Interpolation of rational matrix functions
Ball, Joseph A; Rodman, Leiba
1990-01-01
This book aims to present the theory of interpolation for rational matrix functions as a recently matured independent mathematical subject with its own problems, methods and applications. The authors decided to start working on this book during the regional CBMS conference in Lincoln, Nebraska organized by F. Gilfeather and D. Larson. The principal lecturer, J. William Helton, presented ten lectures on operator and systems theory and the interplay between them. The conference was very stimulating and helped us to decide that the time was ripe for a book on interpolation for matrix valued functions (both rational and non-rational). When the work started and the first partial draft of the book was ready it became clear that the topic is vast and that the rational case by itself with its applications is already enough material for an interesting book. In the process of writing the book, methods for the rational case were developed and refined. As a result we are now able to present the rational case as an indepe...
Frommer, A; Lippert, Th; Rittich, H
2012-01-01
The Lanczos process constructs a sequence of orthonormal vectors v_m spanning a nested sequence of Krylov subspaces generated by a hermitian matrix A and some starting vector b. In this paper we show how to cheaply recover a secondary Lanczos process, starting at an arbitrary Lanczos vector v_m and how to use this secondary process to efficiently obtain computable error estimates and error bounds for the Lanczos approximations to a solution of a linear system Ax = b as well as, more generally, for the Lanczos approximations to the action of a rational matrix function on a vector. Our approach uses the relation between the Lanczos process and quadrature as developed by Golub and Meurant. It is different from methods known so far because of its use of the secondary Lanczos process. With our approach, it is now in particular possible to efficiently obtain upper bounds for the error in the 2-norm, provided a lower bound on the smallest eigenvalue of A is known. This holds for the error of the cg iterates as well ...
Alpay, Daniel; Dijksma, Aad; Langer, Heinz; Wanjala, Gerald
2006-01-01
We define and solve a boundary interpolation problem for generalized Schur functions s(z) on the open unit disk D which have preassigned asymptotics when z from D tends nontangentially to a boundary point z1 ∈ T. The solutions are characterized via a fractional linear parametrization formula. We als
Orthogonal rational functions on the unit circle: from the scalar to the matrix case.
Bultheel, A.; Gonzalez-Vera, P.; Hendriksen, E.; Njastad, O.
2006-01-01
Special functions and orthogonal polynomials in particular have been around for centuries. Can you imagine mathematics without trigonometric functions, the exponential function or polynomials? In the twentieth century the emphasis was on special functions satisfying linear differential equations, bu
样条型矩阵有理插值%SPLINE-TYPE MATRIX VALUED RATIONAL INTERPOLATION
杨松林
2005-01-01
The matrix valued rational interpolation is very useful in the partial realization problem and model reduction for all the linear system theory. Lagrange basic functions have been used in matrix valued rational interpolation. In this paper, according to the property of cardinal spline interpolation, we constructed a kind of spline type matrix valued rational interpolation, which based on cardinal spline. This spline type interpolation can avoid instability of high order polynomial interpolation and we obtained a useful formula.
Kargın, Levent; Kurt, Veli
2015-01-01
In this study, obtaining the matrix analog of the Euler's reflection formula for the classical gamma function we expand the domain of the gamma matrix function and give a infinite product expansion of sinπxP. Furthermore we define Riemann zeta matrix function and evaluate some other matrix integrals. We prove a functional equation for Riemann zeta matrix function.
Werner-Type Matrix Valued Rational Interpolation and Its Recurrence Algorithms
顾传青; 王金波
2004-01-01
In this paper, a practical Werner-type continued fraction method for solving matrix valued rational interpolation problem isprovided by using a generalized inverse of matrices. In order to reduce the continued fraction form to rational function form of the in-terpolants, an efficient forward recurrence algorithm is obtained.
ON THE GENERALIZED INVERSE NEVILLE-TYPE MATRIX-VALUED RATIONAL INTERPOLANTS
Zhibing Chen
2003-01-01
A new kind of matrix-valued rational interpolants is recursively established by means of generalized Samelson inverse for matrices, with scalar numerator and matrix-valued denominator. In this respect, it is essentially different from that of the previous works [7,9], where the matrix-valued rational interpolants is in Thiele-type continued fraction form with matrix-valued numerator and scalar denominator. For both univariate and bivariate cases, sufficient conditions for existence, characterisation and uniqueness in some sense are proved respectively, and an error formula for the univariate interpolating function is also given. The results obtained in this paper are illustrated with some numerical examples.
Rational top and its classical r-matrix
Aminov, G.; Arthamonov, S.; Smirnov, A.; Zotov, A.
2014-08-01
We construct a rational integrable system (the rational top) on a co-adjoint orbit of SL N Lie group. It is described by the Lax operator with spectral parameter and classical non-dynamical skew-symmetric r-matrix. In the case of the orbit of minimal dimension the model is gauge equivalent to the rational Calogero-Moser (CM) system. To obtain the results we represent the Lax operator of the CM model in two different factorized forms—without spectral parameter (related to the spinless case) and another one with the spectral parameter. The latter gives rise to the rational top while the first one is related to generalized Cremmer-Gervais r-matrices. The gauge transformation relating the rational top and CM model provides the classical rational version of the IRF-Vertex correspondence. From the geometrical point of view it describes the modification of SL(N,{C})-bundles over degenerated elliptic curve. In view of the Symplectic Hecke Correspondence the rational top is related to the rational spin CM model. Possible applications and generalizations of the suggested construction are discussed. In particular, the obtained r-matrix defines a class of KZB equations.
Rational Top and its Classical R-matrix
Aminov, G; Smirnov, A; Zotov, A
2014-01-01
We construct a rational integrable system (the rational top) on a coadjoint orbit of ${\\rm SL}_N$ Lie group. It is described by the Lax operator with spectral parameter and classical non-dynamical skew-symmetric $r$-matrix. In the case of the orbit of minimal dimension the model is gauge equivalent to the rational Calogero-Moser (CM) system. To obtain the results we represent the Lax operator of the CM model in two different factorized forms -- without spectral parameter (related to spinless case) and another one with the spectral parameter. The later gives rise to the rational top while the first one is related to generalized Cremmer-Gervais $r$-matrices. The gauge transformation relating the rational top and CM model provides a classical rational version of the IRF-Vertex correspondence. From a geometrical point of view it describes the modification of ${\\rm SL}(N,\\mathbb C)$-bundles over degenerated elliptic curve. In view of Symplectic Hecke Correspondence the rational top is related to the rational spin ...
The structure of bivariate rational hypergeometric functions
Cattani, Eduardo; Villegas, Fernando Rodriguez
2009-01-01
We describe the structure of all codimension-two lattice configurations $A$ which admit a stable rational $A$-hypergeometric function, that is a rational function $F$ all whose partial derivatives are non zero, and which is a solution of the $A$-hypergeometric system of partial differential equations defined by Gel'fand, Kapranov and Zelevinsky. We show, moreover, that all stable rational $A$-hypergeometric functions may be described by toric residues and apply our results to study the rationality of bivariate series whose coefficients are quotients of factorials of linear forms.
Linear parameter estimation of rational biokinetic functions
Doeswijk, T.G.; Keesman, K.J.
2009-01-01
For rational biokinetic functions such as the Michaelis-Menten equation, in general, a nonlinear least-squares method is a good estimator. However, a major drawback of a nonlinear least-squares estimator is that it can end up in a local minimum. Rearranging and linearizing rational biokinetic
Perturbing rational harmonic functions by poles
Sète, Olivier; Liesen, Jörg
2014-01-01
We study how adding certain poles to rational harmonic functions of the form $R(z)-\\bar{z}$, with $R(z)$ rational and of degree $d\\geq 2$, affects the number of zeros of the resulting functions. Our results are motivated by and generalize a construction of Rhie derived in the context of gravitational microlensing (ArXiv e-print 2003). Of particular interest is the construction and the behavior of rational functions $R(z)$ that are {\\em extremal} in the sense that $R(z)-\\bar{z}$ has the maximal possible number of $5(d-1)$ zeros.
Seraji, H.
1987-01-01
Given a multivariable system, it is proved that the numerator matrix N(s) of the transfer function evaluated at any system pole either has unity rank or is a null matrix. It is also shown that N(s) evaluated at any transmission zero of the system has rank deficiency. Examples are given for illustration.
On computing closed forms for summations. [polynomials and rational functions
Moenck, R.
1977-01-01
The problem of finding closed forms for a summation involving polynomials and rational functions is considered. A method closely related to Hermite's method for integration of rational functions derived. The method expresses the sum of a rational function as a rational function part and a transcendental part involving derivatives of the gamma function.
Robust identification for rational fractional transfer functions
王书宁
1997-01-01
An algorithm is proposed for robust identification of a rational fractional transfer function with a fixed degree under the framework of worst-case/deterministic robust identification. The convergence of the algorithm is proven. Its feasibility is shown with a numerical example.
Shape preserving rational bi-cubic function
Malik Zawwar Hussain
2012-11-01
Full Text Available The study is dedicated to the development of shape preserving interpolation scheme for monotone and convex data. A rational bi-cubic function with parameters is used for interpolation. To preserve the shape of monotone and convex data, the simple data dependent constraints are developed on these parameters in each rectangular patch. The developed scheme of this paper is confined, cheap to run and produce smooth surfaces.
Matrix string partition function
Kostov, Ivan K; Kostov, Ivan K.; Vanhove, Pierre
1998-01-01
We evaluate quasiclassically the Ramond partition function of Euclidean D=10 U(N) super Yang-Mills theory reduced to a two-dimensional torus. The result can be interpreted in terms of free strings wrapping the space-time torus, as expected from the point of view of Matrix string theory. We demonstrate that, when extrapolated to the ultraviolet limit (small area of the torus), the quasiclassical expressions reproduce exactly the recently obtained expression for the partition of the completely reduced SYM theory, including the overall numerical factor. This is an evidence that our quasiclassical calculation might be exact.
The Gross conjecture over rational function fields
OUYANG; Yi
2005-01-01
We study the Gross conjecture for the cyclotomic function field extension k(∧f)/k where k = Fq(t) is the rational function field and f is a monic polynomial in Fq[t].We prove the conjecture in the Fermat curve case(i.e., when f = t(t - 1)) by a direct calculation. We also prove the case when f is irreducible, which is analogous to the Weil reciprocity law. In the general case, we manage to show the weak version of the Gross conjecture here.
Rational function systems and electrical networks with multiparameters
Lu, KaiSheng
2012-01-01
To overcome the problems of system theory and network theory over real field, this book uses matrices over the field F(z) of rational functions in multiparameters describing coefficient matrices of systems and networks and makes systems and network description over F(z) and researches their structural properties: reducible condition of a class of matrices over F(z) and their characteristic polynomial; type1 matrix and two basic properties; variable replacement conditions for independent parameters; structural controllability and observability of linear systems over F(z); separability, reducibi
TETRAHEDRAL Cm INTERPOLATION BY RATIONAL FUNCTIONS
Guo-liang Xu; Chuan I Chu; Wei-min Xue
2001-01-01
A general local Cm(m ≥ 0) tetrahedral interpolation scheme bypolynomials of degree 4m + l plus low order rational functions from the given data is proposed. The scheme can have either 4m + l order algebraic precision if C2m data at vertices and Cm data on faces are given or k + E[k/3] + 1 order algebraic precision if Ck (k ≤ 2m) data are given at vertices. The resulted interpolant and its partial derivatives of up to order m are polynomials on the boundaries of the tetrahedra.
Research on Bounded Rationality of Fuzzy Choice Functions
Xinlin Wu
2014-01-01
Full Text Available The rationality of a fuzzy choice function is a hot research topic in the study of fuzzy choice functions. In this paper, two common fuzzy sets are studied and analyzed in the framework of the Banerjee choice function. The complete rationality and bounded rationality of fuzzy choice functions are defined based on the two fuzzy sets. An assumption is presented to study the fuzzy choice function, and especially the fuzzy choice function with bounded rationality is studied combined with some rationality conditions. Results show that the fuzzy choice function with bounded rationality also satisfies some important rationality conditions, but not vice versa. The research gives supplements to the investigation in the framework of the Banerjee choice function.
Werner-Type Matrix Valued Rational Interpolation and Its Recurrence Algorithms%Werner型矩阵有理插值和递推算法
顾传青; 王金波
2004-01-01
In this paper, a practical Werner-type continued fraction method for solving matrix valued rational interpolation problem is provided by using a generalized inverse of matrices. In order to reduce the continued fraction form to rational function form of the interpolants, an efficient forward recurrence algorithm is obtained.
On Chebyshev-Markov rational functions over several intervals
Lukashov, AL
1998-01-01
Chebyshev-Markov rational functions are the solutions of the following extremal problem [GRAPHICS] with K being a compact subset of R and omega(n)(x) being a fixed real polynomial of degree less than n, positive on K. A parametric representation of Chebyshev-Markov rational functions is found for K
Construction of `Wachspress Type' Rational Basis Functions over Rectangles
P L Powar; S S Rana
2000-02-01
In the present paper, we have constructed rational basis functions of 0 class over rectangular elements with wider choice of denominator function. This construction yields additional number of interior nodes. Hence, extra nodal points and the flexibility of denominator function suggest better approximation.
Nonlinear programming extensions to rational function approximations of unsteady aerodynamics
Tiffany, Sherwood H.; Adams, William M., Jr.
1987-01-01
This paper deals with approximating unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft. Two methods of formulating these approximations are extended to include both the same flexibility in constraining them and the same methodology in optimizing nonlinear parameters as another currently used 'extended least-squares' method. Optimal selection of 'nonlinear' parameters is made in each of the three methods by use of the same nonlinear (nongradient) optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is of lower order than that required when no optimization of the nonlinear terms is performed. The free 'linear' parameters are determined using least-squares matrix techniques on a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from the different approaches are described, and results are presented which show comparative evaluations from application of each of the extended methods to a numerical example. The results obtained for the example problem show a significant (up to 63 percent) reduction in the number of differential equations used to represent the unsteady aerodynamic forces in linear time-invariant equations of motion as compared to a conventional method in which nonlinear terms are not optimized.
周腾锦; 王纯
2013-01-01
Matrix is an important mathematical method of diagonalization, but because of its computational complexity, it has caused great difficulties on the application, The mathematical software has the function of processing of diagonalization, but for rational matrix diagonalization problem in the field of rational number the result is not satisfactory. So the study of rational matrix over the rational number field similarity diagonalization diagonalization, contract and orthogonal diagonalization algorithm and program project, design to realize rational matrices over the field of rational numbers on the diagonalization of utility software, solves the rational matrices over the field of rational numbers on the diagonalization of the accurate determination and computation problem.% 矩阵对角化是重要的数学方法，但因其计算复杂却造成了应用上的极大困难，虽然已有的数学软件具有处理对角化功能，但对有理矩阵在有理数域上的对角化问题的计算结果却不尽人意。所以提出了研究有理矩阵在有理数域上相似对角化、合同对角化以及正交对角化的算法与程序课题，设计出能够实现有理矩阵在有理数域上对角化的实用软件，解决了有理矩阵在有理数域上对角化的精确判定与计算问题。
Multiple sine, multiple elliptic gamma functions and rational cones
Tizzano, Luigi
2015-01-01
We define generalizations of the multiple elliptic gamma functions and the multiple sine functions, labelled by rational cones in $\\mathbb{R}^r$. For $r=2,3$ we prove that the generalized multiple elliptic gamma functions enjoy a modular property determined by the cone. This generalizes the modular properties of the elliptic gamma function studied by Felder and Varchenko. The generalized multiple sine enjoy a related infinite product representation, generalizing the results of Narukawa for the ordinary multiple sine functions.
Extended Matrix Variate Hypergeometric Functions and Matrix Variate Distributions
Daya K. Nagar
2015-01-01
Full Text Available Hypergeometric functions of matrix arguments occur frequently in multivariate statistical analysis. In this paper, we define and study extended forms of Gauss and confluent hypergeometric functions of matrix arguments and show that they occur naturally in statistical distribution theory.
L’Hospital rule for matrix functions
Z.M. Kishka
2013-07-01
Full Text Available In this paper, the L’Hospital rule for evaluating limits of complex matrix functions is introduced. We present some specific examples on certain matrix functions showing the applicability of our approach.
Rational functions with maximal radius of absolute monotonicity
Loczi, Lajos
2014-05-19
We study the radius of absolute monotonicity R of rational functions with numerator and denominator of degree s that approximate the exponential function to order p. Such functions arise in the application of implicit s-stage, order p Runge-Kutta methods for initial value problems and the radius of absolute monotonicity governs the numerical preservation of properties like positivity and maximum-norm contractivity. We construct a function with p=2 and R>2s, disproving a conjecture of van de Griend and Kraaijevanger. We determine the maximum attainable radius for functions in several one-parameter families of rational functions. Moreover, we prove earlier conjectured optimal radii in some families with 2 or 3 parameters via uniqueness arguments for systems of polynomial inequalities. Our results also prove the optimality of some strong stability preserving implicit and singly diagonally implicit Runge-Kutta methods. Whereas previous results in this area were primarily numerical, we give all constants as exact algebraic numbers.
Repelling periodic points of given periods of rational functions
CHANG Jianming; FANG Mingliang
2006-01-01
Let R(z) be a rational function of degree d ≥ 2. Then R(z) has at least one repelling periodic point of given period k ≥ 2, unless k = 4 and d=2, or k= 3 and d ≤ 3, or k=2 and d≤8. Examples show that all exceptional cases occur.
