WorldWideScience

Sample records for rationally designed histone

  1. Computer-aided Molecular Design of Compounds Targeting Histone Modifying Enzymes

    Science.gov (United States)

    Andreoli, Federico; Del Rio, Alberto

    2015-01-01

    Growing evidences show that epigenetic mechanisms play crucial roles in the genesis and progression of many physiopathological processes. As a result, research in epigenetic grew at a fast pace in the last decade. In particular, the study of histone post-translational modifications encountered an extraordinary progression and many modifications have been characterized and associated to fundamental biological processes and pathological conditions. Histone modifications are the catalytic result of a large set of enzyme families that operate covalent modifications on specific residues at the histone tails. Taken together, these modifications elicit a complex and concerted processing that greatly contribute to the chromatin remodeling and may drive different pathological conditions, especially cancer. For this reason, several epigenetic targets are currently under validation for drug discovery purposes and different academic and industrial programs have been already launched to produce the first pre-clinical and clinical outcomes. In this scenario, computer-aided molecular design techniques are offering important tools, mainly as a consequence of the increasing structural information available for these targets. In this mini-review we will briefly discuss the most common types of known histone modifications and the corresponding operating enzymes by emphasizing the computer-aided molecular design approaches that can be of use to speed-up the efforts to generate new pharmaceutically relevant compounds. PMID:26082827

  2. A Rationally Designed Histone Deacetylase Inhibitor with Distinct Antitumor Activity against Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Ya-Ting Yang

    2009-06-01

    Full Text Available Histone deacetylase inhibitors (HDACIs are a class of antineoplastic agents previously demonstrating preclinical chemosensitizing activity against drug-resistant cancer cells and mouse xenografts. However, whereas clinical studies have shown efficacy against human hematologic malignancies, solid tumor trials have proved disappointing. We previously developed a novel HDACI, “OSU-HDAC42,” and herein examine its activity against ovarian cancer cell lines and xenografts. OSU-HDAC42, (i unlike most HDACIs, elicited a more than five-fold increase in G2-phase cells, at 2.5 µM, with G2 arrest followed by apoptosis; (ii at 1.0 µM, completely repressed messenger RNA expression of the cell cycle progression gene cdc2; (iii at low doses (0.25–1.0 µM for 24 hours, induced tumor cell epithelial differentiation, as evidenced by morphology changes and a more than five-fold up-regulation of epithelium-specific cytokeratins; (iv potently abrogated the growth of numerous ovarian cancer cells, with IC50 values of 0.5 to 1.0 µM, whereas also remaining eight-fold less toxic (IC50 of 8.6 µM to normal ovarian surface epithelial cells; and (v chemosensitizated platinum-resistant mouse xenografts to cisplatin. Compared with the clinically approved HDACI suberoylanilide hydroxamic acid (vorinostat, 1.0 µM OSU-HDAC42 was more biochemically potent (i.e., enzyme-inhibitory, as suggested by greater gene up-regulation and acetylation of both histone and nonhistone proteins. In p53-dysfunctional cells, however, OSU-HDAC42 was two- to eight-fold less inductive of p53-regulated genes, whereas also having a two-fold higher IC50 than p53-functional cells, demonstrating some interaction with p53 tumor-suppressive cascades. These findings establish OSU-HDAC42 as a promising therapeutic agent for drug-resistant ovarian cancer and justify its further investigation.

  3. De novo peptide design and experimental validation of histone methyltransferase inhibitors.

    Directory of Open Access Journals (Sweden)

    James Smadbeck

    Full Text Available Histones are small proteins critical to the efficient packaging of DNA in the nucleus. DNA–protein complexes, known as nucleosomes, are formed when the DNA winds itself around the surface of the histones. The methylation of histone residues by enhancer of zeste homolog 2 (EZH2 maintains gene repression over successive cell generations. Overexpression of EZH2 can silence important tumor suppressor genes leading to increased invasiveness of many types of cancers. This makes the inhibition of EZH2 an important target in the development of cancer therapeutics. We employed a three-stage computational de novo peptide design method to design inhibitory peptides of EZH2. The method consists of a sequence selection stage and two validation stages for fold specificity and approximate binding affinity. The sequence selection stage consists of an integer linear optimization model that was solved to produce a rank-ordered list of amino acid sequences with increased stability in the bound peptide-EZH2 structure. These sequences were validated through the calculation of the fold specificity and approximate binding affinity of the designed peptides. Here we report the discovery of novel EZH2 inhibitory peptides using the de novo peptide design method. The computationally discovered peptides were experimentally validated in vitro using dose titrations and mechanism of action enzymatic assays. The peptide with the highest in vitro response, SQ037, was validated in nucleo using quantitative mass spectrometry-based proteomics. This peptide had an IC50 of 13.5 mM, demonstrated greater potency as an inhibitor when compared to the native and K27A mutant control peptides, and demonstrated competitive inhibition versus the peptide substrate. Additionally, this peptide demonstrated high specificity to the EZH2 target in comparison to other histone methyltransferases. The validated peptides are the first computationally designed peptides that directly inhibit EZH2

  4. De novo peptide design and experimental validation of histone methyltransferase inhibitors.

    Directory of Open Access Journals (Sweden)

    James Smadbeck

    Full Text Available Histones are small proteins critical to the efficient packaging of DNA in the nucleus. DNA-protein complexes, known as nucleosomes, are formed when the DNA winds itself around the surface of the histones. The methylation of histone residues by enhancer of zeste homolog 2 (EZH2 maintains gene repression over successive cell generations. Overexpression of EZH2 can silence important tumor suppressor genes leading to increased invasiveness of many types of cancers. This makes the inhibition of EZH2 an important target in the development of cancer therapeutics. We employed a three-stage computational de novo peptide design method to design inhibitory peptides of EZH2. The method consists of a sequence selection stage and two validation stages for fold specificity and approximate binding affinity. The sequence selection stage consists of an integer linear optimization model that was solved to produce a rank-ordered list of amino acid sequences with increased stability in the bound peptide-EZH2 structure. These sequences were validated through the calculation of the fold specificity and approximate binding affinity of the designed peptides. Here we report the discovery of novel EZH2 inhibitory peptides using the de novo peptide design method. The computationally discovered peptides were experimentally validated in vitro using dose titrations and mechanism of action enzymatic assays. The peptide with the highest in vitro response, SQ037, was validated in nucleo using quantitative mass spectrometry-based proteomics. This peptide had an IC50 of 13.5 [Formula: see text]M, demonstrated greater potency as an inhibitor when compared to the native and K27A mutant control peptides, and demonstrated competitive inhibition versus the peptide substrate. Additionally, this peptide demonstrated high specificity to the EZH2 target in comparison to other histone methyltransferases. The validated peptides are the first computationally designed peptides that directly

  5. Rational design of nanomaterials for water treatment

    KAUST Repository

    Li, Renyuan

    2015-08-26

    The ever-increasing human demand for safe and clean water is gradually pushing conventional water treatment technologies to their limits and it is now a popular perception that the solutions to the existing and future water challenges will highly hinge upon the further development of nanomaterial sciences. The concept of rational design emphasizes ‘design-for-purpose’ and it necessitates a scientifically clear problem definition to initiate the nanomaterial design. The field of rational design of nanomaterials for water treatment has experienced a significant growth in the past decade and is poised to make its contribution in creating advanced next-generation water treatment technologies in the years to come. Within the water treatment context, this review offers a comprehensive and in-depth overview of the latest progress of the rational design, synthesis and applications of nanomaterials in adsorption, chemical oxidation and reduction reactions, membrane-based separation, oil/water separation, and synergistic multifunctional all-in-one nanomaterials/nanodevices. Special attention is paid on chemical concepts of the nanomaterial designs throughout the review.

  6. Towards a formal logic of design rationalization

    DEFF Research Database (Denmark)

    Galle, Per

    1997-01-01

    Certain extensions to standard predicate logic are proposed and used as a framework for critical logical study of patterns of inference in design reasoning. It is shown that within this framework a modal logic of design rationalization (suggested by an empirical study reported earlier) can...... be formally defined in terms of quantification over a universe of discourse of ‘relevant points of view’. Five basic principles of the extended predicate logic are listed, on the basis of which the validity of ten modal patterns of inference encountered in design rationalization is tested. The basic idea...

  7. Developing and Testing Rational Models of Message Design.

    Science.gov (United States)

    O'Keefe, Barbara J.

    1992-01-01

    Responds to an article in the same issue regarding research methods for conversational cognition. Argues for a noncognitive view of rational models in communication research. Sets out an analysis of the kinds of claims made by rational models of message design. Discusses the implications of this analysis for studies of the cognitive processes…

  8. Thermodynamics of ligand binding to histone deacetylase like amidohydrolase from Bordetella/Alcaligenes.

    Science.gov (United States)

    Meyners, Christian; Baud, Matthias G J; Fuchter, Matthew J; Meyer-Almes, Franz-Josef

    2014-03-01

    Thermodynamic studies on ligand-protein binding have become increasingly important in the process of drug design. In combination with structural data and molecular dynamics simulations, thermodynamic studies provide relevant information about the mode of interaction between compounds and their target proteins and therefore build a sound basis for further drug optimization. Using the example of histone deacetylases (HDACs), particularly the histone deacetylase like amidohydrolase (HDAH) from Bordetella/Alcaligenes, a novel sensitive competitive fluorescence resonance energy transfer-based binding assay was developed and the thermodynamics of interaction of both fluorescent ligands and inhibitors to histone deacetylase like amidohydrolase were investigated. The assay consumes only small amounts of valuable target proteins and is suitable for fast kinetic and mechanistic studies as well as high throughput screening applications. Binding affinity increased with increasing length of aliphatic spacers (n = 4-7) between the hydroxamate moiety and the dansyl head group of ligand probes. Van't Hoff plots revealed an optimum in enthalpy contribution to the free energy of binding for the dansyl-ligand with hexyl spacer. The selectivity in the series of dansyl-ligands against human class I HDAC1 but not class II HDACs 4 and 6 increased with the ratio of ΔH(0)/ΔG(0). The data clearly emphasize the importance of thermodynamic signatures as useful general guidance for the optimization of ligands or rational drug design. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Guest-responsive structural adaptation of a rationally-designed ...

    Indian Academy of Sciences (India)

    adaptability of the TB core to undergo subtle structural changes in response to the guest that is included. The structural ... we report the design, synthesis and inclusion behaviour of a novel ..... Based on a rational design, we have shown from ...

  10. Evaluation of urban river landscape design rationality based on AHP

    Directory of Open Access Journals (Sweden)

    Qiao Lifang

    2008-12-01

    Full Text Available An evaluation model for the rationality of the landscape design of urban rivers was established with the analytic hierarchy process (AHP method so as to provide a foundation for updating the landscape design of urban rivers. The evaluation system was divided into four layers, including the target layer, the comprehensive layer, the element layer, and the index layer. Each layer was made of different indices. The evaluation standards for each index were also given in this paper. This evaluation model was proved tenable through its application to the landscape design rationality evaluation of the Weihe River in Xinxiang City of Henan Province. The results show that the water quality, space, activity, facility, community, width of vegetation, sense of beauty and water content are among the most influential factors and should be considered the main basis for evaluating the rationality of the landscape design of urban rivers.

  11. Rewiring AMPK and Mitochondrial Retrograde Signaling for Metabolic Control of Aging and Histone Acetylation in Respiratory-Defective Cells

    Directory of Open Access Journals (Sweden)

    R. Magnus N. Friis

    2014-04-01

    Full Text Available Abnormal respiratory metabolism plays a role in numerous human disorders. We find that regulation of overall histone acetylation is perturbed in respiratory-incompetent (ρ0 yeast. Because histone acetylation is highly sensitive to acetyl-coenzyme A (acetyl-CoA availability, we sought interventions that suppress this ρ0 phenotype through reprogramming metabolism. Nutritional intervention studies led to the discovery that genetic coactivation of the mitochondrion-to-nucleus retrograde (RTG response and the AMPK (Snf1 pathway prevents abnormal histone deacetylation in ρ0 cells. Metabolic profiling of signaling mutants uncovered links between chromatin-dependent phenotypes of ρ0 cells and metabolism of ATP, acetyl-CoA, glutathione, branched-chain amino acids, and the storage carbohydrate trehalose. Importantly, RTG/AMPK activation reprograms energy metabolism to increase the supply of acetyl-CoA to lysine acetyltransferases and extend the chronological lifespan of ρ0 cells. Our results strengthen the framework for rational design of nutrient supplementation schemes and drug-discovery initiatives aimed at mimicking the therapeutic benefits of dietary interventions.

  12. Machine learning in the rational design of antimicrobial peptides.

    Science.gov (United States)

    Rondón-Villarreal, Paola; Sierra, Daniel A; Torres, Rodrigo

    2014-01-01

    One of the most important public health issues is the microbial and bacterial resistance to conventional antibiotics by pathogen microorganisms. In recent years, many researches have been focused on the development of new antibiotics. Among these, antimicrobial peptides (AMPs) have raised as a promising alternative to combat antibioticresistant microorganisms. For this reason, many theoretical efforts have been done in the development of new computational tools for the rational design of both better and effective AMPs. In this review, we present an overview of the rational design of AMPs using machine learning techniques and new research fields.

  13. Rational Design of an Ultrasensitive Quorum-Sensing Switch.

    Science.gov (United States)

    Zeng, Weiqian; Du, Pei; Lou, Qiuli; Wu, Lili; Zhang, Haoqian M; Lou, Chunbo; Wang, Hongli; Ouyang, Qi

    2017-08-18

    One of the purposes of synthetic biology is to develop rational methods that accelerate the design of genetic circuits, saving time and effort spent on experiments and providing reliably predictable circuit performance. We applied a reverse engineering approach to design an ultrasensitive transcriptional quorum-sensing switch. We want to explore how systems biology can guide synthetic biology in the choice of specific DNA sequences and their regulatory relations to achieve a targeted function. The workflow comprises network enumeration that achieves the target function robustly, experimental restriction of the obtained candidate networks, global parameter optimization via mathematical analysis, selection and engineering of parts based on these calculations, and finally, circuit construction based on the principles of standardization and modularization. The performance of realized quorum-sensing switches was in good qualitative agreement with the computational predictions. This study provides practical principles for the rational design of genetic circuits with targeted functions.

  14. From bricolage to BioBricks™: Synthetic biology and rational design.

    Science.gov (United States)

    Lewens, Tim

    2013-12-01

    Synthetic biology is often described as a project that applies rational design methods to the organic world. Although humans have influenced organic lineages in many ways, it is nonetheless reasonable to place synthetic biology towards one end of a continuum between purely 'blind' processes of organic modification at one extreme, and wholly rational, design-led processes at the other. An example from evolutionary electronics illustrates some of the constraints imposed by the rational design methodology itself. These constraints reinforce the limitations of the synthetic biology ideal, limitations that are often freely acknowledged by synthetic biology's own practitioners. The synthetic biology methodology reflects a series of constraints imposed on finite human designers who wish, as far as is practicable, to communicate with each other and to intervene in nature in reasonably targeted and well-understood ways. This is better understood as indicative of an underlying awareness of human limitations, rather than as expressive of an objectionable impulse to mastery over nature. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Design of 2-D rational digital filters

    International Nuclear Information System (INIS)

    Harris, D.B

    1981-01-01

    A novel 2-D rational filter design technique is presented which makes use of a reflection coefficient function (RCF) representation for the filter transfer function. The design problem is formulated in the frequency domain. A least-square error criterion is used though the usual error measure is augmented with barrier functions. These act to restrict the domain of approximation to the set of stable filters. Construction of suitable barrier functions is facilitated by the RCF characterization

  16. Refolding of proteins from inclusion bodies: rational design and recipes.

    Science.gov (United States)

    Basu, Anindya; Li, Xiang; Leong, Susanna Su Jan

    2011-10-01

    The need to develop protein biomanufacturing platforms that can deliver proteins quickly and cost-effectively is ever more pressing. The rapid rate at which genomes can now be sequenced demands efficient protein production platforms for gene function identification. There is a continued need for the biotech industry to deliver new and more effective protein-based drugs to address new diseases. Bacterial production platforms have the advantage of high expression yields, but insoluble expression of many proteins necessitates the development of diverse and optimised refolding-based processes. Strategies employed to eliminate insoluble expression are reviewed, where it is concluded that inclusion bodies are difficult to eliminate for various reasons. Rational design of refolding systems and recipes are therefore needed to expedite production of recombinant proteins. This review article discusses efforts towards rational design of refolding systems and recipes, which can be guided by the development of refolding screening platforms that yield both qualitative and quantitative information on the progression of a given refolding process. The new opportunities presented by light scattering technologies for developing rational protein refolding buffer systems which in turn can be used to develop new process designs armed with better monitoring and controlling functionalities are discussed. The coupling of dynamic and static light scattering methodologies for incorporation into future bioprocess designs to ensure delivery of high-quality refolded proteins at faster rates is also discussed.

  17. Standby Gasoline Rationing Plan. Contingency gasoline rationing regulations

    Energy Technology Data Exchange (ETDEWEB)

    1979-02-01

    The Economic Regulatory Administration issues final rules with respect to standby gasoline rationing. The plan is designed for and would be used only in the event of a severe gasoline shortage. The plan provides that eligibility for ration allotments will be primarily on the basis of motor vehicle registrations. DOE will mail government ration checks to the parties named in a national vehicle registration file to be maintained by DOE. Ration recipients may cash these checks for ration coupons at various designated coupon issuance points. Retail outlets and other suppliers will be required to redeem the ration coupons received in exchange for gasoline sold. Supplemental gas will be given to high-priority activities. A ration banking system will be established with two separate and distinct of ration accounts: retail outlets and other suppliers will open redemption accounts for the deposit of redeemed ration rights; and individuals or firms may open ration rights accounts, which will operate in much the same manner as monetary checking accounts. A white market will be permitted for the sale of transfer of ration rights. A percentage of the total ration rights to be issued will be reserved for distribution to the states as a State Ration Reserve, to be used by the states primarily for the relief of hardship. A National Ration Reserave will also be established. All sections of the Standby Gasoline Rationing Regulations are analyzed. (MCW)

  18. An Isochemogenic Set of Inhibitors To Define the Therapeutic Potential of Histone Deacetylases in β-Cell Protection

    DEFF Research Database (Denmark)

    Wagner, Florence F; Lundh, Morten; Kaya, Taner

    2016-01-01

    Modulation of histone deacetylase (HDAC) activity has been implicated as a potential therapeutic strategy for multiple diseases. However, it has been difficult to dissect the role of individual HDACs due to a lack of selective small-molecule inhibitors. Here, we report the synthesis of a series...... of highly potent and isoform-selective class I HDAC inhibitors, rationally designed by exploiting minimal structural changes to the clinically experienced HDAC inhibitor CI-994. We used this toolkit of isochemogenic or chemically matched inhibitors to probe the role of class I HDACs in β-cell pathobiology...... pancreatic β-cells from inflammatory cytokines and nutrient overload in diabetes....

  19. Cell cycle-regulated oscillator coordinates core histone gene transcription through histone acetylation.

    Science.gov (United States)

    Kurat, Christoph F; Lambert, Jean-Philippe; Petschnigg, Julia; Friesen, Helena; Pawson, Tony; Rosebrock, Adam; Gingras, Anne-Claude; Fillingham, Jeffrey; Andrews, Brenda

    2014-09-30

    DNA replication occurs during the synthetic (S) phase of the eukaryotic cell cycle and features a dramatic induction of histone gene expression for concomitant chromatin assembly. Ectopic production of core histones outside of S phase is toxic, underscoring the critical importance of regulatory pathways that ensure proper expression of histone genes. Several regulators of histone gene expression in the budding yeast Saccharomyces cerevisiae are known, yet the key oscillator responsible for restricting gene expression to S phase has remained elusive. Here, we show that suppressor of Ty (Spt)10, a putative histone acetyltransferase, and its binding partner Spt21 are key determinants of S-phase-specific histone gene expression. We show that Spt21 abundance is restricted to S phase in part by anaphase promoting complex Cdc20-homologue 1 (APC(Cdh1)) and that it is recruited to histone gene promoters in S phase by Spt10. There, Spt21-Spt10 enables the recruitment of a cascade of regulators, including histone chaperones and the histone-acetyltransferase general control nonderepressible (Gcn) 5, which we hypothesize lead to histone acetylation and consequent transcription activation.

  20. Cell cycle-regulated oscillator coordinates core histone gene transcription through histone acetylation

    Science.gov (United States)

    Kurat, Christoph F.; Lambert, Jean-Philippe; Petschnigg, Julia; Friesen, Helena; Pawson, Tony; Rosebrock, Adam; Gingras, Anne-Claude; Fillingham, Jeffrey; Andrews, Brenda

    2014-01-01

    DNA replication occurs during the synthetic (S) phase of the eukaryotic cell cycle and features a dramatic induction of histone gene expression for concomitant chromatin assembly. Ectopic production of core histones outside of S phase is toxic, underscoring the critical importance of regulatory pathways that ensure proper expression of histone genes. Several regulators of histone gene expression in the budding yeast Saccharomyces cerevisiae are known, yet the key oscillator responsible for restricting gene expression to S phase has remained elusive. Here, we show that suppressor of Ty (Spt)10, a putative histone acetyltransferase, and its binding partner Spt21 are key determinants of S-phase–specific histone gene expression. We show that Spt21 abundance is restricted to S phase in part by anaphase promoting complex Cdc20-homologue 1 (APCCdh1) and that it is recruited to histone gene promoters in S phase by Spt10. There, Spt21-Spt10 enables the recruitment of a cascade of regulators, including histone chaperones and the histone-acetyltransferase general control nonderepressible (Gcn) 5, which we hypothesize lead to histone acetylation and consequent transcription activation. PMID:25228766

  1. RECENT ADVANCES TOWARDS THE RATIONAL DESIGN OF PEPTIDE DRUGS

    OpenAIRE

    YEŞİLADA, Akgül; ÖZKANLI, Fügen

    2004-01-01

    In this review, after a short introduction to definition and physiological roles of regulatory peptides, problems faced during the development of peptide drugs, studies directed to solve these problems and rational design of peptide drugs with special emphesis on peptidomimetics are mentioned

  2. A rational approach for ω-transaminase-catalyzed process design

    DEFF Research Database (Denmark)

    T. Gundersen, Maria; Lloyd, Richard; Tufvesson, Pär

    Herein we describe a novel rational approach to the design of a ω-transaminase process such that it will fulfill criteria necessary for industrial use. By first determining the fundamental properties of the reaction system, it is possible to suggest appropriate process strategies that may be used...

  3. Design rationalization and the logic of design: a case study

    DEFF Research Database (Denmark)

    Galle, Per

    1996-01-01

    various ‘sources of credibility’ of premises, items of general background knowledge, and several (abductive and deductive) patterns of inference which suggest a possible ‘logic of design’. Rationalization of decisions is defined, and many decisions are found not to be fully rationalized, despite...... the apparent rationality of the reasoning....

  4. Replication stress interferes with histone recycling and predeposition marking of new histones

    DEFF Research Database (Denmark)

    Jasencakova, Zuzana; Scharf, Annette N D; Ask, Katrine

    2010-01-01

    To restore chromatin on new DNA during replication, recycling of histones evicted ahead of the fork is combined with new histone deposition. The Asf1 histone chaperone, which buffers excess histones under stress, is a key player in this process. Yet how histones handled by human Asf1 are modified...... remains unclear. Here we identify marks on histones H3-H4 bound to Asf1 and changes induced upon replication stress. In S phase, distinct cytosolic and nuclear Asf1b complexes show ubiquitous H4K5K12diAc and heterogeneous H3 marks, including K9me1, K14ac, K18ac, and K56ac. Upon acute replication arrest......, the predeposition mark H3K9me1 and modifications typical of chromatin accumulate in Asf1 complexes. In parallel, ssDNA is generated at replication sites, consistent with evicted histones being trapped with Asf1. During recovery, histones stored with Asf1 are rapidly used as replication resumes. This shows...

  5. Histone deacetylase inhibitors (HDACIs: multitargeted anticancer agents

    Directory of Open Access Journals (Sweden)

    Ververis K

    2013-02-01

    advancement of these drugs, especially to facilitate the rational design of HDAC inhibitors that are effective as antineoplastic agents. This review will discuss the use of HDAC inhibitors as multitargeted therapies for malignancy. Further, we outline the pharmacology and mechanisms of action of HDAC inhibitors while discussing the safety and efficacy of these compounds in clinical studies to date.Keywords: chromatin modifications, histone acetylation, histone deacetylase inhibitor, suberoylanilide hydroxamic acid, depsipeptide, entinostat

  6. Rational Design of Cancer-Targeted Benzoselenadiazole by RGD Peptide Functionalization for Cancer Theranostics.

    Science.gov (United States)

    Yang, Liye; Li, Wenying; Huang, Yanyu; Zhou, Yangliang; Chen, Tianfeng

    2015-09-01

    A cancer-targeted conjugate of the selenadiazole derivative BSeC (benzo[1,2,5] selenadiazole-5-carboxylic acid) with RGD peptide as targeting molecule and PEI (polyethylenimine) as a linker is rationally designed and synthesized in the present study. The results show that RGD-PEI-BSeC forms nanoparticles in aqueous solution with a core-shell nanostructure and high stability under physiological conditions. This rational design effectively enhances the selective cellular uptake and cellular retention of BSeC in human glioma cells, and increases its selectivity between cancer and normal cells. The nanoparticles enter the cells through receptor-mediated endocytosis via clathrin-mediated and nystatin-dependent lipid raft-mediated pathways. Internalized nanoparticles trigger glioma cell apoptosis by activation of ROS-mediated p53 phosphorylation. Therefore, this study provides a strategy for the rational design of selenium-containing cancer-targeted theranostics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. MIRATE: MIps RATional dEsign Science Gateway.

    Science.gov (United States)

    Busato, Mirko; Distefano, Rosario; Bates, Ferdia; Karim, Kal; Bossi, Alessandra Maria; López Vilariño, José Manuel; Piletsky, Sergey; Bombieri, Nicola; Giorgetti, Alejandro

    2018-06-13

    Molecularly imprinted polymers (MIPs) are high affinity robust synthetic receptors, which can be optimally synthesized and manufactured more economically than their biological equivalents (i.e. antibody). In MIPs production, rational design based on molecular modeling is a commonly employed technique. This mostly aids in (i) virtual screening of functional monomers (FMs), (ii) optimization of monomer-template ratio, and (iii) selectivity analysis. We present MIRATE, an integrated science gateway for the intelligent design of MIPs. By combining and adapting multiple state-of-the-art bioinformatics tools into automated and innovative pipelines, MIRATE guides the user through the entire process of MIPs' design. The platform allows the user to fully customize each stage involved in the MIPs' design, with the main goal to support the synthesis in the wet-laboratory. MIRATE is freely accessible with no login requirement at http://mirate.di.univr.it/. All major browsers are supported.

  8. Structure-based, rational design of T cell receptors

    Directory of Open Access Journals (Sweden)

    Vincent eZoete

    2013-09-01

    Full Text Available Adoptive cell transfer using engineered T cells is emerging as a promising treatment for metastatic melanoma. Such an approach allows one to introduce TCR modifications that, while maintaining the specificity for the targeted antigen, can enhance the binding and kinetic parameters for the interaction pMHC. Using the well-characterized 2C TCR/SIYR/H-2K(b structure as a model system, we demonstrated that a binding free energy decomposition based on the MM-GBSA approach provides a detailed and reliable description of the TCR/pMHC interactions at the structural and thermodynamic levels. Starting from this result, we developed a new structure-based approach, to rationally design new TCR sequences, and applied it to the BC1 TCR targeting the HLA-A2 restricted NY-ESO-1157-165 cancer-testis epitope. 54% of the designed sequence replacements exhibited improved pMHC-binding as compared to the native TCR, with up to 150 fold increase in affinity, while preserving specificity. Genetically-engineered CD8+ T cells expressing these modified TCRs showed an improved functional activity compared to those expressing BC1 TCR. We measured maximum levels of activities for TCRs within the upper limit of natural affinity. Beyond the affinity threshold at KD < 1 μM we observed an attenuation in cellular function. We have also developed a homology modeling-based approach, TCRep 3D, to obtain accurate structural models of any TCR-pMHC complexes. We have complemented the approach with a simplified rigid method to predict the TCR orientation over pMHC. These methods potentially extend the use of our TCR engineering method to entire TCR repertoires for which no X-ray structure is available. We have also performed a steered molecular dynamics study of the unbinding of the TCR-pMHC complex to get a better understanding of how TCRs interact with pMHCs. This entire rational TCR design pipeline is now being used to produce rationally optimized TCRs for adoptive cell therapies of

  9. Rapid purification of recombinant histones.

    Science.gov (United States)

    Klinker, Henrike; Haas, Caroline; Harrer, Nadine; Becker, Peter B; Mueller-Planitz, Felix

    2014-01-01

    The development of methods to assemble nucleosomes from recombinant histones decades ago has transformed chromatin research. Nevertheless, nucleosome reconstitution remains time consuming to this day, not least because the four individual histones must be purified first. Here, we present a streamlined purification protocol of recombinant histones from bacteria. We termed this method "rapid histone purification" (RHP) as it circumvents isolation of inclusion bodies and thereby cuts out the most time-consuming step of traditional purification protocols. Instead of inclusion body isolation, whole cell extracts are prepared under strongly denaturing conditions that directly solubilize inclusion bodies. By ion exchange chromatography, the histones are purified from the extracts. The protocol has been successfully applied to all four canonical Drosophila and human histones. RHP histones and histones that were purified from isolated inclusion bodies had similar purities. The different purification strategies also did not impact the quality of octamers reconstituted from these histones. We expect that the RHP protocol can be readily applied to the purification of canonical histones from other species as well as the numerous histone variants.

  10. Rationalization of design and construction of buildings for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Shunsaku; Mitsumatsu, Kazuo

    1987-02-01

    This article presents various rationalization methods introduced in the past few years for design and construction of BWR nuclear power plant buildings. When the site for a nuclear power plant has been decided, investigation is made on various aspects of possible earthquakes, based on which anti-earthquake design for the plant site is established. The next step is to examine the displacements and stresses that may occur to various parts of the bulding from a postulated earthquake. This is normally called the earthquake response analysis and consists of calculating the behaviors of the buildings using large computers. A seismic controlled structure system has recently proposed, aiming to reduce the displacements and stresses of the building itself by controlling the flexibility of the installed seismic apparatus against the input of external loads. Lately, high strength concrete and high strength reinforcing steel bars (rebars) are being considered for practical application. If advanced computers and related accessories are utilized to the maximum, it will lead not only to efficiency in the design work but to the possibility of optimized design. For rational construction, a combined scaffolding and temporary support has been devised to reduce the time and volume of required temporary work. What have been developed for rationalization of construction work also include robots for heavy weight rebar fabrication, horizontal reed blind type rebars, portable concrete distributor, all weather environment facilities, and construction materials conveyance system. (Nogami, K.).

  11. Rationalization of design and construction of buildings for nuclear power plants

    International Nuclear Information System (INIS)

    Satoh, Shunsaku; Mitsumatsu, Kazuo

    1987-01-01

    This article presents various rationalization methods introduced in the past few years for design and construction of BWR nuclear power plant buildings. When the site for a nuclear power plant has been decided, investigation is made on various aspects of possible earthquakes, based on which anti-earthquake design for the plant site is established. The next step is to examine the displacements and stresses that may occur to various parts of the bulding from a postulated earthquake. This is normally called the earthquake response analysis and consists of calculating the behaviors of the buildings using large computers. A seismic controlled structure system has recently proposed, aiming to reduce the displacements and stresses of the building itself by controlling the flexibility of the installed seismic apparatus against the input of external loads. Lately, high strength concrete and high strength reinforcing steel bars (rebars) are being considered for practical application. If advanced computers and related accessories are utilized to the maximum, it will lead not only to efficiency in the design work but to the possibility of optimized design. For rational construction, a combined scaffolding and temporary support has been devised to reduce the time and volume of required temporary work. What have been developed for rationalization of construction work also include robots for heavy weight rebar fabrication, horizontal reed blind type rebars, portable concrete distributor, all weather environment facilities, and construction materials conveyance system. (Nogami, K.)

  12. On rationally supported surfaces

    DEFF Research Database (Denmark)

    Gravesen, Jens; Juttler, B.; Sir, Z.

    2008-01-01

    We analyze the class of surfaces which are equipped with rational support functions. Any rational support function can be decomposed into a symmetric (even) and an antisymmetric (odd) part. We analyze certain geometric properties of surfaces with odd and even rational support functions....... In particular it is shown that odd rational support functions correspond to those rational surfaces which can be equipped with a linear field of normal vectors, which were discussed by Sampoli et al. (Sampoli, M.L., Peternell, M., Juttler, B., 2006. Rational surfaces with linear normals and their convolutions...... with rational surfaces. Comput. Aided Geom. Design 23, 179-192). As shown recently, this class of surfaces includes non-developable quadratic triangular Bezier surface patches (Lavicka, M., Bastl, B., 2007. Rational hypersurfaces with rational convolutions. Comput. Aided Geom. Design 24, 410426; Peternell, M...

  13. Organ distribution of histones after intravenous infusion of FITC histones or after sepsis.

    Science.gov (United States)

    Fattahi, Fatemeh; Grailer, Jamison J; Jajou, Lawrence; Zetoune, Firas S; Andjelkovic, Anuska V; Ward, Peter A

    2015-03-01

    Histones appear in plasma during infectious or non-infectious sepsis and are associated with multiorgan injury. In the current studies, intravenous infusion of histones resulted in their localization in major organs. In vitro exposure of mouse macrophages to histones caused a buildup of histones on cell membranes followed by localization into cytosol and into the nucleus. After polymicrobial sepsis (cecal ligation and puncture), histones appeared in plasma as well as in a multiorgan pattern, peaking at 8 h followed by decline. In lungs, histones and neutrophils appeared together, with evidence for formation of neutrophil extracellular traps (NETs), which represent an innate immune response to trap and kill bacteria and other infectious agents. In liver, there was intense NET formation, featuring linear patterns containing histones and strands of DNA. When neutrophils were activated in vitro with C5a or phorbol myristate acetate, NET formation ensued. While formation of NETs represents entrapment and killing of infectious agents, the simultaneous release from neutrophils of histones often results in tissue/organ damage.

  14. Organ Distribution of Histones after Intravenous Infusion of FITC-Histones or after Sepsis

    Science.gov (United States)

    Fattahi, Fatemeh; Grailer, Jamison J.; Jajou, Lawrence; Zetoune, Firas S.; Andjelkovic, Anuska V.; Ward, Peter A.

    2015-01-01

    Histones appear in plasma during infectious or non-infectious sepsis and are associated with multiorgan injury. In the current studies, intravenous infusion of histones resulted in their localization in major organs. In vitro exposure of mouse macrophages to histones caused a buildup of histones on cell membranes followed by localization into cytosol and into the nucleus. After polymicrobial sepsis (cecal ligation and puncture, CLP), histones appeared in plasma as well as in a multiorgan pattern, peaking at 8 hr followed by decline. In lungs, histones and neutrophils appeared together, with evidence for formation of neutrophil extracellular traps (NETs), which represent an innate immune response to trap and kill bacteria and other infectious agents. In liver, there was intense NET formation, featuring linear patterns containing histones and strands of DNA. When neutrophils were activated in vitro with C5a or phorbol myristate acetate, NET formation ensued. While formation of NETs represents entrapment and killing of infectious agents, the simultaneous release from neutrophils of histones often results in tissue/organ damage. PMID:25680340

  15. Nickel compounds induce histone ubiquitination by inhibiting histone deubiquitinating enzyme activity

    International Nuclear Information System (INIS)

    Ke Qingdong; Ellen, Thomas P.; Costa, Max

    2008-01-01

    Nickel (Ni) compounds are known carcinogens but underlying mechanisms are not clear. Epigenetic changes are likely to play an important role in nickel ion carcinogenesis. Previous studies have shown epigenetic effects of nickel ions, including the loss of histone acetylation and a pronounced increase in dimethylated H3K9 in nickel-exposed cells. In this study, we demonstrated that both water-soluble and insoluble nickel compounds induce histone ubiquitination (uH2A and uH2B) in a variety of cell lines. Investigations of the mechanism by which nickel increases histone ubiquitination in cells reveal that nickel does not affect cellular levels of the substrates of this modification, i.e., ubiquitin, histones, and other non-histone ubiquitinated proteins. In vitro ubiquitination and deubiquitination assays have been developed to further investigate possible effects of nickel on enzymes responsible for histone ubiquitination. Results from the in vitro assays demonstrate that the presence of nickel did not affect the levels of ubiquitinated histones in the ubiquitinating assay. Instead, the addition of nickel significantly prevents loss of uH2A and uH2B in the deubiquitinating assay, suggesting that nickel-induced histone ubiquitination is the result of inhibition of (a) putative deubiquitinating enzyme(s). Additional supporting evidence comes from the comparison of the response to nickel ions with a known deubiquitinating enzyme inhibitor, iodoacetamide (IAA). This study is the first to demonstrate such effects of nickel ions on histone ubiquitination. It also sheds light on the possible mechanisms involved in altering the steady state of this modification. The study provides further evidence that supports the notion that nickel ions alter epigenetic homeostasis in cells, which may lead to altered programs of gene expression and carcinogenesis

  16. Rational assembly of nanoparticle superlattices with designed lattice symmetries

    Science.gov (United States)

    Gang, Oleg; Lu, Fang; Tagawa, Miho

    2017-09-05

    A method for lattice design via multivalent linkers (LDML) is disclosed that introduces a rationally designed symmetry of connections between particles in order to achieve control over the morphology of their assembly. The method affords the inclusion of different programmable interactions within one linker that allow an assembly of different types of particles. The designed symmetry of connections is preferably provided utilizing DNA encoding. The linkers may include fabricated "patchy" particles, DNA scaffold constructs and Y-shaped DNA linkers, anisotropic particles, which are preferably functionalized with DNA, multimeric protein-DNA complexes, and particles with finite numbers of DNA linkers.

  17. Recombinant thrombomodulin protects mice against histone-induced lethal thromboembolism.

    Directory of Open Access Journals (Sweden)

    Mayumi Nakahara

    Full Text Available INTRODUCTION: Recent studies have shown that histones, the chief protein component of chromatin, are released into the extracellular space during sepsis, trauma, and ischemia-reperfusion injury, and act as major mediators of the death of an organism. This study was designed to elucidate the cellular and molecular basis of histone-induced lethality and to assess the protective effects of recombinant thrombomodulin (rTM. rTM has been approved for the treatment of disseminated intravascular coagulation (DIC in Japan, and is currently undergoing a phase III clinical trial in the United States. METHODS: Histone H3 levels in plasma of healthy volunteers and patients with sepsis and DIC were measured using enzyme-linked immunosorbent assay. Male C57BL/6 mice were injected intravenously with purified histones, and pathological examinations were performed. The protective effects of rTM against histone toxicity were analyzed both in vitro and in mice. RESULTS: Histone H3 was not detectable in plasma of healthy volunteers, but significant levels were observed in patients with sepsis and DIC. These levels were higher in non-survivors than in survivors. Extracellular histones triggered platelet aggregation, leading to thrombotic occlusion of pulmonary capillaries and subsequent right-sided heart failure in mice. These mice displayed symptoms of DIC, including thrombocytopenia, prolonged prothrombin time, decreased fibrinogen, fibrin deposition in capillaries, and bleeding. Platelet depletion protected mice from histone-induced death in the first 30 minutes, suggesting that vessel occlusion by platelet-rich thrombi might be responsible for death during the early phase. Furthermore, rTM bound to extracellular histones, suppressed histone-induced platelet aggregation, thrombotic occlusion of pulmonary capillaries, and dilatation of the right ventricle, and rescued mice from lethal thromboembolism. CONCLUSIONS: Extracellular histones cause massive

  18. Rational design of soft mechanical metamaterials : Independent tailoring of elastic properties with randomness

    NARCIS (Netherlands)

    Mirzaali Mazandarani, M.J.; Hedayati, R.; Vena, P; Vergani, L.; Strano, M.; Zadpoor, A.A.

    2017-01-01

    The elastic properties of mechanical metamaterials are direct functions of their topological designs. Rational design approaches based on computational models could, therefore, be used to devise topological designs that result in the desired properties. It is of particular importance to

  19. No need to be HAMLET or BAMLET to interact with histones: binding of monomeric alpha-lactalbumin to histones and basic poly-amino acids.

    Science.gov (United States)

    Permyakov, Serge E; Pershikova, Irina V; Khokhlova, Tatyana I; Uversky, Vladimir N; Permyakov, Eugene A

    2004-05-18

    The ability of a specific complex of human alpha-lactalbumin with oleic acid (HAMLET) to induce cell death with selectivity for tumor and undifferentiated cells was shown recently to be mediated by interaction of HAMLET with histone proteins irreversibly disrupting chromatin structure [Duringer, C., et al. (2003) J. Biol. Chem. 278, 42131-42135]. Here we show that monomeric alpha-lactalbumin (alpha-LA) in the absence of fatty acids is also able to bind efficiently to the primary target of HAMLET, histone HIII, regardless of Ca(2+) content. Thus, the modification of alpha-LA by oleic acid is not required for binding to histones. We suggest that interaction of negatively charged alpha-LA with the basic histone stabilizes apo-alpha-LA and destabilizes the Ca(2+)-bound protein due to compensation for excess negative charge of alpha-LA's Ca(2+)-binding loop by positively charged residues of the histone. Spectrofluorimetric curves of titration of alpha-LA by histone H3 were well approximated by a scheme of cooperative binding of four alpha-LA molecules per molecule of histone, with an equilibrium dissociation constant of 1.0 microM. Such a stoichiometry of binding implies that the binding process is not site-specific with respect to histone and likely is driven by just electrostatic interactions. Co-incubation of positively charged poly-amino acids (poly-Lys and poly-Arg) with alpha-LA resulted in effects which were similar to those caused by histone HIII, confirming the electrostatic nature of the alpha-LA-histone interaction. In all cases that were studied, the binding was accompanied by aggregation. The data indicate that alpha-lactalbumin can be used as a basis for the design of antitumor agents, acting through disorganization of chromatin structure due to interaction between alpha-LA and histone proteins.

  20. MS_HistoneDB, a manually curated resource for proteomic analysis of human and mouse histones.

    Science.gov (United States)

    El Kennani, Sara; Adrait, Annie; Shaytan, Alexey K; Khochbin, Saadi; Bruley, Christophe; Panchenko, Anna R; Landsman, David; Pflieger, Delphine; Govin, Jérôme

    2017-01-01

    Histones and histone variants are essential components of the nuclear chromatin. While mass spectrometry has opened a large window to their characterization and functional studies, their identification from proteomic data remains challenging. Indeed, the current interpretation of mass spectrometry data relies on public databases which are either not exhaustive (Swiss-Prot) or contain many redundant entries (UniProtKB or NCBI). Currently, no protein database is ideally suited for the analysis of histones and the complex array of mammalian histone variants. We propose two proteomics-oriented manually curated databases for mouse and human histone variants. We manually curated >1700 gene, transcript and protein entries to produce a non-redundant list of 83 mouse and 85 human histones. These entries were annotated in accordance with the current nomenclature and unified with the "HistoneDB2.0 with Variants" database. This resource is provided in a format that can be directly read by programs used for mass spectrometry data interpretation. In addition, it was used to interpret mass spectrometry data acquired on histones extracted from mouse testis. Several histone variants, which had so far only been inferred by homology or detected at the RNA level, were detected by mass spectrometry, confirming the existence of their protein form. Mouse and human histone entries were collected from different databases and subsequently curated to produce a non-redundant protein-centric resource, MS_HistoneDB. It is dedicated to the proteomic study of histones in mouse and human and will hopefully facilitate the identification and functional study of histone variants.

  1. Histone turnover within nonproliferating cells

    International Nuclear Information System (INIS)

    Commerford, S.L.; Carsten, A.L.; Cronkite, E.P.

    1982-01-01

    The turnover of DNA and histones in the livers and brains of mice has been determined. These mice had been exposed to constant levels of tritiated water from conception until they were 8 months old. At this point, exposure to tritium was discontinued, and the tritium remaining in DNA and histones was measured at various intervals afterward. The half-lives calculated for these components (with 95% confidence limits given in parentheses) were 117 (85 to 188) days for liver histone, 318 (241 to 466) days for liver DNA, 159 (129 to 208) days for brain histone and 593 (376 to 1406) days for brain DNA. The difference between histone and DNA turnover is statistically significant for both tissues and indicates that histone turnover within tissues cannot be solely accounted for by cell turnover within the tissue but also must include histone turnover within living cells. The half-life of histone within cells is estimated to be 117 (88 to 178) days in liver and 223 (187 to 277) days in brain

  2. Histone H2A mobility is regulated by its tails and acetylation of core histone tails

    International Nuclear Information System (INIS)

    Higashi, Tsunehito; Matsunaga, Sachihiro; Isobe, Keisuke; Morimoto, Akihiro; Shimada, Tomoko; Kataoka, Shogo; Watanabe, Wataru; Uchiyama, Susumu; Itoh, Kazuyoshi; Fukui, Kiichi

    2007-01-01

    Histone tail domains play important roles in cellular processes, such as replication, transcription, and chromosome condensation. Histone H2A has one central and two tail domains, and their functions have mainly been studied from a biochemical perspective. In addition, analyses based on visualization have been employed for functional analysis of some chromatin proteins. In this study, we analyzed histone H2A mobility in vivo by two-photon FRAP, and elucidated that the histone H2A N- and C-terminal tails regulate its mobility. We found that histone H2A mobility was increased following treatment of host cells with a histone deacetylase inhibitor. Our results support a model in which core histone tails directly regulate transcription by interacting with nucleosome DNA via electrostatic interactions

  3. Does decision documentation help junior designers rationalize their decisions? A comparative multiple-case study

    NARCIS (Netherlands)

    Heesch, U. van; Avgeriou, P.; Tang, A.

    Software architecture design is challenging, especially for junior software designers. Lacking practice and experience, junior designers need process support in order to make rational architecture decisions. In this paper, we present the results of a comparative multiple-case study conducted to find

  4. Radiation damage to histones

    International Nuclear Information System (INIS)

    Mee, L.K.; Adelstein, S.J.

    1985-01-01

    The damage to histones irradiated in isolation is being elaborated to aid the identification of the crosslinking sites in radiation-induced DNA-histone adducts. Histones are being examined by amino acid analysis to determine the destruction of residues and by polyacrylamide gel electrophoresis to delineate changes in conformation. For the slightly lysine-rich histone, H2A, a specific attack on selective residues has been established, the aromatic residues, tyrosine and phenylalanine, and the heterocyclic residue, histidine, being significantly destroyed. In addition, a significant increase in aspartic acid was found; this may represent a radiation product from scission of the ring in the histidine residues. The similarity of the effects on residues in nitrous oxide-saturated and nitrogen-saturated solutions suggests that OH . and e/sub aq//sup -/ are equally efficient and selective in their attack. On gel electrophoresis degradation of the histone H2A was found to be greatest for irradiations in nitrous oxide-saturated solutions, suggesting CH . is the most effective radical for producing changes in conformation; O/sub 2//sup -/ was essentially ineffective. Other histones are being examined for changes in amino acid composition, conformation, and for the formation of radiation products

  5. Interactions of acetylated histones with DNA as revealed by UV laser induced histone-DNA crosslinking

    International Nuclear Information System (INIS)

    Stefanovsky, V.Yu.; Dimitrov, S.I.; Angelov, D.; Pashev, I.G.

    1989-01-01

    The interaction of acetylated histones with DNA in chromatin has been studied by UV laser-induced crosslinking histones to DNA. After irradiation of the nuclei, the covalently linked protein-DNA complexes were isolated and the presence of histones in them demonstrated immunochemically. When chromatin from irradiated nuclei was treated with clostripain, which selectively cleaved the N-terminal tails of core histones, no one of them was found covalently linked to DNA, thus showing that crosslinking proceeded solely via the N-terminal regions. However, the crosslinking ability of the laser was preserved both upon physiological acetylation of histones, known to be restricted to the N-terminal tails, and with chemically acetylated chromatin. This finding is direct evidence that the postsynthetic histone acetylation does not release the N-terminal tails from interaction with DNA

  6. Extracting histones for the specific purpose of label-free MS.

    Science.gov (United States)

    Govaert, Elisabeth; Van Steendam, Katleen; Scheerlinck, Ellen; Vossaert, Liesbeth; Meert, Paulien; Stella, Martina; Willems, Sander; De Clerck, Laura; Dhaenens, Maarten; Deforce, Dieter

    2016-12-01

    Extracting histones from cells is the first step in studies that aim to characterize histones and their post-translational modifications (hPTMs) with MS. In the last decade, label-free quantification is more frequently being used for MS-based histone characterization. However, many histone extraction protocols were not specifically designed for label-free MS. While label-free quantification has its advantages, it is also very susceptible to technical variation. Here, we adjust an established histone extraction protocol according to general label-free MS guidelines with a specific focus on minimizing sample handling. These protocols are first evaluated using SDS-PAGE. Hereafter, a selection of extraction protocols was used in a complete histone workflow for label-free MS. All protocols display nearly identical relative quantification of hPTMs. We thus show that, depending on the cell type under investigation and at the cost of some additional contaminating proteins, minimizing sample handling can be done during histone isolation. This allows analyzing bigger sample batches, leads to reduced technical variation and minimizes the chance of in vitro alterations to the hPTM snapshot. Overall, these results allow researchers to determine the best protocol depending on the resources and goal of their specific study. Data are available via ProteomeXchange with identifier PXD002885. © 2016 The Authors. Proteomics Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Histone variants and lipid metabolism

    NARCIS (Netherlands)

    Borghesan, Michela; Mazzoccoli, Gianluigi; Sheedfar, Fareeba; Oben, Jude; Pazienza, Valerio; Vinciguerra, Manlio

    2014-01-01

    Within nucleosomes, canonical histones package the genome, but they can be opportunely replaced with histone variants. The incorporation of histone variants into the nucleosome is a chief cellular strategy to regulate transcription and cellular metabolism. In pathological terms, cellular steatosis

  8. A brief histone in time: understanding the combinatorial functions of histone PTMs in the nucleosome context.

    Science.gov (United States)

    Ng, Marlee K; Cheung, Peter

    2016-02-01

    It has been over 50 years since Allfrey et al. proposed that histone acetylation regulates RNA synthesis, and the study of histone modifications has progressed at an extraordinary pace for the past two decades. In this review, we provide a perspective on some key events and advances in our understanding of histone modifications. We also highlight reagents and tools from past to present that facilitated progress in this research field. Using histone H3 phosphorylation as an underlying thread, we review the rationale that led to the proposal of the histone code hypothesis, as well as examples that illustrate the concepts of combinatorial histone modifications and cross-talk pathways. We further highlight the importance of investigating these mechanisms in the context of nucleosomes rather than just at the histone level and present current and developing approaches for such studies. Overall, research on histone modifications has yielded great mechanistic insights into the regulation of genomic functions, and extending these studies using nucleosomes will further elucidate the complexity of these pathways in a more physiologically relevant context.

  9. Biological significance of lysine mono-, di- and trimethylation on histone and non-histone proteins

    International Nuclear Information System (INIS)

    Perez-Burgos, L.

    2006-01-01

    Histones are the proteins that compact DNA into the repeating unit of chromatin known as the nucleosome. The N-termini of histones are subject to a series of post-translational modifications, one of which is methylation. This modification is termed 'epigenetic' because it extends the information encoded in the genome. Lysines can be mono-, di- or tri-methylated at different positions on histones H1, H3 and H4. In order to study the biological role of histone lysine methylation, antibodies were generated against mono-, di- and trimethylated H3-K9 and H3-27. Indeed, different chromatin domains in the mouse nucleus are enriched in distinct forms of histone lysine methylation, such as pericentric heterochromatin and the inactive X chromosome. Interestingly, heterochromatin in Arabidopsis thaliana is enriched in the mono- and di-, but not the trimethylated form of H3-K9. Furthermore, there exists a hierarchy of epigenetic modifications in which H3-K9 trimethylation is found to be upstream of DNA methylation on mouse major satellites. Histone lysine methylation is also involved in gene regulation upon development. One example is the chicken 61538;-globin locus, a region of facultative chromatin that undergoes a loss of di- and trimethylated H3-K27 in mature red blood cells, concomitant with expression of the 61538;-globin genes. SET-domain proteins are enzymes that methylate histones, but some of them are also able to methylate non-histone substrates. In particular, p53 is methylated by Set9 on lysine 372, G9a and Glp-1 on lysine 373 and by Smyd2 on lysine 370. Smyd2 transcript levels are greatly increased upon irradiation and dimethylated p53-370 specifically binds to 53BP1, a protein involved in recognizing DNA double-stranded breaks upon ionizing radiation. These results argue for a novel role of p53-K370 methylation in the biology of DNA damage. In summary, lysine methylation is a post-translational modification that can occur both on histone and non-histone proteins

  10. Histone Lysine Methylation and Neurodevelopmental Disorders

    Directory of Open Access Journals (Sweden)

    Jeong-Hoon Kim

    2017-06-01

    Full Text Available Methylation of several lysine residues of histones is a crucial mechanism for relatively long-term regulation of genomic activity. Recent molecular biological studies have demonstrated that the function of histone methylation is more diverse and complex than previously thought. Moreover, studies using newly available genomics techniques, such as exome sequencing, have identified an increasing number of histone lysine methylation-related genes as intellectual disability-associated genes, which highlights the importance of accurate control of histone methylation during neurogenesis. However, given the functional diversity and complexity of histone methylation within the cell, the study of the molecular basis of histone methylation-related neurodevelopmental disorders is currently still in its infancy. Here, we review the latest studies that revealed the pathological implications of alterations in histone methylation status in the context of various neurodevelopmental disorders and propose possible therapeutic application of epigenetic compounds regulating histone methylation status for the treatment of these diseases.

  11. Fundamental understanding and rational design of high energy structural microbatteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuxing; Li, Qiuyan; Cartmell, Samuel; Li, Huidong; Mendoza, Sarah; Zhang, Ji-Guang; Deng, Zhiqun Daniel; Xiao, Jie

    2018-01-01

    Microbatteries play a critical role in determining the lifetime of downsized sensors, wearable devices and medical applications, etc. More often, structural batteries are required from the perspective of aesthetics and space utilization, which is however rarely explored. Herein, we discuss the fundamental issues associated with the rational design of practically usable high energy microbatteries. The tubular shape of the cell further allows the flexible integration of microelectronics. A functioning acoustic micro-transmitter continuously powered by this tubular battery has been successfully demonstrated. Multiple design features adopted to accommodate large mechanical stress during the rolling process are discussed providing new insights in designing the structural microbatteries for emerging technologies.

  12. Nitric Oxide Modulates Histone Acetylation at Stress Genes by Inhibition of Histone Deacetylases.

    Science.gov (United States)

    Mengel, Alexander; Ageeva, Alexandra; Georgii, Elisabeth; Bernhardt, Jörg; Wu, Keqiang; Durner, Jörg; Lindermayr, Christian

    2017-02-01

    Histone acetylation, which is an important mechanism to regulate gene expression, is controlled by the opposing action of histone acetyltransferases and histone deacetylases (HDACs). In animals, several HDACs are subjected to regulation by nitric oxide (NO); in plants, however, it is unknown whether NO affects histone acetylation. We found that treatment with the physiological NO donor S-nitrosoglutathione (GSNO) increased the abundance of several histone acetylation marks in Arabidopsis (Arabidopsis thaliana), which was strongly diminished in the presence of the NO scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. This increase was likely triggered by NO-dependent inhibition of HDAC activity, since GSNO and S-nitroso-N-acetyl-dl-penicillamine significantly and reversibly reduced total HDAC activity in vitro (in nuclear extracts) and in vivo (in protoplasts). Next, genome-wide H3K9/14ac profiles in Arabidopsis seedlings were generated by chromatin immunoprecipitation sequencing, and changes induced by GSNO, GSNO/2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide or trichostatin A (an HDAC inhibitor) were quantified, thereby identifying genes that display putative NO-regulated histone acetylation. Functional classification of these genes revealed that many of them are involved in the plant defense response and the abiotic stress response. Furthermore, salicylic acid, which is the major plant defense hormone against biotrophic pathogens, inhibited HDAC activity and increased histone acetylation by inducing endogenous NO production. These data suggest that NO affects histone acetylation by targeting and inhibiting HDAC complexes, resulting in the hyperacetylation of specific genes. This mechanism might operate in the plant stress response by facilitating the stress-induced transcription of genes. © 2017 American Society of Plant Biologists. All Rights Reserved.

  13. Rational Multiparty Computation

    OpenAIRE

    Wallrabenstein, John Ross

    2014-01-01

    The field of rational cryptography considers the design of cryptographic protocols in the presence of rational agents seeking to maximize local utility functions. This departs from the standard secure multiparty computation setting, where players are assumed to be either honest or malicious. ^ We detail the construction of both a two-party and a multiparty game theoretic framework for constructing rational cryptographic protocols. Our framework specifies the utility function assumptions neces...

  14. Designing institutions for climate change: Why rational design involves technology

    Energy Technology Data Exchange (ETDEWEB)

    Coninck, H. de [Energy Research Centre of the Netherlands, Petten (Netherlands)

    2008-09-30

    This paper aims to explore how to augment the institutional solutions offered by current political theory for addressing the unprecedented problem of climate change. Although steering directly at emission reductions in an international treaty has benefits in terms of cost-effectiveness, the paper arrives at the conclusion that considerations around technological development should be drawn into the treaty equation in order to generate sufficient reciprocity to have a politically feasible international regime. It then argues that the benefits of technology agreements for climate change mitigation may be larger than commonly assumed, as they - if properly designed - could lead to real emission reductions and provide more flexibility to reach agreement in post-2012 negotiations than proposals modelled exclusively on the Kyoto Protocol or other types of absolute emission targets. Based on rational design of international institutions for environmental governance, and attempting to take into account considerations of technological dynamics and the 'sociotechnical system', contours of a possible environmentally effective and politically feasible international climate change agreements are sketched.

  15. Fundamental understanding and rational design of high energy structural microbatteries

    International Nuclear Information System (INIS)

    Wang, Yuxing; Li, Qiuyan; Cartmell, Samuel; Li, Huidong; Mendoza, Sarah

    2017-01-01

    We present that microbatteries play a critical role in determining the lifetime of downsized sensors, wearable devices, medical applications, and animal acoustic telemetry transmitters among others. More often, structural batteries are required from the perspective of aesthetics and space utilization, which is however rarely explored. Herein, we discuss the fundamental issues associated with the rational design of practically usable high energy microbatteries. The tubular shape of the cell further allows the flexible integration of microelectronics. A functioning acoustic micro-transmitter continuously powered by this tubular battery has been successfully demonstrated. Finally, multiple design features adopted to accommodate large mechanical stress during the rolling process are discussed providing new insights in designing the structural microbatteries for emerging technologies.

  16. Multi-Step Usage of in Vivo Models During Rational Drug Design and Discovery

    Directory of Open Access Journals (Sweden)

    Charles H. Williams

    2011-04-01

    Full Text Available In this article we propose a systematic development method for rational drug design while reviewing paradigms in industry, emerging techniques and technologies in the field. Although the process of drug development today has been accelerated by emergence of computational methodologies, it is a herculean challenge requiring exorbitant resources; and often fails to yield clinically viable results. The current paradigm of target based drug design is often misguided and tends to yield compounds that have poor absorption, distribution, metabolism, and excretion, toxicology (ADMET properties. Therefore, an in vivo organism based approach allowing for a multidisciplinary inquiry into potent and selective molecules is an excellent place to begin rational drug design. We will review how organisms like the zebrafish and Caenorhabditis elegans can not only be starting points, but can be used at various steps of the drug development process from target identification to pre-clinical trial models. This systems biology based approach paired with the power of computational biology; genetics and developmental biology provide a methodological framework to avoid the pitfalls of traditional target based drug design.

  17. Histone deacetylases (HDACs and brain function

    Directory of Open Access Journals (Sweden)

    Claude-Henry Volmar

    2015-01-01

    Full Text Available Modulation of gene expression is a constant and necessary event for mammalian brain function. An important way of regulating gene expression is through the remodeling of chromatin, the complex of DNA, and histone proteins around which DNA wraps. The “histone code hypothesis” places histone post-translational modifications as a significant part of chromatin remodeling to regulate transcriptional activity. Acetylation of histones by histone acetyl transferases and deacetylation by histone deacetylases (HDACs at lysine residues are the most studied histone post-translational modifications in cognition and neuropsychiatric diseases. Here, we review the literature regarding the role of HDACs in brain function. Among the roles of HDACs in the brain, studies show that they participate in glial lineage development, learning and memory, neuropsychiatric diseases, and even rare neurologic diseases. Most HDACs can be targeted with small molecules. However, additional brain-penetrant specific inhibitors with high central nervous system exposure are needed to determine the cause-and-effect relationship between individual HDACs and brain-associated diseases.

  18. Rational Design of Semiconductor Nanostructures for Functional Subcellular Interfaces.

    Science.gov (United States)

    Parameswaran, Ramya; Tian, Bozhi

    2018-05-15

    One of the fundamental questions guiding research in the biological sciences is how cellular systems process complex physical and environmental cues and communicate with each other across multiple length scales. Importantly, aberrant signal processing in these systems can lead to diseases that can have devastating impacts on human lives. Biophysical studies in the past several decades have demonstrated that cells can respond to not only biochemical cues but also mechanical and electrical ones. Thus, the development of new materials that can both sense and modulate all of these pathways is necessary. Semiconducting nanostructures are an emerging class of discovery platforms and tools that can push the limits of our ability to modulate and sense biological behaviors for both fundamental research and clinical applications. These materials are of particular interest for interfacing with cellular systems due to their matched dimension with subcellular components (e.g., cytoskeletal filaments), and easily tunable properties in the electrical, optical and mechanical regimes. Rational design via traditional or new approaches, such as nanocasting and mesoscale chemical lithography, can allow us to control micro- and nanoscale features in nanowires to achieve new biointerfaces. Both processes endogenous to the target cell and properties of the material surface dictate the character of these interfaces. In this Account, we focus on (1) approaches for the rational design of semiconducting nanowires that exhibit unique structures for biointerfaces, (2) recent fundamental discoveries that yield robust biointerfaces at the subcellular level, (3) intracellular electrical and mechanical sensing, and (4) modulation of cellular behaviors through material topography and remote physical stimuli. In the first section, we discuss new approaches for the synthetic control of micro- and nanoscale features of these materials. In the second section, we focus on achieving biointerfaces with

  19. Histones induce rapid and profound thrombocytopenia in mice

    Science.gov (United States)

    Bhandari, Ashish A.

    2011-01-01

    Histones are released from dying cells and contribute to antimicrobial defense during infection. However, extracellular histones are a double-edged sword because they also damage host tissue and may cause death. We studied the interactions of histones with platelets. Histones bound to platelets, induced calcium influx, and recruited plasma adhesion proteins such as fibrinogen to induce platelet aggregation. Hereby fibrinogen cross-linked histone-bearing platelets and triggered microaggregation. Fibrinogen interactions with αIIbβ3 integrins were not required for this process but were necessary for the formation of large platelet aggregates. Infused histones associated with platelets in vivo and caused a profound thrombocytopenia within minutes after administration. Mice lacking platelets or αIIbβ3 integrins were protected from histone-induced death but not from histone-induced tissue damage. Heparin, at high concentrations, prevented histone interactions with platelets and protected mice from histone-induced thrombocytopenia, tissue damage, and death. Heparin and histones are evolutionary maintained. Histones may combine microbicidal with prothrombotic properties to fight invading microbes and maintain hemostasis after injury. Heparin may provide an innate counter mechanism to neutralize histones and diminish collateral tissue damage. PMID:21700775

  20. Rational design and application of responsive α-helical peptide hydrogels

    Science.gov (United States)

    Banwell, Eleanor F.; Abelardo, Edgardo S.; Adams, Dave J.; Birchall, Martin A.; Corrigan, Adam; Donald, Athene M.; Kirkland, Mark; Serpell, Louise C.; Butler, Michael F.; Woolfson, Derek N.

    2009-01-01

    Biocompatible hydrogels have a wide variety of potential applications in biotechnology and medicine, such as the controlled delivery and release of cells, cosmetics and drugs; and as supports for cell growth and tissue engineering1. Rational peptide design and engineering are emerging as promising new routes to such functional biomaterials2-4. Here we present the first examples of rationally designed and fully characterized self-assembling hydrogels based on standard linear peptides with purely α-helical structures, which we call hydrogelating self-assembling fibres (hSAFs). These form spanning networks of α-helical fibrils that interact to give self-supporting physical hydrogels of >99% water content. The peptide sequences can be engineered to alter the underlying mechanism of gelation and, consequently, the hydrogel properties. Interestingly, for example, those with hydrogen-bonded networks melt upon heating, whereas those formed via hydrophobic interactions strengthen when warmed. The hSAFs are dual-peptide systems that only gel on mixing, which gives tight control over assembly5. These properties raise possibilities for using the hSAFs as substrates in cell culture. We have tested this in comparison with the widely used Matrigel substrate, and demonstrate that, like Matrigel, hSAFs support both growth and differentiation of rat adrenal pheochromocytoma cells for sustained periods in culture. PMID:19543314

  1. Histone chaperone networks shaping chromatin function

    DEFF Research Database (Denmark)

    Hammond, Colin; Strømme, Caroline Bianchi; Huang, Hongda

    2017-01-01

    and fate, which affects all chromosomal processes, including gene expression, chromosome segregation and genome replication and repair. Here, we review the distinct structural and functional properties of the expanding network of histone chaperones. We emphasize how chaperones cooperate in the histone...... chaperone network and via co-chaperone complexes to match histone supply with demand, thereby promoting proper nucleosome assembly and maintaining epigenetic information by recycling modified histones evicted from chromatin....

  2. Geology and Design: Formal and Rational Connections

    Science.gov (United States)

    Eriksson, S. C.; Brewer, J.

    2016-12-01

    Geological forms and the manmade environment have always been inextricably linked. From the time that Upper Paleolithic man created drawings in the Lascaux Caves in the southwest of France, geology has provided a critical and dramatic spoil for human creativity. This inspiration has manifested itself in many different ways, and the history of architecture is rife with examples of geologically derived buildings. During the early 20th Century, German Expressionist art and architecture was heavily influenced by the natural and often translucent quality of minerals. Architects like Bruno Taut drew and built crystalline forms that would go on to inspire the more restrained Bauhaus movement. Even within the context of Contemporary architecture, geology has been a fertile source for inspiration. Architectural practices across the globe leverage the rationality and grounding found in geology to inform a process that is otherwise dominated by computer-driven parametric design. The connection between advanced design technology and the beautifully realized geo natural forms insures that geology will be a relevant source of architectural inspiration well into the 21st century. The sometimes hidden relationship of geology to the various sub-disciplines of Design such as Architecture, Interiors, Landscape Architecture, and Historic Preservation is explored in relation to curriculum and the practice of design. Topics such as materials, form, history, the cultural and physical landscape, natural hazards, and global design enrich and inform curriculum across the college. Commonly, these help define place-based education.

  3. Structured morphological modeling as a framework for rational strain design of Streptomyces species

    NARCIS (Netherlands)

    Celler, K.; Picioreanu, C.; Van Loosdrecht, M.C.M.; Van Wezel, G.P.

    2012-01-01

    Successful application of a computational model for rational design of industrial Streptomyces exploitation requires a better understanding of the relationship between morphology—dictated by microbial growth, branching, fragmentation and adhesion—and product formation. Here we review the

  4. Nucleic acids for the rational design of reaction circuits.

    Science.gov (United States)

    Padirac, Adrien; Fujii, Teruo; Rondelez, Yannick

    2013-08-01

    Nucleic acid-based circuits are rationally designed in vitro assemblies that can perform complex preencoded programs. They can be used to mimic in silico computations. Recent works emphasized the modularity and robustness of these circuits, which allow their scaling-up. Another new development has led to dynamic, time-responsive systems that can display emergent behaviors like oscillations. These are closely related to biological architectures and provide an in vitro model of in vivo information processing. Nucleic acid circuits have already been used to handle various processes for technological or biotechnological purposes. Future applications of these chemical smart systems will benefit from the rapidly growing ability to design, construct, and model nucleic acid circuits of increasing size. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Rational use of water in trickle irrigation design.

    Science.gov (United States)

    Saad, J. C. C.; da Silva Junior, H. M.

    2012-04-01

    In trickle irrigation systems, the design is based on the pre-established emission uniformity (EU) which is the combined result of the equipment characteristics and its hydraulic configuration. However, this desired value of the EU may not be confirmed by the final project (in field conditions) and neither by the yield uniformity. However, the most important is to assure yield uniformity with rational use of water. The hypotheses of this research were: a) the EU of a trickle irrigation system at field conditions is equal to the emission uniformity pre-established in the design; b) EU has always the lowest value when compared with other indicators of uniformity; c) the discharge variation coefficient is not equal to production variation coefficient in the operational unit; d) the productivity variation coefficient is more dependent on water depth applied than the EU. This study aimed to evaluate the relationships among EU used in the irrigation system design, water depth applied and the final yield uniformity. The uniformity indicators evaluated were: EU, distribution uniformity (UD) and the index proposed by Barragan & Wu (2005). They were compared estimating the performance of a trickle irrigation system applied in a citrus orchard with dimensions of 400m x 600m. The design of the irrigation system was optimized by a Linear Programming model. The tree rows were leveled in the larger direction and the spacing adopted in the orchard was 7m x 4m. The manifold line was always operating on a slope condition. The sensitivity analysis involved different slopes, 0, 3, 6, 9 and 12%, and different values of emission uniformity, 60, 70, 75, 80, 85, 90 and 94%. The citrus yield uniformity was evaluated by the variation coefficient. The emission uniformity (EU) after design differed from the EU pre-established, more sharply in the initial values lower than 90%. Comparing the uniformity indexes, the EU always generated lower values when compared with the UD and with the index

  6. Biochemical Analysis Reveals the Multifactorial Mechanism of Histone H3 Clipping by Chicken Liver Histone H3 Protease

    KAUST Repository

    Chauhan, Sakshi

    2016-09-02

    Proteolytic clipping of histone H3 has been identified in many organisms. Despite several studies, the mechanism of clipping, the substrate specificity, and the significance of this poorly understood epigenetic mechanism are not clear. We have previously reported histone H3 specific proteolytic clipping and a protein inhibitor in chicken liver. However, the sites of clipping are still not known very well. In this study, we attempt to identify clipping sites in histone H3 and to determine the mechanism of inhibition by stefin B protein, a cysteine protease inhibitor. By employing site-directed mutagenesis and in vitro biochemical assays, we have identified three distinct clipping sites in recombinant human histone H3 and its variants (H3.1, H3.3, and H3t). However, post-translationally modified histones isolated from chicken liver and Saccharomyces cerevisiae wild-type cells showed different clipping patterns. Clipping of histone H3 N-terminal tail at three sites occurs in a sequential manner. We have further observed that clipping sites are regulated by the structure of the N-terminal tail as well as the globular domain of histone H3. We also have identified the QVVAG region of stefin B protein to be very crucial for inhibition of the protease activity. Altogether, our comprehensive biochemical studies have revealed three distinct clipping sites in histone H3 and their regulation by the structure of histone H3, histone modifications marks, and stefin B.

