy, Naser; Nourledin, Aboelamgd; Theriault, Jim; Campbell, Scott

    2009-01-01

    The problem of target detection and tracking in the ocean environment has attracted considerable attention due to its importance in military and civilian applications. Sonobuoys are one of the capable passive sonar systems used in underwater target detection. Target detection and bearing estimation are mainly obtained through spectral analysis of received signals. The frequency resolution introduced by current techniques is limited which affects the accuracy of target detection and bearing estimation at a relatively low signal-to-noise ratio (SNR). This research investigates the development of a bearing estimation method using fast orthogonal search (FOS) for enhanced spectral estimation. FOS is employed in this research in order to improve both target detection and bearing estimation in the case of low SNR inputs. The proposed methods were tested using simulated data developed for two different scenarios under different underwater environmental conditions. The results show that the proposed method is capable of enhancing the accuracy for target detection as well as bearing estimation especially in cases of a very low SNR

  8. Final results of the cadmium and spectral ratios obtained inside of the fuel rod positioned in the central position of the IPEN/MB-01 nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bitelli, Ulysses d' Utra; Mura, Luiz Ernesto C.; Santos, Diogo Feliciano dos, E-mail: ubitelli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Lambiasi, Beatriz G.N. [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil)

    2015-07-01

    The spectral ratios are very important to determine some nuclear reactors parameters such as reaction rates, fuel lifetime, etc and some safety operational conditions. This study aims to determine the spectral ratios in 2 (two) spatial positions located inside the core of the Nuclear Reactor IPEN/MB-01. These places are at the central position of the nuclear reactor core in an asymptotic neutron flux region. The experiment consists in inserting different activation foil detectors inside an experimental fuel rod. The experimental rod is assembled at the central position of the reactor core. Activation neutron foil detectors of different elements such as {sup 197}Au, {sup 238}U, {sup 45}Sc, {sup 58}Ni, {sup 24}Mg, {sup 47}Ti and {sup 115m}In were used to cover a large range of neutron spectrum. Saturation activity per target nucleus was obtained by gamma spectrometry using a HPGe system. The experimental cadmium ratios compared with values computed by MCNP-4C code show good agreement. (author)

  9. Bedload transport from spectral analysis of seismic noise near rivers

    Science.gov (United States)

    Hsu, L.; Finnegan, N. J.; Brodsky, E. E.

    2010-12-01

    Channel change in rivers is driven by bedload sediment transport. However, the nonlinear nature of sediment transport combined with the difficulty of making direct observations in rivers at flood hinder prediction of the timing and magnitude of bedload movement. Recent studies have shown that spectral analysis of seismic noise from seismometers near rivers illustrate a correlation between the relative amplitude of high frequency (>1 Hz) seismic noise and conditions for bedload transport, presumably from the energy transferred from clast collisions with the channel. However, a previous study in the Himalayas did not contain extensive bedload transport or discharge measurements, and the correspondence of seismic noise with proxy variables such as regional hydrologic and meteorologic data was not exact. A more complete understanding of the relationship between bedload transport and seismic noise would be valuable for extending the spatial and temporal extent of bedload data. To explore the direct relationship between bedload transport and seismic noise, we examine data from several seismic stations near the Trinity River in California, where the fluvial morphodynamics and bedload rating curves have been studied extensively. We compare the relative amplitude of the ambient seismic noise with records of water discharge and sediment transport. We also examine the noise at hourly, daily, and seasonal timescales to determine other possible sources of noise. We report the influence of variables such as local river slope, adjacent geology, anthropogenic noise, and distance from the river. The results illustrate the feasibility of using existing seismic arrays to sense radiated energy from processes of bedload transport. In addition, the results can be used to design future seismic array campaigns to optimize information about bedload transport. This technique provides great spatial and temporal coverage, and can be performed where direct bedload measurements are difficult or

  10. PKA spectral effects on subcascade structures and free defect survival ratio as estimated by cascade-annealing computer simulation

    International Nuclear Information System (INIS)

    Muroga, Takeo

    1990-01-01

    The free defect survival ratio is calculated by ''cascade-annealing'' computer simulation using the MARLOWE and modified DAIQUIRI codes in various cases of Primary Knock-on Atom (PKA) spectra. The number of subcascades is calculated by ''cut-off'' calculation using MARLOWE. The adequacy of these methods is checked by comparing the results with experiments (surface segregation measurements and Transmission Electron Microscope cascade defect observations). The correlation using the weighted average recoil energy as a parameter shows that the saturation of the free defect survival ratio at high PKA energies has a close relation to the cascade splitting into subcascades. (author)

  11. Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS)

    Science.gov (United States)

    Wang, Hong-Fei; Gan, Wei; Lu, Rong; Rao, Yi; Wu, Bao-Hua

    Sum frequency generation vibrational spectroscopy (SFG-VS) has been proven to be a uniquely effective spectroscopic technique in the investigation of molecular structure and conformations, as well as the dynamics of molecular interfaces. However, the ability to apply SFG-VS to complex molecular interfaces has been limited by the ability to abstract quantitative information from SFG-VS experiments. In this review, we try to make assessments of the limitations, issues and techniques as well as methodologies in quantitative orientational and spectral analysis with SFG-VS. Based on these assessments, we also try to summarize recent developments in methodologies on quantitative orientational and spectral analysis in SFG-VS, and their applications to detailed analysis of SFG-VS data of various vapour/neat liquid interfaces. A rigorous formulation of the polarization null angle (PNA) method is given for accurate determination of the orientational parameter D = /, and comparison between the PNA method with the commonly used polarization intensity ratio (PIR) method is discussed. The polarization and incident angle dependencies of the SFG-VS intensity are also reviewed, in the light of how experimental arrangements can be optimized to effectively abstract crucial information from the SFG-VS experiments. The values and models of the local field factors in the molecular layers are discussed. In order to examine the validity and limitations of the bond polarizability derivative model, the general expressions for molecular hyperpolarizability tensors and their expression with the bond polarizability derivative model for C3v, C2v and C∞v molecular groups are given in the two appendixes. We show that the bond polarizability derivative model can quantitatively describe many aspects of the intensities observed in the SFG-VS spectrum of the vapour/neat liquid interfaces in different polarizations. Using the polarization analysis in SFG-VS, polarization selection rules or

  12. Automated computation of autonomous spectral submanifolds for nonlinear modal analysis

    Science.gov (United States)

    Ponsioen, Sten; Pedergnana, Tiemo; Haller, George

    2018-04-01

    We discuss an automated computational methodology for computing two-dimensional spectral submanifolds (SSMs) in autonomous nonlinear mechanical systems of arbitrary degrees of freedom. In our algorithm, SSMs, the smoothest nonlinear continuations of modal subspaces of the linearized system, are constructed up to arbitrary orders of accuracy, using the parameterization method. An advantage of this approach is that the construction of the SSMs does not break down when the SSM folds over its underlying spectral subspace. A further advantage is an automated a posteriori error estimation feature that enables a systematic increase in the orders of the SSM computation until the required accuracy is reached. We find that the present algorithm provides a major speed-up, relative to numerical continuation methods, in the computation of backbone curves, especially in higher-dimensional problems. We illustrate the accuracy and speed of the automated SSM algorithm on lower- and higher-dimensional mechanical systems.

  13. Inverse odds ratio-weighted estimation for causal mediation analysis.

    Science.gov (United States)

    Tchetgen Tchetgen, Eric J

    2013-11-20

    An important scientific goal of studies in the health and social sciences is increasingly to determine to what extent the total effect of a point exposure is mediated by an intermediate variable on the causal pathway between the exposure and the outcome. A causal framework has recently been proposed for mediation analysis, which gives rise to new definitions, formal identification results and novel estimators of direct and indirect effects. In the present paper, the author describes a new inverse odds ratio-weighted approach to estimate so-called natural direct and indirect effects. The approach, which uses as a weight the inverse of an estimate of the odds ratio function relating the exposure and the mediator, is universal in that it can be used to decompose total effects in a number of regression models commonly used in practice. Specifically, the approach may be used for effect decomposition in generalized linear models with a nonlinear link function, and in a number of other commonly used models such as the Cox proportional hazards regression for a survival outcome. The approach is simple and can be implemented in standard software provided a weight can be specified for each observation. An additional advantage of the method is that it easily incorporates multiple mediators of a categorical, discrete or continuous nature. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Numerical Analysis of Film Cooling at High Blowing Ratio

    Science.gov (United States)

    El-Gabry, Lamyaa; Heidmann, James; Ameri, Ali

    2009-01-01

    Computational Fluid Dynamics is used in the analysis of a film cooling jet in crossflow. Predictions of film effectiveness are compared with experimental results for a circular jet at blowing ratios ranging from 0.5 to 2.0. Film effectiveness is a surface quantity which alone is insufficient in understanding the source and finding a remedy for shortcomings of the numerical model. Therefore, in addition, comparisons are made to flow field measurements of temperature along the jet centerline. These comparisons show that the CFD model is accurately predicting the extent and trajectory of the film cooling jet; however, there is a lack of agreement in the near-wall region downstream of the film hole. The effects of main stream turbulence conditions, boundary layer thickness, turbulence modeling, and numerical artificial dissipation are evaluated and found to have an insufficient impact in the wake region of separated films (i.e. cannot account for the discrepancy between measured and predicted centerline fluid temperatures). Analyses of low and moderate blowing ratio cases are carried out and results are in good agreement with data.

  15. Advances in spectral analysis using artificial neural networks

    International Nuclear Information System (INIS)

    Martinez, M.; Vigneron, V.

    1995-01-01

    Artificial Neural networks (ANNs) have a powerful representational capacity and ability to handle with any multi-input multi-output mapping problem, e.g. in clustering, pattern recognition and identification areas, particularly when combined with some a priori knowledge and statistical point of view. They can be useful in spectrometry for the uranium enrichment methods by examples, where numerous approaches like models fitting or experts analysis are limited. These depends on the radiation measured: the methods most widely used developed over the past 20 years were based on the counting of the 185.7-keV peak with a sodium iodide scintillation detector or the 163.4-keV peak of 235 U. But these methods depend critically of the source-detector geometry. A means of improving the above conventional methods is to reduce the region of interest: it is possible by focusing at the region called KαX where the three elementary components are present. The measurement of these components in mixtures leads to the isotope ratio 235 U / ( 235 U + 236 U + 238 U). In this paper we explore statistical orientations and their consequences on 'neural' parameters. We show this decisions are induced by a log-linear model, a special case of a GLIM (Generalized LInear Model) and correspond to a Maximum Likelihood Estimation problem. (authors). 15 refs., 7 figs., 2 tabs

  16. Signal-to-noise analysis of a birefringent spectral zooming imaging spectrometer

    Science.gov (United States)

    Li, Jie; Zhang, Xiaotong; Wu, Haiying; Qi, Chun

    2018-05-01

    Study of signal-to-noise ratio (SNR) of a novel spectral zooming imaging spectrometer (SZIS) based on two identical Wollaston prisms is conducted. According to the theory of radiometry and Fourier transform spectroscopy, we deduce the theoretical equations of SNR of SZIS in spectral domain with consideration of the incident wavelength and the adjustable spectral resolution. An example calculation of SNR of SZIS is performed over 400-1000 nm. The calculation results indicate that SNR with different spectral resolutions of SZIS can be optionally selected by changing the spacing between the two identical Wollaston prisms. This will provide theoretical basis for the design, development and engineering of the developed imaging spectrometer for broad spectrum and SNR requirements.

  17. Semiconductor detectors in current energy dispersive X-ray spectral analysis

    Energy Technology Data Exchange (ETDEWEB)

    Betin, J; Zhabin, E; Krampit, I; Smirnov, V

    1980-04-01

    A review is presented of the properties of semiconductor detectors and of the possibilities stemming therefrom of using the detectors in X-ray spectral analysis in industries, in logging, in ecology and environmental control, in medicine, etc.

  18. Spectral Analysis of the Background in Ground-based, Long-slit ...

    Indian Academy of Sciences (India)

    1996-12-08

    Dec 8, 1996 ... Spectral Analysis of the Background in Ground-based,. Long-slit .... Figure 1 plots spectra from the 2-D array, after instrumental calibration and before correction for ..... which would merit attention and a better understanding.

  19. Broadband X-Ray Spectral Analysis of the Double-nucleus Luminous Infrared Galaxy Mrk 463

    Science.gov (United States)

    Yamada, Satoshi; Ueda, Yoshihiro; Oda, Saeko; Tanimoto, Atsushi; Imanishi, Masatoshi; Terashima, Yuichi; Ricci, Claudio

    2018-05-01

    We present a broadband (0.4–70 keV) X-ray spectral analysis of the luminous infrared galaxy (LIRG) system Mrk 463 observed with Nuclear Spectroscopic Telescope Array (NuSTAR), Chandra, and XMM-Newton, which contains double active galactic nuclei (AGNs; Mrk 463E and Mrk 463W) with a separation of ∼3.8 kpc. Detecting their transmitted hard X-ray >10 keV continua with NuSTAR, we confirm that Mrk 463E and Mrk 463W have AGNs with intrinsic luminosities of (1.6–2.2) × 1043 and (0.5–0.6) × 1043 erg s‑1 (2–10 keV) obscured by hydrogen column densities of 8 × 1023 and 3 × 1023 cm‑2, respectively. Both nuclei show strong reflection components from cold matter. The luminosity ratio between X-ray (2–10 keV) and [O IV] 25.89 μm of Mrk 463E is ∼5 times smaller than those of normal Seyfert galaxies, suggesting that the intrinsic SED is X-ray weak relative to the UV luminosity. In fact, the bolometric AGN luminosity of Mrk 463E estimated from L‧-band (3.8 μm), [O IV] 25.89 μm, and [Ne V] 14.32 μm lines indicate a large bolometric-to-X-ray luminosity ratio, κ 2–10 keV ≈ 110–410, and a high Eddington ratio, λ Edd ∼ 0.4–0.8. We suggest that the merger triggered a rapid growth of the black hole in Mrk 463E, which is not yet deeply “buried” by circumnuclear dust. By contrast, the L‧-band luminosity of Mrk 463W is unusually small relative to the X-ray luminosity, suggesting that the Eddington ratio is low (activity.

  20. High-speed Vibrational Imaging and Spectral Analysis of Lipid Bodies by Compound Raman Microscopy

    OpenAIRE

    Slipchenko, Mikhail N.; Le, Thuc T.; Chen, Hongtao; Cheng, Ji-Xin

    2009-01-01

    Cells store excess energy in the form of cytoplasmic lipid droplets. At present, it is unclear how different types of fatty acids contribute to the formation of lipid-droplets. We describe a compound Raman microscope capable of both high-speed chemical imaging and quantitative spectral analysis on the same platform. We use a picosecond laser source to perform coherent Raman scattering imaging of a biological sample and confocal Raman spectral analysis at points of interest. The potential of t...

  1. Spectral Analysis of Certain Schrödinger Operators

    Directory of Open Access Journals (Sweden)

    Mourad E.H. Ismail

    2012-09-01

    Full Text Available The J-matrix method is extended to difference and q-difference operators and is applied to several explicit differential, difference, q-difference and second order Askey-Wilson type operators. The spectrum and the spectral measures are discussed in each case and the corresponding eigenfunction expansion is written down explicitly in most cases. In some cases we encounter new orthogonal polynomials with explicit three term recurrence relations where nothing is known about their explicit representations or orthogonality measures. Each model we analyze is a discrete quantum mechanical model in the sense of Odake and Sasaki [J. Phys. A: Math. Theor. 44 (2011, 353001, 47 pages].

  2. Assessment of modern spectral analysis methods to improve wavenumber resolution of F-K spectra

    International Nuclear Information System (INIS)

    Shirley, T.E.; Laster, S.J.; Meek, R.A.

    1987-01-01

    The improvement in wavenumber spectra obtained by using high resolution spectral estimators is examined. Three modern spectral estimators were tested, namely the Autoregressive/Maximum Entropy (AR/ME) method, the Extended Prony method, and an eigenstructure method. They were combined with the conventional Fourier method by first transforming each trace with a Fast Fourier Transform (FFT). A high resolution spectral estimator was applied to the resulting complex spatial sequence for each frequency. The collection of wavenumber spectra thus computed comprises a hybrid f-k spectrum with high wavenumber resolution and less spectral ringing. Synthetic and real data records containing 25 traces were analyzed by using the hybrid f-k method. The results show an FFT-AR/ME f-k spectrum has noticeably better wavenumber resolution and more spectral dynamic range than conventional spectra when the number of channels is small. The observed improvement suggests the hybrid technique is potentially valuable in seismic data analysis

  3. An Improved Spectral Analysis Method for Fatigue Damage Assessment of Details in Liquid Cargo Tanks

    Science.gov (United States)

    Zhao, Peng-yuan; Huang, Xiao-ping

    2018-03-01

    Errors will be caused in calculating the fatigue damages of details in liquid cargo tanks by using the traditional spectral analysis method which is based on linear system, for the nonlinear relationship between the dynamic stress and the ship acceleration. An improved spectral analysis method for the assessment of the fatigue damage in detail of a liquid cargo tank is proposed in this paper. Based on assumptions that the wave process can be simulated by summing the sinusoidal waves in different frequencies and the stress process can be simulated by summing the stress processes induced by these sinusoidal waves, the stress power spectral density (PSD) is calculated by expanding the stress processes induced by the sinusoidal waves into Fourier series and adding the amplitudes of each harmonic component with the same frequency. This analysis method can take the nonlinear relationship into consideration and the fatigue damage is then calculated based on the PSD of stress. Take an independent tank in an LNG carrier for example, the accuracy of the improved spectral analysis method is proved much better than that of the traditional spectral analysis method by comparing the calculated damage results with the results calculated by the time domain method. The proposed spectral analysis method is more accurate in calculating the fatigue damages in detail of ship liquid cargo tanks.

  4. Time-variant power spectral analysis of heart-rate time series by ...

    Indian Academy of Sciences (India)

    Frequency domain representation of a short-term heart-rate time series (HRTS) signal is a popular method for evaluating the cardiovascular control system. The spectral parameters, viz. percentage power in low frequency band (%PLF), percentage power in high frequency band (%PHF), power ratio of low frequency to high ...

  5. Stellar and wind parameters of massive stars from spectral analysis

    Science.gov (United States)

    Araya, Ignacio; Curé, Michel

    2017-11-01

    The only way to deduce information from stars is to decode the radiation it emits in an appropriate way. Spectroscopy can solve this and derive many properties of stars. In this work we seek to derive simultaneously the stellar and wind characteristics of a wide range of massive stars. Our stellar properties encompass the effective temperature, the surface gravity, the stellar radius, the micro-turbulence velocity, the rotational velocity and the Si abundance. For wind properties we consider the mass-loss rate, the terminal velocity and the line-force parameters α, k and δ (from the line-driven wind theory). To model the data we use the radiative transport code Fastwind considering the newest hydrodynamical solutions derived with Hydwind code, which needs stellar and line-force parameters to obtain a wind solution. A grid of spectral models of massive stars is created and together with the observed spectra their physical properties are determined through spectral line fittings. These fittings provide an estimation about the line-force parameters, whose theoretical calculations are extremely complex. Furthermore, we expect to confirm that the hydrodynamical solutions obtained with a value of δ slightly larger than ~ 0.25, called δ-slow solutions, describe quite reliable the radiation line-driven winds of A and late B supergiant stars and at the same time explain disagreements between observational data and theoretical models for the Wind-Momentum Luminosity Relationship (WLR).

  6. Embedded gamma spectrometry: new algorithms for spectral analysis

    International Nuclear Information System (INIS)

    Martin-Burtart, Nicolas

    2012-01-01

    Airborne gamma spectrometry was first used for mining prospecting. Three main families were looked for: K-40, U-238 and Th-232. The Chernobyl accident acted as a trigger and for the last fifteen years, a lot of new systems have been developed for intervention in case of nuclear accident or environmental purposes. Depending on their uses, new algorithms were developed, mainly for medium or high energy signal extraction. These spectral regions are characteristics of natural emissions (K-40, U-238 and Th-232 decay chains) and fissions products (mainly Cs-137 and Co-60). Below 400 keV, where special nuclear materials emit, these methods can still be used but are greatly imprecise. A new algorithm called 2-windows (extended to 3), was developed. It allows an accurate extraction, taking the flight altitude into account to minimize false detection. Watching radioactive materials traffic appeared with homeland security policy a few years ago. This particular use of dedicated sensors require a new type of algorithms. Before, one algorithm was very efficient for a particular nuclide or spectral region. Now, we need algorithm able to detect an anomaly wherever it is and whatever it is: industrial, medical or SNM. This work identified two families of methods working under these circumstances. Finally, anomalies have to be identified. IAEA recommend to watch around 30 radionuclides. A brand new identification algorithm was developed, using several rays per element and avoiding identifications conflicts. (author) [fr

  7. Spectral Analysis of Chinese Medicinal Herbs Based on Delayed Luminescence

    Directory of Open Access Journals (Sweden)

    Jingxiang Pang

    2016-01-01

    Full Text Available Traditional Chinese medicine (TCM plays a critical role in healthcare; however, it lacks scientific evidence to support the multidimensional therapeutic effects. These effects are based on experience, and, to date, there is no advanced tool to evaluate these experience based effects. In the current study, Chinese herbal materials classified with different cold and heat therapeutic properties, based on Chinese medicine principles, were investigated using spectral distribution, as well as the decay probability distribution based on delayed luminescence (DL. A detection system based on ultraweak biophoton emission was developed to determine the DL decay kinetics of the cold and heat properties of Chinese herbal materials. We constructed a mathematical model to fit the experimental data and characterize the properties of Chinese medicinal herbs with different parameters. The results demonstrated that this method has good reproducibility. Moreover, there is a significant difference (p<0.05 in the spectral distribution and the decay probability distribution of Chinese herbal materials with cold and heat properties. This approach takes advantage of the comprehensive nature of DL compared with more reductionist approaches and is more consistent with TCM principles, in which the core comprises holistic views.

  8. The spectral analysis of cyclo-non-stationary signals

    Science.gov (United States)

    Abboud, D.; Baudin, S.; Antoni, J.; Rémond, D.; Eltabach, M.; Sauvage, O.

    2016-06-01

    Condition monitoring of rotating machines in speed-varying conditions remains a challenging task and an active field of research. Specifically, the produced vibrations belong to a particular class of non-stationary signals called cyclo-non-stationary: although highly non-stationary, they contain hidden periodicities related to the shaft angle; the phenomenon of long term modulations is what makes them different from cyclostationary signals which are encountered under constant speed regimes. In this paper, it is shown that the optimal way of describing cyclo-non-stationary signals is jointly in the time and the angular domains. While the first domain describes the waveform characteristics related to the system dynamics, the second one reveals existing periodicities linked to the system kinematics. Therefore, a specific class of signals - coined angle-time cyclostationary is considered, expressing the angle-time interaction. Accordingly, the related spectral representations, the order-frequency spectral correlation and coherence functions are proposed and their efficiency is demonstrated on two industrial cases.

  9. Global spectral graph wavelet signature for surface analysis of carpal bones

    Science.gov (United States)

    Masoumi, Majid; Rezaei, Mahsa; Ben Hamza, A.

    2018-02-01

    Quantitative shape comparison is a fundamental problem in computer vision, geometry processing and medical imaging. In this paper, we present a spectral graph wavelet approach for shape analysis of carpal bones of the human wrist. We employ spectral graph wavelets to represent the cortical surface of a carpal bone via the spectral geometric analysis of the Laplace-Beltrami operator in the discrete domain. We propose global spectral graph wavelet (GSGW) descriptor that is isometric invariant, efficient to compute, and combines the advantages of both low-pass and band-pass filters. We perform experiments on shapes of the carpal bones of ten women and ten men from a publicly-available database of wrist bones. Using one-way multivariate analysis of variance (MANOVA) and permutation testing, we show through extensive experiments that the proposed GSGW framework gives a much better performance compared to the global point signature embedding approach for comparing shapes of the carpal bones across populations.

  10. Antarctic ice sheet thickness estimation using the horizontal-to-vertical spectral ratio method with single-station seismic ambient noise

    Directory of Open Access Journals (Sweden)

    P. Yan

    2018-03-01

    Full Text Available We report on a successful application of the horizontal-to-vertical spectral ratio (H / V method, generally used to investigate the subsurface velocity structures of the shallow crust, to estimate the Antarctic ice sheet thickness for the first time. Using three-component, five-day long, seismic ambient noise records gathered from more than 60 temporary seismic stations located on the Antarctic ice sheet, the ice thickness measured at each station has comparable accuracy to the Bedmap2 database. Preliminary analysis revealed that 60 out of 65 seismic stations on the ice sheet obtained clear peak frequencies (f0 related to the ice sheet thickness in the H / V spectrum. Thus, assuming that the isotropic ice layer lies atop a high velocity half-space bedrock, the ice sheet thickness can be calculated by a simple approximation formula. About half of the calculated ice sheet thicknesses were consistent with the Bedmap2 ice thickness values. To further improve the reliability of ice thickness measurements, two-type models were built to fit the observed H / V spectrum through non-linear inversion. The two-type models represent the isotropic structures of single- and two-layer ice sheets, and the latter depicts the non-uniform, layered characteristics of the ice sheet widely distributed in Antarctica. The inversion results suggest that the ice thicknesses derived from the two-layer ice models were in good concurrence with the Bedmap2 ice thickness database, and that ice thickness differences between the two were within 300 m at almost all stations. Our results support previous finding that the Antarctic ice sheet is stratified. Extensive data processing indicates that the time length of seismic ambient noise records can be shortened to two hours for reliable ice sheet thickness estimation using the H / V method. This study extends the application fields of the H / V method and provides an effective and independent way to measure

  11. Comparison of modal spectral and non-linear time history analysis of a piping system

    International Nuclear Information System (INIS)

    Gerard, R.; Aelbrecht, D.; Lafaille, J.P.

    1987-01-01

    A typical piping system of the discharge line of the chemical and volumetric control system, outside the containment, between the penetration and the heat exchanger, an operating power plant was analyzed using four different methods: Modal spectral analysis with 2% constant damping, modal spectral analysis using ASME Code Case N411 (PVRC damping), linear time history analysis, non-linear time history analysis. This paper presents an estimation of the conservatism of the linear methods compared to the non-linear analysis. (orig./HP)

  12. Analysis of Financial Ratio to Distinguish Indonesia Joint Venture General Insurance Company Performance using Discriminant Analysis

    Directory of Open Access Journals (Sweden)

    Subiakto Soekarno

    2012-01-01

    Full Text Available Insurance industry stands as a service business that plays a significant role in Indonesiaeconomical condition. The development of insurance industry in Indonesia, both of generalinsurance and life insurance, has increased very fast. The general insurance industry itselfdivided into two major players which are local private company and Joint Venture Company.Lately, the use of statistical techniques and financial ratios models to asses financial institutionsuch as insurance company have been used as one of the appropriate combination inpredicting the performance of an industry. This research aims to distinguish between JointVenture General Insurance Companies that have a good performance and those who are lessperforming well using Discriminant Analysis. Further, the findings led that DiscriminantAnalysis is able to distinguish Joint Venture General Insurance Companies that have a goodperformance and those who are not performing well. There are also six ratios which are RBC,Technical Reserve to Investment Ratio, Debt Ratio, Return on Equity, Loss Ratio, and ExpenseRatio that stand as the most influential ratios to distinguish the performance of joint venturegeneral insurance companies. In addition, the result suggest business people to be concernedtoward those six ratios, to increase their companies’ performance.Key words: general insurance, financial ratio, discriminant analysis

  13. Non-stationary (13)C-metabolic flux ratio analysis.

    Science.gov (United States)

    Hörl, Manuel; Schnidder, Julian; Sauer, Uwe; Zamboni, Nicola

    2013-12-01

    (13)C-metabolic flux analysis ((13)C-MFA) has become a key method for metabolic engineering and systems biology. In the most common methodology, fluxes are calculated by global isotopomer balancing and iterative fitting to stationary (13)C-labeling data. This approach requires a closed carbon balance, long-lasting metabolic steady state, and the detection of (13)C-patterns in a large number of metabolites. These restrictions mostly reduced the application of (13)C-MFA to the central carbon metabolism of well-studied model organisms grown in minimal media with a single carbon source. Here we introduce non-stationary (13)C-metabolic flux ratio analysis as a novel method for (13)C-MFA to allow estimating local, relative fluxes from ultra-short (13)C-labeling experiments and without the need for global isotopomer balancing. The approach relies on the acquisition of non-stationary (13)C-labeling data exclusively for metabolites in the proximity of a node of converging fluxes and a local parameter estimation with a system of ordinary differential equations. We developed a generalized workflow that takes into account reaction types and the availability of mass spectrometric data on molecular ions or fragments for data processing, modeling, parameter and error estimation. We demonstrated the approach by analyzing three key nodes of converging fluxes in central metabolism of Bacillus subtilis. We obtained flux estimates that are in agreement with published results obtained from steady state experiments, but reduced the duration of the necessary (13)C-labeling experiment to less than a minute. These results show that our strategy enables to formally estimate relative pathway fluxes on extremely short time scale, neglecting cellular carbon balancing. Hence this approach paves the road to targeted (13)C-MFA in dynamic systems with multiple carbon sources and towards rich media. © 2013 Wiley Periodicals, Inc.

  14. Spectral Karyotyping. An new method for chromosome analysis

    International Nuclear Information System (INIS)

    Zhou Liying; Qian Jianxin; Guo Xiaokui; Dai Hong; Liu Yulong; Zhou Jianying

    2006-01-01

    Spectral Karyotyping (SKY) can reveal fine changes in Chromosome structure which could not be detected by G, R, Q banding before, has become an accurate, sensitive and reliable method for karyotyping, promoted the development of cell genetics to molecular level and has been used in medicine and radiological injury research. It also has the ability of analyzing 24 chromosomes on its once test run and, find implicated structure of chromosome changes, such as metathesis, depletion, amplification, rearrangement, dikinetochore, equiarm and maker-body, detect the abnormal change of stable Chromosome and calculate the bio-dose curve; The abnormal Chromosome detected by SKY can be adopted as early diagnosis, effective indexes of minor remaining changes for use of monitor of treatment and in the duration of follow up. This technique provides us a more advanced and effective method for relative gene cloning and the study of pathological mechanism of cancer. (authors)

  15. [Estimation of Hunan forest carbon density based on spectral mixture analysis of MODIS data].

    Science.gov (United States)

    Yan, En-ping; Lin, Hui; Wang, Guang-xing; Chen, Zhen-xiong

    2015-11-01

    With the fast development of remote sensing technology, combining forest inventory sample plot data and remotely sensed images has become a widely used method to map forest carbon density. However, the existence of mixed pixels often impedes the improvement of forest carbon density mapping, especially when low spatial resolution images such as MODIS are used. In this study, MODIS images and national forest inventory sample plot data were used to conduct the study of estimation for forest carbon density. Linear spectral mixture analysis with and without constraint, and nonlinear spectral mixture analysis were compared to derive the fractions of different land use and land cover (LULC) types. Then sequential Gaussian co-simulation algorithm with and without the fraction images from spectral mixture analyses were employed to estimate forest carbon density of Hunan Province. Results showed that 1) Linear spectral mixture analysis with constraint, leading to a mean RMSE of 0.002, more accurately estimated the fractions of LULC types than linear spectral and nonlinear spectral mixture analyses; 2) Integrating spectral mixture analysis model and sequential Gaussian co-simulation algorithm increased the estimation accuracy of forest carbon density to 81.5% from 74.1%, and decreased the RMSE to 5.18 from 7.26; and 3) The mean value of forest carbon density for the province was 30.06 t · hm(-2), ranging from 0.00 to 67.35 t · hm(-2). This implied that the spectral mixture analysis provided a great potential to increase the estimation accuracy of forest carbon density on regional and global level.

  16. Statistical analysis of modal parameters of a suspension bridge based on Bayesian spectral density approach and SHM data

    Science.gov (United States)

    Li, Zhijun; Feng, Maria Q.; Luo, Longxi; Feng, Dongming; Xu, Xiuli

    2018-01-01

    Uncertainty of modal parameters estimation appear in structural health monitoring (SHM) practice of civil engineering to quite some significant extent due to environmental influences and modeling errors. Reasonable methodologies are needed for processing the uncertainty. Bayesian inference can provide a promising and feasible identification solution for the purpose of SHM. However, there are relatively few researches on the application of Bayesian spectral method in the modal identification using SHM data sets. To extract modal parameters from large data sets collected by SHM system, the Bayesian spectral density algorithm was applied to address the uncertainty of mode extraction from output-only response of a long-span suspension bridge. The posterior most possible values of modal parameters and their uncertainties were estimated through Bayesian inference. A long-term variation and statistical analysis was performed using the sensor data sets collected from the SHM system of the suspension bridge over a one-year period. The t location-scale distribution was shown to be a better candidate function for frequencies of lower modes. On the other hand, the burr distribution provided the best fitting to the higher modes which are sensitive to the temperature. In addition, wind-induced variation of modal parameters was also investigated. It was observed that both the damping ratios and modal forces increased during the period of typhoon excitations. Meanwhile, the modal damping ratios exhibit significant correlation with the spectral intensities of the corresponding modal forces.

  17. Spectral analysis of growing graphs a quantum probability point of view

    CERN Document Server

    Obata, Nobuaki

    2017-01-01

    This book is designed as a concise introduction to the recent achievements on spectral analysis of graphs or networks from the point of view of quantum (or non-commutative) probability theory. The main topics are spectral distributions of the adjacency matrices of finite or infinite graphs and their limit distributions for growing graphs. The main vehicle is quantum probability, an algebraic extension of the traditional probability theory, which provides a new framework for the analysis of adjacency matrices revealing their non-commutative nature. For example, the method of quantum decomposition makes it possible to study spectral distributions by means of interacting Fock spaces or equivalently by orthogonal polynomials. Various concepts of independence in quantum probability and corresponding central limit theorems are used for the asymptotic study of spectral distributions for product graphs. This book is written for researchers, teachers, and students interested in graph spectra, their (asymptotic) spectr...

  18. ANALYSIS OF SPECTRAL CHARACTERISTICS AMONG DIFFERENT SENSORS BY USE OF SIMULATED RS IMAGES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This research, by use of RS image-simulating method, simulated apparent reflectance images at sensor level and ground-reflectance images of SPOT-HRV,CBERS-CCD,Landsat-TM and NOAA14-AVHRR' s corresponding bands. These images were used to analyze sensor's differences caused by spectral sensitivity and atmospheric impacts. The differences were analyzed on Normalized Difference Vegetation Index(NDVI). The results showed that the differences of sensors' spectral characteristics cause changes of their NDVI and reflectance. When multiple sensors' data are applied to digital analysis, the error should be taken into account. Atmospheric effect makes NDVI smaller, and atn~pheric correction has the tendency of increasing NDVI values. The reflectance and their NDVIs of different sensors can be used to analyze the differences among sensor' s features. The spectral analysis method based on RS simulated images can provide a new way to design the spectral characteristics of new sensors.

  19. Spatio-spectral analysis of ionization times in high-harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Soifer, Hadas, E-mail: hadas.soifer@weizmann.ac.il [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel); Dagan, Michal; Shafir, Dror; Bruner, Barry D. [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel); Ivanov, Misha Yu. [Department of Physics, Imperial College London, South Kensington Campus, SW7 2AZ London (United Kingdom); Max-Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Strasse 2A, D-12489 Berlin (Germany); Serbinenko, Valeria; Barth, Ingo; Smirnova, Olga [Max-Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Strasse 2A, D-12489 Berlin (Germany); Dudovich, Nirit [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2013-03-12

    Graphical abstract: A spatio-spectral analysis of the two-color oscillation phase allows us to accurately separate short and long trajectories and reconstruct their ionization times. Highlights: ► We perform a complete spatio-spectral analysis of the high harmonic generation process. ► We analyze the ionization times across the entire spatio-spectral plane of the harmonics. ► We apply this analysis to reconstruct the ionization times of both short and long trajectories. - Abstract: Recollision experiments have been very successful in resolving attosecond scale dynamics. However, such schemes rely on the single atom response, neglecting the macroscopic properties of the interaction and the effects of using multi-cycle laser fields. In this paper we perform a complete spatio-spectral analysis of the high harmonic generation process and resolve the distribution of the subcycle dynamics of the recolliding electron. Specifically, we focus on the measurement of ionization times. Recently, we have demonstrated that the addition of a weak, crossed polarized second harmonic field allows us to resolve the moment of ionization (Shafir, 2012) [1]. In this paper we extend this measurement and perform a complete spatio-spectral analysis. We apply this analysis to reconstruct the ionization times of both short and long trajectories showing good agreement with the quantum path analysis.

  20. Standard gamma-ray spectra for the comparison of spectral analysis software

    International Nuclear Information System (INIS)

    Woods, S.; Hemingway, J.; Bowles, N.

    1997-01-01

    Three sets of standard γ-ray spectra have been produced for use in assessing the performance of spectral analysis software. The origin of and rationale behind the spectra are described. Nine representative analysis systems have been tested both in terms of component performance and in terms of overall performance and the problems encountered in the analysis are discussed. (author)

  1. Standard gamma-ray spectra for the comparison of spectral analysis software

    Energy Technology Data Exchange (ETDEWEB)

    Woods, S.; Hemingway, J.; Bowles, N. [and others

    1997-08-01

    Three sets of standard {gamma}-ray spectra have been produced for use in assessing the performance of spectral analysis software. The origin of and rationale behind the spectra are described. Nine representative analysis systems have been tested both in terms of component performance and in terms of overall performance and the problems encountered in the analysis are discussed. (author)

  2. A hybrid model for mapping relative differences in belowground biomass and root: Shoot ratios using spectral reflectance, foliar N and plant biophysical data within coastal marsh

    Science.gov (United States)

    Jessica L. O'Connell,; Byrd, Kristin B.; Maggi Kelly,

    2015-01-01

    Broad-scale estimates of belowground biomass are needed to understand wetland resiliency and C and N cycling, but these estimates are difficult to obtain because root:shoot ratios vary considerably both within and between species. We used remotely-sensed estimates of two aboveground plant characteristics, aboveground biomass and % foliar N to explore biomass allocation in low diversity freshwater impounded peatlands (Sacramento-San Joaquin River Delta, CA, USA). We developed a hybrid modeling approach to relate remotely-sensed estimates of % foliar N (a surrogate for environmental N and plant available nutrients) and aboveground biomass to field-measured belowground biomass for species specific and mixed species models. We estimated up to 90% of variation in foliar N concentration using partial least squares (PLS) regression of full-spectrum field spectrometer reflectance data. Landsat 7 reflectance data explained up to 70% of % foliar N and 67% of aboveground biomass. Spectrally estimated foliar N or aboveground biomass had negative relationships with belowground biomass and root:shoot ratio in both Schoenoplectus acutus and Typha, consistent with a balanced growth model, which suggests plants only allocate growth belowground when additional nutrients are necessary to support shoot development. Hybrid models explained up to 76% of variation in belowground biomass and 86% of variation in root:shoot ratio. Our modeling approach provides a method for developing maps of spatial variation in wetland belowground biomass.

  3. Mean centering of ratio spectra and concentration augmented classical least squares in a comparative approach for quantitation of spectrally overlapped bands of antihypertensives in formulations

    Science.gov (United States)

    Hegazy, Maha Abdel Monem; Fayez, Yasmin Mohammed

    2015-04-01

    Two different methods manipulating spectrophotometric data have been developed, validated and compared. One is capable of removing the signal of any interfering components at the selected wavelength of the component of interest (univariate). The other includes more variables and extracts maximum information to determine the component of interest in the presence of other components (multivariate). The applied methods are smart, simple, accurate, sensitive, precise and capable of determination of spectrally overlapped antihypertensives; hydrochlorothiazide (HCT), irbesartan (IRB) and candesartan (CAN). Mean centering of ratio spectra (MCR) and concentration residual augmented classical least-squares method (CRACLS) were developed and their efficiency was compared. CRACLS is a simple method that is capable of extracting the pure spectral profiles of each component in a mixture. Correlation was calculated between the estimated and pure spectra and was found to be 0.9998, 0.9987 and 0.9992 for HCT, IRB and CAN, respectively. The methods were successfully determined the three components in bulk powder, laboratory-prepared mixtures, and combined dosage forms. The results obtained were compared statistically with each other and to those of the official methods.

