WorldWideScience

Sample records for ratios cd adsorption

  1. Synthesis of CdS Sensitized TiO2 Photocatalysts: Methylene Blue Adsorption and Enhanced Photocatalytic Activities

    Directory of Open Access Journals (Sweden)

    A. B. Makama

    2016-01-01

    Full Text Available A series of CdS/TiO2 nanocomposites with different Cd to Ti molar ratio were synthesized from P25-TiO2 nanopowder using microwave-assisted hydrothermal method. The as-produced powders were characterized by XRD, electron microscopy, EDX, and UV-Vis diffuse reflectance spectroscopy. The adsorption capacity and photocatalytic activity of the samples were investigated using methylene blue as a model pollutant. Sorption tests revealed that the adsorption of MB onto the samples obeys the Freundlich-Langmuir isotherm model. The sorption capacity decreased as follows: TiO2>TCd2>TCd1>TCd3>TCd4. The results of the photocatalytic tests under high-intensity discharge (HID lamp revealed that CdS/TiO2 powders with low Cd to Ti molar ratios exhibited much higher activities than P25-TiO2. The CdS/TiO2 sample with 20% CdS/(TCd2 showed the most activity among all these samples. The results also show that the Cd to Ti molar ratio of the nanocomposite has a significant effect on the photodegradation of MB and the enhanced activities exhibited by the nanocomposites are because of the low rate of electron-hole recombination.

  2. Selective adsorption behavior of Cd(II) ion imprinted polymers synthesized by microwave-assisted inverse emulsion polymerization: Adsorption performance and mechanism

    International Nuclear Information System (INIS)

    Zhu, Fang; Li, Luwei; Xing, Junde

    2017-01-01

    Highlights: • Microwave assisted inverse emulsion polymerization was applied to prepare Cd(II) imprinted polymers. • The adsorption capacity was evaluated by static adsorption experiments. • Pseudo-second-order model and Langmuir adsorption isotherm model had the best agreement with the experimental data. • The adsorption was a spontaneous and endothermic process. • Cd(II) imprinted polymers have specific identification for Cd(II). - Abstract: Microwave-assisted inverse emulsion polymerization method was used to prepare Cd(II) imprinted polymer (IIP) by using β-cyclodextrin (β-CD) and acrylamide (AM) as functional monomer, epichlorohydrin (ECH) as crossing-linking agent, ammonium persulfate as initiator. The Cd(II) imprinted polymer was characterized by SEM, FTIR and TGA. The influences of initial concentration of Cd(II), pH values, temperature, time and competitive ions on adsorption capacity and recognition properties are investigated. Under the optimal conditions, the adsorption capacity could reach 107 mg/g. Furthermore, pseudo first order kinetic model, pseudo second order kinetic model and intra-particular diffusion model were used to describe the adsorption kinetic behavior. Results showed that the pseudo-second-order model (R"2 0.9928–0.9961) had the best agreement with the experimental data. Langmuir adsorption isotherm model described the experimental data well, which indicated that adsorption was mainly monolayer absorption. Moreover, the study of adsorption thermodynamics (ΔG"0 0, ΔS"0 > 0) suggested that the adsorption process was a spontaneous and endothermic process. Competitive selectivity experiment revealed that imprinted polymer could selectively recognize Cd(II). It provides a new idea for removing Cd(II) from aqueous solution.

  3. Selective adsorption behavior of Cd(II) ion imprinted polymers synthesized by microwave-assisted inverse emulsion polymerization: Adsorption performance and mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Fang, E-mail: zhufang@tyut.edu.cn [College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024 (China); Li, Luwei [College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024 (China); Xing, Junde [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024 (China)

    2017-01-05

    Highlights: • Microwave assisted inverse emulsion polymerization was applied to prepare Cd(II) imprinted polymers. • The adsorption capacity was evaluated by static adsorption experiments. • Pseudo-second-order model and Langmuir adsorption isotherm model had the best agreement with the experimental data. • The adsorption was a spontaneous and endothermic process. • Cd(II) imprinted polymers have specific identification for Cd(II). - Abstract: Microwave-assisted inverse emulsion polymerization method was used to prepare Cd(II) imprinted polymer (IIP) by using β-cyclodextrin (β-CD) and acrylamide (AM) as functional monomer, epichlorohydrin (ECH) as crossing-linking agent, ammonium persulfate as initiator. The Cd(II) imprinted polymer was characterized by SEM, FTIR and TGA. The influences of initial concentration of Cd(II), pH values, temperature, time and competitive ions on adsorption capacity and recognition properties are investigated. Under the optimal conditions, the adsorption capacity could reach 107 mg/g. Furthermore, pseudo first order kinetic model, pseudo second order kinetic model and intra-particular diffusion model were used to describe the adsorption kinetic behavior. Results showed that the pseudo-second-order model (R{sup 2} 0.9928–0.9961) had the best agreement with the experimental data. Langmuir adsorption isotherm model described the experimental data well, which indicated that adsorption was mainly monolayer absorption. Moreover, the study of adsorption thermodynamics (ΔG{sup 0} < 0, ΔH{sup 0} > 0, ΔS{sup 0} > 0) suggested that the adsorption process was a spontaneous and endothermic process. Competitive selectivity experiment revealed that imprinted polymer could selectively recognize Cd(II). It provides a new idea for removing Cd(II) from aqueous solution.

  4. Influence of extracellular polymeric substances (EPS) on Cd adsorption by bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Wei Xing [State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070 (China); Fang Linchuan [Key Laboratory of Subtropical Agricultural Resources and Environment, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China); Cai Peng, E-mail: cp@mail.hzau.edu.cn [State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070 (China); Key Laboratory of Subtropical Agricultural Resources and Environment, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China); Huang Qiaoyun [State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070 (China); Key Laboratory of Subtropical Agricultural Resources and Environment, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China); Chen Hao [College of Science, Huazhong Agricultural University, Wuhan 430070 (China); Liang Wei; Rong, Xinming [Key Laboratory of Subtropical Agricultural Resources and Environment, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China)

    2011-05-15

    The role of extracellular polymeric substances (EPS) in Cd adsorption by Bacillus subtilis and Pseudomonas putida was investigated using a combination of batch adsorption experiments, potentiometric titrations, Fourier transform infrared spectroscopy (FTIR). An increased adsorption capacity of Cd was observed for untreated bacteria relative to that for EPS-free bacteria. Surface complexation modeling of titration data showed the similar pK{sub a} values of functional groups (carboxyl, phosphate and hydroxyl) between untreated and EPS-free bacteria. However, site concentrations on the untreated bacteria were found to be higher than those on the EPS-free bacteria. FTIR spectra also showed that no significant difference in peak positions was observed between untreated and EPS-free bacteria and carboxyl and phosphate groups were responsible for Cd adsorption on bacterial cells. The information obtained in this study is of fundamental significance for understanding the interaction mechanisms between heavy metals and biofilms in natural environments. - Highlights: > The presence of EPS on bacterial surfaces facilitates the adsorption of Cd. > The promoting effects on Cd adsorption are more remarkable on Gram-positive B. subtilis cells than that on Gram-negative P. putida cells. > Carboxyl and phosphate groups are mostly responsible for Cd binding on untreated and EPS-free cells. > Intact bacterial cells and EPS-free cells have similar binding mechanisms for Cd. - Intact bacterial cells and EPS-free cells have similar binding mechanisms for Cd.

  5. The Adsorption of Cd(II) on Manganese Oxide Investigated by Batch and Modeling Techniques.

    Science.gov (United States)

    Huang, Xiaoming; Chen, Tianhu; Zou, Xuehua; Zhu, Mulan; Chen, Dong; Pan, Min

    2017-09-28

    Manganese (Mn) oxide is a ubiquitous metal oxide in sub-environments. The adsorption of Cd(II) on Mn oxide as function of adsorption time, pH, ionic strength, temperature, and initial Cd(II) concentration was investigated by batch techniques. The adsorption kinetics showed that the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by pseudo-second-order kinetic model with high correlation coefficients (R² > 0.999). The adsorption of Cd(II) on Mn oxide significantly decreased with increasing ionic strength at pH adsorption was independent of ionic strength at pH > 6.0, which indicated that outer-sphere and inner-sphere surface complexation dominated the adsorption of Cd(II) on Mn oxide at pH 6.0, respectively. The maximum adsorption capacity of Mn oxide for Cd(II) calculated from Langmuir model was 104.17 mg/g at pH 6.0 and 298 K. The thermodynamic parameters showed that the adsorption of Cd(II) on Mn oxide was an endothermic and spontaneous process. According to the results of surface complexation modeling, the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by ion exchange sites (X₂Cd) at low pH and inner-sphere surface complexation sites (SOCd⁺ and (SO)₂CdOH - species) at high pH conditions. The finding presented herein plays an important role in understanding the fate and transport of heavy metals at the water-mineral interface.

  6. The Adsorption of Cd(II) on Manganese Oxide Investigated by Batch and Modeling Techniques

    Science.gov (United States)

    Huang, Xiaoming; Chen, Tianhu; Zou, Xuehua; Zhu, Mulan; Chen, Dong

    2017-01-01

    Manganese (Mn) oxide is a ubiquitous metal oxide in sub-environments. The adsorption of Cd(II) on Mn oxide as function of adsorption time, pH, ionic strength, temperature, and initial Cd(II) concentration was investigated by batch techniques. The adsorption kinetics showed that the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by pseudo-second-order kinetic model with high correlation coefficients (R2 > 0.999). The adsorption of Cd(II) on Mn oxide significantly decreased with increasing ionic strength at pH adsorption was independent of ionic strength at pH > 6.0, which indicated that outer-sphere and inner-sphere surface complexation dominated the adsorption of Cd(II) on Mn oxide at pH 6.0, respectively. The maximum adsorption capacity of Mn oxide for Cd(II) calculated from Langmuir model was 104.17 mg/g at pH 6.0 and 298 K. The thermodynamic parameters showed that the adsorption of Cd(II) on Mn oxide was an endothermic and spontaneous process. According to the results of surface complexation modeling, the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by ion exchange sites (X2Cd) at low pH and inner-sphere surface complexation sites (SOCd+ and (SO)2CdOH− species) at high pH conditions. The finding presented herein plays an important role in understanding the fate and transport of heavy metals at the water–mineral interface. PMID:28956849

  7. The Adsorption of Cd(II on Manganese Oxide Investigated by Batch and Modeling Techniques

    Directory of Open Access Journals (Sweden)

    Xiaoming Huang

    2017-09-01

    Full Text Available Manganese (Mn oxide is a ubiquitous metal oxide in sub-environments. The adsorption of Cd(II on Mn oxide as function of adsorption time, pH, ionic strength, temperature, and initial Cd(II concentration was investigated by batch techniques. The adsorption kinetics showed that the adsorption of Cd(II on Mn oxide can be satisfactorily simulated by pseudo-second-order kinetic model with high correlation coefficients (R2 > 0.999. The adsorption of Cd(II on Mn oxide significantly decreased with increasing ionic strength at pH < 5.0, whereas Cd(II adsorption was independent of ionic strength at pH > 6.0, which indicated that outer-sphere and inner-sphere surface complexation dominated the adsorption of Cd(II on Mn oxide at pH < 5.0 and pH > 6.0, respectively. The maximum adsorption capacity of Mn oxide for Cd(II calculated from Langmuir model was 104.17 mg/g at pH 6.0 and 298 K. The thermodynamic parameters showed that the adsorption of Cd(II on Mn oxide was an endothermic and spontaneous process. According to the results of surface complexation modeling, the adsorption of Cd(II on Mn oxide can be satisfactorily simulated by ion exchange sites (X2Cd at low pH and inner-sphere surface complexation sites (SOCd+ and (SO2CdOH− species at high pH conditions. The finding presented herein plays an important role in understanding the fate and transport of heavy metals at the water–mineral interface.

  8. Rapid adsorption of Pb, Cu and Cd from aqueous solutions by β-cyclodextrin polymers

    Science.gov (United States)

    He, Junyong; Li, Yulian; Wang, Chengming; Zhang, Kaisheng; Lin, Dongyue; Kong, Lingtao; Liu, Jinhuai

    2017-12-01

    Removing heavy metals from aqueous solutions has drawn more and more attentions these years because of their serious global health challenge to human society. To develop an adsorbent with low-cost and high-efficiency for removal of heavy metals (HMs), β-cyclodextrin (β-CD) polymers crosslinked with rigid aromatic groups were prepared and used for lead (Pb), copper (Cu) and cadmium (Cd) removal for the first time. The negatively charged β-CD polymers with large BET surface area were suitable to be used in HMs adsorption. The adsorption process completed in 5 min was well fit by Freundlich isotherm model and pseudo-second-order model. The intraparticle diffusion model was also appropriate to describe the adsorption of Pb, Cu and Cd on β-CD polymer. The maximum of adsorption capacities at 25 °C for Pb, Cu and Cd were 196.42, 164.43 and 136.43 mg/g when the initial concentration was 200 mg/L. The HMs adsorption process on the surface of β-CD polymer was an endothermic and spontaneous process. Both of the electrostatic interaction and distribution of Pb, Cu and Cd species influenced the adsorption process at different pH values. The order of removal efficiencies in multi-component adsorption for the three metal ions were Pb > Cu > Cd. The adsorption mechanisms were H+ ions on hydroxyl groups exchanged with heavy metal ions and electrostatic interactions. This study indicated that β-CD polymers could be developed into effective adsorbents for rapid removal of heavy metals.

  9. AMINO AND MERCAPTO-SILICA HYBRID FOR Cd(II ADSORPTION IN AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    Buhani Buhani

    2010-06-01

    Full Text Available Modification of silica gel with 3-aminopropyltrimethoxysilane and 3-mercaptopropyltrimethoxysilane through sol-gel technique producing amino-silica hybrid (HAS and mercapto-silica hybrid (HMS, respectively, has been carried out using tetraethylorthosilicate (TEOS as silica source. The adsorbents were characterized using infrared spectroscopy (IR, and X-ray energy dispersion spectroscopy (EDX. Adsorption of Cd(II individually as well as its binary mixture with Ni(II, Cu(II, and Zn(II in solution was performed in a batch system. Adsorption capacities of Cd(II ion on adsorbent of silica gel (SG, HAS, and HMS are 86.7, 256.4 and 319.5 μmol/g with the adsorption energies are 24.60, 22.61 and 23.15 kJ/mol, respectively. Selectivity coefficient (α of Cd(II ion toward combination of Cd(II/Ni(II, Cd(II/Cu(II, and Cd(II/Zn(II ions on HAS adsorbent is relatively smaller than those on HMS adsorbent which has α > 1.   Keywords: adsorption, amino-silica hybrid, mercapto-silica

  10. Simultaneous removal of Cd(II) and Sb(V) by Fe–Mn binary oxide: Positive effects of Cd(II) on Sb(V) adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ruiping [Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Liu, Feng [Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Hu, Chengzhi, E-mail: czhu@rcees.ac.cn [Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); He, Zan [Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Huijuan; Qu, Jiuhui [Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2015-12-30

    Highlights: • Fe–Mn binary oxide achieves the simultaneous removal of Cd(II) and Sb(V). • Cd(II) at above 0.25 mmol/L improves Sb(V) adsorption onto FMBO. • Cd(II) improves more significant Sb(V) adsorption than Ca{sup 2+} and Mn{sup 2+}. • Sb(V) adsorption decreases whereas Cd(II) adsorption increases with elevated pH. • The increased ζ-potential and Cd(II)–Sb(V) precipitation favors Sb(V) adsorption. - Abstract: The coexistence of cadmium ion (Cd(II)) and antimonate (Sb(V)) creates the need for their simultaneous removal. This study aims to investigate the effects of positively-charged Cd(II) on the removal of negative Sb(V) ions by Fe–Mn binary oxide (FMBO) and associated mechanisms. The maximum Sb(V) adsorption density (Q{sub max,Sb(V)}) increased from 1.02 to 1.32 and 2.01 mmol/g in the presence of Cd(II) at 0.25 and 0.50 mmol/L. Cd{sup 2+} exhibited a more significant positive effect than both calcium ion (Ca{sup 2+}) and manganese ion (Mn{sup 2+}). Cd{sup 2+} showed higher affinity towards FMBO and increased its ζ-potential more significantly compared to Ca{sup 2+} and Mn{sup 2+}. The simultaneous adsorption of Sb(V) and Cd(II) onto FMBO can be achieved over a wide initial pH (pH{sub i}) range from 2 to 9, and Q{sub Sb(V)} decreases whereas Q{sub Cd(II)} increases with elevated pH{sub i}. Their combined values, as expressed by Q{sub Sb(V)+Cd(II)}, amount to about 2 mmol/g and vary slightly in the pH{sub i} range 4–9. FTIR and XPS spectra indicate the significant synergistic effect of Cd(II) on Sb(V) adsorption onto FMBO, and that little chemical valence transformation occurs. These results may be valuable for the treatment of wastewater with coexisting heavy metals such as Cd(II) and Sb(V).

  11. Simultaneous removal of Cd(II) and Sb(V) by Fe–Mn binary oxide: Positive effects of Cd(II) on Sb(V) adsorption

    International Nuclear Information System (INIS)

    Liu, Ruiping; Liu, Feng; Hu, Chengzhi; He, Zan; Liu, Huijuan; Qu, Jiuhui

    2015-01-01

    Highlights: • Fe–Mn binary oxide achieves the simultaneous removal of Cd(II) and Sb(V). • Cd(II) at above 0.25 mmol/L improves Sb(V) adsorption onto FMBO. • Cd(II) improves more significant Sb(V) adsorption than Ca"2"+ and Mn"2"+. • Sb(V) adsorption decreases whereas Cd(II) adsorption increases with elevated pH. • The increased ζ-potential and Cd(II)–Sb(V) precipitation favors Sb(V) adsorption. - Abstract: The coexistence of cadmium ion (Cd(II)) and antimonate (Sb(V)) creates the need for their simultaneous removal. This study aims to investigate the effects of positively-charged Cd(II) on the removal of negative Sb(V) ions by Fe–Mn binary oxide (FMBO) and associated mechanisms. The maximum Sb(V) adsorption density (Q_m_a_x_,_S_b_(_V_)) increased from 1.02 to 1.32 and 2.01 mmol/g in the presence of Cd(II) at 0.25 and 0.50 mmol/L. Cd"2"+ exhibited a more significant positive effect than both calcium ion (Ca"2"+) and manganese ion (Mn"2"+). Cd"2"+ showed higher affinity towards FMBO and increased its ζ-potential more significantly compared to Ca"2"+ and Mn"2"+. The simultaneous adsorption of Sb(V) and Cd(II) onto FMBO can be achieved over a wide initial pH (pH_i) range from 2 to 9, and Q_S_b_(_V_) decreases whereas Q_C_d_(_I_I_) increases with elevated pH_i. Their combined values, as expressed by Q_S_b_(_V_)_+_C_d_(_I_I_), amount to about 2 mmol/g and vary slightly in the pH_i range 4–9. FTIR and XPS spectra indicate the significant synergistic effect of Cd(II) on Sb(V) adsorption onto FMBO, and that little chemical valence transformation occurs. These results may be valuable for the treatment of wastewater with coexisting heavy metals such as Cd(II) and Sb(V).

  12. Adsorption of heavy metal ions on activated carbon, (5)

    International Nuclear Information System (INIS)

    Yoshida, Hisayoshi; Kamegawa, Katsumi; Arita, Seiji

    1978-01-01

    The adsorption effect of heavy metal ions Cd 2+ , Zn 2+ and Hg 2+ on activated carbon by adding EDTA is reported, utilizing the experimental data. The activated carbons used for the experiment are mostly D, and B, C and F partly. As for the experimental procedure, the solutions of 100 ml which are composed of activated carbon, pH adjusting liquid, EDTA solution and solutions of heavy metals Cd, Zn and Hg, are shaken for 24 hours at 20 deg C, and after the activated carbon is centrifuged and separated for 15 minutes at 3000 rpm, the remaining heavy metal concentrations and pH in the supernatant are measured. The experimental results showed the useful effect on the adsorption of heavy metal ions of Cd, Zn and Hg by adding about 1 mol ratio of (EDTA/heavy metals). The individual experimental results are presented in detail. Concerning the adsorption quantity, 83% of Cd ions remained in the supernatant without addition of EDTA, but less than 1% with addition of about 1 to 5 mol ratio of (EDTA/Cd), and this adsorption effect was almost similar to Zn and Hg, i.e. 100% to 1% in Zn and 70% to 2 or 3% in Hg, under the condition written above. As for the influence of pH on Cd adsorption, the remaining Cd ratio is less than 10%, when pH is 7 to 10.5 at the mol ratio of 1 and 5.5 to 9 at the mol ratio of 10. The adsorption effect was different according to the kinds of activated carbon. The influencing factors for adsorption effect are the concentration of coexisting cations in the solution and the mixing time, etc. The effects of pH on Zn and Hg adsorption were almost similar to Cd. (Nakai, Y.)

  13. Adsorption of Cd(II) Metal Ion on Adsorbent beads from Biomass Saccharomycess cereviceae - Chitosan

    Science.gov (United States)

    Hasri; Mudasir

    2018-01-01

    The adsorbent beads that was preparation from Saccharomycess cereviceae culture strain FN CC 3012 and shrimp shells waste and its application for adsorption of Cd (II) metal ion has been studied. The study start with combination of Saccharomycess cereviceae biomass to chitosan (Sc-Chi), contact time, pH of solution and initial concentration of cations. Total Cd(II) metal ion adsorbed was calculated from the difference of metal ion concentration before and after adsorption by AAS. The results showed that optimum condition for adsorption of Cd(II) ions by Sc-Chi beads was achieved with solution pH of 4, contact time of 60 minutes and initial concentration adsorption 100mg/L. The hydroxyl (-OH) and amino (-NH2) functional groups were believed to be responsible for the adsorption of Cd(II) ions.

  14. Adsorption of Pb, Cd, Zn, Cu and Hg ions on Formaldehyde and ...

    African Journals Online (AJOL)

    Adsorption of Pb(II), Cd(II), Zn(II), Cu(II) and Hg(II) ions on formaldehyde and Pyridine modified bean husks were determined. The adsorption capacity of formaldehyde modified bean husks (mg/g) was: Pb2+, 5.01; Cd2+, 3.63; Zn2+, 2.18; Hg2+, 1.82; Cu2+, 1.58 and that of pyridine modified bean husk was: Hg2+, 6.92; Cd2+ ...

  15. Adsorption of Cd(II) and Cu(II) from aqueous solution by carbonate hydroxylapatite derived from eggshell waste

    International Nuclear Information System (INIS)

    Zheng Wei; Li Xiaoming; Yang Qi; Zeng Guangming; Shen Xiangxin; Zhang Ying; Liu Jingjin

    2007-01-01

    Carbonate hydroxylapatite (CHAP) synthesized by using eggshell waste as raw material has been investigated as metal adsorption for Cd(II) and Cu(II) from aqueous solutions. The effect of various parameters on adsorption process such as contact time, solution pH, amount of CHAP and initial concentration of metal ions was studied at room temperature to optimize the conditions for maximum adsorption. The results showed that the removal efficiency of Cd(II) and Cu(II) by CHAP could reach 94 and 93.17%, respectively, when the initial Cd(II) concentration 80 mg/L and Cu(II) 60 mg/L and the liquid/solid ratio was 2.5 g/L. The equilibrium sorption data for single metal systems at room temperature could be described by the Langmuir and Freundlich isotherm models. The highest value of Langmuir maximum uptake, (b), was found for cadmium (111.1 mg/g) and copper (142.86 mg/g). Similar Freundlich empirical constants, K, were obtained for cadmium (2.224) and copper (7.925). Ion exchange and surface adsorption might be involved in the adsorption process of cadmium and copper. Desorption experiments showed that CaCl 2 , NaCl, acetic acid and ultrasonic were not efficient enough to desorb substantial amount of metal ions from the CHAP. The results obtained show that CHAP has a high affinity to cadmium and copper

  16. Removal of Cd (II from Aqueous Media by Adsorption onto Chemically and Thermally Treated Rice Husk

    Directory of Open Access Journals (Sweden)

    María Camila Hoyos-Sánchez

    2017-01-01

    Full Text Available Chemically and thermally treated rice husks were evaluated as a potential decontaminant of toxic Cd (II in aqueous media. Rice husk (RH, a by-product from rice milling, was chemically treated with HCl and NaOH. Then, thermal treatments to 300, 500, and 700°C were applied. The chemical composition and morphological characteristics of RH were evaluated by different techniques. The specific surface area analysis of RH samples by BET nitrogen adsorption method provided specific surface areas ranging from 6 to 14 m2/g. SEM, FTIR, and EDX analyses of RH were carried out to determine the surface morphology, functional groups involved in metal binding mechanism, and C/O and C/Si ratios, respectively. The maximum Cd (II adsorption capacity was 28.27 mg/g at an optimum pH, 6.0. The kinetic studies revealed that adsorption process followed the pseudo-second-order kinetic model.

  17. Effects of Different Doping Ratio of Cu Doped CdS on QDSCs Performance

    Directory of Open Access Journals (Sweden)

    Xiaojun Zhu

    2015-01-01

    Full Text Available We use the successive ionic layer adsorption and reaction (SILAR method for the preparation of quantum dot sensitized solar cells, to improve the performance of solar cells by doping quantum dots. We tested the UV-Vis absorption spectrum of undoped CdS QDSCs and Cu doped CdS QDSCs with different doping ratios. The doping ratios of copper were 1 : 100, 1 : 500, and 1 : 1000, respectively. The experimental results show that, under the same SILAR cycle number, Cu doped CdS quantum dot sensitized solar cells have higher open circuit voltage, short circuit current density photoelectric conversion efficiency than undoped CdS quantum dots sensitized solar cells. Refinement of Cu doping ratio are 1 : 10, 1 : 100, 1 : 200, 1 : 500, and 1 : 1000. When the proportion of Cu and CdS is 1 : 10, all the parameters of the QDSCs reach the minimum value, and, with the decrease of the proportion, the short circuit current density, open circuit voltage, and the photoelectric conversion efficiency are all increased. When proportion is 1 : 500, all parameters reach the maximum values. While with further reduction of the doping ratio of Cu, the parameters of QDSCs have a decline tendency. The results showed that, in a certain range, the lower the doping ratio of Cu, the better the performance of quantum dot sensitized solar cell.

  18. Cd(II) adsorption on various adsorbents obtained from charred biomaterials

    International Nuclear Information System (INIS)

    Li Zhenze; Katsumi, Takeshi; Imaizumi, Shigeyoshi; Tang Xiaowu; Inui, Toru

    2010-01-01

    Cadmium could cause severe toxicant impact to living beings and is especially mobile in the environment. Biomass is abundant and effective to adsorb heavy metals, but is easy to be decomposed biologically which affects the reliability of long-run application. Several biomasses were charred with and without additives at temperatures less than 200 deg. C in this study. The prepared adsorbents were further testified to remove Cd(II) from aqueous solution. Equilibrium and kinetic studies were performed in batch conditions. The effect of several experimental parameters on the cadmium adsorption kinetics namely: contact time, initial cadmium concentration, sorbent dose, initial pH of solution and ionic strength was evaluated. Kinetic study confirmed (1) the rapid adsorption of Cd(II) on GC within 10 min and (2) the following gradual intraparticle diffusion inwards the sorbent at neutral pH and outwards at strong acidic solution. The grass char (GC) was selected for further test according to its high adsorption capacity (115.8 mg g -1 ) and affinity (Langmuir type isotherm). The Cd(II) removal efficiency was increased with increasing solution pH while the highest achieved at sorbent dosage 10.0 g L -1 . The ionic strength affects the sorption of Cd(II) on GC to a limited extent whereas calcium resulted in larger competition to the sorption sites than potassium. Spectroscopic investigation revealed the adsorption mechanisms between Cd(II) and surface functional groups involving amine, carboxyl and iron oxide. The long-term stability of the pyrolyzed grass char and the potential application in engineering practices were discussed.

  19. Cd(II) removal from aqueous solution by adsorption on α-ketoglutaric acid-modified magnetic chitosan

    International Nuclear Information System (INIS)

    Yang, Guide; Tang, Lin; Lei, Xiaoxia; Zeng, Guangming; Cai, Ye; Wei, Xue; Zhou, Yaoyu; Li, Sisi; Fang, Yan; Zhang, Yi

    2014-01-01

    The present study developed an α-ketoglutaric acid-modified magnetic chitosan (α-KA-Fe 3 O 4 /CS) for highly efficient adsorption of Cd(II) from aqueous solution. Several techniques, including transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and vibrating sample magnetometer (VSM), were applied to characterize the adsorbent. Batch tests were conducted to investigate the Cd(II) adsorption performance of α-KA-Fe 3 O 4 /CS. The maximum adsorption efficiency of Cd(II) appeared at pH 6.0 with the value of 93%. The adsorption amount was large and even reached 201.2 mg/g with the initial Cd(II) concentration of 1000 mg/L. The adsorption equilibrium was reached within 30 min and commendably described by pseudo-second-order model, and Langmuir model fitted the adsorption isotherm better. Furthermore, thermodynamic parameters, free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) of Cd(II) adsorption were also calculated and showed that the overall adsorption process was endothermic and spontaneous in nature because of positive ΔH values and negative ΔG values, respectively. Moreover, the Cd(II)-loaded α-KA-Fe 3 O 4 /CS could be regenerated by 0.02 mol/L NaOH solution, and the cadmium removal capacity could still be kept around 89% in the sixth cycle. All the results indicated that α-KA-Fe 3 O 4 /CS was a promising adsorbent in environment pollution cleanup.

  20. Increased Aqueous Humor CD4+/CD8+ Lymphocyte Ratio in Sarcoid Uveitis.

    Science.gov (United States)

    Dave, Namita; Chevour, Priyanka; Mahendradas, Padmamalini; Venkatesh, Anitha; Kawali, Ankush; Shetty, Rohit; Ghosh, Arkasubhra; Sethu, Swaminathan

    2018-02-08

    To determine aqueous humor CD4+/CD8+ T-lymphocyte ratio changes in sarcoid and non-sarcoid uveitis with anterior chamber involvement. The case-control study includes 61 patients with either anterior uveitis, intermediate uveitis with anterior spill, or panuveitis. A total of 21 of them were categorized as sarcoid uveitis and 40 as non-sarcoid uveitis according to diagnostic criteria. CD4+/CD8+ ratio in the aqueous humor was determined using flow cytometry. Significantly higher CD4+/CD8+ ratio in the aqueous humor was observed in patients with sarcoid uveitis (6.3 ± 1.4; mean ± SEM) compared to non-sarcoid uveitis (1.6 ± 0.1; mean ± SEM). Whole blood CD4+/CD8+ ratio was not elevated in subjects with sarcoid and non-sarcoid uveitis. Aqueous humor CD4+/CD8+ ratio >3.5 was observed to be associated with sarcoid uveitis (OR 38, 95% CI 7.0-205.2). Increased aqueous humor CD4+/CD8+ ratio in sarcoid uveitis. Immunophenotyping of localized lymphocytosis in aqueous humor could be utilized as an additional confirmatory marker for ocular sarcoidosis.

  1. CD4/CD8 Ratio and KT Ratio Predict Yellow Fever Vaccine Immunogenicity in HIV-Infected Patients.

    Science.gov (United States)

    Avelino-Silva, Vivian I; Miyaji, Karina T; Hunt, Peter W; Huang, Yong; Simoes, Marisol; Lima, Sheila B; Freire, Marcos S; Caiaffa-Filho, Helio H; Hong, Marisa A; Costa, Dayane Alves; Dias, Juliana Zanatta C; Cerqueira, Natalia B; Nishiya, Anna Shoko; Sabino, Ester Cerdeira; Sartori, Ana M; Kallas, Esper G

    2016-12-01

    HIV-infected individuals have deficient responses to Yellow Fever vaccine (YFV) and may be at higher risk for adverse events (AE). Chronic immune activation-characterized by low CD4/CD8 ratio or high indoleamine 2,3-dioxygenase-1 (IDO) activity-may influence vaccine response in this population. We prospectively assessed AE, viremia by the YFV virus and YF-specific neutralizing antibodies (NAb) in HIV-infected (CD4>350) and -uninfected adults through 1 year after vaccination. The effect of HIV status on initial antibody response to YFV was measured during the first 3 months following vaccination, while the effect on persistence of antibody response was measured one year following vaccination. We explored CD4/CD8 ratio, IDO activity (plasma kynurenine/tryptophan [KT] ratio) and viremia by Human Pegivirus as potential predictors of NAb response to YFV among HIV-infected participants with linear mixed models. 12 HIV-infected and 45-uninfected participants were included in the final analysis. HIV was not significantly associated with AE, YFV viremia or NAb titers through the first 3 months following vaccination. However, HIV-infected participants had 0.32 times the NAb titers observed for HIV-uninfected participants at 1 year following YFV (95% CI 0.13 to 0.83, p = 0.021), independent of sex, age and prior vaccination. In HIV-infected participants, each 10% increase in CD4/CD8 ratio predicted a mean 21% higher post-baseline YFV Nab titer (p = 0.024). Similarly, each 10% increase in KT ratio predicted a mean 21% lower post-baseline YFV Nab titer (p = 0.009). Viremia by Human Pegivirus was not significantly associated with NAb titers. HIV infection appears to decrease the durability of NAb responses to YFV, an effect that may be predicted by lower CD4/CD8 ratio or higher KT ratio.

  2. CD4/CD8 Ratio and KT Ratio Predict Yellow Fever Vaccine Immunogenicity in HIV-Infected Patients

    Science.gov (United States)

    Hunt, Peter W.; Huang, Yong; Simoes, Marisol; Lima, Sheila B.; Freire, Marcos S.; Caiaffa-Filho, Helio H.; Hong, Marisa A.; Costa, Dayane Alves; Dias, Juliana Zanatta C.; Cerqueira, Natalia B.; Nishiya, Anna Shoko; Sabino, Ester Cerdeira; Sartori, Ana M.; Kallas, Esper G.

    2016-01-01

    Background HIV-infected individuals have deficient responses to Yellow Fever vaccine (YFV) and may be at higher risk for adverse events (AE). Chronic immune activation–characterized by low CD4/CD8 ratio or high indoleamine 2,3-dioxygenase-1 (IDO) activity—may influence vaccine response in this population. Methods We prospectively assessed AE, viremia by the YFV virus and YF-specific neutralizing antibodies (NAb) in HIV-infected (CD4>350) and -uninfected adults through 1 year after vaccination. The effect of HIV status on initial antibody response to YFV was measured during the first 3 months following vaccination, while the effect on persistence of antibody response was measured one year following vaccination. We explored CD4/CD8 ratio, IDO activity (plasma kynurenine/tryptophan [KT] ratio) and viremia by Human Pegivirus as potential predictors of NAb response to YFV among HIV-infected participants with linear mixed models. Results 12 HIV-infected and 45-uninfected participants were included in the final analysis. HIV was not significantly associated with AE, YFV viremia or NAb titers through the first 3 months following vaccination. However, HIV–infected participants had 0.32 times the NAb titers observed for HIV-uninfected participants at 1 year following YFV (95% CI 0.13 to 0.83, p = 0.021), independent of sex, age and prior vaccination. In HIV-infected participants, each 10% increase in CD4/CD8 ratio predicted a mean 21% higher post-baseline YFV Nab titer (p = 0.024). Similarly, each 10% increase in KT ratio predicted a mean 21% lower post-baseline YFV Nab titer (p = 0.009). Viremia by Human Pegivirus was not significantly associated with NAb titers. Conclusions HIV infection appears to decrease the durability of NAb responses to YFV, an effect that may be predicted by lower CD4/CD8 ratio or higher KT ratio. PMID:27941965

  3. Fabrication of the tea saponin functionalized reduced graphene oxide for fast adsorptive removal of Cd(II) from water

    Science.gov (United States)

    Li, Zhigang; Liu, Zhifeng; Wu, Zhibin; Zeng, Guangming; Shao, Binbin; Liu, Yujie; Jiang, Yilin; Zhong, Hua; Liu, Yang

    2018-05-01

    A novel graphene-based material of tea saponin functionalized reduced graphene oxide (TS-RGO) was synthesized via a facil thermal method, and it was characterized as the absorbent for Cd(II) removal from aqueous solutions. The factors on adsorption process including solution pH, contact time, initial concentration of Cd(II) and background electrolyte cations were studied to optimize the conditions for maximum adsorption at room temperature. The results indicated that Cd(II) adsorption was strongly dependent on pH and could be strongly affected by background electrolytes and ionic strength. The optimal pH and required equilibrium time was 6.0 and 10 min, respectively. The Cd(II) removal decreased with the presence of background electrolyte cations (Na+ < Ca2+ < Al3+). The adsorption kinetics of Cd(II) followed well with the pseudo-second-order model. The adsorption isotherm fitted well to the Langmuir model, indicating that the adsorption was a monolayer adsorption process occurred on the homogeneous surfaces of TS-RGO. The maximum monolayer adsorption capacity was 127 mg/g at 313 K and pH 6.0. Therefore, the TS-RGO was considered to be a cost-effective and promising material for the removal of Cd(II) from wastewater.

  4. Comparative adsorption of Pb2+ and Cd2+ by cow manure and its vermicompost.

    Science.gov (United States)

    Zhu, Weiqin; Du, Wenhui; Shen, Xuyang; Zhang, Hangjun; Ding, Ying

    2017-08-01

    Organic waste has great potential for use as an amendment to immobilize heavy metals in the environment. Therefore, this study investigates various properties of cow manure (CM) and its derived vermicompost (CV), including the pH, cationic exchangeable capacity (CEC), elemental composition and surface structure, to determine the potential of these waste products to remove Pb 2+ and Cd 2+ from solution. The results demonstrate that CV has a much higher pH, CEC and more irregular pores than CM and is enriched with minerals and ash content but has a lower C, H, O and N content. Adsorption isotherms studies shows that the adsorption of Pb 2+ and Cd 2+ onto either CM or CV follows a Langmuir model and presents maximum Pb 2+ and Cd 2+ adsorption capacities of 102.77 mg g -1 and 38.11 mg g -1 onto CM and 170.65 and 43.01 mg g -1 onto CV, respectively. Kinetic studies show that the adsorption of Pb 2+ onto CM and CV fits an Elovich model, whereas the adsorption of Cd 2+ onto CM and CV fits a pseudo-second-order model. Desorption studies indicate that CV is more effective than CM in removing Pb 2+ and Cd 2+ . FTIR analysis demonstrates that the adsorption of Pb 2+ and Cd 2+ onto CM mainly depends on existed aliphatic alcohol, aromatic acid as well as new produced carbonates, whereas that onto CV may be contributed by the existed aliphatic alcohol, aromatic acids as well as some carbonates and phosphates. Thus, vermicomposting disposal of cow manure with destination mineral addition may broaden the way of its recycle and environmental usage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Theoretical study of heavy metal Cd, Cu, Hg, and Ni(II) adsorption on the kaolinite(0 0 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jian, E-mail: zhaojian0209@aliyun.com [Institute of Applied Physics and Computational Mathematics, PO Box 8009, Beijing 100088 (China); State Key Laboratory of Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083 (China); He, Man-Chao [State Key Laboratory of Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083 (China)

    2014-10-30

    Highlights: • We investigated the adsorption of Cd, Cu, Hg, and Ni(II) on kaolinite(0 0 1) surface. • The adsorption capabilities of the kaolinite for HM atoms were Ni > Cu > Cd > Hg(II). • The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms. • The adsorption energy decreases with the coverage for Ni(II) atoms. - Abstract: Heavy metal pollution is currently of great concern because it has been recognized as a potential threat to air, water, and soil. Adsorption was one of the most popular methods for the removal of heavy metal. The adsorption of heavy metal Cd, Cu, Hg, and Ni(II) atoms on the hydroxylated (0 0 1) surface of kaolinite was investigated using density-functional theory within the generalized gradient approximation and a supercell approach. The coverage dependence of the adsorption structures and energetics were systematically studied for a wide range of coverage Θ [from 0.11 to 1.0 monolayers (ML)] and adsorption sites. The most stable among all possible adsorption sites for Cd(II) atom was the two-fold bridge site followed by the one-fold top site, and the top site was the most favorite adsorption site for Cu and Ni(II) atoms, while the three-fold hollow site was the most stable adsorption site for Hg(II) atom followed by the two-fold bridge site. The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms, thus indicating the higher stability of surface adsorption and a tendency to the formation of adsorbate islands (clusters) with increasing the coverage. However, the adsorption energy of Ni(II) atoms decreases when increasing the coverage. The adsorption capabilities of the kaolinite clay for the heavy metal atoms were in the order of Ni > Cu > Cd > Hg(II). The other properties of the Cd, Cu, Hg, and Ni(II)/kaolinite(0 0 1) system including the different charge distribution, the lattice relaxation, and the electronic density of states were also studied and discussed in detail.

  6. Theoretical study of heavy metal Cd, Cu, Hg, and Ni(II) adsorption on the kaolinite(0 0 1) surface

    International Nuclear Information System (INIS)

    Zhao, Jian; He, Man-Chao

    2014-01-01

    Highlights: • We investigated the adsorption of Cd, Cu, Hg, and Ni(II) on kaolinite(0 0 1) surface. • The adsorption capabilities of the kaolinite for HM atoms were Ni > Cu > Cd > Hg(II). • The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms. • The adsorption energy decreases with the coverage for Ni(II) atoms. - Abstract: Heavy metal pollution is currently of great concern because it has been recognized as a potential threat to air, water, and soil. Adsorption was one of the most popular methods for the removal of heavy metal. The adsorption of heavy metal Cd, Cu, Hg, and Ni(II) atoms on the hydroxylated (0 0 1) surface of kaolinite was investigated using density-functional theory within the generalized gradient approximation and a supercell approach. The coverage dependence of the adsorption structures and energetics were systematically studied for a wide range of coverage Θ [from 0.11 to 1.0 monolayers (ML)] and adsorption sites. The most stable among all possible adsorption sites for Cd(II) atom was the two-fold bridge site followed by the one-fold top site, and the top site was the most favorite adsorption site for Cu and Ni(II) atoms, while the three-fold hollow site was the most stable adsorption site for Hg(II) atom followed by the two-fold bridge site. The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms, thus indicating the higher stability of surface adsorption and a tendency to the formation of adsorbate islands (clusters) with increasing the coverage. However, the adsorption energy of Ni(II) atoms decreases when increasing the coverage. The adsorption capabilities of the kaolinite clay for the heavy metal atoms were in the order of Ni > Cu > Cd > Hg(II). The other properties of the Cd, Cu, Hg, and Ni(II)/kaolinite(0 0 1) system including the different charge distribution, the lattice relaxation, and the electronic density of states were also studied and discussed in detail

  7. The CD4+/CD8+ Ratio in Pulmonary Tuberculosis: Systematic and Meta-Analysis Article.

    Science.gov (United States)

    Yin, Yongmei; Qin, Jie; Dai, Yaping; Zeng, Fanwei; Pei, Hao; Wang, Jun

    2015-02-01

    The ratio of CD4+/CD8+ has been used as a clinically index to evaluate patients' immunity. Numerous researchers have studied CD4+/CD8+ ratio in pulmonary tuberculosis (PTB) patients. However, the change of CD4+/CD8+ ratio remains controversial. We present a meta-analysis of 15 case-control studies to identify the change of CD4+/CD8+ ratio in PTB patients. We assessed heterogeneity of effect estimates within each group using I(2) test. Subgroup analysis was performed to explore the potential source of heterogeneity. To investigate further the potential publication bias, we visually examined the funnel plots. For robustness of results, we performed sensitivity analysis by removing studies. Data entry and analyses were carried out with RevMan 5.2 (The Nordic Cochrane Centre). Twelve peripheral blood studies were categorized into two subgroups. Eight studies presented a significant decrease of CD4+/CD8+ ratio in PTB cases compared to healthy subjects (SMD: -0.45; 95% CI -0.65--0.25; I(2) = 7%). Other four studies researched on the newly diagnosed patients presented a more seriously and significantly decrease (SMD: -2.17; 95% CI -2.61--1.74; I(2) = 37%). The pooled analysis of bronchoalveolar lavage fluid (BALF) studies showed a significant increase of CD4+/CD8+ ratio using Flow Cytometry (FCM) (SMD: 4.75; 95% CI 3.44-6.05; I(2) =0%). The present meta-analysis indicated that there was a synthetic evidence for the reduced CD4+/CD8+ ratio in peripheral blood of PTB patients, especially newly diagnosed cases. However, the CD4+/CD8+ ratio in BALF was increased using method of FCM.

  8. Adsorption of cadmium onto Al{sub 13}-pillared acid-activated montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Yan Liangguo [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Shan Xiaoquan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China)], E-mail: xiaoquan@rcees.ac.cn; Wen Bei [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Owens, Gary [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Boulevard, South Australia 5095 (Australia)

    2008-08-15

    The optimal preparation conditions for Al{sub 13}-pillared acid-activated Na{sup +}-montmorillonite (Al{sub 13}-PAAMt) were (1) an acid-activated Na{sup +}-montmorillonite (Na{sup +}-Mt) solution of pH 3.0, (2) a OH{sup -}/Al{sup 3+} molar ratio of 2.4 and (3) Al{sup 3+}/Na{sup +}-Mt ratio of 1.0 mmol g{sup -1}. The effects of OH{sup -}/Al{sup 3+} and Al{sup 3+}/Na{sup +}-Mt ratios on the adsorption of Cd{sup 2+} onto Al{sub 13}-PAAMt were studied. A comparison of the adsorption of Cd{sup 2+} onto Al{sub 13}-PAAMt, Al{sub 13}-pillared Na{sup +}-montmorillonite (Al{sub 13}-PMt) and Na{sup +}-Mt suggested that Al{sub 13}-PAAMt had higher adsorption affinity for Cd{sup 2+} than the other two adsorbents. A pseudo-second-order model described the adsorption kinetics well. Cadmium adsorption followed the Langmuir two-site equation, while desorption was hysteretic.

  9. Effect of sodium adsorption ratio and electric conductivity of the ...

    African Journals Online (AJOL)

    of the water and its sodium content relative to calcium and magnesium content. ... calcium and magnesium is the sodium adsorption ratio (SAR). It is a measure of the ..... comparison of ANN and geo statistics methods for estimating spatial distribution of sodium adsorption ratio (SAR) in groundwater. Int. J. Agric. Crop Sci.

  10. A Low Peripheral Blood CD4/CD8 Ratio Is Associated with Pulmonary Emphysema in HIV.

    Science.gov (United States)

    Triplette, Matthew; Attia, Engi F; Akgün, Kathleen M; Soo Hoo, Guy W; Freiberg, Matthew S; Butt, Adeel A; Wongtrakool, Cherry; Goetz, Matthew Bidwell; Brown, Sheldon T; Graber, Christopher J; Huang, Laurence; Crothers, Kristina

    2017-01-01

    The prevalence of emphysema is higher among HIV-infected (HIV+) individuals compared to HIV-uninfected persons. While greater tobacco use contributes, HIV-related effects on immunity likely confer additional risk. Low peripheral blood CD4+ to CD8+ T-lymphocyte (CD4/CD8) ratio may reflect chronic inflammation in HIV and may be a marker of chronic lung disease in this population. Therefore, we sought to determine whether the CD4/CD8 ratio was associated with chronic obstructive pulmonary disease (COPD), particularly the emphysema subtype, in a cohort of HIV+ subjects. We performed a cross-sectional analysis of 190 HIV+ subjects enrolled in the Examinations of HIV Associated Lung Emphysema (EXHALE) study. Subjects underwent baseline laboratory assessments, pulmonary function testing and chest computed tomography (CT) analyzed for emphysema severity and distribution. We determined the association between CD4/CD8 ratio and emphysema, and the association between CD4/CD8 ratio and pulmonary function markers of COPD. Mild or greater emphysema (>10% lung involvement) was present in 31% of subjects. Low CD4/CD8 ratio was associated with >10% emphysema in multivariable models, adjusting for risk factors including smoking, current and nadir CD4 count and HIV RNA level. Those with CD4/CD8 ratio 10% emphysema compared to those with a ratio >1.0 in fully adjusted models. A low CD4/CD8 ratio was also associated with reduced diffusion capacity (DLCO). A low CD4/CD8 ratio was associated with emphysema and low DLCO in HIV+ subjects, independent of other risk factors and clinical markers of HIV. The CD4/CD8 ratio may be a useful, clinically available, marker for risk of emphysema in HIV+ subjects in the antiretroviral therapy (ART) era.

  11. Comparative adsorption of Pb2+ and Cd2+ by cow manure and its vermicompost

    International Nuclear Information System (INIS)

    Zhu, Weiqin; Du, Wenhui; Shen, Xuyang; Zhang, Hangjun; Ding, Ying

    2017-01-01

    Organic waste has great potential for use as an amendment to immobilize heavy metals in the environment. Therefore, this study investigates various properties of cow manure (CM) and its derived vermicompost (CV), including the pH, cationic exchangeable capacity (CEC), elemental composition and surface structure, to determine the potential of these waste products to remove Pb 2+ and Cd 2+ from solution. The results demonstrate that CV has a much higher pH, CEC and more irregular pores than CM and is enriched with minerals and ash content but has a lower C, H, O and N content. Adsorption isotherms studies shows that the adsorption of Pb 2+ and Cd 2+ onto either CM or CV follows a Langmuir model and presents maximum Pb 2+ and Cd 2+ adsorption capacities of 102.77 mg g −1 and 38.11 mg g −1 onto CM and 170.65 and 43.01 mg g −1 onto CV, respectively. Kinetic studies show that the adsorption of Pb 2+ onto CM and CV fits an Elovich model, whereas the adsorption of Cd 2+ onto CM and CV fits a pseudo-second-order model. Desorption studies indicate that CV is more effective than CM in removing Pb 2+ and Cd 2+ . FTIR analysis demonstrates that the adsorption of Pb 2+ and Cd 2+ onto CM mainly depends on existed aliphatic alcohol, aromatic acid as well as new produced carbonates, whereas that onto CV may be contributed by the existed aliphatic alcohol, aromatic acids as well as some carbonates and phosphates. Thus, vermicomposting disposal of cow manure with destination mineral addition may broaden the way of its recycle and environmental usage. - Graphical abstract: The existed aliphatic alcohol, aromatic acids and its only carbonates and phosphates may underlie much higher efficiency of vermicompost (CV) on Pb 2+ and Cd 2+ removal than cow manure (CM). - Highlights: • Less irregular pores in cow manure (CM) than its vermicompost (CV). • More Pb 2+ or Cd 2+ could be removed from solution by vermicompost (CV) than by cow manure (CM). • The existed aliphatic

  12. Decreasing Ni, Cu, Cd, and Zn heavy metal magnetite-bentonite nanocomposites and adsorption isotherm study

    Science.gov (United States)

    Eskandari, M.; Zakeri Khatir, M.; Khodadadi Darban, A.; Meshkini, M.

    2018-04-01

    This present study was conducted to investigate the effect of magnetite-bentonite nanocomposite on heavy metal removal from an effluent. For this purpose, magnetite-bentonite nanocomposite was prepared through the chemical method and characterized using x-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques, followed by studying the effect of produced nanocomposite on the removal of Ni2+, Cu2+, Cd2+, and Zn2+ heavy metal ions. The results showed that adsorption capacity of magnetite-bentonite nanocomposites for the studied ions is in the order of Zn2+ > Cd2+ > Cu2+ > Ni2+. Adsorption isotherms were drawn for Ni2+, Cu2+, Cd2+, and Zn2+ cations and found that cations adsorption on nanocomposite fit into Langmuir model.

  13. Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes.

    Science.gov (United States)

    Li, Bing; Yang, Lan; Wang, Chang-Quan; Zhang, Qing-Pei; Liu, Qing-Cheng; Li, Yi-Ding; Xiao, Rui

    2017-05-01

    In order to deal with cadmium (Cd(II)) pollution, three modified biochar materials: alkaline treatment of biochar (BC-NaOH), KMnO 4 impregnation of biochar (BC-MnO x ) and FeCl 3 magnetic treatment of biochar (BC-FeO x ), were investigated. Nitrogen adsorption-desorption isotherms, Fourier transform infrared spectroscopy (FTIR), Boehm titration, and scanning electron microscopy (SEM) were used to determine the characteristics of adsorbents and explore the main adsorption mechanism. The results show that manganese oxide particles are carried successfully within the biochar, contributing to micropore creation, boosting specific surface area and forming innersphere complexes with oxygen-containing groups, while also increasing the number of oxygen-containing groups. The adsorption sites created by the loaded manganese oxide, rather than specific surface areas, play the most important roles in cadmium adsorption. Batch adsorption experiments demonstrate a Langmuir model fit for Cd(II), and BC-MnO x provided the highest sorption capacity (81.10 mg g -1 ). The sorption kinetics of Cd(II) on adsorbents follows pseudo-second-order kinetics and the adsorption rate of the BC-MnO x material was the highest (14.46 g (mg·h) -1 ). Therefore, biochar modification methods involving KMnO 4 impregnation may provide effective ways of enhancing Cd(II) removal from aqueous solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Adsorption and Desorption Characteristics of Cd2+ and Pb2+ by Micro and Nano-sized Biogenic CaCO3

    Science.gov (United States)

    Liu, Renlu; Guan, Yong; Chen, Liang; Lian, Bin

    2018-01-01

    The purpose of this study was to elucidate the characteristics and mechanisms of adsorption and desorption for heavy metals by micro and nano-sized biogenic CaCO3 induced by Bacillus subtilis, and the pH effect on adsorption was investigated. The results showed that the adsorption characteristics of Cd2+ and Pb2+ are well described by the Langmuir adsorption isothermal equation, and the maximum adsorption amounts for Cd2+ and Pb2+ were 94.340 and 416.667 mg/g, respectively. The maximum removal efficiencies were 97% for Cd2+, 100% for Pb2+, and the desorption rate was smaller than 3%. Further experiments revealed that the biogenic CaCO3 could maintain its high adsorption capability for heavy metals within wide pH ranges (3–8). The FTIR and XRD results showed that, after the biogenic CaCO3 adsorbed Cd2+ or Pb2+, it did not produce a new phase, which indicated that biogenic CaCO3 and heavy metal ions were governed by a physical adsorption process, and the high adsorptive capacity of biogenic CaCO3 for Cd2+ and Pb2+ were mainly attributed to its large total specific surface area. The findings could improve the state of knowledge about biogenic CaCO3 formation in the environment and its potential roles in the biogeochemical cycles of heavy metals. PMID:29434577

  15. Adsorption and desorption of Cd(II) onto titanate nanotubes and efficient regeneration of tubular structures

    International Nuclear Information System (INIS)

    Wang, Ting; Liu, Wen; Xu, Nan; Ni, Jinren

    2013-01-01

    Highlights: ► Satisfactory reuse of TNTs due to easy regeneration of tubular structures. ► TNTs regeneration using only 2% of NaOH needed for virgin TNTs preparation. ► Excellent regeneration attributed to steady TNTs skeleton and complex form of TNTs-OCd + OH − onto adsorbed TNTs. -- Abstract: Efficient regeneration of desorbed titanate nanotubes (TNTs) was investigated with cycled Cd(II) adsorption and desorption processes. After desorption of Cd (II) from TNTs using 0.1 M HNO 3 , regeneration could be simply achieved with only 0.2 M NaOH at ambient temperature, i.e. 2% of the NaOH needed for virgin TNTs preparation at 130 °C. The regenerated TNTs displayed similar adsorption capacity of Cd(II) even after six recycles, while significant reduction could be detected for desorbed TNTs without regeneration. The virgin TNTs, absorbed TNTs, desorbed TNTs and regenerated TNTs were systematically characterized. As results, the ion-exchange mechanism with Na + in TNTs was convinced with obvious change of -TiO(ONa) 2 by FTIR spectroscopy. The easy recovery of the damaged tubular structures proved by TEM and XRD was ascribed to asymmetric distribution of H + and Na + on the surface side and interlayer region of TNTs. More importantly, the cost-effective regeneration was found possibly related to complex form of TNTs-OCd + OH − onto the adsorbed TNTs, which was identified with help of X-ray photoelectron spectroscopy, and further indicated due to high relevance to an unexpected mole ratio of 1:1 between exchanged Na + and absorbed Cd(II)

  16. Single and binary adsorption of Cd (Ⅱ) and Zn (Ⅱ) ions from aqueous solutions onto bottom ash

    Energy Technology Data Exchange (ETDEWEB)

    Sukpreabprom, Hatairat; Arqueropanyo, Orn-anong; Naksata, Wimol; Janhom, Sorapong [Chiang Mai University, Chiang Mai (Thailand); Sooksamiti, Ponlayuth [The Office of Primary Industries and Mines Region 3, Chiang Mai (Thailand)

    2015-05-15

    Bottom ash, a waste obtained from coal-burning power plant, was used as a low cost adsorbent for the removal of Cd (Ⅱ) and Zn (Ⅱ) ions from single and binary systems in batch experiments. The results of adsorption capacity showed that bottom ash could be considered as a potential adsorbent. The uptake of Zn (Ⅱ) ion was greater than that of Cd (Ⅱ) ion. For single adsorption, based on the correlation coefficient (R{sup 2}) values, both Langmuir and Freundlich isotherms suitably described the adsorption equilibrium data in the initial metal ion concentration range of 10-50 mg/L. The multicomponent isotherms, including the extended Langmuir and IAST-Freundlich isotherms, were used to predict the binary adsorption of Cd (Ⅱ) and Zn (Ⅱ) ions. Furthermore, the appropriate multicomponent isotherm was investigated by minimizing the average relative error (ARE) function. It should be confirmed that the extended Langmuir isotherm fitted the binary adsorption equilibrium data satisfactorily.

  17. Kinetic and isotherm modeling of Cd (II) adsorption by L-cysteine functionalized multi-walled carbon nanotubes as adsorbent.

    Science.gov (United States)

    Taghavi, Mahmoud; Zazouli, Mohammad Ali; Yousefi, Zabihollah; Akbari-adergani, Behrouz

    2015-11-01

    In this study, multi-walled carbon nanotubes were functionalized by L-cysteine to show the kinetic and isotherm modeling of Cd (II) ions onto L-cysteine functionalized multi-walled carbon nanotubes. The adsorption behavior of Cd (II) ion was studied by varying parameters including dose of L-MWCNTs, contact time, and cadmium concentration. Equilibrium adsorption isotherms and kinetics were also investigated based on Cd (II) adsorption tests. The results showed that an increase in contact time and adsorbent dosage resulted in increase of the adsorption rate. The optimum condition of the Cd (II) removal process was found at pH=7.0, 15 mg/L L-MWCNTs dosage, 6 mg/L cadmium concentration, and contact time of 60 min. The removal percent was equal to 89.56 at optimum condition. Langmuir and Freundlich models were employed to analyze the experimental data. The data showed well fitting with the Langmuir model (R2=0.994) with q max of 43.47 mg/g. Analyzing the kinetic data by the pseudo-first-order and pseudo-second-order equations revealed that the adsorption of cadmium using L-MWSNTs following the pseudo-second-order kinetic model with correlation coefficients (R2) equals to 0.998, 0.992, and 0.998 for 3, 6, and 9 mg/L Cd (II) concentrations, respectively. The experimental data fitted very well with the pseudo-second-order. Overall, treatment of polluted solution to Cd (II) by adsorption process using L-MWCNT can be considered as an effective technology.

  18. Impact of a commercial glyphosate formulation on adsorption of Cd(II) and Pb(II) ions on paddy soil.

    Science.gov (United States)

    Divisekara, T; Navaratne, A N; Abeysekara, A S K

    2018-05-01

    Use of glyphosate as a weedicide on rice cultivation has been a controversial issue in Sri Lanka, due to the hypothesis that the metal complexes of commercial glyphosate is one of the causative factors of Chronic Kidney Disease of unknown aetiology (CKDu) prevalent in some parts of Sri Lanka. The effect of commercial glyphosate on the adsorption and desorption of Cd(II) and Pb(II) ions on selective paddy soil studied using batch experiments, over a wide concentration range, indicates that the Langmuir adsorption isotherm model is obeyed at low initial metal ion concentrations while the Freundlich adsorption isotherm model obeys at high metal ion concentrations in the presence and absence of glyphosate. For all cases, adsorption of both Cd(II) and Pb(II) ions obeys pseudo second order kinetics, suggesting that initial adsorption is a chemisorption process. In the presence of glyphosate formulation, the extent of adsorption of Cd(II) and Pb(II) ions on soil is decreased, while their desorption is increased at high concentrations of glyphosate. Low concentrations of glyphosate formulation do not significantly affect the desorption of metal ions from soil. Reduction of adsorption leads to enhance the concentration of Cd(II) and Pb(II) ions in the aqueous phase when in contact with soil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Effect of temperature on equilibrium and thermodynamic parameters of Cd (II) adsorption onto turmeric powder

    International Nuclear Information System (INIS)

    Qayoom, A.

    2012-01-01

    Summary: Batch adsorption of Cd (II) onto turmeric powder was conducted as a function of temperature. Nonlinear Langmuir, Freundlich, Dubinin-Radushkevish (D-R) and Temkin equilibrium models were employed. In addition to R 2, five different error functions were used to determine best fit equilibrium isotherm model. It was found that Freundlich isotherm model provided better fit for adsorption data at 298 and 303 K and Langmuir model was suitable for the experimental data obtained at 310 and 313 K. It was found that increase in temperature decreased maximum adsorption capacities, showing that the adsorption of Cd (II) onto turmeric powder is exothermic. Enthalpy values also confirmed the same trend. Entropy values were negative which means that randomness decreased on increasing temperature. Gibbs free energies were non spontaneous at all the temperatures studied. E values were in the range of 2.73-3.23 kJ mol/sup -1/ which indicated that adsorption mechanism is essentially physical. (author)

  20. Synthesis, Characterization and Adsorption Capability of CdO Microstructure for Congo Red from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    A. Tadjarodi

    2012-03-01

    Full Text Available Cadmium oxide rhombus-shaped nanostructure was synthesized using hydrothermal process followed by heating treatment. Clearly, X-ray diffraction pattern demonstrated the formation of CdO crystalline phase. Scanning electron microscopy (SEM showed that the obtained rhombus-like structure is composed of nanoparticles with the average size of 29 nm. In addition, we evaluated adsorption of organic dye i.e. Congo red from water using the prepared CdO rhombus like microstructure. UV-visible absorption spectroscopy was used to record the adsorption behavior. It was found that the removal process is performed via electrostatic absorption mechanism. The maximum adsorption capacity of CdO rhombus structures (0.01 g for Congo Red (CR in the concentration range (5-50 mg L-1 studied, as calculated from the Langmuir isotherm model at 25 ˚C and neutral pH, was found to be 41.20 mg g−1 .

  1. Is an increase in CD4/CD8 T-cell ratio in lymph node fine needle aspiration helpful for diagnosing Hodgkin lymphoma? A study of 85 lymph node FNAs with increased CD4/CD8 ratio

    Directory of Open Access Journals (Sweden)

    Hernandez Osvaldo

    2005-01-01

    Full Text Available Abstract Background An elevated CD4/CD8 T-cell ratio on flow cytometry (FCM analysis has been reported in the literature to be associated with Hodgkin lymphoma (HL. The purpose of our study was to determine the diagnostic significance of an elevated CD4/CD8 ratio in lymph node fine needle aspiration (FNA specimens. Design Between 1996 and 2002, out of 837 lymph node FNAs submitted for flow cytometry analysis, 85 cases showed an elevated CD4/CD8 ratio, defined as greater than or equal to 4, without definitive evidence of a lymphoproliferative disorder. The cytologic diagnoses of these 85 cases were grouped into four categories: reactive, atypical, Hodgkin lymphoma (HL, and non-Hodgkin lymphoma (NHL. Histologic follow-up was available in 17/85 (20% of the cases. Results 5 of the 64 cases in which FCM and cytology did not reveal evidence of a lymphoproliferative disease had tissue follow-up because of persistent lymphadenopathy and high clinical suspicion. 3/5 (60% confirmed the diagnosis of reactive lymphadenopathy. The two remaining cases (40% were positive for lymphoma (1HL, 1NHL. 8/15 cases called atypical on cytology had histologic follow-up. 7/8 (87.5% cases were positive for lymphoma (3HL, 4NHL. 3/4 cases called HL on cytology had tissue follow-up and all 3 (100% confirmed the diagnosis of HL. One case diagnosed as NHL on cytology was found to be a diffuse large B-cell lymphoma. In summary, out of 17 cases with histologic follow-up 4/17 (24% were reactive with CD4/CD8 T-cell ratio of 4.1–29, 7/17 (41% were HLs with CD4/CD8 T-cell ratio of 5.3 – 11, and 6/17 (35% were NHLs with CD4/CD8 T-cell ratio of 4.2 – 14. Conclusion An elevated CD4/CD8 ratio on FCM is a nonspecific finding which may be seen in both reactive and lymphoproliferative disorders. The cytomorphologic features of the smear are more relevant than the sole flow cytometric finding of an elevated CD4/CD8 ratio.

  2. Adsorption and photocatalysis for methyl orange and Cd removal from wastewater using TiO2/sewage sludge-based activated carbon nanocomposites

    Science.gov (United States)

    Rashed, M. Nageeb; Eltaher, M. A.; Abdou, A. N. A.

    2017-12-01

    Nanocomposite TiO2/ASS (TiO2 nanoparticle coated sewage sludge-based activated carbon) was synthesized by the sol-gel method. The changes in surface properties of the TiO2/ASS nanocomposite were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray fluorescence. The prepared TiO2/ASS nanocomposite was applied for simultaneous removal of methyl orange dye (MO) and Cd2+ from bi-pollutant solution. The factors influencing photocatalysis (TiO2 : ASS ratios, initial pollutant concentrations, solution pH, nanocomposite dosage and UV irradiation time) were investigated. The results revealed that high removal efficiency of methyl orange dye (MO) and Cd2+ from bi-pollutant solution was achieved with TiO2/ASS at a ratio (1 : 2). The obtained results revealed that degradation of MO dye on the TiO2/ASS nanocomposite was facilitated by surface adsorption and photocatalytic processes. The coupled photocatalysis and adsorption shown by TiO2/ASS nanocomposite resulted in faster and higher degradation of MO as compared to MO removal by ASS adsorbent. The removal efficiency of MO by ASS adsorbent and TiO2/ASS (1 : 2) nanocomposite at optimum pH value 7 were 74.14 and 94.28%, respectively, while for Cd2+ it was more than 90%. The experimental results fitted well with the second-order kinetic reaction.

  3. Poly(hydroxyethyl methacrylate-co-methacryloylglutamic acid) nanospheres for adsorption of Cd2+ ions from aqueous solutions

    Science.gov (United States)

    Esen, Cem; Şenay, Raziye Hilal; Feyzioğlu, Esra; Akgöl, Sinan

    2014-02-01

    Poly(2-hydroxyethyl methacrylate-co- N-methacryloyl-( l)-glutamic acid) p(HEMA-MAGA) nanospheres have been synthesized, characterized, and used for the adsorption of Cd2+ ions from aqueous solutions. Nanospheres were prepared by surfactant free emulsion polymerization. The p(HEMA-MAGA) nanospheres were characterized by SEM, FTIR, zeta size, and elemental analysis. The specific surface area of nanospheres was found to be 1,779 m2/g. According to zeta size analysis results, average size of nanospheres is 147.3 nm with poly-dispersity index of 0.200. The goal of this study was to evaluate the adsorption performance of p(HEMA-MAGA) nanospheres for Cd2+ ions from aqueous solutions by a series of batch experiments. The Cd2+ concentration was determined by inductively coupled plasma-optical emission spectrometer. Equilibrium sorption experiments indicated a Cd2+ uptake capacity of 44.2 mg g-1 at pH 4.0 at 25 °C. The adsorption of Cd2+ ions increased with increasing pH and reached a plateau value at around pH 4.0. The data were successfully modeled with a Langmuir equation. A series of kinetics experiments was then carried out and a pseudo-second order equation was used to fit the experimental data. Desorption experiments which were carried out with nitric acid showed that the p(HEMA-MAGA) nanospheres could be reused without significant losses of their initial properties in consecutive adsorption and elution operations.

  4. Diagnostic Performance of Bronchoalveolar Lavage Fluid CD4/CD8 Ratio for Sarcoidosis: A Meta-analysis.

    Science.gov (United States)

    Shen, Yongchun; Pang, Caishuang; Wu, Yanqiu; Li, Diandian; Wan, Chun; Liao, Zenglin; Yang, Ting; Chen, Lei; Wen, Fuqiang

    2016-06-01

    The usefulness of bronchoalveolar lavage fluid (BALF) CD4/CD8 ratio for diagnosing sarcoidosis has been reported in many studies with variable results. Therefore, we performed a meta-analysis to estimate the overall diagnostic accuracy of BALF CD4/CD8 ratio based on the bulk of published evidence. Studies published prior to June 2015 and indexed in PubMed, OVID, Web of Science, Scopus and other databases were evaluated for inclusion. Data on sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) were pooled from included studies. Summary receiver operating characteristic (SROC) curves were used to summarize overall test performance. Deeks's funnel plot was used to detect publication bias. Sixteen publications with 1885 subjects met our inclusion criteria and were included in this meta-analysis. Summary estimates of the diagnostic performance of the BALF CD4/CD8 ratio were as follows: sensitivity, 0.70 (95%CI 0.64-0.75); specificity, 0.83 (95%CI 0.78-0.86); PLR, 4.04 (95%CI 3.13-5.20); NLR, 0.36 (95%CI 0.30-0.44); and DOR, 11.17 (95%CI 7.31-17.07). The area under the SROC curve was 0.84 (95%CI 0.81-0.87). There was no evidence of publication bias. Measuring the BALF CD4/CD8 ratio may assist in the diagnosis of sarcoidosis when interpreted in parallel with other diagnostic factors. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Adsorption and photocatalysis for methyl orange and Cd removal from wastewater using TiO2/sewage sludge-based activated carbon nanocomposites.

    Science.gov (United States)

    Rashed, M Nageeb; Eltaher, M A; Abdou, A N A

    2017-12-01

    Nanocomposite TiO 2 /ASS (TiO 2 nanoparticle coated sewage sludge-based activated carbon) was synthesized by the sol-gel method. The changes in surface properties of the TiO 2 /ASS nanocomposite were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray fluorescence. The prepared TiO 2 /ASS nanocomposite was applied for simultaneous removal of methyl orange dye (MO) and Cd 2+ from bi-pollutant solution. The factors influencing photocatalysis (TiO 2  : ASS ratios, initial pollutant concentrations, solution pH, nanocomposite dosage and UV irradiation time) were investigated. The results revealed that high removal efficiency of methyl orange dye (MO) and Cd 2+ from bi-pollutant solution was achieved with TiO 2 /ASS at a ratio (1 : 2). The obtained results revealed that degradation of MO dye on the TiO 2 /ASS nanocomposite was facilitated by surface adsorption and photocatalytic processes. The coupled photocatalysis and adsorption shown by TiO 2 /ASS nanocomposite resulted in faster and higher degradation of MO as compared to MO removal by ASS adsorbent. The removal efficiency of MO by ASS adsorbent and TiO 2 /ASS (1 : 2) nanocomposite at optimum pH value 7 were 74.14 and 94.28%, respectively, while for Cd 2+ it was more than 90%. The experimental results fitted well with the second-order kinetic reaction.

  6. Characteristics of Heavy Metals Adsorption Cu, Pb and Cd Using Synthetics Zeolite Zsm-5

    OpenAIRE

    Priyadi,; Iskandar,; Suwardi,; Mukti, Rino Rakhmata

    2015-01-01

    It is generally known that zeolite has potential for heavy metal adsorption. The objectives of this study were to synthesize and characterize zeolite ZSM-5 and to figure out the adsorption capacity of zeolite ZSM-5 for heavy metals of Cu2+, Pb2+ and Cd2+. Characterization of zeolite ZSM-5 included some variables i.e. crystal structure (XRD), morphology (SEM), specific surface area and total pore volume (N2 physisorption). Adsorption capacity of zeolite ZSM-5 was analysed using a batch system...

  7. CD4(+)/CD8(+) T-lymphocyte Ratio: Effects of Rehydration before Exercise in Dehydrated Men

    Science.gov (United States)

    Greenleaf, John E.; Jackson, Catherine G. R.; Lawless, Desales

    1995-01-01

    Effects of fluid ingestion on CD4+/CD8+ T-lymphocyte cell ratios were measured in four dehydrated men (ages 30-46 yr) before and after 70 min of supine submaximal (71 % VO(sub 2max) lower extremity cycle exercise. Just before exercise, Evans blue dye was injected for measurement of plasma volume. The subjects then drank one of six fluid formulations (12 ml/kg) in 3-4 min. All six mean post-hydration (pre-exercise) CD4+/CD8+ ratios (Becton-Dickinson Fluorescence Activated Cell Sorter and FACScan Consort-30 software program were below the normal range of 1.2-1.5; mean (+/- SE) and range were 0.77 +/- 0.12 and 0.39-1.15, respectively. The post-exercise ratios increased: mean = 1.36 =/- 0.15 (P less than 0.05) and range = 0.98-1.98. Regression of mean CD4+/CD8+ ratios on mean plasma osmolality resulted in pre- and post-exercise correlation coefficients of -0.76 (P less than 0.10) and -0.92 (P less than 0.01), respectively. The decreased pre-exercise ratios (after drinking) were probably not caused by the Evans blue dye but appeared to be associated more with the stress (osmotic) of dehydration. The increased post-exercise ratios to normal levels accompanied the rehydration and were not due to the varied electrolyte and osmotic concentrations of the ingested fluids or to the varied vascular volume shifts during exercise. Thus, the level of subject hydration and plasma osmotality may be factors involved in the mechanism of immune system modulation induced by exercise.

  8. Impact of CD68/(CD3+CD20 ratio at the invasive front of primary tumors on distant metastasis development in breast cancer.

    Directory of Open Access Journals (Sweden)

    Noemí Eiró

    Full Text Available Tumors are infiltrated by macrophages, T and B-lymphocytes, which may favor tumor development by promoting angiogenesis, growth and invasion. The aim of this study was to investigate the clinical relevance of the relative amount of macrophages (CD68⁺, T-cells (CD3⁺ and B-cells (CD20⁺ at the invasive front of breast carcinomas, and the expression of matrix metalloproteases (MMPs and their inhibitors (TIMPs either at the invasive front or at the tumor center. We performed an immunohistochemical study counting CD3, CD20 and CD68 positive cells at the invasive front, in 102 breast carcinomas. Also, tissue sections were stained with MMP-2, -9, -11, -14 and TIMP-2 antibodies, and immunoreactivity location, percentage of reactive area and intensity were determined at the invasive front and at the tumor center. The results showed that an increased CD68 count and CD68/(CD3+CD20 ratio were directly associated with both MMP-11 and TIMP-2 expression by mononuclear inflammatory cells at the tumor center (p = 0.041 and p = 0.025 for CD68 count and p = 0.001 and p = 0.045 for ratio, respectively for MMP-11 and TIMP-2. In addition, a high CD68/(CD3+CD20 ratio (>0.05 was directly associated with a higher probability of shortened relapse-free survival. Multivariate analysis revealed that CD68/(CD3+CD20 ratio was an independent factor associated with distant relapse-free survival (RR: 2.54, CI: (1.23-5.24, p<0.01. Therefore, CD68/(CD3+CD20 ratio at the invasive front could be used as an important prognostic marker.

  9. Cross-sectional study of CD4: CD8 ratio recovery in young adults with perinatally acquired HIV-1 infection.

    Science.gov (United States)

    Pollock, Katrina M; Pintilie, Hannah; Foster, Caroline; Fidler, Sarah

    2018-02-01

    Antiretroviral therapy (ART) has improved survival into adulthood for young people with perinatally acquired HIV-1 (yp-PaHIV), but long-term prognosis remains unclear. We hypothesized that on-going immune activation, reflected in the failure of CD4:CD8 ratio normalization would be observed in yp-PaHIV, despite ART.A cross-sectional study of routinely collected clinical data from a cohort of yp-PaHIV (≥16 years).Data were collected from records of individuals attending a specialist clinic for yp-PaHIV transitioning to adult care. CD4:CD8 ratio and proportion with CD4:CD8 ratio ≥1, demographic data and viral parameters, including HIV-1 viral load (VL) and human cytomegalovirus (CMV) IgG, were analyzed with IBM SPSS Statistics v22.A total of 115 yp-PaHIV, median (IQR) age 22.0 (20.0-24.0) years, were studied, of whom 59 were females, and the majority were Black African 75/115 (65.2%). Where measured, CMV antibodies were frequently detected (71/74, 95.9%) and CMV IgG titre was inversely associated with CD4:CD8 ratio, (Rho -0.383, P = .012). Of those taking ART, 69 out of 90 (76.7%) yp-PaHIV had suppressed HIV viremia (HIV viremia. Persistence of low CD4:CD8 ratio was observed even in those with a CD4 count ≥500 cells/μL, where 28/52 (53.8%) had a CD4:CD8 ratio HIV infection and widespread CMV coinfection, CD4:CD8 ratio recovery rate was comparable to adults treated in acute infection. Where persistence of CD4:CD8 ratio abnormality was observed, on-going immune activation may have significance for non-AIDS outcomes. Taken together our findings indicate immune resilience to be a feature of these adult survivors of perinatally acquired HIV infection, which can be supported with early antiretroviral therapy.

  10. Kinetic and equilibrium studies of Pb(II and Cd(II adsorption on African wild mango (Irvingia gabonensis shell

    Directory of Open Access Journals (Sweden)

    F. A. Adekola

    2016-08-01

    Full Text Available The adsorption behavior of NaOH-activated African wild mango (Irvingia gabonensis shell with respect to Pb2+ and Cd2+ has been studied in order to consider its application to purify metal finishing waste water. The optimum conditions of adsorption were determined by investigating the initial metal ions concentration, contact time, adsorbent dose, pH value of aqueous solution and temperature. The extent of adsorption of metal ions was investigated by batch method using metal concentrations in solution ranging from 5-200 mg/L. The adsorption efficiencies were found to be pH dependent, with maximum metals uptake recorded at pH of 5. The equilibrium adsorption capacity for lead and cadmium ions were obtained from Freundlich, Langmuir, Temkin and DRK isotherms and the experimental data were found to fit best the Langmuir isotherm with values of 21.28 and 40.00 mg/g for Cd(II and Pb(II ions, respectively. The Pseudo-second order kinetics model had the best fitting for lead and cadmium adsorption kinetic data. The thermodynamic investigation showed that the adsorption processes of both metals are exothermic. An optimum concentration of 0.05 M HCl was found to be adequate for the regeneration of the spent adsorbent with recovery values of 78% and 71% for Pb2+ and Cd2+ respectively from the spent adsorbent. The results revealed that lead and cadmium are considerably adsorbed on the adsorbent and could be an economic method for the removal of these metals from aqueous solutions.

  11. Vermicompost as a natural adsorbent: evaluation of simultaneous metals (Pb, Cd) and tetracycline adsorption by sewage sludge-derived vermicompost.

    Science.gov (United States)

    He, Xin; Zhang, Yaxin; Shen, Maocai; Tian, Ye; Zheng, Kaixuan; Zeng, Guangming

    2017-03-01

    The simultaneous adsorption of heavy metals (Pb, Cd) and organic pollutant (tetracycline (TC)) by a sewage sludge-derived vermicompost was investigated. The maximal adsorption capacity for Pb, Cd, and TC in a single adsorptive system calculated from Langmuir equation was 12.80, 85.20, and 42.94 mg L -1 , while for mixed substances, the adsorption amount was 2.99, 13.46, and 20.89 mg L -1 , respectively. The adsorption kinetics fitted well to the pseudo-second-order model, implying chemical interaction between adsorbates and functional groups, such as -COOH, -OH, -NH, and -CO, as well as the formation of organo-metal complexes. Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) specific surface area measurement were adopted to gain insight into the structural changes and a better understanding of the adsorption mechanism. The sewage sludge-derived vermicompost can be a low cost and environmental benign eco-material for high efficient wastewater remediation.

  12. CD4+, CD8+, CD3+ cell counts and CD4+/CD8+ ratio among patients with mycobacterial diseases (leprosy, tuberculosis), HIV infections, and normal healthy adults: a comparative analysis of studies in different regions of India.

    Science.gov (United States)

    Hussain, Tahziba; Kulshreshtha, K K; Yadav, V S; Katoch, Kiran

    2015-01-01

    In this study, we estimated the CD4+, CD8+, CD3+ cell counts and the CD4/CD8 ratio among normal healthy controls (adults and children), leprosy patients (without any complications and during reactional states), TB patients (with and without HIV), and HIV-positive patients (early infection and full-blown AIDS) and correlated the changes with disease progression. In our study, it was observed that among adults, CD4+ cell counts ranged from 518-1098, CD8+ from 312-952, whereas CD4/CD8 ratio from 0.75-2.30. Among children, both CD4+ and CD8+ cells were more and the CD4/CD8 ratio varied from 0.91-3.17. With regard to leprosy patients, we observed that CD4+ and CD8+ cell counts were lower among PB (pauci-bacillary) and MB (multi-bacillary) patients. CD4/CD8 ratio was 0.99 ± 0.28 among PB patients while the ratio was lower, 0.78 ± 0.20, among MB patients. CD4+ cell counts were raised during RR (reversal reactions) and ENL (erythema nodosum leprosum) among the PB and MB patients whereas the CD8+ cell counts were lower among PB and MB patients. CD4/CD8 ratio doubled during reactional episodes of RR and ENL. Among the HIV-negative tuberculosis (TB) patients, both the CD4+ and CD8+ cell counts were found to be less and the CD4/CD8 ratio varied between 0.53-1.75. Among the HIV-positive TB patients and HIV-positive patients, both the CD4+ and CD8+ cells were very less and ratio drops significantly. In the initial stages of infection, as CD4+ counts drop, an increase in the CD8+ cell counts was observed and the ratio declines. In full-blown cases, CD4+ cell counts were very low, 3-4 to 54 cells, CD8+ cells from 12-211 and the ratio drops too low. This study is the first of its kind in this region of the country and assumes importance since no other study has reported the values of CD4+ and CD8+ T-lymphocyte counts among patients with mycobacterial diseases (leprosy and TB), HIV infections along with normal healthy individuals of the region, and correlation with clinical

  13. Adsorption of Cd (II) on Modified Granular Activated Carbons: Isotherm and Column Study.

    Science.gov (United States)

    Rodríguez-Estupiñán, Paola; Erto, Alessandro; Giraldo, Liliana; Moreno-Piraján, Juan Carlos

    2017-12-20

    In this work, equilibrium and dynamic adsorption tests of cadmium Cd (II) on activated carbons derived from different oxidation treatments (with either HNO₃, H₂O₂, or NaOCl, corresponding to GACoxN, GACoxP, and GACoxCl samples) are presented. The oxidation treatments determined an increase in the surface functional groups (mainly the acidic ones) and a decrease in the pH PZC (except for the GACoxCl sample). A slight alteration of the textural parameters was also observed, which was more significant for the GACoxCl sample, in terms of a decrease of both Brunauer-Emmett-Teller ( BET ) surface area and micropore volume. Adsorption isotherms were determined for all the adsorbents and a significant increase in the adsorption performances of the oxidized samples with respect to the parent material was observed. The performances ranking was GACoxCl > GACoxP > GACoxN > GAC, likely due to the chemical surface properties of the adsorbents. Dynamic tests in a fixed bed column were carried out in terms of breakthrough curves at constant Cd inlet concentration and flow rate. GACoxCl and GACoxN showed a significantly higher value of the breakpoint time, likely due to the higher adsorption capacity. Finally, the dynamic tests were analyzed in light of a kinetic model. In the adopted experimental conditions, the results showed that mass transfer is controlled by internal pore diffusion, in which surface diffusion plays a major role.

  14. Adsorption of Cd (II on Modified Granular Activated Carbons: Isotherm and Column Study

    Directory of Open Access Journals (Sweden)

    Paola Rodríguez-Estupiñán

    2017-12-01

    Full Text Available In this work, equilibrium and dynamic adsorption tests of cadmium Cd (II on activated carbons derived from different oxidation treatments (with either HNO3, H2O2, or NaOCl, corresponding to GACoxN, GACoxP, and GACoxCl samples are presented. The oxidation treatments determined an increase in the surface functional groups (mainly the acidic ones and a decrease in the pHPZC (except for the GACoxCl sample. A slight alteration of the textural parameters was also observed, which was more significant for the GACoxCl sample, in terms of a decrease of both Brunauer-Emmett-Teller (BET surface area and micropore volume. Adsorption isotherms were determined for all the adsorbents and a significant increase in the adsorption performances of the oxidized samples with respect to the parent material was observed. The performances ranking was GACoxCl > GACoxP > GACoxN > GAC, likely due to the chemical surface properties of the adsorbents. Dynamic tests in a fixed bed column were carried out in terms of breakthrough curves at constant Cd inlet concentration and flow rate. GACoxCl and GACoxN showed a significantly higher value of the breakpoint time, likely due to the higher adsorption capacity. Finally, the dynamic tests were analyzed in light of a kinetic model. In the adopted experimental conditions, the results showed that mass transfer is controlled by internal pore diffusion, in which surface diffusion plays a major role.

  15. Competitive adsorption of arsenate and phosphate onto calcite; experimental results and modeling with CCM and CD-MUSIC

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt; Postma, Dieke; Jakobsen, Rasmus

    2012-01-01

    The competitive adsorption of arsenate and phosphate onto calcite was studied in batch experiments using calcite-equilibrated solutions. The solutions had circum-neutral pH (7–8.3) and covered a wide span in the activity of Ca2+ and View the MathML source. The results show that the adsorption...... that adsorption of arsenate onto calcite is of minor importance in most groundwater aquifers, as phosphate is often present at concentration levels sufficient to significantly reduce arsenate adsorption. The CD-MUSIC model for calcite was used successfully to model adsorption of arsenate and phosphate separately...

  16. High-resolution insight into the competitive adsorption of heavy metals on natural sediment by site energy distribution.

    Science.gov (United States)

    Huang, Limin; Jin, Qiang; Tandon, Puja; Li, Aimin; Shan, Aidang; Du, Jiajie

    2018-04-01

    Investigating competitive adsorption on river/lake sediments is valuable for understanding the fate and transport of heavy metals. Most studies have studied the adsorption isotherms of competitive heavy metals, which mainly comparing the adsorption information on the same concentration. However, intrinsically, the concentration of each heavy metal on competitive adsorption sites is different, while the adsorption energy is identical. Thus, this paper introduced the site energy distribution theory to increase insight into the competitive adsorption of heavy metals (Cu, Cd and Zn). The site energy distributions of each metal with and without other coexisting heavy metals were obtained. It illustrated that site energy distributions provide much more information than adsorption isotherms through screening of the full energy range. The results showed the superior heavy metal in each site energy area and the influence of competitive metals on the site energy distribution of target heavy metal. Site energy distributions can further help in determining the competitive sites and ratios of coexisting metals. In particular, in the high-energy area, which has great environmental significance, the ratios of heavy metals in the competitive adsorption sites obtained for various competitive systems were as follows: slightly more than 3:1 (Cu-Cd), slightly less than 3:1 (Cu-Zn), slightly more than 1:1 (Cd-Zn), and nearly 7:2:2 (Cu-Cd-Zn). The results from this study are helpful to deeply understand competitive adsorption of heavy metals (Cu, Cd, Zn) on sediment. Therefore, this study was effective in presenting a general pattern for future reference in competitive adsorption studies on sediments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Synthesis and Adsorption Study of BSA Surface Imprinted Polymer on CdS Quantum Dots

    Science.gov (United States)

    Tang, Ping-ping; Cai, Ji-bao; Su, Qing-de

    2010-04-01

    A new bovine serum albumin (BSA) surface imprinting method was developed by the incorporation of quantum dots (QDs) into molecularly imprinted polymers (MIP), which can offer shape selectivity. Preparation and adsorption conditions were optimized. Physical appearance of the QDs and QDs-MIP particles was illustrated by scanning electron microscope images. Photoluminescence emission of CdS was quenched when rebinding of the template. The quenching of photoluminescence emissions is presumably due to the fluorescence resonance energy transfer between quantum dots and BSA template molecules. The adsorption is compiled with Langmuir isotherm, and chemical adsorption is the rate-controlling step. The maximum adsorption capacity could reach 226.0 mg/g, which is 142.4 mg/g larger than that of undoped BSA MIP. This study demonstrates the validity of QDs coupled with MIP technology for analyzing BSA.