Computational approaches for rational design of proteins with novel functionalities
Manish Kumar Tiwari
2012-09-01
Full Text Available Proteins are the most multifaceted macromolecules in living systems and have various important functions, including structural, catalytic, sensory, and regulatory functions. Rational design of enzymes is a great challenge to our understanding of protein structure and physical chemistry and has numerous potential applications. Protein design algorithms have been applied to design or engineer proteins that fold, fold faster, catalyze, catalyze faster, signal, and adopt preferred conformational states. The field of de novo protein design, although only a few decades old, is beginning to produce exciting results. Developments in this field are already having a significant impact on biotechnology and chemical biology. The application of powerful computational methods for functional protein designing has recently succeeded at engineering target activities. Here, we review recently reported de novo functional proteins that were developed using various protein design approaches, including rational design, computational optimization, and selection from combinatorial libraries, highlighting recent advances and successes.
Computational approaches for rational design of proteins with novel functionalities.
Tiwari, Manish Kumar; Singh, Ranjitha; Singh, Raushan Kumar; Kim, In-Won; Lee, Jung-Kul
2012-01-01
Proteins are the most multifaceted macromolecules in living systems and have various important functions, including structural, catalytic, sensory, and regulatory functions. Rational design of enzymes is a great challenge to our understanding of protein structure and physical chemistry and has numerous potential applications. Protein design algorithms have been applied to design or engineer proteins that fold, fold faster, catalyze, catalyze faster, signal, and adopt preferred conformational states. The field of de novo protein design, although only a few decades old, is beginning to produce exciting results. Developments in this field are already having a significant impact on biotechnology and chemical biology. The application of powerful computational methods for functional protein designing has recently succeeded at engineering target activities. Here, we review recently reported de novo functional proteins that were developed using various protein design approaches, including rational design, computational optimization, and selection from combinatorial libraries, highlighting recent advances and successes.
Positivity of Matrices with Generalized Matrix Functions
Fuzhen ZHANG
2012-01-01
Using an elementary fact on matrices we show by a unified approach the positivity of a partitioned positive semidefinite matrix with each square block replaced by a compound matrix,an elementary symmetric function or a generalized matrix function.In addition,we present a refined version of the Thompson determinant compression theorem.
Rationality of trace and norm L-functions
Rojas-León, Antonio
2010-01-01
For a given l-adic sheaf F on the affine line A^1 over a finite field k (respectively on the torus G_m) and an positive integer r we define the r-th local trace L-function of F at a point t of k (resp. its local norm L-function at a non-zero t in k) and prove its rationality. This function gives information on the sum of the local Frobenius traces of F over the points of k_r (the extension of degree r of k) with trace t (resp. with norm t). These sums can in turn be used to estimate the number of rational points on curves or the absolute value of exponential sums which are invariant under a large group of translations or homotheties.
Interpolation and approximation by rational functions in the complex domain
Walsh, J L
1935-01-01
The present work is restricted to the representation of functions in the complex domain, particularly analytic functions, by sequences of polynomials or of more general rational functions whose poles are preassigned, the sequences being defined either by interpolation or by extremal properties (i.e. best approximation). Taylor's series plays a central role in this entire study, for it has properties of both interpolation and best approximation, and serves as a guide throughout the whole treatise. Indeed, almost every result given on the representation of functions is concerned with a generaliz
A General Theory of Computational Scalability Based on Rational Functions
Gunther, Neil J
2008-01-01
The universal scalability law (USL) of computational capacity is a rational function C_p = P(p)/Q(p) with P(p) a linear polynomial and Q(p) a second-degree polynomial in the number of physical processors p, that has long been used for statistical modeling and prediction of computer system performance. We prove that C_p is equivalent to the synchronous throughput bound for a machine-repairman with state-dependent service rate. Simpler rational functions, such as Amdahl's law and Gustafson speedup, are corollaries of this queue-theoretic bound. C_p is both necessary and sufficient for modeling all practical characteristics of computational scalability.
Short Rational Generating Functions For Multiobjective Linear Integer Programming
Blanco, Victor
2007-01-01
This paper presents an algorithm for solving multiobjective integer programming problems. The algorithm uses Barvinok's rational functions of the polytope that defines the feasible region and provides as output the entire set of nondominated solutions for the problem. Theoretical complexity results on the algorithm are provided in the paper and an implementation of the algorithm shows that it is useful for solving multiobjective integer linear programs.
Rational Design of a Structural and Functional Nitric Oxide Reductase
Yeung, N.; Lin, Y; Gao, Y; Zhao, X; Russell, B; Lei, L; Miner, L; Robinson, H; Lu, Y
2009-01-01
Protein design provides a rigorous test of our knowledge about proteins and allows the creation of novel enzymes for biotechnological applications. Whereas progress has been made in designing proteins that mimic native proteins structurally, it is more difficult to design functional proteins. In comparison to recent successes in designing non-metalloproteins, it is even more challenging to rationally design metalloproteins that reproduce both the structure and function of native metalloenzymes. This is because protein metal-binding sites are much more varied than non-metal-containing sites, in terms of different metal ion oxidation states, preferred geometry and metal ion ligand donor sets. Because of their variability, it has been difficult to predict metal-binding site properties in silico, as many of the parameters, such as force fields, are ill-defined. Therefore, the successful design of a structural and functional metalloprotein would greatly advance the field of protein design and our understanding of enzymes. Here we report a successful, rational design of a structural and functional model of a metalloprotein, nitric oxide reductase (NOR), by introducing three histidines and one glutamate, predicted as ligands in the active site of NOR, into the distal pocket of myoglobin. A crystal structure of the designed protein confirms that the minimized computer model contains a haem/non-haem FeB centre that is remarkably similar to that in the crystal structure. This designed protein also exhibits NO reduction activity, and so models both the structure and function of NOR, offering insight that the active site glutamate is required for both iron binding and activity. These results show that structural and functional metalloproteins can be rationally designed in silico.
Differential analysis of matrix convex functions II
Hansen, Frank; Tomiyama, Jun
2009-01-01
We continue the analysis in [F. Hansen, and J. Tomiyama, Differential analysis of matrix convex functions. Linear Algebra Appl., 420:102--116, 2007] of matrix convex functions of a fixed order defined in a real interval by differential methods as opposed to the characterization in terms of divide...
Rational design of functional and tunable oscillating enzymatic networks
Semenov, Sergey N.; Wong, Albert S. Y.; van der Made, R. Martijn; Postma, Sjoerd G. J.; Groen, Joost; van Roekel, Hendrik W. H.; de Greef, Tom F. A.; Huck, Wilhelm T. S.
2015-02-01
Life is sustained by complex systems operating far from equilibrium and consisting of a multitude of enzymatic reaction networks. The operating principles of biology's regulatory networks are known, but the in vitro assembly of out-of-equilibrium enzymatic reaction networks has proved challenging, limiting the development of synthetic systems showing autonomous behaviour. Here, we present a strategy for the rational design of programmable functional reaction networks that exhibit dynamic behaviour. We demonstrate that a network built around autoactivation and delayed negative feedback of the enzyme trypsin is capable of producing sustained oscillating concentrations of active trypsin for over 65 h. Other functions, such as amplification, analog-to-digital conversion and periodic control over equilibrium systems, are obtained by linking multiple network modules in microfluidic flow reactors. The methodology developed here provides a general framework to construct dissipative, tunable and robust (bio)chemical reaction networks.
Epitaxial Nucleation on Rationally Designed Peptide Functionalized Interface
2011-07-19
in order to generate intricate biomimetic architectures , matrix mediated nucleation needs to be a multi- step process,23 This hypothesis is known as... tectonic ” nucleation and growth,24 and we apply our biomimetic interfacially confined peptide to explore this phenomenon at an addressable air...template functional hybrid materials. Figure 2. Tectonic hypothesis for nucleation and growth. 23 Figure 3. Objectives and progress. Progress in
Upper Bounds on Character Sums with Rational Function Entries
Todd COCHRANE; Chun Lei LIU; Zhi Yong ZHENG
2003-01-01
We obtain formulae and estimates for character sums of the type (x, f,P )=∑pmx=1x(f(x)),where pm is a prime power with m ≥ 2, x is a mnultiplicative character (mod pm), and f ＝ f1/f2 is a rational function over Z. In particular, ifp is odd, d ＝ deg(f1)+deg(f2) and d* = max(deg(f1), deg(f2)) then we obtain |S(x, f, pm)|≤ (d- 1)pm(1 -1/dx) for any non-constant f (mod p) and primitive character x. For p ＝ 2 an extra factor of 2√2 is needed.
Matrix elements from moments of correlation functions
Bouchard, Chris; Orginos, Kostas; Richards, David
2016-01-01
Momentum-space derivatives of matrix elements can be related to their coordinate-space moments through the Fourier transform. We derive these expressions as a function of momentum transfer $Q^2$ for asymptotic in/out states consisting of a single hadron. We calculate corrections to the finite volume moments by studying the spatial dependence of the lattice correlation functions. This method permits the computation of not only the values of matrix elements at momenta accessible on the lattice, but also the momentum-space derivatives, providing {\\it a priori} information about the $Q^2$ dependence of form factors. As a specific application we use the method, at a single lattice spacing and with unphysically heavy quarks, to directly obtain the slope of the isovector form factor at various $Q^2$, whence the isovector charge radius. The method has potential application in the calculation of any hadronic matrix element with momentum transfer, including those relevant to hadronic weak decays.
Matrix elements from moments of correlation functions
Chang, Chia Cheng [SLAC National Accelerator Lab., Menlo Park, CA (United States); Bouchard, Chris [College of William and Mary, Williamsburg, VA (United States); Orginos, Konstantinos [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States); Richards, David G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-10-01
Momentum-space derivatives of matrix elements can be related to their coordinate-space moments through the Fourier transform. We derive these expressions as a function of momentum transfer Q2 for asymptotic in/out states consisting of a single hadron. We calculate corrections to the finite volume moments by studying the spatial dependence of the lattice correlation functions. This method permits the computation of not only the values of matrix elements at momenta accessible on the lattice, but also the momentum-space derivatives, providing {\\it a priori} information about the Q2 dependence of form factors. As a specific application we use the method, at a single lattice spacing and with unphysically heavy quarks, to directly obtain the slope of the isovector form factor at various Q2, whence the isovector charge radius. The method has potential application in the calculation of any hadronic matrix element with momentum transfer, including those relevant to hadronic weak decays.
Differential analysis of matrix convex functions
Hansen, Frank; Tomiyama, Jun
2007-01-01
We analyze matrix convex functions of a fixed order defined in a real interval by differential methods as opposed to the characterization in terms of divided differences given by Kraus [F. Kraus, Über konvekse Matrixfunktionen, Math. Z. 41 (1936) 18-42]. We obtain for each order conditions for ma...
Limit properties of monotone matrix functions
Behrndt, Jussi; Hassi, Seppo; de Snoo, Henk; Wietsma, Rudi
2012-01-01
The basic objects in this paper are monotonically nondecreasing n x n matrix functions D(center dot) defined on some open interval l = (a, b) of R and their limit values D(a) and D(b) at the endpoints a and b which are, in general, selfadjoint relations in C-n. Certain space decompositions induced b
Harvesting bioenergy with rationally designed complex functional materials
Kuang, Liangju
A key challenge in renewable energy is to capture, convert and store solar power with earth-abundant materials and environmentally benign technologies. The goal of this thesis is to develop rationally designed complex functional materials for bio-renewable energy applications. On one hand, photoconversion membrane proteins (MPs) are nature's nanoengineering feats for renewable energy management. Harnessing their functions in synthetic systems could help understand, predict, and ultimately control matter and energy at the nanoscale. This is particularly enticing in the post-genome era as recombinant or cell-free expression of many MPs with high yields becomes possible. However, the labile nature of lipid bilayers renders them unsuitable for use in a broad range of engineered systems. A knowledge gap exists about how to design robust synthetic nanomembranes as lipid-bilayer-mimics to support MP functions and how to direct hierarchical MP reconstitution into those membranes to form 2-D or 3-D ordered proteomembrane arrays. Our studies on proteorhodopsin (PR) and bacterial reaction center (BRC), the two light-harvesting MPs, reveal that a charge-interaction-directed reconstitution (CIDR) mechanism induces spontaneous reconstitution of detergent-solubilized MPs into various amphiphilic block copolymer membranes, many of which have far superior stability than lipid bilayers. Our preliminary data also suggest MPs are not enslaved by the biological membranes they derive from; rather, the chemically nonspecific material properties of MP-supporting membranes may act as allosteric regulators. Versatile chemical designs are possible to modulate the conformational energetics of MPs, hence their transport performance in synthetic systems. On the other hand, microalgae are widely regarded as a sustainable feedstock for biofuel production. Microalgae-derived biofuels have not been commercialized yet because current technologies for microalgae dewatering add a huge cost to the
Formalization of Function Matrix Theory in HOL
Zhiping Shi
2014-01-01
Full Text Available Function matrices, in which elements are functions rather than numbers, are widely used in model analysis of dynamic systems such as control systems and robotics. In safety-critical applications, the dynamic systems are required to be analyzed formally and accurately to ensure their correctness and safeness. Higher-order logic (HOL theorem proving is a promise technique to match the requirement. This paper proposes a higher-order logic formalization of the function vector and the function matrix theories using the HOL theorem prover, including data types, operations, and their properties, and further presents formalization of the differential and integral of function vectors and function matrices. The formalization is implemented as a library in the HOL system. A case study, a formal analysis of differential of quadratic functions, is presented to show the usefulness of the proposed formalization.
On certain families of rational functions arising in dynamics
Byrnes, C. I.
1979-01-01
It is noted that linear systems, depending on parameters, can occur in diverse situations including families of rational solutions to the Korteweg-de Vries equation or to the finite Toda lattice. The inverse scattering method used by Moser (1975) to obtain canonical coordinates for the finite homogeneous Toda lattice can be used for the synthesis of RC networks. It is concluded that the multivariable RC setting is ideal for the analysis of the periodic Toda lattice.
Matrix metalloproteinases and their function in myocardium.
Kukacka, Jirí; Průsa, Richard; Kotaska, Karel; Pelouch, Václav
2005-12-01
A significant number of myocardial diseases are accompanied by increased synthesis and degradation of the extracellular matrix (ECM) as well as by changed maturation and incorporation of ECM components. Important groups of enzymes responsible for both normal and pathological processes in ECM remodeling are matrix metaloproteinases (MMPs). These enzymes share a relatively conserved structure with a number of identifiable modules linked to their specific functions. The most important function of MMPs is the ability to cleave various ECM components; including such rigid molecules as fibrillar collagen molecules. The amount and activity of MMPs in cardiac tissue are regulated by a range of activating and inhibiting processes. Although MMPs play multifarious roles in many myocardial diseases, here we have focused on their function in ischemic cardiac tissue, dilated cardiomyopathy and hypertrophied cardiac tissue. The inhibition of MMPs by means of synthetic inhibitors seems to be a promising strategy in cardiac disease treatment. Their effects on diseased cardiac tissue have been successfully tested in several experimental studies.
Olesov, A V [G.I. Nevelskoi Maritime State University, Vladivostok (Russian Federation)
2014-10-31
New inequalities are established for analytic functions satisfying Meiman's majorization conditions. Estimates for values of and differential inequalities involving rational trigonometric functions with an integer majorant on an interval of length less than the period and with prescribed poles which are symmetrically positioned relative to the real axis, as well as differential inequalities for trigonometric polynomials in some classes, are given as applications. These results improve several theorems due to Meiman, Genchev, Smirnov and Rusak. Bibliography: 27 titles.
Infinite Matrix Products and the Representation of the Matrix Gamma Function
J.-C. Cortés
2015-01-01
Full Text Available We introduce infinite matrix products including some of their main properties and convergence results. We apply them in order to extend to the matrix scenario the definition of the scalar gamma function given by an infinite product due to Weierstrass. A limit representation of the matrix gamma function is also provided.
SZEG? KERNEL FOR HARDY SPACE OF MATRIX FUNCTIONS
Fuli HE; Min KU; Uwe K ?HLER
2016-01-01
By the characterization of the matrix Hilbert transform in the Hermitian Clifford analysis, we introduce the matrix Szeg? projection operator for the Hardy space of Hermitean monogenic functions defined on a bounded sub-domain of even dimensional Euclidean space, establish the Kerzman-Stein formula which closely connects the matrix Szeg? projection operator with the Hardy projection operator onto the Hardy space, and get the matrix Szeg? projection operator in terms of the Hardy projection operator and its adjoint. Furthermore, we construct the explicit matrix Szeg? kernel function for the Hardy space on the sphere as an example, and get the solution to a boundary value problem for matrix functions.
Rational design of metal-organic frameworks with anticipated porosities and functionalities
Zhang, MW; Bosch, M; Gentle, T; Zhou, HC
2014-01-01
Metal-organic frameworks have emerged as a new category of porous materials that have intriguing structures and diverse applications. Even though the early discovery of new MOFs appears to be serendipitous, much effort has been made to reveal their structure-property relationships for the purpose of rationally designing novel frameworks with expected properties. Until now, much progress has been made to rationalize the design and synthesis of MOFs. This highlight review will outline the recent advances on this topic from both our and other groups and provide a systematic overview of different methods for the rational design of MOFs with desired porosities and functionalities. In this review, we will categorize the recent efforts for rational MOF design into two different approaches: a structural approach and a functional approach.