  4. Methodology for diagnosing of skin cancer on images of dermatologic spots by spectral analysis

    OpenAIRE

    Guerra-Rosas, Esperanza; Álvarez-Borrego, Josué

    2015-01-01

    In this paper a new methodology for the diagnosing of skin cancer on images of dermatologic spots using image processing is presented. Currently skin cancer is one of the most frequent diseases in humans. This methodology is based on Fourier spectral analysis by using filters such as the classic, inverse and k-law nonlinear. The sample images were obtained by a medical specialist and a new spectral technique is developed to obtain a quantitative measurement of the complex pattern found in can...

  5. Technical Training on High-Order Spectral Analysis and Thermal Anemometry Applications

    Science.gov (United States)

    Maslov, A. A.; Shiplyuk, A. N.; Sidirenko, A. A.; Bountin, D. A.

    2003-01-01

    The topics of thermal anemometry and high-order spectral analyses were the subject of the technical training. Specifically, the objective of the technical training was to study: (i) the recently introduced constant voltage anemometer (CVA) for high-speed boundary layer; and (ii) newly developed high-order spectral analysis techniques (HOSA). Both CVA and HOSA are relevant tools for studies of boundary layer transition and stability.

  6. Investigating cardiorespiratory interaction by cross-spectral analysis of event series

    Science.gov (United States)

    Schäfer, Carsten; Rosenblum, Michael G.; Pikovsky, Arkady S.; Kurths, Jürgen

    2000-02-01

    The human cardiovascular and respiratory systems interact with each other and show effects of modulation and synchronization. Here we present a cross-spectral technique that specifically considers the event-like character of the heartbeat and avoids typical restrictions of other spectral methods. Using models as well as experimental data, we demonstrate how modulation and synchronization can be distinguished. Finally, we compare the method to traditional techniques and to the analysis of instantaneous phases.

  7. Application of spectral analysis for differentiation between metals using signals from eddy-current transducers

    OpenAIRE

    Abramovych, Anton; Poddubny, Volodymyr

    2017-01-01

    The authors theoretically and experimentally substantiated the use of the spectral method for processing a signal of the vortex-current metal detector for dichotomous differentiation between metals. Results of experimental research that prove the possibility of using spectral analysis for differentiation between metals were presented. The vortex-current method for detection of hidden metal objects was analyzed. It was indicated that amplitude of output VCD signal is determined by electric con...

  8. Ratioing methods for in-flight response calibration of space-based spectro-radiometers, operating in the solar spectral region

    Science.gov (United States)

    Lobb, Dan

    2017-11-01

    One of the most significant problems for space-based spectro-radiometer systems, observing Earth from space in the solar spectral band (UV through short-wave IR), is in achievement of the required absolute radiometric accuracy. Classical methods, for example using one or more sun-illuminated diffusers as reflectance standards, do not generally provide methods for monitoring degradation of the in-flight reference after pre-flight characterisation. Ratioing methods have been proposed that provide monitoring of degradation of solar attenuators in flight, thus in principle allowing much higher confidence in absolute response calibration. Two example methods are described. It is shown that systems can be designed for relatively low size and without significant additions to the complexity of flight hardware.

  9. Multivariate statistical analysis for x-ray photoelectron spectroscopy spectral imaging: Effect of image acquisition time

    International Nuclear Information System (INIS)

    Peebles, D.E.; Ohlhausen, J.A.; Kotula, P.G.; Hutton, S.; Blomfield, C.

    2004-01-01

    The acquisition of spectral images for x-ray photoelectron spectroscopy (XPS) is a relatively new approach, although it has been used with other analytical spectroscopy tools for some time. This technique provides full spectral information at every pixel of an image, in order to provide a complete chemical mapping of the imaged surface area. Multivariate statistical analysis techniques applied to the spectral image data allow the determination of chemical component species, and their distribution and concentrations, with minimal data acquisition and processing times. Some of these statistical techniques have proven to be very robust and efficient methods for deriving physically realistic chemical components without input by the user other than the spectral matrix itself. The benefits of multivariate analysis of the spectral image data include significantly improved signal to noise, improved image contrast and intensity uniformity, and improved spatial resolution - which are achieved due to the effective statistical aggregation of the large number of often noisy data points in the image. This work demonstrates the improvements in chemical component determination and contrast, signal-to-noise level, and spatial resolution that can be obtained by the application of multivariate statistical analysis to XPS spectral images

  10. Application of spectral decomposition analysis to in vivo quantification of aluminum by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Comsa, D.C. E-mail: comsadc@mcmaster.ca; Prestwich, W.V.; McNeill, F.E.; Byun, S.H

    2004-12-01

    The toxic effects of aluminum are cumulative and result in painful forms of renal osteodystrophy, most notably adynamic bone disease and osteomalacia, but also other forms of disease. The Trace Element Group at McMaster University has developed an accelerator-based in vivo procedure for detecting aluminum body burden by neutron activation analysis (NAA). Further refining of the method was necessary for increasing its sensitivity. In this context, the present study proposes an improved algorithm for data analysis, based on spectral decomposition. A new minimum detectable limit (MDL) of (0.7{+-}0.1) mg Al was reached for a local dose of (20{+-}1) mSv. The study also addresses the feasibility of a new data acquisition technique, the electronic rejection of the coincident events detected by a NaI(Tl) system. It is expected that the application of this technique, together with spectral decomposition analysis, would provide an acceptable MDL for the method to be valuable in a clinical setting.

  11. New development of neutron spectral modulation data analysis

    International Nuclear Information System (INIS)

    Ito, Y.

    1988-01-01

    A study is made on procedures for obtaining desired scattering function information. The neutron spectral modulation technique incorporates both the low (including DC) and high frequency Fourier components in its incident spectrum. Lake's procedure increases the Fourier components of the doconvoluted scattering function by using the existing Fourier components as nucleus, thereby bridges the Fourier gap and extends the Fourier region. Since the Lake's procedure takes care of the missing Fourier components, a single measurement using an appropriate NSM modulation suffices to recover the S(W) line shape. Deep modulation depth is not essential to reproduce the scattering function. This should be contrasted to the previous NSM treatment as well as to the neutron spin echo method, both of which require the several repeat of measurements with the varying modulation frequency under the high degree of beam polarization condition. Although the computer simulation of the present paper does not include the statistical fluctuation encountered in the experimental data, these analyses show a great promise of the NSM method, which can now be used with much flexibility in the field of both cold and ultracold neutron scattering experiment. (N.K.)

  12. Power Spectral Density Specification and Analysis of Large Optical Surfaces

    Science.gov (United States)

    Sidick, Erkin

    2009-01-01

    The 2-dimensional Power Spectral Density (PSD) can be used to characterize the mid- and the high-spatial frequency components of the surface height errors of an optical surface. We found it necessary to have a complete, easy-to-use approach for specifying and evaluating the PSD characteristics of large optical surfaces, an approach that allows one to specify the surface quality of a large optical surface based on simulated results using a PSD function and to evaluate the measured surface profile data of the same optic in comparison with those predicted by the simulations during the specification-derivation process. This paper provides a complete mathematical description of PSD error, and proposes a new approach in which a 2-dimentional (2D) PSD is converted into a 1-dimentional (1D) one by azimuthally averaging the 2D-PSD. The 1D-PSD calculated this way has the same unit and the same profile as the original PSD function, thus allows one to compare the two with each other directly.

  13. Spectral analysis and markov switching model of Indonesia business cycle

    Science.gov (United States)

    Fajar, Muhammad; Darwis, Sutawanir; Darmawan, Gumgum

    2017-03-01

    This study aims to investigate the Indonesia business cycle encompassing the determination of smoothing parameter (λ) on Hodrick-Prescott filter. Subsequently, the components of the filter output cycles were analyzed using a spectral method useful to know its characteristics, and Markov switching regime modeling is made to forecast the probability recession and expansion regimes. The data used in the study is real GDP (1983Q1 - 2016Q2). The results of the study are: a) Hodrick-Prescott filter on real GDP of Indonesia to be optimal when the value of the smoothing parameter is 988.474, b) Indonesia business cycle has amplitude varies between±0.0071 to±0.01024, and the duration is between 4 to 22 quarters, c) the business cycle can be modelled by MSIV-AR (2) but regime periodization is generated this model not perfect exactly with real regime periodzation, and d) Based on the model MSIV-AR (2) obtained long-term probabilities in the expansion regime: 0.4858 and in the recession regime: 0.5142.

  14. LDA measurements and turbulence spectral analysis in an agitated vessel

    Directory of Open Access Journals (Sweden)

    Chára Zdeněk

    2013-04-01

    Full Text Available During the last years considerable improvement of the derivation of turbulence power spectrum from Laser Doppler Anemometry (LDA has been achieved. The irregularly sampled LDA data is proposed to approximate by several methods e.g. Lomb-Scargle method, which estimates amplitude and phase of spectral lines from missing data, methods based on the reconstruction of the auto-correlation function (referred to as correlation slotting technique, methods based on the reconstruction of the time series using interpolation between the uneven sampling and subsequent resampling etc. These different methods were used on the LDA data measured in an agitated vessel and the results of the power spectrum calculations were compared. The measurements were performed in the mixing vessel with flat bottom. The vessel was equipped with four baffles and agitated with a six-blade pitched blade impeller. Three values of the impeller speed (Reynolds number were tested. Long time series of the axial velocity component were measured in selected points. In each point the time series were analyzed and evaluated in a form of power spectrum.

  15. LDA measurements and turbulence spectral analysis in an agitated vessel

    Science.gov (United States)

    Kysela, Bohuš; Konfršt, Jiří; Chára, Zdeněk

    2013-04-01

    During the last years considerable improvement of the derivation of turbulence power spectrum from Laser Doppler Anemometry (LDA) has been achieved. The irregularly sampled LDA data is proposed to approximate by several methods e.g. Lomb-Scargle method, which estimates amplitude and phase of spectral lines from missing data, methods based on the reconstruction of the auto-correlation function (referred to as correlation slotting technique), methods based on the reconstruction of the time series using interpolation between the uneven sampling and subsequent resampling etc. These different methods were used on the LDA data measured in an agitated vessel and the results of the power spectrum calculations were compared. The measurements were performed in the mixing vessel with flat bottom. The vessel was equipped with four baffles and agitated with a six-blade pitched blade impeller. Three values of the impeller speed (Reynolds number) were tested. Long time series of the axial velocity component were measured in selected points. In each point the time series were analyzed and evaluated in a form of power spectrum.

  16. Isolation and Spectral Analysis of Naturally Occurring Thiarubrine A

    Science.gov (United States)

    Reyes, Juan; Morton, Melita; Downum, Kelsey; O'Shea, Kevin E.

    2001-06-01

    We have designed an experiment in which students isolate and characterize thiarubrine A, a pseudo-antiaromatic 1,2-dithia-3,5-cyclohexadiene derivative. Thiarubrines are an important class of compounds which have recently received attention because of their unusual reactivity, unique biological activity, and potential medicinal applications. They possess a distinctive red color and structure features that are particularly useful for demonstrating UV-vis, NMR, and IR spectral analyses. A crude mixture containing thiarubrine A is obtained by methanol (liquid-solid) extraction of the roots of short ragweed, Ambrosia artemisiifolia. Alternatively, these compounds can be isolated from numerous taxa within the family Asteraceae. Thiarubrine A possesses alkyl, alkenyl, and alkynyl functionality, which is useful in illustrating the utility of IR and NMR in the characterization of natural products. The long wavelength UV-vis absorption band of thiarubrine is indication of the nonplanarity of dithiin ring and provides an excellent opportunity to discuss the concepts of aromaticity, conjugation, and molecular orbital theory.

  17. The Observatory as Laboratory: Spectral Analysis at Mount Wilson Observatory

    Science.gov (United States)

    Brashear, Ronald

    2018-01-01

    This paper will discuss the seminal changes in astronomical research practices made at the Mount Wilson Observatory in the early twentieth century by George Ellery Hale and his staff. Hale’s desire to set the agenda for solar and stellar astronomical research is often described in terms of his new telescopes, primarily the solar tower observatories and the 60- and 100-inch telescopes on Mount Wilson. This paper will focus more on the ancillary but no less critical parts of Hale’s research mission: the establishment of associated “physical” laboratories as part of the observatory complex where observational spectral data could be quickly compared with spectra obtained using specialized laboratory equipment. Hale built a spectroscopic laboratory on the mountain and a more elaborate physical laboratory in Pasadena and staffed it with highly trained physicists, not classically trained astronomers. The success of Hale’s vision for an astronomical observatory quickly made the Carnegie Institution’s Mount Wilson Observatory one of the most important astrophysical research centers in the world.

  18. Systematic wavelength selection for improved multivariate spectral analysis

    Science.gov (United States)

    Thomas, Edward V.; Robinson, Mark R.; Haaland, David M.

    1995-01-01

    Methods and apparatus for determining in a biological material one or more unknown values of at least one known characteristic (e.g. the concentration of an analyte such as glucose in blood or the concentration of one or more blood gas parameters) with a model based on a set of samples with known values of the known characteristics and a multivariate algorithm using several wavelength subsets. The method includes selecting multiple wavelength subsets, from the electromagnetic spectral region appropriate for determining the known characteristic, for use by an algorithm wherein the selection of wavelength subsets improves the model's fitness of the determination for the unknown values of the known characteristic. The selection process utilizes multivariate search methods that select both predictive and synergistic wavelengths within the range of wavelengths utilized. The fitness of the wavelength subsets is determined by the fitness function F=.function.(cost, performance). The method includes the steps of: (1) using one or more applications of a genetic algorithm to produce one or more count spectra, with multiple count spectra then combined to produce a combined count spectrum; (2) smoothing the count spectrum; (3) selecting a threshold count from a count spectrum to select these wavelength subsets which optimize the fitness function; and (4) eliminating a portion of the selected wavelength subsets. The determination of the unknown values can be made: (1) noninvasively and in vivo; (2) invasively and in vivo; or (3) in vitro.

  19. Analysis of the moderating ratio in BWR fuels

    International Nuclear Information System (INIS)

    Gomez, A.; Xolocostli, V.; Alonso, G.

    2001-01-01

    In all different light water nuclear reactors is very important the fuel assembly design. It has to be designed to achieve safety and efficiency performance in an economical way. The moderating ratio plays a very important role because an adequate election can provide an optimal energy production making the fuel assembly more efficient. This work analyze the moderation ratio as a function of the fuel assembly enrichment and ifs burnup, based on this study the optimal moderation ratio are obtained. Furthermore, based on numerical relations some simulation schemes are proposed to describe the behavior of the infinite multiplication factor as a function of the moderating ratio for a given fuel assembly enrichment at zero burnup. (Author)

  20. Analysis of cash flow ratios: A study on CMC

    Directory of Open Access Journals (Sweden)

    Somnath Das

    2018-01-01

    Full Text Available Cash flow ratios help financial users get relevant information about financial resources for a given time. Cash flow ratios are now used more than the traditional ones because it is more effective and justified. Cash flow based ratios are especially surprising because they do not only play a significant role in the credit rating of evaluation, but also forecast the failure of a corporation. In this study, we perform an empirical investigation on a company named CMC. From the study, it is clear that the liquidity and solvency positions of the company were moderate whereas the company maintained low profitability. On the other hand, the efficiency and sufficiency ratios of the study give us a new look on financial judgement.

  1. Regional sensitivity analysis using revised mean and variance ratio functions

    International Nuclear Information System (INIS)

    Wei, Pengfei; Lu, Zhenzhou; Ruan, Wenbin; Song, Jingwen

    2014-01-01

    The variance ratio function, derived from the contribution to sample variance (CSV) plot, is a regional sensitivity index for studying how much the output deviates from the original mean of model output when the distribution range of one input is reduced and to measure the contribution of different distribution ranges of each input to the variance of model output. In this paper, the revised mean and variance ratio functions are developed for quantifying the actual change of the model output mean and variance, respectively, when one reduces the range of one input. The connection between the revised variance ratio function and the original one is derived and discussed. It is shown that compared with the classical variance ratio function, the revised one is more suitable to the evaluation of model output variance due to reduced ranges of model inputs. A Monte Carlo procedure, which needs only a set of samples for implementing it, is developed for efficiently computing the revised mean and variance ratio functions. The revised mean and variance ratio functions are compared with the classical ones by using the Ishigami function. At last, they are applied to a planar 10-bar structure

  2. Analysis of neutron reflectivity data: maximum entropy, Bayesian spectral analysis and speckle holography

    International Nuclear Information System (INIS)

    Sivia, D.S.; Hamilton, W.A.; Smith, G.S.

    1991-01-01

    The analysis of neutron reflectivity data to obtain nuclear scattering length density profiles is akin to the notorious phaseless Fourier problem, well known in many fields such as crystallography. Current methods of analysis culminate in the refinement of a few parameters of a functional model, and are often preceded by a long and laborious process of trial and error. We start by discussing the use of maximum entropy for obtained 'free-form' solutions of the density profile, as an alternative to the trial and error phase when a functional model is not available. Next we consider a Bayesian spectral analysis approach, which is appropriate for optimising the parameters of a simple (but adequate) type of model when the number of parameters is not known. Finally, we suggest a novel experimental procedure, the analogue of astronomical speckle holography, designed to alleviate the ambiguity problems inherent in traditional reflectivity measurements. (orig.)

  3. Spectral analysis of an algebraic collapsing acceleration for the characteristics method

    International Nuclear Information System (INIS)

    Le Tellier, R.; Hebert, A.

    2005-01-01

    A spectral analysis of a diffusion synthetic acceleration called Algebraic Collapsing Acceleration (ACA) was carried out in the context of the characteristics method to solve the neutron transport equation. Two analysis were performed in order to assess the ACA performances. Both a standard Fourier analysis in a periodic and infinite slab-geometry and a direct spectral analysis for a finite slab-geometry were investigated. In order to evaluate its performance, ACA was compared with two competing techniques used to accelerate the convergence of the characteristics method, the Self-Collision Re-balancing technique and the Asymptotic Synthetic Acceleration. In the restricted framework of 1-dimensional slab-geometries, we conclude that ACA offers a good compromise between the reduction of the spectral radius of the iterative matrix and the resources to construct, store and solve the corrective system. A comparison on a monoenergetic 2-dimensional benchmark was performed and tends to confirm these conclusions. (authors)

  4. Remote sensing of potential lunar resources. 2: High spatial resolution mapping of spectral reflectance ratios and implications for nearside mare TiO2 content`

    Science.gov (United States)

    Melendrez, David E.; Johnson, Jeffrey R.; Larson, Stephen M.; Singer, Robert B.

    1994-01-01

    High spatial resolution maps illustrating variations in spectral reflectance 400/560 nm ratio values have been generated for the following mare regions: (1) the border between southern Mare Serenitatis and northern Mare Tranquillitatis (including the MS-2 standard area and Apollo 17 landing site), (2) central Mare Tranquillitatis, (3) Oceanus Procellarum near Seleucus, and (4) southern Oceanus Procellarum and Flamsteed. We have also obtained 320-1000 nm reflectance spectra of several sites relative to MS-2 to facilitate scaling of the images and provide additional information on surface composition. Inferred TiO2 abundances for these mare regions have been determined using an empirical calibration which relates the weight percent TiO2 in mature mare regolith to the observed 400/560 nm ratio. Mare areas with high TiO2 abundances are probably rich in ilmenite (FeTiO3) a potential lunar resource. The highest potential TiO2 concentrations we have identified in the nearside maria occur in central Mare Tranquillitatis. Inferred TiO2 contents for these areas are greater than 9 wt% and are spatially consistent with the highest-TiO2 regions mapped previously at lower spatial resolution. We note that the morphology of surface units with high 400/560 nm ratio values increases in complexity at higher spatial resolutions. Comparisons have been made with previously published geologic maps, Lunar Orbiter IV, and ground-based images, and some possible morphologic correlatins have been found between our mapped 400/560 nm ratio values and volcanic landforms such as lava flows, mare domes, and collapse pits.

  5. VIBRATIONS DETECTION IN INDUSTRIAL PUMPS BASED ON SPECTRAL ANALYSIS TO INCREASE THEIR EFFICIENCY

    Directory of Open Access Journals (Sweden)

    Belhadef RACHID

    2016-01-01

    Full Text Available Spectral analysis is the key tool for the study of vibration signals in rotating machinery. In this work, the vibration analy-sis applied for conditional preventive maintenance of such machines is proposed, as part of resolved problems related to vibration detection on the organs of these machines. The vibration signal of a centrifugal pump was treated to mount the benefits of the approach proposed. The obtained results present the signal estimation of a pump vibration using Fourier transform technique compared by the spectral analysis methods based on Prony approach.

  6. Spectral characterization as a tool for parchment analysis

    Science.gov (United States)

    Radis, Michela; Iacomussi, Paola; Rossi, Giuseppe

    2015-06-01

    The paper presents an investigation on the correlation between spectral characteristics and conservation conditions of parchment to define a NON invasive methodology able to detect and monitor deterioration process in historical parchment without the need of taking small samples. To verify the feasibility and define the most appropriate measurement method, several samples of contemporary parchments, produced following ancient recipes and coming from different animal species, with different degrees of artificially induced damage, were analyzed. The SRF and STF of each sample were measured in the same point, before and after each step of the artificial ageing treatment. Having at disposal a parchment coming from a whole lamb leather, allowed also the study of the correlations between the variations of SRF - STF and the intrinsic factors of a parchment like the variability of animal skin anatomy and of manufacturing. Analyzing different samples allowed also the definition of the measuring method sensitivity and of reference spectrum for the different animal species parchments with accuracy limits. The definition of a reference spectrum of not damaged parchment with acceptability limits is a necessary step for understanding, through SRF - STF measurements, historical parchments conservation conditions: indeed it is necessary to know if deviations from the reference spectrum are ascribable to damage or only to parchment anatomic/production variability. As a case study, the method has been applied to two historical parchment scrolls stored at the Archivio di Stato di Torino (Italy). The SRF - STF of both scrolls was acquired in several points of the scroll, the average spectrum of each scroll was compared with the reference spectra with the relative tolerance limits, recognizing the animal species and damage alterations and demonstrating the feasibility of the method.

  7. Performance evaluation using bootstrapping DEA techniques: Evidence from industry ratio analysis

    OpenAIRE

    Halkos, George; Tzeremes, Nickolaos

    2010-01-01

    In Data Envelopment Analysis (DEA) context financial data/ ratios have been used in order to produce a unified measure of performance metric. However, several scholars have indicated that the inclusion of financial ratios create biased efficiency estimates with implications on firms’ and industries’ performance evaluation. There have been several DEA formulations and techniques dealing with this problem including sensitivity analysis, Prior-Ratio-Analysis and DEA/ output–input ratio analysis ...

  8. Automics: an integrated platform for NMR-based metabonomics spectral processing and data analysis

    Directory of Open Access Journals (Sweden)

    Qu Lijia

    2009-03-01

    Full Text Available Abstract Background Spectral processing and post-experimental data analysis are the major tasks in NMR-based metabonomics studies. While there are commercial and free licensed software tools available to assist these tasks, researchers usually have to use multiple software packages for their studies because software packages generally focus on specific tasks. It would be beneficial to have a highly integrated platform, in which these tasks can be completed within one package. Moreover, with open source architecture, newly proposed algorithms or methods for spectral processing and data analysis can be implemented much more easily and accessed freely by the public. Results In this paper, we report an open source software tool, Automics, which is specifically designed for NMR-based metabonomics studies. Automics is a highly integrated platform that provides functions covering almost all the stages of NMR-based metabonomics studies. Automics provides high throughput automatic modules with most recently proposed algorithms and powerful manual modules for 1D NMR spectral processing. In addition to spectral processing functions, powerful features for data organization, data pre-processing, and data analysis have been implemented. Nine statistical methods can be applied to analyses including: feature selection (Fisher's criterion, data reduction (PCA, LDA, ULDA, unsupervised clustering (K-Mean and supervised regression and classification (PLS/PLS-DA, KNN, SIMCA, SVM. Moreover, Automics has a user-friendly graphical interface for visualizing NMR spectra and data analysis results. The functional ability of Automics is demonstrated with an analysis of a type 2 diabetes metabolic profile. Conclusion Automics facilitates high throughput 1D NMR spectral processing and high dimensional data analysis for NMR-based metabonomics applications. Using Automics, users can complete spectral processing and data analysis within one software package in most cases

  9. Automics: an integrated platform for NMR-based metabonomics spectral processing and data analysis.

    Science.gov (United States)

    Wang, Tao; Shao, Kang; Chu, Qinying; Ren, Yanfei; Mu, Yiming; Qu, Lijia; He, Jie; Jin, Changwen; Xia, Bin

    2009-03-16

    Spectral processing and post-experimental data analysis are the major tasks in NMR-based metabonomics studies. While there are commercial and free licensed software tools available to assist these tasks, researchers usually have to use multiple software packages for their studies because software packages generally focus on specific tasks. It would be beneficial to have a highly integrated platform, in which these tasks can be completed within one package. Moreover, with open source architecture, newly proposed algorithms or methods for spectral processing and data analysis can be implemented much more easily and accessed freely by the public. In this paper, we report an open source software tool, Automics, which is specifically designed for NMR-based metabonomics studies. Automics is a highly integrated platform that provides functions covering almost all the stages of NMR-based metabonomics studies. Automics provides high throughput automatic modules with most recently proposed algorithms and powerful manual modules for 1D NMR spectral processing. In addition to spectral processing functions, powerful features for data organization, data pre-processing, and data analysis have been implemented. Nine statistical methods can be applied to analyses including: feature selection (Fisher's criterion), data reduction (PCA, LDA, ULDA), unsupervised clustering (K-Mean) and supervised regression and classification (PLS/PLS-DA, KNN, SIMCA, SVM). Moreover, Automics has a user-friendly graphical interface for visualizing NMR spectra and data analysis results. The functional ability of Automics is demonstrated with an analysis of a type 2 diabetes metabolic profile. Automics facilitates high throughput 1D NMR spectral processing and high dimensional data analysis for NMR-based metabonomics applications. Using Automics, users can complete spectral processing and data analysis within one software package in most cases. Moreover, with its open source architecture, interested

  10. Spectral analysis of the fifth spectrum of indium: In V

    International Nuclear Information System (INIS)

    Swapnil; Tauheed, A.

    2016-01-01

    The fifth spectrum of indium (In V) has been investigated in the grazing and normal incidence wavelength regions. In"4"+ is a Rh-like ion with the ground configuration 4p"64d"9 and first excited configurations of the type 4p"64d"8nℓ (n≥4). The theoretical predications for this ion were made by Cowan's quasi-relativistic Hartree–Fock code with superposition of configurations involving 4p"64d"8(5p+6p+7p+4f+5f+6f), 4p"54d"1"0, 4p"64d"75s(5p+4f) for the odd parity matrix and 4p"64d"8 (5s+6s+7s+5d+6d), 4p"64d"7(5s"2+5p"2) for the even parity system. The spectra used for this work were recorded on 10.7 m grazing and normal incidence spectrographs at the National Institute of Standards and Technology, Gaithersburg, Maryland (USA) and also on a 3-m normal incidence vacuum spectrograph at Antigonish (Canada). The sources used were a sliding spark and a triggered spark respectively. Two hundred and thirty two energy levels based on the identification of 873 spectral lines have been established, forty six being new. Least squares fitted parametric calculations were used to interpret the observed level structure. The energy levels were optimized using a level optimization computer program (LOPT). Our wavelength accuracy for sharp and unblended lines is estimated to be within ±0.005 Å for λ below 400 Å and ±0.006 Å up to 1200 Å. - Highlights: • Indium spectra were recorded on both grazing and normal incidence spectrographs. • Calculations were made with Cowan's quasi-relativistic Hartree–Fock code. • New atomic transitions of In V were identified with newly found energy levels. • Uncertainties and Ritz wavelengths of all observed transitions were calculated. • Weighted transition probabilities (gA) were calculated.

  11. IR spectral analysis for the diagnostics of crust earthquake precursors

    Science.gov (United States)

    Umarkhodgaev, R. M.; Liperovsky, V. A.; Mikhailin, V. V.; Meister, C.-V.; Naumov, D. Ju

    2012-04-01

    In regions of future earthquakes, a few days before the seismic shock, the emanation of radon and hydrogen is being observed, which causes clouds of increased ionisation in the atmosphere. In the present work the possible diagnostics of these clouds using infrared (IR) spectroscopy is considered, which may be important and useful for the general geophysical system of earthquake prediction and the observation of industrial emissions of radioactive materials into the atmosphere. Some possible physical processes are analysed, which cause, under the condition of additional ionisation in a pre-breakdown electrical field, emissions in the IR interval. In doing so, the transparency region of the IR spectrum at wavelengths of 7-15 μm is taken into account. This transparency region corresponds to spectral lines of small atmospheric constituents like CH4, CO2, N2O, NO2, NO, and O3. The possible intensities of the IR emissions observable in laboratories and in nature are estimated. The acceleration process of the electrons in the pre-breakdown electrical field before its adhesion to the molecules is analysed. The laboratory equipment for the investigation of the IR absorption spectrum is constructed for the cases of normal and decreased atmospheric pressures. The syntheses of ozone and nitrous oxides are performed in the barrier discharge. It is studied if the products of the syntheses may be used to model atmospheric processes where these components take part. Spectra of products of the syntheses in the wavelength region of 2-10 μm are observed and analysed. A device is created for the syntheses and accumulation of nitrous oxides. Experiments to observe the IR-spectra of ozone and nitrous oxides during the syntheses and during the further evolution of these molecules are performed. For the earthquake prediction, practically, the investigation of emission spectra is most important, but during the laboratory experiments, the radiation of the excited molecules is shifted by a

  12. Rank-shaping regularization of exponential spectral analysis for application to functional parametric mapping

    International Nuclear Information System (INIS)

    Turkheimer, Federico E; Hinz, Rainer; Gunn, Roger N; Aston, John A D; Gunn, Steve R; Cunningham, Vincent J

    2003-01-01

    Compartmental models are widely used for the mathematical modelling of dynamic studies acquired with positron emission tomography (PET). The numerical problem involves the estimation of a sum of decaying real exponentials convolved with an input function. In exponential spectral analysis (SA), the nonlinear estimation of the exponential functions is replaced by the linear estimation of the coefficients of a predefined set of exponential basis functions. This set-up guarantees fast estimation and attainment of the global optimum. SA, however, is hampered by high sensitivity to noise and, because of the positivity constraints implemented in the algorithm, cannot be extended to reference region modelling. In this paper, SA limitations are addressed by a new rank-shaping (RS) estimator that defines an appropriate regularization over an unconstrained least-squares solution obtained through singular value decomposition of the exponential base. Shrinkage parameters are conditioned on the expected signal-to-noise ratio. Through application to simulated and real datasets, it is shown that RS ameliorates and extends SA properties in the case of the production of functional parametric maps from PET studies

  13. Spectral Analysis of Traffic Functions in Urban Areas

    Directory of Open Access Journals (Sweden)

    Florin Nemtanu

    2015-12-01

    Full Text Available The paper is focused on the Fourier transform application in urban traffic analysis and the use of said transform in traffic decomposition. The traffic function is defined as traffic flow generated by different categories of traffic participants. A Fourier analysis was elaborated in terms of identifying the main traffic function components, called traffic sub-functions. This paper presents the results of the method being applied in a real case situation, that is, an intersection in the city of Bucharest where the effect of a bus line was analysed. The analysis was done using different time scales, while three different traffic functions were defined to demonstrate the theoretical effect of the proposed method of analysis. An extension of the method is proposed to be applied in urban areas, especially in the areas covered by predictive traffic control.

  14. Multi spectral imaging analysis for meat spoilage discrimination

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman; Carstensen, Jens Michael; Papadopoulou, Olga

    classification methods: Naive Bayes Classifier as a reference model, Canonical Discriminant Analysis (CDA) and Support Vector Classification (SVC). As the final step, generalization of the models was performed using k-fold validation (k=10). Results showed that image analysis provided good discrimination of meat......In the present study, fresh beef fillets were purchased from a local butcher shop and stored aerobically and in modified atmosphere packaging (MAP, CO2 40%/O2 30%/N2 30%) at six different temperatures (0, 4, 8, 12, 16 and 20°C). Microbiological analysis in terms of total viable counts (TVC......) was performed in parallel with videometer image snapshots and sensory analysis. Odour and colour characteristics of meat were determined by a test panel and attributed into three pre-characterized quality classes, namely Fresh; Semi Fresh and Spoiled during the days of its shelf life. So far, different...

  15. Laryngoscopic and spectral analysis of laryngeal and pharyngeal configuration in non-classical singing styles.

    Science.gov (United States)

    Guzman, Marco; Lanas, Andres; Olavarria, Christian; Azocar, Maria Josefina; Muñoz, Daniel; Madrid, Sofia; Monsalve, Sebastian; Martinez, Francisca; Vargas, Sindy; Cortez, Pedro; Mayerhoff, Ross M

    2015-01-01

    The present study aimed to assess three different singing styles (pop, rock, and jazz) with laryngoscopic, acoustic, and perceptual analysis in healthy singers at different loudness levels. Special emphasis was given to the degree of anterior-posterior (A-P) laryngeal compression, medial laryngeal compression, vertical laryngeal position (VLP), and pharyngeal compression. Prospective study. Twelve female trained singers with at least 5 years of voice training and absence of any voice pathology were included. Flexible and rigid laryngeal endoscopic examinations were performed. Voice recording was also carried out. Four blinded judges were asked to assess laryngoscopic and auditory perceptual variables using a visual analog scale. All laryngoscopic parameters showed significant differences for all singing styles. Rock showed the greatest degree for all of them. Overall A-P laryngeal compression scores demonstrated significantly higher values than overall medial compression and VLP. High loudness level produced the highest degree of A-P compression, medial compression, pharyngeal compression, and the lowest VLP for all singing styles. Additionally, rock demonstrated the highest values for alpha ratio (less steep spectral slope), L1-L0 ratio (more glottal adduction), and Leq (more vocal intensity). Statistically significant differences between the three loudness levels were also found for these acoustic parameters. Rock singing seems to be the style with the highest degree of both laryngeal and pharyngeal activity in healthy singers. Although, supraglottic activity during singing could be labeled as hyperfunctional vocal behavior, it may not necessarily be harmful, but a strategy to avoid vocal fold damage. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  16. Quantitative analysis of enhanced malignant and benign lesions on contrast-enhanced spectral mammography.

    Science.gov (United States)

    Deng, Chih-Ying; Juan, Yu-Hsiang; Cheung, Yun-Chung; Lin, Yu-Ching; Lo, Yung-Feng; Lin, GiGin; Chen, Shin-Cheh; Ng, Shu-Hang

    2018-02-27

    To retrospectively analyze the quantitative measurement and kinetic enhancement among pathologically proven benign and malignant lesions using contrast-enhanced spectral mammography (CESM). We investigated the differences in enhancement between 44 benign and 108 malignant breast lesions in CESM, quantifying the extent of enhancements and the relative enhancements between early (between 2-3 min after contrast medium injection) and late (3-6 min) phases. The enhancement was statistically stronger in malignancies compared to benign lesions, with good performance by the receiver operating characteristic curve [0.877, 95% confidence interval (0.813-0.941)]. Using optimal cut-off value at 220.94 according to Youden index, the sensitivity was 75.9%, specificity 88.6%, positive likelihood ratio 6.681, negative likelihood ratio 0.272 and accuracy 82.3%. The relative enhancement patterns of benign and malignant lesions, showing 29.92 vs 73.08% in the elevated pattern, 7.14 vs 92.86% in the steady pattern, 5.71 vs 94.29% in the depressed pattern, and 80.00 vs 20.00% in non-enhanced lesions (p < 0.0001), respectively. Despite variations in the degree of tumour angiogenesis, quantitative analysis of the breast lesions on CESM documented the malignancies had distinctive stronger enhancement and depressed relative enhancement patterns than benign lesions. Advances in knowledge: To our knowledge, this is the first study evaluating the feasibility of quantifying lesion enhancement on CESM. The quantities of enhancement were informative for assessing breast lesions in which the malignancies had stronger enhancement and more relative depressed enhancement than the benign lesions.

  17. THE AKARI 2.5-5.0 μm SPECTRAL ATLAS OF TYPE-1 ACTIVE GALACTIC NUCLEI: BLACK HOLE MASS ESTIMATOR, LINE RATIO, AND HOT DUST TEMPERATURE

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dohyeong; Im, Myungshin; Kim, Ji Hoon; Jun, Hyunsung David; Lee, Seong-Kook [Center for the Exploration of the Origin of the Universe (CEOU), Astronomy Program, Department of Physics and Astronomy, Seoul National University, Shillim-Dong, Kwanak-Gu, Seoul 151-742 (Korea, Republic of); Woo, Jong-Hak; Lee, Hyung Mok; Lee, Myung Gyoon [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Shillim-Dong, Kwanak-Gu, Seoul 151-742 (Korea, Republic of); Nakagawa, Takao; Matsuhara, Hideo; Wada, Takehiko; Takagi, Toshinobu [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa 252-5210 (Japan); Oyabu, Shinki [Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 (Japan); Ohyama, Youichi, E-mail: dohyeong@astro.snu.ac.kr, E-mail: mim@astro.snu.ac.kr [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China)

    2015-01-01

    We present 2.5-5.0 μm spectra of 83 nearby (0.002 < z < 0.48) and bright (K < 14 mag) type-1 active galactic nuclei (AGNs) taken with the Infrared Camera on board AKARI. The 2.5-5.0 μm spectral region contains emission lines such as Brβ (2.63 μm), Brα (4.05 μm), and polycyclic aromatic hydrocarbons (3.3 μm), which can be used for studying the black hole (BH) masses and star formation activity in the host galaxies of AGNs. The spectral region also suffers less dust extinction than in the ultra violet (UV) or optical wavelengths, which may provide an unobscured view of dusty AGNs. Our sample is selected from bright quasar surveys of Palomar-Green and SNUQSO, and AGNs with reverberation-mapped BH masses from Peterson et al. Using 11 AGNs with reliable detection of Brackett lines, we derive the Brackett-line-based BH mass estimators. We also find that the observed Brackett line ratios can be explained with the commonly adopted physical conditions of the broad line region. Moreover, we fit the hot and warm dust components of the dust torus by adding photometric data of SDSS, 2MASS, WISE, and ISO to the AKARI spectra, finding hot and warm dust temperatures of ∼1100 K and ∼220 K, respectively, rather than the commonly cited hot dust temperature of 1500 K.

  18. Relation between peak period of microtremor spectral ratio (horizontal and vertical components) and basement depth; Bido no suiheido/jogedo supekutoru hi no peak to kiso shindo tono kankei

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H; Mizutani, K; Saito, T [Iwate University, Iwate (Japan). Faculty of Engineering

    1996-05-01

    The peak period of the horizontal/vertical spectral ratio of microtremors was referred to the underground structure for the purpose of finding out if it was possible to estimate the ground structure by use of the peak period of the spectral ratio. The observation was carried in the areas of Morioka City and Hachinohe City using seismographs for measuring east-west, north-south, and up-down motions. As for the relationship between the peak period of the spectral ratio distribution involving 490 observation sites and the known gravity anomalies in the Morioka City area, it was found that the peak period of the spectral ratio tended to be shorter from west toward east while the gravity anomalies were greater from west toward east. Again, as for the relations with the underground geology, the period was longer when the distance to the granite basement was greater, and shorter when smaller. In the Hachinohe City area, relations not only of the first period peak but also of the second period peak to the basement were disclosed, which indicates the possibility that the peak period of the spectral ratio will be used as a means for estimating the basement structure. 2 refs., 8 figs.