  7. Nitric Oxide Modulates Histone Acetylation at Stress Genes by Inhibition of Histone Deacetylases1[OPEN

    Science.gov (United States)

    Mengel, Alexander; Ageeva, Alexandra; Durner, Jörg

    2017-01-01

    Histone acetylation, which is an important mechanism to regulate gene expression, is controlled by the opposing action of histone acetyltransferases and histone deacetylases (HDACs). In animals, several HDACs are subjected to regulation by nitric oxide (NO); in plants, however, it is unknown whether NO affects histone acetylation. We found that treatment with the physiological NO donor S-nitrosoglutathione (GSNO) increased the abundance of several histone acetylation marks in Arabidopsis (Arabidopsis thaliana), which was strongly diminished in the presence of the NO scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. This increase was likely triggered by NO-dependent inhibition of HDAC activity, since GSNO and S-nitroso-N-acetyl-dl-penicillamine significantly and reversibly reduced total HDAC activity in vitro (in nuclear extracts) and in vivo (in protoplasts). Next, genome-wide H3K9/14ac profiles in Arabidopsis seedlings were generated by chromatin immunoprecipitation sequencing, and changes induced by GSNO, GSNO/2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide or trichostatin A (an HDAC inhibitor) were quantified, thereby identifying genes that display putative NO-regulated histone acetylation. Functional classification of these genes revealed that many of them are involved in the plant defense response and the abiotic stress response. Furthermore, salicylic acid, which is the major plant defense hormone against biotrophic pathogens, inhibited HDAC activity and increased histone acetylation by inducing endogenous NO production. These data suggest that NO affects histone acetylation by targeting and inhibiting HDAC complexes, resulting in the hyperacetylation of specific genes. This mechanism might operate in the plant stress response by facilitating the stress-induced transcription of genes. PMID:27980017

  8. Simplified Method for Rapid Purification of Soluble Histones

    Directory of Open Access Journals (Sweden)

    Nives Ivić

    2016-06-01

    Full Text Available Functional and structural studies of histone-chaperone complexes, nucleosome modifications, their interactions with remodelers and regulatory proteins rely on obtaining recombinant histones from bacteria. In the present study, we show that co-expression of Xenopus laevis histone pairs leads to production of soluble H2AH2B heterodimer and (H3H42 heterotetramer. The soluble histone complexes are purified by simple chromatographic techniques. Obtained H2AH2B dimer and H3H4 tetramer are proficient in histone chaperone binding and histone octamer and nucleosome formation. Our optimized protocol enables rapid purification of multiple soluble histone variants with a remarkable high yield and simplifies histone octamer preparation. We expect that this simple approach will contribute to the histone chaperone and chromatin research. This work is licensed under a Creative Commons Attribution 4.0 International License.

  9. Modulation of histone deacetylase attenuates naloxone-precipitated opioid withdrawal syndrome.

    Science.gov (United States)

    Rehni, Ashish K; Singh, Nirmal; Rachamalla, Mahesh; Tikoo, Kulbhushan

    2012-06-01

    The present study has been designed to investigate the effect of selective inhibitors of histone deacetylase and/or N-acetyl-Asp-Glu-Val-Asp-al (Ac-DEVD-CHO), a selective interleukin-1β converting enzyme inhibitor, on the development of naloxone-induced opioid withdrawal syndrome both in vitro and in vivo and the effect of histone deacetylase inhibition on histone H3 acetylation in brain. Sub-acute morphine administration followed by a single injection of naloxone (8 mg/kg, i.p.) was used to precipitate opioid withdrawal syndrome in mice. Behavioral observations were made immediately after naloxone treatment. Withdrawal syndrome was quantitatively assessed in terms of withdrawal severity score and frequency of jumping, rearing, fore paw licking and circling. Separately naloxone-induced contraction in morphine-dependent isolated rat ileum was employed as an in vitro model. An isobolographic study design was employed to assess potential synergistic activity between trichostatin A and Ac-DEVD-CHO. Brain histone acetylation status was examined by western blotting. Injection of naloxone precipitated a severe form of abstinence syndrome in morphine-dependent mice along with strong contracture in isolated rat ileum. Administration of tributyrin (1.5, 3 and 6 g/kg, p.o.), trichostatin A (0.3, 1.0 and 3.0 mg/kg, p.o.) and Ac-DEVD-CHO (0.3, 1.0 and 3.0 mg/kg, p.o.) markedly and dose dependently attenuated naloxone-induced morphine withdrawal syndrome in vivo as well as in vitro in rat ileum. Trichostatin A was also observed to exert a synergistic interaction with Ac-DEVD-CHO. Western blot analysis revealed that multiple administration with the effective dose of tributyrin or trichostatin A in the in vivo experiments induced hyperacetylation of histone H3 in the mouse brain. Thus, it is proposed that histone deacetylase activation linked mechanism might be involved in the development of opioid dependence and the precipitation of its withdrawal syndrome.

  10. Rational drug design paradigms: the odyssey for designing better drugs.

    Science.gov (United States)

    Kellici, Tahsin; Ntountaniotis, Dimitrios; Vrontaki, Eleni; Liapakis, George; Moutevelis-Minakakis, Panagiota; Kokotos, George; Hadjikakou, Sotiris; Tzakos, Andreas G; Afantitis, Antreas; Melagraki, Georgia; Bryant, Sharon; Langer, Thierry; Di Marzo, Vincenzo; Mavromoustakos, Thomas

    2015-01-01

    Due to the time and effort requirements for the development of a new drug, and the high attrition rates associated with this developmental process, there is an intense effort by academic and industrial researchers to find novel ways for more effective drug development schemes. The first step in the discovery process of a new drug is the identification of the lead compound. The modern research tendency is to avoid the synthesis of new molecules based on chemical intuition, which is time and cost consuming, and instead to apply in silico rational drug design. This approach reduces the consumables and human personnel involved in the initial steps of the drug design. In this review real examples from our research activity aiming to discover new leads will be given for various dire warnings diseases. There is no recipe to follow for discovering new leads. The strategy to be followed depends on the knowledge of the studied system and the experience of the researchers. The described examples constitute successful and unsuccessful efforts and reflect the reality which medicinal chemists have to face in drug design and development. The drug stability is also discussed in both organic molecules and metallotherapeutics. This is an important issue in drug discovery as drug metabolism in the body can lead to various toxic and undesired molecules.

  11. Extracellular histones induce erythrocyte fragility and anemia.

    Science.gov (United States)

    Kordbacheh, Farzaneh; O'Meara, Connor H; Coupland, Lucy A; Lelliott, Patrick M; Parish, Christopher R

    2017-12-28

    Extracellular histones have been shown to play an important pathogenic role in many diseases, primarily through their cytotoxicity toward nucleated cells and their ability to promote platelet activation with resultant thrombosis and thrombocytopenia. In contrast, little is known about the effect of extracellular histones on erythrocyte function. We demonstrate in this study that histones promote erythrocyte aggregation, sedimentation, and using a novel in vitro shear stress model, we show that histones induce erythrocyte fragility and lysis in a concentration-dependent manner. Furthermore, histones impair erythrocyte deformability based on reduced passage of erythrocytes through an artificial spleen. These in vitro results were mirrored in vivo with the injection of histones inducing anemia within minutes of administration, with a concomitant increase in splenic hemoglobin content. Thrombocytopenia and leukopenia were also observed. These findings suggest that histones binding to erythrocytes may contribute to the elevated erythrocyte sedimentation rates observed in inflammatory conditions. Furthermore, histone-induced increases in red blood cell lysis and splenic clearance may be a significant factor in the unexplained anemias seen in critically ill patients. © 2017 by The American Society of Hematology.

  12. Technique on rationalization of using electricity and cases

    International Nuclear Information System (INIS)

    1988-04-01

    This book deals with rationalization of using electric and cases. It is divided into four parts. The first part introduces necessity and of progression rationalization of using electric. The second part describes the technique on rationalization of using electric with management of electric energy. The third part depicts domestic cases of rationalization on using of electric such as substation and motor. The last part also introduces foreign cases of rationalization on using of electric with measure of generator circuit, design of motor, design of lighting and design of other equipment.

  13. HiHiMap: single-cell quantitation of histones and histone posttranslational modifications across the cell cycle by high-throughput imaging.

    Science.gov (United States)

    Zane, Linda; Chapus, Fleur; Pegoraro, Gianluca; Misteli, Tom

    2017-08-15

    We describe Hi gh-throughput Hi stone Map ping (HiHiMap), a high-throughput imaging method to measure histones and histone posttranslational modifications (PTMs) in single cells. HiHiMap uses imaging-based quantification of DNA and cyclin A to stage individual cells in the cell cycle to determine the levels of histones or histone PTMs in each stage of the cell cycle. As proof of principle, we apply HiHiMap to measure the level of 21 core histones, histone variants, and PTMs in primary, immortalized, and transformed cells. We identify several histone modifications associated with oncogenic transformation. HiHiMap allows the rapid, high-throughput study of histones and histone PTMs across the cell cycle and the study of subpopulations of cells. © 2017 Zane et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. Histones bundle F-actin filaments and affect actin structure.

    Science.gov (United States)

    Blotnick, Edna; Sol, Asaf; Muhlrad, Andras

    2017-01-01

    Histones are small polycationic proteins complexed with DNA located in the cell nucleus. Upon apoptosis they are secreted from the cells and react with extracellular polyanionic compounds. Actin which is a polyanionic protein, is also secreted from necrotic cells and interacts with histones. We showed that both histone mixture (histone type III) and the recombinant H2A histone bundles F-actin, increases the viscosity of the F-actin containing solution and polymerizes G-actin. The histone-actin bundles are relatively insensitive to increase of ionic strength, unlike other polycation, histatin, lysozyme, spermine and LL-37 induced F-actin bundles. The histone-actin bundles dissociate completely only in the presence of 300-400 mM NaCl. DNA, which competes with F-actin for histones, disassembles histone induced actin bundles. DNase1, which depolymerizes F- to G-actin, actively unbundles the H2A histone induced but slightly affects the histone mixture induced actin bundles. Cofilin decreases the amount of F-actin sedimented by low speed centrifugation, increases light scattering and viscosity of F-actin-histone mixture containing solutions and forms star like superstructures by copolymerizing G-actin with H2A histone. The results indicate that histones are tightly attached to F-actin by strong electrostatic and hydrophobic forces. Since both histones and F-actin are present in the sputum of patients with cystic fibrosis, therefore, the formation of the stable histone-actin bundles can contribute to the pathology of this disease by increasing the viscosity of the sputum. The actin-histone interaction in the nucleus might affect gene expression.

  15. Overview of the Classical Histone Deacetylase Enzymes and Histone Deacetylase Inhibitors

    OpenAIRE

    Ververis, Katherine; Karagiannis, Tom C.

    2012-01-01

    The important role of histone deacetylase enzymes in regulating gene expression, cellular proliferation, and survival has made them attractive targets for the development of histone deacetylase inhibitors as anticancer drugs. Suberoylanilide hydroxamic acid (Vorinostat, Zolinza), a structural analogue of the prototypical Trichostatin A, was approved by the US Food and Drug Administration for the treatment of advanced cutaneous T-cell lymphoma in 2006. This was followed by approval of the cycl...

  16. CCLab--a multi-objective genetic algorithm based combinatorial library design software and an application for histone deacetylase inhibitor design.

    Science.gov (United States)

    Fang, Guanghua; Xue, Mengzhu; Su, Mingbo; Hu, Dingyu; Li, Yanlian; Xiong, Bing; Ma, Lanping; Meng, Tao; Chen, Yuelei; Li, Jingya; Li, Jia; Shen, Jingkang

    2012-07-15

    The introduction of the multi-objective optimization has dramatically changed the virtual combinatorial library design, which can consider many objectives simultaneously, such as synthesis cost and drug-likeness, thus may increase positive rates of biological active compounds. Here we described a software called CCLab (Combinatorial Chemistry Laboratory) for combinatorial library design based on the multi-objective genetic algorithm. Tests of the convergence ability and the ratio to re-take the building blocks in the reference library were conducted to assess the software in silico, and then it was applied to a real case of designing a 5×6 HDAC inhibitor library. Sixteen compounds in the resulted library were synthesized, and the histone deactetylase (HDAC) enzymatic assays proved that 14 compounds showed inhibitory ratios more than 50% against tested 3 HDAC enzymes at concentration of 20 μg/mL, with IC(50) values of 3 compounds comparable to SAHA. These results demonstrated that the CCLab software could enhance the hit rates of the designed library and would be beneficial for medicinal chemists to design focused library in drug development (the software can be downloaded at: http://202.127.30.184:8080/drugdesign.html). Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Identification and Interrogation of Combinatorial Histone Modifications

    Directory of Open Access Journals (Sweden)

    Kelly R Karch

    2013-12-01

    Full Text Available Histone proteins are dynamically modified to mediate a variety of cellular processes including gene transcription, DNA damage repair, and apoptosis. Regulation of these processes occurs through the recruitment of non-histone proteins to chromatin by specific combinations of histone post-translational modifications (PTMs. Mass spectrometry has emerged as an essential tool to discover and quantify histone PTMs both within and between samples in an unbiased manner. Developments in mass spectrometry that allow for characterization of large histone peptides or intact protein has made it possible to determine which modifications occur simultaneously on a single histone polypeptide. A variety of techniques from biochemistry, biophysics, and chemical biology have been employed to determine the biological relevance of discovered combinatorial codes. This review first describes advancements in the field of mass spectrometry that have facilitated histone PTM analysis and then covers notable approaches to probe the biological relevance of these modifications in their nucleosomal context.

  18. Histones bundle F-actin filaments and affect actin structure.

    Directory of Open Access Journals (Sweden)

    Edna Blotnick

    Full Text Available Histones are small polycationic proteins complexed with DNA located in the cell nucleus. Upon apoptosis they are secreted from the cells and react with extracellular polyanionic compounds. Actin which is a polyanionic protein, is also secreted from necrotic cells and interacts with histones. We showed that both histone mixture (histone type III and the recombinant H2A histone bundles F-actin, increases the viscosity of the F-actin containing solution and polymerizes G-actin. The histone-actin bundles are relatively insensitive to increase of ionic strength, unlike other polycation, histatin, lysozyme, spermine and LL-37 induced F-actin bundles. The histone-actin bundles dissociate completely only in the presence of 300-400 mM NaCl. DNA, which competes with F-actin for histones, disassembles histone induced actin bundles. DNase1, which depolymerizes F- to G-actin, actively unbundles the H2A histone induced but slightly affects the histone mixture induced actin bundles. Cofilin decreases the amount of F-actin sedimented by low speed centrifugation, increases light scattering and viscosity of F-actin-histone mixture containing solutions and forms star like superstructures by copolymerizing G-actin with H2A histone. The results indicate that histones are tightly attached to F-actin by strong electrostatic and hydrophobic forces. Since both histones and F-actin are present in the sputum of patients with cystic fibrosis, therefore, the formation of the stable histone-actin bundles can contribute to the pathology of this disease by increasing the viscosity of the sputum. The actin-histone interaction in the nucleus might affect gene expression.

  19. Characterization of human papillomavirus type 16 pseudovirus containing histones.

    Science.gov (United States)

    Kim, Hyoung Jin; Kwag, Hye-Lim; Kim, Hong-Jin

    2016-08-27

    Pseudoviruses (PsVs) that encapsidate a reporter plasmid DNA have been used as surrogates for native human papillomavirus (HPV), whose continuous production is technically difficult. HPV PsVs have been designed to form capsids made up of the major capsid protein L1 and the minor capsid proteins L2. HPV PsVs have been produced in 293TT cells transfected with plasmid expressing L1 and L2 protein and plasmid containing the reporter gene. Several studies have suggested that naturally occurring HPV virions contain cellular histones, and histones have also been identified in mature HPV PsVs. However, the effect of the histones on the properties of the PsVs has not been investigated. Using heparin chromatography, we separated mature HPV type 16 PsVs into three fractions (I, II, and III) according to their heparin-binding affinities. The amounts of cellular histone and cellular nucleotides per PsV were found to increase in the order fraction I, II and III. It appeared that PsVs in fraction I contains just small amount of cellular histone in Western blot analysis. The proportions of the three fractions in PsV preparations were 83.4, 7.5, and 9.1 % for fraction I, II, and III PsVs, respectively. In the electron microscope PsVs in fraction I appeared to have a more condensed structure than those in fractions II and III. Under the electron microscope fraction II and III PsVs appeared to be covered by substantial amounts of cellular histone while there was no visible histone covering PsVs of fraction I. Also the levels of reporter gene expression in infections of fraction II and III PsVs to 293TT cells were significantly lower than those in infections of fraction I PsV, and fraction II and III particles had significantly reduced immunogenicity. Our findings suggest that the involvement of large amounts of cellular histones during PsV formation interferes with the structural integrity of the PsVs and affects their immunogenicity. The fraction I particle therefore has the most

  20. Molecular mechanisms and potential functions of histone demethylases

    DEFF Research Database (Denmark)

    Kooistra, Susanne Marije; Helin, Kristian

    2012-01-01

    of two families of enzymes that can demethylate histones has changed this notion. The biochemical activities of these histone demethylases towards specific Lys residues on histones, and in some cases non-histone substrates, have highlighted their importance in developmental control, cell-fate decisions...

  1. The histone codes for meiosis.

    Science.gov (United States)

    Wang, Lina; Xu, Zhiliang; Khawar, Muhammad Babar; Liu, Chao; Li, Wei

    2017-09-01

    Meiosis is a specialized process that produces haploid gametes from diploid cells by a single round of DNA replication followed by two successive cell divisions. It contains many special events, such as programmed DNA double-strand break (DSB) formation, homologous recombination, crossover formation and resolution. These events are associated with dynamically regulated chromosomal structures, the dynamic transcriptional regulation and chromatin remodeling are mainly modulated by histone modifications, termed 'histone codes'. The purpose of this review is to summarize the histone codes that are required for meiosis during spermatogenesis and oogenesis, involving meiosis resumption, meiotic asymmetric division and other cellular processes. We not only systematically review the functional roles of histone codes in meiosis but also discuss future trends and perspectives in this field. © 2017 Society for Reproduction and Fertility.

  2. Rapid divergence of histones in Hydrozoa (Cnidaria) and evolution of a novel histone involved in DNA damage response in hydra.

    Science.gov (United States)

    Reddy, Puli Chandramouli; Ubhe, Suyog; Sirwani, Neha; Lohokare, Rasika; Galande, Sanjeev

    2017-08-01

    Histones are fundamental components of chromatin in all eukaryotes. Hydra, an emerging model system belonging to the basal metazoan phylum Cnidaria, provides an ideal platform to understand the evolution of core histone components at the base of eumetazoan phyla. Hydra exhibits peculiar properties such as tremendous regenerative capacity, lack of organismal senescence and rarity of malignancy. In light of the role of histone modifications and histone variants in these processes it is important to understand the nature of histones themselves and their variants in hydra. Here, we report identification of the complete repertoire of histone-coding genes in the Hydra magnipapillata genome. Hydra histones were classified based on their copy numbers, gene structure and other characteristic features. Genomic organization of canonical histone genes revealed the presence of H2A-H2B and H3-H4 paired clusters in high frequency and also a cluster with all core histones along with H1. Phylogenetic analysis of identified members of H2A and H2B histones suggested rapid expansion of these groups in Hydrozoa resulting in the appearance of unique subtypes. Amino acid sequence level comparisons of H2A and H2B forms with bilaterian counterparts suggest the possibility of a highly mobile nature of nucleosomes in hydra. Absolute quantitation of transcripts confirmed the high copy number of histones and supported the canonical nature of H2A. Furthermore, functional characterization of H2A.X.1 and a unique variant H2A.X.2 in the gastric region suggest their role in the maintenance of genome integrity and differentiation processes. These findings provide insights into the evolution of histones and their variants in hydra. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Rational design of the exchange-spring permanent magnet.

    Science.gov (United States)

    Jiang, J S; Bader, S D

    2014-02-12

    The development of the optimal exchange-spring permanent magnet balances exchange hardening, magnetization enhancement, and the feasibility of scalable fabrication. These requirements can be met with a rational design of the microstructural characteristics. The magnetization processes in several model exchange-spring structures with different geometries have been analyzed with both micromagnetic simulations and nucleation theory. The multilayer geometry and the soft-cylinders-in-hard-matrix geometry have the highest achievable figure of merit (BH)max, while the soft-spheres-in-hard-matrix geometry has the lowest upper limit for (BH)max. The cylindrical geometry permits the soft phase to be larger and does not require strict size control. Exchange-spring permanent magnets based on the cylindrical geometry may be amenable to scaled-up fabrication.

  4. Rational design of the exchange-spring permanent magnet

    International Nuclear Information System (INIS)

    Jiang, J S; Bader, S D

    2014-01-01

    The development of the optimal exchange-spring permanent magnet balances exchange hardening, magnetization enhancement, and the feasibility of scalable fabrication. These requirements can be met with a rational design of the microstructural characteristics. The magnetization processes in several model exchange-spring structures with different geometries have been analyzed with both micromagnetic simulations and nucleation theory. The multilayer geometry and the soft-cylinders-in-hard-matrix geometry have the highest achievable figure of merit (BH) max , while the soft-spheres-in-hard-matrix geometry has the lowest upper limit for (BH) max . The cylindrical geometry permits the soft phase to be larger and does not require strict size control. Exchange-spring permanent magnets based on the cylindrical geometry may be amenable to scaled-up fabrication. (paper)

  5. Does decision documentation help junior designers rationalize their decisions? A comparative multiple-case study

    OpenAIRE

    Heesch, U. van; Avgeriou, P.; Tang, A.

    2013-01-01

    Software architecture design is challenging, especially for junior software designers. Lacking practice and experience, junior designers need process support in order to make rational architecture decisions. In this paper, we present the results of a comparative multiple-case study conducted to find out if decision viewpoints from van Heesch et al. (2012, in press) can provide such a support. The case study was conducted with four teams of software engineering students working in industrial s...

  6. Principles underlying rational design of live attenuated influenza vaccines

    Science.gov (United States)

    Jang, Yo Han

    2012-01-01

    Despite recent innovative advances in molecular virology and the developments of vaccines, influenza virus remains a serious burden for human health. Vaccination has been considered a primary countermeasure for prevention of influenza infection. Live attenuated influenza vaccines (LAIVs) are particularly attracting attention as an effective strategy due to several advantages over inactivated vaccines. Cold-adaptation, as a classical means for attenuating viral virulence, has been successfully used for generating safe and effective donor strains of LAIVs against seasonal epidemics and occasional pandemics. Recently, the advent of reverse genetics technique expedited a variety of rational strategies to broaden the pool of LAIVs. Considering the breadth of antigenic diversity of influenza virus, the pool of LAIVs is likely to equip us with better options for controlling influenza pandemics. With a brief reflection on classical attenuating strategies used at the initial stage of development of LAIVs, especially on the principles underlying the development of cold-adapted LAIVs, we further discuss and outline other attenuation strategies especially with respect to the rationales for attenuation, and their practicality for mass production. Finally, we propose important considerations for a rational vaccine design, which will provide us with practical guidelines for improving the safety and effectiveness of LAIVs. PMID:23596576

  7. Standby Gasoline Rationing Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-06-01

    The final rules adopted by the President for a Standby Gasoline Rationing Plan are presented. The plan provides that eligibility for ration allotments will be determined primarily on the basis of motor vehicle registrations, taking into account historical differences in the use of gasoline among states. The regulations also provide authority for supplemental allotments to firms so that their allotment will equal a specified percentage of gasoline use during a base period. Priority classifications, i.e., agriculture, defense, etc., are established to assure adequate gasoline supplies for designated essential services. Ration rights must be provided by end-users to their suppliers for each gallon sold. DOE will regulate the distribution of gasoline at the wholesale level according to the transfer by suppliers of redeemed ration rights and the gasoline allocation regulations. Ration rights are transferable. A ration banking system is created to facilitate transfers of ration rights. Each state will be provided with a reserve of ration rights to provide for hardship needs and to alleviate inequities. (DC)

  8. Structure and Functions of Linker Histones.

    Science.gov (United States)

    Lyubitelev, A V; Nikitin, D V; Shaytan, A K; Studitsky, V M; Kirpichnikov, M P

    2016-03-01

    Linker histones such as variants H1, H5, and other similar proteins play an important role in regulation of chromatin structure and dynamics. However, interactions of linker histones with DNA and proteins, as well as specific functions of their different variants, are poorly studied. This is because they acquire tertiary structure only when interacting with a nucleosome, and because of limitations of currently available methods. However, deeper investigation of linker histones and their interactions with other proteins will address a number of important questions - from structure of compacted chromatin to regulation of early embryogenesis. In this review, structures of histone H1 variants and its interaction with chromatin DNA are considered. A possible functional significance of different H1 variants, a role of these proteins in maintaining interphase chromatin structure, and interactions of linker histones with other cellular proteins are also discussed.

  9. dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during Polycomb group silencing

    NARCIS (Netherlands)

    A. Lagarou (Anna); A.B. Mohd Sarip; Y.M. Moshkin (Yuri); G.E. Chalkley (Gillian); K. Bezstarosti (Karel); J.A.A. Demmers (Jeroen); C.P. Verrijzer (Peter)

    2008-01-01

    textabstractTranscription regulation involves enzyme-mediated changes in chromatin structure. Here, we describe a novel mode of histone crosstalk during gene silencing, in which histone H2A monoubiquitylation is coupled to the removal of histone H3 Lys 36 dimethylation (H3K36me2). This pathway was

  10. Histone modifications influence mediator interactions with chromatin

    Science.gov (United States)

    Zhu, Xuefeng; Zhang, Yongqiang; Bjornsdottir, Gudrun; Liu, Zhongle; Quan, Amy; Costanzo, Michael; Dávila López, Marcela; Westholm, Jakub Orzechowski; Ronne, Hans; Boone, Charles; Gustafsson, Claes M.; Myers, Lawrence C.

    2011-01-01

    The Mediator complex transmits activation signals from DNA bound transcription factors to the core transcription machinery. Genome wide localization studies have demonstrated that Mediator occupancy not only correlates with high levels of transcription, but that the complex also is present at transcriptionally silenced locations. We provide evidence that Mediator localization is guided by an interaction with histone tails, and that this interaction is regulated by their post-translational modifications. A quantitative, high-density genetic interaction map revealed links between Mediator components and factors affecting chromatin structure, especially histone deacetylases. Peptide binding assays demonstrated that pure wild-type Mediator forms stable complexes with the tails of Histone H3 and H4. These binding assays also showed Mediator—histone H4 peptide interactions are specifically inhibited by acetylation of the histone H4 lysine 16, a residue critical in transcriptional silencing. Finally, these findings were validated by tiling array analysis that revealed a broad correlation between Mediator and nucleosome occupancy in vivo, but a negative correlation between Mediator and nucleosomes acetylated at histone H4 lysine 16. Our studies show that chromatin structure and the acetylation state of histones are intimately connected to Mediator localization. PMID:21742760

  11. Rationally designed synthetic protein hydrogels with predictable mechanical properties.

    Science.gov (United States)

    Wu, Junhua; Li, Pengfei; Dong, Chenling; Jiang, Heting; Bin Xue; Gao, Xiang; Qin, Meng; Wang, Wei; Bin Chen; Cao, Yi

    2018-02-12

    Designing synthetic protein hydrogels with tailored mechanical properties similar to naturally occurring tissues is an eternal pursuit in tissue engineering and stem cell and cancer research. However, it remains challenging to correlate the mechanical properties of protein hydrogels with the nanomechanics of individual building blocks. Here we use single-molecule force spectroscopy, protein engineering and theoretical modeling to prove that the mechanical properties of protein hydrogels are predictable based on the mechanical hierarchy of the cross-linkers and the load-bearing modules at the molecular level. These findings provide a framework for rationally designing protein hydrogels with independently tunable elasticity, extensibility, toughness and self-healing. Using this principle, we demonstrate the engineering of self-healable muscle-mimicking hydrogels that can significantly dissipate energy through protein unfolding. We expect that this principle can be generalized for the construction of protein hydrogels with customized mechanical properties for biomedical applications.

  12. Regulation of human histone gene expression: transcriptional and posttranscriptional control in the coupling of histone messenger RNA stability with DNA replication

    International Nuclear Information System (INIS)

    Baumbach, L.L.; Stein, G.S.; Stein, J.L.

    1987-01-01

    The extent to which transcriptional and posttranscriptional regulation contributes to the coupling of histone gene expression and DNA replication was examined during the cell cycle in synchronized HeLa S3 cells. Rates of transcription were determined in vitro in isolated nuclei. A 3-5-fold increase in cell cycle dependent histone gene transcription was observed in early S phase, prior to the peak of DNA synthesis. This result is consistent with a previous determination of histone mRNA synthesis in intact cells. The transcription of these genes did not change appreciably after inhibition of DNA replication by hydroxyurea treatment, although Northern blot analysis indicated that cellular levels of histone mRNA decreased rapidly in the presence of the drug. Total cellular levels of histone mRNA closely parallel the rate of DNA synthesis as a function of cell cycle progression, reaching a maximal 20-fold increase as compared with non S phase levels. This DNA synthesis dependent accumulation of histone mRNA occurs predominantly in the cytoplasm and appears to be mediated primarily by control of histone mRNA stability. Changes in nuclear histone mRNA levels were less pronounced. These combined observations suggest that both transcriptional regulation and posttranscriptional regulation contribute toward control of the cell cycle dependent accumulation of histone mRNA during S phase, while the stability of histone mRNA throughout S phase and the selective turnover of histone mRNAs, either at the natural termination of S phase or following inhibition of DNA synthesis, are posttranscriptionally regulated

  13. Histone Acetylation in Fungal Pathogens of Plants

    Directory of Open Access Journals (Sweden)

    Junhyun Jeon

    2014-03-01

    Full Text Available Acetylation of histone lysine residues occurs in different organisms ranging from yeast to plants and mammals for the regulation of diverse cellular processes. With the identification of enzymes that create or reverse this modification, our understanding on histone acetylation has expanded at an amazing pace during the last two decades. In fungal pathogens of plants, however, the importance of such modification has only just begun to be appreciated in the recent years and there is a dearth of information on how histone acetylation is implicated in fungal pathogenesis. This review covers the current status of research related to histone acetylation in plant pathogenic fungi and considers relevant findings in the interaction between fungal pathogens and host plants. We first describe the families of histone acetyltransferases and deacetylases. Then we provide the cases where histone acetylation was investigated in the context of fungal pathogenesis. Finally, future directions and perspectives in epigenetics of fungal pathogenesis are discussed.

  14. Extracellular histones in tissue injury and inflammation.

    Science.gov (United States)

    Allam, Ramanjaneyulu; Kumar, Santhosh V R; Darisipudi, Murthy N; Anders, Hans-Joachim

    2014-05-01

    Neutrophil NETosis is an important element of host defense as it catapults chromatin out of the cell to trap bacteria, which then are killed, e.g., by the chromatin's histone component. Also, during sterile inflammation TNF-alpha and other mediators trigger NETosis, which elicits cytotoxic effects on host cells. The same mechanism should apply to other forms of regulated necrosis including pyroptosis, necroptosis, ferroptosis, and cyclophilin D-mediated regulated necrosis. Beyond these toxic effects, extracellular histones also trigger thrombus formation and innate immunity by activating Toll-like receptors and the NLRP3 inflammasome. Thereby, extracellular histones contribute to the microvascular complications of sepsis, major trauma, small vessel vasculitis as well as acute liver, kidney, brain, and lung injury. Finally, histones prevent the degradation of extracellular DNA, which promotes autoimmunization, anti-nuclear antibody formation, and autoimmunity in susceptible individuals. Here, we review the current evidence on the pathogenic role of extracellular histones in disease and discuss how to target extracellular histones to improve disease outcomes.

  15. Histones of Chlamydomonas reinhardtii. Synthesis, acetylation, and methylation

    International Nuclear Information System (INIS)

    Waterborg, J.H.; Robertson, A.J.; Tatar, D.L.; Borza, C.M.; Davie, J.R.

    1995-01-01

    Histones of the green alga Chlamydomonas reinhardtii were prepared by a new method and fractionated by reversed-phase high-performance liquid chromatography. Acid-urea-Triton gel analysis and tritiated acetate labeling demonstrated high levels of steady-state acetylation for the single histone H3 protein, in contrast to low levels on histones H4 and H2B. Twenty percent of histone H3 is subject to dynamic acetylation with, on average, three acetylated lysine residues per protein molecule. Histone synthesis in light-dark-synchronized cultures was biphasic with pattern differences between two histone H1 variants, between two H2A variants, and between H2B and ubiquitinated H2B. Automated protein sequence analysis of histone H3 demonstrated a site-specific pattern of steady-state acetylation between 7 and 17% at five of the six amino-terminal lysines and of monomethylation between 5 and 81% at five of the eight amino-terminal lysines in a pattern that may limit dynamic acetylation. An algal histone H3 sequence was confirmed by protein sequencing with a since threonine as residue 28 instead of the serine(28)-alanine(29) sequence, present in all other known plant and animal H3 histones

  16. Role of extracellular histones in the cardiomyopathy of sepsis.

    Science.gov (United States)

    Kalbitz, Miriam; Grailer, Jamison J; Fattahi, Fatemeh; Jajou, Lawrence; Herron, Todd J; Campbell, Katherine F; Zetoune, Firas S; Bosmann, Markus; Sarma, J Vidya; Huber-Lang, Markus; Gebhard, Florian; Loaiza, Randall; Valdivia, Hector H; Jalife, José; Russell, Mark W; Ward, Peter A

    2015-05-01

    The purpose of this study was to define the relationship in polymicrobial sepsis (in adult male C57BL/6 mice) between heart dysfunction and the appearance in plasma of extracellular histones. Procedures included induction of sepsis by cecal ligation and puncture and measurement of heart function using echocardiogram/Doppler parameters. We assessed the ability of histones to cause disequilibrium in the redox status and intracellular [Ca(2+)]i levels in cardiomyocytes (CMs) (from mice and rats). We also studied the ability of histones to disturb both functional and electrical responses of hearts perfused with histones. Main findings revealed that extracellular histones appearing in septic plasma required C5a receptors, polymorphonuclear leukocytes (PMNs), and the Nacht-, LRR-, and PYD-domains-containing protein 3 (NLRP3) inflammasome. In vitro exposure of CMs to histones caused loss of homeostasis of the redox system and in [Ca(2+)]i, as well as defects in mitochondrial function. Perfusion of hearts with histones caused electrical and functional dysfunction. Finally, in vivo neutralization of histones in septic mice markedly reduced the parameters of heart dysfunction. Histones caused dysfunction in hearts during polymicrobial sepsis. These events could be attenuated by histone neutralization, suggesting that histones may be targets in the setting of sepsis to reduce cardiac dysfunction. © FASEB.

  17.   A rationally designed tyrosine hydroxylase DNA vaccine induces specific antineuroblastoma immunity

    DEFF Research Database (Denmark)

    Huebener, Nicole; Fest, Stefan; Strandsby, Anne Bystrup

    2008-01-01

    Therapeutic vaccination against tumor antigens without induction of autoimmunity remains a major challenge in cancer immunotherapy. Here, we show for the first time effective therapeutic vaccination followed by suppression of established spontaneous neuroblastoma metastases using a tyrosine...... show effective therapeutic vaccination against neuroblastoma with a novel rationally designed TH minigene vaccine without induction of autoimmunity providing an important baseline for future clinical application of this strategy....

  18. Aging and radiation induced alternations in liver histones

    International Nuclear Information System (INIS)

    Kozurkova, M.; Misurova, E.; Kropacova, K.

    1994-01-01

    Age-related changes in histones in the liver of normal rats and in rats irradiated with 5.7 Gy gamma rays were examined. Quantitative histone changes in growing and aging rats (from 1 to 28 months of age) were found to be mild only. As they paralleled the DNA changes, the histone /DNA ratio remained stable with age. In total extracted histones there was a decrease in the H1 proportion in older groups with preceding increase in the H1 grad proportion. Thirty minutes after irradiation the amount of histones was reduced with age, probably due to an impaired extractability of histones. As the quantitative DNA changes were milder, the histone?DNA ratio decreased in aging liver after irradiation. Similar patterns of changes in proportion of the H1 fraction and H1 grad sub-fraction were observed in irradiated and nonirradiated animals in the former with an earlier onset. Irradiation, therefore, accelerated spontaneous age-related alternations. (author)

  19. Histones as mediators of host defense, inflammation and thrombosis.

    Science.gov (United States)

    Hoeksema, Marloes; van Eijk, Martin; Haagsman, Henk P; Hartshorn, Kevan L

    2016-01-01

    Histones are known for their ability to bind to and regulate expression of DNA. However, histones are also present in cytoplasm and extracellular fluids where they serve host defense functions and promote inflammatory responses. Histones are a major component of neutrophil extracellular traps that contribute to bacterial killing but also to inflammatory injury. Histones can act as antimicrobial peptides and directly kill bacteria, fungi, parasites and viruses, in vitro and in a variety of animal hosts. In addition, histones can trigger inflammatory responses in some cases acting through Toll-like receptors or inflammasome pathways. Extracellular histones mediate organ injury (lung, liver), sepsis physiology, thrombocytopenia and thrombin generation and some proteins can bind histones and reduce these potentially harmful effects.

  20. Posttranslational Modifications of the Histone 3 Tail and Their Impact on the Activity of Histone Lysine Demethylases In Vitro

    DEFF Research Database (Denmark)

    Lohse, Brian; Helgstrand, Charlotte; Andersson, Jan Legaard

    2013-01-01

    mimicking histone H3. Various combinations with other PTMs were employed to study possible cross-talk effects by comparing enzyme kinetic characteristics. We compared the kinetics of histone tail substrates for truncated histone lysine demethylases KDM4A and KDM4C containing only the catalytic core (cc...... toward bis-trimethylated substrates could be observed. Furthermore, a significant difference in the catalytic activity between dimethylated and trimethylated substrates was found for full length demethylases in line with what has been reported previously for truncated demethylases. Histone peptide...

  1. Deposition of newly synthesized histones: new histones H2A and H2B do not deposit in the same nucleosome with new Histones H3 and H4

    International Nuclear Information System (INIS)

    Jackson, V.

    1987-01-01

    The authors have developed procedures to study histone-histone interactions during the deposition of histones in replicating cells. Cells are labeled for 60 min with dense amino acids, and subsequently, the histones within the nucleosomes are cross-linked into an octameric complex with formaldehyde. These complexes are sedimented to equilibrium in density gradients and octamer and dioctamer complexes separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. With reversal of the cross-link, the distribution of the individual density-labeled histones in the octamer is determined. Newly synthesized H3 and H4 deposits as a tetramer and are associated with old H2A and H2B. Newly synthesized H2A and H2B deposit as a dimer associated with old H2A, H2B, H3, and H4. The significance of these results with respect to the dynamics of histone interactions in the nucleus is discussed. Control experiments are presented to test for artifactual formation of these complexes during preparative procedures. In addition, reconstitution experiments were performed to demonstrate that the composition of these octameric complexes can be determined from their distribution of density gradients

  2. Histone displacement during nucleotide excision repair

    DEFF Research Database (Denmark)

    Dinant, C.; Bartek, J.; Bekker-Jensen, S.

    2012-01-01

    Nucleotide excision repair (NER) is an important DNA repair mechanism required for cellular resistance against UV light and toxic chemicals such as those found in tobacco smoke. In living cells, NER efficiently detects and removes DNA lesions within the large nuclear macromolecular complex called...... of histone variants and histone displacement (including nucleosome sliding). Here we review current knowledge, and speculate about current unknowns, regarding those chromatin remodeling activities that physically displace histones before, during and after NER....

  3. Residualization Rates of Near Infrared Dyes for the Rational Design of Molecular Imaging Agents

    Science.gov (United States)

    Cilliers, Cornelius; Liao, Jianshan; Atangcho, Lydia; Thurber, Greg M.

    2016-01-01

    Purpose Near infrared (NIR) fluorescence imaging is widely used for tracking antibodies and biomolecules in vivo. Clinical and preclinical applications include intraoperative imaging, tracking therapeutics, and fluorescent labeling as a surrogate for subsequent radiolabeling. Despite their extensive use, one of the fundamental properties of NIR dyes, the residualization rate within cells following internalization, has not been systematically studied. This rate is required for the rational design of probes and proper interpretation of in vivo results. Procedures In this brief report, we measure the cellular residualization rate of eight commonly used dyes encompassing three core structures (cyanine, BODIPY, and oxazine/thiazine/carbopyronin). Results We identify residualizing (half-life > 24 hrs) and non-residualizing dyes (half-life < 24 hrs) in both the far red (~650-680 nm) and near infrared (~740-800 nm) regions. Conclusions This data will allow researchers to independently and rationally select the wavelength and residualizing nature of dyes for molecular imaging agent design. PMID:25869081

  4. Residualization Rates of Near-Infrared Dyes for the Rational Design of Molecular Imaging Agents.

    Science.gov (United States)

    Cilliers, Cornelius; Liao, Jianshan; Atangcho, Lydia; Thurber, Greg M

    2015-12-01

    Near-infrared (NIR) fluorescence imaging is widely used for tracking antibodies and biomolecules in vivo. Clinical and preclinical applications include intraoperative imaging, tracking therapeutics, and fluorescent labeling as a surrogate for subsequent radiolabeling. Despite their extensive use, one of the fundamental properties of NIR dyes, the residualization rate within cells following internalization, has not been systematically studied. This rate is required for the rational design of probes and proper interpretation of in vivo results. In this brief report, we measure the cellular residualization rate of eight commonly used dyes encompassing three core structures (cyanine, boron-dipyrromethene (BODIPY), and oxazine/thiazine/carbopyronin). We identify residualizing (half-life >24 h) and non-residualizing (half-life <24 h) dyes in both the far-red (~650-680 nm) and near-infrared (~740-800 nm) regions. This data will allow researchers to independently and rationally select the wavelength and residualizing nature of dyes for molecular imaging agent design.

  5. Histone Lysine Methylation in Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Guang-dong Sun

    2014-01-01

    Full Text Available Diabetic nephropathy (DN belongs to debilitating microvascular complications of diabetes and is the leading cause of end-stage renal diseases worldwide. Furthermore, outcomes from the DCCT/EDIC study showed that DN often persists and progresses despite intensive glucose control in many diabetes patients, possibly as a result of prior episode of hyperglycemia, which is called “metabolic memory.” The underlying mechanisms responsible for the development and progression of DN remain poorly understood. Activation of multiple signaling pathways and key transcription factors can lead to aberrant expression of DN-related pathologic genes in target renal cells. Increasing evidence suggests that epigenetic mechanisms in chromatin such as DNA methylation, histone acetylation, and methylation can influence the pathophysiology of DN and metabolic memory. Exciting researches from cell culture and experimental animals have shown that key histone methylation patterns and the related histone methyltransferases and histone demethylases can play important roles in the regulation of inflammatory and profibrotic genes in renal cells under diabetic conditions. Because histone methylation is dynamic and potentially reversible, it can provide a window of opportunity for the development of much-needed novel therapeutic potential for DN in the future. In this minireview, we discuss recent advances in the field of histone methylation and its roles in the pathogenesis and progression of DN.

  6. Design for Additive Bio-Manufacturing: From Patient-Specific Medical Devices to Rationally Designed Meta-Biomaterials.

    Science.gov (United States)

    Zadpoor, Amir A

    2017-07-25

    Recent advances in additive manufacturing (AM) techniques in terms of accuracy, reliability, the range of processable materials, and commercial availability have made them promising candidates for production of functional parts including those used in the biomedical industry. The complexity-for-free feature offered by AM means that very complex designs become feasible to manufacture, while batch-size-indifference enables fabrication of fully patient-specific medical devices. Design for AM (DfAM) approaches aim to fully utilize those features for development of medical devices with substantially enhanced performance and biomaterials with unprecedented combinations of favorable properties that originate from complex geometrical designs at the micro-scale. This paper reviews the most important approaches in DfAM particularly those applicable to additive bio-manufacturing including image-based design pipelines, parametric and non-parametric designs, metamaterials, rational and computationally enabled design, topology optimization, and bio-inspired design. Areas with limited research have been identified and suggestions have been made for future research. The paper concludes with a brief discussion on the practical aspects of DfAM and the potential of combining AM with subtractive and formative manufacturing processes in so-called hybrid manufacturing processes.

  7. Design for Additive Bio-Manufacturing: From Patient-Specific Medical Devices to Rationally Designed Meta-Biomaterials

    Directory of Open Access Journals (Sweden)

    Amir A. Zadpoor

    2017-07-01

    Full Text Available Recent advances in additive manufacturing (AM techniques in terms of accuracy, reliability, the range of processable materials, and commercial availability have made them promising candidates for production of functional parts including those used in the biomedical industry. The complexity-for-free feature offered by AM means that very complex designs become feasible to manufacture, while batch-size-indifference enables fabrication of fully patient-specific medical devices. Design for AM (DfAM approaches aim to fully utilize those features for development of medical devices with substantially enhanced performance and biomaterials with unprecedented combinations of favorable properties that originate from complex geometrical designs at the micro-scale. This paper reviews the most important approaches in DfAM particularly those applicable to additive bio-manufacturing including image-based design pipelines, parametric and non-parametric designs, metamaterials, rational and computationally enabled design, topology optimization, and bio-inspired design. Areas with limited research have been identified and suggestions have been made for future research. The paper concludes with a brief discussion on the practical aspects of DfAM and the potential of combining AM with subtractive and formative manufacturing processes in so-called hybrid manufacturing processes.

  8. One-pot synthesis of water soluble iron nanoparticles using rationally-designed peptides and ligand release.

    Science.gov (United States)

    Papst, Stefanie; Cheong, Soshan; Banholzer, Moritz J; Brimble, Margaret A; Williams, David E; Tilley, Richard D

    2013-05-18

    Herein we report the rational design of new phosphopeptides for control of nucleation, growth and aggregation of water-soluble, superparamagnetic iron-iron oxide core-shell nanoparticles. The use of the designed peptides enables a one-pot synthesis that avoids utilizing unstable or toxic iron precursors, organic solvents, and the need for exchange of capping agent after synthesis of the NPs.

  9. Co-regulation of histone-modifying enzymes in cancer.

    Directory of Open Access Journals (Sweden)

    Abul B M M K Islam

    Full Text Available Cancer is characterized by aberrant patterns of expression of multiple genes. These major shifts in gene expression are believed to be due to not only genetic but also epigenetic changes. The epigenetic changes are communicated through chemical modifications, including histone modifications. However, it is unclear whether the binding of histone-modifying proteins to genomic regions and the placing of histone modifications efficiently discriminates corresponding genes from the rest of the genes in the human genome. We performed gene expression analysis of histone demethylases (HDMs and histone methyltransferases (HMTs, their target genes and genes with relevant histone modifications in normal and tumor tissues. Surprisingly, this analysis revealed the existence of correlations in the expression levels of different HDMs and HMTs. The observed HDM/HMT gene expression signature was specific to particular normal and cancer cell types and highly correlated with target gene expression and the expression of genes with histone modifications. Notably, we observed that trimethylation at lysine 4 and lysine 27 separated preferentially expressed and underexpressed genes, which was strikingly different in cancer cells compared to normal cells. We conclude that changes in coordinated regulation of enzymes executing histone modifications may underlie global epigenetic changes occurring in cancer.

  10. Rational combination treatment with histone deacetylase inhibitors and immunomodulatory drugs in multiple myeloma

    International Nuclear Information System (INIS)

    Hideshima, T; Cottini, F; Ohguchi, H; Jakubikova, J; Gorgun, G; Mimura, N; Tai, Y-T; Munshi, N C; Richardson, P G; Anderson, K C

    2015-01-01

    Immunomodulatory drugs (IMiDs) thalidomide, lenalidomide (Len) and pomalidomide trigger anti-tumor activities in multiple myeloma (MM) by targetting cereblon and thereby impacting IZF1/3, c-Myc and IRF4. Histone deacetylase inhibitors (HDACi) also downregulate c-Myc. We therefore determined whether IMiDs with HDACi trigger significant MM cell growth inhibition by inhibiting or downregulating c-Myc. Combination treatment of Len with non-selective HDACi suberoylanilide hydroxamic acid or class-I HDAC-selective inhibitor MS275 induces synergic cytotoxicity, associated with downregulation of c-Myc. Unexpectedly, we observed that decreased levels of cereblon (CRBN), a primary target protein of IMiDs, was triggered by these agents. Indeed, sequential treatment of MM cells with MS275 followed by Len shows less efficacy than simultaneous treatment with this combination. Importantly ACY1215, an HDAC6 inhibitor with minimal effects on class-I HDACs, together with Len induces synergistic MM cytotoxicity without alteration of CRBN expression. Our results showed that only modest class-I HDAC inhibition is able to induce synergistic MM cytotoxicity in combination with Len. These studies may provide the framework for utilizing HDACi in combination with Len to both avoid CRBN downregulation and enhance anti-MM activities

  11. Rational combination treatment with histone deacetylase inhibitors and immunomodulatory drugs in multiple myeloma.

    Science.gov (United States)

    Hideshima, T; Cottini, F; Ohguchi, H; Jakubikova, J; Gorgun, G; Mimura, N; Tai, Y-T; Munshi, N C; Richardson, P G; Anderson, K C

    2015-05-15

    Immunomodulatory drugs (IMiDs) thalidomide, lenalidomide (Len) and pomalidomide trigger anti-tumor activities in multiple myeloma (MM) by targetting cereblon and thereby impacting IZF1/3, c-Myc and IRF4. Histone deacetylase inhibitors (HDACi) also downregulate c-Myc. We therefore determined whether IMiDs with HDACi trigger significant MM cell growth inhibition by inhibiting or downregulating c-Myc. Combination treatment of Len with non-selective HDACi suberoylanilide hydroxamic acid or class-I HDAC-selective inhibitor MS275 induces synergic cytotoxicity, associated with downregulation of c-Myc. Unexpectedly, we observed that decreased levels of cereblon (CRBN), a primary target protein of IMiDs, was triggered by these agents. Indeed, sequential treatment of MM cells with MS275 followed by Len shows less efficacy than simultaneous treatment with this combination. Importantly ACY1215, an HDAC6 inhibitor with minimal effects on class-I HDACs, together with Len induces synergistic MM cytotoxicity without alteration of CRBN expression. Our results showed that only modest class-I HDAC inhibition is able to induce synergistic MM cytotoxicity in combination with Len. These studies may provide the framework for utilizing HDACi in combination with Len to both avoid CRBN downregulation and enhance anti-MM activities.

  12. Histone demethylases in development and disease

    DEFF Research Database (Denmark)

    Pedersen, Marianne Terndrup; Helin, Kristian

    2010-01-01

    Histone modifications serve as regulatory marks that are instrumental for the control of transcription and chromatin architecture. Strict regulation of gene expression patterns is crucial during development and differentiation, where diverse cell types evolve from common predecessors. Since...... the first histone lysine demethylase was discovered in 2004, a number of demethylases have been identified and implicated in the control of gene expression programmes and cell fate decisions. Histone demethylases are now emerging as important players in developmental processes and have been linked to human...

  13. Flexible histone tails in a new mesoscopic oligonucleosome model.

    Science.gov (United States)

    Arya, Gaurav; Zhang, Qing; Schlick, Tamar

    2006-07-01

    We describe a new mesoscopic model of oligonucleosomes that incorporates flexible histone tails. The nucleosome cores are modeled using the discrete surface-charge optimization model, which treats the nucleosome as an electrostatic surface represented by hundreds of point charges; the linker DNAs are treated using a discrete elastic chain model; and the histone tails are modeled using a bead/chain hydrodynamic approach as chains of connected beads where each bead represents five protein residues. Appropriate charges and force fields are assigned to each histone chain so as to reproduce the electrostatic potential, structure, and dynamics of the corresponding atomistic histone tails at different salt conditions. The dynamics of resulting oligonucleosomes at different sizes and varying salt concentrations are simulated by Brownian dynamics with complete hydrodynamic interactions. The analyses demonstrate that the new mesoscopic model reproduces experimental results better than its predecessors, which modeled histone tails as rigid entities. In particular, our model with flexible histone tails: correctly accounts for salt-dependent conformational changes in the histone tails; yields the experimentally obtained values of histone-tail mediated core/core attraction energies; and considers the partial shielding of electrostatic repulsion between DNA linkers as a result of the spatial distribution of histone tails. These effects are crucial for regulating chromatin structure but are absent or improperly treated in models with rigid histone tails. The development of this model of oligonucleosomes thus opens new avenues for studying the role of histone tails and their variants in mediating gene expression through modulation of chromatin structure.

  14. Potential non-oncological applications of histone deacetylase inhibitors.

    Science.gov (United States)

    Ververis, Katherine; Karagiannis, Tom C

    2011-01-01

    Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutic drugs. Their clinical utility in oncology stems from their intrinsic cytotoxic properties and combinatorial effects with other conventional cancer therapies. To date, the histone deacetylase inhibitors suberoylanilide hydroxamic acid (Vorinostat, Zolinza®) and depsipeptide (Romidepsin, Istodax®) have been approved by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Further, there are currently over 100 clinical trials involving the use of histone deacetylase inhibitors in a wide range of solid and hematological malignancies. The therapeutic potential of histone deacetylase inhibitors has also been investigated for numerous other diseases. For example, the cytotoxic properties of histone deacetylase inhibitors are currently being harnessed as a potential treatment for malaria, whereas the efficacy of these compounds for HIV relies on de-silencing latent virus. The anti-inflammatory properties of histone deacetylase inhibitors are the predominant mechanisms for other diseases, such as hepatitis, systemic lupus erythematosus and a wide range of neurodegenerative conditions. Additionally, histone deacetylase inhibitors have been shown to be efficacious in animal models of cardiac hypertrophy and asthma. Broad-spectrum histone deacetylase inhibitors are clinically available and have been used almost exclusively in preclinical systems to date. However, it is emerging that class- or isoform-specific compounds, which are becoming more readily available, may be more efficacious particularly for non-oncological applications. The aim of this review is to provide an overview of the effects and clinical potential of histone deacetylase inhibitors in various diseases. Apart from applications in oncology, the discussion is focused on the potential efficacy of histone deacetylase inhibitors for the treatment of neurodegenerative diseases, cardiac

  15. Further evidence for poly-ADP-ribosylated histones as DNA suppressors

    International Nuclear Information System (INIS)

    Yu, F.L.; Geronimo, I.H.; Bender, W.; Meginniss, K.E.

    1986-01-01

    For many years histones have been considered to be the gene suppressors in eukaryotic cells. Recently, the authors have found strong evidence indicating that poly-ADP-ribosylated histones, rather than histones, are the potent inhibitors of DNA-dependent RNA synthesis. They now report additional evidence for this concept: 1) using histone inhibitor isolated directly from nuclei, the authors are able to confirm their earlier findings that the inhibitor substances are sensitive to pronase, snake venom phosphodiesterase digestion and 0.1N KOH hydrolysis, and are resistant to DNase I and RNase A digestion, 2) the O.D. 260/O.D.280 ratio of the histone inhibitor is between pure protein and nuclei acid, suggesting the inhibitor substance is a nucleoprotein hybrid. This result directly supports the fact that the isolated histone inhibitor is radioactive poly (ADP-ribose) labeled, 3) commercial histones show big differences in inhibitor activity. The authors believe this reflects the variation in poly-ADP-ribosylation among commercial histones, and 4) 0.1N KOH hydrolysis eliminates the poly (ADP-ribose) radioactivity from the acceptor proteins as well as histone inhibitor activity. Yet, on gel, the inhibitor shows identical histone bands and stain intensity before and after hydrolysis, indicating the histones per se are qualitatively and quantitatively unaffected by alkaline treatment. This result strongly suggests that histones themselves are not capable of inhibiting DNA-dependent RNA synthesis

  16. Reconstitution of Nucleosomes with Differentially Isotope-labeled Sister Histones.

    Science.gov (United States)

    Liokatis, Stamatios

    2017-03-26

    Asymmetrically modified nucleosomes contain the two copies of a histone (sister histones) decorated with distinct sets of Post-translational Modifications (PTMs). They are newly identified species with unknown means of establishment and functional implications. Current analytical methods are inadequate to detect the copy-specific occurrence of PTMs on the nucleosomal sister histones. This protocol presents a biochemical method for the in vitro reconstitution of nucleosomes containing differentially isotope-labeled sister histones. The generated complex can be also asymmetrically modified, after including a premodified histone pool during refolding of histone subcomplexes. These asymmetric nucleosome preparations can be readily reacted with histone-modifying enzymes to study modification cross-talk mechanisms imposed by the asymmetrically pre-incorporated PTM using nuclear magnetic resonance (NMR) spectroscopy. Particularly, the modification reactions in real-time can be mapped independently on the two sister histones by performing different types of NMR correlation experiments, tailored for the respective isotope type. This methodology provides the means to study crosstalk mechanisms that contribute to the formation and propagation of asymmetric PTM patterns on nucleosomal complexes.

  17. Histone modifications: Cycling with chromosomal replication

    DEFF Research Database (Denmark)

    Thon, Genevieve

    2008-01-01

    Histone modifications tend to be lost during chromosome duplication. Several recent studies suggest that the RNA interference pathway becomes active during the weakened transcriptional repression occurring at centromeres in S phase, resulting in the re-establishment of histone modifications...

  18. Eviction of linker histone H1 by NAP-family histone chaperones enhances activated transcription.

    Science.gov (United States)

    Zhang, Qian; Giebler, Holli A; Isaacson, Marisa K; Nyborg, Jennifer K

    2015-01-01

    In the Metazoan nucleus, core histones assemble the genomic DNA to form nucleosome arrays, which are further compacted into dense chromatin structures by the linker histone H1. The extraordinary density of chromatin creates an obstacle for accessing the genetic information. Regulation of chromatin dynamics is therefore critical to cellular homeostasis, and histone chaperones serve as prominent players in these processes. In the current study, we examined the role of specific histone chaperones in negotiating the inherently repressive chromatin structure during transcriptional activation. Using a model promoter, we demonstrate that the human nucleosome assembly protein family members hNap1 and SET/Taf1β stimulate transcription in vitro during pre-initiation complex formation, prior to elongation. This stimulatory effect is dependent upon the presence of activators, p300, and Acetyl-CoA. We show that transcription from our chromatin template is strongly repressed by H1, and that both histone chaperones enhance RNA synthesis by overcoming H1-induced repression. Importantly, both hNap1 and SET/Taf1β directly bind H1, and function to enhance transcription by evicting the linker histone from chromatin reconstituted with H1. In vivo studies demonstrate that SET/Taf1β, but not hNap1, strongly stimulates activated transcription from the chromosomally-integrated model promoter, consistent with the observation that SET/Taf1β is nuclear, whereas hNap1 is primarily cytoplasmic. Together, these observations indicate that SET/Taf1β may serve as a critical regulator of H1 dynamics and gene activation in vivo. These studies uncover a novel function for SET that mechanistically couples transcriptional derepression with H1 dynamics. Furthermore, they underscore the significance of chaperone-dependent H1 displacement as an essential early step in the transition of a promoter from a dense chromatin state into one that is permissive to transcription factor binding and robust

  19. Development of a Preventive HIV Vaccine Requires Solving Inverse Problems Which Is Unattainable by Rational Vaccine Design

    Directory of Open Access Journals (Sweden)

    Marc H. V. Van Regenmortel

    2018-01-01

    Full Text Available Hypotheses and theories are essential constituents of the scientific method. Many vaccinologists are unaware that the problems they try to solve are mostly inverse problems that consist in imagining what could bring about a desired outcome. An inverse problem starts with the result and tries to guess what are the multiple causes that could have produced it. Compared to the usual direct scientific problems that start with the causes and derive or calculate the results using deductive reasoning and known mechanisms, solving an inverse problem uses a less reliable inductive approach and requires the development of a theoretical model that may have different solutions or none at all. Unsuccessful attempts to solve inverse problems in HIV vaccinology by reductionist methods, systems biology and structure-based reverse vaccinology are described. The popular strategy known as rational vaccine design is unable to solve the multiple inverse problems faced by HIV vaccine developers. The term “rational” is derived from “rational drug design” which uses the 3D structure of a biological target for designing molecules that will selectively bind to it and inhibit its biological activity. In vaccine design, however, the word “rational” simply means that the investigator is concentrating on parts of the system for which molecular information is available. The economist and Nobel laureate Herbert Simon introduced the concept of “bounded rationality” to explain why the complexity of the world economic system makes it impossible, for instance, to predict an event like the financial crash of 2007–2008. Humans always operate under unavoidable constraints such as insufficient information, a limited capacity to process huge amounts of data and a limited amount of time available to reach a decision. Such limitations always prevent us from achieving the complete understanding and optimization of a complex system that would be needed to achieve a truly

  20. Rational modular design of metabolic network for efficient production of plant polyphenol pinosylvin.

    Science.gov (United States)

    Wu, Junjun; Zhang, Xia; Zhu, Yingjie; Tan, Qinyu; He, Jiacheng; Dong, Mingsheng

    2017-05-03

    Efficient biosynthesis of the plant polyphenol pinosylvin, which has numerous applications in nutraceuticals and pharmaceuticals, is necessary to make biological production economically viable. To this end, an efficient Escherichia coli platform for pinosylvin production was developed via a rational modular design approach. Initially, different candidate pathway enzymes were screened to construct de novo pinosylvin pathway directly from D-glucose. A comparative analysis of pathway intermediate pools identified that this initial construct led to the intermediate cinnamic acid accumulation. The pinosylvin synthetic pathway was then divided into two new modules separated at cinnamic acid. Combinatorial optimization of transcriptional and translational levels of these two modules resulted in a 16-fold increase in pinosylvin titer. To further improve the concentration of the limiting precursor malonyl-CoA, the malonyl-CoA synthesis module based on clustered regularly interspaced short palindromic repeats interference was assembled and optimized with other two modules. The final pinosylvin titer was improved to 281 mg/L, which was the highest pinosylvin titer even directly from D-glucose without any additional precursor supplementation. The rational modular design approach described here could bolster our capabilities in synthetic biology for value-added chemical production.

  1. Cofactor specificity switch in Shikimate dehydrogenase by rational design and consensus engineering.

    Science.gov (United States)

    García-Guevara, Fernando; Bravo, Iris; Martínez-Anaya, Claudia; Segovia, Lorenzo

    2017-08-01

    Consensus engineering has been used to design more stable variants using the most frequent amino acid at each site of a multiple sequence alignment; sometimes consensus engineering modifies function, but efforts have mainly been focused on studying stability. Here we constructed a consensus Rossmann domain for the Shikimate dehydrogenase enzyme; separately we decided to switch the cofactor specificity through rational design in the Escherichia coli Shikimate dehydrogenase enzyme and then analyzed the effect of consensus mutations on top of our design. We found that consensus mutations closest to the 2' adenine moiety increased the activity in our design. Consensus engineering has been shown to result in more stable proteins and our findings suggest it could also be used as a complementary tool for increasing or modifying enzyme activity during design. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. The Role of Extracellular Histones in Influenza Virus Pathogenesis.

    Science.gov (United States)

    Ashar, Harshini K; Mueller, Nathan C; Rudd, Jennifer M; Snider, Timothy A; Achanta, Mallika; Prasanthi, Maram; Pulavendran, Sivasami; Thomas, Paul G; Ramachandran, Akhilesh; Malayer, Jerry R; Ritchey, Jerry W; Rajasekhar, Rachakatla; Chow, Vincent T K; Esmon, Charles T; Teluguakula, Narasaraju

    2018-01-01

    Although exaggerated host immune responses have been implicated in influenza-induced lung pathogenesis, the etiologic factors that contribute to these events are not completely understood. We previously demonstrated that neutrophil extracellular traps exacerbate pulmonary injury during influenza pneumonia. Histones are the major protein components of neutrophil extracellular traps and are known to have cytotoxic effects. Here, we examined the role of extracellular histones in lung pathogenesis during influenza. Mice infected with influenza virus displayed high accumulation of extracellular histones, with widespread pulmonary microvascular thrombosis. Occluded pulmonary blood vessels with vascular thrombi often exhibited endothelial necrosis surrounded by hemorrhagic effusions and pulmonary edema. Histones released during influenza induced cytotoxicity and showed strong binding to platelets within thrombi in infected mouse lungs. Nasal wash samples from influenza-infected patients also showed increased accumulation of extracellular histones, suggesting a possible clinical relevance of elevated histones in pulmonary injury. Although histones inhibited influenza growth in vitro, in vivo treatment with histones did not yield antiviral effects and instead exacerbated lung pathology. Blocking with antihistone antibodies caused a marked decrease in lung pathology in lethal influenza-challenged mice and improved protection when administered in combination with the antiviral agent oseltamivir. These findings support the pathogenic effects of extracellular histones in that pulmonary injury during influenza was exacerbated. Targeting histones provides a novel therapeutic approach to influenza pneumonia. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  3. Rational Emotive Education

    Science.gov (United States)

    Knaus, William

    1977-01-01

    Rational Emotive Education--an outgrowth of theories developed by Albert Ellis--is a teaching design of mental health concepts and problem-solving activities designed to help students to approach and cope with their problems through experiential learning, via a structured, thematic sequence of emotive education lessons. (MJB)

  4. Rational design of capillary-driven flows for paper-based microfluidics.

    Science.gov (United States)

    Elizalde, Emanuel; Urteaga, Raúl; Berli, Claudio L A

    2015-05-21

    The design of paper-based assays that integrate passive pumping requires a precise programming of the fluid transport, which has to be encoded in the geometrical shape of the substrate. This requirement becomes critical in multiple-step processes, where fluid handling must be accurate and reproducible for each operation. The present work theoretically investigates the capillary imbibition in paper-like substrates to better understand fluid transport in terms of the macroscopic geometry of the flow domain. A fluid dynamic model was derived for homogeneous porous substrates with arbitrary cross-sectional shapes, which allows one to determine the cross-sectional profile required for a prescribed fluid velocity or mass transport rate. An extension of the model to slit microchannels is also demonstrated. Calculations were validated by experiments with prototypes fabricated in our lab. The proposed method constitutes a valuable tool for the rational design of paper-based assays.

  5. Attenuation of Vibrio fischeri quorum sensing using rationally designed polymers.

    Science.gov (United States)

    Piletska, Elena V; Stavroulakis, Georgios; Karim, Kal; Whitcombe, Michael J; Chianella, Iva; Sharma, Anant; Eboigbodin, Kevin E; Robinson, Gary K; Piletsky, Sergey A

    2010-04-12

    A first attempt to attenuate the quorum sensing (QS) of a marine heterotroph microorganism, Vibrio fischeri , using signal molecule-sequestering polymers (SSPs) is presented. A set of rationally designed polymers with affinity toward a signal molecule of V. fischeri , N-(beta-ketocaproyl)-l-homoserine lactone (3-oxo-C6-AHL) was produced. It is reported that computationally designed polymers could sequester a signal molecule of V. fischeri and prevent QS-controlled phenotypes (in this case, bioluminescence) from being up-regulated. It was proven that the attenuation of bioluminescence of V. fischeri was due to sequestration of the signal molecule by specific polymers and not due to the toxicity of polymer or nonspecific depletion of nutrients. The ability to disrupt the bacterial communication using easy to synthesize and chemically inert polymers could provide a new concept for the development of pharmaceuticals and susceptible device coatings such as catheters.

  6. Histone methylation and aging: Lessons learned from model systems

    Science.gov (United States)

    McCauley, Brenna S.; Dang, Weiwei

    2014-01-01

    Aging induces myriad cellular and, ultimately, physiological changes that cause a decline in an organism's functional capabilities. Although the aging process and pathways that regulate it have been extensively studied, only in the last decade have we begun to appreciate that dynamic histone methylation may contribute to this process. In this review, we discuss recent work implicating histone methylation in aging. Loss of certain histone methyltransferases and demethylases changes lifespan in invertebrates, and alterations in histone methylation in aged organisms regulate lifespan and aging phenotypes, including oxidative stress-induced hormesis in yeast, insulin signaling in Caenorhabiditis elegans and mammals, and the senescence-associated secretory phenotype in mammals. In all cases where histone methylation has been shown to impact aging and aging phenotypes, it does so by regulating transcription, suggesting that this is a major mechanism of its action in this context. Histone methylation additionally regulates or is regulated by other cellular pathways that contribute to or combat aging. Given the numerous processes that regulate aging and histone methylation, and are in turn regulated by them, the role of histone methylation in aging is almost certainly underappreciated. PMID:24859460

  7. Dynamics of Histone Tails within Chromatin

    Science.gov (United States)

    Bernier, Morgan; North, Justin; Page, Michael; Jaroniec, Christopher; Hammel, Christopher; Poirier, Michael

    2012-02-01

    Genetic information in humans is encoded within DNA molecules that is wrapped around histone octamer proteins and compacted into a highly conserved structural polymer, chromatin. The physical and material properties of chromatin appear to influence gene expression by altering the accessibility of proteins to the DNA. The tails of the histones are flexible domains that are thought to play a role in regulating DNA accessibility and compaction; however the molecular mechanisms for these phenomena are not understood. I will present CW-EPR studies on site directed spin labeled nucleosomes that probe the structure and dynamics of these histone tails within nucleosomes.

  8. The histones of the endosymbiont alga of Peridinium balticum (Dinophyceae).

    Science.gov (United States)

    Rizzo, P J; Morris, R L; Zweidler, A

    1988-01-01

    The histones of the endosymbiont nucleus of the binucleate dinoflagellate Peridinium balticum were characterized by amino acid analysis and peptide mapping, and compared to calf thymus histones. Using these and various other criteria we have identified two H1-like histones as well as the highly conserved histones H3 and H4. A 13,000 dalton component in sodium dodecyl sulphate (SDS) gels can be separated into two components in Triton-containing gels. We suggest that these histones (HPb1 and HPb2) correspond to the vertebrate histones H2A and H2B, respectively.

  9. Regulation of replication fork progression through histone supply and demand

    DEFF Research Database (Denmark)

    Groth, Anja; Corpet, Armelle; Cook, Adam J L

    2007-01-01

    DNA replication in eukaryotes requires nucleosome disruption ahead of the replication fork and reassembly behind. An unresolved issue concerns how histone dynamics are coordinated with fork progression to maintain chromosomal stability. Here, we characterize a complex in which the human histone c...... progression and histone supply and demand.......1 chaperone function, histone supply, and replicative unwinding of DNA in chromatin. We propose that Asf1, as a histone acceptor and donor, handles parental and new histones at the replication fork via an Asf1-(H3-H4)-MCM2-7 intermediate and thus provides a means to fine-tune replication fork...

  10. Structural Mechanisms of Nucleosome Recognition by Linker Histones.

    Science.gov (United States)

    Zhou, Bing-Rui; Jiang, Jiansheng; Feng, Hanqiao; Ghirlando, Rodolfo; Xiao, T Sam; Bai, Yawen

    2015-08-20

    Linker histones bind to the nucleosome and regulate the structure of chromatin and gene expression. Despite more than three decades of effort, the structural basis of nucleosome recognition by linker histones remains elusive. Here, we report the crystal structure of the globular domain of chicken linker histone H5 in complex with the nucleosome at 3.5 Å resolution, which is validated using nuclear magnetic resonance spectroscopy. The globular domain sits on the dyad of the nucleosome and interacts with both DNA linkers. Our structure integrates results from mutation analyses and previous cross-linking and fluorescence recovery after photobleach experiments, and it helps resolve the long debate on structural mechanisms of nucleosome recognition by linker histones. The on-dyad binding mode of the H5 globular domain is different from the recently reported off-dyad binding mode of Drosophila linker histone H1. We demonstrate that linker histones with different binding modes could fold chromatin to form distinct higher-order structures. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Considerations for the rational design of a Chlamydia vaccine.