Clement, T Prabhakar
2014-06-01
We propose a rational method for addressing an important question-who deserves to be an author of a scientific article? We review various contentious issues associated with this question and recommend that the scientific community should view authorship in terms of contributions and responsibilities, rather than credits. We propose a new paradigm that conceptually divides a scientific article into four basic elements: ideas, work, writing, and stewardship. We employ these four fundamental elements to modify the well-known International Committee of Medical Journal Editors (ICMJE) authorship guidelines. The modified ICMJE guidelines are then used as the basis to develop an approach to quantify individual contributions and responsibilities in multi-author articles. The outcome of the approach is an authorship matrix, which can be used to answer several nagging questions related to authorship.
Effective potential in density matrix functional theory.
Nagy, A; Amovilli, C
2004-10-01
In the previous paper it was shown that in the ground state the diagonal of the spin independent second-order density matrix n can be determined by solving a single auxiliary equation of a two-particle problem. Thus the problem of an arbitrary system with even electrons can be reduced to a two-particle problem. The effective potential of the two-particle equation contains a term v(p) of completely kinetic origin. Virial theorem and hierarchy of equations are derived for v(p) and simple approximations are proposed. A relationship between the effective potential u(p) of the shape function equation and the potential v(p) is established.
Discrete Least-norm Approximation by Nonnegative (Trigonomtric) Polynomials and Rational Functions
Siem, A.Y.D.; de Klerk, E.; den Hertog, D.
2005-01-01
Polynomials, trigonometric polynomials, and rational functions are widely used for the discrete approximation of functions or simulation models.Often, it is known beforehand, that the underlying unknown function has certain properties, e.g. nonnegative or increasing on a certain region.However, the
Discrete Least-norm Approximation by Nonnegative (Trigonomtric) Polynomials and Rational Functions
Siem, A.Y.D.; de Klerk, E.; den Hertog, D.
2005-01-01
Polynomials, trigonometric polynomials, and rational functions are widely used for the discrete approximation of functions or simulation models.Often, it is known beforehand, that the underlying unknown function has certain properties, e.g. nonnegative or increasing on a certain region.However, the
Tiffany, Sherwood H.; Adams, William M., Jr.
1988-01-01
The approximation of unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft are discussed. Two methods of formulating these approximations are extended to include the same flexibility in constraining the approximations and the same methodology in optimizing nonlinear parameters as another currently used extended least-squares method. Optimal selection of nonlinear parameters is made in each of the three methods by use of the same nonlinear, nongradient optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is lower order than that required when no optimization of the nonlinear terms is performed. The free linear parameters are determined using the least-squares matrix techniques of a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from different approaches are described and results are presented that show comparative evaluations from application of each of the extended methods to a numerical example.
Generalized and Stability Rational Functions for Dynamic Systems of Reactor Kinetics
Ahmed E. Aboanber
2013-01-01
Full Text Available The base of reactor kinetics dynamic systems is a set of coupled stiff ordinary differential equations known as the point reactor kinetics equations. These equations which express the time dependence of the neutron density and the decay of the delayed neutron precursors within a reactor are first order nonlinear and essentially describe the change in neutron density within the reactor due to a change in reactivity. Outstanding the particular structure of the point kinetic matrix, a semianalytical inversion is performed and generalized for each elementary step resulting eventually in substantial time saving. Also, the factorization techniques based on using temporarily the complex plane with the analytical inversion is applied. The theory is of general validity and involves no approximations. In addition, the stability of rational function approximations is discussed and applied to the solution of the point kinetics equations of nuclear reactor with different types of reactivity. From the results of various benchmark tests with different types of reactivity insertions, the developed generalized Padé approximation (GPA method shows high accuracy, high efficiency, and stable character of the solution.
An algorithm for the matrix lambert W function
Massimiliano Fasi, Nicholas J. Higham, Bruno Iannazzo
2015-01-01
An algorithm is proposed for computing primary matrix Lambert $W$ functions of a square matrix $A$, which are solutions of the matrix equation $We^W = A$. The algorithm employs the Schur decomposition and blocks the triangular form in such a way that Newton's method can be used on each diagonal block, with a starting matrix depending on the block. A natural simplification of Newton's method for the Lambert $W$ function is shown to be numerically unstable. By reorganizing the...
Bond, F W; Dryden, W; Briscoe, R
1999-12-01
This article describes a role playing experiment that examined the sufficiency hypothesis of Rational Emotive Behaviour Therapy (REBT). This proposition states that it is sufficient for rational and irrational beliefs to refer to preferences and musts, respectively, if those beliefs are to affect the functionality of inferences (FI). Consistent with the REBT literature (e.g. Dryden, 1994; Dryden & Ellis, 1988; Palmer, Dryden, Ellis & Yapp, 1995) results from this experiment showed that rational and irrational beliefs, as defined by REBT, do affect FI. Specifically, results showed that people who hold a rational belief form inferences that are significantly more functional than those that are formed by people who hold an irrational belief. Contrary to REBT theory, the sufficiency hypothesis was not supported. Thus, results indicated that it is not sufficient for rational and irrational beliefs to refer to preferences and musts, respectively, if those beliefs are to affect the FI. It appears, then, that preferences and musts are not sufficient mechanisms by which rational and irrational beliefs, respectively, affect the FI. Psychotherapeutic implications of these findings are considered.
The nuclear matrix and virus function.
Deppert, W; Schirmbeck, R
1995-01-01
Replication of the small DNA tumor virus, simian virus 40 (SV40), is largely dependent on host cell functions, because SV40, in addition to virion proteins, codes only for a few regulatory proteins, the most important one being the SV40 large tumor antigen (T-antigen). This renders SV40 an excellent tool for studying complex cellular and viral processes. In this review we summarize and discuss data providing evidence for virtually all major viral processes during the life cycle of SV40 from viral DNA replication to virion formation, being performed at or within structural systems of the nucleus, in particular the chromatin and the nuclear matrix. These data further support the concept that viral replication in the nucleus is structurally organized and demonstrate that viruses are excellent tools for analyzing the underlying cellular processes. The analysis of viral replication at nuclear structures might also provide a means for specifically interfering with viral processes without interfering with the corresponding cellular functions.
On the Rational Approximation of Analytic Functions Having Generalized Types of Rate of Growth
Devendra Kumar
2012-01-01
Full Text Available The present paper is concerned with the rational approximation of functions holomorphic on a domain G⊂C, having generalized types of rates of growth. Moreover, we obtain the characterization of the rate of decay of product of the best approximation errors for functions f having fast and slow rates of growth of the maximum modulus.
A Discussion on the Substitution Method for Trigonometric Rational Functions
Ponce-Campuzano, Juan Carlos; Rivera-Figueroa, Antonio
2011-01-01
It is common to see, in the books on calculus, primitives of functions (some authors use the word "antiderivative" instead of primitive). However, the majority of authors pay scant attention to the domains over which the primitives are valid, which could lead to errors in the evaluation of definite integrals. In the teaching of calculus, in…
Sheng Zhang; Hong-Qing Zhang
2011-04-01
A direct method, called the transformed rational function method, is used to construct more types of exact solutions of nonlinear partial differential equations by introducing new and more general rational functions. To illustrate the validity and advantages of the introduced general rational functions, the (3+1)-dimensional potential Yu–Toda–Sasa–Fukuyama (YTSF) equation is considered and new travelling wave solutions are obtained in a uniform way. Some of the obtained solutions, namely exponential function solutions, hyperbolic function solutions, trigonometric function solutions, Jacobi elliptic function solutions and rational solutions, contain an explicit linear function of the independent variables involved in the potential YTSF equation. It is shown that the transformed rational function method provides more powerful mathematical tool for solving nonlinear partial differential equations.
Surface functionalization of metal organic frameworks for mixed matrix membranes
Albenze, Erik; Lartey, Michael; Li, Tao; Luebke, David R.; Nulwala, Hunaid B.; Rosi, Nathaniel L.; Venna, Surendar R.
2017-03-21
Mixed Matrix Membrane (MMM) are composite membranes for gas separation and comprising a quantity of inorganic filler particles, in particular metal organic framework (MOF), dispersed throughout a polymer matrix comprising one or more polymers. This disclosure is directed to MOF functionalized through addition of a pendant functional group to the MOF, in order to improve interaction with a surrounding polymer matrix in a MMM. The improved interaction aids in avoiding defects in the MMM due to incompatible interfaces between the polymer matrix and the MOF particle, in turn increasing the mechanical and gas separation properties of the MMM. The disclosure is also directed to a MMM incorporating the surface functionalized MOF.
Fair and Square Computation of Inverse "Z"-Transforms of Rational Functions
Moreira, M. V.; Basilio, J. C.
2012-01-01
All methods presented in textbooks for computing inverse "Z"-transforms of rational functions have some limitation: 1) the direct division method does not, in general, provide enough information to derive an analytical expression for the time-domain sequence "x"("k") whose "Z"-transform is "X"("z"); 2) computation using the inversion integral…
Man, Yiu-Kwong
2012-01-01
In this note, a new method for computing the partial fraction decomposition of rational functions with irreducible quadratic factors in the denominators is presented. This method involves polynomial divisions and substitutions only, without having to solve for the complex roots of the irreducible quadratic polynomial or to solve a system of linear…
Man, Yiu-Kwong
2012-01-01
In this note, a new method for computing the partial fraction decomposition of rational functions with irreducible quadratic factors in the denominators is presented. This method involves polynomial divisions and substitutions only, without having to solve for the complex roots of the irreducible quadratic polynomial or to solve a system of linear…
Reduced density-matrix functionals from many-particle theory
Schade, Robert; Kamil, Ebad; Blöchl, Peter
2017-07-01
In materials with strong electron correlation the proper treatment of local atomic physics described by orbital occupations is crucial. Reduced density-matrix functional theory is a natural extension of density functional theory for systems that are dominated by orbital physics. We review the current state of reduced density-matrix functional theory (RDMFT). For atomic structure relaxations or ab-initio molecular dynamics the combination of density functional theory (DFT) and dynamical mean-field theory (DMFT) possesses a number of disadvantages, like the cumbersome evaluation of forces. We therefore describe a method, DFT+RDMFT, that combines many-particle effects based on reduced density-matrix functional theory with a density functional-like framework. A recent development is the construction of density-matrix functionals directly from many-particle theory such as methods from quantum chemistry or many-particle Green's functions. We present the underlying exact theorems and describe current progress towards quantitative functionals.
Matrix models for β-ensembles from Nekrasov partition functions
Sułkowski, P.
2010-01-01
We relate Nekrasov partition functions, with arbitrary values of ∊ 1, ∊ 2 parameters, to matrix models for β-ensembles. We find matrix models encoding the instanton part of Nekrasov partition functions, whose measure, to the leading order in ∊ 2 expansion, is given by the Vandermonde determinant to
On tau-functions of Zakharov-Shabat and other matrix hierarchies of integrable equations
Dickey, L A
1995-01-01
Matrix hierarchies are: multi-component KP, general Zakharov-Shabat (ZS) and its special cases, e.g., AKNS. The ZS comprises all integrable systems having a form of zero-curvature equations with rational dependence of matrices on a spectral parameter. The notion of a \\tau-function is introduced here in the most general case along with formulas linking \\tau-functions with wave Baker functions. The method originally invented by Sato et al. for the KP hierarchy is used. This method goes immediately from definitions and does not require any assumption about the character of a solution, being the most general. Applied to the matrix hierarchies, it involves considerable sophistication. The paper is self-contained and does not expect any special prerequisite from a reader.
Utilizing Symbolic Programming in Analog Circuit Synthesis of Arbitrary Rational Transfer Functions
Amjad Fuad Hajjar
2014-11-01
Full Text Available The employment of symbolic programming in analog circuit design for system interfaces is proposed. Given a rational transfer function with a set of specifications and constraints, one may autonomously synthesize it into an analog circuit. First, a classification of the target transfer function polynomials into 14 classes is performed. The classes include both stable and unstable functions as required. A symbolic exhaustive search algorithm based on a circuit configuration under investigation is then conducted where a polynomial in hand is to be identified. For illustration purposes, a set of complete design equations for the primary rational transfer functions is obtained targeting all classes of second order polynomials based on a proposed general circuit configuration. The design consists of a single active element and four different circuit structures. Finally, an illustrative example with full analysis and simulation is presented.
Efficient Recursive Methods for Partial Fraction Expansion of General Rational Functions
Youneng Ma
2014-01-01
Full Text Available Partial fraction expansion (pfe is a classic technique used in many fields of pure or applied mathematics. The paper focuses on the pfe of general rational functions in both factorized and expanded form. Novel, simple, and recursive formulas for the computation of residues and residual polynomial coefficients are derived. The proposed pfe methods require only simple pure-algebraic operations in the whole computation process. They do not involve derivatives when tackling proper functions and require no polynomial division when dealing with improper functions. The methods are efficient and very easy to apply for both computer and manual calculation. Various numerical experiments confirm that the proposed methods can achieve quite desirable accuracy even for pfe of rational functions with multiple high-order poles or some tricky ill-conditioned poles.
Fluctuations of Matrix Entries of Regular Functions of Wigner Matrices
Pizzo, Alessandro; Soshnikov, Alexander
2011-01-01
We study the fluctuations of the matrix entries of regular functions of Wigner random matrices in the limit when the matrix size goes to infinity. In the case of the Gaussian ensembles (GOE and GUE) this problem was considered by A.Lytova and L.Pastur in J. Stat. Phys., v.134, 147-159 (2009). Our results are valid provided the off-diagonal matrix entries have finite fourth moment, the diagonal matrix entries have finite third moment, and the test functions have four continuous derivatives in a neighborhood of the support of the Wigner semicircle law.
Multi-point quasi-rational approximants for the modified Bessel function I1(x)
Martin, P.; Olivares, J.; Cortés-Vega, L.; Sotomayor, A.
2016-08-01
Approximants for the modified Bessel function I1(x) has been found using the multi-point quasi-rational technique. The approximations here determined has good accuracy for any positive value of the variable, and it seems to be adequate for most of the works where this function are used. Furthermore, the approximants are simple to calculate numerically in a direct way or using any usual MAPLE or MATLAB software.
Geil, Hans Olav; Matsumoto, Ryutaroh
2009-01-01
We present a new bound on the number of Fq -rational places in an algebraic function field. It uses information about the generators of the Weierstrass semigroup related to a rational place. As we demonstrate, the bound has implications to the theory of towers of function fields....
Ranking hubs and authorities using matrix functions
2012-01-01
The notions of subgraph centrality and communicability, based on the exponential of the adjacency matrix of the underlying graph, have been effectively used in the analysis of undirected networks. In this paper we propose an extension of these measures to directed networks, and we apply them to the problem of ranking hubs and authorities. The extension is achieved by bipartization, i.e., the directed network is mapped onto a bipartite undirected network with twice as many nodes in order to ob...
The nuclear matrix: a structural milieu for genomic function.
Berezney, R; Mortillaro, M J; Ma, H; Wei, X; Samarabandu, J
1995-01-01
While significant progress has been made in elucidating molecular properties of specific genes and their regulation, our understanding of how the whole genome is coordinated has lagged behind. To understand how the genome functions as a coordinated whole, we must understand how the nucleus is put together and functions as a whole. An important step in that direction occurred with the isolation and characterization of the nuclear matrix. Aside from the plethora of functional properties associated with these isolated nuclear structures, they have enabled the first direct examination and molecular cloning of specific nuclear matrix proteins. The isolated nuclear matrix can be used for providing an in vitro model for understanding nuclear matrix organization in whole cells. Recent development of high-resolution and three-dimensional approaches for visualizing domains of genomic organization and function in situ has provided corroborative evidence for the nuclear matrix as the site of organization for replication, transcription, and post-transcriptional processing. As more is learned about these in situ functional sites, appropriate experiments could be designed to test molecular mechanisms with the in vitro nuclear matrix systems. This is illustrated in this chapter by the studies of nuclear matrix-associated DNA replication which have evolved from biochemical studies of in vitro nuclear matrix systems toward three-dimensional computer image analysis of replication sites for individual genes.
Multipole Matrix of Green Function of Laplace Equation
Makuch, K.; Górka, P.
Multipole matrix elements of Green function of Laplace equation are calculated. The multipole matrix elements of Green function in electrostatics describe potential on a sphere which is produced by a charge distributed on the surface of a different (possibly overlapping) sphere of the same radius. The matrix elements are defined by double convolution of two spherical harmonics with the Green function of Laplace equation. The method we use relies on the fact that in the Fourier space the double convolution has simple form. Therefore we calculate the multipole matrix from its Fourier transform. An important part of our considerations is simplification of the three dimensional Fourier transformation of general multipole matrix by its rotational symmetry to the one-dimensional Hankel transformation.
An Alternate Method for Computation of Transfer Function Matrix
Appukuttan K. K.
2010-01-01
Full Text Available A direct and simple numerical method is presented for calculating the transfer function matrix of a linear time invariant multivariable system (A, B, C. The method is based on the matrix-determinant identity, and it involves operations with an auxiliary vector on the matrices. The method is computationally faster compared to Liverrier and Danilevsky methods.
Universality of the Distribution Functions of Random Matrix Theory. II
Tracy, Craig A.; Widom, Harold
1999-01-01
This paper is a brief review of recent developments in random matrix theory. Two aspects are emphasized: the underlying role of integrable systems and the occurrence of the distribution functions of random matrix theory in diverse areas of mathematics and physics.