  19. An experiment with spectral analysis of emotional speech affected by orthodontic appliances

    Science.gov (United States)

    Přibil, Jiří; Přibilová, Anna; Ďuračková, Daniela

    2012-11-01

    The contribution describes the effect of the fixed and removable orthodontic appliances on spectral properties of emotional speech. Spectral changes were analyzed and evaluated by spectrograms and mean Welch’s periodograms. This alternative approach to the standard listening test enables to obtain objective comparison based on statistical analysis by ANOVA and hypothesis tests. Obtained results of analysis performed on short sentences of a female speaker in four emotional states (joyous, sad, angry, and neutral) show that, first of all, the removable orthodontic appliance affects the spectrograms of produced speech.

  20. Comparing airborne and satellite retrievals of cloud optical thickness and particle effective radius using a spectral radiance ratio technique: two case studies for cirrus and deep convective clouds

    Science.gov (United States)

    Krisna, Trismono C.; Wendisch, Manfred; Ehrlich, André; Jäkel, Evelyn; Werner, Frank; Weigel, Ralf; Borrmann, Stephan; Mahnke, Christoph; Pöschl, Ulrich; Andreae, Meinrat O.; Voigt, Christiane; Machado, Luiz A. T.

    2018-04-01

    Solar radiation reflected by cirrus and deep convective clouds (DCCs) was measured by the Spectral Modular Airborne Radiation Measurement System (SMART) installed on the German High Altitude and Long Range Research Aircraft (HALO) during the Mid-Latitude Cirrus (ML-CIRRUS) and the Aerosol, Cloud, Precipitation, and Radiation Interaction and Dynamic of Convective Clouds System - Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modelling and to the Global Precipitation Measurement (ACRIDICON-CHUVA) campaigns. On particular flights, HALO performed measurements closely collocated with overpasses of the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua satellite. A cirrus cloud located above liquid water clouds and a DCC topped by an anvil cirrus are analyzed in this paper. Based on the nadir spectral upward radiance measured above the two clouds, the optical thickness τ and particle effective radius reff of the cirrus and DCC are retrieved using a radiance ratio technique, which considers the cloud thermodynamic phase, the vertical profile of cloud microphysical properties, the presence of multilayer clouds, and the heterogeneity of the surface albedo. For the cirrus case, the comparison of τ and reff retrieved on the basis of SMART and MODIS measurements yields a normalized mean absolute deviation of up to 1.2 % for τ and 2.1 % for reff. For the DCC case, deviations of up to 3.6 % for τ and 6.2 % for reff are obtained. The larger deviations in the DCC case are mainly attributed to the fast cloud evolution and three-dimensional (3-D) radiative effects. Measurements of spectral upward radiance at near-infrared wavelengths are employed to investigate the vertical profile of reff in the cirrus. The retrieved values of reff are compared with corresponding in situ measurements using a vertical weighting method. Compared to the MODIS observations, measurements of SMART provide more information on the

  1. A Molecular Iodine Spectral Data Set for Rovibronic Analysis

    Science.gov (United States)

    Williamson, J. Charles; Kuntzleman, Thomas S.; Kafader, Rachael A.

    2013-01-01

    A data set of 7,381 molecular iodine vapor rovibronic transitions between the X and B electronic states has been prepared for an advanced undergraduate spectroscopic analysis project. Students apply standard theoretical techniques to these data and determine the values of three X-state constants (image omitted) and four B-state constants (image…

  2. Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data

    Science.gov (United States)

    Rowan, L.C.; Schmidt, R.G.; Mars, J.C.

    2006-01-01

    The Reko Diq, Pakistan mineralized study area, approximately 10??km in diameter, is underlain by a central zone of hydrothermally altered rocks associated with Cu-Au mineralization. The surrounding country rocks are a variable mixture of unaltered volcanic rocks, fluvial deposits, and eolian quartz sand. Analysis of 15-band Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data of the study area, aided by laboratory spectral reflectance and spectral emittance measurements of field samples, shows that phyllically altered rocks are laterally extensive, and contain localized areas of argillically altered rocks. In the visible through shortwave-infrared (VNIR + SWIR) phyllically altered rocks are characterized by Al-OH absorption in ASTER band 6 because of molecular vibrations in muscovite, whereas argillically altered rocks have an absorption feature in band 5 resulting from alunite. Propylitically altered rocks form a peripheral zone and are present in scattered exposures within the main altered area. Chlorite and muscovite cause distinctive absorption features at 2.33 and 2.20????m, respectively, although less intense 2.33????m absorption is also present in image spectra of country rocks. Important complementary lithologic information was derived by analysis of the spectral emittance data in the 5 thermal-infrared (TIR) bands. Silicified rocks were not distinguished in the 9 VNIR + SWIR bands because of the lack of diagnostic spectral absorption features in quartz in this wavelength region. Quartz-bearing surficial deposits, as well as hydrothermally silicified rocks, were mapped in the TIR bands by using a band 13/band 12 ratio image, which is sensitive to the intensity of the quartz reststrahlen feature. Improved distinction between the quartzose surficial deposits and silicified bedrock was achieved by using matched-filter processing with TIR image spectra for reference. ?? 2006 Elsevier Inc. All rights reserved.

  3. Temporal measurement and analysis of high-resolution spectral signatures of plants and relationships to biophysical characteristics

    Science.gov (United States)

    Bostater, Charles R., Jr.; Rebbman, Jan; Hall, Carlton; Provancha, Mark; Vieglais, David

    1995-11-01

    Measurements of temporal reflectance signatures as a function of growing season for sand live oak (Quercus geminata), myrtle oak (Q. myrtifolia, and saw palmetto (Serenoa repens) were collected during a two year study period. Canopy level spectral reflectance signatures, as a function of 252 channels between 368 and 1115 nm, were collected using near nadir viewing geometry and a consistent sun illumination angle. Leaf level reflectance measurements were made in the laboratory using a halogen light source and an environmental optics chamber with a barium sulfate reflectance coating. Spectral measurements were related to several biophysical measurements utilizing optimal passive ambient correlation spectroscopy (OPACS) technique. Biophysical parameters included percent moisture, water potential (MPa), total chlorophyll, and total Kjeldahl nitrogen. Quantitative data processing techniques were used to determine optimal bands based on the utilization of a second order derivative or inflection estimator. An optical cleanup procedure was then employed that computes the double inflection ratio (DIR) spectra for all possible three band combinations normalized to the previously computed optimal bands. These results demonstrate a unique approach to the analysis of high spectral resolution reflectance signatures for estimation of several biophysical measures of plants at the leaf and canopy level from optimally selected bands or bandwidths.

  4. Performance evaluation of spectral deconvolution analysis tool (SDAT) software used for nuclear explosion radionuclide measurements

    International Nuclear Information System (INIS)

    Foltz Biegalski, K.M.; Biegalski, S.R.; Haas, D.A.

    2008-01-01

    The Spectral Deconvolution Analysis Tool (SDAT) software was developed to improve counting statistics and detection limits for nuclear explosion radionuclide measurements. SDAT utilizes spectral deconvolution spectroscopy techniques and can analyze both β-γ coincidence spectra for radioxenon isotopes and high-resolution HPGe spectra from aerosol monitors. Spectral deconvolution spectroscopy is an analysis method that utilizes the entire signal deposited in a gamma-ray detector rather than the small portion of the signal that is present in one gamma-ray peak. This method shows promise to improve detection limits over classical gamma-ray spectroscopy analytical techniques; however, this hypothesis has not been tested. To address this issue, we performed three tests to compare the detection ability and variance of SDAT results to those of commercial off- the-shelf (COTS) software which utilizes a standard peak search algorithm. (author)

  5. Real-time spectral analysis of HRV signals: an interactive and user-friendly PC system.

    Science.gov (United States)

    Basano, L; Canepa, F; Ottonello, P

    1998-01-01

    We present a real-time system, built around a PC and a low-cost data acquisition board, for the spectral analysis of the heart rate variability signal. The Windows-like operating environment on which it is based makes the computer program very user-friendly even for non-specialized personnel. The Power Spectral Density is computed through the use of a hybrid method, in which a classical FFT analysis follows an autoregressive finite-extension of data; the stationarity of the sequence is continuously checked. The use of this algorithm gives a high degree of robustness of the spectral estimation. Moreover, always in real time, the FFT of every data block is computed and displayed in order to corroborate the results as well as to allow the user to interactively choose a proper AR model order.

  6. Dimensionality Reduction of Hyperspectral Image with Graph-Based Discriminant Analysis Considering Spectral Similarity

    Directory of Open Access Journals (Sweden)

    Fubiao Feng

    2017-03-01

    Full Text Available Recently, graph embedding has drawn great attention for dimensionality reduction in hyperspectral imagery. For example, locality preserving projection (LPP utilizes typical Euclidean distance in a heat kernel to create an affinity matrix and projects the high-dimensional data into a lower-dimensional space. However, the Euclidean distance is not sufficiently correlated with intrinsic spectral variation of a material, which may result in inappropriate graph representation. In this work, a graph-based discriminant analysis with spectral similarity (denoted as GDA-SS measurement is proposed, which fully considers curves changing description among spectral bands. Experimental results based on real hyperspectral images demonstrate that the proposed method is superior to traditional methods, such as supervised LPP, and the state-of-the-art sparse graph-based discriminant analysis (SGDA.

  7. Processing of spectral X-ray data with principal components analysis

    CERN Document Server

    Butler, A P H; Cook, N J; Butzer, J; Schleich, N; Tlustos, L; Scott, N; Grasset, R; de Ruiter, N; Anderson, N G

    2011-01-01

    The goal of the work was to develop a general method for processing spectral x-ray image data. Principle component analysis (PCA) is a well understood technique for multivariate data analysis and so was investigated. To assess this method, spectral (multi-energy) computed tomography (CT) data was obtained using a Medipix2 detector in a MARS-CT (Medipix All Resolution System). PCA was able to separate bone (calcium) from two elements with k-edges in the X-ray spectrum used (iodine and barium) within a mouse. This has potential clinical application in dual-energy CT systems and future Medipix3 based spectral imaging where up to eight energies can be recorded simultaneously with excellent energy resolution. (c) 2010 Elsevier B.V. All rights reserved.

  8. Analysis of spectral data with rare events statistics

    International Nuclear Information System (INIS)

    Ilyushchenko, V.I.; Chernov, N.I.

    1990-01-01

    The case is considered of analyzing experimental data, when the results of individual experimental runs cannot be summed due to large systematic errors. A statistical analysis of the hypothesis about the persistent peaks in the spectra has been performed by means of the Neyman-Pearson test. The computations demonstrate the confidence level for the hypothesis about the presence of a persistent peak in the spectrum is proportional to the square root of the number of independent experimental runs, K. 5 refs

  9. Spectral analysis of optical emission of microplasma in sea water

    Science.gov (United States)

    Gamaleev, Vladislav; Morita, Hayato; Oh, Jun-Seok; Furuta, Hiroshi; Hatta, Akimitsu

    2016-09-01

    This work presents an analysis of optical emission spectra from microplasma in three types of liquid, namely artificial sea water composed of 10 typical agents (10ASW), reference solutions each containing a single agent (NaCl, MgCl2 + H2O, Na2SO4, CaCl2, KCl, NaHCO3, KBr, NaHCO3, H3BO3, SrCl2 + H2O, NaF) and naturally sampled deep sea water (DSW). Microplasma was operated using a needle(Pd)-to-plate(Pt) electrode system sunk into each liquid in a quartz cuvette. The radius of the tip of the needle was 50 μm and the gap between the electrodes was set at 20 μm. An inpulse generator circuit, consisting of a MOSFET switch, a capacitor, an inductor and the resistance of the liquid between the electrodes, was used as a pulse current source for operation of discharges. In the spectra, the emission peaks for the main components of sea water and contaminants from the electrodes were detected. Spectra for reference solutions were examined to enable the identification of unassigned peaks in the spectra for sea water. Analysis of the Stark broadening of H α peak was carried out to estimate the electron density of the plasma under various conditions. The characteristics of microplasma discharge in sea water and the analysis of the optical emission spectra will be presented. This work was supported by JSPS KAKENHI Grant Number 26600129.

  10. Difference of horizontal-to-vertical spectral ratios of observed earthquakes and microtremors and its application to S-wave velocity inversion based on the diffuse field concept

    Science.gov (United States)

    Kawase, Hiroshi; Mori, Yuta; Nagashima, Fumiaki

    2018-01-01

    We have been discussing the validity of using the horizontal-to-vertical spectral ratios (HVRs) as a substitute for S-wave amplifications after Nakamura first proposed the idea in 1989. So far a formula for HVRs had not been derived that fully utilized their physical characteristics until a recent proposal based on the diffuse field concept. There is another source of confusion that comes from the mixed use of HVRs from earthquake and microtremors, although their wave fields are hardly the same. In this study, we compared HVRs from observed microtremors (MHVR) and those from observed earthquake motions (EHVR) at one hundred K-NET and KiK-net stations. We found that MHVR and EHVR share similarities, especially until their first peak frequency, but have significant differences in the higher frequency range. This is because microtremors mainly consist of surface waves so that peaks associated with higher modes would not be prominent, while seismic motions mainly consist of upwardly propagating plain body waves so that higher mode resonances can be seen in high frequency. We defined here the spectral amplitude ratio between them as EMR and calculated their average. We categorize all the sites into five bins by their fundamental peak frequencies in MHVR. Once we obtained EMRs for five categories, we back-calculated EHVRs from MHVRs, which we call pseudo-EHVRs (pEHVR). We found that pEHVR is much closer to EHVR than MHVR. Then we use our inversion code to invert the one-dimensional S-wave velocity structures from EHVRs based on the diffuse field concept. We also applied the same code to pEHVRs and MHVRs for comparison. We found that pEHVRs yield velocity structures much closer to those by EHVRs than those by MHVRs. This is natural since what we have done up to here is circular except for the average operation in EMRs. Finally, we showed independent examples of data not used in the EMR calculation, where better ground structures were successfully identified from p

  11. Correlative Spectral Analysis of Gamma-Ray Bursts using Swift-BAT and GLAST-GBM

    International Nuclear Information System (INIS)

    Stamatikos, Michael; Sakamoto, Taka; Band, David L.

    2008-01-01

    We discuss the preliminary results of spectral analysis simulations involving anticipated correlated multi-wavelength observations of gamma-ray bursts (GRBs) using Swift's Burst Alert Telescope (BAT) and the Gamma-Ray Large Area Space Telescope's (GLAST) Burst Monitor (GLAST-GBM), resulting in joint spectral fits, including characteristic photon energy (E peak ) values, for a conservative annual estimate of ∼30 GRBs. The addition of BAT's spectral response will (i) complement in-orbit calibration efforts of GBM's detector response matrices, (ii) augment GLAST's low energy sensitivity by increasing the ∼20-100 keV effective area, (iii) facilitate ground-based follow-up efforts of GLAST GRBs by increasing GBM's source localization precision, and (iv) help identify a subset of non-triggered GRBs discovered via off-line GBM data analysis. Such multi-wavelength correlative analyses, which have been demonstrated by successful joint-spectral fits of Swift-BAT GRBs with other higher energy detectors such as Konus-WIND and Suzaku-WAM, would enable the study of broad-band spectral and temporal evolution of prompt GRB emission over three energy decades, thus potentially increasing science return without placing additional demands upon mission resources throughout their contemporaneous orbital tenure over the next decade.

  12. Correlative Spectral Analysis of Gamma-Ray Bursts using Swift-BAT and GLAST-GBM

    International Nuclear Information System (INIS)

    Stamatikos, Michael; Sakamoto, Takanori; Band, David L.

    2008-01-01

    We discuss the preliminary results of spectral analysis simulations involving anticipated correlated multi-wavelength observations of gamma-ray bursts (GRBs) using Swift's Burst Alert Telescope (BAT) and the Gamma-Ray Large Area Space Telescope's (GLAST) Burst Monitor (GLAST-GBM), resulting in joint spectral fits, including characteristic photon energy (E peak ) values, for a conservative annual estimate of ∼30 GRBs. The addition of BAT/s spectral response will (i) complement in-orbit calibration efforts of GBM's detector response matrices, (ii) augment GLAST's low energy sensitivity by increasing the ∼20-100 keV effective area, (iii) facilitate ground-based follow-up efforts of GLAST GRBs by increasing GBM's source localization precision, and (iv) help identify a subset of non-triggered GRBs discovered via off-line GBM data analysis. Such multi-wavelength correlative analyses, which have been demonstrated by successful joint-spectral fits of Swift-BAT GRBs with other higher energy detectors such as Konus-WIND and Suzaku-WAM, would enable the study of broad-band spectral and temporal evolution of prompt GRB emission over three energy decades, thus potentially increasing science return without placing additional demands upon mission resources throughout their contemporaneous orbital tenure over the next decade

  13. Non destructive defect detection by spectral density analysis.

    Science.gov (United States)

    Krejcar, Ondrej; Frischer, Robert

    2011-01-01

    The potential nondestructive diagnostics of solid objects is discussed in this article. The whole process is accomplished by consecutive steps involving software analysis of the vibration power spectrum (eventually acoustic emissions) created during the normal operation of the diagnosed device or under unexpected situations. Another option is to create an artificial pulse, which can help us to determine the actual state of the diagnosed device. The main idea of this method is based on the analysis of the current power spectrum density of the received signal and its postprocessing in the Matlab environment with a following sample comparison in the Statistica software environment. The last step, which is comparison of samples, is the most important, because it is possible to determine the status of the examined object at a given time. Nowadays samples are compared only visually, but this method can't produce good results. Further the presented filter can choose relevant data from a huge group of data, which originate from applying FFT (Fast Fourier Transform). On the other hand, using this approach they can be subjected to analysis with the assistance of a neural network. If correct and high-quality starting data are provided to the initial network, we are able to analyze other samples and state in which condition a certain object is. The success rate of this approximation, based on our testing of the solution, is now 85.7%. With further improvement of the filter, it could be even greater. Finally it is possible to detect defective conditions or upcoming limiting states of examined objects/materials by using only one device which contains HW and SW parts. This kind of detection can provide significant financial savings in certain cases (such as continuous casting of iron where it could save hundreds of thousands of USD).

  14. Application of OLAM network in X-ray spectral analysis

    International Nuclear Information System (INIS)

    Liu Yinbing; Zhou Rongsheng

    2001-01-01

    The author describes a new approach to the automatic radioisotope identification problem based on the use of OLAM network. Different from the traditional methods, the OLAM network takes the spectrum as a whole comparing its shape with the patterns learned during the training period of the network. It is found that the OLAM network, once adequately trained, is quite suitable to identify a given isotope present in a mixture of elements as well as the relative proportions of each identified substance. Preliminary results are good enough to consider OLAM network as powerful and simple tools in the automatic spectrum analysis

  15. Business ratio report: an industry sector analysis. 7. ed.

    International Nuclear Information System (INIS)

    1992-01-01

    This publication not only compiles and assimilates a vast wealth of information relating to 126 UK companies in oil and gas exploration, refining and distribution, but it also presents it in an easily digestible form. Relative company performance is ranked in a series of tables and compared with an overall average for the industry. The report analyses a fixed sample of companies over a three year period. As an indication of the longer-term trend a graphical representation of the return on capital, profit margin, stock to sales, credit period, profit per employee and sales per employee ratios are featured for a period of up to seven years. (150 tables). (author)

  16. A new perspective on hospital financial ratio analysis.

    Science.gov (United States)

    Zeller, T L; Stanko, B B; Cleverley, W O

    1997-11-01

    Using audit financial data in a study of 2,189 not-for-profit hospitals for the period 1989-1992, six financial characteristics of performance were defined. These characteristics are profitability factor, fixed-asset efficiency, capital structure, fixed-asset age, working capital efficiency, and liquidity. The statistical output also shows the specific sets of financial ratios that can be used to measure the six characteristics of hospital performance. The results of this study can be beneficial to healthcare financial managers, hospital boards, policy groups, and other relevant entities because it affords them a clear understanding of an institution's financial performance.

  17. Micro-Raman Imaging for Biology with Multivariate Spectral Analysis

    KAUST Repository

    Malvaso, Federica

    2015-05-05

    Raman spectroscopy is a noninvasive technique that can provide complex information on the vibrational state of the molecules. It defines the unique fingerprint that allow the identification of the various chemical components within a given sample. The aim of the following thesis work is to analyze Raman maps related to three pairs of different cells, highlighting differences and similarities through multivariate algorithms. The first pair of analyzed cells are human embryonic stem cells (hESCs), while the other two pairs are induced pluripotent stem cells (iPSCs) derived from T lymphocytes and keratinocytes, respectively. Although two different multivariate techniques were employed, ie Principal Component Analysis and Cluster Analysis, the same results were achieved: the iPSCs derived from T-lymphocytes show a higher content of genetic material both compared with the iPSCs derived from keratinocytes and the hESCs . On the other side, equally evident, was that iPS cells derived from keratinocytes assume a molecular distribution very similar to hESCs.

  18. Seismic analysis of a NPP reactor building using spectrum-compatible power spectral density functions

    International Nuclear Information System (INIS)

    Venancio Filho, F.; DeCarvalho Santos, S.H.; Joia, L.A.

    1987-01-01

    A numerical methodology to obtain Power Spectral Density Functions (PSDF) of ground accelerations, compatible with a given design response spectrum is presented. The PSDF's are derived from the statistical analysis of the amplitudes of the frequency components in a set of artificially generated time-histories matching the given spectrum. A so obtained PSDF is then used in the stochastic analysis of a NPP Reactor Building. The main results of this analysis are compared with the ones obtained by deterministic methods

  19. Seismic analysis of a NPP reactor building using spectrum-compatible power spectral density functions

    International Nuclear Information System (INIS)

    Venancio Filho, F.; Joia, L.A.

    1987-01-01

    A numerical methodology to obtain Power Spectral Density Functions (PSDF) of ground accelerations, compatible with a given design response spectrum is presented. The PSDF's are derived from the statistical analysis of the amplitudes of the frequency components in a set of artificially generated time-histories matching the given spectrum. A so obtained PSDF is then used in the stochastic analysis of a reactor building. The main results of this analysis are compared with the ones obtained by deterministic methods. (orig./HP)

  20. A preliminary analysis of the Mariner 10 color ratio map of Mercury

    Science.gov (United States)

    Rava, Barry; Hapke, Bruce

    1987-01-01

    A preliminary geological analysis of the Mariner 10 orange/UV color ratio map of Mercury is given, assuming a basaltic crust. Certain errors in the map are pointed out. The relationship between color and terrain are distinctly non-lunar. Rays and ejecta are bluer than average on Mercury, whereas they are redder on the Moon. This fact, along with the lack of the ferrous band in Mercury's spectral reflectance and smaller albedo contrasts, implies that the crust is low in Fe and Ti. There is no correlation between color boundaries and the smooth plains on Mercury, in contrast with the strong correlation between color and maria-highlands contacts on the Moon. The smooth plains are not Mercurian analogs of lunar maria, and a lunar-type of second wave melting did not occur. Ambiguous correlations between color and topography indicate that older, redder materials underlie younger, bluer rocks in many places on the planet, implying that the last stages of volcanism involved low-Fe lavas covering higher-Fe rocks. There is some evidence of late Fe-rich pyroclastic activity.

  1. Negative Control Outcomes and the Analysis of Standardized Mortality Ratios.

    Science.gov (United States)

    Richardson, David B; Keil, Alexander P; Tchetgen Tchetgen, Eric; Cooper, Glinda

    2015-09-01

    In occupational cohort mortality studies, epidemiologists often compare the observed number of deaths in the cohort to the expected number obtained by multiplying person-time accrued in the study cohort by the mortality rate in an external reference population. Interpretation of the result may be difficult due to noncomparability of the occupational cohort and reference population with respect to unmeasured risk factors for the outcome of interest. We describe an approach to estimate an adjusted standardized mortality ratio (aSMR) to control for such bias. The approach draws on methods developed for the use of negative control outcomes. Conditions necessary for unbiased estimation are described, as well as looser conditions necessary for bias reduction. The approach is illustrated using data on bladder cancer mortality among male Oak Ridge National Laboratory workers. The SMR for bladder cancer was elevated among hourly-paid males (SMR = 1.9; 95% confidence interval [CI] = 1.3, 2.7) but not among monthly-paid males (SMR = 1.0; 95% CI = 0.67, 1.3). After indirect adjustment using the proposed approach, the mortality ratios were similar in magnitude among hourly- and monthly-paid men (aSMR = 2.2; 95% CI = 1.5, 3.2; and, aSMR = 2.0; 95% CI = 1.4, 2.8, respectively). The proposed adjusted SMR offers a complement to typical SMR analyses.

  2. Spectral analysis of viscous static compressible fluid equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel [Departamento de Analisis Matematico, Universidad de Valladolid, Valladolid (Spain)

    2001-05-25

    It is generally assumed that the study of the spectrum of the linearized Navier-Stokes equations around a static state will provide information about the stability of the equilibrium. This is obvious for inviscid barotropic compressible fluids by the self-adjoint character of the relevant operator, and rather easy for viscous incompressible fluids by the compact character of the resolvent. The viscous compressible linearized system, both for periodic and homogeneous Dirichlet boundary problems, satisfies neither condition, but it does turn out to be the generator of an immediately continuous, almost stable semigroup, which justifies the analysis of the spectrum as predictive of the initial behaviour of the flow. As for the spectrum itself, except for a unique negative finite accumulation point, it is formed by eigenvalues with negative real part, and nonreal eigenvalues are confined to a certain bounded subset of complex numbers. (author)

  3. Spectral analysis of musical sounds with emphasis on the piano

    CERN Document Server

    Koenig, David M

    2014-01-01

    There are three parts to this book which addresses the analysis of musical sounds from the viewpoint of someone at the intersection between physicists, engineers, piano technicians, and musicians. The reader is introduced to a variety of waves and a variety of ways of presenting, visualizing, and analyzing them in the first part. A tutorial on the tools used throughout the book accompanies this introduction. The mathematics behind the tools is left to the appendices. Part 2 is a graphical survey of the classical areas of acoustics that pertain to musical instruments: vibrating strings, bars, membranes, and plates. Part 3 is devoted almost exclusively to the piano. Several two- and three-dimensional graphical tools are introduced to study the following characteristics of pianos: individual notes and interactions among them, the missing fundamental, inharmonicity, tuning visualization, the different distribution of harmonic power for the various zones of the piano keyboard, and potential uses for quality contro...

  4. Continental Spatio-temporal Data Analysis with Linear Spectral Mixture Model using FOSS

    Science.gov (United States)

    Kumar, U.; Nemani, R. R.; Ganguly, S.; Milesi, C.; Raja, K. S.; Wang, W.; Votava, P.; Michaelis, A.

    2015-12-01

    This work demonstrates the development and implementation of a Fully Constrained Least Squares (FCLS) unmixing model developed in C++ programming language with OpenCV package and boost C++ libraries in the NASA Earth Exchange (NEX). Visualization of the results is supported by GRASS GIS and statistical analysis is carried in R in a Linux system environment. FCLS was first tested on computer simulated data with Gaussian noise of various signal-to-noise ratio, and Landsat data of an agricultural scenario and an urban environment using a set of global endmembers of substrate (soils, sediments, rocks, and non-photosynthetic vegetation), vegetation that includes green photosynthetic plants and dark objects which encompasses absorptive substrate materials, clear water, deep shadows, etc. For the agricultural scenario, a spectrally diverse collection of 11 scenes of Level 1 terrain corrected, cloud free Landsat-5 TM data of Fresno, California, USA were unmixed and the results were validated with the corresponding ground data. To study an urbanized landscape, a clear sky Landsat-5 TM data were unmixed and validated with coincident World View-2 abundance maps (of 2 m spatial resolution) for an area of San Francisco, California, USA. The results were evaluated using descriptive statistics, correlation coefficient, RMSE, probability of success, boxplot and bivariate distribution function. Finally, FCLS was used for sub-pixel land cover analysis of the monthly WELD (Wen-enabled Landsat data) repository from 2008 to 2011 of North America. The abundance maps in conjunction with DMSP-OLS nighttime lights data were used to extract the urban land cover features and analyze their spatial-temporal growth.

  5. Continental Spatio-Temporal Data Analysis with Linear Spectral Mixture Model Using FOSS

    Science.gov (United States)

    Kumar, Uttam; Nemani, Ramakrishna; Ganguly, Sangram; Milesi, Cristina; Raja, Kumar; Wang, Weile; Votava, Petr; Michaelis, Andrew

    2015-01-01

    This work demonstrates the development and implementation of a Fully Constrained Least Squares (FCLS) unmixing model developed in C++ programming language with OpenCV package and boost C++ libraries in the NASA Earth Exchange (NEX). Visualization of the results is supported by GRASS GIS and statistical analysis is carried in R in a Linux system environment. FCLS was first tested on computer simulated data with Gaussian noise of various signal-to-noise ratio, and Landsat data of an agricultural scenario and an urban environment using a set of global end members of substrate (soils, sediments, rocks, and non-photosynthetic vegetation), vegetation that includes green photosynthetic plants and dark objects which encompasses absorptive substrate materials, clear water, deep shadows, etc. For the agricultural scenario, a spectrally diverse collection of 11 scenes of Level 1 terrain corrected, cloud free Landsat-5 TM data of Fresno, California, USA were unmixed and the results were validated with the corresponding ground data. To study an urbanized landscape, a clear sky Landsat-5 TM data were unmixed and validated with coincident World View-2 abundance maps (of 2 m spatial resolution) for an area of San Francisco, California, USA. The results were evaluated using descriptive statistics, correlation coefficient, RMSE, probability of success, boxplot and bivariate distribution function. Finally, FCLS was used for sub-pixel land cover analysis of the monthly WELD (Wen-enabled Landsat data) repository from 2008 to 2011 of North America. The abundance maps in conjunction with DMSP-OLS nighttime lights data were used to extract the urban land cover features and analyze their spatial-temporal growth.

  6. Spectral Analysis of a Quantum System with a Double Line Singular Interaction

    Czech Academy of Sciences Publication Activity Database

    Kondej, S.; Krejčiřík, David

    2013-01-01

    Roč. 49, č. 4 (2013), s. 831-859 ISSN 0034-5318 R&D Projects: GA ČR GAP203/11/0701 Institutional support: RVO:61389005 Keywords : Schrödinger operator * singular perturbation * spectral analysis * Hardy inequality * resonance Subject RIV: BE - Theoretical Physics Impact factor: 0.614, year: 2013

  7. Semiconductor detectors in current energy dispersive X-ray spectral analysis

    International Nuclear Information System (INIS)

    Betin, J.; Zhabin, E.; Krampit, I.; Smirnov, V.

    1980-01-01

    A review is presented of the properties of semiconductor detectors and of the possibilities stemming therefrom of using the detectors in X-ray spectral analysis in industries, in logging, in ecology and environmental control, in medicine, etc. (M.S.)

  8. Evaluation of skin melanoma in spectral range 450-950 nm using principal component analysis

    Science.gov (United States)

    Jakovels, D.; Lihacova, I.; Kuzmina, I.; Spigulis, J.

    2013-06-01

    Diagnostic potential of principal component analysis (PCA) of multi-spectral imaging data in the wavelength range 450- 950 nm for distant skin melanoma recognition is discussed. Processing of the measured clinical data by means of PCA resulted in clear separation between malignant melanomas and pigmented nevi.

  9. Spectral analysis of K-shell X-ray emission of magnesium plasma

    Indian Academy of Sciences (India)

    2014-02-06

    Feb 6, 2014 ... Spectral analysis of K-shell X-ray emission of magnesium plasma, produced by laser pulses of 45 fs duration, focussed up to an intensity of ∼1018 W cm-2, is carried out. The plasma conditions prevalent during the emission of X-ray spectrum were identified by comparing the experimental spectra with the ...

  10. WINDOWS: a program for the analysis of spectral data foil activation measurements

    International Nuclear Information System (INIS)

    Stallmann, F.W.; Eastham, J.F.; Kam, F.B.K.

    1978-12-01

    The computer program WINDOWS together with its subroutines is described for the analysis of neutron spectral data foil activation measurements. In particular, the unfolding of the neutron differential spectrum, estimated windows and detector contributions, upper and lower bounds for an integral response, and group fluxes obtained from neutron transport calculations. 116 references

  11. WINDOWS: a program for the analysis of spectral data foil activation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Stallmann, F.W.; Eastham, J.F.; Kam, F.B.K.

    1978-12-01

    The computer program WINDOWS together with its subroutines is described for the analysis of neutron spectral data foil activation measurements. In particular, the unfolding of the neutron differential spectrum, estimated windows and detector contributions, upper and lower bounds for an integral response, and group fluxes obtained from neutron transport calculations. 116 references. (JFP)

  12. Estimation of compound distribution in spectral images of tomatoes using independent component analysis

    NARCIS (Netherlands)

    Polder, G.; Heijden, van der G.W.A.M.

    2003-01-01

    Independent Component Analysis (ICA) is one of the most widely used methods for blind source separation. In this paper we use this technique to estimate the important compounds which play a role in the ripening of tomatoes. Spectral images of tomatoes were analyzed. Two main independent components

  13. Comparison of Analysis and Spectral Nudging Techniques for Dynamical Downscaling with the WRF Model over China

    Directory of Open Access Journals (Sweden)

    Yuanyuan Ma

    2016-01-01

    Full Text Available To overcome the problem that the horizontal resolution of global climate models may be too low to resolve features which are important at the regional or local scales, dynamical downscaling has been extensively used. However, dynamical downscaling results generally drift away from large-scale driving fields. The nudging technique can be used to balance the performance of dynamical downscaling at large and small scales, but the performances of the two nudging techniques (analysis nudging and spectral nudging are debated. Moreover, dynamical downscaling is now performed at the convection-permitting scale to reduce the parameterization uncertainty and obtain the finer resolution. To compare the performances of the two nudging techniques in this study, three sensitivity experiments (with no nudging, analysis nudging, and spectral nudging covering a period of two months with a grid spacing of 6 km over continental China are conducted to downscale the 1-degree National Centers for Environmental Prediction (NCEP dataset with the Weather Research and Forecasting (WRF model. Compared with observations, the results show that both of the nudging experiments decrease the bias of conventional meteorological elements near the surface and at different heights during the process of dynamical downscaling. However, spectral nudging outperforms analysis nudging for predicting precipitation, and analysis nudging outperforms spectral nudging for the simulation of air humidity and wind speed.

  14. Sex Differences in the Sleep EEG of Young Adults : Visual Scoring and Spectral Analysis

    NARCIS (Netherlands)

    Dijk, Derk Jan; Beersma, Domien G.M.; Bloem, Gerda M.

    1989-01-01

    Baseline sleep of 13 men (mean age of 23.5 years) and 15 women (21.9 years) was analyzed. Visual scoring of the electroencephalograms (EEGs) revealed no significant differences between the sexes in the amounts of slow-wave sleep and rapid-eye-movement (REM) sleep. Spectral analysis, however,

  15. Quantitative analysis of the dual-energy CT virtual spectral curve for focal liver lesions characterization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qi, E-mail: wq20@hotmail.com; Shi, Gaofeng, E-mail: gaofengs62@sina.com; Qi, Xiaohui, E-mail: qixiaohui1984@163.com; Fan, Xueli, E-mail: 407849960@qq.com; Wang, Lijia, E-mail: 893197597@qq.com

    2014-10-15

    Highlights: • We establish a feasible method using the virtual spectral curves (VSC) to differentiate focal liver lesions using DECT. • Our study shows the slope of the VSC can be used to differentiate between hemangioma, HCC, metastasis and cyst. • Importantly, the diagnostic specificities associated with using the slope to diagnose both hemangioma and cysts were 100%. - Abstract: Objective: To assess the usefulness of the spectral curve slope of dual-energy CT (DECT) for differentiating between hepatocellular carcinoma (HCC), hepatic metastasis, hemangioma (HH) and cysts. Methods: In total, 121 patients were imaged in the portal venous phase using dual-energy mode. Of these patients, 23 patients had HH, 28 patients had HCC, 40 patients had metastases and 30 patients had simple cysts. The spectral curves of the hepatic lesions were derived from the 40–190 keV levels of virtual monochromatic spectral imaging. The spectral curve slopes were calculated from 40 to 110 keV. The slopes were compared using the Kruskal–Wallis test. Receiver operating characteristic curves (ROC) were used to determine the optimal cut-off value of the slope of the spectral curve to differentiate between the lesions. Results: The spectral curves of the four lesion types had different baseline levels. The HH baseline level was the highest followed by HCC, metastases and cysts. The slopes of the spectral curves of HH, HCC, metastases and cysts were 3.81 ± 1.19, 1.49 ± 0.57, 1.06 ± 0.76 and 0.13 ± 0.17, respectively. These values were significantly different (P < 0.008). Based on ROC analysis, the respective diagnostic sensitivity and specificity were 87% and 100% for hemangioma (cut-off value ≥ 2.988), 82.1% and 65.9% for HCC (cut-off value 1.167–2.998), 65.9% and 59% for metastasis (cut-off value 0.133–1.167) and 44.4% and 100% for cysts (cut-off value ≤ 0.133). Conclusion: Quantitative analysis of the DECT spectral curve in the portal venous phase can be used to

  16. Spectral and kinetic analysis of radiation induced optical attenuation in silica: towards intrinsic fibre optic dosimetry?

    International Nuclear Information System (INIS)

    Borgermans, P.

    2002-01-01

    The document is an abstract of a PhD thesis. The PhD work concerns the detailed investigation of the behaviour of optical fibres in radiation fields such as is the case for various nuclear and space application,s. The core of the work concerns the spectral and kinetic analysis of the radiation induced optical attenuation. Models describing underlying physical phenomena, both for the spectral and the time dimensions, have been developed. The potential of silica optical fibre waveguides for intrinsic dosimetry has been assessed by employing specific properties of radiation induced defects in the silica waveguide material

  17. An experimental applications of impedance measurements by spectral analysis to electrochemistry and corrosion

    International Nuclear Information System (INIS)

    Castro, E.B.; Vilche, J.R.; Milocco, R.H.

    1984-01-01

    An impedance measurement system based on the spectral analysis of excitation and response signals was implemented using a pseudo-random binary sequence in the generation of the electrical perturbation signal. The spectral density functions were estimated through finite Fourier transforms of the original time history records by fast computation of Fourier series. Experimental results obtained using the FFT algorithm in the developed impedance measurement system which covers a wide frequency range, 10 KHz >= f >= 1 mHz, are given both for dummy cells representing conventional electric circuits in electrochemistry and corrosion systems and for the Fe/acidic chloride solution interfaces under different polarization conditions. (C.L.B.) [pt

  18. The analysis of toxic connections content in water by spectral methods

    Science.gov (United States)

    Plotnikova, I. V.; Chaikovskaya, O. N.; Sokolova, I. V.; Artyushin, V. R.

    2017-08-01

    The current state of ecology means the strict observance of measures for the utilization of household and industrial wastes that is connected with very essential expenses of means and time. Thanks to spectroscopic devices usage the spectral methods allow to carry out the express quantitative and qualitative analysis in a workplace and field conditions. In a work the application of spectral methods by studying the degradation of toxic organic compounds after preliminary radiation of various sources is shown. Experimental data of optical density of water at various influences are given.

  19. Spectral Analysis within the Virtual Observatory: The GAVO Service TheoSSA

    Science.gov (United States)

    Ringat, E.