    Science.gov (United States)

    Liang, Steven; Bulir, David; Kaushic, Charu; Mahony, James

    2017-04-03

    Chlamydia trachomatis is the leading cause of preventable blindness and the most common bacterial sexually transmitted infection. Remarkable progress in vaccine research over the past six decades has led to the advancement of novel C. trachomatis vaccine candidates into clinical trials. However, many questions regarding the role of specific cellular populations and molecular mechanisms in protective immunity against human C. trachomatis genital tract infections remain unanswered. Biomarkers of vaccine induced protective immunity are elusive in humans, while a cautionary message on the translatability of data obtained from current animal models has emanated from vaccine research and development efforts against other important human pathogens. In this commentary, we highlight recent advances in Chlamydia vaccine development and discuss their implications in the context of a rational approach to the design of a human C. trachomatis vaccine.

  12. Development of rational design technique for frame steel structure combining seismic resistance and economic performance

    International Nuclear Information System (INIS)

    Kato, Motoki; Morishita, Kunihiro; Shimono, Masaki; Chuman, Yasuharu; Okafuji, Takashi; Monaka, Toshiaki

    2015-01-01

    Anti-seismic designs have been applied to plant support steel frames for years. Today, a rational structure that further improves seismic resistance and ensures economic performance is required in response to an increase of seismic load on the assumption of predicted future massive earthquakes. For satisfying this requirement, a steel frame design method that combines a steel frame weight minimizing method, which enables economic design through simultaneous minimization of multiple steel frame materials, and a seismic response control design technology that improves seismic resistance has been established. Its application in the design of real structures has been promoted. This paper gives an overview of this design technology and presents design examples to which this design technology is applied. (author)

  13. Histone deacetylase inhibitors promote the tumoricidal effect of HAMLET.

    Science.gov (United States)

    Brest, Patrick; Gustafsson, Mattias; Mossberg, Ann-Kristin; Gustafsson, Lotta; Duringer, Caroline; Hamiche, Ali; Svanborg, Catharina

    2007-12-01

    Histone deacetylase inhibitors (HDIs) and HAMLET (human alpha-lactalbumin made lethal to tumor cells) interact with histones, modify the structure of chromatin, and trigger tumor cell death. This study investigated how the combination of HDIs and HAMLET influences cell viability, histone acetylation, and DNA integrity. The pretreatment of tumor cells with HDIs was shown to enhance the lethal effect of HAMLET and the histone hyperacetylation response to HDIs increased even further after HAMLET treatment. HDIs and HAMLET were shown to target different histone domains as HAMLET bound tailless core histones, whereas HDIs modify the acetylation of the histone tail. DNA damage in response to HAMLET was increased by HDIs. The DNA repair response (p21WAFI expression) was induced by both agonists but abolished when the two agonists were combined. The results suggest that the synergy of HDIs and HAMLET is based on different but converging death pathways, both involving chromatin alterations. We speculate that HAMLET and HDIs might be combined to promote tumor cell death in vivo.

  14. Histone acetylation regulates the time of replication origin firing.

    Science.gov (United States)

    Vogelauer, Maria; Rubbi, Liudmilla; Lucas, Isabelle; Brewer, Bonita J; Grunstein, Michael

    2002-11-01

    The temporal firing of replication origins throughout S phase in yeast depends on unknown determinants within the adjacent chromosomal environment. We demonstrate here that the state of histone acetylation of surrounding chromatin is an important regulator of temporal firing. Deletion of RPD3 histone deacetylase causes earlier origin firing and concurrent binding of the replication factor Cdc45p to origins. In addition, increased acetylation of histones in the vicinity of the late origin ARS1412 by recruitment of the histone acetyltransferase Gcn5p causes ARS1412 alone to fire earlier. These data indicate that histone acetylation is a direct determinant of the timing of origin firing.

  15. Identification and characterization of the genes encoding the core histones and histone variants of Neurospora crassa.

    OpenAIRE

    Hays, Shan M; Swanson, Johanna; Selker, Eric U

    2002-01-01

    We have identified and characterized the complete complement of genes encoding the core histones of Neurospora crassa. In addition to the previously identified pair of genes that encode histones H3 and H4 (hH3 and hH4-1), we identified a second histone H4 gene (hH4-2), a divergently transcribed pair of genes that encode H2A and H2B (hH2A and hH2B), a homolog of the F/Z family of H2A variants (hH2Az), a homolog of the H3 variant CSE4 from Saccharomyces cerevisiae (hH3v), and a highly diverged ...

  16. Histones as mediators of host defense, inflammation and thrombosis

    OpenAIRE

    Hoeksema, Marloes; van Eijk, Martin; Haagsman, Henk P; Hartshorn, Kevan L

    2016-01-01

    Histones are known for their ability to bind to and regulate expression of DNA. However, histones are also present in cytoplasm and extracellular fluids where they serve host defense functions and promote inflammatory responses. Histones are a major component of neutrophil extracellular traps that contribute to bacterial killing but also to inflammatory injury. Histones can act as antimicrobial peptides and directly kill bacteria, fungi, parasites and viruses, in vitro and in a variety of ani...

  17. Heparin defends against the toxicity of circulating histones in sepsis.

    Science.gov (United States)

    Wang, Feifei; Zhang, Naipu; Li, Biru; Liu, Lanbo; Ding, Lei; Wang, Ying; Zhu, Yimin; Mo, Xi; Cao, Qing

    2015-06-01

    Although circulating histones were demonstrated as major mediators of death in septic mice models, their roles in septic patients are not clarified. The present study sought to evaluate the clinical relevance of the circulating histone levels in septic children, and the antagonizing effects of heparin on circulating histones. Histone levels in the plasma of septic children were significantly higher than healthy controls, and positively correlated with disease severity. Histone treatment could activate NF-κB pathway of the endothelial cells and induce the secretion of large amount of cytokines that further amplify inflammation, subsequently leading to organ damage. Co-injection of low dose heparin with lethal dose histones could protect mouse from organ damage and death by antagonizing circulating histones, and similar effects were also observed in other septic models. Collectively, these findings indicated that circulating histones might serve as key factors in the pathogenesis of sepsis and their levels in plasma might be a marker for disease progression and prognosis. Furthermore, low dose heparin might be an effective therapy to hamper sepsis progression and reduce the mortality.

  18. Macrocyclic Peptoid–Peptide Hybrids as Inhibitors of Class I Histone Deacetylases

    DEFF Research Database (Denmark)

    Olsen, Christian Adam; Montero, Ana; Leman, Luke J.

    2012-01-01

    We report the design, synthesis, and biological evaluation of the first macrocyclic peptoid-containing histone deacetylase (HDAC) inhibitors. The compounds selectively inhibit human class I HDAC isoforms in vitro, with no inhibition of the tubulin deacetylase activity associated with class IIb HDAC...

  19. Histones as mediators of host defense, inflammation and thrombosis

    NARCIS (Netherlands)

    Hoeksema, Marloes; Eijk, Martin van; Haagsman, Henk P; Hartshorn, Kevan L

    2016-01-01

    Histones are known for their ability to bind to and regulate expression of DNA. However, histones are also present in cytoplasm and extracellular fluids where they serve host defense functions and promote inflammatory responses. Histones are a major component of neutrophil extracellular traps that

  20. Dysregulation of Histone Acetyltransferases and Deacetylases in Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Yonggang Wang

    2014-01-01

    Full Text Available Cardiovascular disease (CVD remains a leading cause of mortality worldwide despite advances in its prevention and management. A comprehensive understanding of factors which contribute to CVD is required in order to develop more effective treatment options. Dysregulation of epigenetic posttranscriptional modifications of histones in chromatin is thought to be associated with the pathology of many disease models, including CVD. Histone acetyltransferases (HATs and deacetylases (HDACs are regulators of histone lysine acetylation. Recent studies have implicated a fundamental role of reversible protein acetylation in the regulation of CVDs such as hypertension, pulmonary hypertension, diabetic cardiomyopathy, coronary artery disease, arrhythmia, and heart failure. This reversible acetylation is governed by enzymes that HATs add or HDACs remove acetyl groups respectively. New evidence has revealed that histone acetylation regulators blunt cardiovascular and related disease states in certain cellular processes including myocyte hypertrophy, apoptosis, fibrosis, oxidative stress, and inflammation. The accumulating evidence of the detrimental role of histone acetylation in cardiac disease combined with the cardioprotective role of histone acetylation regulators suggests that the use of histone acetylation regulators may serve as a novel approach to treating the millions of patients afflicted by cardiac diseases worldwide.

  1. Novel chemokine-like activities of histones in tumor metastasis.

    Science.gov (United States)

    Chen, Ruochan; Xie, Yangchun; Zhong, Xiao; Fu, Yongmin; Huang, Yan; Zhen, Yixiang; Pan, Pinhua; Wang, Haichao; Bartlett, David L; Billiar, Timothy R; Lotze, Michael T; Zeh, Herbert J; Fan, Xue-Gong; Tang, Daolin; Kang, Rui

    2016-09-20

    Histones are intracellular nucleosomal components and extracellular damage-associated molecular pattern molecules that modulate chromatin remodeling, as well as the immune response. However, their extracellular roles in cell migration and invasion remain undefined. Here, we demonstrate that histones are novel regulators of tumor metastasis with chemokine-like activities. Indeed, exogenous histones promote both hepatocellular carcinoma (HCC) cell migration and invasion through toll-like receptor (TLR)4, but not TLR2 or the receptor for advanced glycosylation end product. TLR4-mediated activation of nuclear factor-κB (NF-κB) by extracellular signal-regulated kinase (ERK) is required for histone-induced chemokine (e.g., C-C motif ligand 9/10) production. Pharmacological and genetic inhibition of TLR4-ERK-NF-κB signaling impairs histone-induced chemokine production and HCC cell migration. Additionally, TLR4 depletion (by using TLR4-/- mice and TLR4-shRNA) or inhibition of histone release/activity (by administration of heparin and H3 neutralizing antibody) attenuates lung metastasis of HCC cells injected via the tail vein of mice. Thus, histones promote tumor metastasis of HCC cells through the TLR4-NF-κB pathway and represent novel targets for treating patients with HCC.

  2. Genome-wide analysis of regions similar to promoters of histone genes

    KAUST Repository

    Chowdhary, Rajesh

    2010-05-28

    Background: The purpose of this study is to: i) develop a computational model of promoters of human histone-encoding genes (shortly histone genes), an important class of genes that participate in various critical cellular processes, ii) use the model so developed to identify regions across the human genome that have similar structure as promoters of histone genes; such regions could represent potential genomic regulatory regions, e.g. promoters, of genes that may be coregulated with histone genes, and iii/ identify in this way genes that have high likelihood of being coregulated with the histone genes.Results: We successfully developed a histone promoter model using a comprehensive collection of histone genes. Based on leave-one-out cross-validation test, the model produced good prediction accuracy (94.1% sensitivity, 92.6% specificity, and 92.8% positive predictive value). We used this model to predict across the genome a number of genes that shared similar promoter structures with the histone gene promoters. We thus hypothesize that these predicted genes could be coregulated with histone genes. This hypothesis matches well with the available gene expression, gene ontology, and pathways data. Jointly with promoters of the above-mentioned genes, we found a large number of intergenic regions with similar structure as histone promoters.Conclusions: This study represents one of the most comprehensive computational analyses conducted thus far on a genome-wide scale of promoters of human histone genes. Our analysis suggests a number of other human genes that share a high similarity of promoter structure with the histone genes and thus are highly likely to be coregulated, and consequently coexpressed, with the histone genes. We also found that there are a large number of intergenic regions across the genome with their structures similar to promoters of histone genes. These regions may be promoters of yet unidentified genes, or may represent remote control regions that

  3. Application of Absorption Modeling in Rational Design of Drug Product Under Quality-by-Design Paradigm.

    Science.gov (United States)

    Kesisoglou, Filippos; Mitra, Amitava

    2015-09-01

    Physiologically based absorption models can be an important tool in understanding product performance and hence implementation of Quality by Design (QbD) in drug product development. In this report, we show several case studies to demonstrate the potential application of absorption modeling in rational design of drug product under the QbD paradigm. The examples include application of absorption modeling—(1) prior to first-in-human studies to guide development of a formulation with minimal sensitivity to higher gastric pH and hence reduced interaction when co-administered with PPIs and/or H2RAs, (2) design of a controlled release formulation with optimal release rate to meet trough plasma concentrations and enable QD dosing, (3) understanding the impact of API particle size distribution on tablet bioavailability and guide formulation design in late-stage development, (4) assess impact of API phase change on product performance to guide specification setting, and (5) investigate the effect of dissolution rate changes on formulation bioperformance and enable appropriate specification setting. These case studies are meant to highlight the utility of physiologically based absorption modeling in gaining a thorough understanding of the product performance and the critical factors impacting performance to drive design of a robust drug product that would deliver the optimal benefit to the patients.

  4. Plant Responses to Abiotic Stress Regulated by Histone Deacetylases

    Directory of Open Access Journals (Sweden)

    Ming Luo

    2017-12-01

    Full Text Available In eukaryotic cells, histone acetylation and deacetylation play an important role in the regulation of gene expression. Histone acetylation levels are modulated by histone acetyltransferases and histone deacetylases (HDACs. Recent studies indicate that HDACs play essential roles in the regulation of gene expression in plant response to environmental stress. In this review, we discussed the recent advance regarding the plant HDACs and their functions in the regulation of abiotic stress responses. The role of HDACs in autophagy was also discussed.

  5. Arginine-rich histones have strong antiviral activity for influenza A viruses.

    Science.gov (United States)

    Hoeksema, Marloes; Tripathi, Shweta; White, Mitchell; Qi, Li; Taubenberger, Jeffery; van Eijk, Martin; Haagsman, Henk; Hartshorn, Kevan L

    2015-10-01

    While histones are best known for DNA binding and transcription-regulating properties, they also have antimicrobial activity against a broad range of potentially pathogenic organisms. Histones are abundant in neutrophil extracellular traps, where they play an important role in NET-mediated antimicrobial killing. Here, we show anti-influenza activity of histones against both seasonal H3N2 and H1N1, but not pandemic H1N1. The arginine rich histones, H3 and H4, had greater neutralizing and viral aggregating activity than the lysine rich histones, H2A and H2B. Of all core histones, histone H4 is most potent in neutralizing IAV, and incubation with IAV with histone H4 results in a decrease in uptake and viral replication by epithelial cells when measured by qRT-PCR. The antiviral activity of histone H4 is mediated principally by direct effects on viral particles. Histone H4 binds to IAV as assessed by ELISA and co-sedimentation of H4 with IAV. H4 also induces aggregation, as assessed by confocal microscopy and light transmission assays. Despite strong antiviral activity against the seasonal IAV strains, H4 was inactive against pandemic H1N1. These findings indicate a possible role for histones in the innate immune response against IAV. © The Author(s) 2015.

  6. Acid-Urea Gel Electrophoresis and Western Blotting of Histones.

    Science.gov (United States)

    Hazzalin, Catherine A; Mahadevan, Louis C

    2017-01-01

    Acid-urea gel electrophoresis offers significant advantages over SDS-PAGE for analysis of post-translational protein modifications, being capable of resolving proteins of similar size but varying in charge. Hence, it can be used to separate protein variants with small charge-altering differences in primary sequence, and is particularly useful in the analysis of histones whose charge variation arises from post-translational modification, such as phosphorylation or acetylation. On acid-urea gels, histones that carry multiple modifications, each with a characteristic charge, are resolved into distinct bands, the so-called "histone ladder." Thus, the extent and distribution of different modification states of histones can be visualized. Here, we describe the analysis of histone H3 by acid-urea gel electrophoresis and western blotting.

  7. The role of extracellular histones in haematological disorders.

    Science.gov (United States)

    Alhamdi, Yasir; Toh, Cheng-Hock

    2016-06-01

    Over the past decades, chromosomal alterations have been extensively investigated for their pathophysiological relevance in haematological malignancies. In particular, epigenetic modifications of intra-nuclear histones are now known as key regulators of healthy cell cycles that have also evolved into novel therapeutic targets for certain blood cancers. Thus, for most haematologists, histones are DNA-chained proteins that are buried deep within chromatin. However, the plot has deepened with recent revelations on the function of histones when unchained and released extracellularly upon cell death or from activated neutrophils as part of neutrophil extracellular traps (NETs). Extracellular histones and NETs are increasingly recognized for profound cytotoxicity and pro-coagulant effects. This article highlights the importance of recognizing this new paradigm of extracellular histones as a key player in host defence through its damage-associated molecular patterns, which could translate into novel diagnostic and therapeutic biomarkers in various haematological and critical disorders. © 2016 John Wiley & Sons Ltd.

  8. Circulating histones are mediators of trauma-associated lung injury.

    Science.gov (United States)

    Abrams, Simon T; Zhang, Nan; Manson, Joanna; Liu, Tingting; Dart, Caroline; Baluwa, Florence; Wang, Susan Siyu; Brohi, Karim; Kipar, Anja; Yu, Weiping; Wang, Guozheng; Toh, Cheng-Hock

    2013-01-15

    Acute lung injury is a common complication after severe trauma, which predisposes patients to multiple organ failure. This syndrome largely accounts for the late mortality that arises and despite many theories, the pathological mechanism is not fully understood. Discovery of histone-induced toxicity in mice presents a new dimension for elucidating the underlying pathophysiology. To investigate the pathological roles of circulating histones in trauma-induced lung injury. Circulating histone levels in patients with severe trauma were determined and correlated with respiratory failure and Sequential Organ Failure Assessment (SOFA) scores. Their cause-effect relationship was studied using cells and mouse models. In a cohort of 52 patients with severe nonthoracic blunt trauma, circulating histones surged immediately after trauma to levels that were toxic to cultured endothelial cells. The high levels were significantly associated with the incidence of acute lung injury and SOFA scores, as well as markers of endothelial damage and coagulation activation. In in vitro systems, histones damaged endothelial cells, stimulated cytokine release, and induced neutrophil extracellular trap formation and myeloperoxidase release. Cellular toxicity resulted from their direct membrane interaction and resultant calcium influx. In mouse models, cytokines and markers for endothelial damage and coagulation activation significantly increased immediately after trauma or histone infusion. Pathological examinations showed that lungs were the predominantly affected organ with edema, hemorrhage, microvascular thrombosis, and neutrophil congestion. An anti-histone antibody could reduce these changes and protect mice from histone-induced lethality. This study elucidates a new mechanism for acute lung injury after severe trauma and proposes that circulating histones are viable therapeutic targets for improving survival outcomes in patients.

  9. Circulating Histones Are Mediators of Trauma-associated Lung Injury

    Science.gov (United States)

    Abrams, Simon T.; Zhang, Nan; Manson, Joanna; Liu, Tingting; Dart, Caroline; Baluwa, Florence; Wang, Susan Siyu; Brohi, Karim; Kipar, Anja; Yu, Weiping

    2013-01-01

    Rationale: Acute lung injury is a common complication after severe trauma, which predisposes patients to multiple organ failure. This syndrome largely accounts for the late mortality that arises and despite many theories, the pathological mechanism is not fully understood. Discovery of histone-induced toxicity in mice presents a new dimension for elucidating the underlying pathophysiology. Objectives: To investigate the pathological roles of circulating histones in trauma-induced lung injury. Methods: Circulating histone levels in patients with severe trauma were determined and correlated with respiratory failure and Sequential Organ Failure Assessment (SOFA) scores. Their cause–effect relationship was studied using cells and mouse models. Measurements and Main Results: In a cohort of 52 patients with severe nonthoracic blunt trauma, circulating histones surged immediately after trauma to levels that were toxic to cultured endothelial cells. The high levels were significantly associated with the incidence of acute lung injury and SOFA scores, as well as markers of endothelial damage and coagulation activation. In in vitro systems, histones damaged endothelial cells, stimulated cytokine release, and induced neutrophil extracellular trap formation and myeloperoxidase release. Cellular toxicity resulted from their direct membrane interaction and resultant calcium influx. In mouse models, cytokines and markers for endothelial damage and coagulation activation significantly increased immediately after trauma or histone infusion. Pathological examinations showed that lungs were the predominantly affected organ with edema, hemorrhage, microvascular thrombosis, and neutrophil congestion. An anti-histone antibody could reduce these changes and protect mice from histone-induced lethality. Conclusions: This study elucidates a new mechanism for acute lung injury after severe trauma and proposes that circulating histones are viable therapeutic targets for improving survival

  10. Phosphorylation of rat thymus histones, its control and the effects thereon of γ-irradiation

    International Nuclear Information System (INIS)

    Fonagy, A.; Ord, M.G.; Stocken, L.A.

    1977-01-01

    The phosphate content of rat thymus histones was determined. As expected for a replicating tissue, histones 1 and 2B were more phosphorylated and had higher 32 P uptakes than did histones from resting liver nuclei; the other histones all showed 32 P uptake, but the phosphate content and uptake of histone 2A was about half that for liver histone 2A. When thymus nuclei were incubated in a slightly hypo-osmotic medium, non-histone proteins and phosphorylated histones were released into solution; this was enhanced if ATP was present in the medium. [γ- 32 P]ATP was incorporated into non-histone proteins, including Pl, and into the ADP-ribosylated form of histone 1; negligible 32 P was incorporated into the other, bound, histones. Histones 1 and 2B added to the incubation medium were extensively, and histones 2A and 4 slightly, phosphorylated. Histones released by increasing the ionic strength of the medium were phosphorylated. Added lysozyme and cytochrome c were neither bound nor phosphorylated, but added non-histone protein Pl was phosphorylated, causing other histones to be released from the nuclei, especially histones 2A and 3. The released histones were phosphorylated. γ-irradiation decreased 32 P uptake into the non-ADP-ribosylated histones 1 and 4; phosphorylation of histone 1 in vitro was unaffected. The importance of non-histone proteins, ATP availability and nuclear protein kinases to the control of histone phosphorylation in vivo is discussed. (author)

  11. Germline-specific H1 variants: the "sexy" linker histones.

    Science.gov (United States)

    Pérez-Montero, Salvador; Carbonell, Albert; Azorín, Fernando

    2016-03-01

    The eukaryotic genome is packed into chromatin, a nucleoprotein complex mainly formed by the interaction of DNA with the abundant basic histone proteins. The fundamental structural and functional subunit of chromatin is the nucleosome core particle, which is composed by 146 bp of DNA wrapped around an octameric protein complex formed by two copies of each core histone H2A, H2B, H3, and H4. In addition, although not an intrinsic component of the nucleosome core particle, linker histone H1 directly interacts with it in a monomeric form. Histone H1 binds nucleosomes near the exit/entry sites of linker DNA, determines nucleosome repeat length and stabilizes higher-order organization of nucleosomes into the ∼30 nm chromatin fiber. In comparison to core histones, histone H1 is less well conserved through evolution. Furthermore, histone H1 composition in metazoans is generally complex with most species containing multiple variants that play redundant as well as specific functions. In this regard, a characteristic feature is the presence of specific H1 variants that replace somatic H1s in the germline and during early embryogenesis. In this review, we summarize our current knowledge about their structural and functional properties.

  12. Rational design of hierarchical ZnO@Carbon nanoflower for high performance lithium ion battery anodes

    Science.gov (United States)

    liu, Huichao; Shi, Ludi; Li, Dongzhi; Yu, Jiali; Zhang, Han-Ming; Ullah, Shahid; Yang, Bo; Li, Cuihua; Zhu, Caizhen; Xu, Jian

    2018-05-01

    The rational structure design and strong interfacial bonding are crucially desired for high performance zinc oxide (ZnO)/carbon composite electrodes. In this context, micro-nano secondary structure design and strong dopamine coating strategies are adopted for the fabrication of flower-like ZnO/carbon (ZnO@C nanoflowers) composite electrodes. The results show the ZnO@C nanoflowers (2-6 μm) are assembled by hierarchical ZnO nanosheets (∼27 nm) and continuous carbon framework. The micro-nano secondary architecture can facilitate the penetration of electrolyte, shorten lithium ions diffusion length, and hinder the aggregation of the nanosheets. Moreover, the strong chemical interaction between ZnO and coating carbon layer via C-Zn bond improves structure stability as well as the electronic conductivity. As a synergistic result, when evaluated as lithium ion batteries (LIBs) anode, the ZnO@C nanoflower electrodes show high reversible capacity of ca. 1200 mA h g-1 at 0.1 A g-1 after 80 cycles. As well as good long-cycling stability (638 and 420 mA h g-1 at 1 and 5 A g-1 after 500 cycles, respectively) and excellent rate capability. Therefore, this rational design of ZnO@C nanoflowers electrode is a promising anode for high-performance LIBs.

  13. Histone H4 Lysine 20 methylation

    DEFF Research Database (Denmark)

    Jørgensen, Stine; Schotta, Gunnar; Sørensen, Claus Storgaard

    2013-01-01

    of histones have emerged as key regulators of genomic integrity. Intense research during the past few years has revealed histone H4 lysine 20 methylation (H4K20me) as critically important for the biological processes that ensure genome integrity, such as DNA damage repair, DNA replication and chromatin...... compaction. The distinct H4K20 methylation states are mediated by SET8/PR-Set7 that catalyses monomethylation of H4K20, whereas SUV4-20H1 and SUV4-20H2 enzymes mediate further H4K20 methylation to H4K20me2 and H4K20me3. Disruption of these H4K20-specific histone methyltransferases leads to genomic...

  14. Histone Acetylome-wide Association Study of Autism Spectrum Disorder.

    Science.gov (United States)

    Sun, Wenjie; Poschmann, Jeremie; Cruz-Herrera Del Rosario, Ricardo; Parikshak, Neelroop N; Hajan, Hajira Shreen; Kumar, Vibhor; Ramasamy, Ramalakshmi; Belgard, T Grant; Elanggovan, Bavani; Wong, Chloe Chung Yi; Mill, Jonathan; Geschwind, Daniel H; Prabhakar, Shyam

    2016-11-17

    The association of histone modification changes with autism spectrum disorder (ASD) has not been systematically examined. We conducted a histone acetylome-wide association study (HAWAS) by performing H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq) on 257 postmortem samples from ASD and matched control brains. Despite etiological heterogeneity, ≥68% of syndromic and idiopathic ASD cases shared a common acetylome signature at >5,000 cis-regulatory elements in prefrontal and temporal cortex. Similarly, multiple genes associated with rare genetic mutations in ASD showed common "epimutations." Acetylome aberrations in ASD were not attributable to genetic differentiation at cis-SNPs and highlighted genes involved in synaptic transmission, ion transport, epilepsy, behavioral abnormality, chemokinesis, histone deacetylation, and immunity. By correlating histone acetylation with genotype, we discovered >2,000 histone acetylation quantitative trait loci (haQTLs) in human brain regions, including four candidate causal variants for psychiatric diseases. Due to the relative stability of histone modifications postmortem, we anticipate that the HAWAS approach will be applicable to multiple diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Biotinylation is a natural, albeit rare, modification of human histones

    Science.gov (United States)

    Kuroishi, Toshinobu; Rios-Avila, Luisa; Pestinger, Valerie; Wijeratne, Subhashinee S. K.; Zempleni, Janos

    2011-01-01

    Previous studies suggest that histones H3 and H4 are posttranslationally modified by binding of the vitamin biotin, catalyzed by holocarboxylase synthetase (HCS). Albeit a rare epigenetic mark, biotinylated histones were repeatedly shown to be enriched in repeat regions and repressed loci, participating in the maintenance of genome stability and gene regulation. Recently, a team of investigators failed to detect biotinylated histones and proposed that biotinylation is not a natural modification of histones, but rather an assay artifact. Here, we describe the results of experiments, including the comparison of various analytical protocols, antibodies, cell lines, classes of histones, and radiotracers. These studies provide unambiguous evidence that biotinylation is a natural, albeit rare, histone modification. Less than 0.001% of human histones H3 and H4 are biotinylated, raising concerns that the abundance might too low to elicit biological effects in vivo. We integrated information from this study, previous studies, and ongoing research efforts to present a new working model in which biological effects are caused by a role of HCS in multiprotein complexes in chromatin. In this model, docking of HCS in chromatin causes the occasional binding of biotin to histones as a tracer for HCS binding sites. PMID:21930408

  16. Rational design of functional and tunable oscillating enzymatic networks

    Science.gov (United States)

    Semenov, Sergey N.; Wong, Albert S. Y.; van der Made, R. Martijn; Postma, Sjoerd G. J.; Groen, Joost; van Roekel, Hendrik W. H.; de Greef, Tom F. A.; Huck, Wilhelm T. S.

    2015-02-01

    Life is sustained by complex systems operating far from equilibrium and consisting of a multitude of enzymatic reaction networks. The operating principles of biology's regulatory networks are known, but the in vitro assembly of out-of-equilibrium enzymatic reaction networks has proved challenging, limiting the development of synthetic systems showing autonomous behaviour. Here, we present a strategy for the rational design of programmable functional reaction networks that exhibit dynamic behaviour. We demonstrate that a network built around autoactivation and delayed negative feedback of the enzyme trypsin is capable of producing sustained oscillating concentrations of active trypsin for over 65 h. Other functions, such as amplification, analog-to-digital conversion and periodic control over equilibrium systems, are obtained by linking multiple network modules in microfluidic flow reactors. The methodology developed here provides a general framework to construct dissipative, tunable and robust (bio)chemical reaction networks.

  17. Neutrophil Extracellular Trap-Related Extracellular Histones Cause Vascular Necrosis in Severe GN.

    Science.gov (United States)

    Kumar, Santhosh V R; Kulkarni, Onkar P; Mulay, Shrikant R; Darisipudi, Murthy N; Romoli, Simone; Thomasova, Dana; Scherbaum, Christina R; Hohenstein, Bernd; Hugo, Christian; Müller, Susanna; Liapis, Helen; Anders, Hans-Joachim

    2015-10-01

    Severe GN involves local neutrophil extracellular trap (NET) formation. We hypothesized a local cytotoxic effect of NET-related histone release in necrotizing GN. In vitro, histones from calf thymus or histones released by neutrophils undergoing NETosis killed glomerular endothelial cells, podocytes, and parietal epithelial cells in a dose-dependent manner. Histone-neutralizing agents such as antihistone IgG, activated protein C, or heparin prevented this effect. Histone toxicity on glomeruli ex vivo was Toll-like receptor 2/4 dependent, and lack of TLR2/4 attenuated histone-induced renal thrombotic microangiopathy and glomerular necrosis in mice. Anti-glomerular basement membrane GN involved NET formation and vascular necrosis, whereas blocking NET formation by peptidylarginine inhibition or preemptive anti-histone IgG injection significantly reduced all aspects of GN (i.e., vascular necrosis, podocyte loss, albuminuria, cytokine induction, recruitment or activation of glomerular leukocytes, and glomerular crescent formation). To evaluate histones as a therapeutic target, mice with established GN were treated with three different histone-neutralizing agents. Anti-histone IgG, recombinant activated protein C, and heparin were equally effective in abrogating severe GN, whereas combination therapy had no additive effects. Together, these results indicate that NET-related histone release during GN elicits cytotoxic and immunostimulatory effects. Furthermore, neutralizing extracellular histones is still therapeutic when initiated in established GN. Copyright © 2015 by the American Society of Nephrology.

  18. Identification of distinct SET/TAF-Ibeta domains required for core histone binding and quantitative characterisation of the interaction.

    Science.gov (United States)

    Karetsou, Zoe; Emmanouilidou, Anastasia; Sanidas, Ioannis; Liokatis, Stamatis; Nikolakaki, Eleni; Politou, Anastasia S; Papamarcaki, Thomais

    2009-04-09

    The assembly of nucleosomes to higher-order chromatin structures is finely tuned by the relative affinities of histones for chaperones and nucleosomal binding sites. The myeloid leukaemia protein SET/TAF-Ibeta belongs to the NAP1 family of histone chaperones and participates in several chromatin-based mechanisms, such as chromatin assembly, nucleosome reorganisation and transcriptional activation. To better understand the histone chaperone function of SET/TAF-Ibeta, we designed several SET/TAF-Ibeta truncations, examined their structural integrity by circular Dichroism and assessed qualitatively and quantitatively the histone binding properties of wild-type protein and mutant forms using GST-pull down experiments and fluorescence spectroscopy-based binding assays. Wild type SET/TAF-Ibeta binds to histones H2B and H3 with Kd values of 2.87 and 0.15 microM, respectively. The preferential binding of SET/TAF-Ibeta to histone H3 is mediated by its central region and the globular part of H3. On the contrary, the acidic C-terminal tail and the amino-terminal dimerisation domain of SET/TAF-Ibeta, as well as the H3 amino-terminal tail, are dispensable for this interaction. This type of analysis allowed us to assess the relative affinities of SET/TAF-Ibeta for different histones and identify the domains of the protein required for effective histone recognition. Our findings are consistent with recent structural studies of SET/TAF-Ibeta and can be valuable to understand the role of SET/TAF-Ibeta in chromatin function.

  19. Testing the rationality assumption using a design difference in the TV game show 'Jeopardy'

    OpenAIRE

    Sjögren Lindquist, Gabriella; Säve-Söderbergh, Jenny

    2006-01-01

    Abstract This paper empirically investigates the rationality assumption commonly applied in economic modeling by exploiting a design difference in the game-show Jeopardy between the US and Sweden. In particular we address the assumption of individuals’ capabilities to process complex mathematical problems to find optimal strategies. The vital difference is that US contestants are given explicit information before they act, while Swedish contestants individually need to calculate the same info...

  20. Virus-Like Particle Engineering: From Rational Design to Versatile Applications.

    Science.gov (United States)

    Ding, Xuanwei; Liu, Dong; Booth, George; Gao, Wei; Lu, Yuan

    2018-05-01

    As mimicking natural virus structures, virus-like particles (VLPs) have evolved to become a widely accepted technology used for humans which are safe, highly efficacious, and profitable. Several remarkable advantages have been achieved to revolutionize the molecule delivery for diverse applications in nanotechnology, biotechnology, and medicine. Here, the rational structure design, manufacturing process, functionalization strategy, and emerging applications of VLPs is reviewed. The situation and challenges in the VLP engineering, the key development orientation, and future applications have been discussed. To develop a good VLP design concept, the virus/VLP-host interactions need to be examined and the screening methods of the VLP stabilization factors need to be established. The functionalization toolbox can be expanded to fabricate smart, robust, and multifunctional VLPs. Novel robust VLP manufacturing platforms are required to deliver vaccines in resource-poor regions with a significant reduction in the production time and cost. The future applications of VLPs are always driven by the development of emerging technologies and new requirements of modern life. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Targeting post-translational modifications of histones for cancer therapy.

    Science.gov (United States)

    Hsu, Y-C; Hsieh, Y-H; Liao, C-C; Chong, L-W; Lee, C-Y; Yu, Y-L; Chou, R-H

    2015-10-30

    Post-translational modifications (PTMs) on histones including acetylation, methylation, phosphorylation, citrullination, ubiquitination, ADP ribosylation, and sumoylation, play important roles in different biological events including chromatin dynamics, DNA replication, and transcriptional regulation. Aberrant histones PTMs leads to abnormal gene expression and uncontrolled cell proliferation, followed by development of cancers. Therefore, targeting the enzymes required for specific histone PTMs holds a lot of potential for cancer treatment. In this review article, we retrospect the latest studies in the regulations of acetylation, methylation, and phosphorylation of histones. We also summarize inhibitors/drugs that target these modifications for cancer treatment.

  2. O-antigen protects gram-negative bacteria from histone killing.

    Directory of Open Access Journals (Sweden)

    Catherine Chaput

    Full Text Available Beyond their traditional role of wrapping DNA, histones display antibacterial activity to Gram-negative and -positive bacteria. To identify bacterial components that allow survival to a histone challenge, we selected resistant bacteria from homologous Escherichia coli libraries that harbor plasmids carrying pieces of the chromosome in different sizes. We identified genes required for exopolysaccharide production and for the synthesis of the polysaccharide domain of the lipopolysaccharide, called O-antigen. Indeed, O-antigen and exopolysaccharide conferred further resistance to histones. Notably, O-antigen also conferred resistance to histones in the pathogens Shigella flexneri and Klebsiella pneumoniae.

  3. Substrate- and Cofactor-independent Inhibition of Histone Demethylase KDM4C

    DEFF Research Database (Denmark)

    Leurs, Ulrike; Lohse, Brian; Rand, Kasper Dyrberg

    2014-01-01

    Inhibition of histone demethylases has within recent years advanced into a new strategy for treating cancer and other diseases. Targeting specific histone demethylases can be challenging as the active sites of KDM1A-B and KDM-4A-D histone demethylases, respectively, are highly conserved. Most...... inhibitors developed up-to-date target either the cofactor- or substrate-binding sites of these enzymes, resulting in a lack of selectivity and off-target effects. This study describes the discovery of the first peptide-based inhibitors of KDM4 histone demethylases that do not share the histone peptide...... sequence, or inhibit through substrate competition. Through screening of DNA-encoded peptide libraries against KDM1 and -4 histone demethylases by phage display, two cyclic peptides targeting the histone demethylase KDM4C were identified and developed as inhibitors by amino acid replacement, truncation...

  4. Open and closed: the roles of linker histones in plants and animals.

    Science.gov (United States)

    Over, Ryan S; Michaels, Scott D

    2014-03-01

    Histones package DNA in all eukaryotes and play key roles in regulating gene expression. Approximately 150 base pairs of DNA wraps around an octamer of core histones to form the nucleosome, the basic unit of chromatin. Linker histones compact chromatin further by binding to and neutralizing the charge of the DNA between nucleosomes. It is well established that chromatin packing is regulated by a complex pattern of posttranslational modifications (PTMs) to core histones, but linker histone function is less well understood. In this review, we describe the current understanding of the many roles that linker histones play in cellular processes, including gene regulation, cell division, and development, while putting the linker histone in the context of other nuclear proteins. Although intriguing roles for plant linker histones are beginning to emerge, much of our current understanding comes from work in animal systems. Many unanswered questions remain and additional work is required to fully elucidate the complex processes mediated by linker histones in plants.

  5. Rationality of limited rationality : some aggregate implications

    OpenAIRE

    Uri M. Possen; Mikko Puhakka

    1994-01-01

    In this paper we let economic agents choose whether to become fully rational or stay boundedly rational. Boundedly rational agents are less sophisticated in their information processing abilities. It is costly to acquire information needed to become fully rational, and thus not all agents are willing to incur those costs. We then explore the aggregate effects of endogenizing the decision whether the agent should or should not become fully rational in handling information. Since fully and boun...

  6. Histone deacetylase 1, 2, 6 and acetylated histone H4 in B- and T-cell lymphomas

    DEFF Research Database (Denmark)

    Marquard, L.; Poulsen, C.B.; Gjerdrum, L.M.

    2009-01-01

    AIMS: Histone deacetylase (HDAC) inhibitors are novel therapeutics in the treatment of peripheral T-cell lymphoma, unspecified (PTCL) and diffuse large B-cell lymphoma (DLBCL), where, for unknown reasons, T-cell malignancies appear to be more sensitive than B-cell malignancies. The aim was to det......AIMS: Histone deacetylase (HDAC) inhibitors are novel therapeutics in the treatment of peripheral T-cell lymphoma, unspecified (PTCL) and diffuse large B-cell lymphoma (DLBCL), where, for unknown reasons, T-cell malignancies appear to be more sensitive than B-cell malignancies. The aim...... was to determine HDAC expression in DLBCL and PTCL which has not previously been investigated. METHODS AND RESULTS: The expression of HDAC1, HDAC2, HDAC6 and acetylated histone H4 was examined immunohistochemically in 31 DLBCL and 45 PTCL. All four markers showed high expression in both DLBCL and PTCL compared...

  7. Methyl Effect in Azumamides Provides Insight Into Histone Deacetylase Inhibition by Macrocycles

    DEFF Research Database (Denmark)

    Maolanon, Alex; Villadsen, Jesper; Christensen, Niels Johan

    2014-01-01

    Natural, nonribosomal cyclotetrapeptides have traditionally been a rich source of inspiration for design of potent histone deacetylase (HDAC) inhibitors. We recently disclosed the total synthesis and full HDAC pro fi ling of the naturally occurring azumamides ( J. Med. Chem. 2013 , 56 , 6512...

  8. A histone H3K9M mutation traps histone methyltransferase Clr4 to prevent heterochromatin spreading

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Chun-Min; Wang, Jiyong; Xu, Ke; Chen, Huijie; Yue, Jia-Xing; Andrews, Stuart; Moresco, James J.; Yates, John R.; Nagy, Peter L.; Tong, Liang; Jia, Songtao

    2016-09-20

    Histone lysine-to-methionine (K-to-M) mutations are associated with multiple cancers, and they function in a dominant fashion to block the methylation of corresponding lysines on wild type histones. However, their mechanisms of function are controversial. Here we show that in fission yeast, introducing the K9M mutation into one of the three histone H3 genes dominantly blocks H3K9 methylation on wild type H3 across the genome. In addition, H3K9M enhances the interaction of histone H3 tail with the H3K9 methyltransferase Clr4 in a SAM (S-adenosyl-methionine)-dependent manner, and Clr4 is trapped at nucleation sites to prevent its spreading and the formation of large heterochromatin domains. We further determined the crystal structure of an H3K9M peptide in complex with human H3K9 methyltransferase G9a and SAM, which reveales that the methionine side chain had enhanced van der Waals interactions with G9a. Therefore, our results provide a detailed mechanism by which H3K9M regulates H3K9 methylation.

  9. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents.

    Science.gov (United States)

    Ververis, Katherine; Hiong, Alison; Karagiannis, Tom C; Licciardi, Paul V

    2013-01-01

    Histone deacetylase (HDAC) inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents) as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza) and depsipeptide (romidepsin, Istodax). More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the advancement of these drugs, especially to facilitate the rational design of HDAC inhibitors that are effective as antineoplastic agents. This review will discuss the use of HDAC inhibitors as multitargeted therapies for malignancy. Further, we outline the pharmacology and mechanisms of action of HDAC inhibitors while

  10. Two distinct modes for propagation of histone PTMs across the cell cycle

    DEFF Research Database (Denmark)

    Alabert, Constance; Barth, Teresa K; Reverón-Gómez, Nazaret

    2015-01-01

    Epigenetic states defined by chromatin can be maintained through mitotic cell division. However, it remains unknown how histone-based information is transmitted. Here we combine nascent chromatin capture (NCC) and triple-SILAC (stable isotope labeling with amino acids in cell culture) labeling...... to track histone modifications and histone variants during DNA replication and across the cell cycle. We show that post-translational modifications (PTMs) are transmitted with parental histones to newly replicated DNA. Di- and trimethylation marks are diluted twofold upon DNA replication, as a consequence...... of new histone deposition. Importantly, within one cell cycle, all PTMs are restored. In general, new histones are modified to mirror the parental histones. However, H3K9 trimethylation (H3K9me3) and H3K27me3 are propagated by continuous modification of parental and new histones because the establishment...

  11. Circulating Extracellular Histones Are Clinically Relevant Mediators of Multiple Organ Injury.

    Science.gov (United States)

    Kawai, Chihiro; Kotani, Hirokazu; Miyao, Masashi; Ishida, Tokiko; Jemail, Leila; Abiru, Hitoshi; Tamaki, Keiji

    2016-04-01

    Extracellular histones are a damage-associated molecular pattern (DAMP) involved in the pathogenesis of various diseases. The mechanisms of histone-mediated injury in certain organs have been extensively studied, but an understanding of the pathophysiological role of histone-mediated injury in multiple organ injury remains elusive. To elucidate this role, we systemically subjected C57BL/6 mice to various doses of histones and performed a chronological evaluation of the morphological and functional changes in the lungs, liver, and kidneys. Notably, histone administration ultimately led to death after a dose-dependent aggravation of multiple organ injury. In chronological studies, pulmonary and hepatic injuries occurred within 15 minutes, whereas renal injuries presented at a later phase, suggesting that susceptibility to extracellular histones varies among organs. Histones bound to pulmonary and hepatic endothelial cells immediately after administration, leading to endothelial damage, which could be ameliorated by pretreatment with heparin. Furthermore, release of another DAMP, high-mobility group protein box 1, followed the histone-induced tissue damage, and an antibody against the molecule ameliorated hepatic and renal failure in a late phase. These findings indicate that extracellular histones induce multiple organ injury in two progressive stages-direct injury to endothelial cells and the subsequent release of other DAMPs-and that combination therapies against extracellular histones and high-mobility group protein box 1 may be a promising strategy for treating multiple organ injury. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. Circulating histones for predicting prognosis after cardiac surgery: a prospective study.

    Science.gov (United States)

    Gao, Hongxiang; Zhang, Naipu; Lu, Fangfang; Yu, Xindi; Zhu, Limin; Mo, Xi; Wang, Wei

    2016-11-01

    The objective of this study was to assess the perioperative changes in circulating histones and their relationships with other biomarkers and clinical outcomes after cardiac surgery with cardiopulmonary bypass (CPB) in patients. Forty-eight patients with congenital cardiac diseases undergoing corrective procedure with CPB were prospectively enrolled in this study. Circulating histones, N-terminal pro-brain natriuretic peptide (NT-proBNP), procalcitonin (PCT) and C-reactive protein (CRP) were measured preoperatively (T0) and at 0 (T1), 24 (T2), 48 (T3) and 72 (T4) h postoperatively. The relationships between biomarkers and clinical outcomes were analysed. Circulating histones, NT-proBNP, PCT and CRP increased significantly postoperatively, with histones reaching the peak value earliest at T1. Circulating histone levels were higher in patients with adverse events. Receiver operating characteristic curve analysis showed that peak histone levels had a better predictive value for adverse events postoperatively. Peak histone levels correlated with the peak level of NT-proBNP (r = 0.563, P histones reached peak levels faster than NT-proBNP, PCT and CRP. Furthermore, peak histone levels correlated with biomarkers and postoperative clinical outcomes. Circulating histones may be used as a prognostic indicator for patients after cardiac surgery with CPB. ClinicalTrials.gov (ID: NCT02325765). © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  13. Histone modifications in response to DNA damage

    International Nuclear Information System (INIS)

    Altaf, Mohammed; Saksouk, Nehme; Cote, Jacques

    2007-01-01

    The packaging of the eukaryotic genome into highly condensed chromatin makes it inaccessible to the factors required for gene transcription, DNA replication, recombination and repair. Eukaryotes have developed intricate mechanisms to overcome this repressive barrier imposed by chromatin. Histone modifying enzymes and ATP-dependent chromatin remodeling complexes play key roles here as they regulate many nuclear processes by altering the chromatin structure. Significantly, these activities are integral to the process of DNA repair where histone modifications act as signals and landing platforms for various repair proteins. This review summarizes the recent developments in our understanding of histone modifications and their role in the maintenance of genome integrity

  14. Identification of histone modifications in biomedical text for supporting epigenomic research.

    Science.gov (United States)

    Kolárik, Corinna; Klinger, Roman; Hofmann-Apitius, Martin

    2009-01-30

    Posttranslational modifications of histones influence the structure of chromatine and in such a way take part in the regulation of gene expression. Certain histone modification patterns, distributed over the genome, are connected to cell as well as tissue differentiation and to the adaption of organisms to their environment. Abnormal changes instead influence the development of disease states like cancer. The regulation mechanisms for modifying histones and its functionalities are the subject of epigenomics investigation and are still not completely understood. Text provides a rich resource of knowledge on epigenomics and modifications of histones in particular. It contains information about experimental studies, the conditions used, and results. To our knowledge, no approach has been published so far for identifying histone modifications in text. We have developed an approach for identifying histone modifications in biomedical literature with Conditional Random Fields (CRF) and for resolving the recognized histone modification term variants by term standardization. For the term identification F1 measures of 0.84 by 10-fold cross-validation on the training corpus and 0.81 on an independent test corpus have been obtained. The standardization enabled the correct transformation of 96% of the terms from training and 98% from test the corpus. Due to the lack of terminologies exhaustively covering specific histone modification types, we developed a histone modification term hierarchy for use in a semantic text retrieval system. The developed approach highly improves the retrieval of articles describing histone modifications. Since text contains context information about performed studies and experiments, the identification of histone modifications is the basis for supporting literature-based knowledge discovery and hypothesis generation to accelerate epigenomic research.

  15. Histone Methylation and Epigenetic Silencing in Breast Cancer

    National Research Council Canada - National Science Library

    Simon, Jeffrey A; Lange, Carol A

    2008-01-01

    .... EZH2 is a histone methyltransferase which modifies lysine-27 of histone H3 an epigenetic mark which is generally linked to gene silencing and is implicated in tumor suppressor silencing during breast cancer progression...

  16. Extracellular histones, cell-free DNA, or nucleosomes: differences in immunostimulation.

    Science.gov (United States)

    Marsman, Gerben; Zeerleder, Sacha; Luken, Brenda M

    2016-12-08

    In inflammation, extensive cell death may occur, which results in the release of chromatin components into the extracellular environment. Individually, the purified chromatin components double stranded (ds)DNA and histones have been demonstrated, both in vitro and in vivo, to display various immunostimulatory effects, for example, histones induce cytotoxicity and proinflammatory signaling through toll-like receptor (TLR)2 and 4, while DNA induces signaling through TLR9 and intracellular nucleic acid sensing mechanisms. However, DNA and histones are organized in nucleosomes in the nucleus, and evidence suggests that nucleosomes are released as such in inflammation. The cytotoxicity and proinflammatory signaling induced by nucleosomes have not been studied as extensively as the separate effects brought about by histones and dsDNA, and there appear to be some marked differences. Remarkably, little distinction between the different forms in which histones circulate has been made throughout literature. This is partly due to the limitations of existing techniques to differentiate between histones in their free or DNA-bound form. Here we review the current understanding of immunostimulation induced by extracellular histones, dsDNA and nucleosomes, and discuss the importance of techniques that in their detection differentiate between these different chromatin components.

  17. Histone deacetylases and their roles in mineralized tissue regeneration

    Directory of Open Access Journals (Sweden)

    Nam Cong-Nhat Huynh

    2017-12-01

    Full Text Available Histone acetylation is an important epigenetic mechanism that controls expression of certain genes. It includes non-sequence-based changes of chromosomal regional structure that can alter the expression of genes. Acetylation of histones is controlled by the activity of two groups of enzymes: the histone acetyltransferases (HATs and histone deacetylases (HDACs. HDACs remove acetyl groups from the histone tail, which alters its charge and thus promotes compaction of DNA in the nucleosome. HDACs render the chromatin structure into a more compact form of heterochromatin, which makes the genes inaccessible for transcription. By altering the transcriptional activity of bone-associated genes, HDACs control both osteogenesis and osteoclastogenesis. This review presents an overview of the function of HDACs in the modulation of bone formation. Special attention is paid to the use of HDAC inhibitors in mineralized tissue regeneration from cells of dental origin.

  18. Trichostatin A induced histone acetylation causes decondensation of interphase chromatin.

    NARCIS (Netherlands)

    T.A. Knoch (Tobias); M. Wachsmuth (Malte); M. Frank-Stöhr (Monika); M. Stöhr (Michael); C.P. Bacher (Christian); K. Rippe (Karsten)

    2004-01-01

    textabstractThe effect of trichostatin A (TSA)-induced histone acetylation on the interphase chromatin structure was visualized in vivo with a HeLa cell line stably expressing histone H2A, which was fused to enhanced yellow fluorescent protein. The globally increased histone acetylation caused a

  19. Rationalization with ruled surfaces in architecture

    DEFF Research Database (Denmark)

    Steenstrup, Kasper Hornbak

    This thesis addresses the problems of rationalizing and segmenting large scale 3D models, and how to handle difficult production constraints in this area. The design choices when constructing large scale architecture are influenced by the budget. Therefore I strive to minimize the amount of time...... and material needed for production. This makes advanced free form architecture viable for low cost projects, allowing the architects to realize their designs. By pre-cutting building blocks using hot wire robots, the amount of milling necessary can be reduced drastically. I do this by rationalizing...

  20. GREEN: A program package for docking studies in rational drug design

    Science.gov (United States)

    Tomioka, Nobuo; Itai, Akiko

    1994-08-01

    A program package, GREEN, has been developed that enables docking studies between ligand molecules and a protein molecule. Based on the structure of the protein molecule, the physical and chemical environment of the ligand-binding site is expressed as three-dimensional grid-point data. The grid-point data are used for the real-time evaluation of the protein-ligand interaction energy, as well as for the graphical representation of the binding-site environment. The interactive docking operation is facilitated by various built-in functions, such as energy minimization, energy contribution analysis and logging of the manipulation trajectory. Interactive modeling functions are incorporated for designing new ligand molecules while considering the binding-site environment and the protein-ligand interaction. As an example of the application of GREEN, a docking study is presented on the complex between trypsin and a synthetic trypsin inhibitor. The program package will be useful for rational drug design, based on the 3D structure of the target protein.

  1. Global turnover of histone post-translational modifications and variants in human cells

    Directory of Open Access Journals (Sweden)

    Zee Barry M

    2010-12-01

    Full Text Available Abstract Background Post-translational modifications (PTMs on the N-terminal tails of histones and histone variants regulate distinct transcriptional states and nuclear events. Whereas the functional effects of specific PTMs are the current subject of intense investigation, most studies characterize histone PTMs/variants in a non-temporal fashion and very few studies have reported kinetic information about these histone forms. Previous studies have used radiolabeling, fluorescence microscopy and chromatin immunoprecipitation to determine rates of histone turnover, and have found interesting correlations between increased turnover and increased gene expression. Therefore, histone turnover is an understudied yet potentially important parameter that may contribute to epigenetic regulation. Understanding turnover in the context of histone modifications and sequence variants could provide valuable additional insight into the function of histone replacement. Results In this study, we measured the metabolic rate of labeled isotope incorporation into the histone proteins of HeLa cells by combining stable isotope labeling of amino acids in cell culture (SILAC pulse experiments with quantitative mass spectrometry-based proteomics. In general, we found that most core histones have similar turnover rates, with the exception of the H2A variants, which exhibit a wider range of rates, potentially consistent with their epigenetic function. In addition, acetylated histones have a significantly faster turnover compared with general histone protein and methylated histones, although these rates vary considerably, depending on the site and overall degree of methylation. Histones containing transcriptionally active marks have been consistently found to have faster turnover rates than histones containing silent marks. Interestingly, the presence of both active and silent marks on the same peptide resulted in a slower turnover rate than either mark alone on that same

  2. HAMLET interacts with histones and chromatin in tumor cell nuclei.

    Science.gov (United States)

    Düringer, Caroline; Hamiche, Ali; Gustafsson, Lotta; Kimura, Hiroshi; Svanborg, Catharina

    2003-10-24

    HAMLET is a folding variant of human alpha-lactalbumin in an active complex with oleic acid. HAMLET selectively enters tumor cells, accumulates in their nuclei and induces apoptosis-like cell death. This study examined the interactions of HAMLET with nuclear constituents and identified histones as targets. HAMLET was found to bind histone H3 strongly and to lesser extent histones H4 and H2B. The specificity of these interactions was confirmed using BIAcore technology and chromatin assembly assays. In vivo in tumor cells, HAMLET co-localized with histones and perturbed the chromatin structure; HAMLET was found associated with chromatin in an insoluble nuclear fraction resistant to salt extraction. In vitro, HAMLET bound strongly to histones and impaired their deposition on DNA. We conclude that HAMLET interacts with histones and chromatin in tumor cell nuclei and propose that this interaction locks the cells into the death pathway by irreversibly disrupting chromatin organization.

  3. Histone modifications and nuclear architecture: A review

    Czech Academy of Sciences Publication Activity Database

    Bártová, Eva; Kroupová, Jana; Harničarová, Andrea; Galiová-Šustáčková, Gabriela; Kozubek, Stanislav

    2008-01-01

    Roč. 56, č. 8 (2008), s. 711-721 ISSN 0722-186X R&D Projects: GA ČR(CZ) GA204/06/0978; GA MŠk(CZ) LC535 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : histones * histone modifications * nuclear architecture Subject RIV: BO - Biophysics

  4. Evaluation of Proteomic Search Engines for the Analysis of Histone Modifications

    Science.gov (United States)

    2015-01-01

    Identification of histone post-translational modifications (PTMs) is challenging for proteomics search engines. Including many histone PTMs in one search increases the number of candidate peptides dramatically, leading to low search speed and fewer identified spectra. To evaluate database search engines on identifying histone PTMs, we present a method in which one kind of modification is searched each time, for example, unmodified, individually modified, and multimodified, each search result is filtered with false discovery rate less than 1%, and the identifications of multiple search engines are combined to obtain confident results. We apply this method for eight search engines on histone data sets. We find that two search engines, pFind and Mascot, identify most of the confident results at a reasonable speed, so we recommend using them to identify histone modifications. During the evaluation, we also find some important aspects for the analysis of histone modifications. Our evaluation of different search engines on identifying histone modifications will hopefully help those who are hoping to enter the histone proteomics field. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD001118. PMID:25167464

  5. Evaluation of proteomic search engines for the analysis of histone modifications.

    Science.gov (United States)

    Yuan, Zuo-Fei; Lin, Shu; Molden, Rosalynn C; Garcia, Benjamin A

    2014-10-03

    Identification of histone post-translational modifications (PTMs) is challenging for proteomics search engines. Including many histone PTMs in one search increases the number of candidate peptides dramatically, leading to low search speed and fewer identified spectra. To evaluate database search engines on identifying histone PTMs, we present a method in which one kind of modification is searched each time, for example, unmodified, individually modified, and multimodified, each search result is filtered with false discovery rate less than 1%, and the identifications of multiple search engines are combined to obtain confident results. We apply this method for eight search engines on histone data sets. We find that two search engines, pFind and Mascot, identify most of the confident results at a reasonable speed, so we recommend using them to identify histone modifications. During the evaluation, we also find some important aspects for the analysis of histone modifications. Our evaluation of different search engines on identifying histone modifications will hopefully help those who are hoping to enter the histone proteomics field. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD001118.

  6. Rational Design Approach for Enhancing Higher-Mode Response of a Microcantilever in Vibro-Impacting Mode

    Directory of Open Access Journals (Sweden)

    Ieva Migliniene

    2017-12-01

    Full Text Available This paper proposes an approach for designing an efficient vibration energy harvester based on a vibro-impacting piezoelectric microcantilever with a geometric shape that has been rationally modified in accordance with results of dynamic optimization. The design goal is to increase the amplitudes of higher-order vibration modes induced during the vibro-impact response of the piezoelectric transducer, thereby providing a means to improve the energy conversion efficiency and power output. A rational configuration of the energy harvester is proposed and it is demonstrated that the new design retains essential modal characteristics of the optimal microcantilever structures, further providing the added benefit of less costly fabrication. The effects of structural dynamics associated with advantageous exploitation of higher vibration modes are analyzed experimentally by means of laser vibrometry as well as numerically via transient simulations of microcantilever response to random excitation. Electrical characterization results indicate that the proposed harvester outperforms its conventional counterpart (based on the microcantilever of the constant cross-section in terms of generated electrical output. Reported results may serve for the development of impact-type micropower generators with harvesting performance that is enhanced by virtue of self-excitation of large intensity higher-order mode responses when the piezoelectric transducer is subjected to relatively low-frequency excitation with strongly variable vibration magnitudes.

  7. Rationalization and Design of the Complementarity Determining Region Sequences in an Antibody-Antigen Recognition Interface

    Science.gov (United States)

    Chen, Ing-Chien; Lee, Yu-Ching; Chen, Jun-Bo; Tsai, Keng-Chang; Chen, Ching-Tai; Chang, Jeng-Yih; Yang, Ei-Wen; Hsu, Po-Chiang; Jian, Jhih-Wei; Hsu, Hung-Ju; Chang, Hung-Ju; Hsu, Wen-Lian; Huang, Kai-Fa; Ma, Alex Che; Yang, An-Suei

    2012-01-01

    Protein-protein interactions are critical determinants in biological systems. Engineered proteins binding to specific areas on protein surfaces could lead to therapeutics or diagnostics for treating diseases in humans. But designing epitope-specific protein-protein interactions with computational atomistic interaction free energy remains a difficult challenge. Here we show that, with the antibody-VEGF (vascular endothelial growth factor) interaction as a model system, the experimentally observed amino acid preferences in the antibody-antigen interface can be rationalized with 3-dimensional distributions of interacting atoms derived from the database of protein structures. Machine learning models established on the rationalization can be generalized to design amino acid preferences in antibody-antigen interfaces, for which the experimental validations are tractable with current high throughput synthetic antibody display technologies. Leave-one-out cross validation on the benchmark system yielded the accuracy, precision, recall (sensitivity) and specificity of the overall binary predictions to be 0.69, 0.45, 0.63, and 0.71 respectively, and the overall Matthews correlation coefficient of the 20 amino acid types in the 24 interface CDR positions was 0.312. The structure-based computational antibody design methodology was further tested with other antibodies binding to VEGF. The results indicate that the methodology could provide alternatives to the current antibody technologies based on animal immune systems in engineering therapeutic and diagnostic antibodies against predetermined antigen epitopes. PMID:22457753

  8. Identification of distinct SET/TAF-Iβ domains required for core histone binding and quantitative characterisation of the interaction

    Science.gov (United States)

    Karetsou, Zoe; Emmanouilidou, Anastasia; Sanidas, Ioannis; Liokatis, Stamatis; Nikolakaki, Eleni; Politou, Anastasia S; Papamarcaki, Thomais

    2009-01-01

    Background The assembly of nucleosomes to higher-order chromatin structures is finely tuned by the relative affinities of histones for chaperones and nucleosomal binding sites. The myeloid leukaemia protein SET/TAF-Iβ belongs to the NAP1 family of histone chaperones and participates in several chromatin-based mechanisms, such as chromatin assembly, nucleosome reorganisation and transcriptional activation. To better understand the histone chaperone function of SET/TAF-Iβ, we designed several SET/TAF-Iβ truncations, examined their structural integrity by circular Dichroism and assessed qualitatively and quantitatively the histone binding properties of wild-type protein and mutant forms using GST-pull down experiments and fluorescence spectroscopy-based binding assays. Results Wild type SET/TAF-Iβ binds to histones H2B and H3 with Kd values of 2.87 and 0.15 μM, respectively. The preferential binding of SET/TAF-Iβ to histone H3 is mediated by its central region and the globular part of H3. On the contrary, the acidic C-terminal tail and the amino-terminal dimerisation domain of SET/TAF-Iβ, as well as the H3 amino-terminal tail, are dispensable for this interaction. Conclusion This type of analysis allowed us to assess the relative affinities of SET/TAF-Iβ for different histones and identify the domains of the protein required for effective histone recognition. Our findings are consistent with recent structural studies of SET/TAF-Iβ and can be valuable to understand the role of SET/TAF-Iβ in chromatin function. PMID:19358706

  9. Hyaluronan protection of corneal endothelial cells against extracellular histones after phacoemulsification.

    Science.gov (United States)

    Kawano, Hiroki; Sakamoto, Taiji; Ito, Takashi; Miyata, Kazunori; Hashiguchi, Teruto; Maruyama, Ikuro

    2014-11-01

    To determine the effect of histones on corneal endothelial cells generated during cataract surgery. Kagoshima University Hospital, Kagoshima, Japan. Experimental study. Standard phacoemulsification was performed on enucleated pig eyes. Histones in the anterior segment of the eye were determined by immunohistochemistry. Cultured human corneal endothelial cells were exposed to histones for 18 hours, and cell viability was determined by 2-(2-methoxy-4-nitrophenyl)-3-(4-nitro-phenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt assay. The concentration of interleukin-6 (IL-6) in the culture medium of human corneal endothelial cells was measured using enzyme-linked immunosorbent assay. The effects of signal inhibitors U0126, SB203580, and SP600125 were evaluated. The protective effect of hyaluronan against histones was evaluated in human corneal endothelial cells with and without hyaluronan. Cellular debris containing histones was observed in the anterior chamber of pig eyes after phacoemulsification. Exposure of human corneal endothelial cells to 50 μg/mL of histones or more led to cytotoxic effects. The IL-6 concentration was significantly increased dose dependently after exposure of human corneal endothelial cells to histones (Phistone-induced IL-6 production was significantly decreased by extracellular signal-regulated kinases 1/2 and p-38 mitogen-activated protein kinase inhibitors (Phistones caused formation of histone aggregates, decreased the cytotoxic effects of the histones, and blocked the increase in IL-6 (PHistones were released extracellularly during phacoemulsification and exposure of human corneal endothelial cells to histones increased the IL-6 secretion. The intraoperative use of hyaluronan may decrease the cytotoxic effects of histones released during cataract surgery. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  10. Biochemical profiling of histone binding selectivity of the yeast bromodomain family.

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2010-01-01

    Full Text Available It has been shown that molecular interactions between site-specific chemical modifications such as acetylation and methylation on DNA-packing histones and conserved structural modules present in transcriptional proteins are closely associated with chromatin structural changes and gene activation. Unlike methyl-lysine that can interact with different protein modules including chromodomains, Tudor and MBT domains, as well as PHD fingers, acetyl-lysine (Kac is known thus far to be recognized only by bromodomains. While histone lysine acetylation plays a crucial role in regulation of chromatin-mediated gene transcription, a high degree of sequence variation of the acetyl-lysine binding site in the bromodomains has limited our understanding of histone binding selectivity of the bromodomain family. Here, we report a systematic family-wide analysis of 14 yeast bromodomains binding to 32 lysine-acetylated peptides derived from known major acetylation sites in four core histones that are conserved in eukaryotes.The histone binding selectivity of purified recombinant yeast bromodomains was assessed by using the native core histones in an overlay assay, as well as N-terminally biotinylated lysine-acetylated histone peptides spotted on streptavidin-coated nitrocellulose membrane in a dot blot assay. NMR binding analysis further validated the interactions between histones and selected bromodomain. Structural models of all yeast bromodomains were built using comparative modeling to provide insights into the molecular basis of their histone binding selectivity.Our study reveals that while not all members of the bromodomain family are privileged to interact with acetylated-lysine, identifiable sequence features from those that bind histone emerge. These include an asparagine residue at the C-terminus of the third helix in the 4-helix bundle, negatively charged residues around the ZA loop, and preponderance of aromatic amino acid residues in the binding pocket

  11. Extracellular DNA and histones: double-edged swords in immunothrombosis.

    Science.gov (United States)

    Gould, T J; Lysov, Z; Liaw, P C

    2015-06-01

    The existence of extracellular DNA in human plasma, also known as cell-free DNA (cfDNA), was first described in the 1940s. In recent years, there has been a resurgence of interest in the functional significance of cfDNA, particularly in the context of neutrophil extracellular traps (NETs). cfDNA and histones are key components of NETs that aid in the host response to infection and inflammation. However, cfDNA and histones may also exert harmful effects by triggering coagulation, inflammation, and cell death and by impairing fibrinolysis. In this article, we will review the pathologic nature of cfDNA and histones in macrovascular and microvascular thrombosis, including venous thromboembolism, cancer, sepsis, and trauma. We will also discuss the prognostic value of cfDNA and histones in these disease states. Understanding the molecular and cellular pathways regulated by cfDNA and histones may provide novel insights to prevent pathological thrombus formation and vascular occlusion. © 2015 International Society on Thrombosis and Haemostasis.

  12. Immune activation by histones: plusses and minuses in inflammation.

    Science.gov (United States)

    Pisetsky, David S

    2013-12-01

    Histones are highly cationic proteins that are essential components of the cell nucleus, interacting with DNA to form the nucleosome and regulating transcription. Histones, however, can transit from the cell nucleus during cell death and, once in an extracellular location, can serve as danger signals and activate immune cells. An article in this issue of the European Journal of Immunology [Eur. J. Immunol. 2013. 43: 3336-3342] reports that histones can activate monocyte-derived DCs via the NRLP3 inflammasome to induce the production of IL-1β. As such, histones, which can also stimulate TLRs, may drive events in the immunopathogenesis of a wide range of acute and chronic diseases marked by sterile inflammation. While the mechanism of this stimulation is not known, the positive charge of histones may provide a structural element to promote interaction with cells and activation of downstream signaling systems. © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Histones induce phosphatidylserine exposure and a procoagulant phenotype in human red blood cells.

    Science.gov (United States)

    Semeraro, F; Ammollo, C T; Esmon, N L; Esmon, C T

    2014-10-01

    Extracellular histones exert part of their prothrombotic activity through the stimulation of blood cells. Besides platelets, histones can bind to red blood cells (RBCs), which are important contributors to thrombogenesis, but little is known about the functional consequences of this interaction. To evaluate the effect of histones on the procoagulant potential of human RBCs with particular regard to the expression of surface phosphatidylserine (PS). PS exposure on human RBCs treated with a natural mixture of histones or recombinant individual histones was evaluated with fluorescein isothiocyanate-annexin-V binding and measured with flow cytometry. Calcium influx in RBCs loaded with the calcium-sensitive fluorophore Fluo-4 AM was assessed with flow cytometry. The procoagulant potential of histone-treated RBCs was evaluated with a purified prothrombinase assay and a one-stage plasma recalcification clotting test. Natural histones induced PS exposure on RBCs in a dose-dependent manner, and neutralization or cleavage of histones by heparin or activated protein C, respectively, abolished PS externalization. H4 was mainly responsible for the stimulating activity of histones, whereas the other subtypes were almost ineffective. Similarly, natural histones and H4 induced influx of calcium into RBCs, whereas the other individual histones did not. Histone-induced exposure of PS on RBCs translated into increased prothrombinase complex-mediated prothrombin activation and accelerated fibrin formation in plasma. Histones induce RBCs to express a procoagulant phenotype through the externalization of PS. This finding provides new insights into the prothrombotic activity of extracellular histones. © 2014 International Society on Thrombosis and Haemostasis.

  14. Rational design of new materials using recombinant structural proteins: Current state and future challenges.

    Science.gov (United States)

    Sutherland, Tara D; Huson, Mickey G; Rapson, Trevor D

    2018-01-01

    Sequence-definable polymers are seen as a prerequisite for design of future materials, with many polymer scientists regarding such polymers as the holy grail of polymer science. Recombinant proteins are sequence-defined polymers. Proteins are dictated by DNA templates and therefore the sequence of amino acids in a protein is defined, and molecular biology provides tools that allow redesign of the DNA as required. Despite this advantage, proteins are underrepresented in materials science. In this publication we investigate the advantages and limitations of using proteins as templates for rational design of new materials. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  15. Development of a new rapid HPLC method for the fractionation of histones

    International Nuclear Information System (INIS)

    Gurley, L.R.; Valdez, J.G.; Prentice, D.A.; Spall, W.D.

    1983-01-01

    To study histone functions, it is necessary to fractionate the histones into their five classes (H1, H2A, H2B, H3 and H4) and then to subfractionate these classes into variants having slightly different primary structures and into different phosphorylated and acetylated forms. With the advent of high-performance liquid chromatography (HPLC), it was hoped that laborious and time-consuming conventional methods could be replaced by a simple, rapid, high-resolving HPLC method for fractionating histones. However, problems of irreversible adsorption of the histones to HPLC column packings discouraged this development. Our laboratory has now determined that the strong adsorption of histones to HPLC columns results from two different forces: (1) polar interactions between the histones and the silanol groups of silica-based HPLC column packing, and (2) hydrophobic interactions between the histones and the bound organic phase of the column packings. By minimizing these forces, we have succeeded in developing an HPLC method suitable for histone studies

  16. Gleaning Insights from Fecal Microbiota Transplantation and Probiotic Studies for the Rational Design of Combination Microbial Therapies

    Science.gov (United States)

    Hudson, Lauren E.; Anderson, Sarah E.; Corbett, Anita H.