A New Method of Constructing Bivariate Vector Valued Rational Interpolation Function
Lin ZHENGI; Gong Qin ZHU
2011-01-01
At present,the methods of constructing vector valued rational interpolation function in rectangular mesh are mainly presented by means of the branched continued fractions.In order to get vector valued rational interpolation function with lower degree and better approximation effect,the paper divides rectangular mesh into pieces by choosing nonnegative integer parameters d1(0≤di ≤ m) and d2 (0≤d2 ≤n),builds bivariate polynomial vector interpolation for each piece,then combines with them properly.As compared with previous methods,the new method given by this paper is easy to compute and the degree for the interpolants is lower.
Nuclear matrix - structure, function and pathogenesis.
Wasąg, Piotr; Lenartowski, Robert
2016-12-20
The nuclear matrix (NM), or nuclear skeleton, is the non-chromatin, ribonucleoproteinaceous framework that is resistant to high ionic strength buffers, nonionic detergents, and nucleolytic enzymes. The NM fulfills a structural role in eukaryotic cells and is responsible for maintaining the shape of the nucleus and the spatial organization of chromatin. Moreover, the NM participates in several cellular processes, such as DNA replication/repair, gene expression, RNA transport, cell signaling and differentiation, cell cycle regulation, apoptosis and carcinogenesis. Short nucleotide sequences called scaffold/matrix attachment regions (S/MAR) anchor the chromatin loops to the NM proteins (NMP). The NMP composition is dynamic and depends on the cell type and differentiation stage or metabolic activity. Alterations in the NMP composition affect anchoring of the S/MARs and thus alter gene expression. This review aims to systematize information about the skeletal structure of the nucleus, with particular emphasis on the organization of the NM and its role in selected cellular processes. We also discuss several diseases that are caused by aberrant NM structure or dysfunction of individual NM elements.
Shape Preserving Positive and Convex Data Visualization using Rational Bi-cubic Functions
Tahira Sumbal Shaikh
2012-01-01
Full Text Available This paper is concerned with the problem of positive and convex data visualization in the form of positive and convex surfaces. A rational bi-cubic partially blended function with eight free parameters in its description is introduced and applied to visualize the shape of positive data and convex data. The developed schemes in this paper have unique representations. Visual models of surfaces attain smoothness.
A(α)-ACCEPTABILITY OF RATIONAL APPROXIMATIONS TO FUNCTION exp(z)
Yang Fengjian; Chen Xinming
2001-01-01
In this paper, two necessary and sufficient conditions, and asufficient condition of A (a)-acceptability for (n,m) rational approximation to function exp(z) are given, where a∈ (0, π/2). A necessary and sufficient condition of A-acceptability for (n,m) rational approximation to exp(z) of order p is obtained, where n≤m≤p.CLC Number：O17 Document ID：AReferences：[1]Ralston,A. ,A first Course in Numerical Analysis,Mc Graw-Hill,1965.[2]Saff,E. B. and Varga,R.S. ,On the Zeros and Poles of Padé Approximations to exp(x),Numer. Math. ,25(1975),1,1-4.[3]Wanner,G. ,Hairer,E. and Nqrsett,P. ,Order Stars and Stability Theorems,BIT,18(1978),4,475-489.[4]Yang Fengjian and Chen Xinming,A (a)-acceptability of Padé Approximations to Function exp (q). Approx. Thory & its Appl.,15 (1999)3,92- 99.[5]Liniger,W. and Willoughby,R. A.,Efficient Integration Methods for Stiff Systems of Ordinary Differential Equations,SIAM J. Numer. Anal. ,7(1970),1,47- 66.[6]Li Shoufu and Yang Fengjian,Acceptability of Rational Approximations to the Function exp (q) (in Chinese),Math,Numer Sinica,14 (1992),4,480- 488.[7]Yang Fengjian,The necessary and Sufficient Conditions of A-Acceptability of n parameters (n,n) Rational Approximations to the Function exp (q) (in Chinese). Math Numer Sinica,18(1996),4,397-404.[8]Zhong Y. Q.,Complex Analysis (in Chinese),Higher Education Press,Beijing,1979.[9]Nrsett,S. P. ,C-Polynomials for Rational Approximation to the Exponential Function,Numer. Math. ,25(1975),1,39-56.Manuscript Received：1999年9月14日Manuscript Revised：2000年12月2日Published：2001年9月1日
On Painleve Related Functions Arising in Random Matrix Theory
Choup, Leonard N
2011-01-01
In deriving large n probability distribution function of the rightmost eigenvalue from the classical Random Matrix Theory Ensembles, one is faced with que question of ?finding large n asymptotic of certain coupled set of functions. This paper presents some of these functions in a new light.
Wave Function Structure in Two-Body Random Matrix Ensembles
Kaplan, L; Kaplan, Lev; Papenbrock, Thomas
2000-01-01
We study the structure of eigenstates in two-body interaction random matrix ensembles and find significant deviations from random matrix theory expectations. The deviations are most prominent in the tails of the spectral density and indicate localization of the eigenstates in Fock space. Using ideas related to scar theory we derive an analytical formula that relates fluctuations in wave function intensities to fluctuations of the two-body interaction matrix elements. Numerical results for many-body fermion systems agree well with the theoretical predictions.
Matrix proteoglycans as effector molecules for epithelial cell function
C. W. Frevert
2005-12-01
Full Text Available Matrix proteoglycans are complex molecules composed of a core protein and glycosaminoglycan side chains. Once thought to be the molecular glue providing structural support and imparting biomechanical properties to lung tissue, it is now apparent that proteoglycans are important biological modifiers which regulate processes such as lung development, homeostasis, inflammation and wound healing. The diverse roles of proteoglycans in the extracellular matrix suggest that these molecules play a critical role in normal and diseased lungs. This short article will discuss the role extracellular matrix proteoglycans play in regulating epithelial cell function in the lungs.
Universality of Correlation Functions in Random Matrix Models of QCD
Jackson, A D; Verbaarschot, J J M
1997-01-01
We demonstrate the universality of the spectral correlation functions of a QCD inspired random matrix model that consists of a random part having the chiral structure of the QCD Dirac operator and a deterministic part which describes a schematic temperature dependence. We calculate the correlation functions analytically using the technique of Itzykson-Zuber integrals for arbitrary complex super-matrices. An alternative exact calculation for arbitrary matrix size is given for the special case of zero temperature, and we reproduce the well-known Laguerre kernel. At finite temperature, the microscopic limit of the correlation functions are calculated in the saddle point approximation. The main result of this paper is that the microscopic universality of correlation functions is maintained even though unitary invariance is broken by the addition of a deterministic matrix to the ensemble.
Blackett, S.A. [Univ. of Auckland (New Zealand). Dept of Engineering Science
1996-02-01
Numerical analysis is an important part of Engineering. Frequently relationships are not adequately understood, or too complicated to be represented by theoretical formulae. Instead, empirical approximations based on observed relationships can be used for simple fast and accurate evaluations. Historically, storage of data has been a large constraint on approximately methods. So the challenge is to find a sufficiently accurate representation of data which is valid over as large a range as possible while requiring the storage of only a few numerical values. Polynomials, popular as approximation functions because of their simplicity, can be used to represent simple data. Equation 1.1 shows a simple 3rd order polynomial approximation. However, just increasing the order and number of terms included in a polynomial approximation does not improve the overall result. Although the function may fit exactly to observed data, between these points it is likely that the approximation is increasingly less smooth and probably inadequate. An alternative to adding further terms to the approximation is to make the approximation rational. Equation 1.2 shows a rational polynomial, 3rd order in the numerator and denominator. A rational polynomial approximation allows poles and this can greatly enhance an approximation. In Sections 2 and 3 two different methods for fitting rational polynomials to a given data set are detailed. In Section 4, consideration is given to different rational polynomials used on adjacent regions. Section 5 shows the performance of the rational polynomial algorithms. Conclusions are presented in Section 6.
Tunnelling matrix elements with Gutzwiller wave functions
Di Ciolo, Andrea; Tocchio, Luca F.; Gros, Claudius [Institut fuer Theoretische Physik, Goethe Universitaet Frankfurt, Frankfurt Am Main (Germany)
2011-07-01
We use a generalized Gutzwiller approach, in order to study projected particle (hole) excitations for superconducting systems and systems with antiferromagnetic (AFM) order. As in the standard Gutzwiller scheme the effects of the strong electronic correlations are given via the suppression of the site double occupancy; for our computations it is helpful to consider a lattice with a reservoir site unaffected by this suppression of the double occupancy. In this approach we obtain the probabilities for the tunnelling of a particle (hole) into the projected state. Our results are due only to the physical properties of the trial state and not to the choice of a specifical Hamiltonian: in this sense, they are model-independent but not universal, because they rely on the features of the chosen Gutzwiller wave function (projected Fermi Sea, BCS superconductor, AFM..) The accuracy and the reliability of our analytical approximation is tested using the Variational Monte Carlo. Possible comparisons with tunnelling experiments are discussed.
SONG Li-Na; ZHANG Hong-Qing
2007-01-01
In this work, by means of a generalized method and symbolic computation, we extend the Jacobi elliptic function rational expansion method to uniformly construct a series of stochastic wave solutions for stochastic evolution equations. To illustrate the effectiveness of our method, we take the (2+1)-dimensional stochastic dispersive long wave system as an example. We not only have obtained some known solutions, but also have constructed some new rational formal stochastic Jacobi elliptic function solutions.
Hilbert's Tenth Problem for rational function fields over p-adic fields
Degroote, Claudia
2011-01-01
Let K be a p-adic field (a finite extension of some Q_p) and let K(t) be the field of rational functions over K. We define a kind of quadratic reciprocity symbol for polynomials over K and apply it to prove isotropy for a certain class of quadratic forms over K(t). Using this result, we give an existential definition for the predicate "v_t(x) >= 0" in K(t). This implies undecidability of diophantine equations over K(t).
Exponential rational function method for space-time fractional differential equations
Aksoy, Esin; Kaplan, Melike; Bekir, Ahmet
2016-04-01
In this paper, exponential rational function method is applied to obtain analytical solutions of the space-time fractional Fokas equation, the space-time fractional Zakharov Kuznetsov Benjamin Bona Mahony, and the space-time fractional coupled Burgers' equations. As a result, some exact solutions for them are successfully established. These solutions are constructed in fractional complex transform to convert fractional differential equations into ordinary differential equations. The fractional derivatives are described in Jumarie's modified Riemann-Liouville sense. The exact solutions obtained by the proposed method indicate that the approach is easy to implement and effective.
Khaled A. Gepreel
2012-01-01
Full Text Available We modified the rational Jacobi elliptic functions method to construct some new exact solutions for nonlinear differential difference equations in mathematical physics via the lattice equation, the discrete nonlinear Schrodinger equation with a saturable nonlinearity, the discrete nonlinear Klein-Gordon equation, and the quintic discrete nonlinear Schrodinger equation. Some new types of the Jacobi elliptic solutions are obtained for some nonlinear differential difference equations in mathematical physics. The proposed method is more effective and powerful to obtain the exact solutions for nonlinear differential difference equations.
A T Matrix Method Based upon Scalar Basis Functions
Mackowski, D.W.; Kahnert, F. M.; Mishchenko, Michael I.
2013-01-01
A surface integral formulation is developed for the T matrix of a homogenous and isotropic particle of arbitrary shape, which employs scalar basis functions represented by the translation matrix elements of the vector spherical wave functions. The formulation begins with the volume integral equation for scattering by the particle, which is transformed so that the vector and dyadic components in the equation are replaced with associated dipole and multipole level scalar harmonic wave functions. The approach leads to a volume integral formulation for the T matrix, which can be extended, by use of Green's identities, to the surface integral formulation. The result is shown to be equivalent to the traditional surface integral formulas based on the VSWF basis.
Matrix Transfer Function Design for Flexible Structures: An Application
Brennan, T. J.; Compito, A. V.; Doran, A. L.; Gustafson, C. L.; Wong, C. L.
1985-01-01
The application of matrix transfer function design techniques to the problem of disturbance rejection on a flexible space structure is demonstrated. The design approach is based on parameterizing a class of stabilizing compensators for the plant and formulating the design specifications as a constrained minimization problem in terms of these parameters. The solution yields a matrix transfer function representation of the compensator. A state space realization of the compensator is constructed to investigate performance and stability on the nominal and perturbed models. The application is made to the ACOSSA (Active Control of Space Structures) optical structure.
D.O. Smallwood
1996-01-01
Full Text Available It is shown that the usual method for estimating the coherence functions (ordinary, partial, and multiple for a general multiple-input! multiple-output problem can be expressed as a modified form of Cholesky decomposition of the cross-spectral density matrix of the input and output records. The results can be equivalently obtained using singular value decomposition (SVD of the cross-spectral density matrix. Using SVD suggests a new form of fractional coherence. The formulation as a SVD problem also suggests a way to order the inputs when a natural physical order of the inputs is absent.
On rationally supported surfaces
Gravesen, Jens; Juttler, B.; Sir, Z.
2008-01-01
We analyze the class of surfaces which are equipped with rational support functions. Any rational support function can be decomposed into a symmetric (even) and an antisymmetric (odd) part. We analyze certain geometric properties of surfaces with odd and even rational support functions....... In particular it is shown that odd rational support functions correspond to those rational surfaces which can be equipped with a linear field of normal vectors, which were discussed by Sampoli et al. (Sampoli, M.L., Peternell, M., Juttler, B., 2006. Rational surfaces with linear normals and their convolutions...... with rational surfaces. Comput. Aided Geom. Design 23, 179-192). As shown recently, this class of surfaces includes non-developable quadratic triangular Bezier surface patches (Lavicka, M., Bastl, B., 2007. Rational hypersurfaces with rational convolutions. Comput. Aided Geom. Design 24, 410426; Peternell, M...
Stable computations with flat radial basis functions using vector-valued rational approximations
Wright, Grady B.; Fornberg, Bengt
2017-02-01
One commonly finds in applications of smooth radial basis functions (RBFs) that scaling the kernels so they are 'flat' leads to smaller discretization errors. However, the direct numerical approach for computing with flat RBFs (RBF-Direct) is severely ill-conditioned. We present an algorithm for bypassing this ill-conditioning that is based on a new method for rational approximation (RA) of vector-valued analytic functions with the property that all components of the vector share the same singularities. This new algorithm (RBF-RA) is more accurate, robust, and easier to implement than the Contour-Padé method, which is similarly based on vector-valued rational approximation. In contrast to the stable RBF-QR and RBF-GA algorithms, which are based on finding a better conditioned base in the same RBF-space, the new algorithm can be used with any type of smooth radial kernel, and it is also applicable to a wider range of tasks (including calculating Hermite type implicit RBF-FD stencils). We present a series of numerical experiments demonstrating the effectiveness of this new method for computing RBF interpolants in the flat regime. We also demonstrate the flexibility of the method by using it to compute implicit RBF-FD formulas in the flat regime and then using these for solving Poisson's equation in a 3-D spherical shell.
Algebraic evaluation of matrix elements in the Laguerre function basis
McCoy, A. E.; Caprio, M. A.
2016-02-01
The Laguerre functions constitute one of the fundamental basis sets for calculations in atomic and molecular electron-structure theory, with applications in hadronic and nuclear theory as well. While similar in form to the Coulomb bound-state eigenfunctions (from the Schrödinger eigenproblem) or the Coulomb-Sturmian functions (from a related Sturm-Liouville problem), the Laguerre functions, unlike these former functions, constitute a complete, discrete, orthonormal set for square-integrable functions in three dimensions. We construct the SU(1, 1) × SO(3) dynamical algebra for the Laguerre functions and apply the ideas of factorization (or supersymmetric quantum mechanics) to derive shift operators for these functions. We use the resulting algebraic framework to derive analytic expressions for matrix elements of several basic radial operators (involving powers of the radial coordinate and radial derivative) in the Laguerre function basis. We illustrate how matrix elements for more general spherical tensor operators in three dimensional space, such as the gradient, may then be constructed from these radial matrix elements.
Analysis of stability problems via matrix Lyapunov functions
Anatoly A. Martynyuk
1990-01-01
Full Text Available The stability of nonlinear systems is analyzed by the direct Lyapunov's method in terms of Lyapunov matrix functions. The given paper surveys the main theorems on stability, asymptotic stability and nonstability. They are applied to systems of nonlinear equations, singularly-perturbed systems and hybrid systems. The results are demonstrated by an example of a two-component system.
On the Ground State Wave Function of Matrix Theory
Lin, Ying-Hsuan
2014-01-01
We propose an explicit construction of the leading terms in the asymptotic expansion of the ground state wave function of BFSS SU(N) matrix quantum mechanics. Our proposal is consistent with the expected factorization property in various limits of the Coulomb branch, and involves a different scaling behavior from previous suggestions. We comment on some possible physical implications.
On the ground state wave function of matrix theory
Lin, Ying-Hsuan; Yin, Xi
2015-11-01
We propose an explicit construction of the leading terms in the asymptotic expansion of the ground state wave function of BFSS SU( N ) matrix quantum mechanics. Our proposal is consistent with the expected factorization property in various limits of the Coulomb branch, and involves a different scaling behavior from previous suggestions. We comment on some possible physical implications.
Rational identification of diet-derived postbiotics for improving intestinal microbiota function.
Klemashevich, Cory; Wu, Charmian; Howsmon, Daniel; Alaniz, Robert C; Lee, Kyongbum; Jayaraman, Arul
2014-04-01
The intestinal microbiota plays an important role in a wide range of functions and whole body homeostasis. Recent advances have linked microbiota dysbiosis to conditions ranging from Crohn's disease to cancer. The restoration or strengthening of the intestinal microbiota through diet-based approaches such as probiotics and prebiotics has been proposed for combating the onset or progression of these diseases. In this review, we highlight the importance of postbiotics for the manipulation of the intestinal microbiota, with special emphasis on systems biology computational tools and targeted metabolomics for the rational discovery and identification of these bioactive molecules. The identification of novel postbiotics and the pathways responsible for their production should lead to improved mechanistic understanding of the role that specific probiotics, prebiotics, and postbiotics have in restoring intestinal microbiota composition and function.