    2012-03-01

    In the last decade, numerous Virtual Observatory organizations were established. One of these is the German Astrophysical Virtual Observatory (GAVO) that e.g. provides access to spectral energy distributions via the service TheoSSA. In a pilot phase, these are based on the Tübingen NLTE Model-Atmosphere Package (TMAP) and suitable for hot, compact stars. We demonstrate the power of TheoSSA in an application to the sdOB primary of AA Doradus by comparison with a “classical” spectral analysis.

  20. Monitoring PSR B1509–58 with RXTE: Spectral analysis 1996–2010

    Directory of Open Access Journals (Sweden)

    E. Litzinger

    2011-01-01

    Full Text Available We present an analysis of the X-ray spectra of the young, Crab-like pulsar PSR B1509–58 (pulse period P ~ 151ms observed by RXTE over 14 years since the beginning of the mission in 1996. The uniform dataset is especially well suited for studying the stability of the spectral parameters over time as well as for determining pulse phase resolved spectral parameters with high significance. The phase averaged spectra as well as the resolved spectra can be well described by an absorbed power law.

  1. Solid state linear dichroic infrared spectral analysis of benzimidazoles and their N 1-protonated salts

    Science.gov (United States)

    Ivanova, B. B.

    2005-11-01

    A stereo structural characterization of 2,5,6-thrimethylbenzimidazole (MBIZ) and 2-amino-benzimidaziole (2-NH 2-BI) and their N 1 protonation salts was carried out using a polarized solid state linear dichroic infrared spectral (IR-LD) analysis in nematic liquid crystal suspension. All experimental predicted structures were compared with the theoretical ones, obtained by ab initio calculations. The Cs to C2v* symmetry transformation as a result of protonation processes, with a view of its reflection on the infrared spectral characteristics was described.

  2. Spectral analysis of the geomagnetic activity index Ap during different IMF conditions (1947-1978)

    International Nuclear Information System (INIS)

    Francia, P.; Villante, U.

    1986-01-01

    The spectral analysis of the geomagnetic activity index Ap (1947-1978) has been conducted for intervals associated respectively with two and four sectors of the interplanetary magnetic fields per solar rotation. A recurrent 2-sector structure is typically associated with an emerging spectral peak close to T s (T s being the period of solar rotation as seen from Earth), while the T 2 /2 modulation becomes more important during intervals corresponding to four sectors per solar rotation. The recurrence tendency of two high-velocity streams per solar rotation seems to reinforce the relative importance of the T 2 /2 modulation

  3. Spectral Analysis of Geomagnetic Activity Indices and Solar Wind Parameters

    Directory of Open Access Journals (Sweden)

    Jung-Hee Kim

    2014-06-01

    Full Text Available Solar variability is widely known to affect the interplanetary space and in turn the Earth’s electromagnetical environment on the basis of common periodicities in the solar and geomagnetic activity indices. The goal of this study is twofold. Firstly, we attempt to associate modes by comparing a temporal behavior of the power of geomagnetic activity parameters since it is barely sufficient searching for common peaks with a similar periodicity in order to causally correlate geomagnetic activity parameters. As a result of the wavelet transform analysis we are able to obtain information on the temporal behavior of the power in the velocity of the solar wind, the number density of protons in the solar wind, the AE index, the Dst index, the interplanetary magnetic field, B and its three components of the GSM coordinate system, BX, BY, BZ. Secondly, we also attempt to search for any signatures of influence on the space environment near the Earth by inner planets orbiting around the Sun. Our main findings are as follows: (1 Parameters we have investigated show periodicities of ~ 27 days, ~ 13.5 days, ~ 9 days. (2 The peaks in the power spectrum of BZ appear to be split due to an unknown agent. (3 For some modes powers are not present all the time and intervals showing high powers do not always coincide. (4 Noticeable peaks do not emerge at those frequencies corresponding to the synodic and/or sidereal periods of Mercury and Venus, which leads us to conclude that the Earth’s space environment is not subject to the shadow of the inner planets as suggested earlier.

  4. Spectral analysis of highly aliased sea-level signals

    Science.gov (United States)

    Ray, Richard D.

    1998-10-01

    Observing high-wavenumber ocean phenomena with a satellite altimeter generally calls for "along-track" analyses of the data: measurements along a repeating satellite ground track are analyzed in a point-by-point fashion, as opposed to spatially averaging data over multiple tracks. The sea-level aliasing problems encountered in such analyses can be especially challenging. For TOPEX/POSEIDON, all signals with frequency greater than 18 cycles per year (cpy), including both tidal and subdiurnal signals, are folded into the 0-18 cpy band. Because the tidal bands are wider than 18 cpy, residual tidal cusp energy, plus any subdiurnal energy, is capable of corrupting any low-frequency signal of interest. The practical consequences of this are explored here by using real sea-level measurements from conventional tide gauges, for which the true oceanographic spectrum is known and to which a simulated "satellite-measured" spectrum, based on coarsely subsampled data, may be compared. At many locations the spectrum is sufficently red that interannual frequencies remain unaffected. Intra-annual frequencies, however, must be interpreted with greater caution, and even interannual frequencies can be corrupted if the spectrum is flat. The results also suggest that whenever tides must be estimated directly from the altimetry, response methods of analysis are preferable to harmonic methods, even in nonlinear regimes; this will remain so for the foreseeable future. We concentrate on three example tide gauges: two coastal stations on the Malay Peninsula where the closely aliased K1 and Ssa tides are strong and at Canton Island where trapped equatorial waves are aliased.

  5. System analysis of a tilted field-widened Michelson interferometer for high spectral resolution lidar.

    Science.gov (United States)

    Liu, Dong; Hostetler, Chris; Miller, Ian; Cook, Anthony; Hair, Johnathan

    2012-01-16

    High spectral resolution lidars (HSRLs) have shown great value in aircraft aerosol remote sensing application and are planned for future satellite missions. A compact, robust, quasi-monolithic tilted field-widened Michelson interferometer is being developed as the spectral discrimination filter for an second-generation HSRL(HSRL-2) at NASA Langley Research Center. The Michelson interferometer consists of a cubic beam splitter, a solid arm and an air arm. Piezo stacks connect the air arm mirror to the body of the interferometer and can tune the interferometer within a small range. The whole interferometer is tilted so that the standard Michelson output and the reflected complementary output can both be obtained. In this paper, the transmission ratio is proposed to evaluate the performance of the spectral filter for HSRL. The transmission ratios over different types of system imperfections, such as cumulative wavefront error, locking error, reflectance of the beam splitter and anti-reflection coatings, system tilt, and depolarization angle are analyzed. The requirements of each imperfection for good interferometer performance are obtained.

  6. Two-stage meta-analysis of survival data from individual participants using percentile ratios

    Science.gov (United States)

    Barrett, Jessica K; Farewell, Vern T; Siannis, Fotios; Tierney, Jayne; Higgins, Julian P T

    2012-01-01

    Methods for individual participant data meta-analysis of survival outcomes commonly focus on the hazard ratio as a measure of treatment effect. Recently, Siannis et al. (2010, Statistics in Medicine 29:3030–3045) proposed the use of percentile ratios as an alternative to hazard ratios. We describe a novel two-stage method for the meta-analysis of percentile ratios that avoids distributional assumptions at the study level. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22825835

  7. High precision isotopic ratio analysis of volatile metal chelates

    International Nuclear Information System (INIS)

    Hachey, D.L.; Blais, J.C.; Klein, P.D.

    1980-01-01

    High precision isotope ratio measurements have been made for a series of volatile alkaline earth and transition metal chelates using conventional GC/MS instrumentation. Electron ionization was used for alkaline earth chelates, whereas isobutane chemical ionization was used for transition metal studies. Natural isotopic abundances were determined for a series of Mg, Ca, Cr, Fe, Ni, Cu, Cd, and Zn chelates. Absolute accuracy ranged between 0.01 and 1.19 at. %. Absolute precision ranged between +-0.01-0.27 at. % (RSD +- 0.07-10.26%) for elements that contained as many as eight natural isotopes. Calibration curves were prepared using natural abundance metals and their enriched 50 Cr, 60 Ni, and 65 Cu isotopes covering the range 0.1-1010.7 at. % excess. A separate multiple isotope calibration curve was similarly prepared using enriched 60 Ni (0.02-2.15 at. % excess) and 62 Ni (0.23-18.5 at. % excess). The samples were analyzed by GC/CI/MS. Human plasma, containing enriched 26 Mg and 44 Ca, was analyzed by EI/MS. 1 figure, 5 tables

  8. Analysis of brood sex ratios: implications of offspring clustering

    Czech Academy of Sciences Publication Activity Database

    Krackow, S.; Tkadlec, Emil

    Roc. 50, č. 4 (2001), s. 293-301 ISSN 0340-5443 R&D Projects: GA ČR GA524/01/1316 Institutional research plan: CEZ:AV0Z6093917 Keywords : generalized linear mixed models * random coefficients * multilevel analysis Subject RIV: EG - Zoology Impact factor: 2.353, year: 2001

  9. Spectral analysis of turbulence propagation mechanisms in solar wind and tokamaks plasmas

    International Nuclear Information System (INIS)

    Dong, Yue

    2014-01-01

    This thesis takes part in the study of spectral transfers in the turbulence of magnetized plasmas. We will be interested in turbulence in solar wind and tokamaks. Spacecraft measures, first principle simulations and simple dynamical systems will be used to understand the mechanisms behind spectral anisotropy and spectral transfers in these plasmas. The first part of this manuscript will introduce the common context of solar wind and tokamaks, what is specific to each of them and present some notions needed to understand the work presented here. The second part deals with turbulence in the solar wind. We will present first an observational study on the spectral variability of solar wind turbulence. Starting from the study of Grappin et al. (1990, 1991) on Helios mission data, we bring a new analysis taking into account a correct evaluation of large scale spectral break, provided by the higher frequency data of the Wind mission. This considerably modifies the result on the spectral index distribution of the magnetic and kinetic energy. A second observational study is presented on solar wind turbulence anisotropy using autocorrelation functions. Following the work of Matthaeus et al. (1990); Dasso et al. (2005), we bring a new insight on this statistical, in particular the question of normalisation choices used to build the autocorrelation function, and its consequence on the measured anisotropy. This allows us to bring a new element in the debate on the measured anisotropy depending on the choice of the referential either based on local or global mean magnetic field. Finally, we study for the first time in 3D the effects of the transverse expansion of solar wind on its turbulence. This work is based on a theoretical and numerical scheme developed by Grappin et al. (1993); Grappin and Velli (1996), but never used in 3D. Our main results deal with the evolution of spectral and polarization anisotropy due to the competition between non-linear and linear (Alfven coupling

  10. Modal spectral analysis of piping: Determination of the significant frequency range

    International Nuclear Information System (INIS)

    Geraets, L.H.

    1981-01-01

    This paper investigates the influence of the number of modes on the response of a piping system in a dynamic modal spectral analysis. It shows how the analysis can be limited to a specific frequency range of the pipe (independent of the frequency range of the response spectrum), allowing cost reduction without loss in accuracy. The 'missing mass' is taken into account through an original technique. (orig./HP)

  11. Statistical Analysis of the Grid Connected Photovoltaic System Performance Ratio

    Directory of Open Access Journals (Sweden)

    Javier Vilariño-García

    2017-05-01

    Full Text Available A methodology based on the application of variance analysis and Tukey's method to a data set of solar radiation in the plane of the photovoltaic modules and the corresponding values of power delivered to the grid at intervals of 10 minutes presents from sunrise to sunset during the 52 weeks of the year 2013. These data were obtained through a monitoring system located in a photovoltaic plant of 10 MW of rated power located in Cordoba, consisting of 16 transformers and 98 investors. The application of the comparative method among the middle of the performance index of the processing centers to detect with an analysis of variance if there is significant difference in average at least the rest at a level of significance of 5% and then by testing Tukey which one or more processing centers that are below average due to a fault to be detected and corrected are.

  12. Analysis of the Structure Ratios of the Funding Sources

    Directory of Open Access Journals (Sweden)

    Maria Daniela Bondoc

    2014-06-01

    Full Text Available The funding sources of the assets and liabilities in the balance sheet include equity capitals and the debts of the entity. The analysis of the structure rates of the funding sources allows for making assessments related to the funding policy, highlighting the financial autonomy and how resources are provided. Using the literature specializing in economic and financial analysis, this paper aims at presenting these rates that focus, on the one hand, to reflect the degree of financial dependence (the rate of financial stability, the rate of global financial autonomy, the rate of on-term financial autonomy and on the other hand the debt structure (the rate of short-term debts, the global indebtedness rate, the on-term indebtedness rate. Based on the financial statements of an entity in the Argeş County, I analysed these indicators, and I drew conclusions and made assessments related to the autonomy, indebtedness and financial stability of the studied entity.

  13. Laser ablation molecular isotopic spectrometry of water for {sub 1}D{sup 2}/{sub 1}H{sup 1} ratio analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Arnab [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mao, Xianglei; Chan, George C.-Y. [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Russo, Richard E., E-mail: rerusso@lbl.gov [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)

    2013-10-01

    Laser Ablation Molecular Isotopic Spectrometry (LAMIS) has been investigated for optical isotopic analysis of the deuterium to protium ratio in enriched water samples in ambient air at atmospheric pressure. Multivariate PLSR (Partial Least Squares Regression) based calibrations were carried out and validated using multiple statistical parameters. Comparisons of results are reported using two spectrometers having two orders of magnitude difference in spectral resolution. The accuracy and precision of isotopic analysis depends on the spectral resolution and the inherent isotope shift of the elements. The requirements for spectral resolution of the measurement system can be significantly relaxed when the isotopic abundance ratio is determined using chemometric processing of the spectra. Large isotopic shifts in the individual rotational branches of OH/OD molecular emission spectra were measured. Optimized temporal conditions for LAMIS measurements were established. Several sub-regions of spectra were used for PLSR calibration and the results demonstrate that both the emission intensity and degree of spectral differentiation affect the quality of the PLSR calibration. LAMIS results also were compared with traditional LIBS results obtained using PLSR and a spectral deconvolution method, demonstrating the advantages of LAMIS over LIBS with respect to isotopic composition determination. - Highlights: • D/H isotopic ratio in water over a large dynamic range was measured by LAMIS. • PLSR based multivariate calibration was used for construction of calibrations. • Region of interest significantly affects the analytical results of isotopic ratio. • LAMIS has improved results over LIBS irrespective of the spectrometer resolution. • The superiority is more prominent in the case using low resolution spectrometer.

  14. Spectral analysis of time series of events: effect of respiration on heart rate in neonates

    International Nuclear Information System (INIS)

    Van Drongelen, Wim; Williams, Amber L; Lasky, Robert E

    2009-01-01

    Certain types of biomedical processes such as the heart rate generator can be considered as signals that are sampled by the occurring events, i.e. QRS complexes. This sampling property generates problems for the evaluation of spectral parameters of such signals. First, the irregular occurrence of heart beats creates an unevenly sampled data set which must either be pre-processed (e.g. by using trace binning or interpolation) prior to spectral analysis, or analyzed with specialized methods (e.g. Lomb's algorithm). Second, the average occurrence of events determines the Nyquist limit for the sampled time series. Here we evaluate different types of spectral analysis of recordings of neonatal heart rate. Coupling between respiration and heart rate and the detection of heart rate itself are emphasized. We examine both standard and data adaptive frequency bands of heart rate signals generated by models of coupled oscillators and recorded data sets from neonates. We find that an important spectral artifact occurs due to a mirror effect around the Nyquist limit of half the average heart rate. Further we conclude that the presence of respiratory coupling can only be detected under low noise conditions and if a data-adaptive respiratory band is used

  15. Spectral analysis of point-vortex dynamics: first application to vortex polygons in a circular domain

    International Nuclear Information System (INIS)

    Speetjens, M F M; Meleshko, V V; Van Heijst, G J F

    2014-01-01

    The present study addresses the classical problem of the dynamics and stability of a cluster of N-point vortices of equal strength arranged in a polygonal configuration (‘N-vortex polygons’). In unbounded domains, such N-vortex polygons are unconditionally stable for N⩽7. Confinement in a circular domain tightens the stability conditions to N⩽6 and a maximum polygon size relative to the domain radius. This work expands on existing studies on stability and integrability by a first giving an exploratory spectral analysis of the dynamics of N vortex polygons in circular domains. Key to this is that the spectral signature of the time evolution of vortex positions reflects their qualitative behaviour. Expressing vortex motion by a generic evolution operator (the so-called Koopman operator) provides a rigorous framework for such spectral analyses. This paves the way to further differentiation and classification of point-vortex behaviour beyond stability and integrability. The concept of Koopman-based spectral analysis is demonstrated for N-vortex polygons. This reveals that conditional stability can be seen as a local form of integrability and confirms an important generic link between spectrum and dynamics: discrete spectra imply regular (quasi-periodic) motion; continuous (sub-)spectra imply chaotic motion. Moreover, this exposes rich nonlinear dynamics as intermittency between regular and chaotic motion and quasi-coherent structures formed by chaotic vortices. (ss 1)

  16. On the spectral analysis of iterative solutions of the discretized one-group transport equation

    International Nuclear Information System (INIS)

    Sanchez, Richard

    2004-01-01

    We analyze the Fourier-mode technique used for the spectral analysis of iterative solutions of the one-group discretized transport equation. We introduce a direct spectral analysis for the iterative solution of finite difference approximations for finite slabs composed of identical layers, providing thus a complementary analysis that is more appropriate for reactor applications. Numerical calculations for the method of characteristics and with the diamond difference approximation show the appearance of antisymmetric modes generated by the iteration on boundary data. We have also utilized the discrete Fourier transform to compute the spectrum for a periodic slab containing N identical layers and shown that at the limit N → ∞ one obtains the familiar Fourier-mode solution

  17. The spectral analysis of motion: An "open field" activity test example

    Directory of Open Access Journals (Sweden)

    Obradović Z.

    2013-01-01

    Full Text Available In this work we have described the new mathematical approach, with spectral analysis of the data to evaluate position and motion in the „„open field““ experiments. The aim of this work is to introduce several new parameters mathematically derived from experimental data by means of spectral analysis, and to quantitatively estimate the quality of the motion. Two original software packages (TRACKER and POSTPROC were used for transforming a video data to a log file, suitable for further computational analysis, and to perform analysis from the log file. As an example, results obtained from the experiments with Wistar rats in the „open field“ test are included. The test group of animals was treated with diazepam. Our results demonstrate that all the calculated parameters, such as movement variability, acceleration and deceleration, were significantly lower in the test group compared to the control group. We believe that the application of parameters obtained by spectral analysis could be of great significance in assessing the locomotion impairment in any kind of motion. [Projekat Ministarstva nauke Republike Srbije, br. III41007 i br. ON174028

  18. Financial and Staffing Ratio Analysis: Predicting Fiscal Distress in School Districts.

    Science.gov (United States)

    Lee, Robert Alan

    1983-01-01

    From analysis of data from 579 school districts it is concluded that financial ratios have the ability to forecast fiscal distress a year in advance. Liquidity ratios and salary and fringe benefit ratios were found to be strong forecasters, while per pupil expenditure data had little predictive value. (MJL)

  19. Measurement of reactor parameters of the 'Nora' reactor by noise analysis method - power spectral density

    International Nuclear Information System (INIS)

    Jovanovic, S.; Stormark, E.

    1966-01-01

    Measurements of reactor parameters the Nora reactor by Power Spectral Density (PSD) method are described. In case of critical reactor this method was applied for direct measurement of β/l ratio, β is the effective yield of delayed neutrons and l is the neutron lifetime. In case of subcritical reactor values of α+β-ρ/l were measured, ρ is the negative reactivity. Out coming PSD was measured by a filter or by ISAC. PSD was registered by ISAC as well as the auto-correlation function [sr

  20. Thermal infrared spectral analysis of compacted fine-grained mineral mixtures: implications for spectral interpretation of lithified sedimentary materials on Mars

    Science.gov (United States)

    Pan, C.; Rogers, D.

    2012-12-01

    Characterizing the thermal infrared (TIR) spectral mixing behavior of compacted fine-grained mineral assemblages is necessary for facilitating quantitative mineralogy of sedimentary surfaces from spectral measurements. Previous researchers have demonstrated that TIR spectra from igneous and metamorphic rocks as well as coarse-grained (>63 micron) sand mixtures combine in proportion to their volume abundance. However, the spectral mixing behavior of compacted, fine-grained mineral mixtures that would be characteristic of sedimentary depositional environments has received little attention. Here we characterize the spectral properties of pressed pellet samples of pestle and centrifuged to obtain less than 10 micron size. Pure phases and mixtures of two, three and four components were made in varying proportions by volume. All of the samples were pressed into pellets at 15000PSI to minimize volume scattering. Thermal infrared spectra of pellets were measured in the Vibrational Spectroscopy Laboratory at Stony Brook University with a Thermo Fisher Nicolet 6700 Fourier transform infrared Michelson interferometer from ~225 to 2000 cm-1. Our preliminary results indicate that some pelletized samples have contributions from volume scattering, which leads to non-linear spectral combinations. It is not clear if the transparency features (which arise from multiple surface reflections of incident photons) are due to minor clinging fines on an otherwise specular pellet surface or to partially transmitted energy through optically thin grains in the compacted mixture. Inclusion of loose powder (analysis of TES and Mini-TES data of lithified sedimentary deposits.

  1. Efficiency Analysis of Financial Management Administration of ABC Hospital using Financial Ratio Analysis Method

    Directory of Open Access Journals (Sweden)

    Jonny Jonny

    2016-05-01

    Full Text Available This paper evaluated the financial performance of ABC hospital within the period of 2012 to 2013. To overcome the problems faced by the hospital related to how to measure and presented its financial performance in which financial ratio analysis was undertaken. These financial ratios were employed to measure the liquidity, assets utilization, long-term solvency and profitability of the hospital. This analysis was conducted in order to prove whether the hospital has been managed efficiently or not in accordance to Indonesian Hospital Quality Accreditation as stated in its clause on Administration Standard No. 5 Parameter No. 3 that the hospital financial management shall be conducted in appropriate way in order to guarantee its operation efficiently. The result showed that overall financial performance of ABC hospital increased considerably in those two years of the analysis. A significant change was occurred on its solvency ratio which was decreased from -2% to -8%, indicating its loose dependency due to its founder’s strong financial support. Therefore, based on this favorable result, the hospital was regarded to have efficient hospital management and thus, together with other standard fulfillment, it was accredited by Indonesian Health Ministry.

  2. [Analysis of software for identifying spectral line of laser-induced breakdown spectroscopy based on LabVIEW].

    Science.gov (United States)

    Hu, Zhi-yu; Zhang, Lei; Ma, Wei-guang; Yan, Xiao-juan; Li, Zhi-xin; Zhang, Yong-zhi; Wang, Le; Dong, Lei; Yin, Wang-bao; Jia, Suo-tang

    2012-03-01

    Self-designed identifying software for LIBS spectral line was introduced. Being integrated with LabVIEW, the soft ware can smooth spectral lines and pick peaks. The second difference and threshold methods were employed. Characteristic spectrum of several elements matches the NIST database, and realizes automatic spectral line identification and qualitative analysis of the basic composition of sample. This software can analyze spectrum handily and rapidly. It will be a useful tool for LIBS.

  3. FIREFLY (Fitting IteRativEly For Likelihood analYsis): a full spectral fitting code

    Science.gov (United States)

    Wilkinson, David M.; Maraston, Claudia; Goddard, Daniel; Thomas, Daniel; Parikh, Taniya

    2017-12-01

    We present a new spectral fitting code, FIREFLY, for deriving the stellar population properties of stellar systems. FIREFLY is a chi-squared minimization fitting code that fits combinations of single-burst stellar population models to spectroscopic data, following an iterative best-fitting process controlled by the Bayesian information criterion. No priors are applied, rather all solutions within a statistical cut are retained with their weight. Moreover, no additive or multiplicative polynomials are employed to adjust the spectral shape. This fitting freedom is envisaged in order to map out the effect of intrinsic spectral energy distribution degeneracies, such as age, metallicity, dust reddening on galaxy properties, and to quantify the effect of varying input model components on such properties. Dust attenuation is included using a new procedure, which was tested on Integral Field Spectroscopic data in a previous paper. The fitting method is extensively tested with a comprehensive suite of mock galaxies, real galaxies from the Sloan Digital Sky Survey and Milky Way globular clusters. We also assess the robustness of the derived properties as a function of signal-to-noise ratio (S/N) and adopted wavelength range. We show that FIREFLY is able to recover age, metallicity, stellar mass, and even the star formation history remarkably well down to an S/N ∼ 5, for moderately dusty systems. Code and results are publicly available.1

  4. Spectral stratigraphy

    Science.gov (United States)

    Lang, Harold R.

    1991-01-01

    A new approach to stratigraphic analysis is described which uses photogeologic and spectral interpretation of multispectral remote sensing data combined with topographic information to determine the attitude, thickness, and lithology of strata exposed at the surface. The new stratigraphic procedure is illustrated by examples in the literature. The published results demonstrate the potential of spectral stratigraphy for mapping strata, determining dip and strike, measuring and correlating stratigraphic sequences, defining lithofacies, mapping biofacies, and interpreting geological structures.

  5. High-speed vibrational imaging and spectral analysis of lipid bodies by compound Raman microscopy.

    Science.gov (United States)

    Slipchenko, Mikhail N; Le, Thuc T; Chen, Hongtao; Cheng, Ji-Xin

    2009-05-28

    Cells store excess energy in the form of cytoplasmic lipid droplets. At present, it is unclear how different types of fatty acids contribute to the formation of lipid droplets. We describe a compound Raman microscope capable of both high-speed chemical imaging and quantitative spectral analysis on the same platform. We used a picosecond laser source to perform coherent Raman scattering imaging of a biological sample and confocal Raman spectral analysis at points of interest. The potential of the compound Raman microscope was evaluated on lipid bodies of cultured cells and live animals. Our data indicate that the in vivo fat contains much more unsaturated fatty acids (FAs) than the fat formed via de novo synthesis in 3T3-L1 cells. Furthermore, in vivo analysis of subcutaneous adipocytes and glands revealed a dramatic difference not only in the unsaturation level but also in the thermodynamic state of FAs inside their lipid bodies. Additionally, the compound Raman microscope allows tracking of the cellular uptake of a specific fatty acid and its abundance in nascent cytoplasmic lipid droplets. The high-speed vibrational imaging and spectral analysis capability renders compound Raman microscopy an indispensible analytical tool for the study of lipid-droplet biology.

  6. Spectral analysis of bacanora (agave-derived liquor) by using FT-Raman spectroscopy

    Science.gov (United States)

    Ortega Clavero, Valentin; Weber, Andreas; Schröder, Werner; Curticapean, Dan

    2016-04-01

    The industry of the agave-derived bacanora, in the northern Mexican state of Sonora, has been growing substantially in recent years. However, this higher demand still lies under the influences of a variety of social, legal, cultural, ecological and economic elements. The governmental institutions of the state have tried to encourage a sustainable development and certain levels of standardization in the production of bacanora by applying different economical and legal strategies. However, a large portion of this alcoholic beverage is still produced in a traditional and rudimentary fashion. Beyond the quality of the beverage, the lack of proper control, by using adequate instrumental methods, might represent a health risk, as in several cases traditional-distilled beverages can contain elevated levels of harmful materials. The present article describes the qualitative spectral analysis of samples of the traditional-produced distilled beverage bacanora in the range from 0 cm-1 to 3500 cm-1 by using a Fourier Transform Raman spectrometer. This particular technique has not been previously explored for the analysis of bacanora, as in the case of other beverages, including tequila. The proposed instrumental arrangement for the spectral analysis has been built by combining conventional hardware parts (Michelson interferometer, photo-diodes, visible laser, etc.) and a set of self-developed evaluation algorithms. The resulting spectral information has been compared to those of pure samples of ethanol and to the spectra from different samples of the alcoholic beverage tequila. The proposed instrumental arrangement can be used the analysis of bacanora.

  7. Tree species mapping in tropical forests using multi-temporal imaging spectroscopy: Wavelength adaptive spectral mixture analysis

    Science.gov (United States)

    Somers, B.; Asner, G. P.

    2014-09-01

    The use of imaging spectroscopy for florisic mapping of forests is complicated by the spectral similarity among co-existing species. Here we evaluated an alternative spectral unmixing strategy combining a time series of EO-1 Hyperion images and an automated feature selection in Multiple Endmember Spectral Mixture Analysis (MESMA). The temporal analysis provided a way to incorporate species phenology while feature selection indicated the best phenological time and best spectral feature set to optimize the separability between tree species. Instead of using the same set of spectral bands throughout the image which is the standard approach in MESMA, our modified Wavelength Adaptive Spectral Mixture Analysis (WASMA) approach allowed the spectral subsets to vary on a per pixel basis. As such we were able to optimize the spectral separability between the tree species present in each pixel. The potential of the new approach for floristic mapping of tree species in Hawaiian rainforests was quantitatively assessed using both simulated and actual hyperspectral image time-series. With a Cohen's Kappa coefficient of 0.65, WASMA provided a more accurate tree species map compared to conventional MESMA (Kappa = 0.54; p-value < 0.05. The flexible or adaptive use of band sets in WASMA provides an interesting avenue to address spectral similarities in complex vegetation canopies.

  8. Hyperspectral imaging of polymer banknotes for building and analysis of spectral library

    Science.gov (United States)

    Lim, Hoong-Ta; Murukeshan, Vadakke Matham

    2017-11-01

    The use of counterfeit banknotes increases crime rates and cripples the economy. New countermeasures are required to stop counterfeiters who use advancing technologies with criminal intent. Many countries started adopting polymer banknotes to replace paper notes, as polymer notes are more durable and have better quality. The research on authenticating such banknotes is of much interest to the forensic investigators. Hyperspectral imaging can be employed to build a spectral library of polymer notes, which can then be used for classification to authenticate these notes. This is however not widely reported and has become a research interest in forensic identification. This paper focuses on the use of hyperspectral imaging on polymer notes to build spectral libraries, using a pushbroom hyperspectral imager which has been previously reported. As an initial study, a spectral library will be built from three arbitrarily chosen regions of interest of five circulated genuine polymer notes. Principal component analysis is used for dimension reduction and to convert the information in the spectral library to principal components. A 99% confidence ellipse is formed around the cluster of principal component scores of each class and then used as classification criteria. The potential of the adopted methodology is demonstrated by the classification of the imaged regions as training samples.

  9. Assessing and monitoring of urban vegetation using multiple endmember spectral mixture analysis

    Science.gov (United States)

    Zoran, M. A.; Savastru, R. S.; Savastru, D. M.

    2013-08-01

    During last years urban vegetation with significant health, biological and economical values had experienced dramatic changes due to urbanization and human activities in the metropolitan area of Bucharest in Romania. We investigated the utility of remote sensing approaches of multiple endmember spectral mixture analysis (MESMA) applied to IKONOS and Landsat TM/ETM satellite data for estimating fractional cover of urban/periurban forest, parks, agricultural vegetation areas. Because of the spectral heterogeneity of same physical features of urban vegetation increases with the increase of image resolution, the traditional spectral information-based statistical method may not be useful to classify land cover dynamics from high resolution imageries like IKONOS. So we used hierarchy tree classification method in classification and MESMA for vegetation land cover dynamics assessment based on available IKONOS high-resolution imagery of Bucharest town. This study employs thirty two endmembers and six hundred and sixty spectral models to identify all Earth's features (vegetation, water, soil, impervious) and shade in the Bucharest area. The mean RMS error for the selected vegetation land cover classes range from 0.0027 to 0.018. The Pearson correlation between the fraction outputs from MESMA and reference data from all IKONOS images 1m panchromatic resolution data for urban/periurban vegetation were ranging in the domain 0.7048 - 0.8287. The framework in this study can be applied to other urban vegetation areas in Romania.

  10. Spectral decomposition in advection-diffusion analysis by finite element methods

    International Nuclear Information System (INIS)

    Nickell, R.E.; Gartling, D.K.; Strang, G.

    1978-01-01

    In a recent study of the convergence properties of finite element methods in nonlinear fluid mechanics, an indirect approach was taken. A two-dimensional example with a known exact solution was chosen as the vehicle for the study, and various mesh refinements were tested in an attempt to extract information on the effect of the local Reynolds number. However, more direct approaches are usually preferred. In this study one such direct approach is followed, based upon the spectral decomposition of the solution operator. Spectral decomposition is widely employed as a solution technique for linear structural dynamics problems and can be applied readily to linear, transient heat transfer analysis; in this case, the extension to nonlinear problems is of interest. It was shown previously that spectral techniques were applicable to stiff systems of rate equations, while recent studies of geometrically and materially nonlinear structural dynamics have demonstrated the increased information content of the numerical results. The use of spectral decomposition in nonlinear problems of heat and mass transfer would be expected to yield equally increased flow of information to the analyst, and this information could include a quantitative comparison of various solution strategies, meshes, and element hierarchies

  11. Spectral and correlation analysis of soft X-ray signals from the Joint European Torus tokamak

    International Nuclear Information System (INIS)

    Karlsson, J.; Pazsit, I.

    1997-01-01

    Tomographic methods applied to soft X-rays emitted from a fusion plasma have long been used to diagnose and interpret magnetohydrodynamic and other plasma activities. However, fluctuation analysis has recently been proposed as a complementary method to tomography. The novelty of the suggested method is that the various modes can be determined without tomographic inversion. This paper reports on the results of correlation and spectral analysis of soft X-ray data. The seven measurements analyzed were made by the Joint European Torus (JET) Joint Undertaking using their old soft X-ray measurement system. Auto power spectral densities and phase relations were evaluated from the measured signals as functions of the lines of sight. The fundamental mode m=n=1 was identified in several measurements. The corresponding frequency and toroidal rotation velocity were determined. Higher order modes were also observed and identified. Furthermore, simple model calculations were performed and the results compared with evaluated auto-spectra. (orig.)

  12. A distributed microcomputer-controlled system for data acquisition and power spectral analysis of EEG.

    Science.gov (United States)

    Vo, T D; Dwyer, G; Szeto, H H

    1986-04-01

    A relatively powerful and inexpensive microcomputer-based system for the spectral analysis of the EEG is presented. High resolution and speed is achieved with the use of recently available large-scale integrated circuit technology with enhanced functionality (INTEL Math co-processors 8087) which can perform transcendental functions rapidly. The versatility of the system is achieved with a hardware organization that has distributed data acquisition capability performed by the use of a microprocessor-based analog to digital converter with large resident memory (Cyborg ISAAC-2000). Compiled BASIC programs and assembly language subroutines perform on-line or off-line the fast Fourier transform and spectral analysis of the EEG which is stored as soft as well as hard copy. Some results obtained from test application of the entire system in animal studies are presented.

  13. High-Selectivity Filter Banks for Spectral Analysis of Music Signals

    Directory of Open Access Journals (Sweden)

    Luiz W. P. Biscainho

    2007-01-01

    Full Text Available This paper approaches, under a unified framework, several algorithms for the spectral analysis of musical signals. Such algorithms include the fast Fourier transform (FFT, the fast filter bank (FFB, the constant-Q transform (CQT, and the bounded-Q transform (BQT, previously known from the associated literature. Two new methods are then introduced, namely, the constant-Q fast filter bank (CQFFB and the bounded-Q fast filter bank (BQFFB, combining the positive characteristics of the previously mentioned algorithms. The provided analyses indicate that the proposed BQFFB achieves an excellent compromise between the reduced computational effort of the FFT, the high selectivity of each output channel of the FFB, and the efficient distribution of frequency channels associated to the CQT and BQT methods. Examples are included to illustrate the performances of these methods in the spectral analysis of music signals.

  14. Spectral analysis of the He-enriched sdO-star HD 127493

    Science.gov (United States)

    Dorsch, Matti; Latour, Marilyn; Heber, Ulrich

    2018-02-01

    The bright sdO star HD127493 is known to be of mixed H/He composition and excellent archival spectra covering both optical and ultraviolet ranges are available. UV spectra play a key role as they give access to many chemical species that do not show spectral lines in the optical, such as iron and nickel. This encouraged the quantitative spectral analysis of this prototypical mixed H/He composition sdO star. We determined atmospheric parameters for HD127493 in addition to the abundance of C, N, O, Si, S, Fe, and Ni in the atmosphere using non-LTE model atmospheres calculated with TLUSTY/SYNSPEC. A comparison between the parallax distance measured by Hipparcos and the derived spectroscopic distance indicate that the derived atmospheric parameters are realistic. From our metal abundance analysis, we find a strong CNO signature and enrichment in iron and nickel.

  15. Localized Spectral Analysis of Fluctuating Power Generation from Solar Energy Systems

    Directory of Open Access Journals (Sweden)

    Johan Nijs

    2007-01-01

    Full Text Available Fluctuations in solar irradiance are a serious obstacle for the future large-scale application of photovoltaics. Occurring regularly with the passage of clouds, they can cause unexpected power variations and introduce voltage dips to the power distribution system. This paper proposes the treatment of such fluctuating time series as realizations of a stochastic, locally stationary, wavelet process. Its local spectral density can be estimated from empirical data by means of wavelet periodograms. The wavelet approach allows the analysis of the amplitude of fluctuations per characteristic scale, hence, persistence of the fluctuation. Furthermore, conclusions can be drawn on the frequency of occurrence of fluctuations of different scale. This localized spectral analysis was applied to empirical data of two successive years. The approach is especially useful for network planning and load management of power distribution systems containing a high density of photovoltaic generation units.

  16. Analysis of the differences in breeding ratio and fissile inventory between heterogeneous and homogeneous liquid-metal fast breeder reactors

    International Nuclear Information System (INIS)

    Tzanos, C.P.

    1980-01-01

    The differences in fissile inventory and breeding ratio, with respect to the differences in fertile inventory and neutron spectrum, between equivalent heterogeneous and homogeneous configurations were analyzed. To quantify the effect of spectral changes on reaction rate ratios, a calculational scheme based on properly prepared one-group cross-section sets was used

  17. Spectral analysis of Jupiter kilometric radio emissions during the Ulysses flyby

    Science.gov (United States)

    Echer, M. P. D. S.; Echer, E.; Gonzalez, W.; Magalães, F. P.

    2016-12-01

    In this work we analyze Ulysses URAP kilometric radio data during Ulysses Jupiter flyby. The interval selected for analysis was from October 1991 to February 1992. URAP 10-min averages of auroral (bkom) and torus (nkom) radio data are used. The wavelet and iterative regression spectral analyses techniques are employed on both data set. The results obtained will enable us to determine the major frequencies present in the auroral and torus data and study their similar and different periodicities.

  18. Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models

    OpenAIRE

    MURILLO, Carol Andrea; THOREL, Luc; CAICEDO, Bernardo

    2009-01-01

    The method of the spectral analysis of surface waves (SASW) is tested out on reduced scale centrifuge models, with a specific device, called the mini Falling Weight, developed for this purpose. Tests are performed on layered materials made of a mixture of sand and clay. The shear wave velocity VS determined within the models using the SASW is compared with the laboratory measurements carried out using the bender element test. The results show that the SASW technique applied to centrifuge test...

  19. Perturbation method utilization in the analysis of the Convertible Spectral Shift Reactor (RCVS)

    International Nuclear Information System (INIS)

    Bruna, G.B; Legendre, J.F.; Porta, J.; Doriath, J.Y.