    2016-01-01

    SUMMARY Beneficial microorganisms hold promise for the treatment of numerous gastrointestinal diseases. The transfer of whole microbiota via fecal transplantation has already been shown to ameliorate the severity of diseases such as Clostridium difficile infection, inflammatory bowel disease, and others. However, the exact mechanisms of fecal microbiota transplant efficacy and the particular strains conferring this benefit are still unclear. Rationally designed combinations of microbial preparations may enable more efficient and effective treatment approaches tailored to particular diseases. Here we use an infectious disease, C. difficile infection, and an inflammatory disorder, the inflammatory bowel disease ulcerative colitis, as examples to facilitate the discussion of how microbial therapy might be rationally designed for specific gastrointestinal diseases. Fecal microbiota transplantation has already shown some efficacy in the treatment of both these disorders; detailed comparisons of studies evaluating commensal and probiotic organisms in the context of these disparate gastrointestinal diseases may shed light on potential protective mechanisms and elucidate how future microbial therapies can be tailored to particular diseases. PMID:27856521

  17. Histones and their phosphorylation during germination of rice seeds

    International Nuclear Information System (INIS)

    Iqbal Ahmed, C.M.; Padayatti, J.D.

    1980-01-01

    Histones from nuclei of rice embryos were identified by their mobilities on 15% acid-urea polyacrylamide gel electrophoreogram, incorporation of ( 3 H)lysine and ( 14 C) arginine and lack of incorporation of ( 3 H)tryptophan. The ratio of histone to DNA in ungerminated embryos was 2.7 which decreased during germination reaching unity by 48 hr. There was preferential phosphorylation of lysine-rich histones, which paralleled the synthesis of DNA. In the presence of cytosine arabinoside and mitomycin-C, which inhibited the synthesis of DNA to the extend of 75-80% the phosphorylation of lysine-rich histone was reduced by 50-60% suggesting the dependence of phosphorylation on the ongoing synthesis of DNA. (auth.)

  18. Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant.

    Science.gov (United States)

    Earnshaw, W C; Allshire, R C; Black, B E; Bloom, K; Brinkley, B R; Brown, W; Cheeseman, I M; Choo, K H A; Copenhaver, G P; Deluca, J G; Desai, A; Diekmann, S; Erhardt, S; Fitzgerald-Hayes, M; Foltz, D; Fukagawa, T; Gassmann, R; Gerlich, D W; Glover, D M; Gorbsky, G J; Harrison, S C; Heun, P; Hirota, T; Jansen, L E T; Karpen, G; Kops, G J P L; Lampson, M A; Lens, S M; Losada, A; Luger, K; Maiato, H; Maddox, P S; Margolis, R L; Masumoto, H; McAinsh, A D; Mellone, B G; Meraldi, P; Musacchio, A; Oegema, K; O'Neill, R J; Salmon, E D; Scott, K C; Straight, A F; Stukenberg, P T; Sullivan, B A; Sullivan, K F; Sunkel, C E; Swedlow, J R; Walczak, C E; Warburton, P E; Westermann, S; Willard, H F; Wordeman, L; Yanagida, M; Yen, T J; Yoda, K; Cleveland, D W

    2013-04-01

    The first centromeric protein identified in any species was CENP-A, a divergent member of the histone H3 family that was recognised by autoantibodies from patients with scleroderma-spectrum disease. It has recently been suggested to rename this protein CenH3. Here, we argue that the original name should be maintained both because it is the basis of a long established nomenclature for centromere proteins and because it avoids confusion due to the presence of canonical histone H3 at centromeres.

  19. HMCan-diff: a method to detect changes in histone modifications in cells with different genetic characteristics

    KAUST Repository

    Ashoor, Haitham

    2016-12-19

    Comparing histone modification profiles between cancer and normal states, or across different tumor samples, can provide insights into understanding cancer initiation, progression and response to therapy. ChIP-seq histone modification data of cancer samples are distorted by copy number variation innate to any cancer cell. We present HMCan-diff, the first method designed to analyze ChIP-seq data to detect changes in histone modifications between two cancer samples of different genetic backgrounds, or between a cancer sample and a normal control. HMCan-diff explicitly corrects for copy number bias, and for other biases in the ChIP-seq data, which significantly improves prediction accuracy compared to methods that do not consider such corrections. On in silico simulated ChIP-seq data generated using genomes with differences in copy number profiles, HMCan-diff shows a much better performance compared to other methods that have no correction for copy number bias. Additionally, we benchmarked HMCan-diff on four experimental datasets, characterizing two histone marks in two different scenarios. We correlated changes in histone modifications between a cancer and a normal control sample with changes in gene expression. On all experimental datasets, HMCan-diff demonstrated better performance compared to the other methods.

  20. Toxic effects of extracellular histones and their neutralization by vitreous in retinal detachment.

    Science.gov (United States)

    Kawano, Hiroki; Ito, Takashi; Yamada, Shingo; Hashiguchi, Teruto; Maruyama, Ikuro; Hisatomi, Toshio; Nakamura, Makoto; Sakamoto, Taiji

    2014-05-01

    Histones are DNA-binding proteins and are involved in chromatin remodeling and regulation of gene expression. Histones can be released after tissue injuries, and the extracellular histones cause cellular damage and organ dysfunction. Regardless of their clinical significance, the role and relevance of histones in ocular diseases are unknown. We studied the role of histones in eyes with retinal detachment (RD). Vitreous samples were collected during vitrectomy, and the concentration of histone H3 was measured by enzyme-linked immunosorbent assay. The location of the histones and related molecules was examined in a rat RD model. The release of histones and their effects on rat retinal progenitor cells R28 and ARPE-19 were evaluated in vitro. In addition, the protective role of the vitreous body against histones was tested. The intravitreal concentration of histones was higher in eyes with RD (mean, 30.9 ± 9.8 ng/ml) than in control eyes (below the limit of detection, Phistone H3 was observed on the outer side of the detached retina and was associated with photoreceptor death. Histone H3 was released from cultured R28 by oxidative stress. Histones at a concentration 10 μg/ml induced the production of interleukin-8 in ARPE-19 cells (2.5-fold increase, PHistones were toxic to cells at concentrations of ≥ 20 μg/ml. Vitreous body or hyaluronan decreased toxicity of histones by inhibiting diffusion of histones. These results indicate that histones are released from retinas with RD and may modulate the subretinal microenvironment by functioning as damage-associated molecular pattern molecules, thereby inducing proinflammatory cytokines or cell toxicity. In addition, the important role of the vitreous body and hyaluronan in protecting the retina from these toxic effects is suggested.

  1. Analysis of Primary Structural Determinants That Distinguish the Centromere-Specific Function of Histone Variant Cse4p from Histone H3

    OpenAIRE

    Keith, Kevin C.; Baker, Richard E.; Chen, Yinhuai; Harris, Kendra; Stoler, Sam; Fitzgerald-Hayes, Molly

    1999-01-01

    Cse4p is a variant of histone H3 that has an essential role in chromosome segregation and centromere chromatin structure in budding yeast. Cse4p has a unique 135-amino-acid N terminus and a C-terminal histone-fold domain that is more than 60% identical to histone H3 and the mammalian centromere protein CENP-A. Cse4p and CENP-A have biochemical properties similar to H3 and probably replace H3 in centromere-specific nucleosomes in yeasts and mammals, respectively. In order to identify regions o...

  2. Genome-wide analysis of regions similar to promoters of histone genes

    KAUST Repository

    Chowdhary, Rajesh; Bajic, Vladimir B.; Dong, Difeng; Wong, Limsoon; Liu, Jun S

    2010-01-01

    of histone and histone-coregulated gene transcription initiation. While these hypotheses still remain to be verified, we believe that these form a useful resource for researchers to further explore regulation of human histone genes and human genome

  3. Rational Design of Coordination Polymers with Flexible Oxyethylene Side Chains

    International Nuclear Information System (INIS)

    Choi, Eun Young; Gao, Chunji; Lee, Suck Hyun; Kwon, O Pil

    2012-01-01

    We rationally designed and synthesized metallopolymers with organic 1,4-benzenedicarboxylic acid (BDC) linkers with different lengths of oxyethylene side chains in order to examine the influence of side chains on the coordination characteristics. While in a previous report the BDC linkers with alkyl side chains were found to form three-dimensional (3D) isoreticular metal-organic framework (IRMOF) structures or one-dimensional (1D) coordination polymeric structures with short -O(CH 2 ) 6 CH 3 or long -O(CH 2 ) 9 CH 3 side chains, respectively, new BDC linkers with oxyethylene side chains of the same lengths, -(OCH 2 CH 2 ) 2 CH 3 and -(OCH 2 CH 2 ) 3 CH 3 , form only 3D IRMOF structures. This result is attributed to the higher flexibility and smaller volume of oxyethylene side chains compared to alkyl side chains

  4. SIRT3 restricts HBV transcription and replication via epigenetic regulation of cccDNA involving SUV39H1 and SETD1A histone methyltransferases.

    Science.gov (United States)

    Ren, Ji-Hua; Hu, Jie-Li; Cheng, Sheng-Tao; Yu, Hai-Bo; Wong, Vincent Kam Wai; Law, Betty Yuen Kwan; Yang, Yong-Feng; Huang, Ying; Liu, Yi; Chen, Wei-Xian; Cai, Xue-Fei; Tang, Hua; Hu, Yuan; Zhang, Wen-Lu; Liu, Xiang; Long, Quan-Xin; Zhou, Li; Tao, Na-Na; Zhou, Hong-Zhong; Yang, Qiu-Xia; Ren, Fang; He, Lin; Gong, Rui; Huang, Ai-Long; Chen, Juan

    2018-04-06

    Hepatitis B virus (HBV) infection remains a major health problem worldwide. Maintenance of the covalently closed circular DNA (cccDNA) which serves as a template for HBV RNA transcription is responsible for the failure of eradicating chronic HBV during current antiviral therapy. cccDNA is assembled with cellular histone proteins into chromatin, but little is known about the regulation of HBV chromatin by histone posttranslational modifications. In this study, we identified SIRT3 as a host factor restricting HBV transcription and replication by screening seven members of Sirtuin family which is the class III histone deacetylase. Ectopic SIRT3 expression significantly reduced total HBV RNAs, 3.5-kb RNA as well as replicative intermediate DNA in HBV-infected HepG2-NTCP cells and PHH. In contrast, gene silencing of SIRT3 promoted HBV transcription and replication. Mechanistic study found nuclear SIRT3 was recruited to the HBV cccDNA, where it deacetylated histone 3 lysine 9 (H3K9). Importantly, occupancy of SIRT3 onto cccDNA could increase the recruitment of histone methyltransferase SUV39H1 to cccDNA and decrease recruitment of SETD1A, leading to a marked increase of H3K9me3 and a decrease of H3K4me3 on cccDNA. Moreover, SIRT3-mediated HBV cccDNA transcriptional repression involved decreased binding of host RNA polymerase II and transcription factor YY1 to cccDNA. Finally, viral protein HBx could relieve SIRT3-mediated cccDNA transcriptional repression by inhibiting both SIRT3 expression and its recruitment to cccDNA. SIRT3 is a novel host factor epigenetically restricting HBV cccDNA transcription by acting cooperatively with histone methyltransferase. These data provided a rational for the use of SIRT3 activators in the prevention or treatment of HBV infection. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.

  5. Biophysical characterization of the association of histones with single-stranded DNA.

    Science.gov (United States)

    Wang, Ying; van Merwyk, Luis; Tönsing, Katja; Walhorn, Volker; Anselmetti, Dario; Fernàndez-Busquets, Xavier

    2017-11-01

    Despite the profound current knowledge of the architecture and dynamics of nucleosomes, little is known about the structures generated by the interaction of histones with single-stranded DNA (ssDNA), which is widely present during replication and transcription. Non-denaturing gel electrophoresis, transmission electron microscopy, atomic force microscopy, magnetic tweezers. Histones have a high affinity for ssDNA in 0.15M NaCl ionic strength, with an apparent binding constant similar to that calculated for their association with double-stranded DNA (dsDNA). The length of DNA (number of nucleotides in ssDNA or base pairs in dsDNA) associated with a fixed core histone mass is the same for both ssDNA and dsDNA. Although histone-ssDNA complexes show a high tendency to aggregate, nucleosome-like structures are formed at physiological salt concentrations. Core histones are able to protect ssDNA from digestion by micrococcal nuclease, and a shortening of ssDNA occurs upon its interaction with histones. The purified (+) strand of a cloned DNA fragment of nucleosomal origin has a higher affinity for histones than the purified complementary (-) strand. At physiological ionic strength histones have high affinity for ssDNA, possibly associating with it into nucleosome-like structures. In the cell nucleus histones may spontaneously interact with ssDNA to facilitate their participation in the replication and transcription of chromatin. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. EPC1/TIP60-mediated histone acetylation facilitates spermiogenesis in mice

    DEFF Research Database (Denmark)

    Dong, Yixin; Isono, Kyo Ichi; Ohbo, Kazuyuki

    2017-01-01

    Global histone hyperacetylation is suggested to play a critical role for replacement of histones by transition proteins and protamines to compact the genome during spermiogenesis. However, the underlying mechanisms for hyperacetylation- mediated histone replacement remains poorly understood. Here...

  7. Histone acetyltransferases : challenges in targeting bi-substrate enzymes

    NARCIS (Netherlands)

    Wapenaar, Hannah; Dekker, Frank J

    2016-01-01

    Histone acetyltransferases (HATs) are epigenetic enzymes that install acetyl groups onto lysine residues of cellular proteins such as histones, transcription factors, nuclear receptors, and enzymes. HATs have been shown to play a role in diseases ranging from cancer and inflammatory diseases to

  8. The Role of Histone Protein Modifications and Mutations in Histone Modifiers in Pediatric B-Cell Progenitor Acute Lymphoblastic Leukemia

    Science.gov (United States)

    Janczar, Szymon; Janczar, Karolina; Pastorczak, Agata; Harb, Hani; Paige, Adam J. W.; Zalewska-Szewczyk, Beata; Danilewicz, Marian; Mlynarski, Wojciech

    2017-01-01

    While cancer has been long recognized as a disease of the genome, the importance of epigenetic mechanisms in neoplasia was acknowledged more recently. The most active epigenetic marks are DNA methylation and histone protein modifications and they are involved in basic biological phenomena in every cell. Their role in tumorigenesis is stressed by recent unbiased large-scale studies providing evidence that several epigenetic modifiers are recurrently mutated or frequently dysregulated in multiple cancers. The interest in epigenetic marks is especially due to the fact that they are potentially reversible and thus druggable. In B-cell progenitor acute lymphoblastic leukemia (BCP-ALL) there is a relative paucity of reports on the role of histone protein modifications (acetylation, methylation, phosphorylation) as compared to acute myeloid leukemia, T-cell ALL, or other hematologic cancers, and in this setting chromatin modifications are relatively less well studied and reviewed than DNA methylation. In this paper, we discuss the biomarker associations and evidence for a driver role of dysregulated global and loci-specific histone marks, as well as mutations in epigenetic modifiers in BCP-ALL. Examples of chromatin modifiers recurrently mutated/disrupted in BCP-ALL and associated with disease outcomes include MLL1, CREBBP, NSD2, and SETD2. Altered histone marks and histone modifiers and readers may play a particular role in disease chemoresistance and relapse. We also suggest that epigenetic regulation of B-cell differentiation may have parallel roles in leukemogenesis. PMID:28054944

  9. Acetylation-Mediated Proteasomal Degradation of Core Histones during DNA Repair and Spermatogenesis

    Science.gov (United States)

    Qian, Min-Xian; Pang, Ye; Liu, Cui Hua; Haratake, Kousuke; Du, Bo-Yu; Ji, Dan-Yang; Wang, Guang-Fei; Zhu, Qian-Qian; Song, Wei; Yu, Yadong; Zhang, Xiao-Xu; Huang, Hai-Tao; Miao, Shiying; Chen, Lian-Bin; Zhang, Zi-Hui; Liang, Ya-Nan; Liu, Shan; Cha, Hwangho; Yang, Dong; Zhai, Yonggong; Komatsu, Takuo; Tsuruta, Fuminori; Li, Haitao; Cao, Cheng; Li, Wei; Li, Guo-Hong; Cheng, Yifan; Chiba, Tomoki; Wang, Linfang; Goldberg, Alfred L.; Shen, Yan; Qiu, Xiao-Bo

    2013-01-01

    SUMMARY Histone acetylation plays critical roles in chromatin remodeling, DNA repair, and epigenetic regulation of gene expression, but the underlying mechanisms are unclear. Proteasomes usually catalyze ATP- and polyubiquitin-dependent proteolysis. Here we show that the proteasomes containing the activator PA200 catalyze the polyubiquitin-independent degradation of histones. Most proteasomes in mammalian testes (“spermatoproteasomes”) contain a spermatid/sperm-specific α-subunit α4s/PSMA8 and/or the catalytic β-subunits of immunoproteasomes in addition to PA200. Deletion of PA200 in mice abolishes acetylation-dependent degradation of somatic core histones during DNA double-strand breaks, and delays core histone disappearance in elongated spermatids. Purified PA200 greatly promotes ATP-independent proteasomal degradation of the acetylated core histones, but not polyubiquitinated proteins. Furthermore, acetylation on histones is required for their binding to the bromodomain-like regions in PA200 and its yeast ortholog, Blm10. Thus, PA200/Blm10 specifically targets the core histones for acetylation-mediated degradation by proteasomes, providing mechanisms by which acetylation regulates histone degradation, DNA repair, and spermatogenesis. PMID:23706739

  10. Small molecule inhibitors of histone deacetylases and acetyltransferases as potential therapeutics in oncology

    NARCIS (Netherlands)

    van den Bosch, Thea; Leus, Niek; Timmerman, Tirza; Dekker, Frank J

    2016-01-01

    Uncontrolled cell proliferation and resistance to apoptosis in cancer are, among others, regulated by post-translational modifications of histone proteins. The most investigated type of histone modification is lysine acetylation. Histone acetyltransferases (HATs), acetylate histone lysine residues,

  11. Improving specific activity and thermostability of Escherichia coli phytase by structure-based rational design.

    Science.gov (United States)

    Wu, Tzu-Hui; Chen, Chun-Chi; Cheng, Ya-Shan; Ko, Tzu-Ping; Lin, Cheng-Yen; Lai, Hui-Lin; Huang, Ting-Yung; Liu, Je-Ruei; Guo, Rey-Ting

    2014-04-10

    Escherichia coli phytase (EcAppA) which hydrolyzes phytate has been widely applied in the feed industry, but the need to improve the enzyme activity and thermostability remains. Here, we conduct rational design with two strategies to enhance the EcAppA performance. First, residues near the substrate binding pocket of EcAppA were modified according to the consensus sequence of two highly active Citrobacter phytases. One out of the eleven mutants, V89T, exhibited 17.5% increase in catalytic activity, which might be a result of stabilized protein folding. Second, the EcAppA glycosylation pattern was modified in accordance with the Citrobacter phytases. An N-glycosylation motif near the substrate binding site was disrupted to remove spatial hindrance for phytate entry and product departure. The de-glycosylated mutants showed 9.6% increase in specific activity. On the other hand, the EcAppA mutants that adopt N-glycosylation motifs from CbAppA showed improved thermostability that three mutants carrying single N-glycosylation motif exhibited 5.6-9.5% residual activity after treatment at 80°C (1.8% for wild type). Furthermore, the mutant carrying all three glycosylation motifs exhibited 27% residual activity. In conclusion, a successful rational design was performed to obtain several useful EcAppA mutants with better properties for further applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Simultaneous inhibition of aberrant cancer kinome using rationally designed polymer-protein core-shell nanomedicine.

    Science.gov (United States)

    Chandran, Parwathy; Gupta, Neha; Retnakumari, Archana Payickattu; Malarvizhi, Giridharan Loghanathan; Keechilat, Pavithran; Nair, Shantikumar; Koyakutty, Manzoor

    2013-11-01

    Simultaneous inhibition of deregulated cancer kinome using rationally designed nanomedicine is an advanced therapeutic approach. Herein, we have developed a polymer-protein core-shell nanomedicine to inhibit critically aberrant pro-survival kinases (mTOR, MAPK and STAT5) in primitive (CD34(+)/CD38(-)) Acute Myeloid Leukemia (AML) cells. The nanomedicine consists of poly-lactide-co-glycolide core (~250 nm) loaded with mTOR inhibitor, everolimus, and albumin shell (~25 nm thick) loaded with MAPK/STAT5 inhibitor, sorafenib and the whole construct was surface conjugated with monoclonal antibody against CD33 receptor overexpressed in AML. Electron microscopy confirmed formation of core-shell nanostructure (~290 nm) and flow cytometry and confocal studies showed enhanced cellular uptake of targeted nanomedicine. Simultaneous inhibition of critical kinases causing synergistic lethality against leukemic cells, without affecting healthy blood cells, was demonstrated using immunoblotting, cytotoxicity and apoptosis assays. This cell receptor plus multi-kinase targeted core-shell nanomedicine was found better specific and tolerable compared to current clinical regime of cytarabine and daunorubicin. These authors demonstrate simultaneous inhibition of critical kinases causing synergistic lethality against leukemic cells, without affecting healthy blood cells by using rationally designed polymer-protein core-shell nanomedicine, provoding an advanced method to eliminate cancer cells, with the hope of future therapeutic use. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Chemical engineering in the electronics industry: progress towards the rational design of organic semiconductor heterojunctions

    KAUST Repository

    Clancy, Paulette

    2012-05-01

    We review the current status of heterojunction design for combinations of organic semiconductor materials, given its central role in affecting the device performance for electronic devices and solar cell applications. We provide an emphasis on recent progress towards the rational design of heterojunctions that may lead to higher performance of charge separation and mobility. We also play particular attention to the role played by computational approaches and its potential to help define the best choice of materials for solar cell development in the future. We report the current status of the field with respect to such goals. © 2012 Elsevier Ltd.

  14. Chemical engineering in the electronics industry: progress towards the rational design of organic semiconductor heterojunctions

    KAUST Repository

    Clancy, Paulette

    2012-01-01

    We review the current status of heterojunction design for combinations of organic semiconductor materials, given its central role in affecting the device performance for electronic devices and solar cell applications. We provide an emphasis on recent progress towards the rational design of heterojunctions that may lead to higher performance of charge separation and mobility. We also play particular attention to the role played by computational approaches and its potential to help define the best choice of materials for solar cell development in the future. We report the current status of the field with respect to such goals. © 2012 Elsevier Ltd.

  15. Quantitative proteomic analysis of post-translational modifications of human histones

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Nielsen, Eva C; Matthiesen, Rune

    2006-01-01

    , and H4 in a site-specific and dose-dependent manner. This unbiased analysis revealed that a relative increase in acetylated peptide from the histone variants H2A, H2B, and H4 was accompanied by a relative decrease of dimethylated Lys(57) from histone H2B. The dose-response results obtained...... by quantitative proteomics of histones from HDACi-treated cells were consistent with Western blot analysis of histone acetylation, cytotoxicity, and dose-dependent expression profiles of p21 and cyclin A2. This demonstrates that mass spectrometry-based quantitative proteomic analysis of post-translational...

  16. Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease

    DEFF Research Database (Denmark)

    Cloos, Paul A C; Christensen, Jesper; Agger, Karl

    2008-01-01

    The enzymes catalyzing lysine and arginine methylation of histones are essential for maintaining transcriptional programs and determining cell fate and identity. Until recently, histone methylation was regarded irreversible. However, within the last few years, several families of histone...... demethylases erasing methyl marks associated with gene repression or activation have been identified, underscoring the plasticity and dynamic nature of histone methylation. Recent discoveries have revealed that histone demethylases take part in large multiprotein complexes synergizing with histone deacetylases......, histone methyltransferases, and nuclear receptors to control developmental and transcriptional programs. Here we review the emerging biochemical and biological functions of the histone demethylases and discuss their potential involvement in human diseases, including cancer....

  17. Histone hypoacetylation is required to maintain late replication timing of constitutive heterochromatin.

    Science.gov (United States)

    Casas-Delucchi, Corella S; van Bemmel, Joke G; Haase, Sebastian; Herce, Henry D; Nowak, Danny; Meilinger, Daniela; Stear, Jeffrey H; Leonhardt, Heinrich; Cardoso, M Cristina

    2012-01-01

    The replication of the genome is a spatio-temporally highly organized process. Yet, its flexibility throughout development suggests that this process is not genetically regulated. However, the mechanisms and chromatin modifications controlling replication timing are still unclear. We made use of the prominent structure and defined heterochromatic landscape of pericentric regions as an example of late replicating constitutive heterochromatin. We manipulated the major chromatin markers of these regions, namely histone acetylation, DNA and histone methylation, as well as chromatin condensation and determined the effects of these altered chromatin states on replication timing. Here, we show that manipulation of DNA and histone methylation as well as acetylation levels caused large-scale heterochromatin decondensation. Histone demethylation and the concomitant decondensation, however, did not affect replication timing. In contrast, immuno-FISH and time-lapse analyses showed that lowering DNA methylation, as well as increasing histone acetylation, advanced the onset of heterochromatin replication. While dnmt1(-)(/)(-) cells showed increased histone acetylation at chromocenters, histone hyperacetylation did not induce DNA demethylation. Hence, we propose that histone hypoacetylation is required to maintain normal heterochromatin duplication dynamics. We speculate that a high histone acetylation level might increase the firing efficiency of origins and, concomitantly, advances the replication timing of distinct genomic regions.

  18. Identification of novel post-translational modifications in linker histones from chicken erythrocytes.

    Science.gov (United States)

    Sarg, Bettina; Lopez, Rita; Lindner, Herbert; Ponte, Inma; Suau, Pedro; Roque, Alicia

    2015-01-15

    Chicken erythrocyte nuclei were digested with micrococcal nuclease and fractionated by centrifugation in low-salt buffer into soluble and insoluble fractions. Post-translational modifications of the purified linker histones of both fractions were analyzed by LC-ESI-MS/MS. All six histone H1 subtypes (H1.01, H1.02, H1.03, H1.10, H1.1L and H1.1R) and histone H5 were identified. Mass spectrometry analysis enabled the identification of a wide range of PTMs, including N(α)-terminal acetylation, acetylation, formylation, phosphorylation and oxidation. A total of nine new modifications in chicken linker histones were mapped, most of them located in the N-terminal and globular domains. Relative quantification of the modified peptides showed that linker histone PTMs were differentially distributed among both chromatin fractions, suggesting their relevance in the regulation of chromatin structure. The analysis of our results combined with previously reported data for chicken and some mammalian species showed that most of the modified positions were conserved throughout evolution, highlighting their importance in specific linker histone functions and epigenetics. Post-translational modifications of linker histones could have a role in the regulation of gene expression through the modulation of chromatin higher-order structure and chromatin remodeling. Finding new PTMs in linker histones is the first step to elucidate their role in the histone code. In this manuscript we report nine new post-translational modifications of the linker histones from chicken erythrocytes, one in H5 and eight in the H1 subtypes. Chromatin fractionated by centrifugation in low-salt buffer resulted in two fractions with different contents and compositions of linker histones and enriched in specific core histone PTMs. Of particular interest is the fact that linker histone PTMs were differentially distributed in both chromatin fractions, suggesting specific functions. Future studies are needed to

  19. Theory and simulation of DNA-coated colloids: a guide for rational design.

    Science.gov (United States)

    Angioletti-Uberti, Stefano; Mognetti, Bortolo M; Frenkel, Daan

    2016-03-07

    By exploiting the exquisite selectivity of DNA hybridization, DNA-coated colloids (DNACCs) can be made to self-assemble in a wide variety of structures. The beauty of this system stems largely from its exceptional versatility and from the fact that a proper choice of the grafted DNA sequences yields fine control over the colloidal interactions. Theory and simulations have an important role to play in the optimal design of self assembling DNACCs. At present, the powerful model-based design tools are not widely used, because the theoretical literature is fragmented and the connection between different theories is often not evident. In this Perspective, we aim to discuss the similarities and differences between the different models that have been described in the literature, their underlying assumptions, their strengths and their weaknesses. Using the tools described in the present Review, it should be possible to move towards a more rational design of novel self-assembling structures of DNACCs and, more generally, of systems where ligand-receptor are used to control interactions.

  20. Rational In Silico Design of an Organic Semiconductor with Improved Electron Mobility.

    Science.gov (United States)

    Friederich, Pascal; Gómez, Verónica; Sprau, Christian; Meded, Velimir; Strunk, Timo; Jenne, Michael; Magri, Andrea; Symalla, Franz; Colsmann, Alexander; Ruben, Mario; Wenzel, Wolfgang

    2017-11-01

    Organic semiconductors find a wide range of applications, such as in organic light emitting diodes, organic solar cells, and organic field effect transistors. One of their most striking disadvantages in comparison to crystalline inorganic semiconductors is their low charge-carrier mobility, which manifests itself in major device constraints such as limited photoactive layer thicknesses. Trial-and-error attempts to increase charge-carrier mobility are impeded by the complex interplay of the molecular and electronic structure of the material with its morphology. Here, the viability of a multiscale simulation approach to rationally design materials with improved electron mobility is demonstrated. Starting from one of the most widely used electron conducting materials (Alq 3 ), novel organic semiconductors with tailored electronic properties are designed for which an improvement of the electron mobility by three orders of magnitude is predicted and experimentally confirmed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Novel amide derivatives as inhibitors of histone deacetylase: design, synthesis and SAR

    DEFF Research Database (Denmark)

    Andrianov, V.; Gailite, V.; Lola, D.

    2009-01-01

    Enzymatic inhibition of histone deacetylase (HDAC) activity is emerging as an innovative and effective approach for the treatment of cancer. A series of novel amide derivatives have been synthesized and evaluated for their ability to inhibit human HDACs. Multiple compounds were identified as potent...... HDAC inhibitors (HDACi), with IC(50) values in the low nanomolar (nM) range against enzyme activity in HeLa cell extracts and sub-microM for their in vitro anti-proliferative effect on cell lines. The introduction of an unsaturated linking group between the terminal aryl ring and the amide moiety...

  2. Biochemical studies on histones of the central nervous system. 2

    International Nuclear Information System (INIS)

    Schmitt, M.; Matthies, H.

    1979-01-01

    There are no qualitative differences in the electrophoretic patterns of histones from neurones and glia. A 25% increased acetylation rate is found in neutronal histones as compared to glial histones after incubation of chopped brain in a [ 14 C]-acetate containing medium. This result probably reflects different condensation states of the chromatins of both cell types, as demonstrated by electron microscopy. (author)

  3. Histone deacetylase inhibition abolishes stress-induced spatial memory impairment.

    Science.gov (United States)

    Vargas-López, Viviana; Lamprea, Marisol R; Múnera, Alejandro

    2016-10-01

    Acute stress induced before spatial training impairs memory consolidation. Although non-epigenetic underpinning of such effect has been described, the epigenetic mechanisms involved have not yet been studied. Since spatial training and intense stress have opposite effects on histone acetylation balance, it is conceivable that disruption of such balance may underlie acute stress-induced spatial memory consolidation impairment and that inhibiting histone deacetylases prevents such effect. Trichostatin-A (TSA, a histone deacetylase inhibitor) was used to test its effectiveness in preventing stress' deleterious effect on memory. Male Wistar rats were trained in a spatial task in the Barnes maze; 1-h movement restraint was applied to half of them before training. Immediately after training, stressed and non-stressed animals were randomly assigned to receive either TSA (1mg/kg) or vehicle intraperitoneal injection. Twenty-four hours after training, long-term spatial memory was tested; plasma and brain tissue were collected immediately after the memory test to evaluate corticosterone levels and histone H3 acetylation in several brain areas. Stressed animals receiving vehicle displayed memory impairment, increased plasma corticosterone levels and markedly reduced histone H3 acetylation in prelimbic cortex and hippocampus. Such effects did not occur in stressed animals treated with TSA. The aforementioned results support the hypothesis that acute stress induced-memory impairment is related to histone deacetylation. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Interactions of Histone Acetyltransferase p300 with the Nuclear Proteins Histone and HMGB1, As Revealed by Single Molecule Atomic Force Spectroscopy.

    Science.gov (United States)

    Banerjee, S; Rakshit, T; Sett, S; Mukhopadhyay, R

    2015-10-22

    One of the important properties of the transcriptional coactivator p300 is histone acetyltransferase (HAT) activity that enables p300 to influence chromatin action via histone modulation. p300 can exert its HAT action upon the other nuclear proteins too--one notable example being the transcription-factor-like protein HMGB1, which functions also as a cytokine, and whose accumulation in the cytoplasm, as a response to tissue damage, is triggered by its acetylation. Hitherto, no information on the structure and stability of the complexes between full-length p300 (p300FL) (300 kDa) and the histone/HMGB1 proteins are available, probably due to the presence of unstructured regions within p300FL that makes it difficult to be crystallized. Herein, we have adopted the high-resolution atomic force microscopy (AFM) approach, which allows molecularly resolved three-dimensional contour mapping of a protein molecule of any size and structure. From the off-rate and activation barrier values, obtained using single molecule dynamic force spectroscopy, the biochemical proposition of preferential binding of p300FL to histone H3, compared to the octameric histone, can be validated. Importantly, from the energy landscape of the dissociation events, a model for the p300-histone and the p300-HMGB1 dynamic complexes that HAT forms, can be proposed. The lower unbinding forces of the complexes observed in acetylating conditions, compared to those observed in non-acetylating conditions, indicate that upon acetylation, p300 tends to weakly associate, probably as an outcome of charge alterations on the histone/HMGB1 surface and/or acetylation-induced conformational changes. To our knowledge, for the first time, a single molecule level treatment of the interactions of HAT, where the full-length protein is considered, is being reported.

  5. Design of a Discrete Tracking Controller for a Magnetic Levitation System: A Nonlinear Rational Model Approach

    Directory of Open Access Journals (Sweden)

    Fernando Gómez-Salas

    2015-01-01

    Full Text Available This work proposes a discrete-time nonlinear rational approximate model for the unstable magnetic levitation system. Based on this model and as an application of the input-output linearization technique, a discrete-time tracking control design will be derived using the corresponding classical state space representation of the model. A simulation example illustrates the efficiency of the proposed methodology.

  6. Histone Deacetylase Inhibitor Alleviates the Neurodegenerative Phenotypes and Histone Dysregulation in Presenilins-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Ting Cao

    2018-05-01

    Full Text Available Histone acetylation has been shown to play a crucial role in memory formation, and histone deacetylase (HDAC inhibitor sodium butyrate (NaB has been demonstrated to improve memory performance and rescue the neurodegeneration of several Alzheimer’s Disease (AD mouse models. The forebrain presenilin-1 and presenilin-2 conditional double knockout (cDKO mice showed memory impairment, forebrain degeneration, tau hyperphosphorylation and inflammation that closely mimics AD-like phenotypes. In this article, we have investigated the effects of systemic administration of NaB on neurodegenerative phenotypes in cDKO mice. We found that chronic NaB treatment significantly restored contextual memory but did not alter cued memory in cDKO mice while such an effect was not permanent after treatment withdrawal. We further revealed that NaB treatment did not rescue reduced synaptic numbers and cortical shrinkage in cDKO mice, but significantly increased the neurogenesis in subgranular zone of dentate gyrus (DG. We also observed that tau hyperphosphorylation and inflammation related protein glial fibrillary acidic protein (GFAP level were decreased in cDKO mice by NaB. Furthermore, GO and pathway analysis for the RNA-Seq data demonstrated that NaB treatment induced enrichment of transcripts associated with inflammation/immune processes and cytokine-cytokine receptor interactions. RT-PCR confirmed that NaB treatment inhibited the expression of inflammation related genes such as S100a9 and Ccl4 found upregulated in the brain of cDKO mice. Surprisingly, the level of brain histone acetylation in cDKO mice was dramatically increased and was decreased by the administration of NaB, which may reflect dysregulation of histone acetylation underlying memory impairment in cDKO mice. These results shed some lights on the possible molecular mechanisms of HDAC inhibitor in alleviating the neurodegenerative phenotypes of cDKO mice and provide a promising target for treating AD.

  7. Rational design of a bi-layered reduced graphene oxide film on polystyrene foam for solar-driven interfacial water evaporation

    KAUST Repository

    Shi, Le; Wang, Yuchao; Zhang, Lianbin; Wang, Peng

    2016-01-01

    Solar-driven water evaporation has been emerging as a highly efficient way for utilizing solar energy for clean water production and wastewater treatment. Here we rationally designed and fabricated a bi-layered photothermal membrane with a porous

  8. Chemical and semisynthesis of modified histones.

    Science.gov (United States)

    Maity, Suman Kumar; Jbara, Muhammad; Brik, Ashraf

    2016-05-01

    Post-translational modifications (PTMs) of histones play critical roles in the epigenetic regulation of eukaryotic genome by directly altering the biophysical properties of chromatin or by recruiting effector proteins. The large number of PTMs and the inherent complexity in their population and signaling processes make it highly challenging to understand epigenetics-related processes. To address these challenges, accesses to homogeneously modified histones are obligatory. Over the last decade, synthetic protein chemists have been devising novel synthetic tools and applying state-of-the-art chemoselective ligation strategies to prepare precious materials useful in answering fundamental questions in this area. In this short review, we cover some of the recent breakthroughs in these directions in particular the synthesis and semi-synthesis of modified histones and their use to unravel the mysteries of epigenetics. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  9. Rational Design, Synthesis and Pharmacological Evaluation of the (2R)- and (2S)-Stereoisomers of 3-(2-Carboxypyrrolidinyl)-2-methyl Acetic Acid as Ligands for the Ionotropic Glutamate Receptors

    DEFF Research Database (Denmark)

    Rasmussen, Julie; Storgaard, Morten; Pickering, Darryl S

    2011-01-01

    In this paper we describe the rational design, synthesis and pharmacological evaluation of two new stereoisomeric (S)-glutamate (Glu) analogues. The rational design was based on hybrid structures of the natural product kainic acid, a synthetic analogue CPAA and the high-affinity Glu analogue SYM...

  10. Developmentally Regulated Post-translational Modification of Nucleoplasmin Controls Histone Sequestration and Deposition

    Directory of Open Access Journals (Sweden)

    Takashi Onikubo

    2015-03-01

    Full Text Available Nucleoplasmin (Npm is an abundant histone chaperone in vertebrate oocytes and embryos. During embryogenesis, regulation of Npm histone binding is critical for its function in storing and releasing maternal histones to establish and maintain the zygotic epigenome. Here, we demonstrate that Xenopus laevis Npm post-translational modifications (PTMs specific to the oocyte and egg promote either histone deposition or sequestration, respectively. Mass spectrometry and Npm phosphomimetic mutations used in chromatin assembly assays identified hyperphosphorylation on the N-terminal tail as a critical regulator for sequestration. C-terminal tail phosphorylation and PRMT5-catalyzed arginine methylation enhance nucleosome assembly by promoting histone interaction with the second acidic tract of Npm. Electron microscopy reconstructions of Npm and TTLL4 activity toward the C-terminal tail demonstrate that oocyte- and egg-specific PTMs cause Npm conformational changes. Our results reveal that PTMs regulate Npm chaperoning activity by modulating Npm conformation and Npm-histone interaction, leading to histone sequestration in the egg.

  11. Rational design of stealthy hyperuniform two-phase media with tunable order

    Science.gov (United States)

    DiStasio, Robert A.; Zhang, Ge; Stillinger, Frank H.; Torquato, Salvatore

    2018-02-01

    Disordered stealthy hyperuniform materials are exotic amorphous states of matter that have attracted recent attention because of their novel structural characteristics (hidden order at large length scales) and physical properties, including desirable photonic and transport properties. It is therefore useful to devise algorithms that enable one to design a wide class of such amorphous configurations at will. In this paper, we present several algorithms enabling the systematic identification and generation of discrete (digitized) stealthy hyperuniform patterns with a tunable degree of order, paving the way towards the rational design of disordered materials endowed with novel thermodynamic and physical properties. To quantify the degree of order or disorder of the stealthy systems, we utilize the discrete version of the τ order metric, which accounts for the underlying spatial correlations that exist across all relevant length scales in a given digitized two-phase (or, equivalently, a two-spin state) system of interest. Our results impinge on a myriad of fields, ranging from physics, materials science and engineering, visual perception, and information theory to modern data science.

  12. Histone H4 acetylation by immunohistochemistry and prognosis in newly diagnosed adult acute lymphoblastic leukemia (ALL) patients

    International Nuclear Information System (INIS)

    Advani, Anjali S; Sungren, Shawnda; Hsi, Eric D; Gibson, Sarah E; Douglas, Elizabeth; Jin, Tao; Zhao, Xiaoxian; Kalaycio, Matt; Copelan, Ed; Sobecks, Ronald; Sekeres, Mikkael

    2010-01-01

    Histone deacetylase (HDAC) inhibitors are a novel anti-tumor therapy. To determine whether HDAC inhibitors may be useful in the treatment of adult acute lymphoblastic leukemia (ALL), we examined the acetylation of histone H4 by immunohistochemistry in newly diagnosed ALL patients and evaluated the impact of acetylation on complete remission (CR) rate, relapse-free survival (RFS), and overall survival (OS). Patients ≥18 years of age and an available diagnostic bone marrow biopsy were evaluated. Cox proportional hazards analysis was used to identify univariate and multivariate correlates of CR, RFS, and OS. The variables histone H4 acetylation (positive or negative), white blood count, cytogenetic (CG) risk group (CALGB criteria), and age were used in multivariate analysis. On multivariate analysis, histone acetylation was associated with a trend towards an improved OS (for all CG risk groups) (HR = 0.51, p = 0.09). In patients without poor risk CG, there was an impressive association between the presence of histone acetylation and an improved CR rate (OR 3.43, p = 0.035), RFS (HR 0.07, p = 0.005), and OS (HR 0.24, p = 0.007). This association remained statistically significant in multivariate analysis. These data provide a rationale for the design of novel regimens incorporating HDAC inhibitors in ALL

  13. Total levels of hippocampal histone acetylation predict normal variability in mouse behavior.

    Directory of Open Access Journals (Sweden)

    Addie May I Nesbitt

    Full Text Available Genetic, pharmacological, and environmental interventions that alter total levels of histone acetylation in specific brain regions can modulate behaviors and treatment responses. Efforts have been made to identify specific genes that are affected by alterations in total histone acetylation and to propose that such gene specific modulation could explain the effects of total histone acetylation levels on behavior - the implication being that under naturalistic conditions variability in histone acetylation occurs primarily around the promoters of specific genes.Here we challenge this hypothesis by demonstrating with a novel flow cytometry based technique that normal variability in open field exploration, a hippocampus-related behavior, was associated with total levels of histone acetylation in the hippocampus but not in other brain regions.Results suggest that modulation of total levels of histone acetylation may play a role in regulating biological processes. We speculate in the discussion that endogenous regulation of total levels of histone acetylation may be a mechanism through which organisms regulate cellular plasticity. Flow cytometry provides a useful approach to measure total levels of histone acetylation at the single cell level. Relating such information to behavioral measures and treatment responses could inform drug delivery strategies to target histone deacetylase inhibitors and other chromatin modulators to places where they may be of benefit while avoiding areas where correction is not needed and could be harmful.

  14. Destabilization of the Outer and Inner Mitochondrial Membranes by Core and Linker Histones

    Science.gov (United States)

    Cascone, Annunziata; Bruelle, Celine; Lindholm, Dan; Bernardi, Paolo; Eriksson, Ove

    2012-01-01

    Background Extensive DNA damage leads to apoptosis. Histones play a central role in DNA damage sensing and may mediate signals of genotoxic damage to cytosolic effectors including mitochondria. Methodology/Principal Findings We have investigated the effects of histones on mitochondrial function and membrane integrity. We demonstrate that both linker histone H1 and core histones H2A, H2B, H3, and H4 bind strongly to isolated mitochondria. All histones caused a rapid and massive release of the pro-apoptotic intermembrane space proteins cytochrome c and Smac/Diablo, indicating that they permeabilize the outer mitochondrial membrane. In addition, linker histone H1, but not core histones, permeabilized the inner membrane with a collapse of the membrane potential, release of pyridine nucleotides, and mitochondrial fragmentation. Conclusions We conclude that histones destabilize the mitochondrial membranes, a mechanism that may convey genotoxic signals to mitochondria and promote apoptosis following DNA damage. PMID:22523586

  15. Crystals of Human Serum Albumin for Use in Genetic Engineering and Rational Drug Design

    Science.gov (United States)

    Carter, Daniel C. (Inventor)

    1994-01-01

    This invention pertains to crystals of serum albumin and processes for growing them. The purpose of the invention is to provide crystals of serum albumin which can be studied to determine binding sites for drugs. Form 2 crystals grow in the monoclinic space P2(sub 1), and possesses the following unit cell constraints: a = 58.9 +/- 7, b = 88.3 +/- 7, c = 60.7 +/- 7, Beta = 101.0 +/- 2 degrees. One advantage of the invention is that it will allow rational drug design

  16. Histone H3 Lysine Methylation in Cognition and Intellectual Disability Disorders

    Science.gov (United States)

    Parkel, Sven; Lopez-Atalaya, Jose P.; Barco, Angel

    2013-01-01

    Recent research indicates that epigenetic mechanisms and, in particular, the post-translational modification (PTM) of histones may contribute to memory encoding and storage. Among the dozens of possible histone PTMs, the methylation/demethylation of lysines in the N-terminal tail of histone H3 exhibits particularly strong links with cognitive…

  17. Histone deacetylases in memory and cognition.

    Science.gov (United States)

    Penney, Jay; Tsai, Li-Huei

    2014-12-09

    Over the past 30 years, lysine acetylation of histone and nonhistone proteins has become established as a key modulator of gene expression regulating numerous aspects of cell biology. Neuronal growth and plasticity are no exception; roles for lysine acetylation and deacetylation in brain function and dysfunction continue to be uncovered. Transcriptional programs coupling synaptic activity to changes in gene expression are critical to the plasticity mechanisms underlying higher brain functions. These transcriptional programs can be modulated by changes in histone acetylation, and in many cases, transcription factors and histone-modifying enzymes are recruited together to plasticity-associated genes. Lysine acetylation, catalyzed by lysine acetyltransferases (KATs), generally promotes cognitive performance, whereas the opposing process, catalyzed by histone lysine deacetylases (HDACs), appears to negatively regulate cognition in multiple brain regions. Consistently, mutation or deregulation of different KATs or HDACs contributes to neurological dysfunction and neurodegeneration. HDAC inhibitors have shown promise as a treatment to combat the cognitive decline associated with aging and neurodegenerative disease, as well as to ameliorate the symptoms of depression and posttraumatic stress disorder, among others. In this review, we discuss the evidence for the roles of HDACs in cognitive function as well as in neurological disorders and disease. In particular, we focus on HDAC2, which plays a central role in coupling lysine acetylation to synaptic plasticity and mediates many of the effects of HDAC inhibition in cognition and disease. Copyright © 2014, American Association for the Advancement of Science.

  18. The histone H5 variant in Xenopus laevis

    NARCIS (Netherlands)

    Moorman, A. F.; de Boer, P. A.; Linders, M. T.; Charles, R.

    1984-01-01

    The presumptive histone H5 of Xenopus laevis has been characterized by SDS and acid-urea-Triton polyacrylamide gel electrophoresis and compared with chicken histone H5. Chicken H5 has a lower electrophoretic mobility compared to that of Xenopus H5 in both gel systems. It is shown, using a polyclonal

  19. Solar Simulated Ultraviolet Radiation Induces Global Histone Hypoacetylation in Human Keratinocytes.

    Science.gov (United States)

    Zhang, Xiaoru; Kluz, Thomas; Gesumaria, Lisa; Matsui, Mary S; Costa, Max; Sun, Hong

    2016-01-01

    Ultraviolet radiation (UVR) from sunlight is the primary effector of skin DNA damage. Chromatin remodeling and histone post-translational modification (PTM) are critical factors in repairing DNA damage and maintaining genomic integrity, however, the dynamic changes of histone marks in response to solar UVR are not well characterized. Here we report global changes in histone PTMs induced by solar simulated UVR (ssUVR). A decrease in lysine acetylation of histones H3 and H4, particularly at positions of H3 lysine 9, lysine 56, H4 lysine 5, and lysine 16, was found in human keratinocytes exposed to ssUVR. These acetylation changes were highly associated with ssUVR in a dose-dependent and time-specific manner. Interestingly, H4K16ac, a mark that is crucial for higher order chromatin structure, exhibited a persistent reduction by ssUVR that was transmitted through multiple cell divisions. In addition, the enzymatic activities of histone acetyltransferases were significantly reduced in irradiated cells, which may account for decreased global acetylation. Moreover, depletion of histone deacetylase SIRT1 in keratinocytes rescued ssUVR-induced H4K16 hypoacetylation. These results indicate that ssUVR affects both HDAC and HAT activities, leading to reduced histone acetylation.

  20. CSR-1 RNAi pathway positively regulates histone expression in C. elegans.

    Science.gov (United States)

    Avgousti, Daphne C; Palani, Santhosh; Sherman, Yekaterina; Grishok, Alla

    2012-10-03

    Endogenous small interfering RNAs (endo-siRNAs) have been discovered in many organisms, including mammals. In C. elegans, depletion of germline-enriched endo-siRNAs found in complex with the CSR-1 Argonaute protein causes sterility and defects in chromosome segregation in early embryos. We discovered that knockdown of either csr-1, the RNA-dependent RNA polymerase (RdRP) ego-1, or the dicer-related helicase drh-3, leads to defects in histone mRNA processing, resulting in severe depletion of core histone proteins. The maturation of replication-dependent histone mRNAs, unlike that of other mRNAs, requires processing of their 3'UTRs through an endonucleolytic cleavage guided by the U7 snRNA, which is lacking in C. elegans. We found that CSR-1-bound antisense endo-siRNAs match histone mRNAs and mRNA precursors. Consistently, we demonstrate that CSR-1 directly binds to histone mRNA in an ego-1-dependent manner using biotinylated 2'-O-methyl RNA oligonucleotides. Moreover, we demonstrate that increasing the dosage of histone genes rescues the lethality associated with depletion of CSR-1 and EGO-1. These results support a positive and direct effect of RNAi on histone gene expression.

  1. Rationalization: A Bibliography.

    Science.gov (United States)

    Pedrini, D. T.; Pedrini, Bonnie C.

    Rationalization was studied by Sigmund Freud and was specifically labeled by Ernest Jones. Rationalization ought to be differentiated from rational, rationality, logical analysis, etc. On the one hand, rationalization is considered a defense mechanism, on the other hand, rationality is not. Haan has done much work with self-report inventories and…

  2. Histone methylations in heart development, congenital and adult heart diseases.

    Science.gov (United States)

    Zhang, Qing-Jun; Liu, Zhi-Ping

    2015-01-01

    Heart development comprises myocyte specification, differentiation and cardiac morphogenesis. These processes are regulated by a group of core cardiac transcription factors in a coordinated temporal and spatial manner. Histone methylation is an emerging epigenetic mechanism for regulating gene transcription. Interplay among cardiac transcription factors and histone lysine modifiers plays important role in heart development. Aberrant expression and mutation of the histone lysine modifiers during development and in adult life can cause either embryonic lethality or congenital heart diseases, and influences the response of adult hearts to pathological stresses. In this review, we describe current body of literature on the role of several common histone methylations and their modifying enzymes in heart development, congenital and adult heart diseases.

  3. Stage-specific histone modification profiles reveal global transitions in the Xenopus embryonic epigenome.

    Directory of Open Access Journals (Sweden)

    Tobias D Schneider

    Full Text Available Vertebrate embryos are derived from a transitory pool of pluripotent cells. By the process of embryonic induction, these precursor cells are assigned to specific fates and differentiation programs. Histone post-translational modifications are thought to play a key role in the establishment and maintenance of stable gene expression patterns underlying these processes. While on gene level histone modifications are known to change during differentiation, very little is known about the quantitative fluctuations in bulk histone modifications during development. To investigate this issue we analysed histones isolated from four different developmental stages of Xenopus laevis by mass spectrometry. In toto, we quantified 59 modification states on core histones H3 and H4 from blastula to tadpole stages. During this developmental period, we observed in general an increase in the unmodified states, and a shift from histone modifications associated with transcriptional activity to transcriptionally repressive histone marks. We also compared these naturally occurring patterns with the histone modifications of murine ES cells, detecting large differences in the methylation patterns of histone H3 lysines 27 and 36 between pluripotent ES cells and pluripotent cells from Xenopus blastulae. By combining all detected modification transitions we could cluster their patterns according to their embryonic origin, defining specific histone modification profiles (HMPs for each developmental stage. To our knowledge, this data set represents the first compendium of covalent histone modifications and their quantitative flux during normogenesis in a vertebrate model organism. The HMPs indicate a stepwise maturation of the embryonic epigenome, which may be causal to the progressing restriction of cellular potency during development.

  4. Post-Translational Modifications of Histones in Human Sperm.

    Science.gov (United States)

    Krejčí, Jana; Stixová, Lenka; Pagáčová, Eva; Legartová, Soňa; Kozubek, Stanislav; Lochmanová, Gabriela; Zdráhal, Zbyněk; Sehnalová, Petra; Dabravolski, Siarhei; Hejátko, Jan; Bártová, Eva

    2015-10-01

    We examined the levels and distribution of post-translationally modified histones and protamines in human sperm. Using western blot immunoassay, immunofluorescence, mass spectrometry (MS), and FLIM-FRET approaches, we analyzed the status of histone modifications and the protamine P2. Among individual samples, we observed variability in the levels of H3K9me1, H3K9me2, H3K27me3, H3K36me3, and H3K79me1, but the level of acetylated (ac) histones H4 was relatively stable in the sperm head fractions, as demonstrated by western blot analysis. Sperm heads with lower levels of P2 exhibited lower levels of H3K9ac, H3K9me1, H3K27me3, H3K36me3, and H3K79me1. A very strong correlation was observed between the levels of P2 and H3K9me2. FLIM-FRET analysis additionally revealed that acetylated histones H4 are not only parts of sperm chromatin but also appear in a non-integrated form. Intriguingly, H4ac and H3K27me3 were detected in sperm tail fractions via western blot analysis. An appearance of specific histone H3 and H4 acetylation and H3 methylation in sperm tail fractions was also confirmed by both LC-MS/MS and MALDI-TOF MS analysis. Taken together, these data indicate that particular post-translational modifications of histones are uniquely distributed in human sperm, and this distribution varies among individuals and among the sperm of a single individual. © 2015 Wiley Periodicals, Inc.

  5. High-resolution structure of the native histone octamer

    International Nuclear Information System (INIS)

    Wood, Christopher M.; Nicholson, James M.; Lambert, Stanley J.; Chantalat, Laurent; Reynolds, Colin D.; Baldwin, John P.

    2005-01-01

    The high-resolution (1.90 Å) model of the native histone octamer allows structural comparisons to be made with the nucleosome-core particle, along with an identification of a likely core-histone binding site. Crystals of native histone octamers (H2A–H2B)–(H4–H3)–(H3′–H4′)–(H2B′–H2A′) from chick erythrocytes in 2 M KCl, 1.35 M potassium phosphate pH 6.9 diffract X-rays to 1.90 Å resolution, yielding a structure with an R work value of 18.7% and an R free of 22.2%. The crystal space group is P6 5 , the asymmetric unit of which contains one complete octamer. This high-resolution model of the histone-core octamer allows further insight into intermolecular interactions, including water molecules, that dock the histone dimers to the tetramer in the nucleosome-core particle and have relevance to nucleosome remodelling. The three key areas analysed are the H2A′–H3–H4 molecular cluster (also H2A–H3′–H4′), the H4–H2B′ interaction (also H4′–H2B) and the H2A′–H4 β-sheet interaction (also H2A–H4′). The latter of these three regions is important to nucleosome remodelling by RNA polymerase II, as it is shown to be a likely core-histone binding site, and its disruption creates an instability in the nucleosome-core particle. A majority of the water molecules in the high-resolution octamer have positions that correlate to similar positions in the high-resolution nucleosome-core particle structure, suggesting that the high-resolution octamer model can be used for comparative studies with the high-resolution nucleosome-core particle

  6. Post-cardiac arrest level of free-plasma DNA and DNA-histone complexes

    DEFF Research Database (Denmark)

    Jeppesen, A N; Hvas, A-M; Grejs, A M

    2017-01-01

    Background Plasma DNA-histone complexes and total free-plasma DNA have the potential to quantify the ischaemia-reperfusion damages occurring after cardiac arrest. Furthermore, DNA-histone complexes may have the potential of being a target for future treatment. The aim was to examine if plasma DNA-histone...... after 22, 46 and 70 h. Samples for DNA-histone complexes were quantified by Cell Death Detection ELISAplus. The total free-plasma DNA analyses were quantified with qPCR by analysing the Beta-2 microglobulin gene. The control group comprised 40 healthy individuals. Results We found no difference...... in the level of DNA-histone complexes between the 22-h sample and healthy individuals (P = 0.10). In the 46-h sample, there was an increased level of DNA-histone complexes in non-survivors compared with survivors 30 days after the cardiac arrest (P

  7. Histone deacetylase inhibitors augment doxorubicin-induced DNA damage in cardiomyocytes.

    Science.gov (United States)

    Ververis, Katherine; Rodd, Annabelle L; Tang, Michelle M; El-Osta, Assam; Karagiannis, Tom C

    2011-12-01

    Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutics with suberoylanilide hydroxamic acid (Vorinostat) and depsipeptide (Romidepsin) already being approved for clinical use. Numerous studies have identified that histone deacetylase inhibitors will be most effective in the clinic when used in combination with conventional cancer therapies such as ionizing radiation and chemotherapeutic agents. One promising combination, particularly for hematologic malignancies, involves the use of histone deacetylase inhibitors with the anthracycline, doxorubicin. However, we previously identified that trichostatin A can potentiate doxorubicin-induced hypertrophy, the dose-limiting side-effect of the anthracycline, in cardiac myocytes. Here we have the extended the earlier studies and evaluated the effects of combinations of the histone deacetylase inhibitors, trichostatin A, valproic acid and sodium butyrate on doxorubicin-induced DNA double-strand breaks in cardiomyocytes. Using γH2AX as a molecular marker for the DNA lesions, we identified that all of the broad-spectrum histone deacetylase inhibitors tested augment doxorubicin-induced DNA damage. Furthermore, it is evident from the fluorescence photomicrographs of stained nuclei that the histone deacetylase inhibitors also augment doxorubicin-induced hypertrophy. These observations highlight the importance of investigating potential side-effects, in relevant model systems, which may be associated with emerging combination therapies for cancer.

  8. Sepsis and ARDS: The Dark Side of Histones

    Science.gov (United States)

    Xu, Zhiheng; Huang, Yongbo; Mao, Pu; Zhang, Jianrong; Li, Yimin

    2015-01-01

    Despite advances in management over the last several decades, sepsis and acute respiratory distress syndrome (ARDS) still remain major clinical challenges and the leading causes of death for patients in intensive care units (ICUs) due to insufficient understanding of the pathophysiological mechanisms of these diseases. However, recent studies have shown that histones, also known as chromatin-basic structure proteins, could be released into the extracellular space during severe stress and physical challenges to the body (e.g., sepsis and ARDS). Due to their cytotoxic and proinflammatory effects, extracellular histones can lead to excessive and overwhelming cell damage and death, thus contributing to the pathogenesis of both sepsis and ARDS. In addition, antihistone-based treatments (e.g., neutralizing antibodies, activated protein C, and heparin) have shown protective effects and have significantly improved the outcomes of mice suffering from sepsis and ARDS. Here, we review researches related to the pathological role of histone in context of sepsis and ARDS and evaluate the potential value of histones as biomarkers and therapeutic targets of these diseases. PMID:26609197

  9. Open and Closed: The Roles of Linker Histones in Plants and Animals

    OpenAIRE

    Over, Ryan S.; Michaels, Scott D.

    2014-01-01

    Linker histones play key roles alongside core histones in the regulation and maintenance of chromatin. Here, we illustrate our current understanding of the contributions of linker histones to the cell cycle, development, and chromatin structure in plants and animals.

  10. Dissociation of histone and DNA synthesis in x-irradiated HeLa cells

    International Nuclear Information System (INIS)

    Bases, R.; Mendez, F.

    1971-01-01

    Although histone synthesis and DNA synthesis are normally very well coordinated in HeLa cells, their histone synthesis proved relatively resistant to inhibition by ionizing radiation. During the first 24 h after 1,000 R the rate of cellular DNA synthesis progressively fell to small fractions of control values while histone synthesis with much less relative reduction. Acrylamide gel electropherograms of the acid soluble nuclear histones synthesized by irradiated HeLa cells were qualitatively normal

  11. Public policy, rationality and reason

    Directory of Open Access Journals (Sweden)

    Rodolfo Canto Sáenz

    2015-07-01

    Full Text Available This work suggests the incorporation of practical reason in the design, implementation and evaluation of public policies, alongside instrumental rationality. It takes two proposals that today point in this direction: Rawls distinction between reasonable (practical reason and rational (instrumental reason and what this author calls the CI Procedure (categorical imperative procedure and Habermas model of deliberative democracy. The main conclusion is that the analysis of public policies can not be limited to rather narrow limits of science, but requires the contribution of political and moral philosophy.

  12. Rational Design and Synthesis of Efficient Sunscreens To Boost the Solar Protection Factor.

    Science.gov (United States)

    Losantos, Raúl; Funes-Ardoiz, Ignacio; Aguilera, José; Herrera-Ceballos, Enrique; García-Iriepa, Cristina; Campos, Pedro J; Sampedro, Diego

    2017-03-01

    Skin cancer incidence has been increasing in the last decades, but most of the commercial formulations used as sunscreens are designed to protect only against solar erythema. Many of the active components present in sunscreens show critical weaknesses, such as low stability and toxicity. Thus, the development of more efficient components is an urgent health necessity and an attractive industrial target. We have rationally designed core moieties with increased photoprotective capacities and a new energy dissipation mechanism. Using these scaffolds, we have synthesized a series of compounds with tunable properties suitable for their use in sunscreens, and enhanced properties in terms of stability, light energy dissipation, and toxicity. Moreover, some representative compounds were included in final sunscreen formulations and a relevant solar protection factor boost was measured. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. DNA and factor VII-activating protease protect against the cytotoxicity of histones

    NARCIS (Netherlands)

    Marsman, Gerben; von Richthofen, Helen; Bulder, Ingrid; Lupu, Florea; Hazelzet, Jan; Luken, Brenda M.; Zeerleder, Sacha

    2017-01-01

    Circulating histones have been implicated as major mediators of inflammatory disease because of their strong cytotoxic effects. Histones form the protein core of nucleosomes; however, it is unclear whether histones and nucleosomes are equally cytotoxic. Several plasma proteins that neutralize

  14. Post-Training Intrahippocampal Inhibition of Class I Histone Deacetylases Enhances Long-Term Object-Location Memory

    Science.gov (United States)

    Hawk, Joshua D.; Florian, Cedrick; Abel, Ted

    2011-01-01

    Long-term memory formation involves covalent modification of the histone proteins that package DNA. Reducing histone acetylation by mutating histone acetyltransferases impairs long-term memory, and enhancing histone acetylation by inhibiting histone deacetylases (HDACs) improves long-term memory. Previous studies using HDAC inhibitors to enhance…

  15. Rational Decision Making as Performative Praxis: Explaining Rationality's Éternel Retour

    OpenAIRE

    Cabantous, L.; Gond, J-P.

    2011-01-01

    Organizational theorists built their knowledge of decision making through a progressive critique of rational choice theory. Their positioning towards rationality, however, is at odds with the observation of rationality persistence in organizational life. This paper addresses this paradox. It proposes a new perspective on rationality that allows the theorizing of the production of rational decisions by organizations. To account for rationality's éternel retour, we approach rational decision ma...

  16. Rational Design of a Green-Light-Mediated Unimolecular Platform for Fast Switchable Acidic Sensing.

    Science.gov (United States)

    Zhou, Yunyun; Zou, Qi; Qiu, Jing; Wang, Linjun; Zhu, Liangliang

    2018-02-01

    A controllable sensing ability strongly connects to complex and precise events in diagnosis and treatment. However, imposing visible light into the molecular-scale mediation of sensing processes is restricted by the lack of structural relevance. To address this critical challenge, we present the rational design, synthesis, and in vitro studies of a novel cyanostyryl-modified azulene system for green-light-mediated fast switchable acidic sensing. The advantageous features of the design include a highly efficient green-light-driven Z/E-isomerization (a quantum yield up to 61.3%) for fast erasing chromatic and luminescent expressions and a superior compatibility with control of ratiometric protonation. Significantly, these merits of the design enable the development of a microfluidic system to perform a green-light-mediated reusable sensing function toward a gastric acid analyte in a miniaturized platform. The results may provide new insights for building future integrated green materials.

  17. Arginine-phosphate salt bridges between histones and DNA: Intermolecular actuators that control nucleosome architecture

    Science.gov (United States)

    Yusufaly, Tahir I.; Li, Yun; Singh, Gautam; Olson, Wilma K.

    2014-10-01

    Structural bioinformatics and van der Waals density functional theory are combined to investigate the mechanochemical impact of a major class of histone-DNA interactions, namely, the formation of salt bridges between arginine residues in histones and phosphate groups on the DNA backbone. Principal component analysis reveals that the configurational fluctuations of the sugar-phosphate backbone display sequence-specific directionality and variability, and clustering of nucleosome crystal structures identifies two major salt-bridge configurations: a monodentate form in which the arginine end-group guanidinium only forms one hydrogen bond with the phosphate, and a bidentate form in which it forms two. Density functional theory calculations highlight that the combination of sequence, denticity, and salt-bridge positioning enables the histones to apply a tunable mechanochemical stress to the DNA via precise and specific activation of backbone deformations. The results suggest that selection for specific placements of van der Waals contacts, with high-precision control of the spatial distribution of intermolecular forces, may serve as an underlying evolutionary design principle for the structure and function of nucleosomes, a conjecture that is corroborated by previous experimental studies.

  18. Quantitative analysis of histone modifications: formaldehyde is a source of pathological n(6-formyllysine that is refractory to histone deacetylases.

    Directory of Open Access Journals (Sweden)

    Bahar Edrissi

    Full Text Available Aberrant protein modifications play an important role in the pathophysiology of many human diseases, in terms of both dysfunction of physiological modifications and the formation of pathological modifications by reaction of proteins with endogenous electrophiles. Recent studies have identified a chemical homolog of lysine acetylation, N(6-formyllysine, as an abundant modification of histone and chromatin proteins, one possible source of which is the reaction of lysine with 3'-formylphosphate residues from DNA oxidation. Using a new liquid chromatography-coupled to tandem mass spectrometry method to quantify all N(6-methyl-, -acetyl- and -formyl-lysine modifications, we now report that endogenous formaldehyde is a major source of N(6-formyllysine and that this adduct is widespread among cellular proteins in all compartments. N(6-formyllysine was evenly distributed among different classes of histone proteins from human TK6 cells at 1-4 modifications per 10(4 lysines, which contrasted strongly with lysine acetylation and mono-, di-, and tri-methylation levels of 1.5-380, 5-870, 0-1400, and 0-390 per 10(4 lysines, respectively. While isotope labeling studies revealed that lysine demethylation is not a source of N(6-formyllysine in histones, formaldehyde exposure was observed to cause a dose-dependent increase in N(6-formyllysine, with use of [(13C,(2H2]-formaldehyde revealing unchanged levels of adducts derived from endogenous sources. Inhibitors of class I and class II histone deacetylases did not affect the levels of N(6-formyllysine in TK6 cells, and the class III histone deacetylase, SIRT1, had minimal activity (<10% with a peptide substrate containing the formyl adduct. These data suggest that N(6-formyllysine is refractory to removal by histone deacetylases, which supports the idea that this abundant protein modification could interfere with normal regulation of gene expression if it arises at conserved sites of physiological protein secondary

  19. The histone demethylase Jhdm1a regulates hepatic gluconeogenesis.

    Directory of Open Access Journals (Sweden)

    Dongning Pan

    Full Text Available Hepatic gluconeogenesis is required for maintaining blood glucose homeostasis; yet, in diabetes mellitus, this process is unrestrained and is a major contributor to fasting hyperglycemia. To date, the impacts of chromatin modifying enzymes and chromatin landscape on gluconeogenesis are poorly understood. Through catalyzing the removal of methyl groups from specific lysine residues in the histone tail, histone demethylases modulate chromatin structure and, hence, gene expression. Here we perform an RNA interference screen against the known histone demethylases and identify a histone H3 lysine 36 (H3K36 demethylase, Jhdm1a, as a key negative regulator of gluconeogenic gene expression. In vivo, silencing of Jhdm1a promotes liver glucose synthesis, while its exogenous expression reduces blood glucose level. Importantly, the regulation of gluconeogenesis by Jhdm1a requires its demethylation activity. Mechanistically, we find that Jhdm1a regulates the expression of a major gluconeogenic regulator, C/EBPα. This is achieved, at least in part, by its USF1-dependent association with the C/EBPα promoter and its subsequent demethylation of dimethylated H3K36 on the C/EBPα locus. Our work provides compelling evidence that links histone demethylation to transcriptional regulation of gluconeogenesis and has important implications for the treatment of diabetes.