  18. Batch adsorption of heavy metals (Cu, Pb, Fe, Cr and Cd) from ...

    African Journals Online (AJOL)

    cinthia

    This study was carried out to evaluate the efficiency of metals (Cu, Fe, Pb, Cr and Cd) removal from mixed metal ions solution using coconut husk as adsorbent. The effects of varying contact time, initial metal ion concentration, adsorbent dose and pH on adsorption process of these metals were studied using synthetically ...

  19. Prevalence of Oral Manifestations and Their Association with CD4/CD8 Ratio and HIV Viral Load in South India

    Directory of Open Access Journals (Sweden)

    Sharma Gaurav

    2011-01-01

    Full Text Available The objective of the present research was to determine the prevalence of oral manifestations in an HIV infected population from south India and evaluate their association with HIV viral load and CD4/CD8 ratio. Intraoral examination of 103 patients, whose CD4/CD8 ratio was available, were conducted. HIV viral loads were available for thirty patients only. The prevalence of oral manifestations was 80.6% (83/103. The most common oromucosal lesion was erythematous candidiasis (EC (38.8% followed by melanotic hyperpigmentation (35.9%. Patients having any oral manifestation had a mean CD4/CD8 ratio of 0.24. EC had positive predictive value of 85.0% for CD4/CD8 ratio 20,000 copies/mL (20,000 copies/mL.

  20. Kinetic study on adsorption of Cr(VI), Ni(II), Cd(II) and Pb(II) ions from aqueous solutions using activated carbon prepared from Cucumis melo peel

    Science.gov (United States)

    Manjuladevi, M.; Anitha, R.; Manonmani, S.

    2018-03-01

    The adsorption of Cr(VI), Ni(II), Cd(II) and Pb(II), ions from aqueous solutions by Cucumis melo peel-activated carbon was investigated under laboratory conditions to assess its potential in removing metal ions. The adsorption behavior of metal ions onto CMAC was analyzed with Elovich, intra-particle diffusion rate equations and pseudo-first-order model. The rate constant of Elovich and intra-particle diffusion on CMAC increased in the sequence of Cr(VI) > Ni(II) > Cd(II) > Pb(II). According to the regression coefficients, it was observed that the kinetic adsorption data can fit better by the pseudo-first-order model compared to the second-order Lagergren's model with R 2 > 0.957. The maximum adsorption of metal ions onto the CMAC was found to be 97.95% for Chromium(VI), 98.78% for Ni(II), 98.55% for Pb(II) and 97.96% for Cd(II) at CMAC dose of 250 mg. The adsorption capacities followed the sequence Ni(II) ≈ Pb(II) > Cr(VI) ≈ Cd(II) and Ni(II) > Pb(II) > Cd(II) > Cr(VI). The optimum adsorption conditions selected were adsorbent dosage of 250 mg, pH of 3.0 for Cr(VI) and 6.0 for Ni(II), Cd(II) and Pb(II), adsorption concentration of 250 mg/L and contact time of 180.

  1. Cd2+ Toxicity to a Green Alga Chlamydomonas reinhardtii as Influenced by Its Adsorption on TiO2 Engineered Nanoparticles

    Science.gov (United States)

    Yang, Wei-Wan; Miao, Ai-Jun; Yang, Liu-Yan

    2012-01-01

    In the present study, Cd2+ adsorption on polyacrylate-coated TiO2 engineered nanoparticles (TiO2-ENs) and its effect on the bioavailability as well as toxicity of Cd2+ to a green alga Chlamydomonas reinhardtii were investigated. TiO2-ENs could be well dispersed in the experimental medium and their pHpzc is approximately 2. There was a quick adsorption of Cd2+ on TiO2-ENs and a steady state was reached within 30 min. A pseudo-first order kinetics was found for the time-related changes in the amount of Cd2+ complexed with TiO2-ENs. At equilibrium, Cd2+ adsorption followed the Langmuir isotherm with the maximum binding capacity 31.9, 177.1, and 242.2 mg/g when the TiO2-EN concentration was 1, 10, and 100 mg/l, respectively. On the other hand, Cd2+ toxicity was alleviated in the presence of TiO2-ENs. Algal growth was less suppressed in treatments with comparable total Cd2+ concentration but more TiO2-ENs. However, such toxicity difference disappeared and all the data points could be fitted to a single Logistic dose-response curve when cell growth inhibition was plotted against the free Cd2+ concentration. No detectable amount of TiO2-ENs was found to be associated with the algal cells. Therefore, TiO2-ENs could reduce the free Cd2+ concentration in the toxicity media, which further lowered its bioavailability and toxicity to C. reinhardtii. PMID:22403644

  2. Remediation of soil contaminated with the heavy metal (Cd2+)

    International Nuclear Information System (INIS)

    Lin, C.-C.; Lin, H.-L.

    2005-01-01

    Soil contamination by heavy metals is increasing. The biosorption process for removal of the heavy metal Cd 2+ from contaminated soil is chosen for this study due to its economy, commercial applications, and because it acts without destroying soil structure. The study is divided into four parts (1) soil leaching: the relationships between the soil leaching effect and agitation rates, solvent concentrations, ratios of soil to solvent, leaching time and pH were studied to identify their optimum conditions; (2) adsorption Cd 2+ tests of immobilized Saccharomycetes pombe beads: different weight percentages of chitosan and polyvinyl alcohol (PVAL) were added to alginate (10 wt.%) and then blended or cross-linked by epichlorohydrin (ECH) to increase their mechanical strength. Next, before blending or cross-linking, different weight percentages of S. pombe 806 or S. pombe ATCC 2476 were added to increase Cd 2+ adsorption. Thus, the optimum beads (blending or cross-linking, the percentages of chitosan, PVAL and S. pombe 806 or S. pombe ATCC 2476) and the optimum adsorption conditions (agitation rate, equilibrium adsorption time, and pH in the aqueous solution) were ascertained; (3) regeneration tests of the optimum beads: the optimum beads adsorbing Cd 2+ were regenerated by various concentrations of aqueous HCl solutions. The results indicate that the reuse of immobilized pombe beads was feasible; and (4) adsorption model/kinetic model/thermodynamic property: the equilibrium adsorption, kinetics, change in Gibbs free energy of adsorption of Cd 2+ on optimum beads were also investigated

  3. Adsorption of Cd(II) by Mg–Al–CO{sub 3}- and magnetic Fe{sub 3}O{sub 4}/Mg–Al–CO{sub 3}-layered double hydroxides: Kinetic, isothermal, thermodynamic and mechanistic studies

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Ran-ran; Yan, Liang-guo, E-mail: yanyu-33@163.com; Yang, Kun; Hao, Yuan-feng; Du, Bin

    2015-12-15

    Highlights: • The Mg–Al–CO{sub 3}- and magnetic Fe{sub 3}O{sub 4}/Mg–Al–CO{sub 3}–LDH can efficiently remove Cd(II) from aqueous solutions. • The adsorption mechanisms of Cd(II) were discussed in detail. • The adsorption kinetic, isothermal and thermodynamic properties of Cd(II) were studied. • Magnetic Fe{sub 3}O{sub 4}/Mg–Al–CO{sub 3}–LDH can be quickly and easily separated using a magnet. - Abstract: Understanding the adsorption mechanisms of metal cations on the surfaces of solids is important for determining the fate of these metals in water and wastewater treatment. The adsorption kinetic, isothermal, thermodynamic and mechanistic properties of cadmium (Cd(II)) in an aqueous solution containing Mg–Al–CO{sub 3}- and magnetic Fe{sub 3}O{sub 4}/Mg–Al–CO{sub 3}-layered double hydroxide (LDH) were studied. The results demonstrated that the adsorption kinetic and isotherm data followed the pseudo-second-order model and the Langmuir equation, respectively. The adsorption process of Cd(II) was feasible, spontaneous and endothermic in nature. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy were used to explain the adsorption mechanisms. The characteristic XRD peaks and FTIR bands of CdCO{sub 3} emerged in the LDH spectra after Cd(II) adsorption, which indicated that the adsorption of Cd(II) by LDHs occurred mainly via CdCO{sub 3} precipitation, surface adsorption and surface complexation. Furthermore, the magnetic Fe{sub 3}O{sub 4}/Mg–Al–CO{sub 3}-LDH can be quickly and easily separated using a magnet before and after the adsorption process.

  4. Association between CD8 T-cell subsets and CD4/CD8 ratio with HS-CRP level in HIV-infected patients on antiretroviral therapy

    Science.gov (United States)

    Isabela, S.; Nugroho, A.; Harijanto, P. N.

    2018-03-01

    Due to improved access and adherence to antiretroviral therapy (ART), most HIV-infected persons worldwide are predicted to live longer. Nowadays the cause of death for most HIV-infected persons has changed to serious non-AIDS events (SNAEs) which is due to low-grade viremia. HIV patients with ART who had undergone CD4 cell count above 500/uL and there is an increase in hs-CRP despite an undetectable viral load. Some conditions CD8 cells count do not decrease with CD4 cells repairs. We researched in Prof Kandou General Hospital with a total sample of 35 HIV patients who had received ART with the level of CD4>350/uL. CD8 levels, CD4/CD8 ratio, and hs-CRP were assessed. This research is analytic descriptive with cross-sectional study design and analysis uses Spearman correlation. The mean CD8 during the study was 1291.8 (IQR 319-2610cells/uL), the mean ratio of CD4:CD8 was 0.57 (IQR 0.16-1.24) and median hs-CRP is 2.18 (IQR 0.3-6.6mg/dL). There was a significant positive correlation between CD8 and increased hs-CRP (r=0.369, pCD4/CD8 ratio and hs-CRP (r=-0.370, p<0.05).

  5. Adsorption of heavy metal ions on different clays

    International Nuclear Information System (INIS)

    Kruse, K.

    1992-01-01

    The aim of the present dissertation is to study the adsorption of heavy metal ions (Cd 2+ , Cu 2+ , Pb 2+ , Zn 2+ ) and their mixtures on clays. Different clays and bentonites (Ca 2+ -bentonite, activated Na + -bentonite, special heavy metal adsorber bentonite, two organophilic bentonites and a mixed layer clay) were used. The adsorbed metal ions were desorbed by appropriate solutions of HCl, EDTA and dioctadecyl dimethylammonium bromide. High concentrations of the heavy metal ions in the solutions can be reached. The desorption guarantees economical recycling. After desorption the clays were used (up to three times) for purification of contaminated water. The best experimental conditions, i.e. the highest adsorption of heavy metal ions from aqueous solutions was found for the greatest ratio of adsorbent/adsorbate. The adsorption was very fast. Calcium, sodium bentonites and the heavy metal adsorber bentonite attained the highest adsorption and desorption for Cu 2+, Zn 2+ and Pb 2+ ions. Cd 2+ ions were only absorbed by Silitonit, a special heavy metal absorber bentonite. The mixed layer clay (Opalit) ranges in adsorption and desorption properties below the unmodified Ca 2+ -bentonite (Montigel) or the activated Na + -bentonite. Only Tixosorb and Tixogel (organophilic bentonites) reach the lowest value of heavy metal adsorption. Only lead cations which are characterised by good polarizability were adsorbed at higher rates, therefore the organophilic bentonites are not appropriate for adsorption of heavy metal ions from aqueous solutions. Mixing of the metal ions generally decreases the adsorption of Pb 2+ and increases the adsorption of Cd 2+ . From mixtures if heavy metal ions adsorption and desorption of Cu 2+ ions reached a maximum for all clays. (author) figs., tabs., 56 refs

  6. Adsorption of Pb{sup 2+} and Cd{sup 2+} onto a novel activated carbon-chitosan complex

    Energy Technology Data Exchange (ETDEWEB)

    Ge, H.; Fan, X. [College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China)

    2011-10-15

    A novel activated carbon-chitosan complex adsorbent (ACCA) was prepared via the crosslinking of glutaraldehyde and activated carbon-(NH{sub 2}-protected) chitosan complex under microwave irradiation. The surface morphology of this adsorbent was characterized. The adsorption of ACCA for Pb{sup 2+} and Cd{sup 2+} was investigated. The results demonstrate that ACCA has higher adsorption capacity than chitosan. The adsorption follows pseudo first-order kinetics. The isotherm adsorption equilibria are better described by Freundlich and Dubinin-Radushkevich isotherms than by the Langmuir isotherm. The adsorbent can be recycled. These results have important implications for the design of low-cost and effective adsorbents in the removal of heavy metal ions from wastewaters. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Low CD4/CD8 Ratio Is Associated with Non AIDS-Defining Cancers in Patients on Antiretroviral Therapy: ANRS CO8 (Aproco/Copilote Prospective Cohort Study.

    Directory of Open Access Journals (Sweden)

    Mariam Noelie Hema

    Full Text Available To study the association between CD4/CD8 ratio and morbidity in HIV-infected patients on antiretroviral therapy (ART.The APROCO/COPILOTE cohort enrolled patients initiating a protease inhibitor-containing ART in 1997-1999. The association between occurrence of first non AIDS-defining severe events (NADE and time-dependent measures of immune restoration was assessed by 4 Cox models with different definitions of restoration, CD4+ cell counts (CD4, CD4/CD8 ratio, both CD4 and CD4/CD8 ratio, or a composite variable (CD4 500/mm3 and CD4/CD8 ratio 500/mm3 and CD4/CD8 ratio > 1. Models adjusted on baseline characteristics and time-dependent viral load were compared using Akaike Information Criterion.We included 1227 patients. Median duration of follow-up was 9.2 years (IQR: 4.2-11.4. Median CD4 was 530/mm3 at 9 years. Median CD4/CD8 ratio was 0.3 (IQR: 0.2-0.5 at baseline and 0.6 (IQR: 0.4-0.9 after 9 years. Incidence of first NADE was 7.4/100 person-years, the most common being bacterial infections (21%, cardiovascular events (14% and cancers (10%. For both bacterial infections and cardiovascular events, the CD4/CD8 ratio did not add predictive information to the CD4 cell count. However, low CD4/CD8 ratio was the best predictor of non-AIDS cancers (adjusted HR = 2.13 for CD4/CD8 < 0.5; 95% CI = 1.32-3.44.CD4/CD8 ratio remains < 1 in most HIV-infected patients despite long-term CD4+ cell counts restoration on ART. A CD4/CD8 ratio < 0.5 could identify patients who require a more intensive strategy of cancer prevention or screening.

  8. Adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II), and As(V) on bacterially produced metal sulfides.

    Science.gov (United States)

    Jong, Tony; Parry, David L

    2004-07-01

    The adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II) and As(V) onto bacterially produced metal sulfide (BPMS) material was investigated using a batch equilibrium method. It was found that the sulfide material had adsorptive properties comparable with those of other adsorbents with respect to the specific uptake of a range of metals and, the levels to which dissolved metal concentrations in solution can be reduced. The percentage of adsorption increased with increasing pH and adsorbent dose, but decreased with increasing initial dissolved metal concentration. The pH of the solution was the most important parameter controlling adsorption of Cd(II), Cu(II), Fe(II), Ni(II), Pb(II), Zn(II), and As(V) by BPMS. The adsorption data were successfully modeled using the Langmuir adsorption isotherm. Desorption experiments showed that the reversibility of adsorption was low, suggesting high-affinity adsorption governed by chemisorption. The mechanism of adsorption for the divalent metals was thought to be the formation of strong, inner-sphere complexes involving surface hydroxyl groups. However, the mechanism for the adsorption of As(V) by BPMS appears to be distinct from that of surface hydroxyl exchange. These results have important implications to the management of metal sulfide sludge produced by bacterial sulfate reduction.

  9. Effect of sodium adsorption ratio and electric conductivity of the ...

    African Journals Online (AJOL)

    Infiltration measurements using a double-ring infiltrometer were conducted on a sandy-loam soil located in Saudi Arabia. The measurements were performed for an undisturbed soil. The effect of sodium adsorption ratio (SAR) and electric conductivity (EC) of the applied water on infiltration rate was examined. The infiltration ...

  10. Adsorption of Cu 2+ , As 3+ and Cd 2+ ions from aqueous solution ...

    African Journals Online (AJOL)

    The adsorption of Cu2+, Cd2+ and As3+ ions on eggshell from aqueous solution was studied under batch conditions at 30, 40, 50 and 60oC and concentrations of 10, 20, 30, 60 and 80 mg/l. The partition coefficient for the ions between aqueous solution and chicken eggshell increased with time and with increase in the ...

  11. Peripheral Blood CD64 Levels Decrease in Crohn’s Disease following Granulocyte and Monocyte Adsorptive Apheresis

    Directory of Open Access Journals (Sweden)

    Toshimi Chiba

    2011-12-01

    Full Text Available Granulocyte and monocyte adsorptive apheresis (GMA is reportedly useful as induction therapy for Crohn’s disease (CD. However, the effects of GMA on CD64 have not been well characterized. We report here our assessment of CD64 expression on neutrophils before and after treatment with GMA in two patients with CD. The severity of CD was assessed with the CD activity index (CDAI. The duration of each GMA session was 60 min at a flow rate of 30 ml/min as per protocol. CD64 expression on neutrophils was measured by analyzing whole blood with a FACScan flow cytometer. In case 1, CD64 levels after each session of GMA tended to decrease compared to pretreatment levels, whereas in case 2, CD64 levels dropped significantly after treatment. The CDAI decreased after GMA in both cases 1 and 2. A significant correlation was noted between CDAI scores and CD64 levels in both cases. In conclusion, GMA reduced blood CD64 levels, which would be an important factor for the decrease of CDAI scores.

  12. Synthesis of Cd doped ZnO/CNT nanocomposite by using microwave method: Photocatalytic behavior, adsorption and kinetic study

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Ahmadi Azqhandi

    Full Text Available The Cd-doped ZnO/CNT nanocomposites (Cd@ZnO/CNT-NCs were synthesized by the microwave assisted hydrothermal method. The as-synthesized Cd@ZnO/CNT-NCs was characterized in detail in term of their structural, morphological, chemical and optical properties using XRD; SEM, FE-TEM, BET and UV–Vis methods. The band gap energy measurements confirmed that the addition of Cd ions causes a decrease in the band gap energy of the nanocomposites. The photocatalytic properties of the synthesized nanocomposites were investigated by the measurements of methyl orange (MO degradation under UV irradiation.The equilibrium adsorption data of all three nanocomposites (i.e. ZnO/CNT, CZC-1, CZC-0.25 were analyzed by Langmuir and Freundlich isotherm models, respectively. The best fit to the data was obtained from the Langmuir model. The decrease in MO dye concentration was examined by UV–Visible spectroscopy at different time intervals under ultraviolet light irradiation, until the dye was completely degraded to colorless end product. Rapid MO dye decomposition was observed with a degradation rate of ∼93, 70 and 44% on the CZC-1, CZC-0.25 and ZnO/CNT within the initial 110 min, respectively. The fast degradation rate and high degradation efficiency of CZC-1 and CZC-0.25 is attributed to the porous nature, large specific surface area (162.5 and 136.1 m2 g−1, narrow pore size distribution (7.46 and 12.98 nm evaluated from N2 adsorption-desorption isotherms analysis and excellent electron accepting features of the engineered porous Cd@ZnO/CNT-NCs. The kinetic results revealed that the degradation rate of MO on the CZC-1 (i.e. Cd0.5Zn0.5O/CNT and CZC-0.25 (i.e. Cd0.25Zn0.75O/CNT is approximately 2- and 4-folds larger than the CNT/ZnO that can be explained by the replacement of Cd ions in the ZnO structure. The degradation of the model dyes was observed to follow pseudo first order degradation kinetics. Keywords: Adsorption, CNTs, CNT/ZnO nanocomposites, CNT/ZnO:Cd

  13. Water-Soluble CdTe/CdS Core/Shell Semiconductor Nanocrystals: How Their Optical Properties Depend on the Synthesis Methods

    Directory of Open Access Journals (Sweden)

    Brener R. C. Vale

    2016-10-01

    Full Text Available We conducted a comparative synthesis of water-soluble CdTe/CdS colloidal nanocrystalline semiconductors of the core/shell type. We prepared the CdS shell using two different methods: a one-pot approach and successive ionic layer adsorption and reaction (SILAR; in both cases, we used 3-mercaptopropionic acid (MPA as the surface ligand. In the one-pot approach, thiourea was added over the freshly formed CdTe dispersion, and served as the sulfur source. We achieved thicker CdS layers by altering the Cd:S stoichiometric ratio (1:1, 1:2, 1:4, and 1:8. The Cd:S ratios 1:1 and 1:2 furnished the best optical properties; these ratios also made the formation of surface defects less likely. For CdTe/CdS obtained using SILAR, we coated the surface of three differently sized CdTe cores (2.17, 3.10, and 3.45 nm with one to five CdS layers using successive injections of the Cd2+ and S2– ions. The results showed that the core size influenced the optical properties of the materials. The deposition of three to five layers over the surface of smaller CdTe colloidal nanocrystals generated strain effects on the core/shell structure.

  14. Association between Apoptotis and CD4+/CD8+ T-Lymphocyte Ratio in Aseptic Loosening after Total Hip Replacement

    Science.gov (United States)

    Landgraeber, Stefan; von Knoch, Marius; Löer, Franz; Brankamp, Jochen; Tsokos, Michael; Grabellus, Florian; Schmid, Kurt Werner; Totsch, Martin

    2009-01-01

    Particle-induced osteolysis is a major cause of aseptic loosening after total joint replacement. While the osteolytic cascade initiated by cytokine release from macrophages has been studied extensively, the involvement of T-lymphocytes in this context is controversial and has been addressed by only a few authors. In a former study we detected that the quantity of T-lymphocytes may be influenced by apoptosis in patients with aseptic loosening. In this study we intended to find out more details about the apoptosis-induced shifting of the T-cell number. We focused our interest on the CD4+ and CD8+ T-cells and their relative ratio. Caspase-3 cleaved was evaluated immunohistochemically to detect apoptotic T-cells in capsules and interface membranes from patients with aseptic hip implant loosening and a varying degree of caspase-3 cleaved expression in CD4+ and CD8+ T-lymphocytes was detected. Moreover, a relationship between the intensity of the apoptotic reactions and the radiological extent of osteolysis was observed. The number of CD4+ cells was decreased in the presence of strong apoptotic reactions, respectively extensive osteolysis, while CD8+ cells were affected to a much lower degree. Thus, the CD4+/CD8+ ratio changed from 1.0 in cases with only small areas of periprosthetic osteolysis and minimally intense apoptosis to 0.33 in cases with large areas of osteolysis. This may suggest a causal relationship between the apoptosis-induced shift in the CD4+/CD8+ ratio and the osteolysis respectively aseptic loosening. It is possible that these findings may lead to a new understanding of particle-induced osteolysis. PMID:19214244

  15. Synthesis of Collagen-Based Hydrogel Nanocomposites Using Montmorillonite and Study of Adsorption Behavior of Cd from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Gholam Bagheri Marandi

    2013-04-01

    Full Text Available Novel collagen-based hydrogel nanocomposites were synthesized by graft copolymerization of acrylamide and maleic anhydrid in the presence of different amounts of montmorillonite, using methylenebisacrylamide (MBAand ammonium persulfate (APS as crosslinker and initiator, respectively. The optimum amount of clay on the swelling properties of the samples was studied. It was found that the hydrogel nanocomposites exhibited improved swelling capacity compared with the clay-free hydrogel. Gel content was also studied and the resultsindicated that the inclusion of montmorillonite causes an increase in gel content. The sorption behavior of heavy metal ion from aqueous solutions was investigated by its relationship with pH, contact time, initial concentration of metal ion and also, montmorillonite content of the nanocomposites. The experimental data showed thatCd2+ ion adsorption increases with increasing initial concentration of Cd2+ ion in solution and the clay content. Also, the results indicated that more than 88% of the maximum adsorption capacities toward Cd2+ ion were achieved within the initial 10 minute. Functional groups of the prepared hydrogels have shown complexation abilitywith metal ions and improving hydrogels' adsorption properties. It was concluded that the nanocomposites could be used as fast-responsive, and high capacity sorbent materials in Cd2+ ion removing processes. The prepared hydrogel nanocomposites were characerized by means of XRD patterns, TGA thermal methods and FTIRspectroscopy. The XRD patterns of nanocomposites showed that the interlayer distance of montmorillonite was changed and the clay sheets were exfoliated. Furthermore, the results showed that by increasing the montmorillonite content, thermal stability of the nanocomposites was clearly improved.

  16. Thermal activation of serpentine for adsorption of cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Chun-Yan [College of Land and Environment, Shenyang Agricultural University, Shenyang (China); College of Chemistry, Chemical Engineering and Food Safety, Bohai University, Jinzhou (China); Liang, Cheng-Hua, E-mail: liang110161@163.com [College of Land and Environment, Shenyang Agricultural University, Shenyang (China); Yin, Yan [Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang (China); Du, Li-Yu [College of Land and Environment, Shenyang Agricultural University, Shenyang (China)

    2017-05-05

    Highlights: • Thermal activated serpentine was prepared by changing heated temperature. • Thermal activated serpentine exhibited excellent adsorption behavior for cadmium. • The adsorption mechanisms could be explained as formation of CdCO{sub 3} and Cd(OH){sub 2}. • The adsorption obeyed Langmuir model and pseudo second order kinetics model. - Abstract: Thermal activated serpentine with high adsorption capacity for heavy metals was prepared. The batch experiment studies were conducted to evaluate the adsorption performance of Cd{sup 2+} in aqueous solution using thermal activated serpentine as adsorbent. These samples before and after adsorption were characterized by XRD, FT-IR, SEM, XPS, and N{sub 2} adsorption-desorption at low temperature. It was found that serpentine with layered structure transformed to forsterite with amorphous structure after thermal treatment at over 700 °C, while the surface area of the samples was increased with activated temperature and the serpentine activated at 700 °C (S-700) presented the largest surface area. The pH of solution after adsorption was increased in different degrees due to hydrolysis of MgO in serpentine, resulting in enhancing adsorption of Cd{sup 2+}. The S-700 exhibited the maximum equilibrium adsorption capacity (15.21 mg/g), which was 2 times more than pristine serpentine. Langmuir isotherm was proved to describe the equilibrium adsorption data better than Freundlich isotherm and pseudo second order kinetics model could fit the adsorption kinetics processes well. Based on the results of characterization with XPS and XRD, the adsorption mechanisms could be explained as primarily formation of CdCO{sub 3} and Cd(OH){sub 2} precipitation on the surface of serpentine.

  17. Thermal activation of serpentine for adsorption of cadmium

    International Nuclear Information System (INIS)

    Cao, Chun-Yan; Liang, Cheng-Hua; Yin, Yan; Du, Li-Yu

    2017-01-01

    Highlights: • Thermal activated serpentine was prepared by changing heated temperature. • Thermal activated serpentine exhibited excellent adsorption behavior for cadmium. • The adsorption mechanisms could be explained as formation of CdCO_3 and Cd(OH)_2. • The adsorption obeyed Langmuir model and pseudo second order kinetics model. - Abstract: Thermal activated serpentine with high adsorption capacity for heavy metals was prepared. The batch experiment studies were conducted to evaluate the adsorption performance of Cd"2"+ in aqueous solution using thermal activated serpentine as adsorbent. These samples before and after adsorption were characterized by XRD, FT-IR, SEM, XPS, and N_2 adsorption-desorption at low temperature. It was found that serpentine with layered structure transformed to forsterite with amorphous structure after thermal treatment at over 700 °C, while the surface area of the samples was increased with activated temperature and the serpentine activated at 700 °C (S-700) presented the largest surface area. The pH of solution after adsorption was increased in different degrees due to hydrolysis of MgO in serpentine, resulting in enhancing adsorption of Cd"2"+. The S-700 exhibited the maximum equilibrium adsorption capacity (15.21 mg/g), which was 2 times more than pristine serpentine. Langmuir isotherm was proved to describe the equilibrium adsorption data better than Freundlich isotherm and pseudo second order kinetics model could fit the adsorption kinetics processes well. Based on the results of characterization with XPS and XRD, the adsorption mechanisms could be explained as primarily formation of CdCO_3 and Cd(OH)_2 precipitation on the surface of serpentine.

  18. Modification of cyanobacterial bloom-derived biomass using potassium permanganate enhanced the removal of microcystins and adsorption capacity toward cadmium (II)

    International Nuclear Information System (INIS)

    Shao, Jihai; Gu, Ji-Dong; Peng, Liang; Luo, Si; Luo, Huili; Yan, Zhiyong; Wu, Genyi

    2014-01-01

    Highlights: • Potassium permanganate removed microcystins in the cyanobacterial bloom-derived biomass (CBDB). • Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB. • Manganese dioxide was formed on the surface of CBDB. • Potassium permanganate oxidation process increased the adsorption capacity of CBDB toward Cd(II). - Abstract: Cyanobacterial biomass shows high adsorption capacity toward heavy metal ions. However, the cyanotoxins in the cyanobacterial biomass inhibit its application in heavy metals removal. In order to safely and effectively remove Cd(II) from water using cyanobacterial bloom-derived biomass (CBDB), KMnO 4 was used to modify CBDB. The results indicated that the microcystins in the CBDB were successfully removed by KMnO 4 . Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB, and formed manganese dioxide on the surface of CBDB. The oxidized CBDB showed higher adsorption capacity toward Cd(II) than that of unoxidized treatment. The optimal KMnO 4 concentration for increasing the adsorption capacity of CBDB toward Cd(II) was 0.2 g/L. The adsorption isotherm of Cd(II) by oxidized- or unoxidized-CBDB was well fitted by Langmuir model, indicating that the adsorption of Cd(II) by CBDB was monolayer adsorption. The desorption ratio of Cd(II) from oxidized CBDB was higher than that from unoxidized CBDB in the desorption process using NH 4 NO 3 and EDTA as desorbent. The results presented in this study suggest that KMnO 4 modified CBDB may be used as a safe and high efficient adsorbent in Cd(II) removal from water

  19. Effects of Surface Charge and Functional Groups on the Adsorption and Binding Forms of Cu and Cd on Roots of indica and japonica Rice Cultivars

    Directory of Open Access Journals (Sweden)

    Zhao-Dong Liu

    2017-08-01

    Full Text Available This work was designed to understand the mechanisms of adsorption of copper (Cu and cadmium (Cd on roots of indica and japonica varieties of rice. Six varieties each of indica and japonica rice were grown in hydroponics and the chemical properties of the root surface were analyzed, including surface charges and functional groups (-COO- groups as measured by the streaming potential and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR. Binding forms of heavy metals adsorbed on rice roots were identified using sequential extraction methods. In rice roots exposed to Cu and Cd solutions, Cu existed mainly in both exchangeable and complexed forms, whereas Cd existed mainly in the exchangeable form. The amounts of exchangeable Cu and Cd and total adsorbed metal cations on the roots of indica varieties were significantly greater than those on the roots of japonica varieties, and the higher negative charges and the larger number of functional groups on the roots of indica varieties were responsible for their higher adsorption capacity and greater binding strength for Cu and Cd. Surface charge and functional groups on roots play an important role in the adsorption of Cu and Cd on the rice roots.

  20. Adsorption of Zn(II) and Cd(II) ions in batch system by using the Eichhornia crassipes.

    Science.gov (United States)

    Módenes, A N; Espinoza-Quiñones, F R; Borba, C E; Trigueros, D E G; Lavarda, F L; Abugderah, M M; Kroumov, A D

    2011-01-01

    In this work, the displacement effects on the sorption capacities of zinc and cadmium ions of the Eichornia crassipes-type biosorbent in batch binary system has been studied. Preliminary single metal sorption experiments were carried out. An improvement on the Zn(II) and Cd(II) ions removal was achieved by working at 30 °C temperature and with non-uniform biosorbent grain sizes. A 60 min equilibrium time was achieved for both Zn(II) and Cd(II) ions. Furthermore, it was found that the overall kinetic data were best described by the pseudo second-order kinetic model. Classical multi-component adsorption isotherms have been tested as well as a modified extended Langmuir isotherm model, showing good agreement with the equilibrium binary data. Around 0.65 mequiv./g maximum metal uptake associated with the E. crassipes biosorbent was attained and the E. crassipes biosorbent has shown higher adsorption affinity for the zinc ions than for the cadmium ones in the binary system.

  1. Pb(II), Cd(II) and Zn(II) adsorption on low grade manganese ore ...

    African Journals Online (AJOL)

    Low grade manganese ore (LMO) of Orissa containing 58.37% SiO2, 25.05% MnO2, 8.8% Al2O3, and 5.03% Fe2O3 as the main constituents was taken to study its adsorption behaviour for Pb(II), Cd(II) and Zn(II) from aqueous solutions. The XRD studies showed the crystalline phases to be quartz, ß-MnO2, d-MnO2 and ...

  2. [Adsorption of heavy metals on the surface of birnessite relationship with its Mn average oxidation state and adsorption sites].

    Science.gov (United States)

    Wang, Yan; Tan, Wen-Feng; Feng, Xiong-Han; Qiu, Guo-Hong; Liu, Fan

    2011-10-01

    Adsorption characteristics of mineral surface for heavy metal ions are largely determined by the type and amount of surface adsorption sites. However, the effects of substructure variance in manganese oxide on the adsorption sites and adsorption characteristics remain unclear. Adsorption experiments and powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) were combined to examine the adsorption characteristics of Pb2+, Cu2+, Zn2+ and Cd2+ sequestration by birnessites with different Mn average oxidation state (AOS), and the Mn AOS dependent adsorption sites and adsorption characteristics. The results show that the maximum adsorption capacity of Pb2+, Cu2+, Zn2+ and Cd2+ increased with increasing birnessite Mn AOS. The adsorption capacity followed the order of Pb2+ > Cu2+ > Zn2+ > Cd2+. The observations suggest that there exist two sites on the surface of birnessite, i. e., high-binding-energy site (HBE site) and low-binding-energy site (LBE site). With the increase of Mn AOS for birnessites, the amount of HBE sites for heavy metal ions adsorption remarkably increased. On the other hand, variation in the amount of LBE sites was insignificant. The amount of LBE sites is much more than those of HBE sites on the surface of birnessite with low Mn AOS. Nevertheless, both amounts on the surface of birnessite with high Mn AOS are very close to each other. Therefore, the heavy metal ions adsorption capacity on birnessite is largely determined by the amount of HBE sites. On birnessite surface, adsorption of Cu2+, Zn2+, and Cd2+ mostly occurred at HBE sites. In comparison with Zn2+ and Cd2+, more Cu2+ adsorbed on the LBW sites. Pb2+ adsorption maybe occupy at both LBE sites and HBE sites simultaneously.

  3. Hesperidin Inhibits Inflammatory Response Induced by Aeromonas hydrophila Infection and Alters CD4+/CD8+ T Cell Ratio

    Directory of Open Access Journals (Sweden)

    Abdelaziz S. A. Abuelsaad

    2014-01-01

    Full Text Available Background. Aeromonas hydrophila is an opportunistic bacterial pathogen that is associated with a number of human diseases. Hesperidin (HES has been reported to exert antioxidant and anti-inflammatory activities. Objectives. The aim of this study was to investigate the potential effect of HES treatment on inflammatory response induced by A. hydrophila infection in murine. Methods. A. hydrophila-infected mice were treated with HES at 250 mg/kg b.wt./week for 4 consecutive weeks. Phagocytosis, reactive oxygen species production, CD4+/CD8+ T cell ratio, and CD14 expression on intestinal infiltrating monocytes were evaluated. The expression of E-selectin and intercellular adhesion molecule 1 on stimulated HUVECs and RAW macrophage was evaluated. Results. Percentage of CD4+ T cells in the intestinal tissues of infected treated mice was highly significantly increased; however, phagocytic index, ROS production, CD8+ T cells percentage, and CD14 expression on monocytes were significantly reduced. On the other hand, HES significantly inhibited A-LPS- and A-ECP-induced E-selectin and ICAM-1 expression on HUVECs and ICAM-1 expression on RAW macrophage. Conclusion. Present data indicated that HES has a potential role in the suppression of inflammatory response induced by A. hydrophila toxins through downmodulation of ROS production and CD14 and adhesion molecules expression, as well as increase of CD4+/CD8+ cell ratio.

  4. Effects of adhesions of amorphous Fe and Al hydroxides on surface charge and adsorption of K+ and Cd2+ on rice roots.

    Science.gov (United States)

    Liu, Zhao-Dong; Wang, Hai-Cui; Zhou, Qin; Xu, Ren-Kou

    2017-11-01

    Iron (Fe) and aluminum (Al) hydroxides in variable charge soils attached to rice roots may affect surface-charge properties and subsequently the adsorption and uptake of nutrients and toxic metals by the roots. Adhesion of amorphous Fe and Al hydroxides onto rice roots and their effects on zeta potential of roots and adsorption of potassium (K + ) and cadmium (Cd 2+ ) by roots were investigated. Rice roots adsorbed more Al hydroxide than Fe hydroxide because of the greater positive charge on Al hydroxide. Adhesion of Fe and Al hydroxides decreased the negative charge on rice roots, and a greater effect of the Al hydroxide. Consequently, adhesion of Fe and Al hydroxides reduced the K + and Cd 2+ adsorption by rice roots. The results of attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and desorption of K + and Cd 2+ from rice roots indicated that physical masking by Fe and Al hydroxides and diffuse-layer overlapping between the positively-charged hydroxides and negatively-charged roots were responsible for the reduction of negative charge on roots induced by adhesion of the hydroxides. Therefore, the interaction between Fe and Al hydroxides and rice roots reduced negative charge on roots and thus inhibited their adsorption of nutrient and toxic cations. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Adsorption of Cs(I), Sr(II), Eu(III), Co(II) and Cd(II) by Al2O3

    International Nuclear Information System (INIS)

    Shiao, S.Y.; Egozy, Y.; Meyer, R.E.

    1981-01-01

    Adsorption of Cs(I), Sr(II), Eu(III), Co(II) and Cd(II) by Al 2 O 3 was carried out over a wide range of NaCl concentration and solution pH. In the medium pH region (pH 5 to 9), adsorption depends strongly on pH and less on salt concentration. However, in the high pH region (pH above 9), the salt dependence of the distribution coefficient becomes important. (author)

  6. Evaluation of a Candidate Trace Contaminant Control Subsystem Architecture: The High Velocity, Low Aspect Ratio (HVLA) Adsorption Process

    Science.gov (United States)

    Kayatin, Matthew J.; Perry, Jay L.

    2017-01-01

    Traditional gas-phase trace contaminant control adsorption process flow is constrained as required to maintain high contaminant single-pass adsorption efficiency. Specifically, the bed superficial velocity is controlled to limit the adsorption mass-transfer zone length relative to the physical adsorption bed; this is aided by traditional high-aspect ratio bed design. Through operation in this manner, most contaminants, including those with relatively high potential energy are readily adsorbed. A consequence of this operational approach, however, is a limited available operational flow margin. By considering a paradigm shift in adsorption architecture design and operations, in which flows of high superficial velocity are treated by low-aspect ratio sorbent beds, the range of well-adsorbed contaminants becomes limited, but the process flow is increased such that contaminant leaks or emerging contaminants of interest may be effectively controlled. To this end, the high velocity, low aspect ratio (HVLA) adsorption process architecture was demonstrated against a trace contaminant load representative of the International Space Station atmosphere. Two HVLA concept packaging designs (linear flow and radial flow) were tested. The performance of each design was evaluated and compared against computer simulation. Utilizing the HVLA process, long and sustained control of heavy organic contaminants was demonstrated.

  7. Modification of cyanobacterial bloom-derived biomass using potassium permanganate enhanced the removal of microcystins and adsorption capacity toward cadmium (II)

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Jihai [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China); Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Agricultural University, Changsha 410128 (China); Gu, Ji-Dong [Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Agricultural University, Changsha 410128 (China); Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong); Peng, Liang; Luo, Si; Luo, Huili [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China); Yan, Zhiyong, E-mail: zhyyan111@163.com [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China); Wu, Genyi, E-mail: wugenyi99@163.com [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China)

    2014-05-01

    Highlights: • Potassium permanganate removed microcystins in the cyanobacterial bloom-derived biomass (CBDB). • Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB. • Manganese dioxide was formed on the surface of CBDB. • Potassium permanganate oxidation process increased the adsorption capacity of CBDB toward Cd(II). - Abstract: Cyanobacterial biomass shows high adsorption capacity toward heavy metal ions. However, the cyanotoxins in the cyanobacterial biomass inhibit its application in heavy metals removal. In order to safely and effectively remove Cd(II) from water using cyanobacterial bloom-derived biomass (CBDB), KMnO{sub 4} was used to modify CBDB. The results indicated that the microcystins in the CBDB were successfully removed by KMnO{sub 4}. Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB, and formed manganese dioxide on the surface of CBDB. The oxidized CBDB showed higher adsorption capacity toward Cd(II) than that of unoxidized treatment. The optimal KMnO{sub 4} concentration for increasing the adsorption capacity of CBDB toward Cd(II) was 0.2 g/L. The adsorption isotherm of Cd(II) by oxidized- or unoxidized-CBDB was well fitted by Langmuir model, indicating that the adsorption of Cd(II) by CBDB was monolayer adsorption. The desorption ratio of Cd(II) from oxidized CBDB was higher than that from unoxidized CBDB in the desorption process using NH{sub 4}NO{sub 3} and EDTA as desorbent. The results presented in this study suggest that KMnO{sub 4} modified CBDB may be used as a safe and high efficient adsorbent in Cd(II) removal from water.

  8. Adsorption of arsenate on soils. Part 2: Modeling the relationship between adsorption capacity and soil physiochemical properties using 16 Chinese soils

    International Nuclear Information System (INIS)

    Jiang Wei; Zhang, Shuzhen; Shan Xiaoquan; Feng Muhua; Zhu Yongguan; McLaren, Ron G.

    2005-01-01

    An attempt has been made to elucidate the effects of soil properties on arsenate adsorption by modeling the relationships between adsorption capacity and the properties of 16 Chinese soils. The model produced was validated against three Australian and three American soils. The results showed that nearly 93.8% of the variability in arsenate adsorption on the low-energy surface could be described by citrate-dithionite extractable Fe (Fe CD ), clay content, organic matter content (OM) and dissolved organic carbon (DOC); nearly 87.6% of the variability in arsenate adsorption on the high-energy surface could be described by Fe CD , DOC and total arsenic in soils. Fe CD exhibited the most important positive influence on arsenate adsorption. Oxalate extractable Al (Al OX ), citrate-dithionite extractable Al (Al CD ), extractable P and soil pH appeared relatively unimportant for adsorption of arsenate by soils. - Citrate-dithionite extractable Fe has the most important positive influence on arsenate adsorption on soils

  9. Pleural sarcoidosis diagnosed on the basis of an increased CD4/CD8 lymphocyte ratio in pleural effusion fluid: a case report.

    Science.gov (United States)

    Kumagai, Toru; Tomita, Yasuhiko; Inoue, Takako; Uchida, Junji; Nishino, Kazumi; Imamura, Fumio

    2015-08-14

    Pleural effusion induced by sarcoidosis is rare, and pleural sarcoidosis is often diagnosed by thoracoscopic surgery. The diagnosis of pleural sarcoidosis using thoracentesis may be less invasive when sarcoidosis is already diagnosed histologically in more than one organ specimen. Here we report the case of a 64-year-old woman with pleural sarcoidosis diagnosed on the basis of an increased CD4/CD8 lymphocyte ratio in pleural effusion fluid obtained by thoracentesis. This case report is important because it highlights the usefulness of the CD4/CD8 lymphocyte ratio in pleural effusion as an indicator of pleural involvement of sarcoidosis. A 64-year-old Japanese woman visited our hospital with an initial symptom of dyspnea on exertion for a period of 4 months. Chest computed tomography showed bilateral hilar and multiple mediastinal lymphadenopathy, multiple small nodular shadows in her bilateral lungs, small nodular shadows along the interlobar pleura, and bilateral pleural effusion. Her serum angiotensin-converting enzyme and soluble interleukin-2 receptor levels were elevated. Histological analysis of a resected subcutaneous nodule, and biopsy specimens from a right mediastinal lymph node and from her right lung revealed non-caseous epithelioid granulomas. Her bronchoalveolar lavage fluid exhibited a predominance of lymphocytes together with an increase in the CD4/CD8 lymphocyte ratio. The lymphocytic predominance and the increased CD4/CD8 lymphocyte ratio were also detected in the right-sided pleural effusion fluid obtained by thoracentesis. We diagnosed sarcoidosis with pleural involvement. Because pleural effusion did not resolve spontaneously and her symptom of dyspnea on exertion worsened, corticosteroid therapy was initiated, which ameliorated the sarcoidosis and the pleuritis. Analysis of the CD4/CD8 lymphocyte ratio in pleural effusion fluid obtained by thoracentesis may be helpful for the diagnosis of pleural sarcoidosis when the diagnosis is already made

  10. Study on adsorption of rhodamine B onto Beta zeolites by tuning SiO2/Al2O3 ratio.

    Science.gov (United States)

    Cheng, Zhi-Lin; Li, Yan-Xiang; Liu, Zan

    2018-02-01

    The exploration of the relationship between zeolite composition and adsorption performance favored to facilitate its better application in removal of the hazardous substances from water. The adsorption capacity of rhodamine B (RB) onto Beta zeolite from aqueous solution was reported. The relationship between SiO 2 /Al 2 O 3 ratio and adsorption capacity of Beta zeolite for RB was explored. The structure and physical properties of Beta zeolites with various SiO 2 /Al 2 O 3 ratios were determined by XRD, FTIR, TEM, BET, UV-vis and so on characterizations. The adsorption behavior of rhodamine B onto Beta zeolite matched to Langmuir adsorption isotherm and more suitable description for the adsorption kinetics was a pseudo-second-order reaction model. The maximum adsorption capacity of the as-prepared Beta zeolite with SiO 2 /Al 2 O 3 = 18.4 was up to 27.97mg/g. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Clinical, immunological and treatment-related factors associated with normalised CD4+/CD8+ T-cell ratio: effect of naïve and memory T-cell subsets.

    LENUS (Irish Health Repository)

    Tinago, Willard

    2014-01-01

    Although effective antiretroviral therapy(ART) increases CD4+ T-cell count, responses to ART vary considerably and only a minority of patients normalise their CD4+\\/CD8+ ratio. Although retention of naïve CD4+ T-cells is thought to predict better immune responses, relationships between CD4+ and CD8+ T-cell subsets and CD4+\\/CD8+ ratio have not been well described.

  12. The fabrication of highly uniform ZnO/CdS core/shell structures using a spin-coating-based successive ion layer adsorption and reaction method

    International Nuclear Information System (INIS)

    Joo, Jinmyoung; Kim, Darae; Yun, Dong-Jin; Jun, Hwichan; Rhee, Shi-Woo; Lee, Jae Sung; Yong, Kijung; Jeon, Sangmin; Kim, Sungjee

    2010-01-01

    We developed a successive ion layer adsorption and reaction method based on spin-coating (spin-SILAR) and applied the method to the fabrication of highly uniform ZnO/CdS core/shell nanowire arrays. Because the adsorption, reaction, and rinsing steps occur simultaneously during spin-coating, the spin-SILAR method does not require rinsing steps between the alternating ion adsorption steps, making the growth process simpler and faster than conventional SILAR methods based on dip-coating (dip-SILAR). The ZnO/CdS core/shell nanowire arrays prepared by spin-SILAR had a denser and more uniform structure than those prepared by dip-SILAR, resulting in the higher power efficiency for use in photoelectrochemical cells.

  13. The fabrication of highly uniform ZnO/CdS core/shell structures using a spin-coating-based successive ion layer adsorption and reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Jinmyoung; Kim, Darae; Yun, Dong-Jin; Jun, Hwichan; Rhee, Shi-Woo; Lee, Jae Sung; Yong, Kijung; Jeon, Sangmin [System on Chip Chemical Process Research, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang (Korea, Republic of); Kim, Sungjee, E-mail: jeons@postech.ac.kr [Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang (Korea, Republic of)

    2010-08-13

    We developed a successive ion layer adsorption and reaction method based on spin-coating (spin-SILAR) and applied the method to the fabrication of highly uniform ZnO/CdS core/shell nanowire arrays. Because the adsorption, reaction, and rinsing steps occur simultaneously during spin-coating, the spin-SILAR method does not require rinsing steps between the alternating ion adsorption steps, making the growth process simpler and faster than conventional SILAR methods based on dip-coating (dip-SILAR). The ZnO/CdS core/shell nanowire arrays prepared by spin-SILAR had a denser and more uniform structure than those prepared by dip-SILAR, resulting in the higher power efficiency for use in photoelectrochemical cells.

  14. Pathological significance and prognostic roles of densities of CD57+ cells, CD68+ cells, and mast cells, and their ratios in clear cell renal cell carcinoma.

    Science.gov (United States)

    Nakanishi, Hiromi; Miyata, Yasuyoshi; Mochizuki, Yasushi; Yasuda, Takuji; Nakamura, Yuichiro; Araki, Kyohei; Sagara, Yuji; Matsuo, Tomohiro; Ohba, Kojiro; Sakai, Hideki

    2018-05-19

    The immune system is closely associated with malignant behavior in renal cell carcinoma (RCC). Therefore, understanding the pathological roles of immune cells in tumor stroma is essential to discuss the pathological characteristics of RCC. In this study, the clinical significance of densities of CD57+ cells, CD68+ cells, and mast cells, and their ratios were investigated in patients with clear cell RCC. The densities of CD57+, CD68+, and mast cells were evaluated by immunohistochemical techniques in 179 patients. Proliferation index (PI), apoptotic index (AI), and microvessel density (MVD) were evaluated by using anti-Ki-67, anti-cleaved caspase-3, and anti-CD31 antibodies, respectively. The density of CD57+ cell was negatively correlated with grade, pT stage, and metastasis, although densities of CD68+ cell and mast cell were positively correlated. Ratios of CD68+ cell/CD57+ cell and mast cell/CD57+ cell were significantly correlated with grade, pT stage, and metastasis. Survival analyses showed that the CD68+ cell/CD57+ cell ratio was a significant predictor for cause-specific survival by multi-variate analyses (hazard ratio=1.41, 95% confidential interval=1.03-1.93, P=.031), and was significantly correlated with PI, AI, and MVD (r=.47; P <. 001, r=-.31, P<.001, and r=.40, P<.001, respectively). In conclusion, CD57+ cell, CD68+ cell, and mast cell played important roles in malignancy in clear cell RCC. The CD68+ cell/CD57+ cell ratio was strongly correlated with pathological features and prognosis in these patients because this ratio reflected the status of cancer cell proliferation, apoptosis, and angiogenesis. Copyright © 2018. Published by Elsevier Inc.

  15. Multidimensional Clusters of CD4+T Cell Dysfunction Are Primarily Associated with the CD4/CD8 Ratio in Chronic HIV Infection

    DEFF Research Database (Denmark)

    Frederiksen, Juliet Wairimu; Buggert, Marcus; Noyan, Kajsa

    2015-01-01

    was compared to a multidimensional clustering tool, FLOw Clustering with K (FLOCK) in two cohorts of 47 untreated HIV-infected individuals and 21 age and sex matched healthy controls. In order to reduce the subjectivity of FLOCK, we developed an "artificial reference", using 2% of all CD4+ gated T cells from...... each of the HIV-infected individuals. Principle component analyses demonstrated that using an artificial reference lead to a better separation of the HIV-infected individuals from the healthy controls as compared to using a single HIV-infected subject as a reference or analyzing data manually. Multiple...... correlation analyses between laboratory parameters and pathological CD4+ clusters revealed that the CD4/CD8 ratio was the preeminent surrogate marker of CD4+ T cells dysfunction using all three methods. Increased frequencies of an early-differentiated CD4+ T cell cluster with high CD38, HLA-DR and PD-1...

  16. The CD4/CD8 ratio of tumor-infiltrating lymphocytes at the tumor-host interface has prognostic value in triple-negative breast cancer.

    Science.gov (United States)

    Wang, Kai; Shen, Tiansheng; Siegal, Gene P; Wei, Shi

    2017-11-01

    Compelling evidence has demonstrated the prognostic value of tumor-infiltrating lymphocytes (TILs), especially in triple-negative breast cancer (TNBC). However, only a limited number of studies to investigate the importance of the subsets of T cells in TILs have been carried out, less so the significance of the location of these TILs. In this study, we explored in a cohort of 42 consecutive TNBC cases the prognostic significance of TIL subsets at the tumor-host interface (within 1 high-power field [0.5 mm] of the invasive front) and compared them with TILs within the intratumoral stroma. Given the reported importance of TILs in HER2-overexpressing breast cancer, a subset of such tumors was also included for comparison. The range was wide in both locations; nevertheless, the mean CD4 + and CD8 + T cell count was significantly higher at the tumor-host interface than that found within the intratumoral stroma (both P<.0001). The number of CD4 + or CD8 + T cells at either location was not significantly associated with distant relapse-free or overall survival. However, the CD4/CD8 ratio at the tumor-host interface was significantly associated with both relapse-free survival (hazard ratio 0.2, P=.002) and overall survival (hazard ratio 0.13, P=.002), whereas this association was not seen for the CD4/CD8 ratio within the intratumoral stroma. As expected, both tumor size and nodal status were significantly associated with survival outcomes. The findings further support the contention that TILs, as markers of regional immune escape, are of prognostic importance in TNBC progression and that the CD4/CD8 ratio of TILs at the tumor-host interface plays a distinctive role, thus appearing to be of clinical relevance. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Characterization of CBD-CdS layers with different S/Cd ratios in the chemical bath and their relation with the efficiency of CdS/CdTe solar cells

    International Nuclear Information System (INIS)

    Vigil-Galan, O.; Morales-Acevedo, A.; Cruz-Gandarilla, F.; Jimenez-Escamilla, M.G.; Aguilar-Hernandez, J.; Contreras-Puente, G.; Sastre-Hernandez, J.; Sanchez-Meza, E.; Ramon-Garcia, M.L.

    2007-01-01

    In previous papers we have reported the improvement of the efficiency of CdS/CdTe solar cells by varying the thiourea/CdCl 2 ratio (R tc ) in the chemical bath solution used for the deposition of the CdS layers. In this work, a more complete study concerning the physical properties of Chemical Bath Deposited (CBD) CdS layers studied by photoluminescence, X-ray diffraction and optical spectroscopy are correlated to the I-V characteristics under AM 1.5 sunlight and the spectral response of CdS/CdTe solar cells. It is confirmed that the optimum R tc for the CBD CdS films is R tc = 5, since in this case the best solar cells were obtained and these films show the better optical and structural characteristics

  18. Diagnostic utility of CD4%:CD8 low% T-lymphocyte ratio to differentiate feline immunodeficiency virus (FIV)-infected from FIV-vaccinated cats.

    Science.gov (United States)

    Litster, Annette; Lin, Jui-Ming; Nichols, Jamieson; Weng, Hsin-Yi

    2014-06-04

    Antibody testing based on individual risk assessments is recommended to determine feline immunodeficiency virus (FIV) status, but ELISA and Western blot tests cannot distinguish between anti-FIV antibodies produced in response to natural infection and those produced in response to FIV vaccination. The aim of this cross-sectional study was to test the hypothesis that FIV-infected cats could be differentiated from FIV-vaccinated uninfected cats using lymphocyte subset results, specifically the CD4%:CD8(low)% T-lymphocyte ratio. Comparisons of the CD4%:CD8(low)% T-lymphocyte ratio were made among the following four groups: Group 1 - FIV-infected cats (n=61; FIV-antibody positive by ELISA and FIV PCR positive); Group 2 - FIV-uninfected cats (n=96; FIV-antibody negative by ELISA); Group 3 - FIV-vaccinated uninfected cats (n=31; FIV-antibody negative by ELISA before being vaccinated against FIV, after which they tested FIV ELISA positive); and Group 4 - FIV-uninfected but under chronic/active antigenic stimulation (n=16; FIV-antibody negative by ELISA; all had active clinical signs of either upper respiratory tract disease or gingival disease for ≥ 21 days). The median CD4%:CD8(low)% T-lymphocyte ratio was lower in Group 1 (1.39) than in each of the other three groups (Group 2 - 9.77, Group 3 - 9.72, Group 4 - 5.64; P<0.05). The CD4%:CD8(low)% T-lymphocyte ratio was also the most effective discriminator between FIV-infected cats and the other three groups, and areas under ROC curves ranged from 0.91 (compared with Group 4) to 0.96 (compared with Group 3). CD4%:CD8(low)% shows promise as an effective test to differentiate between FIV-infected cats and FIV-vaccinated uninfected cats. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Adsorption Kinetics of Cd(ll and Pb(ll Ions from Aqueous Solutions by Bamboo-Based Activated Charcoal and Bamboo Dust

    Directory of Open Access Journals (Sweden)

    Stevens Azubuike Odoemelam

    2015-01-01

    Full Text Available The use of bamboo dust (BD and bamboo-based activated charcoal for adsorption of Pb(ll and Cd(ll ions from aqueous solutions were assessed in this work. The effect of contact time on the uptake of these metal ions was studied in batch process. The adsorption data were correlated with pseudo first-order, pseudo second-order and diffusivity kinetic models. Results show that pseudo second-order kinetic model gave the best description for the adsorption process. Kinetic studies further showed that the adsorption transport mechanism was particle-diffusion controlled for the adsorption process. Results obtained generally showed that lead(ll ions were better adsorbed onto both adsorbents as compared to cadmium(ll. Comparison of sorption capacity for the two adsorbents shows that bamboo-based activated charcoal exhibited better removal for the metal ions than the bamboo dust.

  20. Analysis of mercury adsorption at the gibbsite-water interface using the CD-MUSIC model.

    Science.gov (United States)

    Park, Chang Min

    2018-05-22

    Mercury (Hg), one of the most toxic substances in nature, has long been released during the anthropogenic activity. A correct description of the adsorptive behavior of mercury is important to gain a better insight into its fate and transport in natural mineral surfaces, which will be a prerequisite for the development of surface complexation model for the adsorption processes. In the present study, simulation experiments on macroscopic Hg(II) sorption by gibbsite (α-Al(OH) 3 ), a representative aluminum (hydr)oxide mineral, were performed using the charge distribution and multi-site complexation (CD-MUSIC) approach with 1-pK triple plane model (TPM). For this purpose, several data sets which had already been reported in the literature were employed to analyze the effect of pH, ionic strength, and co-exisiting ions (NO 3 - and Cl - ) on the Hg(II) adsorption onto gibbsite. Sequential optimization approach was used to determine the acidity and asymmetric binding constants for electrolyte ions and the affinity constants of the surface species through the model simulation using FITEQLC (a modified code of FITEQL 4.0). The model successfully incorporated the presence of inorganic ligands at the dominant edge (100) face of gibbsite with consistent surface species, which was evidenced by molecular scale analysis. The model was verified with an independent set of Hg(II) adsorption data incorporating carbonate binding species in an open gibbsite-water system.

  1. Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent-Bamboo charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fayuan [State Key Joint Laboratory of Environment Simulation and Pollution Control, Department of Environmental Science and Engineering, Tsinghua University, Qinghuayuan, Haidian District, Beijing 100084 (China); Wang Hui, E-mail: wanghui@mail.tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control, Department of Environmental Science and Engineering, Tsinghua University, Qinghuayuan, Haidian District, Beijing 100084 (China); Ma Jianwei [State Key Joint Laboratory of Environment Simulation and Pollution Control, Department of Environmental Science and Engineering, Tsinghua University, Qinghuayuan, Haidian District, Beijing 100084 (China)

    2010-05-15

    Batch adsorption experiments were conducted for the adsorption of Cd (II) ions from aqueous solution by bamboo charcoal. The results showed that the adsorption of Cd (II) ions was very fast initially and the equilibrium time was 6 h. High pH ({>=}8.0) was favorable for the adsorption and removal of Cd (II) ions. Higher initial Cd concentrations led to lower removal percentages but higher adsorption capacity. As the adsorbent dose increased, the removal of Cd increased, while the adsorption capacity decreased. Adsorption kinetics of Cd (II) ions onto bamboo charcoal could be best described by the pseudo-second-order model. The adsorption behavior of Cd (II) ions fitted Langmuir, Temkin and Freundlich isotherms well, but followed Langmuir isotherm most precisely, with a maximum adsorption capacity of 12.08 mg/g. EDS analysis confirmed that Cd (II) was adsorbed onto bamboo charcoal. This study demonstrated that bamboo charcoal could be used for the removal of Cd (II) ions in water treatment.

  2. CdTe deposition by successive ionic layer adsorption and reaction (SILAR) technique onto ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Raul; Delamoreanu, Alexandru; Saidi, Bilel; Ivanova, Valentina [CEA, LETI, MINATEC Campus, 17 Rue des Martyrs, 38054, Grenoble (France); Levy-Clement, Claude [CNRS, Institut de Chimie et des Materiaux de Paris-Est, 94320, Thiais (France)

    2014-09-15

    In this study is reported CdTe deposition by Successive Ionic Layer Adsorption and reaction (SILAR) at room temperature onto ZnO nanowires (NWs). The as-deposited CdTe layer exhibits poor crystalline quality and not well defined optical transition which is probably result of its amorphous nature. The implementation of an annealing step and chemical treatment by CdCl{sub 2} to the classical SILAR technique improved significantly the CdTe film quality. The XRD analysis showed that the as treated layers are crystallized in the cubic zinc blende structure. The full coverage of ZnO nanowires and thickness of the CdTe shell, composed of small crystallites, was confirmed by STEM and TEM analysis. The layer thickness could be controlled by the number of SILAR cycles. The sharper optical transitions for the annealed and CdCl{sub 2} treated heterostructures additionally proves the enhancement of the layer crystalline quality. For comparison CdTe was also deposited by close space sublimation (CSS) method onto ZnO nanowires. It is shown that the SILAR deposited CdTe exhibits equal crystalline and optical properties to that prepared by CSS. These results demonstrate that SILAR technique is more suitable for conformal thin film deposition on nanostructures. CdTe extremely thin film deposited by SILAR method onto ZnO nanowire. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. CdTe deposition by successive ionic layer adsorption and reaction (SILAR) technique onto ZnO nanowires

    International Nuclear Information System (INIS)

    Salazar, Raul; Delamoreanu, Alexandru; Saidi, Bilel; Ivanova, Valentina; Levy-Clement, Claude

    2014-01-01

    In this study is reported CdTe deposition by Successive Ionic Layer Adsorption and reaction (SILAR) at room temperature onto ZnO nanowires (NWs). The as-deposited CdTe layer exhibits poor crystalline quality and not well defined optical transition which is probably result of its amorphous nature. The implementation of an annealing step and chemical treatment by CdCl 2 to the classical SILAR technique improved significantly the CdTe film quality. The XRD analysis showed that the as treated layers are crystallized in the cubic zinc blende structure. The full coverage of ZnO nanowires and thickness of the CdTe shell, composed of small crystallites, was confirmed by STEM and TEM analysis. The layer thickness could be controlled by the number of SILAR cycles. The sharper optical transitions for the annealed and CdCl 2 treated heterostructures additionally proves the enhancement of the layer crystalline quality. For comparison CdTe was also deposited by close space sublimation (CSS) method onto ZnO nanowires. It is shown that the SILAR deposited CdTe exhibits equal crystalline and optical properties to that prepared by CSS. These results demonstrate that SILAR technique is more suitable for conformal thin film deposition on nanostructures. CdTe extremely thin film deposited by SILAR method onto ZnO nanowire. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Comparison of adsorption of Cd(II and Pb(II ions on pure and chemically modified fly ashes

    Directory of Open Access Journals (Sweden)

    Sočo Eleonora

    2016-06-01

    Full Text Available The study investigates chemical modifications of coal fly ash (FA treated with HCl or NH4HCO3 or NaOH or Na2edta, based on the research conducted to examine the behaviour of Cd(II and Pb(II ions adsorbed from water solution on treated fly ash. In laboratory tests, the equilibrium and kinetics were examined applying various temperatures (293 - 333 K and pH (2 - 11 values. The maximum Cd(II and Pb(II ions adsorption capacity obtained at 293 K, pH 9 and mixing time 2 h from the Langmuir model can be grouped in the following order: FA-NaOH > FA-NH4HCO3 > FA > FA-Na2edta > FA-HCl. The morphology of fly ash grains was examined via small-angle X-ray scattering (SAXS and images of scanning electron microscope (SEM. The adsorption kinetics data were well fitted by a pseudo-second-order rate model but showed a very poor fit for the pseudofirst order model. The intra-particle model also revealed that there are two separate stages in the sorption process, i.e. the external diffusion and the inter-particle diffusion. Thermodynamics parameters such as free energy, enthalpy and entropy were also determined. A laboratory test demonstrated that the modified coal fly ash worked well for the Cd(II and Pb(II ion uptake from polluted waters.

  5. [Aging and influence of inversion of the CD4:CD8 ratio in the incidence of co-morbidities and mortality in a cohort of patients infected with human immunodeficiency virus].

    Science.gov (United States)

    Cervero, Miguel; Torres, Rafael; Agud, Jose Luis; Pastor, Susana; Jusdado, Juan José

    2016-03-04

    It has been postulated that the inversion of the CD4:CD8 ratio as a hallmark of immunosenescence can be an independent factor that can herald the risk of co-morbidities. We studied the influence of aging and inversion of the CD4:CD8 ratio in the incidence of comorbidities and mortality in the cohort of Hosptital Severo Ochoa. We analyzed the differences in the incidence rates of age-adjusted morbidities and evaluated the inversion of the CD4:CD8 ratio as predictor of mortality and development of comorbidities. Age was associated with an increased incidence rate of diabetes mellitus, fractures, COPD and non-AIDS malignancies. We found an increased incidence rate of non-AIDS clinical events (OR 2.25; 95% CI 1.025-4.94) and AIDS events (OR 3.48; 95% CI 1.58-7.64) in individuals with CD4:CD8 ratio<0.7. Moreover, patients with a CD4:CD8 ratio<0.7 ratio had a higher risk of mortality (OR 5.96; 95% CI 0.73 to 48.40). It is important to detect and prevent non-AIDS comorbidities in the presence of a CD4:CD8 ratio<0.7. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  6. Competitive adsorption-desorption reactions of two hazardous heavy metals in contaminated soils.

    Science.gov (United States)

    Davari, Masoud; Rahnemaie, Rasoul; Homaee, Mehdi

    2015-09-01

    Investigating the interactions of heavy metals is imperative for sustaining environment and human health. Among those, Cd is toxic for organisms at any concentration. While Ni acts as a micronutrient at very low concentration but is hazardous toxic above certain threshold value. In this study, the chemical adsorption and desorption reactions of Ni and Cd in contaminated soils were investigated in both single and binary ion systems. Both Ni and Cd experimental data demonstrated Langmuir type adsorption. In the competitive systems, an antagonistic effect was observed, implying that both ions compete for same type of adsorption sites. Adverse effect of Cd on Ni adsorption was slightly stronger than that of opposite system, consistent with adsorption isotherms in single ion systems. Variation in ionic strength indicated that Ca, a much weaker adsorbate, could also compete with Cd and Ni for adsorption on soil particles. Desorption data indicated that Cd and Ni are adsorbed very tightly such that after four successive desorption steps, less than 0.5 % of initially adsorbed ions released into the soil solution. This implies that Ca, at concentration in equilibrium with calcite mineral, cannot adequately compete with and replace adsorbed Ni and Cd ions. This adsorption behavior was led to considerable hysteresis between adsorption and desorption in both single and binary ion systems. In the binary ion systems, desorption of Cd and Ni was increased by increase in both equilibrium concentration of adsorbed ion and concentration of competitor ion. The overall results obtained in this research indicate that Cd and Ni are strongly adsorbed in calcareous soil and Ca, the major dissolved ion, insignificantly influences metal ions adsorption. Consequently, the contaminated soils by Ni and Cd can simultaneously be remediated by environmentally oriented technologies such as phytoremediation.

  7. Cation exchange removal of Cd from aqueous solution by NiO

    International Nuclear Information System (INIS)

    Mahmood, T.; Saddique, M.T.; Naeem, A.; Mustafa, S.; Dilara, B.; Raza, Z.A.

    2011-01-01

    Graphical abstract: Sorption of Cd on NiO particles is described by modified Langmuir adsorption isotherms. - Abstract: Detailed adsorption experiments of Cd from aqueous solution on NiO were conducted under batch process with different concentrations of Cd, time and temperature of the suspension. The solution pH is found to play a decisive role in the metal ions precipitation, surface dissolution and adsorption of metal ions onto the NiO. Preliminary adsorption experiments show that the selectivity of NiO towards different divalent metal ions follows the trend Pb > Zn > Co > Cd, which is related to their first hydrolysis equilibrium constant. The exchange between the proton from the NiO surface and the metal from solution is responsible for the adsorption. The cation/exchange mechanism essentially remains the same for Pb, Zn, Co and Cd ions. The sorption of Cd on NiO particles is described by the modified Langmuir adsorption isotherms. The isosteric heat of adsorption (ΔH) indicates the endothermic nature of the cation exchange process. Spectroscopic analyses provide evidence that Cd is chemisorbed onto the surface of NiO.

  8. The correlation of adsorption behavior between ciprofloxacin hydrochloride and the active sites of Fe-doped MCM-41

    Science.gov (United States)

    Wu, Ying; Tang, Yiming; Li, Laisheng; Liu, Peihong; Li, Xukai; Chen, Weirui; Xue, Ying

    2018-02-01

    Fe-MCM-41s with various molar ratios of silicon to iron (20, 40, 80 and 160) were prepared to investigate adsorption properties of ciprofloxacin hydrochloride (CPX) in aqueous solutions. Fe-MCM-41s were characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption/desorption isotherms and infrared spectroscopy (FT-IR). Effects of silicon–iron ratio, adsorbent dosage, pH and temperature were conducted to explore the adsorption mechanism of CPX on Fe-MCM-41. The results showed that the introduction of iron facilitated the absorption quantity for CPX from 20.04 to 83.33 mg g-1 at 120 min of reaction time, which was mainly attributed to surface complexation. The promotion of hydrophobic effect, electrostatic interactions and π-π electron donor–acceptor interaction also played coordinate roles in the adsorption process. The experimental kinetic data followed both the pseudo-second-order and intra-particle diffusion models, while the adsorption isotherm data fit well to Freundlich model at high temperature. Thermodynamic study showed that the adsorption was spontaneous. Under the effect of electrostatic interaction, pH of the solution strongly affected CPX adsorption. Five representative metal cations (Ca, Cu, Ni, Pb and Cd) were chosen to study the effects on CPX adsorption and their complexation. The inhibiting effect of metal cations on CPX adsorption was sequenced in the order of Cu > Ni > Pb > Cd > Ca, which followed the same order as the complexation stability constants between CPX and cations. The Fe-MCM-41 adsorbent possessed excellent reusability for 4 cycles use, suggesting a potential applicability of Fe-MCM-41 to remove CPX in water.

  9. Some hematological parameters and the prognostic values of CD4, CD8 and total lymphocyte counts and CD4/CD8 cell count ratio in healthy HIV sero-negative, healthy HIV sero-positive and AIDS subjects in Port Harcourt, Nigeria

    Directory of Open Access Journals (Sweden)

    Blessing Didia

    2008-12-01

    Full Text Available OBJECTIVE: The present study attempts to determine normal values of CD4, CD8, CD4/CD8 ratio, total WBC and differential counts, hematocrit and total lymphocyte count (TLC in healthy HIV sero-negative and sero-positive subjects, and to assess the prognostic significance of these parameters in these subjects as compared to AIDS subjects.METHODS: A total of 300 subjects (147 M, 153 F aged between 17 and 71 years were recruited into the study. Subjects were separated according to sex and divided into three groups: Group A: healthy HIV sero-negative subjects; Group B: healthy HIV sero-positive newly diagnosed ART-naïve subjects; and Group C: AIDS subjects. CD4 and CD8 counts were determined by flow cytometry; hematocrit was determined using Hawksley micro-capillary tubes; total WBC and differential counts were determined manually with the improved Neubauer counting chamber; and TLC was obtained by multiplying the percentage of lymphocytes by the total WBC count.RESULTS: For male subjects, significant differences were found in CD4 count, CD4/CD8 count ratio, hematocrit, total WBC and TLC, whereas for female subjects, significant differences were found only in CD4 and CD4/CD8 count ratio in the three groups of subjects. In both sexes, however, these parameters were found to be highest in healthy HIV sero-negative subjects and lowest in AIDS subjects, with HIV sero-positive subjects having intermediate values. CONCLUSION: The results confirm previous reports that the CD4 count and CD4/CD8 count ratio are fairly reliable indicators of the progression of HIV infection. In addition, the results also apparently suggest that the prognostic value of CD8 count is limited and that of TLC possibly sex-dependent. The results could be of importance in our environment since previous reports have been relatively scarce.

  10. Study of Zn, Cd, and Pb Adsorption Using Chitin Extracted from Lobsters from Oman Sea

    Directory of Open Access Journals (Sweden)

    Alireza Sardashti

    2015-10-01

    Full Text Available Lobster shells from Konarak Port were collected in October 2002, purified, and dried for the purposes of the present study. Chitin was extracted from the shellsusing the common chemical processes of demineralization, proteinzation, and decolonization, beforepurificationwith 1% CH3COOH and 1% NaCl to obatin an extract containing 12% (w/w chitin. Chitin composition was determined using FT-IR, X-Ray powder diffraction, BET, and C.H.N.S analysis. The FT-IR spectrum of the extracted chitin was corresponded well to the Merck standard one, indicating that it is a linear polymer of N-acetyl-D- glucosamine on which metal ions can be adsorbed. Kinetic study of chitin’s reaction with Zn+2 at pH=6.75 and an ionic strength of 0.02 M indicated that adsorption equilibrium was reached within six hours of mixing. Adsorption Langmuir isotherms for a solution of Zn+2, Cd+2, and Pb+2 ions at an initial concentration of 2×10‒3 M were determined for an ionic strenght of 0.02 M, different pH levels, and at ambient temparature using the discontinued in-pot method. The maximum amounts of metal ions adsorbed on chitin at pH= 6.75 were measured to be 0.119 mol/kg for Cd+2, 0.714 mol/kg for Zn+2, and 1.630 mol/Kg for Pb+2. The overdyeing graphs, Cs= f (pH, show that the adsorption capacity of chitin is influenced by such factors as pH, reaction time, metal ion concantration, and adsorbent particle size. Thus, chitin as a non-toxic natural polymer may be highly recommended for water detoxification from heavy metal ions.

  11. Adsorption of tetracycline on Fe (hydr)oxides: effects of pH and metal cation (Cu2+, Zn2+ and Al3+) addition in various molar ratios

    Science.gov (United States)

    Hsu, Liang-Ching; Liu, Yu-Ting; Syu, Chien-Hui; Huang, Mei-Hsia; Teah, Heng Yi

    2018-01-01

    Iron (Fe) (hydr)oxides control the mobility and bioavailability of tetracycline (TC) in waters and soils. Adsorption of TC on Fe (hydr)oxides is greatly affected by polyvalent metals; however, impacts of molar metal/TC ratios on TC adsorptive behaviours on Fe (hydr)oxides remain unclear. Results showed that maximum TC adsorption on ferrihydrite and goethite occurred at pH 5–6. Such TC adsorption was generally promoted by the addition of Cu2+, Zn2+ and Al3+. The greatest increase in TC adsorption was found in the system with molar Cu/TC ratio of 3 due to the formation of Fe hydr(oxide)–Cu–TC ternary complexes. Functional groups on TC that were responsible for the complexation with Cu2+shifted from phenolic diketone groups at Cu/TC molar ratio adsorption at a molar Al/TC ratio of 1. However, TC adsorption decreased for Al/TC molar ratio > 1 as excess Al3+ led to the competitive adsorption with Al/TC complexes. For the Zn2+ addition, no significant correlation was found between TC adsorption capacity and molar Zn/TC ratios. PMID:29657795

  12. Effect of metal cation ratio on chemical properties of ZnFe2O4/AC composite and adsorption of organic contaminant

    Science.gov (United States)

    Meilia, Demara; Misbah Khunur, Mochamad; Setianingsih, Tutik

    2018-01-01

    Porous woody char is biochar prepared through pyrolisis. The biochar can be used as adsorbent. In this research, ZnFe2O4/AC composite was synthesized through imregnation of the woody biochar with ZnFe2O4 to study effect of mol ratio of Fe(III) and Zn(II) toward their physicochemistry and adsorption of drug wastewater. Paracetamol was used as adsorbate model. This research was conducted in several steps, including activation of the woody biochar using KOH activator at temperatur 500 °C for 15 min to produce the activated carbon, fungsionalization of the carbon using H2SO4 oxidator (6M) at temperature of 80 °C for 3 h, impregnation of the oxidized activated carbon with Zn-Fe-LDH (Layered Double Hydroxide) at various mol ratio of Fe(III) and Zn(III), including 1:2, 1:3 and 1:4 using NaOH solution (5M) for coprecipitation, and calcination of Zn-Fe-LDH/AC at 950 °C for 5 min to produce ZnFe2O4/AC. FTIR diffraction characterization indicated existence of M-O (M = Zn(II), Fe(III)) and OH functional groups. FTIR spectra showed increasing of bands connected to -OH by increasing of the ratio till the ratio was achieved at 1:4, then decreased again. The ratio mol showed effect on the adsorption of paracetamol. Profile of adsorption value was fit with changing of functional groups. The highest adsorption was achieved at the ratio of 1:4. After calcination it gave the adsorption value of 17,66 mg/g.

  13. Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris

    International Nuclear Information System (INIS)

    Taty-Costodes, V. Christian; Fauduet, Henri; Porte, Catherine; Delacroix, Alain

    2003-01-01

    Fixation of heavy metal ions (Cd(II) and Pb(II)) onto sawdust of Pinus sylvestris is presented in this paper. Batch experiments were conducted to study the main parameters such as adsorbent concentration, initial adsorbate concentration, contact time, kinetic, pH solution, and stirring velocity on the sorption of Cd(II) and Pb(II) by sawdust of P. sylvestris. Kinetic aspects are studied in order to develop a model which can describe the process of adsorption on sawdust. The equilibrium of a solution between liquid and solid phases is described by Langmuir model. Scanning electronic microscopy (SEM) coupled with energy dispersive X-ray analysis (EDAX) and X-ray photoelectron spectroscopy (XPS) shows that the process is controlled by a porous diffusion with ion-exchange. The capacity of the metal ions to bind onto the biomass was 96% for Cd(II), and 98% for Pb(II). The sorption followed a pseudo-second-order kinetics. The adsorption of these heavy metals ions increased with the pH and reached a maximum at a 5.5 value. From these results, it can be concluded that the sawdust of P. sylvestris could be a good adsorbent for the metal ions coming from aqueous solutions. Moreover, this material could also be used for purification of water before rejection into the natural environment

  14. Effect of immobilized amine density on cadmium(II) adsorption capacities for ethanediamine-modified magnetic poly-(glycidyl methacrylate) microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Tingting [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yang, Liangrong, E-mail: lryang@ipe.ac.cn [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Pan, Feng; Xing, Huifang; Wang, Li; Yu, Jiemiao [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Qu, Hongnan [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Rong, Meng [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Huizhou, E-mail: hzliu@ipe.ac.cn [Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-04-01

    A series of ethanediamine (EDA) – modified magnetic poly-(glycidyl methacrylate) (m-PGMA-EDA)microspheres with different amine density were synthesized and their cadmium saturation adsorption capacities were examined. The results showed that the cadmium saturation adsorption capacity increased with the immobilized amine density. However, they did not show strong positive linear correlation in the whole range of amine density examined. The molar ratio of amine groups to the adsorbed cadmium decreased with the increase of amine density and eventually reached a minimum value about 4. It suggested that low immobilized amine density led to low coordination efficiency of the amine. It is hypothesized that the immobilized amine groups needed to be physically close enough to form stable amine-metal complex. When the amine density reached to a critical value 1.25 m mol m{sup −2}, stable amine-cadmium complex (4:1 N/Cd) was proposed to form. To illustrate the coordination mechanism (structure and number) of amine and Cd, FT-IR spectra of m-PGMA-EDA and m-PGMA-EDA-Cd , and X-ray photoelectron spectroscopy (XPS) of PGMA–EDA and PGMA-EDA-Cd were examined and analyzed. - Highlights: • A series of magnetic poly-(glycidyl methacrylate) (m-PGMA-EDA)microspheres with different amine density were synthesized and their cadmium saturation adsorption capacities were examined. • The molar ratio of amine groups to adsorbed cadmium decreased with the increase of amine density and eventually reached a minimum value about 4. • when the amine density reached high enough, 4:1 N/Cd complex was proposed to form, and the hydroxyl also participated in the chelating with Cd.

  15. Synthesis and characterization of a surface-grafted Cd(II) ion-imprinted polymer for selective separation of Cd(II) ion from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Li, Min [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Feng, Changgen, E-mail: cgfeng@cast.org.cn [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Li, Mingyu; Zeng, Qingxuan; Gan, Qiang [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Yang, Haiyan [Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China)

    2015-03-30

    Highlights: • Cd(II) ion-imprinted polymer (Cd(II)-IIP) is prepared. • Cd(II)-IIP shows high stability, good selectivity and reusability. • Cd(II)-IIP can be used as a sorbent for selective removal of Cd(II) ion. - Abstract: A novel Cd(II) ion-imprinted polymer (Cd(II)-IIP) was prepared with surface imprinting technology by using cadmium chloride as a template and allyl thiourea (ATU) as a functional monomer for on-line solid-phase extraction of trace Cd(II) ion and selective separation Cd(II) ion in water samples. The Cd(II)-IIP exhibited good chemical performance and thermal stability. Kinetics studies showed that the equilibrium adsorption was achieved within 8.0 min and the adsorption process can be described by pseudo-second-order kinetic model. Compared to the Cd(II) non-imprinted polymer (Cd(II)-NIP), the Cd(II)-IIP had a higher adsorption capacity and selectivity for Cd(II) ion. The maximum adsorption capacities of the Cd(II)-IIP and Cd(II)-NIP for Cd(II) were 38.30 and 13.21 mg g{sup −1}, respectively. The relative selectivity coefficients of the adsorbent for Cd(II) in the presence of Cu{sup 2+}, Ni{sup 2+}, Co{sup 2+}, Pb{sup 2+} and Zn{sup 2+} were 2.86, 6.42, 11.50, 9.46 and 3.73, respectively. In addition, the Cd(II) ion adsorbed was easy to remove from sorbent and the Cd(II)-IIP exhibited good stability and reusability. The adsorption capacity had no obvious decrease after being used six times. The accuracy of this method was verified by the standard reference material, it was then applied for cadmium ion determination in different types of water samples.

  16. Characterization of nanostructured photosensitive (NiS)x(CdS)(1-x) composite thin films grown by successive ionic layer adsorption and reaction (SILAR) route

    International Nuclear Information System (INIS)

    Ubale, A.U.; Bargal, A.N.

    2011-01-01

    Highlights: → Thin films of (NiS) x (CdS) (1-x) with variable composition (x = 1 to 0) were deposited onto glass substrates by the successive ionic layer adsorption and reaction (SILAR) method. → The structural, surface morphological and electrical characterizations of the as deposited and annealed films were studied. → The bandgap and activation energy of annealed (NiS) x (CdS) (1-x) film decrease with improvement in photosensitive nature. -- Abstract: Recently ternary semiconductor nanostructured composite materials have attracted the interest of researchers because of their photovoltaic applications. Thin films of (NiS) x (CdS) (1-x) with variable composition (x = 1-0) had been deposited onto glass substrates by the successive ionic layer adsorption and reaction (SILAR) method. As grown and annealed films were characterised by X-ray diffraction, scanning electron microscopy and EDAX to investigate structural and morphological properties. The (NiS) x (CdS) (1-x) films were polycrystalline in nature having mixed phase of rhombohedral and hexagonal crystal structure due to NiS and CdS respectively. The optical and electrical properties of (NiS) x (CdS) (1-x) thin films were studied to determine compsition dependent bandgap, activation energy and photconductivity. The bandgap and activation energy of annealed (NiS) x (CdS) (1-x) film decrease with improvement in photosensitive nature.

  17. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions.

    Science.gov (United States)

    Park, Jong-Hwan; Ok, Yong Sik; Kim, Seong-Heon; Cho, Ju-Sik; Heo, Jong-Soo; Delaune, Ronald D; Seo, Dong-Cheol

    2016-01-01

    Objective of this research was to evaluate adsorption of heavy metals in mono and multimetal forms onto sesame straw biochar (SSB). Competitive sorption of metals by SSB has never been reported previously. The maximum adsorption capacities (mgg(-1)) of metals by SSB were in the order of Pb (102)≫Cd (86)≫Cr (65)>Cu (55)≫Zn (34) in the monometal adsorption isotherm and Pb (88)≫Cu (40)≫Cr (21)>Zn (7)⩾Cd (5) in the multimetal adsorption isotherm. Based on data obtained from the distribution coefficients, Freundlich and Langmuir adsorption models, and three-dimensional simulation, multimetal adsorption behaviors differed from monometal adsorption due to competition. Especially, during multimetal adsorption, Cd was easily exchanged and substituted by other metals. Further competitive adsorption studies are necessary in order to accurately estimate the heavy metal adsorption capacity of biochar in natural environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Immunotherapy of non-Hodgkin lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells

    Science.gov (United States)

    Turtle, Cameron J.; Hanafi, Laïla-Aïcha; Berger, Carolina; Hudecek, Michael; Pender, Barbara; Robinson, Emily; Hawkins, Reed; Chaney, Colette; Cherian, Sindhu; Chen, Xueyan; Soma, Lorinda; Wood, Brent; Li, Daniel; Heimfeld, Shelly; Riddell, Stanley R.; Maloney, David G.