    1988-01-01

    In the framework of the preliminary faisability studies on a new core concept, techniques derived from perturbation theory show-up very useful in the calculation and physical analysis of project parameters. We show, in the present work, some applications of these methods to the RCVS (Reacteur Convertible a Variation de Spectre - Convertible Spectral Shift Reactor) Concept studies. Actually, we present here the search of a few group project type energy structure and the splitting of reactivity effects into individual components [fr

  20. Spectral analysis of doxorubicin accumulation and the indirect quantification of its DNA intercalation

    Czech Academy of Sciences Publication Activity Database

    Hovorka, Ondřej; Šubr, Vladimír; Větvička, David; Kovář, Lubomír; Strohalm, Jiří; Strohalm, Martin; Benda, Aleš; Hof, Martin; Ulbrich, Karel; Říhová, Blanka

    2010-01-01

    Roč. 76, č. 3 (2010), s. 514-524 ISSN 0939-6411 R&D Projects: GA AV ČR IAA400200702; GA AV ČR IAAX00500803; GA MŠk(CZ) LC06063 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z40400503; CEZ:AV0Z40500505 Keywords : doxorubicin * spectral analysis * fluorescence Subject RIV: EC - Immunology Impact factor: 4.304, year: 2010

  1. Numerical Solution of Nonlinear Fredholm Integro-Differential Equations Using Spectral Homotopy Analysis Method

    Directory of Open Access Journals (Sweden)

    Z. Pashazadeh Atabakan

    2013-01-01

    Full Text Available Spectral homotopy analysis method (SHAM as a modification of homotopy analysis method (HAM is applied to obtain solution of high-order nonlinear Fredholm integro-differential problems. The existence and uniqueness of the solution and convergence of the proposed method are proved. Some examples are given to approve the efficiency and the accuracy of the proposed method. The SHAM results show that the proposed approach is quite reasonable when compared to homotopy analysis method, Lagrange interpolation solutions, and exact solutions.

  2. Identification of neuronal network properties from the spectral analysis of calcium imaging signals in neuronal cultures.

    Science.gov (United States)

    Tibau, Elisenda; Valencia, Miguel; Soriano, Jordi

    2013-01-01

    Neuronal networks in vitro are prominent systems to study the development of connections in living neuronal networks and the interplay between connectivity, activity and function. These cultured networks show a rich spontaneous activity that evolves concurrently with the connectivity of the underlying network. In this work we monitor the development of neuronal cultures, and record their activity using calcium fluorescence imaging. We use spectral analysis to characterize global dynamical and structural traits of the neuronal cultures. We first observe that the power spectrum can be used as a signature of the state of the network, for instance when inhibition is active or silent, as well as a measure of the network's connectivity strength. Second, the power spectrum identifies prominent developmental changes in the network such as GABAA switch. And third, the analysis of the spatial distribution of the spectral density, in experiments with a controlled disintegration of the network through CNQX, an AMPA-glutamate receptor antagonist in excitatory neurons, reveals the existence of communities of strongly connected, highly active neurons that display synchronous oscillations. Our work illustrates the interest of spectral analysis for the study of in vitro networks, and its potential use as a network-state indicator, for instance to compare healthy and diseased neuronal networks.

  3. Spectral Quantitative Analysis Model with Combining Wavelength Selection and Topology Structure Optimization

    Directory of Open Access Journals (Sweden)

    Qian Wang

    2016-01-01

    Full Text Available Spectroscopy is an efficient and widely used quantitative analysis method. In this paper, a spectral quantitative analysis model with combining wavelength selection and topology structure optimization is proposed. For the proposed method, backpropagation neural network is adopted for building the component prediction model, and the simultaneousness optimization of the wavelength selection and the topology structure of neural network is realized by nonlinear adaptive evolutionary programming (NAEP. The hybrid chromosome in binary scheme of NAEP has three parts. The first part represents the topology structure of neural network, the second part represents the selection of wavelengths in the spectral data, and the third part represents the parameters of mutation of NAEP. Two real flue gas datasets are used in the experiments. In order to present the effectiveness of the methods, the partial least squares with full spectrum, the partial least squares combined with genetic algorithm, the uninformative variable elimination method, the backpropagation neural network with full spectrum, the backpropagation neural network combined with genetic algorithm, and the proposed method are performed for building the component prediction model. Experimental results verify that the proposed method has the ability to predict more accurately and robustly as a practical spectral analysis tool.

  4. Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations

    Science.gov (United States)

    Moghaderi, Hamid; Dehghan, Mehdi; Donatelli, Marco; Mazza, Mariarosa

    2017-12-01

    Fractional diffusion equations (FDEs) are a mathematical tool used for describing some special diffusion phenomena arising in many different applications like porous media and computational finance. In this paper, we focus on a two-dimensional space-FDE problem discretized by means of a second order finite difference scheme obtained as combination of the Crank-Nicolson scheme and the so-called weighted and shifted Grünwald formula. By fully exploiting the Toeplitz-like structure of the resulting linear system, we provide a detailed spectral analysis of the coefficient matrix at each time step, both in the case of constant and variable diffusion coefficients. Such a spectral analysis has a very crucial role, since it can be used for designing fast and robust iterative solvers. In particular, we employ the obtained spectral information to define a Galerkin multigrid method based on the classical linear interpolation as grid transfer operator and damped-Jacobi as smoother, and to prove the linear convergence rate of the corresponding two-grid method. The theoretical analysis suggests that the proposed grid transfer operator is strong enough for working also with the V-cycle method and the geometric multigrid. On this basis, we introduce two computationally favourable variants of the proposed multigrid method and we use them as preconditioners for Krylov methods. Several numerical results confirm that the resulting preconditioning strategies still keep a linear convergence rate.

  5. Spectral analysis of four surprisingly similar hot hydrogen-rich subdwarf O stars

    Science.gov (United States)

    Latour, M.; Chayer, P.; Green, E. M.; Irrgang, A.; Fontaine, G.

    2018-01-01

    Context. Post-extreme horizontal branch stars (post-EHB) are helium-shell burning objects evolving away from the EHB and contracting directly towards the white dwarf regime. While the stars forming the EHB have been extensively studied in the past, their hotter and more evolved progeny are not so well characterized. Aims: We perform a comprehensive spectroscopic analysis of four such bright sdO stars, namely Feige 34, Feige 67, AGK+81°266, and LS II+18°9, among which the first three are used as standard stars for flux calibration. Our goal is to determine their atmospheric parameters, chemical properties, and evolutionary status to better understand this class of stars that are en route to become white dwarfs. Methods: We used non-local thermodynamic equilibrium model atmospheres in combination with high quality optical and UV spectra. Photometric data were also used to compute the spectroscopic distances of our stars and to characterize the companion responsible for the infrared excess of Feige 34. Results: The four bright sdO stars have very similar atmospheric parameters with Teff between 60 000 and 63 000 K and log g (cm s-2) in the range 5.9 to 6.1. This places these objects right on the theoretical post-EHB evolutionary tracks. The UV spectra are dominated by strong iron and nickel lines and suggest abundances that are enriched with respect to those of the Sun by factors of 25 and 60. On the other hand, the lighter elements, C, N, O, Mg, Si, P, and S are depleted. The stars have very similar abundances, although AGK+81°266 shows differences in its light element abundances. For instance, the helium abundance of this object is 10 times lower than that observed in the other three stars. All our stars show UV spectral lines that require additional line broadening that is consistent with a rotational velocity of about 25 km s-1. The infrared excess of Feige 34 is well reproduced by a M0 main-sequence companion and the surface area ratio of the two stars

  6. Study on the Spectral Mixing Model for Mineral Pigments Based on Derivative of Ratio Spectroscopy-Take Vermilion and Stone Yellow for Example

    Science.gov (United States)

    Zhao, H.; Hao, Y.; Liu, X.; Hou, M.; Zhao, X.

    2018-04-01

    Hyperspectral remote sensing is a completely non-invasive technology for measurement of cultural relics, and has been successfully applied in identification and analysis of pigments of Chinese historical paintings. Although the phenomenon of mixing pigments is very usual in Chinese historical paintings, the quantitative analysis of the mixing pigments in the ancient paintings is still unsolved. In this research, we took two typical mineral pigments, vermilion and stone yellow as example, made precisely mixed samples using these two kinds of pigments, and measured their spectra in the laboratory. For the mixing spectra, both fully constrained least square (FCLS) method and derivative of ratio spectroscopy (DRS) were performed. Experimental results showed that the mixing spectra of vermilion and stone yellow had strong nonlinear mixing characteristics, but at some bands linear unmixing could also achieve satisfactory results. DRS using strong linear bands can reach much higher accuracy than that of FCLS using full bands.

  7. Using spectral imaging for the analysis of abnormalities for colorectal cancer: When is it helpful?

    Science.gov (United States)

    Awan, Ruqayya; Al-Maadeed, Somaya; Al-Saady, Rafif

    2018-01-01

    The spectral imaging technique has been shown to provide more discriminative information than the RGB images and has been proposed for a range of problems. There are many studies demonstrating its potential for the analysis of histopathology images for abnormality detection but there have been discrepancies among previous studies as well. Many multispectral based methods have been proposed for histopathology images but the significance of the use of whole multispectral cube versus a subset of bands or a single band is still arguable. We performed comprehensive analysis using individual bands and different subsets of bands to determine the effectiveness of spectral information for determining the anomaly in colorectal images. Our multispectral colorectal dataset consists of four classes, each represented by infra-red spectrum bands in addition to the visual spectrum bands. We performed our analysis of spectral imaging by stratifying the abnormalities using both spatial and spectral information. For our experiments, we used a combination of texture descriptors with an ensemble classification approach that performed best on our dataset. We applied our method to another dataset and got comparable results with those obtained using the state-of-the-art method and convolutional neural network based method. Moreover, we explored the relationship of the number of bands with the problem complexity and found that higher number of bands is required for a complex task to achieve improved performance. Our results demonstrate a synergy between infra-red and visual spectrum by improving the classification accuracy (by 6%) on incorporating the infra-red representation. We also highlight the importance of how the dataset should be divided into training and testing set for evaluating the histopathology image-based approaches, which has not been considered in previous studies on multispectral histopathology images.

  8. Liquidity Analysis Using Cash Flow Ratios as Compared to Traditional Ratios in the Pharmaceutical Sector in Jordan

    OpenAIRE

    Sulayman H. Atieh

    2014-01-01

    The purpose of this study is to examine the liquidity position of the Jordanian pharmaceutical sector using the traditional ratios as compared to the more recently developed cash flow ratios. The research involved the comparison between traditional ratios and cash flow ratios of the big seven companies of the pharmaceutical industry in Jordan over six years period (2007¨C2012). The companies were all from the same sector, and the data was obtained from the annual reports of these companies. T...

  9. Site classification for National Strong Motion Observation Network System (NSMONS) stations in China using an empirical H/V spectral ratio method

    Science.gov (United States)

    Ji, Kun; Ren, Yefei; Wen, Ruizhi

    2017-10-01

    Reliable site classification of the stations of the China National Strong Motion Observation Network System (NSMONS) has not yet been assigned because of lacking borehole data. This study used an empirical horizontal-to-vertical (H/V) spectral ratio (hereafter, HVSR) site classification method to overcome this problem. First, according to their borehole data, stations selected from KiK-net in Japan were individually assigned a site class (CL-I, CL-II, or CL-III), which is defined in the Chinese seismic code. Then, the mean HVSR curve for each site class was computed using strong motion recordings captured during the period 1996-2012. These curves were compared with those proposed by Zhao et al. (2006a) for four types of site classes (SC-I, SC-II, SC-III, and SC-IV) defined in the Japanese seismic code (JRA, 1980). It was found that an approximate range of the predominant period Tg could be identified by the predominant peak of the HVSR curve for the CL-I and SC-I sites, CL-II and SC-II sites, and CL-III and SC-III + SC-IV sites. Second, an empirical site classification method was proposed based on comprehensive consideration of peak period, amplitude, and shape of the HVSR curve. The selected stations from KiK-net were classified using the proposed method. The results showed that the success rates of the proposed method in identifying CL-I, CL-II, and CL-III sites were 63%, 64%, and 58% respectively. Finally, the HVSRs of 178 NSMONS stations were computed based on recordings from 2007 to 2015 and the sites classified using the proposed method. The mean HVSR curves were re-calculated for three site classes and compared with those from KiK-net data. It was found that both the peak period and the amplitude were similar for the mean HVSR curves derived from NSMONS classification results and KiK-net borehole data, implying the effectiveness of the proposed method in identifying different site classes. The classification results have good agreement with site classes

  10. An Excel‐based implementation of the spectral method of action potential alternans analysis

    Science.gov (United States)

    Pearman, Charles M.

    2014-01-01

    Abstract Action potential (AP) alternans has been well established as a mechanism of arrhythmogenesis and sudden cardiac death. Proper interpretation of AP alternans requires a robust method of alternans quantification. Traditional methods of alternans analysis neglect higher order periodicities that may have greater pro‐arrhythmic potential than classical 2:1 alternans. The spectral method of alternans analysis, already widely used in the related study of microvolt T‐wave alternans, has also been used to study AP alternans. Software to meet the specific needs of AP alternans analysis is not currently available in the public domain. An AP analysis tool is implemented here, written in Visual Basic for Applications and using Microsoft Excel as a shell. This performs a sophisticated analysis of alternans behavior allowing reliable distinction of alternans from random fluctuations, quantification of alternans magnitude, and identification of which phases of the AP are most affected. In addition, the spectral method has been adapted to allow detection and quantification of higher order regular oscillations. Analysis of action potential morphology is also performed. A simple user interface enables easy import, analysis, and export of collated results. PMID:25501439

  11. An Excel-based implementation of the spectral method of action potential alternans analysis.

    Science.gov (United States)

    Pearman, Charles M

    2014-12-01

    Action potential (AP) alternans has been well established as a mechanism of arrhythmogenesis and sudden cardiac death. Proper interpretation of AP alternans requires a robust method of alternans quantification. Traditional methods of alternans analysis neglect higher order periodicities that may have greater pro-arrhythmic potential than classical 2:1 alternans. The spectral method of alternans analysis, already widely used in the related study of microvolt T-wave alternans, has also been used to study AP alternans. Software to meet the specific needs of AP alternans analysis is not currently available in the public domain. An AP analysis tool is implemented here, written in Visual Basic for Applications and using Microsoft Excel as a shell. This performs a sophisticated analysis of alternans behavior allowing reliable distinction of alternans from random fluctuations, quantification of alternans magnitude, and identification of which phases of the AP are most affected. In addition, the spectral method has been adapted to allow detection and quantification of higher order regular oscillations. Analysis of action potential morphology is also performed. A simple user interface enables easy import, analysis, and export of collated results. © 2014 The Author. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  12. Monte-Carlo error analysis in x-ray spectral deconvolution

    International Nuclear Information System (INIS)

    Shirk, D.G.; Hoffman, N.M.

    1985-01-01

    The deconvolution of spectral information from sparse x-ray data is a widely encountered problem in data analysis. An often-neglected aspect of this problem is the propagation of random error in the deconvolution process. We have developed a Monte-Carlo approach that enables us to attach error bars to unfolded x-ray spectra. Our Monte-Carlo error analysis has been incorporated into two specific deconvolution techniques: the first is an iterative convergent weight method; the second is a singular-value-decomposition (SVD) method. These two methods were applied to an x-ray spectral deconvolution problem having m channels of observations with n points in energy space. When m is less than n, this problem has no unique solution. We discuss the systematics of nonunique solutions and energy-dependent error bars for both methods. The Monte-Carlo approach has a particular benefit in relation to the SVD method: It allows us to apply the constraint of spectral nonnegativity after the SVD deconvolution rather than before. Consequently, we can identify inconsistencies between different detector channels

  13. Spectral methods for the detection of network community structure: a comparative analysis

    International Nuclear Information System (INIS)

    Shen, Hua-Wei; Cheng, Xue-Qi

    2010-01-01

    Spectral analysis has been successfully applied to the detection of community structure of networks, respectively being based on the adjacency matrix, the standard Laplacian matrix, the normalized Laplacian matrix, the modularity matrix, the correlation matrix and several other variants of these matrices. However, the comparison between these spectral methods is less reported. More importantly, it is still unclear which matrix is more appropriate for the detection of community structure. This paper answers the question by evaluating the effectiveness of these five matrices against benchmark networks with heterogeneous distributions of node degree and community size. Test results demonstrate that the normalized Laplacian matrix and the correlation matrix significantly outperform the other three matrices at identifying the community structure of networks. This indicates that it is crucial to take into account the heterogeneous distribution of node degree when using spectral analysis for the detection of community structure. In addition, to our surprise, the modularity matrix exhibits very similar performance to the adjacency matrix, which indicates that the modularity matrix does not gain benefits from using the configuration model as a reference network with the consideration of the node degree heterogeneity

  14. Identification of mineral compositions in some renal calculi by FT Raman and IR spectral analysis

    Science.gov (United States)

    Tonannavar, J.; Deshpande, Gouri; Yenagi, Jayashree; Patil, Siddanagouda B.; Patil, Nikhil A.; Mulimani, B. G.

    2016-02-01

    We present in this paper accurate and reliable Raman and IR spectral identification of mineral constituents in nine samples of renal calculi (kidney stones) removed from patients suffering from nephrolithiasis. The identified mineral components include Calcium Oxalate Monohydrate (COM, whewellite), Calcium Oxalate Dihydrate (COD, weddellite), Magnesium Ammonium Phosphate Hexahydrate (MAPH, struvite), Calcium Hydrogen Phosphate Dihydrate (CHPD, brushite), Pentacalcium Hydroxy Triphosphate (PCHT, hydroxyapatite) and Uric Acid (UA). The identification is based on a satisfactory assignment of all the observed IR and Raman bands (3500-400 cm- 1) to chemical functional groups of mineral components in the samples, aided by spectral analysis of pure materials of COM, MAPH, CHPD and UA. It is found that the eight samples are composed of COM as the common component, the other mineral species as common components are: MAPH in five samples, PCHT in three samples, COD in three samples, UA in three samples and CHPD in two samples. One sample is wholly composed of UA as a single component; this inference is supported by the good agreement between ab initio density functional theoretical spectra and experimental spectral measurements of both sample and pure material. A combined application of Raman and IR techniques has shown that, where the IR is ambiguous, the Raman analysis can differentiate COD from COM and PCHT from MAPH.

  15. Arbitrary-order Hilbert Spectral Analysis and Intermittency in Solar Wind Density Fluctuations

    Science.gov (United States)

    Carbone, Francesco; Sorriso-Valvo, Luca; Alberti, Tommaso; Lepreti, Fabio; Chen, Christopher H. K.; Němeček, Zdenek; Šafránková, Jana

    2018-05-01

    The properties of inertial- and kinetic-range solar wind turbulence have been investigated with the arbitrary-order Hilbert spectral analysis method, applied to high-resolution density measurements. Due to the small sample size and to the presence of strong nonstationary behavior and large-scale structures, the classical analysis in terms of structure functions may prove to be unsuccessful in detecting the power-law behavior in the inertial range, and may underestimate the scaling exponents. However, the Hilbert spectral method provides an optimal estimation of the scaling exponents, which have been found to be close to those for velocity fluctuations in fully developed hydrodynamic turbulence. At smaller scales, below the proton gyroscale, the system loses its intermittent multiscaling properties and converges to a monofractal process. The resulting scaling exponents, obtained at small scales, are in good agreement with those of classical fractional Brownian motion, indicating a long-term memory in the process, and the absence of correlations around the spectral-break scale. These results provide important constraints on models of kinetic-range turbulence in the solar wind.

  16. Identification of mineral compositions in some renal calculi by FT Raman and IR spectral analysis.

    Science.gov (United States)

    Tonannavar, J; Deshpande, Gouri; Yenagi, Jayashree; Patil, Siddanagouda B; Patil, Nikhil A; Mulimani, B G

    2016-02-05

    We present in this paper accurate and reliable Raman and IR spectral identification of mineral constituents in nine samples of renal calculi (kidney stones) removed from patients suffering from nephrolithiasis. The identified mineral components include Calcium Oxalate Monohydrate (COM, whewellite), Calcium Oxalate Dihydrate (COD, weddellite), Magnesium Ammonium Phosphate Hexahydrate (MAPH, struvite), Calcium Hydrogen Phosphate Dihydrate (CHPD, brushite), Pentacalcium Hydroxy Triphosphate (PCHT, hydroxyapatite) and Uric Acid (UA). The identification is based on a satisfactory assignment of all the observed IR and Raman bands (3500-400c m(-1)) to chemical functional groups of mineral components in the samples, aided by spectral analysis of pure materials of COM, MAPH, CHPD and UA. It is found that the eight samples are composed of COM as the common component, the other mineral species as common components are: MAPH in five samples, PCHT in three samples, COD in three samples, UA in three samples and CHPD in two samples. One sample is wholly composed of UA as a single component; this inference is supported by the good agreement between ab initio density functional theoretical spectra and experimental spectral measurements of both sample and pure material. A combined application of Raman and IR techniques has shown that, where the IR is ambiguous, the Raman analysis can differentiate COD from COM and PCHT from MAPH. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Variation in growth form in relation to spectral light quality (red/far-red ratio) in Plantago lanceolata L in sun and shade populations

    NARCIS (Netherlands)

    Van Hinsberg, A.; Van Tienderen, P.H.

    1997-01-01

    Plants from a sun and shade population were grown in two environments differing in the ratio of red to far-red light (R/FR ratio). A low R/FR ratio, simulating vegetation shade, promoted the formation of long, upright-growing leaves and allocation towards shoot growth, whereas a high R/FR ratio had

  18. ASTER spectral analysis and lithologic mapping of the Khanneshin carbonatite volcano, Afghanistan

    Science.gov (United States)

    Mars, John C.; Rowan, Lawrence C.

    2011-01-01

    Advanced Spaceborne Thermal and Reflection Radiometer (ASTER) data of the early Quaternary Khanneshin carbonatite volcano located in southern Afghanistan were used to identify carbonate rocks within the volcano and to distinguish them from Neogene ferruginous polymict sandstone and argillite. The carbonatitic rocks are characterized by diagnostic CO3 absorption near 11.2 μm and 2.31–2.33 μm, whereas the sandstone, argillite, and adjacent alluvial deposits exhibit intense Si-O absorption near 8.7 μm caused mainly by quartz and Al-OH absorption near 2.20 μm due to muscovite and illite.Calcitic carbonatite was distinguished from ankeritic carbonatite in the short wave infrared (SWIR) region of the ASTER data due to a slight shift of the CO3 absorption feature toward 2.26 μm (ASTER band 7) in the ankeritic carbonatite spectra. Spectral assessment using ASTER SWIR data suggests that the area is covered by extensive carbonatite flows that contain calcite, ankerite, and muscovite, though some areas mapped as ankeritic carbonatite on a preexisting geologic map were not identified in the ASTER data. A contact aureole shown on the geologic map was defined using an ASTER false color composite image (R = 6, G = 3, B = 1) and a logical operator byte image. The contact aureole rocks exhibit Fe2+, Al-OH, and Fe, Mg-OH spectral absorption features at 1.65, 2.2, and 2.33 μm, respectively, which suggest that the contact aureole rocks contain muscovite, epidote, and chlorite. The contact aureole rocks were mapped using an Interactive Data Language (IDL) logical operator.A visible through short wave infrared (VNIR-SWIR) mineral and rock-type map based on matched filter, band ratio, and logical operator analysis illustrates: (1) laterally extensive calcitic carbonatite that covers most of the crater and areas northeast of the crater; (2) ankeritic carbonatite located southeast and north of the crater and some small deposits located within the crater; (3) agglomerate that

  19. Use of fast Fourier transform in gamma-ray spectral analysis

    International Nuclear Information System (INIS)

    Tominaga, Shoji; Nayatani, Yoshinobu; Nagata, Shojiro; Sasaki, Takashi; Ueda, Isamu.

    1978-01-01

    In order to simplify the mass data processing in a response matrix method for γ-ray spectral analysis, a method using a Fast Fourier Transform has been devised. The validity of the method has been confirmed by computer simulation for spectra of a NaI detector. First, it is shown that spectral data can be represented by Fourier series with a reduced number of terms. Then the estimation of intensities of γ-ray components is performed by a matrix operation using the compressed data of an observation spectrum and standard spectra in Fourier coefficients. The identification of γ-ray energies is also easy. Several features of the method and a general problem to be solved in relation to a response matrix method are described. (author)

  20. The quantum spectral analysis of the two-dimensional annular billiard system

    International Nuclear Information System (INIS)

    Yan-Hui, Zhang; Ji-Quan, Zhang; Xue-You, Xu; Sheng-Lu, Lin

    2009-01-01

    Based on the extended closed-orbit theory together with spectral analysis, this paper studies the correspondence between quantum mechanics and the classical counterpart in a two-dimensional annular billiard. The results demonstrate that the Fourier-transformed quantum spectra are in very good accordance with the lengths of the classical ballistic trajectories, whereas spectral strength is intimately associated with the shapes of possible open orbits connecting arbitrary two points in the annular cavity. This approach facilitates an intuitive understanding of basic quantum features such as quantum interference, locations of the wavefunctions, and allows quantitative calculations in the range of high energies, where full quantum calculations may become impractical in general. This treatment provides a thread to explore the properties of microjunction transport and even quantum chaos under the much more general system. (general)

  1. A spectral analysis of the domain decomposed Monte Carlo method for linear systems

    Energy Technology Data Exchange (ETDEWEB)

    Slattery, S. R.; Wilson, P. P. H. [Engineering Physics Department, University of Wisconsin - Madison, 1500 Engineering Dr., Madison, WI 53706 (United States); Evans, T. M. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830 (United States)

    2013-07-01

    The domain decomposed behavior of the adjoint Neumann-Ulam Monte Carlo method for solving linear systems is analyzed using the spectral properties of the linear operator. Relationships for the average length of the adjoint random walks, a measure of convergence speed and serial performance, are made with respect to the eigenvalues of the linear operator. In addition, relationships for the effective optical thickness of a domain in the decomposition are presented based on the spectral analysis and diffusion theory. Using the effective optical thickness, the Wigner rational approximation and the mean chord approximation are applied to estimate the leakage fraction of stochastic histories from a domain in the decomposition as a measure of parallel performance and potential communication costs. The one-speed, two-dimensional neutron diffusion equation is used as a model problem to test the models for symmetric operators. In general, the derived approximations show good agreement with measured computational results. (authors)

  2. Use of the spectral analysis for estimating the intensity of a weak periodic source

    International Nuclear Information System (INIS)

    Marseguerra, M.

    1989-01-01

    This paper deals with the possibility of exploiting spectral methods for the analysis of counting experiments in which one has to estimate the intensity of a weak periodic source of particles buried in a high background. The general theoretical expressions here obtained for the auto- and cross-spectra are applied to three kinds of simulated experiments. In all cases it turns out that the source intensity can acutally be estimated with a standard deviation comparable with that obtained in classical experiments in which the source can be moved out. Thus the spectral methods represent an interesting technique nowadays easy to implement on low-cost computers which could also be used in many research fields by suitably redesigning classical experiments. The convenience of using these methods in the field of nuclear safeguards is presently investigated in our Institute. (orig.)

  3. A spectral analysis of the domain decomposed Monte Carlo method for linear systems

    International Nuclear Information System (INIS)

    Slattery, S. R.; Wilson, P. P. H.; Evans, T. M.

    2013-01-01

    The domain decomposed behavior of the adjoint Neumann-Ulam Monte Carlo method for solving linear systems is analyzed using the spectral properties of the linear operator. Relationships for the average length of the adjoint random walks, a measure of convergence speed and serial performance, are made with respect to the eigenvalues of the linear operator. In addition, relationships for the effective optical thickness of a domain in the decomposition are presented based on the spectral analysis and diffusion theory. Using the effective optical thickness, the Wigner rational approximation and the mean chord approximation are applied to estimate the leakage fraction of stochastic histories from a domain in the decomposition as a measure of parallel performance and potential communication costs. The one-speed, two-dimensional neutron diffusion equation is used as a model problem to test the models for symmetric operators. In general, the derived approximations show good agreement with measured computational results. (authors)

  4. Wavelet-based spectral finite element dynamic analysis for an axially moving Timoshenko beam

    Science.gov (United States)

    Mokhtari, Ali; Mirdamadi, Hamid Reza; Ghayour, Mostafa

    2017-08-01

    In this article, wavelet-based spectral finite element (WSFE) model is formulated for time domain and wave domain dynamic analysis of an axially moving Timoshenko beam subjected to axial pretension. The formulation is similar to conventional FFT-based spectral finite element (SFE) model except that Daubechies wavelet basis functions are used for temporal discretization of the governing partial differential equations into a set of ordinary differential equations. The localized nature of Daubechies wavelet basis functions helps to rule out problems of SFE model due to periodicity assumption, especially during inverse Fourier transformation and back to time domain. The high accuracy of WSFE model is then evaluated by comparing its results with those of conventional finite element and SFE results. The effects of moving beam speed and axial tensile force on vibration and wave characteristics, and static and dynamic stabilities of moving beam are investigated.

  5. Passive microrheology of soft materials with atomic force microscopy: A wavelet-based spectral analysis

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Torres, C.; Streppa, L. [CNRS, UMR5672, Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 46 Allée d' Italie, Université de Lyon, 69007 Lyon (France); Arneodo, A.; Argoul, F. [CNRS, UMR5672, Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 46 Allée d' Italie, Université de Lyon, 69007 Lyon (France); CNRS, UMR5798, Laboratoire Ondes et Matière d' Aquitaine, Université de Bordeaux, 351 Cours de la Libération, 33405 Talence (France); Argoul, P. [Université Paris-Est, Ecole des Ponts ParisTech, SDOA, MAST, IFSTTAR, 14-20 Bd Newton, Cité Descartes, 77420 Champs sur Marne (France)

    2016-01-18

    Compared to active microrheology where a known force or modulation is periodically imposed to a soft material, passive microrheology relies on the spectral analysis of the spontaneous motion of tracers inherent or external to the material. Passive microrheology studies of soft or living materials with atomic force microscopy (AFM) cantilever tips are rather rare because, in the spectral densities, the rheological response of the materials is hardly distinguishable from other sources of random or periodic perturbations. To circumvent this difficulty, we propose here a wavelet-based decomposition of AFM cantilever tip fluctuations and we show that when applying this multi-scale method to soft polymer layers and to living myoblasts, the structural damping exponents of these soft materials can be retrieved.

  6. Spectral Analysis of the sdO Standard Star Feige 34

    Science.gov (United States)

    Latour, M.; Chayer, P.; Green, E. M.; Fontaine, G.

    2017-03-01

    We present our current work on the spectral analysis of the hot sdO star Feige 34. We combine high S/N optical spectra and fully-blanketed non-LTE model atmospheres to derive its fundamental parameters (Teff, log g) and helium abundance. Our best fits indicate Teff = 63 000 K, log g = 6.0 and log N(He)/N(H) = -1.8. We also use available ultraviolet spectra (IUE and FUSE) to measure metal abundances. We find the star to be enriched in iron and nickel by a factor of ten with respect to the solar values, while lighter elements have subsolar abundances. The FUSE spectrum suggests that the spectral lines could be broadened by rotation.

  7. Multivariat least-squares methods applied to the quantitative spectral analysis of multicomponent samples

    International Nuclear Information System (INIS)

    Haaland, D.M.; Easterling, R.G.; Vopicka, D.A.

    1985-01-01

    In an extension of earlier work, weighted multivariate least-squares methods of quantitative FT-IR analysis have been developed. A linear least-squares approximation to nonlinearities in the Beer-Lambert law is made by allowing the reference spectra to be a set of known mixtures, The incorporation of nonzero intercepts in the relation between absorbance and concentration further improves the approximation of nonlinearities while simultaneously accounting for nonzero spectra baselines. Pathlength variations are also accommodated in the analysis, and under certain conditions, unknown sample pathlengths can be determined. All spectral data are used to improve the precision and accuracy of the estimated concentrations. During the calibration phase of the analysis, pure component spectra are estimated from the standard mixture spectra. These can be compared with the measured pure component spectra to determine which vibrations experience nonlinear behavior. In the predictive phase of the analysis, the calculated spectra are used in our previous least-squares analysis to estimate sample component concentrations. These methods were applied to the analysis of the IR spectra of binary mixtures of esters. Even with severely overlapping spectral bands and nonlinearities in the Beer-Lambert law, the average relative error in the estimated concentration was <1%

  8. TOF plotter - a program to perform routine analysis time-of-flight mass spectral data

    International Nuclear Information System (INIS)

    Knippel, Brad C.; Padgett, Clifford W.; Marcus, R. Kenneth

    2004-01-01

    The main article discusses the operation and application of the program to mass spectral data files. This laboratory has recently reported the construction and characterization of a linear time-of-flight mass spectrometer (ToF-MS) utilizing a radio frequency glow discharge ionization source. Data acquisition and analysis was performed using a digital oscilloscope and Microsoft Excel, respectively. Presently, no software package is available that is specifically designed for time-of-flight mass spectral analysis that is not instrument dependent. While spreadsheet applications such as Excel offer tremendous utility, they can be cumbersome when repeatedly performing tasks which are too complex or too user intensive for macros to be viable. To address this situation and make data analysis a faster, simpler task, our laboratory has developed a Microsoft Windows-based software program coded in Microsoft Visual Basic. This program enables the user to rapidly perform routine data analysis tasks such as mass calibration, plotting and smoothing on x-y data sets. In addition to a suite of tools for data analysis, a number of calculators are built into the software to simplify routine calculations pertaining to linear ToF-MS. These include mass resolution, ion kinetic energy and single peak identification calculators. A detailed description of the software and its associated functions is presented followed by a characterization of its performance in the analysis of several representative ToF-MS spectra obtained from different GD-ToF-MS systems

  9. Communication system and spectral analysis for Ge-Li and GeHp detectors

    International Nuclear Information System (INIS)

    Fernandez, J.; Castano, P.; Bonino, A.D.; Righetti, M.A.

    1990-01-01

    An integral communication and spectral analysis system (SICADE) was developed and implemented to satisfy the need to optimize and automate the measurement system used in Atucha I nuclear power plant for the activity in the primary loop's water extracted by the TV system. The importance of these measurements is based on the fact that from the spectrometric analysis of the samples extracted, the Iodines-GN and Iodines-Iodines relations, which allow to detect the presence of deficient fuel elements, are calculated. The system developed is based on two modules integrated in a unique set commanded by the operators through the screen dialogue. (Author) [es

  10. Spectral and cross-spectral analysis of uneven time series with the smoothed Lomb-Scargle periodogram and Monte Carlo evaluation of statistical significance

    Science.gov (United States)

    Pardo-Igúzquiza, Eulogio; Rodríguez-Tovar, Francisco J.

    2012-12-01

    Many spectral analysis techniques have been designed assuming sequences taken with a constant sampling interval. However, there are empirical time series in the geosciences (sediment cores, fossil abundance data, isotope analysis, …) that do not follow regular sampling because of missing data, gapped data, random sampling or incomplete sequences, among other reasons. In general, interpolating an uneven series in order to obtain a succession with a constant sampling interval alters the spectral content of the series. In such cases it is preferable to follow an approach that works with the uneven data directly, avoiding the need for an explicit interpolation step. The Lomb-Scargle periodogram is a popular choice in such circumstances, as there are programs available in the public domain for its computation. One new computer program for spectral analysis improves the standard Lomb-Scargle periodogram approach in two ways: (1) It explicitly adjusts the statistical significance to any bias introduced by variance reduction smoothing, and (2) it uses a permutation test to evaluate confidence levels, which is better suited than parametric methods when neighbouring frequencies are highly correlated. Another novel program for cross-spectral analysis offers the advantage of estimating the Lomb-Scargle cross-periodogram of two uneven time series defined on the same interval, and it evaluates the confidence levels of the estimated cross-spectra by a non-parametric computer intensive permutation test. Thus, the cross-spectrum, the squared coherence spectrum, the phase spectrum, and the Monte Carlo statistical significance of the cross-spectrum and the squared-coherence spectrum can be obtained. Both of the programs are written in ANSI Fortran 77, in view of its simplicity and compatibility. The program code is of public domain, provided on the website of the journal (http://www.iamg.org/index.php/publisher/articleview/frmArticleID/112/). Different examples (with simulated and

  11. Practical Guidance for Conducting Mediation Analysis With Multiple Mediators Using Inverse Odds Ratio Weighting

    OpenAIRE

    Nguyen, Quynh C.; Osypuk, Theresa L.; Schmidt, Nicole M.; Glymour, M. Maria; Tchetgen Tchetgen, Eric J.

    2015-01-01

    Despite the recent flourishing of mediation analysis techniques, many modern approaches are difficult to implement or applicable to only a restricted range of regression models. This report provides practical guidance for implementing a new technique utilizing inverse odds ratio weighting (IORW) to estimate natural direct and indirect effects for mediation analyses. IORW takes advantage of the odds ratio's invariance property and condenses information on the odds ratio for the relationship be...

  12. Verification and Improvement of the Three-Dimensional Basin Velocity Structure Model in the Osaka Sedimentary Basin, Japan Using Interstation Green's Functions and H/V Spectral Ratios of Microtremors

    Science.gov (United States)

    Asano, K.; Iwata, T.; Sekiguchi, H.; Somei, K.; Nishimura, T.; Miyakoshi, K.; Aoi, S.; Kunugi, T.

    2012-12-01

    as low as 350 m/s in 0.2-0.5 Hz. The second observation is a set of short-time (30~60 min) single-station microtremor observations to obtain H/V spectral ratios at sites. We observed microtremor at 100 strong motion stations of Osaka prefecture government, JMA, K-NET, KiK-net, and other institutes. The peak period of H/V ranges from about 1 to 7 s, and it depends on the bedrock depth at the observation site as previously pointed by Miyakoshi et al. (1997). Though the basin velocity model explains the characteristics of observed H/V spectral ratios at most sites, we found discrepancies between observed and predicted H/V peak periods at north part of Osaka bay area and hill area in southeastern part of the basin. By combining the observed constraints from the group velocities, waveform characteristics of interstation Green's functions, and H/V spectral ratios, we will improve the S-wave velocity structure model inside the Osaka basin.

  13. Accurate palm vein recognition based on wavelet scattering and spectral regression kernel discriminant analysis

    Science.gov (United States)

    Elnasir, Selma; Shamsuddin, Siti Mariyam; Farokhi, Sajad

    2015-01-01

    Palm vein recognition (PVR) is a promising new biometric that has been applied successfully as a method of access control by many organizations, which has even further potential in the field of forensics. The palm vein pattern has highly discriminative features that are difficult to forge because of its subcutaneous position in the palm. Despite considerable progress and a few practical issues, providing accurate palm vein readings has remained an unsolved issue in biometrics. We propose a robust and more accurate PVR method based on the combination of wavelet scattering (WS) with spectral regression kernel discriminant analysis (SRKDA). As the dimension of WS generated features is quite large, SRKDA is required to reduce the extracted features to enhance the discrimination. The results based on two public databases-PolyU Hyper Spectral Palmprint public database and PolyU Multi Spectral Palmprint-show the high performance of the proposed scheme in comparison with state-of-the-art methods. The proposed approach scored a 99.44% identification rate and a 99.90% verification rate [equal error rate (EER)=0.1%] for the hyperspectral database and a 99.97% identification rate and a 99.98% verification rate (EER=0.019%) for the multispectral database.

  14. EFFECTS OF LORAZEPAM ON CARDIAC VAGAL TONE DURING REST AND MENTAL STRESS - ASSESSMENT BY MEANS OF SPECTRAL-ANALYSIS

    NARCIS (Netherlands)

    TULEN, JHM; MULDER, G; PEPPLINKHUIZEN, L; INTVELD, AJM; VANSTEENIS, HG; MOLEMAN, P

    Dose-dependent effects of intravenously administered lorazepam on haemodynamic fluctuations were studied by means of spectral analysis, in order to elucidate sympathetic and parasympathetic components in cardiovascular control during situations of rest and mental stress after benzodiazepine

  15. Effects of lorazepam on cardiac vagal tone during rest and mental stress: assessment by means of spectral analysis

    NARCIS (Netherlands)

    J.H.M. Tulen (Joke); G. Mulder (G.); L. Pepplinkhuizen (Lolke); A.J. Man in't Veld (A.); H.G. van Steenis (H.); P. Moleman (Peter)

    1994-01-01

    textabstractDose-dependent effects of intravenously administered lorazepam on haemodynamic fluctuations were studied by means of spectral analysis, in order to elucidate sympathetic and parasympathetic components in cardiovascular control during situations of rest and mental stress after

  16. A Financial Ratio Analysis of For-Profit and Non-Profit Rural Referral Centers

    Science.gov (United States)

    McCue, Michael J.; Nayar, Preethy

    2009-01-01

    Context: National financial data show that rural referral center (RRC) hospitals have performed well financially. RRC hospitals' median cash flow margin ratio was 10.04% in 2002 and grew to 11.04% in 2004. Purpose: The aim of this study is to compare the ratio analysis of key operational and financial performance measures of for-profit RRCs to…

  17. A hierarchical cluster analysis of normal-tension glaucoma using spectral-domain optical coherence tomography parameters.