  20. The Histone Demethylase Jhdm1a Regulates Hepatic Gluconeogenesis

    Science.gov (United States)

    Zou, Tie; Yao, Annie Y.; Cooper, Marcus P.; Boyartchuk, Victor; Wang, Yong-Xu

    2012-01-01

    Hepatic gluconeogenesis is required for maintaining blood glucose homeostasis; yet, in diabetes mellitus, this process is unrestrained and is a major contributor to fasting hyperglycemia. To date, the impacts of chromatin modifying enzymes and chromatin landscape on gluconeogenesis are poorly understood. Through catalyzing the removal of methyl groups from specific lysine residues in the histone tail, histone demethylases modulate chromatin structure and, hence, gene expression. Here we perform an RNA interference screen against the known histone demethylases and identify a histone H3 lysine 36 (H3K36) demethylase, Jhdm1a, as a key negative regulator of gluconeogenic gene expression. In vivo, silencing of Jhdm1a promotes liver glucose synthesis, while its exogenous expression reduces blood glucose level. Importantly, the regulation of gluconeogenesis by Jhdm1a requires its demethylation activity. Mechanistically, we find that Jhdm1a regulates the expression of a major gluconeogenic regulator, C/EBPα. This is achieved, at least in part, by its USF1-dependent association with the C/EBPα promoter and its subsequent demethylation of dimethylated H3K36 on the C/EBPα locus. Our work provides compelling evidence that links histone demethylation to transcriptional regulation of gluconeogenesis and has important implications for the treatment of diabetes. PMID:22719268

  1. Histones trigger sterile inflammation by activating the NLRP3 inflammasome.

    Science.gov (United States)

    Allam, Ramanjaneyulu; Darisipudi, Murthy Narayana; Tschopp, Jurg; Anders, Hans-Joachim

    2013-12-01

    Sterile cell death mediated inflammation is linked to several pathological disorders and involves danger recognition of intracellular molecules released by necrotic cells that activate different groups of innate pattern recognition receptors. Toll-like receptors directly interact with their extrinsic or intrinsic agonists and induce multiple proinflammatory mediators. In contrast, the NLRP3 inflammasome is rather thought to represent a downstream element integrating various indirect stimuli into proteolytic cleavage of interleukin (IL)-1β and IL-18. Here, we report that histones released from necrotic cells induce IL-1β secretion in an NLRP3-ASC-caspase-1-dependent manner. Genetic deletion of NLRP3 in mice significantly attenuated histone-induced IL-1β production and neutrophil recruitment. Furthermore, necrotic cells induced neutrophil recruitment, which was significantly reduced by histone-neutralizing antibodies or depleting extracellular histones via enzymatic degradation. These results identify cytosolic uptake of necrotic cell-derived histones as a triggering mechanism of sterile inflammation, which involves NLRP3 inflammasome activation and IL-1β secretion via oxidative stress. © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The Role of Dietary Histone Deacetylases (HDACs Inhibitors in Health and Disease

    Directory of Open Access Journals (Sweden)

    Shalome A. Bassett

    2014-10-01

    Full Text Available Modification of the histone proteins associated with DNA is an important process in the epigenetic regulation of DNA structure and function. There are several known modifications to histones, including methylation, acetylation, and phosphorylation, and a range of factors influence each of these. Histone deacetylases (HDACs remove the acetyl group from lysine residues within a range of proteins, including transcription factors and histones. Whilst this means that their influence on cellular processes is more complex and far-reaching than histone modifications alone, their predominant function appears to relate to histones; through deacetylation of lysine residues they can influence expression of genes encoded by DNA linked to the histone molecule. HDAC inhibitors in turn regulate the activity of HDACs, and have been widely used as therapeutics in psychiatry and neurology, in which a number of adverse outcomes are associated with aberrant HDAC function. More recently, dietary HDAC inhibitors have been shown to have a regulatory effect similar to that of pharmacological HDAC inhibitors without the possible side-effects. Here, we discuss a number of dietary HDAC inhibitors, and how they may have therapeutic potential in the context of a whole food.

  3. Structure of the human histone chaperone FACT Spt16 N-terminal domain

    Energy Technology Data Exchange (ETDEWEB)

    Marcianò, G.; Huang, D. T., E-mail: d.huang@beatson.gla.ac.uk [Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, Scotland (United Kingdom)

    2016-01-22

    The Spt16–SSRP1 heterodimer is a histone chaperone that plays an important role in regulating chromatin assembly. Here, a crystal structure of the N-terminal domain of human Spt16 is presented and it is shown that this domain may contribute to histone binding. The histone chaperone FACT plays an important role in facilitating nucleosome assembly and disassembly during transcription. FACT is a heterodimeric complex consisting of Spt16 and SSRP1. The N-terminal domain of Spt16 resembles an inactive aminopeptidase. How this domain contributes to the histone chaperone activity of FACT remains elusive. Here, the crystal structure of the N-terminal domain (NTD) of human Spt16 is reported at a resolution of 1.84 Å. The structure adopts an aminopeptidase-like fold similar to those of the Saccharomyces cerevisiae and Schizosaccharomyces pombe Spt16 NTDs. Isothermal titration calorimetry analyses show that human Spt16 NTD binds histones H3/H4 with low-micromolar affinity, suggesting that Spt16 NTD may contribute to histone binding in the FACT complex. Surface-residue conservation and electrostatic analysis reveal a conserved acidic patch that may be involved in histone binding.

  4. Structure of the human histone chaperone FACT Spt16 N-terminal domain

    International Nuclear Information System (INIS)

    Marcianò, G.; Huang, D. T.

    2016-01-01

    The Spt16–SSRP1 heterodimer is a histone chaperone that plays an important role in regulating chromatin assembly. Here, a crystal structure of the N-terminal domain of human Spt16 is presented and it is shown that this domain may contribute to histone binding. The histone chaperone FACT plays an important role in facilitating nucleosome assembly and disassembly during transcription. FACT is a heterodimeric complex consisting of Spt16 and SSRP1. The N-terminal domain of Spt16 resembles an inactive aminopeptidase. How this domain contributes to the histone chaperone activity of FACT remains elusive. Here, the crystal structure of the N-terminal domain (NTD) of human Spt16 is reported at a resolution of 1.84 Å. The structure adopts an aminopeptidase-like fold similar to those of the Saccharomyces cerevisiae and Schizosaccharomyces pombe Spt16 NTDs. Isothermal titration calorimetry analyses show that human Spt16 NTD binds histones H3/H4 with low-micromolar affinity, suggesting that Spt16 NTD may contribute to histone binding in the FACT complex. Surface-residue conservation and electrostatic analysis reveal a conserved acidic patch that may be involved in histone binding

  5. Intracellular distribution of histone mRNAs in human fibroblasts studied by in situ hybridization

    International Nuclear Information System (INIS)

    Lawrence, J.B.; Singer, R.H.; Villnave, C.A.; Stein, J.L.; Stein, G.S.

    1988-01-01

    We have used in situ hybridization to study the intracellular distribution of mRNAs for cell cycle-dependent core and H1 histone proteins in human WI-38 fibroblasts. Because histones are abundant nuclear proteins and histone mRNA expression is tightly coupled to DNA synthesis, it was of interest to determine whether histone mRNAs are localized near the nucleus. Cells were hybridized with tritiated DNA probes specific for either histone H1, histone H4, actin, or poly(A)+ mRNA and were processed for autoradiography. In exponentially growing cultures, the fraction of histone mRNA-positive cells correlated well with the fraction of cells in S phase and was eliminated by hydroxyurea inhibition of DNA synthesis. Within individual cells the label for histone mRNA was widely distributed throughout the cytoplasm and did not appear to be more heavily concentrated near the nucleus. However, histone mRNA appeared to exhibit patchy, nonhomogeneous localization, and a quantitative evaluation confirmed that grain distributions were not as uniform as they were after hybridizations to poly(A)+ mRNA. Actin mRNA in WI-38 cells was also widely distributed throughout the cytoplasm but differed from histone mRNA in that label for actin mRNA was frequently most dense at the outermost region of narrow cell extensions. The localization of actin mRNA was less pronounced but qualitatively very similar to that previously described for chicken embryonic myoblasts and fibroblasts. We conclude that localization of histones in WI-38 cells is not facilitated by localization of histone protein synthesis near the nucleus and that there are subtle but discrete and potentially functional differences in the distributions of histone, actin, and poly(A)+ mRNAs

  6. Chemical mechanisms of histone lysine and arginine modifications

    OpenAIRE

    Smith, Brian C.; Denu, John M.

    2008-01-01

    Histone lysine and arginine residues are subject to a wide array of post-translational modifications including methylation, citrullination, acetylation, ubiquitination, and sumoylation. The combinatorial action of these modifications regulates critical DNA processes including replication, repair, and transcription. In addition, enzymes that modify histone lysine and arginine residues have been correlated with a variety of human diseases including arthritis, cancer, heart disease, diabetes, an...

  7. histoneHMM: Differential analysis of histone modifications with broad genomic footprints

    Czech Academy of Sciences Publication Activity Database

    Heinig, M.; Colomé-Tatché, M.; Taudt, A.; Rintisch, C.; Schafer, S.; Pravenec, Michal; Hubner, N.; Vingron, M.; Johannes, F.

    2015-01-01

    Roč. 16, Feb 22 (2015), s. 60 ISSN 1471-2105 R&D Projects: GA MŠk(CZ) 7E10067; GA ČR(CZ) GA13-04420S Institutional support: RVO:67985823 Keywords : ChIP - seq * histone modifications * Hidden Markov model * computational biology * differential analysis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.435, year: 2015

  8. UV laser-induced histone-DNA crosslinking proceeds via the N-terminal tails

    International Nuclear Information System (INIS)

    Stefanovski, V.; Dimitrov, S.; Angelov, D.; Keskinova, E.; Pashev, I.

    1990-01-01

    The covalent crosslinking of histones to DNA by UV laser irradiation is accomplished solely via the N-terminal part of the molecule. Irradiated isolated calfthymus nuclei are treated with clostripain. The crosslinked protein-DNA complexes are isolated and the presence of each core histone analyzed by dot-immunoassay using antibodies, specific to the central globular domain of the respective histone. The reaction is negative for all core histones i.e. the globular domain is absent. It means that this domain has not been crosslinked to DNA and, once cleaved by clostripain, it has been stripped from DNA during the centrigugation in CsCl. This peculiar property of the crosslinked procedure makes it particularly useful in addressing some yet unanswered questions concerning histone-DNA interactions, such as the interaction of the N-terminal tails with linker DNA, the effect of the transient postsynthetic histone acetylation on its interaction with DNA, etc. These questions are now under study. 1 fig., 6 refs

  9. Molecular and macro-scale analysis of enzyme-crosslinked silk hydrogels for rational biomaterial design.

    Science.gov (United States)

    McGill, Meghan; Coburn, Jeannine M; Partlow, Benjamin P; Mu, Xuan; Kaplan, David L

    2017-11-01

    Silk fibroin-based hydrogels have exciting applications in tissue engineering and therapeutic molecule delivery; however, their utility is dependent on their diffusive properties. The present study describes a molecular and macro-scale investigation of enzymatically-crosslinked silk fibroin hydrogels, and demonstrates that these systems have tunable crosslink density and diffusivity. We developed a liquid chromatography tandem mass spectroscopy (LC-MS/MS) method to assess the quantity and order of covalent tyrosine crosslinks in the hydrogels. This analysis revealed between 28 and 56% conversion of tyrosine to dityrosine, which was dependent on the silk concentration and reactant concentration. The crosslink density was then correlated with storage modulus, revealing that both crosslinking and protein concentration influenced the mechanical properties of the hydrogels. The diffusive properties of the bulk material were studied by fluorescence recovery after photobleaching (FRAP), which revealed a non-linear relationship between silk concentration and diffusivity. As a result of this work, a model for synthesizing hydrogels with known crosslink densities and diffusive properties has been established, enabling the rational design of silk hydrogels for biomedical applications. Hydrogels from naturally-derived silk polymers offer versitile opportunities in the biomedical field, however, their design has largely been an empirical process. We present a fundamental study of the crosslink density, storage modulus, and diffusion behavior of enzymatically-crosslinked silk hydrogels to better inform scaffold design. These studies revealed unexpected non-linear trends in the crosslink density and diffusivity of silk hydrogels with respect to protein concentration and crosslink reagent concentration. This work demonstrates the tunable diffusivity and crosslinking in silk fibroin hydrogels, and enables the rational design of biomaterials. Further, the characterization methods

  10. New clinical developments in histone deacetylase inhibitors for epigenetic therapy of cancer

    Directory of Open Access Journals (Sweden)

    Ma Yuehua

    2009-06-01

    Full Text Available Abstract DNA methylation and histone acetylation are two well known epigenetic chromatin modifications. Epigenetic agents leading to DNA hypomethylation and histone hyperacetylation have been approved for treatment of hematological disorders. The first histone deacetylase inhibitor, vorinostat, has been licensed for cutaneous T cell lymphoma treatment. More than 11 new epigenetic agents are in various stages of clinical development for therapy of multiple cancer types. In this review we summarize novel histone deacetylase inhibitors and new regimens from clinical trials for epigenetic therapy of cancer.

  11. Extracellular histones play an inflammatory role in acid aspiration-induced acute respiratory distress syndrome.

    Science.gov (United States)

    Zhang, Yanlin; Wen, Zongmei; Guan, Li; Jiang, Ping; Gu, Tao; Zhao, Jinyuan; Lv, Xin; Wen, Tao

    2015-01-01

    Systemic inflammation is a key feature in acid aspiration-induced acute respiratory distress syndrome (ARDS), but the factors that trigger inflammation are unclear. The authors hypothesize that extracellular histones, a newly identified inflammatory mediator, play important roles in the pathogenesis of ARDS. The authors used a hydrochloric acid aspiration-induced ARDS model to investigate whether extracellular histones are pathogenic and whether targeting histones are protective. Exogenous histones and antihistone antibody were administered to mice. Heparin can bind to histones, so the authors studied whether heparin could protect from ARDS using cell and mouse models. Furthermore, the authors analyzed whether extracellular histones are clinically involved in ARDS patients caused by gastric aspiration. Extracellular histones in bronchoalveolar lavage fluid of acid-treated mice were significantly higher (1.832 ± 0.698) at 3 h after injury than in sham-treated group (0.63 ± 0.153; P = 0.0252, n = 5 per group). Elevated histones may originate from damaged lung cells and neutrophil infiltration. Exogenous histones aggravated lung injury, whereas antihistone antibody markedly attenuated the intensity of ARDS. Notably, heparin provided a similar protective effect against ARDS. Analysis of plasma from ARDS patients (n = 21) showed elevated histones were significantly correlated with the degree of ARDS and were higher in nonsurvivors (2.723 ± 0.2933, n = 7) than in survivors (1.725 ± 0.1787, P = 0.006, n = 14). Extracellular histones may play a contributory role toward ARDS by promoting tissue damage and systemic inflammation and may become a novel marker reflecting disease activity. Targeting histones by neutralizing antibody or heparin shows potent protective effects, suggesting a potentially therapeutic strategy.

  12. Histones Differentially Modulate the Anticoagulant and Profibrinolytic Activities of Heparin, Heparin Derivatives, and Dabigatran.

    Science.gov (United States)

    Ammollo, Concetta Tiziana; Semeraro, Nicola; Carratù, Maria Rosaria; Colucci, Mario; Semeraro, Fabrizio

    2016-02-01

    The antithrombin activity of unfractionated heparin (UFH) is offset by extracellular histones, which, along with DNA, represent a novel mediator of thrombosis and a structural component of thrombi. Here, we systematically evaluated the effect of histones, DNA, and histone-DNA complexes on the anticoagulant and profibrinolytic activities of UFH, its derivatives enoxaparin and fondaparinux, and the direct thrombin inhibitor dabigatran. Thrombin generation was assessed by calibrated automated thrombinography, inhibition of factor Xa and thrombin by synthetic substrates, tissue plasminogen activator-mediated clot lysis by turbidimetry, and thrombin-activatable fibrinolysis inhibitor (TAFI) activation by a functional assay. Histones alone delayed coagulation and slightly stimulated fibrinolysis. The anticoagulant activity of UFH and enoxaparin was markedly inhibited by histones, whereas that of fondaparinux was enhanced. Histones neutralized both the anti-Xa and anti-IIa activities of UFH and preferentially blocked the anti-IIa activity of enoxaparin. The anti-Xa activity of fondaparinux was not influenced by histones when analyzed by chromogenic substrates, but was potentiated in a plasma prothrombinase assay. Histones inhibited the profibrinolytic activity of UFH and enoxaparin and enhanced that of fondaparinux by acting on the modulation of TAFI activation by anticoagulants. Histone H1 was mainly responsible for these effects. Histone-DNA complexes, as well as intact neutrophil extracellular traps, impaired the activities of UFH, enoxaparin, and fondaparinux. Dabigatran was not noticeably affected by histones and/or DNA, whatever the assay performed. In conclusion, histones and DNA present in the forming clot may variably influence the antithrombotic activities of anticoagulants, suggesting a potential therapeutic advantage of dabigatran and fondaparinux over heparins. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  13. Preferential Phosphorylation on Old Histones during Early Mitosis in Human Cells.

    Science.gov (United States)

    Lin, Shu; Yuan, Zuo-Fei; Han, Yumiao; Marchione, Dylan M; Garcia, Benjamin A

    2016-07-15

    How histone post-translational modifications (PTMs) are inherited through the cell cycle remains poorly understood. Canonical histones are made in the S phase of the cell cycle. Combining mass spectrometry-based technologies and stable isotope labeling by amino acids in cell culture, we question the distribution of multiple histone PTMs on old versus new histones in synchronized human cells. We show that histone PTMs can be grouped into three categories according to their distributions. Most lysine mono-methylation and acetylation PTMs are either symmetrically distributed on old and new histones or are enriched on new histones. In contrast, most di- and tri-methylation PTMs are enriched on old histones, suggesting that the inheritance of different PTMs is regulated distinctly. Intriguingly, old and new histones are distinct in their phosphorylation status during early mitosis in the following three human cell types: HeLa, 293T, and human foreskin fibroblast cells. The mitotic hallmark H3S10ph is predominantly associated with old H3 at early mitosis and becomes symmetric with the progression of mitosis. This same distribution was observed with other mitotic phosphorylation marks, including H3T3/T6ph, H3.1/2S28ph, and H1.4S26ph but not S28/S31ph on the H3 variant H3.3. Although H3S10ph often associates with the neighboring Lys-9 di- or tri-methylations, they are not required for the asymmetric distribution of Ser-10 phosphorylation on the same H3 tail. Inhibition of the kinase Aurora B does not change the distribution despite significant reduction of H3S10ph levels. However, K9me2 abundance on the new H3 is significantly reduced after Aurora B inhibition, suggesting a cross-talk between H3S10ph and H3K9me2. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Preferential Phosphorylation on Old Histones during Early Mitosis in Human Cells*

    Science.gov (United States)

    Lin, Shu; Yuan, Zuo-Fei; Han, Yumiao; Marchione, Dylan M.; Garcia, Benjamin A.

    2016-01-01

    How histone post-translational modifications (PTMs) are inherited through the cell cycle remains poorly understood. Canonical histones are made in the S phase of the cell cycle. Combining mass spectrometry-based technologies and stable isotope labeling by amino acids in cell culture, we question the distribution of multiple histone PTMs on old versus new histones in synchronized human cells. We show that histone PTMs can be grouped into three categories according to their distributions. Most lysine mono-methylation and acetylation PTMs are either symmetrically distributed on old and new histones or are enriched on new histones. In contrast, most di- and tri-methylation PTMs are enriched on old histones, suggesting that the inheritance of different PTMs is regulated distinctly. Intriguingly, old and new histones are distinct in their phosphorylation status during early mitosis in the following three human cell types: HeLa, 293T, and human foreskin fibroblast cells. The mitotic hallmark H3S10ph is predominantly associated with old H3 at early mitosis and becomes symmetric with the progression of mitosis. This same distribution was observed with other mitotic phosphorylation marks, including H3T3/T6ph, H3.1/2S28ph, and H1.4S26ph but not S28/S31ph on the H3 variant H3.3. Although H3S10ph often associates with the neighboring Lys-9 di- or tri-methylations, they are not required for the asymmetric distribution of Ser-10 phosphorylation on the same H3 tail. Inhibition of the kinase Aurora B does not change the distribution despite significant reduction of H3S10ph levels. However, K9me2 abundance on the new H3 is significantly reduced after Aurora B inhibition, suggesting a cross-talk between H3S10ph and H3K9me2. PMID:27226594

  15. Distribution pattern of histone H3 phosphorylation at serine 10 ...

    Indian Academy of Sciences (India)

    2013-08-06

    Aug 6, 2013 ... tant consequences for chromatin packing due to change in histone load ... Minas Gerais, Brazil), in B. brizantha (cultivar Marandu, ... (2005), who state that the ..... Mitotic microtubule development and histone H3 phosphoryla-.

  16. Investigation of the reactions of histone protein hydroperoxides and their role in DNA damage

    International Nuclear Information System (INIS)

    Luxford, C.; Dean, R.T.; Davies, M.J.

    1998-01-01

    Free radical attack on DNA results in base changes, cross-linking and strand cleavage leading to mutations if unrepaired. Histone proteins are intimately involved in DNA packaging and are excellent candidates for investigating DNA damage arising from protein-OOH-derived radicals. This study aimed (i) to investigate the formation of hydroperoxide on the linker histone H1 via radical reactions in the presence of O 2 ; (ii) to examine the radicals formed from transition metal ion-catalyzed breakdown of histone H1-OOH and (iii) to determine whether histone H1-OOH-derived radicals can damage DNA and free bases. (i) Histone H1 solutions were γ-irradiated ( 60 Co source) in the presence of O 2 and histone H1-OOH concentrations determined using a manual iodometric assay. Formation ( histone H1-OOH was dose-dependent and, in the absence of light or transition metal ions these hydroperoxides were found to be very stable (half life of 24 hours at 4degC ). (ii) Electron Paramagnetic Resonance (EPR) spectroscopy and spin trapping was used t investigate the Cu + -catalyzed breakdown of histone H1-OOH to form histone H1 protein side chain and -backbone carbon-centred radicals. Further EPR/spin trapping experiments showed that histone H1-OOH-derived radicals can oxidise pyrimidine bases (eg. uridine with the resultant trapping of three radical species; two pyrimidine radicals, C5-yl and Ct yl adducts (via addition of histone H1-OOH-derived radicals to the C5-C6 double bond o the pyrimidine ring) and an acyl radical adduct, whose origin is currently unknown. (iii) Damage to DNA and 2'-deoxyguanosine after reaction of histone H1-OOH-derive radicals were detected and quantified using HPLC (with EC and UV detection). We have identified 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) as a significant product ( histone H1-OOH-derived oxidative DNA modification. Increasing histone H1-OOH concentrations resulted in a concomitant increase in the amount of 8-oxodG formed. Our studies show

  17. Rational design of carbon and TiO2 assembly materials: covered or strewn, which is better for photocatalysis?

    Science.gov (United States)

    Cui, Guan-wei; Wang, Wei-liang; Ma, Ming-yue; Zhang, Ming; Xia, Xin-yuan; Han, Feng-yun; Shi, Xi-feng; Zhao, Ying-qiang; Dong, Yu-bin; Tang, Bo

    2013-07-21

    The rational design of carbonaceous hybrid nanostructures is very important for obtaining high photoactivity. TiO2 particles strewn with an optimal quantity of carbon nanodots have a much higher photoactivity than that of TiO2 covered with a carbon layer, showing the importance of carbon morphology in the photocatalysis of carbonaceous hybrid nanostructures.

  18. Laccase engineering: from rational design to directed evolution.

    Science.gov (United States)

    Mate, Diana M; Alcalde, Miguel

    2015-01-01

    Laccases are multicopper oxidoreductases considered by many in the biotechonology field as the ultimate "green catalysts". This is mainly due to their broad substrate specificity and relative autonomy (they use molecular oxygen from air as an electron acceptor and they only produce water as by-product), making them suitable for a wide array of applications: biofuel production, bioremediation, organic synthesis, pulp biobleaching, textiles, the beverage and food industries, biosensor and biofuel cell development. Since the beginning of the 21st century, specific features of bacterial and fungal laccases have been exhaustively adapted in order to reach the industrial demands for high catalytic activity and stability in conjunction with reduced production cost. Among the goals established for laccase engineering, heterologous functional expression, improved activity and thermostability, tolerance to non-natural media (organic solvents, ionic liquids, physiological fluids) and resistance to different types of inhibitors are all challenges that have been met, while obtaining a more comprehensive understanding of laccase structure-function relationships. In this review we examine the most significant advances in this exciting research area in which rational, semi-rational and directed evolution approaches have been employed to ultimately convert laccases into high value-added biocatalysts. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Radicals derived from histone hydroperoxides damage nucleobases in RNA and DNA

    DEFF Research Database (Denmark)

    Luxford, C; Dean, R T; Davies, Michael Jonathan

    2000-01-01

    Exposure of individual histone proteins (H1, H2A, H2B, H3, or H4) and histone octamers (consisting of two molecules each of H2A, H2B, H3, and H4) to hydroxyl radicals, generated by gamma-irradiation, in the presence of O(2) generates protein-bound hydroperoxides in a dose-dependent fashion......; this is in accord with previous studies with other proteins. These histone hydroperoxides are stable in the absence of exogenous catalysts (e.g., heat, light, and transition metal ions), but in the presence of these agents decompose rapidly to give a variety of radicals which have been identified by EPR spin...... trapping. Histone hydroperoxide-derived radicals generated on decomposition of the hydroperoxides with Cu(+) react with both pyrimidine and purine nucleobases. Thus, with uridine the histone hydroperoxide-derived radicals undergo addition across the C(5)-C(6) double bond of the pyrimidine ring to give...

  20. Growth-Phase-Specific Modulation of Cell Morphology and Gene Expression by an Archaeal Histone Protein.

    Science.gov (United States)

    Dulmage, Keely A; Todor, Horia; Schmid, Amy K

    2015-09-08

    In all three domains of life, organisms use nonspecific DNA-binding proteins to compact and organize the genome as well as to regulate transcription on a global scale. Histone is the primary eukaryotic nucleoprotein, and its evolutionary roots can be traced to the archaea. However, not all archaea use this protein as the primary DNA-packaging component, raising questions regarding the role of histones in archaeal chromatin function. Here, quantitative phenotyping, transcriptomic, and proteomic assays were performed on deletion and overexpression mutants of the sole histone protein of the hypersaline-adapted haloarchaeal model organism Halobacterium salinarum. This protein is highly conserved among all sequenced haloarchaeal species and maintains hallmark residues required for eukaryotic histone functions. Surprisingly, despite this conservation at the sequence level, unlike in other archaea or eukaryotes, H. salinarum histone is required to regulate cell shape but is not necessary for survival. Genome-wide expression changes in histone deletion strains were global, significant but subtle in terms of fold change, bidirectional, and growth phase dependent. Mass spectrometric proteomic identification of proteins from chromatin enrichments yielded levels of histone and putative nucleoid-associated proteins similar to those of transcription factors, consistent with an open and transcriptionally active genome. Taken together, these data suggest that histone in H. salinarum plays a minor role in DNA compaction but important roles in growth-phase-dependent gene expression and regulation of cell shape. Histone function in haloarchaea more closely resembles a regulator of gene expression than a chromatin-organizing protein like canonical eukaryotic histone. Histones comprise the major protein component of eukaryotic chromatin and are required for both genome packaging and global regulation of expression. The current paradigm maintains that archaea whose genes encode

  1. Structural and Histone Binding Ability Characterizations of Human PWWP Domains

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hong; Zeng, Hong; Lam, Robert; Tempel, Wolfram; Amaya, Maria F.; Xu, Chao; Dombrovski, Ludmila; Qiu, Wei; Wang, Yanming; Min, Jinrong (Toronto); (Penn)

    2013-09-25

    The PWWP domain was first identified as a structural motif of 100-130 amino acids in the WHSC1 protein and predicted to be a protein-protein interaction domain. It belongs to the Tudor domain 'Royal Family', which consists of Tudor, chromodomain, MBT and PWWP domains. While Tudor, chromodomain and MBT domains have long been known to bind methylated histones, PWWP was shown to exhibit histone binding ability only until recently. The PWWP domain has been shown to be a DNA binding domain, but sequence analysis and previous structural studies show that the PWWP domain exhibits significant similarity to other 'Royal Family' members, implying that the PWWP domain has the potential to bind histones. In order to further explore the function of the PWWP domain, we used the protein family approach to determine the crystal structures of the PWWP domains from seven different human proteins. Our fluorescence polarization binding studies show that PWWP domains have weak histone binding ability, which is also confirmed by our NMR titration experiments. Furthermore, we determined the crystal structures of the BRPF1 PWWP domain in complex with H3K36me3, and HDGF2 PWWP domain in complex with H3K79me3 and H4K20me3. PWWP proteins constitute a new family of methyl lysine histone binders. The PWWP domain consists of three motifs: a canonical {beta}-barrel core, an insertion motif between the second and third {beta}-strands and a C-terminal {alpha}-helix bundle. Both the canonical {beta}-barrel core and the insertion motif are directly involved in histone binding. The PWWP domain has been previously shown to be a DNA binding domain. Therefore, the PWWP domain exhibits dual functions: binding both DNA and methyllysine histones.

  2. Effect of gamma irradiation on rat thymus arginine-rich H3 histone in vitro

    International Nuclear Information System (INIS)

    Patil, M.S.; Narasimhan, Saroja; Sreenivasan, A.

    1977-01-01

    Physicochemical properties of rat thymus H3 histone have been studied following gamma radiation (25-90 krad) in 0.2 N HCl. Polyacrylamide gel electrophoretic pattern (PGE) of H3 histone indicated that aggregates were formed in the histone fraction following gamma irradiation. The PGE pattern of the irradiated-histone fraction remained unaltered even after it was treated with 8.0 M urea to eliminate noncovalent bonding. On the other hand, the irradiated sample treated with β-mercaptoethanol exhibited the PGE pattern which was essentially similar to that of unirradiated sample. These results indicate that the aggregates seen in the PGE pattern of irradiated-H3 histone may be formed through interpolypeptide chain disulphide linkeges rather than by noncovalent bonding. This contention is also supported by the fact that irradiated-H3 histone exhibited hyperchromic shift at 240-250 nm region as well as increased disulphide content. Other results revealed that DNA-dependent RNA synthesis in vitro was inhibited to a greater extent by irradiated-H3 histone than by unirradiated-H3 histone. (author)

  3. The histone genes in HeLa cells are on individual transcriptional units

    International Nuclear Information System (INIS)

    Hackett, P.B.; Traub, P.; Gallwitz, D.

    1978-01-01

    The distances of the five major histone genes from their promotors have been investigated in order to determine whether in human cells these genes could be transcribed as a single polycistronic transcriptional unit. By measuring the decreases of both histone protein and histone mRNA synthesis as functions of the ultraviolet light dosage, it was possible to calculate the distances of the histone genes from their promotors. The inactivation kinetics for histone genes H1 and H3 are first-order, indicating a single type of transcriptional unit for each gene. The dose-response kinetics for genes H2A, H2B and H4 are first-order with two distinct rates; 10 to 15% of the genes for each of these histones appear to be much more sensitive to ultraviolet light inactivation than are the majority. It is concluded that the transcriptional units for 85 to 90% of the genes for H2A, H2B and H4 are similar. As determined by the inhibition of protein synthesis, the inactivation coefficients for the major component of each histone are: H1, 907 mm 2 /erg; H2A, 878 mm 2 /erg; H2B, 871 mm 2 /erg; H3, 965 mm 2 /erg; and H4, 792 mm 2 /erg. The sensitivities of histone mRNA synthesis to irradiation were measured by translation in vitro with similar results. The calculated target sizes for the genes (in base-pairs) are: H1, 1190; H2A, 1240; H2B, 1250; H3, 1130; and H4, 1380. This similarity in target sizes for all five of the histones genes indicates that they are primarily transcribed from individual transcriptional units. (author)

  4. [PHI regulates histone methylation and acetylation in Burkitt lymphoma Daudi cell line].

    Science.gov (United States)

    Hong, Ling-Ling; Ma, Xu-Dong; Huang, Yi-Qun

    2011-02-01

    This study was purposed to investigate the effects of phenylhexyl isothiocyanate (PHI) on Burkitt lymphoma Daudi cell line and regulation of histone acetylation and methylation in Daudi cells, and to explore the potential mechanism. The apoptotic rate of Daudi cells treated with PHI was measured by flow cytometry, the changes of histone H3 and H4 acetylation, histone H3K9 and H3K4 methylation in Daudi cells treated with PHI were detected by Western blot. The results showed that PHI could induce apoptosis of Daudi cells, increased the acetylation level of H3 and H4, enhanced the methylation of H3K4, but reduced the methylation of H3K9. It is concluded that the PHI can up-regulate the acetylation level of histone H3 associated with transcription stimulation and the methylation of histone H3K4, down-regulate the methylation on histone H3K9 associated with transcription inhibition, promotes the apoptosis of Daudi cells. PHI may be a potential agent for target therapy of lymphoma.

  5. Targeting Histone Abnormality in Triple Negative Breast Cancer

    Science.gov (United States)

    2015-08-01

    κB pathway in triple negative breast cancer . 8th International Nitric Oxide Conference & 6th International Nitrite/ Nitrate Conference, Cleveland, OH...1 AWARD NUMBER: W81XWH-14-1-0237 TITLE: Targeting Histone Abnormality in Triple-Negative Breast Cancer PRINCIPAL INVESTIGATOR: Yi...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Targeting Histone Abnormality in Triple-Negative Breast Cancer 5b. GRANT NUMBER W81XWH-14-1-0237 5c

  6. Gallic Acid Decreases Inflammatory Cytokine Secretion Through Histone Acetyltransferase/Histone Deacetylase Regulation in High Glucose-Induced Human Monocytes.

    Science.gov (United States)

    Lee, Wooje; Lee, Sang Yeol; Son, Young-Jin; Yun, Jung-Mi

    2015-07-01

    Hyperglycemia contributes to diabetes and several diabetes-related complications. Gallic acid is a polyhydroxy phenolic compound found in various natural products. In this study, we investigated the effects and mechanism of gallic acid on proinflammatory cytokine secretion in high glucose-induced human monocytes (THP-1 cells). THP-1 cells were cultured under normoglycemic or hyperglycemic conditions, in the absence or presence of gallic acid. Hyperglycemic conditions significantly induced histone acetylation, nuclear factor-κB (NF-κB) activation, and proinflammatory cytokine release from THP-1 cells, whereas gallic acid suppressed NF-κB activity and cytokine release. It also significantly reduced CREB-binding protein/p300 (CBP/p300, a NF-κB coactivator) gene expression, acetylation levels, and CBP/p300 histone acetyltransferase (HAT) activity. In addition, histone deacetylase 2 (HDAC2) expression was significantly induced. These results suggest that gallic acid inhibits hyperglycemic-induced cytokine production in monocytes through epigenetic changes involving NF-κB. Therefore, gallic acid may have potential for the treatment and prevention of diabetes and its complications.

  7. Histone deacetylase inhibitors induced differentiation and accelerated mineralization of pulp-derived cells.

    LENUS (Irish Health Repository)

    Duncan, Henry F

    2012-03-01

    Histone deacetylase inhibitors (HDACis) alter the homeostatic balance between 2 groups of cellular enzymes, histone deacetylases (HDACs) and histone acetyltransferases (HATs), increasing transcription and influencing cell behavior. This study investigated the potential of 2 HDACis, valproic acid (VPA) and trichostatin A (TSA), to promote reparative processes in pulp cells as assayed by viability, cell cycle, and mineralization analyses.

  8. Mechanical Stability and Fibrinolytic Resistance of Clots Containing Fibrin, DNA, and Histones*

    Science.gov (United States)

    Longstaff, Colin; Varjú, Imre; Sótonyi, Péter; Szabó, László; Krumrey, Michael; Hoell, Armin; Bóta, Attila; Varga, Zoltán; Komorowicz, Erzsébet; Kolev, Krasimir

    2013-01-01

    Neutrophil extracellular traps are networks of DNA and associated proteins produced by nucleosome release from activated neutrophils in response to infection stimuli and have recently been identified as key mediators between innate immunity, inflammation, and hemostasis. The interaction of DNA and histones with a number of hemostatic factors has been shown to promote clotting and is associated with increased thrombosis, but little is known about the effects of DNA and histones on the regulation of fibrin stability and fibrinolysis. Here we demonstrate that the addition of histone-DNA complexes to fibrin results in thicker fibers (increase in median diameter from 84 to 123 nm according to scanning electron microscopy data) accompanied by improved stability and rigidity (the critical shear stress causing loss of fibrin viscosity increases from 150 to 376 Pa whereas the storage modulus of the gel increases from 62 to 82 pascals according to oscillation rheometric data). The effects of DNA and histones alone are subtle and suggest that histones affect clot structure whereas DNA changes the way clots are lysed. The combination of histones + DNA significantly prolongs clot lysis. Isothermal titration and confocal microscopy studies suggest that histones and DNA bind large fibrin degradation products with 191 and 136 nm dissociation constants, respectively, interactions that inhibit clot lysis. Heparin, which is known to interfere with the formation of neutrophil extracellular traps, appears to prolong lysis time at a concentration favoring ternary histone-DNA-heparin complex formation, and DNase effectively promotes clot lysis in combination with tissue plasminogen activator. PMID:23293023

  9. Rationality in Society

    NARCIS (Netherlands)

    Flache, Andreas; Dijkstra, Jacob; Wright, James D.

    2015-01-01

    Contemporary theories of rational behavior in human society augment the orthodox model of rationality both by adding various forms of bounded rationality and relaxing the assumptions of self-interest and materialistic preferences. This entry discusses how these extensions of the theory of rational

  10. Novel E3 ubiquitin ligases that regulate histone protein levels in the budding yeast Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Singh

    Full Text Available Core histone proteins are essential for packaging the genomic DNA into chromatin in all eukaryotes. Since multiple genes encode these histone proteins, there is potential for generating more histones than what is required for chromatin assembly. The positively charged histones have a very high affinity for negatively charged molecules such as DNA, and any excess of histone proteins results in deleterious effects on genomic stability and cell viability. Hence, histone levels are known to be tightly regulated via transcriptional, posttranscriptional and posttranslational mechanisms. We have previously elucidated the posttranslational regulation of histone protein levels by the ubiquitin-proteasome pathway involving the E2 ubiquitin conjugating enzymes Ubc4/5 and the HECT (Homologous to E6-AP C-Terminus domain containing E3 ligase Tom1 in the budding yeast. Here we report the identification of four additional E3 ligases containing the RING (Really Interesting New Gene finger domains that are involved in the ubiquitylation and subsequent degradation of excess histones in yeast. These E3 ligases are Pep5, Snt2 as well as two previously uncharacterized Open Reading Frames (ORFs YKR017C and YDR266C that we have named Hel1 and Hel2 (for Histone E3 Ligases respectively. Mutants lacking these E3 ligases are sensitive to histone overexpression as they fail to degrade excess histones and accumulate high levels of endogenous histones on histone chaperones. Co-immunoprecipitation assays showed that these E3 ligases interact with the major E2 enzyme Ubc4 that is involved in the degradation related ubiquitylation of histones. Using mutagenesis we further demonstrate that the RING domains of Hel1, Hel2 and Snt2 are required for histone regulation. Lastly, mutants corresponding to Hel1, Hel2 and Pep5 are sensitive to replication inhibitors. Overall, our results highlight the importance of posttranslational histone regulatory mechanisms that employ multiple E3

  11. Antibodies from the sera of HIV-infected patients efficiently hydrolyze all human histones.

    Science.gov (United States)

    Baranova, Svetlana V; Buneva, Valentina N; Nevinsky, Georgy A

    2016-08-01

    Histones and their post-translational modifications have key roles in chromatin remodeling and gene transcription. Besides intranuclear functions, histones act as damage-associated molecular pattern molecules when they are released into the extracellular space. Administration of exogenous histones to animals leads to systemic inflammatory and toxic responses through activating Toll-like receptors and inflammasome pathways. Here, using ELISA it was shown that sera of HIV-infected patients and healthy donors contain autoantibodies against histones. Autoantibodies with enzymic activities (abzymes) are a distinctive feature of autoimmune diseases. It was interesting whether antibodies from sera of HIV-infected patients can hydrolyze human histones. Electrophoretically and immunologically homogeneous IgGs were isolated from sera of HIV-infected patients by chromatography on several affinity sorbents. We present first evidence showing that 100% of IgGs purified from the sera of 32 HIV-infected patients efficiently hydrolyze from one to five human histones. Several rigid criteria have been applied to show that the histone-hydrolyzing activity is an intrinsic property of IgGs of HIV-infected patients. The relative efficiency of hydrolysis of histones (H1, H2a, H2b, H3, and H4) significantly varied for IgGs of different patients. IgGs from the sera of 40% of healthy donors also hydrolyze histones but with an average efficiency approximately 16-fold lower than that of HIV-infected patients. Similar to proteolytic abzymes from the sera of patients with several autoimmune diseases, histone-hydrolyzing IgGs from HIV-infected patients were inhibited by specific inhibitors of serine and of metal-dependent proteases, but an unexpected significant inhibition of the activity by specific inhibitor of thiol-like proteases was also observed. Because IgGs can efficiently hydrolyze histones, a negative role of abzymes in development of acquired immune deficiency syndrome cannot be

  12. Histone fractionation by high-performance liquid chromatography on cyanoalkylsilane (CN) reverse-phase columns

    International Nuclear Information System (INIS)

    Gurley, L.R.; Prentice, D.A.; Valdez, J.G.; Spall, W.D.

    1983-01-01

    Previous work described conditions for the rapid fractionation of histones by high-performance liquid chromatography (HPLC) using a reverse-phase μBondapak C 18 column. That procedure resolved the major classes of histones with one exception: the more hydrophobic H2A variant, (MHP)H2A, was not resolved from the H4 histone class. This report extends that work describing experiments using a μBondapak CN column which better resolves the classes of histones from each other including the resolution of (MHP)H2A from the H4. In addition, the less hydrophobic H2A variant, (LHP)H2A, is partially resolved from the (MHP)H2A, and the less hydrophobic H3 variant, (LHP)H3, is resolved from the more hydrophobic H3 variant, (MHP)H3. Lower trifluoroacetic acid (TFA) concentrations (0.1%) in the eluting water/acetonitrile solvent were used with the CN column than were used with the C 18 column which increased the sensitivity of histone detection by ultraviolet absorption at 206 nm. Greater than 95% of the total [ 3 H]lysine-labeled protein applied to the CN column was eluted from the column. Contaminating nonhistone proteins were found to chromatograph in the region of histone elution. These were greatly reduced by isolating nuclei prior to histone preparation. The fractionation of the histones appears to be based on the hydrophobic properties of the proteins. The histone fractions (identified by their electrophoretic mobilities) were eluted from the CN column in the following order: H1, H2B, (LHP)H2A, (MHP)H2A, H4, (LHP)H3, and (MHP)H3. Phosphorylated and acetylated histone species were not resolved from their unmodified parental species

  13. Prepatterning of developmental gene expression by modified histones before zygotic genome activation

    DEFF Research Database (Denmark)

    Lindeman, Leif C.; Andersen, Ingrid S.; Reiner, Andrew H.

    2011-01-01

    A hallmark of anamniote vertebrate development is a window of embryonic transcription-independent cell divisions before onset of zygotic genome activation (ZGA). Chromatin determinants of ZGA are unexplored; however, marking of developmental genes by modified histones in sperm suggests a predictive...... role of histone marks for ZGA. In zebrafish, pre-ZGA development for ten cell cycles provides an opportunity to examine whether genomic enrichment in modified histones is present before initiation of transcription. By profiling histone H3 trimethylation on all zebrafish promoters before and after ZGA......, we demonstrate here an epigenetic prepatterning of developmental gene expression. This involves pre-ZGA marking of transcriptionally inactive genes involved in homeostatic and developmental regulation by permissive H3K4me3 with or without repressive H3K9me3 or H3K27me3. Our data suggest that histone...

  14. A Rational Approach to Rational Suicide.

    Science.gov (United States)

    Richman, Joseph

    1992-01-01

    Describes suicide as reaction to internal and external sources of stress and the impact of life events. Notes that, in the elderly, these situations are prevalent in many who are not suicidal. Contends that much more is written about rational suicide than its alternative (rational nonsuicide). Reviews reasons for this and suggests rational…

  15. Rational design of competitive electrocatalysts for the oxygen reduction reaction in hydrogen fuel cells

    Science.gov (United States)

    Stolbov, Sergey; Alcántara Ortigoza, Marisol

    2012-02-01

    The large-scale application of one of the most promising clean and renewable sources of energy, hydrogen fuel cells, still awaits efficient and cost-effective electrocatalysts for the oxygen reduction reaction (ORR) occurring on the cathode. We demonstrate that truly rational design renders electrocatalysts possessing both qualities. By unifying the knowledge on surface morphology, composition, electronic structure and reactivity, we solve that sandwich-like structures are an excellent choice for optimization. Their constituting species couple synergistically yielding reaction-environment stability, cost-effectiveness and tunable reactivity. This cooperative-action concept enabled us to predict two advantageous ORR electrocatalysts. Density functional theory calculations of the reaction free-energy diagrams confirm that these materials are more active toward ORR than the so far best Pt-based catalysts. Our designing concept advances also a general approach for engineering materials in heterogeneous catalysis.

  16. Serendipitous discovery of potent human head and neck squamous cell carcinoma anti-cancer molecules: A fortunate failure of a rational molecular design.

    Science.gov (United States)

    Zagni, Chiara; Pistarà, Venerando; Oliveira, Luciana A; Castilho, Rogerio M; Romeo, Giovanni; Chiacchio, Ugo; Rescifina, Antonio

    2017-12-01

    Histone deacetylase inhibitors (HDACis) play an important role as valuable drugs targeted to cancer therapy: several HDACis are currently being tested in clinical trials. Two new potential HDACis 1a and 1d, characterized by the presence of a biphenyl-4-sulfonamide group as a connection unit between the N-{4-[(E)-(2-formylhydrazinylidene)methyl]-3-hydroxyphenyl} and the 2-hydroxy-N-(trifluoroacetyl)benzamide moiety, respectively, as two zinc-binding group (ZBG), have been designed, synthesized and tested for their biological activity. Surprisingly, compounds 1a and 12, this last exclusively obtained in place of 1d, exhibited a very low HDAC inhibitory activity. A serendipitous assay of these two compounds, conducted on three chemoresistant cell lines of head and neck squamous cell carcinoma (HNSCC), showed their antiproliferative activity at low nanomolar concentrations, better than cisplatin. In vitro, biological assays indicated that compounds 1a and 12 are able to increase acetylation of histone H3 and to interfere with the PI3K/Akt/mTOR pathway by inducing the accumulation of PTEN protein. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Extracellular Histones Increase Tissue Factor Activity and Enhance Thrombin Generation by Human Blood Monocytes.

    Science.gov (United States)

    Gould, Travis J; Lysov, Zakhar; Swystun, Laura L; Dwivedi, Dhruva J; Zarychanski, Ryan; Fox-Robichaud, Alison E; Liaw, Patricia C

    2016-12-01

    Sepsis is characterized by systemic activation of inflammatory and coagulation pathways in response to infection. Recently, it was demonstrated that histones released into the circulation by dying/activated cells may contribute to sepsis pathology. Although the ability of extracellular histones to modulate the procoagulant activities of several cell types has been investigated, the influence of histones on the hemostatic functions of circulating monocytes is unknown. To address this, we investigated the ability of histones to modulate the procoagulant potential of THP-1 cells and peripheral blood monocytes, and examined the effects of plasmas obtained from septic patients to induce a procoagulant phenotype on monocytic cells. Tissue factor (TF) activity assays were performed on histone-treated THP-1 cells and blood monocytes. Exposure of monocytic cells to histones resulted in increases in TF activity, TF antigen, and phosphatidylserine exposure. Histones modulate the procoagulant activity via engagement of Toll-like receptors 2 and 4, and this effect was abrogated with inhibitory antibodies. Increased TF activity of histone-treated cells corresponded to enhanced thrombin generation in plasma determined by calibrated automated thrombography. Finally, TF activity was increased on monocytes exposed to plasma from septic patients, an effect that was attenuated in plasma from patients receiving unfractionated heparin (UFH). Our studies suggest that increased levels of extracellular histones found in sepsis contribute to dysregulated coagulation by increasing TF activity of monocytes. These procoagulant effects can be partially ameliorated in sepsis patients receiving UFH, thereby identifying extracellular histones as a potential therapeutic target for sepsis treatment.

  18. Impact of plasma histones in human sepsis and their contribution to cellular injury and inflammation.

    Science.gov (United States)

    Ekaney, Michael Liembo; Otto, Gordon Philipp; Sossdorf, Maik; Sponholz, Christoph; Boehringer, Michael; Loesche, Wolfgang; Rittirsch, Daniel; Wilharm, Arne; Kurzai, Oliver; Bauer, Michael; Claus, Ralf Alexander

    2014-09-24

    Circulating histones have been identified as mediators of damage in animal models of sepsis and in patients with trauma-associated lung injury. Despite existing controversies on actual histone concentrations, clinical implications and mechanism of action in various disease conditions, histone levels in human sepsis, association with disease progression and mediated effects on endothelial and immune cells remain unreported. This study aimed to determine histone levels and its clinical implication in septic patients and to elucidate histone-mediated effects ex-vivo. Histone levels, endogenous activated protein C (APC) levels and clinical data from two independent cohorts of septic patients were obtained. Histone levels were compared with various control groups including healthy individuals, intensive care unit (ICU) patients without sepsis, ICU patients with multiple organ failure and patients with minor or multiple trauma, all without infection. Endothelial and monocytic cells were stimulated with histones. Cellular integrity and sepsis prototypical cytokines were evaluated. The mechanism of action of histones via Toll-like receptor 4 (TLR4) was evaluated using a function blocking antibody. Histone degradation in plasma was studied by immunoblotting. Histone H4 levels were significantly elevated in patients with sepsis (cohort I; n = 15 and cohort II; n = 19) versus ICU controls (n = 12), patients with multiple organ failure (n = 12) or minor trauma (n = 7), associated with need for renal replacement therapy and decrease in platelet count during disease progression, and remarkably were significantly associated with increased mortality rates in septic patients (ICU-, 28 day- and 90 day mortality rates). There was an inverse correlation between plasma histones and endogenous APC levels. Histone stimulation induced the release of sepsis prototypic cytokines and decreased cell integrity indicated by a significant increase of lactate dehydrogenase (LDH) and propidium

  19. Geometric Rationalization for Freeform Architecture

    KAUST Repository

    Jiang, Caigui

    2016-06-20

    The emergence of freeform architecture provides interesting geometric challenges with regards to the design and manufacturing of large-scale structures. To design these architectural structures, we have to consider two types of constraints. First, aesthetic constraints are important because the buildings have to be visually impressive. Sec- ond, functional constraints are important for the performance of a building and its e cient construction. This thesis contributes to the area of architectural geometry. Specifically, we are interested in the geometric rationalization of freeform architec- ture with the goal of combining aesthetic and functional constraints and construction requirements. Aesthetic requirements typically come from designers and architects. To obtain visually pleasing structures, they favor smoothness of the building shape, but also smoothness of the visible patterns on the surface. Functional requirements typically come from the engineers involved in the construction process. For exam- ple, covering freeform structures using planar panels is much cheaper than using non-planar ones. Further, constructed buildings have to be stable and should not collapse. In this thesis, we explore the geometric rationalization of freeform archi- tecture using four specific example problems inspired by real life applications. We achieve our results by developing optimization algorithms and a theoretical study of the underlying geometrical structure of the problems. The four example problems are the following: (1) The design of shading and lighting systems which are torsion-free structures with planar beams based on quad meshes. They satisfy the functionality requirements of preventing light from going inside a building as shad- ing systems or reflecting light into a building as lighting systems. (2) The Design of freeform honeycomb structures that are constructed based on hex-dominant meshes with a planar beam mounted along each edge. The beams intersect without

  20. Functional Roles of Acetylated Histone Marks at Mouse Meiotic Recombination Hot Spots

    Science.gov (United States)

    Wu, Zhen; Fallahi, Mohammad; Ouizem, Souad; Liu, Qin; Li, Weimin; Costi, Roberta; Roush, William R.; Bois, Philippe R. J.

    2016-01-01

    ABSTRACT Meiotic recombination initiates following the formation of DNA double-strand breaks (DSBs) by the Spo11 endonuclease early in prophase I, at discrete regions in the genome coined “hot spots.” In mammals, meiotic DSB site selection is directed in part by sequence-specific binding of PRDM9, a polymorphic histone H3 (H3K4Me3) methyltransferase. However, other chromatin features needed for meiotic hot spot specification are largely unknown. Here we show that the recombinogenic cores of active hot spots in mice harbor several histone H3 and H4 acetylation and methylation marks that are typical of open, active chromatin. Further, deposition of these open chromatin-associated histone marks is dynamic and is manifest at spermatogonia and/or pre-leptotene-stage cells, which facilitates PRDM9 binding and access for Spo11 to direct the formation of DSBs, which are initiated at the leptotene stage. Importantly, manipulating histone acetylase and deacetylase activities established that histone acetylation marks are necessary for both hot spot activity and crossover resolution. We conclude that there are functional roles for histone acetylation marks at mammalian meiotic recombination hot spots. PMID:27821479

  1. Abundance of intrinsic structural disorder in the histone H1 subtypes.

    Science.gov (United States)

    Kowalski, Andrzej

    2015-12-01

    The intrinsically disordered proteins consist of partially structured regions linked to the unstructured stretches, which consequently form the transient and dynamic conformational ensembles. They undergo disorder to order transition upon binding their partners. Intrinsic disorder is attributed to histones H1, perceived as assemblers of chromatin structure and the regulators of DNA and proteins activity. In this work, the comparison of intrinsic disorder abundance in the histone H1 subtypes was performed both by the analysis of their amino acid composition and by the prediction of disordered stretches, as well as by identifying molecular recognition features (MoRFs) and ANCHOR protein binding regions (APBR) that are responsible for recognition and binding. Both human and model organisms-animals, plants, fungi and protists-have H1 histone subtypes with the properties typical of disordered state. They possess a significantly higher content of hydrophilic and charged amino acid residues, arranged in the long regions, covering over half of the whole amino acid residues in chain. Almost complete disorder corresponds to histone H1 terminal domains, including MoRFs and ANCHOR. Those motifs were also identified in a more ordered histone H1 globular domain. Compared to the control (globular and fibrous) proteins, H1 histones demonstrate the increased folding rate and a higher proportion of low-complexity segments. The results of this work indicate that intrinsic disorder is an inherent structural property of histone H1 subtypes and it is essential for establishing a protein conformation which defines functional outcomes affecting on DNA- and/or partner protein-dependent cell processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. An Investigation of Extracellular Histones in Pig-To-Baboon Organ Xenotransplantation.

    Science.gov (United States)

    Li, Tao; Lee, Whayoung; Hara, Hidetaka; Long, Cassandra; Ezzelarab, Mohamed; Ayares, David; Huang, Hai; Wang, Yi; Esmon, Charles T; Cooper, David K C; Iwase, Hayato

    2017-10-01

    Serum (extracellular) histone levels are increased in inflammatory states and in the presence of coagulation dysfunction, for example, trauma, chemical/ischemic injury, infection. There is increasing evidence of a systemic inflammatory response associated with the presence of a pig xenograft in a nonhuman primate. We evaluated extracellular histone levels in baboons with various pig xenografts. We measured serum histones in baboons with pig heterotopic heart (n = 8), life-supporting kidney (n = 5), orthotopic liver (n = 4), and artery patch (n = 9) grafts by enzyme-linked immunosorbent assay. C-reactive protein (CRP), free triiodothyronine (fT3), serum amyloid A (SAA), and platelet counts were also measured, all of which may provide an indication of an inflammatory state. We investigated the effect of histones on platelet aggregation and on cytotoxicity of pig cells in vitro. Serum histones increased when baboons developed consumptive coagulopathy (eg, thrombocytopenia) or infection. CRP levels tended to be higher and fT3 levels lower when consumptive coagulopathy developed. Measurement of SAA correlated fairly well with CRP and indicated the state of inflammation. Treatment of the recipient with tocilizumab reduced the level of serum histones, CRP, and SAA, and increased the level of fT3 and platelet counts. In vitro, histone-induced platelet aggregation and endothelial cell apoptosis were both significantly reduced by the NF-κB pathway inhibitor, parthenolide. These noninvasive assays may be useful for monitoring the health status of nonhuman primate recipients of pig organ grafts and may help in management after xenotransplantation. Tocilizumab and NF-κB inhibitors might prove valuable in reducing the inflammatory response to a pig xenograft.

  3. Specific distribution of the Saccharomyces cerevisiae linker histone homolog HHO1p in the chromatin

    OpenAIRE

    Freidkin, Ilya; Katcoff, Don J.

    2001-01-01

    In virtually all eukaryotic organisms, linker DNA between nucleosomes is associated with a histone termed linker histone or histone H1. In Saccharomyces cerevisiae, HHO1 encodes a putative linker histone with very significant homology to histone H1. The encoded protein is expressed in the nucleus, but has not been shown to affect global chromatin structure, nor has its deletion shown any detectable phenotype. In vitro chromatin assembly experiments with recombinant HHO1p have shown that it is...

  4. Histone Deacetylase Inhibitors as Anticancer Drugs.

    Science.gov (United States)

    Eckschlager, Tomas; Plch, Johana; Stiborova, Marie; Hrabeta, Jan

    2017-07-01

    Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC) and histone acetyltransferases (HAT). HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities.

  5. Histone Deacetylase Inhibitors as Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Tomas Eckschlager

    2017-07-01

    Full Text Available Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC and histone acetyltransferases (HAT. HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities.

  6. DAXX envelops a histone H3.3-H4 dimer for H3.3-specific recognition

    Energy Technology Data Exchange (ETDEWEB)

    Elsässer, Simon J; Huang, Hongda; Lewis, Peter W; Chin, Jason W; Allis, C David; Patel, Dinshaw J [MSKCC; (Rockefeller); (MRC)

    2013-01-24

    Histone chaperones represent a structurally and functionally diverse family of histone-binding proteins that prevent promiscuous interactions of histones before their assembly into chromatin. DAXX is a metazoan histone chaperone specific to the evolutionarily conserved histone variant H3.3. Here we report the crystal structures of the DAXX histone-binding domain with a histone H3.3–H4 dimer, including mutants within DAXX and H3.3, together with in vitro and in vivo functional studies that elucidate the principles underlying H3.3 recognition specificity. Occupying 40% of the histone surface-accessible area, DAXX wraps around the H3.3–H4 dimer, with complex formation accompanied by structural transitions in the H3.3–H4 histone fold. DAXX uses an extended α-helical conformation to compete with major inter-histone, DNA and ASF1 interaction sites. Our structural studies identify recognition elements that read out H3.3-specific residues, and functional studies address the contributions of Gly90 in H3.3 and Glu225 in DAXX to chaperone-mediated H3.3 variant recognition specificity.

  7. Thermodynamical study of interaction of histone H1 chromosomal protein and mitoxantrone anticancer drug

    International Nuclear Information System (INIS)

    Jafargholizadeh, Naser; Zargar, Seyed Jalal; Safarian, Shahrokh; Habibi-Rezaei, Mehran

    2012-01-01

    Highlights: ► For the first time, our results show mitoxantrone anticancer drug binds to histone H1, via hydrophobic, hydrogen, van der Waals and electrostatic interactions. ► Binding of mitoxantrone molecules to histone H1 is positive cooperative. ► Histone H1 may be considered as a new target for mitoxantrone at the chromatin level. - Using ultraviolet spectroscopy technique, we have investigated the interaction of anticancer drug, mitoxantrone with calf thymus histone H1 chromosomal protein in 100 mM phosphate buffer, pH 7.0, at temperatures 300 and 310 K. UV spectroscopy results show interactions between mitoxantrone and histone H1 with a positive cooperative binding process which was confirmed by Scatchard plot. According to the obtained results, it is concluded that histone H1 can be considered as a target for mitoxantrone binding at the chromatin level.

  8. [Proteolytic activity of IgG-antibodies of mice, immunized by calf thymus histones].

    Science.gov (United States)

    Kit, Iu Ia; Korniĭ, N; Kril', I Ĭ; Mahorivs'ka, I B; Tkachenko, V; Bilyĭ, R O; Stoĭka, R S

    2014-01-01

    The main goal of the study was to determine the ability of histones to induce production of the proteolytically active IgG-antibodies in BALB/c mice. In order to perform this study 8 mice were immunized with the fraction of total calf thymus histones. IgGs were isolated from the serum of the immunized and not immunized animals by means of precipitation with 33% ammonium sulfate, followed by affinity chromatography on protein G-Sepharose column. Histones, myelin basic protein (MBP), lysozyme, BSA, ovalbumin, macroglobulin, casein and cytochrome c served as substrates for determining the proteolytic activity. It was found that IgGs from the blood serum of immunized mice are capable of hydrolyzing histone H1, core histone and MBP. On the contrary, the proteolytic activity of IgGs from the blood serum of not immunized mice was not detected. The absence of proteolytical enzymes in the fraction of IgGs was proven by HPLC chromatography. High levels of proteolytic activity toward histones have been also detected in affinity purified IgGs from blood serum of patients with rheumatoid arthritis, but not in healthy donors. These data indicate that eukaryotic histones may induce production of protabzymes in mammals. The possible origin of these protabzymes and their potential biological role in mammalians is discussed.

  9. Neutralisation of the anti-coagulant effects of heparin by histones in blood plasma and purified systems.

    Science.gov (United States)

    Longstaff, Colin; Hogwood, John; Gray, Elaine; Komorowicz, Erzsebet; Varjú, Imre; Varga, Zoltán; Kolev, Krasimir

    2016-03-01

    Neutrophil extracellular traps (NETs) composed primarily of DNA and histones are a link between infection, inflammation and coagulation. NETs promote coagulation and approaches to destabilise NETs have been explored to reduce thrombosis and treat sepsis. Heparinoids bind histones and we report quantitative studies in plasma and purified systems to better understand physiological consequences. Unfractionated heparin (UFH) was investigated by activated partial thromboplastin time (APTT) and alongside low-molecular-weight heparins (LMWH) in purified systems with thrombin or factor Xa (FXa) and antithrombin (AT) to measure the sensitivity of UFH or LMWH to histones. A method was developed to assess the effectiveness of DNA and non-anticoagulant heparinoids as anti-histones. Histones effectively neutralised UFH, the IC50 value for neutralisation of 0.2 IU/ml UFH was 1.8 µg/ml histones in APTT and 4.6 µg/ml against 0.6 IU/ml UFH in a purified system. Histones also inhibited the activities of LMWHs with thrombin (IC50 6.1 and 11.0 µg/ml histones, for different LMWHs) or FXa (IC50 7.8 and 7.0 µg/ml histones). Direct interactions of UFH and LMWH with DNA and histones were explored by surface plasmon resonance, while rheology studies showed complex effects of histones, UFH and LMWH on clot resilience. A conclusion from these studies is that anticoagulation by UFH and LMWH will be compromised by high affinity binding to circulating histones even in the presence of DNA. A complete understanding of the effects of histones, DNA and heparins on the haemostatic system must include an appreciation of direct effects on fibrin and clot structure.

  10. Guidelines for Rational Cancer Therapeutics

    Directory of Open Access Journals (Sweden)

    Byunghee Yoo

    2017-12-01

    Full Text Available Traditionally, cancer therapy has relied on surgery, radiation therapy, and chemotherapy. In recent years, these interventions have become increasingly replaced or complemented by more targeted approaches that are informed by a deeper understanding of the underlying biology. Still, the implementation of fully rational patient-specific drug design appears to be years away. Here, we present a vision of rational drug design for cancer that is defined by two major components: modularity and image guidance. We suggest that modularity can be achieved by combining a nanocarrier and an oligonucleotide component into the therapeutic. Image guidance can be incorporated into the nanocarrier component by labeling with a specific imaging reporter, such as a radionuclide or contrast agent for magnetic resonance imaging. While limited by the need for additional technological advancement in the areas of cancer biology, nanotechnology, and imaging, this vision for the future of cancer therapy can be used as a guide to future research endeavors.

  11. Rational design of DNA sequences for nanotechnology, microarrays and molecular computers using Eulerian graphs.

    Science.gov (United States)

    Pancoska, Petr; Moravek, Zdenek; Moll, Ute M

    2004-01-01

    Nucleic acids are molecules of choice for both established and emerging nanoscale technologies. These technologies benefit from large functional densities of 'DNA processing elements' that can be readily manufactured. To achieve the desired functionality, polynucleotide sequences are currently designed by a process that involves tedious and laborious filtering of potential candidates against a series of requirements and parameters. Here, we present a complete novel methodology for the rapid rational design of large sets of DNA sequences. This method allows for the direct implementation of very complex and detailed requirements for the generated sequences, thus avoiding 'brute force' filtering. At the same time, these sequences have narrow distributions of melting temperatures. The molecular part of the design process can be done without computer assistance, using an efficient 'human engineering' approach by drawing a single blueprint graph that represents all generated sequences. Moreover, the method eliminates the necessity for extensive thermodynamic calculations. Melting temperature can be calculated only once (or not at all). In addition, the isostability of the sequences is independent of the selection of a particular set of thermodynamic parameters. Applications are presented for DNA sequence designs for microarrays, universal microarray zip sequences and electron transfer experiments.

  12. Differential patterns of histone acetylation in inflammatory bowel diseases

    Directory of Open Access Journals (Sweden)

    Adcock Ian M

    2011-01-01

    Full Text Available Abstract Post-translational modifications of histones, particularly acetylation, are associated with the regulation of inflammatory gene expression. We used two animal models of inflammation of the bowel and biopsy samples from patients with Crohn's disease (CD to study the expression of acetylated histones (H 3 and 4 in inflamed mucosa. Acetylation of histone H4 was significantly elevated in the inflamed mucosa in the trinitrobenzene sulfonic acid model of colitis particularly on lysine residues (K 8 and 12 in contrast to non-inflamed tissue. In addition, acetylated H4 was localised to inflamed tissue and to Peyer's patches (PP in dextran sulfate sodium (DSS-treated rat models. Within the PP, H3 acetylation was detected in the mantle zone whereas H4 acetylation was seen in both the periphery and the germinal centre. Finally, acetylation of H4 was significantly upregulated in inflamed biopsies and PP from patients with CD. Enhanced acetylation of H4K5 and K16 was seen in the PP. These results demonstrate that histone acetylation is associated with inflammation and may provide a novel therapeutic target for mucosal inflammation.

  13. Implication of Posttranslational Histone Modifications in Nucleotide Excision Repair

    Directory of Open Access Journals (Sweden)

    Shisheng Li

    2012-09-01

    Full Text Available Histones are highly alkaline proteins that package and order the DNA into chromatin in eukaryotic cells. Nucleotide excision repair (NER is a conserved multistep reaction that removes a wide range of generally bulky and/or helix-distorting DNA lesions. Although the core biochemical mechanism of NER is relatively well known, how cells detect and repair lesions in diverse chromatin environments is still under intensive research. As with all DNA-related processes, the NER machinery must deal with the presence of organized chromatin and the physical obstacles it presents. A huge catalogue of posttranslational histone modifications has been documented. Although a comprehensive understanding of most of these modifications is still lacking, they are believed to be important regulatory elements for many biological processes, including DNA replication and repair, transcription and cell cycle control. Some of these modifications, including acetylation, methylation, phosphorylation and ubiquitination on the four core histones (H2A, H2B, H3 and H4 or the histone H2A variant H2AX, have been found to be implicated in different stages of the NER process. This review will summarize our recent understanding in this area.

  14. Circulating Histones Are Major Mediators of Cardiac Injury in Patients With Sepsis.

    Science.gov (United States)

    Alhamdi, Yasir; Abrams, Simon T; Cheng, Zhenxing; Jing, Shengjie; Su, Dunhao; Liu, Zhiyong; Lane, Steven; Welters, Ingeborg; Wang, Guozheng; Toh, Cheng-Hock

    2015-10-01

    To investigate the impact of circulating histones on cardiac injury and dysfunction in a murine model and patients with sepsis. Prospective, observational clinical study with in vivo and ex vivo translational laboratory investigations. General ICU and university research laboratory. Sixty-five septic patients and 27 healthy volunteers. Twelve-week-old male C57BL/6N mice. Serial blood samples from 65 patients with sepsis were analyzed, and left ventricular function was assessed by echocardiography. Patients' sera were incubated with cultured cardiomyocytes in the presence or absence of antihistone antibody, and cellular viability was assessed. Murine sepsis was initiated by intraperitoneal Escherichia coli injection (10(8) colony-forming unit/mouse) in 12-week-old male C57BL/6N mice, and the effect of antihistone antibody (10 mg/kg) was studied. Murine blood samples were collected serially, and left ventricular function was assessed by intraventricular catheters and electrocardiography. Circulating histones and cardiac troponins in human and murine plasma were quantified. In 65 patients with sepsis, circulating histones were significantly elevated compared with healthy controls (n = 27) and linearly correlated with cardiac troponin T levels (rs = 0.650; p histone levels were significantly associated with new-onset left ventricular dysfunction (p = 0.001) and arrhythmias (p = 0.01). Left ventricular dysfunction only predicted adverse outcomes when combined with elevated histones or cardiac troponin levels. Furthermore, patients' sera directly induced histone-specific cardiomyocyte death ex vivo, which was abrogated by antihistone antibodies. In vivo studies on septic mice confirmed the cause-effect relationship between circulating histones and the development of cardiac injury, arrhythmias, and left ventricular dysfunction. Circulating histones are novel and important mediators of septic cardiomyopathy, which can potentially be utilized for prognostic and therapeutic

  15. Harvesting bioenergy with rationally designed complex functional materials

    Science.gov (United States)

    Kuang, Liangju

    A key challenge in renewable energy is to capture, convert and store solar power with earth-abundant materials and environmentally benign technologies. The goal of this thesis is to develop rationally designed complex functional materials for bio-renewable energy applications. On one hand, photoconversion membrane proteins (MPs) are nature's nanoengineering feats for renewable energy management. Harnessing their functions in synthetic systems could help understand, predict, and ultimately control matter and energy at the nanoscale. This is particularly enticing in the post-genome era as recombinant or cell-free expression of many MPs with high yields becomes possible. However, the labile nature of lipid bilayers renders them unsuitable for use in a broad range of engineered systems. A knowledge gap exists about how to design robust synthetic nanomembranes as lipid-bilayer-mimics to support MP functions and how to direct hierarchical MP reconstitution into those membranes to form 2-D or 3-D ordered proteomembrane arrays. Our studies on proteorhodopsin (PR) and bacterial reaction center (BRC), the two light-harvesting MPs, reveal that a charge-interaction-directed reconstitution (CIDR) mechanism induces spontaneous reconstitution of detergent-solubilized MPs into various amphiphilic block copolymer membranes, many of which have far superior stability than lipid bilayers. Our preliminary data also suggest MPs are not enslaved by the biological membranes they derive from; rather, the chemically nonspecific material properties of MP-supporting membranes may act as allosteric regulators. Versatile chemical designs are possible to modulate the conformational energetics of MPs, hence their transport performance in synthetic systems. On the other hand, microalgae are widely regarded as a sustainable feedstock for biofuel production. Microalgae-derived biofuels have not been commercialized yet because current technologies for microalgae dewatering add a huge cost to the

  16. About a significance of the avian linker histone (H1) polymorphic ...

    Indian Academy of Sciences (India)

    60

    structural disorder may specify histone H1 interaction with both DNA and partnering proteins through ... from the studies conducted on mammalian model, including the human H1 variants. However ..... Thus, the disparate layout of histone H1.

  17. Histones and their modifications in ovarian cancer - drivers of disease and therapeutic targets.

    Science.gov (United States)

    Marsh, Deborah J; Shah, Jaynish S; Cole, Alexander J

    2014-01-01

    Epithelial ovarian cancer has the highest mortality of the gynecological malignancies. High grade serous epithelial ovarian cancer (SEOC) is the most common subtype, with the majority of women presenting with advanced disease where 5-year survival is around 25%. Platinum-based chemotherapy in combination with paclitaxel remains the most effective treatment despite platinum therapies being introduced almost 40 years ago. Advances in molecular medicine are underpinning new strategies for the treatment of cancer. Major advances have been made by international initiatives to sequence cancer genomes. For SEOC, with the exception of TP53 that is mutated in virtually 100% of these tumors, there is no other gene mutated at high frequency. There is extensive copy number variation, as well as changes in methylation patterns that will influence gene expression. To date, the role of histones and their post-translational modifications in ovarian cancer is a relatively understudied field. Post-translational histone modifications play major roles in gene expression as they direct the configuration of chromatin and so access by transcription factors. Histone modifications include methylation, acetylation, and monoubiquitination, with involvement of enzymes including histone methyltransferases, histone acetyltransferases/deacetylases, and ubiquitin ligases/deubiquitinases, respectively. Complexes such as the Polycomb repressive complex also play roles in the control of histone modifications and more recently roles for long non-coding RNA and microRNAs are emerging. Epigenomic-based therapies targeting histone modifications are being developed and offer new approaches for the treatment of ovarian cancer. Here, we discuss histone modifications and their aberrant regulation in malignancy and specifically in ovarian cancer. We review current and upcoming histone-based therapies that have the potential to inform and improve treatment strategies for women with ovarian cancer.