Delong Ma; Zhong Wu; Zhanyi Cao
2014-01-01
Supercapacitors (SCs) have attracted much attention as one of the alternative energy devices due to their high power performance, long cycle life, and low maintenance cost. Graphene is considered as an innovative and promising material due to its large theoretical specific surface area, high electrical conductivity, good mechanical properties and chemical stability. Herein, we report an effective strategy for elaborately constructing rationally functionalized self-standing graphene (SG) obtained from giant graphene oxide (GGO) paper followed by an ultrarapid thermal-processing. This treatment results in both the exfoliation of graphene sheets and the reduction of GGO by elimination of oxygen-containing groups. The as-prepared SG electrode materials without additive and conducting agent provide an excellent combination of the electrical double layer capacitor (EDLC) and pseudocapacitor (PC) functions and exhibit superior electrochemical performance, including high specific capacitance, good rate capability and excellent cycling stability when investigated in three-electrode electrochemical cells.
A Study on Rational Function Model Generation for TerraSAR-X Imagery
Mahdi Motagh
2013-09-01
Full Text Available The Rational Function Model (RFM has been widely used as an alternative to rigorous sensor models of high-resolution optical imagery in photogrammetry and remote sensing geometric processing. However, not much work has been done to evaluate the applicability of the RF model for Synthetic Aperture Radar (SAR image processing. This paper investigates how to generate a Rational Polynomial Coefficient (RPC for high-resolution TerraSAR-X imagery using an independent approach. The experimental results demonstrate that the RFM obtained using the independent approach fits the Range-Doppler physical sensor model with an accuracy of greater than 10−3 pixel. Because independent RPCs indicate absolute errors in geolocation, two methods can be used to improve the geometric accuracy of the RFM. In the first method, Ground Control Points (GCPs are used to update SAR sensor orientation parameters, and the RPCs are calculated using the updated parameters. Our experiment demonstrates that by using three control points in the corners of the image, an accuracy of 0.69 pixels in range and 0.88 pixels in the azimuth direction is achieved. For the second method, we tested the use of an affine model for refining RPCs. In this case, by applying four GCPs in the corners of the image, the accuracy reached 0.75 pixels in range and 0.82 pixels in the azimuth direction.
Devriendt, C.; Weijtjens, W.; De Sitter, G.; Guillaume, P.
2013-10-01
In recent years, the authors have proposed an innovative approach for Operational Modal Analysis based on transmissibility measurements. A method was proposed based on combining 2 single-reference transmissibility functions that were obtained during 2 different loading conditions. However in practice one in general has access to multiple transmissibility functions and perhaps even multiple loading conditions. In this paper a new method is introduced that combines all the measured single-reference transmissibility functions in a unique matrix formulation in order to identify system poles. It will be shown that each element of the pseudo-inverse of this matrix is a rational function with poles equal to the system poles. The proposed method reduces the risk to miss system poles and to identify extra non-physical poles. Therefore the method increases the usability and reliability of transmissibility based operational modal analysis (TOMA). The method will be demonstrated and validated by means of an experiment on a beam excited at multiple inputs for three different loading conditions.
Integrating products of Bessel functions with an additional exponential or rational factor
Van Deun, Joris; Cools, Ronald
2008-04-01
We provide two MATLAB programs to compute integrals of the form ex∏i=1kJν_i(ax)dxand 0∞xr+x∏i=1kJν_i(ax)dx with Jν_i(x) the Bessel function of the first kind and (real) order ν. The parameter m is a real number such that ∑ν+m>-1 (to assure integrability near zero), r is real and the numbers c and a are all strictly positive. The program can deliver accurate error estimates. Program summaryProgram title: BESSELINTR, BESSELINTC Catalogue identifier: AEAH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1601 No. of bytes in distributed program, including test data, etc.: 13 161 Distribution format: tar.gz Programming language: Matlab (version ⩾6.5), Octave (version ⩾2.1.69) Computer: All supporting Matlab or Octave Operating system: All supporting Matlab or Octave RAM: For k Bessel functions our program needs approximately ( 500+140k) double precision variables Classification: 4.11 Nature of problem: The problem consists in integrating an arbitrary product of Bessel functions with an additional rational or exponential factor over a semi-infinite interval. Difficulties arise from the irregular oscillatory behaviour and the possible slow decay of the integrand, which prevents truncation at a finite point. Solution method: The interval of integration is split into a finite and infinite part. The integral over the finite part is computed using Gauss-Legendre quadrature. The integrand on the infinite part is approximated using asymptotic expansions and this approximation is integrated exactly with the aid of the upper incomplete gamma function. In the case where a rational factor is present, this factor is first expanded in a Taylor series around infinity. Restrictions: Some (and eventually all
Giorgio Molteni
2017-01-01
Full Text Available Conventional frontier molecular orbital theory is not able to satisfactorily explain the regioselectivity outcome of the nitrilimine–alkene cycloaddition. We considered that conceptual density functional theory (DFT could be an effective theoretical framework to rationalize the regioselectivity of the title reaction. Several nitrilimine–alkene cycloadditions were analyzed, for which we could find regioselectivity data in the literature. We computed DFT reactivity indices at the B3LYP/6-311G(2d,p//B3LYP/6-31G(d,p and employed the grand potential stabilization criterion to calculate the preferred regioisomer. Experimental and calculated regioselectivity agree in the vast majority of cases. It was concluded that predominance of a single regioisomer can be obtained by maximizing (i the chemical potential difference between nitrilimine and alkene and (ii the local softness difference between the reactive atomic sites within each reactant. Such maximization can be achieved by carefully selecting the substituents on both reactants.
Two essential peritrophic matrix proteins mediate matrix barrier functions in the insect midgut.
Agrawal, Sinu; Kelkenberg, Marco; Begum, Khurshida; Steinfeld, Lea; Williams, Clay E; Kramer, Karl J; Beeman, Richard W; Park, Yoonseong; Muthukrishnan, Subbaratnam; Merzendorfer, Hans
2014-06-01
The peritrophic matrix (PM) in the midgut of insects consists primarily of chitin and proteins and is thought to support digestion and provide protection from abrasive food particles and enteric pathogens. We examined the physiological roles of 11 putative peritrophic matrix protein (PMP) genes of the red flour beetle, Tribolium castaneum (TcPMPs). TcPMP genes are differentially expressed along the length of the midgut epithelium of feeding larvae. RNAi of individual PMP genes revealed no abnormal developmental phenotypes for 9 of the 11 TcPMPs. However, RNAi for two PMP genes, TcPMP3 and TcPMP5-B, resulted in depletion of the fat body, growth arrest, molting defects and mortality. In situ permeability assays after oral administration of different-sized FITC-dextran beads demonstrated that the exclusion size of the larval peritrophic matrix (PM) decreases progressively from >2 MDa to RNAi for TcPMP3 and TcPMP5-B, these dextrans penetrated the epithelium of the median midgut, indicating loss of structural integrity and barrier function of the larval PM. In contrast, RNAi for TcPMP5-B, but not RNAi for TcPMP3, resulted in breakdown of impermeability to 4 and 40 kDa dextrans in the PM of the posterior midgut. These results suggest that specific PMPs are involved in the regulation of PM permeability, and that a gradient of barrier function is essential for survival and fat body maintenance.
Four-point function in the IOP matrix model
Michel, Ben; Polchinski, Joseph; Rosenhaus, Vladimir; Suh, S. Josephine
2016-05-01
The IOP model is a quantum mechanical system of a large- N matrix oscillator and a fundamental oscillator, coupled through a quartic interaction. It was introduced previously as a toy model of the gauge dual of an AdS black hole, and captures a key property that at infinite N the two-point function decays to zero on long time scales. Motivated by recent work on quantum chaos, we sum all planar Feynman diagrams contributing to the four-point function. We find that the IOP model does not satisfy the more refined criteria of exponential growth of the out-of-time-order four-point function.
Four-point function in the IOP matrix model
Michel, Ben; Rosenhaus, Vladimir; Suh, S Josephine
2016-01-01
The IOP model is a quantum mechanical system of a large-$N$ matrix oscillator and a fundamental oscillator, coupled through a quartic interaction. It was introduced previously as a toy model of the gauge dual of an AdS black hole, and captures a key property that at infinite $N$ the two-point function decays to zero on long time scales. Motivated by recent work on quantum chaos, we sum all planar Feynman diagrams contributing to the four-point function. We find that the IOP model does not satisfy the more refined criteria of exponential growth of the out-of-time-order four-point function.
Structure and function of the skeletal muscle extracellular matrix.
Gillies, Allison R; Lieber, Richard L
2011-09-01
The skeletal muscle extracellular matrix (ECM) plays an important role in muscle fiber force transmission, maintenance, and repair. In both injured and diseased states, ECM adapts dramatically, a property that has clinical manifestations and alters muscle function. Here we review the structure, composition, and mechanical properties of skeletal muscle ECM; describe the cells that contribute to the maintenance of the ECM; and, finally, overview changes that occur with pathology. New scanning electron micrographs of ECM structure are also presented with hypotheses about ECM structure–function relationships. Detailed structure–function relationships of the ECM have yet to be defined and, as a result, we propose areas for future study.
Jiang, Xiaocheng; Tian, Bozhi; Xiang, Jie; Qian, Fang; Zheng, Gengfeng; Wang, Hongtao; Mai, Liqiang; Lieber, Charles M
2011-07-26
Branched nanostructures represent unique, 3D building blocks for the "bottom-up" paradigm of nanoscale science and technology. Here, we report a rational, multistep approach toward the general synthesis of 3D branched nanowire (NW) heterostructures. Single-crystalline semiconductor, including groups IV, III-V, and II-VI, and metal branches have been selectively grown on core or core/shell NW backbones, with the composition, morphology, and doping of core (core/shell) NWs and branch NWs well controlled during synthesis. Measurements made on the different composition branched NW structures demonstrate encoding of functional p-type/n-type diodes and light-emitting diodes (LEDs) as well as field effect transistors with device function localized at the branch/backbone NW junctions. In addition, multibranch/backbone NW structures were synthesized and used to demonstrate capability to create addressable nanoscale LED arrays, logic circuits, and biological sensors. Our work demonstrates a previously undescribed level of structural and functional complexity in NW materials, and more generally, highlights the potential of bottom-up synthesis to yield increasingly complex functional systems in the future.
Test functions, Schur-Agler classes and transfer-function realizations: the matrix-valued setting
Ball, Joseph A
2011-01-01
Given a collection of test functions, one defines the associated Schur-Agler class as the intersection of the contractive multipliers over the collection of all positive kernels for which each test function is a contractive multiplier. We indicate extensions of this framework to the case where the test functions, kernel functions, and Schur-Agler-class functions are allowed to be matrix- or operator-valued. We illustrate the general theory with two examples: (1) the matrix-valued Schur class over a finitely-connected planar domain and (2) the matrix-valued version of the constrained Hardy algebra (bounded analytic functions on the unit disk with derivative at the origin constrained to have zero value). Emphasis is on examples where the matrix-valued version is not obtained as a simple higher-multiplicity tensoring of the scalar-valued version.
Silicon Photodetectors Matrix Coordinate Bipolar Functionally Integrated Structures
V.N. Murashev
2015-03-01
Full Text Available In this paper a new approach for solving the detection and coordinate the detection of radiation in the optical range of 0.3-1.1 microns, based on the use of so-called bipolar functionally integrated structures (BI-FIS in pixels photodetector arrays is discussed. Variants of new technical solutions based on photo-detectors matrix pixel BI-FIS structures are shown. Their effectiveness and scope are evaluated.
Hybrid functional study rationalizes the simple cubic phase of calcium at high pressures.
Liu, Hanyu; Cui, Wenwen; Ma, Yanming
2012-11-14
Simple cubic (SC) phase has been long experimentally determined as the high-pressure phase III of elemental calcium (Ca) since 1984. However, recent density functional calculations within semi-local approximation showed that this SC phase is structurally unstable by exhibiting severely imaginary phonons, and is energetically unstable with respect to a theoretical body-centered tetragonal I4(1)/amd structure over the pressure range of phase III. These calculations generated extensive debates on the validity of SC phase. Here we have re-examined the SC structure by performing more precise density functional calculations within hybrid functionals of Heyd-Scuseria-Erhzerhof and PBE0. Our calculations were able to rationalize fundamentally the phase stability of SC structure over all other known phases by evidence of its actual energetic stability above 33 GPa and its intrinsically dynamical stability without showing any imaginary phonons in the entire pressure range studied. We further established that the long-thought theoretical I4(1)/amd structure remains stable in a narrow pressure range before entering SC phase and is actually the structure of experimental Ca-III(') synthesized recently at low temperature 14 K as supported by the excellent agreement between our simulated x-ray diffraction patterns and the experimental data. Our results shed strong light on the crucial role played by the precise electron exchange energy in a proper description of the potential energy of Ca.
Kalmykov, M.Yu.; Kniehl, B.A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2008-07-15
We prove the following theorems: 1) The Laurent expansions in {epsilon} of the Gauss hypergeometric functions {sub 2}F{sub 1}(I{sub 1}+a{epsilon},I{sub 2}+b{epsilon};I{sub 3}+(p)/(q)+c{epsilon};z), {sub 2}F{sub 1}(I{sub 1}+(p)/(q)+a{epsilon},I{sub 2}+(p/q)+b{epsilon};I{sub 3}+(p)/(q)+c{epsilon};z) and {sub 2}F{sub 1}(I{sub 1}+(p)/(q)+ a{epsilon},I{sub 2}+b{epsilon};I{sub 3}+(p)/(q)+c{epsilon};z), where I{sub 1},I{sub 2},I{sub 3},p,q are arbitrary integers, a,b,c are arbitrary numbers and {epsilon} is an infinitesimal parameter, are expressible in terms of multiple polylogarithms of q-roots of unity with coefficients that are ratios of polynomials; 2) The Laurent expansion of the Gauss hypergeometric function {sub 2}F{sub 1}(I{sub 1}+(p)/(q)+a{epsilon},I{sub 2}+b{epsilon};I{sub 3}+c{epsilon};z) is expressible in terms of multiple polylogarithms of q-roots of unity times powers of logarithm with coefficients that are ratios of polynomials; 3) The multiple inverse rational sums {sigma}{sup {infinity}}{sub j=1}({gamma}(j))/({gamma}(1+j-(p)/(q))) (z{sup j})/(j{sup c}) S{sub a{sub 1}}(j-1).. S{sub a{sub p}}(j-1) and the multiple rational sums {sigma}{sup {infinity}}{sub j=1} ({gamma}(j+(p)/(q)))/({gamma}(1+j)) (z{sup j})/(j{sup c}) S{sub a{sub 1}}(j-1).. S{sub a{sub p}}(j-1), where S{sub a}(j)={sigma}{sup j}{sub k=1}(1)/(k{sup a}) is a harmonic series and c is an arbitrary integer, are expressible in terms of multiple polylogarithms; 4) The generalized hypergeometric functions {sub p}F{sub p.1}((vector)A+(vector)a{epsilon};(vector)B+(vector)b{epsilon},(p)/(q)+B{sub p-1};z) and {sub p}F{sub p-1}((vector)A+(vector)a{epsilon},(p)/(q)+A{sub p};(vector)B+(vector)b{epsilon};z) are expressible in terms of multiple polylogarithms with coefficients that are ratios of polynomials. (orig.)
Chen, Tian; Qiu, Jinhao; Zhu, Kongjun; Li, Jinhuan; Wang, Jingwen; Li, Shuqin; Wang, Xiaoliang
2015-03-26
Dielectric elastomers have great potentials as flexible actuators in micro-electromechanical systems (MEMS) due to their large deformation, light weight, mechanical compliancy, and low cost. The low dielectric constant of these elastomers requires a rather high voltage electric field, which has greatly limited their applications. In this work, a diaphragm-type flexible microactuator comprising a hyperbranched aromatic polyamide functionalized graphene (HAPFG) filler embedded into the polyurethane (PU) dielectric elastomer matrix is described. The rational designed HAPFG sheets exhibits uniform dispersion in PU matrix and strong adhesion with the matrix by hydrogen-bond coupling. Consequently, the HAPFG-PU composites possess high dielectric performance and low loss modulus. The effect of hyperbranched aromatic polyamide functionalized graphene on high voltage electric field induced strain was experimentally investigated using the Fotonic sensor. The high electric field response of the composite was discussed by applying different kinds of alternating-current field. In addition, a comparison of the breakdown strength between the HAPFG-PU composite and the pure PU was carried out.
Crystal Frameworks, Matrix-valued Functions and Rigidity Operators
Power, S C
2011-01-01
An introduction and survey is given of some recent work on the infinitesimal dynamics of \\textit{crystal frameworks}, that is, of translationally periodic discrete bond-node structures in $\\mathbb{R}^d$, for $ d=2,3,...$. We discuss the rigidity matrix, a fundamental object from finite bar-joint framework theory, rigidity operators, matrix-function representations and low energy phonons. These phonons in material crystals, such as quartz and zeolites, are known as rigid unit modes, or RUMs, and are associated with the relative motions of rigid units, such as ~SiO$_4$ tetrahedra in the tetrahedral polyhedral bond-node model for quartz. We also introduce semi-infinite crystal frameworks, bi-crystal frameworks and associated multi-variable Toeplitz operators.