    Science.gov (United States)

    Bae, Hyoung Won; Ji, Yongwoo; Lee, Hye Sun; Lee, Naeun; Hong, Samin; Seong, Gong Je; Sung, Kyung Rim; Kim, Chan Yun

    2015-01-01

    Normal-tension glaucoma (NTG) is a heterogenous disease, and there is still controversy about subclassifications of this disorder. On the basis of spectral-domain optical coherence tomography (SD-OCT), we subdivided NTG with hierarchical cluster analysis using optic nerve head (ONH) parameters and retinal nerve fiber layer (RNFL) thicknesses. A total of 200 eyes of 200 NTG patients between March 2011 and June 2012 underwent SD-OCT scans to measure ONH parameters and RNFL thicknesses. We classified NTG into homogenous subgroups based on these variables using a hierarchical cluster analysis, and compared clusters to evaluate diverse NTG characteristics. Three clusters were found after hierarchical cluster analysis. Cluster 1 (62 eyes) had the thickest RNFL and widest rim area, and showed early glaucoma features. Cluster 2 (60 eyes) was characterized by the largest cup/disc ratio and cup volume, and showed advanced glaucomatous damage. Cluster 3 (78 eyes) had small disc areas in SD-OCT and were comprised of patients with significantly younger age, longer axial length, and greater myopia than the other 2 groups. A hierarchical cluster analysis of SD-OCT scans divided NTG patients into 3 groups based upon ONH parameters and RNFL thicknesses. It is anticipated that the small disc area group comprised of younger and more myopic patients may show unique features unlike the other 2 groups.

  18. Spectacle and SpecViz: New Spectral Analysis and Visualization Tools

    Science.gov (United States)

    Earl, Nicholas; Peeples, Molly; JDADF Developers

    2018-01-01

    A new era of spectroscopic exploration of our universe is being ushered in with advances in instrumentation and next-generation space telescopes. The advent of new spectroscopic instruments has highlighted a pressing need for tools scientists can use to analyze and explore these new data. We have developed Spectacle, a software package for analyzing both synthetic spectra from hydrodynamic simulations as well as real COS data with an aim of characterizing the behavior of the circumgalactic medium. It allows easy reduction of spectral data and analytic line generation capabilities. Currently, the package is focused on automatic determination of absorption regions and line identification with custom line list support, simultaneous line fitting using Voigt profiles via least-squares or MCMC methods, and multi-component modeling of blended features. Non-parametric measurements, such as equivalent widths, delta v90, and full-width half-max are available. Spectacle also provides the ability to compose compound models used to generate synthetic spectra allowing the user to define various LSF kernels, uncertainties, and to specify sampling.We also present updates to the visualization tool SpecViz, developed in conjunction with the JWST data analysis tools development team, to aid in the exploration of spectral data. SpecViz is an open source, Python-based spectral 1-D interactive visualization and analysis application built around high-performance interactive plotting. It supports handling general and instrument-specific data and includes advanced tool-sets for filtering and detrending one-dimensional data, along with the ability to isolate absorption regions using slicing and manipulate spectral features via spectral arithmetic. Multi-component modeling is also possible using a flexible model fitting tool-set that supports custom models to be used with various fitting routines. It also features robust user extensions such as custom data loaders and support for user

  19. Convenient method for estimating underground s-wave velocity structure utilizing horizontal and vertical components microtremor spectral ratio; Bido no suiheido/jogedo supekutoru hi wo riyoshita kan`i chika s ha sokudo kozo suiteiho

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H; Yoshioka, M; Saito, T [Iwate University, Iwate (Japan). Faculty of Engineering

    1996-05-01

    Studies were conducted about the method of estimating the underground S-wave velocity structure by inversion making use of the horizontal/vertical motion spectral ratio of microtremors. For this purpose, a dynamo-electric velocity type seismograph was used, capable of processing the east-west, north-south, and vertical components integratedly. For the purpose of sampling the Rayleigh wave spectral ratio, one out of all the azimuths was chosen, whose horizontal motion had a high Fourier frequency component coherency with the vertical motions. For the estimation of the underground S-wave velocity structure, parameters (P-wave velocity, S-wave velocity, density, and layer thickness) were determined from the minimum residual sum of squares involving the observed microtremor spectral ratio and the theoretical value calculated by use of a model structure. The known boring data was utilized for the study of the S-wave velocity in the top layer, and it was determined using an S-wave velocity estimation formula for the Morioka area constructed using the N-value, depth, and geological classification. It was found that the optimum S-wave velocity structure even below the top layer well reflects the S-wave velocity obtained by the estimation formula. 5 refs., 6 figs.

  20. Sex ratio and time to pregnancy: analysis of four large European population surveys

    DEFF Research Database (Denmark)

    Joffe, Mike; Bennett, James; Best, Nicky

    2007-01-01

    To test whether the secondary sex ratio (proportion of male births) is associated with time to pregnancy, a marker of fertility. Design Analysis of four large population surveys. Setting Denmark and the United Kingdom. Participants 49 506 pregnancies.......To test whether the secondary sex ratio (proportion of male births) is associated with time to pregnancy, a marker of fertility. Design Analysis of four large population surveys. Setting Denmark and the United Kingdom. Participants 49 506 pregnancies....

  1. Sr/Ca mass ratio determination in bones using fast neutron activation analysis

    International Nuclear Information System (INIS)

    Hult, Mikael; Fessler, Andreas

    1998-01-01

    The Sr/Ca mass ratio in human bones reveals information regarding the diet which is of interest in archaeology. By using fast neutron activation analysis this ratio can be measured in a non-destructive manner, which is important when bones are considered too precious to allow for destructive analysis. Simulations and measurements showed that the nuclear reactions 88 Sr(n, 2n) 87m Sr and 44 Ca(n, p) 44 K are highly useful for the purpose

  2. Comprehensive assessment of firm financial performance using financial ratios and linguistic analysis of annual reports

    OpenAIRE

    Renáta Myšková; Petr Hájek

    2017-01-01

    Indicators of financial performance, especially financial ratio analysis, have become important financial decision-support information used by firm management and other stakeholders to assess financial stability and growth potential. However, additional information may be hidden in management communication. The article deals with the analysis of the annual reports of U.S. firms from both points of view, a financial one based on a set of financial ratios, and a linguistic one based on the anal...

  3. Unexploded Ordnance identification—A gamma-ray spectral analysis method for Carbon, Nitrogen and Oxygen signals following tagged neutron interrogation

    International Nuclear Information System (INIS)

    Mitra, S.; Dioszegi, I.

    2012-01-01

    A novel gamma-ray spectral analysis method has been demonstrated to optimally extract the signals of the signature elements of explosives, carbon (C), nitrogen (N) and oxygen (O) from 57–155 mm projectiles following tagged neutron interrogation with 14 MeV neutrons. The method was implemented on Monte Carlo simulated, synthetic spectra of Unexploded Ordnance (UXO) that contained high explosive fillers (Composition B, TNT or Explosive D) within steel casings of appropriate thicknesses. The analysis technique defined three broad regions-of-interest (ROI) between 4–7.5 MeV of a spectrum and from a system of three equations for the three unknowns namely C, N and O, the maximum counts from each of these elements were extracted. Unlike conventional spectral analysis techniques, the present method included the Compton continuum under a spectrum. For a neutron output of ∼2×10 7 ns −1 and using four 12.7 cm diameter×12.7 cm NaI(Tl) detectors, the C/N and C/O gamma-ray counts ratios of the explosive fillers were vastly different from that of an inert substance like sand. Conversion of the counts ratios to elemental ratios could further discriminate the different types of explosive fillers. The interrogation time was kept at ten minutes for each projectile.

  4. EZ and GOSSIP, two new VO compliant tools for spectral analysis

    Science.gov (United States)

    Franzetti, P.; Garill, B.; Fumana, M.; Paioro, L.; Scodeggio, M.; Paltani, S.; Scaramella, R.

    2008-10-01

    We present EZ and GOSSIP, two new VO compliant tools dedicated to spectral analysis. EZ is a tool to perform automatic redshift measurement; GOSSIP is a tool created to perform the SED fitting procedure in a simple, user friendly and efficient way. These two tools have been developed by the PANDORA Group at INAF-IASF (Milano); EZ has been developed in collaboration with Osservatorio Monte Porzio (Roma) and Integral Science Data Center (Geneve). EZ is released to the astronomical community; GOSSIP is currently in beta-testing.

  5. Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models

    Science.gov (United States)

    Murillo, Carol Andrea; Thorel, Luc; Caicedo, Bernardo

    2009-06-01

    The method of the spectral analysis of surface waves (SASW) is tested out on reduced scale centrifuge models, with a specific device, called the mini Falling Weight, developed for this purpose. Tests are performed on layered materials made of a mixture of sand and clay. The shear wave velocity VS determined within the models using the SASW is compared with the laboratory measurements carried out using the bender element test. The results show that the SASW technique applied to centrifuge testing is a relevant method to characterize VS near the surface.

  6. Turbulence in extended synchrotron radio sources. I. Polarization of turbulent sources. II. Power-spectral analysis

    International Nuclear Information System (INIS)

    Eilek, J.A.

    1989-01-01

    Recent theories of magnetohydrodynamic turbulence are used to construct microphysical turbulence models, with emphasis on models of anisotropic turbulence. These models have been applied to the determination of the emergent polarization from a resolved uniform source. It is found that depolarization alone is not a unique measure of the turbulence, and that the turblence will also affect the total-intensity distributions. Fluctuations in the intensity image can thus be employed to measure turbulence strength. In the second part, it is demonstrated that a power-spectral analysis of the total and polarized intensity images can be used to obtain the power spectra of the synchrotron emission. 81 refs

  7. The comparative metrological estimation of methods of emission spectral analysis for wear products in aviation oils

    Energy Technology Data Exchange (ETDEWEB)

    Alchimov, A B; Drobot, S I; Drokov, V G; Zarubin, V P; Kazmirov, A D; Skodaev, Y D; Podrezov, A M [Applied Physics Institute of Irkutsk State University, Irkutsk (Russian Federation)

    1998-12-31

    The comparison of different spectral methods of analysis for wear diagnostics of aircraft engines has been carried out. It is shown that known techniques of determination of metals content in aviation oils with the use the spectrometers MFS (Russia) and MOA (USA) give a low accuracy of measurements. As an alternative the method of wear diagnostics on the base of a scintillation spectrometer is suggested. This method possess far better metrological properties in comparison with those on the base of the spectrometer MFS and MOA. (orig.) 6 refs.

  8. Bottomside sinusoidal irregularities in the equatorial F region. II - Cross-correlation and spectral analysis

    Science.gov (United States)

    Cragin, B. L.; Hanson, W. B.; Mcclure, J. P.; Valladares, C. E.

    1985-01-01

    Equatorial bottomside sinusoidal (BSS) irregularities have been studied by applying techniques of cross-correlation and spectral analysis to the Atmosphere Explorer data set. The phase of the cross-correlations of the plasma number density is discussed and the two drift velocity components observed using the retarding potential analyzer and ion drift meter on the satellite are discussed. Morphology is addressed, presenting the geographical distributions of the occurrence of BSS events for the equinoxes and solstices. Physical processes including the ion Larmor flux, interhemispheric plasma flows, and variations in the lower F region Pedersen conductivity are invoked to explain the findings.

  9. The comparative metrological estimation of methods of emission spectral analysis for wear products in aviation oils

    Energy Technology Data Exchange (ETDEWEB)

    Alchimov, A.B.; Drobot, S.I.; Drokov, V.G.; Zarubin, V.P.; Kazmirov, A.D.; Skodaev, Y.D.; Podrezov, A.M. [Applied Physics Institute of Irkutsk State University, Irkutsk (Russian Federation)

    1997-12-31

    The comparison of different spectral methods of analysis for wear diagnostics of aircraft engines has been carried out. It is shown that known techniques of determination of metals content in aviation oils with the use the spectrometers MFS (Russia) and MOA (USA) give a low accuracy of measurements. As an alternative the method of wear diagnostics on the base of a scintillation spectrometer is suggested. This method possess far better metrological properties in comparison with those on the base of the spectrometer MFS and MOA. (orig.) 6 refs.

  10. A Spectral Analysis of Discrete-Time Quantum Walks Related to the Birth and Death Chains

    Science.gov (United States)

    Ho, Choon-Lin; Ide, Yusuke; Konno, Norio; Segawa, Etsuo; Takumi, Kentaro

    2018-04-01

    In this paper, we consider a spectral analysis of discrete time quantum walks on the path. For isospectral coin cases, we show that the time averaged distribution and stationary distributions of the quantum walks are described by the pair of eigenvalues of the coins as well as the eigenvalues and eigenvectors of the corresponding random walks which are usually referred as the birth and death chains. As an example of the results, we derive the time averaged distribution of so-called Szegedy's walk which is related to the Ehrenfest model. It is represented by Krawtchouk polynomials which is the eigenvectors of the model and includes the arcsine law.

  11. On the 485-day Mode in the Atmospheric Angular Momentum: Spectral Analysis of IERS Data

    Science.gov (United States)

    Tsurkis, I. Ya.; Kuchai, M. S.

    2018-05-01

    The modification of spectral analysis especially intended for studying the disturbing functions of the atmosphere and ocean, as well as the observed polar motion (Wiener-Liouville spectrum), is used. The time series of the atmospheric disturbing functions obtained by the U.S. National Centers for Environmental Prediction (NCEP) of the International Earth Rotation and Reference Systems Service (IERS) for the period from January 1, 1980 to June 20, 2014 (http://www.iers.org/.cs1?pid=43-1100116) are analyzed. It is shown that the baric disturbing function contains a regular mode with a period of 16 months; the contribution of this mode in the polar motion is estimated.

  12. Classification of Error-Diffused Halftone Images Based on Spectral Regression Kernel Discriminant Analysis

    Directory of Open Access Journals (Sweden)

    Zhigao Zeng

    2016-01-01

    Full Text Available This paper proposes a novel algorithm to solve the challenging problem of classifying error-diffused halftone images. We firstly design the class feature matrices, after extracting the image patches according to their statistics characteristics, to classify the error-diffused halftone images. Then, the spectral regression kernel discriminant analysis is used for feature dimension reduction. The error-diffused halftone images are finally classified using an idea similar to the nearest centroids classifier. As demonstrated by the experimental results, our method is fast and can achieve a high classification accuracy rate with an added benefit of robustness in tackling noise.

  13. Application of Arbitrary-Order Hilbert Spectral Analysis to Passive Scalar Turbulence

    International Nuclear Information System (INIS)

    Huang, Y X; Lu, Z M; Liu, Y L; Schmitt, F G; Gagne, Y

    2011-01-01

    In previous work [Huang et al., PRE 82, 26319, 2010], we found that the passive scalar turbulence field maybe less intermittent than what we believed before. Here we apply the same method, namely arbitrary-order Hilbert spectral analysis, to a passive scalar (temperature) time series with a Taylor's microscale Reynolds number Re λ ≅ 3000. We find that with increasing Reynolds number, the discrepancy of scaling exponents between Hilbert ξ θ (q) and Kolmogorov-Obukhov-Corrsin (KOC) theory is increasing, and consequently the discrepancy between Hilbert and structure function could disappear at infinite Reynolds number.

  14. Gauss-Vanicek Spectral Analysis of the Sepkoski Compendium: No New Life Cycles

    OpenAIRE

    Omerbashich, M.

    2006-01-01

    New periods can emerge from data as a byproduct of incorrect processing or even the method applied. In one such recent instance, a new life cycle with a 62+-3 Myr period was reportedly found (about trend) in genus variations from the Sepkoski compendium, the world most complete fossil record. The approach that led to reporting this period was based on Fourier method of spectral analysis. I show here that no such period is found when the original data set is considered rigorously and processed...

  15. Evaluation of atmospheric particulate concentrations derived from analysis of ratio Thematic Mapper data

    Science.gov (United States)

    Carnahan, W. H.; Mausel, P. W.; Zhou, G. P.

    1984-01-01

    An approach for atmospheric particulate concentration evaluation above urban areas using ratio Thematic Mapper (TM) data is discussed. October 25, 1982 TM data over Chicago, IL are analyzed using TM band ratios of 1/2, 1/3, 1/4, 1/5, and 1/6 and particulate concentration estimates derived from TM ratios are tested over low reflective turbid water sites and highly reflective concrete highways. From analysis of the data it is evident that for water, the pattern of increasing particulate concentration is associated with decreasing ratio values in all band combinations used. Over concrete features, the TM band 1/4 ratio values follow the predicted pattern, while the TM band 1/6 has ratios which are reversed from anticipated values.

  16. On the detection of corrosion pit interactions using two-dimensional spectral analysis

    International Nuclear Information System (INIS)

    Jarrah, Adil; Nianga, Jean-Marie; Iost, Alain; Guillemot, Gildas; Najjar, Denis

    2010-01-01

    A statistical methodology for detecting pits interactions based on a two-dimensional spectral analysis is presented. This method can be used as a tool for the exploratory analysis of spatial point patterns and can be advanced as an alternative of classical methods based on distance. One of the major advantages of the spectral analysis approach over the use of classical methods is its ability to reveal more details about the spatial structure like the scale for which pits corrosion can be considered as independent. Furthermore, directional components of pattern can be investigated. The method is validated in a first time using numerical simulations on random, regular and aggregated structures. The density of pits, used in the numerical simulations, corresponds to that assessed from a corroded aluminium sheet. In a second time, this method is applied to verify the independence of the corrosion pits observed on the aforementioned aluminium sheet before applying the Gumbel theory to determine the maximum pit depth. Indeed, the property of independence is a prerequisite of the Gumbel theory which is one of the most frequently used in the field of safety and reliability.

  17. Spectral analysis of coolant activity from a commercial nuclear generating station

    International Nuclear Information System (INIS)

    Swann, J.D.; Lewis, B.J.; Ip, M.

    2008-01-01

    In support of the development of a real-time on-line fuel failure monitoring system for the CANDU reactor, actual gamma spectroscopy data files from the gaseous fission product (GFP) monitoring system were acquired from almost four years of operation at a commercial Nuclear Generating Station (NGS). Several spectral analysis techniques were used to process the data files. Radioisotopic activity from the plant information (PI) system was compared to an in-house C++ code that was used to determine the photopeak area and to a separate analysis with commercial software from Canberra-Aptec. These various techniques provided for a calculation of the coolant activity concentration of the noble gas and iodine species in the primary heat transport system. These data were then used to benchmark the Visual DETECT code, a user friendly software tool which can be used to characterize the defective fuel state based on a coolant activity analysis. Acceptable agreement was found with the spectral techniques when compared to the known defective bundle history at the commercial reactor. A more generalized method of assessing the fission product release data was also considered with the development of a pre-processor to evaluate the radioisotopic release rate from mass balance considerations. The release rate provided a more efficient means to characterize the occurrence of a defect and was consistent with the actual defect situation at the power plant as determined from in-bay examination of discharged fuel bundles. (author)

  18. Spectral analysis to detection of short circuit fault of solar photovoltaic modules in strings

    International Nuclear Information System (INIS)

    Sevilla-Camacho, P.Y.; Robles-Ocampo, J.B.; Zuñiga-Reyes, Marco A.

    2017-01-01

    This research work presents a method to detect the number of short circuit faulted solar photovoltaic modules in strings of a photovoltaic system by taking into account speed, safety, and non-use of sensors and specialized and expensive equipment. The method consists on apply the spectral analysis and statistical techniques to the alternating current output voltage of a string and detect the number of failed modules through the changes in the amplitude of the component frequency of 12 kHz. For that, the analyzed string is disconnected of the array; and a small pulsed voltage signal of frequency of 12 kHz introduces him under dark condition and controlled temperature. Previous to the analysis, the signal is analogic filtered in order to reduce the direct current signal component. The spectral analysis technique used is the Fast Fourier Transform. The obtained experimental results were validated through simulation of the alternating current equivalent circuit of a solar cell. In all experimental and simulated test, the method allowed to identify correctly the number of photovoltaic modules with short circuit in the analyzed string. (author)

  19. Transient Elastography vs. Aspartate Aminotransferase to Platelet Ratio Index in Hepatitis C: A Meta-Analysis.

    Science.gov (United States)

    Mattos, A Z; Mattos, A A

    Many different non-invasive methods have been studied with the purpose of staging liver fibrosis. The objective of this study was verifying if transient elastography is superior to aspartate aminotransferase to platelet ratio index for staging fibrosis in patients with chronic hepatitis C. A systematic review with meta-analysis of studies which evaluated both non-invasive tests and used biopsy as the reference standard was performed. A random-effects model was used, anticipating heterogeneity among studies. Diagnostic odds ratio was the main effect measure, and summary receiver operating characteristic curves were created. A sensitivity analysis was planned, in which the meta-analysis would be repeated excluding each study at a time. Eight studies were included in the meta-analysis. Regarding the prediction of significant fibrosis, transient elastography and aspartate aminotransferase to platelet ratio index had diagnostic odds ratios of 11.70 (95% confidence interval = 7.13-19.21) and 8.56 (95% confidence interval = 4.90-14.94) respectively. Concerning the prediction of cirrhosis, transient elastography and aspartate aminotransferase to platelet ratio index had diagnostic odds ratios of 66.49 (95% confidence interval = 23.71-186.48) and 7.47 (95% confidence interval = 4.88-11.43) respectively. In conclusion, there was no evidence of significant superiority of transient elastography over aspartate aminotransferase to platelet ratio index regarding the prediction of significant fibrosis, but the former proved to be better than the latter concerning prediction of cirrhosis.

  20. Spectral analysis of the stick-slip phenomenon in "oral" tribological texture evaluation.

    Science.gov (United States)

    Sanahuja, Solange; Upadhyay, Rutuja; Briesen, Heiko; Chen, Jianshe

    2017-08-01

    "Oral" tribology has become a new paradigm in food texture studies to understand complex texture attributes, such as creaminess, oiliness, and astringency, which could not be successfully characterized by traditional texture analysis nor by rheology. Stick-slip effects resulting from intermittent sliding motion during kinetic friction of oral mucosa could constitute an additional determining factor of sensory perception where traditional friction coefficient values and their Stribeck regimes fail in predicting different lubricant (food bolus and saliva) behaviors. It was hypothesized that the observed jagged behavior of most sliding force curves are due to stick-slip effects and depend on test velocity, normal load, surface roughness as well as lubricant type. Therefore, different measurement set-ups were investigated: sliding velocities from 0.01 to 40 mm/s, loads of 0.5 and 2.5 N as well as a smooth and a textured silicone contact surface. Moreover, dry contact measurements were compared to model food systems, such as water, oil, and oil-in-water emulsions. Spectral analysis permitted to extract the distribution of stick-slip magnitudes for specific wave numbers, characterizing the occurrence of jagged force peaks per unit sliding distance, similar to frequencies per unit time. The spectral features were affected by all the above mentioned tested factors. Stick-slip created vibration frequencies in the range of those detected by oral mechanoreceptors (0.3-400 Hz). The study thus provides a new insight into the use of tribology in food psychophysics. Dynamic spectral analysis has been applied for the first time to the force-displacement curves in "oral" tribology. Analyzing the stick-slip phenomenon in the dynamic friction provides new information that is generally overlooked or confused with machine noise and which may help to understand friction-related sensory attributes. This approach allows us to differentiate samples that have similar friction coefficient

  1. On the construction of a new stellar classification template library for the LAMOST spectral analysis pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Peng; Luo, Ali; Li, Yinbi; Tu, Liangping; Wang, Fengfei; Zhang, Jiannan; Chen, Xiaoyan; Hou, Wen; Kong, Xiao; Wu, Yue; Zuo, Fang; Yi, Zhenping; Zhao, Yongheng; Chen, Jianjun; Du, Bing; Guo, Yanxin; Ren, Juanjuan [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Pan, Jingchang; Jiang, Bin; Liu, Jie, E-mail: lal@nao.cas.cn, E-mail: weipeng@nao.cas.cn [School of Mechanical, Electrical, and Information Engineering, Shandong University, Weihai 264209 (China); and others

    2014-05-01

    The LAMOST spectral analysis pipeline, called the 1D pipeline, aims to classify and measure the spectra observed in the LAMOST survey. Through this pipeline, the observed stellar spectra are classified into different subclasses by matching with template spectra. Consequently, the performance of the stellar classification greatly depends on the quality of the template spectra. In this paper, we construct a new LAMOST stellar spectral classification template library, which is supposed to improve the precision and credibility of the present LAMOST stellar classification. About one million spectra are selected from LAMOST Data Release One to construct the new stellar templates, and they are gathered in 233 groups by two criteria: (1) pseudo g – r colors obtained by convolving the LAMOST spectra with the Sloan Digital Sky Survey ugriz filter response curve, and (2) the stellar subclass given by the LAMOST pipeline. In each group, the template spectra are constructed using three steps. (1) Outliers are excluded using the Local Outlier Probabilities algorithm, and then the principal component analysis method is applied to the remaining spectra of each group. About 5% of the one million spectra are ruled out as outliers. (2) All remaining spectra are reconstructed using the first principal components of each group. (3) The weighted average spectrum is used as the template spectrum in each group. Using the previous 3 steps, we initially obtain 216 stellar template spectra. We visually inspect all template spectra, and 29 spectra are abandoned due to low spectral quality. Furthermore, the MK classification for the remaining 187 template spectra is manually determined by comparing with 3 template libraries. Meanwhile, 10 template spectra whose subclass is difficult to determine are abandoned. Finally, we obtain a new template library containing 183 LAMOST template spectra with 61 different MK classes by combining it with the current library.

  2. Spectral Mixture Analysis to map burned areas in Brazil's deforestation arc from 1992 to 2011

    Science.gov (United States)

    Antunes Daldegan, G.; Ribeiro, F.; Roberts, D. A.

    2017-12-01

    The two most extensive biomes in South America, the Amazon and the Cerrado, are subject to several fire events every dry season. Both are known for their ecological and environmental importance. However, due to the intensive human occupation over the last four decades, they have been facing high deforestation rates. The Cerrado biome is adapted to fire and is considered a fire-dependent landscape. In contrast, the Amazon as a tropical moist broadleaf forest does not display similar characteristics and is classified as a fire-sensitive landscape. Nonetheless, studies have shown that forest areas that have already been burned become more prone to experience recurrent burns. Remote sensing has been extensively used by a large number of researchers studying fire occurrence at a global scale, as well as in both landscapes aforementioned. Digital image processing aiming to map fire activity has been applied to a number of imagery from sensors of various spatial, temporal, and spectral resolutions. More specifically, several studies have used Landsat data to map fire scars in the Amazon forest and in the Cerrado. An advantage of using Landsat data is the potential to map fire scars at a finer spatial resolution, when compared to products derived from imagery of sensors featuring better temporal resolution but coarser spatial resolution, such as MODIS (Moderate Resolution Imaging Spectrometer) and GOES (Geostationary Operational Environmental Satellite). This study aimed to map burned areas present in the Amazon-Cerrado transition zone by applying Spectral Mixture Analysis on Landsat imagery for a period of 20 years (1992-2011). The study area is a subset of this ecotone, centered at the State of Mato Grosso. By taking advantage of the Landsat 5TM and Landsat 7ETM+ imagery collections available in Google Earth Engine platform and applying Spectral Mixture Analysis (SMA) techniques over them permitted to model fire scar fractions and delimitate burned areas. Overlaying

  3. Spectral analysis of IGR J01572-7259 during its 2016 outburst

    Science.gov (United States)

    La Palombara, N.; Esposito, P.; Mereghetti, S.; Pintore, F.; Sidoli, L.; Tiengo, A.

    2018-03-01

    We report on the results of the XMM-Newton observation of IGR J01572-7259 during its most recent outburst in 2016 May, the first since 2008. The source reached a flux f ˜ 10-10 erg cm-2 s-1, which allowed us to perform a detailed analysis of its timing and spectral properties. We obtained a pulse period Pspin = 11.58208(2) s. The pulse profile is double peaked and strongly energy dependent, as the second peak is prominent only at low energies and the pulsed fraction increases with energy. The main spectral component is a power-law model, but at low energies, we also detected a soft thermal component, which can be described with either a blackbody or a hot plasma model. Both the EPIC and RGS spectra show several emission lines, which can be identified with the transition lines of ionized N, O, Ne, and Fe and cannot be described with a thermal emission model. The phase-resolved spectral analysis showed that the flux of both the soft excess and the emission lines vary with the pulse phase: the soft excess disappears in the first pulse and becomes significant only in the second, where also the Fe line is stronger. This variability is difficult to explain with emission from a hot plasma, while the reprocessing of the primary X-ray emission at the inner edge of the accretion disc provides a reliable scenario. On the other hand, the narrow emission lines can be due to the presence of photoionized matter around the accreting source.

  4. Emission spectral analysis of nickel-base superalloys with fixed time intergration technique

    International Nuclear Information System (INIS)

    Okochi, Haruno; Takahashi, Katsuyuki; Suzuki, Shunichi; Sudo, Emiko

    1980-01-01

    Simultaneous determination of multielements (C, B, Mo, Ta, Co, Fe, Mn, Cr, Nb, Cu, Ti, Zr, and Al) in nickel-base superalloys (Ni: 68 -- 76%) was performed by emission spectral analysis. At first, samples which had various nickel contents (ni: 68 -- 76%) were prepared by using JAERI R9, nickel and other metals (Fe, Co, or Cr). It was confirmed that in the internal standard method (Ni II 227.73 nm), analytical values of all the elements examined decreased with a decrease of the integration time (ca. 3.9 -- 4.6 s), that is, an increase of the nickel content. On the other hand, according to the fixed time integration method, elements except for C, Mo, and Cr were not interfered within the range of nickel contents examined. A series of nickel-base binary alloys (Al, Si, Ti, Cr, Mn, Fe, Co, Nb, Mo, and W series) were prepared by high frequency induction melting and the centrifugal casting method and formulae for correcting interferences with near spectral lines were obtained. Various synthetic samples were prepared and analysed by this method. The equations of calibration curves were derived from the data for standard samples (JAERI R1 -- R6, NBS 1189, 1203 -- 1205, and B.S. 600B) by curve fitting with orthogonal polynomials using a computer. For the assessment of this method studied, the F-test was performed by comparison of variances of both analytical values of standard and synthetic samples. The surfaces of specimens were polished with a belt grinder using No. 80 of alumina or silicon carbide endless-paper. The preburn period and integration one were decided at 5 and 6 s respectively. A few standard samples which gave worse reproducibility in emission spectral analysis was investigated with an optical microscope and an electron probe X-ray microanalyser. (author)

  5. Validation of spectral methods for the seismic analysis of multi-supported structures

    International Nuclear Information System (INIS)

    Viola, B.

    1999-01-01

    There are many methodologies for the seismic analysis of buildings. When a seism occurs, structures such piping systems in nuclear power plants are subjected to motions that may be different at each support point. Therefore it is necessary to develop methods that take into account the multi-supported effect. In a first time, a bibliography analysis on the different methods that exist has been carried out. The aim was to find a particular method applicable to the study of piping systems. The second step of this work consisted in developing a program that may be used to test and make comparisons on different selected methods. So spectral methods have the advantage to give an estimation of the maximum values for strain in the structure, in reduced calculation time. The time history analysis is used as the reference for the tests. (author)

  6. Financial Ratio Analysis: the Development of a Dedicated Management Information System

    Directory of Open Access Journals (Sweden)

    Voicu-Dan Dragomir

    2007-01-01

    Full Text Available This paper disseminates the results of the development process for a financial analysis information system. The system has been subject to conceptual design using the Unified Modeling Language (UML and has been implemented in object-oriented manner using the Visual Basic .NET 2003 programming language. The classic financial analysis literature is focused on the chain-substitution method of computing the prior-year to current-year variation of linked financial ratios. We have applied this technique on the DuPont System of analysis concerning the Return on Equity ratio, by designing several structural UML diagrams depicting the breakdown and analysis of each financial ratio involved. The resulting computer application offers a flexible approach to the analytical tools: the user is required to introduce the raw data and the system provides both table-style and charted information on the output of computation. User-friendliness is also a key feature of this particular financial analysis application.

  7. Two Step Procedure Using a 1-D Slab Spectral Geometry in a Pebble Bed Reactor Core Analysis

    International Nuclear Information System (INIS)

    Lee, Hyun Chul; Kim, Kang Seog; Noh, Jae Man; Joo, Hyung Kook

    2005-01-01

    A strong spectral interaction between the core and the reflector has been one of the main concerns in the analysis of pebble bed reactor cores. To resolve this problem, VSOP adopted iteration between the spectrum calculation in a spectral zone and the global core calculation. In VSOP, the whole problem domain is divided into many spectral zones in which the fine group spectrum is calculated using bucklings for fast groups and albedos for thermal groups from the global core calculation. The resulting spectrum in each spectral zone is used to generate broad group cross sections of the spectral zone for the global core calculation. In this paper, we demonstrate a two step procedure in a pebble bed reactor core analysis. In the first step, we generate equivalent cross sections from a 1-D slab spectral geometry model with the help of the equivalence theory. The equivalent cross sections generated in this way include the effect of the spectral interaction between the core and the reflector. In the second step, we perform a diffusion calculation using the equivalent cross sections generated in the first step. A simple benchmark problem derived from the PMBR-400 Reactor was introduced to verify this approach. We compared the two step solutions with the Monte Carlo (MC) solutions for the problem

  8. Cardiothoracic ratio for prediction of left ventricular dilation: a systematic review and pooled analysis.

    Science.gov (United States)

    Loomba, Rohit S; Shah, Parinda H; Nijhawan, Karan; Aggarwal, Saurabh; Arora, Rohit

    2015-03-01

    Increased cardiothoracic ratio noted on chest radiographs often prompts concern and further evaluation with additional imaging. This study pools available data assessing the utility of cardiothoracic ratio in predicting left ventricular dilation. A systematic review of the literature was conducted to identify studies comparing cardiothoracic ratio by chest x-ray to left ventricular dilation by echocardiography. Electronic databases were used to identify studies which were then assessed for quality and bias, with those with adequate quality and minimal bias ultimately being included in the pooled analysis. The pooled data were used to determine the sensitivity, specificity, positive predictive value and negative predictive value of cardiomegaly in predicting left ventricular dilation. A total of six studies consisting of 466 patients were included in this analysis. Cardiothoracic ratio had 83.3% sensitivity, 45.4% specificity, 43.5% positive predictive value and 82.7% negative predictive value. When a secondary analysis was conducted with a pediatric study excluded, a total of five studies consisting of 371 patients were included. Cardiothoracic ratio had 86.2% sensitivity, 25.2% specificity, 42.5% positive predictive value and 74.0% negative predictive value. Cardiothoracic ratio as determined by chest radiograph is sensitive but not specific for identifying left ventricular dilation. Cardiothoracic ratio also has a strong negative predictive value for identifying left ventricular dilation.

  9. Prognostic value of the neutrophil to lymphocyte ratio in lung cancer: A meta-analysis.

    Science.gov (United States)

    Yin, Yongmei; Wang, Jun; Wang, Xuedong; Gu, Lan; Pei, Hao; Kuai, Shougang; Zhang, Yingying; Shang, Zhongbo

    2015-07-01

    Recently, a series of studies explored the correlation between the neutrophil to lymphocyte ratio and the prognosis of lung cancer. However, the current opinion regarding the prognostic role of the neutrophil to lymphocyte ratio in lung cancer is inconsistent. We performed a meta-analysis of published articles to investigate the prognostic value of the neutrophil to lymphocyte ratio in lung cancer. The hazard ratio (HR) and its 95% confidence interval (CI) were calculated. An elevated neutrophil to lymphocyte ratio predicted worse overall survival, with a pooled HR of 1.243 (95%CI: 1.106-1.397; P(heterogeneity)=0.001) from multivariate studies and 1.867 (95%CI: 1.487-2.344; P(heterogeneity)=0.047) from univariate studies. Subgroup analysis showed that a high neutrophil to lymphocyte ratio yielded worse overall survival in non-small cell lung cancer (NSCLC) (HR=1.192, 95%CI: 1.061-1.399; P(heterogeneity)=0.003) as well as small cell lung cancer (SCLC) (HR=1.550, 95% CI: 1.156-2.077; P(heterogeneity)=0.625) in multivariate studies. The synthesized evidence from this meta-analysis of published articles demonstrated that an elevated neutrophil to lymphocyte ratio was a predictor of poor overall survival in patients with lung cancer.

  10. Recognizing stationary and locomotion activities using combinational of spectral analysis with statistical descriptors features

    Science.gov (United States)

    Zainudin, M. N. Shah; Sulaiman, Md Nasir; Mustapha, Norwati; Perumal, Thinagaran

    2017-10-01

    Prior knowledge in pervasive computing recently garnered a lot of attention due to its high demand in various application domains. Human activity recognition (HAR) considered as the applications that are widely explored by the expertise that provides valuable information to the human. Accelerometer sensor-based approach is utilized as devices to undergo the research in HAR since their small in size and this sensor already build-in in the various type of smartphones. However, the existence of high inter-class similarities among the class tends to degrade the recognition performance. Hence, this work presents the method for activity recognition using our proposed features from combinational of spectral analysis with statistical descriptors that able to tackle the issue of differentiating stationary and locomotion activities. The noise signal is filtered using Fourier Transform before it will be extracted using two different groups of features, spectral frequency analysis, and statistical descriptors. Extracted signal later will be classified using random forest ensemble classifier models. The recognition results show the good accuracy performance for stationary and locomotion activities based on USC HAD datasets.

  11. Spectral wave analysis at the mesopause from SCIAMACHY airglow data compared to SABER temperature spectra

    Directory of Open Access Journals (Sweden)

    M. Ern

    2009-01-01

    Full Text Available Space-time spectral analysis of satellite data is an important method to derive a synoptic picture of the atmosphere from measurements sampled asynoptically by satellite instruments. In addition, it serves as a powerful tool to identify and separate different wave modes in the atmospheric data. In our work we present space-time spectral analyses of chemical heating rates derived from Scanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY hydroxyl nightglow emission measurements onboard Envisat for the years 2002–2006 at mesopause heights. Since SCIAMACHY nightglow hydroxyl emission measurements are restricted to the ascending (nighttime part of the satellite orbit, our analysis also includes temperature spectra derived from 15 μm CO2 emissions measured by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER instrument. SABER offers better temporal and spatial coverage (daytime and night-time values of temperature and a more regular sampling grid. Therefore SABER spectra also contain information about higher frequency waves. Comparison of SCIAMACHY and SABER results shows that SCIAMACHY, in spite of its observational restrictions, provides valuable information on most of the wave modes present in the mesopause region. The main differences between wave spectra obtained from these sensors can be attributed to the differences in their sampling patterns.

  12. Spectral wave analysis at the mesopause from SCIAMACHY airglow data compared to SABER temperature spectra

    Directory of Open Access Journals (Sweden)

    M. Ern

    2009-01-01

    Full Text Available Space-time spectral analysis of satellite data is an important method to derive a synoptic picture of the atmosphere from measurements sampled asynoptically by satellite instruments. In addition, it serves as a powerful tool to identify and separate different wave modes in the atmospheric data. In our work we present space-time spectral analyses of chemical heating rates derived from Scanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY hydroxyl nightglow emission measurements onboard Envisat for the years 2002–2006 at mesopause heights.