  18. A rational and economical seismic design of beam columns in steel frames

    International Nuclear Information System (INIS)

    Gupta, A.K.; Fang, S.-J.; Chu, S.-L.

    1977-01-01

    In the present study, a new rational procedure is used in which simultaneous variation in various response quantities is predicted. For designing the beam column section according to the AISC Manual of Steel Construction, one has to know the values of the axial force, the moment about x and y axes at the two ends, and the maximum moments about x, y axes near the center of the beam column, which altogether constitutes seven response quantities of interest for each beam column element. Normally, seven equivalent modes will be required to represent the response. However, by designing the two end sections and the intermediate section independently one can consider three equivalent modes for each section, thus simplifying the problem a great deal. An existing computer program is used for the implementation of the proposed method. Results for typical example problems have been presented. It is shown that savings up to 42% in the steel cross-sectional area can be obtained depending upon combination of various forces and moments. The propposed method is 'exact' within the existing assumptions of the SRSS (square root of the sum of the squares) or the double sum method

  19. Rational design of botulinum neurotoxin A1 mutants with improved oxidative stability.

    Science.gov (United States)

    López de la Paz, Manuela; Scheps, Daniel; Jurk, Marcel; Hofmann, Fred; Frevert, Jürgen

    2018-06-01

    Botulinum neurotoxins (BoNTs) are the most potent toxic proteins to mankind known but applied in low doses trigger a localized muscle paralysis that is beneficial for the therapy of several neurological disorders and aesthetic treatment. The paralytic effect is generated by the enzymatic activity of the light chain (LC) that cleaves specifically one of the SNARE proteins responsible for neurotransmitter exocytosis. The activity of the LC in a BoNT-containing therapeutic can be compromised by denaturing agents present during manufacturing and/or in the cell. Stabilization of the LC by reducing vulnerability towards denaturants would thus be advantageous for the development of BoNT-based therapeutics. In this work, we focused on increasing the stability of LC of BoNT/A1 (LC/A1) towards oxidative stress. We tackled this task by rational design of mutations at cysteine and methionine LC/A1 sites. Designed mutants showed improved oxidative stability in vitro and equipotency to wildtype toxin in vivo. Our results suggest that suitable modification of the catalytic domain can lead to more stable BoNTs without impairing their therapeutic efficacy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Removal of histone tails from nucleosome dissects the physical mechanisms of salt-induced aggregation, linker histone H1-induced compaction, and 30-nm fiber formation of the nucleosome array

    International Nuclear Information System (INIS)

    Hizume, Kohji; Nakai, Tonau; Araki, Sumiko; Prieto, Eloise; Yoshikawa, Kenichi; Takeyasu, Kunio

    2009-01-01

    In order to reveal the roles of histone tails in the formation of higher-order chromatin structures, we employed atomic force microscopy (AFM), and an in vitro reconstitution system to examine the properties of reconstituted chromatin composed of tail-less histones and a long DNA (106-kb plasmid) template. The tail-less nucleosomes did not aggregate at high salt concentrations or with an excess amount of core histones, in contrast with the behavior of nucleosomal arrays composed of nucleosomes containing normal, N-terminal tails. Analysis of our nucleosome distributions reveals that the attractive interaction between tail-less nucleosomes is weakened. Addition of linker histone H1 into the tail-less nucleosomal array failed to promote the formation of 30 nm chromatin fibers that are usually formed in the normal nucleosomal array. These results demonstrate that the attractive interaction between nucleosomes via histone tails plays a critical role in the formation of the uniform 30-nm chromatin fiber.

  1. Model-based rational feedback controller design for closed-loop deep brain stimulation of Parkinson's disease

    Science.gov (United States)

    Gorzelic, P.; Schiff, S. J.; Sinha, A.

    2013-04-01

    Objective. To explore the use of classical feedback control methods to achieve an improved deep brain stimulation (DBS) algorithm for application to Parkinson's disease (PD). Approach. A computational model of PD dynamics was employed to develop model-based rational feedback controller design. The restoration of thalamocortical relay capabilities to patients suffering from PD is formulated as a feedback control problem with the DBS waveform serving as the control input. Two high-level control strategies are tested: one that is driven by an online estimate of thalamic reliability, and another that acts to eliminate substantial decreases in the inhibition from the globus pallidus interna (GPi) to the thalamus. Control laws inspired by traditional proportional-integral-derivative (PID) methodology are prescribed for each strategy and simulated on this computational model of the basal ganglia network. Main Results. For control based upon thalamic reliability, a strategy of frequency proportional control with proportional bias delivered the optimal control achieved for a given energy expenditure. In comparison, control based upon synaptic inhibitory output from the GPi performed very well in comparison with those of reliability-based control, with considerable further reduction in energy expenditure relative to that of open-loop DBS. The best controller performance was amplitude proportional with derivative control and integral bias, which is full PID control. We demonstrated how optimizing the three components of PID control is feasible in this setting, although the complexity of these optimization functions argues for adaptive methods in implementation. Significance. Our findings point to the potential value of model-based rational design of feedback controllers for Parkinson's disease.

  2. Characterization of Chromatin Structure-associated Histone Modifications in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Chang Pyo Hong

    2012-09-01

    Full Text Available Chromatin structure and dynamics that are influenced by epigenetic marks, such as histone modification and DNA methylation, play a crucial role in modulating gene transcription. To understand the relationship between histone modifications and regulatory elements in breast cancer cells, we compared our chromatin immunoprecipitation sequencing (ChIP-Seq histone modification patterns for histone H3K4me1, H3K4me3, H3K9/16ac, and H3K27me3 in MCF-7 cells with publicly available formaldehyde-assisted isolation of regulatory elements (FAIRE-chip signals in human chromosomes 8, 11, and 12, identified by a method called FAIRE. Active regulatory elements defined by FAIRE were highly associated with active histone modifications, like H3K4me3 and H3K9/16ac, especially near transcription start sites. The H3K9/16ac-enriched genes that overlapped with FAIRE signals (FAIRE-H3K9/14ac were moderately correlated with gene expression levels. We also identified functional sequence motifs at H3K4me1-enriched FAIRE sites upstream of putative promoters, suggesting that regulatory elements could be associated with H3K4me1 to be regarded as distal regulatory elements. Our results might provide an insight into epigenetic regulatory mechanisms explaining the association of histone modifications with open chromatin structure in breast cancer cells.

  3. Rational design of peptide affinity ligands for the purification of therapeutic enzymes.

    Science.gov (United States)

    Trasatti, John P; Woo, James; Ladiwala, Asif; Cramer, Steven; Karande, Pankaj

    2018-04-25

    Non-mAb biologics represent a growing class of therapeutics under clinical development. Although affinity chromatography is a potentially attractive approach for purification, the development of platform technologies, such as Protein A for mAbs, has been challenging due to the inherent chemical and structural diversity of these molecules. Here, we present our studies on the rapid development of peptide affinity ligands for the purification of biologics using a prototypical enzyme therapeutic in clinical use. Employing a suite of de novo rational and combinatorial design strategies we designed and screened a library of peptides on microarray platforms for their ability to bind to the target with high affinity and selectivity in cell culture fluid. Lead peptides were evaluated on resin in batch conditions and compared with a commercially available resin to evaluate their efficacy. Two lead candidates identified from microarray studies provided high binding capacity to the target while demonstrating high selectivity against culture contaminants and product variants compared to a commercial resin system. These findings provide a proof-of-concept for developing affinity peptide-based bioseparations processes for a target biologic. Peptide affinity ligand design and screening approaches presented in this work can also be easily translated to other biologics of interest. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  4. Subcellular distribution of histone-degrading enzyme activities from rat liver

    International Nuclear Information System (INIS)

    Heinrich, P.C.; Raydt, G.; Puschendorf, B.; Jusic, M.

    1976-01-01

    Chromatin prepared from liver tissue contains a histone-degrading enzyme activity with a pH optimum of 7.5-8.0, whereas chromatin isolated from purified nuclei is devoid of it. The histone-degrading enzyme activity was assayed with radioactively labelled total histones from Ehrlich ascites tumor cells. Among the different subcellular fractions assayed, only lysosomes and mitochondria exhibited histone-degrading enzymes. A pH optimum around 4.0-5.0 was found for the lysosomal fraction, whereas 7.5-8.0 has been found for mitochondria. Binding studies of frozen and thawed lysosomes or mitochondria to proteinase-free chromatin demonstrate that the proteinase associated with chromatin isolated from frozen tissue originates from damaged mitochondria. The protein degradation patterns obtained after acrylamide gel electrophoresis are similar for the chromatin-associated and the mitochondrial proteinase and different from that obtained after incubation with lysosomes. The chromatin-associated proteinase as well as the mitochondrial proteinase are strongly inhibited by 1.0 mM phenylmethanesulfonyl fluoride. Weak inhibition is found for lysosomal proteinases at pH 5. Kallikrein-trypsin inhibitor, however, inhibits lysosomal proteinase activity and has no effect on either chromatin-associated or mitochondrial proteinases. The higher template activity of chromatin isolated from a total homogenate compared to chromatin prepared from nuclei may be due to the presence of this histone-degrading enzyme activity. (orig.) [de

  5. Selective Biological Responses of Phagocytes and Lungs to Purified Histones.

    Science.gov (United States)

    Fattahi, Fatemeh; Grailer, Jamison J; Lu, Hope; Dick, Rachel S; Parlett, Michella; Zetoune, Firas S; Nuñez, Gabriel; Ward, Peter A

    2017-01-01

    Histones invoke strong proinflammatory responses in many different organs and cells. We assessed biological responses to purified or recombinant histones, using human and murine phagocytes and mouse lungs. H1 had the strongest ability in vitro to induce cell swelling independent of requirements for toll-like receptors (TLRs) 2 or 4. These responses were also associated with lactate dehydrogenase release. H3 and H2B were the strongest inducers of [Ca2+]i elevations in phagocytes. Cytokine and chemokine release from mouse and human phagocytes was predominately a function of H2A and H2B. Double TLR2 and TLR4 knockout (KO) mice had dramatically reduced cytokine release induced in macrophages exposed to individual histones. In contrast, macrophages from single TLR-KO mice showed few inhibitory effects on cytokine production. Using the NLRP3 inflammasome protocol, release of mature IL-1β was predominantly a feature of H1. Acute lung injury following the airway delivery of histones suggested that H1, H2A, and H2B were linked to alveolar leak of albumin and the buildup of polymorphonuclear neutrophils as well as the release of chemokines and cytokines into bronchoalveolar fluids. These results demonstrate distinct biological roles for individual histones in the context of inflammation biology and the requirement of both TLR2 and TLR4. © 2017 S. Karger AG, Basel.

  6. Inhibition of histone deacetylases prevents cytokine-induced toxicity in beta cells

    DEFF Research Database (Denmark)

    Larsen, L; Tonnesen, M; Ronn, S G

    2007-01-01

    B (NFkappaB) is a critical signalling molecule in inflammation and is required for expression of the gene encoding inducible NO synthase (iNOS) and of pro-apoptotic genes. NFkappaB has recently been shown to associate with chromatin-modifying enzymes histone acetyltransferases and histone...... by immunoblotting and by immunoblotting combined with electrophoretic mobility shift assay, respectively. Viability was analysed by 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyl-tetrazolium bromide and apoptosis by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) assay and histone...

  7. Histone deacetylase inhibitors in multiple myeloma

    Directory of Open Access Journals (Sweden)

    Sarah Deleu

    2009-06-01

    Full Text Available Novel drugs such as bortezomib and high dose chemotherapy combined with stem cell transplantation improved the outcome of multiple myeloma patients in the past decade. However, multiple myeloma often remains incurable due to the development of drug resistance governed by the bone marrow micro-environment. Therefore targeting new pathways to overcome this resistance is needed. Histone deacetylase (HDAC inhibitors represent a new class of anti-myeloma agents. Inhibiting HDACs results in histone hyperacetylation and alterations in chromatine structure, which, in turn, cause growth arrest differentiation and/or apoptosis in several tumor cells. Here we summarize the molecular actions of HDACi as a single agent or in combination with other drugs in different in vitro and in vivo myeloma models and in (preclinical trials.

  8. Analysis of the histone protein tail and DNA in nucleosome using molecular dynamics simulation

    Science.gov (United States)

    Fujimori, R.; Komatsu, Y.; Fukuda, M.; Miyakawa, T.; Morikawa, R.; Takasu, M.

    2013-02-01

    We study the effect of the tails of H3 and H4 histones in the nucleosomes, where DNA and histones are packed in the form of chromatin. We perform molecular dynamics simulations of the complex of DNA and histones and calculate the mean square displacement and the gyration radius of the complex of DNA and histones for the cases with tails intact and the cases with tails missing. Our results show that the H3 tails are important for the motion of the histones. We also find that the motion of one tail is affected by other tails, although the tails are distanced apart, suggesting the correlated motion in biological systems.

  9. Trichostatin-A induces differential changes in histone protein dynamics and expression in HeLa cells

    International Nuclear Information System (INIS)

    Rao, Jyothsna; Bhattacharya, Dipanjan; Banerjee, Bidisha; Sarin, Apurva; Shivashankar, G.V.

    2007-01-01

    Trichostatin-A (TSA), a histone deacetylase (HDAC) inhibitor, results in enhanced acetylation of core histones thereby disrupting chromatin organization within living cells. We report on changes in chromatin organization and the resultant alteration in nuclear architecture following treatment with TSA using fluorescence imaging. TSA triggers an expected increase in the euchromatin fraction which is accompanied by a significant increase in nuclear volume and alterations in chromatin compaction mapped using fluorescence anisotropy imaging. We observe differential changes in the mobility of core and linker histones as measured by fluorescence recovery after photo-bleaching (FRAP) and fluorescence correlation spectroscopy (FCS) methods. Further TSA induces a differential increase in linker histone transcription and increased phosphorylation of linker histone proteins accompanying an expected increase in core histone acetylation patterns. Thus subtle feedback responses triggered by changes in chromatin configurations impinge selectively on linker histone mobility and its expression. These observations have implications for understanding the role of HDAC in the dynamic maintenance of chromatin organization

  10. Real-Time Tracking of Parental Histones Reveals Their Contribution to Chromatin Integrity Following DNA Damage.

    Science.gov (United States)

    Adam, Salomé; Dabin, Juliette; Chevallier, Odile; Leroy, Olivier; Baldeyron, Céline; Corpet, Armelle; Lomonte, Patrick; Renaud, Olivier; Almouzni, Geneviève; Polo, Sophie E

    2016-10-06

    Chromatin integrity is critical for cell function and identity but is challenged by DNA damage. To understand how chromatin architecture and the information that it conveys are preserved or altered following genotoxic stress, we established a system for real-time tracking of parental histones, which characterize the pre-damage chromatin state. Focusing on histone H3 dynamics after local UVC irradiation in human cells, we demonstrate that parental histones rapidly redistribute around damaged regions by a dual mechanism combining chromatin opening and histone mobilization on chromatin. Importantly, parental histones almost entirely recover and mix with new histones in repairing chromatin. Our data further define a close coordination of parental histone dynamics with DNA repair progression through the damage sensor DDB2 (DNA damage-binding protein 2). We speculate that this mechanism may contribute to maintaining a memory of the original chromatin landscape and may help preserve epigenome stability in response to DNA damage. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Bioinformatics and multiepitope DNA immunization to design rational snake antivenom.

    Directory of Open Access Journals (Sweden)

    Simon C Wagstaff

    2006-06-01

    Full Text Available Snake venom is a potentially lethal and complex mixture of hundreds of functionally diverse proteins that are difficult to purify and hence difficult to characterize. These difficulties have inhibited the development of toxin-targeted therapy, and conventional antivenom is still generated from the sera of horses or sheep immunized with whole venom. Although life-saving, antivenoms contain an immunoglobulin pool of unknown antigen specificity and known redundancy, which necessitates the delivery of large volumes of heterologous immunoglobulin to the envenomed victim, thus increasing the risk of anaphylactoid and serum sickness adverse effects. Here we exploit recent molecular sequence analysis and DNA immunization tools to design more rational toxin-targeted antivenom.We developed a novel bioinformatic strategy that identified sequences encoding immunogenic and structurally significant epitopes from an expressed sequence tag database of a venom gland cDNA library of Echis ocellatus, the most medically important viper in Africa. Focusing upon snake venom metalloproteinases (SVMPs that are responsible for the severe and frequently lethal hemorrhage in envenomed victims, we identified seven epitopes that we predicted would be represented in all isomers of this multimeric toxin and that we engineered into a single synthetic multiepitope DNA immunogen (epitope string. We compared the specificity and toxin-neutralizing efficacy of antiserum raised against the string to antisera raised against a single SVMP toxin (or domains or antiserum raised by conventional (whole venom immunization protocols. The SVMP string antiserum, as predicted in silico, contained antibody specificities to numerous SVMPs in E. ocellatus venom and venoms of several other African vipers. More significantly, the antiserum cross-specifically neutralized hemorrhage induced by E. ocellatus and Cerastes cerastes cerastes venoms.These data provide valuable sequence and structure

  12. Modulation of histone methylation and MLH1 gene silencing by hexavalent chromium

    International Nuclear Information System (INIS)

    Sun Hong; Zhou Xue; Chen Haobin; Li Qin; Costa, Max

    2009-01-01

    Hexavalent chromium [Cr(VI)] is a mutagen and carcinogen, and occupational exposure can lead to lung cancers and other adverse health effects. Genetic changes resulting from DNA damage have been proposed as an important mechanism that mediates chromate's carcinogenicity. Here we show that chromate exposure of human lung A549 cells increased global levels of di- and tri-methylated histone H3 lysine 9 (H3K9) and lysine 4 (H3K4) but decreased the levels of tri-methylated histone H3 lysine 27 (H3K27) and di-methylated histone H3 arginine 2 (H3R2). Most interestingly, H3K9 dimethylation was enriched in the human MLH1 gene promoter following chromate exposure and this was correlated with decreased MLH1 mRNA expression. Chromate exposure increased the protein as well as mRNA levels of G9a a histone methyltransferase that specifically methylates H3K9. This Cr(VI)-induced increase in G9a may account for the global elevation of H3K9 dimethylation. Furthermore, supplementation with ascorbate, the primary reductant of Cr(VI) and also an essential cofactor for the histone demethylase activity, partially reversed the H3K9 dimethylation induced by chromate. Thus our studies suggest that Cr(VI) may target histone methyltransferases and demethylases, which in turn affect both global and gene promoter specific histone methylation, leading to the silencing of specific tumor suppressor genes such as MLH1.

  13. [Comparative investigation of the non-histone proteins of chromatin from pigeon erythroblasts and erythrocytes].

    Science.gov (United States)

    Fedina, A B; Gazarian, G G

    1976-01-01

    Chromosomal non-histone proteins are obtained from nuclei of two types of pigeon erythroid cells: erythroblasts (cells active in RNA synthesis) and erythrocytes (cells with repressed RNA synthesis). They are well soluble in solutions of low ionic strength. Electrophoretic separation of the obtained non-histone proteins in polyacrylamide gels with urea and SDS shows the presence of qualitative differences in the pattern of non-histone proteins of chromatine from erythroblasts and erythrocytes. By electrophoresis in urea some protein bands of non-histone proteins of chromatine from erythroblasts were found which disappear with the aging of cells. At the same time two protein fractions were observed in chromatine from erythrocytes which were absent in that of erythroblasts. Disappearance of some high molecular weight protein fractions from erythrocyte chromatine as compared to erythroblasts was observed by separation of the non-histone proteins in the presence of SDS. These fractions of the non-histone proteins disappearing during aging of cells are well extractable from erythroblast chromatine by 0.35 M NaCl solution. In the in vitro system with E. coli RNA polymerase addition of non-histone proteins of chromatine from erythroblasts to chromatine from erythrocytes increases RNA synthesis 2--3 times. At the same time addition of non-histone proteins from erythrocytes is either without any influence on this process or somewhat inhibiting.

  14. Presence of Cytotoxic Extracellular Histones in Machine Perfusate of Donation After Circulatory Death Kidneys.

    Science.gov (United States)

    van Smaalen, Tim C; Beurskens, Daniëlle M H; Hoogland, E R Pieter; Winkens, Bjorn; Christiaans, Maarten H L; Reutelingsperger, Chris P; van Heurn, L W Ernest; Nicolaes, Gerry A F

    2017-04-01

    Extracellular histones are cytotoxic molecules that are related to cell stress and death. They have been shown to play a crucial role in multiple pathophysiologic processes like sepsis, inflammation, vascular dysfunction, and thrombosis. Their role in organ donation and graft function and survival is still unknown. The aim of this study was to assess whether an association exists between the presence of extracellular histones in machine perfusates and deceased donor kidney viability. Machine perfusates of 390 donations after circulatory death kidneys were analyzed for histone concentration, and corresponding graft function and survival were assessed. Extracellular histone concentrations were significantly higher in perfusates of kidneys with posttransplant graft dysfunction (primary nonfunction and delayed graft function) and were an independent risk factor for delayed graft function (odds ratio, 2.152; 95% confidence interval [95% CI], 1.199-3.863) and 1 year graft failure (hazard ratio, 1.386; 95% CI, 1.037-1.853), but not for primary nonfunction (odds ratio, 1.342; 95% CI, 0.900-2.002). One year graft survival was 12% higher in the group with low histone concentrations (P = 0.008) as compared with the group that contained higher histone concentrations. This study warrants future studies to probe for a possible role of cytotoxic extracellular histones in organ viability and suggests that quantitation of extracellular histones might contribute to assessment of posttransplant graft function and survival.

  15. Inhibition of histone deacetylases stimulates HBV replication independent of protein X

    NARCIS (Netherlands)

    van de Klundert, Maarten A. A.; Swart, Marjolein; Zaaijer, Hans L.; Kootstra, Neeltje A.

    2015-01-01

    Aim: HBV expresses an accessory protein called X (HBx), which supports HBV replication by increasing transcription from episomal templates. Here, we investigate whether HBx augments HBV replication by interfering with the deacetylation of HBV DNA associated histones by histone deacetylases (HDACs).

  16. HISTONE DEACETYLASE 9 represses seedling traits in Arabidopsis thaliana dry seeds

    NARCIS (Netherlands)

    van Zanten, Martijn; Zöll, C.; Wang, Z.; Philipp, C.; Carles, A.; Li, Y.; Kornet, N.G.; Liu, Y.; Soppe, W.J.J.

    2014-01-01

    Plant life is characterized by major phase changes. We studied the role of histone deacetylase (HDAC) activity in the transition from seed to seedling in Arabidopsis. Pharmacological inhibition of HDAC stimulated germination of freshly harvested seeds. Subsequent analysis revealed that histone

  17. ChIP on SNP-chip for genome-wide analysis of human histone H4 hyperacetylation

    Directory of Open Access Journals (Sweden)

    Porter Christopher J

    2007-09-01

    Full Text Available Abstract Background SNP microarrays are designed to genotype Single Nucleotide Polymorphisms (SNPs. These microarrays report hybridization of DNA fragments and therefore can be used for the purpose of detecting genomic fragments. Results Here, we demonstrate that a SNP microarray can be effectively used in this way to perform chromatin immunoprecipitation (ChIP on chip as an alternative to tiling microarrays. We illustrate this novel application by mapping whole genome histone H4 hyperacetylation in human myoblasts and myotubes. We detect clusters of hyperacetylated histone H4, often spanning across up to 300 kilobases of genomic sequence. Using complementary genome-wide analyses of gene expression by DNA microarray we demonstrate that these clusters of hyperacetylated histone H4 tend to be associated with expressed genes. Conclusion The use of a SNP array for a ChIP-on-chip application (ChIP on SNP-chip will be of great value to laboratories whose interest is the determination of general rules regarding the relationship of specific chromatin modifications to transcriptional status throughout the genome and to examine the asymmetric modification of chromatin at heterozygous loci.

  18. Structural Basis of Histone Demethylase KDM6B Histone 3 Lysine 27 Specificity

    DEFF Research Database (Denmark)

    Jones, Sarah E; Olsen, Lars; Gajhede, Michael

    2018-01-01

    KDM subfamily 6 enzymes KDM6A and KDM6B specifically catalyze demethylation of di- and trimethylated lysine on histone 3 lysine 27 (H3K27me3/2) and play an important role in repression of developmental genes. Despite identical amino acid sequence in the immediate surroundings of H3K9me3/2 (ARKS...

  19. Comparative proteomic analysis of histone post-translational modifications upon ischemia/reperfusion-induced retinal injury

    DEFF Research Database (Denmark)

    Zhao, Xiaolu; Sidoli, Simone; Wang, Leilei

    2014-01-01

    We present a detailed quantitative map of single and coexisting histone post-translational modifications (PTMs) in rat retinas affected by ischemia and reperfusion (I/R) injury. Retinal I/R injury contributes to serious ocular diseases, which can lead to vision loss and blindness. We applied linear...... ion trap-orbitrap hybrid tandem mass spectrometry (MS/MS) to quantify 131 single histone marks and 143 combinations of multiple histone marks in noninjured and injured retinas. We observed 34 histone PTMs that exhibited significantly (p

  20. Pragmatics & rationality.

    OpenAIRE

    Allott, N. E.

    2007-01-01

    This thesis is about the reconciliation of realistic views of rationality with inferential-intentional theories of communication. Grice (1957 1975) argued that working out what a speaker meant by an utterance is a matter of inferring the speaker's intentions on the presumption that she is acting rationally. This is abductive inference: inference to the best explanation for the utterance. Thus an utterance both rationalises and causes the interpretation the hearer constructs. Human rationality...

  1. Biochemical systems approaches for the analysis of histone modification readout.

    Science.gov (United States)

    Soldi, Monica; Bremang, Michael; Bonaldi, Tiziana

    2014-08-01

    Chromatin is the macromolecular nucleoprotein complex that governs the organization of genetic material in the nucleus of eukaryotic cells. In chromatin, DNA is packed with histone proteins into nucleosomes. Core histones are prototypes of hyper-modified proteins, being decorated by a large number of site-specific reversible and irreversible post-translational modifications (PTMs), which contribute to the maintenance and modulation of chromatin plasticity, gene activation, and a variety of other biological processes and disease states. The observations of the variety, frequency and co-occurrence of histone modifications in distinct patterns at specific genomic loci have led to the idea that hPTMs can create a molecular barcode, read by effector proteins that translate it into a specific transcriptional state, or process, on the underlying DNA. However, despite the fact that this histone-code hypothesis was proposed more than 10 years ago, the molecular details of its working mechanisms are only partially characterized. In particular, two questions deserve specific investigation: how the different modifications associate and synergize into patterns and how these PTM configurations are read and translated by multi-protein complexes into a specific functional outcome on the genome. Mass spectrometry (MS) has emerged as a versatile tool to investigate chromatin biology, useful for both identifying and validating hPTMs, and to dissect the molecular determinants of histone modification readout systems. We review here the MS techniques and the proteomics methods that have been developed to address these fundamental questions in epigenetics research, emphasizing approaches based on the proteomic dissection of distinct native chromatin regions, with a critical evaluation of their present challenges and future potential. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The emerging role of histone lysine demethylases in prostate cancer

    Directory of Open Access Journals (Sweden)

    Crea Francesco

    2012-08-01

    Full Text Available Abstract Early prostate cancer (PCa is generally treatable and associated with good prognosis. After a variable time, PCa evolves into a highly metastatic and treatment-refractory disease: castration-resistant PCa (CRPC. Currently, few prognostic factors are available to predict the emergence of CRPC, and no curative option is available. Epigenetic gene regulation has been shown to trigger PCa metastasis and androgen-independence. Most epigenetic studies have focused on DNA and histone methyltransferases. While DNA methylation leads to gene silencing, histone methylation can trigger gene activation or inactivation, depending on the target amino acid residues and the extent of methylation (me1, me2, or me3. Interestingly, some histone modifiers are essential for PCa tumor-initiating cell (TIC self-renewal. TICs are considered the seeds responsible for metastatic spreading and androgen-independence. Histone Lysine Demethylases (KDMs are a novel class of epigenetic enzymes which can remove both repressive and activating histone marks. KDMs are currently grouped into 7 major classes, each one targeting a specific methylation site. Since their discovery, KDM expression has been found to be deregulated in several neoplasms. In PCa, KDMs may act as either tumor suppressors or oncogenes, depending on their gene regulatory function. For example, KDM1A and KDM4C are essential for PCa androgen-dependent proliferation, while PHF8 is involved in PCa migration and invasion. Interestingly, the possibility of pharmacologically targeting KDMs has been demonstrated. In the present paper, we summarize the emerging role of KDMs in regulating the metastatic potential and androgen-dependence of PCa. In addition, we speculate on the possible interaction between KDMs and other epigenetic effectors relevant for PCa TICs. Finally, we explore the role of KDMs as novel prognostic factors and therapeutic targets. We believe that studies on histone demethylation may add a

  3. Mechanisms of transcriptional repression by histone lysine methylation

    DEFF Research Database (Denmark)

    Hublitz, Philip; Albert, Mareike; Peters, Antoine H F M

    2009-01-01

    . In this report, we review the recent literature to deduce mechanisms underlying Polycomb and H3K9 methylation mediated repression, and describe the functional interplay with activating H3K4 methylation. We summarize recent data that indicate a close relationship between GC density of promoter sequences......, transcription factor binding and the antagonizing activities of distinct epigenetic regulators such as histone methyltransferases (HMTs) and histone demethylases (HDMs). Subsequently, we compare chromatin signatures associated with different types of transcriptional outcomes from stable repression to highly...

  4. Characterization of Complete Histone Tail Proteoforms Using Differential Ion Mobility Spectrometry

    DEFF Research Database (Denmark)

    Shliaha, Pavel V; Baird, Matthew A; Nielsen, Mogens M

    2017-01-01

    Histone proteins are subject to dynamic post-translational modifications (PTMs) that cooperatively modulate the chromatin structure and function. Nearly all functional PTMs are found on the N-terminal histone domains (tails) of ∼50 residues protruding from the nucleosome core. Using high...

  5. Low Proteolytic Clipping of Histone H3 in Cervical Cancer

    Science.gov (United States)

    Sandoval-Basilio, Jorge; Serafín-Higuera, Nicolás; Reyes-Hernandez, Octavio D.; Serafín-Higuera, Idanya; Leija-Montoya, Gabriela; Blanco-Morales, Magali; Sierra-Martínez, Monica; Ramos-Mondragon, Roberto; García, Silvia; López-Hernández, Luz Berenice; Yocupicio-Monroy, Martha; Alcaraz-Estrada, Sofia L.

    2016-01-01

    Chromatin in cervical cancer (CC) undergoes chemical and structural changes that alter the expression pattern of genes. Recently, a potential mechanism, which regulates gene expression at transcriptional levels is the proteolytic clipping of histone H3. However, until now this process in CC has not been reported. Using HeLa cells as a model of CC and human samples from patients with CC, we identify that the H3 cleavage was lower in CC compared with control tissue. Additionally, the histone H3 clipping was performed by serine and aspartyl proteases in HeLa cells. These results suggest that histone H3 clipping operates as part of post-translational modification system in CC. PMID:27698925

  6. Baseline rationing

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Moreno-Ternero, Juan D.; Østerdal, Lars Peter Raahave

    The standard problem of adjudicating conflicting claims describes a situation in which a given amount of a divisible good has to be allocated among agents who hold claims against it exceeding the available amount. This paper considers more general rationing problems in which, in addition to claims...... to international protocols for the reduction of greenhouse emissions, or water distribution in drought periods. We define a family of allocation methods for such general rationing problems - called baseline rationing rules - and provide an axiomatic characterization for it. Any baseline rationing rule within...... the family is associated with a standard rule and we show that if the latter obeys some properties reflecting principles of impartiality, priority and solidarity, the former obeys them too....

  7. Three dimensional analysis of histone methylation patterns in normal and tumor cell nuclei

    Directory of Open Access Journals (Sweden)

    M Cremer

    2009-06-01

    Full Text Available Histone modifications represent an important epigenetic mechanism for the organization of higher order chromatin structure and gene regulation. Methylation of position-specific lysine residues in the histone H3 and H4 amino termini has been linked with the formation of constitutive and facultative heterochromatin as well as with specifically repressed single gene loci. Using an antibody, directed against dimethylated lysine 9 of histone H3 and several other lysine methylation sites, we visualized the nuclear distribution pattern of chromatin flagged by these methylated lysines in 3D preserved nuclei of normal and malignant cell types. Optical confocal serial sections were used for a quantitative evaluation. We demonstrate distinct differences of these histone methylation patterns among nuclei of different cell types after exit of the cell cycle. Changes in the pattern formation were also observed during the cell cycle. Our data suggest an important role of methylated histones in the reestablishment of higher order chromatin arrangements during telophase/early G1. Cell type specific histone methylation patterns are possibly causally involved in the formation of cell type specific heterochromatin compartments, composed of (pericentromeric regions and chromosomal subregions from neighboring chromosome territories, which contain silent genes.

  8. Dynamics of gene expression with positive feedback to histone modifications at bivalent domains

    Science.gov (United States)

    Huang, Rongsheng; Lei, Jinzhi

    2018-03-01

    Experiments have shown that in embryonic stem cells, the promoters of many lineage-control genes contain “bivalent domains”, within which the nucleosomes possess both active (H3K4me3) and repressive (H3K27me3) marks. Such bivalent modifications play important roles in maintaining pluripotency in embryonic stem cells. Here, to investigate gene expression dynamics when there are regulations in bivalent histone modifications and random partition in cell divisions, we study how positive feedback to histone methylation/demethylation controls the transition dynamics of the histone modification patterns along with cell cycles. We constructed a computational model that includes dynamics of histone marks, three-stage chromatin state transitions, transcription and translation, feedbacks from protein product to enzymes to regulate the addition and removal of histone marks, and the inheritance of nucleosome state between cell cycles. The model reveals how dynamics of both nucleosome state transition and gene expression are dependent on the enzyme activities and feedback regulations. Results show that the combination of stochastic histone modification at each cell division and the deterministic feedback regulation work together to adjust the dynamics of chromatin state transition in stem cell regenerations.

  9. Deficit in DNA content relative to histones in X-irradiated HeLa cells

    International Nuclear Information System (INIS)

    Bases, R.; Mendez, F.; Neubort, S.

    1976-01-01

    The DNA and histone content of HeLa S-3 cell cultures was measured by direct mass assays 21 hours after 1000 rad of X-irradiation, when the cells were arrested in G2 phase. The nuclear DNA content of such cultures was found to be deficient (73 per cent of control values). In contrast, the synthesis of nuclear histones persisted, and the total histone content was close to 100 per cent of control values. When synchronously-growing cultures were irradiated in mid-S phase and examined 3.5 hours later in G2 phase, both DNA and histone content were equal to control values. (author)

  10. Rationing with baselines

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Moreno-Ternero, Juan D.; Østerdal, Lars Peter Raahave

    2013-01-01

    We introduce a new operator for general rationing problems in which, besides conflicting claims, individual baselines play an important role in the rationing process. The operator builds onto ideas of composition, which are not only frequent in rationing, but also in related problems...... such as bargaining, choice, and queuing. We characterize the operator and show how it preserves some standard axioms in the literature on rationing. We also relate it to recent contributions in such literature....

  11. Protein engineering of Bacillus acidopullulyticus pullulanase for enhanced thermostability using in silico data driven rational design methods.

    Science.gov (United States)

    Chen, Ana; Li, Yamei; Nie, Jianqi; McNeil, Brian; Jeffrey, Laura; Yang, Yankun; Bai, Zhonghu

    2015-10-01

    Thermostability has been considered as a requirement in the starch processing industry to maintain high catalytic activity of pullulanase under high temperatures. Four data driven rational design methods (B-FITTER, proline theory, PoPMuSiC-2.1, and sequence consensus approach) were adopted to identify the key residue potential links with thermostability, and 39 residues of Bacillus acidopullulyticus pullulanase were chosen as mutagenesis targets. Single mutagenesis followed by combined mutagenesis resulted in the best mutant E518I-S662R-Q706P, which exhibited an 11-fold half-life improvement at 60 °C and a 9.5 °C increase in Tm. The optimum temperature of the mutant increased from 60 to 65 °C. Fluorescence spectroscopy results demonstrated that the tertiary structure of the mutant enzyme was more compact than that of the wild-type (WT) enzyme. Structural change analysis revealed that the increase in thermostability was most probably caused by a combination of lower stability free-energy and higher hydrophobicity of E518I, more hydrogen bonds of S662R, and higher rigidity of Q706P compared with the WT. The findings demonstrated the effectiveness of combined data-driven rational design approaches in engineering an industrial enzyme to improve thermostability. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Rational design of metal-organic electronic devices: A computational perspective

    Science.gov (United States)

    Chilukuri, Bhaskar

    engineers to choose the appropriate metal electrodes considering the chemical interactions at the interface. Additionally, the calculations performed on the interfaces provided valuable insight into binding energies, charge redistribution, change in the energy levels, dipole formation, etc., which are important parameters to consider while fabricating an electronic device. The research described in this dissertation highlights the application of unique computational modeling methods at different levels of theory to guide the experimental chemists and device engineers toward a rational design of transition metal based electronic devices with low cost and high performance.

  13. Cinnamoyl compounds as simple molecules that inhibit p300 histone acetyltransferase.

    Science.gov (United States)

    Costi, Roberta; Di Santo, Roberto; Artico, Marino; Miele, Gaetano; Valentini, Paola; Novellino, Ettore; Cereseto, Anna

    2007-04-19

    Cinnamoly compounds 1a-c and 2a-d were designed, synthesized, and in vitro tested as p300 inhibitors. At different degrees, all tested compounds were proven to inactivate p300, particularly, derivative 2c was the most active inhibitor, also showing high specificity for p300 as compared to other histone acetyltransferases. Most notably, 2c showed anti-acetylase activity in mammalian cells. These compounds represent a new class of synthetic inhibitors of p300, characterized by simple chemical structures.

  14. Histones link inflammation and thrombosis through the induction of Weibel-Palade body exocytosis.

    Science.gov (United States)

    Michels, A; Albánez, S; Mewburn, J; Nesbitt, K; Gould, T J; Liaw, P C; James, P D; Swystun, L L; Lillicrap, D

    2016-11-01

    Essentials Dysregulated DNA and histone release can promote pathological immunothrombosis. Weibel-Palade bodies (WPBs) are sentinel-like organelles that respond to proinflammatory stimuli. Histones induce WPB exocytosis in a caspase, calcium and charge-dependent mechanism. A targetable axis may exist between DNA/histones and WPBs in inflammation and immunothrombosis. Background Damage-associated molecular patterns (DAMPs), including molecules such as DNA and histones, are released into the blood following cell death. DAMPs promote a procoagulant phenotype through enhancement of thrombin generation and platelet activation, thereby contributing to immunothrombosis. Weibel-Palade bodies (WPBs) are dynamic endothelial cell organelles that contain procoagulant and proinflammatory mediators, such as von Willebrand factor (VWF), and are released in response to cell stresses. VWF mediates platelet adhesion and aggregation, and has been implicated as a procoagulant component of the innate immune response. Objective To determine the influence of histones and DNA on WPB release, and characterize their association in models of inflammation. Methods We treated C57BL/6J mice and cultured endothelial cells with histones (unfractionated, lysine-rich or arginine-rich) and DNA, and measured WPB exocytosis. We used inhibitors to determine a mechanism of histone-induced WPB release in vitro. We characterized the release of DAMPs and WPBs in response to acute and chronic inflammation in human and murine models. Results and conclusions Histones, but not DNA, induced the release of VWF (1.46-fold) from WBPs and caused thrombocytopenia (0.74-fold), which impaired arterial thrombus formation in mice. Histones induced WPB release from endothelial cells in a caspase-dependent, calcium-dependent and charge-dependent manner, and promoted platelet capture in a flow chamber model of VWF-platelet string formation. The levels of DAMPs and WPB-released proteins were elevated during inflammation

  15. Differentiation of eosinophilic leukemia EoL-1 cells into eosinophils induced by histone deacetylase inhibitors.

    Science.gov (United States)

    Ishihara, Kenji; Takahashi, Aki; Kaneko, Motoko; Sugeno, Hiroki; Hirasawa, Noriyasu; Hong, JangJa; Zee, OkPyo; Ohuchi, Kazuo

    2007-03-06

    EoL-1 cells differentiate into eosinophils in the presence of n-butyrate, but the mechanism has remained to be elucidated. Because n-butyrate can inhibit histone deacetylases, we hypothesized that the inhibition of histone deacetylases induces the differentiation of EoL-1 cells into eosinophils. In this study, using n-butyrate and two other histone deacetylase inhibitors, apicidin and trichostatin A, we have analyzed the relationship between the inhibition of histone deacetylases and the differentiation into eosinophils in EoL-1 cells. It was demonstrated that apicidin and n-butyrate induced a continuous acetylation of histones H4 and H3, inhibited the proliferation of EoL-1 cells without attenuating the level of FIP1L1-PDGFRA mRNA, and induced the expression of markers for mature eosinophils such as integrin beta7, CCR1, and CCR3 on EoL-1 cells, while trichostatin A evoked a transient acetylation of histones and induced no differentiation into eosinophils. These findings suggest that the continuous inhibition of histone deacetylases in EoL-1 cells induces the differentiation into mature eosinophils.

  16. Histone dosage regulates DNA damage sensitivity in a checkpoint-independent manner by the homologous recombination pathway

    Science.gov (United States)

    Liang, Dun; Burkhart, Sarah Lyn; Singh, Rakesh Kumar; Kabbaj, Marie-Helene Miquel; Gunjan, Akash

    2012-01-01

    In eukaryotes, multiple genes encode histone proteins that package genomic deoxyribonucleic acid (DNA) and regulate its accessibility. Because of their positive charge, ‘free’ (non-chromatin associated) histones can bind non-specifically to the negatively charged DNA and affect its metabolism, including DNA repair. We have investigated the effect of altering histone dosage on DNA repair in budding yeast. An increase in histone gene dosage resulted in enhanced DNA damage sensitivity, whereas deletion of a H3–H4 gene pair resulted in reduced levels of free H3 and H4 concomitant with resistance to DNA damaging agents, even in mutants defective in the DNA damage checkpoint. Studies involving the repair of a HO endonuclease-mediated DNA double-strand break (DSB) at the MAT locus show enhanced repair efficiency by the homologous recombination (HR) pathway on a reduction in histone dosage. Cells with reduced histone dosage experience greater histone loss around a DSB, whereas the recruitment of HR factors is concomitantly enhanced. Further, free histones compete with the HR machinery for binding to DNA and associate with certain HR factors, potentially interfering with HR-mediated repair. Our findings may have important implications for DNA repair, genomic stability, carcinogenesis and aging in human cells that have dozens of histone genes. PMID:22850743

  17. Pulmonary endothelial activation caused by extracellular histones contributes to neutrophil activation in acute respiratory distress syndrome.

    Science.gov (United States)

    Zhang, Yanlin; Guan, Li; Yu, Jie; Zhao, Zanmei; Mao, Lijun; Li, Shuqiang; Zhao, Jinyuan

    2016-11-21

    During the acute respiratory distress syndrome (ARDS), neutrophils play a central role in the pathogenesis, and their activation requires interaction with the endothelium. Extracellular histones have been recognized as pivotal inflammatory mediators. This study was to investigate the role of pulmonary endothelial activation during the extracellular histone-induced inflammatory response in ARDS. ARDS was induced in male C57BL/6 mice by intravenous injection with lipopolysaccharide (LPS) or exogenous histones. Concurrent with LPS administration, anti-histone H4 antibody (anti-H4) or non-specific IgG was administered to study the role of extracellular histones. The circulating von Willebrand factor (vWF) and soluble thrombomodulin (sTM) were measured with ELISA kits at the preset time points. Myeloperoxidase (MPO) activity in lung tissue was measured with a MPO detection kit. The translocation of P-selectin and neutrophil infiltration were measured by immunohistochemical detection. For in vitro studies, histone H4 in the supernatant of mouse lung vascular endothelial cells (MLVECs) was measured by Western blot. The binding of extracellular histones with endothelial membrane was examined by confocal laser microscopy. Endothelial P-selectin translocation was measured by cell surface ELISA. Adhesion of neutrophils to MLVECs was assessed with a color video digital camera. The results showed that during LPS-induced ARDS extracellular histones caused endothelial and neutrophil activation, as seen by P-selectin translocation, release of vWF, an increase of circulating sTM, lung neutrophil infiltration and increased MPO activity. Extracellular histones directly bound and activated MLVECs in a dose-dependent manner. On the contrary, the direct stimulatory effect of exogenous histones on neutrophils was very limited, as measured by neutrophil adhesion and MPO activity. With the contribution of activated endothelium, extracellular histones could effectively activating

  18. Post-Translational Modifications of H2A Histone Variants and Their Role in Cancer

    Directory of Open Access Journals (Sweden)

    David Corujo

    2018-02-01

    Full Text Available Histone variants are chromatin components that replace replication-coupled histones in a fraction of nucleosomes and confer particular characteristics to chromatin. H2A variants represent the most numerous and diverse group among histone protein families. In the nucleosomal structure, H2A-H2B dimers can be removed and exchanged more easily than the stable H3-H4 core. The unstructured N-terminal histone tails of all histones, but also the C-terminal tails of H2A histones protrude out of the compact structure of the nucleosome core. These accessible tails are the preferential target sites for a large number of post-translational modifications (PTMs. While some PTMs are shared between replication-coupled H2A and H2A variants, many modifications are limited to a specific histone variant. The present review focuses on the H2A variants H2A.Z, H2A.X, and macroH2A, and summarizes their functions in chromatin and how these are linked to cancer development and progression. H2A.Z primarily acts as an oncogene and macroH2A and H2A.X as tumour suppressors. We further focus on the regulation by PTMs, which helps to understand a degree of context dependency.

  19. Histone and RNA-binding protein interaction creates crosstalk network for regulation of alternative splicing.

    Science.gov (United States)

    Kim, Yong-Eun; Park, Chungoo; Kim, Kyoon Eon; Kim, Kee K

    2018-04-30

    Alternative splicing is an essential process in eukaryotes, as it increases the complexity of gene expression by generating multiple proteins from a single pre-mRNA. However, information on the regulatory mechanisms for alternative splicing is lacking, because splicing occurs over a short period via the transient interactions of proteins within functional complexes of the spliceosome. Here, we investigated in detail the molecular mechanisms connecting alternative splicing with epigenetic mechanisms. We identified interactions between histone proteins and splicing factors such as Rbfox2, Rbfox3, and splicing factor proline and glutamine rich protein (SFPQ) by in vivo crosslinking and immunoprecipitation. Furthermore, we confirmed that splicing factors were bound to specific modified residues of histone proteins. Additionally, changes in histone methylation due to histone methyltransferase inhibitor treatment notably affected alternative splicing in selected genes. Therefore, we suggested that there may be crosstalk mechanisms connecting histone modifications and RNA-binding proteins that increase the local concentration of RNA-binding proteins in alternative exon loci of nucleosomes by binding specific modified histone proteins, leading to alternative splicing. This crosstalk mechanism may play a major role in epigenetic processes such as histone modification and the regulation of alternative splicing. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Histone acetylation and CREB binding protein are required for neuronal resistance against ischemic injury.

    Directory of Open Access Journals (Sweden)

    Ferah Yildirim

    Full Text Available Epigenetic transcriptional regulation by histone acetylation depends on the balance between histone acetyltransferase (HAT and deacetylase activities (HDAC. Inhibition of HDAC activity provides neuroprotection, indicating that the outcome of cerebral ischemia depends crucially on the acetylation status of histones. In the present study, we characterized the changes in histone acetylation levels in ischemia models of focal cerebral ischemia and identified cAMP-response element binding protein (CREB-binding protein (CBP as a crucial factor in the susceptibility of neurons to ischemic stress. Both neuron-specific RNA interference and neurons derived from CBP heterozygous knockout mice showed increased damage after oxygen-glucose deprivation (OGD in vitro. Furthermore, we demonstrated that ischemic preconditioning by a short (5 min subthreshold occlusion of the middle cerebral artery (MCA, followed 24 h afterwards by a 30 min occlusion of the MCA, increased histone acetylation levels in vivo. Ischemic preconditioning enhanced CBP recruitment and histone acetylation at the promoter of the neuroprotective gene gelsolin leading to increased gelsolin expression in neurons. Inhibition of CBP's HAT activity attenuated neuronal ischemic preconditioning. Taken together, our findings suggest that the levels of CBP and histone acetylation determine stroke outcome and are crucially associated with the induction of an ischemia-resistant state in neurons.

  1. Restoring chromatin after replication: How new and old histone marks come together

    DEFF Research Database (Denmark)

    Jasencakova, Zusana; Groth, Anja

    2010-01-01

    In dividing cells genome stability and function rely on faithful transmission of both DNA sequence and its organization into chromatin. In the course of DNA replication chromatin undergoes transient genome-wide disruption followed by restoration on new DNA. This involves tight coordination of DNA...... replication and chromatin assembly processes in time and space. Dynamic recycling and de novo deposition of histones are fundamental for chromatin restoration. Histone post-translational modifications (PTMs) are thought to have a causal role in establishing distinct chromatin structures. Here we discuss PTMs...... present on new and parental histones and how they influence genome stability and restoration of epigenetically defined domains. Newly deposited histones must change their signature in the process of chromatin restoration, this may occur in a step-wise fashion involving replication-coupled processes...

  2. Rational design and optimization of downstream processes of virus particles for biopharmaceutical applications: current advances.

    Science.gov (United States)

    Vicente, Tiago; Mota, José P B; Peixoto, Cristina; Alves, Paula M; Carrondo, Manuel J T

    2011-01-01

    The advent of advanced therapies in the pharmaceutical industry has moved the spotlight into virus-like particles and viral vectors produced in cell culture holding great promise in a myriad of clinical targets, including cancer prophylaxis and treatment. Even though a couple of cases have reached the clinic, these products have yet to overcome a number of biological and technological challenges before broad utilization. Concerning the manufacturing processes, there is significant research focusing on the optimization of current cell culture systems and, more recently, on developing scalable downstream processes to generate material for pre-clinical and clinical trials. We review the current options for downstream processing of these complex biopharmaceuticals and underline current advances on knowledge-based toolboxes proposed for rational optimization of their processing. Rational tools developed to increase the yet scarce knowledge on the purification processes of complex biologicals are discussed as alternative to empirical, "black-boxed" based strategies classically used for process development. Innovative methodologies based on surface plasmon resonance, dynamic light scattering, scale-down high-throughput screening and mathematical modeling for supporting ion-exchange chromatography show great potential for a more efficient and cost-effective process design, optimization and equipment prototyping. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Generalized nucleation and looping model for epigenetic memory of histone modifications

    Science.gov (United States)

    Erdel, Fabian; Greene, Eric C.

    2016-01-01

    Histone modifications can redistribute along the genome in a sequence-independent manner, giving rise to chromatin position effects and epigenetic memory. The underlying mechanisms shape the endogenous chromatin landscape and determine its response to ectopically targeted histone modifiers. Here, we simulate linear and looping-driven spreading of histone modifications and compare both models to recent experiments on histone methylation in fission yeast. We find that a generalized nucleation-and-looping mechanism describes key observations on engineered and endogenous methylation domains including intrinsic spatial confinement, independent regulation of domain size and memory, variegation in the absence of antagonists, and coexistence of short- and long-term memory at loci with weak and strong constitutive nucleation. These findings support a straightforward relationship between the biochemical properties of chromatin modifiers and the spatiotemporal modification pattern. The proposed mechanism gives rise to a phase diagram for cellular memory that may be generally applicable to explain epigenetic phenomena across different species. PMID:27382173

  4. Linker Histone Phosphorylation Regulates Global Timing of Replication Origin Firing*S⃞

    Science.gov (United States)

    Thiriet, Christophe; Hayes, Jeffrey J.

    2009-01-01

    Despite the presence of linker histone in all eukaryotes, the primary function(s) of this histone have been difficult to clarify. Knock-out experiments indicate that H1s play a role in regulation of only a small subset of genes but are an essential component in mouse development. Here, we show that linker histone (H1) is involved in the global regulation of DNA replication in Physarum polycephalum. We find that genomic DNA of H1 knock-down cells is more rapidly replicated, an effect due at least in part to disruption of the native timing of replication fork firing. Immunoprecipitation experiments demonstrate that H1 is transiently lost from replicating chromatin via a process facilitated by phosphorylation. Our results suggest that linker histones generate a chromatin environment refractory to replication and that their transient removal via protein phosphorylation during S phase is a critical step in the epigenetic regulation of replication timing. PMID:19015270

  5. Evolutionary and Comparative Genomics to Drive Rational Drug Design, with Particular Focus on Neuropeptide Seven-Transmembrane Receptors.

    Science.gov (United States)

    Furlong, Michael; Seong, Jae Young

    2017-01-01

    Seven transmembrane receptors (7TMRs), also known as G protein-coupled receptors, are popular targets of drug development, particularly 7TMR systems that are activated by peptide ligands. Although many pharmaceutical drugs have been discovered via conventional bulk analysis techniques the increasing availability of structural and evolutionary data are facilitating change to rational, targeted drug design. This article discusses the appeal of neuropeptide-7TMR systems as drug targets and provides an overview of concepts in the evolution of vertebrate genomes and gene families. Subsequently, methods that use evolutionary concepts and comparative analysis techniques to aid in gene discovery, gene function identification, and novel drug design are provided along with case study examples.

  6. Rational design of hypoallergens applied to the major cat allergen Fel d 1.

    Science.gov (United States)

    Saarne, T; Kaiser, L; Grönlund, H; Rasool, O; Gafvelin, G; van Hage-Hamsten, M

    2005-05-01

    Allergen-specific immunotherapy is the only treatment for allergic disease providing long-lasting symptom relief. Currently, it is mainly based on the use of crude allergen extracts. The treatment may be improved by the use of genetically engineered allergens, hypoallergens, aiming at a more effective and safer therapy. The aim of this study was to provide a rational design of hypoallergen candidates for immunotherapy by using structural information and knowledge of B and T cell epitopes of an allergen. The three-dimensional structure of the major cat allergen Fel d 1 was systematically altered by duplication of selected T cell epitopes and disruption of disulphide bonds. Seven Fel d 1 derivatives were generated and screened for allergenic reactivity in comparison with recombinant Fel d 1 in competition-ELISA. The allergenicity was further evaluated in basophil activation experiments and T cell reactivity was assessed in a lymphoproliferation assay. Three out of seven Fel d 1 derivatives, with two duplicated T cell epitopes and one or two disulphide bonds disrupted, were carefully evaluated. The three derivatives displayed a strong reduction in allergenicity with 400-900 times lower IgE-binding capacity than recombinant Fel d 1. In addition, they induced a lower degree of basophil activation and similar or stronger T cell proliferation than recombinant Fel d 1. By a rational approach, we have constructed three Fel d 1 hypoallergens with reduced IgE-binding capacities and retained T cell reactivities. This strategy may be applied to any well-characterized allergen to improve immunotherapy for allergic patients.

  7. Personal Autonomy and Rational Suicide.

    Science.gov (United States)

    Webber, May A.; Shulman, Ernest

    That certain suicides (which can be designated as rational) ought not to be interfered with is closely tied to the notion of the "right to autonomy." Specifically it is because the individual in question has this right that interference is prohibited. A proper understanding of the right to autonomy, while essential to understanding why…

  8. Histones and their modifications in ovarian cancer – drivers of disease and therapeutic targets

    Directory of Open Access Journals (Sweden)

    Deborah Joy Marsh

    2014-06-01

    Full Text Available Epithelial ovarian cancer has the highest mortality of the gynecological malignancies. High grade serous epithelial ovarian cancer (SEOC is the most common subtype, with the majority of women presenting with advanced disease where 5 year survival is around 25%. Platinum-based chemotherapy in combination with paclitaxel remains the most effective treatment despite platinum therapies being introduced almost 40 years ago. Advances in molecular medicine are underpinning new strategies for the treatment of cancer. Major advances have been made by international initiatives to sequence cancer genomes. For SEOC, with the exception of TP53 that is mutated in virtually 100% of these tumors, there is no other gene mutated at high frequency. There is extensive copy number variation, as well as changes in methylation patterns that will influence gene expression. To date, the role of histones and their post-translational modifications in ovarian cancer is a relatively understudied field. Post-translational histone modifications play major roles in gene expression as they direct the configuration of chromatin and so access by transcription factors. Histone modifications include methylation, acetylation and monoubiquitination, with involvement of enzymes including histone methyl transferases (HMTases, histone acetyltransferases/deacetylases and ubiquitin ligases/deubiquitinases respectively. Complexes such as the Polycomb Repressive Complex also play roles in the control of histone modifications and more recently roles for long non-coding (lnc RNA and microRNAs (miRNAs are emerging. Epigenomic-based therapies targeting histone modifications are being developed and offer new approaches for the treatment of ovarian cancer. Here we discuss histone modifications and their aberrant regulation in malignancy and specifically in ovarian cancer. We review current and upcoming histone-based therapies that have the potential to inform and improve treatment strategies for

  9. The histone methyltransferase SET8 is required for S-phase progression

    DEFF Research Database (Denmark)

    Jørgensen, Stine; Elvers, Ingegerd; Trelle, Morten Beck

    2008-01-01

    Chromatin structure and function is influenced by histone posttranslational modifications. SET8 (also known as PR-Set7 and SETD8) is a histone methyltransferase that monomethylates histonfe H4-K20. However, a function for SET8 in mammalian cell proliferation has not been determined. We show...

  10. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks.

    Science.gov (United States)

    Huang, Hongda; Strømme, Caroline B; Saredi, Giulia; Hödl, Martina; Strandsby, Anne; González-Aguilera, Cristina; Chen, Shoudeng; Groth, Anja; Patel, Dinshaw J

    2015-08-01

    During DNA replication, chromatin is reassembled by recycling of modified old histones and deposition of new ones. How histone dynamics integrates with DNA replication to maintain genome and epigenome information remains unclear. Here, we reveal how human MCM2, part of the replicative helicase, chaperones histones H3-H4. Our first structure shows an H3-H4 tetramer bound by two MCM2 histone-binding domains (HBDs), which hijack interaction sites used by nucleosomal DNA. Our second structure reveals MCM2 and ASF1 cochaperoning an H3-H4 dimer. Mutational analyses show that the MCM2 HBD is required for MCM2-7 histone-chaperone function and normal cell proliferation. Further, we show that MCM2 can chaperone both new and old canonical histones H3-H4 as well as H3.3 and CENPA variants. The unique histone-binding mode of MCM2 thus endows the replicative helicase with ideal properties for recycling histones genome wide during DNA replication.

  11. Excess free histone H3 localizes to centrosomes for proteasome-mediated degradation during mitosis in metazoans.

    Science.gov (United States)

    Wike, Candice L; Graves, Hillary K; Wason, Arpit; Hawkins, Reva; Gopalakrishnan, Jay; Schumacher, Jill; Tyler, Jessica K

    2016-08-17

    The cell tightly controls histone protein levels in order to achieve proper packaging of the genome into chromatin, while avoiding the deleterious consequences of excess free histones. Our accompanying study has shown that a histone modification that loosens the intrinsic structure of the nucleosome, phosphorylation of histone H3 on threonine 118 (H3 T118ph), exists on centromeres and chromosome arms during mitosis. Here, we show that H3 T118ph localizes to centrosomes in humans, flies, and worms during all stages of mitosis. H3 abundance at the centrosome increased upon proteasome inhibition, suggesting that excess free histone H3 localizes to centrosomes for degradation during mitosis. In agreement, we find ubiquitinated H3 specifically during mitosis and within purified centrosomes. These results suggest that targeting of histone H3 to the centrosome for proteasome-mediated degradation is a novel pathway for controlling histone supply, specifically during mitosis.

  12. Inaugurating Rationalization: Three Field Studies Find Increased Rationalization When Anticipated Realities Become Current.

    Science.gov (United States)

    Laurin, Kristin

    2018-04-01

    People will often rationalize the status quo, reconstruing it in an exaggeratedly positive light. They will even rationalize the status quo they anticipate, emphasizing the upsides and minimizing the downsides of sociopolitical realities they expect to take effect. Drawing on recent findings on the psychological triggers of rationalization, I present results from three field studies, one of which was preregistered, testing the hypothesis that an anticipated reality becoming current triggers an observable boost in people's rationalizations. San Franciscans rationalized a ban on plastic water bottles, Ontarians rationalized a targeted smoking ban, and Americans rationalized the presidency of Donald Trump, more in the days immediately after these realities became current compared with the days immediately before. Additional findings show evidence for a mechanism underlying these behaviors and rule out alternative accounts. These findings carry implications for scholarship on rationalization, for understanding protest behavior, and for policymakers.

  13. Extracellular histones disarrange vasoactive mediators release through a COX-NOS interaction in human endothelial cells.

    Science.gov (United States)

    Pérez-Cremades, Daniel; Bueno-Betí, Carlos; García-Giménez, José Luis; Ibañez-Cabellos, José Santiago; Hermenegildo, Carlos; Pallardó, Federico V; Novella, Susana

    2017-08-01

    Extracellular histones are mediators of inflammation, tissue injury and organ dysfunction. Interactions between circulating histones and vascular endothelial cells are key events in histone-mediated pathologies. Our aim was to investigate the implication of extracellular histones in the production of the major vasoactive compounds released by human endothelial cells (HUVECs), prostanoids and nitric oxide (NO). HUVEC exposed to increasing concentrations of histones (0.001 to 100 μg/ml) for 4 hrs induced prostacyclin (PGI2) production in a dose-dependent manner and decreased thromboxane A2 (TXA2) release at 100 μg/ml. Extracellular histones raised cyclooxygenase-2 (COX-2) and prostacyclin synthase (PGIS) mRNA and protein expression, decreased COX-1 mRNA levels and did not change thromboxane A2 synthase (TXAS) expression. Moreover, extracellular histones decreased both, eNOS expression and NO production in HUVEC. The impaired NO production was related to COX-2 activity and superoxide production since was reversed after celecoxib (10 μmol/l) and tempol (100 μmol/l) treatments, respectively. In conclusion, our findings suggest that extracellular histones stimulate the release of endothelial-dependent mediators through an up-regulation in COX-2-PGIS-PGI2 pathway which involves a COX-2-dependent superoxide production that decreases the activity of eNOS and the NO production. These effects may contribute to the endothelial cell dysfunction observed in histone-mediated pathologies. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  14. Antifungal properties of wheat histones (H1-H4) and purified wheat histone H1

    Science.gov (United States)

    Wheat (Triticum sp.) histones H1, H2, H3, and H4 were extracted. H1 was further purified. Their activities against fungi with varying degrees of wheat pathogenicity were determined. They included Aspergillus flavus, A. fumigatus, A. niger, F. oxysporum, F. verticillioides, F. solani, F. graminearu...

  15. Histone deacetylation during brain development is essential for permanent masculinization of sexual behavior.

    Science.gov (United States)

    Matsuda, Ken Ichi; Mori, Hiroko; Nugent, Bridget M; Pfaff, Donald W; McCarthy, Margaret M; Kawata, Mitsuhiro

    2011-07-01

    Epigenetic histone modifications are emerging as important mechanisms for conveyance of and maintenance of effects of the hormonal milieu to the developing brain. We hypothesized that alteration of histone acetylation status early in development by sex steroid hormones is important for sexual differentiation of the brain. It was found that during the critical period for sexual differentiation, histones associated with promoters of essential genes in masculinization of the brain (estrogen receptor α and aromatase) in the medial preoptic area, an area necessary for male sexual behavior, were differentially acetylated between the sexes. Consistent with these findings, binding of histone deacetylase (HDAC) 2 and 4 to the promoters was higher in males than in females. To examine the involvement of histone deacetylation on masculinization of the brain at the behavioral level, we inhibited HDAC in vivo by intracerebroventricular infusion of the HDAC inhibitor trichostatin A or antisense oligodeoxynucleotide directed against the mRNA for HDAC2 and -4 in newborn male rats. Aspects of male sexual behavior in adulthood were significantly reduced by administration of either trichostatin A or antisense oligodeoxynucleotide. These results demonstrate that HDAC activity during the early postnatal period plays a crucial role in the masculinization of the brain via modifications of histone acetylation status.

  16. Realization theory for rational systems: Minimal rational realizations

    NARCIS (Netherlands)

    J. Nemcová (Jana); J.H. van Schuppen (Jan)

    2010-01-01

    htmlabstractThe study of realizations of response maps is a topic of control and system theory. Realization theory is used in system identification and control synthesis. A minimal rational realization of a given response map p is a rational realization of p such that the dimension of its state

  17. Potentials and limitations of histone repeat sequences for phylogenetic reconstruction of Sophophora.

    Science.gov (United States)

    Baldo, A M; Les, D H; Strausbaugh, L D

    1999-11-01

    Simplified DNA sequence acquisition has provided many new data sets that are useful for phylogenetic reconstruction, including single- and multiple-copy nuclear and organellar genes. Although transcribed regions receive much attention, nontranscribed regions have recently been added to the repertoire of sequences suitable for phylogenetic studies, especially for closely related taxa. We evaluated the efficacy of a small portion of the histone repeat for phylogenetic reconstruction among Drosophila species. Histone repeats in invertebrates offer distinct advantages similar to those of widely used ribosomal repeats. First, the units are tandemly repeated and undergo concerted evolution. Second, histone repeats include both highly conserved coding and variable intergenic regions. This composition facilitates application of "universal" primers spanning potentially informative sites. We examined a small region of the histone repeat, including the intergenic spacer segments of coding regions from the divergently transcribed H2A and H2B histone genes. The spacer (about 230 bp) exists as a mosaic with highly conserved functional motifs interspersed with rapidly diverging regions; the former aid in alignment of the spacer. There are no ambiguities in alignment of coding regions. Coding and noncoding regions were analyzed together and separately for phylogenetic information. Parsimony, distance, and maximum-likelihood methods successfully retrieve the corroborated phylogeny for the taxa examined. This study demonstrates the resolving power of a small histone region which may now be added to the growing collection of phylogenetically useful DNA sequences.

  18. The Boundedly Rational User Equilibrium : A parametric analysis with application to the Network Design Problem

    NARCIS (Netherlands)

    Eikenbroek, Oskar Adriaan Louis; Still, Georg J.; van Berkum, E.C.; Kern, Walter

    In this paper, we study a static traffic assignment that accounts for the boundedly rational route choice behavior of travelers. This assignment induces uncertainties to the ex-ante evaluation of a policy measure: the boundedly rational assignment is non-unique and the indifference band is an

  19. Specificity of interaction between carcinogenic polynuclear aromatic hydrocarbons and nuclear proteins: widespread occurrence of a restricted pattern of histone-binding in intact cells

    International Nuclear Information System (INIS)

    MacLeod, M.C.; Pelling, J.C.; Slaga, T.J.; Nikbakht-Noghrei, P.A.; Mansfield, B.K.; Selkirk, J.K.

    1982-01-01

    Metabolic activation of benzo(a)pyrene [B(a)P] produces a number of potentially reactive metabolites. The endproducts of one metabolic pathway, 7,8-dihydroxy-9,10-oxy-7,8,9,10-tetrahydro-B(a)P (BPDE) are responsible for essentially all DNA adduct formation in animal cells treated with B(a)P, and a particular stereoisomer, designated (+)-anti-BPDE is thought to be the ultimate carcinogenic derivative of B(a)P. In hamster embryo cell nuclei treated with (+)-anti-BPDE, two of the histones of the nucleosomal core, H3 and H2A, are covalently modified, while the remaining core histones, H4 and H2B, are essentially unmodified. All four purified core histones, however, serve as targets. 7,12-dimethylbenz(a)anthracene and 3-methylcholanthrene show the same pattern of histone binding in hamster embryo cells. Treatment of mouse embryo cells with [ 3 H]-BPDE results in covalent binding of the hydrocarbon to histones H3 and H2A among the many cellular targets, while histones H2B and H4 are not bound. Similar binding patterns are seen in mouse embryo cells, a permanent murine, fibroblastic cell line, and a human mammary epithelial cell line, T47D, treated with [ 3 H]B(a)P. Again, the histones are unevenly labeled, displaying the H3 and H2A pattern. Histone-binding in the human cells may also be mediated by BPDE. Similar BPDE binding patterns were observed in other murine and human cell lines and in primary cultures of murine epidermal epithelial cells. The restriction of histone H2B and H4 binding appears to be general when intact cultured cells are studied. This specificity was not observed in a mixed reconstituted system in which rat liver microsomes were used to activate B(a)P. This finding reinforces reservations concerning the use of microsomal systems to probe the interactions of carcinogens with macromolecules and the relationships of adduct formation with the processes of carcinogenesis

  20. Elevated levels of circulating histones indicate disease activity in patients with hand, foot, and mouth disease (HFMD).

    Science.gov (United States)

    Li, Xiuhui; Li, Qin; Li, Junhong; Li, Ying; Chen, Yuping; Lv, Aiping; Zhang, Jian; Ding, Jianbo; Von Maltzan, Kristine; Wen, Tao

    2014-12-01

    Hand, foot, and mouth disease (HFMD) is a common infectious disease in children, characterized by acute viral infection accompanying acute inflammatory responses. Circulating histones are leading mediators of the inflammatory processes. This study aimed to elucidate whether circulating histones play a contributory role during HFMD. We measured plasma levels of histones, myeloperoxidase (MPO), lactate dehydrogenase (LDH), and cytokines in HFMD patients (n = 126) and compared the results with those of a control group (n = 30). Circulating histone levels were significantly increased in HFMD patients (3.794 ± 0.156 μg/ml) compared with healthy controls (0.238 ± 0.023 μg/ml, p histones correlated positively with plasma IL-6 and IL-10, whereas in severe HFMD, histones were associated with elevated IL-6 and TNF-ɑ levels. These data demonstrate that circulating histones are excessively released in patients with HFMD, which may indicate disease severity and contribute to systemic inflammation by promoting cytokine production (e.g. IL-6). We suggest that in mild HFMD, circulating histones may originate largely from neutrophil activation, whereas in severe HFMD, dying tissue cells and neutrophil activation may be synergistically involved in the increased levels of histones.