Dynamics of a family of transcendental meromorphic functions having rational Schwarzian derivative
Sajid, M.; Kapoor, G. P.
2007-02-01
In the present paper, a class of critically finite transcendental meromorphic functions having rational Schwarzian derivative is introduced and the dynamics of functions in one parameter family is investigated. It is found that there exist two parameter values [lambda]*=[phi](0)>0 and , where and is the real root of [phi]'(x)=0, such that the Fatou sets of f[lambda](z) for [lambda]=[lambda]* and [lambda]=[lambda]** contain parabolic domains. A computationally useful characterization of the Julia set of the function f[lambda](z) as the complement of the basin of attraction of an attracting real fixed point of f[lambda](z) is established and applied for the generation of the images of the Julia sets of f[lambda](z). Further, it is observed that the Julia set of explodes to whole complex plane for [lambda]>[lambda]**. Finally, our results found in the present paper are compared with the recent results on dynamics of one parameter families [lambda]tanz, [R.L. Devaney, L. Keen, Dynamics of meromorphic maps: Maps with polynomial Schwarzian derivative, Ann. Sci. Ecole Norm. Sup. 22 (4) (1989) 55-79; L. Keen, J. Kotus, Dynamics of the family [lambda]tan(z), Conform. Geom. Dynam. 1 (1997) 28-57; G.M. Stallard, The Hausdorff dimension of Julia sets of meromorphic functions, J. London Math. Soc. 49 (1994) 281-295] and , [lambda]>0 [G.P. Kapoor, M. Guru Prem Prasad, Dynamics of : The Julia set and bifurcation, Ergodic Theory Dynam. Systems 18 (1998) 1363-1383].
Esmeryan, Karekin D.; Bressler, Ashton H.; Castano, Carlos E.; Fergusson, Christian P.; Mohammadi, Reza
2016-12-01
Although the superhydrophobic surfaces are preferable for passive anti-icing systems, as they provide water shedding before initiation of ice nucleation, their practical usage is still under debate. This is so, as the superhydrophobic materials are not necessarily icephobic and most of the synthesis techniques are characterized with low fabrication scalability. Here, we describe a rational strategy for the atmospheric icing prevention, based on chemically functionalized carbon soot, suitable for large-scale fabrication of superhydrophobic coatings that exhibit and retain icephobicity in harsh operational conditions. This is achieved through a secondary treatment with ethanol and aqueous fluorocarbon solution, which improves the coating's mechanical strength without altering its water repellency. Subsequent experimental analyses on the impact dynamics of icy water droplets on soot coated aluminum and steel sheets show that these surfaces remain icephobic in condensate environments and substrate temperatures down to -35 °C. Furthermore, the soot's icephobicity and non-wettability are retained in multiple icing/de-icing cycles and upon compressed air scavenging, spinning and water jetting with impact velocity of ∼25 m/s. Finally, on frosted soot surfaces, the droplets freeze in a spherical shape and are entirely detached by adding small amount of thermal energy, indicating lower ice adhesion compared to the uncoated metal substrates.
Evaluation of Rational Function Model for Geometric Modeling of CHANG'E-1 CCD Images
Liu, Y.; Di, K.
2011-08-01
Rational Function Model (RFM) is a generic geometric model that has been widely used in geometric processing of high-resolution earth-observation satellite images, due to its generality and excellent capability of fitting complex rigorous sensor models. In this paper, the feasibility and precision of RFM for geometric modeling of China's Chang'E-1 (CE-1) lunar orbiter images is presented. The RFM parameters of forward-, nadir- and backward-looking CE-1 images are generated though least squares solution using virtual control points derived from the rigorous sensor model. The precision of the RFM is evaluated by comparing with the rigorous sensor model in both image space and object space. Experimental results using nine images from three orbits show that RFM can precisely fit the rigorous sensor model of CE-1 CCD images with a RMS residual error of 1/100 pixel level in image space and less than 5 meters in object space. This indicates that it is feasible to use RFM to describe the imaging geometry of CE-1 CCD images and spacecraft position and orientation. RFM will enable planetary data centers to have an option to supply RFM parameters of orbital images while keeping the original orbit trajectory data confidential.
On matrix model partition functions for QCD with chemical potential
Akemann, G; Vernizzi, G
2004-01-01
Partition functions of two different matrix models for QCD with chemical potential are computed for an arbitrary number of quark and complex conjugate anti-quark flavors. In the large-N limit of weak nonhermiticity complete agreement is found between the two models. This supports the universality of such fermionic partition functions, that is of products of characteristic polynomials in the complex plane. In the strong nonhermiticity limit agreement is found for an equal number of quark and conjugate flavours. For a general flavor content the equality of partition functions holds only for small chemical potential. The chiral phase transition is analyzed for an arbitrary number of quarks, where the free energy presents a discontinuity of first order at a critical chemical potential. In the case of nondegenerate flavors there is first order phase transition for each separate mass scale.
Incorporation of Functionalized Multiwall Carbon Nanotubes into a Polyurethane Matrix
Martin Michálek
2013-01-01
Full Text Available Functionalized and raw multiwall carbon nanotubes (MWCNTs were investigated colloid-chemically in order to study the role of polar versus nonpolar interaction with a polyurethane (PU matrix. Both kinds of MWCNTs were dispersed by ultrasonication in the presence of a surfactant (sodium dodecyl sulphate in aqueous solution. Functional groups on the nanotube surface were characterized by infrared spectroscopy and by the ζ-potential in aqueous suspension. Such suspensions were added to waterborne PU dispersions, drop-cast on glass substrates and cured. The percolation threshold for electrical conductivity with polar (functionalized MWCNTs was reached at 0.24 wt.%, whereas at concentrations as high as 2 wt.%, PU films with nonpolar MWCNTs stayed below the percolation threshold. With an addition of 0.4 wt.% polar MWCNTs, the electrical conductivity increased to >10−6 S/cm in the cured coating layer. These results are interpreted with respect to the chemical nature of the PU matrix.
Matrix converter controlled with the direct transfer function approach
Rodriguez, J.; Silva, E.; Blaabjerg, Frede
2005-01-01
Power electronics is an emerging technology. New power circuits are invented and have to be introduced into the power electronics curriculum. One of the interesting new circuits is the matrix converter (MC), and this paper analyses its working principles. A simple model is proposed to represent...... the power circuit, including the input filter. The power semiconductors are modelled as ideal bidirectional switches and the MC is controlled using a direct transfer function approach. The modulation strategy of the converter is explained in a complete and clear form. The commutation problem of two switches...
The holonomic gradient method for the distribution function of the largest root of a Wishart matrix
Hiroki Hashiguchi; Yasuhide Numata; Nobuki Takayama; Akimichi Takemura
2013-01-01
... of a Wishart matrix, which involves a hypergeometric function 1F1 of a matrix argument. Numerical evaluation of the hypergeometric function has been one of the longstanding problems in multivariate distribution theory...
Matrix convex functions with applications to weighted centers for semidefinite programming
J. Brinkhuis (Jan); Z-Q. Luo; S. Zhang (Shuzhong)
2005-01-01
textabstractIn this paper, we develop various calculus rules for general smooth matrix-valued functions and for the class of matrix convex (or concave) functions first introduced by Loewner and Kraus in 1930s. Then we use these calculus rules and the matrix convex function -log X to study a new
Extracellular matrix hydrogels from decellularized tissues: Structure and function.
Saldin, Lindsey T; Cramer, Madeline C; Velankar, Sachin S; White, Lisa J; Badylak, Stephen F
2017-02-01
Extracellular matrix (ECM) bioscaffolds prepared from decellularized tissues have been used to facilitate constructive and functional tissue remodeling in a variety of clinical applications. The discovery that these ECM materials could be solubilized and subsequently manipulated to form hydrogels expanded their potential in vitro and in vivo utility; i.e. as culture substrates comparable to collagen or Matrigel, and as injectable materials that fill irregularly-shaped defects. The mechanisms by which ECM hydrogels direct cell behavior and influence remodeling outcomes are only partially understood, but likely include structural and biological signals retained from the native source tissue. The present review describes the utility, formation, and physical and biological characterization of ECM hydrogels. Two examples of clinical application are presented to demonstrate in vivo utility of ECM hydrogels in different organ systems. Finally, new research directions and clinical translation of ECM hydrogels are discussed. More than 70 papers have been published on extracellular matrix (ECM) hydrogels created from source tissue in almost every organ system. The present manuscript represents a review of ECM hydrogels and attempts to identify structure-function relationships that influence the tissue remodeling outcomes and gaps in the understanding thereof. There is a Phase 1 clinical trial now in progress for an ECM hydrogel. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Reduced density matrix functional theory at finite temperature
Baldsiefen, Tim
2012-10-15
Density functional theory (DFT) is highly successful in many fields of research. There are, however, areas in which its performance is rather limited. An important example is the description of thermodynamical variables of a quantum system in thermodynamical equilibrium. Although the finite-temperature version of DFT (FT-DFT) rests on a firm theoretical basis and is only one year younger than its brother, groundstate DFT, it has been successfully applied to only a few problems. Because FT-DFT, like DFT, is in principle exact, these shortcomings can be attributed to the difficulties of deriving valuable functionals for FT-DFT. In this thesis, we are going to present an alternative theoretical description of quantum systems in thermal equilibrium. It is based on the 1-reduced density matrix (1RDM) of the system, rather than on its density and will rather cumbersomly be called finite-temperature reduced density matrix functional theory (FT-RDMFT). Its zero-temperature counterpart (RDMFT) proved to be successful in several fields, formerly difficult to address via DFT. These fields include, for example, the calculation of dissociation energies or the calculation of the fundamental gap, also for Mott insulators. This success is mainly due to the fact that the 1RDM carries more directly accessible ''manybody'' information than the density alone, leading for example to an exact description of the kinetic energy functional. This sparks the hope that a description of thermodynamical systems employing the 1RDM via FT-RDMFT can yield an improvement over FT-DFT. Giving a short review of RDMFT and pointing out difficulties when describing spin-polarized systems initiates our work. We then lay the theoretical framework for FT-RDMFT by proving the required Hohenberg-Kohn-like theorems, investigating and determining the domain of FT-RDMFT functionals and by deriving several properties of the exact functional. Subsequently, we present a perturbative method to
Yang, Liye; Li, Wenying; Huang, Yanyu; Zhou, Yangliang; Chen, Tianfeng
2015-09-01
A cancer-targeted conjugate of the selenadiazole derivative BSeC (benzo[1,2,5] selenadiazole-5-carboxylic acid) with RGD peptide as targeting molecule and PEI (polyethylenimine) as a linker is rationally designed and synthesized in the present study. The results show that RGD-PEI-BSeC forms nanoparticles in aqueous solution with a core-shell nanostructure and high stability under physiological conditions. This rational design effectively enhances the selective cellular uptake and cellular retention of BSeC in human glioma cells, and increases its selectivity between cancer and normal cells. The nanoparticles enter the cells through receptor-mediated endocytosis via clathrin-mediated and nystatin-dependent lipid raft-mediated pathways. Internalized nanoparticles trigger glioma cell apoptosis by activation of ROS-mediated p53 phosphorylation. Therefore, this study provides a strategy for the rational design of selenium-containing cancer-targeted theranostics.
Regulation of ovarian function by the matrix metalloproteinase system
无
2002-01-01
@@ In most organs of mammals, cyclic remodelling of tissues after morphogenesis is minimal; however, repro-ductive tissues of female animals including endometrium, mammary gland, ovarian follicle and corpus luteum un-dergo growth, maturation and involution at various stages in the reproductive cycle or lifespan of the animal. Recon-struction of the extracellular matrix (ECM) is required for the dynamic tissue reorganization characteristic of these tissues. The ECM consists of proteinaceous and nonpro-teinaceous molecules that provide the tissue-specific, ex-tracellular architecture to which cells attach. Furthermore, interaction of cellular receptors with proteins of the ECM can regulate cellular structure, second messenger genera-tion and gene expression. Maintenance of ECM homeo-stasis depends largely on coordinated action of matrix metalloproteinases (MMPs) and tissue inhibitors of met-alloproteinases (TIMPs)-- an important proteinase sys-tem responsible for degradating and remodelling of ECM[1]. MMPs/TIMPs have been recognized as the cru-cial role players in regulating follicular and luteal function for their extensive involvements in the cyclic changes of dynamic ovarian tissues. In recent years, literature that MMP system has important roles in ovary is accumulating. The focus of this review is on the effects of MMPs and their inhibitors, TIMPs on follicular growth, atresia, ovu-lation, luteal development, and luteolysis. Emphasis has been given to the recent progress in the new field when-ever possible.
Functionally Graded Al Alloy Matrix In-Situ Composites
Kumar, S.; Subramaniya Sarma, V.; Murty, B. S.
2010-01-01
In the present work, functionally graded (FG) aluminum alloy matrix in-situ composites (FG-AMCs) with TiB2 and TiC reinforcements were synthesized using the horizontal centrifugal casting process. A commercial Al-Si alloy (A356) and an Al-Cu alloy were used as matrices in the present study. The material parameters (such as matrix and reinforcement type) and process parameters (such as mold temperature, mold speed, and melt stirring) were found to influence the gradient in the FG-AMCs. Detailed microstructural analysis of the composites in different processing conditions revealed that the gradients in the reinforcement modify the microstructure and hardness of the Al alloy. The segregated in-situ formed TiB2 and TiC particles change the morphology of Si particles during the solidification of Al-Si alloy. A maximum of 20 vol pct of reinforcement at the surface was achieved by this process in the Al-4Cu-TiB2 system. The stirring of the melt before pouring causes the reinforcement particles to segregate at the periphery of the casting, while in the absence of such stirring, the particles are segregated at the interior of the casting.
Hochman, Amit; White, Jacob K
2011-01-01
A computational scheme for solving 2D Laplace boundary-value problems using rational functions as the basis functions is described. The scheme belongs to the class of desingularized methods, for which the location of singularities and testing points is a major issue that is addressed by the proposed scheme, in the context of the 2D Laplace equation. Well-established rational-function fitting techniques are used to set the poles, while residues are determined by enforcing the boundary conditions in the least-squares sense at the nodes of rational Gauss-Chebyshev quadrature rules. Numerical results show that errors approaching the machine epsilon can be obtained for sharp and almost sharp corners, nearly-touching boundaries, and almost-singular boundary. We show various examples of these cases in which the method yields compact solutions, requiring fewer basis functions than the Nystr\\"{o}m method, for the same accuracy. A scheme for solving fairly large-scale problems is also presented.
An improved density matrix functional by physically motivated repulsive corrections.
Gritsenko, Oleg; Pernal, Katarzyna; Baerends, Evert Jan
2005-05-22
An improved density matrix functional [correction to Buijse and Baerends functional (BBC)] is proposed, in which a hierarchy of physically motivated repulsive corrections is employed to the strongly overbinding functional of Buijse and Baerends (BB). The first correction C1 restores the repulsive exchange-correlation (xc) interaction between electrons in weakly occupied natural orbitals (NOs) as it appears in the exact electron pair density rho(2) for the limiting two-electron case. The second correction C2 reduces the xc interaction of the BB functional between electrons in strongly occupied NOs to an exchange-type interaction. The third correction C3 employs a similar reduction for the interaction of the antibonding orbital of a dissociating molecular bond. In addition, C3 applies a selective cancellation of diagonal terms in the Coulomb and xc energies (not for the frontier orbitals). With these corrections, BBC still retains a correct description of strong nondynamical correlation for the dissociating electron pair bond. BBC greatly improves the quality of the BB potential energy curves for the prototype few-electron molecules and in several cases BBC reproduces very well the benchmark ab initio potential curves. The average error of the self-consistent correlation energies obtained with BBC3 for prototype atomic systems and molecular systems at the equilibrium geometry is only ca. 6%.
Wang Qi [Department of Applied Mathematics, Dalian University of Technology, Dalian 116024 (China) and Key Laboratory of Mathematics Mechanization, Chinese Academy of Sciences, Beijing 100080 (China)]. E-mail: wangqi_dlut@yahoo.com.cn; Chen Yong [Nonlinear Science Center, Department of Mathematics, Ningbo University, Ningbo 315211 (China)
2007-01-15
With the aid of symbolic computation, some algorithms are presented for the rational expansion methods, which lead to closed-form solutions of nonlinear partial differential equations (PDEs). The new algorithms are given to find exact rational formal polynomial solutions of PDEs in terms of Jacobi elliptic functions, solutions of the Riccati equation and solutions of the generalized Riccati equation. They can be implemented in symbolic computation system Maple. As applications of the methods, we choose some nonlinear PDEs to illustrate the methods. As a result, we not only can successfully obtain the solutions found by most existing Jacobi elliptic function methods and Tanh-methods, but also find other new and more general solutions at the same time.
Extracellular matrix structure and nano-mechanics determine megakaryocyte function.
Malara, Alessandro; Gruppi, Cristian; Pallotta, Isabella; Spedden, Elise; Tenni, Ruggero; Raspanti, Mario; Kaplan, David; Tira, Maria Enrica; Staii, Cristian; Balduini, Alessandra
2011-10-20
Cell interactions with matrices via specific receptors control many functions, with chemistry, physics, and membrane elasticity as fundamental elements of the processes involved. Little is known about how biochemical and biophysical processes integrate to generate force and, ultimately, to regulate hemopoiesis into the bone marrow-matrix environment. To address this hypothesis, in this work we focus on the regulation of MK development by type I collagen. By atomic force microscopy analysis, we demonstrate that the tensile strength of fibrils in type I collagen structure is a fundamental requirement to regulate cytoskeleton contractility of human MKs through the activation of integrin-α2β1-dependent Rho-ROCK pathway and MLC-2 phosphorylation. Most importantly, this mechanism seemed to mediate MK migration, fibronectin assembly, and platelet formation. On the contrary, a decrease in mechanical tension caused by N-acetylation of lysine side chains in type I collagen completely reverted these processes by preventing fibrillogenesis.