    2016-01-01

    CD19-specific chimeric antigen receptor (CAR)-modified T cells have antitumor activity in B cell malignancies, but factors that impact toxicity and efficacy have been difficult to define because of differences in lymphodepletion regimens and heterogeneity of CAR-T cells administered to individual patients. We conducted a clinical trial in which CD19 CAR-T cells were manufactured from defined T cell subsets and administered in a 1:1 CD4+:CD8+ ratio of CAR-T cells to 32 adults with relapsed and/or refractory B cell non-Hodgkin lymphoma after cyclophosphamide (Cy)-based lymphodepletion chemotherapy with or without fludarabine (Flu). Patients who received Cy/Flu lymphodepletion had markedly increased CAR-T cell expansion and persistence, and higher response rates (50% CR, 72% ORR, n=20) than patients who received Cy-based lymphodepletion without Flu (8% CR, 50% ORR, n=12). The complete response (CR) rate in patients treated with Cy/Flu at the maximally tolerated dose was 64% (82% ORR, n=11). Cy/Flu minimized the effects of an immune response to the murine scFv component of the CAR, which limited CAR-T cell expansion, persistence, and clinical efficacy in patients who received Cy-based lymphodepletion without Flu. Severe cytokine release syndrome (sCRS) and grade ≥ 3 neurotoxicity were observed in 13% and 28% of all patients, respectively. Serum biomarkers one day after CAR-T cell infusion correlated with subsequent development of sCRS and neurotoxicity. Immunotherapy with CD19 CAR-T cells in a defined CD4+:CD8+ ratio allowed identification of correlative factors for CAR-T cell expansion, persistence, and toxicity, and facilitated optimization of a lymphodepletion regimen that improved disease response and overall and progression-free survival. PMID:27605551

  19. Adsorption Study on Moringa Oleifera Seeds and Musa Cavendish as Natural Water Purification Agents for Removal of Lead, Nickel and Cadmium from Drinking Water

    Science.gov (United States)

    Aziz, N. A. A.; Jayasuriya, N.; Fan, L.

    2016-07-01

    The effectiveness of plant based materials Moringa oleifera (Moringa) seeds and Musa cavendish (banana peel) for removing heavy metals namely lead (Pb), nickel (Ni) and cadmium (Cd) from contaminated groundwater was studied. Tests were carried out with individual and combined biomass at neutral pH condition on synthetic groundwater samples. The optimum biomass doses were determined as 200 mg/L for single biomass and 400 mg/L (in the ratio of 200 mg/L: 200 mg/L) for combined biomasses and used for adsorption isotherm studies with contact time of 30 minutes. Results showed that combined biomasses was able to met the Pb, Ni and Cd WHO standards from higher Pb, Ni and Cd initial concentrations which were up to 40 µg/L, 50 µg/L 9 µg/L, respectively compared to individual biomass of Moringa seed and banana peel. Moringa seeds exhibited the highest removal of Pb (81%) while the combined biomasses was most effective in removing Ni (74%) and Cd (97%) over wider their initial concentration ranges. The experimental data were linearized with Langmuir and Freundlich adsorption isotherm models. Freundlich model described the Pb adsorption better than the Langmuir model for all the tested biomasses. However, the Langmuir model fit better with the experimental data of Ni adsorption by Moringa seeds. Both models showed negligible differences in the coefficient of determination (R2) when applied for Ni and Cd adsorption on banana peel and combined biomasses, suggesting that there were multiple layers on the biomass interacting with the metals. Chemisorption is suggested to be involved in Pb adsorption for all tested biomasses as the value of nF calculated was lower than one. This type of adsorption could explain the phenomenon of different behavior of Pb removal and the higher Pb adsorption capacity (represented by KF values) compared to Ni and Cd. The study demonstrates that Moringa seeds, banana peel and their combination have the potential to be used as a natural alternative

  20. The effect of zeolite treatment by acids on sodium adsorption ratio of coal seam gas water.

    Science.gov (United States)

    Wang, Xiaoyu; Ozdemir, Orhan; Hampton, Marc A; Nguyen, Anh V; Do, Duong D

    2012-10-15

    Many coal seam gas (CSG) waters contain a sodium ion concentration which is too high relative to calcium and magnesium ions for environment acceptance. Natural zeolites can be used as a cheap and effective method to control sodium adsorption ratio (SAR, which is a measure of the relative preponderance of sodium to calcium and magnesium) due to its high cation exchange capacity. In this study, a natural zeolite from Queensland was examined for its potential to treat CSG water to remove sodium ions to lower SAR and reduce the pH value. The results demonstrate that acid activated zeolite at 30%wt solid ratio can reduce the sodium content from 563.0 to 182.7 ppm; the pH from 8.74 to 6.95; and SAR from 70.3 to 18.5. Based on the results of the batch experiments, the sodium adsorption capacity of the acid-treated zeolite is three times greater than that of the untreated zeolite. Both the untreated and acid-treated zeolite samples were characterized using zeta potential, surface characterization, DTA/TG and particle size distribution in order to explain their adsorption behaviours. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. The Correlation of Adsorption Behavior between Ciprofloxacin Hydrochloride and the Active Sites of Fe-doped MCM-41

    Directory of Open Access Journals (Sweden)

    Ying Wu

    2018-02-01

    Full Text Available HIGHLIGHTSFe incorporation significantly accelerated the adsorption of CPX on MCM-41.Fe leaching can be ignored when pH was higher than 4.0.pH played an important role in CPX adsorption on Fe-MCM-41.Co-effect of CPX and metal cations on Fe-MCM-41 was investigated.Fe-MCM-41s with various molar ratios of silicon to iron (20, 40, 80, and 160 were prepared to investigate adsorption properties of ciprofloxacin hydrochloride (CPX in aqueous solutions. Fe-MCM-41s were characterized by transmission electron microscope (TEM, X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, nitrogen adsorption/desorption isotherms, and infrared spectroscopy (FT-IR. Effects of silicon-iron ratio, adsorbent dosage, pH, and temperature were conducted to explore the adsorption mechanism of CPX on Fe-MCM-41. The results showed that the introduction of iron facilitated the absorption quantity for CPX from 20.04 to 83.33 mg g−1 at 120 min of reaction time, which was mainly attributed to surface complexation. The promotion of hydrophobic effect, electrostatic interactions, and π-π electron donor-acceptor interaction also played coordinate roles in the adsorption process. The experimental kinetic data followed both the pseudo-second-order and intra-particle diffusion models, while the adsorption isotherm data fit well to Freundlich model at high temperature. Thermodynamic study showed that the adsorption was spontaneous. Under the effect of electrostatic interaction, pH of the solution strongly affected CPX adsorption. Five representative metal cations (Ca, Cu, Ni, Pb, and Cd were chosen to study the effects on CPX adsorption and their complexation. The inhibiting effect of metal cations on CPX adsorption was sequenced in the order of Cu > Ni > Pb > Cd > Ca, which followed the same order as the complexation stability constants between CPX and cations. The Fe-MCM-41 adsorbent possessed excellent reusability for 4 cycles use, suggesting a potential applicability of

  2. Influence of wide band gap oxide substrates on the photoelectrochemical properties and structural disorder of CdS nanoparticles grown by the successive ionic layer adsorption and reaction (SILAR) method.

    Science.gov (United States)

    Malashchonak, Mikalai V; Mazanik, Alexander V; Korolik, Olga V; Streltsov, Еugene А; Kulak, Anatoly I

    2015-01-01

    The photoelectrochemical properties of nanoheterostructures based on the wide band gap oxide substrates (ZnO, TiO2, In2O3) and CdS nanoparticles deposited by the successive ionic layer adsorption and reaction (SILAR) method have been studied as a function of the CdS deposition cycle number (N). The incident photon-to-current conversion efficiency (IPCE) passes through a maximum with the increase of N, which is ascribed to the competition between the increase in optical absorption and photocarrier recombination. The maximal IPCE values for the In2O3/CdS and ZnO/CdS heterostructures are attained at N ≈ 20, whereas for TiO2/CdS, the appropriate N value is an order of magnitude higher. The photocurrent and Raman spectroscopy studies of CdS nanoparticles revealed the occurrence of the quantum confinement effect, demonstrating the most rapid weakening with the increase of N in ZnO/CdS heterostructures. The structural disorder of CdS nanoparticles was characterized by the Urbach energy (E U), spectral width of the CdS longitudinal optical (LO) phonon band and the relative intensity of the surface optical (SO) phonon band in the Raman spectra. Maximal values of E U (100-120 meV) correspond to СdS nanoparticles on a In2O3 surface, correlating with the fact that the CdS LO band spectral width and intensity ratio for the CdS SO and LO bands are maximal for In2O3/CdS films. A notable variation in the degree of disorder of CdS nanoparticles is observed only in the initial stages of CdS growth (several tens of deposition cycles), indicating the preservation of the nanocrystalline state of CdS over a wide range of SILAR cycles.

  3. Influence of wide band gap oxide substrates on the photoelectrochemical properties and structural disorder of CdS nanoparticles grown by the successive ionic layer adsorption and reaction (SILAR method

    Directory of Open Access Journals (Sweden)

    Mikalai V. Malashchonak

    2015-11-01

    Full Text Available The photoelectrochemical properties of nanoheterostructures based on the wide band gap oxide substrates (ZnO, TiO2, In2O3 and CdS nanoparticles deposited by the successive ionic layer adsorption and reaction (SILAR method have been studied as a function of the CdS deposition cycle number (N. The incident photon-to-current conversion efficiency (IPCE passes through a maximum with the increase of N, which is ascribed to the competition between the increase in optical absorption and photocarrier recombination. The maximal IPCE values for the In2O3/CdS and ZnO/CdS heterostructures are attained at N ≈ 20, whereas for TiO2/CdS, the appropriate N value is an order of magnitude higher. The photocurrent and Raman spectroscopy studies of CdS nanoparticles revealed the occurrence of the quantum confinement effect, demonstrating the most rapid weakening with the increase of N in ZnO/CdS heterostructures. The structural disorder of CdS nanoparticles was characterized by the Urbach energy (EU, spectral width of the CdS longitudinal optical (LO phonon band and the relative intensity of the surface optical (SO phonon band in the Raman spectra. Maximal values of EU (100–120 meV correspond to СdS nanoparticles on a In2O3 surface, correlating with the fact that the CdS LO band spectral width and intensity ratio for the CdS SO and LO bands are maximal for In2O3/CdS films. A notable variation in the degree of disorder of CdS nanoparticles is observed only in the initial stages of CdS growth (several tens of deposition cycles, indicating the preservation of the nanocrystalline state of CdS over a wide range of SILAR cycles.

  4. Adsorption of aqueous Cd(II) and Pb(II) on activated carbon nanopores prepared by chemical activation of doum palm shell.

    Science.gov (United States)

    Gaya, Umar Ibrahim; Otene, Emmanuel; Abdullah, Abdul Halim

    2015-01-01

    Non-uniformly sized activated carbons were derived from doum palm shell, a new precursor, by carbonization in air and activation using KOH, NaOH and ZnCl2. The activated carbon fibres were characterised by X-ray diffraction, N2 adsorption-desorption, scanning electron microscopy, particle size analysis and evaluated for Cd(II) and Pb(II) removal. The 40-50 nm size, less graphitic, mesoporous NaOH activated carbon yielded high adsorption efficiency, pointing largely to the influence surface area. The performance of the KOH based activated carbon was arguably explained for the first time in terms of crystallinity. The efficiencies of the mesoporous ZnCl2-formulated activated carbon diminished due to the presence of larger particles. Batch adsorption of divalent metals revealed dependence on adsorbent dose, agitation time, pH and adsorbate concentrations with high adsorption efficiencies at optimum operating parameters. The equilibrium profiles fitted Langmuir and Freundlich isotherms, and kinetics favoured pseudo-second order model. The study demonstrated the practicability of the removal of alarming levels of cadmium and lead ions from industrial effluents.

  5. Absorbed Pb2+ and Cd2+ Ions in Water by Cross-Linked Starch Xanthate

    Directory of Open Access Journals (Sweden)

    Kai Feng

    2017-01-01

    Full Text Available A cross-linked starch xanthate was prepared by graft copolymerization of acrylamide and sodium acrylate onto starch xanthate using potassium persulfate and sodium hydrogen sulfite initiating system and N,N′-methylenebisacrylamide as a cross-linker. As this kind of cross-linked potato starch xanthate can effectively absorb heavy metal ions, it was dispersed in aqueous solutions of divalent heavy metal ions (Pb2+ and Cd2+ to investigate their absorbency by the polymer. Factors that can influence absorbency were investigated, such as the ratio of matrix to monomers, the amount of initiator and cross-linker, pH, and the concentration of metal ions. Results were reached and conclusion was drawn that the best synthetic conditions for the polymer adsorbing Pb2+ and Cd2+ were as follows: the quality ratio of matrix to monomers was 1 : 12 and 1 : 11, the amount of initiator was 2.4% and 3.2% of matrix, and the amount of cross-linker was 12 mg and 13 mg. When the initial concentration of ions was 10 mg/L, the highest quantities of adsorption of Pb2+ and Cd2+ were 47.11 mg/g and 36.55 mg/g. Adsorption mechanism was discussed by using Fourier transform infrared (FTIR spectroscopy, X-ray diffraction (XRD, scanning electron microscope (SEM, Energy Dispersive X-Ray Spectroscopy (EDS test, and adsorption kinetic simulation.

  6. Adsorption of cadmium by biochar produced from pyrolysis of corn stalk in aqueous solution.

    Science.gov (United States)

    Ma, Fengfeng; Zhao, Baowei; Diao, Jingru

    2016-09-01

    The purpose of this work is to investigate adsorption characteristic of corn stalk (CS) biochar for removal of cadmium ions (Cd 2+ ) from aqueous solution. Batch adsorption experiments were carried out to evaluate the effects of pH value of solution, adsorbent particle size, adsorbent dosage, and ionic strength of solution on the adsorption of Cd 2+ onto biochar that was pyrolytically produced from CS at 300 °C. The results showed that the initial pH value of solution played an important role in adsorption. The adsorptive amount of Cd 2+ onto the biochar decreased with increasing the adsorbent dosage, adsorbent particle size, and ionic strength, while it increased with increasing the initial pH value of solution and temperature. Cd 2+ was removed efficiently and quickly from aqueous solutions by the biochar with a maximum capacity of 33.94 mg/g. The adsorption process was well described by the pseudo-second-order kinetic model with the correlation coefficients greater than 0.986. The adsorption isotherm could be well fitted by the Langmuir model. The thermodynamic studies showed that the adsorption of Cd 2+ onto the biochar was a spontaneous and exothermic process. The results indicate that CS biochar can be considered as an efficient adsorbent.

  7. Cd(II), Cu(II)

    African Journals Online (AJOL)

    user

    Depending on the way goethite was pretreated with oxalic acid, affinity for Cd(II) varied ...... Effects and mechanisms of oxalate on Cd(II) adsorption on goethite at different ... precipitation, surfactant mediation, hydrothermal and micro-emulsion.

  8. Adsorption of heavy metal ions by activated charcoal

    International Nuclear Information System (INIS)

    Fujikawa, Mitsuo

    1978-01-01

    The adsorption effect was measured for several kinds of heavy metal ions, Pb 2+ , Cd 2+ , Cu 2+ and Zn 2+ by passing them through activated charcoal beds and changing the pH values of solutions. The test procedure is to keep the pH value of solution more than 10 at first, filter heavy metal hydroxide deposit, measure the remaining ion concentration in filtrate, and also test the influence of the addition of alkali to each kind of ions. The individual test procedure for each kind of ions is explained. As for the Cd ions, after the detailed experimental procedure is explained, the adsorption characteristic line is shown as the relation between the adsorption quantity and the equilibrium concentration of Cd 2+ . The similar test procedure and the adsorption characteristic lines are shown and evaluated about Pb 2+ , Cu 2+ and Zn 2+ . These lines are all linear, but have different adsorption quantity and inclination in relation to heavy metal ion concentration. Concerning the influence of pH to adsorption, the characteristics of pH increase are presented, when alkali is added by various quantities to Zn 2+ , Cu 2+ , Pb 2+ and Cd 2+ . The pH of Pb 2+ increased to about 10 by adding 0.4 cc alkali and saturates, but the pH of the other ions did not saturate by adding less than 1.5 cc alkali. When the water containing heavy metals are treated, Cd 2+ , Pb 2+ , Cu 2+ and Zn 2+ are removed almost satisfactorily by passing them through active charcoal filters and keeping pH at 10. The experimental concentrations are 0.05 ppm at pH 10 in Cd, 0.86 ppm at 10.3 in Pb, 0 ppm at pH 9.6 in Cu, 0.06 ppm at pH 8.8 and 12.4 ppm at pH 9.8 in Zn. (Nakai, Y.)

  9. A porous Cd(II) metal-organic framework with high adsorption selectivity for CO2 over CH4

    Science.gov (United States)

    Zhu, Chunlan

    2017-05-01

    Metal-organic frameworks (MOFs) have attracted a lot of attention in recent decades. We applied a semi-rigid four-carboxylic acid linker to assemble with Cd(II) ions to generate a novel microporous Cd(II) MOF material. Single crystal X-ray diffraction study reveals the different two dimension (2D) layers can be further packed together with an AB fashion by hydrogen bonds (O4sbnd H4⋯O7 = 1.863 Å) to construct a three dimension (3D) supermolecular architecture. The resulting sample can be synthesized under solvothermal reactions successfully, which exhibits high selectivity adsorption of CO2 over CH4 at room temperature. In addition, the obtained sample was characterized by thermal gravimetric analyses (TGA), Fourier-transform infrared spectra (FT-IR), elemental analysis (CHN) and powder X-ray diffraction (PXRD).

  10. Study of the Adsorbent-Adsorbate Interactions from Cd(II) and Pb(II) Adsorption on Activated Carbon and Activated Carbon Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Ho; Kim, Doo Won; Kim, Bohye; Yang, Kap Seung [Chonnam National Univ., Gwangju (Korea, Republic of); Lim, Yongkyun; Park, Eun Nam [Microfilter Co., Ltd, Seoul (Korea, Republic of)

    2013-02-15

    The adsorption characteristics of Cd(II) and Pb(II) in aqueous solution using granular activated carbon (GAC), activated carbon fiber (ACF), modified ACF (NaACF), and a mixture of GAC and NaACF (GAC/NaACF) have been studied. The surface properties, such as morphology, surface functional groups, and composition of various adsorbents were determined using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The specific surface area, total pore volume, and pore size distribution were investigated using nitrogen adsorption, Brunauer-Emmett-Teller (BET), and Barrett-Joyner-Halenda (BJH) methods. In this study, NaACF showed a high adsorption capacity and rate for heavy metal ions due to the improvement of its ion-exchange capabilities by additional oxygen functional groups. Moreover, the GAC and NaACF mixture was used as an adsorbent to determine the adsorbent-adsorbate interaction in the presence of two competitive adsorbents.

  11. Study of the Adsorbent-Adsorbate Interactions from Cd(II) and Pb(II) Adsorption on Activated Carbon and Activated Carbon Fiber

    International Nuclear Information System (INIS)

    Kim, Dae Ho; Kim, Doo Won; Kim, Bohye; Yang, Kap Seung; Lim, Yongkyun; Park, Eun Nam

    2013-01-01

    The adsorption characteristics of Cd(II) and Pb(II) in aqueous solution using granular activated carbon (GAC), activated carbon fiber (ACF), modified ACF (NaACF), and a mixture of GAC and NaACF (GAC/NaACF) have been studied. The surface properties, such as morphology, surface functional groups, and composition of various adsorbents were determined using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The specific surface area, total pore volume, and pore size distribution were investigated using nitrogen adsorption, Brunauer-Emmett-Teller (BET), and Barrett-Joyner-Halenda (BJH) methods. In this study, NaACF showed a high adsorption capacity and rate for heavy metal ions due to the improvement of its ion-exchange capabilities by additional oxygen functional groups. Moreover, the GAC and NaACF mixture was used as an adsorbent to determine the adsorbent-adsorbate interaction in the presence of two competitive adsorbents

  12. Adsorption of lead and cadmium ions in aqueous solutions onto modified lignin from alkali glycerol delignication

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2004-01-01

    Adsorptions of toxic metal ions (Pb(II) and Cd(II)) onto modified lignin from beech and poplar woods by alkali glycerol delignification are presented in this paper. The material exhibits good adsorption capacity and the adsorption data follow the Langmuir model. The maximum adsorption capacities are 8.2-9.0 and 6.7-7.5 mg/g of the modified lignin for Pb(II) and Cd(II), respectively. The maximum adsorption percentage is 95.8 for Pb(II) for 4 h at 330 K and is 95.0 for Cd(II) for 10 h at 290 K. The adsorption of both the metal ions increased with increasing temperature indicating endothermic nature of the adsorption process. The maximum adsorption percentages of Pb(II) and Cd(II) ions decrease with time till 48 and 42 h and then again increase slightly with time. The adsorption of both heavy metal ions increases with pH. The adsorption of Pb(II) ions reached a maximum at a 5.0 value of pH

  13. Aqueous complexation, precipitation, and adsorption reactions of cadmium in the geologic environment

    International Nuclear Information System (INIS)

    Zachara, J.M.; Rai, D.; Felmy, A.R.; Cowan, C.E.; Smith, S.C.; Moore, D.A.; Resch, C.T.

    1992-06-01

    This report contains new laboratory data and equilibrium constants for important solubility and adsorption reactions of Cd that occur in soil and groundwater and attenuate Cd migration. In addition, extensive interaction experiments with Cd and soils from electric utility sites are described. These experiments show the importance of precipitation and adsorption reactions in soil and demonstrate how such reactions can be modeled to predict Cd attenuation near utility sites

  14. Characterization of nanostructured photosensitive (NiS){sub x}(CdS){sub (1-x)} composite thin films grown by successive ionic layer adsorption and reaction (SILAR) route

    Energy Technology Data Exchange (ETDEWEB)

    Ubale, A.U., E-mail: ashokuu@yahoo.com [Nanostructured Thin Film Materials Laboratory, Department of Physics, Govt. Vidarbha Institute of Science and Humanities, Amravati 444604, Maharashtra (India); Bargal, A.N. [Nanostructured Thin Film Materials Laboratory, Department of Physics, Govt. Vidarbha Institute of Science and Humanities, Amravati 444604, Maharashtra (India)

    2011-07-15

    Highlights: {yields} Thin films of (NiS){sub x}(CdS){sub (1-x)} with variable composition (x = 1 to 0) were deposited onto glass substrates by the successive ionic layer adsorption and reaction (SILAR) method. {yields} The structural, surface morphological and electrical characterizations of the as deposited and annealed films were studied. {yields} The bandgap and activation energy of annealed (NiS){sub x}(CdS){sub (1-x)} film decrease with improvement in photosensitive nature. -- Abstract: Recently ternary semiconductor nanostructured composite materials have attracted the interest of researchers because of their photovoltaic applications. Thin films of (NiS){sub x}(CdS){sub (1-x)} with variable composition (x = 1-0) had been deposited onto glass substrates by the successive ionic layer adsorption and reaction (SILAR) method. As grown and annealed films were characterised by X-ray diffraction, scanning electron microscopy and EDAX to investigate structural and morphological properties. The (NiS){sub x}(CdS){sub (1-x)} films were polycrystalline in nature having mixed phase of rhombohedral and hexagonal crystal structure due to NiS and CdS respectively. The optical and electrical properties of (NiS){sub x}(CdS){sub (1-x)} thin films were studied to determine compsition dependent bandgap, activation energy and photconductivity. The bandgap and activation energy of annealed (NiS){sub x}(CdS){sub (1-x)} film decrease with improvement in photosensitive nature.

  15. T lymphocytes among HIV-infected and -uninfected infants: CD4/CD8 ratio as a potential tool in diagnosis of infection in infants under the age of 2 years

    Directory of Open Access Journals (Sweden)

    Bikoue Arsene

    2005-02-01

    Full Text Available Abstract Background Serologic tests for HIV infection in infants less than 18 months do not differentiate exposure and infection since maternally acquired IgG antibodies may be detected in infants. Thus, the gold standard for diagnosis of HIV-1 infection in infants under the age of 2 years is DNA or reverse transcriptase polymerase chain reaction. There is an urgent need to evaluate alternative and cost effective laboratory methods for early diagnosis of infant HIV-1 infection as well as identifying infected infants who may benefit from cotrimoxazole prophylaxis and/or initiation of highly active antiretroviral therapy. Methods Whole blood was collected in EDTA from 137 infants aged 0 to 18 months. DNA polymerase chain reaction was used as the reference standard for diagnosis of HIV-1 infection. T-cell subset profiles were determined by flow cytometry. Results Seventy-six infants were DNA PCR positive while 61 were negative. The median CD4 counts of PCR negative infants were significantly higher than those of the PCR positive infants, p . The median CD4/CD8 ratio and the %CD4 of the PCR positive infants were both significantly lower than those of the negative infants, p . The CD4/CD8 ratio had a >98% sensitivity for diagnosis of HIV-1 infection and a specificity of >98%. Conclusion The CD4/CD8 ratio appears useful in identifying HIV-infected infants. The development of lower cost and more robust flow cytometric methods that provide both CD4/CD8 ratio and %CD4 may be cost-effective for HIV-1 diagnosis and identification of infants for cotrimoxazole prophylaxis and/or highly active antiretroviral therapy.

  16. Adsorption of cadmium and copper in representative soils of Eastern Amazonia, Brazil

    Directory of Open Access Journals (Sweden)

    Deyvison Andrey Medrado Gonçalves

    2016-10-01

    Full Text Available Studies of heavy metals adsorption in soil play a key role in predicting environmental susceptibility to contamination by toxic elements. The objective of this study was to evaluate cadmium (Cd and copper (Cu adsorption in surface and subsurface soil. Samples of six soils: Xanthic Hapludox (XH1 and XH2, Typic Hapludox (TH, Typic Rhodudalf (TR, Typic Fluvaquent (TF, and Amazonian dark earths (ADE from Eastern Amazonian, Brazil. The soils were selected for chemical, physical and mineralogical characterization and to determine the adsorption by Langmuir and Freundlich isotherms. All soils characterized as kaolinitic, and among them, XH1 and XH2 showed the lowest fertility. The Langmuir and Freundlich isotherms revealed a higher Cu (H curve than Cd (L curve adsorption. Parameters of Langmuir and Freundlich isotherms indicate that soils TR, TF and ADE has the greatest capacity and affinity for metal adsorption. Correlation between the curve adsorption parameters and the soil attributes indicates that the pH, CEC, OM and MnO variables had the best influence on metal retention. The Langmuir and Freundlich isotherms satisfactorily described Cu and Cd soil adsorption, where TR, TF and ADE has a lower vulnerability to metal input to the environment. Besides the pH, CEC and OM the MnO had a significant effect on Cu and Cd adsorption in Amazon soils.

  17. 玉米秸秆基改性生物质活性炭对Cd的吸附特性%Adsorption capacity of modified corn straw based activated biocarbon to Cd

    Institute of Scientific and Technical Information of China (English)

    吐尔逊·吐尔洪; 帕提古丽·伊克木; 阿热祖古丽·达吾提; 阿马努拉·依明尼亚孜

    2018-01-01

    以玉米秸秆为原料,制备了生物质活性炭(以下简称生物炭),用HNO3、NaOH、沸水、四氢呋喃(THF)对其进行改性,并比较了不同生物炭对Cd的吸附特性,对沸水和 T HF滤液进行了光谱分析,结果显示:随着Cd初始浓度的增加,玉米秸秆基生物炭及改性产物对Cd的吸附量大体增强;Cd初始质量浓度超过25.0 mg/L时,吸附量表现为碱改性生物炭> 未改性生物炭> T HF改性生物炭> 沸水改性生物炭> 酸改性生物炭.NaO H通过改变玉米秸秆基生物炭表面官能团和元素构成,增强了其吸附能力.HNO3使玉米秸秆基生物炭孔隙带正电荷,从而抑制了对Cd的吸附.沸水和 T HF从玉米秸秆基生物炭孔隙中溶出了有利于吸附反应的部分表面官能团,从而降低了其对Cd的吸附能力.随着Cd初始浓度增加,玉米秸秆基生物炭对Cd的吸附量大体增加,滤液pH大体降低.用玉米秸秆基生物炭处理污水中的Cd时,建议用碱改性法来提高其吸附能力.%Corn straw based activated biocarbon was prepared and modified with HNO3,NaOH,hot water and tetrahydrofuran(T HF).Adsorption capacities of original and modified activated biocarbons to Cd,as well as spectrum of filtrate of hot water and THF modified activated biocarbons were tested.Result showed that adsorption capacities of activated biocarbons increased with the concentration of initial Cd solution.The order of adsorption capacities was NaOH modified activated biocarbons>original activated biocarbons> THF modified activated biocarbons >hot water modified activated biocarbons > HNO3modified activated biocarbons when initial Cd exceeded 25.0 mg/L.NaOH enhanced the adsorption capacity of original activated biocarbon by changing the surface functional group and elemental contents.HNO3inhibited the adsorption by charging the surface of activated biocarbon with positive charge.Hot water and THF scoured off some surface groups which were favorable for adsorption

  18. Evaluation of CNTs/MnO{sub 2} composite for adsorption of {sup 60}Co(II), {sup 65}Zn(II) and Cd(II) ions from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sharaf El-Deen, Sahar E.A.; Moussa, Saber I.; Mekawy, Zakaria A.; Shehata, Mohamed K.K.; Someda, Hanan H. [Atomic Energy Authority, Inshas (Egypt). Dept. of Nuclear Chemistry; Sadeek, Sadeek A. [Zagazig Univ. (Egypt). Dept. of Chemistry

    2017-03-01

    CNTs/MnO{sub 2} composite was synthesized by a co-precipitation method after preparation of carbon nanotubes (CNTs) using a chemical oxidation method and was characterized using Fourier transformer infrared (FT-IR), X-ray diffraction (XRD) and scanning electron microscope (SEM). The synthesized CNTs/MnO{sub 2} composite was used as a sorbent for the removal of some radionuclides ({sup 60}Co and {sup 65}Zn-radioisotopes) and Cd (II) ions from aqueous solutions. Different parameters affecting the removal process including pH, contact time and metal ion concentration were investigated. Isotherm and kinetic models were studied. Adsorption data was interpreted in terms of both Freundlich and Langmuir isotherms and indicated that the CNTs/MnO{sub 2} composite complied well with both Langmuir and Freundlich models for {sup 60}Co and Cd(II) ions and with the Freundlich model only for the {sup 65}Zn radioisotope. A pseudo-second-order model was effectively employed to describe the adsorption behavior of {sup 60}Co, {sup 65}Zn and Cd(II) ions. Desorption of {sup 60}Co and {sup 65}Zn and Cd(II) ions from loaded samples was studied using different eluents.

  19. Prognostic value of the CD4+/ CD8+ ratio of tumour infiltrating lymphocytes in colorectal cancer and HLA-DR expression on tumour cells

    DEFF Research Database (Denmark)

    Diederichsen, Axel Cosmus Pyndt; Hjelmborg, J v B; Christensen, Per B

    2003-01-01

    class II in 70 enzymatically dissociated colorectal cancers and the phenotype of tumour infiltrating lymphocytes (TILs) in 41 cases. There was no trend in 5-year survival between three levels (low, medium, high) of HLA-DR expression on the tumour cells. Patients with low CD4+/CD8+ ratios had a better...

  20. Fabrication, Characterization, and Optimization of CdS and CdSe Quantum Dot-Sensitized Solar Cells with Quantum Dots Prepared by Successive Ionic Layer Adsorption and Reaction

    Directory of Open Access Journals (Sweden)

    H. K. Jun

    2014-01-01

    Full Text Available CdS and CdSe quantum dot-sensitized solar cells (QDSSCs were used for the study of determining the optimum preparation parameters that could yield the best solar cell performance. The quantum dots (QDs were coated on the surface of mesoporous TiO2 layer deposited on FTO substrate using the successive ionic layer adsorption and reaction (SILAR method. In this method the QDs are allowed to grow on TiO2 by dipping the TiO2 electrode successively in two different solutions for predetermined times. This method allows the fabrication of QDs in a facile way. Three preparation parameters that control the QD fabrication were investigated: concentration of precursor solutions, number of dipping cycles (SILAR cycles, and dipping time in each solution. CdS based QDSSC showed optimum performance when the QDs were prepared from precursor solutions having the concentration of 0.10 M using 4 dipping cycles with the dipping time of 5 minutes in each solution. For CdSe QDSSC, the optimum performance was achieved with QDs prepared from 0.03 M precursor solutions using 7 dipping cycles with 30 s dipping time in each solution. The QDs deposited on TiO2 surface were characterized using UV-vis absorption spectroscopy, FESEM, and TEM imaging.

  1. Removal of Dissolved Cadmium by Adsorption onto Walnut and Almond Shell Charcoal: Comparison with Granular Activated Carbon (GAC

    Directory of Open Access Journals (Sweden)

    Mohsen Saeedi

    2009-06-01

    Full Text Available In the present study, adsorption of dissolved Cadmium (Cd onto walnut and almond shell charcoal and the standard granular activated carbon (GAC has been investigated and compared. The effect of pH value, initial concentration of dissolved Cadmium and amount of adsorbent on the adsorption of Cd by the mentioned adsorbents were investigated. Results showed that the adsorption process was highly dependent on pH. Maximum Cd removal was achieved when the final pH of the mixture fell within 6.5-7. Adsorption test results revealed that Cd adsorption on the studied adsorbents could be better described by Longmuir isotherm. Maximum Cd removal efficiencies were obtained by walnut shell charcoal (91%, almond shell charcoal (85%, and GAC (81%.

  2. Effects of the aspect ratio on the dye adsorption of ZnO nanorods grown by using a sonochemical method for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Choi, Seok Cheol; Yun, Won Suk; Sohn, Sang Ho; Oh, Sang Jin

    2012-01-01

    Well-aligned ZnO nanorods for the photoelectrode of dye-sensitized solar cells (DSSCs) were grown via a sonochemical method, and the effects of their aspect ratios on the dye adsorption in DSSCs were studied. The control of the aspect ratio of well-aligned ZnO nanorods was performed by tuning the mole concentration of zinc acetate dehydrate in the range of 0.04 ∼ 0.06M. The dye amounts adsorbed in the ZnO nanorods were estimated from the UV-Visible absorbance by using the Beer-Lambert law. The efficiency of DSSCs with ZnO nanorods was measured to investigate the effects of the aspect ratio of the ZnO nanorods on the dye adsorption properties. A change in the aspect ratio of the ZnO nanorods was founded to yield a change in their dye adsorption ability, resulting in a change in the efficiency of the DSSCs.

  3. Increased Bone Marrow (BM) Plasma Level of Soluble CD30 and Correlations with BM Plasma Level of Interferon (IFN)-γ, CD4/CD8 T-Cell Ratio and Disease Severity in Aplastic Anemia

    Science.gov (United States)

    Shi, Jun; Ge, Meili; Li, Xingxin; Shao, Yingqi; Yao, Jianfeng; Zheng, Yizhou

    2014-01-01

    Idiopathic aplastic anemia (AA) is an immune-mediated bone marrow failure syndrome. Immune abnormalities such as decreased lymphocyte counts, inverted CD4/CD8 T-cell ratio and increased IFN-γ-producing T cells have been found in AA. CD30, a surface protein belonging to the tumor necrosis factor receptor family and releasing from cell surface as a soluble form (sCD30) after activation, marks a subset of activated T cells secreting IFN-γ when exposed to allogeneic antigens. Our study found elevated BM plasma levels of sCD30 in patients with SAA, which were closely correlated with disease severity, including absolute lymphocyte count (ALC) and absolute netrophil count (ANC). We also noted that sCD30 levels were positively correlated with plasma IFN-γ levels and CD4/CD8 T-cell ratio in patients with SAA. In order to explain these phenomena, we stimulated T cells with alloantigen in vitro and found that CD30+ T cells were the major source of IFN-γ, and induced CD30+ T cells from patients with SAA produced significantly more IFN-γ than that from healthy individuals. In addition, increased proportion of CD8+ T cells in AA showed enhanced allogeneic response by the fact that they expressed more CD30 during allogeneic stimulation. sCD30 levels decreased in patients responded to immunosuppressive therapy. In conclusion, elevated BM plasma levels of sCD30 reflected the enhanced CD30+ T cell-mediated immune response in SAA. CD30 as a molecular marker that transiently expresses on IFN-γ-producing T cells, may participate in mediating bone marrow failure in AA, which also can facilitate our understanding of AA pathogenesis to identify new therapeutic targets. PMID:25383872

  4. Adsorption of Nitrite and Nitrate Ions from an Aqueous Solution by Fe-Mg-Type Hydrotalcites at Different Molar Ratios.

    Science.gov (United States)

    Ogata, Fumihiko; Nagai, Noriaki; Kariya, Yukine; Nagahashi, Eri; Kobayashi, Yuhei; Nakamura, Takehiro; Kawasaki, Naohito

    2018-01-01

    In this study, we prepared Fe-Mg-type hydrotalcites (Fe-HT3.0 and Fe-HT5.0) with different molar ratios and evaluated their adsorption capability for nitrite and nitrate ions from aqueous solution. Fe-HT is a typical hydrotalcite-like layered double hydroxide. Adsorption isotherms, as well as the effects of contact time and pH were investigated, and it was found that Fe-HT can adsorb larger amounts of nitrite and nitrate ions than Al-HT (normal-type hydrotalcite). Adsorption isotherm data were fitted to both Freundlich (correlation coefficient: 0.970-1.000) and Langmuir (correlation coefficient: 0.974-0.999) equations. Elemental analysis and binding energy of Fe-HT surface before and after adsorption indicated that the adsorption mechanism was related to the interaction between the adsorbent surface and anions. In addition, the ion exchange process is related to the adsorption mechanism. The adsorption amount increased with increasing temperature (7-25°C). The experimental data fit the pseudo-second-order model better than the pseudo-first-order model. The effect of pH on adsorption was not significant, which suggested that Fe-HT could be used over a wide pH range (4-12). These results indicate that Fe-HT is a good adsorbent for the removal of nitrite and nitrate ions from aqueous solution.

  5. Improved photoluminescence quantum yield and stability of CdSe-TOP, CdSe-ODA-TOPO, CdSe/CdS and CdSe/EP nanocomposites

    Science.gov (United States)

    Wei, Shutian; Zhu, Zhilin; Wang, Zhixiao; Wei, Gugangfen; Wang, Pingjian; Li, Hai; Hua, Zhen; Lin, Zhonghai

    2016-07-01

    Size-controllable monodisperse CdSe nanocrystals with different organic capping were prepared based on the hot-injection method. The effective separation of nucleation and growth was achieved by rapidly mixing two highly reactive precursors. As a contrast, we prepared CdSe/CdS nanocrystals (NCs) successfully based on the selective ion layer adsorption and reaction (SILAR) technique. This inorganic capping obtained higher photoluminescence quantum yield (PLQY) of 59.3% compared with organic capping of 40.8%. Furthermore, the CdSe-epoxy resin (EP) composites were prepared by adopting a flexible ex situ method, and showed excellent stability in the ambient environment for one year. So the composites with both high PLQY of nanocrystals and excellent stability are very promising to device application.

  6. Adsorption study of cadmium (II) and lead (II) on radish peels

    International Nuclear Information System (INIS)

    Anwar, J.; Shafique, U.; Salman, M.; Zaman, W.; Memoona, M.

    2009-01-01

    The removal efficiency of heavy metals like Cd(II) and Pb(II) from aqueous solutions by adsorption on Raphanus sativus (Radish peels) has been studied. The effects of time, pH, concentration of adsorbent and agitation speed on adsorption have been evaluated. It is found that radish peels powder has high removal efficiency for both the metals. Batch adsorption study has shown that Cd(II) and Pb(II) has been removed up to 88% and 86% respectively. Adsorption equilibriums for both metals have been described by the Langmuir isotherm. The maximum amount of heavy metals (Q ) adsorbed at max equilibrium were 7.5 and 1.23 mg/g for Cd(II) and Pb(II) respectively as evaluated by Langmuir isotherm. It is concluded that waste materials like radish peels can be used for removal of heavy metals from aqueous streams. (author)

  7. Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent

    International Nuclear Information System (INIS)

    Al-Ghouti, Mohammad A.; Li, Juiki; Salamh, Yousef; Al-Laqtah, Nasir; Walker, Gavin; Ahmad, Mohammad N.M.

    2010-01-01

    A potential usefulness of raw date pits as an inexpensive solid adsorbent for methylene blue (MB), copper ion (Cu 2+ ), and cadmium ion (Cd 2+ ) has been demonstrated in this work. This work was conducted to provide fundamental information from the study of equilibrium adsorption isotherms and to investigate the adsorption mechanisms in the adsorption of MB, Cu 2+ , and Cd 2+ onto raw date pits. The fit of two models, namely Langmuir and Freundlich models, to experimental data obtained from the adsorption isotherms was checked. The adsorption capacities of the raw date pits towards MB and both Cu 2+ and Cd 2+ ions obtained from Langmuir and Freundlich models were found to be 277.8, 35.9, and 39.5 mg g -1 , respectively. Surface functional groups on the raw date pits surface substantially influence the adsorption characteristics of MB, Cu 2+ , and Cd 2+ onto the raw date pits. The Fourier transform infrared spectroscopy (FTIR) studies show clear differences in both absorbances and shapes of the bands and in their locations before and after solute adsorption. Two mechanisms were observed for MB adsorption, hydrogen bonding and electrostatic attraction, while other mechanisms were observed for Cu 2+ and Cd 2+ . For Cu 2+ , binding two cellulose/lignin units together is the predominant mechanism. For Cd 2+ , the predominant mechanism is by binding itself using two hydroxyl groups in the cellulose/lignin unit.

  8. Interactions between cadmium and lead with acidic soils: Experimental evidence of similar adsorption patterns for a wide range of metal concentrations and the implications of metal migration

    International Nuclear Information System (INIS)

    Pokrovsky, O.S.; Probst, A.; Leviel, E.; Liao, B.

    2012-01-01

    Highlights: ► Adsorption experiments of Cd and Pb in acid soils (China, France). ► Large pH conditions and large range of metal concentrations were considered. ► Similar dependencies between metals concentration in solution and metal adsorbed on the surface were predicted using Langmuir and Freundlich equations and surface complexation model (SCM). ► No competition between Cd and Pb detected at pH 5. ► Metal adsorption capacity is two orders of magnitude higher than limit value for soil protection. - Abstract: The importance of high- and low-affinity surface sites for cadmium and lead adsorption in typical European and Asian soils was investigated. Adsorption experiments on surface and deep horizons of acidic brown (Vosges, France) and red loess soils (Hunan, China) were performed at 25 °C as a function of the pH (3.5–8) and a large range of metal concentrations in solution (10 −9 –10 −4 mol l −1 ). We studied the adsorption kinetics using a Cd 2+ -selective electrode and desorption experiments as a function of the solid/solution ratio and pH. At a constant solution pH, all samples exhibited similar maximal adsorption capacities (4.0 ± 0.5 μmol/g Cd and 20 ± 2 μmol/g Pb). A constant slope of adsorbed–dissolved concentration dependence was valid over 5 orders of magnitude of metal concentrations. Universal Langmuir and Freundlich equations and the SCM formalism described the adsorption isotherms and the pH-dependent adsorption edge over very broad ranges of metal concentrations, indicating no high- or low-affinity sites for metal binding at the soil surface under these experimental conditions. At pH 5, Cd and Pb did not compete, in accordance with the SCM. The metal adsorption ability exceeded the value for soil protection by two orders of magnitude, but only critical load guarantees soil protection since metal toxicity depends on metal availability.

  9. Does Biochar Alter the Speciation of Cd and Pb in Aqueous Solution?

    Directory of Open Access Journals (Sweden)

    Liqiang Cui

    2014-11-01

    Full Text Available Cadmium and lead contamination in bodies of water has been a serious concern because of risk to the environment. A laboratory experiment was initiated to investigate the efficacy of biochar (BC in removing cadmium and lead (Cd and Pb, respectively from solution. After absorption by BC, the fractions of Cd and Pb at different solution temperatures were measured. The adsorption data were described by Langmuir isotherm with maximum adsorption capacities of 6.36, 6.47, and 6.74 mg Cd g-1 and 50.05, 55.86, and 63.09 mg Pb g-1 at 25, 35, and 45 °C, respectively. The adsorption capacities were affected by Cd/Pb initial concentration, pH, BC particle size, BC dosage, and reaction time. Biochar adsorbed the Cd and Pb mainly as species bound with carbonate (> 50% and organic compounds (~40%. Exchangeable and residual fractions of Cd and Pb were less than 10%. Results from this study indicate that BC is highly effective in the adsorption of the heavy metals Cd and Pb through binding with carbonates.

  10. Enhanced photovoltaic performance of CdS-sensitized inverted organic solar cells prepared via a successive ionic layer adsorption and reaction method

    Science.gov (United States)

    Oleiwi, Hind Fadhil; Zakaria, Azmi; Yap, Chi Chin; Abbas, Haidr Abdulzahra; Tan, Sin Tee; Lee, Hock Beng; Tan, Chun Hui; Ginting, Riski Titian; Alshanableh, Abdelelah; Talib, Zainal Abidin

    2017-05-01

    One-dimensional ZnO nanorods (ZNRs) synthesized on fluorine-doped tin oxide (FTO) glass by hydrothermal method were modified with cadmium sulfide quantum dots (CdS QDs) as an electron transport layer (ETL) in order to enhance the photovoltaic performance of inverted organic solar cell (IOSC). In present study, CdS QDs were deposited on ZNRs using a Successive Ionic Layer Adsorption and Reaction method (SILAR) method. In typical procedures, IOSCs were fabricated by spin-coating the P3HT:PC61BM photoactive layer onto the as-prepared ZNRs/CdS QDs. The results of current-voltage (I-V) measurement under illumination shows that the FTO/ZNRs/CdS QDs/ P3HT:PC61BM/ PEDOT: PSS/Ag IOSC achieved a higher power conversion efficiency (4.06 %) in comparison to FTO/ZNRs/P3HT:PC61BM/PEDOT: PSS/Ag (3.6 %). Our findings suggest that the improved open circuit voltage (Voc) and short circuit current density (Jsc) of ZNRs/CdS QDs devices could be attributed to enhanced electron selectivity and reduced interfacial charge carrier recombination between ZNRs and P3HT:PC61BM after the deposition of CdS QDs. The CdS QDs sensitized ZNRs reported herein exhibit great potential for advanced optoelectronic application.

  11. Adsorption and transport of cadmium and rhodamine WT in pumice sand columns

    International Nuclear Information System (INIS)

    Pang, L.; Close, M.; Greenfield, H.; Stanton, G.

    2004-01-01

    The transport and attenuation of cadmium (Cd) and rhodamine WT (RWT) in a pumice sand aquifer media was investigated using column experiments to study a scenario of point-source contamination. A pore-water velocity of 1.7-1.8 m/day, which is a typical field groundwater velocity in a pumice sand aquifer system, was applied to triplicate columns. A pulse of a solution containing Cd and RWT, together with the conservative tracer tritiated water ( 3 H 2 O) at pH = 7, was introduced into the columns. Experimental results showed that concentration breakthrough curves (BTCs) of 3 H 2 O were symmetrical and fitted well into an equilibrium model. In contrast, BTCs of Cd and RWT were asymmetrical with significant tailings and fitted well with a two-site adsorption/desorption model. The symmetric 3 H 2 O BTCs suggest that physical non-equilibrium was absent in the experimental system, therefore the asymmetrical BTCs of Cd and RWT were attributed to chemical non-equilibrium. Modelling results showed that, in comparison with 3 H 2 O, Cd was apparently retarded by 101-108 times in pumice sand aquifer media (apparent adsorption coefficient 7.33-9.24 ml/g) and underwent a mass loss of 20-30% that was probably because of precipitation of CdCO 3 . As CdCO 3 is extremely insoluble, Cd precipitation would be irreversible and therefore it would not contribute to the tailing of the Cd BTCs. The experimental results suggest that the adsorption and desorption of Cd in pumice sand aquifer media in hydrodynamic conditions was a kinetic process. Cd desorption rates were two orders-of-magnitude slower than its adsorption rates. This resulted in a prolonged mean residence time for Cd in pumice sand aquifer media, which was 10-12 days in the 18-cm-long columns under a flow velocity of 1.7-1.8 m/day. Since the mean residence time is only indicative for the arrival of the central of mass in a contaminant BTC, the time required for the total disappearance of Cd will be much longer than the mean

  12. Effects of Organic Acids on Adsorption of Cadmium onto Kaolinite, Goethite, and Bayerite

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Effects of organic acids (oxalic, acetic, and citric) on adsorption characteristics of Cadmium (Cd) on soil clay minerals(kaolinite, goethite, and bayerite) were studied under different concentrations and different pH values. Although the types of organic acids and minerals were different, the effects of the organic acids on the adsorption of Cd on the minerals were similar, i.e., the amount of adsorbed Cd with an initial solution pH of 5.0 and initial Cd concentration of 35 mg L-1increased with increasing concentration of the organic acid in solution at lower concentrations, and decreased at higher concentrations. The percentage of Cd adsorbed on the minerals in the presence of the organic acids increased considerably with increasing pH of the solution. Meanwhile, different Cd adsorption in the presence of the organic acids, due to different properties on both organic acids and clay minerals, on kaolinite, goethite, or bayerite for different pHs or organic acid concentrations was found.

  13. Distribution of HIV RNA in CSF and Blood is linked to CD4/CD8 Ratio During Acute HIV.

    Science.gov (United States)

    Chan, Phillip; Patel, Payal; Hellmuth, Joanna; Colby, Donn J; Kroon, Eugène; Sacdalan, Carlo; Pinyakorn, Suteeraporn; Jagodzinski, Linda; Krebs, Shelly; Ananworanich, Jintanat; Valcour, Victor; Spudich, Serena

    2018-05-07

    HIV RNA levels in the plasma and cerebrospinal fluid (CSF) are correlated in chronic HIV infection but their dynamics have not been characterized during acute infection. This study analyzed predictors of CSF HIV RNA and relative degree of CNS viral transmigration expressed as plasma minus CSF HIV log10 RNA (PCratio) during untreated acute HIV infection. CSF immune markers were compared between groups with different PCratio. 117 mostly male (97%) participants in the RV254 cohort in Bangkok, Thailand, had median age 28 years and an estimated median 18 days duration of infection; forty-three (37%) were Fiebig stages I/II. Twenty-seven (23%) had CSF HIV RNA CSF HIV RNA and PCratio of 3.76 and 2.36 Log10 copies/mL, respectively. HIV RNA peaked at Fiebig III in plasma and Fiebig IV in CSF. In multivariable analyses, plasma HIV RNA and CD4/CD8 ratio independently correlated with CSF HIV RNA (pCSF neopterin, sCD163, IL-6 and sCD14 levels (all pCSF HIV RNA and PCratio, suggesting that immune responses modulate CNS viral entry at early infection.

  14. Adsorption behavior of 99Tc in Ca-bentonite

    International Nuclear Information System (INIS)

    Liu Dejun; Fan Xianhua; Zhang Yingjie; Yao Jun; Zhou Duo; Wang Yong

    2004-01-01

    The adsorption behaviors of 99 Tc in bentonite were studied with batch methods under aerobic and anoxic conditions. The adsorption ratios is about 1.47 mL/g under aerobic conditions. The adsorption ratio of 99 Tc in bentonite is not affected by pH in the range of 5-12 and the CO 3 2- , Fe 3+ concentrations in the range of 10 -8 -10 -2 mol/L in the solution. The adsorption ratio of Tc in bentonite increases with the increase of the mass percent of Fe 2 O 3 and Fe 3 O 4 and the Fe 2+ concentration in the range of 10 -8 -10 -2 mol/L. Tc exists ainly in the form of Tc(VII) after the adsorption equilibriums. The adsorption ratio of Tc in bentonite increase with the increase of the mass percent of Fe and Tc exists mainly in the form of Tc(VII) after the adsorption equilibriums. The adsorption ratio of Tc in bentonite is about 84.84 mL/g under anoxic conditions. The adsorption ratios of 99 Tc in bentonite decreases with the increase of pH in the range of 5-12 and the CO 3 2- concentration in the range of 10 -8 -10 -2 mol/L in the solution. The adsorption ratio of Tc in bentonite increases with the increase of the Fe 3+ , Fe 2+ concentration in the range of 10 -8 -10 -2 mol/L and the mass percent of Fe, Fe 2 O 3 and Fe 3 O 4 . Tc exists mainly in the form of Tc(IV) after the adsorption equilibriums. The adsorption isotherms of TcO 4 - in bentonite are all in fairly agree with the Freundlich's equation under aerobic and anoxic conditions. (authors)

  15. Effects of exogenous salinity (NaCl) gradient on Cd release in acidified contaminated brown soil

    Science.gov (United States)

    Zhang, Lina; Rong, Yong; Mao, Li; Gao, Zhiyuan; Liu, Xiaoyu; Dong, Zhicheng

    2018-02-01

    Taking acidified Cd contaminated brown soil in Yantai as the research object, based on different exogenous salinity (NaCl) gradient (0%, 0.3%, 0.6%, 0.9%, 1.5%, 2% and 5%), indoor simulation experiments of Cd release were carried out after field investigation. Results showed that there was a significantly positive relation (r>0.90) between Cd release concentration/amount/ratio and exogenous salt (NaCl). Besides, the more exogenous salt (NaCl) was added; maximum release concentration/amount of Cd appeared the earlier. It was found that exogenous salt (NaCl) addition could obviously promote Cd release from acidified Cd contaminated brown soil. It was believed that this could be mainly due to the cation exchange between Cd2+ and Na+, together with the dissociation and/or complexation between Cl- and Cd2+. In addition, available adsorption sites reduction by exchange base in soil causing Cd changed from solid state to soil solution was also a probable reason.

  16. Photoelectrochemical and Raman characterization of nanocrystalline CdS grown on ZnO by successive ionic layer adsorption and reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Kozytskiy, A.V. [L.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine, 31 Nauky Av., 03028 Kyiv (Ukraine); Stroyuk, O.L., E-mail: stroyuk@inphyschem-nas.kiev.ua [L.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine, 31 Nauky Av., 03028 Kyiv (Ukraine); Kuchmiy, S.Ya. [L.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine, 31 Nauky Av., 03028 Kyiv (Ukraine); Mazanik, A.V.; Poznyak, S.K. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Streltsov, E.A., E-mail: streltea@bsu.by [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Kulak, A.I., E-mail: kulak@igic.bas-net.by [Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Surganova str., 9/1, Minsk 220072 (Belarus); Korolik, O.V. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Dzhagan, V.M., E-mail: dzhagan@isp.kiev.ua [V.E. Lashkaryov Institute of Semiconductor Physics of National Academy of Sciences of Ukraine, 41 Nauky Av., 03028 Kyiv (Ukraine)

    2014-07-01

    Properties of CdS nanoparticles (NPs) grown by successive ionic layer adsorption and reaction (SILAR) method on the surface of electrodeposited ZnO films were studied by Raman, photocurrent and UV–Vis absorption spectroscopies. The CdS nanoparticles deposited at a SILAR cycle number (N) from 5 to 10 exhibit a broadening of the band gap (E{sub g}) by 0.17–0.31 eV as compared with that of the CdS particles grown at N = 30. The size quantization of the interband transition energy in CdS nanoparticles is in accordance with the Raman spectroscopic data demonstrating a considerable increase in the LO peak intensity with increasing the N from 5 to 10 as a result of transition to resonant light scattering. The spectral width of the LO peak decreases from 50 to 15 cm{sup −1} as the N increases from 5 to 30 reflecting a less pronounced effect of the nanoparticle surface on the phonon scattering. A large spectral width of the Raman peaks is assumed to originate from a complex structure of the CdS nanoparticles comprising crystallinity domains that can affect the phonon confinement. The photocurrent spectroscopy of ZnO/CdS heterostructures showed that the band gap of CdS NPs deposited at N > 20 is smaller by ∼ 0.08 eV than that of bulk cadmium sulfide. It was concluded that this effect is not associated with photoexcitation of structural defects but rather reflects intrinsic electronic properties of SILAR-deposited CdS nanoparticles. - Highlights: • Visible-light-sensitive ZnO/CdS heterostructures were prepared by SILAR. • A large Raman peak width originates from a complex structure of CdS nanoparticles. • Vibrational properties of CdS nanoparticles depend on SILAR cycle number.

  17. Photoelectrochemical and Raman characterization of nanocrystalline CdS grown on ZnO by successive ionic layer adsorption and reaction method

    International Nuclear Information System (INIS)

    Kozytskiy, A.V.; Stroyuk, O.L.; Kuchmiy, S.Ya.; Mazanik, A.V.; Poznyak, S.K.; Streltsov, E.A.; Kulak, A.I.; Korolik, O.V.; Dzhagan, V.M.

    2014-01-01

    Properties of CdS nanoparticles (NPs) grown by successive ionic layer adsorption and reaction (SILAR) method on the surface of electrodeposited ZnO films were studied by Raman, photocurrent and UV–Vis absorption spectroscopies. The CdS nanoparticles deposited at a SILAR cycle number (N) from 5 to 10 exhibit a broadening of the band gap (E g ) by 0.17–0.31 eV as compared with that of the CdS particles grown at N = 30. The size quantization of the interband transition energy in CdS nanoparticles is in accordance with the Raman spectroscopic data demonstrating a considerable increase in the LO peak intensity with increasing the N from 5 to 10 as a result of transition to resonant light scattering. The spectral width of the LO peak decreases from 50 to 15 cm −1 as the N increases from 5 to 30 reflecting a less pronounced effect of the nanoparticle surface on the phonon scattering. A large spectral width of the Raman peaks is assumed to originate from a complex structure of the CdS nanoparticles comprising crystallinity domains that can affect the phonon confinement. The photocurrent spectroscopy of ZnO/CdS heterostructures showed that the band gap of CdS NPs deposited at N > 20 is smaller by ∼ 0.08 eV than that of bulk cadmium sulfide. It was concluded that this effect is not associated with photoexcitation of structural defects but rather reflects intrinsic electronic properties of SILAR-deposited CdS nanoparticles. - Highlights: • Visible-light-sensitive ZnO/CdS heterostructures were prepared by SILAR. • A large Raman peak width originates from a complex structure of CdS nanoparticles. • Vibrational properties of CdS nanoparticles depend on SILAR cycle number

  18. Studies on the Influence of Mercaptoacetic Acid (MAA) Modification of Cassava (Manihot sculenta Cranz) Waste Biomass on the Adsorption of Cu2+ and Cd2+ from Aqueous Solution

    International Nuclear Information System (INIS)

    Horsfall, M.; Spiff, A. I.; Abia, A. A.

    2004-01-01

    Cassava peelings waste, which is both a waste and pollutant, was chemically modified using mercaptoacetic acid (MAA) and used to adsorb Cu 2+ and Cd 2+ from aqueous solution over a wide range of reaction conditions at 30 .deg. C. Acid modification produced a larger surface area, which significantly enhanced the metal ion binding capacity of the biomass. An adsorption model based on the Cu 2+ /Cd 2+ adsorption differences was developed to predict the competition of the two metal ions towards binding sites for a mixed metal ion system. The phytosorption process was examined in terms of Langmuir, Freundlich and Dubinin-Radushkevich models. The models indicate that the cassava waste biomass had a greater phytosorption capacity, higher affinity and greater sorption intensity for Cu 2+ than Cd 2+ . According to the evaluation using Langmuir equation, the monolayer binding capacity obtained was 127.3 mg/g Cu 2+ and 119.6 mg/g Cd 2+ . The kinetic studies showed that the phytosorption rates could be described better by a pseudo-second order process and the rate coefficients was determined to be 2.04 x 10 -3 min -1 and 1.98 x 10 -3 min -1 for Cu 2+ and Cd 2+ respectively. The results from these studies indicated that acid treated cassava waste biomass could be an efficient sorbent for the removal of toxic and valuable metals from industrial effluents

  19. CD4/CD8 ratio and cytokine levels of the BAL fluid in patients with bronchiectasis caused by sulfur mustard gas inhalation

    Directory of Open Access Journals (Sweden)

    Emad Yasaman

    2007-01-01

    Full Text Available Abstract Objective To analyze cytokine levels in BAL fluid of patients with bronchiectasis due to mustard gas inhalation. Patients 29 victims with mustard gas-induced bronchiectasis and 25 normal veterans as control group. Intervention PFTs,, high-resolution CT scans of the chest, analyses of BAL fluids for five cytokines (IL-8, IL-1β, IL-6, TNF-α, IL-12 and analyses of BAL fluids for cellular and flow-cytometric analysis of the phenotype of bronchoalveolar cells were performed in all cases. Results CD4 lymphocytes expressed as percentage or absolute number were significantly higher in patients with bronchiectasis than in controls (32.17 ± 16.00 vs 23.40 ± 6.97%, respectively; p = 0.01; and 3.31 ± 2.03 vs 1.88 ± 0.83 × 103 cells/ml, respectively; p = 0.001. The CD4/CD8 ratio was significantly higher in patients with bronchiectasis than in controls (3.08 ± 2.05 vs 1.68 ± 0.78; p = 0.002. There were significant differences in cytokine (IL-8, IL-1β, IL-6, TNF-α, IL-12 levels of BAL fluid between patients with bronchiectasis and healthy controls. A significant correlation was observed between the HRCT scores and both the percentage and the absolute number of CD4 lymphocytes in BAL fluid in patients with bronchiectasis (r = -0.49, p = 0.009; r = -0.50, p = 0.008; respectively. HRCT scores showed a significant correlation with CD4/CD8 ratios (r = 0.54, p = 0.004 too. Of measured BAL cytokines, only IL-8 (r = -0.52, p = 0.005 and TNF-aα (r = 0.44, p = 0.01 showed significant correlations with the HRCT scores. Conclusion The increased levels of cytokines CD4 lymphocytes in the BAL fluid suggest the possible causative mechanism in the lung in sulfur mustard gas-induced bronchiectasis by the recruitment of neutrophils into the lung.

  20. The MRC1/CD68 ratio is positively associated with adipose tissue lipogenesis and with muscle mitochondrial gene expression in humans.

    Directory of Open Access Journals (Sweden)

    José María Moreno-Navarrete

    Full Text Available BACKGROUND: Alternative macrophages (M2 express the cluster differentiation (CD 206 (MCR1 at high levels. Decreased M2 in adipose tissue is known to be associated with obesity and inflammation-related metabolic disturbances. Here we aimed to investigate MCR1 relative to CD68 (total macrophages gene expression in association with adipogenic and mitochondrial genes, which were measured in human visceral [VWAT, n = 147] and subcutaneous adipose tissue [SWAT, n = 76] and in rectus abdominis muscle (n = 23. The effects of surgery-induced weight loss were also longitudinally evaluated (n = 6. RESULTS: MCR1 and CD68 gene expression levels were similar in VWAT and SWAT. A higher proportion of CD206 relative to total CD68 was present in subjects with less body fat and lower fasting glucose concentrations. The ratio MCR1/CD68was positively associated with IRS1gene expression and with the expression of lipogenic genes such as ACACA, FASN and THRSP, even after adjusting for BMI. The ratio MCR1/CD68 in SWAT increased significantly after the surgery-induced weight loss (+44.7%; p = 0.005 in parallel to the expression of adipogenic genes. In addition, SWAT MCR1/CD68ratio was significantly associated with muscle mitochondrial gene expression (PPARGC1A, TFAM and MT-CO3. AT CD206 was confirmed by immunohistochemistry to be specific of macrophages, especially abundant in crown-like structures. CONCLUSION: A decreased ratio MCR1/CD68 is linked to adipose tissue and muscle mitochondrial dysfunction at least at the level of expression of adipogenic and mitochondrial genes.

  1. Comparative study of adsorption properties of Turkish fly ashes II. The case of chromium (VI) and cadmium (II)

    International Nuclear Information System (INIS)

    Bayat, Belgin

    2002-01-01

    The purpose of the study described in this paper was to compare the removal of Cr(VI) and Cd(II) from an aqueous solution using two different Turkish fly ashes; Afsin-Elbistan and Seyitomer as adsorbents. The influence of four parameters (contact time, solution pH, initial metal concentration in solution and ash quality) on the removal at 20±2 deg. C was studied. Fly ashes were found to have a higher adsorption capacity for the adsorption of Cd(II) as compared to Cr(VI) and both Cr(VI) and Cd(II) required an equilibrium time of 2 h. The adsorption of Cr(VI) was higher at pH 4.0 for Afsin-Elbistan fly ash (25.46%) and pH 3.0 for Seyitomer fly ash (30.91%) while Cd(II) was adsorbed to a greater extent (98.43% for Afsin-Elbistan fly ash and 65.24% for Seyitomer fly ash) at pH 7.0. The adsorption of Cd(II) increased with an increase in the concentrations of these metals in solution while Cr(VI) adsorption decreased by both fly ashes. The lime (crystalline CaO) content in fly ash seemed to be a significant factor in influencing Cr(VI) and Cd(II) ions removal. The linear forms of the Langmuir and Freundlich equations were utilised for experiments with metal concentrations of 55±2 mg/l for Cr(VI) and 6±0.2 mg/l for Cd(II) as functions of solution pH (3.0-8.0). The adsorption of Cr(VI) on both fly ashes was not described by both the Langmuir and Freundlich isotherms while Cd(II) adsorption on both fly ashes satisfied only the Langmuir isotherm model. The adsorption capacities of both fly ashes were nearly three times less than that of activated carbon for the removal of Cr(VI) while Afsin-Elbistan fly ash with high-calcium content was as effective as activated carbon for the removal of Cd(II). Therefore, there are possibilities for use the adsorption of Cd(II) ions onto fly ash with high-calcium content in practical applications in Turkey

  2. Enhanced removal of Cd(II) and Pb(II) by composites of mesoporous carbon stabilized alumina

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Weichun [Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha 410017 (China); Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Lushan South Road 932, Changsha 410017 (China); Tang, Qiongzhi; Wei, Jingmiao; Ran, Yajun [Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha 410017 (China); Chai, Liyuan [Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha 410017 (China); Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Lushan South Road 932, Changsha 410017 (China); Wang, Haiying, E-mail: haiyw25@163.com [Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha 410017 (China); Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Lushan South Road 932, Changsha 410017 (China)

    2016-04-30

    Graphical abstract: - Highlights: • Mesoporous carbon stabilized alumina was prepared by one-pot hard-templating method. • MC/Al{sub 2}O{sub 3} showed excellent performance for Cd(II) and Pb(II) adsorption. • Enhanced adsorption was due to the high surface area and special functional groups. - Abstract: A novel adsorbent of mesoporous carbon stabilized alumina (MC/Al{sub 2}O{sub 3}) was synthesized through one-pot hard-templating method. The adsorption potential of MC/Al{sub 2}O{sub 3} for Cd(II) and Pb(II) from aqueous solution was investigated compared with the mesoporous carbon. The results indicated the MC/Al{sub 2}O{sub 3} showed excellent performance for Cd(II) and Pb(II) removal, the adsorption capacity reached 49.98 mg g{sup −1} for Cd(II) with initial concentration of 50 mg L{sup −1} and reached 235.57 mg g{sup −1} for Pb(II) with initial concentration of 250 mg L{sup −1}, respectively. The kinetics data of Cd(II) adsorption demonstrated that the Cd(II) adsorption rate was fast, and the removal efficiencies with initial concentration of 10 and 50 mg L{sup −1} can reach up 99% within 5 and 20 min, respectively. The pseudo-second-order kinetic model could describe the kinetics of Cd(II) adsorption well, indicating the chemical reaction was the rate-controlling step. The mechanism for Cd(II) and Pb(II) adsorption by MC/Al{sub 2}O{sub 3} was investigated by X-ray photoelectron spectroscopy (XPS) and Fourier transformed infrared spectroscopy (FTIR), and the results indicated that the excellent performance for Cd(II) and Pb(II) adsorption of MC/Al{sub 2}O{sub 3} was mainly attributed to its high surface area and the special functional groups of hydroxy-aluminum, hydroxyl, carboxylic through the formation of strong surface complexation or ion-exchange. It was concluded that MC/Al{sub 2}O{sub 3} can be recognized as an effective adsorbent for removal of Cd(II) and Pb(II) in aqueous solution.

  3. The effect of the boron source composition ratio on the adsorption performance of hexagonal boron nitride without a template

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ning, E-mail: zhangning5832@163.com; Zhang, Tong; Kan, Hongmin; Wang, Xiaoyang; Long, Haibo; Cui, Xingyu

    2015-08-01

    An inexpensive boric acid (H{sub 3}BO{sub 3}) and borax (Na{sub 2}B{sub 4}O{sub 7}·10H{sub 2}O) mix was used as a source of boron with different composition ratios, and urea was used as a nitrogen source, in flowing ammonia atmosphere, for the preparation of hexagonal boron nitride (h-BN) with different micro-morphologies. Under a certain synthesis process, the effects of the molar ratio of borax and boric acid (or simply the boron source composition ratio for short) on the phase composition of the sample were studied; the work also explored the effect of boron source composition ratio on the micro-morphology, adsorption desorption isotherm and specific surface area of the h-BN powder. The main purpose of this work was to determine the optimum composition ratio of preparing spherical mesoporous h-BN and ensure that the micro-mechanism underpinning the formation of spherical mesoporous h-BN was understood. The results showed that at the optimum boron source composition ratio of 1:1, globular mesoporous spheres with a diameter of approximately 600–800 nm could be obtained with the highest pore volume and specific surface area (230.2 m{sup 2}/g). - Graphical abstract: Display Omitted - Highlights: • Spherical h-BN was synthesized by controlling the boron source composition ratio. • Without extra spherical template, solid Na{sub 2}O was equal to a spherical template. • At boron source composition ratio of 1:1, h-BN had best adsorption performance.

  4. La Doping of CdS for Enhanced CdS/CdSe Quantum Dot Cosensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Xiaolei Qi

    2015-01-01

    Full Text Available CdS/CdSe system of quantum dot cosensitized solar cells (QDCSCs is one of the most attractive structures for high-efficiency due to its effect of level adjusting. However, the stepwise structure formed between levels of CdS and CdSe has a limitation for enhancing the efficiencies. Metal ions doping in quantum dots have emerged as a common way for changing the Fermi level, band gap, and conductance. Here we report an innovative concept for the rare earth materials La-doped of the CdS layer in the CdS/CdSe QDCSCs by means of the successive ionic layer adsorption and reaction (SILAR. Then we tested that La doped quantum dots can help more electrons accumulate in CdS film, which makes the Fermi level shift up and form a stepped structure. This method leads to enhanced absorption intensity, obviously increasing current density in CdS/CdSe QDCSCs. Our research is a new exploration for improving efficiencies of quantum dot sensitized solar cells.

  5. Effect of pH and Calcium on the Adsorptive Removal of Cadmium and Copper by Iron Oxide–Coated Sand and Granular Ferric Hydroxide

    KAUST Repository

    Uwamariya, V.

    2015-08-17

    Iron oxide-coated sand (IOCS) and granular ferric hydroxide (GFH) were used to study the effect of Ca2+ and pH on the adsorptive removal of Cu2+ and Cd2+ from groundwater using batch adsorption experiments and kinetic modeling. It was observed that Cu2+ and Cd2+ were not stable in synthetic waters. The extent of precipitation increased with increasing pH. Removal of Cu2+ and Cd2+ was achieved through both precipitation and adsorption, with IOCS showing higher adsorption efficiency. Increase of pH (from 6 to 8) resulted in a higher overall removal efficiency of both Cu2+ and Cd2+, with precipitation as predominant removal mechanisms at higher pH values, especially for Cu2+. An increase in Ca2+ concentration increased the precipitation of Cu2+ [as Cu2(OH)2CO3 and Cu3(OH)2(CO3)2] and Cd2+ [as Cd(OH)2 and CdCO3]. In addition, Ca2+ competes with Cu2+ and Cd2+ for surface adsorption sites on IOCS and GFH, and reduces their adsorption capacity. The kinetic modeling revealed that the adsorption of Cd2+ onto IOCS is a complex process, with limited contribution of chemisorption that increases in the presence of Ca2+. © 2015 American Society of Civil Engineers.

  6. Adsorption of aqueous Cd(II) and Pb(II) on activated carbon nanopores prepared by chemical activation of doum palm shell

    OpenAIRE

    Gaya, Umar Ibrahim; Otene, Emmanuel; Abdullah, Abdul Halim

    2015-01-01

    Non-uniformly sized activated carbons were derived from doum palm shell, a new precursor, by carbonization in air and activation using KOH, NaOH and ZnCl2. The activated carbon fibres were characterised by X-ray diffraction, N2 adsorption–desorption, scanning electron microscopy, particle size analysis and evaluated for Cd(II) and Pb(II) removal. The 40–50 nm size, less graphitic, mesoporous NaOH activated carbon yielded high adsorption efficiency, pointing largely to the influence surface ar...

  7. Noncompetitive and Competitive Adsorption of Heavy Metals in Sulfur-Functionalized Ordered Mesoporous Carbon.

    Science.gov (United States)

    Saha, Dipendu; Barakat, Soukaina; Van Bramer, Scott E; Nelson, Karl A; Hensley, Dale K; Chen, Jihua

    2016-12-14

    In this work, sulfur-functionalized ordered mesoporous carbons were synthesized by activating the soft-templated mesoporous carbons with sulfur bearing salts that simultaneously enhanced the surface area and introduced sulfur functionalities onto the parent carbon surface. XPS analysis showed that sulfur content within the mesoporous carbons were between 8.2% and 12.9%. The sulfur functionalities include C-S, C═S, -COS, and SO x . SEM images confirmed the ordered mesoporosity within the material. The BET surface areas of the sulfur-functionalized ordered mesoporous carbons range from 837 to 2865 m 2 /g with total pore volume of 0.71-2.3 cm 3 /g. The carbon with highest sulfur functionality was examined for aqueous phase adsorption of mercury (as HgCl 2 ), lead (as Pb(NO 3 ) 2 ), cadmium (as CdCl 2 ), and nickel (as NiCl 2 ) ions in both noncompetitive and competitive mode. Under noncompetitive mode and at a pH greater than 7.0 the affinity of sulfur-functionalized carbons toward heavy metals were in the order of Hg > Pb > Cd > Ni. At lower pH, the adsorbent switched its affinity between Pb and Cd. In the noncompetitive mode, Hg and Pb adsorption showed a strong pH dependency whereas Cd and Ni adsorption did not demonstrate a significant influence of pH. The distribution coefficient for noncompetitive adsorption was in the range of 2448-4000 mL/g for Hg, 290-1990 mL/g for Pb, 550-560 mL/g for Cd, and 115-147 for Ni. The kinetics of adsorption suggested a pseudo-second-order model fits better than other models for all the metals. XPS analysis of metal-adsorption carbons suggested that 7-8% of the adsorbed Hg was converted to HgSO 4 , 14% and 2% of Pb was converted to PbSO 4 and PbS/PbO, respectively, and 5% Cd was converted to CdSO 4 . Ni was below the detection limit for XPS. Overall results suggested these carbon materials might be useful for the separation of heavy metals.

  8. Adsorption studies of Cd(II) onto Al{sub 2}O{sub 3}/Nb{sub 2}O{sub 5} mixed oxide dispersed on silica matrix and its on-line preconcentration and determination by flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca Costa, Lucimara [Programa de Pos-Graduacao em Quimica da Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas-MG, CEP 37130-000 (Brazil); Ribeiro, Emerson Schwingel [Instituto de Quimica, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, CEP 21941-909 (Brazil); Segatelli, Mariana Gava [Departamento de Quimica, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitario, Londrina-PR, CEP 86051-990 (Brazil); Nascimento, Danielle Raphael do [Instituto de Quimica, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, CEP 21941-909 (Brazil); Midori de Oliveira, Fernanda [Departamento de Quimica, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitario, Londrina-PR, CEP 86051-990 (Brazil); Tarley, Cesar Ricardo Teixeira, E-mail: tarley@uel.br [Programa de Pos-Graduacao em Quimica da Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas-MG, CEP 37130-000 (Brazil); Departamento de Quimica, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitario, Londrina-PR, CEP 86051-990 (Brazil)

    2011-05-15

    The present study describes the adsorption characteristic of Cd(II) onto Nb{sub 2}O{sub 5}/Al{sub 2}O{sub 3} mixed oxide dispersed on silica matrix. The characterization of the adsorbent has been carried out by infrared spectroscopy (IR), scanning electronic microscopy (SEM), energy dispersive spectroscopy (EDS), energy dispersive X-ray fluorescence analysis (EDXRF) and specific surface area (S{sub BET}). From batch experiments, adsorption kinetic of Cd(II) was described by a pseudo-second-order kinetic model. The Langmuir linear isotherm fitted to the experimental adsorption isotherm very well, and the maximum adsorption capacity was found to be 17.88 mg g{sup -1}. Using the effective material, a method for Cd(II) preconcentration at trace level was developed. The method was based on on-line adsorption of Cd(II) onto SiO{sub 2}/Al{sub 2}O{sub 3}/Nb{sub 2}O{sub 5} at pH 8.64, in which the quantitative desorption occurs with 1.0 mol L{sup -1} hydrochloric acid towards FAAS detector. The experimental parameters related to the system were studied by means of multivariate analysis, using 2{sup 4} full factorial design and Doehlert matrix. The effect of SO{sub 4}{sup 2-}, Cu{sup 2+}, Zn{sup 2+} and Ni{sup 2+} foreign ions showed no interference at 1:100 analyte:interferent proportion. Under the most favorable experimental conditions, the preconcentration system provided a preconcentration factor of 18.4 times, consumption index of 1.08 mL, sample throughput of 14 h{sup -1}, concentration efficiency of 4.35 min{sup -1}, linear range from 5.0 up to 35.0 {mu}g L{sup -1} and limits of detection and quantification of 0.19 and 0.65 {mu}g L{sup -1} respectively. The feasibility of the proposed method for Cd(II) determination was assessed by analysis of water samples, cigarette sample and certified reference materials TORT-2 (Lobster hepatopancreas) and DOLT-4 (Dogfish liver).

  9. Removal of Parabens from Aqueous Solution Using β-Cyclodextrin Cross-Linked Polymer

    Directory of Open Access Journals (Sweden)

    Mhd Radzi Bin Abas

    2010-09-01

    Full Text Available The removal of four parabens, methyl-, ethyl-, propyl-, and benzyl-paraben, by β-cyclodextrin (β-CD polymer from aqueous solution was studied. Different β-CD polymers were prepared by using two cross-linkers, i.e., hexamethylene diisocyanate (HMDI and toluene-2,6-diisocyanate (TDI, with various molar ratios of cross-linker. β-CD-HMDI polymer with molar ratio of 1:7 and β-CD-TDI polymer with ratio 1:4 gave the highest adsorption of parabens among the β-CD-HMDI and β-CD-TDI series, and were subsequently used for further studies. The adsorption capacity of β-CD-HMDI is 0.0305, 0.0376, 0.1854 and 0.3026 mmol/g for methyl-, ethyl-, propyl-, and benzyl-paraben, respectively. β-CD-TDI have higher adsorption capacities compared with β-CD-HMDI, the adsorption capacity are 0.1019, 0.1286, 0.2551, and 0.3699 mmol/g methyl-, ethyl-, propyl-, and benzyl-paraben respectively. The parameters studied were adsorption capacity, water retention, and reusability. Role of both cross-linker in adsorption, hydrophobicity of polymers, and adsorption capacity of different parabens were compared and discussed. All experiments were conducted in batch adsorption technique. These polymers were applied to real samples and showed positive results.

  10. Effects of Cd on reductive transformation of lepidocrocite by Shewanella oneidensis MR-1

    Institute of Scientific and Technical Information of China (English)

    Chaolei Yuan; Fangbai Li; Rui Han; Tongxu Liu; Weimin Sun; Weilin Huang

    2017-01-01

    We investigated the reduction of lepidocrocite (γ-FeOOH) by Shewanella oneidensis MR-1 in the presence and absence of Cd.The results showed that Cd2+ retarded microbial reduction of γ-FeOOH and avoided formation of magnetite.The inhibitory effect on γ-FeOOH transformation may not result from Cd2+ toxicity to the bacterium;it rather was probably due to competitive adsorption between Cd2+ and Fe2+ on γ-FeOOH as its surface reduction catalyzed by adsorbed Fe2+ was eliminated by adsorption of Cd2+.

  11. Adsorption of heavy metal from aqueous solution by dehydrated root powder of long-root Eichhornia crassipes.

    Science.gov (United States)

    Li, Qiang; Chen, Bo; Lin, Peng; Zhou, Jiali; Zhan, Juhong; Shen, Qiuying; Pan, Xuejun

    2016-01-01

    The root powder of long-root Eichhornia crassipes, as a new kind of biodegradable adsorbent, has been tested for aqueous adsorption of Pb, Zn, Cu, and Cd. From FT-IR, we found that the absorption peaks of phosphorous compounds, carbonyl, and nitrogenous compounds displayed obvious changes before and after adsorption which illustrated that plant characteristics may play a role in binding with metals. Surface properties and morphology of the root powders have been characterized by means of SEM and BET. Energy spectrum analysis showed that the metals were adsorbed on root powders after adsorption. Then, optimum quantity of powder, pH values, and metal ion concentrations in single-system and multi-system were detected to discuss the characteristics and mechanisms of metal adsorption. Freundlich model and the second-order kinetics equation could well describe the adsorption of heavy metals in single-metal system. The adsorption of Pb, Zn, and Cd in the multi-metal system decreased with the concentration increased. At last, competitive adsorption of every two metals on root powder proved that Cu and Pb had suppressed the adsorption performance of Cd and Zn.

  12. Tuning the energy band gap of ternary alloyed Cd1-xPbxS quantum dots for photovoltaic applications

    Science.gov (United States)

    Badawi, Ali

    2016-02-01

    Tuning the energy band gap of ternary alloyed Cd1-xPbxS (x: 0, 0.33, 0.5, 0.67 and 1) quantum dots (QDs) for photovoltaic applications is studied. Alloyed Cd1-xPbxS QDs were adsorbed onto TiO2 nanoparticles (NPs) using ssuccessive ionic layer adsorption and reaction (SILAR) methode. EDX measurements ensure the success adsorption of alloyed Cd1-xPbxS QDs onto the TiO2 electrode. At 100 mW/cm2 (AM 1.5) sun illumination, the photovoltaic performance of alloyed Cd1-xPbxS QDs sensitized solar cells (QDSSCs) was measured. The maximum values of Jsc (1.92 mA/cm2) and η (0.36%) for the alloyed Cd1-xPbxS QDSSCs were obtained when the molar ratio of Cd/Pb is 0.33/0.67. the open circuit voltage (Voc) is equal 0.61 ± 0.01 V for all alloyed Cd1-xPbxS QDSSCs. The electron back recombination rates decrease considerably for alloyed Cd1-xPbxS QDSSCs as x value increases, peaking at 0.67. The electron lifetime (τ) for Cd0.33Pb0.67S QDSSCs is one order of magnitude larger than that of the other alloyed Cd1-xPbxS QDSSCs with different x value. Under ON-OFF cycles to solar illumination, the open circuit voltage decay measurements show the high sensitivity and reproducibility of alloyed Cd1-xPbxS QDSSCs.

  13. Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution.

    Science.gov (United States)

    Lee, Seo-Yun; Choi, Hee-Jeong

    2018-03-01

    The aim of this study was to investigate heavy metal removal using waste biomass adsorbent, persimmon leaves, in an aqueous solution. Persimmon leaves, which are biomaterials, have a large number of hydroxyl groups and are highly suitable for removal of heavy metals. Therefore, in this study, we investigated the possibility of removal of Cu, Pb, and Cd in aqueous solution by using raw persimmon leaves (RPL) and dried persimmon leaves (DPL). Removal of heavy metals by RPL and DPL showed that DPL had a 10%-15% higher removal than RPL, and the order of removal efficiency was found to be Pb > Cu > Cd. The pseudo-second order model was a better fit to the heavy metal adsorption experiments using RPL and DPL than the pseudo-first order model. The adsorption of Cu, Pb, and Cd by DPL was more suitable with the Freundlich isothermal adsorption and showed an ion exchange reaction which occurred in the uneven adsorption surface layer. The maximum adsorption capacity of Cu, Pb, and Cd was determined to be 19.42 mg/g, 22.59 mg/g, and 18.26 mg/g, respectively. The result of the adsorption experiments showed that the n value was higher than 2 regardless of the dose, indicating that the heavy metal adsorption on DPL was easy. In the thermodynamic experiment, ΔG° was a negative value, and ΔH° and ΔS° were positive values. It can be seen that the heavy metal adsorption process using DPL was spontaneous in nature and was an endothermic process. Moreover, as the temperature increased, the adsorption increased, and the affinity of heavy metal adsorption to DPL was very good. This experiment, in which heavy metals are removed using the waste biomass of persimmon leaves is an eco-friendly new bioadsorbent method because it can remove heavy metals without using chemicals while utilizing waste recycling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Use of analcime zeolite from mineral coal fly ash in adsorption of Cu"+"2 and Cd"+"2 in aqueous solutions

    International Nuclear Information System (INIS)

    Rocha Junior, C.A.F.; Santos, S.C.A.; Angelica, R.S.; Neves, R.F.; Souza, C.A.G.

    2011-01-01

    The use of zeolite for removing heavy metals from contaminated effluents over the years has been widespread due to its high cation exchange capacity in aqueous solutions. Thus this study aims to use analcime zeolite for removal of Cu"+"2 and Cd"+"2 from aqueous solutions at different concentrations, and the zeolitic material synthesized from coal fly ash generated in an alumina plant in northern Brazil . The use of zeolite analcime proved quite satisfactory, since this product has removed almost entirely Cu"+"2 and Cd"+"2 solutions with concentrations up to 200ppm, and demonstrated an average capacity for solutions of 400ppm, which shows good applicability of this material for the treatment of effluent contamination in the ranges studied. The adsorption models of Langmuir and Freundlich showed a good fit to experimental data generated in this work. (author)

  15. Zinc sorption in two vertisol and one aridisol series as affected by electrolyte concentration and sodium adsorption ratio

    International Nuclear Information System (INIS)

    Hussein, A. A.; Elamin, E. A.; El Mahi, Y. E.

    2002-01-01

    The effects of electrolyte concentration (C) and sodium adsorption ratio (SAR) on zinc sorption was studied. Top soil samples (0-30 cm) were taken from soils representing three arid-zon smectitc sites in the Gezira Scheme (Sudan). The orders of these soils are vertisol (El-Hosh (now Wad El Ataya) and El-Suleimi) and aridisol (El-Laota). These soils had no previous history of zinc application, and were previously equilibrated with mixed NaCl-CaCl 2 solutions to render different levels of SAR and salt concentration. Zinc retention decreased as electrolyte concentration increased, where maximum sorption occurred at low electrolyte concentration soils having high pH and high negative charge. Sodium adsorption ratio had little effect on Zn sorption as precipitation prevailed at high pH. It was also found that the sorption capacity of three soils were similar despite the variation in CaCO 3 and clay contents, hence cation exchange capacity and surface area. The results indicated that Zn was more soluble in the saline phases of Gezira soils, whereas sodicity had little effect.(Author)

  16. Evaluation of the adsorption potential of eco-friendly activated carbon prepared from cherry kernels for the removal of Pb2+, Cd2+ and Ni2+ from aqueous wastes.