  1. Elaborating and Making Rational Decisions in Designing Process Operations of a Group of Holes

    Directory of Open Access Journals (Sweden)

    A. I. Solov'ev

    2015-01-01

    Full Text Available To manufacture engineering products are used expensive multi-purpose CNC machines with five operated coordinates, allowing a single setup of the work-piece to process a group of holes in the housing part from all sides.Because of the haphazard arrangement of a large number of holes available in the space it is difficult to ensure the effective use of these machines.Onsite operational research, conducted on six CNC GS-500 models, involved actual observations and time measurements during 15 working shifts, processing of observation results, and calculations of equipment performance parameters such as machine utilization rate, arrangement and changeover time loss, and real output. Time loss (downtime because of arrangement amounted 44.52%, while that of due to changeover was 20.1% of the total downtime value. These downtimes hide irrational design solutions concerning the engineering process and a large number of changeovers for a new operation to process a group of the specified work-pieces.It is found that to reduce the changeover downtimes it is necessary to increase, first of all, the average number of single tool travels per one setup in generalized characteristics of a group of the work-pieces. That means to increase a changeover concentration of processing within a single operation, as well as to choose rational values for machining a batch of the work-pieces. Under study conditions, it is, at least. 20-50 pieces.To implement a development of the principle of increasing concentration of the processing changeovers it is advised to apply the developed mathematical models, algorithms, and programs that can be used, as modules or their parts, in computer-aided design (CAD systems. This allows a 3-5 times reduction in time to find the rational option of the work-piece position on the machine work surface when developing a process technology, a review and an analysis of more than the usual number of such possible options. It also improves the

  2. The Effect of Soy Sauce Waste in Ration on Performance of Mojosari Duck

    Directory of Open Access Journals (Sweden)

    G. A. A. Larasati

    2017-06-01

    Full Text Available The purpose of study was to determined the effect of soy sauce waste in ration in the ration on the performance of Mojosari duck. The materials used were 240 of Mojosari which are 20 weeks olds with average body weight 1,385.0 ± 130.85 grams (CV = 9.44%. Feed ingredients used were, rice bran, soybean meal, yellow corn, fish meal, pollard and premix. The design that used was Completely Randomized Design (CRD with 4 treatments and 6 replications.The treatment applied soy sauce waste at level 5, 7,5 and 10%. The parameters observed were consumption, egg production, feed conversion. The data were analyzed by analysis of variance with F test. The results showed that soy sauce waste did not effected on performance (consumption of ration, egg production, ration conversion of Mojosari duck. The conclusion of this research is soy sauce waste be used as feed stuff of Mojosari duck ration until level 10%.

  3. Histone deacetylase inhibitors: can we consider potent anti-neoplastic agents for the treatment of asthma?

    Science.gov (United States)

    Royce, Simon G; Ververis, Katherine; Karagiannis, Tom C

    2012-01-01

    Histone deacetylase inhibitors have emerged as a new class of anti-cancer therapeutics due to their potent anti-proliferative and apoptotic effects in malignant cells. Accumulating evidence is indicating that histone deacetylase inhibitors may also have potential clinical utility in non-oncological applications, including asthma. However, the potential of histone deacetylase inhibitors in asthma remains controversial. For example, the mechanisms of action of the broad-spectrum histone deacetylase inhibitor, Trichostatin A, in animal models of allergic airways disease are conflicting. Further, there is evidence suggesting potential problems associated with histone deacetylase 2 inhibition and conventional glucocorticosteroid therapy. Similarly, disparate findings are emerging following modulation of the class III, sirtuin 1 enzyme. Indeed, it is becoming apparent that the mechanism of action may not be related to histone deacetylase inhibition activity per se. Further, there is only limited evidence that these compounds possess anti-inflammatory effects in models of asthma. In this review, we provide an overview of the biology of the metal-dependent and sirtuin deacetylases in the context of asthma. The controversies surrounding the potential use of histone deacetylase inhibitors in asthma are discussed and future directions involving the investigation of more specific analogues are explored.

  4. Many faces of rationality: Implications of the great rationality debate for clinical decision‐making

    Science.gov (United States)

    Elqayam, Shira

    2017-01-01

    Abstract Given that more than 30% of healthcare costs are wasted on inappropriate care, suboptimal care is increasingly connected to the quality of medical decisions. It has been argued that personal decisions are the leading cause of death, and 80% of healthcare expenditures result from physicians' decisions. Therefore, improving healthcare necessitates improving medical decisions, ie, making decisions (more) rational. Drawing on writings from The Great Rationality Debate from the fields of philosophy, economics, and psychology, we identify core ingredients of rationality commonly encountered across various theoretical models. Rationality is typically classified under umbrella of normative (addressing the question how people “should” or “ought to” make their decisions) and descriptive theories of decision‐making (which portray how people actually make their decisions). Normative theories of rational thought of relevance to medicine include epistemic theories that direct practice of evidence‐based medicine and expected utility theory, which provides the basis for widely used clinical decision analyses. Descriptive theories of rationality of direct relevance to medical decision‐making include bounded rationality, argumentative theory of reasoning, adaptive rationality, dual processing model of rationality, regret‐based rationality, pragmatic/substantive rationality, and meta‐rationality. For the first time, we provide a review of wide range of theories and models of rationality. We showed that what is “rational” behaviour under one rationality theory may be irrational under the other theory. We also showed that context is of paramount importance to rationality and that no one model of rationality can possibly fit all contexts. We suggest that in context‐poor situations, such as policy decision‐making, normative theories based on expected utility informed by best research evidence may provide the optimal approach to medical decision

  5. Lipids Reprogram Metabolism to Become a Major Carbon Source for Histone Acetylation

    DEFF Research Database (Denmark)

    McDonnell, Eoin; Crown, Scott B; Fox, Douglas B

    2016-01-01

    Cells integrate nutrient sensing and metabolism to coordinate proper cellular responses to a particular nutrient source. For example, glucose drives a gene expression program characterized by activating genes involved in its metabolism, in part by increasing glucose-derived histone acetylation....... Here, we find that lipid-derived acetyl-CoA is a major source of carbon for histone acetylation. Using (13)C-carbon tracing combined with acetyl-proteomics, we show that up to 90% of acetylation on certain histone lysines can be derived from fatty acid carbon, even in the presence of excess glucose...

  6. Rational design, synthesis, and pharmacological evaluation of 2-azanorbornane-3-exo,5-endo-dicarboxylic acid

    DEFF Research Database (Denmark)

    Bunch, Lennart; Liljefors, Tommy; Greenwood, Jeremy R

    2003-01-01

    conformationally restricted (S)-glutamic acid (Glu) analogue intended as a mimic of the folded Glu conformation. The synthesis of 1 was completed in its racemic form in eight steps from commercially available starting materials. As a key step, the first facially selective hydroboration of a 5-methylidene[2......The design and synthesis of conformationally restricted analogues of alpha-amino acids is an often used strategy in medicinal chemistry research. Here we present the rational design, synthesis, and pharmacological evaluation of 2-azanorbornane-3-exo,5-endo-dicarboxylic acid (1), a novel...... studies on native 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) (IC(50) > 300 microM, [(3)H]AMPA) or kainic acid (IC(50) > 160 microM, [(3)H]kainic acid) receptors nor in binding studies on the cloned iGluR5,6 subtypes (IC(50) > 300 microM, [(3)H]kainic acid)....

  7. Rational design of single-molecule magnets: a supramolecular approach.

    Science.gov (United States)

    Glaser, Thorsten

    2011-01-07

    Since the discovery that Mn(12)OAc acts as a single-molecule magnet (SMM), an increasing number of transition metal complexes have been demonstrated to behave as SMMs. The signature of a SMM is a slow relaxation of the magnetization at low temperatures accompanied by a magnetic hysteresis. The origin of SMM behaviour is the existence of an appreciable thermal barrier U for spin-reversal called magnetic anisotropy barrier which is related to the combination of a large total spin ground state (S(t)) and an easy-axis magnetic anisotropy. The extensive research on Mn(12)OAc and other SMMs has established more prerequisites for a rational development of new SMMs besides the high-spin ground state and the magnetic anisotropy: the symmetry should be at least C(3) to minimize the quantum tunneling of the magnetization through the anisotropy barrier but lower than cubic to avoid the cancellation of the local anisotropies upon projection onto the spin ground state. Based on these prerequisites, we have designed the ligand triplesalen which combines the phloroglucinol bridging unit for high spin ground states by the spin-polarization mechanism with a salen-like ligand environment for single-site magnetic anisotropies by a strong tetragonal ligand field. The C(3) symmetric, trinuclear complexes of the triplesalen ligand (talen(t-Bu(2)))(6-) exhibit a strong ligand folding resulting in an overall bowl-shaped molecular structure. This ligand folding preorganizes the axial coordination sites of the metal salen subunits for the complementary binding of three facial nitrogen atoms of a hexacyanometallate unit. This leads to a high driving force for the formation of heptanuclear complexes [M(t)(6)M(c)](n+) by the assembly of three molecular building blocks. Attractive van der Waals interactions of the tert-butyl phenyl units of two triplesalen trinuclear building blocks increase the driving force. In this respect, we have been able to synthesize the isostructural series [Mn(III)(6

  8. Progressive methylation of ageing histones by Dot1 functions as a timer

    NARCIS (Netherlands)

    De Vos, Dirk; Frederiks, Floor; Terweij, Marit; van Welsem, Tibor; Verzijlbergen, Kitty F.; Iachina, Ekaterina; de Graaf, Erik L.; Altelaar, A. F. Maarten; Oudgenoeg, Gideon; Heck, Albert J. R.; Krijgsveldz, Jeroen; Bakker, Barbara M.; van Leeuwen, Fred

    Post-translational modifications of histone proteins have a crucial role in regulating gene expression. If efficiently re-established after chromosome duplication, histone modifications could help propagate gene expression patterns in dividing cells by epigenetic mechanisms. We used an integrated

  9. Variations of Histone Modification Patterns: Contributions of Inter-plant Variability and Technical Factors

    Directory of Open Access Journals (Sweden)

    Sylva Brabencová

    2017-12-01

    Full Text Available Inter-individual variability of conspecific plants is governed by differences in their genetically determined growth and development traits, environmental conditions, and adaptive responses under epigenetic control involving histone post-translational modifications. The apparent variability in histone modifications among plants might be increased by technical variation introduced in sample processing during epigenetic analyses. Thus, to detect true variations in epigenetic histone patterns associated with given factors, the basal variability among samples that is not associated with them must be estimated. To improve knowledge of relative contribution of biological and technical variation, mass spectrometry was used to examine histone modification patterns (acetylation and methylation among Arabidopsis thaliana plants of ecotypes Columbia 0 (Col-0 and Wassilewskija (Ws homogenized by two techniques (grinding in a cryomill or with a mortar and pestle. We found little difference in histone modification profiles between the ecotypes. However, in comparison of the biological and technical components of variability, we found consistently higher inter-individual variability in histone mark levels among Ws plants than among Col-0 plants (grown from seeds collected either from single plants or sets of plants. Thus, more replicates of Ws would be needed for rigorous analysis of epigenetic marks. Regarding technical variability, the cryomill introduced detectably more heterogeneity in the data than the mortar and pestle treatment, but mass spectrometric analyses had minor apparent effects. Our study shows that it is essential to consider inter-sample variance and estimate suitable numbers of biological replicates for statistical analysis for each studied organism when investigating changes in epigenetic histone profiles.

  10. Variations of Histone Modification Patterns: Contributions of Inter-plant Variability and Technical Factors.

    Science.gov (United States)

    Brabencová, Sylva; Ihnatová, Ivana; Potěšil, David; Fojtová, Miloslava; Fajkus, Jiří; Zdráhal, Zbyněk; Lochmanová, Gabriela

    2017-01-01

    Inter-individual variability of conspecific plants is governed by differences in their genetically determined growth and development traits, environmental conditions, and adaptive responses under epigenetic control involving histone post-translational modifications. The apparent variability in histone modifications among plants might be increased by technical variation introduced in sample processing during epigenetic analyses. Thus, to detect true variations in epigenetic histone patterns associated with given factors, the basal variability among samples that is not associated with them must be estimated. To improve knowledge of relative contribution of biological and technical variation, mass spectrometry was used to examine histone modification patterns (acetylation and methylation) among Arabidopsis thaliana plants of ecotypes Columbia 0 (Col-0) and Wassilewskija (Ws) homogenized by two techniques (grinding in a cryomill or with a mortar and pestle). We found little difference in histone modification profiles between the ecotypes. However, in comparison of the biological and technical components of variability, we found consistently higher inter-individual variability in histone mark levels among Ws plants than among Col-0 plants (grown from seeds collected either from single plants or sets of plants). Thus, more replicates of Ws would be needed for rigorous analysis of epigenetic marks. Regarding technical variability, the cryomill introduced detectably more heterogeneity in the data than the mortar and pestle treatment, but mass spectrometric analyses had minor apparent effects. Our study shows that it is essential to consider inter-sample variance and estimate suitable numbers of biological replicates for statistical analysis for each studied organism when investigating changes in epigenetic histone profiles.

  11. A histone map of human chromosome 20q13.12.

    Directory of Open Access Journals (Sweden)

    Pelin Akan

    Full Text Available We present a systematic search for regulatory elements in a 3.5 Mb region on human chromosome 20q13.12, a region associated with a number of medical conditions such as type II diabetes and obesity.We profiled six histone modifications alongside RNA polymerase II (PolII and CTCF in two cell lines, HeLa S3 and NTERA-2 clone D1 (NT2/D1, by chromatin immunoprecipitation using an in-house spotted DNA array, constructed with 1.8 kb overlapping plasmid clones. In both cells, more than 90% of transcription start sites (TSSs of expressed genes showed enrichments with PolII, di-methylated lysine 4 of histone H3 (H3K4me2, tri-methylated lysine 4 of histone H3 (H3K4me3 or acetylated H3 (H3Ac, whereas mono-methylated lysine 4 of histone H3 (H3K4me1 signals did not correlate with expression. No TSSs were enriched with tri-methylated lysine 27 of histone H3 (H3K27me3 in HeLa S3, while eight TSSs (4 expressed showed enrichments in NT2/D1. We have also located several CTCF binding sites that are potential insulator elements.In summary, we annotated a number of putative regulatory elements in 20q13.12 and went on to verify experimentally a subset of them using dual luciferase reporter assays. Correlating this data to sequence variation can aid identification of disease causing variants.

  12. Histones from Dying Renal Cells Aggravate Kidney Injury via TLR2 and TLR4

    Science.gov (United States)

    Allam, Ramanjaneyulu; Scherbaum, Christina Rebecca; Darisipudi, Murthy Narayana; Mulay, Shrikant R.; Hägele, Holger; Lichtnekert, Julia; Hagemann, Jan Henrik; Rupanagudi, Khader Valli; Ryu, Mi; Schwarzenberger, Claudia; Hohenstein, Bernd; Hugo, Christian; Uhl, Bernd; Reichel, Christoph A.; Krombach, Fritz; Monestier, Marc; Liapis, Helen; Moreth, Kristin; Schaefer, Liliana

    2012-01-01

    In AKI, dying renal cells release intracellular molecules that stimulate immune cells to secrete proinflammatory cytokines, which trigger leukocyte recruitment and renal inflammation. Whether the release of histones, specifically, from dying cells contributes to the inflammation of AKI is unknown. In this study, we found that dying tubular epithelial cells released histones into the extracellular space, which directly interacted with Toll-like receptor (TLR)-2 (TLR2) and TLR4 to induce MyD88, NF-κB, and mitogen activated protein kinase signaling. Extracellular histones also had directly toxic effects on renal endothelial cells and tubular epithelial cells in vitro. In addition, direct injection of histones into the renal arteries of mice demonstrated that histones induce leukocyte recruitment, microvascular vascular leakage, renal inflammation, and structural features of AKI in a TLR2/TLR4-dependent manner. Antihistone IgG, which neutralizes the immunostimulatory effects of histones, suppressed intrarenal inflammation, neutrophil infiltration, and tubular cell necrosis and improved excretory renal function. In summary, the release of histones from dying cells aggravates AKI via both its direct toxicity to renal cells and its proinflammatory effects. Because the induction of proinflammatory cytokines in dendritic cells requires TLR2 and TLR4, these results support the concept that renal damage triggers an innate immune response, which contributes to the pathogenesis of AKI. PMID:22677551

  13. Biochemical studies on histones of the central nervous system. 1

    International Nuclear Information System (INIS)

    Schmitt, M.; Matthies, H.

    1979-01-01

    Rat brain histones were acetylated in vivo by intraventricular injection of [ 14 C]-acetate. More than 90% of the label is the result of a true acetylation. Enzymatic proteolysis of the labelled histone fraction and subsequent chromatographic investigation of the digestion products showed about 60% of the recovered radioactive material to be epsilon-acetyl lysine, whereas 22% of the radioactivity was found in an unidentified spot. (author)

  14. Design and synthesis of aryl ether and sulfone hydroxamic acids as potent histone deacetylase (HDAC) inhibitors.

    Science.gov (United States)

    Pabba, Chittari; Gregg, Brian T; Kitchen, Douglas B; Chen, Zhen Jia; Judkins, Angela

    2011-01-01

    A series of novel hydroxamic acid based histone deacetylases (HDAC) inhibitors with aryl ether and aryl sulfone residues at the terminus of a substituted, unsaturated 5-carbon spacer moiety have been synthesized for the first time and evaluated. Compounds with meta- and para-substitution on the aryl ring of ether hydroxamic acids 19c, 20c, 19e, 19f and 19g are potent HDAC inhibitors with activities at low nanomolar levels. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Many faces of rationality: Implications of the great rationality debate for clinical decision-making.

    Science.gov (United States)

    Djulbegovic, Benjamin; Elqayam, Shira

    2017-10-01

    Given that more than 30% of healthcare costs are wasted on inappropriate care, suboptimal care is increasingly connected to the quality of medical decisions. It has been argued that personal decisions are the leading cause of death, and 80% of healthcare expenditures result from physicians' decisions. Therefore, improving healthcare necessitates improving medical decisions, ie, making decisions (more) rational. Drawing on writings from The Great Rationality Debate from the fields of philosophy, economics, and psychology, we identify core ingredients of rationality commonly encountered across various theoretical models. Rationality is typically classified under umbrella of normative (addressing the question how people "should" or "ought to" make their decisions) and descriptive theories of decision-making (which portray how people actually make their decisions). Normative theories of rational thought of relevance to medicine include epistemic theories that direct practice of evidence-based medicine and expected utility theory, which provides the basis for widely used clinical decision analyses. Descriptive theories of rationality of direct relevance to medical decision-making include bounded rationality, argumentative theory of reasoning, adaptive rationality, dual processing model of rationality, regret-based rationality, pragmatic/substantive rationality, and meta-rationality. For the first time, we provide a review of wide range of theories and models of rationality. We showed that what is "rational" behaviour under one rationality theory may be irrational under the other theory. We also showed that context is of paramount importance to rationality and that no one model of rationality can possibly fit all contexts. We suggest that in context-poor situations, such as policy decision-making, normative theories based on expected utility informed by best research evidence may provide the optimal approach to medical decision-making, whereas in the context

  16. Hepatic radiofrequency ablation causes an increase of circulating histones in patients with hepatocellular carcinoma.

    Science.gov (United States)

    Gu, Tao; Ge, Yang; Song, Yuezhang; Fu, Zhanzhao; Zhang, Yunjie; Wang, Guangxia; Shao, Shasha; Wen, Tao

    2015-11-01

    Radiofrequency ablation (RFA) has been increasingly accepted for the treatment of hepatocellular carcinoma (HCC). However, RFA has been associated with an obvious systemic inflammatory response, but little is known about the underlying mechanisms. Circulating histones are recently identified as pivotal inflammatory mediators. Hence, we investigated whether circulating histones are involved in RFA-related inflammation. Serial blood samples were collected from 42 HCC patients undergoing RFA at 3 time points: pre-RFA, post-RFA (within 24 h), and in 4-week follow up after RFA. Plasma histones, myeloperoxidase (MPO), inflammatory cytokines (IL-1β, IL-6, IL-10, TNF-α), liver damage parameters (ALT, AST), and creatinine were measured. Compared to pre-RFA (0.837 μg/ml), there was a significant increase in the levels of circulating histones within 24 h post-RFA (4.576 μg/ml, p histones decreased to pre-RFA levels in 4-week follow up after RFA. Meanwhile, MPO, IL-6, and IL-10 were elevated remarkably within 24 h post-RFA, indicative of an occurrence of the inflammatory response. Notably, histone levels correlated well with MPO (r = 0.5678), IL-6 (r = 0.4851), and IL-10 (r = 0.3574), respectively. In addition, there was a significant damage of liver function in patients within 24 h post-RFA, evidenced by the increased levels of ALT and AST. No changes in creatinine levels were observed. These data demonstrate that circulating histones are excessively released in HCC patients treated with RFA, which may lead to systemic inflammation by stimulating neutrophil activation and promoting cytokine production. Circulating histones may act as a novel marker to indicate the extent of inflammation related to RFA.

  17. Rationality and drug use: an experimental approach.

    Science.gov (United States)

    Blondel, Serge; Lohéac, Youenn; Rinaudo, Stéphane

    2007-05-01

    In rational addiction theory, higher discount rates encourage drug use. We test this hypothesis in the general framework of rationality and behaviour under risk. We do so using an experimental design with real monetary incentives. The decisions of 34 drug addicts are compared with those of a control group. The decisions of drug users (DU) are not any less consistent with standard theories of behaviour over time and under risk. Further, there is no difference in the estimated discount rate between drug users and the control group, but the former do appear to be more risk-seeking.

  18. Nucleosomes and histones are present in glomerular deposits in human lupus nephritis

    NARCIS (Netherlands)

    vanBruggen, MCJ; Kramers, C; Walgreen, B; Elema, JD; Kallenberg, CGM; vandenBorn, J; Smeenk, RJT; Assmann, KJM; Muller, S; Monestier, M; Berden, JHM

    Background. Recently we showed that antinuclear autoantibodies complexed to nucleosomes can bind to heparan sulphate (HS) in the glomerular basement membrane (GEM) via the histone part of the nucleosome. Histones have been identified in glomerular deposits in human and murine lupus nephritis. In

  19. Histone and Ribosomal RNA Repetitive Gene Clusters of the Boll Weevil are Linked in a Tandem Array

    Science.gov (United States)

    Histones are the major protein component of chromatin structure. The histone family is made up of a quintet of proteins, four core histones (H2A, H2B, H3 & H4) and the linker histones (H1). Spacers are found between the coding regions. Among insects this quintet of genes is usually clustered and ...

  20. Cell cycle-dependent O-GlcNAc modification of tobacco histones and their interaction with the tobacco lectin.

    Science.gov (United States)

    Delporte, Annelies; De Zaeytijd, Jeroen; De Storme, Nico; Azmi, Abdelkrim; Geelen, Danny; Smagghe, Guy; Guisez, Yves; Van Damme, Els J M

    2014-10-01

    The Nicotiana tabacum agglutinin or Nictaba is a nucleocytoplasmic lectin that is expressed in tobacco after the plants have been exposed to jasmonate treatment or insect herbivory. Nictaba specifically recognizes GlcNAc residues. Recently, it was shown that Nictaba is interacting in vitro with the core histone proteins from calf thymus. Assuming that plant histones - similar to their animal counterparts - undergo O-GlcNAcylation, this interaction presumably occurs through binding of the lectin to the O-GlcNAc modification present on the histones. Hereupon, the question was raised whether this modification also occurs in plants and if it is cell cycle dependent. To this end, histones were purified from tobacco BY-2 suspension cells and the presence of O-GlcNAc modifications was checked. Concomitantly, O-GlcNAcylation of histone proteins was studied. Our data show that similar to animal histones plant histones are modified by O-GlcNAc in a cell cycle-dependent fashion. In addition, the interaction between Nictaba and tobacco histones was confirmed using lectin chromatography and far Western blot analysis. Collectively these findings suggest that Nictaba can act as a modulator of gene transcription through its interaction with core histones. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. Vitamin K3 triggers human leukemia cell death through hydrogen peroxide generation and histone hyperacetylation.

    Science.gov (United States)

    Lin, Changjun; Kang, Jiuhong; Zheng, Rongliang

    2005-10-01

    Vitamin K3 (VK3) is a well-known anticancer agent, but its mechanism remains elusive. In the present study, VK3 was found to simultaneously induce cell death, reactive oxygen species (ROS) generation, including superoxide anion (O2*-) and hydrogen peroxide (H2O2) generation, and histone hyperacetylation in human leukemia HL-60 cells in a concentration- and time-dependent manner. Catalase (CAT), an antioxidant enzyme that specifically scavenges H2O2, could significantly diminish both histone acetylation increase and cell death caused by VK3, whereas superoxide dismutase (SOD), an enzyme that specifically eliminates O2*-, showed no effect on both of these, leading to the conclusion that H2O2 generation, but not O2*- generation, contributes to VK3-induced histone hyperacetylation and cell death. This conclusion was confirmed by the finding that enhancement of VK3-induced H2O2 generation by vitamin C (VC) could significantly promote both the histone hyperacetylation and cell death. Further studies suggested that histone hyperacetylation played an important role in VK3-induced cell death, since sodium butyrate, a histone deacetylase (HDAC) inhibitor, showed no effect on ROS generation, but obviously potentiated VK3-induced histone hyperacetylation and cell death. Collectively, these results demonstrate a novel mechanism for the anticancer activity of VK3, i.e., VK3 induced tumor cell death through H2O2 generation, which then further induced histone hyperacetylation.

  2. Dengue Virus Capsid Protein Binds Core Histones and Inhibits Nucleosome Formation in Human Liver Cells

    Science.gov (United States)

    Colpitts, Tonya M.; Barthel, Sebastian; Wang, Penghua; Fikrig, Erol

    2011-01-01

    Dengue virus (DENV) is a member of the Flaviviridae and a globally (re)emerging pathogen that causes serious human disease. There is no specific antiviral or vaccine for dengue virus infection. Flavivirus capsid (C) is a structural protein responsible for gathering the viral RNA into a nucleocapsid that forms the core of a mature virus particle. Flaviviral replication is known to occur in the cytoplasm yet a large portion of capsid protein localizes to the nucleus during infection. The reasons for the nuclear presences of capsid are not completely understood. Here, we expressed mature DENV C in a tandem affinity purification assay to identify potential binding partners in human liver cells. DENV C targeted the four core histones, H2A, H2B, H3 and H4. DENV C bound recombinant histones in solution and colocalized with histones in the nucleus and cytoplasm of liver cells during DENV infection. We show that DENV C acts as a histone mimic, forming heterodimers with core histones, binding DNA and disrupting nucleosome formation. We also demonstrate that DENV infection increases the amounts of core histones in livers cells, which may be a cellular response to C binding away the histone proteins. Infection with DENV additionally alters levels of H2A phosphorylation in a time-dependent manner. The interactions of C and histones add an interesting new role for the presence of C in the nucleus during DENV infection. PMID:21909430

  3. Histone peptide AKRHRK enhances H2O2-induced DNA damage and alters its site specificity

    International Nuclear Information System (INIS)

    Midorikawa, Kaoru; Murata, Mariko; Kawanishi, Shosuke

    2005-01-01

    Histone proteins are involved in compaction of DNA and the protection of cells from oxygen toxicity. However, several studies have demonstrated that the metal-binding histone reacts with H 2 O 2 , leading to oxidative damage to a nucleobase. We investigated whether histone can accelerate oxidative DNA damage, using a minimal model for the N-terminal tail of histone H4, CH 3 CO-AKRHRK-CONH 2 , which has a metal-binding site. This histone peptide enhanced DNA damage induced by H 2 O 2 and Cu(II), especially at cytosine residues, and induced additional DNA cleavage at the 5'-guanine of GGG sequences. The peptide also enhanced the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine and ESR spin-trapping signal from H 2 O 2 and Cu(II). Cyclic redox reactions involving histone-bound Cu(II) and H 2 O 2 , may give rise to multiple production of radicals leading to multiple hits in DNA. It is noteworthy that the histone H4 peptide with specific sequence AKRHRK can cause DNA damage rather than protection under metal-overloaded condition

  4. The effect of hepatoprotective preparations thioctacid and flavobion on histones in intact and regenerating lever in irradiated rats

    International Nuclear Information System (INIS)

    Kozhurkova, M.; Kropachova, E.; Mishurova, R.; Reksa, R.

    1992-01-01

    The changes in concentration, total content of histones and relative proportion of individual histone fractions in intact and regenerating liver were followed in rats after administration of hepatoprotective agents flavobion and thioctacid and after whole-body gamma irradiation with a dose 5.7 Gy. Thioctacid alone caused an increase in histone concentration in intact liver whereas flavobion alone did not produce significant quantitative changes. Irradiation alone decreased markedly the concentration and total content of histones in intact as well as regenerating liver of unprotected rats. Administration of thioctacid or flavobion protected from these quantitative histone changes or alleviated them consideradly. In relative proportion of individual histone fractions, the most profound changes were found in H1 histone after flavobion application

  5. PARP-1 Interaction with and Activation by Histones and Nucleosomes.

    Science.gov (United States)

    Thomas, Colin; Kotova, Elena; Tulin, Alexei V

    2017-01-01

    Poly(ADP-ribose) Polymerase 1 (PARP-1) is an abundant chromatin associated protein, typical for most eukaryotic nuclei. The localization of PARP-1 in chromatin and its enzymatic activation involves multiple interactions of PARP-1 with nucleosomal histones, other proteins, and DNA. We report a set of methods designed to reconstitute PARP-1 regulation in vitro. These methods involve the expression of PARP-1 and PARP-1-regulating proteins using bacterial and eukaryotic systems, purification of these proteins using chromatography, testing of individual interactions in vitro, assembly of active complexes, and reconstitution of PARP-1 regulating reactions in vitro.

  6. Extracellular histones reduce survival and angiogenic responses of late outgrowth progenitor and mature endothelial cells.

    Science.gov (United States)

    Mena, H A; Carestia, A; Scotti, L; Parborell, F; Schattner, M; Negrotto, S

    2016-02-01

    ESSENTIALS: Extracellular histones are highly augmented in sites of neovessel formation, such as regeneration tissues. We studied histone effect on survival and angiogenic activity of mature and progenitor endothelial cells. Extracellular histones trigger apoptosis and pyroptosis and reduce angiogenesis in vivo and in vitro. Histone blockade can be useful as a therapeutic strategy to improve angiogenesis and tissue regeneration. Extracellular histones are highly augmented in sites of neovessel formation, like regeneration tissues. Their cytotoxic effect has been studied in endothelial cells, although the mechanism involved and their action on endothelial colony-forming cells (ECFCs) remain unknown. To study the effect of histones on ECFC survival and angiogenic functions and compare it with mature endothelial cells. Nuclear morphology analysis showed that each human recombinant histone triggered both apoptotic-like and necrotic-like cell deaths in both mature and progenitor endothelial cells. While H1 and H2A exerted a weak toxicity, H2B, H3 and H4 were the most powerful. The percentage of apoptosis correlated with the percentage of ECFCs exhibiting caspase-3 activation and was zeroed by the pan-caspase inhibitor Z-VAD-FMK. Necrotic-like cell death was also suppressed by this compound and the caspase-1 inhibitor Ac-YVAD-CMK, indicating that histones triggered ECFC pyroptosis. All histones, at non-cytotoxic concentrations, reduced migration and H2B, H3 and H4 induced cell cycle arrest and impaired tubulogenesis via p38 activation. Neutrophil-derived histones exerted similar effects. In vivo blood vessel formation in the quail chorioallantoic membrane was also reduced by H2B, H3 and H4. Their cytotoxic and antiangiogenic effects were suppressed by unfractioned and low-molecular-weight heparins and the combination of TLR2 and TLR4 blocking antibodies. Histones trigger both apoptosis and pyroptosis of ECFCs and inhibit their angiogenic functions. Their cytotoxic and

  7. Histones Induce the Procoagulant Phenotype of Endothelial Cells through Tissue Factor Up-Regulation and Thrombomodulin Down-Regulation.

    Science.gov (United States)

    Kim, Ji Eun; Yoo, Hyun Ju; Gu, Ja Yoon; Kim, Hyun Kyung

    2016-01-01

    The high circulating levels of histones found in various thrombotic diseases may compromise the anticoagulant barrier of endothelial cells. We determined how histones affect endothelial procoagulant tissue factor (TF) and anticoagulant thrombomodulin (TM). Surface antigens, soluble forms, and mRNA levels of TF and TM were measured by flow cytometry, ELISA, and real-time RT-PCR, respectively. TF and TM activity were measured using procoagulant activity, thrombin generation, or chromogenic assays. Involvement of the toll-like receptor (TLR) was assessed using the neutralizing antibodies. Histones dose-dependently induced surface antigens, activity and mRNA levels of endothelial TF. Histone-treated endothelial cells significantly shortened the lag time and enhanced the endogenous thrombin potential of normal plasma, which was normalized by a TF neutralizing antibody. Histones induced phosphatidylserine and protein-disulfide isomerase expression in endothelial cells. Histones also reduced the surface antigen, activity, and mRNA levels of endothelial TM. Polysialic acid and heparin reversed the histone-induced TF up-regulation and TM down-regulation. Activated protein C did not affect the TF up-regulation, but interrupted TM down-regulation. TLR2, and TLR4 inhibitors partially blocked the TF up-regulation. Histones induced the endothelial procoagulant phenotype through TF up-regulation and TM down-regulation. The effects of histones were partly mediated by TLR2, TLR4. Strategies to inhibit the harmful effects of histones in endothelial cells may be required in order to prevent a thrombotic environment.

  8. Surface recognition and fluorescence sensing of histone by dansyl-appended cyclophane-based resorcinarene trimer.

    Science.gov (United States)

    Hayashida, Osamu; Ogawa, Naoyuki; Uchiyama, Masaki

    2007-11-07

    A cyclophane-based resorcinarene trimer (3) bearing a dansyl moiety as an environmentally sensitive fluorophore was prepared by stepwise condensation of a tetraaza[6.1.6.1]paracyclophane skeleton with a dansyl moiety and three resorcinarene derivatives having heptacarboxylic acid residues in this sequence. The dansyl-appended cyclophane exhibited the following fluorescence properties regarding solvent polarity dependency and histone surface recognition: With increasing dioxane contents in dioxane/water solvents, the fluorescence intensity originating from the dansyl moiety of 3 increased along with a concomitant blue shift of the fluorescence maximum (lambdaem). The microenvironmentally sensitive fluorescence properties of dansyl fluorophore were maintained, even when the dansyl moiety was covalently attached to a cyclophane. Most interestingly, the cyclophane-based resorcinarene trimer exhibited recognition and fluorescence sensing capabilities toward histone, a small basic protein of eukaryotic chromatins. The fluorescence intensity originating from 3 increased along with a concomitant blue shift of lambdaem upon the addition of histone, reflecting the formation of 3-histone complexes. A relatively large fluorescence polarization (P) value was obtained for the 3-histone complexes (0.15), reflecting highly restricted conformations of 3, and the obtained P value was much larger than that of 3 alone in aqueous medium (0.07). The binding constant (K) of 3 with histone (unit basis) was estimated to be 2.1 x 106 M-1. On the other hand, upon the addition of acetylated histone (Ac-histone) to an aqueous solution containing 3, the extent of change in fluorescence intensity originating from the dansyl group of 3 was almost negligible, indicating that the electrostatic interactions between 3 and Ac-histone were weak. In addition, the fluorescence spectral changes were also small or negligible upon the addition of other proteins such as albumin, ovalbumin, peanut agglutinin

  9. Genome-Wide Identification of Histone Modifiers and Their Expression Patterns during Fruit Abscission in Litchi

    Directory of Open Access Journals (Sweden)

    Jianguo Li

    2017-04-01

    Full Text Available Modifications to histones, including acetylation and methylation processes, play crucial roles in the regulation of gene expression in plant development as well as in stress responses. However, limited information on the enzymes catalyzing histone acetylation and methylation in non-model plants is currently available. In this study, several histone modifier (HM types, including six histone acetyltransferases (HATs, 11 histone deacetylases (HDACs, 48 histone methyltransferases (HMTs, and 22 histone demethylases (HDMs, are identified in litchi (Litchi chinensis Sonn. cv. Feizixiao based on similarities in their sequences to homologs in Arabidopsis (A. thaliana, tomato (Solanum lycopersicum, and rice (Oryza sativa. Phylogenetic analyses reveal that HM enzymes can be grouped into four HAT, two HDAC, two HMT, and two HDM subfamilies, respectively, while further expression profile analyses demonstrate that 17 HMs were significantly altered during fruit abscission in two field treatments. Analyses reveal that these genes exhibit four distinct patterns of expression in response to fruit abscission, while an in vitro assay was used to confirm the HDAC activity of LcHDA2, LcHDA6, and LcSRT2. Our findings are the first in-depth analysis of HMs in the litchi genome, and imply that some are likely to play important roles in fruit abscission in this commercially important plant.

  10. Antibodies to H2a and H2b histones from the sera of HIV-infected patients catalyze site-specific degradation of these histones.

    Science.gov (United States)

    Baranova, Svetlana V; Dmitrienok, Pavel S; Ivanisenko, Nikita V; Buneva, Valentina N; Nevinsky, Georgy A

    2017-06-01

    Histones and their post-translational modifications have key roles in chromatin remodeling and gene transcription. Besides intranuclear functions, histones act as damage-associated molecules when they are released into the extracellular space. Administration of histones to animals leads to systemic inflammatory and toxic responses. Autoantibodies with enzymatic activities (abzymes) are distinctive features of some autoimmune and viral diseases. Electrophoretically homogeneous IgGs containing no canonical enzymes were isolated from the sera of HIV-infected patients by chromatography on several affinity sorbents including anti-histone Sepharose. In contrast to canonical proteases (trypsin, chymotrypsin, proteinase K), IgGs from HIV-infected patients specifically hydrolyzed only histones but not many other tested globular proteins. Using MALDI mass spectrometry the sites of H2a and H2b histone cleavage by anti-histone IgGs were determined for the first time. One cluster of H2a hydrolysis contains two major (↕) and four moderate (↓) cleavage sites: 31-H↓R↓L↓L↓R↕K G↕N-38. One major and two moderate sites of cleavage were revealed in the second cluster: 14-A↕KSRS↓SRA↓G-22. The third cluster corresponding to the H2a C-terminal part contains only five minor (†) sites of cleavage: 82-H†LQLAIRNDEELN†KLLG†RV†T†I-102. It was shown that two major and four moderate sites of cleavage were present in the main cluster of H2b hydrolysis: 46-K↕QvhpD↓TgiS↓SkA↓M↕GiM↓N-63. Two moderate sites of cleavage correspond to a relatively short 6-mer cluster: 12-K↓GskK↓A-17. The third relatively long 9-mer cluster contains one major and two minor sites of H2b cleavage: 80-L↕AHYN†KRS†T-88. In the nucleosome core particle, most of the major and moderate cleavage sites are located at the H2a/H2b interaction interface. Minor cleavage sites of H2a are involved in binding with H3 in the nucleosome core. Two moderate cleavage sites of H2b and one

  11. Mass spectrometry analysis of the variants of histone H3 and H4 of soybean and their post-translational modifications

    Directory of Open Access Journals (Sweden)

    Lam Hon-Ming

    2009-07-01

    Full Text Available Abstract Background Histone modifications and histone variants are of importance in many biological processes. To understand the biological functions of the global dynamics of histone modifications and histone variants in higher plants, we elucidated the variants and post-translational modifications of histones in soybean, a legume plant with a much bigger genome than that of Arabidopsis thaliana. Results In soybean leaves, mono-, di- and tri-methylation at Lysine 4, Lysine 27 and Lysine 36, and acetylation at Lysine 14, 18 and 23 were detected in HISTONE H3. Lysine 27 was prone to being mono-methylated, while tri-methylation was predominant at Lysine 36. We also observed that Lysine 27 methylation and Lysine 36 methylation usually excluded each other in HISTONE H3. Although methylation at HISTONE H3 Lysine 79 was not reported in A. thaliana, mono- and di-methylated HISTONE H3 Lysine 79 were detected in soybean. Besides, acetylation at Lysine 8 and 12 of HISTONE H4 in soybean were identified. Using a combination of mass spectrometry and nano-liquid chromatography, two variants of HISTONE H3 were detected and their modifications were determined. They were different at positions of A31F41S87S90 (HISTONE variant H3.1 and T31Y41H87L90 (HISTONE variant H3.2, respectively. The methylation patterns in these two HISTONE H3 variants also exhibited differences. Lysine 4 and Lysine 36 methylation were only detected in HISTONE H3.2, suggesting that HISTONE variant H3.2 might be associated with actively transcribing genes. In addition, two variants of histone H4 (H4.1 and H4.2 were also detected, which were missing in other organisms. In the histone variant H4.1 and H4.2, the amino acid 60 was isoleucine and valine, respectively. Conclusion This work revealed several distinct variants of soybean histone and their modifications that were different from A. thaliana, thus providing important biological information toward further understanding of the histone

  12. The emerging functions of histone demethylases

    DEFF Research Database (Denmark)

    Agger, Karl; Christensen, Jesper; Cloos, Paul Ac

    2008-01-01

    characteristic features evolve from the same ancestor, despite identical genomic material. The characterization of several enzymes catalyzing histone lysine methylation have supported this concept by showing the requirement of these enzymes for normal development and their involvement in diseases such as cancer...

  13. Profiling Changes in Histone Post-translational Modifications by Top-Down Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Mowei; Wu, Si; Stenoien, David L.; Zhang, Zhaorui; Connolly, Lanelle; Freitag, Michael; Pasa-Tolic, Ljiljana

    2016-11-11

    Top-down mass spectrometry is a valuable tool for charactering post-translational modifications on histones for understanding of gene control and expression. In this protocol, we describe a top-down workflow using liquid chromatography coupled to mass spectrometry for fast global profiling of changes in histone proteoforms between a wild-type and a mutant of a fungal species. The proteoforms exhibiting different abundances can be subjected to further targeted studies by other mass spectrometric or biochemical assays. This method can be generally adapted for preliminary screening for changes in histone modifications between samples such as wild-type vs. mutant, and control vs. disease.

  14. Adolescent rationality.

    Science.gov (United States)

    Moshman, David

    2013-01-01

    Adolescents are commonly seen as irrational, a position supported to varying degrees by many developmentalists, who often appeal to recent research on adolescent brains. Careful review of relevant evidence, however, shows that (1) adults are less rational than is generally assumed, (2) adolescents (and adults) are categorically different from children with respect to the attainment of advanced levels of rationality and psychological functioning, and (3) adolescents and adults do not differ categorically from each other with respect to any rational competencies, irrational tendencies, brain structures, or neurological functioning. Development often continues in adolescence and beyond but categorical claims about adolescents as distinct from adults cannot be justified. A review of U.S. Supreme Court decisions concerning intellectual freedom, reproductive freedom, and criminal responsibility shows ongoing ambivalence and confusion about the rationality of adolescents. Developmental theory and research suggest that adolescents should be conceptualized as young adults, not immature brains, with important implications for their roles, rights, and responsibilities.

  15. Histones H10a and H10b are the same as CHO histones H1(III) and H1(IV):new features of H10 phosphorylation during the cell cycle

    International Nuclear Information System (INIS)

    D'Anna, J.A.; Gurley, L.R.; Becker, R.R.

    1981-01-01

    Two histone H1 fractions [H1(I) and H1(II) and two histone H1 0 fractions (H1 0 a and H1 0 b) have been isolated from butyrate-treated Chinese hamster (line CHO) cells by guanidine hydrochloride gradient chromatography on Bio-Rex 70 ion-exchange resin. The fractions have been identified by electrophoresis and amino acid analyses. Electrophoretic analysis of cyanogen bromide treated H1 0 in long acid-urea-polyacrylamide gels suggests that H1 0 a and H1 0 b differ, at least, within the 20-30 residue fragment(s) removed by the cyanogen bromide clevage. Shallow-gradient Bio-Rex 70 chromatography indicates that histones H1 0 a and H1 0 b are the same as the respective CHO histones, H1(III) and H1(IV). This identification and the phosphate incorporation data of Gurley et al. (1975) reveal new features about H1 0 phosphorylation: (1) following release from G 1 arrest, H1 0 a and H1 0 b become phosphorylated in late G 1 prior to DNA synthesis; (2) H1 0 a and H1 0 b are phosphorylated at similar rates throughout the cell cycle. These and other data demonstrate that histone H1 0 is phosphorylated in a cell cycle dependent fashion which mimics that of histone H1

  16. Integrated analysis of the molecular action of Vorinostat identifies epi-sensitised targets for combination therapy.

    Science.gov (United States)

    Hay, Jodie F; Lappin, Katrina; Liberante, Fabio; Kettyle, Laura M; Matchett, Kyle B; Thompson, Alexander; Mills, Ken I

    2017-09-15

    Several histone deacetylase inhibitors including Vorinostat have received FDA approval for the treatment of haematological malignancies. However, data from these trials indicate that Vorinostat has limited efficacy as a monotherapy, prompting the need for rational design of combination therapies. A number of epi-sensitised pathways, including sonic hedgehog (SHH), were identified in AML cells by integration of global patterns of histone H3 lysine 9 (H3K9) acetylation with transcriptomic analysis following Vorinostat-treatment. Direct targeting of the SHH pathway with SANT-1, following Vorinostat induced epi-sensitisation, resulted in synergistic cell death of AML cells. In addition, xenograft studies demonstrated that combination therapy induced a marked reduction in leukemic burden compared to control or single agents. Together, the data supports epi-sensitisation as a potential component of the strategy for the rational development of combination therapies in AML.

  17. Cell shape regulates global histone acetylation in human mammaryepithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Le Beyec, Johanne; Xu, Ren; Lee, Sun-Young; Nelson, Celeste M.; Rizki, Aylin; Alcaraz, Jordi; Bissell, Mina J.

    2007-02-28

    Extracellular matrix (ECM) regulates cell morphology and gene expression in vivo; these relationships are maintained in three-dimensional (3D) cultures of mammary epithelial cells. In the presence of laminin-rich ECM (lrECM), mammary epithelial cells round up and undergo global histone deacetylation, a process critical for their functional differentiation. However, it remains unclear whether lrECM-dependent cell rounding and global histone deacetylation are indeed part of a common physical-biochemical pathway. Using 3D cultures as well as nonadhesive and micropatterned substrata, here we showed that the cell 'rounding' caused by lrECM was sufficient to induce deacetylation of histones H3 and H4 in the absence of biochemical cues. Microarray and confocal analysis demonstrated that this deacetylation in 3D culture is associated with a global increase in chromatin condensation and a reduction in gene expression. Whereas cells cultured on plastic substrata formed prominent stress fibers, cells grown in 3D lrECM or on micropatterns lacked these structures. Disruption of the actin cytoskeleton with cytochalasin D phenocopied the lrECM-induced cell rounding and histone deacetylation. These results reveal a novel link between ECM-controlled cell shape and chromatin structure, and suggest that this link is mediated by changes in the actin cytoskeleton.

  18. Targeting Histone Deacetylases: A Novel Approach in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sorabh Sharma

    2015-01-01

    Full Text Available The worldwide prevalence of movement disorders is increasing day by day. Parkinson’s disease (PD is the most common movement disorder. In general, the clinical manifestations of PD result from dysfunction of the basal ganglia. Although the exact underlying mechanisms leading to neural cell death in this disease remains unknown, the genetic causes are often established. Indeed, it is becoming increasingly evident that chromatin acetylation status can be impaired during the neurological disease conditions. The acetylation and deacetylation of histone proteins are carried out by opposing actions of histone acetyltransferases (HATs and histone deacetylases (HDACs, respectively. In the recent past, studies with HDAC inhibitors result in beneficial effects in both in vivo and in vitro models of PD. Various clinical trials have also been initiated to investigate the possible therapeutic potential of HDAC inhibitors in patients suffering from PD. The possible mechanisms assigned for these neuroprotective actions of HDAC inhibitors involve transcriptional activation of neuronal survival genes and maintenance of histone acetylation homeostasis, both of which have been shown to be dysregulated in PD. In this review, the authors have discussed the putative role of HDAC inhibitors in PD and associated abnormalities and suggest new directions for future research in PD.

  19. Love and rationality: on some possible rational effects of love

    Directory of Open Access Journals (Sweden)

    Gustavo Ortiz-Millán

    Full Text Available In this paper I defend the idea that rather than disrupting rationality, as the common-sense conception has done it, love may actually help us to develop rational ways of thinking and acting. I make the case for romantic or erotic love, since this is the kind of love that is more frequently associated with irrationality in acting and thinking. I argue that this kind of love may make us develop epistemic and practical forms of rationality. Based on an analysis of its characteristic action tendencies, I argue that love may help us to develop an instrumental form of rationality in determining the best means to achieve the object of love. It may also narrow down the number of practical considerations that may help us to achieve our goals. Finally, love may generate rational ways of belief-formation by framing the parameters taken into account in perception and attention, and by bringing into light only a small portion of the epistemic information available. Love may make us perceive reality more acutely.

  20. Opposite replication polarities of transcribed and nontranscribed histone H5 genes

    International Nuclear Information System (INIS)

    Trempe, J.P.; Lindstrom, Y.I.; Leffak, M.

    1988-01-01

    The authors used an in vitro nuclear runoff replication assay to analyze the direction of replication of the active and inactive histone H5 genes in avian cells. In embryonic erythrocytes the transcribed histone H5 gene displayed sensitivity to endogenous nuclease cleavage. In contrast, this gene was insensitive to endogenous nuclease digestion under the same conditions in nuclei of the lymphoblastoid cell line MSB-1, and histone H5 gene transcripts were not detectable by dot-blot analysis of MSB-1 cell RNA. When nuclei were isolated from embryonic erythrocyctes and incubated with bromodeoxyuridine triphosphate, runoff replication from endogenous nuclease cleavage sites led to a relative enrichment for fragments near the 3' end of the histone H5 gene in the density-labeled DNA. In nuclei of MSB-1 cells or chicken embryo fibroblasts, however, runoff replication from restriction enzyme-cut sites (or induced endogenous nuclease-cut sites in MSB-1 nuclei) led to a relative enrichment for fragments near the 5' end of the H5 gene in dense DNA. Based on the enhanced incorporation of bromodeoxyuridine into origin-distal regions of DNA during the in vitro runoff replication assay, the authors conclude that the active histone H5 gene in embryonic erythrocytes is preferentially replicated in the transcriptional direction from an origin in the 5'-flanking DNA, whereas its inactive counterparts in MSB-1 cells and chicken embryo fibroblasts are preferentially replicated in the opposite direction

  1. Rational design of highly potent HIV-1 fusion inhibitory proteins: Implication for developing antiviral therapeutics

    International Nuclear Information System (INIS)

    Ni Ling; Gao, George F.; Tien Po

    2005-01-01

    Recombinant protein containing one heptad-repeat 1 (HR1) segment and one HR2 segment of the HIV-1 gp41 (HR1-HR2) has been shown to fold into thermally stable six-helix bundle, representing the fusogenic core of gp41. In this study, we have used the fusogenic core as a scaffold to design HIV-1 fusion inhibitory proteins by linking another HR1 to the C terminus of HR1-HR2 (HR121) or additional HR2 to the N terminus of HR1-HR2 (HR212). Both recombinant proteins could be abundantly and solubly expressed and easily purified, exhibiting high stability and potent inhibitory activity on HIV-1 fusion with IC 50 values of 16.2 ± 2.8 and 2.8 ± 0.63 nM, respectively. These suggest that these rationally designed proteins can be further developed as novel anti-HIV-1 therapeutics

  2. Thiophene-derivatized Fluorescent Benzamides as Possible Probes for Histone Deacetylases

    International Nuclear Information System (INIS)

    Seo, Young Jun

    2013-01-01

    We have synthesized a series of novel fluorescent benzamides inhibitors possessing intrinsic fluorescence properties. Most of these benzamide fluorophores exhibit high quantum yields, making them suitable for use in imaging studies, with colors ranging from blue to green; a couple of them were also water-soluble. Notably, TB1 and TB2 display a high quantum yield and TB1 exhibits high binding affinity to HDAC enzymes. We believe that these new fluorescent benzamide inhibitors might be useful diagnostic tools for in vitro studies of HDACs. Histone deacetylases (HDACs) are crucial gene regulating enzymes that control the expression of histones-epigenetic targets in research related to developing new therapies for cancer, central nervous system disorders, and heart disease. The deacetylation of histones is a vital repression process in transcriptional gene expression; it also affects apoptosis, cell-cycle arrest, and angiogenesis

  3. Thiophene-derivatized Fluorescent Benzamides as Possible Probes for Histone Deacetylases

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Young Jun [Chonbuk National Univ., Jeonju (Korea, Republic of)

    2013-08-15

    We have synthesized a series of novel fluorescent benzamides inhibitors possessing intrinsic fluorescence properties. Most of these benzamide fluorophores exhibit high quantum yields, making them suitable for use in imaging studies, with colors ranging from blue to green; a couple of them were also water-soluble. Notably, TB1 and TB2 display a high quantum yield and TB1 exhibits high binding affinity to HDAC enzymes. We believe that these new fluorescent benzamide inhibitors might be useful diagnostic tools for in vitro studies of HDACs. Histone deacetylases (HDACs) are crucial gene regulating enzymes that control the expression of histones-epigenetic targets in research related to developing new therapies for cancer, central nervous system disorders, and heart disease. The deacetylation of histones is a vital repression process in transcriptional gene expression; it also affects apoptosis, cell-cycle arrest, and angiogenesis.

  4. Histone H3 is absent from organelle nucleoids in BY-2 cultured tobacco cells.

    Science.gov (United States)

    Takusagawa, Mari; Tamotsu, Satoshi; Sakai, Atsushi

    2013-07-01

    The core histone proteins (H2A, H2B, H3 and H4) are nuclear-localised proteins that play a central role in the formation of nucleosome structure. They have long been considered to be absent from extra-nuclear, DNA-containing organelles; that is plastids and mitochondria. Recently, however, the targeting of core histone H3 to mitochondria, and the presence of nucleosome-like structures in mitochondrial nucleoids, were proposed in cauliflower and tobacco respectively. Thus, we examined whether histone H3 was present in plant organelles and participated in the organisation of nucleoid structure, using highly purified organelles and organelle nucleoids isolated from BY-2 cultured tobacco cells. Immunofluorescence microscopic observations and Western blotting analyses demonstrated that histone H3 was absent from organelles and organelle nucleoids, consistent with the historical hypothesis. Thus, the organisation of organelle nucleoids, including putative nucleosome-like repetitive structures, should be constructed and maintained without participation of histone H3. © 2013 International Federation for Cell Biology.

  5. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks

    DEFF Research Database (Denmark)

    Huang, Hongda; Strømme, Caroline B; Saredi, Giulia

    2015-01-01

    During DNA replication, chromatin is reassembled by recycling of modified old histones and deposition of new ones. How histone dynamics integrates with DNA replication to maintain genome and epigenome information remains unclear. Here, we reveal how human MCM2, part of the replicative helicase......, chaperones histones H3-H4. Our first structure shows an H3-H4 tetramer bound by two MCM2 histone-binding domains (HBDs), which hijack interaction sites used by nucleosomal DNA. Our second structure reveals MCM2 and ASF1 cochaperoning an H3-H4 dimer. Mutational analyses show that the MCM2 HBD is required...... for MCM2-7 histone-chaperone function and normal cell proliferation. Further, we show that MCM2 can chaperone both new and old canonical histones H3-H4 as well as H3.3 and CENPA variants. The unique histone-binding mode of MCM2 thus endows the replicative helicase with ideal properties for recycling...

  6. Saccharomyces cerevisiae Linker Histone Hho1p Functionally Interacts with Core Histone H4 and Negatively Regulates the Establishment of Transcriptionally Silent Chromatin*

    OpenAIRE

    Yu, Qun; Kuzmiak, Holly; Zou, Yanfei; Olsen, Lars; Defossez, Pierre-Antoine; Bi, Xin

    2009-01-01

    Saccharomyces cerevisiae linker histone Hho1p is not essential for cell viability, and very little is known about its function in vivo. We show that deletion of HHO1 (hho1Δ) suppresses the defect in transcriptional silencing caused by a mutation in the globular domain of histone H4. hho1Δ also suppresses the reduction in HML silencing by the deletion of SIR1 that is involved in the establishment of silent chromatin at HML. We further show that hho1Δ suppresses chan...

  7. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism

    DEFF Research Database (Denmark)

    Feng, Dan; Liu, Tao; Sun, Zheng

    2011-01-01

    Disruption of the circadian clock exacerbates metabolic diseases, including obesity and diabetes. We show that histone deacetylase 3 (HDAC3) recruitment to the genome displays a circadian rhythm in mouse liver. Histone acetylation is inversely related to HDAC3 binding, and this rhythm is lost whe...

  8. Complex exon-intron marking by histone modifications is not determined solely by nucleosome distribution.

    Directory of Open Access Journals (Sweden)

    Pawandeep Dhami

    2010-08-01

    Full Text Available It has recently been shown that nucleosome distribution, histone modifications and RNA polymerase II (Pol II occupancy show preferential association with exons ("exon-intron marking", linking chromatin structure and function to co-transcriptional splicing in a variety of eukaryotes. Previous ChIP-sequencing studies suggested that these marking patterns reflect the nucleosomal landscape. By analyzing ChIP-chip datasets across the human genome in three cell types, we have found that this marking system is far more complex than previously observed. We show here that a range of histone modifications and Pol II are preferentially associated with exons. However, there is noticeable cell-type specificity in the degree of exon marking by histone modifications and, surprisingly, this is also reflected in some histone modifications patterns showing biases towards introns. Exon-intron marking is laid down in the absence of transcription on silent genes, with some marking biases changing or becoming reversed for genes expressed at different levels. Furthermore, the relationship of this marking system with splicing is not simple, with only some histone modifications reflecting exon usage/inclusion, while others mirror patterns of exon exclusion. By examining nucleosomal distributions in all three cell types, we demonstrate that these histone modification patterns cannot solely be accounted for by differences in nucleosome levels between exons and introns. In addition, because of inherent differences between ChIP-chip array and ChIP-sequencing approaches, these platforms report different nucleosome distribution patterns across the human genome. Our findings confound existing views and point to active cellular mechanisms which dynamically regulate histone modification levels and account for exon-intron marking. We believe that these histone modification patterns provide links between chromatin accessibility, Pol II movement and co-transcriptional splicing.

  9. Biochemical Analysis Reveals the Multifactorial Mechanism of Histone H3 Clipping by Chicken Liver Histone H3 Protease

    KAUST Repository

    Chauhan, Sakshi; Mandal, Papita; Tomar, Raghuvir S.

    2016-01-01

    Proteolytic clipping of histone H3 has been identified in many organisms. Despite several studies, the mechanism of clipping, the substrate specificity, and the significance of this poorly understood epigenetic mechanism are not clear. We have

  10. Evidence for gene-specific rather than transcription rate-dependent histone H3 exchange in yeast coding regions.

    Science.gov (United States)

    Gat-Viks, Irit; Vingron, Martin

    2009-02-01

    In eukaryotic organisms, histones are dynamically exchanged independently of DNA replication. Recent reports show that different coding regions differ in their amount of replication-independent histone H3 exchange. The current paradigm is that this histone exchange variability among coding regions is a consequence of transcription rate. Here we put forward the idea that this variability might be also modulated in a gene-specific manner independently of transcription rate. To that end, we study transcription rate-independent replication-independent coding region histone H3 exchange. We term such events relative exchange. Our genome-wide analysis shows conclusively that in yeast, relative exchange is a novel consistent feature of coding regions. Outside of replication, each coding region has a characteristic pattern of histone H3 exchange that is either higher or lower than what was expected by its RNAPII transcription rate alone. Histone H3 exchange in coding regions might be a way to add or remove certain histone modifications that are important for transcription elongation. Therefore, our results that gene-specific coding region histone H3 exchange is decoupled from transcription rate might hint at a new epigenetic mechanism of transcription regulation.

  11. Quantitative assessment of chemical artefacts produced by propionylation of histones prior to mass spectrometry analysis.

    Science.gov (United States)

    Soldi, Monica; Cuomo, Alessandro; Bonaldi, Tiziana

    2016-07-01

    Histone PTMs play a crucial role in regulating chromatin structure and function, with impact on gene expression. MS is nowadays widely applied to study histone PTMs systematically. Because histones are rich in arginine and lysine, classical shot-gun approaches based on trypsin digestion are typically not employed for histone modifications mapping. Instead, different protocols of chemical derivatization of lysines in combination with trypsin have been implemented to obtain "Arg-C like" digestion products that are more suitable for LC-MS/MS analysis. Although widespread, these strategies have been recently described to cause various side reactions that result in chemical modifications prone to be misinterpreted as native histone marks. These artefacts can also interfere with the quantification process, causing errors in histone PTMs profiling. The work of Paternoster V. et al. is a quantitative assessment of methyl-esterification and other side reactions occurring on histones after chemical derivatization of lysines with propionic anhydride [Proteomics 2016, 16, 2059-2063]. The authors estimate the effect of different solvents, incubation times, and pH on the extent of these side reactions. The results collected indicate that the replacement of methanol with isopropanol or ACN not only blocks methyl-esterification, but also significantly reduces other undesired unspecific reactions. Carefully titrating the pH after propionic anhydride addition is another way to keep methyl-esterification under control. Overall, the authors describe a set of experimental conditions that allow reducing the generation of various artefacts during histone propionylation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Phylogenetic analysis of the core histone doublet and DNA topo II genes of Marseilleviridae: evidence of proto-eukaryotic provenance.

    Science.gov (United States)

    Erives, Albert J

    2017-11-28

    While the genomes of eukaryotes and Archaea both encode the histone-fold domain, only eukaryotes encode the core histone paralogs H2A, H2B, H3, and H4. With DNA, these core histones assemble into the nucleosomal octamer underlying eukaryotic chromatin. Importantly, core histones for H2A and H3 are maintained as neofunctionalized paralogs adapted for general bulk chromatin (canonical H2 and H3) or specialized chromatin (H2A.Z enriched at gene promoters and cenH3s enriched at centromeres). In this context, the identification of core histone-like "doublets" in the cytoplasmic replication factories of the Marseilleviridae (MV) is a novel finding with possible relevance to understanding the origin of eukaryotic chromatin. Here, we analyze and compare the core histone doublet genes from all known MV genomes as well as other MV genes relevant to the origin of the eukaryotic replisome. Using different phylogenetic approaches, we show that MV histone domains encode obligate H2B-H2A and H4-H3 dimers of possible proto-eukaryotic origin. MV core histone moieties form sister clades to each of the four eukaryotic clades of canonical and variant core histones. This suggests that MV core histone moieties diverged prior to eukaryotic neofunctionalizations associated with paired linear chromosomes and variant histone octamer assembly. We also show that MV genomes encode a proto-eukaryotic DNA topoisomerase II enzyme that forms a sister clade to eukaryotes. This is a relevant finding given that DNA topo II influences histone deposition and chromatin compaction and is the second most abundant nuclear protein after histones. The combined domain architecture and phylogenomic analyses presented here suggest that a primitive origin for MV histone genes is a more parsimonious explanation than horizontal gene transfers + gene fusions + sufficient divergence to eliminate relatedness to eukaryotic neofunctionalizations within the H2A and H3 clades without loss of relatedness to each of

  13. Histone HIST1H1C/H1.2 regulates autophagy in the development of diabetic retinopathy.

    Science.gov (United States)

    Wang, Wenjun; Wang, Qing; Wan, Danyang; Sun, Yue; Wang, Lin; Chen, Hong; Liu, Chengyu; Petersen, Robert B; Li, Jianshuang; Xue, Weili; Zheng, Ling; Huang, Kun

    2017-05-04

    Autophagy plays critical and complex roles in many human diseases, including diabetes and its complications. However, the role of autophagy in the development of diabetic retinopathy remains uncertain. Core histone modifications have been reported involved in the development of diabetic retinopathy, but little is known about the histone variants. Here, we observed increased autophagy and histone HIST1H1C/H1.2, an important variant of the linker histone H1, in the retinas of type 1 diabetic rodents. Overexpression of histone HIST1H1C upregulates SIRT1 and HDAC1 to maintain the deacetylation status of H4K16, leads to upregulation of ATG proteins, then promotes autophagy in cultured retinal cell line. Histone HIST1H1C overexpression also promotes inflammation and cell toxicity in vitro. Knockdown of histone HIST1H1C reduces both the basal and stresses (including high glucose)-induced autophagy, and inhibits high glucose induced inflammation and cell toxicity. Importantly, AAV-mediated histone HIST1H1C overexpression in the retinas leads to increased autophagy, inflammation, glial activation and neuron loss, similar to the pathological changes identified in the early stage of diabetic retinopathy. Furthermore, knockdown of histone Hist1h1c by siRNA in the retinas of diabetic mice significantly attenuated the diabetes-induced autophagy, inflammation, glial activation and neuron loss. These results indicate that histone HIST1H1C may offer a novel therapeutic target for preventing diabetic retinopathy.

  14. The specification and global reprogramming of histone epigenetic marks during gamete formation and early embryo development in C. elegans.

    Directory of Open Access Journals (Sweden)

    Mark Samson

    2014-10-01

    Full Text Available In addition to the DNA contributed by sperm and oocytes, embryos receive parent-specific epigenetic information that can include histone variants, histone post-translational modifications (PTMs, and DNA methylation. However, a global view of how such marks are erased or retained during gamete formation and reprogrammed after fertilization is lacking. To focus on features conveyed by histones, we conducted a large-scale proteomic identification of histone variants and PTMs in sperm and mixed-stage embryo chromatin from C. elegans, a species that lacks conserved DNA methylation pathways. The fate of these histone marks was then tracked using immunostaining. Proteomic analysis found that sperm harbor ∼2.4 fold lower levels of histone PTMs than embryos and revealed differences in classes of PTMs between sperm and embryos. Sperm chromatin repackaging involves the incorporation of the sperm-specific histone H2A variant HTAS-1, a widespread erasure of histone acetylation, and the retention of histone methylation at sites that mark the transcriptional history of chromatin domains during spermatogenesis. After fertilization, we show HTAS-1 and 6 histone PTM marks distinguish sperm and oocyte chromatin in the new embryo and characterize distinct paternal and maternal histone remodeling events during the oocyte-to-embryo transition. These include the exchange of histone H2A that is marked by ubiquitination, retention of HTAS-1, removal of the H2A variant HTZ-1, and differential reprogramming of histone PTMs. This work identifies novel and conserved features of paternal chromatin that are specified during spermatogenesis and processed in the embryo. Furthermore, our results show that different species, even those with diverged DNA packaging and imprinting strategies, use conserved histone modification and removal mechanisms to reprogram epigenetic information.

  15. CONTRIBUTIONS TO RATIONAL APPROXIMATION,

    Science.gov (United States)

    Some of the key results of linear Chebyshev approximation theory are extended to generalized rational functions. Prominent among these is Haar’s...linear theorem which yields necessary and sufficient conditions for uniqueness. Some new results in the classic field of rational function Chebyshev...Furthermore a Weierstrass type theorem is proven for rational Chebyshev approximation. A characterization theorem for rational trigonometric Chebyshev approximation in terms of sign alternation is developed. (Author)

  16. Rational points, rational curves, and entire holomorphic curves on projective varieties

    CERN Document Server

    Gasbarri, Carlo; Roth, Mike; Tschinkel, Yuri

    2015-01-01

    This volume contains papers from the Short Thematic Program on Rational Points, Rational Curves, and Entire Holomorphic Curves and Algebraic Varieties, held from June 3-28, 2013, at the Centre de Recherches Mathématiques, Université de Montréal, Québec, Canada. The program was dedicated to the study of subtle interconnections between geometric and arithmetic properties of higher-dimensional algebraic varieties. The main areas of the program were, among others, proving density of rational points in Zariski or analytic topology on special varieties, understanding global geometric properties of rationally connected varieties, as well as connections between geometry and algebraic dynamics exploring new geometric techniques in Diophantine approximation.

  17. Bioorthogonal Chemistry for the Isolation and Study of Newly Synthesized Histones and Their Modifications.

    Science.gov (United States)

    Arnaudo, Anna M; Link, A James; Garcia, Benjamin A

    2016-03-18

    The nucleosome is an octamer containing DNA wrapped around one histone H3-H4 tetramer and two histone H2A-H2B dimers. Within the nucleosome, histones are decorated with post-translational modifications. Previous studies indicate that the H3-H4 tetramer is conserved during DNA replication, suggesting that old tetramers serve as a template for the modification of newly synthesized tetramers. Here, we present a method that merges bioorthogonal chemistry with mass spectrometry for the study of modifications on newly synthesized histones in mammalian cells. HeLa S3 cells are dually labeled with the methionine analog azidohomoalanine and heavy (13)C6,(15)N4 isotope labeled arginine. Heavy amino acid labeling marks newly synthesized histones while azidohomoalanine incorporation allows for their isolation using bioorthogonal ligation. Labeled mononucleosomes were covalently linked via a copper catalyzed reaction to a FLAG-GGR-alkyne peptide, immunoprecipitated, and subjected to mass spectrometry for quantitative modification analysis. Mononucleosomes containing new histones were successfully isolated using this approach. Additionally, the development of this method highlights the potential deleterious effects of azidohomoalanine labeling on protein PTMs and cell cycle progression, which should be considered for future studies utilizing bioorthogonal labeling strategies in mammalian cells.

  18. Dynamic changes in the interchromosomal interaction of early histone gene loci during development of sea urchin.

    Science.gov (United States)

    Matsushita, Masaya; Ochiai, Hiroshi; Suzuki, Ken-Ichi T; Hayashi, Sayaka; Yamamoto, Takashi; Awazu, Akinori; Sakamoto, Naoaki

    2017-12-15

    The nuclear positioning and chromatin dynamics of eukaryotic genes are closely related to the regulation of gene expression, but they have not been well examined during early development, which is accompanied by rapid cell cycle progression and dynamic changes in nuclear organization, such as nuclear size and chromatin constitution. In this study, we focused on the early development of the sea urchin Hemicentrotus pulcherrimus and performed three-dimensional fluorescence in situ hybridization of gene loci encoding early histones (one of the types of histone in sea urchin). There are two non-allelic early histone gene loci per sea urchin genome. We found that during the morula stage, when the early histone gene expression levels are at their maximum, interchromosomal interactions were often formed between the early histone gene loci on separate chromosomes and that the gene loci were directed to locate to more interior positions. Furthermore, these interactions were associated with the active transcription of the early histone genes. Thus, such dynamic interchromosomal interactions may contribute to the efficient synthesis of early histone mRNA during the morula stage of sea urchin development. © 2017. Published by The Company of Biologists Ltd.

  19. Analysis of Myc-induced histone modifications on target chromatin.

    Directory of Open Access Journals (Sweden)

    Francesca Martinato

    Full Text Available The c-myc proto-oncogene is induced by mitogens and is a central regulator of cell growth and differentiation. The c-myc product, Myc, is a transcription factor that binds a multitude of genomic sites, estimated to be over 10-15% of all promoter regions. Target promoters generally pre-exist in an active or poised chromatin state that is further modified by Myc, contributing to fine transcriptional regulation (activation or repression of the afferent gene. Among other mechanisms, Myc recruits histone acetyl-transferases to target chromatin and locally promotes hyper-acetylation of multiple lysines on histones H3 and H4, although the identity and combination of the modified lysines is unknown. Whether Myc dynamically regulates other histone modifications (or marks at its binding sites also remains to be addressed. Here, we used quantitative chromatin immunoprecipitation (qChIP to profile a total of 24 lysine-acetylation and -methylation marks modulated by Myc at target promoters in a human B-cell line with a regulatable c-myc transgene. Myc binding promoted acetylation of multiple lysines, primarily of H3K9, H3K14, H3K18, H4K5 and H4K12, but significantly also of H4K8, H4K91 and H2AK5. Dimethylation of H3K79 was also selectively induced at target promoters. A majority of target promoters showed co-induction of multiple marks - in various combinations - correlating with recruitment of the two HATs tested (Tip60 and HBO1, incorporation of the histone variant H2A.Z and transcriptional activation. Based on this and previous findings, we surmise that Myc recruits the Tip60/p400 complex to achieve a coordinated histone acetylation/exchange reaction at activated promoters. Our data are also consistent with the additive and redundant role of multiple acetylation events in transcriptional activation.