    Since SCIAMACHY nightglow hydroxyl emission measurements are restricted to the ascending (nighttime part of the satellite orbit, our analysis also includes temperature spectra derived from 15 μm CO2 emissions measured by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER instrument. SABER offers better temporal and spatial coverage (daytime and night-time values of temperature and a more regular sampling grid. Therefore SABER spectra also contain information about higher frequency waves.

    Comparison of SCIAMACHY and SABER results shows that SCIAMACHY, in spite of its observational restrictions, provides valuable information on most of the wave modes present in the mesopause region. The main differences between wave spectra obtained from these sensors can be attributed to the differences in their sampling patterns.

  13. SVM-Based Spectral Analysis for Heart Rate from Multi-Channel WPPG Sensor Signals.

    Science.gov (United States)

    Xiong, Jiping; Cai, Lisang; Wang, Fei; He, Xiaowei

    2017-03-03

    Although wrist-type photoplethysmographic (hereafter referred to as WPPG) sensor signals can measure heart rate quite conveniently, the subjects' hand movements can cause strong motion artifacts, and then the motion artifacts will heavily contaminate WPPG signals. Hence, it is challenging for us to accurately estimate heart rate from WPPG signals during intense physical activities. The WWPG method has attracted more attention thanks to the popularity of wrist-worn wearable devices. In this paper, a mixed approach called Mix-SVM is proposed, it can use multi-channel WPPG sensor signals and simultaneous acceleration signals to measurement heart rate. Firstly, we combine the principle component analysis and adaptive filter to remove a part of the motion artifacts. Due to the strong relativity between motion artifacts and acceleration signals, the further denoising problem is regarded as a sparse signals reconstruction problem. Then, we use a spectrum subtraction method to eliminate motion artifacts effectively. Finally, the spectral peak corresponding to heart rate is sought by an SVM-based spectral analysis method. Through the public PPG database in the 2015 IEEE Signal Processing Cup, we acquire the experimental results, i.e., the average absolute error was 1.01 beat per minute, and the Pearson correlation was 0.9972. These results also confirm that the proposed Mix-SVM approach has potential for multi-channel WPPG-based heart rate estimation in the presence of intense physical exercise.

  14. Morphological, spectral and chromatography analysis and forensic comparison of PET fibers.

    Science.gov (United States)

    Farah, Shady; Tsach, Tsadok; Bentolila, Alfonso; Domb, Abraham J

    2014-06-01

    Poly(ethylene terephthalate) (PET) fiber analysis and comparison by spectral and polymer molecular weight determination was investigated. Plain fibers of PET, a common textile fiber and plastic material was chosen for this study. The fibers were analyzed for morphological (SEM and AFM), spectral (IR and NMR), thermal (DSC) and molecular weight (MS and GPC) differences. Molecular analysis of PET fibers by Gel Permeation Chromatography (GPC) allowed the comparison of fibers that could not be otherwise distinguished with high confidence. Plain PET fibers were dissolved in hexafluoroisopropanol (HFIP) and analyzed by GPC using hexafluoroisopropanol:chloroform 2:98 v/v as eluent. 14 PET fiber samples, collected from various commercial producers, were analyzed for polymer molecular weight by GPC. Distinct differences in the molecular weight of the different fiber samples were found which may have potential use in forensic fiber comparison. PET fibers with average molecular weights between about 20,000 and 70,000 g mol(-1) were determined using fiber concentrations in HFIP as low as 1 μg mL(-1). This GPC analytical method can be applied for exclusively distinguish between PET fibers using 1 μg of fiber. This method can be extended to forensic comparison of other synthetic fibers such as polyamides and acrylics. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. [Vegetation index estimation by chlorophyll content of grassland based on spectral analysis].

    Science.gov (United States)

    Xiao, Han; Chen, Xiu-Wan; Yang, Zhen-Yu; Li, Huai-Yu; Zhu, Han

    2014-11-01

    Comparing the methods of existing remote sensing research on the estimation of chlorophyll content, the present paper confirms that the vegetation index is one of the most practical and popular research methods. In recent years, the increasingly serious problem of grassland degradation. This paper, firstly, analyzes the measured reflectance spectral curve and its first derivative curve in the grasslands of Songpan, Sichuan and Gongger, Inner Mongolia, conducts correlation analysis between these two spectral curves and chlorophyll content, and finds out the regulation between REP (red edge position) and grassland chlorophyll content, that is, the higher the chlorophyll content is, the higher the REIP (red-edge inflection point) value would be. Then, this paper constructs GCI (grassland chlorophyll index) and selects the most suitable band for retrieval. Finally, this paper calculates the GCI by the use of satellite hyperspectral image, conducts the verification and accuracy analysis of the calculation results compared with chlorophyll content data collected from field of twice experiments. The result shows that for grassland chlorophyll content, GCI has stronger sensitivity than other indices of chlorophyll, and has higher estimation accuracy. GCI is the first proposed to estimate the grassland chlorophyll content, and has wide application potential for the remote sensing retrieval of grassland chlorophyll content. In addition, the grassland chlorophyll content estimation method based on remote sensing retrieval in this paper provides new research ideas for other vegetation biochemical parameters' estimation, vegetation growth status' evaluation and grassland ecological environment change's monitoring.

  16. COMBINED ANALYSIS OF IMAGES AND SPECTRAL ENERGY DISTRIBUTIONS OF TAURUS PROTOSTARS

    International Nuclear Information System (INIS)

    Gramajo, Luciana V.; Gomez, Mercedes; Whitney, Barbara A.; Robitaille, Thomas P.

    2010-01-01

    We present an analysis of spectral energy distributions (SEDs), near- and mid-infrared images, and Spitzer spectra of eight embedded Class I/II objects in the Taurus-Auriga molecular cloud. The initial model for each source was chosen using the grid of young stellar objects (YSOs) and SED fitting tool of Robitaille et al. Then the models were refined using the radiative transfer code of Whitney et al. to fit both the spectra and the infrared images of these objects. In general, our models agree with previous published analyses. However, our combined models should provide more reliable determinations of the physical and geometrical parameters since they are derived from SEDs, including the Spitzer spectra, covering the complete spectral range; and high-resolution near-infrared and Spitzer IRAC images. The combination of SED and image modeling better constrains the different components (central source, disk, envelope) of the YSOs. Our derived luminosities are higher, on average, than previous estimates because we account for the viewing angles (usually nearly edge-on) of most of the sources. Our analysis suggests that the standard rotating collapsing protostar model with disks and bipolar cavities works well for the analyzed sample of objects in the Taurus molecular cloud.

  17. Research on the strong optical feedback effects based on spectral analysis method

    Science.gov (United States)

    Zeng, Zhaoli; Qu, XueMin; Li, Weina; Zhang, Min; Wang, Hao; Li, Tuo

    2018-01-01

    The strong optical feedback has the advantage of generating high resolution fringes. However, these feedback fringes usually seem like the noise signal when the feedback level is high. This defect severely limits its practical application. In this paper, the generation mechanism of noise fringes with strong optical feedback is studied by using spectral analysis method. The spectral analysis results show that, in most cases, the noise-like fringes are observed owing to the strong multiple high-order feedback. However, at certain feedback cavity condition, there may be only one high-order feedback beam goes back to the laser cavity, the noise-like fringes can change to the cosine-like fringes. And the resolution of this fringe is dozens times than that of the weak optical feedback. This research provides a method to obtain high resolution cosine-like fringes rather than noise signal in the strong optical feedback, which makes it possible to be used in nanoscale displacement measurements.

  18. Spectral analysis of epicardial 60-lead electrograms in dogs with 4-week-old myocardial infarction.

    Science.gov (United States)

    Hosoya, Y; Ikeda, K; Komatsu, T; Yamaki, M; Kubota, I

    2001-01-01

    There were few studies on the spectral analysis of multiple-lead epicardial electrograms in chronic myocardial infarction. Spectral analysis of multi-lead epicardial electrograms was performed in 6 sham-operated dogs (N group) and 8 dogs with 4-week-old myocardial infarction (MI group). Four weeks after the ligation of left anterior descending coronary artery, fast Fourier transform was performed on 60-lead epicardial electrograms, and then inverse transform was performed on 5 frequency ranges from 0 to 250 Hz. From the QRS onset to QRS offset, the time integration of unsigned value of reconstructed waveform was calculated and displayed as AQRS maps. On 0-25 Hz AQRS map, there was no significant difference between the 2 groups. In the frequency ranges of 25-250 Hz, MI group had significantly smaller AQRS values than N group solely in the infarct zone. It was shown that high frequency potentials (25-250 Hz) within QRS complex were reduced in the infarct zone.

  19. SVM-Based Spectral Analysis for Heart Rate from Multi-Channel WPPG Sensor Signals

    Directory of Open Access Journals (Sweden)

    Jiping Xiong

    2017-03-01

    Full Text Available Although wrist-type photoplethysmographic (hereafter referred to as WPPG sensor signals can measure heart rate quite conveniently, the subjects’ hand movements can cause strong motion artifacts, and then the motion artifacts will heavily contaminate WPPG signals. Hence, it is challenging for us to accurately estimate heart rate from WPPG signals during intense physical activities. The WWPG method has attracted more attention thanks to the popularity of wrist-worn wearable devices. In this paper, a mixed approach called Mix-SVM is proposed, it can use multi-channel WPPG sensor signals and simultaneous acceleration signals to measurement heart rate. Firstly, we combine the principle component analysis and adaptive filter to remove a part of the motion artifacts. Due to the strong relativity between motion artifacts and acceleration signals, the further denoising problem is regarded as a sparse signals reconstruction problem. Then, we use a spectrum subtraction method to eliminate motion artifacts effectively. Finally, the spectral peak corresponding to heart rate is sought by an SVM-based spectral analysis method. Through the public PPG database in the 2015 IEEE Signal Processing Cup, we acquire the experimental results, i.e., the average absolute error was 1.01 beat per minute, and the Pearson correlation was 0.9972. These results also confirm that the proposed Mix-SVM approach has potential for multi-channel WPPG-based heart rate estimation in the presence of intense physical exercise.

  20. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, Tanja C. W.; Schierbeek, Henk; Houtekamer, Marco; van Engeland, Tom; Derrien, Delphine; Stal, Lucas J.; Boschker, Henricus T. S.

    2015-01-01

    We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of δ(13)C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although

  1. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, T.C.W.; Schierbeek, H.; Houtekamer, M.; van Engeland, T.; Derrien, D.; Stal, L.J.; Boschker, H.T.S.

    2015-01-01

    We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of d13C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although

  2. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, T.C.W.; Schierbeek, H.; Houtekamer, M.; van Engeland, T.; Derrien, D.; Stal, L.J.; Boschker, H.T.S.

    2015-01-01

    Rationale: We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of δ13C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence,

  3. On the Decay Ratio Determination in BWR Stability Analysis by Auto-Correlation Function Techniques

    International Nuclear Information System (INIS)

    Behringer, K.; Hennig, D.

    2002-11-01

    A novel auto-correlation function (ACF) method has been investigated for determining the oscillation frequency and the decay ratio in BWR stability analyses. The neutron signals are band-pass filtered to separate the oscillation peak in the power spectral density (PSD) from background. Two linear second-order oscillation models are considered. These models, corrected for signal filtering and including a background term under the peak in the PSD, are then least-squares fitted to the ACF of the previously filtered neutron signal, in order to determine the oscillation frequency and the decay ratio. Our method uses fast Fourier transform techniques with signal segmentation for filtering and ACF estimation. Gliding 'short-term' ACF estimates on a record allow the evaluation of uncertainties. Numerical results are given which have been obtained from neutron data of the recent Forsmark I and Forsmark II NEA benchmark project. Our results are compared with those obtained by other participants in the benchmark project. The present PSI report is an extended version of the publication K. Behringer, D. Hennig 'A novel auto-correlation function method for the determination of the decay ratio in BWR stability studies' (Behringer, Hennig, 2002)

  4. The CD4+/CD8+ Ratio in Pulmonary Tuberculosis: Systematic and Meta-Analysis Article.

    Science.gov (United States)

    Yin, Yongmei; Qin, Jie; Dai, Yaping; Zeng, Fanwei; Pei, Hao; Wang, Jun

    2015-02-01

    The ratio of CD4+/CD8+ has been used as a clinically index to evaluate patients' immunity. Numerous researchers have studied CD4+/CD8+ ratio in pulmonary tuberculosis (PTB) patients. However, the change of CD4+/CD8+ ratio remains controversial. We present a meta-analysis of 15 case-control studies to identify the change of CD4+/CD8+ ratio in PTB patients. We assessed heterogeneity of effect estimates within each group using I(2) test. Subgroup analysis was performed to explore the potential source of heterogeneity. To investigate further the potential publication bias, we visually examined the funnel plots. For robustness of results, we performed sensitivity analysis by removing studies. Data entry and analyses were carried out with RevMan 5.2 (The Nordic Cochrane Centre). Twelve peripheral blood studies were categorized into two subgroups. Eight studies presented a significant decrease of CD4+/CD8+ ratio in PTB cases compared to healthy subjects (SMD: -0.45; 95% CI -0.65--0.25; I(2) = 7%). Other four studies researched on the newly diagnosed patients presented a more seriously and significantly decrease (SMD: -2.17; 95% CI -2.61--1.74; I(2) = 37%). The pooled analysis of bronchoalveolar lavage fluid (BALF) studies showed a significant increase of CD4+/CD8+ ratio using Flow Cytometry (FCM) (SMD: 4.75; 95% CI 3.44-6.05; I(2) =0%). The present meta-analysis indicated that there was a synthetic evidence for the reduced CD4+/CD8+ ratio in peripheral blood of PTB patients, especially newly diagnosed cases. However, the CD4+/CD8+ ratio in BALF was increased using method of FCM.

  5. Performance evaluation of tile-based Fisher Ratio analysis using a benchmark yeast metabolome dataset.

    Science.gov (United States)

    Watson, Nathanial E; Parsons, Brendon A; Synovec, Robert E

    2016-08-12

    Performance of tile-based Fisher Ratio (F-ratio) data analysis, recently developed for discovery-based studies using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOFMS), is evaluated with a metabolomics dataset that had been previously analyzed in great detail, but while taking a brute force approach. The previously analyzed data (referred to herein as the benchmark dataset) were intracellular extracts from Saccharomyces cerevisiae (yeast), either metabolizing glucose (repressed) or ethanol (derepressed), which define the two classes in the discovery-based analysis to find metabolites that are statistically different in concentration between the two classes. Beneficially, this previously analyzed dataset provides a concrete means to validate the tile-based F-ratio software. Herein, we demonstrate and validate the significant benefits of applying tile-based F-ratio analysis. The yeast metabolomics data are analyzed more rapidly in about one week versus one year for the prior studies with this dataset. Furthermore, a null distribution analysis is implemented to statistically determine an adequate F-ratio threshold, whereby the variables with F-ratio values below the threshold can be ignored as not class distinguishing, which provides the analyst with confidence when analyzing the hit table. Forty-six of the fifty-four benchmarked changing metabolites were discovered by the new methodology while consistently excluding all but one of the benchmarked nineteen false positive metabolites previously identified. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Numerical analysis on the ion species ratios in a steady state hydrogen plasma

    International Nuclear Information System (INIS)

    Fukumasa, Osamu; Saeki, Setsuo; Osaki, Katashi; Sakiyama, Satoshi; Itatani, Ryohei.

    1984-07-01

    Ion species ratios in a hydrogen plasma are calculated systematically as a function of plasma parameters, i.e. the electron density, the electron temperature, the pressure of hydrogen gas and the plasma volume. Furthermore, in the present analysis, the recombination factor for hydrogen atoms at the wall surface of a vacuum vessel is treated as another plasma parameter. The most significant point is that ion species ratios depend strongly not only on plasma parameters, but also on the recombination factor. The proton ratio increases with decreasing value of the recombination factor. Primary electrons also play an important role for ion species ratios, and the presence of primary electrons causes the proton ratio to decrease. (author)

  7. ANALYSIS OF THE HERSCHEL /HEXOS SPECTRAL SURVEY TOWARD ORION SOUTH: A MASSIVE PROTOSTELLAR ENVELOPE WITH STRONG EXTERNAL IRRADIATION

    Energy Technology Data Exchange (ETDEWEB)

    Tahani, K.; Plume, R. [Department of Physics and Astronomy, University of Calgary, Calgary, AB T2N 1N4 (Canada); Bergin, E. A. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Tolls, V. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Phillips, T. G.; Lis, D. C. [California Institute of Technology, Cahill Center for Astronomy and Astrophysics 301-17, Pasadena, CA 91125 (United States); Caux, E. [Université de Toulouse, UPS-OMP, IRAP, F-31028 Toulouse (France); Cabrit, S.; Pagani, L. [LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, F-75014, Paris (France); Goicoechea, J. R. [Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC). Sor Juana Ines de la Cruz 3, E-28049 Cantoblanco, Madrid (Spain); Goldsmith, P. F.; Pearson, J. C. [Jet Propulsion Laboratory, Caltech, Pasadena, CA 91109 (United States); Johnstone, D. [National Research Council Canada, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Menten, K. M. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Müller, H. S. P.; Ossenkopf-Okada, V. [I. Physikalisches Institut, Universität zu Köln, Zülpicher Strasse 77, D-50937 Köln (Germany); Tak, F. F. S. van der, E-mail: ktahani@ucalgary.ca [SRON Netherlands Institute for Space Research, P.O. Box 800, 9700 AV, Groningen (Netherlands)

    2016-11-20

    We present results from a comprehensive submillimeter spectral survey toward the source Orion South, based on data obtained with the Heterodyne Instrument for the Far-Infrared instrument on board the Herschel Space Observatory , covering the frequency range of 480 to 1900 GHz. We detect 685 spectral lines with signal-to-noise ratios (S/Ns) > 3 σ , originating from 52 different molecular and atomic species. We model each of the detected species assuming conditions of Local Thermodynamic Equilibrium. This analysis provides an estimate of the physical conditions of Orion South (column density, temperature, source size, and V {sub LSR}). We find evidence for three different cloud components: a cool ( T {sub ex} ∼ 20–40 K), spatially extended (>60″), and quiescent (Δ V {sub FWHM} ∼ 4 km s{sup -1}) component; a warmer ( T {sub ex} ∼ 80–100 K), less spatially extended (∼30″), and dynamic (Δ V {sub FWHM} ∼ 8 km s{sup -1}) component, which is likely affected by embedded outflows; and a kinematically distinct region ( T {sub ex} > 100 K; V {sub LSR} ∼ 8 km s{sup -1}), dominated by emission from species that trace ultraviolet irradiation, likely at the surface of the cloud. We find little evidence for the existence of a chemically distinct “hot-core” component, likely due to the small filling factor of the hot core or hot cores within the Herschel beam. We find that the chemical composition of the gas in the cooler, quiescent component of Orion South more closely resembles that of the quiescent ridge in Orion-KL. The gas in the warmer, dynamic component, however, more closely resembles that of the Compact Ridge and Plateau regions of Orion-KL, suggesting that higher temperatures and shocks also have an influence on the overall chemistry of Orion South.

  8. Multisensor Analysis of Spectral Dimensionality and Soil Diversity in the Great Central Valley of California

    Directory of Open Access Journals (Sweden)

    Daniel Sousa

    2018-02-01

    Full Text Available Planned hyperspectral satellite missions and the decreased revisit time of multispectral imaging offer the potential for data fusion to leverage both the spectral resolution of hyperspectral sensors and the temporal resolution of multispectral constellations. Hyperspectral imagery can also be used to better understand fundamental properties of multispectral data. In this analysis, we use five flight lines from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS archive with coincident Landsat 8 acquisitions over a spectrally diverse region of California to address the following questions: (1 How much of the spectral dimensionality of hyperspectral data is captured in multispectral data?; (2 Is the characteristic pyramidal structure of the multispectral feature space also present in the low order dimensions of the hyperspectral feature space at comparable spatial scales?; (3 How much variability in rock and soil substrate endmembers (EMs present in hyperspectral data is captured by multispectral sensors? We find nearly identical partitions of variance, low-order feature space topologies, and EM spectra for hyperspectral and multispectral image composites. The resulting feature spaces and EMs are also very similar to those from previous global multispectral analyses, implying that the fundamental structure of the global feature space is present in our relatively small spatial subset of California. Finally, we find that the multispectral dataset well represents the substrate EM variability present in the study area – despite its inability to resolve narrow band absorptions. We observe a tentative but consistent physical relationship between the gradation of substrate reflectance in the feature space and the gradation of sand versus clay content in the soil classification system.

  9. Spectral analysis of atmospheric composition: application to surface ozone model–measurement comparisons

    Directory of Open Access Journals (Sweden)

    D. R. Bowdalo

    2016-07-01

    Full Text Available Models of atmospheric composition play an essential role in our scientific understanding of atmospheric processes and in providing policy strategies to deal with societally relevant problems such as climate change, air quality, and ecosystem degradation. The fidelity of these models needs to be assessed against observations to ensure that errors in model formulations are found and that model limitations are understood. A range of approaches are necessary for these comparisons. Here, we apply a spectral analysis methodology for this comparison. We use the Lomb–Scargle periodogram, a method similar to a Fourier transform, but better suited to deal with the gapped data sets typical of observational data. We apply this methodology to long-term hourly ozone observations and the equivalent model (GEOS-Chem output. We show that the spectrally transformed observational data show a distinct power spectrum with regimes indicative of meteorological processes (weather, macroweather and specific peaks observed at the daily and annual timescales together with corresponding harmonic peaks at one-half, one-third, etc., of these frequencies. Model output shows corresponding features. A comparison between the amplitude and phase of these peaks introduces a new comparison methodology between model and measurements. We focus on the amplitude and phase of diurnal and seasonal cycles and present observational/model comparisons and discuss model performance. We find large biases notably for the seasonal cycle in the mid-latitude Northern Hemisphere where the amplitudes are generally overestimated by up to 16 ppbv, and phases are too late on the order of 1–5 months. This spectral methodology can be applied to a range of model–measurement applications and is highly suitable for Multimodel Intercomparison Projects (MIPs.

  10. Synthetic spectral analysis of a kinetic model for slow-magnetosonic waves in solar corona

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, Wenzhi; He, Jiansen; Tu, Chuanyi; Wang, Linghua [School of Earth and Space Sciences, Peking University, Beijing, 100871, China, E-mail: jshept@gmail.com (China); Zhang, Lei [State Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190 (China); Vocks, Christian [Leibniz-Institut für Astrophysik Potsdam, 14482, Potsdam (Germany); Marsch, Eckart [Institute for Experimental and Applied Physics, Christian-Albrechts-Universität zu Kiel, 24118 Kiel (Germany); Peter, Hardi [Max Plank Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen (Germany)

    2016-03-25

    We propose a kinetic model of slow-magnetosonic waves to explain various observational features associated with the propagating intensity disturbances (PIDs) occurring in the solar corona. The characteristics of slow mode waves, e.g, inphase oscillations of density, velocity, and thermal speed, are reproduced in this kinetic model. Moreover, the red-blue (R-B) asymmetry of the velocity distribution as self-consistently generated in the model is found to be contributed from the beam component, as a result of the competition between Landau resonance and Coulomb collisions. Furthermore, we synthesize the spectral lines and make the spectral analysis, based on the kinetic simulation data of the flux tube plasmas and the hypothesis of the surrounding background plasmas. It is found that the fluctuations of parameters of the synthetic spectral lines are basically consistent with the observations: (1) the line intensity, Doppler shift, and line width are fluctuating in phase; (2) the R-B asymmetry usually oscillate out of phase with the former three parameters; (3) the blueward asymmetry is more evident than the redward asymmetry in the R-B fluctuations. The oscillations of line parameters become weakened for the case with denser surrounding background plasmas. Similar to the observations, there is no doubled-frequency oscillation of the line width for the case with flux-tube plasmas flowing bulkly upward among the static background plasmas. Therefore, we suggest that the “wave + beam flow” kinetic model may be a viable interpretation for the PIDs observed in the solar corona.

  11. Digital signal processing and spectral analysis for scientists concepts and applications

    CERN Document Server

    Alessio, Silvia Maria

    2016-01-01

    This book covers the basics of processing and spectral analysis of monovariate discrete-time signals. The approach is practical, the aim being to acquaint the reader with the indications for and drawbacks of the various methods and to highlight possible misuses. The book is rich in original ideas, visualized in new and illuminating ways, and is structured so that parts can be skipped without loss of continuity. Many examples are included, based on synthetic data and real measurements from the fields of physics, biology, medicine, macroeconomics etc., and a complete set of MATLAB exercises requiring no previous experience of programming is provided. Prior advanced mathematical skills are not needed in order to understand the contents: a good command of basic mathematical analysis is sufficient. Where more advanced mathematical tools are necessary, they are included in an Appendix and presented in an easy-to-follow way. With this book, digital signal processing leaves the domain of engineering to address the ne...

  12. Flaw location and characterization in anisotropic materials by ultrasonic spectral analysis

    International Nuclear Information System (INIS)

    Adler, L.; Cook, K.V.; Simpson, W.A.; Lewis, D.K.

    1978-01-01

    A method of quantitatively determining size and location of flaws in anisotropic materials such as stainless steel welds is described. In previous work, it was shown that spectral analysis of a broad band ultrasonic pulse scattered from a defect can be used to determine size and orientation in isotropic materials if the velocity of sound in the material is known. In an anisotropic structural material (stainless steel weld, centrifugal cast pipe), the velocity (both shear and longitudinal) is direction-dependent. When anisotropy is not taken into account, defect location and defect size estimation is misjudged. It will be shown that the effect of this structural variation in materials must be considered to obtain the correct size and location of defects by frequency analysis. A theoretical calculation, including anisotropy, of the scattered field from defects will also be presented

  13. [Desmoid fibromatosis in absorption infrared spectroscopy, emission spectral analysis and roentgen diffraction recording].

    Science.gov (United States)

    Zejkan, A; Bejcek, Z; Horejs, J; Vrbová, H; Bakosová, M; Macholda, F; Rykl, D

    1989-10-01

    The authors present results of serial quality and quantity microanalyses of bone patterns and dental tissue patterns in patient with desmoid fibromatosis. Methods of absorption spectroscopy, emission spectral analysis and X-ray diffraction analysis with follow-up to x-ray examination are tested. The above mentioned methods function in a on-line system by means of specially adjusted monitor unit which is controlled centrally by the computer processor system. The whole process of measurement is fully automated and the data obtained are recorded processed in the unit data structure classified into index sequence blocks of data. Serial microanalyses offer exact data for the study of structural changes of dental and bone tissues which manifest themselves in order of crystal grid shifts. They prove the fact that microanalyses give new possibilities in detection and interpretation of chemical and structural changes of apatite cell.

  14. Statistical learning method in regression analysis of simulated positron spectral data

    International Nuclear Information System (INIS)

    Avdic, S. Dz.

    2005-01-01

    Positron lifetime spectroscopy is a non-destructive tool for detection of radiation induced defects in nuclear reactor materials. This work concerns the applicability of the support vector machines method for the input data compression in the neural network analysis of positron lifetime spectra. It has been demonstrated that the SVM technique can be successfully applied to regression analysis of positron spectra. A substantial data compression of about 50 % and 8 % of the whole training set with two and three spectral components respectively has been achieved including a high accuracy of the spectra approximation. However, some parameters in the SVM approach such as the insensitivity zone e and the penalty parameter C have to be chosen carefully to obtain a good performance. (author)

  15. Spectral analysis of stellar light curves by means of neural networks

    Science.gov (United States)

    Tagliaferri, R.; Ciaramella, A.; Milano, L.; Barone, F.; Longo, G.

    1999-06-01

    Periodicity analysis of unevenly collected data is a relevant issue in several scientific fields. In astrophysics, for example, we have to find the fundamental period of light or radial velocity curves which are unevenly sampled observations of stars. Classical spectral analysis methods are unsatisfactory to solve the problem. In this paper we present a neural network based estimator system which performs well the frequency extraction in unevenly sampled signals. It uses an unsupervised Hebbian nonlinear neural algorithm to extract, from the interpolated signal, the principal components which, in turn, are used by the MUSIC frequency estimator algorithm to extract the frequencies. The neural network is tolerant to noise and works well also with few points in the sequence. We benchmark the system on synthetic and real signals with the Periodogram and with the Cramer-Rao lower bound. This work was been partially supported by IIASS, by MURST 40\\% and by the Italian Space Agency.

  16. Principal Components Analysis on the spectral Bidirectional Reflectance Distribution Function of ceramic colour standards.

    Science.gov (United States)

    Ferrero, A; Campos, J; Rabal, A M; Pons, A; Hernanz, M L; Corróns, A

    2011-09-26

    The Bidirectional Reflectance Distribution Function (BRDF) is essential to characterize an object's reflectance properties. This function depends both on the various illumination-observation geometries as well as on the wavelength. As a result, the comprehensive interpretation of the data becomes rather complex. In this work we assess the use of the multivariable analysis technique of Principal Components Analysis (PCA) applied to the experimental BRDF data of a ceramic colour standard. It will be shown that the result may be linked to the various reflection processes occurring on the surface, assuming that the incoming spectral distribution is affected by each one of these processes in a specific manner. Moreover, this procedure facilitates the task of interpolating a series of BRDF measurements obtained for a particular sample. © 2011 Optical Society of America

  17. A spectral power analysis of driving behavior changes during the transition from nondistraction to distraction.

    Science.gov (United States)

    Wang, Yuan; Bao, Shan; Du, Wenjun; Ye, Zhirui; Sayer, James R

    2017-11-17

    This article investigated and compared frequency domain and time domain characteristics of drivers' behaviors before and after the start of distracted driving. Data from an existing naturalistic driving study were used. Fast Fourier transform (FFT) was applied for the frequency domain analysis to explore drivers' behavior pattern changes between nondistracted (prestarting of visual-manual task) and distracted (poststarting of visual-manual task) driving periods. Average relative spectral power in a low frequency range (0-0.5 Hz) and the standard deviation in a 10-s time window of vehicle control variables (i.e., lane offset, yaw rate, and acceleration) were calculated and further compared. Sensitivity analyses were also applied to examine the reliability of the time and frequency domain analyses. Results of the mixed model analyses from the time and frequency domain analyses all showed significant degradation in lateral control performance after engaging in visual-manual tasks while driving. Results of the sensitivity analyses suggested that the frequency domain analysis was less sensitive to the frequency bandwidth, whereas the time domain analysis was more sensitive to the time intervals selected for variation calculations. Different time interval selections can result in significantly different standard deviation values, whereas average spectral power analysis on yaw rate in both low and high frequency bandwidths showed consistent results, that higher variation values were observed during distracted driving when compared to nondistracted driving. This study suggests that driver state detection needs to consider the behavior changes during the prestarting periods, instead of only focusing on periods with physical presence of distraction, such as cell phone use. Lateral control measures can be a better indicator of distraction detection than longitudinal controls. In addition, frequency domain analyses proved to be a more robust and consistent method in assessing

  18. Biometrics from the carbon isotope ratio analysis of amino acids in human hair.

    Science.gov (United States)

    Jackson, Glen P; An, Yan; Konstantynova, Kateryna I; Rashaid, Ayat H B

    2015-01-01

    This study compares and contrasts the ability to classify individuals into different grouping factors through either bulk isotope ratio analysis or amino-acid-specific isotope ratio analysis of human hair. Using LC-IRMS, we measured the isotope ratios of 14 amino acids in hair proteins independently, and leucine/isoleucine as a co-eluting pair, to provide 15 variables for classification. Multivariate analysis confirmed that the essential amino acids and non-essential amino acids were mostly independent variables in the classification rules, thereby enabling the separation of dietary factors of isotope intake from intrinsic or phenotypic factors of isotope fractionation. Multivariate analysis revealed at least two potential sources of non-dietary factors influencing the carbon isotope ratio values of the amino acids in human hair: body mass index (BMI) and age. These results provide evidence that compound-specific isotope ratio analysis has the potential to go beyond region-of-origin or geospatial movements of individuals-obtainable through bulk isotope measurements-to the provision of physical and characteristic traits about the individuals, such as age and BMI. Further development and refinement, for example to genetic, metabolic, disease and hormonal factors could ultimately be of great assistance in forensic and clinical casework. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Analysis of errors in spectral reconstruction with a Laplace transform pair model

    International Nuclear Information System (INIS)

    Archer, B.R.; Bushong, S.C.

    1985-01-01

    The sensitivity of a Laplace transform pair model for spectral reconstruction to random errors in attenuation measurements of diagnostic x-ray units has been investigated. No spectral deformation or significant alteration resulted from the simulated attenuation errors. It is concluded that the range of spectral uncertainties to be expected from the application of this model is acceptable for most scientific applications. (author)

  20. Phasor analysis of multiphoton spectral images distinguishes autofluorescence components of in vivo human skin

    NARCIS (Netherlands)

    Fereidouni, F.; Bader, A.N.; Colonna, A.; Gerritsen, H.C.

    2014-01-01

    Skin contains many autofluorescent components that can be studied using spectral imaging. We employed a spectral phasor method to analyse two photon excited auto-fluorescence and second harmonic generation images of in vivo human skin. This method allows segmentation of images based on spectral

  1. FULLPROF as a new tool for flipping ratio analysis: further improvements

    International Nuclear Information System (INIS)

    Frontera, C.; Rodriguez-Carvajal, J.

    2004-01-01

    In the international workshop on polarized neutron for condensed matter investigation (Juelich, September 2002), we presented the implementations done in FULLPROF in order to introduce the ability of performing flipping ratio analysis. During this year we have modified the program in order to extend the initial features. We have tested these new implementations by re-analyzing flipping ratio data on Metrz-Nit (C 10 H 16 N 5 O 2 ) compound

  2. Laser assisted ratio analysis - An alternative to GC/IRMS for CO2

    International Nuclear Information System (INIS)

    Murnick, D.E.

    2001-01-01

    A new technique for laser based analysis of carbon isotope ratios, with the acronym LARA, based on large isotope shifts in molecular spectra, the use of fixed frequency isotopic lasers, and sensitive detection via the laser optogalvanic effect is reviewed and compared with GC/IRMS for carbon dioxide in specific applications. The possibility for development of new classes of isotope ratio measurement systems with LARA is explored. (author)

  3. Analysis of signal to background ratio in synchrotron radiation X-ray fluorescence

    International Nuclear Information System (INIS)

    Sakurai, Kenji; Gohshi, Yohichi; Iida, Atsuo.

    1988-01-01

    The signal to background (S/B) ratio in energy dispersive X-ray fluorescence using synchrotron radiation (SR) was quantitatively analyzed. The S/B ratio, which has been significantly improved by taking advantage of the polarized nature of SR, was found to be strongly dependent on geometrical factors of the measurement system. From the analysis on the origin of the scattered background, the dependence of the S/B ratio on the geometry was quantitatively explained, mainly by the polarization properties of SR. Experimental conditions could be optimized by adjusting the degree of polarization of the incident beam and the detector solid angle. (author)

  4. Spectral negentropy based sidebands and demodulation analysis for planet bearing fault diagnosis

    Science.gov (United States)

    Feng, Zhipeng; Ma, Haoqun; Zuo, Ming J.

    2017-12-01

    Planet bearing vibration signals are highly complex due to intricate kinematics (involving both revolution and spinning) and strong multiple modulations (including not only the fault induced amplitude modulation and frequency modulation, but also additional amplitude modulations due to load zone passing, time-varying vibration transfer path, and time-varying angle between the gear pair mesh lines of action and fault impact force vector), leading to difficulty in fault feature extraction. Rolling element bearing fault diagnosis essentially relies on detection of fault induced repetitive impulses carried by resonance vibration, but they are usually contaminated by noise and therefor are hard to be detected. This further adds complexity to planet bearing diagnostics. Spectral negentropy is able to reveal the frequency distribution of repetitive transients, thus providing an approach to identify the optimal frequency band of a filter for separating repetitive impulses. In this paper, we find the informative frequency band (including the center frequency and bandwidth) of bearing fault induced repetitive impulses using the spectral negentropy based infogram. In Fourier spectrum, we identify planet bearing faults according to sideband characteristics around the center frequency. For demodulation analysis, we filter out the sensitive component based on the informative frequency band revealed by the infogram. In amplitude demodulated spectrum (squared envelope spectrum) of the sensitive component, we diagnose planet bearing faults by matching the present peaks with the theoretical fault characteristic frequencies. We further decompose the sensitive component into mono-component intrinsic mode functions (IMFs) to estimate their instantaneous frequencies, and select a sensitive IMF with an instantaneous frequency fluctuating around the center frequency for frequency demodulation analysis. In the frequency demodulated spectrum (Fourier spectrum of instantaneous frequency) of

  5. [Use of sFlt-1/PlGF ratio in preeclampsia : a monocentric retrospective analysis].

    Science.gov (United States)

    Verbeurgt, L; Chantraine, F; De Marchin, J; Minon, J-M; Nisolle, M

    2017-09-01

    Soluble Fms-like tyrosine kinase 1 (sFlt-1) is an anti-angiogenic factor released in higher amounts in preeclampsia and implicated in endothelial dysfunction. sFlt-1/PlGF ratio is used in the prediction of preeclampsia. An sFlt-1/PlGF ratio inferior to 38 predicts the short-term absence of preeclampsia. A ratio ? 85 (early-onset PE) or ? 110 (late-onset of PE) could diagnose preeclampsia. In this study, sFlt-1/PlGF ratio has been measured in 183 patients. Sixty-seven preeclampsia have been diagnosed preeclamptic at delivery. The median sFlt-1/PlGF ratio was 100.3. The median ratio among women with preeclampsia (N=67) versus no preeclampsia (N=116) was 212.7 versus 35.4. In accordance with this analysis, an sFlt-1/PlGF ratio ? 38 has a sensibility of 95,5 % and a specificity of 73.3 %. The positive predictive value and the negative predictive value were 67.4 % and 96.6 %, respectively. These results suggest that sFlt-1/PlGF ratio is helpful in the diagnosis of preeclampsia.

  6. M3 spectral analysis of lunar swirls and the link between optical maturation and surface hydroxyl formation at magnetic anomalies

    Science.gov (United States)

    Kramer, G.Y.; Besse, S.; Dhingra, D.; Nettles, J.; Klima, R.; Garrick-Bethell, I.; Clark, Roger N.; Combe, J.-P.; Head, J. W.; Taylor, L.A.; Pieters, C.M.; Boardman, J.; McCord, T.B.