    Science.gov (United States)

    Pap, Sabolč; Radonić, Jelena; Trifunović, Snežana; Adamović, Dragan; Mihajlović, Ivana; Vojinović Miloradov, Mirjana; Turk Sekulić, Maja

    2016-12-15

    Development, characterization and evaluation of the efficiency of cost-effective medium for the removal of Pb 2+ , Cd 2+ and Ni 2+ from aqueous systems, as a novel, eco-friendly solution for wastewater remediation were done. The precursors for low-cost adsorbent were lignocellulosic raw materials (sweet/sour cherry kernels), as industrial byproducts and components of organic solid waste. Activated carbon synthesis was carried out by thermochemical conversion (H 3 PO 4 , 500 °C) in the complete absence of inert atmosphere. Characterization of the activated carbon was performed by elemental analysis, FTIR, SEM, EDX and BET. BET surface area corresponds to 657.1 m 2  g -1 . The evaluation also included the influence of pH, contact time, solute concentration and adsorbent dose on the separation efficiency in the batch operational mode. The equilibrium and kinetic studies of adsorption were done. The maximum adsorption capacity of the activated carbon for Cd 2+ ions was calculated from the Langmuir isotherm and found to be 198.7 mg g -1 . Adsorption of Pb 2+ and Ni 2+ were better suitable to Freundlich model with the maximum adsorption capacity of 180.3 mg g -1 and 76.27 mg g -1 , respectively. The results indicate that the pseudo-second-order model best describes adsorption kinetic data. Based on desorption study results, activated carbon was successfully regenerated with HNO 3 for 3 cycles. In order to provide the results for basic cost-effective analysis, competing ion-effects in a real sample have been evaluated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Processes of adsorption/desorption of iodides and cadmium cations onto/from Ag(111

    Directory of Open Access Journals (Sweden)

    VLADIMIR D. JOVIĆ

    2011-02-01

    Full Text Available In this work, the adsorption/desorption processes of iodides and cadmium cations in the presence of iodides onto/from Ag(111 were investigated. It was shown that both processes were complex, characterized by several peaks on the cyclic voltammograms (CVs. By PeakFit analysis of the recorded CVs and subsequent fitting of the obtained peaks by the Frumkin adsorption isotherm, the interaction parameter (f and the Gibbs energy of adsorption (DGads for each adsorbed phase were determined. In the case of iodide adsorption, four peaks were characterized by negative values of f, indicating attractive lateral interaction between the adsorbed anions, while two of them possessed value of f < –4, indicating phase transition processes. The adsorption/desorption processes of cadmium cations (underpotential deposition – UPD of cadmium in the presence of iodide anions was characterized by two main peaks, each of them being composed of two or three peaks with negative values of f. By the analysis of charge vs. potential dependences obtained either from the CVs or current transients on potentiostatic pulses, it was concluded that adsorbed iodides did not undergo desorption during the process of Cd UPD, but became replaced by Cd ad-atoms and remained adsorbed on top of a Cd layer and/or in between Cd the ad-atoms.

  18. Effect of sodium acetate additive in successive ionic layer adsorption and reaction on the performance of CdS quantum-dot-sensitized solar cells

    Science.gov (United States)

    Liu, I.-Ping; Chen, Liang-Yih; Lee, Yuh-Lang

    2016-09-01

    Sodium acetate (NaAc) is utilized as an additive in cationic precursors of the successive ionic layer adsorption and reaction (SILAR) process to fabricate CdS quantum-dot (QD)-sensitized photoelectrodes. The effects of the NaAc concentration on the deposition rate and distribution of QDs in mesoporous TiO2 films, as well as on the performance of CdS-sensitized solar cells are studied. The experimental results show that the presence of NaAc can significantly accelerate the deposition of CdS, improve the QD distribution across photoelectrodes, and thereby, increase the performance of solar cells. These results are mainly attributed to the pH-elevation effect of NaAc to the cationic precursors which increases the electrostatic interaction of the TiO2 film to cadmium ions. The light-to-energy conversion efficiency of the CdS-sensitized solar cell increases with increasing concentration of the NaAc and approaches a maximum value (3.11%) at 0.05 M NaAc. Additionally, an ionic exchange is carried out on the photoelectrode to transform the deposited CdS into CdS1-xSex ternary QDs. The light-absorption range of the photoelectrode is extended and an exceptional power conversion efficiency of 4.51% is achieved due to this treatment.

  19. Natural dissolved organic matter mobilizes Cd but does not affect the Cd uptake by the green algae Pseudokirchneriella subcapitata (Korschikov) in resin buffered solutions

    Energy Technology Data Exchange (ETDEWEB)

    Verheyen, Liesbeth, E-mail: verheyenliesbeth@gmail.com; Versieren, Liske, E-mail: liske.versieren@ees.kuleuven.be; Smolders, Erik, E-mail: erik.smolders@ees.kuleuven.be

    2014-09-15

    Highlights: • Different DOM samples were added to solutions with a resin buffered Cd{sup 2+} activity. • This increased total dissolved Cd by factors 3–16 due to complexation reactions. • Cd uptake in algae was unaffected or increased maximally 1.6 fold upon addition. • Free Cd{sup 2+} is the main bioavailable form of Cd for algae in well buffered solutions. - Abstract: Natural dissolved organic matter (DOM) can have contrasting effects on metal bioaccumulation in algae because of complexation reactions that reduce free metal ion concentrations and because of DOM adsorption to algal surfaces which promote metal adsorption. This study was set up to reveal the role of different natural DOM samples on cadmium (Cd) uptake by the green algae Pseudokirchneriella subcapitata (Korschikov). Six different DOM samples were collected from natural freshwater systems and isolated by reverse osmosis. In addition, one {sup 13}C enriched DOM sample was isolated from soil to trace DOM adsorption to algae. Algae were exposed to standardized solutions with or without these DOM samples, each exposed at equal DOM concentrations and at equal non-toxic Cd{sup 2+} activity (∼4 nM) that was buffered with a resin. The DOM increased total dissolved Cd by factors 3–16 due to complexation reactions at equal Cd{sup 2+} activity. In contrast, the Cd uptake was unaffected by DOM or increased maximally 1.6 fold ({sup 13}C enriched DOM). The {sup 13}C analysis revealed that maximally 6% of algal C was derived from DOM and that this can explain the small increase in biomass Cd. It is concluded that free Cd{sup 2+} and not DOM-complexed Cd is the main bioavailable form of Cd when solution Cd{sup 2+} is well buffered.

  20. Removal of 2,4-dichlorophenol using cyclodextrin-ionic liquid polymer as a macroporous material: Characterization, adsorption isotherm, kinetic study, thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Raoov, Muggundha [University of Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Advanced Medical and Dental Institute, University of Science Malaysia, No. 1–8 (Lot 8), Persiaran Seksyen 4/1, Bandar Putra Bertam, Kepala Batas, Pulau Pinang 13200 (Malaysia); Mohamad, Sharifah, E-mail: sharifahm@um.edu.my [University of Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Abas, Mohd Radzi [Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2013-12-15

    Highlights: • βCD-BIMOTs-TDI exhibits macropore size (77.66 nm) with 1.254 m{sup 2} g{sup −1} surface area. • Freundlich isotherm and pseudo-second order kinetics fit well the adsorption process. • Removal was optimum at pH 6 with 83% and reached equilibrium at 80 mg L{sup −1}. • Entropy (ΔS°) and heat of adsorption (ΔH°) estimated as −55.99 J/K mol and −18.10 J/mol. • Inclusion complex and π–π interaction were found to be dominant at pH 6. -- Abstract: Cyclodextrin-ionic liquid polymer (βCD-BIMOTs-TDI) was firstly synthesized using functionalized β-Cyclodextrin (CD) with 1-benzylimidazole (BIM) to form monofunctionalized CDCD-BIMOTs) and was further polymerized using toluene diisocyanate (TDI) linker to form insoluble βCD-BIMOTs-TDI. SEM characterization result shows that βCD-BIMOTs-TDI exhibits macropore size while the BET result shows low surface area (1.254 m{sup 2} g{sup −1}). The unique properties of the ILs allow us to produce materials with different morphologies. The adsorption isotherm and kinetics of 2,4-dichlorophenol (2,4-DCP) onto βCD-BIMOTs-TDI is studied. Freundlich isotherm and pseudo-second order kinetics are found to be the best to represent the data for 2,4-DCP adsorption on the βCD-BIMOTs-TDI. The presence of macropores decreases the mass transfer resistance and increases the adsorption process by reducing the diffusion distance. The change in entropy (ΔS°) and heat of adsorption (ΔH°) for 2,4-DCP on βCD-BIMOTs-TDI were estimated as −55.99 J/Kmol and −18.10 J/mol, respectively. The negative value of Gibbs free energy (ΔG°) indicates that the adsorption process is thermodynamically feasible, spontaneous and chemically controlled. Finally, the interactions between the cavity of βCD-BIMOTs and 2,4-DCP are investigated and the results shows that the inclusion of the complex formation and π–π interaction are the main processes involved in the adsorption process.

  1. CD47 expression in Epstein-Barr virus-associated gastric carcinoma: coexistence with tumor immunity lowering the ratio of CD8+/Foxp3+ T cells.

    Science.gov (United States)

    Abe, Hiroyuki; Saito, Ruri; Ichimura, Takashi; Iwasaki, Akiko; Yamazawa, Sho; Shinozaki-Ushiku, Aya; Morikawa, Teppei; Ushiku, Tetsuo; Yamashita, Hiroharu; Seto, Yasuyuki; Fukayama, Masashi

    2018-04-01

    Epstein-Barr virus-associated gastric carcinoma (EBVaGC) frequently harbors dense lymphocytic infiltration, suggesting a specific microenvironment allowing coexistence with tumor immunity. CD47, which mediates the "do not eat me" signal in innate immunity, is also important in adaptive anti-tumor immunity. We investigated the significance of CD47 in EBVaGC compared with EBV-negative gastric cancer and the correlation with various immune cells. By immunohistochemistry of CD47, high, low, and negative expression was observed in 24, 63, and 12% of EBVaGC (n = 41), while 11, 49, and 39% of EBV-negative gastric cancer (n = 262), respectively, indicating that high expression of CD47 in cancer cells was significantly frequent and increased in EBVaGC (P = 0.043). In contrast to EBV-negative gastric carcinoma in which no significant correlation was observed between CD47 and survival, high expression of CD47 correlated significantly with worse disease-specific survival (P = 0.011) and overall survival (P = 0.013) in EBVaGC. To further clarify the role of CD47 expression in EBVaGC, digital image analysis of immune cell infiltration revealed that high CD47 expression was correlated with a lower ratio of CD8 + /Foxp3 + T cells (P = 0.021), a sensitive indicator of tumor immunity. Thus, CD47 lowers anti-tumor immunity in EBVaGC by finely tuning profile of infiltrating T cells, suggesting that CD47 is an additional target for cancer immunotherapy against this virus-driven gastric cancer.

  2. Competitive adsorption and selectivity sequence of heavy metals by chicken bone-derived biochar: Batch and column experiment.

    Science.gov (United States)

    Park, Jong-Hwan; Cho, Ju-Sik; Ok, Yong Sik; Kim, Seong-Heon; Kang, Se-Won; Choi, Ik-Won; Heo, Jong-Soo; DeLaune, Ronald D; Seo, Dong-Cheol

    2015-01-01

    The objective of this research was to evaluate adsorption of heavy metals in single- and ternary-metal forms onto chicken bone biochar (CBB). Competitive sorption of heavy metals by CBB has never been reported previously. The maximum adsorption capacities of metals by CBB were in the order of Cu (130 mg g(-1)) > Cd (109 mg g(-1)) > Zn (93 mg g(-1)) in the single-metal adsorption isotherm and Cu (108 mg g(-1)) > Cd (54 mg g(-1)) ≥ Zn (44 mg g(-1)) in the ternary-metal adsorption isotherm. Cu was the most retained cation, whereas Zn could be easily exchanged and substituted by Cu. Batch experimental data best fit the Langmuir model rather than the Freundlich isotherms. In the column experiments, the total adsorbed amounts of the metals were in the following order of Cu (210 mg g(-1)) > Cd (192 mg g(-1)) > Zn (178) in single-metal conditions, and Cu (156) > Cd (123) > Zn (92) in ternary-metal conditions. Results from both the batch and column experiments indicate that competitive adsorption among metals increases the mobility of these metals. Especially, Zn in single-metal conditions lost it adsorption capacity most significantly. Based on the 3D simulation graphs of heavy metals, adsorption patterns under single adsorption condition were different than under competitive adsorption condition. Results from both the batch and column experiments show that competitive adsorption among metals increases the mobility of these metals. The maximum metal adsorption capacity of the metals in the column experiments was higher than that in the batch experiment indicating other metal retention mechanisms rather than adsorption may be involved. Therefore, both column and batch experiments are needed for estimating retention capacities and removal efficiencies of metals in CBB.

  3. Radiotracer study of the adsorption of Fe(III), Cr(III) and Cd(II) on natural and chemically modified Slovak zeolite

    International Nuclear Information System (INIS)

    Foeldesova, M.; Dillinger, P.; Lukac, P.

    1998-01-01

    In order to minimize the contamination of environment with metals in ionic form the more types of natural and chemically modified zeolites were examined to their uptake of Fe(III), Cr(III) and Cd(II) from water solutions by batch radio-exchange equilibration method. In this study was used zeolitic tuff from deposit Nizny Hrabovec (content of clinoptilolite 50-70%) with the grain size from 1.2 to 2.2 mm. The granules of zeolite were modified with the following NaOH solutions: ).5, 1, 2 and 4 mol.l -1 at 80 grad C for 4 hours. The sorption of Fe, Cr and Cd ions on all types of zeolites was studied by radio-exchange method and the sorption of Fe and Cr also flame atomic absorption method. From sorption curves the sorption coefficients were calculated. The results obtained in this work show that zeolites modified with NaOH solution are suitable for adsorption of Fe(III), Cr(III) and Cd(II) from underwater, waste water, feed water and coolant water from nuclear plants. The adsorbed zeolites can be solidified by conventional way

  4. Pelletized ponderosa pine bark for adsorption of toxic heavy metals from water

    Directory of Open Access Journals (Sweden)

    Tshabalala, M. A.

    2007-02-01

    Full Text Available Bark flour from ponderosa pine (Pinus ponderosa was consolidated into pellets using citric acid as cross-linking agent. The pellets were evaluated for removal of toxic heavy metals from synthetic aqueous solutions. When soaked in water, pellets did not leach tannins, and they showed high adsorption capacity for Cu(II, Zn(II, Cd(II, and Ni(II under both equilibrium and dynamic adsorption conditions. The experimental data for Cd(II and Zn(II showed a better fit to the Langmuir than to the Freundlich isotherm. The Cu(II data best fit the Freundlich isotherm, and the Ni(II data fitted both Freundlich and Langmuir isotherms equally. According to the Freundlich constant KF, adsorption capacity of pelletized bark for the metal ions in aqueous solution, pH 5.1 ± 0.2, followed the order Cd(II > Cu(II > Zn(II >> Ni(II; according to the Langmuir constant b, adsorption affinity followed the order Cd(II >> Cu(II ≈ Zn(II >> Ni(II. Although data from dynamic column adsorption experiments did not show a good fit to the Thomas kinetic adsorption model, estimates of sorption affinity series of the metal ions on pelletized bark derived from this model were not consistent with the series derived from the Langmuir or Freundlich isotherms and followed the order Cu(II > Zn(II ≈ Cd(II > Ni(II. According to the Thomas kinetic model, the theoretical maximum amounts of metal that can be sorbed on the pelletized bark in a column at influent concentration of ≈10 mg/L and flow rate = 5 mL/min were estimated to be 57, 53, 50, and 27 mg/g for copper, zinc, cadmium, and nickel, respectively. This study demonstrated the potential for converting low-cost bark residues to value-added sorbents using starting materials and chemicals derived from renewable resources. These sorbents can be applied in the removal of toxic heavy metals from waste streams with heavy metal ion concentrations of up to 100 mg/L in the case of Cu(II.

  5. Comparison of cadmium adsorption onto chitosan and epichlorohydrin crosslinked chitosan/eggshell composite

    Science.gov (United States)

    Rahmi; Marlina; Nisfayati

    2018-05-01

    The use of chitosan and epichlorohydrin crosslinked chitosan/eggshell composite for cadmium adsorption from water were investigated. The factors affecting adsorption such as pH and contact time were considered. The results showed that the optimum pH of adsorption was pH = 6.0 and the equilibrium time of adsorption was 40 min. The adsorption isotherm of Cd ions onto chitosan and composite were well fitted to Langmuir equation. The maximum adsorption capacity (fitting by Langmuir model) of chitosan and composite were 1.008 and 11.7647 mg/g, respectively. Adsorption performance of composite after regeneration was better than chitosan.

  6. Molecular investigation on the binding of Cd(II) by the binary mixtures of montmorillonite with two bacterial species

    Energy Technology Data Exchange (ETDEWEB)

    Du, Huihui; Qu, ChenChen; Liu, Jing; Chen, Wenli; Cai, Peng; Shi, Zhihua; Yu, Xiao-Ying; Huang, Qiaoyun

    2017-10-01

    Bacteria and phyllosilicate commonly coexist in the natural environment, producing various bacteria–clay complexes that are capable of immobilizing heavy metals, such as cadmium, via adsorption. However, the molecular binding mechanisms of heavy metals on these complex aggregates still remain poorly understood. This study investigated Cd adsorption on Gram-positive B. subtilis, Gram-negative P. putida and their binary mixtures with montmorillonite (Mont) using the Cd K-edge x-ray absorption spectroscopy (XAS) and isothermal titration calorimetry (ITC). We observed a lower adsorptive capacity for P. putida than B. subtilis, whereas P. putida–Mont and B. subtilis–Mont mixtures showed nearly identical Cd adsorption behaviors. EXAFS fits and ITC measurements demonstrated more phosphoryl binding of Cd in P. putida. The decreased coordination of C atoms around Cd and the reduced adsorption enthalpies and entropies for the binary mixtures compared to that for individual bacteria suggested that the bidentate Cd-carboxyl complexes in pure bacteria systems were probably transformed into monodentate complexes that acted as ionic bridging structure between bacteria and motmorillonite. This study clarified the binding mechanism of Cd at the bacteria–phyllosilicate interfaces from a molecular and thermodynamic view, which has an environmental significance for predicting the chemical behavior of trace elements in complex mineral–organic systems.

  7. Column dynamic studies and breakthrough curve analysis for Cd(II) and Cu(II) ions adsorption onto palm oil boiler mill fly ash (POFA).

    Science.gov (United States)

    Aziz, Abdul Shukor Abdul; Manaf, Latifah Abd; Man, Hasfalina Che; Kumar, Nadavala Siva

    2014-01-01

    This paper investigates the adsorption characteristics of palm oil boiler mill fly ash (POFA) derived from an agricultural waste material in removing Cd(II) and Cu(II) from aqueous solution via column studies. The performance of the study is described through the breakthrough curves concept under relevant operating conditions such as column bed depths (1, 1.5, and 2 cm) and influent metal concentrations (5, 10, and 20 mg/L). The Cd(II) and Cu(II) uptake mechanism is particularly bed depth- and concentration-dependant, favoring higher bed depth and lower influent metal concentration. The highest bed capacity of 34.91 mg Cd(II)/g and 21.93 mg Cu(II)/g of POFA was achieved at 20 mg/L of influent metal concentrations, column bed depth of 2 cm, and flow rate of 5 mL/min. The whole breakthrough curve simulation for both metal ions were best described using the Thomas and Yoon–Nelson models, but it is apparent that the initial region of the breakthrough for Cd(II) was better described using the BDST model. The results illustrate that POFA could be utilized effectively for the removal of Cd(II) and Cu(II) ions from aqueous solution in a fixed-bed column system.

  8. Cd(II) removal and recovery enhancement by using acrylamide–titanium nanocomposite as an adsorbent

    International Nuclear Information System (INIS)

    Sharma, Ajit; Lee, Byeong-Kyu

    2014-01-01

    Graphical abstract: - Highlights: • Acrylamide doping initiated 10–20% increase in the particle size. • R-NH 2 Cd 2+ and Cd-O onto the nanocomposite improved Cd(II) adsorption. • Coexisting cations did not make any significant interference of Cd(II) removal. • Increased Ti nanoparticles leads to decrease in mass swelling of acrylamide. - Abstract: Acrylamide (AM) was in-situ doped into titanium during sol–gel reaction and used as an adsorbent for cadmium removal from aqueous solution. The resulting TiO 2 -AM nanocomposite was characterized by particle size distribution (PSD) and thermogravimetric analysis (TGA). After cadmium adsorption, the nanocomposite was also characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy/energy-dispersive X-ray (SEM/EDX) and X-ray photoelectron spectroscopy (XPS) analyses. The adsorption behavior of the nanocomposite was examined by kinetic and equilibrium studies in batch conditions. The maximum cadmium binding capacity of TiO 2 -AM was 322.58 mg g −1 at an optimum pH of 8.0, compared to 86.95 mg g −1 for nano-titanium. Cadmium sorption showed pseudo-second-order kinetics with a rate constant of 4.0 × 10 −4 and 9.4 × 10 −5 g mg −1 min −1 at an initial Cd(II) concentration of 100 and 500 mg L −1 , respectively. Cd (II) adsorption interference of cations (Pb 2+ , Cu 2+ , Co 2+ and Zn +2 ) and anions (Cl − , SO 4 2− , CO 3 2− ) at pH 8 was very nominal because of favorable complex formation of Cd(II) and amide. The Cd(II) adsorption of 27% that was achieved in the fifth cycle was regenerated with 0.05 N acidic solutions

  9. Performance Study of CdS/Co-Doped-CdSe Quantum Dot Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Xiaoping Zou

    2014-01-01

    Full Text Available In order to optimize the charge transfer path in quantum dot sensitized solar cells (QDSCs, we employed successive ionic layer adsorption and reaction method to dope CdSe with Co for fabricating CdS/Co-doped-CdSe QDSCs constructed with CdS/Co-doped-CdSe deposited on mesoscopic TiO2 film as photoanode, Pt counter electrode, and sulfide/polysulfide electrolyte. After Co doping, the bandgap of CdSe quantum dot decreases, and the conduction band and valence band all improve, forming a cascade energy level which is more conducive to charge transport inside the solar cell and reducing the recombination of electron-hole thus improving the photocurrent and ultimately improving the power conversion efficiency. This work has not been found in the literature.

  10. Surface complexation modeling of Cd(II) sorption to montmorillonite, bacteria, and their composite

    Science.gov (United States)

    Wang, Ning; Du, Huihui; Huang, Qiaoyun; Cai, Peng; Rong, Xingmin; Feng, Xionghan; Chen, Wenli

    2016-10-01

    Surface complexation modeling (SCM) has emerged as a powerful tool for simulating heavy metal adsorption processes on the surface of soil solid components under different geochemical conditions. The component additivity (CA) approach is one of the strategies that have been widely used in multicomponent systems. In this study, potentiometric titration, isothermal adsorption, zeta potential measurement, and extended X-ray absorption fine-structure (EXAFS) spectra analysis were conducted to investigate Cd adsorption on 2 : 1 clay mineral montmorillonite, on Gram-positive bacteria Bacillus subtilis, and their mineral-organic composite. We developed constant capacitance models of Cd adsorption on montmorillonite, bacterial cells, and mineral-organic composite. The adsorption behavior of Cd on the surface of the composite was well explained by CA-SCM. Some deviations were observed from the model simulations at pH SCM closely coincided with the estimated value of EXAFS at pH 6. The model could be useful for the prediction of heavy metal distribution at the interface of multicomponents and their risk evaluation in soils and associated environments.

  11. Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Azouaou, N., E-mail: azouaou20@yahoo.fr [Laboratory of Reaction Genius, Faculty of Mechanical and Processes Genius, University of Sciences and Technology Houari - Boumediene, USTHB, BP no 32 El Alia bab ezzouar, 16111 Algiers (Algeria); Sadaoui, Z. [Laboratory of Reaction Genius, Faculty of Mechanical and Processes Genius, University of Sciences and Technology Houari - Boumediene, USTHB, BP no 32 El Alia bab ezzouar, 16111 Algiers (Algeria); Djaafri, A. [Central laboratory, SEAAL, 97 Parc ben omar, Kouba, Algiers (Algeria); Mokaddem, H. [Laboratory of Reaction Genius, Faculty of Mechanical and Processes Genius, University of Sciences and Technology Houari - Boumediene, USTHB, BP no 32 El Alia bab ezzouar, 16111 Algiers (Algeria)

    2010-12-15

    Adsorption can be used as a cost effective and efficient technique for the removal of toxic heavy metals from wastewater. Waste materials with no further treatment such as coffee grounds from cafeterias may act as adsorbents for the removal of cadmium. Batch kinetic and equilibrium experiments were conducted to study the effects of contact time, adsorbent dose, initial pH, particle size, initial concentration of cadmium and temperature. Three adsorption isotherm models namely, Langmuir, Freundlich and Dubinin-Radushkevich were used to analyse the equilibrium data. The Langmuir isotherm which provided the best correlation for Cd{sup 2+} adsorption onto coffee grounds, shows that the adsorption was favourable and the adsorption capacity found was equal to 15.65 mg g{sup -1}. Thermodynamic parameters were evaluated and the adsorption was exothermic. The equilibrium was achieved less than 120 min. The adsorption kinetic data was fitted with first and second order kinetic models. Finally it was concluded that the cadmium adsorption kinetic onto coffee grounds was well fitted by second order kinetic model rather than first order model. The results suggest that coffee grounds have high possibility to be used as effective and economical adsorbent for Cd{sup 2+} removal.

  12. Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics

    International Nuclear Information System (INIS)

    Azouaou, N.; Sadaoui, Z.; Djaafri, A.; Mokaddem, H.

    2010-01-01

    Adsorption can be used as a cost effective and efficient technique for the removal of toxic heavy metals from wastewater. Waste materials with no further treatment such as coffee grounds from cafeterias may act as adsorbents for the removal of cadmium. Batch kinetic and equilibrium experiments were conducted to study the effects of contact time, adsorbent dose, initial pH, particle size, initial concentration of cadmium and temperature. Three adsorption isotherm models namely, Langmuir, Freundlich and Dubinin-Radushkevich were used to analyse the equilibrium data. The Langmuir isotherm which provided the best correlation for Cd 2+ adsorption onto coffee grounds, shows that the adsorption was favourable and the adsorption capacity found was equal to 15.65 mg g -1 . Thermodynamic parameters were evaluated and the adsorption was exothermic. The equilibrium was achieved less than 120 min. The adsorption kinetic data was fitted with first and second order kinetic models. Finally it was concluded that the cadmium adsorption kinetic onto coffee grounds was well fitted by second order kinetic model rather than first order model. The results suggest that coffee grounds have high possibility to be used as effective and economical adsorbent for Cd 2+ removal.

  13. A Study on Adsorption of Cadmium by Using Chemically Modified Salvinia

    International Nuclear Information System (INIS)

    Anies Suhaida Mohd Naspu; Anies Suhaida Mohd Naspu; Mohd Lias Kamal; Zaini Hamzah; Sharizal Hasan

    2014-01-01

    Salvinia was collected at the Tasik Melati, Perlis, Malaysia and it was modified using citric acid to increase the performance in removing heavy metals from standard heavy metal solution. Fourier Transform Infrared (FTIR) and Field Emission Scanning Electron Microscope (FESEM) were used to characterize Salvinia before and after chemical modification. Cadmium (Cd 2+ ) removal studies were carried out by using modified Salvinia and the effect of various parameters such as contact time, initial heavy metal concentration and biosorbent dosage were studied. The adsorption study was investigated by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to determine the removing of heavy metal concentration from the standard Cd 2+ solution. From the study, FTIR analysis was shown the increasing of intensity on hydroxyl group after modification. A clear and smooth surface morphology of Salvinia after treatment were observed by using FESEM. The adsorption of cadmium was increased as contact time and biosorbent dosage increased. In contrast, the percent of adsorption was slightly decreased when initial concentration of Cd 2+ increased. (author)

  14. Single, binary and multi-component adsorption of some anions and heavy metals on environmentally friendly Carpobrotus edulis plant.

    Science.gov (United States)

    Chiban, Mohamed; Soudani, Amina; Sinan, Fouad; Persin, Michel

    2011-02-01

    A low-cost adsorbent and environmentally friendly adsorbent from Carpobrotus edulis plant was used for the removal of NO(3)(-), H(2)PO(4)(-), Pb(2+) and Cd(2+) ions from single, binary and multi-component systems. The efficiency of the adsorbent was studied using batch adsorption technique under different experimental conditions by varying parameters such as pH, initial concentration and contact time. In single component systems, the dried C. edulis has the highest affinity for Pb(2+), followed by NO(3)(-), Cd(2+) and H(2)PO(4)(-), with adsorption capacities of 175mg/g, 125mg/g, 28mg/g and 26mg/g, respectively. These results showed that the adsorption of NO(3)(-) and H(2)PO(4)(-) ions from single and binary component systems can be successfully described by Langmuir and Freundlich isotherms. Freundlich adsorption model, showed the best fit to the single and binary experimental adsorption data. These results also indicated that the adsorption yield of Pb(2+) ion was reduced by the presence of Cd(2+) ion in binary metal mixture. The competitive adsorption of NO(3)(-), H(2)PO(4)(-), Pb(2+) and Cd(2+) ions on dried C. edulis plant shows that NO(3)(-) and H(2)PO(4)(-) anions are able to adsorb on different free binding sites and Pb(2+) and Cd(2+) cations are able to adsorb on the same active sites of C. edulis particles. The dried C. edulis was found to be efficient in removing nitrate, phosphate, cadmium and lead from aqueous solution as compared to other adsorbents already used for the removal of these ions. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Homogeneous CdTe quantum dots-carbon nanotubes heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Kayo Oliveira [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil); Bettini, Jefferson [Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, CEP 13083-970, Campinas, SP (Brazil); Ferrari, Jefferson Luis [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil); Schiavon, Marco Antonio, E-mail: schiavon@ufsj.edu.br [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil)

    2015-01-15

    The development of homogeneous CdTe quantum dots-carbon nanotubes heterostructures based on electrostatic interactions has been investigated. We report a simple and reproducible non-covalent functionalization route that can be accomplished at room temperature, to prepare colloidal composites consisting of CdTe nanocrystals deposited onto multi-walled carbon nanotubes (MWCNTs) functionalized with a thin layer of polyelectrolytes by layer-by-layer technique. Specifically, physical adsorption of polyelectrolytes such as poly (4-styrene sulfonate) and poly (diallyldimethylammonium chloride) was used to deagglomerate and disperse MWCNTs, onto which we deposited CdTe quantum dots coated with mercaptopropionic acid (MPA), as surface ligand, via electrostatic interactions. Confirmation of the CdTe quantum dots/carbon nanotubes heterostructures was done by transmission and scanning electron microscopies (TEM and SEM), dynamic-light scattering (DLS) together with absorption, emission, Raman and infrared spectroscopies (UV–vis, PL, Raman and FT-IR). Almost complete quenching of the PL band of the CdTe quantum dots was observed after adsorption on the MWCNTs, presumably through efficient energy transfer process from photoexcited CdTe to MWCNTs. - Highlights: • Highly homogeneous CdTe-carbon nanotubes heterostructures were prepared. • Simple and reproducible non-covalent functionalization route. • CdTe nanocrystals homogeneously deposited onto multi-walled carbon nanotubes. • Efficient energy transfer process from photoexcited CdTe to MWCNTs.

  16. EFFECT OF DIATOMEAOUS EARTH TREATMENT USING HYDROGEN CHLORIDE AND SULFURIC ACID ON KINETICS OF CADMIUM(II ADSORPTION

    Directory of Open Access Journals (Sweden)

    Nuryono Nuryono

    2010-06-01

    Full Text Available In this research, treatment of diatomaceous earth, Sangiran, Central Java using hydrogen chloride (HCl and sulfuric acid (H2SO4 on kinetics of Cd(II adsorption in aqueous solution has been carried out. The work was conducted by mixing an amount of grounded diatomaceous earth (200 mesh in size with HCl or H2SO4 solution in various concentrations for two hours at temperature range of 100 - 150oC. The mixture was then filtered and washed with water until the filtrate pH is approximately 7 and then the residue was dried for four hours at a temperature of 70oC. The product was used as an adsorbent to adsorb Cd(II in aqueous solution with various concentrations. The Cd(II adsorbed was determined by analyzing the rest of Cd(II in the solution using atomic absorption spectrophotometry. The effect of treatment was evaluated from kinetic parameter of adsorption rate constant calculated based on the simple kinetic model. Results showed  that before equilibrium condition reached, adsorpstion of Cd(II occurred through two steps, i.e. a step tends to follow a reaction of irreversible first order  (step I followed by reaction of reversible first order (step II. Treatment with acids, either hydrogen chloride or sulfuric acid, decreased adsorption rate constant for the step I from 15.2/min to a range of 6.4 - 9.4/min.  However, increasing concentration of acid (in a range of concentration investigated did not give significant and constant change of adsorption rate constant. For step II process,  adsorption involved physical interaction with the sufficient low adsorption energy (in a range of 311.3 - 1001 J/mol.     Keywords: adsorption, cdmium, diatomaceous earth, kinetics.

  17. Biosorption and desorption of Cd2+ from wastewater by dehydrated shreds of Cladophora fascicularis

    Science.gov (United States)

    Deng, Liping; Zhu, Xiaobin; Su, Yingying; Su, Hua; Wang, Xinting

    2008-02-01

    The adsorption and desorption of algae Cladophora fascicularis and their relation with initial Cd2+ concentration, initial pH, and co-existing ions were studied. Adsorption equilibrium and biosorption kinetics were established from batch experiments. The adsorption equilibrium was adequately described by the Langmuir isotherm, and biosorption kinetics was in pseudo-second order model. The experiment on co-existing ions showed that the biosorption capacity of biomass decreased with an increasing concentration of competing ions. Desorption experiments indicated that EDTA was efficient desorbent for recovery from Cd2+. With high capacities of metal biosorption and desorption, the biomass of Cladophora fascicularis is promising as a cost-effective biosorbent for the removal of Cd2+ from wastewater.

  18. Urchin-like CdS/ZrO2 nanocomposite prepared by microwave-assisted hydrothermal combined with ion-exchange and its multimode photocatalytic activity

    Science.gov (United States)

    Li, Li; Wang, Lili; Zhang, Wenzhi; Zhang, Xiuli; Chen, Xi; Dong, Xue

    2014-12-01

    A series of urchin-like CdS/ZrO2 nanocomposites with different mole ratios of Cd/Zr were prepared by a two-step method combining the microwave-assisted hydrothermal and ion exchange methods. The products were characterized by X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and N2 adsorption-desorption measurements. The results of the study revealed that the CdS/ZrO2 nanocomposites had mixed phases of tetragonal ZrO2 and hexagonal CdS. Moreover, the samples prepared by the microwave-assisted hydrothermal method possessed the urchin-like structure with a surface composed of protrude-like nanoparticles in large quantities. The absorption in the visible region changed slightly with increasing mole ratio of Cd/Zr. Moreover, compared to the nanocomposites prepared by the conventional heating, the nanocomposites prepared by the microwave-assisted hydrothermal synthesis showed significantly different Brunauer-Emmett-Teller values, and the urchin-like CdS/ZrO2 structures were obtained. The photocatalytic degradation of methyl orange under ultraviolet (UV) light irradiation indicated that the photocatalytic activity of the CdS/ZrO2 nanocomposite with CdS/ZrO2 molar ratio of 30 % was higher than those of CdS, ZrO2, and other different ratios of CdS/ZrO2 nanocomposites. Moreover, under UV light, visible light, and microwave-assisted multimode photocatalytic degradation, the urchin-like CdS/ZrO2 nanocomposites significantly affected the photodegradation of various dyes. To understand the possible reaction mechanism of the photocatalysis by the CdS/ZrO2 nanocomposites, a series of controlled experiments were performed, and the stability and reusability of the CdS/ZrO2 nanocomposites were further investigated by the photocatalytic reaction.

  19. Adsorption and desorption of cadmium by synthetic and natural organo-clay complexes

    International Nuclear Information System (INIS)

    Levy, R.; Francis, C.W.; Oak Ridge National Lab., Tenn.

    1976-01-01

    Tracer levels of 109 Cd were used to study the adsorption and desorption of Cd by synthetic and natural organo-clay complexes. Synthetic organo-clay complexes were made by adsorbing humic acid extracted from soil to various forms of 3 ) 2 showed that Cd was adsorbed more tenaciously to the sesquioxides than organo-clay fractions

  20. A study on dependence of the structural, optical and electrical properties of cadmium lead sulphide thin films on Cd/Pb ratio

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Sinitha B., E-mail: sinithanair@gmail.com, E-mail: anithakklm@gmail.com; Abraham, Anitha, E-mail: sinithanair@gmail.com, E-mail: anithakklm@gmail.com; Philip, Rachel Reena, E-mail: reenatara@rediffmail.com [Thin film research Lab, U.C. College, Aluva, Kerala (India); Pradeep, B., E-mail: bp@cusat.ac.in [Solid State Physics Laboratory, Cochin University of science and Technology, Cochin (India); Shripathi, T., E-mail: shri@csr.res.in, E-mail: vganesancsr@gmail.com; Ganesan, V., E-mail: shri@csr.res.in, E-mail: vganesancsr@gmail.com [UGC-DAE CSR, Khandwa Road, Indore, 452001, Madhya Pradesh (India)

    2014-10-15

    Cadmium Lead Sulphide thin films with systematic variation in Cd/Pb ratio are prepared at 333K by CBD, adjusting the reagent-molarity, deposition time and pH. XRD exhibits crystalline-amorphous transition as Cd% exceeds Pb%. AFM shows agglomeration of crystallites of size ∼50±5 nm. EDAX assess the composition whereas XPS ascertains the ternary formation, with binding energies of Pb4f{sub 7/2} and 4f{sub 5/2}, Cd3d{sub 5/2} and 3d{sub 3/2} and S2p at 137.03, 141.606, 404.667, 412.133 and 160.218 eV respectively. The optical absorption spectra reveal the variance in the direct allowed band gaps, from 1.57eV to 2.42 eV as Cd/Pb ratio increases from 0.2 to 2.7, suggesting possibility of band gap engineering in the n-type films.

  1. Preparation of Pickering emulsions through interfacial adsorption by soft cyclodextrin nanogels

    Directory of Open Access Journals (Sweden)

    Shintaro Kawano

    2015-11-01

    Full Text Available Background: Emulsions stabilized by colloidal particles are known as Pickering emulsions. To date, soft microgel particles as well as inorganic and organic particles have been utilized as Pickering emulsifiers. Although cyclodextrin (CD works as an attractive emulsion stabilizer through the formation of a CD–oil complex at the oil–water interface, a high concentration of CD is normally required. Our research focuses on an effective Pickering emulsifier based on a soft colloidal CD polymer (CD nanogel with a unique surface-active property.Results: CD nanogels were prepared by crosslinking heptakis(2,6-di-O-methyl-β-cyclodextrin with phenyl diisocyanate and subsequent immersion of the resulting polymer in water. A dynamic light scattering study shows that primary CD nanogels with 30–50 nm diameter assemble into larger CD nanogels with 120 nm diameter by an increase in the concentration of CD nanogel from 0.01 to 0.1 wt %. The CD nanogel has a surface-active property at the air–water interface, which reduces the surface tension of water. The CD nanogel works as an effective Pickering emulsion stabilizer even at a low concentration (0.1 wt %, forming stable oil-in-water emulsions through interfacial adsorption by the CD nanogels.Conclusion: Soft CD nanogel particles adsorb at the oil–water interface with an effective coverage by forming a strong interconnected network and form a stable Pickering emulsion. The adsorption property of CD nanogels on the droplet surface has great potential to become new microcapsule building blocks with porous surfaces. These microcapsules may act as stimuli-responsive nanocarriers and nanocontainers.

  2. Phosphate-induced cadmium adsorption in a tropical savannah soil ...

    African Journals Online (AJOL)

    The influence of phosphate (P) on cadmium (Cd) adsorption was examined in a savanna soil with long history of different fertilizer amendment. The soil was incubated with P at 0, 250 and 500 mg P kg-1 soil and left to equilibrate for 2 weeks. Cd was added to the P-incubated soil at concentrations ranging from 27, 49 and ...

  3. A porous cadmium(II) framework. Synthesis, crystal structure, gas adsorption, and fluorescence sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Pingping [College of Sciences, Agricultural University of Hebei, Baoding (China)

    2017-05-18

    The Cd{sup II} compound, namely [Cd(Tppa)(SO{sub 4})(H{sub 2}O)]{sub n} (1) [Tppa = tris(4-(pyridyl)phenyl) amine], was synthesized by the reaction of CdSO{sub 4}.8H{sub 2}O and Tppa under solvothermal conditions. Single crystal X-ray diffraction analysis revealed that compound 1 features a 3D porous framework based on 1D inorganic -[Cd-SO{sub 4}-Cd]{sub n}- chains. Topological analysis reveals that compound 1 represents a trinodal (3,4,6)-connected topological network with the point symbol of {6.7"2}{sub 2}{6"4.7.10}{6"4.7"5.8"4.10"2}. Gas adsorption properties investigations indicate that compound 1 exhibits moderate adsorption capacities for light hydrocarbons at room temperature. Luminescence property studies revealed that this Cd{sup II} compound exhibits high fluorescence sensitivity for sensing of CS{sub 2} molecule. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Competitive Adsorption of Metals onto Magnetic Graphene Oxide: Comparison with Other Carbonaceous Adsorbents

    Directory of Open Access Journals (Sweden)

    Jin Hur

    2015-01-01

    Full Text Available Competitive adsorption isotherms of Cu(II, Pb(II, and Cd(II were examined on a magnetic graphene oxide (GO, multiwalled carbon nanotubes (MWCNTs, and powered activated carbon (PAC. A series of analyses confirmed the successful synthesis of the magnetic GO based on a simple ultrasonification method. Irrespective of the adsorbents, the adsorption was highly dependent on pH, and the adsorption was well described by the Langmuir isotherm model. The maximum adsorption capacities of the adsorbents were generally higher in the order of Pb(II > Cu(II > Cd(II, which is the same as the degree of the electronegativity and the hydrated radius of the metals, suggesting that the metal adsorption may be governed by an ion exchange between positively charged metals and negatively charged surfaces, as well as diffusion of metals into the surface layer. The adsorption of each metal was mostly lower for multi- versus single-metal systems. The antagonistic effects were influenced by solution pH as well as the type of metals, and they were higher in the order of the magnetic GO > MWCNT > PAC. Dissolved HS played a greater role than HS adsorbed onto the adsorbents, competing with the adsorption sites for metal complexation.

  5. Kinetics of heavy metal adsorption and desorption in soil: Developing a unified model based on chemical speciation

    Science.gov (United States)

    Peng, Lanfang; Liu, Paiyu; Feng, Xionghan; Wang, Zimeng; Cheng, Tao; Liang, Yuzhen; Lin, Zhang; Shi, Zhenqing

    2018-03-01

    Predicting the kinetics of heavy metal adsorption and desorption in soil requires consideration of multiple heterogeneous soil binding sites and variations of reaction chemistry conditions. Although chemical speciation models have been developed for predicting the equilibrium of metal adsorption on soil organic matter (SOM) and important mineral phases (e.g. Fe and Al (hydr)oxides), there is still a lack of modeling tools for predicting the kinetics of metal adsorption and desorption reactions in soil. In this study, we developed a unified model for the kinetics of heavy metal adsorption and desorption in soil based on the equilibrium models WHAM 7 and CD-MUSIC, which specifically consider metal kinetic reactions with multiple binding sites of SOM and soil minerals simultaneously. For each specific binding site, metal adsorption and desorption rate coefficients were constrained by the local equilibrium partition coefficients predicted by WHAM 7 or CD-MUSIC, and, for each metal, the desorption rate coefficients of various binding sites were constrained by their metal binding constants with those sites. The model had only one fitting parameter for each soil binding phase, and all other parameters were derived from WHAM 7 and CD-MUSIC. A stirred-flow method was used to study the kinetics of Cd, Cu, Ni, Pb, and Zn adsorption and desorption in multiple soils under various pH and metal concentrations, and the model successfully reproduced most of the kinetic data. We quantitatively elucidated the significance of different soil components and important soil binding sites during the adsorption and desorption kinetic processes. Our model has provided a theoretical framework to predict metal adsorption and desorption kinetics, which can be further used to predict the dynamic behavior of heavy metals in soil under various natural conditions by coupling other important soil processes.

  6. Ultrasonic-assisted synthesis of novel nanocomposite of poly(vinyl alcohol) and amino-modified MCM-41: A green adsorbent for Cd(II) removal.

    Science.gov (United States)

    Soltani, Roozbeh; Dinari, Mohammad; Mohammadnezhad, Gholamhossein

    2018-01-01

    Amino-modified MCM-41/poly(vinyl alcohol) nanocomposite (M-MCM-41/PVOH NC) was developed for the adsorption of Cd(II) from aqueous media. M-MCM-41/PVOH NC was prepared through ultrasonic-assisted and simple blending procedure with economical and environmentally friendly polymer. The as-prepared adsorbent was characterized by FT-IR, TEM, FE-SEM and TGA. The contact time, solution pH and initial concentration of Cd(II) were found to affect the adsorption of Cd(II) from aqueous media. Kinetic studies were carried out and pseudo-first-order (PFO), pseudo-second-order (PSO), Elovich, and intra-particle diffusion (IPD) reaction kinetic models were examined. The kinetic results revealed that the adsorption of Cd(II) onto M-MCM-41/PVOH NC followed PSO kinetic model and is a chemical adsorption. The equilibrium adsorption data were evaluated by different isotherms viz. Langmuir, Freundlich, and Dubinin Radushkevich (D-R) equations. The equilibrium data fitted better with the Langmuir isotherm and the maximum adsorption capacity of M-MCM-41/PVOH NC at 298K was calculated to be 46.73mgg -1 for Cd(II) on a typical saturated monomolecular layer with a fixed number of localized adsorption sites. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Cd(II) removal and recovery enhancement by using acrylamide–titanium nanocomposite as an adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ajit; Lee, Byeong-Kyu, E-mail: bklee@ulsan.ac.kr

    2014-09-15

    Graphical abstract: - Highlights: • Acrylamide doping initiated 10–20% increase in the particle size. • R-NH{sub 2}Cd{sup 2+} and Cd-O onto the nanocomposite improved Cd(II) adsorption. • Coexisting cations did not make any significant interference of Cd(II) removal. • Increased Ti nanoparticles leads to decrease in mass swelling of acrylamide. - Abstract: Acrylamide (AM) was in-situ doped into titanium during sol–gel reaction and used as an adsorbent for cadmium removal from aqueous solution. The resulting TiO{sub 2}-AM nanocomposite was characterized by particle size distribution (PSD) and thermogravimetric analysis (TGA). After cadmium adsorption, the nanocomposite was also characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy/energy-dispersive X-ray (SEM/EDX) and X-ray photoelectron spectroscopy (XPS) analyses. The adsorption behavior of the nanocomposite was examined by kinetic and equilibrium studies in batch conditions. The maximum cadmium binding capacity of TiO{sub 2}-AM was 322.58 mg g{sup −1} at an optimum pH of 8.0, compared to 86.95 mg g{sup −1} for nano-titanium. Cadmium sorption showed pseudo-second-order kinetics with a rate constant of 4.0 × 10{sup −4} and 9.4 × 10{sup −5} g mg{sup −1} min{sup −1} at an initial Cd(II) concentration of 100 and 500 mg L{sup −1}, respectively. Cd (II) adsorption interference of cations (Pb{sup 2+}, Cu{sup 2+}, Co{sup 2+} and Zn{sup +2}) and anions (Cl{sup −}, SO{sub 4}{sup 2−}, CO{sub 3}{sup 2−}) at pH 8 was very nominal because of favorable complex formation of Cd(II) and amide. The Cd(II) adsorption of 27% that was achieved in the fifth cycle was regenerated with 0.05 N acidic solutions.

  8. Equilibrium Adsorption of heavy Metals from Aqueous Solutions onto Poly aniline Stannic(IV) Phosphate Composite

    International Nuclear Information System (INIS)

    El-Zahhar, A.A.; EI-Shourbagy, M.M.; Shady, S.A.

    2012-01-01

    An adsorbent material has been prepared by immobilization of stannic(IV) phosphate within poly aniline composite. The produced adsorbent exhibit a high adsorption potential for Pb(II), Cd(Il) and Zn(lI) from aqueous solutions. The influence of initial metal ion concentration, adsorbent dose, ph and temperature on metal ion removal has been studied. The process was found to follow a first order rate kinetics. Thc intra-particle diffusion of metal ions through pores in the adsorbent was to be the main rate limiting step. The equilibrium data fit well with Langmuir adsorption isotherm model. The selectivity order of the adsorbent towards the metal ions was Pb(Il) > Cd(Il) >Zn(II). The adsorption rate constant and thermodynamic parameters were also given to predict the nature of adsorption

  9. Fabrication of titanate nanotubes/iron oxide magnetic composite for the high efficient capture of radionuclides: a case investigation of 109Cd(II)

    International Nuclear Information System (INIS)

    Lei Dai; Jun Zheng; Lijie Wang

    2013-01-01

    In this paper, the capture of radiocadmium (Cd(II)) by adsorption onto the titanate nanotube/iron oxide (TNT/IOM) magnetic composite as a function of contact time, pH, ionic strength, foreign cation and anion ions, humic acid (HA) and fulvic acid (FA) was studied using batch technique. The results indicated that the adsorption of Cd(II) onto the TNT/IOM magnetic composite was dependent on ionic strength at pH 9.0. Outer-sphere surface complexation were the main mechanism of Cd(II) adsorption onto the TNT/IOM magnetic composite at low pH values, whereas the adsorption was mainly dominated via inner-sphere surface complexation at high pH values. The adsorption of Cd(II) onto the TNT/IOM magnetic composite was dependent on foreign cation and anion ions at low pH values, but was independent of foreign cation and anion ions at high pH values. A positive effect of HA/FA on Cd(II) adsorption onto the TNT/IOM magnetic composite was found at low pH values, while a negative effect was observed at high pH values. From the results of Cd(II) removal by the TNT/IOM magnetic composite, the optimum reaction conditions can be obtained for the maximum removal of Cd(II) from water. It is clear that the best pH values of the system to remove Cd(II) from solution by using the TNT/IOM magnetic composite are 7.0-8.0. Considering the low cost and effective disposal of Cd(II)-contaminated wastewaters, the best condition for Cd(II) capture by the TNT/IOM magnetic composite is at room temperature and solid content of 0.5 g L -1 . These results are quite important for estimating and optimizing the removal of Cd(II) and related metal ions by the TNT-based magnetic composite. (author)

  10. X-ray investigations for determining the aspect ratio in CdSe nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Pietsch, Ullrich; Kurtulus, Oezguel [Festkoerperphysik, Universitaet Siegen (Germany)

    2008-07-01

    Semiconductor based 1D nanostructures are of high technological interest due to potential application in 1D conductivity measurements and optical devices. Catalyst assisted solution-liquid-solid synthesis is a new method where nanocrystal catalysts are used to grow CdSe nanorods (NR) from solution. The aim of this study is to investigate CdSe samples prepared with this new method by means of X-ray diffraction. The measurements have been performed at DELTA synchrotron using a beam of wavelength 1.127A and an image plate system. It is found that the CdSe NRs have a crystal structure of wurtzite with an aspect ratio changing between 2 and 10. This is in contradiction with the results obtained from TEM measurements, according to which the lengths of the NRs are in the order of 1 {mu} and the widths are around 20 nm. Presently the results are interpreted by the appearance of stacking faults which separate uniformly stacked AB, AB layers from each other. It is planned to measure an individual NR using a nanofocused X-ray beam. Once an individual NR could be observed, the next step is to measure the powder spectrum using a CCD as a function of the position of the beam spot along the nanorod. Depending on this information, the parameters affecting the structure of the NRs would be clear by making experiments with samples prepared in different conditions.

  11. Effectiveness Study of Drinking Water Treatment Using Clays/Andisol Adsorbent in Lariat Heavy Metal Cadmium (Cd) and Bacterial Pathogens

    Science.gov (United States)

    Pranoto; Inayati; Firmansyah, Fathoni

    2018-04-01

    Water is a natural resource that is essential for all living creatures. In addition, water also caused of disease affecting humans. The existence of one of heavy metal pollutants cadmium (Cd) in the body of water is an environmental problem having a negative impact on the quality of water resources. Adsorption is one of the ways or methods that are often used for the treatment of wastewater. Clay and allophanic soil were used as Cd adsorbent by batch method. Ceramic filter was used to reduce Cd concentration in the ground water. This study aims to determine the effect of the composition of clay and Allophane, activation temperature and contact time on the adsorption capacity of Cd in the model solution. The optimum adsorption condition and the effectiveness of drinking water treatment in accordance with Regulation of the Minister of Health using clay/Andisol adsorbents in ensnare heavy metals Cd and bacterial pathogens. Identification and characterization of adsorbent is done by using NaF, Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), specific surface area and total acidity specific. The Cd metal concentrations were analysed by atomic absorption spectroscopy. Adsorption isotherms determined by Freundlich and Langmuir equations. Modified water purification technology using ceramic filters are made with a mixture of clay and Andisol composition. The results showed samples of clay and Andisol containing minerals. The optimum condition of adsorption was achieved at 200 °C of activation temperature, 60 minutes of contact time and the 60:40 of clay:Andisol adsorbent composition. Freundlich isotherm represented Cd adsorption on the clay/Andisol adsorbent with a coefficient of determination (R2=0.99) and constant (k=1.59), higher than Langmuir (R2=0.89). The measurement results show the water purification technology using ceramic filters effectively reduce E. coli bacterial and Cd content in the water.

  12. Laser-ignited frontal polymerization of shape-controllable poly(VI-co-AM) hydrogels based on 3D templates toward adsorption of heavy metal ions

    Science.gov (United States)

    Fan, Suzhen; Liu, Sisi; Wang, Xiao-Qiao; Wang, Cai-Feng; Chen, Su

    2016-06-01

    Given the increasing heavy metal pollution issue, fast preparation of polymeric hydrogels with excellent adsorption property toward heavy metal ions is very attractive. In this work, a series of poly( N-vinylimidazole-co-acrylamide) (poly(VI-co-AM)) hydrogels were synthesized via laser-ignited frontal polymerization (LIFP) for the first time. The dependence of frontal velocity and temperature on two factors monomer ratios and initiator concentrations was systematically investigated. Poly(VI-co-AM) hydrogels with any self-supporting shapes can be synthesized by a one-step LIFP in seconds through the application of 3D templates. These shape-persistent hydrogels are pH-responsive and exhibit excellent adsorption/desorption characteristics toward Mn(II), Zn(II), Cd(II), Ni(II), Cu(II) and Co(II) ions, and the adsorption conformed to the pseudo-second-order kinetic model. The reusability of the hydrogels toward mental ions adsorption was further researched, which suggested that the hydrogels can be reused without serious decrease in adsorption capacity. This work might open a promising strategy to facilely prepare shape-controllable hydrogels and expand the application of LIFP.

  13. An x-ray absorption spectroscopy study of Cd binding onto a halophilic archaeon

    International Nuclear Information System (INIS)

    Showalter, Allison R; Bunker, Bruce A; Szymanowski, Jennifer E S; Fein, Jeremy B

    2016-01-01

    X-ray absorption spectroscopy (XAS) and cadmium (Cd) isotherm experiments determine how Cd adsorbs to the surface of halophilic archaeon Halobacterium noricense . This archaeon, isolated from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico could be involved with the transport of toxic metals stored in the transuranic waste in the salt mine. The isotherm experiments show that adsorption is relatively constant across the tolerable pH range for H. noricense . The XAS results indicate that Cd adsorption occurs predominately via a sulfur site, most likely sulfhydryl, with the same site dominating all measured pH values. (paper)

  14. An x-ray absorption spectroscopy study of Cd binding onto a halophilic archaeon

    Science.gov (United States)

    Showalter, Allison R.; Szymanowski, Jennifer E. S.; Fein, Jeremy B.; Bunker, Bruce A.

    2016-05-01

    X-ray absorption spectroscopy (XAS) and cadmium (Cd) isotherm experiments determine how Cd adsorbs to the surface of halophilic archaeon Halobacterium noricense. This archaeon, isolated from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico could be involved with the transport of toxic metals stored in the transuranic waste in the salt mine. The isotherm experiments show that adsorption is relatively constant across the tolerable pH range for H. noricense. The XAS results indicate that Cd adsorption occurs predominately via a sulfur site, most likely sulfhydryl, with the same site dominating all measured pH values.

  15. Competitive adsorption of copper(II), cadmium(II), lead(II) and zinc(II) onto basic oxygen furnace slag

    International Nuclear Information System (INIS)

    Xue Yongjie; Hou Haobo; Zhu Shujing

    2009-01-01

    Polluted and contaminated water can often contain more than one heavy metal species. It is possible that the behavior of a particular metal species in a solution system will be affected by the presence of other metals. In this study, we have investigated the adsorption of Cd(II), Cu(II), Pb(II), and Zn(II) onto basic oxygen furnace slag (BOF slag) in single- and multi-element solution systems as a function of pH and concentration, in a background solution of 0.01 M NaNO 3 . In adsorption edge experiments, the pH was varied from 2.0 to 13.0 with total metal concentration 0.84 mM in the single element system and 0.21 mM each of Cd(II), Cu(II), Pb(II), and Zn(II) in the multi-element system. The value of pH 50 (the pH at which 50% adsorption occurs) was found to follow the sequence Zn > Cu > Pb > Cd in single-element systems, but Pb > Cu > Zn > Cd in the multi-element system. Adsorption isotherms at pH 6.0 in the multi-element systems showed that there is competition among various metals for adsorption sites on BOF slag. The adsorption and potentiometric titrations data for various slag-metal systems were modeled using an extended constant-capacitance surface complexation model that assumed an ion-exchange process below pH 6.5 and the formation of inner-sphere surface complexes at higher pH. Inner-sphere complexation was more dominant for the Cu(II), Pb(II) and Zn(II) systems

  16. Competitive adsorption of copper(II), cadmium(II), lead(II) and zinc(II) onto basic oxygen furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Xue Yongjie [School of Resource and Environment Science, Wuhan University, Hubei, Wuhan (China); Wuhan Kaidi Electric Power Environmental Protection Co. Ltd., Hubei, Wuhan (China)], E-mail: xueyj@mail.whut.edu.cn; Hou Haobo; Zhu Shujing [School of Resource and Environment Science, Wuhan University, Hubei, Wuhan (China)

    2009-02-15

    Polluted and contaminated water can often contain more than one heavy metal species. It is possible that the behavior of a particular metal species in a solution system will be affected by the presence of other metals. In this study, we have investigated the adsorption of Cd(II), Cu(II), Pb(II), and Zn(II) onto basic oxygen furnace slag (BOF slag) in single- and multi-element solution systems as a function of pH and concentration, in a background solution of 0.01 M NaNO{sub 3}. In adsorption edge experiments, the pH was varied from 2.0 to 13.0 with total metal concentration 0.84 mM in the single element system and 0.21 mM each of Cd(II), Cu(II), Pb(II), and Zn(II) in the multi-element system. The value of pH{sub 50} (the pH at which 50% adsorption occurs) was found to follow the sequence Zn > Cu > Pb > Cd in single-element systems, but Pb > Cu > Zn > Cd in the multi-element system. Adsorption isotherms at pH 6.0 in the multi-element systems showed that there is competition among various metals for adsorption sites on BOF slag. The adsorption and potentiometric titrations data for various slag-metal systems were modeled using an extended constant-capacitance surface complexation model that assumed an ion-exchange process below pH 6.5 and the formation of inner-sphere surface complexes at higher pH. Inner-sphere complexation was more dominant for the Cu(II), Pb(II) and Zn(II) systems.

  17. Competitive adsorption of copper(II), cadmium(II), lead(II) and zinc(II) onto basic oxygen furnace slag.

    Science.gov (United States)

    Xue, Yongjie; Hou, Haobo; Zhu, Shujing

    2009-02-15

    Polluted and contaminated water can often contain more than one heavy metal species. It is possible that the behavior of a particular metal species in a solution system will be affected by the presence of other metals. In this study, we have investigated the adsorption of Cd(II), Cu(II), Pb(II), and Zn(II) onto basic oxygen furnace slag (BOF slag) in single- and multi-element solution systems as a function of pH and concentration, in a background solution of 0.01M NaNO(3). In adsorption edge experiments, the pH was varied from 2.0 to 13.0 with total metal concentration 0.84mM in the single element system and 0.21mM each of Cd(II), Cu(II), Pb(II), and Zn(II) in the multi-element system. The value of pH(50) (the pH at which 50% adsorption occurs) was found to follow the sequence Zn>Cu>Pb>Cd in single-element systems, but Pb>Cu>Zn>Cd in the multi-element system. Adsorption isotherms at pH 6.0 in the multi-element systems showed that there is competition among various metals for adsorption sites on BOF slag. The adsorption and potentiometric titrations data for various slag-metal systems were modeled using an extended constant-capacitance surface complexation model that assumed an ion-exchange process below pH 6.5 and the formation of inner-sphere surface complexes at higher pH. Inner-sphere complexation was more dominant for the Cu(II), Pb(II) and Zn(II) systems.

  18. Structural evolution due to Zn and Te adsorption on As-exposed Si(211): density functional calculation

    International Nuclear Information System (INIS)

    Gupta, Bikash C; Konar, Shyamal; Grein, C H; Sivananthan, S

    2009-01-01

    Systematic theoretical investigations are carried out under the density functional formalism in an effort to understand the initial structural evolution due to the adsorption of ZnTe on As-exposed Si(211). Our calculations indicate that after the adsorption of Zn and Te on the As-exposed Si(211), the stable atomic structure qualitatively follows the ideal atomic structure of Si(211) with alteration of various bond lengths. Since the basic symmetry of the Si(211) is preserved after the adsorption of ZnTe, the deposition of ZnTe on the As terminated Si(211) prior to the deposition of CdTe and HgCdTe is useful for obtaining an ultimate quality layer of HgCdTe on Si(211). Some of our results are compared with the available experimental results, and they are found to agree with each other qualitatively.

  19. Studies on the adsorption characteristics of some heavy elements using Vermiculite

    International Nuclear Information System (INIS)

    Ezz El Deen, A.A.; Waly, S.A.; EL Adham, K.A.; Dakroury, A.M.; Shoukry, M.M

    2012-01-01

    The uncontrolled release of liquid wastes into the environment may lead to hazard to the human and the environment. There have been extensive studies for development of various technologies for removal of Cd 2+ and Co 2+ from wastes The removal of Cd 2+ and Co 2+ ions from aqueous solution by Vermiculite has been investigated. The Vermiculite was characterized by Particle size, Surface area, and chemical analysis. The adsorption behavior of Vermiculite has been studied as a function of the solution agitation time, ph, initial metal concentration in solution, particle size, and temperature. Kinetic studies were undertaken to show the mechanistic aspects of the process. It was showed that the process was first order reaction for the two metal ions. Sorption data have been correlated with both, Langmuir and Freundlich adsorption models. Thermodynamic parameters such as ΔH degree, ΔS degree, and ΔG degree were calculated from the slope and intercept of linear plot of lnK D against 1/T. The ΔH degree and ΔG degree values of metal ions adsorption on the two adsorbents show endothermic heat of adsorption. But there is a negative free energy value, indicating that the process of ions adsorption is favored at high temperatures.

  20. Heavy metals adsorption on blast furnace sludges; Adsorcion de metales pesados sobre lodos de horno alto

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Delgado, A.; Perez, C.; Lopez, F.A. [Centro Nacional de Investigaciones Metalurgicas. CENIM. Madrid (Spain)

    1998-10-01

    Most of industrial liquid effluents have high contents of heavy metals. The recovery of these metals is environmental and economically interesting. In this work we study the use of sludge, a by-product of the steel industry, as an adsorbent for the removal of heavy metals from liquid effluents. The adsorption of Pb``2+, Zn``2+, Cd``2+, Cu``2+ and Cr``3+ on the sludge was investigated by determination of adsorption isotherms. The effect of time, equilibrium temperature and concentration of metal solution on sludge adsorption efficiency was evaluated. The adsorption process was analysed using the theories of Freundlich and Langumuir and the thermodynamic values {Delta}G, {Delta}H and {Delta}S corresponding to each adsorption process were calculated. Blast furnace sludge was found to be an effective sorbent for Pb, Zn, Cd, Cu and Cr-ions within the range of ion concentrations employed. (Author) 5 refs.

  1. The influence of CdS intermediate layer on CdSe/CdS co-sensitized free-standing TiO2 nanotube solar cells

    Science.gov (United States)

    Ren, Xuefeng; Yu, Libo; Li, Zhen; Song, Hai; Wang, Qingyun

    2018-01-01

    We build CdSe quantum dots (QDs) sensitized TiO2 NT solar cells (CdSe/TiO2 solar cells) by successive ionic layer adsorption reaction (SILAR) method on free-standing translucent TiO2 nanotube (NT) film. The best power conversion efficiency (PCE) 0.74% is obtained with CdSe/TiO2 NT solar cells, however, it is very low. Hence, we introduced the CdS QDs layer located between CdSe QDs and TiO2 NT to achieve an enhanced photovoltaic performance. The J-V test results indicated that the insert of CdS intermediate layer yield a significant improvement of PCE to 2.52%. Combining experimental and theoretical analysis, we find that the effects caused by a translucent TiO2 nanotube film, a better lattices match between CdS and TiO2, and a new formed stepwise band edges structure not only improve the light harvesting efficiency but also increase the driving force of electrons, leading to the improvement of photovoltaic performance.

  2. The sorption behavior of Cs and Cd onto oxide and clay surfaces

    International Nuclear Information System (INIS)

    Westrich, H.R.; Cygan, R.T.; Brady, P.V.; Nagy, K.L.; Anderson, H.L.; Kirkpatrick, R.J.

    1995-01-01

    The sorption of Cs and Cd on model soil minerals was examined by complementary analytical and experimental procedures. X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) spectroscopy were used to characterize the chemical and physical nature of Cs-reacted soil minerals. Cd and Cs adsorption isotherms for kaolinite were also measured at variable pH and temperature to establish likely reaction stoichiometries, while atomic force microscopy (AFM) was used to characterize the microtopography of the clay surface. XPS analyses of Cs-exchanged samples show that Cs is sorbed at mineral surfaces and at the interlayer site of smectite clays, although the spectral resolution of XPS analyses is insufficient to differentiate between basal, edge or interlayer sites. 133 Cs MAS-NMR results also show that Cs is adsorbed primarily in an interlayer site of montmorillonite and on edge and basal sites for kaolinite. Cd adsorption isotherms on kaolinite were found to be additive using Al 2 0 3 + Si0 2 Cd binding constants. AFM quantification of kaolinite crystallites suggest that edges comprise up to 50% of the BET surface area, and are consistent with NMR and surface charge results that Cs an Cd adsorption occur primarily at edge sites

  3. Adsorption Desalination: A Novel Method

    KAUST Repository

    Ng, Kim Choon

    2010-11-15

    The search for potable water for quenching global thirst remains a pressing concern throughout many regions of the world. The demand for new and sustainable sources and the associated technologies for producing fresh water are intrinsically linked to the solving of potable water availability and hitherto, innovative and energy efficient desalination methods seems to be the practical solutions. Quenching global thirst by adsorption desalination is a practical and inexpensive method of desalinating the saline and brackish water to produce fresh water for agriculture irrigation, industrial, and building applications. This chapter provides a general overview of the adsorption fundamentals in terms of adsorption isotherms, kinetics, and heat of adsorption. It is then being more focused on the principles of thermally driven adsorption desalination methods. The recent developments of adsorption desalination plants and the effect of operating conditions on the system performance in terms of specific daily water production and performance ratio are presented. Design of a large commercial adsorption desalination plant is also discussed herein.

  4. [Application of classical isothermal adsorption models in heavy metal ions/ diatomite system and related problems].

    Science.gov (United States)

    Zhu, Jian; Wu, Qing-Ding; Wang, Ping; Li, Ke-Lin; Lei, Ming-Jing; Zhang, Wei-Li

    2013-11-01

    In order to fully understand adsorption nature of Cu2+, Zn2+, Pb2+, Cd2+, Mn2+, Fe3+ onto natural diatomite, and to find problems of classical isothermal adsorption models' application in liquid/solid system, a series of isothermal adsorption tests were conducted. As results indicate, the most suitable isotherm models for describing adsorption of Pb2+, Cd2+, Cu2+, Zn2+, Mn2+, Fe3+ onto natural diatomite are Tenkin, Tenkin, Langmuir, Tenkin, Freundlich and Freundlich, respectively, the adsorption of each ion onto natural diatomite is mainly a physical process, and the adsorption reaction is favorable. It also can be found that, when using classical isothermal adsorption models to fit the experimental data in liquid/solid system, the equilibrium adsorption amount q(e) is not a single function of ion equilibrium concentration c(e), while is a function of two variables, namely c(e) and the adsorbent concentration W0, q(e) only depends on c(e)/W(0). Results also show that the classical isothermal adsorption models have a significant adsorbent effect, and their parameter values are unstable, the simulation values of parameter differ greatly from the measured values, which is unhelpful for practical use. The tests prove that four-adsorption-components model can be used for describing adsorption behavior of single ion in nature diatomite-liquid system, its parameters k and q(m) have constant values, which is favorable for practical quantitative calculation in a given system.

  5. Combined paracetamol and amitriptyline adsorption to activated charcoal

    DEFF Research Database (Denmark)

    Hoegberg, Lotte Christine Groth; Groenlykke, Thor Buch; Abildtrup, Ulla

    2010-01-01

    Objectives. High-gram drug doses seen in multiple-drug poisonings might be close to the adsorption capacity of activated charcoal (AC). The aim was to determine the maximum adsorption capacities (Q(m)) of amitriptyline and paracetamol, separately and in combination, to AC. Methods. ACs (Carbomix......® and Norit Ready-To-Use) were tested in vitro. At pH 1.2 and pH 7.2, 0.250 g AC and paracetamol and/or amitriptyline were mixed and incubated. The AC: drug ratios were 10:1, 5:1, 3:1, 2:1, and 1:1. The mixed-drug adsorption vials contained the same AC: paracetamol ratios, but amitriptyline was added as fixed...... Ready-To-Use. The tested pH differences had minor effect on the adsorption. The mixed-drug adsorption showed about 40% Q(m) reduction of each drug with increasing amounts of drug/g AC, but the total gram of drug adsorbed to AC was increased compared to one-drug conditions. Conclusion. The adsorption...

  6. Photoelectrochemical property of CdS and PbS cosensitized on the TiO2 array by novel successive ionic layer adsorption and reaction method

    International Nuclear Information System (INIS)

    Lv, Pin; Fu, Wuyou; Mu, Yannan; Sun, Hairui; Su, Shi; Chen, Yanli; Yao, Huizhen; Ding, Dong; Liu, Tie; Wang, Jun; Yang, Haibin

    2015-01-01

    Highlights: • (CdS + PbS)/TiO 2 NTWs array was firstly synthesized by novel SILAR (N-SILAR) method. • N-SILAR method could shorten time, simplify procedure, lower cost. • (CdS + PbS)/TiO 2 NTWs contain both PbS/CdS/TiO 2 and CdS/PbS/TiO 2 composites structure. • (CdS + PbS)/TiO 2 NTWs can improve electron transport and reduce chemical erosion both. • The photocurrent of (CdS + PbS)/TiO 2 NTWs was 4.1 mA/cm 2 —8 times as high as TiO 2 . - Abstract: TiO 2 film materials have very wide applications in photovoltaic conversion techniques. And, TiO 2 nanotubes array film with nanowires directly formed on top (denoted as TiO 2 NTWs) was prepared by the anodization method. CdS and PbS quantum dots (QDs) were firstly cosensitized on the TiO 2 NTWs array (denoted as (CdS + PbS)/TiO 2 NTWs) by novel successive ionic layer adsorption and reaction (N-SILAR), which only needed a cation mixed solution containing Cd 2+ and Pb 2+ and an anionic solution containing S 2− . This N-SILAR method can not only effectively shorten the experimental time, simplify the experiment procedure and reduce the experiment cost, but also make the material of (CdS + PbS)/TiO 2 NTWs possess the advantages of improving electron transport and reducing chemical erosion. Moreover, the photocurrent of (CdS + PbS)/TiO 2 NTWs was 4.1 mA/cm 2 under an illumination of 100 mW/cm 2 . The most eye-popping part was that the result was 8 times higher than that of the bare TiO 2 NTWs array. The result of photoelectrochemical measurements indicated that this novel material had a potential application in photovoltaic devices

  7. A Suitable Polysulfide Electrolyte for CdSe Quantum Dot-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    H. K. Jun

    2013-01-01

    Full Text Available A polysulfide liquid electrolyte is developed for the application in CdSe quantum dot-sensitized solar cells (QDSSCs. A solvent consisting of ethanol and water in the ratio of 8 : 2 by volume has been found as the optimum solvent for preparing the liquid electrolytes. This solvent ratio appears to give higher cell efficiency compared to pure ethanol or water as a solvent. Na2S and S give rise to a good redox couple in the electrolyte for QDSSC operation, and the optimum concentrations required are 0.5 M and 0.1 M, respectively. Addition of guanidine thiocyanate (GuSCN to the electrolyte further enhances the performance. The QDSSC with CdSe sensitized electrode prepared using 7 cycles of successive ionic layer adsorption and reaction (SILAR produces an efficiency of 1.41% with a fill factor of 44% on using a polysulfide electrolyte of 0.5 M Na2S, 0.1 M S, and 0.05 M GuSCN in ethanol/water (8 : 2 by volume under the illumination of 100 mW/cm2 white light. Inclusion of small amount of TiO2 nanoparticles into the electrolyte helps to stabilize the polysulfide electrolyte and thereby improve the stability of the CdSe QDSSC. The CdSe QDs are also found to be stable in the optimized polysulfide liquid electrolyte.

  8. THERMODYNAMIC STUDIES ON THE ADSORPTION OF Cu2+ ...

    African Journals Online (AJOL)

    KEY WORDS: Amine-modified bentonite, TEPA, Heavy metal ions, Adsorption ..... charged due to the isomorphous substitutions within the layers of Al3+ for Si4+ in ... temperature, high temperature was advantageous for Cu2+, Ni2+ and Cd2+ ...

  9. Kinetics and Isotherm of Sunset Yellow Dye Adsorption on Cadmium Sulfide Nanoparticle Loaded on Activated Carbon

    Directory of Open Access Journals (Sweden)

    N. Mosallanejad, A. Arami

    2012-03-01

    Full Text Available The objective of this study was to assess the potential of cadmium sulfide nanoparticles loaded onto activated carbon (CdSN-AC for the removal of sunset yellow (SY dye from aqueous solution. Adsorption studies were conducted in a batch mode varying solution pH, contact time, initial dye concentration, CdSN-AC dose. In order to investigate the efficiency of SY adsorption on CdSN-AC, pseudo-first-order, pseudo-second-order kinetic models were studied. It was observed that the pseudo-second-order kinetic model fits better than other kinetic models with good correlation coefficient. Equilibrium data were fitted to the Langmuir model. It was found that the sorption of SY onto CdSN-AC is followed by these results. 

  10. Evaluation of CD4+/CD8+ status and urinary tract infections ...

    African Journals Online (AJOL)

    Evaluation of CD4+/CD8+ status and urinary tract infections associated with urinary schistosomiasis ... African Health Sciences ... by <50 ova /10ml of urine had a mean CD4+:CD8+ ratio of 1.57 while those with heavy infections as ... Key words: CD4+, CD8+, urinary tract infections, urinary schistosomiasis, rural Nigerians

  11. Preparation and adsorption behavior for metal ions and humic acid of chitosan derivatives crosslinked by irradiation

    International Nuclear Information System (INIS)

    Zhao Long; Wasikiewicz, J.M.; Mitomo, H.; Nagasawa, N.; Yoshii, F.

    2007-01-01

    This article deals with the determination of the adsorption properties of metal ions and humic acid in wa- ter on crosslinked chitosan derivatives (carboxymethylchitosan) which were formed using the irradiation technique without any additives. The solubility test of these crosslinked materials were investigated in acidic, alkaline media, distilled water, and certain organic solvents. Scanning electron microscopic (SEM) images showed that the crosslinked chitosan derivatives possessed a porous morphological structure. Charged characteristic analyses demonstrated typically pH-dependent properties of the crosslinked materials. The adsorption studies were carded out by the batch method at room temperature. Adsorption of heavy metal ions (such as Cu 2+ , Cd 2+ ) and humic acid onto crosslinked samples was found to be strongly pH-dependent. Adsorption kinetic studies indicated the rapid removal of metal ions, and humic acid from the aqueous solutions. Moreover, isothermal adsorption data revealed that Cu 2+ , Cd 2+ , and humic acid were removed by these crosslinked materials with high efficiency. Adsorption isothermal data were interpreted well by the Langmuir equation. These crosslinked carboxymethylated chitosan derivatives indicate favorable adsorption of metal ions and humic acid. (authors)

  12. The Adsorption of Pb, Zn, Cu, Ni, and Cd by Modified Ligand in a Single Component Aqueous Solution: Equilibrium, Kinetic, Thermodynamic, and Desorption Studies

    Directory of Open Access Journals (Sweden)

    E. Igberase

    2017-01-01

    Full Text Available In this investigation, an amino functionalized adsorbent was developed by grafting 4-aminobenzoic acid onto the backbone of cross-linked chitosan beads. The 3 sets of beads including chitosan (CX, glutaraldehyde cross-linked chitosan (CCX, and 4-aminobenzoic acid grafted cross-linked chitosan (FGCX were characterized by FTIR, XRD, SEM, and TGA. The water content and amine concentration of FGCX were determined. The effect of adsorption parameters was studied and the optimum was used for further studies. Equilibrium data was obtained from the adsorption experiment carried out at different initial concentration; the data were applied in isotherm, thermodynamics, and kinetic studies. The Langmuir and Dubinin-Kaganer-Radushkevich (DKR models were successful in describing the isotherm data for the considered metal ions while the Freundlich and Temkin model fit some of the considered metal ions. Pseudo-second-order and intraparticle model described the kinetic data quite well. Thermodynamic parameters such as Gibb’s free energy change (ΔGo, enthalpy change (ΔHo, and entropy change (ΔSo were calculated and the results showed that the adsorption of Pb, Cu, Ni, Zn, and Cd ions onto FGCX is spontaneous and endothermic in nature. Regeneration of the spent adsorbent was efficient for the considered metal ions.

  13. Adsorption of cadmium ions on nickel surface skeleton catalysts and its effect on reaction of cathodic hydrogen evolution

    International Nuclear Information System (INIS)

    Korovin, N.V.; Udris, E.Ya.; Savel'eva, O.N.

    1986-01-01

    Cadmium adsorption from different concentration CdSO 4 solutions on nickel surface skeleton catalysts (Ni ssc ) is studied by recording of polarization and potentiodynamic curves using electron microscopy and X-ray spectrometry. Main regularities of cadmium adsorption on Ni ssc are shown to be similar to those on smooth and skeleton nickel. A conclusion is drawn that increase of catalytic activity in reaction of cathodic hydrogen evolution from alkali solutions of Ni ssc base electrodes after their treatment in solutions containing Cd 2+ ions is due to irreversible desorption of strongly and averagely bound hydrogen from electrode surface at cadmium adsorption on them

  14. Competitive adsorption of dyes and heavy metals on zeolitic structures.

    Science.gov (United States)

    Hernández-Montoya, V; Pérez-Cruz, M A; Mendoza-Castillo, D I; Moreno-Virgen, M R; Bonilla-Petriciolet, A

    2013-02-15

    The adsorption of Acid blue 25, basic blue 9, basic violet 3, Pb(2+), Ni(2+), Zn(2+) and Cd(2+) ions has been studied in single and dye-metal binary solutions using two mineral materials: Clinoptilolite (CL) and ER (Erionite). These zeolites were characterized by FT-IR spectroscopy; potentiometric titration and nitrogen adsorption isotherms at 77 K to obtain their textural parameters. Results indicated that ER has an acidic character and a high specific surface (401 m(2) g(-1)) in contrast with the zeolite CL (21 m(2) g(-1)). Surprisingly, the removal of dyes was very similar for the two zeolites and they showed a considerable selectivity by the basic dyes in comparison with the acid dyes. In the case of heavy metals, ER was more effective in the adsorption process showing a selectivity of: Pb(2+) > Ni(2+) > Zn(2+) > Cd(2+). In the multicomponent adsorption experiments an antagonistic effect was observed in the removal of basic dyes and heavy metals. Particularly, the adsorbed amount of basic violet 3 decreased more significantly when the heavy metals are presents in contrast with the basic blue 9. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. THERMODYNAMICS AND ADSORPTION ISOTHERMS FOR THE ...

    African Journals Online (AJOL)

    BAFFA

    The use of maize (Zea mays) cob for the biosorption of Cr(VI), Ni(II) and Cd(II) is ... Variations in the concentration of the different adsorbates during the adsorption process .... Langmuir isotherm is the dimensionless separation .... The use of Sago waste for the sorption of lead and copper. Water S. Afr., 24 (3), p251-256.

  16. Adsorption of heavy metals by bio-chars produced from pyrolysis of paper mulberry from simulated industrial wastewater

    International Nuclear Information System (INIS)

    Adil, S.; Asma, M.

    2014-01-01

    Paper mulberry bio-char (by-product of pyrolysis) was evaluated for the removal of heavy metals (Cd, Cr, Cu, Zn and Pb) from simulated industrial waste water. The surface properties and surface area of the bio-char was found suitable for metal adsorption. Batch sorption studies for adsorption potential of paper mulberry bio-char for Cd, Cr, Cu, Pb and Zn were investigated under different experimental conditions of pH, temperature and contact time. Maximum removal efficiency of Cd, Cu, Pb and Zn was 97.8, 76.8, 85.6, and 82.2 % respectively at pH 12 while maximum removal of Cr was recorded (98%) at pH 2. The removal efficiency showed different behaviour at different contact times. Maximum removal efficiency of Cd, Cr, Zn was 81, 86, 61.4% at contact time of 3 hr. The maximum removal of Cu was 64.2% observed at a contact time of 4 hours while the maximum removal of Pb and Zn was 85% at contact time of 2 hr. The values of the thermodynamic parameters, enthalpy delta H, Gibbs free energy delta G of sorption and entropy delta So were calculated to define endothermic or exothermic behavior of the sorbent used. Negative value of delta G for Cd, Cu, Cr and Pb indicated paper mulberry bio-char as a feasible sorbent for the efficient removal of Cd, Cu, Cr and Pb. Negative value of delta H was observed for Cd and Pb indicating that the adsorption process is exothermic while positive value of delta H was calculated for Cu, Cr and Zn showed that the adsorption is endothermic. The results obtained showed that plant residue bio-char can act as an effective sorbent for the removal of heavy metals from aqueous solutions. (author)

  17. CD4:8 ratio >5 is associated with a dominant naive T-cell phenotype and impaired physical functioning in CMV-seropositive very elderly people: results from the BELFRAIL study.

    Science.gov (United States)

    Adriaensen, Wim; Derhovanessian, Evelyna; Vaes, Bert; Van Pottelbergh, Gijs; Degryse, Jean-Marie; Pawelec, Graham; Hamprecht, Klaus; Theeten, Heidi; Matheï, Catharina

    2015-02-01

    A subset of older people is at increased risk of hospitalization and dependency. Emerging evidence suggests that immunosenescence reflected by an inverted CD4:8 ratio and cytomegalovirus (CMV) seropositivity plays an important role in the pathophysiology of functional decline. Nevertheless, the relation between CD4:8 ratio and functional outcome has rarely been investigated. Here, CD4:8 ratio and T-cell phenotypes of 235 community-dwelling persons aged ≥81.5 years in the BELFRAIL study and 25 younger persons (mean age 28.5 years) were analyzed using polychromatic flow cytometry. In the elderly persons, 7.2% had an inverted CD4:8 ratio, which was associated with CMV seropositivity, less naive, and more late-differentiated CD4+ and CD8+ T cells. However, 32.8% had a CD4:8 ratio >5, a phenotype associated with a higher proportion of naive T cells and absent in young donors. In CMV seropositives, this subgroup had lower proportions of late-differentiated CD4+ and CD8+ T cells and weaker anti-CMV immunoglobulin G reactivity. This novel naive T-cell-dominated phenotype was counterintuitively associated with a higher proportion of those with impaired physical functioning in the very elderly people infected with CMV. This underscores the notion that in very elderly people, not merely CMV infection but also the state of its accompanying immune dysregulation is of crucial importance with regard to physical impairment. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Photoelectrochemical property of CdS and PbS cosensitized on the TiO{sub 2} array by novel successive ionic layer adsorption and reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Pin; Fu, Wuyou [National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China); Mu, Yannan [National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China); Department of Physics and Chemistry, Heihe University, Heihe 164300 (China); Sun, Hairui; Su, Shi; Chen, Yanli; Yao, Huizhen; Ding, Dong; Liu, Tie; Wang, Jun; Yang, Haibin [National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China)

    2015-02-05

    Highlights: • (CdS + PbS)/TiO{sub 2}NTWs array was firstly synthesized by novel SILAR (N-SILAR) method. • N-SILAR method could shorten time, simplify procedure, lower cost. • (CdS + PbS)/TiO{sub 2}NTWs contain both PbS/CdS/TiO{sub 2} and CdS/PbS/TiO{sub 2} composites structure. • (CdS + PbS)/TiO{sub 2}NTWs can improve electron transport and reduce chemical erosion both. • The photocurrent of (CdS + PbS)/TiO{sub 2}NTWs was 4.1 mA/cm{sup 2}—8 times as high as TiO{sub 2}. - Abstract: TiO{sub 2} film materials have very wide applications in photovoltaic conversion techniques. And, TiO{sub 2} nanotubes array film with nanowires directly formed on top (denoted as TiO{sub 2}NTWs) was prepared by the anodization method. CdS and PbS quantum dots (QDs) were firstly cosensitized on the TiO{sub 2}NTWs array (denoted as (CdS + PbS)/TiO{sub 2}NTWs) by novel successive ionic layer adsorption and reaction (N-SILAR), which only needed a cation mixed solution containing Cd{sup 2+} and Pb{sup 2+} and an anionic solution containing S{sup 2−}. This N-SILAR method can not only effectively shorten the experimental time, simplify the experiment procedure and reduce the experiment cost, but also make the material of (CdS + PbS)/TiO{sub 2}NTWs possess the advantages of improving electron transport and reducing chemical erosion. Moreover, the photocurrent of (CdS + PbS)/TiO{sub 2}NTWs was 4.1 mA/cm{sup 2} under an illumination of 100 mW/cm{sup 2}. The most eye-popping part was that the result was 8 times higher than that of the bare TiO{sub 2}NTWs array. The result of photoelectrochemical measurements indicated that this novel material had a potential application in photovoltaic devices.

  19. Electrical swing adsorption gas storage and delivery system

    Science.gov (United States)

    Judkins, Roddie R.; Burchell, Timothy D.

    1999-01-01

    Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided.

  20. Continuous biosorption of Pb/Cu and Pb/Cd in fixed-bed column using algae Gelidium and granulated agar extraction algal waste.

    Science.gov (United States)

    Vilar, Vítor J P; Loureiro, José M; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Continuous metal ions biosorption from Pb/Cu and Pb/Cd solutions onto seaweed Gelidium sesquipedale and a composite material prepared from an industrial algal waste was performed in a packed bed column. A binary Langmuir equation describes well the equilibrium data and indicates a good adsorption capacity. In the sorption process, Cd and Cu break through the column faster than Pb due to its lower affinity for the biosorbent. An overshoot in the outlet Cd concentration was observed and explained by competitive adsorption between Pb and Cd, whereby the higher Pb affinity for the biosorbent displaces bound Cd ions. A small overshoot happens for Cu adsorption in the presence of Pb ions. Desorption using 0.1 M HNO3 as eluant, was 100% effective. A mass transfer model for the adsorption and desorption processes, considering an external and intraparticle film resistance, adequately simulates the column performance. A binary Langmuir equation was used to describe equilibrium for the saturation process and a mass action law for the desorption process. Elution process is defined as an ion exchange mechanism, between protons and metal ions.