  20. Adsorption of histones on natural polysaccharides: The potential as agent for multiple organ failure in sepsis.

    Science.gov (United States)

    Isobe, Takashi; Kofuji, Kyoko; Okada, Kenji; Fujimori, Junya; Murata, Mikio; Shigeyama, Masato; Hanioka, Nobumitsu; Murata, Yoshifumi

    2016-03-01

    Histones are intracellular proteins that are structural elements of nuclear chromatin and regulate gene transcription. However, the extracellular histones released in response to bacterial challenges have been identified as mediators contributing to endothelial dysfunction, organ failure, and death during sepsis. In the present study, the adsorption of histones as well as plasma proteins (α1-acid glycoprotein (AGP), albumin, and γ-globulin) on alginic acid, pectin, dextran, and chitosan was examined in order to evaluate the potential of natural polysaccharides as therapeutic agents for multiple organ failure in sepsis. Alginic acid and pectin strongly adsorbed histones, whereas the adsorption abilities of dextran and chitosan toward histones were very low or negligible. Among the natural polysaccharides examined, only alginic acid did not adsorb any of the plasma proteins. These results demonstrated that alginic acid strongly adsorbed histones, but not plasma proteins; therefore, it has potential as a candidate drug for the treatment of multiple organ failure in sepsis. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Somatic mutations of the histone H3K27 demethylase, UTX, in human cancer

    Science.gov (United States)

    van Haaften, Gijs; Dalgliesh, Gillian L; Davies, Helen; Chen, Lina; Bignell, Graham; Greenman, Chris; Edkins, Sarah; Hardy, Claire; O’Meara, Sarah; Teague, Jon; Butler, Adam; Hinton, Jonathan; Latimer, Calli; Andrews, Jenny; Barthorpe, Syd; Beare, Dave; Buck, Gemma; Campbell, Peter J; Cole, Jennifer; Dunmore, Rebecca; Forbes, Simon; Jia, Mingming; Jones, David; Kok, Chai Yin; Leroy, Catherine; Lin, Meng-Lay; McBride, David J; Maddison, Mark; Maquire, Simon; McLay, Kirsten; Menzies, Andrew; Mironenko, Tatiana; Lee, Mulderrig; Mudie, Laura; Pleasance, Erin; Shepherd, Rebecca; Smith, Raffaella; Stebbings, Lucy; Stephens, Philip; Tang, Gurpreet; Tarpey, Patrick S; Turner, Rachel; Turrell, Kelly; Varian, Jennifer; West, Sofie; Widaa, Sara; Wray, Paul; Collins, V Peter; Ichimura, Koichi; Law, Simon; Wong, John; Yuen, Siu Tsan; Leung, Suet Yi; Tonon, Giovanni; DePinho, Ronald A; Tai, Yu-Tzu; Anderson, Kenneth C; Kahnoski, Richard J.; Massie, Aaron; Khoo, Sok Kean; Teh, Bin Tean; Stratton, Michael R; Futreal, P Andrew

    2010-01-01

    Somatically acquired epigenetic changes are present in many cancers. Epigenetic regulation is maintained via post-translational modifications of core histones. Here, we describe inactivating somatic mutations in the histone lysine demethylase, UTX, pointing to histone H3 lysine methylation deregulation in multiple tumour types. UTX reintroduction into cancer cells with inactivating UTX mutations resulted in slowing of proliferation and marked transcriptional changes. These data identify UTX as a new human cancer gene. PMID:19330029

  2. Histone Variants and Composition in the Developing Brain: Should MeCP2 Care?

    Science.gov (United States)

    Zago, Valentina; Pinar-CabezaDeVaca, Cristina; Vincent, John B; Ausio, Juan

    2017-01-01

    Specific compositional chromatin features distinguish brain/neuronal chromatin from that of other tissues and are critical to this organ and cell type development and neuroplasticity. These features include a significant turnover of the major constitutive chromosomal proteins, including the (canonical) replication-dependent histones, the replication-independent replacement histone variants, as well as the chromatin associated transcriptional regulator MeCP2 (methyl CpG binding protein 2). Alterations of histones and MeCP2 have already been implicated in many brain disorders. Despite the relevance of histone variants to chromatin structure and function, only recently has some exciting literature started to re-emerge that directly relates them to neuron plasticity and cognition. However, the amount of information available on the functional role of these histones is still very limited. The purpose of this review is to focus attention to this important group of chromatin proteins, which, in the brain, possess overlapping structural and functional roles with the highly abundant presence of MeCP2. There is an imperative need to understand how all these proteins communicate with each other, and future research will hopefully provide us with answers.

  3. Application of 3D-QSAR in the rational design of receptor ligands and enzyme inhibitors.

    Science.gov (United States)

    Mor, Marco; Rivara, Silvia; Lodola, Alessio; Lorenzi, Simone; Bordi, Fabrizio; Plazzi, Pier Vincenzo; Spadoni, Gilberto; Bedini, Annalida; Duranti, Andrea; Tontini, Andrea; Tarzia, Giorgio

    2005-11-01

    Quantitative structure-activity relationships (QSARs) are frequently employed in medicinal chemistry projects, both to rationalize structure-activity relationships (SAR) for known series of compounds and to help in the design of innovative structures endowed with desired pharmacological actions. As a difference from the so-called structure-based drug design tools, they do not require the knowledge of the biological target structure, but are based on the comparison of drug structural features, thus being defined ligand-based drug design tools. In the 3D-QSAR approach, structural descriptors are calculated from molecular models of the ligands, as interaction fields within a three-dimensional (3D) lattice of points surrounding the ligand structure. These descriptors are collected in a large X matrix, which is submitted to multivariate analysis to look for correlations with biological activity. Like for other QSARs, the reliability and usefulness of the correlation models depends on the validity of the assumptions and on the quality of the data. A careful selection of compounds and pharmacological data can improve the application of 3D-QSAR analysis in drug design. Some examples of the application of CoMFA and CoMSIA approaches to the SAR study and design of receptor or enzyme ligands is described, pointing the attention to the fields of melatonin receptor ligands and FAAH inhibitors.

  4. Effect of histones on hematopoietic stem cells-precursor in normal and irradiated organism

    International Nuclear Information System (INIS)

    Semina, O.V.; Semenets, T.N.; Zeppezauer, M.; Cebecauer, L.; Poverenny, A.M.

    1994-01-01

    Radiotherapeutic activity of histone fractions H 1 and H 2A /H 2B were studied. It was demonstrated that both fractions are able to reduce the damaging effect of ionizing radiation on spleen colony forming unit (CFU-S) population. Histone preparations stimulated colony-forming activity of bone marrow cells exposed to dose of 0.5-3.0 Gy both in the case of incubation with preparations and intravenous or intraperitoneal administration into recipients of irradiated cells. The effect of histones and accessory thymocytes on CFU-S population is compared

  5. Some physico-chemical characteristics of a modified histone H2b on acute radiation affection

    International Nuclear Information System (INIS)

    Khrapunov, S.N.; Mel'nik, G.G.; Blyum, Ya.B.; Tsudzevich, B.A.; Kucherenko, N.E.

    1980-01-01

    A study was made of optical characteristics of histone H2b isolated from liver nuclei 12 h following irradiation in a dose of 0.21 C/kg. It was demonstrated that under similar conditions, the control and exposed histones H2b have different steric organization which correlates with radiation-induced modifications of lateral radicals in H2b histone molecules

  6. Variations in DNA methylation, acetylated histone H4, and methylated histone H3 during Pinus radiata needle maturation in relation to the loss of in vitro organogenic capability.

    Science.gov (United States)

    Valledor, Luis; Meijón, Mónica; Hasbún, Rodrigo; Jesús Cañal, Maria; Rodríguez, Roberto

    2010-03-15

    Needle differentiation is a very complex process associated with the formation of a mature photosynthetic organ. From meristem differentiation to leaf maturation, gene control must play an important role switching required genes on and off to define tissue functions, with the epigenetic code being one of the main regulation mechanisms. In this work, we examined the connections between the variation in the levels of some epigenetic players (DNA methylation, acetylated histone H4 and histone H3 methylation at Lys 4 and Lys 9) at work during needle maturation. Our results indicate that needle maturation, which is associated with a decrease in organogenic capability, is related to an increase in heterochromatin-related epigenetic markers (high DNA methylation and low acetylated histone H4 levels, and the presence of histone H3 methylated at lys 9). Immunohistochemical analyses also showed that the DNA methylation of palisade parenchyma cell layers during the transition from immature to mature scions is associated with the loss of the capacity to induce adventitious organs. Copyright 2009 Elsevier GmbH. All rights reserved.

  7. Histone acetylation and histone deacetylase activity of magnesium valproate in tumor and peripheral blood of patients with cervical cancer. A phase I study

    Directory of Open Access Journals (Sweden)

    Cabrera Gustavo

    2005-07-01

    Full Text Available Abstract Background The development of cancer has been associated with epigenetic alterations such as aberrant histone deacetylase (HDAC activity. It was recently reported that valproic acid is an effective inhibitor of histone deacetylases and as such induces tumor cell differentiation, apoptosis, or growth arrest. Methods Twelve newly diagnosed patients with cervical cancer were treated with magnesium valproate after a baseline tumor biopsy and blood sampling at the following dose levels (four patients each: 20 mg/kg; 30 mg/kg, or 40 mg/kg for 5 days via oral route. At day 6, tumor and blood sampling were repeated and the study protocol ended. Tumor acetylation of H3 and H4 histones and HDAC activity were evaluated by Western blot and colorimetric HDAC assay respectively. Blood levels of valproic acid were determined at day 6 once the steady-state was reached. Toxicity of treatment was evaluated at the end of study period. Results All patients completed the study medication. Mean daily dose for all patients was 1,890 mg. Corresponding means for the doses 20-, 30-, and 40-mg/kg were 1245, 2000, and 2425 mg, respectively. Depressed level of consciousness grade 2 was registered in nine patients. Ten patients were evaluated for H3 and H4 acetylation and HDAC activity. After treatment, we observed hyperacetylation of H3 and H4 in the tumors of nine and seven patients, respectively, whereas six patients demonstrated hyperacetylation of both histones. Serum levels of valproic acid ranged from 73.6–170.49 μg/mL. Tumor deacetylase activity decreased in eight patients (80%, whereas two had either no change or a mild increase. There was a statistically significant difference between pre and post-treatment values of HDAC activity (mean, 0.36 vs. 0.21, two-tailed t test p Conclusion Magnesium valproate at a dose between 20 and 40 mg/kg inhibits deacetylase activity and hyperacetylates histones in tumor tissues.

  8. The multi-domain protein Np95 connects DNA methylation and histone modification.

    Science.gov (United States)

    Rottach, Andrea; Frauer, Carina; Pichler, Garwin; Bonapace, Ian Marc; Spada, Fabio; Leonhardt, Heinrich

    2010-04-01

    DNA methylation and histone modifications play a central role in the epigenetic regulation of gene expression and cell differentiation. Recently, Np95 (also known as UHRF1 or ICBP90) has been found to interact with Dnmt1 and to bind hemimethylated DNA, indicating together with genetic studies a central role in the maintenance of DNA methylation. Using in vitro binding assays we observed a weak preference of Np95 and its SRA (SET- and Ring-associated) domain for hemimethylated CpG sites. However, the binding kinetics of Np95 in living cells was not affected by the complete loss of genomic methylation. Investigating further links with heterochromatin, we could show that Np95 preferentially binds histone H3 N-terminal tails with trimethylated (H3K9me3) but not acetylated lysine 9 via a tandem Tudor domain. This domain contains three highly conserved aromatic amino acids that form an aromatic cage similar to the one binding H3K9me3 in the chromodomain of HP1ss. Mutations targeting the aromatic cage of the Np95 tandem Tudor domain (Y188A and Y191A) abolished specific H3 histone tail binding. These multiple interactions of the multi-domain protein Np95 with hemimethylated DNA and repressive histone marks as well as with DNA and histone methyltransferases integrate the two major epigenetic silencing pathways.

  9. Middle-down hybrid chromatography/tandem mass spectrometry workflow for characterization of combinatorial post-translational modifications in histones.

    Science.gov (United States)

    Sidoli, Simone; Schwämmle, Veit; Ruminowicz, Chrystian; Hansen, Thomas A; Wu, Xudong; Helin, Kristian; Jensen, Ole N

    2014-10-01

    We present an integrated middle-down proteomics platform for sensitive mapping and quantification of coexisting PTMs in large polypeptides (5-7 kDa). We combined an RP trap column with subsequent weak cation exchange-hydrophilic interaction LC interfaced directly to high mass accuracy ESI MS/MS using electron transfer dissociation. This enabled automated and efficient separation and sequencing of hypermodified histone N-terminal tails for unambiguous localization of combinatorial PTMs. We present Histone Coder and IsoScale software to extract, filter, and analyze MS/MS data, including quantification of cofragmenting isobaric polypeptide species. We characterized histone tails derived from murine embryonic stem cells knockout in suppressor of zeste12 (Suz12(-/-) ) and quantified 256 combinatorial histone marks in histones H3, H4, and H2A. Furthermore, a total of 713 different combinatorial histone marks were identified in purified histone H3. We measured a seven-fold reduction of H3K27me2/me3 (where me2 and me3 are dimethylation and trimethylation, respectively) in Suz12(-) (/) (-) cells and detected significant changes of the relative abundance of 16 other single PTMs of histone H3 and other combinatorial marks. We conclude that the inactivation of Suz12 is associated with changes in the abundance of not only H3K27 methylation but also multiple other PTMs in histone H3 tails. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. N-acetyl-heparin attenuates acute lung injury caused by acid aspiration mainly by antagonizing histones in mice.

    Science.gov (United States)

    Zhang, Yanlin; Zhao, Zanmei; Guan, Li; Mao, Lijun; Li, Shuqiang; Guan, Xiaoxu; Chen, Ming; Guo, Lixia; Ding, Lihua; Cong, Cuicui; Wen, Tao; Zhao, Jinyuan

    2014-01-01

    Acute lung injury (ALI) is the leading cause of death in intensive care units. Extracellular histones have recently been recognized to be pivotal inflammatory mediators. Heparin and its derivatives can bind histones through electrostatic interaction. The purpose of this study was to investigate 1) the role of extracellular histones in the pathogenesis of ALI caused by acid aspiration and 2) whether N-acetyl-heparin (NAH) provides more protection than heparin against histones at the high dose. ALI was induced in mice via intratracheal instillation of hydrochloric acid (HCl). Lethality rate, blood gas, myeloperoxidase (MPO) activity, lung edema and pathological changes were used to evaluate the degree of ALI. Heparin/NAH was administered intraperitoneally, twice a day, for 3 days or until death. Acid aspiration caused an obvious increase in extracellular histones. A significant correlation existed between the concentration of HCl aspirated and the circulating histones. Heparin/NAH (10 mg/kg) improved the lethality rate, blood gas, MPO activity, lung edema and pathological score. At a dose of 20 mg/kg, NAH still provided protection, however heparin tended to aggravate the injury due to hemorrhagic complications. The specific interaction between heparin and histones was verified by the binding assay. In summary, high levels of extracellular histones can be pathogenic in ALI caused by acid aspiration. By neutralizing extracellular histones, heparin/NAH can offer similar protection at the moderate doses. At the high dose, NAH provides better protection than heparin.

  11. Histone and ribosomal RNA repetitive gene clusters of the boll weevil are linked in a tandem array.

    Science.gov (United States)

    Roehrdanz, R; Heilmann, L; Senechal, P; Sears, S; Evenson, P

    2010-08-01

    Histones are the major protein component of chromatin structure. The histone family is made up of a quintet of proteins, four core histones (H2A, H2B, H3 & H4) and the linker histones (H1). Spacers are found between the coding regions. Among insects this quintet of genes is usually clustered and the clusters are tandemly repeated. Ribosomal DNA contains a cluster of the rRNA sequences 18S, 5.8S and 28S. The rRNA genes are separated by the spacers ITS1, ITS2 and IGS. This cluster is also tandemly repeated. We found that the ribosomal RNA repeat unit of at least two species of Anthonomine weevils, Anthonomus grandis and Anthonomus texanus (Coleoptera: Curculionidae), is interspersed with a block containing the histone gene quintet. The histone genes are situated between the rRNA 18S and 28S genes in what is known as the intergenic spacer region (IGS). The complete reiterated Anthonomus grandis histone-ribosomal sequence is 16,248 bp.

  12. SET oncoprotein accumulation regulates transcription through DNA demethylation and histone hypoacetylation.

    Science.gov (United States)

    Almeida, Luciana O; Neto, Marinaldo P C; Sousa, Lucas O; Tannous, Maryna A; Curti, Carlos; Leopoldino, Andreia M

    2017-04-18

    Epigenetic modifications are essential in the control of normal cellular processes and cancer development. DNA methylation and histone acetylation are major epigenetic modifications involved in gene transcription and abnormal events driving the oncogenic process. SET protein accumulates in many cancer types, including head and neck squamous cell carcinoma (HNSCC); SET is a member of the INHAT complex that inhibits gene transcription associating with histones and preventing their acetylation. We explored how SET protein accumulation impacts on the regulation of gene expression, focusing on DNA methylation and histone acetylation. DNA methylation profile of 24 tumour suppressors evidenced that SET accumulation decreased DNA methylation in association with loss of 5-methylcytidine, formation of 5-hydroxymethylcytosine and increased TET1 levels, indicating an active DNA demethylation mechanism. However, the expression of some suppressor genes was lowered in cells with high SET levels, suggesting that loss of methylation is not the main mechanism modulating gene expression. SET accumulation also downregulated the expression of 32 genes of a panel of 84 transcription factors, and SET directly interacted with chromatin at the promoter of the downregulated genes, decreasing histone acetylation. Gene expression analysis after cell treatment with 5-aza-2'-deoxycytidine (5-AZA) and Trichostatin A (TSA) revealed that histone acetylation reversed transcription repression promoted by SET. These results suggest a new function for SET in the regulation of chromatin dynamics. In addition, TSA diminished both SET protein levels and SET capability to bind to gene promoter, suggesting that administration of epigenetic modifier agents could be efficient to reverse SET phenotype in cancer.

  13. Histone H1 chaperone activity of TAF-I is regulated by its subtype-dependent intramolecular interaction.

    Science.gov (United States)

    Kajitani, Kaori; Kato, Kohsuke; Nagata, Kyosuke

    2017-04-01

    Linker histone H1 is involved in the regulation of gene activity through the maintenance of higher-order chromatin structure. Previously, we have shown that template activating factor-I (TAF-I or protein SET) is involved in linker histone H1 dynamics as a histone H1 chaperone. In human and murine cells, two TAF-I subtypes exist, namely TAF-Iα and TAF-Iβ. TAF-I has a highly acidic amino acid cluster in its C-terminal region and forms homo- or heterodimers through its dimerization domain. Both dimer formation and the C-terminal region of TAF-I are essential for the histone chaperone activity. TAF-Iα exhibits less histone chaperone activity compared with TAF-Iβ even though TAF-Iα and β differ only in their N-terminal regions. However, it is unclear how subtype-specific TAF-I activities are regulated. Here, we have shown that the N-terminal region of TAF-Iα autoinhibits its histone chaperone activity via intramolecular interaction with its C-terminal region. When the interaction between the N- and C-terminal regions of TAF-Iα is disrupted, TAF-Iα shows a histone chaperone activity similar to that of TAF-Iβ. Taken together, these results provide mechanistic insights into the concept that fine tuning of TAF-I histone H1 chaperone activity relies on the subtype compositions of the TAF-I dimer. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  14. Irrational Rationality of Terrorism

    Directory of Open Access Journals (Sweden)

    Robert Nalbandov

    2013-12-01

    Full Text Available The present article deals with the ontological problem of applying the rational choice frameworks to the study of terrorism. It testing the application of the rational choice to the “old” (before the end of the Cold War and the “new” (after the end of the Cold War terrorisms. It starts with analyzing the fundamentals of rationality and applies it at two levels: the individual (actors and group (collective via two outlooks: tactical (short-term and strategic (long-term. The main argument of the article is that while the “old” terrorism can be explained by the rational choice theory its “new” version represents a substantial departure from rationality.

  15. Appendix to rationally designing of machine tools for example of universal lathe

    Directory of Open Access Journals (Sweden)

    Pejović Branko B.

    2015-01-01

    Full Text Available In this paper, for the universal machine tool for turning and function of the thrust of the cutting speed for blasting area efficiency and stability of the tool and sectional filings. These dependencies were used to determine the main characteristics of the optimal and maximum operating power equipment. Based on this, an analysis of the increase in operating power equipment typical cases in order to adapt to the new needs of exploitation properties and improve productivity. Using the previous analysis, it was determined the best solution in terms of the rational design of machines, by ensuring the simultaneous use of the main features on the basis of increase in speed with the use of tools and higher stability. In order to better display problems, an analysis of the appropriate diagrams P-V and V-D. On a typical example of the manufacturing practice at the end of the work, we demonstrate improvement of exploitation characteristics of a universal machine through appropriate calculations in terms of new needs adjustment feature, where it is expected that the reconstruction of the smallest machines.

  16. Lying for Strategic Advantage: Rational and Boundedly Rational Misrepresentation of Intentions

    OpenAIRE

    Crawford, Vincent P.

    2001-01-01

    Starting from Hendricks and McAfee's (2000) example of the Allies' decision to feint at Calais and attack at Normandy on D-Day, this paper models misrepresentation of intentions to competitors or enemies. Allowing for the possibility of bounded strategic rationality and rational players' responses to it yields a sensible account of lying via costless, noiseless messages. In many cases the model has generically unique pure-strategy sequential equilibria, in which rational players exploit bound...

  17. Characterization of the UV-crosslinked heterodimer of histones H2B and H4

    International Nuclear Information System (INIS)

    Johnson, E.R.; Brown, D.M.; DeLange, R.J.

    1986-01-01

    At relatively high salt concentrations (1.2 M), histone 2B (H2B) and histone 4 (H4) can be covalently crosslinked by irradiation with ultraviolet light to yield a mixture of the three possible dimers: H2B-H2B, H4-H4, and H2B-H4. The formation of the H2B-H4 heterodimer was found to be favored at lower histone concentrations (> 90% H2B-H4 at 0.1 mg/ml total histone protein). CNBr cleavage of the H2B-H4 dimer produced three fragments which were separated by reverse phase HPLC. These fragments were identified by amino acid compositional analysis to be H4(85-102), H2B(62-125), and the crosslinked N-terminal regions H2B(1-59)-H4(1-84). Amino acid sequence analysis of the crosslinked fragment indicated that tyrosine-40 of H2B is likely involved in the covalent crosslinkage which joins the histone monomers to form the heterodimer

  18. Aberrant histone acetylation contributes to elevated interleukin-6 production in rheumatoid arthritis synovial fibroblasts.

    Science.gov (United States)

    Wada, Takuma Tsuzuki; Araki, Yasuto; Sato, Kojiro; Aizaki, Yoshimi; Yokota, Kazuhiro; Kim, Yoon Taek; Oda, Hiromi; Kurokawa, Riki; Mimura, Toshihide

    2014-02-21

    Accumulating evidence indicates that epigenetic aberrations have a role in the pathogenesis of rheumatoid arthritis (RA). However, reports on histone modifications are as yet quite limited in RA. Interleukin (IL)-6 is an inflammatory cytokine which is known to be involved in the pathogenesis of RA. Here we report the role of histone modifications in elevated IL-6 production in RA synovial fibroblasts (SFs). The level of histone H3 acetylation (H3ac) in the IL-6 promoter was significantly higher in RASFs than osteoarthritis (OA) SFs. This suggests that chromatin structure is in an open or loose state in the IL-6 promoter in RASFs. Furthermore, curcumin, a histone acetyltransferase (HAT) inhibitor, significantly reduced the level of H3ac in the IL-6 promoter, as well as IL-6 mRNA expression and IL-6 protein secretion by RASFs. Taken together, it is suggested that hyperacetylation of histone H3 in the IL-6 promoter induces the increase in IL-6 production by RASFs and thereby participates in the pathogenesis of RA. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Histone lysine demethylases as targets for anticancer therapy

    DEFF Research Database (Denmark)

    Højfeldt, Jonas W; Agger, Karl; Helin, Kristian

    2013-01-01

    It has recently been demonstrated that the genes controlling the epigenetic programmes that are required for maintaining chromatin structure and cell identity include genes that drive human cancer. This observation has led to an increased awareness of chromatin-associated proteins as potentially...... interesting drug targets. The successful introduction of DNA methylation and histone deacetylase (HDAC) inhibitors for the treatment of specific subtypes of cancer has paved the way for the use of epigenetic therapy. Here, we highlight key biological findings demonstrating the roles of members of the histone...... lysine demethylase class of enzymes in the development of cancers, discuss the potential and challenges of therapeutically targeting them, and highlight emerging small-molecule inhibitors of these enzymes....

  20. The organization structure and regulatory elements of Chlamydomonas histone genes reveal features linking plant and animal genes.

    Science.gov (United States)

    Fabry, S; Müller, K; Lindauer, A; Park, P B; Cornelius, T; Schmitt, R

    1995-09-01

    The genome of the green alga Chlamydomonas reinhardtii contains approximately 15 gene clusters of the nucleosomal (or core) histone H2A, H2B, H3 and H4 genes and at least one histone H1 gene. Seven non-allelic histone gene loci were isolated from a genomic library, physically mapped, and the nucleotide sequences of three isotypes of each core histone gene species and one linked H1 gene determined. The core histone genes are organized in clusters of H2A-H2B and H3-H4 pairs, in which each gene pair shows outwardly divergent transcription from a short (< 300 bp) intercistronic region. These intercistronic regions contain typically conserved promoter elements, namely a TATA-box and the three motifs TGGCCAG-G(G/C)-CGAG, CGTTGACC and CGGTTG. Different from the genes of higher plants, but like those of animals and the related alga Volvox, the 3' untranslated regions contain no poly A signal, but a palindromic sequence (3' palindrome) essential for mRNA processing is present. One single H1 gene was found in close linkage to a H2A-H2B pair. The H1 upstream region contains the octameric promoter element GGTTGACC (also found upstream of the core histone genes) and two specific sequence motifs that are shared only with the Volvox H1 promoters. This suggests differential transcription of the H1 and the core histone genes. The H1 gene is interrupted by two introns. Unlike Volvox H3 genes, the three sequenced H3 isoforms are intron-free. Primer-directed PCR of genomic DNA demonstrated, however, that at least 8 of the about 15 H3 genes do contain one intron at a conserved position. In synchronized C. reinhardtii cells, H4 mRNA levels (representative of all core histone mRNAs) peak during cell division, suggesting strict replication-dependent gene control. The derived peptide sequences place C. reinhardtii core histones closer to plants than to animals, except that the H2A histones are more animal-like. The peptide sequence of histone H1 is closely related to the V. carteri VH1-II

  1. Hippocampal histone acetylation regulates object recognition and the estradiol-induced enhancement of object recognition.

    Science.gov (United States)

    Zhao, Zaorui; Fan, Lu; Fortress, Ashley M; Boulware, Marissa I; Frick, Karyn M

    2012-02-15

    Histone acetylation has recently been implicated in learning and memory processes, yet necessity of histone acetylation for such processes has not been demonstrated using pharmacological inhibitors of histone acetyltransferases (HATs). As such, the present study tested whether garcinol, a potent HAT inhibitor in vitro, could impair hippocampal memory consolidation and block the memory-enhancing effects of the modulatory hormone 17β-estradiol E2. We first showed that bilateral infusion of garcinol (0.1, 1, or 10 μg/side) into the dorsal hippocampus (DH) immediately after training impaired object recognition memory consolidation in ovariectomized female mice. A behaviorally effective dose of garcinol (10 μg/side) also significantly decreased DH HAT activity. We next examined whether DH infusion of a behaviorally subeffective dose of garcinol (1 ng/side) could block the effects of DH E2 infusion on object recognition and epigenetic processes. Immediately after training, ovariectomized female mice received bilateral DH infusions of vehicle, E2 (5 μg/side), garcinol (1 ng/side), or E2 plus garcinol. Forty-eight hours later, garcinol blocked the memory-enhancing effects of E2. Garcinol also reversed the E2-induced increase in DH histone H3 acetylation, HAT activity, and levels of the de novo methyltransferase DNMT3B, as well as the E2-induced decrease in levels of the memory repressor protein histone deacetylase 2. Collectively, these findings suggest that histone acetylation is critical for object recognition memory consolidation and the beneficial effects of E2 on object recognition. Importantly, this work demonstrates that the role of histone acetylation in memory processes can be studied using a HAT inhibitor.

  2. Inhibition of histone deacetylases sensitizes glioblastoma cells to lomustine

    DEFF Research Database (Denmark)

    Staberg, Mikkel; Michaelsen, Signe Regner; Rasmussen, Rikke Darling

    2017-01-01

    the sensitizing effect of the HDACi trichostatin A (TSA) to the alkylating agent lomustine (CCNU), which is used in the clinic for the treatment of GBM. METHODS: Twelve primary GBM cell cultures grown as neurospheres were used in this study, as well as one established GBM-derived cell line (U87 MG). Histone...... are problems that call for a prompt development of novel therapeutic strategies. While only displaying modest efficacies as mono-therapy in pre-clinical settings, histone deacetylase inhibitors (HDACi) have shown promising sensitizing effects to a number of cytotoxic agents. Here, we sought to investigate...

  3. Determinants of Actor Rationality

    DEFF Research Database (Denmark)

    Ellegaard, Chris

    Industrial companies must exercise influence on their suppliers (or supplier actors). Actor rationality is a central theme connected to this management task. In this article, relevant literature is studied with the purpose of shedding light on determinants of actor rationality. Two buyer-supplier...... relations are investigated in a multiple case study, leading to the proposal of various additional factors that determine and shape actor rationality. Moreover a conceptual model of rationality determinants in the buyer-supplier relation is proposed, a model that may help supply managers analyse...

  4. Two Concepts of Rationality

    Directory of Open Access Journals (Sweden)

    Danny Frederick

    2010-02-01

    Full Text Available The dominant tradition in Western philosophy sees rationality as dictating. Thus rationality may require that we believe the best explanation and simple conceptual truths and that we infer in accordance with evident rules of inference. I argue that, given what we know about the growth of knowledge, this authoritarian concept of rationality leads to absurdities and should be abandoned. I then outline a libertarian concept of rationality, derived from Popper, which eschews the dictates and which sees a rational agent as one who questions, criticises, conjectures and experiments. I argue that, while the libertarian approach escapes the absurdities of the authoritarian, it requires two significant developments and an important clarification to be made fully consistent with itself.

  5. Rationality and institutions : an inquiry into the normative implications of rational choice theory

    OpenAIRE

    Engelen, Bart

    2007-01-01

    I aim to analyze in this dissertation what a desirable basic institutional structure looks like from the perspective of rationality. While the main topic is thus normative in nature, I start by clarifying in the first part what the notion of rationality exactly entails. I do so by focusing explicitly on the economic conception of rationality, according to which a rational individual is motivated to serve his self-interest on the basis of cost-benefit calculations. Such a Homo Economicus is ch...

  6. Circulating histones are major mediators of systemic inflammation and cellular injury in patients with acute liver failure.

    Science.gov (United States)

    Wen, Zongmei; Lei, Zhen; Yao, Lu; Jiang, Ping; Gu, Tao; Ren, Feng; Liu, Yan; Gou, Chunyan; Li, Xiuhui; Wen, Tao

    2016-09-29

    Acute liver failure (ALF) is a life-threatening systemic disorder. Here we investigated the impact of circulating histones, recently identified inflammatory mediators, on systemic inflammation and liver injury in murine models and patients with ALF. We analyzed histone levels in blood samples from 62 patients with ALF, 60 patients with chronic liver disease, and 30 healthy volunteers. We incubated patients' sera with human L02 hepatocytes and monocytic U937 cells to assess cellular damage and cytokine production. d-galactosamine plus lipopolysaccharide (GalN/LPS), concanavalin A (ConA), and acetaminophen (APAP) were given to C57BL/6N mice to induce liver injury, respectively, and the pathogenic role of circulating histones was studied. Besides, the protective effect of nonanticoagulant heparin, which can bind histones, was evaluated with in vivo and ex vivo investigations. We observed that circulating histones were significantly increased in patients with ALF, and correlated with disease severity and mortality. Significant systemic inflammation was also pronounced in ALF patients, which were associated with histone levels. ALF patients' sera induced significant L02 cell death and stimulated U937 cells to produce cytokines, which were abrogated by nonanticoagulant heparin. Furthermore, circulating histones were all released remarkably in GalN/LPS, ConA, and APAP-treated mice, and associated with high levels of inflammatory cytokines. Heparin reduced systemic inflammation and liver damage in mice, suggesting that it could interfere with histone-associated liver injury. Collectively, these findings demonstrate that circulating histones are critical mediators of systemic inflammation and cellular damage in ALF, which may be potentially translatable for clinical use.

  7. Histone deacetylase inhibition as an alternative strategy against invasive aspergillosis

    Directory of Open Access Journals (Sweden)

    Frederic eLamoth

    2015-02-01

    Full Text Available Invasive aspergillosis (IA is a life-threatening infection due to Aspergillus fumigatus and other Aspergillus spp. Drugs targeting the fungal cell membrane (triazoles, amphotericin B or cell wall (echinocandins are currently the sole therapeutic options against IA. Their limited efficacy and the emergence of resistance warrant the identification of new antifungal targets. Histone deacetylases (HDACs are enzymes responsible of the deacetylation of lysine residues of core histones, thus controlling chromatin remodeling and transcriptional activation. HDACs also control the acetylation and activation status of multiple non-histone proteins, including the heat shock protein 90 (Hsp90, an essential molecular chaperone for fungal virulence and antifungal resistance. This review provides an overview of the different HDACs in Aspergillus spp. as well as their respective contribution to total HDAC activity, fungal growth, stress responses, and virulence. The potential of HDAC inhibitors, currently under development for cancer therapy, as novel alternative antifungal agents against IA is discussed.

  8. Tetrahydroisoquinolines as novel histone deacetylase inhibitors for treatment of cancer

    Directory of Open Access Journals (Sweden)

    Danqi Chen

    2016-01-01

    Full Text Available Histone acetylation is a critical process in the regulation of chromatin structure and gene expression. Histone deacetylases (HDACs remove the acetyl group, leading to chromatin condensation and transcriptional repression. HDAC inhibitors are considered a new class of anticancer agents and have been shown to alter gene transcription and exert antitumor effects. This paper describes our work on the structural determination and structure-activity relationship (SAR optimization of tetrahydroisoquinoline compounds as HDAC inhibitors. These compounds were tested for their ability to inhibit HDAC 1, 3, 6 and for their ability to inhibit the proliferation of a panel of cancer cell lines. Among these, compound 82 showed the greatest inhibitory activity toward HDAC 1, 3, 6 and strongly inhibited growth of the cancer cell lines, with results clearly superior to those of the reference compound, vorinostat (SAHA. Compound 82 increased the acetylation of histones H3, H4 and tubulin in a concentration-dependent manner, suggesting that it is a broad inhibitor of HDACs.

  9. Current Proteomic Methods to Investigate the Dynamics of Histone Turnover in the Central Nervous System.

    Science.gov (United States)

    Farrelly, L A; Dill, B D; Molina, H; Birtwistle, M R; Maze, I

    2016-01-01

    Characterizing the dynamic behavior of nucleosomes in the central nervous system is vital to our understanding of brain-specific chromatin-templated processes and their roles in transcriptional plasticity. Histone turnover-the complete loss of old, and replacement by new, nucleosomal histones-is one such phenomenon that has recently been shown to be critical for cell-type-specific transcription in brain, synaptic plasticity, and cognition. Such revelations that histones, long believed to static proteins in postmitotic cells, are highly dynamic in neurons were only possible owing to significant advances in analytical chemistry-based techniques, which now provide a platform for investigations of histone dynamics in both healthy and diseased tissues. Here, we discuss both past and present proteomic methods (eg, mass spectrometry, human "bomb pulse labeling") for investigating histone turnover in brain with the hope that such information may stimulate future investigations of both adaptive and aberrant forms of "neuroepigenetic" plasticity. © 2016 Elsevier Inc. All rights reserved.

  10. Study of the repeatability of histone genes in the ploidy series of wheat and Aegilops

    International Nuclear Information System (INIS)

    Vakhitov, V.A.; Kulikov, A.M.

    1986-01-01

    The hDNA content and number of histone genes in the genomes of different wheat and Aegilops species have been determined by molecular hybridization of DNA with 125 I-histone DNA of Drosophila (L-repeat) on nitrocellulose filters. It has been demonstrated that the proportion of hDNA in the total DNA of diploid and polyploid wheat species is (1.3-7.7) x 10 -3 % (57-850 genes), and in the ploidy series of Aegilops species (2.0-8.0) x 10 -3 % (89-780 genes). The repeatability of the histone genes generally increases at each ploidy level in the species with higher DNA content. At the same time, it has been demonstrated that the DNA content is not the only factor determining repeatability of the histone genes, as some diploid and allopolyploid species have similar number of these genes. It has been concluded that genetic mechanisms are involved in the regulation of the number of histone genes

  11. Histone H2AX in DNA repair

    International Nuclear Information System (INIS)

    Lewandowska, H.; Szumiel, I.

    2002-01-01

    The paper reviews the recent reports on the role of the phosphorylated histone H2AX (γ-H2AX). The modification of this histone is an important part of the cellular response to the induction of DNA double strand brakes (DSB) by ionising radiation and other DSB-generating factors. In irradiated cells the modification is carried out mainly by ATM (ataxia-telangiectasia mutated) kinase, the enzyme that starts the alarm signalling upon induction of DSB.γ-H2AX molecules are formed within 1-3 min after irradiation and form foci at the sites of DSB. This seems to be necessary for the recruitment of repair factors that are later present in foci of damaged nuclei. Modification of a constant percentage of H2AX molecules per DSB takes place, corresponding to chromatin domains of megabase of DNA. (author)

  12. Rational Behavior Training: A Seven Lesson Sequence for Teaching Rational Behavior Skills to Students with Social and Emotional Disabilities.

    Science.gov (United States)

    Patton, Patricia Lucey

    This seven lesson curriculum sequence is designed to help teachers teach principles of Rational Behavior Training (RBT) which targets thinking behaviors, feeling behaviors, and behavioral responses to the environment. The program is appropriate for students with social and emotional disabilities and also develops reading, writing, spelling,…

  13. Rationing medical education.

    African Journals Online (AJOL)

    This paper discussed the pros and cons of the application of rationing to medical education and the different ... Different types of rationing exist in healthcare professional education. ... state-of-the-art resources, technology and tutors con-.

  14. Different reaction of core histones H2A and H2B to the red laser radiation

    Directory of Open Access Journals (Sweden)

    Brill G.E.

    2017-09-01

    Full Text Available Aim: to investigate the influence of red laser irradiation on the processes of self-assembly of core histones H2A and H2B. Material and Methods. Solutions of human histone proteins were used in the work. Self-assembly was studied by the method of wedge dehydration. Image facies analysis consisted in their qualitative characterization and calculation of quantitative indicators with subsequent statistical processing. Results. It was established that linearly polarized laser light of the red region of the spectrum (A=660 nm, 1 J/cm2 significantly modifies the process of self-assembly of core histone H2B, while the structure of the facies of H2A histone changing to a lesser extent. Conclusion. Red laser radiation influences on the on the processes of self-assembly of core histones H2A and H2B. There is a differential sensitivity of different classes of histones to laser action. Histone proteins used in the experiments are present in the form of aqueous salt solutions. Red light realizes the effect seems to be due to the formation of singlet oxygen by direct laser excitation of molecular oxygen.

  15. Epigenetic Histone Marks of Extended Meta-Polycentric Centromeres of Lathyrus and Pisum Chromosomes

    Czech Academy of Sciences Publication Activity Database

    Neumann, Pavel; Schubert, V.; Vrbová, Iva; Manning, Jasper Eugene; Houben, A.; Macas, Jiří

    2016-01-01

    Roč. 7, č. 234 (2016) ISSN 1664-462X R&D Projects: GA ČR(CZ) GAP501/11/1843 Institutional support: RVO:60077344 Keywords : Centromere structure * epigenetic modifications * histone phosphorylation * histone methylation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.298, year: 2016

  16. The multi-domain protein Np95 connects DNA methylation and histone modification

    Science.gov (United States)

    Rottach, Andrea; Frauer, Carina; Pichler, Garwin; Bonapace, Ian Marc; Spada, Fabio; Leonhardt, Heinrich

    2010-01-01

    DNA methylation and histone modifications play a central role in the epigenetic regulation of gene expression and cell differentiation. Recently, Np95 (also known as UHRF1 or ICBP90) has been found to interact with Dnmt1 and to bind hemimethylated DNA, indicating together with genetic studies a central role in the maintenance of DNA methylation. Using in vitro binding assays we observed a weak preference of Np95 and its SRA (SET- and Ring-associated) domain for hemimethylated CpG sites. However, the binding kinetics of Np95 in living cells was not affected by the complete loss of genomic methylation. Investigating further links with heterochromatin, we could show that Np95 preferentially binds histone H3 N-terminal tails with trimethylated (H3K9me3) but not acetylated lysine 9 via a tandem Tudor domain. This domain contains three highly conserved aromatic amino acids that form an aromatic cage similar to the one binding H3K9me3 in the chromodomain of HP1ß. Mutations targeting the aromatic cage of the Np95 tandem Tudor domain (Y188A and Y191A) abolished specific H3 histone tail binding. These multiple interactions of the multi-domain protein Np95 with hemimethylated DNA and repressive histone marks as well as with DNA and histone methyltransferases integrate the two major epigenetic silencing pathways. PMID:20026581

  17. Histone phosphorylation during radiation-induced mitotic delay in synchronous plasmodia of Physarum polycephalum

    International Nuclear Information System (INIS)

    Brewer, E.N.; Oleinick, N.L.

    1980-01-01

    Using the nearly perfect synchrony of the mitotic stages in Physarum plasmodia, and making use of 32 P as a tracer, studies were made to define the time course of histone phosphorylation during the late G2 and prophase and the alterations in that time course accompanying radiation-induced mitotic delay. Histone H1 was phosphorylated throughout the last 2-3 hours of the mitotic cycle coincident with the early stages of chromosome condensation. H1 phosphorylation appeared to be reduced in irradiated plasmodia. It is postulated that a longer time period, i.e. the mitotic delay, may be required to obtain the same eventual level of H1-phosphate. In normal cultures, nucleosome core histones were phosphorylated late in G2 and prophase, the peak corresponding closely with the γ-transition point. In irradiated plasmodia, phosphorylation of the core histones had an extended time course similar to H1. (U.K.)

  18. Rationality problem for algebraic tori

    CERN Document Server

    Hoshi, Akinari

    2017-01-01

    The authors give the complete stably rational classification of algebraic tori of dimensions 4 and 5 over a field k. In particular, the stably rational classification of norm one tori whose Chevalley modules are of rank 4 and 5 is given. The authors show that there exist exactly 487 (resp. 7, resp. 216) stably rational (resp. not stably but retract rational, resp. not retract rational) algebraic tori of dimension 4, and there exist exactly 3051 (resp. 25, resp. 3003) stably rational (resp. not stably but retract rational, resp. not retract rational) algebraic tori of dimension 5. The authors make a procedure to compute a flabby resolution of a G-lattice effectively by using the computer algebra system GAP. Some algorithms may determine whether the flabby class of a G-lattice is invertible (resp. zero) or not. Using the algorithms, the suthors determine all the flabby and coflabby G-lattices of rank up to 6 and verify that they are stably permutation. The authors also show that the Krull-Schmidt theorem for G-...

  19. MAPK-triggered chromatin reprogramming by histone deacetylase in plant innate immunity

    KAUST Repository

    Latrasse, David; Jé gu, Teddy; Li, Huchen; Zé licourt, Axel de; Raynaud, Cé cile; Legras, Sté phanie; Gust, Andrea; Samajova, Olga; Veluchamy, Alaguraj; Rayapuram, Naganand; Ramirez Prado, Juan Sebastian; Kulikova, Olga; Colcombet, Jean; Bigeard, Jean; Genot, Baptiste; Bisseling, Ton; Benhamed, Moussa; Hirt, Heribert

    2017-01-01

    Microbial-associated molecular patterns activate several MAP kinases, which are major regulators of the innate immune response in Arabidopsis thaliana that induce large-scale changes in gene expression. Here, we determine whether microbial-associated molecular pattern-triggered gene expression involves modifications at the chromatin level.Histone acetylation and deacetylation are major regulators of microbial-associated molecular pattern-triggered gene expression and implicate the histone deacetylase HD2B in the reprogramming of defence gene expression and innate immunity. The MAP kinase MPK3 directly interacts with and phosphorylates HD2B, thereby regulating the intra-nuclear compartmentalization and function of the histone deacetylase.By studying a number of gene loci that undergo microbial-associated molecular pattern-dependent activation or repression, our data reveal a mechanistic model for how protein kinase signaling directly impacts chromatin reprogramming in plant defense.

  20. MAPK-triggered chromatin reprogramming by histone deacetylase in plant innate immunity

    KAUST Repository

    Latrasse, David

    2017-07-06

    Microbial-associated molecular patterns activate several MAP kinases, which are major regulators of the innate immune response in Arabidopsis thaliana that induce large-scale changes in gene expression. Here, we determine whether microbial-associated molecular pattern-triggered gene expression involves modifications at the chromatin level.Histone acetylation and deacetylation are major regulators of microbial-associated molecular pattern-triggered gene expression and implicate the histone deacetylase HD2B in the reprogramming of defence gene expression and innate immunity. The MAP kinase MPK3 directly interacts with and phosphorylates HD2B, thereby regulating the intra-nuclear compartmentalization and function of the histone deacetylase.By studying a number of gene loci that undergo microbial-associated molecular pattern-dependent activation or repression, our data reveal a mechanistic model for how protein kinase signaling directly impacts chromatin reprogramming in plant defense.

  1. Identification of a peptide inhibitor for the histone methyltransferase WHSC1.

    Directory of Open Access Journals (Sweden)

    Michael J Morrison

    Full Text Available WHSC1 is a histone methyltransferase that is responsible for mono- and dimethylation of lysine 36 on histone H3 and has been implicated as a driver in a variety of hematological and solid tumors. Currently, there is a complete lack of validated chemical matter for this important drug discovery target. Herein we report on the first fully validated WHSC1 inhibitor, PTD2, a norleucine-containing peptide derived from the histone H4 sequence. This peptide exhibits micromolar affinity towards WHSC1 in biochemical and biophysical assays. Furthermore, a crystal structure was solved with the peptide in complex with SAM and the SET domain of WHSC1L1. This inhibitor is an important first step in creating potent, selective WHSC1 tool compounds for the purposes of understanding the complex biology in relation to human disease.

  2. Rational Approximations to Rational Models: Alternative Algorithms for Category Learning

    Science.gov (United States)

    Sanborn, Adam N.; Griffiths, Thomas L.; Navarro, Daniel J.

    2010-01-01

    Rational models of cognition typically consider the abstract computational problems posed by the environment, assuming that people are capable of optimally solving those problems. This differs from more traditional formal models of cognition, which focus on the psychological processes responsible for behavior. A basic challenge for rational models…

  3. Targeting Extracellular Histones with Novel RNA Bio drugs for the Treatment of Acute Lung Injury

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0179 TITLE: Targeting Extracellular Histones with Novel RNA Bio -drugs for the Treatment of Acute Lung Injury...4. TITLE AND SUBTITLE Targeting Extracellular Histones with Novel RNA Bio -drugs for the Treatment of Acute Lung Injury 5a. CONTRACT NUMBER 5b...and field situations. To accomplish this goal, we developed novel bio -reagents (RNA aptamers) that bind to those histones known to cause MODS/ARDS and

  4. Adsorption of rationally designed "surf-tides" to a liquid-crystal interface.

    Science.gov (United States)

    Badami, Joseph V; Bernstein, Chaim; Maldarelli, Charles; Tu, Raymond S

    2015-09-07

    The interfacial adsorption of proteins in surfactant laden systems occurs both in nature and industrial processing, yet much of the fundamental behavior behind these systems is still not well understood. We report the development of a system that monitors optical transitions of a liquid-crystalline/aqueous interface to examine the dynamics of adsorption of two rationally designed model peptide molecules. The two molecules synthesized in this study were both designed to become surface-active upon folding and contain the same net charge of +3, but one of the peptides, K-2.5, has its three charges separated by 2.5 amino acids as compared to K-6.0, which has its three charges separated by 6 amino acids. Our study examines the roles that surfactant adsorption, peptide charge distribution and secondary structure have on the relative adsorption dynamics of these two models peptides onto a fluid/fluid interface. Using the optical detection of molecular adsorption and image analysis of these events, we obtain quantitative information about the dynamics as a function of the charge spacing and initial peptide concentration. We show that both peptides initially follow a diffusion-limited adsorption model onto the interface. Additionally, our results suggest that the K-6.0 peptides demonstrate enhanced adsorption kinetics, where the enhanced rates are a consequence of the well-folded adsorbed state and spatial distribution on the surface. These findings provide further insights into the role that charge spacing has on secondary structure and subsequently the dynamics of adsorption, while developing a versatile system capable of extracting quantitative information from a simple inexpensive optical system.

  5. Mild performic acid oxidation enhances chromatographic and top down mass spectrometric analyses of histones.

    Science.gov (United States)

    Pesavento, James J; Garcia, Benjamin A; Streeky, James A; Kelleher, Neil L; Mizzen, Craig A

    2007-09-01

    Recent developments in top down mass spectrometry have enabled closely related histone variants and their modified forms to be identified and quantitated with unprecedented precision, facilitating efforts to better understand how histones contribute to the epigenetic regulation of gene transcription and other nuclear processes. It is therefore crucial that intact MS profiles accurately reflect the levels of variants and modified forms present in a given cell type or cell state for the full benefit of such efforts to be realized. Here we show that partial oxidation of Met and Cys residues in histone samples prepared by conventional methods, together with oxidation that can accrue during storage or during chip-based automated nanoflow electrospray ionization, confounds MS analysis by altering the intact MS profile as well as hindering posttranslational modification localization after MS/MS. We also describe an optimized performic acid oxidation procedure that circumvents these problems without catalyzing additional oxidations or altering the levels of posttranslational modifications common in histones. MS and MS/MS of HeLa cell core histones confirmed that Met and Cys were the only residues oxidized and that complete oxidation restored true intact abundance ratios and significantly enhanced MS/MS data quality. This allowed for the unequivocal detection, at the intact molecule level, of novel combinatorially modified forms of H4 that would have been missed otherwise. Oxidation also enhanced the separation of human core histones by reverse phase chromatography and decreased the levels of salt-adducted forms observed in ESI-FTMS. This method represents a simple and easily automated means for enhancing the accuracy and sensitivity of top down analyses of combinatorially modified forms of histones that may also be of benefit for top down or bottom up analyses of other proteins.

  6. An efficient immunodetection method for histone modifications in plants.

    Science.gov (United States)

    Nic-Can, Geovanny; Hernández-Castellano, Sara; Kú-González, Angela; Loyola-Vargas, Víctor M; De-la-Peña, Clelia

    2013-12-16

    Epigenetic mechanisms can be highly dynamic, but the cross-talk among them and with the genome is still poorly understood. Many of these mechanisms work at different places in the cell and at different times of organism development. Covalent histone modifications are one of the most complex and studied epigenetic mechanisms involved in cellular reprogramming and development in plants. Therefore, the knowledge of the spatial distribution of histone methylation in different tissues is important to understand their behavior on specific cells. Based on the importance of epigenetic marks for biology, we present a simplified, inexpensive and efficient protocol for in situ immunolocalization on different tissues such as flowers, buds, callus, somatic embryo and meristematic tissue from several plants of agronomical and biological importance. Here, we fully describe all the steps to perform the localization of histone modifications. Using this method, we were able to visualize the distribution of H3K4me3 and H3K9me2 without loss of histological integrity of tissues from several plants, including Agave tequilana, Capsicum chinense, Coffea canephora and Cedrela odorata, as well as Arabidopsis thaliana. There are many protocols to study chromatin modifications; however, most of them are expensive, difficult and require sophisticated equipment. Here, we provide an efficient protocol for in situ localization of histone methylation that dispenses with the use of expensive and sensitive enzymes. The present method can be used to investigate the cellular distribution and localization of a wide array of proteins, which could help to clarify the biological role that they play at specific times and places in different tissues of various plant species.

  7. METHODOLOGICAL ASPECTS OF RATIONAL DESIGN FORMATION OF INFRASTRUCTURE OF AGRARIAN SECTOR OF UKRAINE

    Directory of Open Access Journals (Sweden)

    Ivan Korchynskyy

    2016-11-01

    Full Text Available Methodological aspects of formation of rational design of infrastructure of agrarian sector of Ukraine on the basis of the institutional approach and laws of architectonics are examined. It is shown that the agrarian sector of Ukraine is a complex socio-economic system, the formation and development of which is in the process of market transformation what is caused by institutional influences. In general the process of relations institutionalization imply their formalization and standardization, in other case the subject of public life could not predict the actions of other entities associated with him and ensure their cooperation. One of the specific characteristic of human society is formed institutional system that regulates behaviour. In the article the factors of influence on the conduct of being in charge subjects are considered in the conditions of development of market economy. The special attention is spared the institutional factors of the economy growing. Methodology. The meaning of “agricultural field” and “infrastructure” and their mutual consistency is classified. As the scientific method, the institutional approach of principles of architectonics has been used, which allowed to justify the creation of a rational approach to the design of infrastructure in agrarian sector as a whole on the basis, relation and interdependence of its elements, based on the fundamental laws of architectonics (law of equilibrium, law of the golden mean structuring. The article demonstrates a necessary of the choice of a theory of institutionalism as the main methodological basis for the study of the process of innovation development of economic system of Ukraine. It is determined that the inefficient activities of institutions in Ukraine are the main cause of the low level of innovation, which has a negative impact on the development of the economy as a whole. Results. Research points on new aspects of infrastructure as a part of the entire

  8. Nuclear lactate dehydrogenase modulates histone modification in human hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Castonguay, Zachary; Auger, Christopher; Thomas, Sean C.; Chahma, M’hamed; Appanna, Vasu D., E-mail: vappanna@laurentian.ca

    2014-11-07

    Highlights: • Nuclear LDH is up-regulated under oxidative stress. • SIRT1 is co-immunoprecipitated bound to nuclear LDH. • Nuclear LDH is involved in histone deacetylation and epigenetics. - Abstract: It is becoming increasingly apparent that the nucleus harbors metabolic enzymes that affect genetic transforming events. Here, we describe a nuclear isoform of lactate dehydrogenase (nLDH) and its ability to orchestrate histone deacetylation by controlling the availability of nicotinamide adenine dinucleotide (NAD{sup +}), a key ingredient of the sirtuin-1 (SIRT1) deacetylase system. There was an increase in the expression of nLDH concomitant with the presence of hydrogen peroxide (H{sub 2}O{sub 2}) in the culture medium. Under oxidative stress, the NAD{sup +} generated by nLDH resulted in the enhanced deacetylation of histones compared to the control hepatocytes despite no discernable change in the levels of SIRT1. There appeared to be an intimate association between nLDH and SIRT1 as these two enzymes co-immunoprecipitated. The ability of nLDH to regulate epigenetic modifications by manipulating NAD{sup +} reveals an intricate link between metabolism and the processing of genetic information.

  9. Rational design of protamine nanocapsules as antigen delivery carriers.

    Science.gov (United States)

    González-Aramundiz, José Vicente; Presas, Elena; Dalmau-Mena, Inmaculada; Martínez-Pulgarín, Susana; Alonso, Covadonga; Escribano, José M; Alonso, María J; Csaba, Noemi Stefánia

    2017-01-10

    Current challenges in global immunization indicate the demand for new delivery strategies, which could be applied to the development of new vaccines against emerging diseases, as well as to improve safety and efficacy of currently existing vaccine formulations. Here, we report a novel antigen nanocarrier consisting of an oily core and a protamine shell, further stabilized with pegylated surfactants. These nanocarriers, named protamine nanocapsules, were rationally designed to promote the intracellular delivery of antigens to immunocompetent cells and to trigger an efficient and long-lasting immune response. Protamine nanocapsules have nanometric size, positive zeta potential and high association capacity for H1N1 influenza hemagglutinin, a protein that was used here as a model antigen. The new formulation shows an attractive stability profile both, as an aqueous suspension or a freeze-dried powder formulation. In vitro studies showed that protamine nanocapsules were efficiently internalized by macrophages without eliciting significant toxicity. In vivo studies indicate that antigen-loaded nanocapsules trigger immune responses comparable to those achieved with alum, even when using significantly lower antigen doses, thus indicating their adjuvant properties. These promising in vivo data, alongside with their versatility for the loading of different antigens and oily immunomodulators and their excellent stability profile, make these nanocapsules a promising platform for the delivery of antigens. Protamine sulphate (PubChem SID: 7849283), Sodium Cholate (PubChem CID: 23668194), Miglyol (PubChem CID: 53471835), α tocopherol (PubChem CID: 14985), Tween® 20(PubChem CID: 443314), Tween® 80(PubChem CID: 5281955), TPGS (PubChem CID: 71406). Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Rationally Designed TLR4 Ligands for Vaccine Adjuvant Discovery

    Directory of Open Access Journals (Sweden)

    Kelsey A. Gregg

    2017-05-01

    Full Text Available Adjuvant properties of bacterial cell wall components like MPLA (monophosphoryl lipid A are well described and have gained FDA approval for use in vaccines such as Cervarix. MPLA is the product of chemically modified lipooligosaccharide (LOS, altered to diminish toxic proinflammatory effects while retaining adequate immunogenicity. Despite the virtually unlimited number of potential sources among bacterial strains, the number of useable compounds within this promising class of adjuvants are few. We have developed bacterial enzymatic combinatorial chemistry (BECC as a method to generate rationally designed, functionally diverse lipid A. BECC removes endogenous or introduces exogenous lipid A-modifying enzymes to bacteria, effectively reprogramming the lipid A biosynthetic pathway. In this study, BECC is applied within an avirulent strain of Yersinia pestis to develop structurally distinct LOS molecules that elicit differential Toll-like receptor 4 (TLR4 activation. Using reporter cell lines that measure NF-κB activation, BECC-derived molecules were screened for the ability to induce a lower proinflammatory response than Escherichia coli LOS. Their structures exhibit varied, dose-dependent, TLR4-driven NF-κB activation with both human and mouse TLR4 complexes. Additional cytokine secretion screening identified molecules that induce levels of tumor necrosis factor alpha (TNF-α and interleukin-8 (IL-8 comparable to the levels induced by phosphorylated hexa-acyl disaccharide (PHAD. The lead candidates demonstrated potent immunostimulation in mouse splenocytes, human primary blood mononuclear cells (PBMCs, and human monocyte-derived dendritic cells (DCs. This newly described system allows directed programming of lipid A synthesis and has the potential to generate a diverse array of TLR4 agonist candidates.

  11. Epigenetic Metabolite Acetate Inhibits Class I/II Histone Deacetylases, Promotes Histone Acetylation, and Increases HIV-1 Integration in CD4+ T Cells.

    Science.gov (United States)

    Bolduc, Jean-François; Hany, Laurent; Barat, Corinne; Ouellet, Michel; Tremblay, Michel J

    2017-08-15

    In this study, we investigated the effect of acetate, the most concentrated short-chain fatty acid (SCFA) in the gut and bloodstream, on the susceptibility of primary human CD4 + T cells to HIV-1 infection. We report that HIV-1 replication is increased in CD3/CD28-costimulated CD4 + T cells upon acetate treatment. This enhancing effect correlates with increased expression of the early activation marker CD69 and impaired class I/II histone deacetylase (HDAC) activity. In addition, acetate enhances acetylation of histones H3 and H4 and augments HIV-1 integration into the genome of CD4 + T cells. Thus, we propose that upon antigen presentation, acetate influences class I/II HDAC activity that transforms condensed chromatin into a more relaxed structure. This event leads to a higher level of viral integration and enhanced HIV-1 production. In line with previous studies showing reactivation of latent HIV-1 by SCFAs, we provide evidence that acetate can also increase the susceptibility of primary human CD4 + T cells to productive HIV-1 infection. IMPORTANCE Alterations in the fecal microbiota and intestinal epithelial damage involved in the gastrointestinal disorder associated with HIV-1 infection result in microbial translocation that leads to disease progression and virus-related comorbidities. Indeed, notably via production of short-chain fatty acids, bacteria migrating from the lumen to the intestinal mucosa could influence HIV-1 replication by epigenetic regulatory mechanisms, such as histone acetylation. We demonstrate that acetate enhances virus production in primary human CD4 + T cells. Moreover, we report that acetate impairs class I/II histone deacetylase activity and increases integration of HIV-1 DNA into the host genome. Therefore, it can be postulated that bacterial metabolites such as acetate modulate HIV-1-mediated disease progression. Copyright © 2017 American Society for Microbiology.

  12. Epigenetic control of skull morphogenesis by histone deacetylase 8

    Science.gov (United States)

    Haberland, Michael; Mokalled, Mayssa H.; Montgomery, Rusty L.; Olson, Eric N.

    2009-01-01

    Histone deacetylases (Hdacs) are transcriptional repressors with crucial roles in mammalian development. Here we provide evidence that Hdac8 specifically controls patterning of the skull by repressing a subset of transcription factors in cranial neural crest cells. Global deletion of Hdac8 in mice leads to perinatal lethality due to skull instability, and this is phenocopied by conditional deletion of Hdac8 in cranial neural crest cells. Hdac8 specifically represses the aberrant expression of homeobox transcription factors such as Otx2 and Lhx1. These findings reveal how the identity and patterning of vertebrate-specific portions of the skull are epigenetically controlled by a histone deacetylase. PMID:19605684

  13. Brownian dynamics simulation of the cross-talking effect among modified histones on conformations of nucleosomes

    Science.gov (United States)

    Duan, Zhao-Wen; Li, Wei; Xie, Ping; Dou, Shuo-Xing; Wang, Peng-Ye

    2010-04-01

    Using Brownian dynamics simulation, we studied the effect of histone modifications on conformations of an array of nucleosomes in a segment of chromatin. The simulation demonstrated that the segment of chromatin shows the dynamic behaviour that its conformation can switch between a state with nearly all of the histones being wrapped by DNA and a state with nearly all of the histones being unwrapped by DNA, thus involving the “cross-talking" interactions among the histones. Each state can stay for a sufficiently long time. These conformational states are essential for gene expression or gene silence. The simulation also shows that these conformational states can be inherited by the daughter DNAs during DNA replication, giving a theoretical explanation of the epigenetic phenomenon.

  14. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4

    Science.gov (United States)

    Semeraro, Fabrizio; Ammollo, Concetta T.; Morrissey, James H.; Dale, George L.; Friese, Paul; Esmon, Naomi L.

    2011-01-01

    The release of histones from dying cells is associated with microvascular thrombosis and, because histones activate platelets, this could represent a possible pathogenic mechanism. In the present study, we assessed the influence of histones on the procoagulant potential of human platelets in platelet-rich plasma (PRP) and in purified systems. Histones dose-dependently enhanced thrombin generation in PRP in the absence of any trigger, as evaluated by calibrated automated thrombinography regardless of whether the contact phase was inhibited. Activation of coagulation required the presence of fully activatable platelets and was not ascribable to platelet tissue factor, whereas targeting polyphosphate with phosphatase reduced thrombin generation even when factor XII (FXII) was blocked or absent. In the presence of histones, purified polyphosphate was able to induce thrombin generation in plasma independently of FXII. In purified systems, histones induced platelet aggregation; P-selectin, phosphatidylserine, and FV/Va expression; and prothrombinase activity. Blocking platelet TLR2 and TLR4 with mAbs reduced the percentage of activated platelets and lowered the amount of thrombin generated in PRP. These data show that histone-activated platelets possess a procoagulant phenotype that drives plasma thrombin generation and suggest that TLR2 and TLR4 mediate the activation process. PMID:21673343

  15. Coordinated action of histone modification and microRNA regulations in human genome.

    Science.gov (United States)

    Wang, Xuan; Zheng, Guantao; Dong, Dong

    2015-10-10

    Both histone modifications and microRNAs (miRNAs) play pivotal role in gene expression regulation. Although numerous studies have been devoted to explore the gene regulation by miRNA and epigenetic regulations, their coordinated actions have not been comprehensively examined. In this work, we systematically investigated the combinatorial relationship between miRNA and epigenetic regulation by taking advantage of recently published whole genome-wide histone modification data and high quality miRNA targeting data. The results showed that miRNA targets have distinct histone modification patterns compared with non-targets in their promoter regions. Based on this finding, we proposed a machine learning approach to fit predictive models on the task to discern whether a gene is targeted by a specific miRNA. We found a considerable advantage in both sensitivity and specificity in diverse human cell lines. Finally, we found that our predicted miRNA targets are consistently annotated with Gene Ontology terms. Our work is the first genome-wide investigation of the coordinated action of miRNA and histone modification regulations, which provide a guide to deeply understand the complexity of transcriptional regulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Optimal public rationing and price response.

    Science.gov (United States)

    Grassi, Simona; Ma, Ching-To Albert

    2011-12-01

    We study optimal public health care rationing and private sector price responses. Consumers differ in their wealth and illness severity (defined as treatment cost). Due to a limited budget, some consumers must be rationed. Rationed consumers may purchase from a monopolistic private market. We consider two information regimes. In the first, the public supplier rations consumers according to their wealth information (means testing). In equilibrium, the public supplier must ration both rich and poor consumers. Rationing some poor consumers implements price reduction in the private market. In the second information regime, the public supplier rations consumers according to consumers' wealth and cost information. In equilibrium, consumers are allocated the good if and only if their costs are below a threshold (cost effectiveness). Rationing based on cost results in higher equilibrium consumer surplus than rationing based on wealth. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Histone deacetylases and their inhibition in Candida species

    Directory of Open Access Journals (Sweden)

    Cecile Garnaud

    2016-08-01

    Full Text Available Fungi are generally benign members of the human mucosal flora or live as saprophytes in the environment. However, they can become pathogenic, leading to invasive and life threatening infections in vulnerable patients. These invasive fungal infections are regarded as a major public health problem on a similar scale to tuberculosis or malaria. Current treatment for these infections is based on only four available drug classes. This limited therapeutic arsenal and the emergence of drug-resistant strains are a matter of concern due to the growing number of patients to be treated, and new therapeutic strategies are urgently needed. Adaptation of fungi to drug pressure involves transcriptional regulation, in which chromatin dynamics and histone modifications play a major role. Histone deacetylases (HDACs remove acetyl groups from histones and actively participate in controlling stress responses. HDAC inhibition has been shown to limit fungal development, virulence, biofilm formation and dissemination in the infected host, while also improving the efficacy of existing antifungal drugs towards Candida spp. In this article, we review the functional roles of HDACs and the biological effects of HDAC inhibitors on Candida spp., highlighting the correlations between their pathogenic effects in vitro and in vivo. We focus on how HDAC inhibitors could be used to treat invasive candidiasis while also reviewing recent developments in their clinical evaluation.

  18. Application of machine learning methods to histone methylation ChIP-Seq data reveals H4R3me2 globally represses gene expression

    Science.gov (United States)

    2010-01-01

    Background In the last decade, biochemical studies have revealed that epigenetic modifications including histone modifications, histone variants and DNA methylation form a complex network that regulate the state of chromatin and processes that depend on it including transcription and DNA replication. Currently, a large number of these epigenetic modifications are being mapped in a variety of cell lines at different stages of development using high throughput sequencing by members of the ENCODE consortium, the NIH Roadmap Epigenomics Program and the Human Epigenome Project. An extremely promising and underexplored area of research is the application of machine learning methods, which are designed to construct predictive network models, to these large-scale epigenomic data sets. Results Using a ChIP-Seq data set of 20 histone lysine and arginine methylations and histone variant H2A.Z in human CD4+ T-cells, we built predictive models of gene expression as a function of histone modification/variant levels using Multilinear (ML) Regression and Multivariate Adaptive Regression Splines (MARS). Along with extensive crosstalk among the 20 histone methylations, we found H4R3me2 was the most and second most globally repressive histone methylation among the 20 studied in the ML and MARS models, respectively. In support of our finding, a number of experimental studies show that PRMT5-catalyzed symmetric dimethylation of H4R3 is associated with repression of gene expression. This includes a recent study, which demonstrated that H4R3me2 is required for DNMT3A-mediated DNA methylation--a known global repressor of gene expression. Conclusion In stark contrast to univariate analysis of the relationship between H4R3me2 and gene expression levels, our study showed that the regulatory role of some modifications like H4R3me2 is masked by confounding variables, but can be elucidated by multivariate/systems-level approaches. PMID:20653935

  19. Regulation of Cellular Dynamics and Chromosomal Binding Site Preference of Linker Histones H1.0 and H1.X.

    Science.gov (United States)

    Okuwaki, Mitsuru; Abe, Mayumi; Hisaoka, Miharu; Nagata, Kyosuke

    2016-11-01

    Linker histones play important roles in the genomic organization of mammalian cells. Of the linker histone variants, H1.X shows the most dynamic behavior in the nucleus. Recent research has suggested that the linker histone variants H1.X and H1.0 have different chromosomal binding site preferences. However, it remains unclear how the dynamics and binding site preferences of linker histones are determined. Here, we biochemically demonstrated that the DNA/nucleosome and histone chaperone binding activities of H1.X are significantly lower than those of other linker histones. This explains why H1.X moves more rapidly than other linker histones in vivo Domain swapping between H1.0 and H1.X suggests that the globular domain (GD) and C-terminal domain (CTD) of H1.X independently contribute to the dynamic behavior of H1.X. Our results also suggest that the N-terminal domain (NTD), GD, and CTD cooperatively determine the preferential binding sites, and the contribution of each domain for this determination is different depending on the target genes. We also found that linker histones accumulate in the nucleoli when the nucleosome binding activities of the GDs are weak. Our results contribute to understanding the molecular mechanisms of dynamic behaviors, binding site selection, and localization of linker histones. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Core Histones H2B and H4 Are Mobilized during Infection with Herpes Simplex Virus 1 ▿

    Science.gov (United States)

    Conn, Kristen L.; Hendzel, Michael J.; Schang, Luis M.

    2011-01-01

    The infecting genomes of herpes simplex virus 1 (HSV-1) are assembled into unstable nucleosomes soon after nuclear entry. The source of the histones that bind to these genomes has yet to be addressed. However, infection inhibits histone synthesis. The histones that bind to HSV-1 genomes are therefore most likely those previously bound in cellular chromatin. In order for preexisting cellular histones to associate with HSV-1 genomes, however, they must first disassociate from cellular chromatin. Consistently, we have shown that linker histones are mobilized during HSV-1 infection. Chromatinization of HSV-1 genomes would also require the association of core histones. We therefore evaluated the mobility of the core histones H2B and H4 as measures of the mobilization of H2A-H2B dimers and the more stable H3-H4 core tetramer. H2B and H4 were mobilized during infection. Their mobilization increased the levels of H2B and H4 in the free pools and decreased the rate of H2B fast chromatin exchange. The histones in the free pools would then be available to bind to HSV-1 genomes. The mobilization of H2B occurred independently from HSV-1 protein expression or DNA replication although expression of HSV-1 immediate-early (IE) or early (E) proteins enhanced it. The mobilization of core histones H2B and H4 supports a model in which the histones that associate with HSV-1 genomes are those that were previously bound in cellular chromatin. Moreover, this mobilization is consistent with the assembly of H2A-H2B and H3-H4 dimers into unstable nucleosomes with HSV-1 genomes. PMID:21994445