U Laha
2009-03-01
By exploiting the theory of ordinary differential equations together with certain properties of higher transcendental functions, a useful analytical expression for the integral transform of the Green's function for motion in Coulomb–Yamaguchi potential is derived via the r-space approach. This integral transform is applied to construct an analytical expression for off-shell Jost solution in its ‘maximal reduced form’ involving confluent and Gaussian hypergeometric functions. Corresponding Jost functions auto-matically follow from this solution. Finally, as another application of the off-shell Jost solution, the off-shell T-matrix is calculated by using a modified relation between offshell physical wave function and T-matrix which does not involve the potential explicitly, thereby avoiding certain difficult integrals, and expressed it in terms of rational functions and simple hypergeometric functions which is in exact agreement with the results given previously by other authors.
Advances in random matrix theory, zeta functions, and sphere packing.
Hales, T C; Sarnak, P; Pugh, M C
2000-11-21
Over four hundred years ago, Sir Walter Raleigh asked his mathematical assistant to find formulas for the number of cannonballs in regularly stacked piles. These investigations aroused the curiosity of the astronomer Johannes Kepler and led to a problem that has gone centuries without a solution: why is the familiar cannonball stack the most efficient arrangement possible? Here we discuss the solution that Hales found in 1998. Almost every part of the 282-page proof relies on long computer verifications. Random matrix theory was developed by physicists to describe the spectra of complex nuclei. In particular, the statistical fluctuations of the eigenvalues ("the energy levels") follow certain universal laws based on symmetry types. We describe these and then discuss the remarkable appearance of these laws for zeros of the Riemann zeta function (which is the generating function for prime numbers and is the last special function from the last century that is not understood today.) Explaining this phenomenon is a central problem. These topics are distinct, so we present them separately with their own introductory remarks.
论经济逻辑学的社会理性功能%On Social Rationality Function of Economic Logic
瞿麦生
2012-01-01
社会理性是社会共同体及其成员为共同的事业展开一致行动的重要基础。经济逻辑学是关于理性选择智慧的科学,因而具有很强的社会理性功能。本文以哲学角度的理性探賾为逻辑起点,详细论述了时代呼唤经济逻辑理性的规约;深入探索了经济理性向逻辑理性的转向,提升了经济逻辑学社会理性功能;具体阐述了经济逻辑学社会理性功能的理性预测、理性辩护、理性制导三大特征。%Social rationality is the important base for the social communities,together with their members,to conduct in accord with their corporate cause.Economic logic is the science of rational choice,and hence has great social rationality function.Taking rational exploration as starting point of logic in the perspective of philosophy,the paper discusses the stipulation of time calling for economic logic rationality in detail,explores the turning of economic rationality to logic rationality and advances the social rationality of economic logic accordingly,and then concretely illustrates the three features of the social rationality function of economic logic： rational expectation,rational advocacy and rational control and guidance.
Donald St. P. Richards
2011-08-01
Full Text Available Results from the theory of the generalized hypergeometric functions of matrix argument, and the related zonal polynomials, are used to develop a new approach to study the asymptotic distributions of linear functions of uniformly distributed random matrices from the classical compact matrix groups. In particular, we provide a new approach for proving the following result of D’Aristotile, Diaconis, and Newman: Let the random matrix Hn be uniformly distributed according to Haar measure on the group of n × n orthogonal matrices, and let An be a non-random n × n real matrix such that tr (A'nAn = 1. Then, as n→∞, √n tr AnHn converges in distribution to the standard normal distribution.
Numerical Optimization of Eigenvalues of Hermitian Matrix Functions
Mengi, Emre; Yıldırım, Emre Alper; Kılıç, Mustafa
2011-01-01
Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. SIAM J. MATRIX ANAL. APPL. c 2014 Society for Industrial and Applied Mathematics Vol. 35, No. 2, pp. 699–724 NUMERICAL OPTIMIZATION OF EIGENVALUES OF HERMITIAN MATRIX FUNCTIONS∗ EMRE MENGI†, E. ALPER YILDIRIM ‡ , AND MUSTAFA KILIC¸ † Abstract. This work concerns the global minimization of a prescribed eigenvalue or a weighted sum of prescribed eigenvalues of a Hermitian matrix-valued func...
Mayo, David J.
1998-01-01
The rational suicide paradigm is contrasted with the traditional view of the mental health professions. Historical background on suicide in western civilization is supplied and the concept of rationality elucidated. Parallels between the questions of refusing life-prolonging therapy and rational suicide are discussed, as are reasons for suicide.…
分担有理函数的亚纯函数%Meromorphic Functions That Share Rational Functions
仇惠玲
2007-01-01
In this paper, the uniqueness of meromorphic functions is studied and the following result is proved:Let p(z) and q(z) be two coprime polynomials of degree n1 and n2 respectively, let f(z) and g(z) be two nonconstant transcendental meromorphic functions, and let n≥max{11,2n1+4n2+3} be a positive integer. If f n(z)f '(z) and gn(z)g'(z) share p(z)/q(z) CM, then f(z)=c1Q(z)eα(z), g(z)=c2Q-1(z)e-α(z), where c1,c2 are two constants, Q(z) is a rational function,and α(z) is a nonconstant polynomial satisfying(c1c2)n+1(Q'(z)/(Q(z)+α'(z))2≡-(p(z)/(q(z))2,or f(z)≡tg(z) for a constant t satisfying tn+1=1.%研究亚纯函数的惟一性,证明如下结果:设p(z)和q(z)分别为n1和n2次多项式且互素, f(z)和g(z)是两个超越亚纯函数,n≥max{11,2n1+4n2+3}是一个正整数,如果f n(z)f'(z),gn(z)g'(z)分担有理函数p(z)/q(z)CM,则f(z)=c1Q(z)eα(z),g(z)=c2Q-1(z)e-α(z),这里c1,c2是两个常数,Q(z)是一个有理函数,α(z)是一个非常数多项式,满足(c1c2)n+1(Q'(z)/(Q(z)+α'(z))2≡-(p(z)/q(z))2;或者f(z)≡tg(z),其中t是满足tn+1=1的常数.
Structural and functional polymer-matrix composites for electromagnetic applications
Wu, Junhua
This dissertation addresses the science and technology of functional and structural polymer-matrix composite materials for electromagnetic applications, which include electromagnetic interference (EMI) shielding and low observability (Stealth). The structural composites are continuous carbon fiber epoxy-matrix composites, which are widely used for airframes. The functional composites are composites with discontinuous fillers and in both bulk and coating forms. Through composite structure variation, attractive electromagnetic properties have been achieved. With no degradation of the tensile strength or modulus, the shielding effectiveness of the structural composites has been improved by enhancing multiple reflections through light activation of the carbon fiber. The multiple reflections loss of the electromagnetic wave increases from 1.1 to 10.2 dB at 1.0 GHz due to the activation. Such a large effect of multiple reflections has not been previously reported in any material. The observability of these composites has been lowered by decreasing the electrical conductivity (and hence decreasing the reflection loss) through carbon fiber coating. The incorporation of mumetal, a magnetic alloy particulate filler (28-40 mum size), in a latex paint has been found to be effective for enhancing the shielding only if the electrical resistivity of the resulting composite coating is below 10 O.cm, as rendered by a conductive particulate filler, such as nickel flake (14-20 mum size). This effectiveness (39 dB at 1.0 GHz) is attributed to the absorption of the electromagnetic wave by the mumetal and the nickel flake, with the high conductivity rendered by the presence of the nickel flake resulting in a relatively high reflection loss of 15.5 dB. Without the nickel flake, the mumetal gives only 3 dB of shielding and 1.5 dB of reflection loss at 1.0 GHz. Nickel powder (0.3-0.5 mum size) has been found to be an effective filler for improving the shielding of polyethersulfone (PES
Dielectric functions of Si nanoparticles within a silicon nitride matrix
Keita, A.S.; En Naciri, A. [Laboratoire de Physique des Milieux Denses (LPMD), Universite Paul Verlaine-Metz, Metz (France); Delachat, F.; Carrada, M.; Ferblantier, G.; Slaoui, A. [Institut d' Electronique du Solide et des Systemes (InESS), CNRS/UdS, Strasbourg (France)
2010-02-15
We report on the study of the influence of ammonia flow on physical properties of plasma enhanced chemical vapor deposition (PECV)-grown silicon nanoparticles (np-Si) within a silicon nitride matrix. To achieve this goal, we have used spectroscopic ellipsometry (SE) to determine the np-Si dielectric functions (DFs). On the one hand, the DF have been modeled using single parametric oscillators given by Tauc-Lorentz and Forouhi-Bloomer dispersion models. On the other hand, wavelength-by-wavelength numerical inversion, carried out without considering any fitting parameter, have represented another way to derive the DFs of the np-Si. Besides a comparison has been done between results given by Bruggeman effective medium approximation (BEMA) and Maxwell-Garnett law. The results have shown that SE can be used to find out the band gap and mean size of np-Si according to quantum confinement theory. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Novaes, Marcel [Instituto de Física, Universidade Federal de Uberlândia, Ave. João Naves de Ávila, 2121, Uberlândia, MG 38408-100 (Brazil)
2015-06-15
We consider the statistics of time delay in a chaotic cavity having M open channels, in the absence of time-reversal invariance. In the random matrix theory approach, we compute the average value of polynomial functions of the time delay matrix Q = − iħS{sup †}dS/dE, where S is the scattering matrix. Our results do not assume M to be large. In a companion paper, we develop a semiclassical approximation to S-matrix correlation functions, from which the statistics of Q can also be derived. Together, these papers contribute to establishing the conjectured equivalence between the random matrix and the semiclassical approaches.
Novaes, Marcel
2015-06-01
We consider the statistics of time delay in a chaotic cavity having M open channels, in the absence of time-reversal invariance. In the random matrix theory approach, we compute the average value of polynomial functions of the time delay matrix Q = - iħS†dS/dE, where S is the scattering matrix. Our results do not assume M to be large. In a companion paper, we develop a semiclassical approximation to S-matrix correlation functions, from which the statistics of Q can also be derived. Together, these papers contribute to establishing the conjectured equivalence between the random matrix and the semiclassical approaches.
The Optimization on Ranks and Inertias of a Quadratic Hermitian Matrix Function and Its Applications
Yirong Yao
2013-01-01
Full Text Available We solve optimization problems on the ranks and inertias of the quadratic Hermitian matrix function subject to a consistent system of matrix equations and . As applications, we derive necessary and sufficient conditions for the solvability to the systems of matrix equations and matrix inequalities , and in the Löwner partial ordering to be feasible, respectively. The findings of this paper widely extend the known results in the literature.
Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound
Tracy, Lauren E.; Minasian, Raquel A.; Caterson, E.J.
2016-01-01
Significance: Fibroblasts play a critical role in normal wound healing. Various extracellular matrix (ECM) components, including collagens, fibrin, fibronectin, proteoglycans, glycosaminoglycans, and matricellular proteins, can be considered potent protagonists of fibroblast survival, migration, and metabolism.
María Paz Gazzola
2013-06-01
Full Text Available This research proposes the teaching of mathematics in the secondary school by means of the Study and Research Paths (SRP. A longitudinal analysis has been carried out during two years with secondary school students (aged 15-17. The results obtained in the last part of the path are presented in the present work, during which the rational functions were studied. The aspects connected to the processes of mesogenesis, topogenesis and cronogenesis are analyzed, according to Chevallard in the Anthropologic Theory of Didactics (ATD.
Rational Convolution Roots of Isobaric Polynomials
Conci, Aura; Li, Huilan; MacHenry, Trueman
2014-01-01
In this paper, we exhibit two matrix representations of the rational roots of generalized Fibonacci polynomials (GFPs) under convolution product, in terms of determinants and permanents, respectively. The underlying root formulas for GFPs and for weighted isobaric polynomials (WIPs), which appeared in an earlier paper by MacHenry and Tudose, make use of two types of operators. These operators are derived from the generating functions for Stirling numbers of the first kind and second kind. Hen...
Putative functions of extracellular matrix glycoproteins in secondary palate morphogenesis
d'Amaro, Rocca; Scheidegger, Rolf; Blumer, Susan; Pazera, Pawel; Katsaros, Christos; Graf, Daniel; Chiquet, Matthias
2012-01-01
Cleft palate is a common birth defect in humans. Elevation and fusion of paired palatal shelves are coordinated by growth and transcription factors, and mutations in these can cause malformations. Among the effector genes for growth factor signaling are extracellular matrix (ECM) glycoproteins. These provide substrates for cell adhesion (e.g., fibronectin, tenascins), but also regulate growth factor availability (e.g., fibrillins). Cleft palate in Bmp7 null mouse embryos is caused by a delay in palatal shelf elevation. In contrast, palatal shelves of Tgf-β3 knockout mice elevate normally, but a cleft develops due to their failure to fuse. However, nothing is known about a possible functional interaction between specific ECM proteins and Tgf-β/Bmp family members in palatogenesis. To start addressing this question, we studied the mRNA and protein distribution of relevant ECM components during secondary palate development, and compared it to growth factor expression in wildtypewild type and mutant mice. We found that fibrillin-2 (but not fibrillin-1) mRNA appeared in the mesenchyme of elevated palatal shelves adjacent to the midline epithelial cells, which were positive for Tgf-β3 mRNA. Moreover, midline epithelial cells started expressing fibronectin upon contact of the two palatal shelves. These findings support the hypothesis that fibrillin-2 and fibronectin are involved in regulating the activity of Tgf-β3 at the fusing midline. In addition, we observed that tenascin-W (but not tenascin-C) was misexpressed in palatal shelves of Bmp7-deficient mouse embryos. In contrast to tenascin-C, tenascin-W secretion was strongly induced by Bmp7 in embryonic cranial fibroblasts in vitro. These results are consistent with a putative function for tenascin-W as a target of Bmp7 signaling during palate elevation. Our results indicate that distinct ECM proteins are important for morphogenesis of the secondary palate, both as downstream effectors and as regulators of Tgf
Convergence analysis of a Pad\\'{e} family of iterations for the matrix sector function
Karp, Dmitry B
2011-01-01
The main purpose of this paper is to give a solution to a conjecture concerning a Pad\\'{e} family of iterations for the matrix sector function that was recently raised by B. Laszkiewicz et al in [A Pad\\'{e} family of iterations for the matrix sector function and the matrix $p$th root, Numer. Linear Algebra Appl. 2009; 16:951-970]. Using a sharpened version Schwarz's lemma, we also demonstrate a strengthening of the conjecture.
Kapoor, Varun; Brics, Martins; Bauer, Dieter [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany)
2013-07-01
Autoionizing states are inaccessible to time-dependent density functional theory (TDDFT) using known, adiabatic Kohn-Sham (KS) potentials. We determine the exact KS potential for a numerically exactly solvable model Helium atom interacting with a laser field that is populating an autoionizing state. The exact single-particle density of the population in the autoionizing state corresponds to that of the energetically lowest quasi-stationary state in the exact KS potential. We describe how this exact potential controls the decay by a barrier whose height and width allows for the density to tunnel out and decay with the same rate as in the ab initio time-dependent Schroedinger calculation. However, devising a useful exchange-correlation potential that is capable of governing such a scenario in general and in more complex systems is hopeless. As an improvement over TDDFT, time-dependent reduced density matrix functional theory has been proposed. We are able to obtain for the above described autoionization process the exact time-dependent natural orbitals (i.e., the eigenfunctions of the exact, time-dependent one-body reduced density matrix) and study the potentials that appear in the equations of motion for the natural orbitals and the structure of the two-body density matrix expanded in them.
Hougaard, Jens Leth; Moreno-Ternero, Juan D.; Østerdal, Lars Peter Raahave
The standard problem of adjudicating conflicting claims describes a situation in which a given amount of a divisible good has to be allocated among agents who hold claims against it exceeding the available amount. This paper considers more general rationing problems in which, in addition to claims......, there exist baselines (to be interpreted as objective entitlements, ideal targets, or past consumption) that might play an important role in the allocation process. The model we present is able to accommodate real-life rationing situations, ranging from resource allocation in the public health care sector...... to international protocols for the reduction of greenhouse emissions, or water distribution in drought periods. We define a family of allocation methods for such general rationing problems - called baseline rationing rules - and provide an axiomatic characterization for it. Any baseline rationing rule within...
Bilateral matrix-exponential distributions
Bladt, Mogens; Esparza, Luz Judith R; Nielsen, Bo Friis
2012-01-01
In this article we define the classes of bilateral and multivariate bilateral matrix-exponential distributions. These distributions have support on the entire real space and have rational moment-generating functions. These distributions extend the class of bilateral phasetype distributions of [1]...