  1. Continuous biosorption of Pb/Cu and Pb/Cd in fixed-bed column using algae Gelidium and granulated agar extraction algal waste

    Energy Technology Data Exchange (ETDEWEB)

    Vilar, Vitor J.P. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: vilar@fe.up.pt; Loureiro, Jose M. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: loureiro@fe.up.pt; Botelho, Cidalia M.S. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: cbotelho@fe.up.pt; Boaventura, Rui A.R. [LSRE-Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: bventura@fe.up.pt

    2008-06-15

    Continuous metal ions biosorption from Pb/Cu and Pb/Cd solutions onto seaweed Gelidium sesquipedale and a composite material prepared from an industrial algal waste was performed in a packed bed column. A binary Langmuir equation describes well the equilibrium data and indicates a good adsorption capacity. In the sorption process, Cd and Cu break through the column faster than Pb due to its lower affinity for the biosorbent. An overshoot in the outlet Cd concentration was observed and explained by competitive adsorption between Pb and Cd, whereby the higher Pb affinity for the biosorbent displaces bound Cd ions. A small overshoot happens for Cu adsorption in the presence of Pb ions. Desorption using 0.1 M HNO{sub 3} as eluant, was 100% effective. A mass transfer model for the adsorption and desorption processes, considering an external and intraparticle film resistance, adequately simulates the column performance. A binary Langmuir equation was used to describe equilibrium for the saturation process and a mass action law for the desorption process. Elution process is defined as an ion exchange mechanism, between protons and metal ions.

  2. Continuous biosorption of Pb/Cu and Pb/Cd in fixed-bed column using algae Gelidium and granulated agar extraction algal waste

    International Nuclear Information System (INIS)

    Vilar, Vitor J.P.; Loureiro, Jose M.; Botelho, Cidalia M.S.; Boaventura, Rui A.R.

    2008-01-01

    Continuous metal ions biosorption from Pb/Cu and Pb/Cd solutions onto seaweed Gelidium sesquipedale and a composite material prepared from an industrial algal waste was performed in a packed bed column. A binary Langmuir equation describes well the equilibrium data and indicates a good adsorption capacity. In the sorption process, Cd and Cu break through the column faster than Pb due to its lower affinity for the biosorbent. An overshoot in the outlet Cd concentration was observed and explained by competitive adsorption between Pb and Cd, whereby the higher Pb affinity for the biosorbent displaces bound Cd ions. A small overshoot happens for Cu adsorption in the presence of Pb ions. Desorption using 0.1 M HNO 3 as eluant, was 100% effective. A mass transfer model for the adsorption and desorption processes, considering an external and intraparticle film resistance, adequately simulates the column performance. A binary Langmuir equation was used to describe equilibrium for the saturation process and a mass action law for the desorption process. Elution process is defined as an ion exchange mechanism, between protons and metal ions

  3. The retained templates as "helpers" for the spherical meso-silica in adsorption of heavy metals and impacts of solution chemistry.

    Science.gov (United States)

    Liang, Zhijie; Shi, Wenxin; Zhao, Zhiwei; Sun, Tianyi; Cui, Fuyi

    2017-06-15

    The spherical mesoporous silica (meso-silica) MCM-41 and those with different dosage of the retained templates were prepared and characterized. Particularly, effects of the retained template and its dosage on the adsorption of typical heavy metals (Cu 2+ and Cd 2+ ) in the synthesized materials were investigated. The results indicated that the retained templates acted as "helpers" for the adsorption of Cu 2+ and Cd 2+ in the spherical meso-silica MCM-41, and the maximum adsorption capacities (Q max ) increased with the increase of the retained template dosage. The interaction between the metal ions and the cationic heads of the templates contributed to the enhancement effect due to the anions (Cl - and OH - ) electronically adsorbed on the interface of the template micelles. Additionally, the presented results indicated that the adsorption of Cu 2+ and Cd 2+ depended on pH and high ion strength of the solution but not on the coexisted humic acid. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Band-gap and sub-band-gap photoelectrochemical processes at nanocrystalline CdS grown on ZnO by successive ionic layer adsorption and reaction method

    International Nuclear Information System (INIS)

    Malashchonak, M.V.; Streltsov, E.A.; Mazanik, A.V.; Kulak, A.I.; Poznyak, S.K.; Stroyuk, O.L.; Kuchmiy, S.Ya.; Gaiduk, P.I.

    2015-01-01

    Cadmium sulfide nanoparticle (NP) deposition by the successive ionic layer adsorption and reaction (SILAR) method on the surface of mesoporous ZnO micro-platelets with a large specific surface area (110 ± 10 m 2 g −1 ) results in the formation of ZnO/CdS heterostructures exhibiting a high incident photon-to-current conversion efficiency (Y) not only within the region of CdS fundamental absorption (Y max = 90%; 0.1 M Na 2 S + 0.1 M Na 2 SO 3 ), but also in the sub-band-gap (SBG) range (Y max = 25%). The onset potentials of SBG photoelectrochemical processes are more positive than the band-gap (BG) onset potential by up to 100 mV. A maximum incident photon-to-current conversion efficiency value for SBG processes is observed at larger amount of deposited CdS in comparison with the case of BG ones. The Urbach energy (E U ) of CdS NPs determined from the photocurrent spectra reaches a maximal value on an early deposition stage (E U = 93 mV at SILAR cycle number N = 5), then lowers somewhat (E U = 73 mV at N = 10) and remains steady in the range of N from 20 to 300 (E U = 67 ± 1 mV). High efficiency of the photoelectrochemical SBG processes are interpreted in terms of light scattering in the ZnO/CdS heterostructures. - Highlights: • ZnO/CdS films demonstrate high quantum efficiency (25%) for sub-band-gap transitions. • Onset photocurrent potentials for sub-band-gap processes differ than those for band-gap ones. • Sub-band-gap transitions are caused by band-tail states in CdS nanoparticles

  5. Band-gap and sub-band-gap photoelectrochemical processes at nanocrystalline CdS grown on ZnO by successive ionic layer adsorption and reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Malashchonak, M.V., E-mail: che.malasche@gmail.com [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Streltsov, E.A., E-mail: streltea@bsu.by [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Mazanik, A.V. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Kulak, A.I., E-mail: kulak@igic.bas-net.by [Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Surganova str., 9/1, Minsk 220072 (Belarus); Poznyak, S.K. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Stroyuk, O.L., E-mail: stroyuk@inphyschem-nas.kiev.ua [L.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine, 31 prosp. Nauky, 03028 Kyiv (Ukraine); Kuchmiy, S.Ya. [L.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine, 31 prosp. Nauky, 03028 Kyiv (Ukraine); Gaiduk, P.I. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus)

    2015-08-31

    Cadmium sulfide nanoparticle (NP) deposition by the successive ionic layer adsorption and reaction (SILAR) method on the surface of mesoporous ZnO micro-platelets with a large specific surface area (110 ± 10 m{sup 2}g{sup −1}) results in the formation of ZnO/CdS heterostructures exhibiting a high incident photon-to-current conversion efficiency (Y) not only within the region of CdS fundamental absorption (Y{sub max} = 90%; 0.1 M Na{sub 2}S + 0.1 M Na{sub 2}SO{sub 3}), but also in the sub-band-gap (SBG) range (Y{sub max} = 25%). The onset potentials of SBG photoelectrochemical processes are more positive than the band-gap (BG) onset potential by up to 100 mV. A maximum incident photon-to-current conversion efficiency value for SBG processes is observed at larger amount of deposited CdS in comparison with the case of BG ones. The Urbach energy (E{sub U}) of CdS NPs determined from the photocurrent spectra reaches a maximal value on an early deposition stage (E{sub U} = 93 mV at SILAR cycle number N = 5), then lowers somewhat (E{sub U} = 73 mV at N = 10) and remains steady in the range of N from 20 to 300 (E{sub U} = 67 ± 1 mV). High efficiency of the photoelectrochemical SBG processes are interpreted in terms of light scattering in the ZnO/CdS heterostructures. - Highlights: • ZnO/CdS films demonstrate high quantum efficiency (25%) for sub-band-gap transitions. • Onset photocurrent potentials for sub-band-gap processes differ than those for band-gap ones. • Sub-band-gap transitions are caused by band-tail states in CdS nanoparticles.

  6. Photoluminescence of CdSe/ZnS/TOPO nanocrystals expanded on silica glass substrates: Adsorption and desorption effects of polar molecules on nanocrystal surfaces

    International Nuclear Information System (INIS)

    Oda, Masaru; Tsukamoto, Junpei; Hasegawa, Atsushi; Iwami, Noriya; Nishiura, Ken; Hagiwara, Izumi; Ando, Naohisa; Horiuchi, Hiromi; Tani, Toshiro

    2006-01-01

    We have investigated photoluminescence (PL) properties of CdSe/ZnS/TOPO nanocrystals (NCs) in various kinds of gases at one atmospheric pressure. Increase of PL intensity with spectral shift is observed under 488 nm cw light irradiation in all cases. Especially, the PL intensity increases more than twice after 1200 s irradiation in nitrogen gases saturated with vapor of polar molecules, such as H 2 O and NH 3 . The increased PL intensity with the spectral shift mostly recovers to its previous values when the sample is evacuated under continuous light irradiation. These results indicate that photo-adsorption of the polar molecules onto NC surfaces provides some reversible restoring functions to the PL quenching defects or trap sites on or near the surfaces. The existence of the trap sites on NC surfaces is already widely introduced for describing e.g., blinking phenomena. Assuming part of these traps being charged, we propose the photo-induced effects can be understood as charge-compensated inactivation of the trap sites due to the adsorption of the polar molecules consistently

  7. Characteristics of NaNO3-Promoted CdO as a Midtemperature CO2 Absorbent.

    Science.gov (United States)

    Kim, Kang-Yeong; Kwak, Jin-Su; An, Young-In; Oh, Kyung-Ryul; Kwon, Young-Uk

    2017-06-28

    In this study, we explored the reaction system CdO(s) + CO 2 (g) ⇄ CdCO 3 (s) as a model system for CO 2 capture agent in the intermediate temperature range of 300-400 °C. While pure CdO does not react with CO 2 at all up to 500 °C, CdO mixed with an appropriate amount of NaNO 3 (optimal molar ratio NaNO 3 /CdO = 0.14) greatly enhances the conversion of CdO into CdCO 3 up to ∼80% (5.68 mmol/g). These NaNO 3 -promoted CdO absorbents can undergo many cycles of absorption and desorption by temperature swing between 300 and 370 °C under a 100% CO 2 condition. Details of how NaNO 3 promotes the CO 2 absorption of CdO have been delineated through various techniques using thermogravimetry, coupled with X-ray diffraction and electron microscopy. On the basis of the observed data, we propose a mechanism of CO 2 absorption and desorption of NaNO 3 -promoted CdO. The absorption proceeds through a sequence of events of CO 2 adsorption on the CdO surface covered by NaNO 3 , dissolution of so-formed CdCO 3 , and precipitation of CdCO 3 particles in the NaNO 3 medium. The desorption occurs through the decomposition of CdCO 3 in the dissolved state in the NaNO 3 medium where CdO nanoparticles are formed dispersed in the NaNO 3 medium. The CdO nanoparticles are aggregated into micrometer-large particles with smooth surfaces and regular shapes.

  8. Sandwich-like nano-system for simultaneous removal of Cr(VI) and Cd(II) from water and soil.

    Science.gov (United States)

    Wang, Dongfang; Zhang, Guilong; Dai, Zhangyu; Zhou, Linglin; Bian, Po; Zheng, Kang; Wu, Zhengyan; Cai, Dongqing

    2018-05-07

    In this work, a novel nano-system with sandwich-like structure was synthesized via face-to-face combination of two pieces of waste cotton fabrics (CFs) carrying ferrous sulfide (FeS) and carboxyl-functionalized ferroferric oxide (CFFM) respectively, and the obtained nano system was named as FeS/CFFM/CF. Therein, FeS has high reduction and adsorption capabilities for hexavalent chromium (Cr(VI)), CFFM possesses a high adsorption ability on cadmium ion (Cd(II)) through electrostatics attraction and chelation, and CF displays high immobilization ability for FeS and CFFM and adsorption performance on Cd(II). FeS/CFFM/CF could simultaneously remove Cr(VI) and Cd(II) from water, inhibit the uptake of Cr and Cd by fish and water spinach, ensuring the food safety. Besides, this technology could efficiently control migration of Cr(VI) and Cd(II) in sand-soil mixture, which was favorable to prevent their wide diffusion. Importantly, FeS/CFFM/CF possessed a high flexibility and could be conveniently produced with needed scale and shape, and easily separated from water and soil, displaying a promising approach to remediate Cr(VI)/Cd(II)-contaminated water and soil and a huge application potential.

  9. Binding of Cd by ferrihydrite organo-mineral composites: Implications for Cd mobility and fate in natural and contaminated environments.

    Science.gov (United States)

    Du, Huihui; Peacock, Caroline L; Chen, Wenli; Huang, Qiaoyun

    2018-09-01

    Adsorption and coprecipitation of organic matter with iron (hydr)oxides can alter iron (hydr)oxide surface properties and their reactivity towards nutrient elements and heavy metals. Organo-mineral composites were synthesized using humic acid (HA) and iron oxide, during coprecipitation with ferrihydrite (Fh) and adsorption to pre-formed Fh with two C loadings. The Fh-HA coprecipitated composites have a higher C content and smaller surface area compared to the equivalent adsorbed composites. NanoSIMS shows there is a high degree of spatial correlation between Fe and C for both composites, but C distribution is more uniform in the coprecipitated composites. The C 1s NEXAFS reveals a similar C composition between the Fh-HA coprecipitated and adsorbed composites. However composites at high carbon loading are more enriched in aromatic C, likely due to preferential binding of carboxyl functional groups on aromatic rings in the HA. The amount of Cd sorbed is independent of the composite type, either coprecipitated or adsorbed, but is a function of the C loading. Composites with low C loading show Cd sorption that is almost identical to pure Fh, while composites with high C loading show Cd sorption that is intermediate between pure Fh and pure HA, with sorption significantly enhanced over pure Fh at pH < 6.5. A bidentate edge-sharing binding was identified for Cd on pure Fh and Cd-carboxyl binding on pure HA. These findings have significant implications not only for the sequestration of Cd in contaminated environments but also the coupled biogeochemical cycling of Cd, Fe and C in the critical zone. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  10. Adsorption of trace elements of radionuclides on hydrous iron oxides

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.

    1988-01-01

    Factors that influence the adsorption of trace elements or radionuclides on hydrous iron oxides were investigated. The adsorption of monovalent cations (Cs + , Rb + ) on hydrous iron oxides is not strongly pH-dependent and it can be regarded as nonspecific. On the other hand, the adsorption of Ag + , divalent cations (Zn 2+ , Cd 2+ , Mn 2+ , Sr 2+ ) or trivalent cations (Cr 3+ , La 3+ , Ce 3+ , Eu 3+ , Gd 3+ , Er 3+ , Yb 3+ ) is strongly pH-dependent. The regularities of the adsorption of these cations on hydrous iron oxides are discussed. The differences in the adsorption behaviour of some divalent and trivalent cations are also explained. Freshly precipitated iron(III) hydroxide can be used for the decontamination of radionuclides from low-level waste solutions. However, the efficacy of decontamination depends on the oxidation state and the chemical properties of radionuclides. (author) 40 refs.; 9 figs

  11. Tartrazine modified activated carbon for the removal of Pb(II), Cd(II) and Cr(III).

    Science.gov (United States)

    Monser, Lotfi; Adhoum, Nafaâ

    2009-01-15

    A two in one attempt for the removal of tartrazine and metal ions on activated carbon has been developed. The method was based on the modification of activated carbon with tartrazine then its application for the removal of Pb(II), Cd(II) and Cr(III) ions at different pH values. Tartrazine adsorption data were modelled using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacities qm were 121.3, 67 and 56.7mgg(-1) at initial pH values of 1.0, 6.0 and 10, respectively. The adsorption of tartrazine onto activated carbon followed second-order kinetic model. The equilibrium time was found to be 240min at pH 1.0 and 120min at pH 10 for 500mgL(-1) tartrazine concentration. A maximum removal of 85% was obtained after 1h of contact time. The presence of tartrazine as modifier enhances attractive electrostatic interactions between metal ions and carbon surface. The adsorption capacity for Pb(II), Cd(II) and Cr(III) ions has been improved with respect to non-modified carbon reaching a maximum of 140%. The adsorption capacity was found to be a pH dependent for both modified and non-modified carbon with a greater adsorption at higher pH values except for Cr(III). The enhancement percent of Pb(II), Cd(II) and Cr(III) at different pH values was varied from 28% to 140% with respect to non-modified carbon. The amount of metal ions adsorbed using static regime was 11-40% higher than that with dynamic mode. The difference between adsorption capacities could be attributed to the applied flow rate.

  12. Kinetics, isotherms, and thermodynamic studies of lead, chromium, and cadmium bio-adsorption from aqueous solution onto Picea smithiana sawdust.

    Science.gov (United States)

    Mahmood-Ul-Hassan, Muhammad; Yasin, Muhammad; Yousra, Munazza; Ahmad, Rizwan; Sarwar, Sair

    2018-05-01

    Lead (Pb), chromium (Cr), and cadmium (Cd) removal capacity of sawdust (Picea smithiana) from aqueous solution was investigated by conducting batch experiments. Thermodynamic parameters, like change in standard free energy (ΔG Θ ), enthalpy (ΔH Θ ) and entropy (ΔS Θ ) during bio-adsorption process were estimated using the Van't Hoff equation. The maximum metals adsorption was observed at pH 8, 20 g L -1 bio-adsorbent and at 60 min of contact time. The metal adsorption kinetics was examined by fitting the pseudo-first-order as well as four forms of pseudo-second-order kinetic models. Type 1 pseudo-second-order equation described adsorption kinetics better than others. Langmuir model and Freundlich equations were used for calculation of sorption parameters. The Langmuir maximum adsorption capacity of Pb, Cr, and Cd was 6.35, 3.37, and 2.87 mg g -1 at room temperature, respectively. The values of the separation factor (RL) were in between 0 and 1, indicating that bio-adsorption was favorable. Thermodynamics study revealed that the Pb, Cr, and Cd uptake reactions were endothermic and spontaneous. Results of the study asserted that the removal of heavy metal ions from aqueous solution is viable and the sawdust could be used in the treatment of effluents from industries, thereby reducing the level of water pollution.

  13. Strong Selective Adsorption of Polymers.

    Science.gov (United States)

    Ge, Ting; Rubinstein, Michael

    2015-06-09

    A scaling theory is developed for selective adsorption of polymers induced by the strong binding between specific monomers and complementary surface adsorption sites. By "selective" we mean specific attraction between a subset of all monomers, called "sticky", and a subset of surface sites, called "adsorption sites". We demonstrate that, in addition to the expected dependence on the polymer volume fraction ϕ bulk in the bulk solution, selective adsorption strongly depends on the ratio between two characteristic length scales, the root-mean-square distance l between neighboring sticky monomers along the polymer, and the average distance d between neighboring surface adsorption sites. The role of the ratio l / d arises from the fact that a polymer needs to deform to enable the spatial commensurability between its sticky monomers and the surface adsorption sites for selective adsorption. We study strong selective adsorption of both telechelic polymers with two end monomers being sticky and multisticker polymers with many sticky monomers between sticky ends. For telechelic polymers, we identify four adsorption regimes at l / d 1, we expect that the adsorption layer at exponentially low ϕ bulk consists of separated unstretched loops, while as ϕ bulk increases the layer crosses over to a brush of extended loops with a second layer of weakly overlapping tails. For multisticker chains, in the limit of exponentially low ϕ bulk , adsorbed polymers are well separated from each other. As l / d increases, the conformation of an individual polymer changes from a single-end-adsorbed "mushroom" to a random walk of loops. For high ϕ bulk , adsorbed polymers at small l / d are mushrooms that cover all the adsorption sites. At sufficiently large l / d , adsorbed multisticker polymers strongly overlap. We anticipate the formation of a self-similar carpet and with increasing l / d a two-layer structure with a brush of loops covered by a self-similar carpet. As l / d exceeds the

  14. Properties and reactivity of Fe-organic matter associations formed by coprecipitation versus adsorption: Clues from arsenate batch adsorption

    Science.gov (United States)

    Mikutta, Robert; Lorenz, Dennis; Guggenberger, Georg; Haumaier, Ludwig; Freund, Anja

    2014-11-01

    Ferric oxyhydroxides play an important role in controlling the bioavailability of oxyanions such as arsenate and phosphate in soil. Despite this, little is known about the properties and reactivity of Fe(III)-organic matter phases derived from adsorption (reaction of organic matter (OM) to post-synthesis Fe oxide) versus coprecipitation (formation of Fe oxides in presence of OM). Coprecipitates and adsorption complexes were synthesized at pH 4 using two natural organic matter (NOM) types extracted from forest floor layers (Oi and Oa horizon) of a Haplic Podzol. Iron(III) coprecipitates were formed at initial molar metal-to-carbon (M/C) ratios of 1.0 and 0.1 and an aluminum (Al)-to-Fe(III) ratio of 0.2. Sample properties were studied by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), N2 gas adsorption, dynamic light scattering, and electrophoretic mobility measurements. Arsenic [As(V)] adsorption to Fe-OM phases was studied in batch experiments (168 h, pH 4, 100 μM As). The organic carbon (OC) contents of the coprecipitates (82-339 mg g-1) were higher than those of adsorption complexes (31 and 36 mg g-1), leading to pronounced variations in specific surface area (9-300 m2 g-1), average pore radii (1-9 nm), and total pore volumes (11-374 mm3 g-1) but being independent of the NOM type or the presence of Al. The occlusion of Fe solids by OM (XPS surface concentrations: 60-82 atom% C) caused comparable pHPZC (1.5-2) of adsorption complexes and coprecipitates. The synthesis conditions resulted in different Fe-OM association modes: Fe oxide particles in 'M/C 0.1' coprecipitates covered to a larger extent the outermost aggregate surfaces, for some 'M/C 1.0' coprecipitates OM effectively enveloped the Fe oxides, while OM in the adsorption complexes primarily covered the outer aggregate surfaces. Despite of their larger OC contents, adsorption of As(V) was fastest to coprecipitates formed at low Fe availability (M/C 0.1) and facilitated by desorption of weakly

  15. Production cross sections and isomeric ratios for sup(110m)In/sup(110g)In formed in Cd (d,xn) reactions

    International Nuclear Information System (INIS)

    Herreros Usher, Oscar; Maceiras de Jefimowicz, Elena; De la Vega Vedoya, Mario; Jorge Nassiff, Sonia

    1980-01-01

    Excitation functions and isomeric cross sections ratios have been measured for the 110 Cd (d,2n) and 111 Cd (d,3n) reactions in which the isomeric pair sup(110m)In/sup(110g)In is produced. Activation method was employed and the irradiations were performed at the synchrocyclotron of the Comision Nacional de Energia Atomica, Argentina, with an incident energy of 27.MeV. (author) [es

  16. Pb and Cd binding to natural freshwater biofilms developed at different pH: the important role of culture pH.

    Science.gov (United States)

    Hua, Xiuyi; Dong, Deming; Ding, Xiaoou; Yang, Fan; Jiang, Xu; Guo, Zhiyong

    2013-01-01

    The effects of solution pH on adsorption of trace metals to different types of natural aquatic solid materials have been studied extensively, but few studies have been carried out to investigate the effect of pH at which the solid materials were formed on the adsorption. The purpose of present study is to examine this effect of culture pH on metal adsorption to natural freshwater biofilms. The adsorption of Pb and Cd to biofilms which were developed at different culture pH values (ranging from 6.5 to 9.0) was measured at the same adsorption pH value (6.5). The culture pH had considerable effects on both composition and metal adsorption ability of the biofilms. Higher culture pH usually promoted the accumulation of organic material and Fe oxides in the biofilms. The culture pH also affected the quantity and species of algae in the biofilms. The adsorption of Pb and Cd to the biofilms generally increased with the increase of culture pH. This increase was minor at lower pH range and significant at higher pH range and was more remarkable for Cd adsorption than for Pb adsorption. The notable contribution of organic material to the adsorption at higher culture pH values was also observed. The profound impacts of culture pH on adsorption behavior of biofilms mainly resulted from the variation of total contents of the biofilm components and were also affected by the alteration of composition and properties of the components.

  17. Effects of wood vinegar on properties and mechanism of heavy metal competitive adsorption on secondary fermentation based composts.

    Science.gov (United States)

    Liu, Ling; Guo, Xiaoping; Wang, Shuqi; Li, Lei; Zeng, Yang; Liu, Guanhong

    2018-04-15

    In this study, secondary municipal solid waste composts (SC) and wood vinegar treated secondary compost (WV-SC) was prepared to investigate the capability for single-heavy metals and multi-metal systems adsorption. The adsorption sequence of WV-SC for the maximum single metals sorption capacities was Cd (42.7mgg -1 ) > Cu (38.6mgg -1 ) > Zn (34.9mgg -1 ) > Ni (28.7mgg -1 ) and showed higher than that of SC adsorption isotherm. In binary/quaternary-metal systems, Ni adsorption showed a stronger inhibitory effect compared with Zn, Cd and Cu on both SC and WV-SC. According to Freundlich and Langmuir adsorption isotherm models, as well as desorption behaviors and speciation analysis of heavy metals, competitive adsorption behaviors were differed from single-metal adsorption. Especially, the three-dimensional simulation of competitive adsorption indicated that the Ni was easily exchanged and desorbed. The amount of exchangeable heavy metal fraction were in the lowest level for the metal-loaded adsorbents, composting treated by wood vinegar improved the adsorbed metals converted to the residue fraction. This was an essential start in estimating the multiple heavy metal adsorption behaviors of secondary composts, the results proved that wood vinegar was an effective additive to improve the composts quality and decrease the metal toxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Detection and Significance of CD4+CD25+CD127dim Regulatory T Cells in Individuals with Severe Aplastic Anemia

    Directory of Open Access Journals (Sweden)

    Weiwei Qi

    2015-09-01

    Full Text Available Objective: To investigate the relationship between CD4+CD25+CD127dim regulatory T cells (Tregs and immune imbalance in acquired severe aplastic anemia (SAA. Materials and Methods: The quantity of CD4+CD25+CD127dim Tregs in 44 SAA patients and 23 normal controls was measured by flow cytometry. Correlations between Tregs and T cell subsets, dendritic cell (DC subsets, granulocyte counts, and percentage of reticulocytes (RET% were analyzed. Results: The percentage of CD4+CD25+CD127dim Tregs in peripheral blood lymphocytes (PBLs of untreated patients was lower than in recovery patients and normal controls (0.83±0.44% vs. 2.91±1.24% and 2.18±0.55%, respectively, p<0.05. The percentage of CD4+CD25+CD127dim Tregs in CD4+ T lymphocytes of recovery patients was higher than that of untreated patients and normal controls (9.39±3.51% vs. 7.61±5.3% and 6.83±1.4%, respectively, p<0.05. The percentage of CD4+ T lymphocytes in PBLs of untreated patients was lower than in recovery patients and normal controls (13.55±7.37% vs. 31.82±8.43% and 32.12±5.88%, respectively, p<0.05. T cell subset (CD4+/CD8+ ratio was 0.41±0.24 in untreated patients, which was lower than in recovery patients (1.2±0.4 and normal controls (1.11±0.23 (p<0.05. DC subset (myeloid DC/plasmacytoid DC ratio, DC1/DC2 ratio was 3.08±0.72 in untreated patients, which was higher than in recovery patients (1.61±0.49 and normal controls (1.39±0.36 (p<0.05. The percentage of CD4+CD25+CD127dim Tregs in PBLs was positively associated with T cell subset (r=0.955, p<0.01 and negatively associated with DC subset (r=-0.765, p<0.01. There were significant positive correlations between CD4+CD25+CD127dim Tregs/PBL and granulocyte counts and RET% (r=0.739 and r=0.749, respectively, p<0.01. Conclusion: The decrease of CD4+CD25+CD127dim Tregs in SAA patients may cause excessive functioning of T lymphocytes and thus lead to hematopoiesis failure in SAA.

  19. GIS-NaP1 zeolite microspheres as potential water adsorption material: Influence of initial silica concentration on adsorptive and physical/topological properties.

    Science.gov (United States)

    Sharma, Pankaj; Song, Ju-Sub; Han, Moon Hee; Cho, Churl-Hee

    2016-03-11

    GIS-NaP1 zeolite samples were synthesized using seven different Si/Al ratios (5-11) of the hydrothermal reaction mixtures having chemical composition Al2O3:xSiO2:14Na2O:840H2O to study the impact of Si/Al molar ratio on the water vapour adsorption potential, phase purity, morphology and crystal size of as-synthesized GIS-NaP1 zeolite crystals. The X-ray diffraction (XRD) observations reveal that Si/Al ratio does not affect the phase purity of GIS-NaP1 zeolite samples as high purity GIS-NaP1 zeolite crystals were obtained from all Si/Al ratios. Contrary, Si/Al ratios have remarkable effect on the morphology, crystal size and porosity of GIS-NaP1 zeolite microspheres. Transmission electron microscopy (TEM) evaluations of individual GIS-NaP1 zeolite microsphere demonstrate the characteristic changes in the packaging/arrangement, shape and size of primary nano crystallites. Textural characterisation using water vapour adsorption/desorption, and nitrogen adsorption/desorption data of as-synthesized GIS-NaP1 zeolite predicts the existence of mix-pores i.e., microporous as well as mesoporous character. High water storage capacity 1727.5 cm(3) g(-1) (138.9 wt.%) has been found for as-synthesized GIS-NaP1 zeolite microsphere samples during water vapour adsorption studies. Further, the total water adsorption capacity values for P6 (1299.4 mg g(-1)) and P7 (1388.8 mg g(-1)) samples reveal that these two particular samples can absorb even more water than their own weights.

  20. GIS-NaP1 zeolite microspheres as potential water adsorption material: Influence of initial silica concentration on adsorptive and physical/topological properties

    Science.gov (United States)

    Sharma, Pankaj; Song, Ju-Sub; Han, Moon Hee; Cho, Churl-Hee

    2016-01-01

    GIS-NaP1 zeolite samples were synthesized using seven different Si/Al ratios (5–11) of the hydrothermal reaction mixtures having chemical composition Al2O3:xSiO2:14Na2O:840H2O to study the impact of Si/Al molar ratio on the water vapour adsorption potential, phase purity, morphology and crystal size of as-synthesized GIS-NaP1 zeolite crystals. The X-ray diffraction (XRD) observations reveal that Si/Al ratio does not affect the phase purity of GIS-NaP1 zeolite samples as high purity GIS-NaP1 zeolite crystals were obtained from all Si/Al ratios. Contrary, Si/Al ratios have remarkable effect on the morphology, crystal size and porosity of GIS-NaP1 zeolite microspheres. Transmission electron microscopy (TEM) evaluations of individual GIS-NaP1 zeolite microsphere demonstrate the characteristic changes in the packaging/arrangement, shape and size of primary nano crystallites. Textural characterisation using water vapour adsorption/desorption, and nitrogen adsorption/desorption data of as-synthesized GIS-NaP1 zeolite predicts the existence of mix-pores i.e., microporous as well as mesoporous character. High water storage capacity 1727.5 cm3 g−1 (138.9 wt.%) has been found for as-synthesized GIS-NaP1 zeolite microsphere samples during water vapour adsorption studies. Further, the total water adsorption capacity values for P6 (1299.4 mg g−1) and P7 (1388.8 mg g−1) samples reveal that these two particular samples can absorb even more water than their own weights. PMID:26964638

  1. [Heavy metals contents and Hg adsorption characteristics of mosses in virgin forest of Gongga Mountain].

    Science.gov (United States)

    Liang, Peng; Yang, Yong-Kui; He, Lei; Wang, Ding-Yong

    2008-06-01

    Seven main moss species in the Hailuogou virgin forest of Gongga Mountain were sampled to determine their heavy metals (Hg, Cr, Cd, Ni, Pb, Cu, Mn, Zn and Fe) content, and two widely distributed species, Pleurozium schreberi (Brid.) Mitt. and Racomitrium laetum Besch., were selected to study their Hg adsorption characteristics. The results showed that the heavy metals contents in the mosses were lower than the background values in Europe and America, except that the Cd had a comparable value, which indicated that the atmosphere in study area was not polluted by heavy metals and good in quality. The Hg adsorption by P. schreberi and R. laetum was an initiative and rapid process, with the equilibrium reached in about two hours, and could be well fitted by Freundlich and Langmuir equations. Based on Langmuir equation, the maximum Hg adsorption capacities of P. schreberi and R. laetum were 15.24 and 8.19 mg x g(-1), respectively, suggesting that the two mosses had a good capacity of Hg adsorption, and could be used as the bio-monitors of atmospheric Hg pollution.

  2. Optically Active CdSe-Dot/CdS-Rod Nanocrystals with Induced Chirality and Circularly Polarized Luminescence.

    Science.gov (United States)

    Cheng, Jiaji; Hao, Junjie; Liu, Haochen; Li, Jiagen; Li, Junzi; Zhu, Xi; Lin, Xiaodong; Wang, Kai; He, Tingchao

    2018-05-30

    Ligand-induced chirality in semiconductor nanocrystals (NCs) has attracted attention because of the tunable optical properties of the NCs. Induced circular dichroism (CD) has been observed in CdX (X = S, Se, Te) NCs and their hybrids, but circularly polarized luminescence (CPL) in these fluorescent nanomaterials has been seldom reported. Herein, we describe the successful preparation of l- and d-cysteine-capped CdSe-dot/CdS-rods (DRs) with tunable CD and CPL behaviors and a maximum anisotropic factor ( g lum ) of 4.66 × 10 -4 . The observed CD and CPL activities are sensitive to the relative absorption ratio of the CdS shell to the CdSe core, suggesting that the anisotropic g-factors in both CD and CPL increase to some extent for a smaller shell-to-core absorption ratio. In addition, the molar ratio of chiral cysteine to the DRs is investigated. Instead of enhancing the chiral interactions between the chiral molecules and DRs, an excess of cysteine molecules in aqueous solution inhibits both the CD and CPL activities. Such chiral and emissive NCs provide an ideal platform for the rational design of semiconductor nanomaterials with chiroptical properties.

  3. Preparation of mesoporous CdS-containing TiO{sub 2} film and enhanced visible light photocatalytic property

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yanmei; Wang, Renliang, E-mail: rlwang@tsmc.edu.cn; Zhang, Wenping; Ge, Haiyan; Wang, Xiaopeng; Li, Li

    2015-01-15

    Highlights: • Well-dispersed distribution of CdS nanoparticles inside of TiO{sub 2} mesoporous structures was fabricated. • The sensitization of CdS nanoparticles significantly extends the response of TiO{sub 2} mesoporous film in the visible region. • An improved visible light photocatalytic activity was observed by the CdS–MTF. - Abstract: Mesoporous TiO{sub 2} films containing CdS nanocrystals were successfully fabricated by a two-step process of successive ionic layer adsorption and reaction (SILAR) technique and a solvothermal method followed by annealing. The distribution of CdS nanoparticles in the inner structures of the TiO{sub 2} mesoporous films is confirmed by field emission scanning electron microscope. The CdS modification of the mesoporous films results in an increase in the visible light adsorption, and exhibits more excellent photocatalytic degradation of methyl orange (MO) under visible light irradiation.

  4. Isotherm Studies of Equilibrium Sorption of Cu2+ and Cd2+ from Aqueous Solutions by Modified and Unmodified Breadfruit Seed Hull

    Directory of Open Access Journals (Sweden)

    Christopher Uchechukwu Sonde

    2015-09-01

    Full Text Available The ability of an economically cheap adsorbent material of natural origin, African breadfruit seed hull, was assessed for Cu(II and Cd(II ions’ adsorption from aqueous solutions. The effects of adsorbent dose, particle size and initial metal ion concentrations were investigated in a batch adsorption process. The experimental data were analyzed using five two-parameter isotherm equations (i.e., Langmuir, Freundlich, Temkin, Harkins-Jura and Halsey isotherm models. Freundlich and Halsey models provided the best description for the adsorption data while the other three models gave fairly good interpretation to the experimental adsorption data. The maximum adsorption capacity corresponding to saturation of sites (qmax, obtained from the Langmuir plots, were 7.76 and 8.06 mg g-1 for Cu(II and Cd(II onto the unmodified breadfruit seed hull (UBSH and 12.67 and 13.97 mg g-1, respectively for Cu(II and Cd(II adsorption onto the modified breadfruit seed hull (MBSH. The experimental results showed that there was an enhancement in the removal of the metal ions by the mercaptoacetic acid-modified breadfruit seed hull. DOI: http://dx.doi.org/10.17807/orbital.v7i3.625 

  5. Role of ZnO photoanode nanostructures and sensitizer deposition approaches on the photovoltaic properties of CdS/CdSe and CdS1-xSex quantum dot-sensitized solar cells

    Science.gov (United States)

    Şişman, İlkay; Tekir, Oktay; Karaca, Hüseyin

    2017-02-01

    Hierarchical bundle-like ZnO nanorod arrays (BNRs) were synthesized by a one-pot hydrothermal method based on two consecutive temperature steps for cascade CdS/CdSe and ternary CdS1-xSex alloy quantum dot-sensitized solar cells (QDSSCs) as photoanode. The CdS/CdSe and CdS1-xSex QDs were deposited on the surface of the ZnO BNRs by conventional and modified successive ionic-layer adsorption and reaction (SILAR) methods, respectively. Using the ZnO BNRs/CdS/CdSe photoanode, the power conversion efficiency reaches 2.08%, which is 1.8 times higher than that of pristine ZnO nanorods/CdS/CdSe photoanode, while by applying ZnO BNRs/CdS1-xSex, the power conversion efficiency improves 2.52%. The remarkably improved photovoltaic performance is mainly derived from the bundle-like nanorod arrays structure, which increases the QDs loading amount and the scattering effect for light absorption, and the appropriate conduction band energy, sufficient Se amount and well coverage of the ternary CdS1-xSex QDs result in enhanced photogenerated electron injection, high light absorption and reduced recombination, respectively. As a result, ZnO BNRs/CdS1-xSex combination can significantly improve performance of QDSSCs.

  6. Thermodynamics and Adsorption Efficiencies of Low Cost Natural ...

    African Journals Online (AJOL)

    The thermodynamics and sorption efficiencies for the remediation of Cr, Ni and Cd from their ... using Maize Cob (MC) and Sawdust (SD) in a batch system are reported. ... to study concentration differences before and after the adsorption process. ... By Country · List All Titles · Free To Read Titles This Journal is Open Access.

  7. Adsorption performance of nickel and cadmium ions onto brewer's yeast

    Energy Technology Data Exchange (ETDEWEB)

    Cui, L.; Wu, G. [South-Central Univ. for Nationalities, Wuhan (China). College of Chemical and Materials Science, Key Laboratory of Catalysts and Materials Science of Hubei Province; Jeong, T. [Chonbuk National Univ., Chonbuk (Korea, Republic of). Dept. of Environmental Engineering

    2010-02-15

    Heavy metals must be removed from polluted water streams in order to meet increasingly stringent environmental quality standards. Although various techniques have been used to recover metal ions from wastewater, they are either ineffective when heavy metals are present at low concentrations. In this study, brewer's yeast was used as an adsorbent for the removal of Ni(2) and Cd(2) metal ions from aqueous solution. The surface of the brewer's yeast had 3 main functional groups of sulfonate, carboxyl, and amine groups. The pH of solution played a key role on the uptake of metal ions. Optimum adsorption was obtained at pH 6. An acid solution with a pH of 3 was efficient for the desorption of Ni(2) and Cd(2) ions from loaded brewer's yeast. The desorption efficiency was greater than 90 per cent. The rate of metal ions adsorption onto brewer's yeast was rapid with short contact time. The kinetics of the adsorption process followed the pseudo-second-order kinetic model. Langmuir and Freundlich isotherm models were used to fit the experimental data. The Langmuir isotherm model provided a better fit. The maximum uptakes of Ni(2) and Cd(2) by brewer's yeast were estimated to be 5.34 and 10.17 mg/g, respectively. Electrostatic interaction was found to be the main mechanism of metal ions adsorption on the brewer's yeast. It was concluded that brewer's yeast is a promising adsorbent for the removal of metal ions from wastewater. 21 refs., 3 tabs., 6 figs.

  8. Predicting heavy metals' adsorption edges and adsorption isotherms on MnO2 with the parameters determined from Langmuir kinetics.

    Science.gov (United States)

    Hu, Qinghai; Xiao, Zhongjin; Xiong, Xinmei; Zhou, Gongming; Guan, Xiaohong

    2015-01-01

    Although surface complexation models have been widely used to describe the adsorption of heavy metals, few studies have verified the feasibility of modeling the adsorption kinetics, edge, and isotherm data with one pH-independent parameter. A close inspection of the derivation process of Langmuir isotherm revealed that the equilibrium constant derived from the Langmuir kinetic model, KS-kinetic, is theoretically equivalent to the adsorption constant in Langmuir isotherm, KS-Langmuir. The modified Langmuir kinetic model (MLK model) and modified Langmuir isotherm model (MLI model) incorporating pH factor were developed. The MLK model was employed to simulate the adsorption kinetics of Cu(II), Co(II), Cd(II), Zn(II) and Ni(II) on MnO2 at pH3.2 or 3.3 to get the values of KS-kinetic. The adsorption edges of heavy metals could be modeled with the modified metal partitioning model (MMP model), and the values of KS-Langmuir were obtained. The values of KS-kinetic and KS-Langmuir are very close to each other, validating that the constants obtained by these two methods are basically the same. The MMP model with KS-kinetic constants could predict the adsorption edges of heavy metals on MnO2 very well at different adsorbent/adsorbate concentrations. Moreover, the adsorption isotherms of heavy metals on MnO2 at various pH levels could be predicted reasonably well by the MLI model with the KS-kinetic constants. Copyright © 2014. Published by Elsevier B.V.

  9. Adsorption of Cadmium Ions from Water on Double-walled Carbon Nanotubes/Iron Oxide Composite

    Directory of Open Access Journals (Sweden)

    Karima Seffah

    2017-12-01

    Full Text Available A new material (DWCNT/iron oxide for heavy metals removal was developed by combining the adsorption features of double-walled carbon nanotubes with the magnetic properties of iron oxides. Batch experiments were applied in order to evaluate adsorption capacity of the DWCNT/iron oxide composite for cadmium ions. The influence of operating parameters such as pH value, amount of adsorbent, initial adsorbate concentration and agitation speed was studied. The adsorption capacity of the DWCNT/iron oxide adsorbent for Cd2+ ions was 20.8 mg g-1, which is at the state of the art. The obtained results revealed that DWCNT/iron oxide composite is a very promising adsorbent for removal of Cd2+ ions from water under natural conditions. The advantage of the magnetic composite is that it can be used as adsorbent for contaminants in water and can be subsequently controlled and removed from the medium by a simple magnetic process.

  10. Influences of the CdS nanoparticles grown strategies on CdTe nanorods array films: A comparison between successive ionic layer absorption and reaction and chemical bath deposition

    International Nuclear Information System (INIS)

    Wang, Jun; Zhou, Xiaoming; Lv, Pin; Yang, Lihua; Ding, Dong; Niu, Jiasheng; Liu, Li; Li, Xue; Fu, Wuyou; Yang, Haibin

    2016-01-01

    The cadmium sulfide (CdS) film is deposited on the surface of cadmium telluride (CdTe) nanorods (NRs) by two different methods, successive ionic layer adsorption and reaction (SILAR) and chemical bath deposition (CBD) techniques. The influence of the deposition parameters on the properties of the films is investigated. Compared to SILAR, CBD is a simple and time saving technique, which can ensure full coverage and better growth of CdS on the surface of CdTe NRs. The photovoltaic characteristics of CdS sensitized CdTe films are also investigated. It is found that the CdTe/CBD-CdS thin film demonstrates excellent photoelectrical properties, which is ascribed to the large absorption coefficient of the material, indicating the potential applications in solar cells.

  11. Adsorption of zinc(II) on hydrous iron oxides

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.

    1992-01-01

    The adsorption of Zn 2+ ions on amorphous Fe(OH 3 ) and α-Fe 2 O 3 , as a function of pH, has been investigated. In the pH region corresponding to the formation of positively charged Zn-hydroxy complexes, an abrupt increase in adsorption was observed. The influence of EDTA and glycine on the adsorption of Zn 2+ by α-Fe 2 O 3 has also been investigated. Strong suppression of the adsorption of Zn 2+ was observed for high [EDTA or Gly]/[Zn 2+ ] concentration ratios. The results of the adsorption of Zn 2+ in the presence of an organic ligand were explained by the formation of Zn-EDTA or Zn-glycine complexes and also by the occupation of adsorption sites by the free organic ligand. (author) 26 refs.; 6 figs

  12. Study of optimizing the process of Cadmium adsorption by synthesized silver nanoparticles using Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Faezeh Sajadi

    2016-05-01

    Full Text Available Background and Aim: Cadmium (Cd is one of the most toxic heavy metals in water that mostly enters the water cycle through industrial waste water. Silver nanoparticles have the capacity to remove heavy metals from the water resources through the mechanism of adsorption. The present study aimed at producing  silver bio-nanoparticles and optimizing . Cd removal from aquatic solutions. Materials and Methods: Silver bio-nanoparticles were extracted via a micro-algae Chlorella vulgaris extract and silver nitrate synthesis. Then, the characteristics of the particles were  determined using FT-IR, XRD, SEM devices. In order to optimize Cadmium adsorption by means of silver nanoparticles, parameters including pH, reaction time, initial concentration of Cd and concentrations of nanoparticles were studied under different conditions. Results: The resulting nanoparticles were spherical, single and crystalline, whose sizes were 10-45 nm.  Under the condition of PH = 8, the initial concentration of cadmium 0.5 mg/L, adsorbent dosage of 0.5 mg, reaction time of 10 min, temperature of 300C and mixing speed of 200 rpm, 99% of cadmium was removed. Isotherm of Cadmium-ion adsorption followed Langmuir (R2> 0/96 (and Freundlich (R2> 0/94 models. Conclusion: Under optimal conditions, silver bio-nanoparticles had the capacity of quick and effective adsorption of cadmium. Thus, with a cheap, non-toxic and environmentally friendly method  can remove heavy metals in a short time.

  13. CD36-Mediated Hematoma Absorption following Intracerebral Hemorrhage: Negative Regulation by TLR4 Signaling

    OpenAIRE

    Fang, Huang; Chen, Jing; Lin, Sen; Wang, PengFei; Wang, YanChun; Xiong, XiaoYi; Yang, QingWu

    2014-01-01

    Promoting hematoma absorption is a novel therapeutic strategy for intracerebral hemorrhage (ICH); however, the mechanism of hematoma absorption is unclear. The present study explored the function and potential mechanism of CD36 in hematoma absorption using in vitro and in vivo ICH models. Hematoma absorption in CD36-deficient ICH patients was examined. Compared with patients with normal CD36 expression, CD36-deficient ICH patients had slower hematoma adsorption and aggravated neurologic defic...

  14. N-doping effectively enhances the adsorption capacity of biochar for heavy metal ions from aqueous solution.

    Science.gov (United States)

    Yu, Wenchao; Lian, Fei; Cui, Guannan; Liu, Zhongqi

    2018-02-01

    N-doping was successfully employed to improve the adsorption capacity of biochar (BC) for Cu 2+ and Cd 2+ by direct annealing of crop straws in NH 3 . The surface N content of BC increased more than 20 times by N-doping; meanwhile the content of oxidized-N was gradually diminished but graphitic-N was formed and increased with increasing annealing temperature and duration time. After N-doping, a high graphitic-N percentage (46.4%) and S BET (418.7 m 2 /g) can be achieved for BC. As a result, the N-doped BC exhibited an excellent adsorption capacity for Cu 2+ (1.63 mmol g -1 ) and Cd 2+ (1.76 mmol g -1 ), which was up to 4.0 times higher than that of the original BC. Furthermore, the adsorption performance of the N-doped BC remained stable even at acidic conditions. A positive correlation can be found between adsorption capacity with the graphitic N content on BC surface. The surface chemistry of N-doped BC before and after the heavy metal ions adsorption was carefully examined by XPS and FTIR techniques, which indicated that the adsorption mechanisms mainly included cation-π bonding and complexation with graphitic-N and hydroxyl groups of carbon surfaces. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A study: removal of Cu(II), Cd(II), and Pb(II) ions from real industrial water and contaminated water using activated sludge biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kusvuran, Erdal; Yildirim, Deniz [Arts and Sciences Faculty, Chemistry Department, Cukurova University, Balcali, Adana (Turkey); Samil, Ali [Arts and Sciences Faculty, Chemistry Department, Sutcu Imam University, Kahramanmaras (Turkey); Gulnaz, Osman [Arts and Sciences Faculty, Biology Department, Cukurova University, Balcali, Adana (Turkey)

    2012-11-15

    This study aims to remove of Cu{sup 2+}, Cd{sup 2+}, and Pb{sup 2+} ions from solution and to investigate the adsorption isotherms, adsorption kinetics, and ion-exchange affinities of these metals using waste activated sludge (AS) biomass. The adsorptions of the metals on biomass were optimal at an acidic pH value of 6.0 based on its monolayer capacities. Maximum monolayer capacities of AS biomass (q{sub max}) were calculated as 0.478, 0.358, and 0.280 mmol g{sup -1} for Cu{sup 2+}, Cd{sup 2+}, and Pb{sup 2+}, respectively, and the adsorption equilibrium time was found as 60 min for each metal. The adsorbed amount of metal rose with increasing of initial metal ion concentration. The equilibrium adsorption capacity of AS for initial 0.25 mmol L{sup -1} metal concentration was determined as 0.200, 0.167, and 0.155 mmol g{sup -1} for Cu{sup 2+}, Cd{sup 2+}, and Pb{sup 2+} ions, respectively. These relevant values were determined as 0.420, 0.305, and 0.282 mmol g{sup -1} for Cu{sup 2+}, Cd{sup 2+}, and Pb{sup 2+} ions, respectively, when initial metal concentration was 0.50 mmol L{sup -1}. In the multi-metal sorption system, the adsorption capacity of AS biomass was observed in the order of Cu{sup 2+} > Cd{sup 2+} > Pb{sup 2+}. In the presence of 100 mmol L{sup -1} H{sup +} ion, the order of ion-exchange affinity with H{sup +} was found as Cu{sup 2+} > Cd{sup 2+} > Pb{sup 2+}. The adsorption kinetics were also found to be well described by the pseudo-second-order and intraparticle diffusion models. Two different rate constants were obtained as k{sub i1} and k{sub i2} and k{sub i1} (first stage) was found to be higher than k{sub i2} (second stage). (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Direct synthesis of all-inorganic heterostructured CdSe/CdS QDs in aqueous solution for improved photocatalytic hydrogen generation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi-Jun; Fan, Xiang-Bing; Li, Xu-Bing; Li, Jia-Xin; Zhan, Fei; Tao, Ye; Zhang, Xiaoyi; Kong, Qing-Yu; Zhao, Ning-Jiu; Zhang, Jian-Ping; Ye, Chen; Gao, Yu-Ji; Wang, Xu-Zhe; Meng, Qing-Yuan; Feng, Ke; Chen, Bin; Tung, Chen-Ho; Wu, Li-Zhu

    2017-01-01

    Here we present a facile aqueous approach to synthesize heterostructured CdSe/CdS QDs with all-inorganic chalcogenide S2- ligands under mild conditions. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and steady-state emission spectroscopy demonstrate that the heterostructured CdSe/CdS QDs with sulfur-rich surface composition are formed by heterogeneous nucleation of Cd2+ and S2- precursors on the CdSe QDs. After adsorption of small Ni(OH)(2) clusters over the surface in situ, the CdSe/CdS-Ni(OH)(2) photocatalyst enables H-2 production efficiently with an internal quantum yield of 52% under visible light irradiation at 455 nm, up to an 8-fold increase of activity to that of spherical CdSe QDs-Ni(OH)(2) under the same conditions. Femtosecond transient absorption spectroscopy, X-ray transient absorption (XTA) spectroscopy, steady-state and time-resolved emission spectroscopy show that the quasi-type-II band alignment in the CdSe/CdS heterostructure is responsible for the efficiency enhancement of light harvesting and surface/interfacial charge separation in solar energy conversion. The unprecedented results exemplify an easily accessible pattern of aqueous synthesis of all-inorganic heterostructured QDs for advanced photosynthetic H-2 evolution.

  17. Adsorption and desorption of cationic malachite green dye on cellulose nanofibril aerogels.

    Science.gov (United States)

    Jiang, Feng; Dinh, Darren M; Hsieh, You-Lo

    2017-10-01

    Ultra-light aerogels have been assembled from cellulose nanofibrils into hierarchically macroporous (several hundred μm) honeycomb cellular structure surrounded with mesoporous (8-60nm) thin walls. The high specific surface (193m 2 /g) and surface carboxyl content (1.29mmol/g) of these aerogels were demonstrated to be highly capable of removing cationic malachite green (MG) dye from aqueous media. The rapid MG adsorption was driven by electrostatic interactions and followed a pseudo-second-order adsorption kinetic and monolayer Langmuir adsorption isotherm. At a low 1:5mg/mL aerogel/MG ratio, both initial MG adsorption rate (2.3-59.8mgg -1 min -1 ) and equilibrium adsorption capacity (53.0-203.7mgg -1 ) increased with increasing initial MG concentrations from 10 to 200mg/L, reaching a maximum adsorption of 212.7mgg -1 . The excellent dye removal efficiency was demonstrated by complete MG removal through four repetitive adsorptions at a low 1:5mg/mL aerogel/MG ratio and 10mg/L dye concentration as well as 92% MG adsorption in a single batch at one order of magnitude higher10:5mg/mL aerogel/MG ratio and 100mg/L dye concentration. The adsorbed MG in aerogels could be desorbed in aqueous media by increasing ionic strength, demonstrating facile recovery of both dye and aerogel as well as the robust capability of this aerogel for repetitive applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Optical properties of CdS thin films by (SILAR) method

    International Nuclear Information System (INIS)

    Ates, A.; Gurbulak, B.; Yildirim, M.

    2004-01-01

    Full text: CdS thin film was grown by Successive ionic layer adsorption and reaction (SILAR) technique on quartz substrate. The film homogeneous of film is good and the film colour obtained as orange. Optical properties of CdS thin film has been investigated as a function of temperature in the temperature range 10-320 K with 10 K steps. The band gap energy decreased with increasing temperature

  19. Influence of thermal treatment on bentonite used as adsorbent for Cd, Pb, Zn retention from mono-solute and poly-solute aqueous solutions

    Directory of Open Access Journals (Sweden)

    Susana Yamila Martinez Stagnaro

    2012-08-01

    Full Text Available The retentions of Zn, Cd and Pb cations by one treated bentonite up to 750 °C were analyzed. The retentions were evaluated by using mono-and poly-solute aqueous solutions of such cations. The adsorptions were carried out in batch system at room temperature. The solid/liquid ratio was 2% wt.v-1. The solids were characterized by X-ray diffraction, thermal and chemical analyses. The Zn cation from mono- or polysolute-solutions was retained in higher amount than Cd and Pb cations in similar solution types by bentonite. The retentions were effective up to 450 °C calcined bentonite, after that, the retention capacity decreased in concordance with dehydroxylation of the structure of clay minerals.

  20. Comparison of Fenton process and adsorption method for treatment of industrial container and drum cleaning industry wastewater.

    Science.gov (United States)

    Güneş, Elçin; Çifçi, Deniz İzlen; Çelik, Suna Özden

    2018-04-01

    The present study aims to explore the characterization of industrial container and drum cleaning (ICDC) industry wastewater and treatment alternatives of this wastewater using Fenton and adsorption processes. Wastewater derived from ICDC industry is usually treated by chemical coagulation and biological treatment in Turkey and then discharged in a centralized wastewater treatment facility. It is required that the wastewater COD is below 1500 mg/L to treat in a centralized wastewater treatment facility. The wastewater samples were characterized for parameters of pH, conductivity, COD, BOD 5 , TSS, NH 3 -N, TN, TOC, TP, Cd, Cr, Cu, Fe, Ni, Pb, Zn, and Hg. Initial COD values were in the range of 11,300-14,200 mg/L. The optimum conditions for Fenton treatment were 35-40 g/L for H 2 O 2 , 2-5 g/L for Fe 2+ , and 13-36 for H 2 O 2 /Fe 2+ molar ratio. The optimum conditions of PAC doses and contact times in adsorption studies were 20-30 g/L and 5-12 h, respectively. Removal efficiencies of characterized parameters for the three samples were compared for both Fenton and adsorption processes under optimum conditions. The results suggest that these wastewaters are suitable for discharge to a centralized wastewater treatment plant.

  1. Adsorption preference for divalent metal ions by Lactobacillus casei JCM1134.

    Science.gov (United States)

    Endo, Rin; Aoyagi, Hideki

    2018-05-09

    The removal of harmful metals from the intestinal environment can be inhibited by various ions which can interfere with the adsorption of target metal ions. Therefore, it is important to understand the ion selectivity and adsorption mechanism of the adsorbent. In this study, we estimated the adsorption properties of Lactobacillus casei JCM1134 by analyzing the correlation between its maximum adsorption level (q max ) for seven metals and their ion characteristics. Some metal ions showed altered adsorption levels by L. casei JCM1134 as culture growth time increased. Although it was impossible to identify specific adsorption components, adsorption of Sr and Ba may depend on capsular polysaccharide levels. The maximum adsorption of L. casei JCM1134 (9 h of growth in culture) for divalent metal ions was in the following order: Cu 2+  > Ba 2+  > Sr 2+  > Cd 2+  > Co 2+  > Mg 2+  > Ni 2+ . The q max showed a high positive correlation with the ionic radius. Because this tendency is similar to adsorption occurring through an ion exchange mechanism, it was inferred that an ion exchange mechanism contributed greatly to adsorption by L. casei JCM1134. Because the decrease in the amount of adsorption due to prolonged culture time was remarkable for metals with a large ion radius, it is likely that the adsorption components involved in the ion exchange mechanism decomposed over time. These results and analytical concept may be helpful for designing means to remove harmful metals from the intestinal tract.

  2. Study of BSA protein adsorption/release on hydroxyapatite nanoparticles

    Science.gov (United States)

    Swain, Sanjaya Kumar; Sarkar, Debasish

    2013-12-01

    Three different spherical, rod and fibrous morphologies of hydroxyapatite (HA) nanoparticles have been prepared through control over the processing parameters like temperature, pH and Ca:P ratio. Protein adsorption/release with respect to HA nanoparticle morphologies are investigated using model protein bovine serum albumin (BSA). BSA adsorption on HA nanoparticles follows Langmuir adsorption isotherm. Thermal analysis and FT-IR spectrum confirms the BSA adhesion and retention of their secondary structure. High surface area with high Ca:P ratio nanorod adsorbs relatively more amount (28 mg BSA/gm of nanorod HA) of BSA within 48 h in comparison with counterpart fibroid and spherical morphologies. Slow and steady BSA release (75 wt% of adsorbed BSA in 96 h) from nanorod HA is found as futuristic drug delivery media.

  3. Cu-Doped-CdS/In-Doped-CdS Cosensitized Quantum Dot Solar Cells

    Directory of Open Access Journals (Sweden)

    Lin Li

    2014-01-01

    Full Text Available Cu-doped-CdS and In-doped-CdS cosensitized (Cu-doped-CdS/In-doped-CdS quantum dot solar cells (QDSCs are introduced here. Different cosensitized sequences, doping ratios, and the thickness (SILAR cycles of Cu-doped-CdS and In-doped-CdS are discussed. Compared with undoped CdS QDSCs, the short circuit current density, UV-Vis absorption spectra, IPCE (monochromatic incident photon-to-electron conversion, open circuit voltage, and so on are all improved. The photoelectric conversion efficiency has obviously improved from 0.71% to 1.28%.

  4. Elevated Ratio of Th17 Cell-Derived Th1 Cells (CD161(+)Th1 Cells) to CD161(+)Th17 Cells in Peripheral Blood of Early-Onset Rheumatoid Arthritis Patients.

    Science.gov (United States)

    Kotake, Shigeru; Nanke, Yuki; Yago, Toru; Kawamoto, Manabu; Kobashigawa, Tsuyoshi; Yamanaka, Hisashi

    2016-01-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by the destruction of articular cartilage and bone with elevated levels of proinflammatory cytokines. It has been reported that IL-17 and Th17 cells play important roles in the pathogenesis of RA. Recently, plasticity in helper T cells has been demonstrated; Th17 cells can convert to Th1 cells. It remains to be elucidated whether this conversion occurs in the early phase of RA. Here, we tried to identify Th17 cells, Th1 cells, and Th17 cell-derived Th1 cells (CD161(+)Th1 cells) in the peripheral blood of early-onset RA patients. We also evaluated the effect of methotrexate on the ratio of Th17 cells in early-onset RA patients. The ratio of Th17 cell-derived Th1 cells to CD161(+)Th17 cells was elevated in the peripheral blood of early-onset RA patients. In addition, MTX reduced the ratio of Th17 cells but not Th1 cells. These findings suggest that IL-17 and Th17 play important roles in the early phase of RA; thus, anti-IL-17 antibodies should be administered to patients with RA in the early phase.

  5. Adsorption of ferrous ions onto montmorillonites

    Science.gov (United States)

    Qin, Dawei; Niu, Xia; Qiao, Min; Liu, Gang; Li, Hongxin; Meng, Zhenxiao

    2015-04-01

    The adsorption of Fe (II) onto montmorillonites was investigated through initial concentration, contact time, pH and temperature. During the whole adsorption process, the ascorbic acid (Vitamin C) was added as a kind of antioxidant, at the same time, deionized water (after boiling) and nitrogen protection were also used to avoid oxidation. The Fe2+/Fetotal ratio of the iron exists in the Fe-montmorillonites was found more than 95%. Two kinetic models, including pseudo-first-order and pseudo-second-order model, were used to analyze the adsorption process of Fe (II) on montmorillonites. The results of our study showed that adsorption process fitted with pseudo-second-order well. Adsorption isotherms showed that Langmuir model was better than Freundlich model. The thermodynamic parameters ΔG0 and ΔH0 were 3.696 kJ/mol and 6.689 kJ/mol (we just gave the values at 298 K), respectively. The positive values at different temperatures showed that the adsorption process was non-spontaneous and endothermic. The characteristics of materials were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Surface area and porosity analyzer, Thermogravimetric analysis (TGA), Differential scanning calorimeter (DSC) and Zeta potential distribution.

  6. Increased numbers of CD4+ and CD8+ T cells in lesional skin of cats with allergic dermatitis.

    Science.gov (United States)

    Roosje, P J; van Kooten, P J; Thepen, T; Bihari, I C; Rutten, V P; Koeman, J P; Willemse, T

    1998-07-01

    The aim of this study was to characterize T cells in the skin of cats with an allergic dermatitis histologically compatible with atopic dermatitis, since T cells play an important role in the pathogenesis of atopic dermatitis in humans. We observed a significantly greater number of T cells in lesional skin of domestic short-haired cats with allergic dermatitis (n = 10; median age 5.8 years) than in the skin of healthy control animals (n = 10; median age 5.0 years). In the skin of the healthy control animals, one or two CD4+ cells and no CD8+ cells were found. A predominant increase of CD4+ T cells and a CD4+/CD8+ ratio (mean +/- SD: 3.9 +/- 2.0) was found in the lesional skin of 10 cats with allergic dermatitis. The CD4+/CD8+ cell ratio in the skin of healthy control animals could not be determined because of the absence of CD8+ cells. The CD4+/CD8+ cell ratio in the peripheral blood of 10 cats with allergic dermatitis (mean +/- SD: 1.9 +/- 0.4) did not differ significantly from that in 10 healthy control animals (2.2 +/- 0.4). The CD4+/CD8+ cell ratio and predominance of CD4+ T cells in the lesional skin of cats with allergic dermatitis is comparable to that found in atopic dermatitis in humans. In addition, the observed increase of CD4+ T cells in the nonlesional skin of cats with allergic dermatitis compared to the skin of healthy cats is similar to what is seen in humans. Cytokines produced by T cells and antigen-specific T cells are important mediators in the inflammatory cascade resulting in atopic dermatitis in humans. This study is a first step to investigate their role in feline allergic dermatitis.

  7. CdS/CdSe quantum dot shell decorated vertical ZnO nanowire arrays by spin-coating-based SILAR for photoelectrochemical cells and quantum-dot-sensitized solar cells.

    Science.gov (United States)

    Zhang, Ran; Luo, Qiu-Ping; Chen, Hong-Yan; Yu, Xiao-Yun; Kuang, Dai-Bin; Su, Cheng-Yong

    2012-04-23

    A CdS/CdSe composite shell is assembled onto the surface of ZnO nanowire arrays with a simple spin-coating-based successive ionic layer adsorption and reaction method. The as-prepared photoelectrode exhibit a high photocurrent density in photoelectrochemical cells and also generates good power conversion efficiency in quantum-dot-sensitized solar cells. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Azadirachta indica (Neem) leaf powder as a biosorbent for removal of Cd(II) from aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Arunima [Department of chemistry, Gauhati University, Guwahati 781014, Assam (India); Bhattacharyya, Krishna G. [Department of chemistry, Gauhati University, Guwahati 781014, Assam (India)]. E-mail: krishna2604@sify.com

    2005-10-17

    A biosorbent, Neem leaf powder (NLP), was prepared from the mature leaves of the Azadirachta indica (Neem) tree by initial cleaning, drying, grinding, washing to remove pigments and redrying. The powder was characterized with respect to specific surface area (21.45 m{sup 2} g{sup -1}), surface topography and surface functional groups and the material was used as an adsorbent in a batch process to remove Cd(II) from aqueous medium under conditions of different concentrations, NLP loadings, pH, agitation time and temperature. Adsorption increased from 8.8% at pH 4.0 to 70.0% at pH 7.0 and 93.6% at pH 9.5, the higher values in alkaline medium being due to removal by precipitation. The adsorption was very fast initially and maximum adsorption was observed within 300 min of agitation. The kinetics of the interactions was tested with pseudo first order Lagergren equation (mean k {sub 1} = 1.2 x 10{sup -2} min{sup -1}), simple second order kinetics (mean k {sub 2} = 1.34 x 10{sup -3} g mg{sup -1} min{sup -1}), Elovich equation, liquid film diffusion model (mean k = 1.39 x 10{sup -2} min{sup -1}) and intra-particle diffusion mechanism. The adsorption data gave good fits with Langmuir and Freundlich isotherms and yielded Langmuir monolayer capacity of 158 mg g{sup -1} for the NLP and Freundlich adsorption capacity of 18.7 L g{sup -1}. A 2.0 g of NLP could remove 86% of Cd(II) at 293 K from a solution containing 158.8 mg Cd(II) per litre. The mean values of the thermodynamic parameters, {delta}H, {delta}S and {delta}G, at 293 K were -73.7 kJ mol{sup -1}, -0.24 J mol{sup -1} K{sup -1} and -3.63 kJ mol{sup -1}, respectively, showing the adsorption process to be thermodynamically favourable. The results have established good potentiality for the Neem leaf powder to be used as a biosorbent for Cd(II)

  9. The adsorption coefficient (KOC) of chlorpyrifos in clay soil

    International Nuclear Information System (INIS)

    Halimah Muhamad; Nashriyah Mat; Tan Yew Ai; Ismail Sahid

    2005-01-01

    The purpose of this study was to determine the adsorption coefficient (KOC) of chlorpyrifos in clay soil by measuring the Freundlich adsorption coefficient (Kads(f)) and desorption coefficient (1/n value) of chlorpyrifos. It was found that the Freundlich adsorption coefficient (Kads(f)) and the linear regression (r2) of the Freundlich adsorption isotherm for chlorpyrifos in the clay soil were 52.6 L/kg and 0.5244, respectively. Adsorption equilibrium time was achieved within 24 hours for clay soil. This adsorption equilibrium time was used to determine the effect of concentration on adsorption. The adsorption coefficient (KOC) of clay soil was found to be 2783 L/kg with an initial concentration solution of 1 μg/g, soil-solution ratio (1:5) at 300 C when the equilibrium between the soil matrix and solution was 24 hours. The Kdes decreased over four repetitions of the desorption process. The chlorpyrifos residues may be strongly adsorbed onto the surface of clay. (Author)

  10. Conceptual adsorption models and open issues pertaining to performance assessment

    International Nuclear Information System (INIS)

    Serne, R.J.

    1992-01-01

    Recently several articles have been published that question the appropriateness of the distribution coefficient, Rd, concept to quantify radionuclide migration. Several distinct issues surrounding the modeling of nuclide retardation. The first section defines adsorption terminology and discusses various adsorption processes. The next section describes five commonly used adsorption conceptual models, specifically emphasizing what attributes that affect adsorption are explicitly accommodated in each model. I also review efforts to incorporate each adsorption model into performance assessment transport computer codes. The five adsorption conceptual models are (1) the constant Rd model, (2) the parametric Rd model, (3) isotherm adsorption models, (4) mass action adsorption models, and (5) surface-complexation with electrostatics models. The final section discusses the adequacy of the distribution ratio concept, the adequacy of transport calculations that rely on constant retardation factors and the status of incorporating sophisticated adsorption models into transport codes. 86 refs., 1 fig., 1 tab

  11. Effect of cations in the background electrolyte on the adsorption kinetics of copper and cadmium and the isoelectric point of imogolite

    International Nuclear Information System (INIS)

    Arancibia-Miranda, Nicolás; Silva-Yumi, Jorge; Escudey, Mauricio

    2015-01-01

    Highlights: • Effect of various cations on the IEP of imogolite was studied. • Studied adsorption kinetics of Cd and Cu on imogolite in the presence of cations. • K"+ acted as an indifferent electrolyte and did not affect the IEP of imogolite. • Adsorption in the presence of K"+ is described well by three of the four models. • These include pseudo-second order, Elovich equation, and Weber–Morris model. - Abstract: Modification of surface charge and changes in the isoelectric point (IEP) of synthetic imogolite were studied for various cations in the background electrolyte (K"+, NH_4"+, Mg"2"+, and Ca"2"+). From the electrophoretic mobility data, it was established that the K"+ (KCl) concentration does not affect the IEP of imogolite; therefore, KCl is a suitable background electrolyte. In terms of the magnitude of changes in the IEP and surface charge, the cations may be ranked in the following order: Mg"2"+ ≈ Ca"2"+ >> NH_4"+ >> K"+. Four different kinetic models were used to evaluate the influence of Mg"2"+, Ca"2"+, NH_4"+, and K"+ on the adsorption of Cd and Cu on synthetic imogolite. When adsorption occurs in the presence of cations with the exception of K"+, the kinetics of the process is well described by the pseudo-first order model. On the other hand, when adsorption is conducted in the presence of K"+, the adsorption kinetics is well described by the pseudo-second order, Elovich, and Weber–Morris models. From the surface charge measurements, the affinity between imogolite and the cations and their effect on the adsorption of trace elements, namely Cu and Cd, were established.

  12. A novel method of synthesizing cyclodextrin grafted multiwall carbon nanotubes/iron oxides and its adsorption of organic pollutant

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Jiang, Xinyu [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Chen, Xiaoqing, E-mail: xqchen@csu.edu.cn [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Collaborative Innovation Center of Resource-conserving and Environment-friendly Society and Ecological Civilization (China)

    2014-11-30

    Highlights: • A cost-effective and one-step method for grafting cyclodextrin onto magnetic material. • Relatively good separation and regeneration properties as adsorbent. • The adsorption capacities are comparable with other adsorbents reported previously. - Abstract: A novel methodology for the synthesis of the multiwalled carbon nanotubes/iron oxides modified by β-cyclodextrin (denoted as MWCNTs/iron oxides/β-CD) was proposed using 1,6-diisocyanatohexane as cross-linker in N,N-dimethyl formamide, which avoided complex steps in the link of β-cyclodextrin and MWCNTs/iron oxides via conventional synthetic methods. The characteristic results of Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), powder X-ray diffraction (XRD), and thermogravimetric analysis (TGA) showed that β-CD was grafted onto the MWCNTs/iron oxides successfully. In addition, vibrating sample magnetometer (VSM) and magnetic separation experiment suggested that the prepared composite exhibited preferable magnetic property and good dispersion property in aqueous solution. The effects of contact time, initial adsorbent content, solution pH and temperature on the adsorption of p-nitrophenol (PNP) were studied systematically. The adsorption kinetics and equilibrium isotherms data fitted well with pseudo-second-order kinetic equation and Langmuir isotherm model, respectively. Furthermore, the adsorption-desorption experiment of PNP demonstrated that MWCNTs/iron oxides/β-CD is a cost-effective material with high regeneration efficiency.

  13. HIV-specific cytotoxic T lymphocyte precursors exist in a CD28-CD8+ T cell subset and increase with loss of CD4 T cells.

    Science.gov (United States)

    Lewis, D E; Yang, L; Luo, W; Wang, X; Rodgers, J R

    1999-06-18

    To determine whether the CD28-CD8+ T cells that develop during HIV infection contain HIV-specific cytotoxic precursor cells. CD8 subpopulations from six asymptomatic HIV-positive adults, with varying degrees of CD4 T cell loss, were sorted by flow cytometry and HIV-specific precursor cytotoxic T lymphocyte frequencies were measured. Three populations of CD8 T cells were tested: CD28+CD5-- T cells, CD28-CD57+ T cells (thought to be memory cells) and CD28-CD57- T cells (function unknown). Sorted CD8 subsets were stimulated with antigen presenting cells expressing HIV-1 Gag/Pol molecules. Cytotoxic T cell assays on Gag/Pol expressing 51Cr-labeled Epstein-Barr virus transformed autologous B cells lines or control targets were performed after 2 weeks. Specific lysis and precursor frequencies were calculated. Both CD28 positive and CD28-CD57+ populations contained appreciable numbers of precursors (9-1720 per 10(6) CD8+ T cells). However, the CD28-CD57- population had fewer precursors in five out of six people studied. More CD28 positive HIV-specific cytotoxic T lymphocyte precursors were found in patients with CD4:CD8 ratios > 1, whereas more CD28-CD57+ precursors were found in patients whose CD4:CD8 ratios were < 1 (r2, 0.68). Memory HIV-specific precursor cytotoxic T lymphocytes are found in both CD28 positive and CD28-CD8+ cells, however, a CD28-CD57- subpopulation had fewer. Because CD28-CD57+ cells are antigen-driven with limited diversity, the loss of CD28 on CD8 T cells during disease progression may reduce the response to new HIV mutations; this requires further testing.

  14. Use of the Charge/Discharge (C/D) ratio to aument voltage limit (V sub T) charge control in the ERBS spacecraft

    Science.gov (United States)

    Halpert, G.

    1982-01-01

    A 50-ampere hour nickel cadmium cell test pack was operated in a power profile simulating the orbit of the Earth Radiation Budget Satellite (ERBS). The objective was to determine the ability of the temperature compensated voltage limit (V sub T) charge control system to maintain energy balance in the half sine wave-type current profile expected of this mission. The four-cell pack (50 E) was tested at the Naval Weapons Support Center (NWSC) at Crane, Indiana. The ERBS evaluation test consisted of two distinct operating sequences, each having a specific purpose. The first phase was a parametric test involving the effect of V sub T level, temperature, and Beta angle on the charge/discharge (C/D) ratio, an indicator of the amount of overcharge. The second phase of testing made use of the C/D ratio limit to augment the V sub T charge limit control. When the C/D limit was reached, the current was switched from the taper mode to a C/67 (0.75 A) trickle charge. The use of an ampere hour integrator limiting the overcharge to a C/67 rate provided a fine tuning of the charge control technique which eliminated the sensitivity problems noted in the initial operating sequence.

  15. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd{sup 2+} and Pb{sup 2+} removal by mango peel waste

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad [Biotechnology Group, Centre for Environment Protection Studies, PCSIR Laboratories Complex, Ferozepur Road, Lahore 54600 (Pakistan)], E-mail: iqbalm@fulbrightweb.org; Saeed, Asma [Biotechnology Group, Centre for Environment Protection Studies, PCSIR Laboratories Complex, Ferozepur Road, Lahore 54600 (Pakistan); Zafar, Saeed Iqbal [School of Biological Sciences, University of Punjab, Lahore 54590 (Pakistan)

    2009-05-15

    Mango peel waste (MPW) was evaluated as a new sorbent for the removal of Cd{sup 2+} and Pb{sup 2+} from aqueous solution. The maximum sorption capacity of Cd{sup 2+} and Pb{sup 2+} was found to be 68.92 and 99.05 mg g{sup -1}, respectively. The kinetics of sorption of both metals was fast, reaching at equilibrium in 60 min. Sorption kinetics and equilibria followed pseudo-second order and Langmuir adsorption isotherm models. FTIR analysis revealed that carboxyl and hydroxyl functional groups were mainly responsible for the sorption of Cd{sup 2+} and Pb{sup 2+}. Chemical modification of MPW for blocking of carboxyl and hydroxyl groups showed that 72.46% and 76.26% removal of Cd{sup 2+} and Pb{sup 2+}, respectively, was due to the involvement of carboxylic group, whereas 26.64% and 23.74% was due to the hydroxyl group. EDX analysis of MPW before and after metal sorption and release of cations (Ca{sup 2+}, Mg{sup 2+}, Na{sup +}, K{sup +}) and proton H{sup +} from MPW with the corresponding uptake of Cd{sup 2+} and Pb{sup 2+} revealed that the main mechanism of sorption was ion exchange. The regeneration experiments showed that the MPW could be reused for five cycles without significant loss in its initial sorption capacity. The study points to the potential of new use of MPW as an effective sorbent for the removal of Cd{sup 2+} and Pb{sup 2+} from aqueous solution.

  16. Optical sensing of triethylamine using CdSe aerogels

    International Nuclear Information System (INIS)

    Yao Qinghong; Brock, Stephanie L

    2010-01-01

    The photoluminescence (PL) response of highly porous CdSe aerogels to triethylamine (TEA) is investigated and compared to results from prior studies on single crystals and nanoparticle-polymer composites. As-prepared CdSe aerogels show significant and reversible enhancement of luminescence intensity upon exposure to TEA relative to the intensity in pure argon carrier gas. The enhancement in the PL response is dependent on the concentration and linear over the range of TEA concentration studied (4.7 x 10 3 -75 x 10 3 ppm). The sensing response of previously tested samples exhibits saturation behavior that is modeled using Langmuir adsorption isotherms, yielding adsorption equilibrium constants in the range 300-380 atm -1 . The response is sensitively affected by the surface characteristics of the aerogel; when the wet gels are treated with pyridine prior to aerogel formation, the response to TEA is diminished, and when as-prepared aerogels are heated in a vacuum, no subsequent response is observed. Deactivation is attributed to an increase in surface oxide (SeO 2 ) and decrease in surface Cd 2+ Lewis acid sites. Sensing runs of approximately one hour have little impact on the morphology or crystallinity of the aerogels, but do result in partial removal of residual thiolate ligands left over from the gelation process.

  17. The adsorption behavior of functional particles modified by polyvinylimidazole for Cu(II) ion

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruixin; Men, Jiying; Gao, Baojiao [School of Chemical Engineering and Environment, North University of China, Taiyuan (China)

    2012-03-15

    In this paper, a novel composite material the silica grafted by poly(N-vinyl imidazole) (PVI), i.e., PVI/SiO{sub 2}, was prepared using 3-methacryloxypropyl trimethoxysilane (MPS) as intermedia through the ''grafting from'' method. The adsorption behavior of metal ions by PVI/SiO{sub 2} was researched by both static and dynamic methods. Experimental results showed that PVI/SiO{sub 2} possessed very strong adsorption ability for metal ions. For different metal ions, PVI/SiO{sub 2} exhibited different adsorption abilities with the following order of adsorption capacity: Cu{sup 2+}> Cd{sup 2+}> Zn{sup 2+}. The adsorption material PVI/SiO{sub 2} was especially good at adsorbing Cu(II) ion and the saturated adsorption capacity could reach up to 49.2 mg/g. The empirical Freundlich isotherm was found to describe well the equilibrium adsorption data. Higher temperatures facilitated the adsorption process and thus increased the adsorption capacity. The pH and grafting amount of PVI had great influence on the adsorption amount. In addition, PVI/SiO{sub 2} particles had excellent eluting and regenerating property using diluted hydrochloric acid solution as eluent. The adsorption ability trended to steady during 10 cycles. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Protein Adsorption and Antibacterial Behavior for Hydroxyapatite Nanocrystals Prepared by Hydrothermal Method

    OpenAIRE

    笠原, 英充; 小形, 信男; 荻原, 隆

    2005-01-01

    Homogeneous hydroxyapatite nanocrystals which have aspect ratio with more than four were synthesized by hydrothermal method. X-ray fluorescence analysis revealed that the Ca/P ratio of hydroxyapatite nanocrystals was maintaining start composition. The protein adsorption properties and bacteria-resistant of hydroxyapatite nanocrystals were investigated. The protein adsorption properties of hydroxyapatite nanocrystals were improvement after the hydrothermal treatment. Bacteria-resistant behavio...

  19. Study on Shale Adsorption Equation Based on Monolayer Adsorption, Multilayer Adsorption, and Capillary Condensation

    Directory of Open Access Journals (Sweden)

    Qing Chen

    2017-01-01

    Full Text Available Shale gas is an effective gas resource all over the world. The evaluation of pore structure plays a critical role in exploring shale gas efficiently. Nitrogen adsorption experiment is one of the significant approaches to analyze pore size structure of shale. Shale is extremely heterogeneous due to component diversity and structure complexity. Therefore, adsorption isotherms for homogeneous adsorbents and empirical isotherms may not apply to shale. The shape of adsorption-desorption curve indicates that nitrogen adsorption on shale includes monolayer adsorption, multilayer adsorption, and capillary condensation. Usually, Langmuir isotherm is a monolayer adsorption model for ideal interfaces; BET (Brunauer, Emmett, Teller adsorption isotherm is a multilayer adsorption model based on specific assumptions; Freundlich isotherm is an empirical equation widely applied in liquid phase adsorption. In this study, a new nitrogen adsorption isotherm is applied to simultaneously depict monolayer adsorption, multilayer adsorption, and capillary condensation, which provides more real and accurate representation of nitrogen adsorption on shale. In addition, parameters are discussed in relation to heat of adsorption which is relevant to the shape of the adsorption isotherm curve. The curve fitting results indicate that our new nitrogen adsorption isotherm can appropriately describe the whole process of nitrogen adsorption on shale.

  20. Adsorption of ferrous ions onto montmorillonites

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Dawei, E-mail: qdw109@163.com [Qilu University of Technology, Jinan, 250353, Shandong (China); Niu, Xia [Qilu University of Technology, Jinan, 250353, Shandong (China); Qiao, Min; Liu, Gang; Li, Hongxin; Meng, Zhenxiao [Shandong SiBang pharmaceutical co., LTD, Jinan, Shandong, 250200 (China)

    2015-04-01

    Highlights: • Adsorption study of ferrous ions on montmorillonites. • Using ascorbic acid as antioxidants in adsorption process. • Fe (II)-MMT had good affinity for phosphate. - Abstract: The adsorption of Fe (II) onto montmorillonites was investigated through initial concentration, contact time, pH and temperature. During the whole adsorption process, the ascorbic acid (Vitamin C) was added as a kind of antioxidant, at the same time, deionized water (after boiling) and nitrogen protection were also used to avoid oxidation. The Fe{sup 2+}/Fe{sub total} ratio of the iron exists in the Fe-montmorillonites was found more than 95%. Two kinetic models, including pseudo-first-order and pseudo-second-order model, were used to analyze the adsorption process of Fe (II) on montmorillonites. The results of our study showed that adsorption process fitted with pseudo-second-order well. Adsorption isotherms showed that Langmuir model was better than Freundlich model. The thermodynamic parameters ΔG{sup 0} and ΔH{sup 0} were 3.696 kJ/mol and 6.689 kJ/mol (we just gave the values at 298 K), respectively. The positive values at different temperatures showed that the adsorption process was non-spontaneous and endothermic. The characteristics of materials were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Surface area and porosity analyzer, Thermogravimetric analysis (TGA), Differential scanning calorimeter (DSC) and Zeta potential distribution.

  1. Conceptual adsorption models and open issues pertaining to performance assessment

    International Nuclear Information System (INIS)

    Serne, R.J.

    1991-10-01

    Recently several articles have been published that question the appropriateness of the distribution coefficient, Rd, concept to quantify radionuclide migration. Several distinct issues are raised by various critics. In this paper I provide some perspective on issues surrounding the modeling of nuclide retardation. The first section defines adsorption terminology and discusses various adsorption processes. The next section describes five commonly used adsorption conceptual models, specifically emphasizing what attributes that affect adsorption are explicitly accommodated in each model. I also review efforts to incorporate each adsorption model into performance assessment transport computer codes. The five adsorption conceptual models are (1) the constant Rd model, (2) the parametric Rd model, (3) isotherm adsorption models, (4) mass-action adsorption models, and (5) surface-complexation with electrostatics models. The final section discusses the adequacy of the distribution ratio concept, the adequacy of transport calculations that rely on constant retardation factors and the status of incorporating sophisticated adsorption models into transport codes

  2. CO_2-assisted compression-adsorption hybrid for cooling and desalination

    International Nuclear Information System (INIS)

    Ali, Syed Muztuza; Chakraborty, Anutosh; Leong, Kai Choong

    2017-01-01

    Highlights: • Amalgamation of vapour compression and adsorption. • Thermodynamic frameworks of compression-adsorption hybrid. • 60% improvement in COP as compared with conventional CO_2 cooling system. • Energy recovery from CO_2 is used for cooling and desalination. • Energy from gas cooler accelerates the desalination process. - Abstract: This paper presents a novel compression-adsorption hybrid that symbiotically combines adsorption and CO_2 compression cooling devices. The seemingly low efficiency of each cycle individually is overcome by an amalgamation with the other. Hence, both heat and water vapour refrigerant mass are recovered for continuous cooling and desalination. Two different configurations are presented. The first configuration deals with a two-stage heat recovery system. At the first stage, heat is recovered from the compressed carbon dioxide to drive the adsorption device. The second stage heat recovery system internally exchanges heat between the low pressure and high pressure refrigerants of the CO_2 cycle. The second configuration is proposed with an additional third-stage heat recovery from the gas cooler to the high pressure evaporator of the adsorption cycle. The water vapour mass is recovered from bed-to-bed adsorption at relatively higher pressure. A detailed thermodynamic framework is presented to simulate the performances in terms of COP (coefficient of performance), SCP (specific cooling power), SDWP (specific daily water production), PR (performance ratio) and OCR (overall conversion ratio). It is found that the overall COP is improved by more than 60% as compared to the conventional CO_2 cycle, and in addition, the system generates 12.7 m"3 of desalinated water per tonne of silica gel per day as extra benefits. Furthermore, both the heat and mass recoveries improve the overall conversion ratio, which is almost double as compared to the conventional CO_2 cycle.