    2011-01-01

    We examined the lunar swirls using data from the Moon Mineralogy Mapper (M3). The improved spectral and spatial resolution of M3 over previous spectral imaging data facilitates distinction of subtle spectral differences, and provides new information about the nature of these enigmatic features. We characterized spectral features of the swirls, interswirl regions (dark lanes), and surrounding terrain for each of three focus regions: Reiner Gamma, Gerasimovich, and Mare Ingenii. We used Principle Component Analysis to identify spectrally distinct surfaces at each focus region, and characterize the spectral features that distinguish them. We compared spectra from small, recent impact craters with the mature soils into which they penetrated to examine differences in maturation trends on- and off-swirl. Fresh, on-swirl crater spectra are higher albedo, exhibit a wider range in albedos and have well-preserved mafic absorption features compared with fresh off-swirl craters. Albedoand mafic absorptions are still evident in undisturbed, on-swirl surface soils, suggesting the maturation process is retarded. The spectral continuum is more concave compared with off-swirl spectra; a result of the limited spectral reddening being mostly constrained to wavelengths less than ∼1500 nm. Off-swirl spectra show very little reddening or change in continuum shape across the entire M3 spectral range. Off-swirl spectra are dark, have attenuated absorption features, and the narrow range in off-swirl albedos suggests off-swirl regions mature rapidly. Spectral parameter maps depicting the relative OH surface abundance for each of our three swirl focus regions were created using the depth of the hydroxyl absorption feature at 2.82 μm. For each of the studied regions, the 2.82 μm absorption feature is significantly weaker on-swirl than off-swirl, indicating the swirls are depleted in OH relative to their surroundings. The spectral characteristics of the swirls and adjacent terrains

  7. (F)UV Spectral Analysis of 15 Hot, Hydrogen-Rich Central Stars of PNe

    Science.gov (United States)

    Ziegler, Marc

    2013-07-01

    The aim of this thesis was the precise determination of basic stellar parameters and metal abundances for a sample of 15 ionizing stars of gaseous nebulae. Strategic lines of metals for the expected parameter range are located in the ultraviolet (UV) and far-ultraviolet (FUV) range. Thus high-resolution, high-S/N UV and FUV observations obtained with the Hubble Space Telescope (HST) and the Far Ultraviolet Spectroscopic Explorer (FUSE) were used for the analysis. For the calculation of the necessary spectral energy distributions the Tübingen NLTE Model-Atmosphere Package (TMAP) was used. The model atmospheres included most elements from H - Ni in order to account for line-blanketing effects. For each object a small grid of model atmospheres was calculated. As the interstellar medium (ISM) imprints its influence in the Space Telescope Imaging Spectrograph (STIS) and especially the FUSE range, the program OWENS was employed to calculate the interstellar absorption features. Both, the photospheric model spectral energy distribution (SED) as well as the ISM models were combined to enable the identification of most of the observed absorption lines. The analyzed sample covers a range of 70 kK < Teff < 136 kK, and surface gravities from log (g/cm/sec^2) = 5.4 - 7.4, thus representing different stages of stellar evolution. For a large number of elements, abundances were determined for the first time in these objects. Lines of C, N, O, F, Ne, Si, P, S, and Ar allowed to determine the corresponding abundances. For none of the objects lines of Ca, Sc, Ti, and V could be found. Only a few objects were rich in Cr, Mn, Fe, Co, and Ni lines. Most of the analyzed stars exhibited only lines of Fe (ionization stages V - VIII) from the iron-group elements. No signs for gravitational settling (the gravitational force exceeds the radiation pressure and elements begin to sink from the atmosphere into deeper layers) were found. This is expected as the values of the surface gravities of

  8. Rapid estimation of compost enzymatic activity by spectral analysis method combined with machine learning.

    Science.gov (United States)

    Chakraborty, Somsubhra; Das, Bhabani S; Ali, Md Nasim; Li, Bin; Sarathjith, M C; Majumdar, K; Ray, D P

    2014-03-01

    The aim of this study was to investigate the feasibility of using visible near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) as an easy, inexpensive, and rapid method to predict compost enzymatic activity, which traditionally measured by fluorescein diacetate hydrolysis (FDA-HR) assay. Compost samples representative of five different compost facilities were scanned by DRS, and the raw reflectance spectra were preprocessed using seven spectral transformations for predicting compost FDA-HR with six multivariate algorithms. Although principal component analysis for all spectral pretreatments satisfactorily identified the clusters by compost types, it could not separate different FDA contents. Furthermore, the artificial neural network multilayer perceptron (residual prediction deviation=3.2, validation r(2)=0.91 and RMSE=13.38 μg g(-1) h(-1)) outperformed other multivariate models to capture the highly non-linear relationships between compost enzymatic activity and VisNIR reflectance spectra after Savitzky-Golay first derivative pretreatment. This work demonstrates the efficiency of VisNIR DRS for predicting compost enzymatic as well as microbial activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Signal noise ratio analysis and on-orbit performance estimation of a solar occultation Fourier transform spectrometer

    Science.gov (United States)

    Li, Bicen; Xu, Pengmei; Hou, Lizhou; Wang, Caiqin

    2017-10-01

    Taking the advantages of high spectral resolution, high sensitivity and wide spectral coverage, space borne Fourier transform infrared spectrometer (FTS) plays more and more important role in atmospheric composition sounding. The combination of solar occultation and FTS technique improves the sensitivity of instrument. To achieve both high spectral resolution and high signal to noise ratio (SNR), reasonable allocation and optimization for instrument parameters are the foundation and difficulty. The solar occultation FTS (SOFTS) is a high spectral resolution (0.03 cm-1) FTS operating from 2.4 to 13.3 μm (750-4100cm-1), which will determine the altitude profile information of typical 10-100km for temperature, pressure, and the volume mixing ratios for several dozens of atmospheric compositions. As key performance of SOFTS, SNR is crucially important to high accuracy retrieval of atmospheric composition, which is required to be no less than 100:1 at the radiance of 5800K blackbody. Based on the study of various parameters and its interacting principle, according to interference theory and operation principle of time modulated FTS, a simulation model of FTS SNR has been built, which considers satellite orbit, spectral radiometric features of sun and atmospheric composition, optical system, interferometer and its control system, measurement duration, detector sensitivity, noise of detector and electronic system and so on. According to the testing results of SNR at the illuminating of 1000 blackbody, the on-orbit SNR performance of SOFTS is estimated, which can meet the mission requirement.

  10. Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits

    Directory of Open Access Journals (Sweden)

    Peeyush Sahay

    2009-10-01

    Full Text Available Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS, cavity ringdown spectroscopy (CRDS, integrated cavity output spectroscopy (ICOS, cavity enhanced absorption spectroscopy (CEAS, cavity leak-out spectroscopy (CALOS, photoacoustic spectroscopy (PAS, quartz-enhanced photoacoustic spectroscopy (QEPAS, and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS. Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis.

  11. Direct uranium isotope ratio analysis of single micrometer-sized glass particles

    International Nuclear Information System (INIS)

    Kappel, Stefanie; Boulyga, Sergei F.; Prohaska, Thomas

    2012-01-01

    We present the application of nanosecond laser ablation (LA) coupled to a ‘Nu Plasma HR’ multi collector inductively coupled plasma mass spectrometer (MC-ICP-MS) for the direct analysis of U isotope ratios in single, 10–20 μm-sized, U-doped glass particles. Method development included studies with respect to (1) external correction of the measured U isotope ratios in glass particles, (2) the applied laser ablation carrier gas (i.e. Ar versus He) and (3) the accurate determination of lower abundant 236 U/ 238 U isotope ratios (i.e. 10 −5 ). In addition, a data processing procedure was developed for evaluation of transient signals, which is of potential use for routine application of the developed method. We demonstrate that the developed method is reliable and well suited for determining U isotope ratios of individual particles. Analyses of twenty-eight S1 glass particles, measured under optimized conditions, yielded average biases of less than 0.6% from the certified values for 234 U/ 238 U and 235 U/ 238 U ratios. Experimental results obtained for 236 U/ 238 U isotope ratios deviated by less than −2.5% from the certified values. Expanded relative total combined standard uncertainties U c (k = 2) of 2.6%, 1.4% and 5.8% were calculated for 234 U/ 238 U, 235 U/ 238 U and 236 U/ 238 U, respectively. - Highlights: ► LA-MC-ICP-MS was fully validated for the direct analysis of individual particles. ► Traceability was established by using an IRMM glass particle reference material. ► Measured U isotope ratios were in agreement with the certified range. ► A comprehensive total combined uncertainty evaluation was performed. ► The analysis of 236 U/ 238 U isotope ratios was improved by using a deceleration filter.

  12. Characterisation and geostatistical analysis of clay rocks in underground facilities using hyper-spectral images

    International Nuclear Information System (INIS)

    Becker, J.K.; Marschall, P.; Brunner, P.; Cholet, C.; Renard, P.; Buckley, S.; Kurz, T.

    2012-01-01

    , and are readily available as spectral libraries for use in software processing packages. Since rocks are composites of minerals, their spectra represent a mixture of spectra of the constituent minerals concerning the reflectance. In general, imaging spectrometry allows a semi-quantitative analysis of mineral abundances from rock spectra, for example by analysing the intensity of absorption bands. In many cases a mineral with a unique absorption signature can be correlated to a specific lithological unit, which can be used to trace and map the lithology. Additionally, abundance and spatial variation can be determined from the rock spectra. Common reflection features in sedimentary rocks are typically related to carbonate and clay minerals, hydroxyl, water or iron-bearing material and weathering products. A number of physical properties can influence the intensity of features in the spectral curves of minerals and rocks, such as particle size, angle of incidence, porosity and surface roughness, though the wavelength positions of the absorption features are not changed. Next to the obvious ability to use the hyper-spectral images to 'visually' correlate layers within a rock over a certain distance they can also be used for a more rigorous approach of geostatistical correlation. We have developed a work flow for this approach using the hyper-spectral image classifications: 1. In a first step, image reconstruction must be performed. During the scanning and possibly also later during classification, some areas of the hyper-spectral images may not be completely usable or some pixels may not have been classified. In this case, the 'holes' should be filled using multiple-point geostatistical techniques. 2. In the present example, images at three different resolutions have been taken. It is envisaged to use the high resolution images and simulate the high resolution over the entire rock face in a way that the high resolution simulations are guided by the low resolution images

  13. White matter fiber-based analysis of T1w/T2w ratio map

    Science.gov (United States)

    Chen, Haiwei; Budin, Francois; Noel, Jean; Prieto, Juan Carlos; Gilmore, John; Rasmussen, Jerod; Wadhwa, Pathik D.; Entringer, Sonja; Buss, Claudia; Styner, Martin

    2017-02-01

    Purpose: To develop, test, evaluate and apply a novel tool for the white matter fiber-based analysis of T1w/T2w ratio maps quantifying myelin content. Background: The cerebral white matter in the human brain develops from a mostly non-myelinated state to a nearly fully mature white matter myelination within the first few years of life. High resolution T1w/T2w ratio maps are believed to be effective in quantitatively estimating myelin content on a voxel-wise basis. We propose the use of a fiber-tract-based analysis of such T1w/T2w ratio data, as it allows us to separate fiber bundles that a common regional analysis imprecisely groups together, and to associate effects to specific tracts rather than large, broad regions. Methods: We developed an intuitive, open source tool to facilitate such fiber-based studies of T1w/T2w ratio maps. Via its Graphical User Interface (GUI) the tool is accessible to non-technical users. The framework uses calibrated T1w/T2w ratio maps and a prior fiber atlas as an input to generate profiles of T1w/T2w values. The resulting fiber profiles are used in a statistical analysis that performs along-tract functional statistical analysis. We applied this approach to a preliminary study of early brain development in neonates. Results: We developed an open-source tool for the fiber based analysis of T1w/T2w ratio maps and tested it in a study of brain development.

  14. White Matter Fiber-based Analysis of T1w/T2w Ratio Map.

    Science.gov (United States)

    Chen, Haiwei; Budin, Francois; Noel, Jean; Prieto, Juan Carlos; Gilmore, John; Rasmussen, Jerod; Wadhwa, Pathik D; Entringer, Sonja; Buss, Claudia; Styner, Martin

    2017-02-01

    To develop, test, evaluate and apply a novel tool for the white matter fiber-based analysis of T1w/T2w ratio maps quantifying myelin content. The cerebral white matter in the human brain develops from a mostly non-myelinated state to a nearly fully mature white matter myelination within the first few years of life. High resolution T1w/T2w ratio maps are believed to be effective in quantitatively estimating myelin content on a voxel-wise basis. We propose the use of a fiber-tract-based analysis of such T1w/T2w ratio data, as it allows us to separate fiber bundles that a common regional analysis imprecisely groups together, and to associate effects to specific tracts rather than large, broad regions. We developed an intuitive, open source tool to facilitate such fiber-based studies of T1w/T2w ratio maps. Via its Graphical User Interface (GUI) the tool is accessible to non-technical users. The framework uses calibrated T1w/T2w ratio maps and a prior fiber atlas as an input to generate profiles of T1w/T2w values. The resulting fiber profiles are used in a statistical analysis that performs along-tract functional statistical analysis. We applied this approach to a preliminary study of early brain development in neonates. We developed an open-source tool for the fiber based analysis of T1w/T2w ratio maps and tested it in a study of brain development.

  15. Electroencephalogram Similarity Analysis Using Temporal and Spectral Dynamics Analysis for Propofol and Desflurane Induced Unconsciousness

    Directory of Open Access Journals (Sweden)

    Quan Liu

    2018-01-01

    Full Text Available Important information about the state dynamics of the brain during anesthesia is unraveled by Electroencephalogram (EEG approaches. Patterns that are observed through EEG related to neural circuit mechanism under different molecular targets dependent anesthetics have recently attracted much attention. Propofol, a Gamma-amino butyric acid, is known with evidently increasing alpha oscillation. Desflurane shares the same receptor action and should be similar to propofol. To explore their dynamics, EEG under routine surgery level anesthetic depth is analyzed using multitaper spectral method from two groups: propofol (n = 28 and desflurane (n = 23. The time-varying spectrum comparison was undertaken to characterize their properties. Results show that both of the agents are dominated by slow and alpha waves. Especially, for increased alpha band feature, propofol unconsciousness shows maximum power at about 10 Hz (mean ± SD; frequency: 10.2 ± 1.4 Hz; peak power, −14.0 ± 1.6 dB, while it is approximate about 8 Hz (mean ± SD; frequency: 8.3 ± 1.3 Hz; peak power, −13.8 ± 1.6 dB for desflurane with significantly lower frequency-resolved spectra for this band. In addition, the mean power of propofol is much higher from alpha to gamma band, including slow oscillation than that of desflurane. The patterns might give us an EEG biomarker for specific anesthetic. This study suggests that both of the anesthetics exhibit similar spectral dynamics, which could provide insight into some common neural circuit mechanism. However, differences between them also indicate their uniqueness where relevant.

  16. Validation of CBZ code system for post-irradiation examination analysis and sensitivity analysis of (n,γ) branching ratio

    International Nuclear Information System (INIS)

    Kawamoto, Yosuke; Chiba, Go; Tsuji, Masashi; Narabayashi, Tadashi

    2013-01-01

    A code system CBZ is being developed in Hokkaido University. In order to validate it, PIE data, which are nuclide composition data of a spent fuel, have been analyzed with CBZ. The validity is evaluated as ratios of the calculation values to the experimental ones (C/E ratios). Differences between experimental values and calculation ones are smaller than 20% except some nuclides. Thus this code system is validated. Additionally, we evaluate influence of change of (n,γ) branching ratio on inventories of fission products and actinides. As a result, branching ratios of Sb-121, Pm-147, and Am-241 influence inventories of several nuclides. We perform PIE analysis using different (n,γ) branching ratio data from the ORIGEN-2 library, JNDC-Ver.2, and JEFF-3.1A, and find that differences in (n,γ) branching ratios between different nuclear libraries have a non-negligible influence on inventories of several nuclides. (author)

  17. Performance Analysis of Selective Decode-and-Forward Multinode Incremental Relaying with Maximal Ratio Combining

    KAUST Repository

    Hadjtaieb, Amir

    2013-09-12

    In this paper, we propose an incremental multinode relaying protocol with arbitrary N-relay nodes that allows an efficient use of the channel spectrum. The destination combines the received signals from the source and the relays using maximal ratio Combining (MRC). The transmission ends successfully once the accumulated signal-to-noise ratio (SNR) exceeds a predefined threshold. The number of relays participating in the transmission is adapted to the channel conditions based on the feedback from the destination. The use of incremental relaying allows obtaining a higher spectral efficiency. Moreover, the symbol error probability (SEP) performance is enhanced by using MRC at the relays. The use of MRC at the relays implies that each relay overhears the signals from the source and all previous relays and combines them using MRC. The proposed protocol differs from most of existing relaying protocol by the fact that it combines both incremental relaying and MRC at the relays for a multinode topology. Our analyses for a decode-and-forward mode show that: (i) compared to existing multinode relaying schemes, the proposed scheme can essentially achieve the same SEP performance but with less average number of time slots, (ii) compared to schemes without MRC at the relays, the proposed scheme can approximately achieve a 3 dB gain.

  18. Spectral data de-noising using semi-classical signal analysis: application to localized MRS

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2016-09-05

    In this paper, we propose a new post-processing technique called semi-classical signal analysis (SCSA) for MRS data de-noising. Similar to Fourier transformation, SCSA decomposes the input real positive MR spectrum into a set of linear combinations of squared eigenfunctions equivalently represented by localized functions with shape derived from the potential function of the Schrodinger operator. In this manner, the MRS spectral peaks represented as a sum of these \\'shaped like\\' functions are efficiently separated from noise and accurately analyzed. The performance of the method is tested by analyzing simulated and real MRS data. The results obtained demonstrate that the SCSA method is highly efficient in localized MRS data de-noising and allows for an accurate data quantification.

  19. Account of spectral dependence of instrumental factor in quantitative X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Pershin, N.V.; Mosichev, V.I.

    1990-01-01

    A new method for calibration of X-ray fluorescence spectrometers using scanning spectrometric channel is proposed. The method is based on a separate account of matrix and instrumental effects and needs no calibration standards for the element analysed. For calibration in the whole spectral range of XRS (0.03-1.0 nm) it is sufficient to have from 10 to 15 pure element emitters made of most wide spread elements. The method provides rapid development of quantitative analysis for the elements which are not provided with standard samples and preparation of pure element emitters for which is impossible or problematic. The practical verification of the method was made by analysing a set of 146 standard samples covering a wide group of alloys. The mean relative error of the method was 3-5 % in an analytical range of 0.1-3.0 wt %

  20. Spectral data de-noising using semi-classical signal analysis: application to localized MRS

    KAUST Repository

    Laleg-Kirati, Taous-Meriem; Zhang, Jiayu; Achten, Eric; Serrai, Hacene

    2016-01-01

    In this paper, we propose a new post-processing technique called semi-classical signal analysis (SCSA) for MRS data de-noising. Similar to Fourier transformation, SCSA decomposes the input real positive MR spectrum into a set of linear combinations of squared eigenfunctions equivalently represented by localized functions with shape derived from the potential function of the Schrodinger operator. In this manner, the MRS spectral peaks represented as a sum of these 'shaped like' functions are efficiently separated from noise and accurately analyzed. The performance of the method is tested by analyzing simulated and real MRS data. The results obtained demonstrate that the SCSA method is highly efficient in localized MRS data de-noising and allows for an accurate data quantification.

  1. Spectral analysis of the SN approximations in a slab with quadratically anisotropic scattering

    International Nuclear Information System (INIS)

    Ourique, L.E.; Pazos, R.P.; Vilhena, M.T.; Barros, R.C.

    2003-01-01

    The spectral analysis of the S N approximations to the one-dimensional transport equation began with 3 and 4, following the studies of 1 and 2 about the discrete eigenvalues of the transport equation. In previous work about the influence of a parameter in the solutions of S N approximations, it was considered the total macroscopic cross section as a control parameter and was analyzed how its variation changes the nature of the eigenvalues of the S N transport matrix, in problems with linearly anisotropic scattering. It was showed the existence of bifurcations points, i.e., there exist some values of control parameters for which the S N transport matrix has only real eigenvalues while for other values the S N relation between the eigenvalues of S N transport matrix and control parameter, supposing quadratically anisotropic scattering. Numerical results are reported. (author)

  2. Self-adjoint extensions and spectral analysis in the Calogero problem

    International Nuclear Information System (INIS)

    Gitman, D M; Tyutin, I V; Voronov, B L

    2010-01-01

    In this paper, we present a mathematically rigorous quantum-mechanical treatment of a one-dimensional motion of a particle in the Calogero potential αx -2 . Although the problem is quite old and well studied, we believe that our consideration based on a uniform approach to constructing a correct quantum-mechanical description for systems with singular potentials and/or boundaries, proposed in our previous works, adds some new points to its solution. To demonstrate that a consideration of the Calogero problem requires mathematical accuracy, we discuss some 'paradoxes' inherent in the 'naive' quantum-mechanical treatment. Using a self-adjoint extension method, we construct and study all possible self-adjoint operators (self-adjoint Hamiltonians) associated with a formal differential expression for the Calogero Hamiltonian. In particular, we discuss a spontaneous scale-symmetry breaking associated with self-adjoint extensions. A complete spectral analysis of all self-adjoint Hamiltonians is presented.

  3. Spectral analysis of the S{sub N} approximations in a slab with quadratically anisotropic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Ourique, L.E.; Pazos, R.P. [Pontificia Univ. Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil)]. E-mail: ourique@pucrs.br; rpp@pucrs.br; Vilhena, M.T. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Escola de Engenharia); vilhena@cesup.ufrgs.br; Barros, R.C. [Universidade do Estado, Nova Friburgo, RJ (Brazil). Instituto Politecnico]. E-mail: dickbarros@uol.com.br

    2003-07-01

    The spectral analysis of the S{sub N} approximations to the one-dimensional transport equation began with 3 and 4, following the studies of 1 and 2 about the discrete eigenvalues of the transport equation. In previous work about the influence of a parameter in the solutions of S{sub N} approximations, it was considered the total macroscopic cross section as a control parameter and was analyzed how its variation changes the nature of the eigenvalues of the S{sub N} transport matrix, in problems with linearly anisotropic scattering. It was showed the existence of bifurcations points, i.e., there exist some values of control parameters for which the S{sub N} transport matrix has only real eigenvalues while for other values the S{sub N} relation between the eigenvalues of S{sub N} transport matrix and control parameter, supposing quadratically anisotropic scattering. Numerical results are reported. (author)

  4. Spectral Analysis by XANES Reveals that GPNMB Influences the Chemical Composition of Intact Melanosomes

    Energy Technology Data Exchange (ETDEWEB)

    T Haraszti; C Trantow; A Hedberg-Buenz; M Grunze; M Anderson

    2011-12-31

    GPNMB is a unique melanosomal protein. Unlike many melanosomal proteins, GPNMB has not been associated with any forms of albinism, and it is unclear whether GPNMB has any direct influence on melanosomes. Here, melanosomes from congenic strains of C57BL/6J mice mutant for Gpnmb are compared to strain-matched controls using standard transmission electron microscopy and synchrotron-based X-ray absorption near-edge structure analysis (XANES). Whereas electron microscopy did not detect any ultrastructural changes in melanosomes lacking functional GPNMB, XANES uncovered multiple spectral phenotypes. These results directly demonstrate that GPNMB influences the chemical composition of melanosomes and more broadly illustrate the potential for using genetic approaches in combination with nano-imaging technologies to study organelle biology.

  5. Quantitative measurement of phase variation amplitude of ultrasonic diffraction grating based on diffraction spectral analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Meiyan, E-mail: yphantomohive@gmail.com; Zeng, Yingzhi; Huang, Zuohua, E-mail: zuohuah@163.com [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, Guangdong 510006 (China)

    2014-09-15

    A new method based on diffraction spectral analysis is proposed for the quantitative measurement of the phase variation amplitude of an ultrasonic diffraction grating. For a traveling wave, the phase variation amplitude of the grating depends on the intensity of the zeroth- and first-order diffraction waves. By contrast, for a standing wave, this amplitude depends on the intensity of the zeroth-, first-, and second-order diffraction waves. The proposed method is verified experimentally. The measured phase variation amplitude ranges from 0 to 2π, with a relative error of approximately 5%. A nearly linear relation exists between the phase variation amplitude and driving voltage. Our proposed method can also be applied to ordinary sinusoidal phase grating.

  6. Frequency-dependant homogenized properties of composite using spectral analysis method

    International Nuclear Information System (INIS)

    Ben Amor, M; Ben Ghozlen, M H; Lanceleur, P

    2010-01-01

    An inverse procedure is proposed to determine the material constants of multilayered composites using a spectral analysis homogenization method. Recursive process gives interfacial displacement perpendicular to layers in term of deepness. A fast-Fourier transform (FFT) procedure has been used in order to extract the wave numbers propagating in the multilayer. The upper frequency bound of this homogenization domain is estimated. Inside the homogenization domain, we discover a maximum of three planes waves susceptible to propagate in the medium. A consistent algorithm is adopted to develop an inverse procedure for the determination of the materials constants of multidirectional composite. The extracted wave numbers are used as the inputs for the procedure. The outputs are the elastic constants of multidirectional composite. Using this method, the frequency dependent effective elastic constants are obtained and example for [0/90] composites is given.

  7. Correlation among the spectral parameters for qualitative analysis of Alpha Liquid Scintillation Spectra

    International Nuclear Information System (INIS)

    Bhade, Sonali P.D.; Reddy, P.J.; Kolekar, R.V.; Singh, Rajvir; Pradeepkumar, K.S.

    2014-01-01

    The potential use of alpha LSC technique is nowadays recognized widely. However the energy resolution of α particle is poor with liquid scintillators. Moreover, α peak positions are influenced by the level of quenching in the samples. To overcome this problem, a thorough study of all concerned parameters that affect spectral information was carried out. The parameters such as peak's centroid, quenching, % resolution, energy of α particle were investigated and the correlation between them was evaluated. In the present work, the qualitative analysis of α spectrum was carried out. Correlations between the energy of α particle and various parameters affecting the peaks of the collected spectra with respect to quenching were established. These correlations will be useful for the deconvolution studies of composite samples containing different alpha radionuclides

  8. Wavelet and Spectral Analysis of Some Selected Problems in Reactor Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Sunde, Carl

    2004-12-01

    Both spectral and wavelet analysis were successfully used in various diagnostic problems involving non-stationary core processes in nuclear power reactors. Three different problems were treated: two-phase flow identification, detector tube impacting and core-barrel vibrations. The first two problems are of non-stationary nature, whereas the last one is not. In the first problem, neutron radiographic and visible light images of four different vertical two-phase flow regimes, bubbly, slug, chum and annular flow, were analysed and classified with a neuro-wavelet algorithm. The algorithm consists of a wavelet part, using the 2-D discrete wavelet transform and of an artificial neural network. It classifies the different flow regimes with up to 99% efficiency. Detector tubes in a Boiling Water Reactor may execute vibrations and may also impact on nearby fuel-assemblies. Signals from in-core neutron detectors in Ringhals-1 were analysed, for detection of impacting, with both a classical spectral method and wavelet-based methods. The wavelet methods include both the discrete and the continuous 1-D wavelet transform. It was found that there is agreement between the different methods as well as with visual inspections made during the outage at the plant. However, the wavelet technique has the advantage that it does not require expert judgement for the interpretation of the analysis. In the last part two analytical calculations of the neutron noise, induced by shell-mode core-barrel vibrations, were carried out. The results are in good agreement with calculations from a numerical simulator. An out-of-phase behaviour between in-core and ex-core positions was found, which is in agreement with earlier measurements from the Pressurised Water Reactor Ringhals-3. The results from these calculations are planned to be used when diagnosing the shell-mode core-barrel vibrations in an operating plant.

  9. Wavelet and Spectral Analysis of Some Selected Problems in Reactor Diagnostics

    International Nuclear Information System (INIS)

    Sunde, Carl

    2004-12-01

    Both spectral and wavelet analysis were successfully used in various diagnostic problems involving non-stationary core processes in nuclear power reactors. Three different problems were treated: two-phase flow identification, detector tube impacting and core-barrel vibrations. The first two problems are of non-stationary nature, whereas the last one is not. In the first problem, neutron radiographic and visible light images of four different vertical two-phase flow regimes, bubbly, slug, chum and annular flow, were analysed and classified with a neuro-wavelet algorithm. The algorithm consists of a wavelet part, using the 2-D discrete wavelet transform and of an artificial neural network. It classifies the different flow regimes with up to 99% efficiency. Detector tubes in a Boiling Water Reactor may execute vibrations and may also impact on nearby fuel-assemblies. Signals from in-core neutron detectors in Ringhals-1 were analysed, for detection of impacting, with both a classical spectral method and wavelet-based methods. The wavelet methods include both the discrete and the continuous 1-D wavelet transform. It was found that there is agreement between the different methods as well as with visual inspections made during the outage at the plant. However, the wavelet technique has the advantage that it does not require expert judgement for the interpretation of the analysis. In the last part two analytical calculations of the neutron noise, induced by shell-mode core-barrel vibrations, were carried out. The results are in good agreement with calculations from a numerical simulator. An out-of-phase behaviour between in-core and ex-core positions was found, which is in agreement with earlier measurements from the Pressurised Water Reactor Ringhals-3. The results from these calculations are planned to be used when diagnosing the shell-mode core-barrel vibrations in an operating plant

  10. Appearance of Abnormal Cardiothoracic Ratio of Fetuses with Hemoglobin Bart's Disease: Life Table Analysis.

    Science.gov (United States)

    Wanapirak, Chanane; Sirichotiyakul, Supatra; Luewan, Suchaya; Srisupundit, Kasemsri; Tongprasert, Fuanglada; Tongsong, Theera

    2017-10-01

    Objective  To determine the timeline of the first appearance of an increased CT ratio of fetuses with hemoglobin (Hb) Bart's disease. Materials and Methods  A prospective longitudinal study was conducted on pregnancies at risk for fetal Hb Bart's disease. Sonographic markers including cardiothoracic (CT) ratio and middle cerebral artery peak systolic velocity (MCA-PSV) were serially assessed and recorded from the first trimester. The definite diagnosis of fetal Hb Bart's disease based on DNA analysis (CVS), or fetal Hb typing (HPLC; cordocentesis) was performed at the first appearance of an increased CT ratio. Results  Of 275 pregnancies at risk, 64 fetuses were finally proven to be affected and life table analysis was performed. Most affected fetuses showed an increased CT ratio in late first trimester and early second trimester, with median time of the first appearance at 13 weeks and all affected fetuses were detected at 23 weeks or less. The CT ratio yielded a sensitivity of 100 % at a gestational age of 23 weeks with a false-positive rate of 8 %. MCA-PSV appeared later than CT ratio. Only 9.4 % of affected cases developed abnormal MCA-PSV before an increased CT ratio. Conclusion  The timeline of the first appearance of an increased CT ratio of fetuses with Hb Bart's disease was established. This may help us identify Hb Bart's disease among fetuses at risk in earlier gestation and proper schedules for serial ultrasound could be made more effectively. © Georg Thieme Verlag KG Stuttgart · New York.

  11. The browning value changes and spectral analysis on the Maillard reaction product from glucose and methionine model system

    Science.gov (United States)

    Al-Baarri, A. N.; Legowo, A. M.; Widayat

    2018-01-01

    D-glucose has been understood to provide the various effect on the reactivity in Maillard reaction resulting in the changes in physical performance of food product. Therefore this research was done to analyse physical appearance of Maillard reaction product made of D-glucose and methionine as a model system. The changes in browning value and spectral analysis model system were determined. The glucose-methionine model system was produced through the heating treatment at 50°C and RH 70% for 24 hours. The data were collected for every three hour using spectrophotometer. As result, browning value was elevated with the increase of heating time and remarkably high if compare to the D-glucose only. Furthermore, the spectral analysis showed that methionine turned the pattern of peak appearance. As conclusion, methionine raised the browning value and changed the pattern of spectral analysis in Maillard reaction model system.

  12. Gamma-ray spectral analysis software designed for extreme ease of use or unattended operation

    International Nuclear Information System (INIS)

    Buckley, W.M.; Carlson, J.B.; Romine, W.A.

    1993-07-01

    We are developing isotopic analysis software in the Safeguards Technology Program that advances usability in two complimentary directions. The first direction is towards Graphical User Interfaces (GUIs) for very easy. to use applications. The second is toward a minimal user interface, but with additional features for unattended or fully automatic applications. We are developing a GUI-based spectral viewing engine that is currently running in the MS-Windows environment. We intend to use this core application to provide the common user interface for our data analysis, and subsequently data acquisition and instrument control applications. We are also investigating sets of cases where the MGA methodology produces reduced accuracy results, incorrect errors, or incorrect results. We try to determine the root cause for the problem and extend the methodology or replace portions of the Methodology so that MGA will function over a wider domain of analysis without requiring intervention and analysis by a spectroscopist. This effort is necessary for applications where such intervention is inconvenient or impractical

  13. Spectral shape of sea level muons derived from the model of Bull et al using ISR results on kaon-pion ratio

    CERN Document Server

    Bhattacharya, D P; Choudhury, B

    1978-01-01

    The diffusion model developed by Bull et al. (1965) is used to calculate the sea-level spectra in the energy range 5-650 GeV. Experimental values taken for the K/ pi ratio are those produced by the CERN Intersecting Storage Rings, (Antinucci et al., 1973).

  14. Trade-off analysis of high-aspect-ratio-cooling-channels for rocket engines

    International Nuclear Information System (INIS)

    Pizzarelli, Marco; Nasuti, Francesco; Onofri, Marcello

    2013-01-01

    Highlights: • Aspect ratio has a significant effect on cooling efficiency and hydraulic losses. • Minimizing power loss is of paramount importance in liquid rocket engine cooling. • A suitable quasi-2D model is used to get fast cooling system analysis. • Trade-off with assigned weight, temperature, and channel height or wall thickness. • Aspect ratio is found that minimizes power loss in the cooling circuit. -- Abstract: High performance liquid rocket engines are often characterized by rectangular cooling channels with high aspect ratio (channel height-to-width ratio) because of their proven superior cooling efficiency with respect to a conventional design. However, the identification of the optimum aspect ratio is not a trivial task. In the present study a trade-off analysis is performed on a cooling channel system that can be of interest for rocket engines. This analysis requires multiple cooling channel flow calculations and thus cannot be efficiently performed by CFD solvers. Therefore, a proper numerical approach, referred to as quasi-2D model, is used to have fast and accurate predictions of cooling system properties. This approach relies on its capability of describing the thermal stratification that occurs in the coolant and in the wall structure, as well as the coolant warming and pressure drop along the channel length. Validation of the model is carried out by comparison with solutions obtained with a validated CFD solver. Results of the analysis show the existence of an optimum channel aspect ratio that minimizes the requested pump power needed to overcome losses in the cooling circuit

  15. Tolerance analysis in manufacturing using process capability ratio with measurement uncertainty

    DEFF Research Database (Denmark)

    Mahshid, Rasoul; Mansourvar, Zahra; Hansen, Hans Nørgaard

    2017-01-01

    . In this paper, a new statistical analysis was applied to manufactured products to assess achieved tolerances when the process is known while using capability ratio and expanded uncertainty. The analysis has benefits for process planning, determining actual precision limits, process optimization, troubleshoot......Tolerance analysis provides valuable information regarding performance of manufacturing process. It allows determining the maximum possible variation of a quality feature in production. Previous researches have focused on application of tolerance analysis to the design of mechanical assemblies...... malfunctioning existing part. The capability measure is based on a number of measurements performed on part’s quality variable. Since the ratio relies on measurements, elimination of any possible error has notable negative impact on results. Therefore, measurement uncertainty was used in combination with process...

  16. Fluvial reservoir characterization using topological descriptors based on spectral analysis of graphs

    Science.gov (United States)

    Viseur, Sophie; Chiaberge, Christophe; Rhomer, Jérémy; Audigane, Pascal

    2015-04-01

    computed for each reservoir rock geobody and studied through a graph spectral analysis. To achieve this, the skeleton is converted into a graph structure. The spectral analysis applied on this graph structure allows a distance to be defined between pairs of graphs. Therefore, this distance is used as support for clustering analysis to gather models that share the same reservoir rock topology. To show the ability of the defined distances to discriminate different types of reservoir connectivity, a synthetic data set of fluvial models with different geological settings was generated and studied using the proposed approach. The results of the clustering analysis are shown and discussed.

  17. CytoSpectre: a tool for spectral analysis of oriented structures on cellular and subcellular levels.

    Science.gov (United States)

    Kartasalo, Kimmo; Pölönen, Risto-Pekka; Ojala, Marisa; Rasku, Jyrki; Lekkala, Jukka; Aalto-Setälä, Katriina; Kallio, Pasi

    2015-10-26

    Orientation and the degree of isotropy are important in many biological systems such as the sarcomeres of cardiomyocytes and other fibrillar structures of the cytoskeleton. Image based analysis of such structures is often limited to qualitative evaluation by human experts, hampering the throughput, repeatability and reliability of the analyses. Software tools are not readily available for this purpose and the existing methods typically rely at least partly on manual operation. We developed CytoSpectre, an automated tool based on spectral analysis, allowing the quantification of orientation and also size distributions of structures in microscopy images. CytoSpectre utilizes the Fourier transform to estimate the power spectrum of an image and based on the spectrum, computes parameter values describing, among others, the mean orientation, isotropy and size of target structures. The analysis can be further tuned to focus on targets of particular size at cellular or subcellular scales. The software can be operated via a graphical user interface without any programming expertise. We analyzed the performance of CytoSpectre by extensive simulations using artificial images, by benchmarking against FibrilTool and by comparisons with manual measurements performed for real images by a panel of human experts. The software was found to be tolerant against noise and blurring and superior to FibrilTool when analyzing realistic targets with degraded image quality. The analysis of real images indicated general good agreement between computational and manual results while also revealing notable expert-to-expert variation. Moreover, the experiment showed that CytoSpectre can handle images obtained of different cell types using different microscopy techniques. Finally, we studied the effect of mechanical stretching on cardiomyocytes to demonstrate the software in an actual experiment and observed changes in cellular orientation in response to stretching. CytoSpectre, a versatile, easy

  18. Error Ratio Analysis: Alternate Mathematics Assessment for General and Special Educators.

    Science.gov (United States)

    Miller, James H.; Carr, Sonya C.

    1997-01-01

    Eighty-seven elementary students in grades four, five, and six, were administered a 30-item multiplication instrument to assess performance in computation across grade levels. An interpretation of student performance using error ratio analysis is provided and the use of this method with groups of students for instructional decision making is…

  19. Comparative Analysis of Mass Spectral Similarity Measures on Peak Alignment for Comprehensive Two-Dimensional Gas Chromatography Mass Spectrometry

    Science.gov (United States)

    2013-01-01

    Peak alignment is a critical procedure in mass spectrometry-based biomarker discovery in metabolomics. One of peak alignment approaches to comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-MS) data is peak matching-based alignment. A key to the peak matching-based alignment is the calculation of mass spectral similarity scores. Various mass spectral similarity measures have been developed mainly for compound identification, but the effect of these spectral similarity measures on the performance of peak matching-based alignment still remains unknown. Therefore, we selected five mass spectral similarity measures, cosine correlation, Pearson's correlation, Spearman's correlation, partial correlation, and part correlation, and examined their effects on peak alignment using two sets of experimental GC×GC-MS data. The results show that the spectral similarity measure does not affect the alignment accuracy significantly in analysis of data from less complex samples, while the partial correlation performs much better than other spectral similarity measures when analyzing experimental data acquired from complex biological samples. PMID:24151524

  20. A theoretical-experimental methodology for assessing the sensitivity of biomedical spectral imaging platforms, assays, and analysis methods.

    Science.gov (United States)

    Leavesley, Silas J; Sweat, Brenner; Abbott, Caitlyn; Favreau, Peter; Rich, Thomas C

    2018-01-01

    Spectral imaging technologies have been used for many years by the remote sensing community. More recently, these approaches have been applied to biomedical problems, where they have shown great promise. However, biomedical spectral imaging has been complicated by the high variance of biological data and the reduced ability to construct test scenarios with fixed ground truths. Hence, it has been difficult to objectively assess and compare biomedical spectral imaging assays and technologies. Here, we present a standardized methodology that allows assessment of the performance of biomedical spectral imaging equipment, assays, and analysis algorithms. This methodology incorporates real experimental data and a theoretical sensitivity analysis, preserving the variability present in biomedical image data. We demonstrate that this approach can be applied in several ways: to compare the effectiveness of spectral analysis algorithms, to compare the response of different imaging platforms, and to assess the level of target signature required to achieve a desired performance. Results indicate that it is possible to compare even very different hardware platforms using this methodology. Future applications could include a range of optimization tasks, such as maximizing detection sensitivity or acquisition speed, providing high utility for investigators ranging from design engineers to biomedical scientists. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.