  3. The effect of ionic strength on the adsorption of H{sup +}, Cd{sup 2+}, Pb{sup 2+}, and Cu{sup 2+} by Bacillus subtilis and Bacillus licheniformis: A surface complexation model

    Energy Technology Data Exchange (ETDEWEB)

    Daughney, C.J. [McGill Univ., Montreal, Quebec (Canada). Earth and Planetary Sciences; Fein, J.B. [Univ. of Notre Dame, IN (United States)

    1998-02-01

    To quantify metal adsorption onto bacterial surfaces, recent studies have applied surface complexation theory to model the specific chemical and electrostatic interactions occurring at the solution-cell wall interface. However, to date, the effect of ionic strength on these interactions has not been investigated. In this study, the authors perform acid-base titrations of suspensions containing Bacillus subtilis or Bacillus licheniformis in 0.01 or 0.1 M NaNO{sub 3}, and they evaluate the constant capacitance and basic Stern double-layer models for their ability to describe ionic-strength-dependent behavior. The constant capacitance model provides the best description of the experimental data. The constant capacitance model parameters vary between independently grown bacterial cultures, possibly due to cell wall variation arising from genetic exchange during reproduction. The authors perform metal-B. subtilis and metal-B. licheniformis adsorption experiments using Cd, Pb, and Cu, and they solve for stability constants describing metal adsorption onto distinct functional groups on the bacterial cell walls. They find that these stability constants vary substantially but systematically between the two bacterial species at the two different ionic strengths.

  4. Immobilization of Cu2 + and Cd2 + by earthworm manure derived biochar in acidic circumstance

    Institute of Scientific and Technical Information of China (English)

    Zhanghong Wang; Fei Shen; Dekui Shen; Yahui Jiang; Rui Xiao

    2017-01-01

    Earthworm manure,the by-product obtained from the disposing of biowastes by earthworm breeding,is largely produced and employed as a feedstock for biochar preparation through pyrolysis.For repairing acidic soil or acidic electroplating effluent,biochar physicochemical properties would suffer from some changes like an acidic washing process,which hence affected its application functions.Pristine biochar (UBC)from pyrolysis of earthworm manure at 700℃ and biochar treated by HCl (WBC) were comparatively investigated regarding their physicochemical properties,adsorption capability and adsorption mechanism of Cu2+ and Cd2+ from aqueous solution to explore the immobilization characteristics ofbiochar in acidic environment.After HCl treatment,the soluble ash content and phenolic-OH in the WBC sample was notably decreased against the increase of the carboxyl C==O,aromatic C=C and Si-O-Si,compared to that of UBC.All adsorption processes can be well described by Langmuir isotherm model.The calculated maximum adsorption capacity of Cu2+ and Cd2+ adsorption on UBC were 36.56and 29.31 mg/g,respectively,which were higher than that of WBC (8.64 and 12.81 mg/g,respectively),indicating that HCl treatment significantly decreased biochar adsorption ability.Mechanism analysis revealed that alkali and alkaline earth metallic,salts (carbonates,phosphates and silicates),and surface functional groups were responsible for UBC adsorption,corresponding to ion exchange,precipitation and complexation,respectively.However,ion exchange made little contributions to WBC adsorption due to the great loss of soluble ash content.WBC adsorption was mainly attributed to the abundant exposure of silicates and surface functional groups (carboxyl C==O and aromatic C=C).

  5. Noninjection Synthesis of CdS and Alloyed CdSxSe1−xNanocrystals Without Nucleation Initiators

    Directory of Open Access Journals (Sweden)

    Zou Yu

    2010-01-01

    Full Text Available Abstract CdS and alloyed CdSxSe1−x nanocrystals were prepared by a simple noninjection method without nucleation initiators. Oleic acid (OA was used to stabilize the growth of the CdS nanocrystals. The size of the CdS nanocrystals can be tuned by changing the OA/Cd molar ratios. On the basis of the successful synthesis of CdS nanocrystals, alloyed CdSxSe1−x nanocrystals can also be prepared by simply replacing certain amount of S precursor with equal amount of Se precursor, verified by TEM, XRD, EDX as well as UV–Vis absorption analysis. The optical properties of the alloyed CdSxSe1−x nanocrystals can be tuned by adjusting the S/Se feed molar ratios. This synthetic approach developed is highly reproducible and can be readily scaled up for potential industrial production.

  6. [Effect of concomitant substances and addition order on the adsorption of Tween 80 on sand].

    Science.gov (United States)

    Xu, Wei; Zhao, Yong-sheng; Li, Sui; Dai, Ning

    2008-08-01

    Adsorption of Tween 80 on sand was investigated, and the effect of inorganic salts (CaCl2), anionic surfactant (SDS) and lignosulphonates (sodium lignosulphonate or ammonium lignosulphonate) on the adsorption of Tween 80 on sand were evaluated at 25 degrees C. The results show that saturated adsorption amount of Tween 80 on sand enhance when CaCl2 or SDS is added into flushing solution of Tween 80. And the adsorption of Tween 80 on sand increase with the increase of molar fraction of CaCl2 or SDS in mixed flushing solution. And adsorption amount of Tween 80 on sand also enhance when SDS is added into sand firstly. The effects of mixing ratios and addition order of lignosulphonates on adsorption of Tween 80 were considered. The results show that with the increase of molar fraction of lignosulphonates in mixing flushing solution, adsorption amount of Tween 80 on sand decrease. The adsorption amount of Tween 80 reduce 20%-75% due to the exist of ammonium lignosulphonate is superior to sodium lignosulphonate (10%-60%) when mix the lignosulphonates-Tween 80 at the total mass ratios of 1:10, while the adsorption amount of Tween 80 reduce 70%-90% at the total mass ratios of 1:2. Lignosulphonates added into sand firstly is more efficient than that together. Therefore,use of lignosulphonates as a preflush can reduce the adsorption of surfactants on sand and is a better method to applied in in situ flushing.

  7. Retinol as a micronutrients related to cervical local immunity: The expression of tumor necrosis factor-alpha specifically stimulated with E6 epitope of human papillomavirus type-16 and ratio of CD4+/CD8+ T cell in natural history of cervical cancer

    Science.gov (United States)

    Utami, T. W.; Aziz, M. F.; Ibrahim, F.; Andrijono

    2017-08-01

    Retinol is one of the antioxidant micronutrients that plays essential roles in the immune system, by preventing the persistence of modulating CD4+ and CD8+ T cells and cytokines production. Tumor Necrosis Factor-Alpha (TNF-α) is an acute pro-inflammatory cytokine which has many crucial roles in controlling HPV. In contrast, when persistent infection occurs, TNF-α induces carcinogenesis. The ratio of CD4+ cells to CD8+ T cells and adequate TNF-α production in acute HPV infection are key points for clearance. The aim of this research is to analyze the sufficiency level of retinol deposit, the expression of TNF-α, and the ratio of CD4+: CD8+ T cells in a normal cervix, clearance and persistent HPV subclinical infection, and cervical cancer group. The sufficiency level of retinol deposit was analyzed from peripheral blood using the ELISA method. The cervico-vaginal secretions, which were incubated for 24 hours, were stimulated specifically by E6 epitope HPV type-16, measuring TNF-α expression semi-quantitatively by the ELISpot method and CD4+/CD8+ T cells quantitatively by flowcytometry method. The sufficient level of retinol deposit in a normal cervix, clearance HPV subclinical infection, persistent, and cervical cancer group was 85%, 75% (OR 1.89), 33.3% (OR 11.33), and 75% (OR 1.89), respectively. The expression of TNF-α in normal cervix group was 10%, while for cervical cancer it was 75% (OR 27.00; p CD4+: CD8+ T cells in the normal cervix and cervical cancer group was 10% and 25% (OR 0.33). There was no high ratio of CD4+: CD8+ T cells in clearance (OR 1.22) and persistent (OR 0.95) HPV subclinical infection groups. This study was able to prove that the normal cervix group has the highest retinol deposit sufficiency level and the cervical cancer group has the highest TNF-α expression (OR 27; p < 0.001). The lowest of retinol deposit sufficiency level was not in cervical cancer, but in the persistent HPV subclinical infection group (OR 11.33). There was

  8. Low-temperature solid-state synthesis and optical properties of CdS-ZnS and ZnS-CdS alloy nanoparticles

    International Nuclear Information System (INIS)

    Liu Jinsong; Zhao Chuanbao; Li Ziquan; Chen Jiankang; Zhou Hengzhi; Gu Shanqun; Zeng Youhong; Li Yongchan; Huang Yongbing

    2011-01-01

    Highlights: → Using a simple low-temperature solid-state synthetic method, ZnS-CdS and CdS-ZnS alloy nanoparticles were obtained, respectively. → The size of the nanoparticles increased with increasing reaction temperature, and reaction sequence had no effect on the size of the nanoparticles under the same temperature. → The particle diameters of the CdS-ZnS products decreased gradually with increasing Cd 2+ /Zn 2+ molar ratio, whereas those of the ZnS-CdS products increased gradually with increasing Zn 2+ /Cd 2+ molar ratio. → The study shows that sufficient grinding and crystalline water may be a key in forming the alloy nanoparticles. → Optical properties of the products depend on reaction temperature, reactant addition sequence, and reactant molar ratio. - Abstract: A simple low-temperature solid-state synthetic method was employed to obtain ZnS-CdS and CdS-ZnS alloy nanoparticles. The effects of reaction sequence, reactant molar ratios, and synthesis temperature on the products were investigated. The crystal structure and morphology of the products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and fourier transform infrared (FT-IR) spectroscopy. The results show that the products are alloy nanoparticles with a cubic phase structure. The formation mechanism of the alloy nanoparticles is briefly discussed. Sufficient grinding and crystalline water may be essential to form alloy nanoparticles. Ultraviolet-visible (UV-vis) spectra show that the edge absorptions of the CdS-ZnS and ZnS-CdS nanoparticles were located between those of ZnS and CdS bulks, and the absorbance at the peak maximum was practically dependent on reaction temperature, reaction sequence, and molar ratio. Extrinsic deep-level emission resulted in strong peaks in the photoluminescence (PL) spectra. The position and intensity of the emission peaks varied with the conditions during synthesis.

  9. [Studies on the process of Herba Clinopodii saponins purified with macroporous adsorption resin].

    Science.gov (United States)

    Zhang, Yi; Yan, Dan; Han, Yumei

    2005-10-01

    To study the technological parameters of the purification process of saponins with macroporous adsorption resin. The adsorptive characteristics and elutive parameters of the process were studied by taking the elutive and purified ratio of saponins as markers. 11.4 ml of the extraction of Herba Clinopodii (crude drugs 0.2 g/ml) was purified with a column of macroporous adsorption resin (phi15 mm x H90 mm, dry weight 2.5 g) and washed with 3BV of distilled water, then eluted with 3BV of 30% ethanol and 3BV of 70% ethanol. Most of saponins were collected in the 70% ethanol. With macroporous adsorption resin adsorbing and purifying,the elutive ratio of saponins is 86.8% and the purity reaches 153.2%. So this process of applying macroporous adsorption resin to adsorb and purify Saponins is feasible.

  10. Synthesis and Characterization of CdS/TiO2-Montmorillonite Nanocomposite with Enhanced Visible-Light Absorption

    Directory of Open Access Journals (Sweden)

    Feng-shan Zhou

    2014-01-01

    Full Text Available Sodium montmorillonite (MMT was chosen as the carrier; a serial of CdS/TiO2-MMT nanocomposites with enhanced visible-light absorption ability was prepared by hydrothermal synthesis method combination with semiconductor compound modification method. The samples are characterized by X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, and ultraviolet visible (UV-Vis spectroscopy; the results showed that TiO2 and CdS nanoparticles were loaded on the surface of montmorillonite uniformly. N2 adsorption-desorption experiment showed that the specific surface area of TiO2/montmorillonite nanocomposite made by this method can reach 200 m2/g and pore-size distribution was from 4 to 6 nm; UV-Vis showed that the recombination of CdS and TiO2 enhanced visible-light absorption ability of samples of TiO2/montmorillonite and visible-light absorption ability increase with the increased of the adsorption of CdS.

  11. Effect of cations in the background electrolyte on the adsorption kinetics of copper and cadmium and the isoelectric point of imogolite

    Energy Technology Data Exchange (ETDEWEB)

    Arancibia-Miranda, Nicolás, E-mail: nicolas.arancibia@usach.cl [Center for the Development of Nanoscience and Nanotechnology, CEDENNA, 9170124, Santiago (Chile); Facultad de Química y Biología, Universidad de Santiago de Chile, Av. B. O' Higgins, 3363, Santiago (Chile); Silva-Yumi, Jorge [Center for the Development of Nanoscience and Nanotechnology, CEDENNA, 9170124, Santiago (Chile); Escudey, Mauricio [Center for the Development of Nanoscience and Nanotechnology, CEDENNA, 9170124, Santiago (Chile); Facultad de Química y Biología, Universidad de Santiago de Chile, Av. B. O' Higgins, 3363, Santiago (Chile)

    2015-12-15

    Highlights: • Effect of various cations on the IEP of imogolite was studied. • Studied adsorption kinetics of Cd and Cu on imogolite in the presence of cations. • K{sup +} acted as an indifferent electrolyte and did not affect the IEP of imogolite. • Adsorption in the presence of K{sup +} is described well by three of the four models. • These include pseudo-second order, Elovich equation, and Weber–Morris model. - Abstract: Modification of surface charge and changes in the isoelectric point (IEP) of synthetic imogolite were studied for various cations in the background electrolyte (K{sup +}, NH{sub 4}{sup +}, Mg{sup 2+}, and Ca{sup 2+}). From the electrophoretic mobility data, it was established that the K{sup +} (KCl) concentration does not affect the IEP of imogolite; therefore, KCl is a suitable background electrolyte. In terms of the magnitude of changes in the IEP and surface charge, the cations may be ranked in the following order: Mg{sup 2+} ≈ Ca{sup 2+} >> NH{sub 4}{sup +} >> K{sup +}. Four different kinetic models were used to evaluate the influence of Mg{sup 2+}, Ca{sup 2+}, NH{sub 4}{sup +}, and K{sup +} on the adsorption of Cd and Cu on synthetic imogolite. When adsorption occurs in the presence of cations with the exception of K{sup +}, the kinetics of the process is well described by the pseudo-first order model. On the other hand, when adsorption is conducted in the presence of K{sup +}, the adsorption kinetics is well described by the pseudo-second order, Elovich, and Weber–Morris models. From the surface charge measurements, the affinity between imogolite and the cations and their effect on the adsorption of trace elements, namely Cu and Cd, were established.

  12. Effect of amendments addition on adsorption of landfill leachate

    Science.gov (United States)

    Bai, X. J.; Zhang, H. Y.; Wang, G. Q.; Gu, J.; Wang, J. H.; Duan, G. P.

    2018-03-01

    The disposal of leachate has become one of the most pressing problems for landfills. This study taking three kinds of amendments, corn straw, mushroom residue and garden waste as adsorbent materials, evaluates the different amendments on the leachate adsorption effect through analyzing indicators as the saturation adsorption ratio, sulfur containing odor emission, heat value. The results showed that all three kinds of amendments can effectively adsorb leachate, with saturation adsorption ratio between 1: 2 and 1: 4. Adding amendment could significantly reduce the sulfur containing odor emission of leachate. Compared the three kinds of amendments, mushroom residue could adsorb leachate at a maximize degree with a low concentration of sulfur containing odor emission. The industrial analysis showed that the heat values of the amendments after absorbing leachate are more than 14MJ/kg, and it can be utilized as a biomass fuel.

  13. Adsorption of heavy metal from landfill leachate by wasted biosolids ...

    African Journals Online (AJOL)

    However, the concentration of Cd, Cu and Zn was not detected in the leachate but Fe was found to be in high concentration (184 mg/L) in raw leachate collected from a municipal landfill site. Therefore, the effects of biomass dosage, contact time, pH and agitation speed were observed for optimal adsorption of iron from ...

  14. Adsorption kinetics of Pb 2+ , Ni 2+ AND Cd 2+ onto powdered ...

    African Journals Online (AJOL)

    In this paper, the removal of lead, nickel and cadmium from aqueous solution by adsorption was studied. Chicken's eggshells were collected, washed with distilled water, air dried, pulverized, sieved into different particle sizes and stored for use. Powdered eggshells (PES) were separated, its properties were determined and ...

  15. Possibility of using adsorption refrigeration unit in district heating network

    Science.gov (United States)

    Grzebielec, Andrzej; Rusowicz, Artur; Jaworski, Maciej; Laskowski, Rafał

    2015-09-01

    Adsorption refrigeration systems are able to work with heat sources of temperature starting with 50 °C. The aim of the article is to determine whether in terms of technical and economic issues adsorption refrigeration equipment can work as elements that produce cold using hot water from the district heating network. For this purpose, examined was the work of the adsorption air conditioning equipment cooperating with drycooler, and the opportunities offered by the district heating network in Warsaw during the summer. It turns out that the efficiency of the adsorption device from the economic perspective is not sufficient for production of cold even during the transitional period. The main problem is not the low temperature of the water supply, but the large difference between the coefficients of performance, COPs, of adsorption device and a traditional compressor air conditioning unit. When outside air temperature is 25 °C, the COP of the compressor type reaches a value of 4.49, whereas that of the adsorption device in the same conditions is 0.14. The ratio of the COPs is 32. At the same time ratio between the price of 1 kWh of electric power and 1 kWh of heat is only 2.85. Adsorption refrigeration equipment to be able to compete with compressor devices, should feature COPads efficiency to be greater than 1.52. At such a low driving temperature and even changing the drycooler into the evaporative cooler it is not currently possible to achieve.

  16. TiO2-CdS Nanocomposites: Effect of CdS Oxidation on the Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    A. Hamdi

    2016-01-01

    Full Text Available Nanocomposites TiO2-CdS with different relative contents of CdS (molar ratios Cd/Ti = 0.02, 0.03, 0.05, 0.1, 0.2, and 0.5 were studied. The structural, photophysical, and chemical properties were investigated using XRD, Raman spectroscopy, XPS, GSDR, and LIL. XRD and Raman results confirmed the presence of TiO2 and CdS with intensities dependent on the ratio Cd/Ti. The presence of CdSO4 was detected by XPS at the surface of all TiO2-CdS composites. The relative amount of sulphate was dependent on the CdS loading. Luminescence time-resolved spectra clearly proved the existence of an excitation transfer process from CdS to TiO2 through the luminescence emission from TiO2 after excitation of CdS at λexc=410 nm, where no direct excitation of TiO2 occurs. Photodegradation of a series of aromatic carboxylic acids—benzoic, salicylic, 4-bromobenzoic, 3-phenylpropionic, and veratric acids—showed a great enhancement in the photocatalytic efficiency of the TiO2-CdS composites, which is due, mainly, to the effect of the charge carriers’ increased lifetime. In addition, it was shown that the oxidation of CdS to CdSO4 did not result in the deactivation of the photocatalytic properties and even contributed to enhance the degradation efficiency.

  17. Irreversible adsorption of particles on heterogeneous surfaces.

    Science.gov (United States)

    Adamczyk, Zbigniew; Jaszczółt, Katarzyna; Michna, Aneta; Siwek, Barbara; Szyk-Warszyńska, Lilianna; Zembala, Maria

    2005-12-30

    Methods of theoretical and experimental evaluation of irreversible adsorption of particles, e.g., colloids and globular proteins at heterogeneous surfaces were reviewed. The theoretical models were based on the generalized random sequential adsorption (RSA) approach. Within the scope of these models, localized adsorption of particles occurring as a result of short-ranged attractive interactions with discrete adsorption sites was analyzed. Monte-Carlo type simulations performed according to this model enabled one to determine the initial flux, adsorption kinetics, jamming coverage and the structure of the particle monolayer as a function of the site coverage and the particle/site size ratio, denoted by lambda. It was revealed that the initial flux increased significantly with the site coverage theta(s) and the lambda parameter. This behavior was quantitatively interpreted in terms of the scaled particle theory. It also was demonstrated that particle adsorption kinetics and the jamming coverage increased significantly, at fixed site coverage, when the lambda parameter increased. Practically, for alpha = lambda2theta(s) > 1 the jamming coverage at the heterogeneous surfaces attained the value pertinent to continuous surfaces. The results obtained prove unequivocally that spherically shaped sites were more efficient in binding particles in comparison with disk-shaped sites. It also was predicted that for particle size ratio lambda charge. Particle deposition occurred under diffusion-controlled transport conditions and their coverage was evaluated by direct particle counting using the optical and electron microscopy. Adsorption kinetics was quantitatively interpreted in terms of numerical solutions of the governing diffusion equation with the non-linear boundary condition derived from Monte-Carlo simulations. It was proven that for site coverage as low as a few percent the initial flux at heterogeneous surfaces attained the maximum value pertinent to homogeneous

  18. A surface structural model for ferrihydrite II: Adsorption of uranyl and carbonate

    NARCIS (Netherlands)

    Hiemstra, T.; Riemsdijk, van W.H.; Rossberg, A.; Ulrich, K.

    2009-01-01

    The adsorption of uranyl (UO22+) on ferrihydrite has been evaluated with the charge distribution (CD) model for systems covering a very large range of conditions, i.e. pH, ionic strength, CO2 pressure, U(VI) concentration, and loading. Modeling suggests that uranyl forms bidentate inner sphere

  19. Preparation and Evaluation of Adsorbents from Coal and Irvingia gabonensis Seed Shell for the Removal of Cd(II and Pb(II Ions from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Mercy A. Ezeokonkwo

    2018-01-01

    Full Text Available Cd(II and Pb(II ions removal using adsorbents prepared from sub-bituminous coal, lignite, and a blend of coal and Irvingia gabonensis seed shells was investigated. Fourier transform infrared, scanning electron microscope and X-ray fluorescence analyses implicated hydroxyl, carbonyl, Al2O3, and SiO2 as being responsible for attaching the metal ions on the porous adsorbents. The optimum adsorption of carbonized lignite for the uptake of Cd(II and Pb(II ions from aqueous media were 80.93 and 87.85%, respectively. Batch adsorption was done by effect of adsorbent dosage, pH, contact time, temperature, particle size, and initial concentration. Equilibrium for the removal of Pb(II and Cd(II was established within 100 and 120 min respectively. Blending the lignite-derived adsorbent with I. gabonensis seed shell improved the performance significantly. More improvement was observed on modification of the blend using NaOH and H3PO4. Pb(II was preferentially adsorbed than Cd(II in all cases. Adsorption of Cd(II and Pb(II ions followed Langmuir isotherm. The adsorption kinetics was best described by pseudo-second order model. The potential for using a blend of coal and agricultural byproduct (I. gabonensis seed shell was found a viable alternative for removal of toxic heavy metals from aqueous solutions.

  20. A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.C.; Li, Y.H. [College of Electromechanical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Li, D.; Zhang, J.P. [College of Electromechanical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Xia, Y.Z. [Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China)

    2010-01-15

    As one kind of environmentally friendly refrigeration, the adsorption refrigeration has attracted many attentions in resent decades. This paper introduces the researches of adsorption refrigeration systems with the commonly used working pairs, advanced adsorption cycles, heat and mass transfer enhancement and attempts of adsorption refrigeration applications. Poor heat and mass transfer problem is a bottleneck to prevent the improvements of the adsorption refrigeration technique. Two ways to enhance the heat and mass transfer are discussed in this paper. The adsorption deterioration of adsorbent, another obstacle to physical adsorption refrigeration applications, is also pointed out. And the possible reasons and the possible methods are analyzed. (author)

  1. Removal of Cd (II) from water using the waste of jatropha fruit ( Jatropha curcas L.)

    Science.gov (United States)

    Nacke, Herbert; Gonçalves, Affonso Celso; Coelho, Gustavo Ferreira; Schwantes, Daniel; Campagnolo, Marcelo Angelo; Leismann, Eduardo Ariel Völz; Junior, Élio Conradi; Miola, Alisson Junior

    2017-10-01

    The aim of this work was to evaluate the removal of Cd (II) from water using three biosorbents originated from the biomass of jatropha (bark, endosperm, and endosperm + tegument). For that, batch tests were performed to verify the effect of solution pH, adsorbent mass, contact time, initial concentration of Cd (II), and the temperature of the process. The adsorption process was evaluated by the studies of kinetics, isotherms, and thermodynamics. The ideal conditions of solution pH were 5.5 and 8 g L-1 of adsorbent mass of biosorbents by solution volume, with an equilibrium time of 60 min. According to the Langmuir model, the maximum adsorption capacity for bark, endosperm, and bark + endosperm of jatropha was, respectively, 29.665, 19.562, and 34.674 mg g-1, predominating chemisorption in monolayers. The biosorbents presented potential for the remediation of waters contaminated with Cd (II).

  2. The adsorption ability of Cr(VI) on sawdust–polyaniline nanocomposite

    International Nuclear Information System (INIS)

    Binh Phan, Thi; Que Do, Ngoc; Thanh Thuy Mai, Thi

    2010-01-01

    The results of this study of sawdust–polyaniline nanocomposite synthesized by a chemical method for Cr(VI) treatment in the environment are presented. Cr(VI) adsorption on a composite was determined by colorimetry. The results showed that sawdust–polyaniline composite synthesized with an aniline:sawdust ratio equal to 0.5 had an adsorption degree of 21.4 mg g −1 and adsorbed nearly 99% of the Cr(VI) after 2 h. The composite could be used for the adsorption of Cr(VI) from waste water. The Cr(VI) adsorption ability of the composite slightly depends on the pH value of the medium. The adsorption is fast during the first half hour and then the rate decreases

  3. Preparation and Adsorption Performances of Phragmites australis Activated Carbon with High Acidity

    Directory of Open Access Journals (Sweden)

    FU Cheng-kai

    2017-03-01

    Full Text Available For removal of heavy metals from wastewater and recycling the wetland plants, the present study investigated the viability of using silage of Phragmites australis (PA to prepare activated carbons (ACs with high acidity. BET surface area, porous texture and surface functional characteristics of ACs were analyzed by N2 adsorption/desorption, elemental analysis and Boehm titration method. ACs presented well-developed micro-porosity and favorable surface acidity. The sorption equilibrium data for Ni (Ⅱ and Cd (Ⅱ sorption onto ACs were analyzed by the Langmuir and Freundlich models. The Langmuir model was fitted well to the adsorption behavior. The properties of high surface acidity promoted the adsorption of heavy metals by the silage-treated ACs and the chemical sorption played the key role in the sorption process.

  4. Enhanced photoelectrochemical perporties of graphene nanowalls–CdS composite materials

    International Nuclear Information System (INIS)

    Song, Xuefen; Wang, Mingjun; Wei, Dapeng; Liu, Dun; Shi, Haofei; Hu, Chenguo; Fang, Liang; Zhang, Wei; Du, Chunlei

    2015-01-01

    A photo-electrochemical electrode of CdS–modified graphene walls (GWs) is fabricated via a successive ionic layer adsorption and reaction (SILAR) process. The as-prepared CdS–GWs composite structures could notably enhance photon absorption (in the visible region) and effectively facilitate the spatial separation of photo-generated carriers, bringing the enhanced photocurrent response. The effective area between CdS nanoparticles (NPs) and GWs is a crucial factor for the photocurrent density. Remarkably, the proposed CdS–GWs photo-anode displays satisfactory performance with the excellent photo-current density of 470 μA/cm 2 and wonderful stability as long as dozens of days. Our studies confirm that CdS–GWs nano-composites could work as high-performance photo-electrochemical electrodes for a lot of potential applications. - Highlights: • The GWs/CdS composites were synthesized via a simple SILAR process. • The mechanism of enhanced photocurrent response was investigated. • The GWs/CdS anode exhibits photo-current density of 470 μA/cm 2 . • The GWs/CdS anode has excellent stability.

  5. Artificial intelligence and regression analysis for Cd(II) ion biosorption from aqueous solution by Gossypium barbadense waste.

    Science.gov (United States)

    Fawzy, Manal; Nasr, Mahmoud; Nagy, Heba; Helmi, Shacker

    2018-02-01

    In this study, batch biosorption experiments were conducted to determine the removal efficiency of Cd(II) ion from aqueous solutions by Gossypium barbadense waste. The biosorbent was characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) connected with energy dispersive X-ray (EDX). The sorption mechanism was described by complexation/chelation of Cd 2+ with the functional groups of O-H, C=O, -COO-, and C-O, as well as, cation-exchange with Mg 2+ and K + . At initial Cd(II) ion concentration (C o ), 50 mg/L, the adsorption equilibrium of 89.2% was achieved after 15 min under the optimum experimental factors of pH 6.0, biosorbent dosage 10 g/L, and particle diameter 0.125-0.25 mm. Both Langmuir and Freundlich models fitted well to the sorption data, suggesting the co-existence of monolayer coverage along with heterogenous surface biosorption. Artificial neural network (ANN) with a structure of 5-10-1 was performed to predict the Cd(II) ion removal efficiency. The ANN model provided high fit (R 2 0.923) to the experimental data and indicated that C o was the most influential input. A pure-quadratic model was developed to determine the effects of experimental factors on Cd(II) ion removal efficiency, which indicated the limiting nature of pH and biosorbent dosage on Cd(II) adsorption. Based on the regression model (R 2 0.873), the optimum experimental factors were pH 7.61, biosorbent dosage 24.74 g/L, particle size 0.125-0.25 mm, and adsorption time 109.77 min, achieving Cd 2+ removal of almost 100% at C o 50 mg/L.

  6. Dynamic adsorption of mixtures of Rhodamine B, Pb (II), Cu (II) and Zn(II) ions on composites chitosan-silica-polyethylene glycol membrane

    Science.gov (United States)

    Mahatmanti, F. W.; Rengga, W. D. P.; Kusumastuti, E.; Nuryono

    2018-04-01

    The adsorption of a solution mixture of Rhodamine B, Pb (II), Cu (II) and Zn(II) was studied using dynamic methods employing chitosan-silica-polyethylene glycol (Ch/Si/P) composite membrane as an adsorptive membrane. The composite Ch/Si/P membrane was prepared by mixing a chitosan-based membrane with silica isolated from rice husk ash (ASP) and polyethylene glycol (PEG) as a plasticizer. The resultant composite membrane was a stronger and more flexible membrane than the original chitosan-based membrane as indicated by the maximum percentage of elongation (20.5 %) and minimum Young’s Modulus (80.5 MPa). The composite membrane also showed increased mechanical and hydrophilic properties compared to the chitosan membranes. The membrane was used as adsorption membrane for Pb (II), Cu (II), Cd (II) ions and Rhodamine B dyes in a dynamic system where the permeation and selectivity were determined. The permeation of the components was observed to be in the following order: Rhodamine B > Cd (II) > Pb (II) > Cu (II) whereas the selectivity was shown to decrease the order of Cu (II) > Pb (II) > Cd (II) > Rhodamine B.

  7. Separation and purification of rebaudioside A from extract of Stevia Rebaudiana leaves by macroporous adsorption resins

    Directory of Open Access Journals (Sweden)

    Anvari Masoumeh

    2016-03-01

    Full Text Available The separation and purification of rebaudioside A from Stevia rebaudiana crude extracts (Steviosides by macroporous resin were optimized by Taguchi orthogonal array (OA experimental design methodology. This approach was applied to evaluate the influence of five factors (adsorption temperature, desorption time, elution solution ratio, adsorption volume and type of resin on the rebaudioside A yield. The percentage contribution of each factor was also determined. The results showed that elution solution ratio and adsorption volume made the greatest (59.6% and the lowest (1.3% contribution, respectively. The results showed that the Taguchi method is able to model the purification of rebaudioside A process well (R2 > 0.998 and can therefore be applied in future studies conducted in various fields. Adsorption temperature 35°C, desorption time 60min, elution solution ratio 3, adsorption volume 200ml and HPD-400 as resin were the best conditions determined by the Taguchi method.

  8. Adsorptive removal of heavy metals from water using sodium titanate nanofibres loaded onto GAC in fixed-bed columns.

    Science.gov (United States)

    Sounthararajah, D P; Loganathan, P; Kandasamy, J; Vigneswaran, S

    2015-04-28

    Heavy metals are serious pollutants in aquatic environments. A study was undertaken to remove Cu, Cd, Ni, Pb and Zn individually (single metal system) and together (mixed metals system) from water by adsorption onto a sodium titanate nanofibrous material. Langmuir adsorption capacities (mg/g) at 10(-3)M NaNO3 ionic strength in the single metal system were 60, 83, 115 and 149 for Ni, Zn, Cu, and Cd, respectively, at pH 6.5 and 250 for Pb at pH 4.0. In the mixed metals system they decreased at high metals concentrations. In column experiments with 4% titanate material and 96% granular activated carbon (w/w) mixture at pH 5.0, the metals breakthrough times and adsorption capacities (for both single and mixed metals systems) decreased in the order Pb>Cd, Cu>Zn>Ni within 266 bed volumes. The amounts adsorbed were up to 82 times higher depending on the metal in the granular activated carbon+titanate column than in the granular activated carbon column. The study showed that the titanate material has high potential for removing heavy metals from polluted water when used with granular activated carbon at a very low proportion in fixed-bed columns. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Modification of Cellulose with 4.4 Diaminodiphenylether-O-Hydroxibenzaldehide as Adsorbent and Its Application for Adsorbing Metalic Ion of Cd2+ In Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Nurlisa HIdayati

    2016-06-01

    Full Text Available This research on the modification of cellulose using 4,4-diaminodiphenylether and o-hydroxybenzaldehyde and its application to adsorb Cd2+ in aqueous solution has been done. The adsorption studies of cellulose and modified cellulose were done by using batch technique. The cellulose and modified cellulose were characterized by FTIR. The FTIR spectra revealed characteristic bands of 1573 cm-1, 1280 cm-1, 3749 cm-1 and 1056 cm-1. It indicates function group of C=N, C=O, O-H and Si-OR bond, respectively. The FTIR spectra of cellulose and modified cellulose which interacted to Cd2+, it were indicated by the shift in wavenumber 3410 cm-1 to 3371 cm-1. This spectral shift indicating Cd2+ bound to OH-group. In this research, interaction between modified cellulose with Cd2+ confirmed by intensities spectral changes at 1620 cm-1. The adsorption capacity and energy from adsorption of Cd2+ ions toward cellulose were 71,43 mg/g and 4,142 kJ/mol, while toward modified cellulose were 55,56 mg/g and 0,13 kJ/mol, respectively.

  10. Heavy metals adsorption by novel EDTA-modified chitosan-silica hybrid materials.

    Science.gov (United States)

    Repo, Eveliina; Warchoł, Jolanta K; Bhatnagar, Amit; Sillanpää, Mika

    2011-06-01

    Novel adsorbents were synthesized by functionalizing chitosan-silica hybrid materials with (ethylenediaminetetraacetic acid) EDTA ligands. The synthesized adsorbents were found to combine the advantages of both silica gel (high surface area, porosity, rigid structure) and chitosan (surface functionality). The Adsorption potential of hybrid materials was investigated using Co(II), Ni(II), Cd(II), and Pb(II) as target metals by varying experimental conditions such as pH, contact time, and initial metal concentration. The kinetic results revealed that the pore diffusion process played a key role in adsorption kinetics, which might be attributed to the porous structure of synthesized adsorbents. The obtained maximum adsorption capacities of the hybrid materials for the metal ions ranged from 0.25 to 0.63 mmol/g under the studied experimental conditions. The adsorbent with the highest chitosan content showed the best adsorption efficiency. Bi-Langmuir and Sips isotherm model fitting to experimental data suggested the surface heterogeneity of the prepared adsorbents. In multimetal solutions, the hybrid adsorbents showed the highest affinity toward Pb(II). Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Kinetic Adsorption Study of Silver Nanoparticles on Natural Zeolite: Experimental and Theoretical Models

    Directory of Open Access Journals (Sweden)

    Alvaro Ruíz-Baltazar

    2015-12-01

    Full Text Available In this research, the adsorption capacity of Ag nanoparticles on natural zeolite from Oaxaca is presented. In order to describe the adsorption mechanism of silver nanoparticles on zeolite, experimental adsorption models for Ag ions and Ag nanoparticles were carried out. These experimental data obtained by the atomic absorption spectrophotometry technique were compared with theoretical models such as Lagergren first-order, pseudo-second-order, Elovich, and intraparticle diffusion. Correlation factors R2 of the order of 0.99 were observed. Analysis by transmission electron microscopy describes the distribution of the silver nanoparticles on the zeolite outer surface. Additionally, a chemical characterization of the material was carried out through a dilution process with lithium metaborate. An average value of 9.3 in the Si/Al ratio was observed. Factors such as the adsorption behavior of the silver ions and the Si/Al ratio of the zeolite are very important to support the theoretical models and establish the adsorption mechanism of Ag nanoparticles on natural zeolite.

  12. Possibility of using adsorption refrigeration unit in district heating network

    Directory of Open Access Journals (Sweden)

    Grzebielec Andrzej

    2015-09-01

    Full Text Available Adsorption refrigeration systems are able to work with heat sources of temperature starting with 50 °C. The aim of the article is to determine whether in terms of technical and economic issues adsorption refrigeration equipment can work as elements that produce cold using hot water from the district heating network. For this purpose, examined was the work of the adsorption air conditioning equipment cooperating with drycooler, and the opportunities offered by the district heating network in Warsaw during the summer. It turns out that the efficiency of the adsorption device from the economic perspective is not sufficient for production of cold even during the transitional period. The main problem is not the low temperature of the water supply, but the large difference between the coefficients of performance, COPs, of adsorption device and a traditional compressor air conditioning unit. When outside air temperature is 25 °C, the COP of the compressor type reaches a value of 4.49, whereas that of the adsorption device in the same conditions is 0.14. The ratio of the COPs is 32. At the same time ratio between the price of 1 kWh of electric power and 1 kWh of heat is only 2.85. Adsorption refrigeration equipment to be able to compete with compressor devices, should feature COPads efficiency to be greater than 1.52. At such a low driving temperature and even changing the drycooler into the evaporative cooler it is not currently possible to achieve.

  13. In vitro Th1 and Th2 cell polarization is severely influenced by the initial ratio of naïve and memory CD4+ T cells

    DEFF Research Database (Denmark)

    Blom, Lars; Poulsen, Lars K.

    2013-01-01

    by even small percentages (99% naïve CD4+ T cells resulted in better Th1 and Th2 polarization with significant reduced fractions of IL-4+ and IFN-γ+ CD4+ T cells, respectively. Moreover, the Th2 primed >99% naïve CD4+ T cells showed significantly higher ratio of IL-4+:IFN-γ+ (>4 fold) and GATA-3:+T......-bet+ (>3 fold) CD4+ T cells when compared with the standard purified >90-95% naïve CD4+ T cells primed under the same culture conditions. This suggests immunomagnetic bead separation, a low cost and easy available technique, with few modifications to the manufacturer's protocol as an attractive alternative...... for laboratories not having a cell sorter. Taken together, we report that it is essential to use rigorously purified (>99%) naïve CD4+ T cells for optimal initial in vitro Th1 and Th2 priming....

  14. Response surface modeling of boron adsorption from aqueous solution by vermiculite using different adsorption agents: Box-Behnken experimental design.

    Science.gov (United States)

    Demirçivi, Pelin; Saygılı, Gülhayat Nasün

    2017-07-01

    In this study, a different method was applied for boron removal by using vermiculite as the adsorbent. Vermiculite, which was used in the experiments, was not modified with adsorption agents before boron adsorption using a separate process. Hexadecyltrimethylammonium bromide (HDTMA) and Gallic acid (GA) were used as adsorption agents for vermiculite by maintaining the solid/liquid ratio at 12.5 g/L. HDTMA/GA concentration, contact time, pH, initial boron concentration, inert electrolyte and temperature effects on boron adsorption were analyzed. A three-factor, three-level Box-Behnken design model combined with response surface method (RSM) was employed to examine and optimize process variables for boron adsorption from aqueous solution by vermiculite using HDTMA and GA. Solution pH (2-12), temperature (25-60 °C) and initial boron concentration (50-8,000 mg/L) were chosen as independent variables and coded x 1 , x 2 and x 3 at three levels (-1, 0 and 1). Analysis of variance was used to test the significance of variables and their interactions with 95% confidence limit (α = 0.05). According to the regression coefficients, a second-order empirical equation was evaluated between the adsorption capacity (q i ) and the coded variables tested (x i ). Optimum values of the variables were also evaluated for maximum boron adsorption by vermiculite-HDTMA (HDTMA-Verm) and vermiculite-GA (GA-Verm).

  15. Adsorption studies on bleaching of palm-kernel oil with activated ...

    African Journals Online (AJOL)

    Adsorption studies were performed on bleaching of palm-kernel oil (PKO) with different weight ratios of activated bentonite clay/PKO, ranging from 0.25% to 3% and at different temperatures of 70ºC, 80ºC, 90ºC and 100ºC. The equilibrium data generated were subsequently fitted with Langmuir and Freundlich adsorption ...

  16. Augmenting granular activated carbon with natural clay for multicomponent sorption of heavy metals from aqueous solutions.

    Science.gov (United States)

    Mu'azu, Nuhu Dalhat; Essa, Mohammed Hussain; Lukman, Salihu

    2017-10-01

    Multicomponent adsorption of Cd, Cr, Cu, Pb and Zn onto date palm pits based granular activated carbon (GAC) augmented with highly active natural clay at different proportion was investigated. The effects of the initial pH and the adsorbents mixed ratio on the removal selectivity sequence of the metals evaluated. Batch adsorption experiments were undertaken at initial pH 2, 6 and 12. At initial pH 2, both the percent removal and the metals adsorptive capacity decreased with increasing GAC to clay ratio (from 0 to 1) with the percentage removal of Cd, Zn and Cr ions dropping from 68, 81, 100% to 43, 57 and 70%, respectively. At both pH 6 and 12, the percentage removals and adsorption capacities of all the heavy metal ions are higher than at pH 2. Selectivity sequences for pH 2, 6 and 12 followed the order Pb > Cr > Cu > Zn > Cd; Pb > Cr > Cu > Cd > Zn and Cd > Cr > Cu > Pb > Zn, respectively. The adsorption trends were analyzed in relation to point of zero charge and ξ-potential and the metals ions speciation at different pH. These results will help better understand the feasibility of augmenting GAC with natural clay minerals during fixed bed column test which is more beneficial for practical industrial applications.

  17. [Effect of different organic fertilizers on bioavailability of soil Cd and Zn].

    Science.gov (United States)

    Xie, Yun-he; Ji, Xiong-hui; Wu, Jia-mei; Huang, Juan; Guan, Di; Zhu, Jian

    2015-03-01

    The active effect of soil Cd and Zn and their interaction was studied in typical paddy field in south China by monitoring the contents of Cd and Zn in soil and rice in rice fields applied with pig manure, chicken manure or rice straw for 4 years continuously. The results showed that applying pig manure, chicken manure or rice straw had no significant impact on the soil total Cd content, soil available Cd content and soil Cd activity, but tended to increase the soil total Cd content and increased the soil total Zn content, soil available Zn content and Zn activity significantly. Applications of pig manure, chicken manure and rice straw all reduced the Cd content of brown rice, in order of pig manure > chicken manure > rice straw. The Cd contents of brown rice, stem and leaf in the treatment applied with pig manure were lower than in the control by 37.5%, 44.0% and 36.4%, respectively; the Cd contents of brown rice, stem and leaf in the treatment applied with chicken manure were lower than in the control by 22.5%, 33.8%, and 22.7%, respectively; the Cd content of brown rice in the treatment applied with rice straw was lower than in the control by 7.5% but its contents in stem and leaf increased by 8.2% and 22.7% , respectively. The reduction in the brown rice Cd content was mainly due to the reduction of Cd enrichment from soil to brown rice after application of pig or chicken manure, but mainly due to the reduction of Cd transportation from stem to brown rice after straw application. Applications of pig manure, chicken manure and rice straw increased Zn contents in rice stem by 53.4%, 53.4% and 13.9%, respectively, but all had no significant effect on brown rice and leaf' s Zn contents. Zn and Cd had the significant antagonistic effects in the soil and rice stem. The increase of Zn content in soil and rice stem inhibited the adsorption and accumulation of Cd in the brown rice, stem and leaf significantly, and with the increase of the proportion of Zn/Cd, the

  18. Econometric models for predicting confusion crop ratios

    Science.gov (United States)

    Umberger, D. E.; Proctor, M. H.; Clark, J. E.; Eisgruber, L. M.; Braschler, C. B. (Principal Investigator)

    1979-01-01

    Results for both the United States and Canada show that econometric models can provide estimates of confusion crop ratios that are more accurate than historical ratios. Whether these models can support the LACIE 90/90 accuracy criterion is uncertain. In the United States, experimenting with additional model formulations could provide improved methods models in some CRD's, particularly in winter wheat. Improved models may also be possible for the Canadian CD's. The more aggressive province/state models outperformed individual CD/CRD models. This result was expected partly because acreage statistics are based on sampling procedures, and the sampling precision declines from the province/state to the CD/CRD level. Declining sampling precision and the need to substitute province/state data for the CD/CRD data introduced measurement error into the CD/CRD models.

  19. Combined paracetamol and amitriptyline adsorption to activated charcoal

    DEFF Research Database (Denmark)

    Hoegberg, Lotte Christine Groth; Groenlykke, Thor Buch; Abildtrup, Ulla

    2010-01-01

    Objectives. High-gram drug doses seen in multiple-drug poisonings might be close to the adsorption capacity of activated charcoal (AC). The aim was to determine the maximum adsorption capacities (Q(m)) of amitriptyline and paracetamol, separately and in combination, to AC. Methods. ACs (Carbomix......® and Norit Ready-To-Use) were tested in vitro. At pH 1.2 and pH 7.2, 0.250 g AC and paracetamol and/or amitriptyline were mixed and incubated. The AC: drug ratios were 10:1, 5:1, 3:1, 2:1, and 1:1. The mixed-drug adsorption vials contained the same AC: paracetamol ratios, but amitriptyline was added as fixed...... dose (0.080 g) to all samples. Drug concentrations in the liquid phase were analyzed using high-performance liquid chromatography (HPLC)/UV-detection. Results. Q(m), amitriptyline, were 0.49 g/g Carbomix® and 0.70 g/g Norit Ready-To-Use, and Q(m), paracetamol, were 0.63 g/g Carbomix® and 0.72 g/g Norit...

  20. Block copolymer adsorption from a homopolymer melt to an amine-terminated surface

    Czech Academy of Sciences Publication Activity Database

    Costa, A. C.; Composto, R. J.; Vlček, Petr; Geoghegan, M.

    2005-01-01

    Roč. 18, č. 2 (2005), s. 159-166 ISSN 1292-8941 R&D Projects: GA ČR GA203/01/0513 Grant - others:Americal Chemical Society, The Petroleum Research Fund(US) 38027/34081 Keywords : copolymer adsorption * neutron reflectometry * diblock copolymers Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.503, year: 2005

  1. Optimization of CO2 adsorption capacity and cyclical adsorption/desorption on tetraethylenepentamine-supported surface-modified hydrotalcite.

    Science.gov (United States)

    Thouchprasitchai, Nutthavich; Pintuyothin, Nuthapol; Pongstabodee, Sangobtip

    2018-03-01

    The objective of this research was to investigate CO 2 adsorption capacity of tetraethylenepentamine-functionalized basic-modified calcined hydrotalcite (TEPA/b-cHT) sorbents at atmospheric pressure formed under varying TEPA loading levels, temperatures, sorbent weight to total gaseous flow rate (W/F) ratios and CO 2 concentrations in the influent gas. The TEPA/b-cHT sorbents were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), thermal gravimetric analysis (TGA), Brunauer-Emmet-Teller (BET) analysis of nitrogen (N 2 ) adsorption/desorption and carbon-hydrogen-nitrogen (CHN) elemental analysis. Moreover, a full 2 4 factorial design with three central points at a 95% confidence interval was used to screen important factor(s) on the CO 2 adsorption capacity. It revealed that 85.0% variation in the capacity came from the influence of four main factors and the 15.0% one was from their interactions. A face-centered central composite design response surface method (FCCCD-RSM) was then employed to optimize the condition, the maximal capacity of 5.5-6.1mmol/g was achieved when operating with a TEPA loading level of 39%-49% (W/W), temperature of 76-90°C, W/F ratio of 1.7-2.60(g·sec)/cm 3 and CO 2 concentration of 27%-41% (V/V). The model fitted sufficiently the experimental data with an error range of ±1.5%. From cyclical adsorption/desorption and selectivity at the optimal condition, the 40%TEPA/b-cHT still expressed its effective performance after eight cycles. Copyright © 2017. Published by Elsevier B.V.

  2. Adsorption of a small protein to a methyl-terminated hydrophobic surfaces

    DEFF Research Database (Denmark)

    Otzen, Daniel; Oliveberg, M.; Höök, F.

    2003-01-01

    We have studied the adsorption kinetics of a small monomeric protein S6 using the quartz crystal microbalance with dissipation monitoring (QCM-D) technique. Competitive adsorption from various proportions of native (Nat) and denatured (Den) protein in the bulk phase was carried out using a range...... of chemical denaturant concentrations. The ratio between Nat and Den in bulk has a profound affect on the adsorption behavior, most obvious from a significant (one order of magnitude) increase in the rate of a lag– and consolidation–adsorption phase when Nat is the major species present in bulk, signaling...... that these adsorption phases originates from the Den fraction of proteins in the bulk. To determine whether the kinetics of protein unfolding in the bulk phase are rate-limiting for adsorption of Nat, the adsorption kinetics of wildtype S6 with the mutant VA85 (whose unfolding kinetics are around 30 times more rapid...

  3. Synergic adsorption in the simultaneous removal of acid blue 25 and heavy metals from water using a Ca(PO3)2-modified carbon.

    Science.gov (United States)

    Tovar-Gómez, R; Rivera-Ramírez, D A; Hernández-Montoya, V; Bonilla-Petriciolet, A; Durán-Valle, C J; Montes-Morán, M A

    2012-01-15

    We report the simultaneous adsorption of acid blue 25 dye (AB25) and heavy metals (Zn(2+), Ni(2+) and Cd(2+)) on a low-cost activated carbon, whose adsorption properties have been improved via a surface chemistry modification using a calcium solution extracted from egg shell wastes. Specifically, we have studied the removal performance of this adsorbent using the binary aqueous systems: AB25-Cd(2+), AB25-Ni(2+) and AB25-Zn(2+). Multi-component kinetic and equilibrium experiments have been performed and used to identify and characterize the synergic adsorption in the simultaneous removal of these pollutants. Our results show that the presence of AB25 significantly favors the removal of heavy metals and may increase the adsorption capacities up to six times with respect to the results obtained using the mono-cationic metallic systems, while the adsorption capacities of AB25 are not affected by the presence of metallic ions. It appears that this anionic dye favors the electrostatic interactions with heavy metals or may create new specific sites for adsorption process. In particular, heavy metals may interact with the -SO(3)(-) group of AB25 and to the hydroxyl and phosphoric groups of this adsorbent. A response surface methodology model has been successfully used for fitting multi-component adsorption data. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Hydrogen adsorption in metal-decorated silicon carbide nanotubes

    Science.gov (United States)

    Singh, Ram Sevak; Solanki, Ankit

    2016-09-01

    Hydrogen storage for fuel cell is an active area of research and appropriate materials with excellent hydrogen adsorption properties are highly demanded. Nanotubes, having high surface to volume ratio, are promising storage materials for hydrogen. Recently, silicon carbide nanotubes have been predicted as potential materials for future hydrogen storage application, and studies in this area are ongoing. Here, we report a systematic study on hydrogen adsorption properties in metal (Pt, Ni and Al) decorated silicon carbide nanotubes (SiCNTs) using first principles calculations based on density functional theory. The hydrogen adsorption properties are investigated by calculations of adsorption energy, electronic band structure, density of states (DOS) and Mulliken charge population analysis. Our findings show that hydrogen adsorptions on Pt, Ni and Al-decorated SiCNTs undergo spontaneous exothermic reactions with significant modulation of electronic structure of SiCNTs in all cases. Importantly, according to the Mulliken charge population analysis, dipole-dipole interaction causes chemisorptions of hydrogen in Pt, Ni and Al decorated SiCNTs with formation of chemical bonds. The study is a platform for the development of metal decorated SiCNTs for hydrogen adsorption or hydrogen storage application.

  5. Interfacial passivation of CdS layer to CdSe quantum dots-sensitized electrodeposited ZnO nanowire thin films

    International Nuclear Information System (INIS)

    Zhang, Jingbo; Sun, Chuanzhen; Bai, Shouli; Luo, Ruixian; Chen, Aifan; Sun, Lina; Lin, Yuan

    2013-01-01

    ZnO porous thin films with nanowire structure were deposited by the one-step electrochemical deposition method. And a CdS layer was coated on the as-deposited ZnO nanowire thin films by successive ionic layer adsorption and reaction (SILAR) method to passivate surface states. Then the films were further sensitized by CdSe quantum dots (QDs) to serve as a photoanode for fabricating quantum dots-sensitized solar cells (QDSSCs). The effect of the CdS interfacial passivation layer on the performance of the QDSSCs was systematically investigated by varying the SILAR cycle number and heating the passivation layer. The amorphous CdS layer with an optimized thickness can effectively suppress the recombination of the injected electrons with holes on QDs and the redox electrolyte. The newly formed CdS layer on the surface of the ZnO nanowire thin film obviously prolongs the electron lifetime in the passivated ZnO nanoporous thin film because of the lower surface trap density in the ZnO nanowires after CdS deposition, which is favorable to the higher short-circuit photocurrent density (J sc ). For the CdSe QDs-sensitized ZnO nanoporous thin film with the interfacial passivation layer, the J sc and conversion efficiency can reach a maximum of 8.36 mA cm −2 and 2.36%, respectively. The conversion efficiency was improved by 83.47% compared with that of the cell based on the CdSe QDs-sensitized ZnO nanoporous thin film without CdS interfacial passivation (0.39%)

  6. Adsorption of heavy metal ions and azo dyes by crosslinked nanochelating resins based on poly(methylmethacrylate-co-maleic anhydride

    Directory of Open Access Journals (Sweden)

    M. Ghaemy

    2014-03-01

    Full Text Available Chelating resins are suitable materials for the removal of heavy metals in water treatments. A copolymer, Poly(MMA-co-MA, was synthesized by radical polymerization of maleic anhydride (MA and methyl methacrylate (MMA, characterized and transformed into multifunctional nanochelating resin beads (80–150 nm via hydrolysis, grafting and crosslink reactions. The resin beads were characterized by swelling studies, field emission scanning electron microscopy (FESEM and Fourier transform infrared spectroscopy (FTIR. The main purpose of this work was to determine the adsorption capacity of the prepared resins (swelling ratio ~55% towards metal ions such as Hg2+, Cd2+, Cu2+ from water at three different pH values (3, 6 and 9. Variations in pH and types of metal ions have not significantly affected the chelation capacity of these resins. The maximum chelation capacity of one of the prepared resin beads (Co-g-AP3 for Hg2+ was 63, 85.8 and 71.14 mg/g at pH 3, 6 and 9, respectively. Approximately 96% of the metal ions could be desorbed from the resin. Adsorption capacity of these resins towards three commercial synthetic azo dyes was also investigated. The maximum adsorption of dye AY42 was 91% for the resin Co-g-AP3 at room temperature. This insures the applicability of the synthesized resins for industrial applications.

  7. Performance and mechanism for cadmium and lead adsorption from water and soil by corn straw biochar

    Institute of Scientific and Technical Information of China (English)

    Tong Chi; Jiane Zuo; Fenglin Liu

    2017-01-01

    Cadmium (Cd) and lead (Pb) in water and soil could be adsorbed by biochar produced fiom corn straw.Biochar pyrolyzed under 400℃ for 2 h could reach the ideal removal efficiencies (99.24% and 98.62% for Cd and Pb,respectively) from water with the biochar dosage of 20 g· L-1 and imtial concentration of 20 mg·L-1.The pH value of 4-7 was the optimal range for adsorption reaction.The adsorption mechanism was discussed on the basis of a range of characterizations,including X-ray diffraction (XRD),X-my photoelectron spectroscopy (XPS),Fourier transform infrared spectroscopy (FTIR) and Raman analysis;it was concluded as surface complexation with active sorption sites (-OH-COO-) coordination with π electrons (C =C,C =O) and precipitation with morganic anions (OH-,CO32-,SO42-) for both Cd and Pb.The sorption isotherms fit Langmuir model better than Freundlich model,and the saturated sorption capacities for Cd and Pb were 38.91 mg.g-1 and 28.99 mg· g-1,respectively.When mixed with soil,biochar could effectively increase alkalinity and reduce bioavailability of heavy metals.Thus,biochar derived from corn straw would be a green material for both removal of heavy metals and amelioration of soil.

  8. Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain

    International Nuclear Information System (INIS)

    Liu Jianguo; Qian Min; Cai Guoliang; Yang Jianchang; Zhu Qingsen

    2007-01-01

    The variations among six rice cultivars in cadmium (Cd) uptake and translocation were investigated with pot soil experiments. The results showed that only a very small portion (0.73%) of Cd absorbed by rice plant was transferred into grain. With regard to plant total Cd uptake, Cd concentrations and quantity accumulations in roots, stems and leaves, the differences among the cultivars (between the largest one and the smallest one) were less than one time. But for Cd concentrations and Cd quantity accumulations in the grains, the differences were more than five and eight times, respectively. With respect to Cd distribution portions in plant organs, the diversities among the cultivars were also small in roots, stems and leaves, but much larger in grains. Grain Cd concentrations correlated positively and significantly (P < 0.01) with Cd quantity accumulations in plant, Cd distribution ratios to aboveground parts, and especially with Cd distribution ratios from aboveground parts to the grain. The results indicated that Cd concentration in rice grain was governed somewhat by plant Cd uptake and the transport of Cd from root to shoot, and in a greater extent, by the transport of Cd from shoot to grain. Cd was not distributed evenly in different products after rice grain processing. The average Cd concentration in cortex (embryo) was five times more than that in chaff and polished rice. With regard to Cd quantity accumulation in the products, near 40% in cortex (embryo), 45% in polished rice and 15% in chaff averagely

  9. Rapid and efficient treatment of wastewater with high-concentration heavy metals using a new type of hydrogel-based adsorption process.

    Science.gov (United States)

    Zhou, Guiyin; Liu, Chengbin; Chu, Lin; Tang, Yanhong; Luo, Shenglian

    2016-11-01

    In this study, a new type of double-network hydrogel sorbent was developed to remove heavy metals in wastewater. The amino-functionalized Starch/PAA hydrogel (NH2-Starch/PAA) could be conducted in a wide pH and the adsorption process could rapidly achieve the equilibrium. The adsorption capacity got to 256.4mg/g for Cd(II). Resultantly, even though Cd(II) concentration was as high as 180mg/L, the Cd(II) could be entirely removed using 1g/L sorbent. Furthermore, the desirable mechanical durability of the adsorbent allowed easy separation and reusability. In the fixed-bed column experiments, the treatment volume of the effluent with a high Cd(II) concentration of 200mg/L reached 2400BV (27.1L) after eight times cycle. The NH2-Starch/PAA overcame the deficiency of conventional sorbents that could not effectively treat the wastewater with relatively high metal concentrations. This work provides a new insight into omnidirectional enhancement of sorbents for removing high-concentration heavy metals in wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Search for first 0 excited states in /sup 108/Cd and /sup 106/Cd

    CERN Document Server

    Roussière, B; Duffait, R; Genevey-Rivier, J; Kilcher, P; Meyer, M; Sauvage-Letessier, J; Tréherne, J

    1981-01-01

    The /sup 108/Cd and /sup 106/Cd isotopes have been studied from the beta /sup +//EC decay of /sup 108/In and /sup 106/In. gamma -rays, conversion electrons, gamma - gamma -t and e/sup -/- gamma -t coincidence measurements have been performed. Level schemes of /sup 108/Cd and /sup 106/Cd have been deduced from these results. A 0/sup + / level has been unambiguously established at 1.913 MeV in /sup 108/Cd and a new 0/sup +/ level proposed at 2.035 MeV in /sup 106/Cd. The energies and branching ratios are discussed in terms of vibrator +particles approach, interacting boson approximation and rotor +quasiparticles model. (15 refs).

  11. Influence of the Si/Al ratio on the separation properties of SSZ-13 zeolite membranes

    NARCIS (Netherlands)

    Kosinov, N.; Auffret, C.; Borghuis, G.J.; Sripathi, V.G.P.; Hensen, E.J.M.

    2015-01-01

    SSZ-13 (CHA) zeolite membranes supported by a-alumina hollow fibers were prepared by a hydrothermal secondary growth method. The gel Si/Al ratio was varied between 5 and 100. The water adsorption depended strongly on the Si/Al ratio. Comparatively, ethanol adsorption varied less with membrane

  12. Photovoltaic and impedance characteristics of modified SILAR grown CdS quantum dot sensitized solar cell

    International Nuclear Information System (INIS)

    Fatehmulla, Amanullah; Farooq, W. A.; Aslam, M.; Atif, M.; Ali, S.M.; Al-Dhafir, A. M.; Yakuphanoglu, F.; Yahia, I.S.

    2014-01-01

    Cadmium Sulphide (CdS) quantum dots (QDs) were deposited on nanostructured TiO 2 film using a modified Successive Ionic Layer Adsorption and Reaction (SILAR) method. Nanostructured TiO 2 on FTO glass and Platinum on FTO are used as photoelectrode and Counter electrode respectively. High resolution Transmission Electron Microscopy (HRT EM) image revealed CdS QDs adsorbed on nanostructured TiO 2 . The photovoltaic characteristics and impedance spectroscopy properties of CdS quantum dot sensitized solar cell (QDSSC) were analyzed under air mass 1.5 illuminations. At the SILAR adsorption time of 2 min (10 cycles), the QDSSC measured a short circuit current density of 2 mA/cm 2 and an open circuit voltage of 0.45 V under air mass 1.5. In a widespread frequency range, the capacitance – voltage, the conductance – voltage, the series resistance - voltage measurements were carried out for the QDSSC applications. A conduct of positive to negative capacitance was observed from the measured characteristics of capacitance - voltage which is attributed to the injection of electrons from FTO electrode into TiO 2 . Key words: Nanostructured TiO 2 , CdS QDSSC, SILAR method, photovoltaic measurements, impedance characteristic

  13. Dynamic adsorption studies for the removal of Cd (II) and Ni (II) from ...

    African Journals Online (AJOL)

    The adsorption was found to be more effective at higher concentrations of metals and with smaller adsorbent particle size. ... Recommendation was made such that, mahogany leaves should be studied for the remediation of other heavy metals, such as lead, chromium, mercury, zinc and uranium among others. Keywords: ...

  14. T CD3+CD8+ Lymphocytes Are More Susceptible for Apoptosis in the First Trimester of Normal Human Pregnancy

    Directory of Open Access Journals (Sweden)

    Dorota Darmochwal-Kolarz

    2014-01-01

    Full Text Available Aims. Normal human pregnancy is a complex process of many immunoregulatory mechanisms which protect fetus from the activation of the maternal immune system. The aim of the study was to investigate the apoptosis of lymphocytes in peripheral blood of normal pregnant patients and healthy nonpregnant women. Methods. Sixty pregnant women and 17 nonpregnant women were included in the study. Lymphocytes were isolated and labeled with anti-CD3, anti-CD4, and anti-CD8 monoclonal antibodies. Apoptosis was detected by CMXRos staining and analyzed using the flow cytometric method. Results. We found significantly higher apoptosis of total lymphocytes in peripheral blood of pregnant patients when compared to healthy nonpregnant women. The percentage of apoptotic T CD3+CD8+ cells in the first trimester was significantly higher when compared to the third trimester of normal pregnancy. The ratio of T CD3+CD4+ : T CD3+CD8+ apoptotic lymphocytes was significantly lower in the first trimester when compared to other trimesters of pregnancy and to both of the phases of the menstrual cycle. Conclusions. The higher apoptosis of T CD3+CD8+ lymphocytes and the lower ratio of T CD3+CD4+ : T CD3+CD8+ apoptotic cells in the first trimester of normal pregnancy may suggest a higher susceptibility of T CD3+CD8+ cells for apoptosis as a protective mechanism at the early stage of pregnancy.

  15. Modification of electrospun polyacrylonitrile nanofibers with EDTA for the removal of Cd and Cr ions from water effluents

    Energy Technology Data Exchange (ETDEWEB)

    Chaúque, Eutilério F.C., E-mail: efchauque@gmail.com [Department of Applied Chemistry, University of Johannesburg, Doornfontein 2028, Johannesburg (South Africa); Dlamini, Langelihle N., E-mail: lndlamini@uj.ac.za [Department of Applied Chemistry, University of Johannesburg, Doornfontein 2028, Johannesburg (South Africa); Adelodun, Adedeji A., E-mail: aadelodun@uj.ac.za [Department of Applied Chemistry, University of Johannesburg, Doornfontein 2028, Johannesburg (South Africa); Greyling, Corinne J., E-mail: GreylingC@cput.ac.za [Technology Station in Clothing and Textiles, Cape Peninsula University of Technology, Symphony Way, Bellville, 7535 (South Africa); Catherine Ngila, J., E-mail: jcngila2002@yahoo.com [Department of Applied Chemistry, University of Johannesburg, Doornfontein 2028, Johannesburg (South Africa)

    2016-04-30

    Graphical abstract: - Highlights: • Polyscrylonitrile (PAN) nanofibers prepared through electrospinning and chemically modified with ethylenediaminetetraacetic acid using ethylenediamine crosslinker. • Fabricated nanofibers have enhanced surface chemistry with insignificant impact on the nanofibrous structure. • Excellent maximum adsorption capacities of 66.24 and 32.68 mg g{sup −1} toward Cr and Cd ions, respectively. • A pre-concentration factor of 19 achieved for removal of Cd and Cr in environmental water samples. - Abstract: Polyacrylonitrile (PAN) nanofibers were obtained by electrospinning technique prior to surface modification with polyethylenediaminetetraacetic acid (EDTA) using ethylenediamine (EDA) as the cross-linker. The modified nanofibers (EDTA-EDA-PAN) were subsequently applied in the wastewater treatment for the removal of Cd(II) and Cr(VI). Textural and chemical characterizations of the nanofibers were carried out by analysis of the specific surface area (Brauner Emmet and Teller (BET)) and thermogravimetric analyses, scanning electron microscopy and Fourier transform infrared spectroscopy. From the adsorption equilibrium studies with Langmuir, Freundlich and Temkin isotherm models, Freundlich was found most suitable for describing the removal mechanism of the target metals as they collect on a heterogeneously functionalized polymer surface. The EDTA-EDA-PAN nanofibers showed effective sorption affinity for both Cd(II) and Cr(VI), achieving maximum adsorption capacities of 32.68 and 66.24 mg g{sup -1}, respectively, at 298 K. In furtherance, the nanofibers were regenerated by simple washing with 2 M HCl solution. Conclusively, the EDTA-EDA-PAN nanofibers were found to be efficient for the removal of Cd(II) and Cr(VI) in water effluents.

  16. Biosorption of Fe (II) and Cd (II) ions from aqueous solution using a ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Biosorption of Fe (II) and Cd (II) ions from aqueous solution using a low cost ... human activities in the environment poses a lot of risk ... ion exchange or reverse osmosis, electrochemical treatment ..... is the adsorption coefficient, n indicates the.

  17. Surface preparation effects on efficient indium-tin-oxide-CdTe and CdS-CdTe heterojunction solar cells

    Science.gov (United States)

    Werthen, J. G.; Fahrenbruch, A. L.; Bube, R. H.; Zesch, J. C.

    1983-05-01

    The effects of CdTe surface preparation and subsequent junction formation have been investigated through characterization of ITO/CdTe and CdS/CdTe heterojunction solar cells formed by electron beam evaporation of indium-tin-oxide (ITO) and CdS onto single crystal p-type CdTe. Surfaces investigated include air-cleaved (110) surfaces, bromine-in-methanol etched (110) and (111) surfaces, and teh latter surfaces subjected to a hydrogen heat treatment. Both air-cleaved and hydrogen heat treated surfaces have a stoichiometric Cd to Te ratio. The ITO/CdTe junction formation process involves an air heat treatment, which ahs serious effects on the behavior of junctions formed on these surfaces. Etched surfaces which have a large excesss of Te, are less affected by the junction formation process and result in ITO/CdTe heterojunctions with solar efficiencies of 9% (Vsc =20 mA/cm2). Use of low-doped CdTe results in junctions characterized by considerably larger open-circuit votages (Voc =0.81 V) which are attributable to increasing diode factors caused by a shift from interfacial recombination to recombination in the depletion region. Resulting solar efficiencies reach 10.5% which is the highest value reported to date for a genuine CdTe heterojunction, CdS/CdTe heterojunctions show a strong dependence on CdTe surface condition, but less influence on the junction formation process. Solar efficiencies of 7.5% on an etched and heat treated surface are observed. All of these ITO/CdTe and CdS/CdTe heterojunctions have been stable for at least 10 months.

  18. Analysis of changes in the percentage of B (CD19) and T (CD3) lymphocytes, nk cells, subsets CD4, CD8 in differentiated thyroid cancer patients treated with iodine-131

    International Nuclear Information System (INIS)

    Luo Quanyong; Yu Yongli; Chen Libo; Lu Hankui; Zhu Ruisen

    2004-01-01

    Objective: To evaluate the changes in the percentage of B (CD19) and T (CD3) lymphocytes, NK cells, subsets CD4, CD8 in patients with differentiated thyroid carcinoma (DTC) who received iodine-131 for therapeutic purposes. Methods: In this study, 102 DTC patients were divided into three groups. Group A, 8 cases received 1850 MBq of iodine-131 for the remnant thyroid ablation. Group B, 43 cases received 3700 MBq of iodine-131 for the treatment of cervical lymph node metastasis. Group C, 51 cases received 7400 MBq of iodine-131 for remote metastasis. All patients were in a hypothyroid state at the time of administration of iodine-131 and resumed L-thyroxine (2μg/Kg/day) 5 days after iodine-131 administration. The percentage of B and T lymphocytes, NK cells, subsets CD4, CD8 in peripheral blood were serially analyzed at baseline and at days 7, 30 and 90 after iodine-131 administration using a Coulter EPICS XL cytometer. Ten healthy individuals were used as a control group for lymphocyte subset values. Results: Comparing the basal lymphocyte subset levels in groups A, B and C with the control group, only NK cells showed significantly higher levels in patients than in controls (P=0.043). In group A, only the percentage of NK cells (P=0.031) and B cells (P =0.024) were reduced at day 7. In group B, a decrease in the percentage of NK cells at days 7(P=0.005), 30 (P=0.021) was observed, while a significant decrease in the percentage of B cells was only observed at day 7(P=0.006). Among T cells, only CD4+ was obviously affected, resulting in a reduction in the CD4+/CD8+ ratio at day 30 (P=0.034). In group C, patients showed a decrease in the percentage of NK cells at days 7 (P=0.023), 30 (P=0.006). A decrease in the percentage of both B and T lymphocytes was observed at days 7(P=0.020, 0.018 respectively), 30(P=0.041, 0.025 respectively). Among T cells, a decrease in the percentage of CD4+ and an increase in the percentage of CD8+ were observed, resulting in a marked

  19. Infiltration into cropped soils: effect of rain and sodium adsorption ratio-impacted irrigation water.

    Science.gov (United States)

    Suarez, Donald L; Wood, James D; Lesch, Scott M

    2008-01-01

    The sodium adsorption ratio (SAR) and salinity criteria for water suitability for irrigation have been developed for conditions where irrigation water is the only water source. It is not clear that these criteria are applicable to environments where there is a combination of rain and irrigation during the growing season. The interaction of rainfall with irrigation water is expected to result in increased sodicity hazard because of the low electrical conductivity of rain. In this study we examined the effects of irrigation waters of SAR 2, 4, 6, 8, and 10 mmol(1/2) L(-1/2) and electrical conductivities of 1 and 2 dS m(-1) on the infiltration rate of two soils with alternating cycles of rain (simulated with a rainfall sprinkler) and irrigation water, separated by drying cycles. The infiltration rate of surface samples from two soils, Kobase silty clay (fine, smectitic, frigid, Torrertic Haplustept) and Glendive very fine sandy loam (coarse-loamy, mixed superactive, calcareous, frigid Aridic Ustifluvent) were evaluated under alfalfa (Medicago sativa) cropped conditions for over 140 d and under full canopy cover. Reductions in infiltration were observed for both soils for SAR above 2, and the reductions became more severe with increasing SAR. Saturated hydraulic conductivity measurements taken from undisturbed cores at the end of the experiment were highly variable, suggesting that in situ infiltration measurements may be preferred when evaluating SAR effects.

  20. STATISTICAL INVESTIGATION OF ADSORPTION OF TWO REACTIVE TEXTILE DYES BY VARIOUS ADSORBENTS

    Directory of Open Access Journals (Sweden)

    Ümmühan DANIŞ

    2002-03-01

    Full Text Available Textile industry, in which uses the dyestuffs containing coloured and complex chemical compounds, is both water consumer and water pollutant. The removal of these compounds from the wastewaters is one of the most important problems in the textile industry. In this study, the adsorption of two reactive dyes (Red Px and Yellow P onto Aşkale and Balkaya lignites, Bensan clay and powdered active carbon (PAC from aqueous solution was statistically investigated. The adsorption time, dye concentration, solid/liquid ratio and mixing rate were chosen as parameters. The effects of these parameters on the amount of dye adsorbed by the adsorbents were determined. The results obtained have been statistically evaluated by using the stepwise method and SPSS Sortware version (9.1. The experimental observations and statistical evaluations shown that the effective parameters on the adsorption are equilibrium dye concentration and solid/liquid ratio. It was found that the adsorptive behaviours of both lignites and clay are similar to each other, but powdered active carbon displays different adsorptive behaviour. Finally, the empirical equations showing the relation between amount of dye adsorbed and the effective parameters were developed.

  1. Coupled electrokinetics-adsorption technique for simultaneous removal of heavy metals and organics from saline-sodic soil.

    Science.gov (United States)

    Lukman, Salihu; Essa, Mohammed Hussain; Mu'azu, Nuhu Dalhat; Bukhari, Alaadin

    2013-01-01

    In situ remediation technologies for contaminated soils are faced with significant technical challenges when the contaminated soil has low permeability. Popular traditional technologies are rendered ineffective due to the difficulty encountered in accessing the contaminants as well as when employed in settings where the soil contains mixed contaminants such as petroleum hydrocarbons, heavy metals, and polar organics. In this study, an integrated in situ remediation technique that couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the efficiency of contaminant removal. For the 21-day period of continuous electrokinetics-adsorption experimental run, efficiency for the removal of Zn, Pb, Cu, Cd, Cr, Hg, phenol, and kerosene was found to reach 26.8, 55.8, 41.0, 34.4, 75.9, 92.49, 100.0, and 49.8%, respectively. The results obtained suggest that integrating adsorption into electrokinetic technology is a promising solution for removal of contaminant mixture from saline-sodic soils.

  2. Use of diatomaceous to liquid organic wastes adsorption

    International Nuclear Information System (INIS)

    Sanhueza M, Azucena; Padilla S, Ulises

    1999-01-01

    Background: One of the radioactive wastes that the Radioactive Wastes Management Unit must process are organic liquids from external generators and from sections of the Chilean Nuclear Energy Commission (CCHEN). The wastes from external generators contain H 3 and C 14; while the wastes from the CCHEN are contaminated with uranium. The total volume of liquid organic wastes that must be treated is 5 m3. The options recommended for processing these wastes are incineration or the adsorption of the organic liquid by some adsorbing medium and its subsequent immobilization in cement molds. Due to the cost of incineration, the adsorption method was chosen for study. Objective: To find the optimum amount of adsorbent to be saturated with radioactive organic liquid from liquid scintillation and to study immobilization in cement molds. Methodology: Adsorption granulated (1568 Merck) and diatom earth were tested as adsorbent mediums. The adsorbents were mixed in different ratios of volume with the organic liquid. Then the waste was mixed with different water/cement ratios to define the best immobilization conditions. Conclusions: The tests carried out with 2 adsorbents recommended in the literature and available in the CCHEN show that as adsorbent waste ratio decreases, the percentage of liquid adsorbed increases, as expected: a greater volume of adsorbent retains a greater quantity of liquid, with an increase in the final volume, depending on the adsorbent used. Of these adsorbents, the diatom earth was better for treating liquid organic wastes. It had 100% adsorption and an increased volume of 0%, which is more than enough from the volumetric point of view of waste management. The ratio 0.8 liquid/adsorbent also showed good characteristics, but more study is needed to decide on the above, since liquid remains to be adsorbed. This work must continue to study the repeatability of results, to obtain physical and radiological characteristics for the immobilized products and to

  3. Thermodynamic evaluation of liquid Cd cathode containing U and Pu

    International Nuclear Information System (INIS)

    Kurata, Masaki; Uozumi, Koichi; Kato, Tetsuya; Iizuka, Masatoshi

    2009-01-01

    In our previous study, a mixture of U and Pu was recovered in liquid Cd cathode from molten salt under various conditions of the U:Pu ratio. Two important things were observed. The first was that three kinds of precipitated phase had been detected in the saturated liquid Cd cathode, such as a U metal and two kinds of U-Pu-Cd compound. The compositions of the compounds were roughly (U+Pu):Cd=1:11 and (U+Pu):Cd=1:6. The second was that the U metal had selectively precipitated in the saturated liquid Cd cathode under the condition that the U:Pu ratio is higher than about 0.8 in the liquid Cd phase. In the present study, phase diagrams were evaluated by the CALPHAD method on the liquid Cd cathode containing U and Pu. The U-Pu-Cd compounds were modeled as MCd 11 -type and MCd 6 -type, respectively, based on the reported binary phase diagrams of U-Cd and Pu-Cd. The calculated result reasonably agreed with the experimental observations. The variations in the U and Pu activities were estimated along with the U:Pu ratio, which is related to the precipitation of various phases in the liquid Cd cathode. (author)

  4. Enhancing scatterometry CD signal-to-noise ratio for 1x logic and memory challenges

    Science.gov (United States)

    Shaughnessy, Derrick; Krishnan, Shankar; Wei, Lanhua; Shchegrov, Andrei V.

    2013-04-01

    The ongoing transition from 2D to 3D structures in logic and memory has led to an increased adoption of scatterometry CD (SCD) for inline metrology. However, shrinking device dimensions in logic and high aspect ratios in memory represent primary challenges for SCD and require a significant breakthrough in improving signal-to-noise performance. We present a report on the new generation of SCD technology, enabled by a new laser-driven plasma source. The developed light source provides several key advantages over conventional arc lamps typically used in SCD applications. The plasma color temperature of the laser driven source is considerably higher than available with arc lamps resulting in >5X increase in radiance in the visible and >10X increase in radiance in the DUV when compared to sources on previous generation SCD tools while maintaining or improving source intensity noise. This high radiance across such a broad spectrum allows for the use of a single light source from 190-1700nm. When combined with other optical design changes, the higher source radiance enables reduction of measurement box size of our spectroscopic ellipsometer from 45×45um box to 25×25um box without compromising signal to noise ratio. The benefits for 1×nm SCD metrology of the additional photons across the DUV to IR spectrum have been found to be greater than the increase in source signal to noise ratio would suggest. Better light penetration in Si and poly-Si has resulted in improved sensitivity and correlation breaking for critical parameters in 1xnm FinFET and HAR flash memory structures.

  5. Fabrication of CdS nanowires with increasing anionic precursor by SILAR method

    Science.gov (United States)

    Dariani, R. S.; Salehi, F.

    2016-05-01

    CdS nanowires were fabricated on glass substrate at room temperature by SILAR method with cadmium nitrate cationic and sodium sulfide anionic precursors. The deposition were done at different S:Cd concentration ratios of 1:1, 3:1, 5:1, and 7:1. Nanowires growth procedure was studied in the mentioned concentrations. The number of immersion cycles was kept constant at 15 cycles. EDX analysis showed that in all stoichiometric ratios, S/Cd composition ratio remains at about unity. Our results indicated that S:Cd concentration ratio of 7:1 had the longest nanowires with hexagonal structure. The main objective of this paper was to produce CdS nanowires with increasing concentration of sulfur.

  6. Enhanced fluoride adsorption using Al (III) modified calcium hydroxyapatite

    International Nuclear Information System (INIS)

    Nie, Yulun; Hu, Chun; Kong, Chuipeng

    2012-01-01

    Highlights: ► Al modified hydroxyapatite possessed a higher defluoridation capacity of 32.57 mg/g. ► Hydroxyl groups on the surface of Al-HAP was the adsorption sites for F − removal. ► Enhanced F − removal over Al-HAP was attributed to the modification with aluminum. - Abstract: Aluminum-modified hydroxyapatite (Al-HAP) was prepared and characterized using XRD and BET analyses. Al-HAP possessed higher defluoridation capacity (DC) of 32.57 mgF − /g than unmodified hydroxyapatite (HAP) which showed a DC of 16.38 mgF − /g. The effect of Al/Ca atomic ratio in Al-HAP, solution pH and co-existing anions was further studied. The results indicated that the adsorption data could be well described by the Langmuir isotherm model and the adsorption kinetic followed the pseudo-second-order model. The pH changes during the adsorption process suggested that the -OH on the surface of Al-HAP was the adsorption sites. The more adsorption sites were formed on Al modified HAP, which possessed abundant surface hydroxyl groups, resulting in higher efficiency of F − removal. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated in order to understand the nature of adsorption process. The results revealed that the adsorption reaction was a spontaneous and endothermic process.

  7. Kaolinite adsorption-regeneration system for dyestuff treatment by Fenton based processes.

    Science.gov (United States)

    Rosales, Emilio; Anasie, Delia; Pazos, Marta; Lazar, Iuliana; Sanromán, M Angeles

    2018-05-01

    The regeneration and reuse of adsorbents is a subject of interest nowadays in order to reduce the pollution and the wastes generated in the adsorption wastewater treatment. In this work, the regeneration of the spent kaolinite by different advanced oxidation processes (Fenton, electro-Fenton and electrokinetic-Fenton) was evaluated. Initially, it was confirmed the ability of a low cost clayey material, kaolinite, for the adsorption of model dye such as Rhodamine B showing Freundlich isotherm fitting. Then, the regeneration and consequent degradation of the pollutant in the adsorbent by Fenton based processes was carried out. The role of different parameters affecting the regeneration process (H 2 O 2 :Fe 2+ ratio, liquid:solid ratio) were evaluated. Working at 100:1 H 2 O 2 :Fe 2+ ratio and 30min near complete dye removal (around 97%) from kaolinite was obtained by Fenton treatment. After that, a two-stage treatment for adsorption-regeneration was evaluated during five treatment cycles demonstrating its viability for regeneration of the adsorbent through dye degradation. Based on the successful application of Fenton technique, the improvement of the treatment by electro-Fenton and electrokinetic-Fenton were studied for different solid:liquid ratios achieving satisfactory regeneration values. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Creatinine Deiminase Adsorption onto Silicalite-Modified pH-FET for Creation of New Creatinine-Sensitive Biosensor

    OpenAIRE

    Marchenko, Svitlana V.; Soldatkin, Oleksandr O.; Kasap, Berna Ozansoy; Kurc, Burcu Akata; Soldatkin, Alexei P.; Dzyadevych, Sergei V.

    2016-01-01

    In the work, silicalite particles were used for the surface modification of pH-sensitive field-effect transistors (pH-FETs) with the purpose of developing new creatinine-sensitive biosensor. Creatinine deiminase (CD) adsorbed on the surface of silicalite-coated pH-FET served as a bioselective membrane. The biosensor based on CD immobilized in glutaraldehyde vapor (GA) was taken as control. The creatinine-sensitive biosensor obtained by adsorption on silicalite was shown to have better analyti...

  9. Competitive Protein Adsorption - Multilayer Adsorption and Surface Induced Protein Aggregation

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2009-01-01

    In this study, competitive adsorption of albumin and IgG (immunoglobulin G) from human serum solutions and protein mixtures onto polymer surfaces is studied by means of radioactive labeling. By using two different radiolabels (125I and 131I), albumin and IgG adsorption to polymer surfaces...... is monitored simultaneously and the influence from the presence of other human serum proteins on albumin and IgG adsorption, as well as their mutual influence during adsorption processes, is investigated. Exploring protein adsorption by combining analysis of competitive adsorption from complex solutions...... of high concentration with investigation of single protein adsorption and interdependent adsorption between two specific proteins enables us to map protein adsorption sequences during competitive protein adsorption. Our study shows that proteins can adsorb in a multilayer fashion onto the polymer surfaces...

  10. Some adsorption characteristics of polysterene base scintillators

    International Nuclear Information System (INIS)

    Seredenko, T.N.; Ehkkerman, V.M.; Solomonov, V.M.; Gen, N.S.

    1980-01-01

    It is necessary to account for the adsorption on the surface of a scintillator when measuring nuclide activity in solutions by submerging into these solutions plastic scintillators. Dependences of 144 Ce, 90 Y, 137 Cs adsorption on specific activities (α) and pH value of solution were investigated. It is shown that K-α ratio is described by the equation K=Casup(p), where K is the specific surface activity of the polystyrene scintillator. Values of C and p are presented for investigated nuclides. The criterion estimating the possibility for repeated usage of scintillator are considered

  11. The CdS/CdSe/ZnS Photoanode Cosensitized Solar Cells Basedon Pt, CuS, Cu2S, and PbS Counter Electrodes

    Directory of Open Access Journals (Sweden)

    Tung Ha Thanh

    2014-01-01

    Full Text Available Highly ordered mesoporous TiO2 modified by CdS, CdSe, and ZnS quantum dots (QDs was fabricated by successive ionic layer adsorption and reaction (SILAR method. The quantity of material deposition seems to be affected not only by the employed deposition method but also and mainly by the nature of the underlying layer. The CdS, CdSe, and ZnS QDs modification expands the photoresponse range of mesoporous TiO2 from ultraviolet region to visible range, as confirmed by UV-Vis spectrum. Optimized anode electrodes led to solar cells producing high current densities. Pt, CuS, PbS, and Cu2S have been used as electrocatalysts on counter electrodes. The maximum solar conversion efficiency reached in this work was 1.52% and was obtained by using Pt electrocatalyst. CuS, PbS, and Cu2S gave high currents and this was in line with the low charge transfer resistances recorded in their case.

  12. The influence of temperature on selenate adsorption by goethite

    Energy Technology Data Exchange (ETDEWEB)

    Kersten, M.; Vlasova, N. [Mainz Univ. (Germany). Geosciences Inst.

    2013-08-01

    Acid-base batch titration data up to 75 C were used to constrain a temperature-dependent 1-pK basic Stern model of the surface protonation reactions of goethite. Experimental data for the temperature dependence of pH{sub PZC} (as determined using the two-term Van't Hoff extrapolation) yielded a negative value of -44.9 kJ/mol for the surface protonation enthalpy, and therefore a shift of the zero point of charge towards lower pH values with increasing temperature. Batch titrations at selenate concentrations of between 10 and 100 {mu}M showed an increased degree of adsorption in the acidic pH range, which appeared to be sensitive to the ionic strength of the solution. The selenate adsorption edges shifted towards more acidic pH values with increasing temperature. A 1-pK charge distribution multi-site surface complexation (CD-MUSIC) model was applied, assuming the formation of an outer-spheric surface complex together with an inner-spheric one, in agreement with published spectroscopic information. The temperature behaviour of the intrinsic equilibrium constants were well represented by a linear Van't Hoff log K vs. 1/T plot, from which negative enthalpy values could be derived for both adsorption reactions. The adsorption of the selenate was therefore exothermic and became weaker with increasing temperature. The bidentate inner-spheric complex was more sensitive to rises in temperature (-70 kJ/mol), compared to the outer-spheric complex (-36 kJ/mol). The latter ultimately became the dominating adsorption process at the highest temperature studied. (orig.)

  13. The influence of temperature on selenate adsorption by goethite

    International Nuclear Information System (INIS)

    Kersten, M.; Vlasova, N.

    2013-01-01

    Acid-base batch titration data up to 75 C were used to constrain a temperature-dependent 1-pK basic Stern model of the surface protonation reactions of goethite. Experimental data for the temperature dependence of pH PZC (as determined using the two-term Van't Hoff extrapolation) yielded a negative value of -44.9 kJ/mol for the surface protonation enthalpy, and therefore a shift of the zero point of charge towards lower pH values with increasing temperature. Batch titrations at selenate concentrations of between 10 and 100 μM showed an increased degree of adsorption in the acidic pH range, which appeared to be sensitive to the ionic strength of the solution. The selenate adsorption edges shifted towards more acidic pH values with increasing temperature. A 1-pK charge distribution multi-site surface complexation (CD-MUSIC) model was applied, assuming the formation of an outer-spheric surface complex together with an inner-spheric one, in agreement with published spectroscopic information. The temperature behaviour of the intrinsic equilibrium constants were well represented by a linear Van't Hoff log K vs. 1/T plot, from which negative enthalpy values could be derived for both adsorption reactions. The adsorption of the selenate was therefore exothermic and became weaker with increasing temperature. The bidentate inner-spheric complex was more sensitive to rises in temperature (-70 kJ/mol), compared to the outer-spheric complex (-36 kJ/mol). The latter ultimately became the dominating adsorption process at the highest temperature studied. (orig.)

  14. CdCl{sub 2} treatment related diffusion phenomena in Cd{sub 1−x}Zn{sub x}S/CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kartopu, G., E-mail: giray.kartopu@glyndwr.ac.uk; Clayton, A. J.; Barrioz, V.; Lamb, D. A.; Irvine, S. J. C. [Centre for Solar Energy Research (CSER), Glyndŵr University, OpTIC, St. Asaph Business Park, St. Asaph LL17 0JD (United Kingdom); Taylor, A. A. [Physics Department, Durham University, Durham DH1 3LE (United Kingdom)

    2014-03-14

    Utilisation of wide bandgap Cd{sub 1−x}Zn{sub x}S alloys as an alternative to the CdS window layer is an attractive route to enhance the performance of CdTe thin film solar cells. For successful implementation, however, it is vital to control the composition and properties of Cd{sub 1−x}Zn{sub x}S through device fabrication processes involving the relatively high-temperature CdTe deposition and CdCl{sub 2} activation steps. In this study, cross-sectional scanning transmission electron microscopy and depth profiling methods were employed to investigate chemical and structural changes in CdTe/Cd{sub 1−x}Zn{sub x}S/CdS superstrate device structures deposited on an ITO/boro-aluminosilicate substrate. Comparison of three devices in different states of completion—fully processed (CdCl{sub 2} activated), annealed only (without CdCl{sub 2} activation), and a control (without CdCl{sub 2} activation or anneal)—revealed cation diffusion phenomena within the window layer, their effects closely coupled to the CdCl{sub 2} treatment. As a result, the initial Cd{sub 1−x}Zn{sub x}S/CdS bilayer structure was observed to unify into a single Cd{sub 1−x}Zn{sub x}S layer with an increased Cd/Zn atomic ratio; these changes defining the properties and performance of the Cd{sub 1−x}Zn{sub x}S/CdTe device.

  15. Can ligand addition to soil enhance Cd phytoextraction? A mechanistic model study.

    Science.gov (United States)

    Lin, Zhongbing; Schneider, André; Nguyen, Christophe; Sterckeman, Thibault

    2014-11-01

    Phytoextraction is a potential method for cleaning Cd-polluted soils. Ligand addition to soil is expected to enhance Cd phytoextraction. However, experimental results show that this addition has contradictory effects on plant Cd uptake. A mechanistic model simulating the reaction kinetics (adsorption on solid phase, complexation in solution), transport (convection, diffusion) and root absorption (symplastic, apoplastic) of Cd and its complexes in soil was developed. This was used to calculate plant Cd uptake with and without ligand addition in a great number of combinations of soil, ligand and plant characteristics, varying the parameters within defined domains. Ligand addition generally strongly reduced hydrated Cd (Cd(2+)) concentration in soil solution through Cd complexation. Dissociation of Cd complex ([Formula: see text]) could not compensate for this reduction, which greatly lowered Cd(2+) symplastic uptake by roots. The apoplastic uptake of [Formula: see text] was not sufficient to compensate for the decrease in symplastic uptake. This explained why in the majority of the cases, ligand addition resulted in the reduction of the simulated Cd phytoextraction. A few results showed an enhanced phytoextraction in very particular conditions (strong plant transpiration with high apoplastic Cd uptake capacity), but this enhancement was very limited, making chelant-enhanced phytoextraction poorly efficient for Cd.

  16. Interfacial adsorption of insulin - Conformational changes and reversibility of adsorption

    NARCIS (Netherlands)

    Mollmann, SH; Jorgensen, L; Bukrinsky, JT; Elofsson, U; Norde, W; Frokjaer, S

    The adsorption of human insulin to Teflon particles was studied with respect to conformational changes and the reversibility of adsorption was examined by total internal reflection fluorescence (TIRF). Adsorption isotherms for the adsorption of human insulin indicated high affinity adsorption, even

  17. Pelletized ponderosa pine bark for adsorption of toxic heavy metals from water

    Science.gov (United States)

    Miyoung Oh; Mandla A. Tshabalala

    2007-01-01

    Bark flour from ponderosa pine (Pinus ponderosa) was consolidated into pellets using citric acid as cross-linking agent. The pellets were evaluated for removal of toxic heavy metals from synthetic aqueous solutions. When soaked in water, pellets did not leach tannins, and they showed high adsorption capacity for Cu(ll), Zn(ll), Cd(ll). and Ni(ll) under both equilibrium...

  18. Influence of herbicide structure, clay acidity, and humic acid coating on acetanilide herbicide adsorption on homoionic clays.

    Science.gov (United States)

    Liu, Weiping; Gan, Jianying; Yates, Scott R

    2002-07-03

    Adsorption of chloroacetanilide herbicides on homoionic montmorillonite was studied by coupling batch equilibration and FT-IR analysis. Adsorption decreased in the order metolachlor > acetochlor > alachlor > propachlor on Ca(2+)- or Mg(2+)-saturated clays and in the order metolachlor > alachlor > acetachlor > propachlor on Al(3+)- or Fe(3+)-saturated clays. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in bonding. For the same herbicide, adsorption of alachlor, acetachlor, and metolachlor on clay followed the order Ca(2+) approximately Mg(2+) < Al(3+) < or = Fe(3+), which coincided with the increasing acidity of homoionic clays. Adsorption of propachlor, however, showed an opposite dependence, suggesting a different governing interaction. In clay and humic acid mixtures, herbicide adsorption was less than that expected from independent additive adsorption by the individual constituents, and the deviation was dependent on the clay-to-humic acid ratio, with the greatest deviation consistently occurring at a 60:40 clay-to-humic acid ratio.

  19. Enhanced photoelectrochemical properties of TiO2 nanorod arrays decorated with CdS nanoparticles

    International Nuclear Information System (INIS)

    Xie, Zheng; Wang, Weipeng; Liu, Can; Li, Zhengcao; Liu, Xiangxuan; Zhang, Zhengjun

    2014-01-01

    TiO 2 nanorod arrays (TiO 2 NRAs) sensitized with CdS nanoparticles were fabricated via successive ion layer adsorption and reaction (SILAR), and TiO 2 NRAs were obtained by oxidizing Ti NRAs obtained through oblique angle deposition. The TiO 2 NRAs decorated with CdS nanoparticles exhibited excellent photoelectrochemical and photocatalytic properties under visible light, and the one decorated with 20 SILAR cycles CdS nanoparticles shows the best performance. This can be attributed to the enhanced separation of electrons and holes by forming heterojunctions of CdS nanoparticles and TiO 2 NRAs. This provides a promising way to fabricate the material for solar energy conversion and wastewater degradation. (paper)

  20. A computational study of adsorption of divalent metal ions on graphene oxide

    Directory of Open Access Journals (Sweden)

    Somphob Thompho

    2017-12-01

    Full Text Available Adsorption of divalent metal ions (Pb2+,Cd2+, Zn2+,Cu2+ on graphene oxide (GO was studied using density functional theory (DFT. Adsorption geometries and energies, as well as the nature of the binding energy, were calculated for the interaction of divalent metal ions with oxygen-containing groups on the surface of GO. The configurations of the complexes were modeled by placing the divalent metal ions above the center and perpendicular to the surface. Binding of Cu2+ to the GO sheet was predicted to be much stronger than that for other divalent metal ions. Calculated results show good agreement with experimental observations and provide useful information for environmental pollution cleanup.

  1. Preparation of bioconjugates of CdTe nanocrystals for cancer marker detection

    International Nuclear Information System (INIS)

    Hu Fengqin; Ran Yuliang; Zhou Zhuan; Gao Mingyuan

    2006-01-01

    Highly fluorescent CdTe quantum dots (Q-dots) stabilized by 3-mercaptopropionic acid (MPA) were prepared by an aqueous solution approach and used as fluorescent labels in detecting a cancer marker, carcinoembryonic antigen (CEA), expressed on human colon carcinoma cell line LS 180. Nonspecific adsorptions of CdTe Q-dots on carcinoma cells were observed and effectively eliminated by replacing MPA with a thiolated PEG (poly(ethylene glycol), Mn = 750) synthesized according to literature. It was unexpectedly found out that the PEG-coated CdTe Q-dots exhibited very strong and specific affinity to anti-CEA monoclonal antibody rch 24 (rch 24 mAb). The resultant CdTe-(rch 24 mAb) conjugates were successfully used in detections of CEA expressed on the surface of cell line LS 180. Further experiments demonstrated that the fluorescent CdTe Q-dots exhibited much better photostability and a brighter fluorescence than FITC, which consequently led to a higher efficiency in the cancer marker detection

  2. CdTeO3 Deposited Mesoporous NiO Photocathode for a Solar Cell

    Directory of Open Access Journals (Sweden)

    Chuan Zhao

    2014-01-01

    Full Text Available Semiconductor sensitized NiO photocathodes have been fabricated by successive ionic layer adsorption and reaction (SILAR method depositing CdTeO3 quantum dots onto mesoscopic NiO films. A solar cell using CdTeO3 deposited NiO mesoporous photocathode has been fabricated. It yields a photovoltage of 103.7 mV and a short-circuit current density of 0.364 mA/cm2. The incident photon to current conversion efficiency (IPCE value is found to be 12% for the newly designed NiO/CdTeO3 solar cell. It shows that the p-type NiO/CdTeO3 structure could be successfully utilized to fabricate p-type solar cell.

  3. Soil Cd, Cr, Cu, Ni, Pb and Zn sorption and retention models using SVM: Variable selection and competitive model.

    Science.gov (United States)

    González Costa, J J; Reigosa, M J; Matías, J M; Covelo, E F

    2017-09-01

    The aim of this study was to model the sorption and retention of Cd, Cu, Ni, Pb and Zn in soils. To that extent, the sorption and retention of these metals were studied and the soil characterization was performed separately. Multiple stepwise regression was used to produce multivariate models with linear techniques and with support vector machines, all of which included 15 explanatory variables characterizing soils. When the R-squared values are represented, two different groups are noticed. Cr, Cu and Pb sorption and retention show a higher R-squared; the most explanatory variables being humified organic matter, Al oxides and, in some cases, cation-exchange capacity (CEC). The other group of metals (Cd, Ni and Zn) shows a lower R-squared, and clays are the most explanatory variables, including a percentage of vermiculite and slime. In some cases, quartz, plagioclase or hematite percentages also show some explanatory capacity. Support Vector Machine (SVM) regression shows that the different models are not as regular as in multiple regression in terms of number of variables, the regression for nickel adsorption being the one with the highest number of variables in its optimal model. On the other hand, there are cases where the most explanatory variables are the same for two metals, as it happens with Cd and Cr adsorption. A similar adsorption mechanism is thus postulated. These patterns of the introduction of variables in the model allow us to create explainability sequences. Those which are the most similar to the selectivity sequences obtained by Covelo (2005) are Mn oxides in multiple regression and change capacity in SVM. Among all the variables, the only one that is explanatory for all the metals after applying the maximum parsimony principle is the percentage of sand in the retention process. In the competitive model arising from the aforementioned sequences, the most intense competitiveness for the adsorption and retention of different metals appears between

  4. Effect of Temperature on Granulocyte and Monocyte Adsorption to Cellulose Acetate Beads.

    Science.gov (United States)

    Nishise, Shoichi; Takeda, Yuji; Abe, Yasuhiko; Sasaki, Yu; Nara, Hidetoshi; Asao, Hironobu; Ueno, Yoshiyuki

    2017-06-01

    Granulocyte and monocyte (GM) adsorptive apheresis (GMA) is an effective therapy for inflammatory disorders including inflammatory bowel disease (IBD). During GMA, the blood of a patient with IBD passes through a column to contact cellulose acetate (CA) beads at a temperature below body temperature, likely close to room temperature. Here we investigated the effect of temperature on GM adsorption to CA beads in vitro. We incubated peripheral blood with and without CA beads at 5°C, 25°C, 37°C, and 43°C and calculated the ratios of adsorbed GMs. The ratios of adsorbed GMs increased as the temperature was raised. Additionally, we measured complement activation fragment concentrations. C3a and C5a concentrations also increased as the temperature was raised, and C5a concentrations had a positive correlation with the ratios of adsorbed GMs. These results suggest that warming the column during GMA might increase GM adsorption to CA beads, thereby enhancing the clinical efficacy of GMA. © 2017 International Society for Apheresis, Japanese Society for Apheresis, and Japanese Society for Dialysis Therapy.

  5. PERBANDINGAN KEMAMPUAN SILIKA GEL DARI ABU SABUT KELAPA DAN ABU SEKAM PADI UNTUK MENURUNKAN KADAR LOGAM Cd2+

    Directory of Open Access Journals (Sweden)

    AF Yusrin

    2015-07-01

    Full Text Available Penelitian mengenai pembuatan silika gel dari bahan baku abu sabut kelapa (ASK dan abu sekam padi (ASP telah dilakukan dengan memanfaatkan kandungan silikanya. Bahan baku ASK dan ASP ditambah larutan NaOH dengan pemanasan dan peleburan pada suhu 500C selama 30 menit menghasilkan larutan natrium silikat, kemudian larutan natrium silikat masing-masing diasamkan dengan HCl 3 M hingga pH 7 dan dikeringkan hingga menjadi silika gel abu sabut kelapa (SG-ASK dan silika gel abu sekam padi (SG-ASP. Hasil karakterisasi XRD menyatakan bahwa SG-ASK dan SG-ASP menghasilkan silika berbentuk amorf, sedangkan hasil analisis FT-IR menyatakan bahwa silika gel memiliki gugus fungsi Si-OH, Si-O dan Si-H. Hasil penelitian mengenai uji penyerapan ion logam Cd2+ menunjukkan bahwa penyerapan optimum ion logam Cd2+ dalam larutan oleh SG-ASK adalah pada pH 6, waktu kontak 60 menit dan konsentrasi optimum 7,45 ppm. Hasil uji penyerapan optimum ion logam Cd2+ dalam larutan oleh SG-ASP pada pH 7, waktu kontak 90 menit dan konsentrasi optimum 11,78 ppm. Hasil penelitian menunjukkan bahwa kemampuan SG-ASP lebih besar dibandingkan dengan kemampuan SG-ASK dalam menurunkan kadar ion logam Cd2+ dalam larutan.Research on the manufacture of gel silica from coconut husk ash (ASK and rice husk ash (ASP has been conducted by utilizing their silica contents. ASK and ASP were added by an NaOH solution, then by heated and melted at temperature 500C for 30 minutes to produce sodium silicate solution. The solution was then acidified separately with HCl 3 M up to pH 7 and dried into silica gel of coconut husk ash (SG-ASK and silica gel of rice husk ash (SG-ASP. The result of XRD characterization showed that SG-ASK and SG-ASP both produced amorphous silica, while the result of FT-IR analysis showed that silica gel had functional groups of Si-OH, Si-O and Si-H. The research on the test adsorption of Cd2+ metal ions showed that the optimum adsorption of Cd2+ metal ions in solution by SG

  6. Removal of Cd(II), Pb(II) and Cr(III) from water using modified residues of Anacardium occidentale L.

    Science.gov (United States)

    Coelho, Gustavo Ferreira; Gonçalves, Affonso Celso; Schwantes, Daniel; Rodríguez, Esperanza Álvarez; Tarley, César Ricardo Teixeira; Dragunski, Douglas; Conradi Junior, Élio

    2018-06-01

    The pollution of water has been one of the greatest problems faced by the modern society, due to industrialization and urban growth. Rivers, lakes and seas have been continually suffering from the rising concentration of various pollutants, especially toxic elements. This study aimed to evaluate the use of cashew nut shell ( Anacardium occidentale) (CNS), after chemical modification with H2O2, H2SO4 and NaOH, as an new and renewable adsorbent material, for the removal of metals Cd2+, Pb2+ and Cr3+ in aqueous medium. The adsorbents were characterized by its chemical constitution, structure, infrared spectroscopy, morphology, by means of scanning electron microscopy, determination of the point of zero charge, thermogravimetrical analysis and porosimetry assessments. Tests were conducted to determine the optimal conditions (pH vs. adsorbent mass) for adsorption, by means of multivariate analysis using a central composite design. The adsorption kinetics was evaluated by models of pseudo-first order, pseudo-second order, Elovich and intraparticle diffusion, while adsorption isotherms were linearized by Langmuir, Freundlich and Dubinin-Radushkevich. The effect of initial concentration, temperature and desorption was also performed. The adsorbents exhibited irregular, spongy and heterogeneous structure. FTIR analysis confirms the presence of hydroxyl, aliphatic, phenolic and carboxylic acid groups, which are favorable adsorption characteristics. The pHPZC of adsorbent is 4.35, 2.50 e 6.92, respectively, for CNS H2O2, H2SO4 and NaOH. The optimum adsorption conditions were as follows: pH 5.0; relation of adsorbent mass/volume of water: 4 g L-1; 40 min of contact time for reaching the equilibration. Results suggest the predominance of chemisorption of Cd2+ and Cr3+. Most of biosorbents exhibited good fit by Langmuir and Freundlich, suggesting the occurrence of adsorption on mono- and multilayers. The adsorbents of cashew nut shell exhibited high removal efficiency of Cd, Pb

  7. Preparation and characterization of polycrystalline n-CdSe photoelectrode

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, T. K.

    1979-01-01

    Thin layers of polycrystalline p-CdSe were prepared by the simultaneous eletrodeposition of cadmium and selenium from cadmium sulfate and selenious acid in a sulfuric acid solution at pH 0-1 on a titanium substrate. The adherence of the layers to the substrate, stoichiometric ratio of Cd:Se and photovoltaic property of the film depend upon the molar ratio of CdSO/sub 4/ and H/sub 2/SeO/sub 3/ and current density as well as on the pH and temperature of the electrolysis bath. On increasing the current density or the ratio of CdSO/sub 4/:H/sub 2/SeO/sub 3/ in the electrolysis bath, the Cd:Se of the electrodeposit increased. The semiconductor films so prepared were annealed at 550/sup 0/C in a nitrogen atmosphere, followed by etching in an acid solution and then used to construct the photo-electrochemical cell, Ti/CdSe/Na/sub 2/S-Na/sub 2/S/sub x/(aq.)/Pt, and the current-voltage curves have been studied. 11 references.

  8. RAFT of sulfobetaine for modifying poly(glycidyl methacrylate) microspheres to reduce nonspecific protein adsorption

    Czech Academy of Sciences Publication Activity Database

    Koubková, Jana; Macková, Hana; Proks, Vladimír; Trchová, Miroslava; Brus, Jiří; Horák, Daniel

    2015-01-01

    Roč. 53, č. 19 (2015), s. 2273-2284 ISSN 0887-624X R&D Projects: GA MŠk(CZ) LH14318; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : adsorption * grafting * hydrophilic polymers Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.114, year: 2015

  9. Adsorption of heavy metal ions on molybdenum and molybdenum trioxide from dilute aqueous solution

    International Nuclear Information System (INIS)

    Utsunomiya, Taizo; Hoshino, Yoshio; Sakabe, Ken-ichi

    1984-01-01

    The adsorption of heavy metal ions such as Co(II), Cu(II) and Pb(II) on molybdenum powder has been investigated by the batch technique as a function of soaking time, concentration of heavy metal ions and coexisting salts, pH etc. Molybdenum trioxide was also used as an adsorbent for a comparison to discuss the adsorption mechanism. The amount of these heavy metal ions adsorbed was highly pH and coexisting salts dependent. These adsorbents have features of selective adsorption for Pb(II) and large adsorption rate. The adsorption of heavy metal ions on these adsorbents proceeds independently or concurrently by following complex mechanism; (1) cation exchange reaction by hydroxyl radical on the surface of Mo and MoO 3 is predominant for most of heavy metal ions except Pb(II) [Co(II), Mn(II), Fe(III), Ni(II), Zn(II), Cd(II) and Sr(II)], (2) reduction (electron exchange reaction) to low ionic or metallic state after cation exchange reaction [Cu(II) and Ag(I) on Mo] and (3) formation of a compound [Pb(II) on both Mo and MoO 3 ]. (author)

  10. The role of electrolyte anions (ClO4-, NO3-, and Cl-) in divalent metal (M2+) adsorption on oxide and hydroxide surfaces in salt solutions

    International Nuclear Information System (INIS)

    Criscenti, L.J.; Sverjensky, D.A.

    1999-01-01

    Adsorption of divalent metal ions (M 2+ ) onto oxide and hydroxide surfaces from solutions of strong electrolytes has typically been inferred to take place without the involvement of the electrolyte anion. Only in situations where M 2+ forms a strong enough aqueous complex with the electrolyte anion (for example, CdCl + or PbCl + ) has it been frequently suggested that the metal and the electrolyte anion adsorb simultaneously. A review of experimental data for the adsorption of Cd 2+ , Pb 2+ , Co 2+ , UO 2 2+ , Zn 2+ , Cu 2+ , Ba 2+ , Sr 2+ , and Ca 2+ onto quartz, silica, goethite, hydrous ferric oxide, corundum, γ-alumina, anatase, birnessite, and magnetite, from NaNO 3 , KNO 3 , NaCl, and NaClO 4 solutions over a wide range of ionic strengths (0.0001 M-1.0 M), reveals that transition and heavy metal adsorption behavior with ionic strength is a function of the type of electrolyte. In NaNO 3 solutions, metal adsorption exhibits little or no dependence on the ionic strength of the solution. However, in NaCl solutions, transition and heavy metal adsorption decreases strongly with increasing ionic strength. In NaClO 4 solutions, metal adsorption decreases strongly with increasing ionic strength. In NaClO 4 solutions, metal adsorption exhibits little dependence on ionic strength but is often suggestive of an increase in metal adsorption with increasing ionic strength. Analysis of selected adsorption edges was carried out using the extended triple-layer model and aqueous speciation models that included metal-nitrate, metal-chloride, and metal-hydroxide complexes

  11. Synthesis, characterization and metal adsorption properties of the new ion exchanger polymer 3-n-propyl(4-methylpyridinium) silsesquioxane chloride.

    Science.gov (United States)

    Magosso, H A; Panteleimonov, A V; Kholin, Y V; Gushikem, Y

    2006-11-01

    The preparation and anion exchange properties of 3-n-propyl(4-methylpyridinium) silsesquioxane chloride polymer are described. This new polymer was prepared by the sol-gel processing method and is designated as SiPic+Cl-. It is insoluble in water and showed an anion exchange capacity of 1.46x10(-3) mol g-1. The adsorption isotherms of ZnCl2, CdCl2 and HgCl2 were determined from aqueous solutions and the adsorption equilibria simulations fit the model of fixed bidentate centers with the absence of lateral interactions and energetic heterogeneity between them. The metal ions diffuse into the solid solution interface and are dominantly present as MCl2-(4) species for Zn(II), MCl(2-)4 and MCl-3 species for Cd(II) and MCl-3 species for Hg(II).

  12. Enhanced Cadmium (Cd Phytoextraction from Contaminated Soil using Cd-Resistant Bacterium

    Directory of Open Access Journals (Sweden)

    Kunchaya Setkit

    2014-01-01

    Full Text Available A cadmium (Cd-resistant bacterium, Micrococcus sp. MU1, is able to produce indole-3-acetic acid and promotes root elongation and plant growth. The potential of this bacterium on enhancement of Cd uptake and bioaccumulation of Cd in Helianthus annuus L. planted in Cd-contaminated soil was evaluated in greenhouse condition. The results showed that Micrococcus sp. MU1promoted the growth of H. annuus L. by increasing the root length, stem height, dry biomass, root to shoot ratio and also significantly increased Cd accumulation in the root and above-ground tissues of H. annuus L. compared to uninoculated control. Re-inoculation with Micrococcus sp. MU1in contaminated soil helped in promoting plant growth and Cd phytoextraction throughout the cultivation period. In addition, phytoextraction coefficient and translocation factor (TF of H. annuus L. inoculated with Micrococcus sp. MU1were higher than that of uninoculated control and TF continuously increased with time. Our results suggested that Micrococcus sp. MU1 has an ability to enhance plant growth and Cd uptake in H. annuus L. Synergistic interaction between Micrococcus sp. MU1 and H. annuus L. could be further applied for Cd phytoextraction in polluted areas.

  13. On-line solid phase selective separation and preconcentration of Cd(II) by solid-phase extraction using carbon active modified with methyl thymol blue.

    Science.gov (United States)

    Ensafi, Ali A; Ghaderi, Ali R

    2007-09-05

    An on-line flow system was used to develop a selective and efficient on-line sorbent extraction preconcentration system for cadmium. The method is based on adsorption of cadmium ions onto the activated carbon modified with methyl thymol blue. Then the adsorbed ions were washed using 0.5M HNO(3) and the eluent was used to determine the Cd(II) ions using flame atomic absorption spectrometry. The results obtained show that the modified activated carbon has the greatest adsorption capacity of 80 microg of Cd(II) per 1.0 g of the solid phase. The optimal pH value for the quantitative preconcentration was 9.0 and full desorption is achieved by using 0.5M HNO(3) solution. It is established that the solid phase can be used repeatedly without a considerable adsorption capacity loss. The detection limit was less than 1 ngmL(-1) Cd(II), with an enrichment factor of 1000. The calibration graph was linear in the range of 1-2000 ngmL(-1) Cd(II). The developed method has been applied to the determination of trace cadmium (II) in water samples and in the following reference materials: sewage sludge (CRM144R), and sea water (CASS.4) with satisfactory results. The accuracy was assessed through recovery experiments.

  14. Oxolane-2,5-dione modified electrospun cellulose nanofibers for heavy metals adsorption

    International Nuclear Information System (INIS)

    Stephen, Musyoka; Catherine, Ngila; Brenda, Moodley; Andrew, Kindness; Leslie, Petrik; Corrine, Greyling

    2011-01-01

    Highlights: → Electrospun and modified cellulose nanofibers have high surface area. → Modified nanofibers showed improved adsorption of Cd and Pb from water. → Regenerated modified nanofibers had high adsorption capacity hence recyclable. - Abstract: Functionalized cellulose nanofibers have been obtained through electrospinning and modification with oxolane-2,5-dione. The application of the nanofibers for adsorption of cadmium and lead ions from model wastewater samples is presented for the first time. Physical and chemical properties of the nanofibers were characterized. Surface chemistry during preparation and functionalization was monitored using Fourier transform-infrared spectroscopy, scanning electron microscopy, carbon-13 solid state nuclear magnetic resonance spectroscopy and Brunauer Emmett and Teller. Enhanced surface area of 13.68 m 2 g -1 was recorded for the nanofibers as compared to the cellulose fibers with a surface area of 3.22 m 2 g -1 . Freundlich isotherm was found to describe the interactions better than Langmuir: K f = 1.0 and 2.91 mmol g -1 (r 2 = 0.997 and 0.988) for lead and cadmium, respectively. Regenerability of the fiber mats was investigated and the results obtained indicate sustainability in adsorption efficacy of the material.

  15. Expression of CD133 in acute leukemia.

    Science.gov (United States)

    Tolba, Fetnat M; Foda, Mona E; Kamal, Howyda M; Elshabrawy, Deena A

    2013-06-01

    There have been conflicting results regarding a correlation between CD133 expression and disease outcome. To assess CD133 expression in patients with acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) and to evaluate its correlation with the different clinical and laboratory data as well as its relation to disease outcome, the present study included 60 newly diagnosed acute leukemic patients; 30 ALL patients with a male to female ratio of 1.5:1 and their ages ranged from 9 months to 48 years, and 30 AML patients with a male to female ratio of 1:1 and their ages ranged from 17 to 66 years. Flow cytometric assessment of CD133 expression was performed on blast cells. In ALL, no correlations were elicited between CD133 expression and some monoclonal antibodies, but in AML group, there was a significant positive correlation between CD133 and HLA-DR, CD3, CD7 and TDT, CD13 and CD34. In ALL group, patients with negative CD133 expression achieved complete remission more than patients with positive CD133 expression. In AML group, there was no statistically significant association found between positive CD133 expression and treatment outcome. The Kaplan-Meier curve illustrated a high significant negative correlation between CD133 expression and the overall survival of the AML patients. CD133 expression is an independent prognostic factor in acute leukemia, especially ALL patients and its expression could characterize a group of acute leukemic patients with higher resistance to standard chemotherapy and relapse. CD133 expression was highly associated with poor prognosis in acute leukemic patients.

  16. Coupled Electrokinetics-Adsorption Technique for Simultaneous Removal of Heavy Metals and Organics from Saline-Sodic Soil

    Science.gov (United States)

    Lukman, Salihu; Essa, Mohammed Hussain; Mu'azu, Nuhu Dalhat; Bukhari, Alaadin

    2013-01-01

    In situ remediation technologies for contaminated soils are faced with significant technical challenges when the contaminated soil has low permeability. Popular traditional technologies are rendered ineffective due to the difficulty encountered in accessing the contaminants as well as when employed in settings where the soil contains mixed contaminants such as petroleum hydrocarbons, heavy metals, and polar organics. In this study, an integrated in situ remediation technique that couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the efficiency of contaminant removal. For the 21-day period of continuous electrokinetics-adsorption experimental run, efficiency for the removal of Zn, Pb, Cu, Cd, Cr, Hg, phenol, and kerosene was found to reach 26.8, 55.8, 41.0, 34.4, 75.9, 92.49, 100.0, and 49.8%, respectively. The results obtained suggest that integrating adsorption into electrokinetic technology is a promising solution for removal of contaminant mixture from saline-sodic soils. PMID:24235885

  17. Coupled Electrokinetics-Adsorption Technique for Simultaneous Removal of Heavy Metals and Organics from Saline-Sodic Soil

    Directory of Open Access Journals (Sweden)

    Salihu Lukman

    2013-01-01

    Full Text Available In situ remediation technologies for contaminated soils are faced with significant technical challenges when the contaminated soil has low permeability. Popular traditional technologies are rendered ineffective due to the difficulty encountered in accessing the contaminants as well as when employed in settings where the soil contains mixed contaminants such as petroleum hydrocarbons, heavy metals, and polar organics. In this study, an integrated in situ remediation technique that couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg, was used in this study to investigate the efficiency of contaminant removal. For the 21-day period of continuous electrokinetics-adsorption experimental run, efficiency for the removal of Zn, Pb, Cu, Cd, Cr, Hg, phenol, and kerosene was found to reach 26.8, 55.8, 41.0, 34.4, 75.9, 92.49, 100.0, and 49.8%, respectively. The results obtained suggest that integrating adsorption into electrokinetic technology is a promising solution for removal of contaminant mixture from saline-sodic soils.

  18. CD26 + CD4 + T cell counts and attack risk in interferon-treated multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F; Ross, C; Koch-Henriksen, Nils

    2005-01-01

    in patients with CD26 + CD4 + T cell counts above median, and this risk was independent of the risk conferred by neutralizing anti-IFN-beta antibodies. CD26 + CD4 + T cell counts may identify patients with MS at increased risk of attack during treatment with IFN-beta....... and CCR5 on T cells is altered in patients with active MS. We studied the expression of these molecules by flow cytometry in patients followed for six months during immunomodulatory treatment. In interferon (IFN)-beta-treated patients, we found that the hazard ratio for developing an attack was 28...

  19. Synthesis and optical properties of core-multi-shell CdSe/CdS/ZnS quantum dots: Surface modifications

    Science.gov (United States)

    Ratnesh, R. K.; Mehata, Mohan Singh

    2017-02-01

    We report two port synthesis of CdSe/CdS/ZnS core-multi-shell quantum dots (Q-dots) and their structural properties. The multi-shell structures of Q-dots were developed by using successive ionic layer adsorption and reaction (SILAR) technique. The obtained Q-dots show high crystallinity with the step-wise adjustment of lattice parameters in the radial direction. The size of the core and core-shell Q-dots estimated by transmission electron microscopy images and absorption spectra is about 3.4 and 5.3 nm, respectively. The water soluble Q-dots (scheme-1) were prepared by using ligand exchange method, and the effect of pH was discussed regarding the variation of quantum yield (QY). The decrease of a lifetime of core-multi-shell Q-dots with respect to core CdSe indicates that the shell growth may be tuned by the lifetimes. Thus, the study clearly demonstrates that the core-shell approach can be used to substantially improve the optical properties of Q-dots desired for various applications.

  20. Synthesis of CdS Nanocrystals with Different Shapes via a Colloidal Method

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Jie; Liu, Changsong; Niu, Jinzhong; Wang, Hongzhe; Xu, Shasha; Shen, Huaibin; Li, Lin Song [Henan Univ., Henan (China)

    2014-02-15

    Size- and shape-controlled monodisperse wurtzite structured CdS nanorods have been successfully synthesized using a facile solution-based colloidal method. Depending on the control of injection/growth temperatures and the variation of Cd-to-S molar ratios, the morphology of the CdS nanocrystals (NCs) can be adjusted into bullet-like, rod-like, and dot-like shapes. X-ray diffraction (XRD), transition electron microscopy (TEM), and absorption spectroscopy were used to characterize the structure, morphology, and optical properties of as-synthesized CdS NCs. It was found that uniform CdS nanorods could be successfully synthesized when the injection and growth temperatures were very high (> 360 .deg. C). The aspect ratios of different shaped (bullet-like or rod-like) CdS NCs could be controlled by simply adjusting the molar ratios between Cd and S.

  1. Synthesis of CdS Nanocrystals with Different Shapes via a Colloidal Method

    International Nuclear Information System (INIS)

    Bai, Jie; Liu, Changsong; Niu, Jinzhong; Wang, Hongzhe; Xu, Shasha; Shen, Huaibin; Li, Lin Song

    2014-01-01

    Size- and shape-controlled monodisperse wurtzite structured CdS nanorods have been successfully synthesized using a facile solution-based colloidal method. Depending on the control of injection/growth temperatures and the variation of Cd-to-S molar ratios, the morphology of the CdS nanocrystals (NCs) can be adjusted into bullet-like, rod-like, and dot-like shapes. X-ray diffraction (XRD), transition electron microscopy (TEM), and absorption spectroscopy were used to characterize the structure, morphology, and optical properties of as-synthesized CdS NCs. It was found that uniform CdS nanorods could be successfully synthesized when the injection and growth temperatures were very high (> 360 .deg. C). The aspect ratios of different shaped (bullet-like or rod-like) CdS NCs could be controlled by simply adjusting the molar ratios between Cd and S

  2. AUSTRALIAN PINE CONES-BASED ACTIVATED CARBON FOR ADSORPTION OF COPPER IN AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    MUSLIM A.

    2017-02-01

    Full Text Available The Australian Pine cones (APCs was utilised as adsorbent material by physical and chemical activation for the adsorption Cu(II in aqueous solution. FTIR and SEM analysis were conducted to obtain the active site and to characterise the surface morphology of the APCs activated carbon (APCs AC prepared through pyrolysis at 1073.15 K and alkaline activation of NaOH. The independent variables effect such as contact time, Cu(II initial concentration and the activator ratio in the ranges of 0-150 min, 84.88-370.21 mg/l and 0.2-0.6 (NaOH:APCs AC, respectively on the Cu(II adsorption capacity were investigated in the APCs activated carbon-solution (APCs ACS system with 1 g the APCs AC in 100 mL Cu(II aqueous solution with magnetic stirring at 75 rpm, room temperature of 298.15 K (± 2 K, 1 atm and pH 5 (±0.25. As the results, Cu(II adsorption capacity dramatically increased with increasing contact time and Cu(II initial concentration. The optimal Cu(II adsorption capacity of 26.71 mg/g was obtained in the APCs ACS system with 120-min contact time, 340.81 m/l initial Cu(II and 0.6 activator ratio. The kinetics study showed the Cu(II adsorption kinetics followed the pseudo-second-order kinetics with 27.03 mg/g of adsorption capacity, 0.09 g/mg.min of rate constant and 0.985-R2. In addition, the Cu(II adsorption isotherm followed the Langmuir model with 12.82 mg/g of the mono-layer adsorption capacity, 42.93 l/g of the over-all adsorption capacity and 0.954-R2.

  3. Target swapping in PLD: An efficient approach for CdS/SiO2 and CdS:Ag(1%)/SiO2 nanocomposite thin films with enhanced luminescent properties

    International Nuclear Information System (INIS)

    Saxena, Nupur; Kumar, Pragati; Gupta, Vinay

    2017-01-01

    A novel synthesis method for luminescent and by-products (like CdO) free CdS/SiO 2 and CdS:Ag(1%)/SiO 2 (i.e. 1%Ag doped CdS/SiO 2 ) nanocomposite thin films at room temperature by pulsed laser deposition is reported. Targets of CdS, CdS:Ag(1%) and SiO 2 are used to deposit CdS/SiO 2 and CdS:Ag(1%)/SiO 2 nanocomposite thin films by swapping them at a frequency ratio of 2:8 laser pulses/sec. X-ray photoelectron spectroscopy analysis ensures the ratio of CdS to SiO 2 in nanocomposite as 21:79 which is nearly same as the ratio of incident pulses/sec (i.e. 2:8) on the two targets. Transmission electron micrographs visualize the formation of CdS/ CdS:Ag(1%) nanocrystals in nanocomposite systems after annealing at 500 °C. Highly intense and broad red emission is achieved from CdS/SiO 2 and CdS:Ag(1%)/SiO 2 nanocomposites. The efficiencies of emission from pristine CdS:SiO 2 and CdS:Ag(1%)/SiO 2 nanocomposites are found to be enhanced by approximately two times as compared to sole nanocrystalline CdS and CdS:Ag(1%) thin films respectively and further enhanced upto 7 times on annealing the nanocomposite systems at 500 °C. - Graphical abstract: A modified synthesis method for luminescent and by-products (like CdO) free undoped &1% Ag doped CdS/SiO 2 (deposit CdS/SiO 2 and CdS:Ag(1%)/SiO 2 ) nanocomposite thin films at room temperature by pulsed laser deposition is reported. Targets of CdS or CdS:Ag(1%) and SiO 2 are used to deposit CdS/SiO 2 and CdS:Ag(1%)/SiO 2 nanocomposite thin films by swapping them at a frequency of 2:8 pulses/sec. X-ray photoelectron spectroscopy analysis ensures the ratio of CdS to SiO 2 in nanocomposite as 21:79 which is nearly same as the ratio of incident pulses/sec (2:8) on the two targets. Transmission electron micrographs visualize the formation of CdS nanocrystals in nanocomposite systems after annealing at 500 °C. Intense and broad red emission is achieved from deposit CdS/SiO 2 and CdS:Ag(1%)/SiO 2 nanocomposites. The efficiency of

  4. Determinación de la adsorción de cadmio mediante isotermas de adsorción en suelos agrícolas venezolanos Determination of the adsorption of cadmium by adsorption isotherms in agricultural soils venezuelans

    Directory of Open Access Journals (Sweden)

    Nereida Sánchez

    2011-04-01

    Full Text Available El cadmio es un metal pesado que tiende a acumularse en la superficie del suelo. En los últimos años, las actividades antropogénicas han ocasionado un incremento en los niveles de este metal en suelos agrícolas generando gran preocupación ambiental debido a su movilidad y lixiviación en el perfil del suelo y a la facilidad con que es absorbido por las plantas. El objetivo de este trabajo fue determinar la capacidad de adsorción de cadmio, de cuatro suelos venezolanos de uso agrícola con diferencias texturales. Para determinar la capacidad de adsorción del metal en cada suelo, inicialmente se determinó el tiempo óptimo de agitación; el cual fue de 2 horas y la relación suelo-solución enriquecedora de Cd; la cual fue de 1:50. Con estos parámetros se elaboraron las isotermas de adsorción para los suelos y se compararon los modelos de Freundlich y Langmuir. Los resultados mostraron que el modelo matemático de Freundlich es el que mejor describe la cinética de la reacción y la capacidad de adsorción de Cd por los suelos, siendo los que poseen mayores contenidos de arcilla, MO y pH ácidos los de mayor capacidad de adsorción.Cadmium is a heavy metal which tends to accumulate in the soil surface. In recent years, anthropogenic activities have caused an increase of the levels of this metal in agricultural soils causing great environmental concern due to their mobility and leaching in the soil profile and the ease way to be absorbed by plants. The purpose of this study was to determine the adsorption capacity of cadmium in four Venezuelan agricultural soils with different texture. To determine the adsorption capacity of Cd in each soil, first of all the optimal time of stirring was determined, which was two hours and the soilenriching solution of Cd, which was (1/50. With these parameters, cadmium adsorption isotherms for all soils were developed and compared with Freundlich and Langmuir models. The data showed that the Freundlich

  5. Applicability of the Pinus bark (Pinus elliottii for the adsorption of toxic heavy metals from aqueous solutions - doi: 10.4025/actascitechnol.v34i1.9585

    Directory of Open Access Journals (Sweden)

    Affonso Celso Gonçalves Junior

    2011-11-01

    Full Text Available  Current research evaluates the efficaciousness of pine (Pinus elliottii bark as adsorbent of the toxic heavy metals cadmium (Cd, lead (Pb and chromium (Cr from aqueous solutions, at two pH conditions: 5.0 and 7.0. Approximately 500 mg of adsorbent material and 50 mL of solution contaminated by Cd, Pb and Cr at different concentrations prepared from standard solutions of each metal were added in 125 mL Erlenmeyer flasks.  Flasks were stirred during 3h at 200 rpm at 25ºC. Further, 10 mL aliquots were then retrieved and concentration of metal Cd, Pb and Cr determined by AAS. Adsorption isotherms for each metal were consequently obtained and linearized according to Langmuir and Freundlich’s mathematical models. Results show that the Pinus bark was efficacious in the removal of toxic heavy metals Cd, Pb and Cr from contaminated solutions and that the bark’s adsorption capacity depended on pH solution.

  6. Clean focus, dose and CD metrology for CD uniformity improvement

    Science.gov (United States)

    Lee, Honggoo; Han, Sangjun; Hong, Minhyung; Kim, Seungyoung; Lee, Jieun; Lee, DongYoung; Oh, Eungryong; Choi, Ahlin; Kim, Nakyoon; Robinson, John C.; Mengel, Markus; Pablo, Rovira; Yoo, Sungchul; Getin, Raphael; Choi, Dongsub; Jeon, Sanghuck

    2018-03-01

    Lithography process control solutions require more exacting capabilities as the semiconductor industry goes forward to the 1x nm node DRAM device manufacturing. In order to continue scaling down the device feature sizes, critical dimension (CD) uniformity requires continuous improvement to meet the required CD error budget. In this study we investigate using optical measurement technology to improve over CD-SEM methods in focus, dose, and CD. One of the key challenges is measuring scanner focus of device patterns. There are focus measurement methods based on specially designed marks on scribe-line, however, one issue of this approach is that it will report focus of scribe line which is potentially different from that of the real device pattern. In addition, scribe-line marks require additional design and troubleshooting steps that add complexity. In this study, we investigated focus measurement directly on the device pattern. Dose control is typically based on using the linear correlation behavior between dose and CD. The noise of CD measurement, based on CD-SEM for example, will not only impact the accuracy, but also will make it difficult to monitor dose signature on product wafers. In this study we will report the direct dose metrology result using an optical metrology system which especially enhances the DUV spectral coverage to improve the signal to noise ratio. CD-SEM is often used to measure CD after the lithography step. This measurement approach has the advantage of easy recipe setup as well as the flexibility to measure critical feature dimensions, however, we observe that CD-SEM metrology has limitations. In this study, we demonstrate within-field CD uniformity improvement through the extraction of clean scanner slit and scan CD behavior by using optical metrology.

  7. Investigation of adsorption performance deterioration in silica gel–water adsorption refrigeration

    International Nuclear Information System (INIS)

    Wang Dechang; Zhang Jipeng; Xia Yanzhi; Han Yanpei; Wang Shuwei

    2012-01-01

    Highlights: ► Adsorption deterioration of silica gel in refrigeration systems is verified. ► Possible factors to cause such deterioration are analyzed. ► Specific surface area, silanol content and adsorption capacity are tested. ► The pollution is the primary factor to decline the adsorption capacity. ► Deteriorated samples are partly restored after being processed by acid solution. - Abstract: Silica gel acts as a key role in adsorption refrigeration systems. The adsorption deterioration must greatly impact the performance of the silica gel–water adsorption refrigeration system. In order to investigate the adsorption deterioration of silica gel, many different silica gel samples were prepared according to the application surroundings of silica gel in adsorption refrigeration systems after the likely factors to cause such deterioration were analyzed. The specific surface area, silanol content, adsorption capacity and pore size distribution of those samples were tested and the corresponding adsorption isotherms were achieved. In terms of the experimental data comparisons, it could be found that there are many factors to affect the adsorption performance of silica gel, but the pollution was the primary one to decline the adsorption capacity. In addition, the adsorption performance of the deteriorated samples after being processed by acid solution was explored in order to find the possible methods to restore its adsorption performance.

  8. Electrokinetic remediation on cadmium (CD) spiked soils

    Energy Technology Data Exchange (ETDEWEB)

    Sah Jy-Gau [Dept. of Environmental Science and Engineering, National Pingtung Univ. of Science and Technology, Pingtung (Taiwan); Yu Lin, L. [Dept. of Civil and Environmental Engineering, Christian Bros. Univ. Memphis, TN (United States)

    2001-07-01

    The objective of this study is to examine several variables, such as soil pH, adsorption capacity, fraction of Cd in soils, and organic content for Cd removal in contaminated soil using electrokinetic technology. Two different experimental modules were constructed in the laboratory. In the small module, most Cd was able to move and concentrate at or near the cathode zone in acidic soil and neutral soil under 8 volts after 30 days of electrification. However, the Cd removal efficiency did not improve even when the alkaline soil was soaked in stronger acid solutions. The results indicated that the removal efficiencies were influenced not only by the pH of conducting solutions, but also the pH of the soils. The removal efficiencies of Cd were reduced when a portion of organic peat moss was added into the soils. The increases of organic content in the soils inhibit the removal efficiency in electrokinetic technology. In the larger scale module, the removal efficiency of Cd was lower than that in the smaller module during a short period of time. Nevertheless, the efficiency was improved in the larger module while 16 volts electric pressure and 180 days were applied to the module. The results also showed that the sequence of removal efficiency of the three soils in larger module followed the changes of soil pH. From this study, it concluded that electrokinetic technology has a highly potential to removal Cd in contaminated soils. Within these influence variable studies, the soil pH and organic content are the most important factor in electrokinetic technology. Keywords: Electrokinetic Technique, Heavy Metal, Cd, Soil Remediation. (orig.)

  9. Investigation of Cd Adsorption and Accumulation from Contaminated Soil in Different Parts of Root Crops

    Directory of Open Access Journals (Sweden)

    Bahman Yargholi

    2010-01-01

        Environmental pollution with heavy metals and their absorption by plants form a universal problem around the world. Numerous investigations have been conducted to put wastewaters containing heavy metals to agricultural reuse. Little is known, however, about the absorption of cadmium in the root zone and its accumulation in the different organs of crops, particularly in root crops. This study was carried out to investigate the influence of different levels of Cd concentration in the root zone on the accumulation rate in various parts of four different types of common root crops in karaj Iran. The experiment was performed in a factorial testing plan in random blocks and in four treatments with three replicates. The treatments included four levels of Cd concentration in soil (50 mg/kg, 100 mg/kg, 50 mg/kg, control without Cd addition and water with 0.5 molar of EDTA. The soil used in this study was prepared by passing through a sieve with a 2mm mesh and adding Nitrate Cadmium (Cd(NO32. Cylinder plastic vases 40 Cm in diameter and 60 cm high were employed to cultivate vegetables. Water demandwas estimated via the Penman-Mantith method, in which Kc was calculated by means of recorded data at Meshgin-Abad synoptic station in Karaj. At the end of the growing season, samples were taken from different organs of the plants to measure Cadmium accumulation. The SPSS software was used for the variance analysis of the collected data. The Dunkan test (at 0.01 and 0.05 levels was then used to evaluate averages of the specifications in the factorial testing levels. The results indicate a direct relationship between Cd concentration in the root zone and Cd accumulation in plant organs. Adding 0.5 molar of EDTA to the irrigation water caused Cd accumulation in plant organs to exceed 60 percent. The results also show that Cd concentration, except for the control, was in excess of the limit for human consumption and that its accumulation levels in the different species tested

  10. A High RORγT/CD3 Ratio is a Strong Prognostic Factor for Postoperative Survival in Advanced Colorectal Cancer: Analysis of Helper T Cell Lymphocytes (Th1, Th2, Th17 and Regulatory T Cells).

    Science.gov (United States)

    Yoshida, Naohiro; Kinugasa, Tetsushi; Miyoshi, Hiroaki; Sato, Kensaku; Yuge, Kotaro; Ohchi, Takafumi; Fujino, Shinya; Shiraiwa, Sachiko; Katagiri, Mitsuhiro; Akagi, Yoshito; Ohshima, Koichi

    2016-03-01

    Tumor-infiltrating lymphocytes (TILs), part of the host immune response, have been widely reported as influential factors in the tumor microenvironment for the clinical outcome of colorectal cancer (CRC). However, the network of helper T cells is very complex, and which T-cell subtypes affect the progression of CRC and postoperative prognosis remains unclear. This study investigated the expression of several subtypes of TILs including T helper type 1 (Th1), Th2, Th17, and regulatory T (Treg) cells to determine their correlation with clinicopathologic features and postoperative prognosis. The study investigated the expression of TILs using immunohistochemistry of tissue microarray samples for 199 CRC patients. The number of each T-cell subtype infiltrating tumors was counted using ImageJ software. The relationship between TIL marker expression, clinicopathologic features, and prognosis was analyzed. A high RORγT/CD3 ratio (Th17 ratio) was significantly correlated with lymph node metastasis (p = 0.002), and a high of Foxp3/CD3 ratio (Treg ratio) was correlated with tumor location in the colon (p = 0.04), as shown by the Chi square test. In multivariate analysis, a high RORγT/CD3 ratio was the only independent prognostic factor for overall survival (p = 0.04; hazard ratio [HR], 1.84; 95% confidence interval [CI] 1.02-3.45). This study confirmed a high RORγT/CD3 ratio as a strong prognostic marker for postoperative survival. The immunohistochemistry results suggest that Th17 may affect lymph node metastasis in CRC. If new immunotherapies reducing Th17 expression are established, they may improve the efficiency of cancer treatment and prolong the survival of patients with CRC.

  11. Advanced adsorption cooling cum desalination cycle: A thermodynamic framework

    KAUST Repository

    Chakraborty, Anutosh

    2011-01-01

    We have developed a thermodynamic framework to calculate adsorption cooling cum desalination cycle performances as a function of pore widths and pore volumes of highly porous adsorbents, which are formulated from the rigor of thermodynamic property surfaces of adsorbent-adsorbate system and the adsorption interaction potential between them. Employing the proposed formulations, the coefficient of performance (COP) and overall performance ratio (OPR) of adsorption cycle are computed for various pore widths of solid adsorbents. These results are compared with experimental data for verifying the proposed thermodynamic formulations. It is found from the present analysis that the COP and OPR of adsorption cooling cum desalination cycle is influenced by (i) the physical characteristics of adsorbents, (ii) characteristics energy and (iii) the surface-structural heterogeneity factor of adsorbent-water system. The present study confirms that there exists a special type of adsorbents having optimal physical characteristics that allows us to obtain the best performance.

  12. Removal of CdTe in acidic media by magnetic ion-exchange resin: A potential recycling methodology for cadmium telluride photovoltaic waste

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Teng, E-mail: zhangteng@mail.iee.ac.cn; Dong, Zebin; Qu, Fei; Ding, Fazhu; Peng, Xingyu; Wang, Hongyan; Gu, Hongwei

    2014-08-30

    Highlights: • Sulfonated magnetic microsphere was prepared as one strong acid cation-exchange resin. • Cd and Te can be removed directly from the highly acidic leaching solution of CdTe. • Good chemical stability, fast adsorbing rate and quick magnetic separation in strong acidic media. • A potential path for recycling CdTe photovoltaic waste. - Abstract: Sulfonated magnetic microspheres (PSt-DVB-SNa MPs) have been successfully prepared as adsorbents via an aqueous suspension polymerization of styrene-divinylbenzene and a sulfonation reaction successively. The resulting adsorbents were confirmed by means of Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope equipped with an energy dispersive spectrometer (SEM-EDS) and vibrating sample magnetometer (VSM). The leaching process of CdTe was optimized, and the removal efficiency of Cd and Te from the leaching solution was investigated. The adsorbents could directly remove all cations of Cd and Te from a highly acidic leaching solution of CdTe. The adsorption process for Cd and Te reached equilibrium in a few minutes and this process highly depended on the dosage of adsorbents and the affinity of sulfonate groups with cations. Because of its good adsorption capacity in strong acidic media, high adsorbing rate, and efficient magnetic separation from the solution, PSt-DVB-SNa MPs is expected to be an ideal material for the recycling of CdTe photovoltaic waste.

  13. Biosorption of Cd(II) and Cs(I) from aqueous solution by live and dead cells of Saccharomyces carlsbergensis PTCC 5051.

    Science.gov (United States)

    Sayyadi, Shayan; Ahmady-Asbchin, Salman; Kamali, Kasra

    2018-02-01

    The biosorption characteristics of Cd(II) and Cs(I) using live and dead cells of Saccharomyces carlsbergensis PTCC 5051 as biosorbents have been investigated in the present research. The influence of different experimental parameters such as initial pH (pHi), shaking rate, sorption time and initial metal concentration was evaluated. The optimum pH was obtained as 4 for Cd(II) and 7 for Cs(I). The experimental adsorption data were fitted to the Langmuir linear equation adsorption model. The highest metal uptake values of 0.593 and 0.473 mmol g -1 were calculated for Cd(II) and Cs(I), respectively. The results of Fourier transform infrared analysis suggested the involvement of amine, carboxyl and hydroxyl groups during the biosorption process and also indicated that more functional groups were involved in the biosorption process of live adsorbents, compared with those linked to dead biomass. The results showed that the biomass of S. carlsbergensis PTCC 5051 is a suitable biosorbent for the removal of Cd(II) and Cs(I) from the aqueous solutions.

  14. Efeito do pH na adsorção e dessorção de cádmio em Latossolos brasileiros Effect of pH on cadmium adsorption and desorption in Brazilian Oxisols

    Directory of Open Access Journals (Sweden)

    Maria Aparecida Pereira Pierangeli

    2005-07-01

    in soils are influenced by the surface of the soil colloid attributes and solution composition. This study evaluated the effect of the pH on Cd adsorption (Cd ads and desorption (Cd des in l7 Brazilian Oxisol samples that differed in their chemical, physical and mineralogical attributes. Samples of each soil, suspended in 5 mmol L-1 Ca(NO32 (pH adjusted to 4.5; 5.5, and 6.5; ratio soil:solution 1:67 were placed to react with 0.20 mmol L-1 Cd(NO32 (final ratio soil:solution 1:100 for 72 h, after which they were centrifuged and the Cd concentration of the solution determined. Thereafter, 25 mL of 5 mmol L-1 Ca(NO32 were added to the remaining residue to desorb the Cd retained in the soil samples. An increase of the pH solution from 4.5 to 5.5, from 4.5 to 6.5 and from 5.5 to 6.5 caused a 1.3; 2.2 and 1.7-fold increase in the Cd adsorption, respectively. The mean percentage of Cd adsorbed (Cd%ads was 27 (pH 4.5, 35 (pH 5.5 and 55% (pH 6.5. The effect of soil attributes on Cd ads was only evidenced at a pH of 5.5 and 6.5, by the correlations between Cd ads and the soil organic matter, specific superficial area (SSA, CEC at pH 7.0 (CEC, kaolinite, hematite, oxalate-and-DCB-Fe and clay contents. However, only CEC and clay content, at pH 5.5 and the SSA, at pH 6.5, were included in the model of Cd ads prediction, obtained through regression analyses. The adsorption in values of higher pH did not propitiate reduction in Cd des, which was around 20% for pH 4.5 and 40% for pH 5.5 and 6.5. The small proportions of Cd adsorbed by these Oxisols, mainly at lower pH values, which are an indication of high mobility and bioavailability, reinforces the need for the adoption of appropriate criteria to use or discard residues containing Cd in agricultural areas or close to aquifers.

  15. Controlled synthesized natroalunite microtubes applied for cadmium(II) and phosphate co–removal

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Huan [School of Physics and Materials Science, Anhui University, Hefei 230601 (China); Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Zhu, Baisheng [University of Science and Technology of China, Hefei 230026 (China); Ren, Xuemei, E-mail: renxm1985@163.com [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Shao, Dadong; Tan, Xiaoli; Chen, Changlun [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China)

    2016-08-15

    Highlights: • Five natroalunite samples with different morphologies were synthesized. • EG: water ratio controls the morphology and adsorption performance of natroalunite. • NMs show the best performance in Cd(II) and phosphate co-uptake. • Phosphate bridges NMs and Cd(II) in co–removal process and enhances Cd(II) uptake. - Abstract: Treatment of wastewater containing several kinds of contaminants poses great challenges, because heavy metal and inorganic anion contaminants possess different fate and transport mechanisms. Individual adsorption of Cd(II)/phosphate on clay or metallic oxides has been extensively investigated, but the mutual effects of these two species in co–existing systems have received little attention. In this study, five natroalunite samples with different morphologies were synthesized by a simple hydrothermal method with appropriate volume ratio of ethylene glycol (EG) to water. The volume ratio of EG to water plays a key role in the formation of natroalunite samples, and dramatically affects their adsorption capacities. The mutual effects of Cd(II) and phosphate on their interaction with natroalunite microtubes (NMs) were investigated by varying experimental conditions, such as pH, temperature and addition sequences. The results demonstrate that highly efficient co–removal of Cd(II) and phosphate can be accomplished using NMs, and the process is strongly dependent on solution pH and temperature via the formation of ternary surface complexes. This study implies that the hydrothermally synthesized NMs can be regarded as a potential promising material for the co–removal of Cd(II) and phosphate from large volumes of aqueous solutions in pollution management.

  16. CD44+CD24+ subset of PANC-1 cells exhibits radiation resistance via decreased levels of reactive oxygen species.

    Science.gov (United States)

    Wang, Lei; Li, Pengping; Hu, Wei; Xia, Youyou; Hu, Chenxi; Liu, Liang; Jiang, Xiaodong

    2017-08-01

    Emerging evidence has suggested that pancreatic adenocarcinoma is sustained by pancreatic cancer stem cells. The present study aimed to investigate the expression patterns of the pancreatic cancer stem cell surface markers cluster of differentiation CD44 and CD24 in a pancreatic adenocarcinoma cell line, and to investigate the possible mechanisms for their radiation resistance. Flow cytometry was used to analyze the expression patterns of CD44 and CD24 in the pancreatic adenocarcinoma PANC-1 cell line. In addition, a multi-target click model was used to fit cell survival curves and determine the sensitizer enhancement ratio. The apoptosis and cycle distribution of the four cell subsets was determined using flow cytometry, and the level of reactive oxygen species (ROS) was determined using the 2',7'-dichlorofluorescin diacetate probe. The present results identified that the ratios of CD44 + and CD24 + in the sorted PANC-1 cell line were 92.0 and 4.7%, respectively. Prior to radiation, no statistically significant differences were observed among the four groups. Following treatment with 6 MV of X-rays, the rate of apoptosis was decreased in the CD44 + CD24 + group compared with other subsets. The percentage of G0/G1 cells was highest in the CD44 + CD24 + group compared with the three other groups, which exhibited increased radiosensitivity. In addition, the level of ROS in the CD44 + CD24 + group was reduced compared with the other groups. In summary, the results of the present study indicated that CD44 + CD24 + exhibited stem cell properties. The lower level of ROS and apoptosis in CD44 + CD24 + cells may contribute to their resistance to radiation in pancreatic adenocarcinoma.

  17. A density functional study of nitrogen adsorption in single-wall carbon nanotubes

    International Nuclear Information System (INIS)

    Zhu Jie; Wang Yao; Li Wenjun; Wei Fei; Yu Yangxin

    2007-01-01

    An understanding of the adsorption behaviour of nitrogen in single-wall carbon nanotubes (SWCNTs) is necessary for obtaining information on its pores by nitrogen adsorption manometry. Non-local density functional theory was used to simulate nitrogen adsorption behaviour, including the adsorption isotherms, equilibrium density profiles and potential energy of the nitrogen molecules at 77 K, inside SWCNTs with diameters ranging from 0.696 to 3.001 nm. With increasing diameter, nitrogen adsorption changes from continuous filling in one dimension to a two-stage adsorption that corresponds to monolayer formation followed by multilayer condensation. The average density of the adsorbed nitrogen and the density profiles, especially in small diameter SWCNTs, were used to analyse the adsorbate phase at the saturation pressure. The results indicate that the type of pore filling depends primarily on the ratio of the SWCNT diameter to the adsorbate molecular diameter. The filling of SWCNTs is not a simple capillary condensation process, but is dominated by geometrical limitation

  18. Surface Complexation Modeling in Variable Charge Soils: Prediction of Cadmium Adsorption

    Directory of Open Access Journals (Sweden)

    Giuliano Marchi

    2015-10-01

    Full Text Available ABSTRACT Intrinsic equilibrium constants for 22 representative Brazilian Oxisols were estimated from a cadmium adsorption experiment. Equilibrium constants were fitted to two surface complexation models: diffuse layer and constant capacitance. Intrinsic equilibrium constants were optimized by FITEQL and by hand calculation using Visual MINTEQ in sweep mode, and Excel spreadsheets. Data from both models were incorporated into Visual MINTEQ. Constants estimated by FITEQL and incorporated in Visual MINTEQ software failed to predict observed data accurately. However, FITEQL raw output data rendered good results when predicted values were directly compared with observed values, instead of incorporating the estimated constants into Visual MINTEQ. Intrinsic equilibrium constants optimized by hand calculation and incorporated in Visual MINTEQ reliably predicted Cd adsorption reactions on soil surfaces under changing environmental conditions.

  19. Low-Cost Lattice Matching Si Based Composite Substrates for HgCdTe

    Science.gov (United States)

    2013-09-01

    211). ..............................................5 Figure 3. Relationship between calculated alloy compositions based on Se/CdTe BEP ratio and...Se:CdTe beam equivalent pressure ( BEP ) ratios. During CdSeTe growth, Se and Te are in competition for the same nucleation sites. If we assume that all...therefore, x(cal) = ΦSe/ΦCd = 2ΦSe/ΦCdTe, where Φ is the BEP of the material, measured by the nude ion gauge at the substrate position. Figure 3 shows the

  20. Preparation and adsorption behavior for metal ions and humic acid of chitosan derivatives crosslinked by irradiation

    International Nuclear Information System (INIS)

    Zhao Long; Mitomo, H.; Yoshii, F.

    2006-01-01

    Introduction: Removing metal ions and humic acid from water in water treatment has attracted much environment and health interests. Adsorbents, derived from a nature polymer, are desired in the viewpoints of environment-conscious technologies. Recently, some nature materials such as chitin, chitosan and their derivatives have been identified as an attractive option due to their distinctive properties. For an insoluble adsorbent based on these polymers to be obtained over a broad pH range, modification through crosslinking is required. Crosslinking agents such as glutaric dialdehyde and ethylene glycol diglycidyl ether are frequently used for modification. However, these crosslinking agents are not preferred because of their physiological toxicity. Radiation-crosslinking without any additive in the fabrication process results in a high-purity product. In a previous work, we applied ionizing radiation to induce the crosslinking of carboxymethylchitosan under highly concentrated paste-like conditions. The aim of this study is to investigate the adsorption behavior of metal ions, humic acid on irradiation-crosslinked carboxymethylchitosan. Experimental: Irradiation of chitosan samples at paste-like state was done with an electron beam. The solubility test of these crosslinked materials were investigated in acidic, alkaline media, and some organic solvents. Swelling and charged characteristic analyses demonstrated typically pH-sensitive properties of these crosslinked materials. Scanning electron microscopic images showed that the crosslinked samples possessed porous morphological structure. The adsorption studies were carried out by the batch method at room temperature. Adsorption of heavy metal ions (such as Cu 2+ , Cd 2+ ) and humic acid onto crosslinked samples was found to be strongly pH-dependent. Adsorption kinetic studies indicated the rapid removal of metal ions, and humic acid from the aqueous solutions. Also, isothermal adsorption data revealed that Cu 2

  1. Comparative kinetic study of functionalized carbon nanotubes and magnetic biochar for removal of Cd2+ ions from wastewater

    International Nuclear Information System (INIS)

    Ruthiraan, Manimaran; Thines, Raj Kogiladas; Abdullah, Ezzat Chan; Mubarak, Nabisab Mujawar; Jayakumar, Natesan Subramanian; Ganesan, Poobalan; Sahu, Jaya Narayan

    2015-01-01

    We did a comparative study between functionalized multiwall carbon nanotube (FMWCNTs), and magnetic biochar was carried out to determine the most efficient adsorbent to be employed in the Cd 2+ ion removal. We optimized parameters such as agitation speed, contact time, pH and adsorbent dosage using design expert vrsion 6.08. The statistical analysis reveals that optimized condition for highest removal of Cd 2+ are at pH 5.0, with dosage 1.0 g, agitation speed and contact time of 100 rpm and 90 minutes, respectively. For the initial concentration of 10mg/l, the removal efficiency of Cd 2+ using FMWCNTs was 90% and and 82% of magnetic biochar. The maximum Cd 2+ adsorption capacities of both FMWCNTs and magnetic biochar were calculated: 83.33mg/g and 62.5mg/g. The Langmuir and Freundlich constants for FMWCNTs were 0.056 L/mg and 13.613 L/mg, while 0.098 L/mg and 25.204 L/mg for magnetic biochar. The statistical analysis proved that FMWCNTs have better adsorption capacity compared to magnetic biochar and both models obeyed the pseudo-second-order

  2. The reliability of four widely used patellar height ratios.

    Science.gov (United States)

    van Duijvenbode, Dennis; Stavenuiter, Michel; Burger, Bart; van Dijke, Cees; Spermon, Jacco; Hoozemans, Marco

    2016-03-01

    The objective of this study was to evaluate the inter-observer reliability and the intra-observer reliability of four patellar height ratios: Insall-Salvati (IS), modified Insall-Salvati (MIS), Blackburne-Peel (BP) and Caton-Deschamps (CD). The patellar height ratios were assessed by four independent examiners using weight-bearing lateral knee radiographs in 30° flexion. Intra-class correlation coefficients and Fleiss' kappa's were determined. The inter-observer reliability was excellent for the IS and moderate for the other ratios. When the ratio values were categorized, the inter-observer reliability was strong for the IS, moderate for the MIS and BP, and poor for the CD. The intra-observer reliability was excellent for the IS, MIS and CD, and strong for the BP. When the ratio values were categorized, the intra-observer reliability was strong for the IS and MIS, and moderate for the other ratios. Although the IS showed best reliability, we advise to use the MIS as it showed the second best reliability but is, according to the literature, associated with better validity.

  3. Adsorption of platinum(IV) and palladium(II) from aqueous solution by thiourea-modified chitosan microspheres

    International Nuclear Information System (INIS)

    Zhou Limin; Liu Jinhui; Liu Zhirong

    2009-01-01

    The chitosan microparticles were prepared using the inverse phase emulsion dispersion method and modified with thiourea (TCS). TCS was characterized by scanning electron microscope (SEM), the Fourier transform infrared (FT-IR) spectra, sulfur elemental analysis, specific surface area and pore diameter. The effects of various parameters, such as pH, contact time, initial concentration and temperature, on the adsorption of Pt(IV) and Pd(II) by TCS were investigated. The results showed that the maximum adsorption capacity was found at pH 2.0 for both Pt(IV) and Pd(II). TCS can selectively adsorb Pt(IV) and Pd(II) from binary mixtures with Cu(II), Pb(II), Cd(II), Zn(II), Ca(II), and Mg(II). The adsorption reaction followed the pseudo-second-order kinetics, indicating the main adsorption mechanism of chemical adsorption. The isotherm adsorption equilibrium was well described by Langmuir isotherms with the maximum adsorption capacity of 129.9 mg/g for Pt(IV) and 112.4 mg/g for Pd(II). The adsorption capacity of both Pt(IV) and Pd(II) decreased with temperature increasing. The negative values of enthalpy (ΔH o ) and Gibbs free energy (ΔG o ) indicate that the adsorption process is exothermic and spontaneous in nature. The adsorbent was stable without loss of the adsorption capacity up to at least 5 cycles and the desorption efficiencies were above 95% when 0.5 M EDTA-0.5 M H 2 SO 4 eluent was used. The results also showed that the preconcentration factor for Pt(IV) and Pd(II) was 196 and 172, respectively, and the recovery was found to be more than 97% for both precious metal ions.

  4. Improved Method for Preparation of Amidoxime Modified Poly(acrylonitrile-co-acrylic acid: Characterizations and Adsorption Case Study

    Directory of Open Access Journals (Sweden)

    Nur Amirah Mohd Zahri

    2015-07-01

    Full Text Available Redox polymerization of poly(acrylonitrile-co-acrylic acid (poly(AN-co-AA is performed at 40 °C under N2 gas by varying the ratio of acrylonitrile (AN and acrylic acid (AA in the feed. The yield production of poly(acrylonitrile (PAN is 73% and poly(AN-co-AA with a feed ratio of 93:7 is the highest yield (72%. The PAN and poly(AN-co-AA are further chemically modify with hydroxylamine hydrochloride. The FTIR spectroscopy is used to confirm the copolymerization of poly(AN-co-AA and chemical modification of poly(AN-co-AA. Elemental microanalysis shows that the overall trend percentage of carbon, hydrogen, and nitrogen for all feed ratios are slightly decreasing as the feed ratio of AA is increasing except for poly(AN-co-AA 93:7. The SEM images shows that spherical diameter of poly(AN-co-AA is smaller compared to the PAN and amidoxime (AO modified poly(AN-co-AA. The TGA (thermogravimetric analysis analysis reveals that the poly(AN-co-AA degrades at lower temperatures compared to the PAN but higher than AO modified poly(AN-co-AA. The case study adsorption test showed that the AO modified poly(AN-co-AA 93:7 had the highest percentage removal of Cd2+ and Pb2+.

  5. Equilibrium, kinetic and thermodynamic studies of adsorption of Th(IV) from aqueous solution onto kaolin

    International Nuclear Information System (INIS)

    Hongxia Zhang; Zhiwei Niu; Zhi Liu; Zhaodong Wen; Weiping Li; Xiaoyun Wang; Wangsuo Wu

    2015-01-01

    The kinetics and thermodynamics of the adsorption of Th(IV) on the kaolin were studied by using batch method. In addition, the experimental data were studied by dynamic and thermodynamic models. The results showed that the adsorption capacity of the adsorbent increased with increasing temperature and solid liquid ratio, but decreased with increasing initial Th(IV) ion concentration, and the best fit was obtained for the pseudo-second-order kinetics model. The calculated activation energy for adsorption was about 45 kJ/mol, which indicated the adsorption process to be chemisorption. The adsorption isotherm data could be well described by the Langmuir as well as Dubinin-Radushkevich model. The mean free energy (E) of adsorption was calculated to be about 15 kJ/mol. The thermodynamic data calculated showed that the adsorption was spontaneous and enhanced at higher temperature. Considering kinetics and equilibrium studies, the adsorption on the sites was the rate-limiting step and that adsorption was mainly a chemisorption process through cation exchange. (author)

  6. SYNTHESIS AND CHARACTERIZATION OF CdTe QUANTUM ...

    African Journals Online (AJOL)

    Preferred Customer

    variables, including pH values, Cd/Te and Cd/Cys molar ratios, on the ... QDs requires nitrogen as the protective gas at the initial stage. ... three-fold volume isopropyl alcohol, and the sediment was collected after centrifugation at 4000.

  7. Effect of solution composition on the adsorption and desorption of 137Cs on forest soils

    International Nuclear Information System (INIS)

    Staunton, S.; Wells, C.; Shaw, G.

    2004-01-01

    There is ongoing debate as to the pertinence of measurements of soil-liquid distribution coefficients in dilute suspension to the understanding and the prediction of the mobility of radionuclides in soil. This debate is particularly active in the case of radiocaesium. Several factors could cause significant discrepancies between measured and effective in situ distributions of radiocaesium. 1. Differences in solution composition, notably ionic strength and concentration in cations such as potassium and ammonium; 2. Differences in soil:solution ratio; 3. Time dependent reactions; 4. Reversibility of the adsorption reaction; 5. Concentration dependence of adsorption. We have attempted to assess the importance of some of these factors by studying 137 Cs adsorption on soils sampled from different horizons of a forest soil. Kd was measured in suspension. Soil:solution ratio and initial 137 Cs concentration and concentration of potassium and stable Cs in solution were varied. Adsorption and desorption Kd values were measured under similar conditions and compared. Kd values were in the lower range of values reported in the literature (5-30 1/kg). Samples from surface layers showed no concentration dependence at trace additions of 137 Cs, whereas some decrease in Kd was observed with increasing 137 Cs concentration on the Ea horizon. Data obtained at different soil:solution ratios all fell on the same adsorption isotherms as those obtained by varying initial 137 Cs concentration. Stable caesium and, to a lesser extent, potassium inhibited 137 Cs adsorption. This effect was greater in the Ea horizon than the surface soils, probably due to the mineral content. For all samples the desorption Kd was greater than the adsorption Kd in the same solution, indicating a small but significant degree of irreversibility. (author)

  8. Adsorption of chloroacetanilide herbicides on soil and its components. III. Influence of clay acidity, humic acid coating and herbicide structure on acetanilide herbicide adsorption on homoionic clays.

    Science.gov (United States)

    Liu, Wei-ping; Fang, Zhuo; Liu, Hui-jun; Yang, Wei-chun

    2002-04-01

    Adsorption of chloroacetanilide herbicides on homoionic montmorillonite, soil humic acid, and their mixtures was studied by coupling batch equilibration and FT-IR analysis. Adsorption isotherms of acetochlor, alachlor, metolachlor and propachlor on Ca(2+)-, Mg(2+)-, Al(3+)- and Fe(3+)-saturated clays were well described by the Freundlich equation. Regardless of the type of exchange cations, Kf decreased in the order of metolachlor > acetolachlor > alachlor > propachlor on the same clay. FT-IR spectra showed that the carbonyl group of the herbicide molecule was involved in binding, probably via H-bond with water molecules in the clay interlayer. The type and position of substitutions around the carbonyl group may have affected the electronegativity of oxygen, thus influencing the relative adsorption of these herbicides. For the same herbicide, adsorption on clay increased in the order of Mg2+ < Ca2+ < Al3+ < or = Fe3+ which coincided with the increasing acidity of homoionic clays. Acidity of cations may have affected the protonation of water, and thus the strength of H-bond between the clay water and herbicide. Complexation of clay and humic acid resulted in less adsorption than that expected from independent adsorption by the individual constituents. The effect varied with herbicides, but the greatest decrease in adsorption occurred at a 60:40 clay-to-humic acid ratio for all the herbicides. Causes for the decreased adsorption need to be characterized to better understand adsorption mechanisms and predict adsorption from soil compositions.

  9. FITOREMEDIASI KADMIUM (CD PADA LEACHATE MENGGUNAKAN KANGKUNG AIR (Ipomoea aquatica Forsk. (STUDI KASUS TPA JATIBARANG

    Directory of Open Access Journals (Sweden)

    K N Zamhar

    2016-03-01

    each long exposure time, as well as temperature, pH, and light intensity in research location. Analyses of Cd accumulation was AAS (Atomic Absorption Spectrofotometry. Data analyzed using Anova and then a LSD with significance level 95%. The results showed that the duration of the water spinach planted in leachate effect on Cd accumulation in plant. The adsorption of Cd in water spinach was reached the saturation at 8th days with a total adsorption 0.052 ppm. The greatest Cd accumulation in plant organs water spinach was in root that is 0.023 ppm.

  10. Adsorption of halogenated hydrocarbons to microporous adsorbents. Pt. 1; Calorimetric measurement of the heat of adsorption of perfluoro-n-hexane and n-hexanes on zeolites of the faujasite type. Untersuchungen zur Adsorption von halogenierten Kohlenwasserstoffen an mikroporoesen Adsorbenzien. T. 1; Kalorimetrische Messung der Adsorptionswaerme von Perfluor-n-hexan and n-Hexan an Zeolithen vom Faujasityp

    Energy Technology Data Exchange (ETDEWEB)

    Stach, H [Adlershofer Umweltschutztechnik- und Forschungsgesellschaft mbH, Berlin (Germany); Sigrist, K; Ruediger, S; Gross, U

    1993-06-01

    The differential molar heats of adsorption were measured for n-C[sub 6]F[sub 14] and n-C[sub 6]H[sub 14] on two different zeolites of faujasite-type at 303 K by using a Calvet-type calorimeter. Comparing the heat curves of the perfluorinated compound on NaX and DY it is found that the molecular sieve with the smaller Si/Al ratio (higher electrostatic field) exhibits an about 10 kJ/mol larger heat of adsorption than the zeolite with the higher Si/Al ratio. The substitution of the H-atoms in the hydrocarbon by F-atoms brings about an increase of the adsorption heat for n-C[sub 6]F[sub 14] of 9.0 and 6.0 kJ/mol on the zeolites NaX and DY, respectively. Using a simple approximate equation the zero heats of adsorption of n-paraffins and perfluoro-n-paraffins from C[sub 1] to C[sub 7] were calculated. (orig.)

  11. Effects of thermal annealing on electrical characteristics of Cd/CdS/n-Si/Au-Sb sandwich structure

    International Nuclear Information System (INIS)

    Saglam, M.; Ates, A.; Guezeldir, B.; Astam, A.; Yildirim, M.A.

    2009-01-01

    In general, at the metal-semiconductor contacts, interfacial layers have been fabricated by different methods such as molecular beam epitaxy, metal organic chemical vapor deposition, sputtering and vacuum evaporation. However, all of these techniques have encountered various difficulties in the deposited films. Instead of these methods, since Successive Ionic Layer Adsorption and Reaction (SILAR) method is simple, fast, sensitive, and less costly to prepare interfacial layer, we have first employed this method in order to prepare Cd/CdS/n-Si/Au-Sb sandwich structure. For this reason, the CdS thin film has been directly formed on n-type Si substrate by means of SILAR method. The Cd/CdS/n-Si/Au-Sb sandwich structure has demonstrated clearly rectifying behaviour by the current-voltage (I-V) curves studied at room temperature. In order to observe the effect of the thermal annealing, this structure has been annealed at temperatures from 50 to 300 deg. C for 3 min in N 2 atmosphere. The characteristic parameters such as barrier height, ideality factor and series resistance of this structure have been calculated from the forward bias I-V characteristics as a function of annealing temperature with different methods. The values of n, Φ b and mean R s of the initial Cd/CdS/n-Si/Au-Sb sandwich structure were found to be 2.31, 0.790 eV and 1.86 kΩ respectively. After annealing at 300 deg. C, these values were changed to 1.89, 0.765 eV and 0.48 kΩ. It has been seen that the barrier height, ideality factor and series resistance have slightly changed with increasing annealing temperature up to 300 deg. C.

  12. Adsorption of Water and Ethanol in MFI-Type Zeolites

    KAUST Repository

    Zhang, Ke; Lively, Ryan P.; Noel, James D.; Dose, Michelle E.; McCool, Benjamin A.; Chance, Ronald R.; Koros, William J.

    2012-01-01

    Water and ethanol vapor adsorption phenomena are investigated systematically on a series of MFI-type zeolites: silicalite-1 samples synthesized via both alkaline (OH -) and fluoride (F -) routes, and ZSM-5 samples with different Si/Al ratios as well

  13. On-line solid phase selective separation and preconcentration of Cd(II) by solid-phase extraction using carbon active modified with methyl thymol blue

    Energy Technology Data Exchange (ETDEWEB)

    Ensafi, Ali A. [College of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)], E-mail: Ensafi@cc.iut.ac.ir; Ghaderi, Ali R. [College of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2007-09-05

    An on-line flow system was used to develop a selective and efficient on-line sorbent extraction preconcentration system for cadmium. The method is based on adsorption of cadmium ions onto the activated carbon modified with methyl thymol blue. Then the adsorbed ions were washed using 0.5 M HNO{sub 3} and the eluent was used to determine the Cd(II) ions using flame atomic absorption spectrometry. The results obtained show that the modified activated carbon has the greatest adsorption capacity of 80 {mu}g of Cd(II) per 1.0 g of the solid phase. The optimal pH value for the quantitative preconcentration was 9.0 and full desorption is achieved by using 0.5 M HNO{sub 3} solution. It is established that the solid phase can be used repeatedly without a considerable adsorption capacity loss. The detection limit was less than 1 ng mL{sup -1} Cd(II), with an enrichment factor of 1000. The calibration graph was linear in the range of 1-2000 ng mL{sup -1} Cd(II). The developed method has been applied to the determination of trace cadmium (II) in water samples and in the following reference materials: sewage sludge (CRM144R), and sea water (CASS.4) with satisfactory results. The accuracy was assessed through recovery experiments.

  14. On-line solid phase selective separation and preconcentration of Cd(II) by solid-phase extraction using carbon active modified with methyl thymol blue

    International Nuclear Information System (INIS)

    Ensafi, Ali A.; Ghaderi, Ali R.

    2007-01-01

    An on-line flow system was used to develop a selective and efficient on-line sorbent extraction preconcentration system for cadmium. The method is based on adsorption of cadmium ions onto the activated carbon modified with methyl thymol blue. Then the adsorbed ions were washed using 0.5 M HNO 3 and the eluent was used to determine the Cd(II) ions using flame atomic absorption spectrometry. The results obtained show that the modified activated carbon has the greatest adsorption capacity of 80 μg of Cd(II) per 1.0 g of the solid phase. The optimal pH value for the quantitative preconcentration was 9.0 and full desorption is achieved by using 0.5 M HNO 3 solution. It is established that the solid phase can be used repeatedly without a considerable adsorption capacity loss. The detection limit was less than 1 ng mL -1 Cd(II), with an enrichment factor of 1000. The calibration graph was linear in the range of 1-2000 ng mL -1 Cd(II). The developed method has been applied to the determination of trace cadmium (II) in water samples and in the following reference materials: sewage sludge (CRM144R), and sea water (CASS.4) with satisfactory results. The accuracy was assessed through recovery experiments

  15. Is vetiver grass of interest for the remediation of Cu and Cd to protect marketing gardens in Burkina Faso?

    Science.gov (United States)

    Ondo Zue Abaga, Norbert; Dousset, Sylvie; Mbengue, Saliou; Munier-Lamy, Colette

    2014-10-01

    In Burkina-Faso, urban vegetable agriculture is often characterized by urban solid waste fertilizer inputs containing heavy metals such as Cu and Cd. Thus, the relevance of surrounding urban vegetable plots with vetiver hedges to reduce environmental pollution by Cu and Cd was investigated by adsorption studies and pot experiments. Vetiver biomass, its metal contents and, its total and MgCl2 extractable soil metals were monitored over 6months in the presence of a mixture of metal at two concentrations: 2-10 and 100-500mgkg(-1), for Cd and Cu, respectively. The Freundlich adsorption coefficient (Kf) values increased after vetiver growth and were significantly higher for vertisol than for lixisol. After 6months, the vetiver that was grown on lixisol accumulated more metal, increasing up to 4635mgkg(-1) for Cu and to 21.8mgkg(-1) for Cd, than did the vetiver that was grown on vertisol, increasing up to 1534mgkg(-1) for Cu and to 7.2mgkg(-1) for Cd. The metal bioconcentration factor, which was significantly higher for Cd, increased with the applied concentration and ranged from 1.6 to 14 for Cu and from 2.3 to 22 for Cd. Additionally, the translocation factors were higher for Cd (0.38-7.3) than for Cu (0.07-2.6), and the translocation was easiest from lixisol than from vertisol. Thus our results demonstrate the ability of vetiver for Cu and Cd phytoremediation in Burkina Faso soils. Nevertheless, these results should be confirmed across the field to advocate the establishment of vetiver hedges. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Synthesis of Hollow CdS-TiO2 Microspheres with Enhanced Visible-Light Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Yuning Huo

    2012-01-01

    Full Text Available CdS-TiO2 composite photocatalyst in the shape of hollow microsphere was successfully synthesized via the hard-template preparation with polystyrene microspheres followed by ion-exchange approach. The hollow CdS-TiO2 microspheres significantly extended the light adsorption into visible light region, comparing to TiO2 microspheres. It led to much higher photocatalytic activities of hollow CdS-TiO2 microspheres than that of TiO2 during the photodegradation of rhodamine B under visible light irradiations. Furthermore, the well-remained hollow structure could achieve light multireflection within the interior cavities and the separation of photo-induced electrons and holes is efficient in CdS-TiO2, which were facilitated to improving the photoactivity.

  17. Comparative kinetic study of functionalized carbon nanotubes and magnetic biochar for removal of Cd{sup 2+} ions from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Ruthiraan, Manimaran; Thines, Raj Kogiladas; Abdullah, Ezzat Chan [Universiti Teknologi Malaysia, Kuala Lumpur (Malaysia); Mubarak, Nabisab Mujawar [UCSI University, Kuala Lumpur (Malaysia); Jayakumar, Natesan Subramanian; Ganesan, Poobalan [University of Malaya, Kuala Lumpur (Malaysia); Sahu, Jaya Narayan [Institut Teknologi Brunei, Gadong (Brunei Darussalam)

    2015-03-15

    We did a comparative study between functionalized multiwall carbon nanotube (FMWCNTs), and magnetic biochar was carried out to determine the most efficient adsorbent to be employed in the Cd{sup 2+} ion removal. We optimized parameters such as agitation speed, contact time, pH and adsorbent dosage using design expert vrsion 6.08. The statistical analysis reveals that optimized condition for highest removal of Cd{sup 2+} are at pH 5.0, with dosage 1.0 g, agitation speed and contact time of 100 rpm and 90 minutes, respectively. For the initial concentration of 10mg/l, the removal efficiency of Cd{sup 2+} using FMWCNTs was 90% and and 82% of magnetic biochar. The maximum Cd{sup 2+} adsorption capacities of both FMWCNTs and magnetic biochar were calculated: 83.33mg/g and 62.5mg/g. The Langmuir and Freundlich constants for FMWCNTs were 0.056 L/mg and 13.613 L/mg, while 0.098 L/mg and 25.204 L/mg for magnetic biochar. The statistical analysis proved that FMWCNTs have better adsorption capacity compared to magnetic biochar and both models obeyed the pseudo-second-order.

  18. Heavy metals adsorption on rolling mill scale; Adsorcion de metales pesados sobre cascarill de laminacion

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, F. A.; Martin, M. I.; Perez, C.; Lopez-Delgado, A.; Alguacil, E. J.

    2003-07-01

    A great quantity of industries are responsible for contaminating the environment with the heavy metals which are containing in their wastewaters. The recovery of these metals is both from an environmental and economical points of view of the upmost interest. A study is made of the use of mill scale-originating in the hot rolling of steel-as an adsorbent for the removal of heavy metals from liquid effluents. The adsorption of Zn''2+, Cd''2+ y Pb''2+ on the rolling mill scale was investigated by determination of adsorption isotherms. The effect of time, equilibrium temperature and concentration of metal solution on mill scale adsorption efficiency was evaluated. The adsorption process was analysed using the theories of Langmuir and Freundlich. Desorption process of metals from loaded mill scales was also studied using several doser bent at different experimental conditions. It has been proved that the mill scale is an effective adsorbent for the cations studies in aqueous solutions within the range of the working concentrations. (Author) 32 refs.

  19. RHEED studies of MBE growth mechanisms of CdTe and CdMnTe

    Energy Technology Data Exchange (ETDEWEB)

    Waag, A.; Behr, T.; Litz, T.; Kuhn-Heinrich, B.; Hommel, D.; Landwehr, G. (Physikalisches Inst., Univ. Wuerzburg (Germany))

    1993-01-30

    We report on reflection high energy electron diffraction (RHEED) studies of molecular beam epitaxy (MBE) growth of CdTe and CdMnTe on (100) oriented CdTe substrates. RHEED oscillations were measured for both the growth and desorption of CdTe and CdMnTe as a function of flux and temperature. For the first time, the influence of laser and electron irradiation on the growth rate, as well as desorption, of CdTe is studied in detail using RHEED oscillations. We found a very small effect on the growth rate as well as on the CdTe desorption rate. The growth rate of CdTe was determined for different temperatures and CdTe flux ratios. The obtained experimental results are compared with a kinetic growth model to get information on the underlying growth processes, taking into account the influence of a precursor by including surface diffusion. From the comparison between model and experimental results the sticking coefficients of Cd and Te are determined. The growth rate of CdMnTe increases with Mn flux. This dependence can be used to calibrate the Mn content during growth by comparing the growth rate of CdTe with the growth rate of CdMnTe. The change in growth rate has been correlated with Mn content via photoluminescence measurements. In addition, the sticking coefficient of Mn is derived by comparing experimental results with a kinetic growth model. For high manganese content a transition to three-dimensional growth occurs. (orig.).

  20. CdSe quantum dots co-sensitized TiO2 photoelectrodes: particle size dependent properties

    International Nuclear Information System (INIS)

    Prabakar, K; Minkyu, S; Inyoung, S; Heeje, K

    2010-01-01

    Cadmium selenide (CdSe) quantum dots (QDs) with different particle sizes have been used as an inorganic co-sensitizer in addition to organic dye for large band gap mesoporous TiO 2 dye sensitized solar cells. The QDs co-sensitized solar cells exhibited overall highest conversion efficiency of 3.65% at 1 sun irradiation for 3.3 nm particle size corresponding to a visible light absorption wavelength of 528 nm. The photovoltaic characteristics of CdSe QDs co-sensitized cells depend on the particle sizes rather than broad spectral light absorption as compared with CdSe QDs alone sensitized and standard dye-sensitized solar cells. Correlation between CdSe QDs adsorption on mesoporous TiO 2 surfaces and photoelectron injection into TiO 2 has been demonstrated. (fast track communication)

  1. Development of 115Cd/115mln generator for industrial and environmental applications

    International Nuclear Information System (INIS)

    Camargo, Fernanda Cristina Fonseca

    2012-01-01

    Indium isotopes, 111 In, '1 13 ln and 115 In are widely used as radiotracers in industrial and environmental applications. 113m ln generators can be found in the international market. However they are manufactured by only a few companies worldwide, are rated at rather high prices and not always are available for sale (they are frequently manufactured only upon request). Hence it is of interest to produce the equipment in the country in which it will be used, especially if the parent nuclide can be also produced there. In Brazil, the ideal situation would be to produce a 115 Cd/ 115m In generator, whose target precursor is the '1 14 Cd. Preliminary tests using non-enriched and inactive CdO were developed. The parent and daughter nuclides were separated flowing the eluate containing the chemical species Cd (II) and In (III) through ion exchange resins, Ag11A8, Chelex100 and Oowex 1 x8. 0.1 M, 1 M and 2M HCI and 2M HCI + 0.1 M NH 4 CI solutions were tested as the eluant. The amount of Cd (l I) and In (III) eluted were determined by ICP-AES. The irradiation conditions of the target 114 CdO were defined according to the neutron flux provided TRIGA MARK-I-R IPR reactor and the nuclear properties the of target. After to preliminary tests with the 115 Cd/ 115m In pair, column experiments were developed. Analyses were accomplished by gamma spectrometry to determine the presence of the 115 Cd and 115m ln nuclides in the fractions eluted. Tests using the resin AG IIA8 and HCI I M eluent solution resulted in 100% adsorption of the Cd (11) and nearly 50% elution of In (III), corresponding to the best conditions for elution. Exposure to radiation can damage the resins, as the decrease in ion exchange capacity and change in volume of the polymer grains. Thus, columns packed with the chosen resin were exposed to radiation doses from 15 to 200 Gy, and eluted with the most effective eluent. The results showed that radiation does not change the adsorption capacity of Cd (II) by the

  2. Nanostructure CdS/ZnO heterojunction configuration for photocatalytic degradation of Methylene blue

    Science.gov (United States)

    Velanganni, S.; Pravinraj, S.; Immanuel, P.; Thiruneelakandan, R.

    2018-04-01

    In the present manuscript, thin films of Zinc Oxide (ZnO) have been deposited on a FTO substrate using a simple successive ionic layer adsorption and reaction (SILAR) and chemical bath deposition (CBD) method. Cadmium Sulphide (CdS) nanoparticles are sensitized over ZnO thin films using SILAR method. The synthesized nanostructured CdS/ZnO heterojunction thin films was characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), High resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), UV-Vis spectroscopy and Raman spectroscopy techniques. The band gap of CdS nanoparticles over ZnO nanostructure was found to be about 3.20 eV. The photocatalytic activities of the deposited CdS/ZnO thin films were evaluated by the degradation of methylene blue (MB) in an aqueous solution under sun light irradiation.

  3. Synthesis of a novel poly-thiolated magnetic nano-platform for heavy metal adsorption. Role of thiol and carboxyl functions

    International Nuclear Information System (INIS)

    Odio, Oscar F.; Lartundo-Rojas, Luis; Palacios, Elia Guadalupe; Martínez, Ricardo; Reguera, Edilso

    2016-01-01

    Graphical abstract: Poly-thiols capping of magnetite nanoparticles for Pb(2+) and Cd(2+) adsorption. Display Omitted - Highlights: • A novel magnetic nano-platform containing free thiol and carboxyl groups is reported. • Thiols are protected by disulfide bridges during magnetite functionalization. • Adsorption of Pb"2"+ and Cd"2"+ onto the nano-platform was studied by XPS measurements. • Metal-sulfur interactions dominate if free thiol groups are present. • Metal-carboxyl interactions dominate if thiol groups are depleted by oxidation. - Abstract: We report a novel strategy for the synthesis of magnetic nano-platforms containing free thiol groups. It first involves the synthesis of a poly(acrylic acid) copolymer containing disulfide bridges between the linear chains through di-ester linkages, followed by the anchoring of this new ligand to magnetite nanoparticles using a ligand exchange reaction. Finally, free −SH groups are obtained by treating the resulting disulfide-functionalized magnetic nano-system with tributyl phosphine as reducing agent. The characterization of the resulting 17 nm nanoparticles (Fe_3O_4@PAA-HEDred) by FTIR and TGA confirms the attachment of the copolymer through iron carboxylates. XRD, TEM and magnetic measurements indicate an increase in the inorganic core diameter and the occurrence of strong magnetic inter-particle interactions during the exchange reaction, although coercitivity and remanence drop to near zero at room temperature. Afterwards, Fe_3O_4@PAA-HEDred nanoparticles were tested as sorbent for Pb"2"+ and Cd"2"+ cations in aqueous media. XPS measurements were performed in order to unravel the role of both carboxyl and thiol functions in the adsorption process. For the sake of comparison, the same study was performed using bare Fe_3O_4 nanoparticles and a nanosystem with disulfide groups (Fe_3O_4@DMSA). The joint analysis of the Pb 4f, Cd 3d, Fe 2p and S 2p high resolution spectra for the nanostructured materials

  4. Synthesis of a novel poly-thiolated magnetic nano-platform for heavy metal adsorption. Role of thiol and carboxyl functions

    Energy Technology Data Exchange (ETDEWEB)

    Odio, Oscar F. [Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, La Habana 10400 (Cuba); Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada-Unidad Legaria, IPN, 11500 México City (Mexico); Lartundo-Rojas, Luis [Centro de Nanociencias y Micro-Nanotecnologías, IPN, 07738 México City (Mexico); Palacios, Elia Guadalupe [Instituto Politécnico Nacional, ESIQIE, UPALM Zacatenco, 07738 México City (Mexico); Martínez, Ricardo [Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, La Habana 10400 (Cuba); Reguera, Edilso, E-mail: edilso.reguera@gmail.com [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada-Unidad Legaria, IPN, 11500 México City (Mexico)

    2016-11-15

    Graphical abstract: Poly-thiols capping of magnetite nanoparticles for Pb(2+) and Cd(2+) adsorption. Display Omitted - Highlights: • A novel magnetic nano-platform containing free thiol and carboxyl groups is reported. • Thiols are protected by disulfide bridges during magnetite functionalization. • Adsorption of Pb{sup 2+} and Cd{sup 2+} onto the nano-platform was studied by XPS measurements. • Metal-sulfur interactions dominate if free thiol groups are present. • Metal-carboxyl interactions dominate if thiol groups are depleted by oxidation. - Abstract: We report a novel strategy for the synthesis of magnetic nano-platforms containing free thiol groups. It first involves the synthesis of a poly(acrylic acid) copolymer containing disulfide bridges between the linear chains through di-ester linkages, followed by the anchoring of this new ligand to magnetite nanoparticles using a ligand exchange reaction. Finally, free −SH groups are obtained by treating the resulting disulfide-functionalized magnetic nano-system with tributyl phosphine as reducing agent. The characterization of the resulting 17 nm nanoparticles (Fe{sub 3}O{sub 4}@PAA-HEDred) by FTIR and TGA confirms the attachment of the copolymer through iron carboxylates. XRD, TEM and magnetic measurements indicate an increase in the inorganic core diameter and the occurrence of strong magnetic inter-particle interactions during the exchange reaction, although coercitivity and remanence drop to near zero at room temperature. Afterwards, Fe{sub 3}O{sub 4}@PAA-HEDred nanoparticles were tested as sorbent for Pb{sup 2+} and Cd{sup 2+} cations in aqueous media. XPS measurements were performed in order to unravel the role of both carboxyl and thiol functions in the adsorption process. For the sake of comparison, the same study was performed using bare Fe{sub 3}O{sub 4} nanoparticles and a nanosystem with disulfide groups (Fe{sub 3}O{sub 4}@DMSA). The joint analysis of the Pb 4f, Cd 3d, Fe 2p and S 2p high

  5. Removal of nitrate from water by adsorption onto zinc chloride treated activated carbon

    DEFF Research Database (Denmark)

    Bhatnagar, A.; Ji, M.; Choi, Y.H.

    2008-01-01

    Adsorption study with untreated and zinc chloride (ZnCl2) treated coconut granular activated carbon (GAC) for nitrate removal from water has been carried out. Untreated coconut GAC was treated with ZnCl2 and carbonized. The optimal conditions were selected by studying the influence of process...... variables such as chemical ratio and activation temperature. Experimental results reveal that chemical weight ratio of 200% and temperature of 500 degrees C was found to be optimum for the maximum removal of nitrate from water. Both untreated and ZnCl2 treated coconut GACs were characterized by scanning...... capacity of untreated and ZnCl2 treated coconut GACs were found 1.7 and 10.2 mg/g, respectively. The adsorption of nitrate on ZnCl2 treated coconut GAC was studied as a function of contact time, initial concentration of nitrate anion, temperature, and pH by batch mode adsorption experiments. The kinetic...

  6. Estimation of CD4+ and CD8+ T-lymphocytes in human immunodeficiency virus infection and acquired immunodeficiency syndrome patients in Manipur

    Directory of Open Access Journals (Sweden)

    Singh H

    2007-01-01

    Full Text Available Purpose : To estimate and stratify CD4 + and CD8 + T-lymphocyte levels in human immunodeficiency virus (HIV infected (asymptomatic and acquired immunodeficiency syndrome (AIDS patients (symptomatic and correlate the clinical features of the patients with CD4+ and CD8+ lymphocyte level. Methods : Between April 2002 and September 2003, a total of 415 HIV seropositive adult patients (297 males and 118 females attending Regional Institute of Medical Sciences (RIMS hospitals were tested for CD4+ and CD8+ T-lymphocytes by fluorescent activated cell sorter (FACS counter (Becton Dickinson. Symptomatic patients were diagnosed as per NACO clinical case definition. Results : Ranges of 0-50, 51-100, 101-200, 201-300, 301-400, 401-500 and above 500 CD4+ T-lymphocyte per microlitre were seen in 68, 52, 101, 73, 47, 31 and 43 patients respectively whereas CD8+ T-lymphocyte ranges of 0-300, 301-600, 601-900, 901-1500, 1501-2000, 2001-3500 per microlitre were seen in 29, 84, 92, 145, 40 and 25 patients respectively. One hundred and fifty patients were asymptomatic and 265 were symptomatic. CD4/CD8 ratio in asymptomatics and symptomatics were 0.13-1.69 and 0.01-0.93 respectively. Tuberculosis and candidiasis occurred in CD4+ T-lymphocyte categories between 0-400 cells per mL in symptomatics. However, cryptosporidiosis, toxoplasmosis, herpes zoster, cryptococcal meningitis, Pneumocystis carinii pneumonia, penicilliosis and cytomegalovirus retinitis were seen in patients having CD4+ T-lymphocyte less than 200 per mL. Conclusions : CD4+ T-lymphocyte was decreased in both asymptomatic and symptomatic HIV patients, The decrease was greater in symptomatics while CD8+ T-lymphocyte was increased in both except advanced stage symptomatics. CD4:CD8 ratio was reversed in both groups. Opportunistic infections correlated with different CD4+ T-lymphocyte categories.

  7. Influence of activated carbon characteristics on toluene and hexane adsorption: Application of surface response methodology

    Science.gov (United States)

    Izquierdo, Mª Teresa; de Yuso, Alicia Martínez; Valenciano, Raquel; Rubio, Begoña; Pino, Mª Rosa

    2013-01-01

    The objective of this study was to evaluate the adsorption capacity of toluene and hexane over activated carbons prepared according an experimental design, considering as variables the activation temperature, the impregnation ratio and the activation time. The response surface methodology was applied to optimize the adsorption capacity of the carbons regarding the preparation conditions that determine the physicochemical characteristics of the activated carbons. The methodology of preparation produced activated carbons with surface areas and micropore volumes as high as 1128 m2/g and 0.52 cm3/g, respectively. Moreover, the activated carbons exhibit mesoporosity, ranging from 64.6% to 89.1% the percentage of microporosity. The surface chemistry was characterized by TPD, FTIR and acid-base titration obtaining different values of surface groups from the different techniques because the limitation of each technique, but obtaining similar trends for the activated carbons studied. The exhaustive characterization of the activated carbons allows to state that the measured surface area does not explain the adsorption capacity for either toluene or n-hexane. On the other hand, the surface chemistry does not explain the adsorption results either. A compromise between physical and chemical characteristics can be obtained from the appropriate activation conditions, and the response surface methodology gives the optimal activated carbon to maximize adsorption capacity. Low activation temperature, intermediate impregnation ratio lead to high toluene and n-hexane adsorption capacities depending on the activation time, which a determining factor to maximize toluene adsorption.

  8. Radioanalysis of RE enrichment of ion adsorption type RE ores

    CERN Document Server

    Zhao Shu Quan; Hu He Ping; Li Fu Sheng; Chen Ying Min; LiuShiMing

    2002-01-01

    Objective: To analyze the radioactivity in Rare Earth (RE) enrichment of ion adsorption type RE ores. Methods: Using HPGe-gamma spectrometer to analyze the activity ratio of gamma radionuclides in kind of samples, using FJ-2603 low background alpha, beta measurement apparatus to measure their total alpha and total beta activities, and using X-ray fluorescence spectrometer to analyze contents of La sub 2 O sub 3 and Y sub 2 O sub 3 , respectively. Results: HPGe gamma spectroscopy and X-ray fluorescence spectroscopy are simple, convenient and non-destructive methods of analyzing radionuclides and La sub 2 O sub 3 , Y sub 2 O sub 3 in RE enrichment of ion adsorption type RE ores, respectively. Conclusion: The basic data were provided for radiation protection and treatment of gas, liquid and solid waste in RE production of ion adsorption type RE ores; method and experience were provided for studying ion adsorption type RE ores

  9. CdS-sensitized TiO2 nanocorals: hydrothermal synthesis, characterization, application.

    Science.gov (United States)

    Mali, S S; Desai, S K; Dalavi, D S; Betty, C A; Bhosale, P N; Patil, P S

    2011-10-01

    Cadmium sulfide (CdS) nanoparticle-sensitized titanium oxide nanocorals (TNC) were synthesized using a two-step deposition process. The TiO(2) nanocorals were grown on the conducting glass substrates (FTO) using A hydrothermal process and CdS nanoparticles were loaded on TNC using successive ionic layer adsorption and reaction (SILAR) method. The TiO(2), CdS and TiO(2)-CdS samples were characterized by optical absorption, X-ray diffraction (XRD), FT-Raman, FT-IR, scanning electron microscopy (SEM) and contact angle. Further, their photoelectrochemical (PEC) performance was tested in NaOH, Na(2)S-NaOH-S and Na(2)S electrolytes, respectively. When CdS nanoparticles are coated on TNCs, the optical absorption is found to be enhanced and band edge is red-shifted towards visible region. The TiO(2)-CdS sample exhibits improved photoelectrochemical (PEC) performance with maximum short circuit current of (J(sc)) 1.04 mA cm(-2). After applying these TiO(2)-CdS electrodes in photovoltaic cells, the photocurrent was found to be enhanced by 2.7 and 32.5 times, as compared with those of bare CdS and TiO(2) nanocorals films electrodes respectively. Also, the power conversion efficiency of TiO(2)-CdS electrodes is 0.72%, which is enhanced by about 16 and 29 times for TiO(2), CdS samples. This journal is © The Royal Society of Chemistry and Owner Societies 2011

  10. Development of CdTe/Cd1-xMgxTe double barrier, single quantum well heterostructure for resonant tunneling

    International Nuclear Information System (INIS)

    Reuscher, G.; Keim, M.; Fischer, F.; Waag, A.; Landwehr, G.

    1995-01-01

    We report the first observation of resonant tunneling through a CdTe/Cd 1-x Mg x Te double barrier, single quantum well heterostructure. Negative differential resistance is observable at temperatures below 230 K, exhibiting a peak to valley ratio of 3:1 at 4.2 K. (author)

  11. Comparative study of CD4 and CD45RO T cells and CD20 B cells in cerebrospinal fluid of syphilitic meningitis and tuberculous meningitis patients.

    Science.gov (United States)

    Yu, Nian; Zhang, Qiao-Quan; Zhang, Kang; Xie, Yuan; Zhu, Hai-Qing; Lin, Xing-Jian; Di, Qing

    2016-09-01

    This study was to investigate the differences of lymphocyte in the cerebrospinal fluid (CSF) of patients with syphilis meningitis (SM) and tuberculous meningitis (TBM) for new diagnostic insights. Totally, 79 cases of SM and 45 cases of TBM were enrolled. In the CSF, the CD4, CD45RO or CD20 positive lymphocytes were detected by immunohistochemistry. The proportion of CD4 T cells in the CSF lymphocytes in patients with SM was significantly higher than that in patients with TBM (p CD4 T-cell proportion in both groups (p CD45RO T cells in CSF lymphocytes of patients with SM was less than that of patients with TBM (p CD45RO T cells was increased in the CSF of both group patients (p cells in the CSF lymphocytes was not obviously different between the two groups during every stage. In conclusion, there are strong differences of CD4 and CD45RO T-cell ratio, but not the CD20 B cells in the meningitis. CD4 and CD45RO T cells in CSF are a useful complement in differentially diagnosing SM and TBM; it contributes to further understand the pathogenesis and prognosis of SM and TBM. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  12. Molecular Insights into the pH-Dependent Adsorption and Removal of Ionizable Antibiotic Oxytetracycline by Adsorbent Cyclodextrin Polymers

    Science.gov (United States)

    Zhang, Yu; Cai, Xiyun; Xiong, Weina; Jiang, Hao; Zhao, Haitong; Yang, Xianhai; Li, Chao; Fu, Zhiqiang; Chen, Jingwen

    2014-01-01

    Effects of pH on adsorption and removal efficiency of ionizable organic compounds (IOCs) by environmental adsorbents are an area of debate, because of its dual mediation towards adsorbents and adsorbate. Here, we probe the pH-dependent adsorption of ionizable antibiotic oxytetracycline (comprising OTCH2 +, OTCH±, OTC−, and OTC2−) onto cyclodextrin polymers (CDPs) with the nature of molecular recognition and pH inertness. OTCH± commonly has high adsorption affinity, OTC− exhibits moderate affinity, and the other two species have negligible affinity. These species are evidenced to selectively interact with structural units (e.g., CD cavity, pore channel, and network) of the polymers and thus immobilized onto the adsorbents to different extents. The differences in adsorption affinity and mechanisms of the species account for the pH-dependent adsorption of OTC. The mathematical equations are derived from the multiple linear regression (MLR) analysis of quantitatively relating adsorption affinity of OTC at varying pH to adsorbent properties. A combination of the MLR analysis for OTC and molecular recognition of adsorption of the species illustrates the nature of the pH-dependent adsorption of OTC. Based on this finding, γ-HP-CDP is chosen to adsorb and remove OTC at pH 5.0 and 7.0, showing high removal efficiency and strong resistance to the interference of coexisting components. PMID:24465975

  13. Removal of I by adsorption with AgX (Ag-impregnated X Zeolite) from high-radioactive seawater waste

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eil Hee; Lee, Keun Young; Kim, Kwang Wook; Kim, Hyung Ju; Kim, Ik Soo; Chung, Dong Yong; Moon, Jei Kwon; Choi, Jong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-09-15

    This study aimed to the adsorption-removal of high- radioactive iodide (I) contained in the initially generated high-radioactive seawater waste (HSW), with the use of AgX (Ag-impregnated X zeolite). Adsorption of I by AgX (hereafter denoted as AgX-I adsorption) was increased by increasing the Ag-impregnated concentration in AgX, and its concentration was suitable at about 30 wt%. Because of AgCl precipitation by chloride ions contained in seawater waste, the leaching yields of Ag from AgX (Ag-impregnated concentration : about 30-35 wt%) was less than those in distilled water (< 1 mg/L). AgX-I adsorption was above 99% in the initial iodide concentration (Ci) of 0.01-10 mg/L at m/V (ratio of weight of adsorbent to solution volume)=2.5 g/L. This shows that efficient removal of I is possible. AgX-I adsorption was found to be more effective in distilled water than in seawater waste, and the influence of solution temperature was insignificant. Ag-I adsorption was better described by a Freundlich isotherm rather than a Langmuir isotherm. AgX-I adsorption kinetics can be expressed by a pseudo-second order rate equation. The adsorption rate constants (k2) decreased by increasing Ci, and conversely increased by increasing the ratio of m/V and the solution temperature. This time, the activation energy of AgX-I adsorption was about 6.3 kJ/mol. This suggests that AgX-I adsorption is dominated by physical adsorption with weaker bonds. The evaluation of thermodynamic parameters (a negative Gibbs free energy and a positive Enthalpy) indicates that AgX-I adsorption is a spontaneous reaction (forward reaction), and an endothermic reaction indicating that higher temperatures are favored.

  14. Mercury adsorption in the Mississippi River deltaic plain freshwater marsh soil of Louisiana Gulf coastal wetlands.

    Science.gov (United States)

    Park, Jong-Hwan; Wang, Jim J; Xiao, Ran; Pensky, Scott M; Kongchum, Manoch; DeLaune, Ronald D; Seo, Dong-Cheol

    2018-03-01

    Mercury adsorption characteristics of Mississippi River deltaic plain (MRDP) freshwater marsh soil in the Louisiana Gulf coast were evaluated under various conditions. Mercury adsorption was well described by pseudo-second order and Langmuir isotherm models with maximum adsorption capacity of 39.8 mg g -1 . Additional fitting of intraparticle model showed that mercury in the MRDP freshwater marsh soil was controlled by both external surface adsorption and intraparticle diffusion. The partition of adsorbed mercury (mg g -1 ) revealed that mercury was primarily adsorbed into organic-bond fraction (12.09) and soluble/exchangeable fraction (10.85), which accounted for 63.5% of the total adsorption, followed by manganese oxide-bound (7.50), easily mobilizable carbonate-bound (4.53), amorphous iron oxide-bound (0.55), crystalline Fe oxide-bound (0.41), and residual fraction (0.16). Mercury adsorption capacity was generally elevated along with increasing solution pH even though dominant species of mercury were non-ionic HgCl 2 , HgClOH and Hg(OH) 2  at between pH 3 and 9. In addition, increasing background NaCl concentration and the presence of humic acid decreased mercury adsorption, whereas the presence of phosphate, sulfate and nitrate enhanced mercury adsorption. Mercury adsorption in the MRDP freshwater marsh soil was reduced by the presence of Pb, Cu, Cd and Zn with Pb showing the greatest competitive adsorption. Overall the adsorption capacity of mercury in the MRDP freshwater marsh soil was found to be significantly influenced by potential environmental changes, and such factors should be considered in order to manage the risks associated with mercury in this MRDP wetland for responding to future climate change scenarios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Sorption Potentials of Waste Tyre for Some Heavy Metals (Pb Cd in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Austin Kanayo ASIAGWU

    2009-07-01

    Full Text Available An investigation into the adsorption potential of activated and inactivated waste tyre powders for some heavy metals (Pb2+ and Cd2+ in their aqueous solution has been studied. The result indicated that inactivated waste tyre is a good non-conventional adsorbent for the removal of Cd from aqueous solution. A total of 93.3% of Cadmium contents was removed. The inactivated waste type proved a good adsorbent for the removal of Pb2+ 5g of 500mm activated tyre removed over 86.66% of Pb2+ from solution.

  16. Water adsorption by a sensitive calibrated gold plasmonic nanosensor.

    Science.gov (United States)

    Demirdjian, Benjamin; Bedu, Frédéric; Ranguis, Alain; Ozerov, Igor; Henry, Claude R

    2018-04-20

    We demonstrate in this work that using nanoplasmonic sensing it is possible to follow the adsorption/desorption of water molecules on gold nanodisks nanofabricated by electron beam lithography. This quantitative method is highly sensitive allowing the detection of a few hundredths of adsorbed monolayers. Disk parameters (height, diameter, inter-disk distance) have been optimized after finite-difference time-domain (FDTD) simulations in order to obtain the best localized surface plasmon resonance (LSPR) signal-to-noise ratio. Finally, we have precisely measured the adsorption kinetics of water on gold as a function of the relative humidity of the surrounding medium.

  17. Adsorption of iodine and cesium onto some cement materials

    Energy Technology Data Exchange (ETDEWEB)

    Mine, Tatsuya [Mitsui Shipbuilding and Engineering Co. Ltd., Tokyo (Japan); Mihara, Morihiro; Ito, Masaru [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works; Kato, Hiroshige [IDC, Tokai, Ibaraki (Japan)

    1997-06-01

    Cement materials, being expected to be used in structural materials in underground disposals of radioactive wastes, may adsorb nuclides resulting in retardation of their migration in environment. In this report adsorption behaviors of cement pastes toward iodine (as anion) and cesium (as cation) were studied. Adsorption of iodine was remarkable for OPC and MHP pastes that are known to have high molar ratio CaO/SiO{sub 2}, partition coefficient being 100 ml/g for initial tracer concentration of 10{sup -5} mol/l. Partition coefficient for cesium for PFA paste was found to be 5 ml/g on average. (S. Ohno)

  18. Adsorption of iodine and cesium onto some cement materials

    International Nuclear Information System (INIS)

    Mine, Tatsuya; Mihara, Morihiro; Ito, Masaru

    1997-06-01

    Cement materials, being expected to be used in structural materials in underground disposals of radioactive wastes, may adsorb nuclides resulting in retardation of their migration in environment. In this report adsorption behaviors of cement pastes toward iodine (as anion) and cesium (as cation) were studied. Adsorption of iodine was remarkable for OPC and MHP pastes that are known to have high molar ratio CaO/SiO 2 , partition coefficient being 100 ml/g for initial tracer concentration of 10 -5 mol/l. Partition coefficient for cesium for PFA paste was found to be 5 ml/g on average. (S. Ohno)

  19. Target swapping in PLD: An efficient approach for CdS/SiO{sub 2} and CdS:Ag(1%)/SiO{sub 2} nanocomposite thin films with enhanced luminescent properties

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Nupur, E-mail: n1saxena@gmail.com [Department of Physics & Astrophysics, University of Delhi, Delhi 110007 (India); Kumar, Pragati, E-mail: pkumar.phy@gmail.com [Department of Physics & Astrophysics, University of Delhi, Delhi 110007 (India); Department of Nano Sciences and Materials, Central University of Jammu, Rahya-Suchani (Bagla), Samba, 181143 Jammu, J& K (India); Gupta, Vinay [Department of Physics & Astrophysics, University of Delhi, Delhi 110007 (India)

    2017-06-15

    A novel synthesis method for luminescent and by-products (like CdO) free CdS/SiO{sub 2} and CdS:Ag(1%)/SiO{sub 2} (i.e. 1%Ag doped CdS/SiO{sub 2}) nanocomposite thin films at room temperature by pulsed laser deposition is reported. Targets of CdS, CdS:Ag(1%) and SiO{sub 2} are used to deposit CdS/SiO{sub 2} and CdS:Ag(1%)/SiO{sub 2} nanocomposite thin films by swapping them at a frequency ratio of 2:8 laser pulses/sec. X-ray photoelectron spectroscopy analysis ensures the ratio of CdS to SiO{sub 2} in nanocomposite as 21:79 which is nearly same as the ratio of incident pulses/sec (i.e. 2:8) on the two targets. Transmission electron micrographs visualize the formation of CdS/ CdS:Ag(1%) nanocrystals in nanocomposite systems after annealing at 500 °C. Highly intense and broad red emission is achieved from CdS/SiO{sub 2} and CdS:Ag(1%)/SiO{sub 2} nanocomposites. The efficiencies of emission from pristine CdS:SiO{sub 2} and CdS:Ag(1%)/SiO{sub 2} nanocomposites are found to be enhanced by approximately two times as compared to sole nanocrystalline CdS and CdS:Ag(1%) thin films respectively and further enhanced upto 7 times on annealing the nanocomposite systems at 500 °C. - Graphical abstract: A modified synthesis method for luminescent and by-products (like CdO) free undoped &1% Ag doped CdS/SiO{sub 2} (deposit CdS/SiO{sub 2} and CdS:Ag(1%)/SiO{sub 2}) nanocomposite thin films at room temperature by pulsed laser deposition is reported. Targets of CdS or CdS:Ag(1%) and SiO{sub 2} are used to deposit CdS/SiO{sub 2} and CdS:Ag(1%)/SiO{sub 2} nanocomposite thin films by swapping them at a frequency of 2:8 pulses/sec. X-ray photoelectron spectroscopy analysis ensures the ratio of CdS to SiO{sub 2} in nanocomposite as 21:79 which is nearly same as the ratio of incident pulses/sec (2:8) on the two targets. Transmission electron micrographs visualize the formation of CdS nanocrystals in nanocomposite systems after annealing at 500 °C. Intense and broad red emission is

  20. Study the influence factors to the adsorption process for separation of polyphenols from green tea

    Science.gov (United States)

    Phung, Lan Huong; Tran, Trung Kien; Van Quyet, Chu; Phi, Nguyen Thien

    2017-09-01

    The objective of this work is applying adsorption process for separation of polyphenols from extract solution of green tea by-product. The older leaves and stem of green tea tree are collected from Hiep Khanh Tea Company (Hoabinh province, Vietnam). In this study, two kinds of adsorbent (silicagel, active carbon) were applied for the adsorption process in batch stirring vessel. The factors that affected to the process productivity were investigated: temperature, solid/liquid ratio, duration time, stirring speed. The process has been empirically described with statistical models obtained by Design of Experiments. The results indicated that active carbon was verified to offer good adsorption productivity (more than 95%), much more effective than silicagel (with only about 20%). From the model, the most affected factor to the process could be seen as solid/liquid ratio.

  1. Enumeration of CD4 and CD8 T-cells in HIV infection in Zimbabwe using a manual immunocytochemical method

    DEFF Research Database (Denmark)

    Gomo, E; Ndhlovu, P; Vennervald, B J

    2001-01-01

    OBJECTIVES: To enumerate CD4 and CD8 T-cells using the simple and cheap immuno-alkaline phosphatase (IA) method and to compare it with flow cytometry (FC); and to study the effects of duration of sample storage on the IA method results. DESIGN: Method comparison study. SETTING: Blair Research...... Laboratory, Harare, Zimbabwe. SUBJECTS: 41 HIV positive and 11 HIV negative men and women from Harare participating in HIV studies at Blair Research Laboratory, Zimbabwe. MAIN OUTCOME MEASURES: CD4 and CD8 T-cell counts by FC and the IA method. RESULTS: The IA method and FC were highly correlated for CD4...... counts (Spearman rs = 0.91), CD4 percentage (rs = 0.84), CD8 count (rs = 0.83), CD8 percentage (rs = 0.96) and CD4/CD8 ratio (rs = 0.89). However, CD4 cell counts and percentage measured by the IA method were (mean difference +/- SE) 133 +/- 24 cells/microL [corrected] and 6.7 +/- 1.1% higher than those...

  2. How Does a SILAR CdSe Film Grow? Tuning the Deposition Steps to Suppress Interfacial Charge Recombination in Solar Cells.

    Science.gov (United States)

    Becker, Matthew A; Radich, James G; Bunker, Bruce A; Kamat, Prashant V

    2014-05-01

    Successive ionic layer adsorption and reaction (SILAR) is a popular method of depositing the metal chalcogenide semiconductor layer on the mesoscopic metal oxide films for designing quantum-dot-sensitized solar cells (QDSSCs) or extremely thin absorber (ETA) solar cells. While this deposition method exhibits higher loading of the light-absorbing semiconductor layer than direct adsorption of presynthesized colloidal quantum dots, the chemical identity of these nanostructures and the evolution of interfacial structure are poorly understood. We have now analyzed step-by-step SILAR deposition of CdSe films on mesoscopic TiO2 nanoparticle films using X-ray absorption near-edge structure analysis and probed the interfacial structure of these films. The film characteristics interestingly show dependence on the order in which the Cd and Se are deposited, and the CdSe-TiO2 interface is affected only during the first few cycles of deposition. Development of a SeO2 passivation layer in the SILAR-prepared films to form a TiO2/SeO2/CdSe junction facilitates an increase in photocurrents and power conversion efficiencies of quantum dot solar cells when these films are integrated as photoanodes in a photoelectrochemical solar cell.

  3. Elevated CO2 increases glomalin-related soil protein (GRSP) in the rhizosphere of Robinia pseudoacacia L. seedlings in Pb- and Cd-contaminated soils.

    Science.gov (United States)

    Jia, Xia; Zhao, Yonghua; Liu, Tuo; Huang, Shuping; Chang, Yafei

    2016-11-01

    Glomalin-related soil protein (GRSP), which contains glycoproteins produced by arbuscular mycorrhizal fungi (AMF), as well as non-mycorrhizal-related heat-stable proteins, lipids, and humic materials, is generally categorized into two fractions: easily extractable GRSP (EE-GRSP) and total GRSP (T-GRSP). GRSP plays an important role in soil carbon (C) sequestration and can stabilize heavy metals such as lead (Pb), cadmium (Cd), and manganese (Mn). Soil contamination by heavy metals is occurring in conjunction with rising atmospheric CO 2 in natural ecosystems due to human activities. However, the response of GRSP to elevated CO 2 combined with heavy metal contamination has not been widely reported. Here, we investigated the response of GRSP to elevated CO 2 in the rhizosphere of Robinia pseudoacacia L. seedlings in Pb- and Cd-contaminated soils. Elevated CO 2 (700 μmol mol -1 ) significantly increased T- and EE- GRSP concentrations in soils contaminated with Cd, Pb or Cd + Pb. GRSP contributed more carbon to the rhizosphere soil organic carbon pool under elevated CO 2  + heavy metals than under ambient CO 2 . The amount of Cd and Pb bound to GRSP was significantly higher under elevated (compared to ambient) CO 2 ; and elevated CO 2 increased the ratio of GRSP-bound Cd and Pb to total Cd and Pb. However, available Cd and Pb in rhizosphere soil under increased elevated CO 2 compared to ambient CO 2 . The combination of both metals and elevated CO 2 led to a significant increase in available Pb in rhizosphere soil compared to the Pb treatment alone. In conclusion, increased GRSP produced under elevated CO 2 could contribute to sequestration of soil pollutants by adsorption of Cd and Pb. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Study on Shale Adsorption Equation Based on Monolayer Adsorption, Multilayer Adsorption, and Capillary Condensation

    OpenAIRE

    Chen, Qing; Tian, Yuanyuan; Li, Peng; Yan, Changhui; Pang, Yu; Zheng, Li; Deng, Hucheng; Zhou, Wen; Meng, Xianghao

    2017-01-01

    Shale gas is an effective gas resource all over the world. The evaluation of pore structure plays a critical role in exploring shale gas efficiently. Nitrogen adsorption experiment is one of the significant approaches to analyze pore size structure of shale. Shale is extremely heterogeneous due to component diversity and structure complexity. Therefore, adsorption isotherms for homogeneous adsorbents and empirical isotherms may not apply to shale. The shape of adsorption-desorption curve indi...

  5. Radiation-adsorption purification of effluents containing pesticides

    International Nuclear Information System (INIS)

    Brusentseva, S.A.; Shubin, V.N.; Nikonorova, G.K.; Zorin, D.M.; Sosnovskaya, A.A.; Petryaev, E.P.; Vlasova, V.I.; Edimicheva, I.P.; Subbotina, N.N.; Belorusskij Gosudarstvennyj Univ., Minsk)

    1986-01-01

    The radiation-adsorption purification is one of the new direction in the radiation purification of natural wastes and effluents containing pesticides. This method combines the conventional adsorption purification with radiation treatment of the sorbent, and the result the protection time of the sorbent increases due to the radiation regeneration of carbon. In present work the method was used for purification of effluents from pesticides, such as 4,4'Dichlorodiphenyltrichloroethane /DDT/, 1,2,3,4,5,6-hexachlorocyclohexane /HCCH/, dimethyl 2,2-dichlorovinylphosphate /DDVF/ and petroleum products (a mixture of kerosene and xylene in ratio 7:1). Such effluents are formed at factories producing an insecticide aerosol 'Prime-71'. Three investigations were carried out on model with a solution similar composition to industrial effluents. (author)

  6. Studies on adsorptions of metallic ions in water by zirconium glyphosate (ZrGP): Behaviors and mechanisms

    International Nuclear Information System (INIS)

    Jia Yunjie; Zhang Yuejuan; Wang Runwei; Fan Faying; Xu Qinghong

    2012-01-01

    A new adsorbent named zirconium glyphosate [Zr(O 3 PCH 2 NHCH 2 COOH) 2 ·0.5H 2 O, denoted as ZrGP] and its selective adsorptions to Pb 2+ , Cd 2+ , Mg 2+ and Ca 2+ ions in water were reported in this paper. Compared to other zirconium adsorbents, such as zirconium phosphate [Zr(HPO 4 ) 2 ], ZrGP exhibited highly selective adsorption to Pb 2+ in solution which contained Pb 2+ , Cd 2+ , Mg 2+ and Ca 2+ ions. The loaded ZrGP with metallic ions can be efficaciously regenerated by aqueous solution of HCl (1.0 M) without any noticeable capacity loss, and almost all of it can be reused and recycled. The memory effect on structural regeneration of ZrGP was also found when Mg 2+ and Ca 2+ were adsorbed. To be specific, the structure of ZrGP was destroyed due to adsorbing these two ions, but it could be regenerated after the loaded materials were dipped in HCl solution (1.0 M) for several minutes to remove metallic ions.

  7. [Investigation on the process of sapindus saponin purified with macroporous adsorption resin and screening of its bacteriostasis].

    Science.gov (United States)

    Fu, Yong; Lei, Peng; Han, Yu-mei; Yan, Dan

    2010-02-01

    To study the technological parameters of the purification process of saponins with macroporous adsorption resin. The adsorptive characteristics and elutive parameters of the process were studied by taking the elutive and purified ratio of saponins as markers. Bacteriostasis activity of each parts eluted was evaluated by the mean of cup-plate method. 13.6 mL of the extraction of sapindus saponin (crude drugs 0.01 g/mL) was purified with a column of macroporous adsorption resin (phi15 mm x H90 mm, dry weight 2.5 g) and washed with 3BV of distilled water, then eluted with 3BV of 30% ethanol and 3BV of 70% ethanol, most of saponins were collected in the 70% ethanol. With macroporous adsorption resin adsorbing and purifying, the elutive ratio of saponins was 93.8% and the purity reached 250.1%. So this process of applying macroporous adsorption resin to adsorb and purify saponins is feasible, and supplies reference to the purification of other types of saponin.

  8. Effect of Fe(II)/Ce(III) dosage ratio on the structure and anion adsorptive removal of hydrothermally precipitated composites: Insights from EXAFS/XANES, XRD and FTIR

    KAUST Repository

    Chubar, Natalia; Gerda, Vasyl; Banerjee, Dipanjan; Yablokova, Ganna

    2016-01-01

    In this work, we present material chemistry in the hydrothermal synthesis of new complex structure materials based on various dosage ratios of Fe and Ce (1:0, 2:1, 1:1, 1:2, 0:1), characterize them by the relevant methods that allow characterization of both crystalline and amorphous phases and correlate their structure/surface properties with the adsorptive performance of the five toxic anions. The applied synthesis conditions resulted in the formation of different compounds of Fe and Ce components. The Fe-component was dominated by various phases of Fe hydrous oxides, whereas the Ce-component was composed of various phases of Ce carbonates. The presence of two metal salts in raw materials resulted in the formation of a mesoporous structure and averaged the surface area compared to one metal-based material. The surface of all Fe-Ce composites was abundant in Fe component phases. Two-metal systems showed stronger anion removal performance than one-metal materials. The best adsorption was demonstrated by Fe-Ce based materials that had low crystallinity, that were rich in phases and that exhibited surfaces were abundant in greater number of surface functional groups. Notably, Fe extended fine structures simulated by EXAFS in these better adsorbents were rich from oscillations from both heavy and light atoms. This work provides new insights on the structure of composite inorganic materials useful to develop their applications in adsorption and catalysis. It also presents new inorganic anion exchangers with very high removal potential to fluoride and arsenate.

  9. Effect of Fe(II)/Ce(III) dosage ratio on the structure and anion adsorptive removal of hydrothermally precipitated composites: Insights from EXAFS/XANES, XRD and FTIR

    KAUST Repository

    Chubar, Natalia

    2016-10-24

    In this work, we present material chemistry in the hydrothermal synthesis of new complex structure materials based on various dosage ratios of Fe and Ce (1:0, 2:1, 1:1, 1:2, 0:1), characterize them by the relevant methods that allow characterization of both crystalline and amorphous phases and correlate their structure/surface properties with the adsorptive performance of the five toxic anions. The applied synthesis conditions resulted in the formation of different compounds of Fe and Ce components. The Fe-component was dominated by various phases of Fe hydrous oxides, whereas the Ce-component was composed of various phases of Ce carbonates. The presence of two metal salts in raw materials resulted in the formation of a mesoporous structure and averaged the surface area compared to one metal-based material. The surface of all Fe-Ce composites was abundant in Fe component phases. Two-metal systems showed stronger anion removal performance than one-metal materials. The best adsorption was demonstrated by Fe-Ce based materials that had low crystallinity, that were rich in phases and that exhibited surfaces were abundant in greater number of surface functional groups. Notably, Fe extended fine structures simulated by EXAFS in these better adsorbents were rich from oscillations from both heavy and light atoms. This work provides new insights on the structure of composite inorganic materials useful to develop their applications in adsorption and catalysis. It also presents new inorganic anion exchangers with very high removal potential to fluoride and arsenate.

  10. [Preparation of Pb2+ imprinted acrylic acid-co-styrene and analysis of its adsorption properties by FAAS].

    Science.gov (United States)

    Shawket, Abliz; Abdiryim, Supahun; Wang, Ji-De; Ismayil, Nurulla

    2011-06-01

    With lead ion template, acrylic acid as functional monomer, potassium persulfate as initiator, strytrene as framework monomer, lead ion imprinted polymers (Pb(II)-IIPs) were prepared using free emulsion polymerization method. The structure and morphology of the polymers were analyzed by UV-spectra, FTIR and scanning electron microscopy. The adsorption/ desorption and selectivity for Pb2+ were investigated by flame atomic absorption spectrometry (FAAS) as the detection means. The results show that compared with non-imprinted polymers(NIPs), the Pb(II)-IIPs had higher specific adsorption properties and selective recognition ability for Pb(II). The relative selectivity coefficient of Pb(II)-IIPs for Pb(II) was 6.25, 6.18, 6.25 and 6.38 in the presence of Cd(II), Cu(II), Mn(II) and Zn(II) interferences, respectively. The absorption rate was the best at the pH of adsorbent solution of 6, Adsorption rate reached 96% during the 2.5 h static adsorption time. Using 3.0 mol x L(-1) HCI as the best desorption solvent to desorb the adsorbents, the desorbtion rate reached 98%. Under the best adsorption conditions, the adsorption capacity of Pb(II)-IIPs for Pb(II) was found to be 40. mg x g(-1).

  11. Chemical synthesis of CdS onto TiO2 nanorods for quantum dot sensitized solar cells

    Science.gov (United States)

    Pawar, Sachin A.; Patil, Dipali S.; Lokhande, Abhishek C.; Gang, Myeng Gil; Shin, Jae Cheol; Patil, Pramod S.; Kim, Jin Hyeok

    2016-08-01

    A quantum dot sensitized solar cell (QDSSC) is fabricated using hydrothermally grown TiO2 nanorods and successive ionic layer adsorption and reaction (SILAR) deposited CdS. Surface morphology of the TiO2 films coated with different SILAR cycles of CdS is examined by Scanning Electron Microscopy which revealed aggregated CdS QDs coverage grow on increasing onto the TiO2 nanorods with respect to cycle number. Under AM 1.5G illumination, we found the TiO2/CdS QDSSC photoelectrode shows a power conversion efficiency of 1.75%, in an aqueous polysulfide electrolyte with short-circuit photocurrent density of 4.04 mA/cm2 which is higher than that of a bare TiO2 nanorods array.

  12. Reformulated tight binding calculation for band discontinuity at CdTe/Hg xCd1-xTe heterointerfaces and their type I-type III transitions

    International Nuclear Information System (INIS)

    Ekpunobi, A.J.

    2005-01-01

    A recently reformulated tight binding method is used to calculate the valence band discontinuity at the CdTe/Hg x Cd 1-x Te interface in the s 2 p 2 configuration. The calculated valence band discontinuity of 0.31 eV at CdTe/HgTe interface is in good agreement with self-consistent calculation and accepted experimental value. Calculations were extended to alloy interfaces, which enabled the investigation of the band-offset problem at the transition point. Both valence band discontinuity ratio and conduction band discontinuity ratio show inflexions at the transition point

  13. Adsorptive removal of organics from aqueous phase by acid-activated coal fly ash: preparation, adsorption, and Fenton regenerative valorization of "spent" adsorbent.

    Science.gov (United States)

    Wang, Nannan; Hao, Linlin; Chen, Jiaqing; Zhao, Qiang; Xu, Han

    2018-05-01

    Raw coal fly ash was activated to an adsorbent by sulfuric acid impregnation. The activation condition, the adsorption capacity, and the regenerative valorization of the adsorbent were studied. The results show that the optimal preparation conditions of the adsorbent are [H 2 SO 4 ] = 1 mol L -1 , activation time = 30 min, the ratio of coal fly ash to acid = 1:20 (g:mL), calcination temperature = 100 °C. The adsorption of p-nitrophenol on the adsorbent accords with the pseudo-second-order kinetic equation and the adsorption rate constant is 0.089 g mg -1  min -1 . The adsorption on this adsorbent can be considered enough after 35 min, when the corresponding adsorption capacity is 1.07 mg g -1 (85.6% of p-nitrophenol removal). Compared with raw coal fly ash, the adsorbent has a stable adsorption performance at low pH range (pH = 1-6) and the adsorption of p-nitrophenol is an exothermic process. Ninety minutes is required for the regenerative valorization of saturated adsorbent by Fenton process. The regenerative valorization for this saturated adsorbent can reach 89% under the optimal proposed conditions (30 °C, pH = 3, [H 2 O 2 ] = 5.0 mmol L -1 , [Fe 2+ ] = 5.5 mmol L -1 ). Within 15 experimental runs, the adsorbent has a better and better stability with the increase of experimental runs. Finally, the mechanism of activating coal fly ash is proposed, being verified by the results of the SEM and BET test.

  14. Blue and green electroluminescence from CdSe nanocrystal quantum-dot-quantum-wells

    International Nuclear Information System (INIS)

    Lu, Y. F.; Cao, X. A.

    2014-01-01

    CdS/CdSe/ZnS quantum dot quantum well (QDQW) nanocrystals were synthesized using the successive ion layer adsorption and reaction technique, and their optical properties were tuned by bandgap and strain engineering. 3-monolayer (ML) CdSe QWs emitted blue photoluminescence at 467 nm with a spectral full-width-at-half-maximum of ∼30 nm. With a 3 ML ZnS cladding layer, which also acts as a passivating and strain-compensating layer, the QDQWs acquired a ∼35% quantum yield of the QW emission. Blue and green electroluminescence (EL) was obtained from QDQW light-emitting devices with 3–4.5 ML CdSe QWs. It was found that as the peak blueshifted, the overall EL was increasingly dominated by defect state emission due to poor hole injection into the QDQWs. The weak EL was also attributed to strong field-induced charge separation resulting from the unique QDQW geometry, weakening the oscillator strength of optical transitions

  15. MgO-based adsorbents for CO2 adsorption: Influence of structural and textural properties on the CO2 adsorption performance.

    Science.gov (United States)

    Elvira, Gutiérrez-Bonilla; Francisco, Granados-Correa; Víctor, Sánchez-Mendieta; Alberto, Morales-Luckie Raúl

    2017-07-01

    A series of MgO-based adsorbents were prepared through solution-combustion synthesis and ball-milling process. The prepared MgO-based powders were characterized using X-ray diffraction, scanning electron microscopy, N 2 physisorption measurements, and employed as potential adsorbents for CO 2 adsorption. The influence of structural and textural properties of these adsorbents over the CO 2 adsorption behaviour was also investigated. The results showed that MgO-based products prepared by solution-combustion and ball-milling processes, were highly porous, fluffy, nanocrystalline structures in nature, which are unique physico-chemical properties that significantly contribute to enhance their CO 2 adsorption. It was found that the MgO synthesized by solution combustion process, using a molar ratio of urea to magnesium nitrate (2:1), and treated by ball-milling during 2.5hr (MgO-BM2.5h), exhibited the maximum CO 2 adsorption capacity of 1.611mmol/g at 25°C and 1atm, mainly via chemisorption. The CO 2 adsorption behaviour on the MgO-based adsorbents was correlated to their improved specific surface area, total pore volume, pore size distribution and crystallinity. The reusability of synthesized MgO-BM2.5h was confirmed by five consecutive CO 2 adsorption-desorption times, without any significant loss of performance, that supports the potential of MgO-based adsorbent. The results confirmed that the special features of MgO prepared by solution-combustion and treated by ball-milling during 2.5hr are favorable to be used as effective MgO-based adsorbent in post-combustion CO 2 capture technologies. Copyright © 2016. Published by Elsevier B.V.

  16. In vitro investigation of protein adsorption and platelet adhesion on inorganic biomaterial surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yan Huang [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China); Lue Xiaoying [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China)], E-mail: luxy@seu.edu.cn; Ma Jingwu [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China); Nan Huang [Institute of Biomaterials and Surface Engineering, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: nhuang@263.com

    2008-11-15

    The aim of this paper was to study the surface properties, protein adsorption and platelet adhesion behaviors of diamond-like carbon (DLC) and titanium (Ti) films. The surface energy and microstructures of these films were characterized by contact angle measurement and atomic force microscopy (AFM). A modified Coomassie brilliant blue (CBB) protein assay was used to study the amount of adsorbed proteins. Platelet adhesion was assessed by scanning electron microscopy (SEM). The AFM results show that the DLC film is smoother than Ti. Protein adsorption results from CBB protein assay show that the ratio of adsorbed albumin (Alb) to IgG (R{sub A/I}) on DLC is larger than Ti, which coincide with the sequence of the ratio of interfacial tension between solid surface and Alb ({gamma}{sub S,Alb}) to interfacial tension between surface and IgG ({gamma}{sub S,IgG}) ({gamma}{sub S,Alb}/{gamma}{sub S,IgG}). The DLC film has a preferential adsorption for Alb. The results suggest that the ratio of {gamma}{sub S,Alb}/{gamma}{sub S,IgG} may indicate an Alb/IgG affinity ratio of materials. More platelets adhere on Ti film than on DLC, which may correspond to the surface roughness of materials. The conclusion is the blood compatibility of DLC seems to be better than Ti.

  17. Adsorption of trace gases to ice surfaces: surface, bulk and co-adsorbate effects

    Science.gov (United States)

    Kerbrat, Michael; Bartels-Rausch, Thorsten; Huthwelker, Thomas; Schneebeli, Martin; Pinzer, Bernd; Ammann, Markus

    2010-05-01

    Atmospheric ices frequently interact with trace gases and aerosol making them an important storage, transport or reaction medium in the global ecosystem. Further, this also alters the physical properties of the ice particles with potential consequences for the global irradiation balance and for the relative humidity of surrounding air masses. We present recent results from a set of laboratory experiments of atmospheric relevance to investigate the nature of the uptake processes. The focus of this talk will be placed on the partitioning of acidic acid and nitrous acid on ice surfaces.The presented results span from very simple reversible adsorption experiments of a single trace gas onto ice surfaces to more complex, but well controlled, experimental procedures that successfully allowed us to - Disentangle surface adsorption and uptake into the ice matrix using radioactive labelled trace gases. - Show that simultaneous adsorption of acetic acid and nitrous acid to an ice surface is consistent with the Langmuir co-adsorption model. The experiments were done in a packed ice bed flow tube at atmospheric pressure and at temperatures between 213 and 253 K. The HONO gas phase mixing ratio was between 0.4 and 137 ppbv, the mixing ratio of acetic acid between 5 and 160 ppbv . The use of the radioactive labelled nitrous acid molecules for these experiments enabled in situ monitoring of the migration of trace gas in the flow tube. The measurements showed that the interactions do not only occur through adsorption but also via diffusion into polycrystalline ice. A method is suggested to disentangle the bulk and the surface processes. The co-adsorption of acetic and nitrous acids was also investigated. The measurements are well reproduced by a competitive Langmuir adsorption model.

  18. Preparation and Characterization of TiO2/CdS Layers as Potential Photoelectrocatalytic Materials

    Directory of Open Access Journals (Sweden)

    Teofil-Danut Silipas

    2011-01-01

    Full Text Available The TiO2/CdS semiconductor composites were prepared on
    indium tin oxide (ITO substrates in di®erent mass proportions via wet-chemical techniques using bi-distilled water, acetyl-acetone, poly-propylene-glycol and Triton X-100 as additives. The composite layers were annealed in normal conditions at the temperature of 450±C, 120 min. with a rate of temperature increasing of 5±C/min. The structural and optical properties of all the TiO2/CdS ayers were characterized by X-ray di®raction, UV-VIS spectroscopy, spectrofluorimetry and FT/IR microscopy. The microstructural properties of the deposited TiO2/CdS layers can be modi¯ed by varying the mass proportions of TiO2:CdS. The good crystallinity level and the high optical adsorption of
    the TiO2/CdS layers make them attractive for photoelectrochemical cell applications.

  19. [Removal of toluene from waste gas by honeycomb adsorption rotor with modified 13X molecular sieves].

    Science.gov (United States)

    Wang, Jia-De; Zheng, Liang-Wei; Zhu, Run-Ye; Yu, Yun-Feng

    2013-12-01

    The removal of toluene from waste gas by Honeycomb Adsorption Rotor with modified 13X molecular sieves was systematically investigated. The effects of the rotor operating parameters and the feed gas parameters on the adsorption efficiency were clarified. The experimental results indicated that the honeycomb adsorption rotor had a good humidity resistance. The removal efficiency of honeycomb adsorption rotor achieved the maximal value with optimal rotor speed and optimal generation air temperature. Moreover, for an appropriate flow rate ratio the removal efficiency and energy consumption should be taken into account. When the recommended operating parameters were regeneration air temperature of 180 degrees C, rotor speed of 2.8-5 r x h(-1), flow rate ratio of 8-12, the removal efficiency kept over 90% for the toluene gas with concentration of 100 mg x m(-3) and inlet velocity of 2 m x s(-1). The research provided design experience and operating parameters for industrial application of honeycomb adsorption rotor. It showed that lower empty bed velocity, faster rotor speed and higher temperature were necessary to purify organic waste gases of higher concentrations.

  20. Dynamics of adsorption of polyallylamine hydrochloride/sodium dodecyl sulphate at water/air and water/hexane interfaces

    Czech Academy of Sciences Publication Activity Database

    Sharipova, A.; Aidarova, S.; Fainerman, V. B.; Stocco, A.; Černoch, Peter; Miller, R.

    2011-01-01

    Roč. 391, 1-3 (2011), s. 112-118 ISSN 0927-7757. [International Symposium on Surfactants in Solution /18./ - SIS 2010. Melbourne, 14.11.2010-19.11.2010] Institutional research plan: CEZ:AV0Z40500505 Keywords : mixed adsorption layers * polymer/surfactant mixtures * water /oil interface Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.236, year: 2011

  1. Synthesis and characterization of a magnetic adsorbent from negatively-valued iron mud for methylene blue adsorption

    Science.gov (United States)

    Liu, Jiancong; Yu, Yang; Yang, Jiakuan; Song, Jian; Fan, Wei; Yu, Hongbin; Bian, Dejun; Huo, Mingxin

    2018-01-01

    With increasing awareness of reduction of energy and CO2 footprint, more waste is considered recyclable for generating value-added products. Here we reported the negatively-valued iron mud, a waste from groundwater treatment plant, was successfully converted into magnetic adsorbent. Comparing with the conventional calcination method under the high temperature and pressure, the synthesis of the magnetic particles (MPs) by Fe2+/Fe3+ coprecipitation was conducted at environment-friendly condition using ascorbic acid (H2A) as reduction reagent and nitric acid (or acid wastewater) as leaching solution. The MPs with major component of Fe3O4 were synthesized at the molar ratio (called ratio subsequently) of H2A to Fe3+ of iron mud ≥ 0.1; while amorphous ferrihydrite phase was formed at the ratio ≤ 0.05, which were confirmed by vibrating sample magnetometer (VSM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). With the ratio increased, the crystalline size and the crystallization degree of MPs increased, and thus the Brunauer-Emmett-Teller (BET) surface and the cation-exchange capacity (CEC) decreased. MPs-3 prepared with H2A to Fe3+ ratio of 0.1 demonstrated the highest methylene blue (MB) adsorption of 87.3 mg/g and good magnetic response. The adsorption of MB onto MPs agreed well with the non-linear Langmuir isotherm model and the pseudo-second-order model. Pilot-scale experiment showed that 99% of MB was removed by adding 10 g/L of MPs-3. After five adsorption-desorption cycles, MPs-3 still showed 62% removal efficiency for MB adsorption. When nitric acid was replaced by acid wastewater from a propylene plant, the synthesized MPs-3w showed 3.7 emu/g of saturation magnetization (Ms) and 56.7 mg/g of MB adsorption capacity, 2.8 times of the widely used commercial adsorbent of granular active carbon (GAC). The major mechanism of MPs adsorption for MB was electrostatic attraction and cation exchange. This study synthesized a magnetic adsorbent from

  2. Modification of porous starch for the adsorption of heavy metal ions from aqueous solution.

    Science.gov (United States)

    Ma, Xiaofei; Liu, Xueyuan; Anderson, Debbie P; Chang, Peter R

    2015-08-15

    Porous starch xanthate (PSX) and porous starch citrate (PSC) were prepared in anticipation of the attached xanthate and carboxylate groups respectively forming chelation and electrostatic interactions with heavy metal ions in the subsequent adsorption process. The lead(II) ion was selected as the model metal and its adsorption by PSX and PSC was characterized. The adsorption capacity was highly dependent on the carbon disulfide/starch and citric acid/starch mole ratios used during preparation. The adsorption behaviors of lead(II) ion on PSXs and PSCs fit both the pseudo-second-order kinetic model and the Langmuir isotherm model. The maximum adsorption capacity from the Langmuir isotherm equation reached 109.1 and 57.6 mg/g for PSX and PSC when preparation conditions were optimized, and the adsorption times were just 20 and 60 min, respectively. PSX and PSC may be used as effective adsorbents for removal of heavy metals from contaminated liquid. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  3. Synthesis, structures and electroluminescence properties of CdS:In/Si nanoheterostructure array

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Ling Ling; Cai, Hong Xin; Chen, Liang [Henan Polytechnic University, School of Physics and Electronic Information Engineering, Jiaozuo (China)

    2017-10-15

    An In-doped CdS/Si nanoheterojunction (CdS:In/Si-NPA) is prepared by depositing an In-doped CdS thin film onto a Si nanoporous pillar array (Si-NPA) via a successive ionic layer adsorption and reaction method. Based on the measured J-V characteristic curve, the nanoheterojunction exhibits a good rectifying behavior with a low forward turn-on voltage (2.2 V), a small leakage current density (0.5 mA/cm{sup 2} at - 3 V) and a high reverse breakdown voltage (> 8 V). The electroluminescence (EL) measurements reveal that a broadband emerges between 400 and 700 nm, and this band is confirmed as a white light emission based on the value of the chromaticity coordinate. The EL properties, including the CIE chromaticity coordinates, Colour Rendering Index and correlated color temperature, can be tuned by the applied voltage. The generation mechanism of the EL can be well interpreted depending on the energy band structure of CdS:In/Si-NPA. The green band should be attributed to the band-edge emission of CdS and the yellow emission may be related to Cd interstitial. These results highlight the potential of CdS:In/Si-NPA as a light source for future white light emitting devices. (orig.)

  4. Microalgal-biochar immobilized complex: A novel efficient biosorbent for cadmium removal from aqueous solution.

    Science.gov (United States)

    Shen, Ying; Li, Huan; Zhu, Wenzhe; Ho, Shih-Hsin; Yuan, Wenqiao; Chen, Jianfeng; Xie, Youping

    2017-11-01

    The feasibility of the bioremediation of cadmium (Cd) using microalgal-biochar immobilized complex (MBIC) was investigated. Major operating parameters (e.g., pH, biosorbent dosage, initial Cd(II) concentration and microalgal-biochar ratio) were varied to compare the treatability of viable algae (Chlorella sp.), biochar and MBIC. The biosorption isotherms obtained by using algae or biochar were found to have satisfactory Langmuir predictions, while the best fitting adsorption isotherm model for MBIC was the Sips model. The maximum Cd(II) adsorption capacity of MBIC with a Chlorella sp.: biochar ratio of 2:3 (217.41mgg -1 ) was higher than that of Chlorella sp. (169.92mgg -1 ) or biochar (95.82mgg -1 ) alone. The pseudo-second-order model fitted the biosorption process of MBIC well (R 2 >0.999). Moreover, zeta potential, SEM and FTIR studies revealed that electrostatic attraction, ion exchange and surface complexation were the main mechanisms responsible for Cd removal when using MBIC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Sorption mechanism of Cd(II) from water solution onto chicken eggshell

    Science.gov (United States)

    Flores-Cano, Jose Valente; Leyva-Ramos, Roberto; Mendoza-Barron, Jovita; Guerrero-Coronado, Rosa María; Aragón-Piña, Antonio; Labrada-Delgado, Gladis Judith

    2013-07-01

    The mechanism and capacity of eggshell for sorbing Cd(II) from aqueous solution was examined in detail. The eggshell was characterized by several techniques. The eggshell was mainly composed of Calcite (CaCO3). The surface charge distribution was determined by acid-base titration and the point of zero charge (PZC) of the eggshell was found to be 11.4. The sorption equilibrium data were obtained in a batch adsorber, and the adsorption isotherm of Langmuir fitted the data quite well. The sorption capacity of eggshell increased while raising the pH from 4 to 6, this tendency was attributed to the electrostatic interaction between the Cd2+ in solution and the surface of the eggshell. Furthermore, the sorption capacity was augmented by increasing the temperature from 15 to 35 °C because the sorption was endothermic. The sorption of Cd(II) occurred mainly onto the calcareous layer of the eggshell, but slightly on the membrane layer. It was demonstrated that the sorption of Cd(II) was not reversible, and the main sorption mechanisms were precipitation and ion exchange. The precipitation of (Cd,Ca)CO3 on the surface of the eggshell was corroborated by SEM and XRD analysis.

  6. Acetate-assisted Synthesis of Chromium(III) Terephthalate and Its Gas Adsorption Properties

    International Nuclear Information System (INIS)

    Zhou, Jingjing; Liu, Kaiyu; Kong, Chunlong; Chen, Liang

    2013-01-01

    We report a facile synthetic approach of high-quality chromium(III) terephthalate [MIL-101(Cr)] by acetate-assisted method in the absence of toxic HF. Results indicate that the morphology and surface area of the MIL-101(Cr) can be tuned by modifying the molar ratio of acetate/Cr(NO 3 ) 3 . The Brunauer-Emmett-Teller (BET) surface area of MIL-101(Cr) synthesized at the optimized condition can exceed 3300 m 2 /g. It is confirmed that acetate could promote the dissolution of di-carboxylic linker and accelerate the nucleation ratio. So the pure and small size of MIL-101(Cr) with clean pores can be obtained. CO 2 , CH 4 and N 2 adsorption isotherms of the samples are studied at 298 K and 313 K. Compared with the traditional method, MIL-101(Cr) synthesized by acetate-assisted method possess enhanced CO 2 selective adsorption capacity. At 1.0 bar 298 K, it exhibits 47% enhanced CO 2 adsorption capacity. This may be attributed to the high surface area together with clean pores of MIL-101(Cr)

  7. Sequential and simultaneous adsorption of Sb(III) and Sb(V) on ferrihydrite: Implications for oxidation and competition.

    Science.gov (United States)

    Qi, Pengfei; Pichler, Thomas

    2016-02-01

    Antimony (Sb) is a naturally occurring element of growing environmental concern whose toxicity, adsorption behavior and other chemical properties are similar to that of arsenic (As). However, less is known about Sb compared to As. Individual and simultaneous adsorption experiments with Sb(III) and Sb(V) were conducted in batch mode with focus on the Sb speciation of the remaining liquid phase during individual Sb(III) adsorption experiments. The simultaneous adsorption and oxidation of Sb(III) was confirmed by the appearance of Sb(V) in the solution at varying Fe/Sb ratios (500, 100 and 8) and varying pH values (3.8, 7 and 9). This newly formed Sb(V) was subsequently removed from solution at a Fe/Sb ratio of 500 or at a pH of 3.8. However, more or less only Sb(V) was observed in the liquid phase at the end of the experiments at lower Fe/Sb ratios and higher pH, indicating that competition took place between the newly formed Sb(V) and Sb(III), and that Sb(III) outcompeted Sb(V). This was independently confirmed by simultaneous adsorption experiments of Sb(III) and Sb(V) in binary systems. Under such conditions, the presence of Sb(V) had no influence on the adsorption of Sb(III) while Sb(V) adsorption was significantly inhibited by Sb(III) over a wide pH range (4-10). Thus, in the presence of ferrihydrite and under redox conditions, which allow the presence of both Sb species, Sb(V) should be the dominant species in aquatic environments, since Sb(III) is adsorbed preferentially and at the same time oxidized to Sb(V). Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Photovoltaic and Impedance Spectroscopy Study of Screen-Printed TiO₂ Based CdS Quantum Dot Sensitized Solar Cells.

    Science.gov (United States)

    Atif, M; Farooq, W A; Fatehmulla, Amanullah; Aslam, M; Ali, Syed Mansoor

    2015-01-19

    Cadmium sulphide (CdS) quantum dot sensitized solar cells (QDSSCs) based on screen-printed TiO₂ were assembled using a screen-printing technique. The CdS quantum dots (QDs) were grown by using the Successive Ionic Layer Adsorption and Reaction (SILAR) method. The optical properties were studied by UV-Vis absorbance spectroscopy. Photovoltaic characteristics and impedance spectroscopic measurements of CdS QDSSCs were carried out under air mass 1.5 illuminations. The experimental results of capacitance against voltage indicate a trend from positive to negative capacitance because of the injection of electrons from the Fluorine doped tin oxide (FTO) electrode into TiO₂.

  9. An increase in CD3+CD4+CD25+ regulatory T cells after administration of umbilical cord-derived mesenchymal stem cells during sepsis.

    Directory of Open Access Journals (Sweden)

    Yu-Hua Chao

    Full Text Available Sepsis remains an important cause of death worldwide, and vigorous immune responses during sepsis could be beneficial for bacterial clearance but at the price of collateral damage to self tissues. Mesenchymal stem cells (MSCs have been found to modulate the immune system and attenuate sepsis. In the present study, MSCs derived from bone marrow and umbilical cord were used and compared. With a cecal ligation and puncture (CLP model, the mechanisms of MSC-mediated immunoregulation during sepsis were studied by determining the changes of circulating inflammation-associated cytokine profiles and peripheral blood mononuclear cells 18 hours after CLP-induced sepsis. In vitro, bone marrow-derived MSCs (BMMSCs and umbilical cord-derived MSCs (UCMSCs showed a similar morphology and surface marker expression. UCMSCs had stronger potential for osteogenesis but lower for adipogenesis than BMMSCs. Compared with rats receiving PBS only after CLP, the percentage of circulating CD3+CD4+CD25+ regulatory T (Treg cells and the ratio of Treg cells/T cells were elevated significantly in rats receiving MSCs. Further experiment regarding Treg cell function demonstrated that the immunosuppressive capacity of Treg cells from rats with CLP-induced sepsis was decreased, but could be restored by administration of MSCs. Compared with rats receiving PBS only after CLP, serum levels of interleukin-6 and tumor necrosis factor-α were significantly lower in rats receiving MSCs after CLP. There were no differences between BMMSCs and UCMSCs. In summary, this work provides the first in vivo evidence that administering BMMSCs or UCMSCs to rats with CLP-induced sepsis could increase circulating CD3+CD4+CD25+ Treg cells and Treg cells/T cells ratio, enhance Treg cell suppressive function, and decrease serum levels of interleukin-6 and tumor necrosis factor-α, suggesting the immunomodulatory association of Treg cells and MSCs during sepsis.

  10. Hydrogel covered bimetallic Co:Ni magnetic nano alloy for protein adsorption in biomedical application

    Science.gov (United States)

    Rajar, Kausar; Alveroglu, Esra

    2017-10-01

    In this study, polyacrylamide (PAAm) hydrogel covered CoNi magnetic nanoalloys with various Co/Ni molar ratio (from 1/4 to 4/1) were synthesized, characterized and used for adsorption of Bovine Serum Albumin (BSA). XRD, EDS, VSM, SEM, AFM, Automated Gas Sorption Analyzer and Fluorescence measurements were used for characterizations and adsorption studies. The results confirm that all the synthesized nanoalloys have soft ferromagnetic nature and particles size were determined to be in the range of 8.60-12.19 nm. Adsorption performances of magnetic nanoalloys were investigated on bovine serum albumin (BSA) as a model protein. The results showed that prepared CoNi:PAAm composites have multistage adsorption kinetics for BSA and increasing Ni content in the CoNi nanoalloys enhance the adsorption rate constant and the rate constant can be tuned between 0.003 s-1 and 0.009 s-1 and between 0.01 s-1 and 0.60 s-1 for the first order adsorption and the second order adsorption stages, respectively. These results show that CoNi:PAAm composites can open new pathways for preparing a special composite material which has specific adsorption kinetic for bio-separation technology.

  11. Predicting AEA dosage by Foam Index and adsorption on Fly Ash

    OpenAIRE

    Jacobsen, Stefan; Ollendorff, Margrethe; Geiker, Mette Rica; Tunstall, Lori; Scherer, George W.

    2012-01-01

    Abstract: The unpredictable air entrainment in fly ash concrete caused by carbon in fly ash was studied by measuring adsorption of Air Entraining Agents (AEA) on the fly ash and by Foam Index (FI) testing. The FI test measures the mass ratio of AEA/binder required to obtain stable foam when shaking a mixture of water, binder powder and AEA, while increasing AEA-dosage stepwise. A review of concrete air entrainment and new studies combining adsorption (TGA, NMR) of AEA on fly ash with various ...

  12. Influence of radiotherapy on CD4+ CD25high regulatory cells in peripheral blood of NPC patients

    International Nuclear Information System (INIS)

    Liu Li; Ding Qian; Song Yingqiu; Cao Rubo; Yao Junxia; Huang Shiang

    2006-01-01

    Objective: The current study was designed to investigate the changes in peripheral CD4 + CD25 high regulatory T (CD4 + CD25 high Tr) cells in patients with nasopharyngeal carcinoma (NPC) and the influence of radiotherapy on immunity function. Methods: The peripheral blood was collected from 36 patients with NPC and 30 healthy controls. By using monoclonal antibodies, the blood samples were evaluated with flow cytometry for lymphocyte subsets and Tr cells. Results: The ratio of CD4 + /CD8 + in the NPC group was not significantly less than that in the healthy controls (P>0.05), but the prevalence of the CD4 + CD25 high Tr cells was significantly higher than that of the healthy group [(2.76 ± 1.06)% versus (2.06 ± 0.98)%, P + CD25 high Tr cells was higher than before it [(4.88 ± 1.02)%, P + CD25 high Tr cells in peripheral blood of NPC patients with or without radiotherapy was significantly higher than those in healthy controls, which may be related to immunosupression and tumor progression in such patients. This finding suggests that CD4 + CD25 high Tr cells in peripheral blood of NPC patients can be a useful index for monitoring the immunity function. (authors)

  13. Lineage determination of CD7+ CD5- CD2- and CD7+ CD5+ CD2- lymphoblasts: studies on phenotype, genotype, and gene expression of myeloperoxidase, CD3 epsilon, and CD3 delta.

    Science.gov (United States)

    Yoneda, N; Tatsumi, E; Teshigawara, K; Nagata, S; Nagano, T; Kishimoto, Y; Kimura, T; Yasunaga, K; Yamaguchi, N

    1994-04-01

    The gene expression of myeloperoxidase (MPO), CD3 epsilon, and CD3 delta molecules, the gene rearrangement of T-cell receptor (TCR) delta, gamma, and beta and immunoglobulin heavy (IgH) chain, and the expression of cell-surface antigens were investigated in seven cases of CD7+ CD5- CD2- and four cases of CD7+ CD5+ CD2- acute lymphoblastic leukemia or lymphoblastic lymphoma (ALL/LBL) blasts, which were negative for cytochemical myeloperoxidase (cyMPO). More mature T-lineage blasts were also investigated in a comparative manner. In conclusion, the CD7+ CD5- CD2- blasts included four categories: undifferentiated blasts without lineage commitment, T-lineage blasts, T-/myeloid lineage blasts, and cyMPO-negative myeloblasts. The CD7+ CD5+ CD2- blasts included two categories; T-lineage and T-/myeloid lineage blasts. The 11 cases were of the germ-line gene (G) for TCR beta and IgH. Four cases were G for TCR delta and TCR gamma. The others were of the monoclonally rearranged gene (R) for TCR delta and G for TCR gamma or R for both TCR delta and TCR gamma. The expression or in vitro induction of CD13 and/or CD33 antigens correlated with the immaturity of these neoplastic T cells, since it was observed in all 11 CD7+ CD5- CD2- and CD7+ CD5+ CD2-, and some CD7+ CD5+ CD2+ (CD3- CD4- CD8-) cases, but not in CD3 +/- CD4+ CD8+ or CD3+ CD4+ CD8- cases. CD3 epsilon mRNA, but not CD3 delta mRNA, was detected in two CD7+ CD5- CD2- cases, while mRNA of neither of the two CD3 molecules was detected in the other tested CD7+ CD5- CD2- cases. In contrast, mRNA of both CD3 epsilon and CD3 delta were detected in all CD7+ CD5+ CD2- cases, indicating that CD7+ CD5- CD2- blasts at least belong to T-lineage. The blasts of two CD7+ CD5- CD2- cases with entire germ-line genes and without mRNA of the three molecules (MPO, CD3 epsilon, and CD3 delta) were regarded as being at an undifferentiated stage prior to their commitment to either T- or myeloid-lineage. The co-expression of the genes of MPO

  14. Influence of the crystallographic structure of the electrode surface on the structure of the electrical double layer and adsorption of organic molecules

    International Nuclear Information System (INIS)

    Kochorovski, Z.; Zagorska, I.; Pruzhkovska-Drakhal, R.; Trasatti, S.

    1995-01-01

    The results of systematic investigation of influence of crystal structure of Bi-, Sb- and Cd-electrode surfaces on regularities of double electric layer structure in aqueous and nonaqueous solutions of surface-nonactive electrolyte are given. Influence of electrode surface characteristics on adsorptive behaviour of different organic molecules has been studied. General regularities of of chemical nature influence and surface crystallographic structure on the double layer structure and on organic compounds adsorption have been established. 57 refs., 7 figs., 4 tabs

  15. Water adsorption on goethite: Application of multilayer adsorption models

    Science.gov (United States)

    Hatch, C. D.; Tumminello, R.; Meredith, R.

    2016-12-01

    Adsorbed water on the surface of atmospheric mineral dust has recently been shown to significantly affect the ability of mineral dust aerosol to act as cloud condensation nuclei. We have studied water adsorption as a function of relative humidity (RH) on goethite (α-FeO(OH)), a common component of atmospheric mineral dust. The goethite surface area and particle size was determined using BET analysis and with N2 as an adsorbate and scanning electron microscopy, respectively. Water adsorption on the sample was monitored using horizontal attenuated total reflectance Fourier transform infrared (HATR-FTIR) spectroscopy equipped with a flow cell. Water content was determined using Beer's law and the optical constants for bulk water. The results were analyzed using Type II adsorption isotherms to model multilayer adsorption, including BET (Brunauer, Emmet and Teller), FHH (Frenkel, Halsey and Hill) and Freundlich. BET fits to experimental data provide parameters of monolayer coverage, while the FHH and Freundlich isotherms provide insights into multilayer adsorption mechanisms. Results indicate that goethite contains 5% H2O by mass at 50% RH, which increases to 12% by mass at 90% RH. Adsorption parameters and experimental results will be presented.

  16. Behaviors and kinetics of toluene adsorption-desorption on activated carbons with varying pore structure.

    Science.gov (United States)

    Yang, Xi; Yi, Honghong; Tang, Xiaolong; Zhao, Shunzheng; Yang, Zhongyu; Ma, Yueqiang; Feng, Tiecheng; Cui, Xiaoxu

    2018-05-01

    This work was undertaken to investigate the behaviors and kinetics of toluene adsorption and desorption on activated carbons with varying pore structure. Five kinds of activated carbon from different raw materials were selected. Adsorption isotherms and breakthrough curves for toluene were measured. Langmuir and Freundlich equations were fitted to the equilibrium data, and the Freundlich equation was more suitable for simulating toluene adsorption. The process consisted of monolayer, multilayer and partial active site adsorption types. The effect of the pore structure of the activated carbons on toluene adsorption capacity was investigated. The quasi-first-order model was more suitable for describing the process than the quasi-second-order model. The adsorption data was also modeled by the internal particle diffusion model and it was found that the adsorption process could be divided into three stages. In the external surface adsorption process, the rate depended on the specific surface area. During the particle diffusion stage, pore structure and volume were the main factors affecting adsorption rate. In the final equilibrium stage, the rate was determined by the ratio of meso- and macro-pores to total pore volume. The rate over the whole adsorption process was dominated by the toluene concentration. The desorption behavior of toluene on activated carbons was investigated, and the process was divided into heat and mass transfer parts corresponding to emission and diffusion mechanisms, respectively. Physical adsorption played the main role during the adsorption process. Copyright © 2017. Published by Elsevier B.V.

  17. Carbon Dioxide Adsorption by Calcium Zirconate at Higher Temperature

    Directory of Open Access Journals (Sweden)

    K. B. Kale

    2012-12-01

    Full Text Available The CO2 adsorption by calcium zirconate was explored at pre- and post- combustion temperature condition. The several samples of the calcium zirconate were prepared by different methods such as sol-gel, solid-solid fusion, template and micro-emulsion. The samples of the calcium zirconate were characterized by measurement of surface area, alkalinity/acidity, and recording the XRD patterns and SEM images. The CO2 adsorptions by samples of the calcium zirconate were studied in the temperature range 100 to 850 oC and the CO2 adsorptions were observed in the ranges of 6.88 to 40.6 wt % at 600 0C and 8 to 16.82 wt% at in between the temperatures 200 to 300 oC. The effect of Ca/Zr mol ratio in the samples of the calcium zirconate on the CO2 adsorption and alkalinity were discussed. The adsorbed moisture by the samples of the calcium zirconate was found to be useful for the CO2 adsorption. The promoted the samples of the calcium zirconate by K+, Na+, Rb+, Cs+, Ag+ and La3+ showed the increased CO2 adsorption. The exposure time of CO2 on the samples of the calcium zirconate showed the increased CO2 adsorption. The samples of the calcium zirconate were found to be regenerable and reusable several times for the adsorption of CO2 for at the post- and pre-combustion temperature condition. Copyright © 2012 by BCREC Undip. All rights reservedReceived: 23rd June 2012, Revised: 28th August 2012, Accepted: 30th August 2012[How to Cite: K. B. Kale, R. Y. Raskar, V. H. Rane and A. G.  Gaikwad (2012. Carbon Dioxide Adsorption by Calcium Zirconate at Higher Temperature. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (2: 124-136. doi:10.9767/bcrec.7.2.3686.124-136] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3686.124-136 ] | View in 

  18. Adsorption of quantum dots onto polymer and Gemini surfactant films: a quartz crystal microbalance study.

    Science.gov (United States)

    Alejo, T; Merchán, M D; Velázquez, M M

    2014-08-26

    We used quartz crystal microbalance with dissipation to study the mechanical properties, the kinetics of adsorption, and the amount of CdSe quantum dots (QDs) adsorbed onto a SiO2 sensor, referred as bare sensor, onto the sensor modified with a film of the polymer poly(maleic anhydride-alt-1-octadecene), PMAO, or with a film of the Gemini surfactant ethyl-bis(dimethyl octadecyl ammonium bromide), abbreviated as 18-2-18. Results showed that when the sensor is coated with polymer or surfactant molecules, the coverage increases compared with that obtained for the bare sensor. On the other hand, rheological properties and kinetics of adsorption of QDs are driven by QD nanoparticles. Thus, the QD films present elastic behavior, and the elasticity values are independent of the molecule used as coating and similar to the elasticity value obtained for QDs films on the bare sensor. The QD adsorption is a two-step mechanism in which the fastest process is attributed to the QD adsorption onto the solid substrate and the slowest one is ascribed to rearrangement movements of the nanoparticles adsorbed at the surface.

  19. The Peltier and Zeebeck coefficients of the Cd-CdI2 melt

    International Nuclear Information System (INIS)

    Kuzyakin, E.B.; Kuz'minskij, E.V.

    1979-01-01

    For the CdI 2 -Cd melt with the usage of molybdenum ''inert'' electrodes in the temperature range of 670-850 K and metal cadmium concentration of 0-5 mol % experimentally determined are the Peltier (PI = 0.67+0.07 V at T = 722 K and 0.23 mol %) and Zeebeck (epsilonsub(in) 1.175+-0.107 mV/deg -1 at 0.20 mol % Cd and T = 700-780 K) coefficients. Calculated is heat transfer coefficient from the electrode to the melt (a = 65+-10 W/m 2 K), reaffirmed is applicability of the second Thomson ratio (PI = Txepsilonsub(in)). It is shown that the method of non-stationary temperature waves, suggested for the Peltier coefficient determination can be applied for evaluation of metal solubility values in their molten salts

  20. Synthesis, Structural, and Adsorption Properties and Thermal Stability of Nanohydroxyapatite/Polysaccharide Composites.

    Science.gov (United States)

    Skwarek, Ewa; Goncharuk, Olena; Sternik, Dariusz; Janusz, Wladyslaw; Gdula, Karolina; Gun'ko, Vladimir M

    2017-12-01

    A series of composites based on nanohydroxyapatite (nHAp) and natural polysaccharides (PS) (nHAp/agar, nHAp/chitosan, nHAp/pectin FB300, nHAp/pectin APA103, nHAp/sodium alginate) was synthesized by liquid-phase two-step method and characterized using nitrogen adsorption-desorption, DSC, TG, FTIR spectroscopy, and SEM. The analysis of nitrogen adsorption-desorption data shows that composites with a nHAp: PS ratio of 4:1 exhibit a sufficiently high specific surface area from 49 to 82 m 2 /g. The incremental pore size distributions indicate mainly mesoporosity. The composites with the component ratio 1:1 preferably form a film-like structure, and the value of S BET varies from 0.3 to 43 m 2 /g depending on the nature of a polysaccharide. Adsorption of Sr(II) on the composites from the aqueous solutions has been studied. The thermal properties of polysaccharides alone and in nHAp/PS show the influence of nHAp, since there is a shift of characteristic DSC and DTG peaks. FTIR spectroscopy data confirm the presence of functional groups typical for nHAp as well as polysaccharides in composites. Structure and morphological characteristics of the composites are strongly dependent on the ratio of components, since nHAp/PS at 4:1 have relatively large S BET values and a good ability to adsorb metal ions. The comparison of the adsorption capacity with respect to Sr(II) of nHAp, polysaccharides, and composites shows that it of the latter is higher than that of nHAp (per 1 m 2 of surface).