Launay, G; Salza, R; Multedo, D; Thierry-Mieg, N; Ricard-Blum, S
2015-01-01
MatrixDB (http://matrixdb.ibcp.fr) is a freely available database focused on interactions established by extracellular proteins and polysaccharides. It is an active member of the International Molecular Exchange (IMEx) consortium and has adopted the PSI-MI standards for annotating and exchanging interaction data, either at the MIMIx or IMEx level. MatrixDB content has been updated by curation and by importing extracellular interaction data from other IMEx databases. Other major changes include the creation of a new website and the development of a novel graphical navigator, iNavigator, to build and expand interaction networks. Filters may be applied to build sub-networks based on a list of biomolecules, a specified interaction detection method and/or an expression level by tissue, developmental stage, and health state (UniGene data). Any molecule of the network may be selected and its partners added to the network at any time. Networks may be exported under Cytoscape and tabular formats and as images, and may be saved for subsequent re-use.
Chèze, Guillaume
2010-01-01
The extended L\\"uroth's Theorem says that if the transcendence degree of $\\KK(\\mathsf{f}_1,\\dots,\\mathsf{f}_m)/\\KK$ is 1 then there exists $f \\in \\KK(\\underline{X})$ such that $\\KK(\\mathsf{f}_1,\\dots,\\mathsf{f}_m)$ is equal to $\\KK(f)$. In this paper we show how to compute $f$ with a probabilistic algorithm. We also describe a probabilistic and a deterministic algorithm for the decomposition of multivariate rational functions. The probabilistic algorithms proposed in this paper are softly optimal when $n$ is fixed and $d$ tends to infinity. We also give an indecomposability test based on gcd computations and Newton's polytope. In the last section, we show that we get a polynomial time algorithm, with a minor modification in the exponential time decomposition algorithm proposed by Gutierez-Rubio-Sevilla in 2001.
Correlation functions of scattering matrix elements in microwave cavities with strong absorption
Schaefer, R [Fachbereich Physik, Philipps-Universitaet Marburg, Renthof 5, D-35032 Marburg (Germany); Gorin, T [Theoretische Quantendynamik, Fakultaet fuer Physik, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Seligman, T H [Centro de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Campus Morelos, CP 62251, Cuernavaca, Morelos (Mexico); Stoeckmann, H-J [Fachbereich Physik, Philipps-Universitaet Marburg, Renthof 5, D-35032 Marburg (Germany)
2003-03-28
The scattering matrix was measured for microwave cavities with two antennae. It was analysed in the regime of overlapping resonances. The theoretical description in terms of a statistical scattering matrix and the rescaled Breit-Wigner approximation has been applied to this regime. The experimental results for the auto-correlation function show that the absorption in the cavity walls yields an exponential decay. This behaviour can only be modelled using a large number of weakly coupled channels. In comparison to the auto-correlation functions, the cross-correlation functions of the diagonal S-matrix elements display a more pronounced difference between regular and chaotic systems.
Correlation functions of scattering matrix elements in microwave cavities with strong absorption
Schäfer, R.; Gorin, T.; Seligman, T. H.; Stöckmann, H.-J.
2003-03-01
The scattering matrix was measured for microwave cavities with two antennae. It was analysed in the regime of overlapping resonances. The theoretical description in terms of a statistical scattering matrix and the rescaled Breit-Wigner approximation has been applied to this regime. The experimental results for the auto-correlation function show that the absorption in the cavity walls yields an exponential decay. This behaviour can only be modelled using a large number of weakly coupled channels. In comparison to the auto-correlation functions, the cross-correlation functions of the diagonal S-matrix elements display a more pronounced difference between regular and chaotic systems.
Ciani, Laura; Bortolussi, Silva; Postuma, Ian; Cansolino, Laura; Ferrari, Cinzia; Panza, Luigi; Altieri, Saverio; Ristori, Sandra
2013-12-31
In this paper we propose a bottom-up approach to obtain new boron carriers built with ortho-carborane functionalized gold nanoparticles (GNPs) for applications in Boron Neutron Capture Therapy. The interaction between carboranes and the gold surface was assured by one or two SH-groups directly linked to the boron atoms of the B10C2 cage. This allowed obtaining stable, nontoxic systems, though optimal biological performance was hampered by low solubility in aqueous media. To improve cell uptake, the hydrophilic character of carborane functionalized GNPs was enhanced by further coverage with an appropriately tailored diblock copolymer (PEO-b-PCL). This polymer also contained pendant carboranes to provide anchoring to the pre-functionalized GNPs. In vitro tests, carried out on osteosarcoma cells, showed that the final vectors possessed excellent biocompatibility joint to the capacity of concentrating boron atoms in the target, which is encouraging evidenced to pursue applications in vivo.
Sobral João
2010-03-01
Full Text Available Abstract Background Multiple lines of evidence suggest that genetic factors contribute to stroke recovery. The matrix metalloproteinases -2 (MMP-2 and -9 (MMP-9 are modulators of extracellular matrix components, with important regulatory functions in the Central Nervous System (CNS. Shortly after stroke, MMP-2 and MMP-9 have mainly damaging effects for brain tissue. However, MMPs also have a beneficial activity in angiogenesis and neurovascular remodelling during the delayed neuroinflammatory response phase, thus possibly contributing to stroke functional recovery. Methods In the present study, the role of MMP-2 and MMP-9 genetic variants in stroke recovery was investigated in 546 stroke patients. Functional outcome was assessed three months after a stroke episode using the modified Rankin Scale (mRS, and patients were classified in two groups: good recovery (mRS ≤ 1 or poor recovery (mRS>1. Haplotype tagging single nucleotide polymorphisms (SNPs in the MMP-2 (N = 21 and MMP-9 (N = 4 genes were genotyped and tested for association with stroke outcome, adjusting for significant non-genetic clinical variables. Results Six SNPs in the MMP-2 gene were significantly associated with stroke outcome (0.0018P P MMP-9 gene. Conclusions The results presented strongly indicate that MMP-2 genetic variants are an important mediator of functional outcome after stroke.
Ramiprilate inhibits functional matrix metalloproteinase activity in Crohn's disease fistulas
Efsen, Eva; Saermark, Torben; Hansen, Alastair
2011-01-01
Increased expression of matrix metalloproteinase (MMP)-2, -3 and -9 has been demonstrated in Crohn's disease fistulas, but it is unknown whether these enzymes are biologically active and represent a therapeutic target. Therefore, we investigated the proteolytic activity of MMPs in fistula tissue...... and examined the effect of inhibitors, including clinically available drugs that beside their main action also suppress MMPs. Fistula specimens were obtained by surgical excision from 22 patients with Crohn's disease and from 10 patients with fistulas resulting from other causes. Colonic endoscopic biopsies......-diamine-tetraacetic acid (EDTA), the synthetic broad-spectrum inhibitor, GM6001, the angiotensin-converting enzyme (ACE) inhibitor, ramiprilate, and the tetracycline, doxycycline. In Crohn's disease fistulas, about 50% of the total protease activity was attributable to MMP activity. The average total MMP activity...
Ramiprilate inhibits functional matrix metalloproteinase activity in Crohn's disease fistulas
Efsen, Eva; Saermark, Torben; Hansen, Alastair
2011-01-01
Increased expression of matrix metalloproteinase (MMP)-2, -3 and -9 has been demonstrated in Crohn's disease fistulas, but it is unknown whether these enzymes are biologically active and represent a therapeutic target. Therefore, we investigated the proteolytic activity of MMPs in fistula tissue...... and examined the effect of inhibitors, including clinically available drugs that beside their main action also suppress MMPs. Fistula specimens were obtained by surgical excision from 22 patients with Crohn's disease and from 10 patients with fistulas resulting from other causes. Colonic endoscopic biopsies......-diamine-tetraacetic acid (EDTA), the synthetic broad-spectrum inhibitor, GM6001, the angiotensin-converting enzyme (ACE) inhibitor, ramiprilate, and the tetracycline, doxycycline. In Crohn's disease fistulas, about 50% of the total protease activity was attributable to MMP activity. The average total MMP activity...
Uncertainty plus Prior Equals Rational Bias: An Intuitive Bayesian Probability Weighting Function
Fennell, John; Baddeley, Roland
2012-01-01
Empirical research has shown that when making choices based on probabilistic options, people behave as if they overestimate small probabilities, underestimate large probabilities, and treat positive and negative outcomes differently. These distortions have been modeled using a nonlinear probability weighting function, which is found in several…
Uncertainty plus Prior Equals Rational Bias: An Intuitive Bayesian Probability Weighting Function
Fennell, John; Baddeley, Roland
2012-01-01
Empirical research has shown that when making choices based on probabilistic options, people behave as if they overestimate small probabilities, underestimate large probabilities, and treat positive and negative outcomes differently. These distortions have been modeled using a nonlinear probability weighting function, which is found in several…
A functional cutin matrix is required for plant protection against water loss
Chen, Guoxiong; Komatsuda, Takao; Ma, Jian Feng; Li, Chao; Yamaji, Naoki; Nevo, Eviatar
2011-01-01
The plant cuticle, a cutin matrix embedded with and covered by wax, seals the aerial organ's surface to protect the plant against uncontrolled water loss. The cutin matrix is essential for the cuticle to function as a barrier to water loss. Recently, we identified from wild barley a drought supersensitive mutant, eibi1, which is caused by a defective cutin matrix as the result of the loss of function of HvABCG31, an ABCG full transporter. Here, we report that eibi1 epidermal cells contain lip...
New Construction Approach of Basic Belief Assignment Function Based on Confusion Matrix
Jing Zhu
2012-08-01
Full Text Available In the application of belief function theory, the first problem is the construction of the basic belief assignment. This study presents a new construction approach based on the confusion matrix. The method starts from the output of the confusion matrix and then designs construction strategy for basic belief assignment functions based on the expectation vector of the confusion matrix. Comparative tests of several other construction methods on the U.C.I database show that our proposed method can achieve higher target classification accuracy, lower computational complexity, which has a strong ability to promote the application.
Rational Use of Antibiotics in the Treatment of Functional Bowel Disorders
Roberta Fasulo
2010-07-01
Full Text Available Functional gastrointestinal symptoms such us bloating, fullness, flatulence, diarrhea, and constipation due to irritable bowel syndrome (IBS were recently attributed to small bowel bacterial overgrowth, a condition depending on the presence of an increased number of bacteria in the small bowel. However, the methodology used to describe this association may be harshly criticized, since it has already been shown to be quite inaccurate. As a result an inappropriate use of antibiotics was consequently generated. In fact, antibiotics could be effective in the treatment of functional complaints, but only in a limited subgroup of patients, characterized by an increase of fermentation at colonic level. In this review, we have examined the papers suggesting a pathophysiological link between IBS and small bowel bacterial overgrowth, underlining its inappropriateness, and put forth our personal view on the rationale for antibiotic use in IBS.
Cho, Kie Yong; Yeom, Yong Sik; Seo, Heun Young; Park, Young Hun; Jang, Ha Na; Baek, Kyung-Youl; Yoon, Ho Gyu
2015-05-13
The design of amphiphilic polymer compatibilizers for solubility manipulation of CNT composites was systematically generalized in this study. Structurally tailored multiamphiphilic compatibilizer were designed and synthesized by applying simple, high-yield reactions. This multiamphiphilic compatibilizer was applied for noncovalent functionalization of CNTs as well as provided CNTs with outstanding dispersion stability, manipulation of solubility, and hybridization with Ag nanoparticles (NPs). With regard to the dispersion properties, superior records in maximum concentration (2.88-3.10 mg/mL in chloroform), and mass ratio of the compatibilizer for good CNT dispersion (36 wt %) were achieved by MWCNTs functionalized with a multiamphiphilic block copolymer compatibilizer. In particular, the solubility limitations of MWCNT dispersion in solvents ranging from toluene (nonpolar) to aqueous solution (polar) are surprisingly resolved by introducing this multiamphiphilic polymer compatibilizer. Furthermore, this polymer compatibilizer allowed the synthesis of the hybrid CNT nanocomposites with Ag nanoparticles by an in situ nucleation process. As such, the multiamphiphilic compatibilizer candidate as a new concept for the noncovalent functionalization of CNTs can extend their use for a wide range of applications.
SOME NONLINEAR APPROXIMATIONS FOR MATRIX-VALUED FUNCTIONS
Guo-liang Xu
2003-01-01
Some nonlinear approximants, i.e., exponential-sum interpolation with equal distance or at origin, (0,1)-type, (0,2)-type and (1,2)-type fraction-sum approximations, for matrixvalued functions are introduced. All these approximation problems lead to a same form system of nonlinear equations. Solving methods for the nonlinear system are discussed.Conclusions on uniqueness and convergence of the approximants for certain class of functions are given.
Trace-Inequalities and Matrix-Convex Functions
Ando Tsuyoshi
2010-01-01
Full Text Available Abstract A real-valued continuous function on an interval gives rise to a map via functional calculus from the convex set of Hermitian matrices all of whose eigenvalues belong to the interval. Since the subpace of Hermitian matrices is provided with the order structure induced by the cone of positive semidefinite matrices, one can consider convexity of this map. We will characterize its convexity by the following trace-inequalities: for . A related topic will be also discussed.
Berkut, Antonina A.; Usmanova, Dinara R.; Peigneur, Steve; Oparin, Peter B.; Mineev, Konstantin S.; Odintsova, Tatyana I.; Tytgat, Jan; Arseniev, Alexander S.; Grishin, Eugene V.; Vassilevski, Alexander A.
2014-01-01
In this study, we present the spatial structure of the wheat antimicrobial peptide (AMP) Tk-AMP-X2 studied using NMR spectroscopy. This peptide was found to adopt a disulfide-stabilized α-helical hairpin fold and therefore belongs to the α-hairpinin family of plant defense peptides. Based on Tk-AMP-X2 structural similarity to cone snail and scorpion potassium channel blockers, a mutant molecule, Tk-hefu, was engineered by incorporating the functionally important residues from κ-hefutoxin 1 onto the Tk-AMP-X2 scaffold. The designed peptide contained the so-called essential dyad of amino acid residues significant for channel-blocking activity. Electrophysiological studies showed that although the parent peptide Tk-AMP-X2 did not present any activity against potassium channels, Tk-hefu blocked Kv1.3 channels with similar potency (IC50 ∼ 35 μm) to κ-hefutoxin 1 (IC50 ∼ 40 μm). We conclude that α-hairpinins are attractive in their simplicity as structural templates, which may be used for functional engineering and drug design. PMID:24671422
Berkut, Antonina A; Usmanova, Dinara R; Peigneur, Steve; Oparin, Peter B; Mineev, Konstantin S; Odintsova, Tatyana I; Tytgat, Jan; Arseniev, Alexander S; Grishin, Eugene V; Vassilevski, Alexander A
2014-05-16
In this study, we present the spatial structure of the wheat antimicrobial peptide (AMP) Tk-AMP-X2 studied using NMR spectroscopy. This peptide was found to adopt a disulfide-stabilized α-helical hairpin fold and therefore belongs to the α-hairpinin family of plant defense peptides. Based on Tk-AMP-X2 structural similarity to cone snail and scorpion potassium channel blockers, a mutant molecule, Tk-hefu, was engineered by incorporating the functionally important residues from κ-hefutoxin 1 onto the Tk-AMP-X2 scaffold. The designed peptide contained the so-called essential dyad of amino acid residues significant for channel-blocking activity. Electrophysiological studies showed that although the parent peptide Tk-AMP-X2 did not present any activity against potassium channels, Tk-hefu blocked Kv1.3 channels with similar potency (IC50 ∼ 35 μm) to κ-hefutoxin 1 (IC50 ∼ 40 μm). We conclude that α-hairpinins are attractive in their simplicity as structural templates, which may be used for functional engineering and drug design. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Cowart, John S., Jr.
Elucidating the structure-function relationships of organic semiconductors has been central to the advancement of organic photovoltaics (OPVs). In particular, enhancing the performance of p-type materials in disordered heterojunctions is broadly acknowledged as the principal factor leading to current trends of improved power conversion efficiencies (PCEs). However, two additional factors are crucially important for the next step forward in improving PCEs. First, investigating the influence, design and synthesis of new n-type materials, specifically fullerene acceptors, is of high importance. Second, because fullerene performance is often compromised by the morphological disorder of bulk heterojunctions, developing fullerenes systems that retain fidelity within disordered blends is also of broad interest. In light of these challenges, the field has witnessed a notable shift towards developing a comprehensive understanding of the design rules needed to advance the performance of fullerene acceptors in bulk heterojunctions. This work spotlights two multi-functional fullerene systems designed for blended heterojunctions. First, the synthesis of several novel fullerene-dye adducts with enhanced photon absorption will be presented. The ability of these adducts to absorb visible light in their pure state was evaluated and systematically examined versus their capacity to complement the absorption of low band gap donors and mediate charge transport in bulk heterojunctions. Second, mixed fullerene ternary blends were introduced as a strategy to stabilize the morphology in bulk heterojunctions and prolong operational lifetimes of OPV devices. Combined, these two systems offer unique insight into the rational design of fullerenes for their application in blended systems.
Performance of one-body reduced density-matrix functionals for the homogeneous electron gas
Lathiotakis, N. N.; Helbig, N.; Gross, E. K. U.
2007-05-01
The subject of this study is the exchange-correlation-energy functional of reduced density-matrix functional theory. Approximations of this functional are tested by applying them to the homogeneous electron gas. We find that two approximations recently proposed by Gritsenko , [J. Chem. Phys. 122, 204102 (2005)] yield considerably better correlation energies and momentum distributions than previously known functionals. We introduce modifications to these functionals, which, by construction, reproduce the exact correlation energy of the homogeneous electron gas.
Monte Carlo studies of matrix theory correlation functions.
Hanada, Masanori; Nishimura, Jun; Sekino, Yasuhiro; Yoneya, Tamiaki
2010-04-16
We study correlation functions in (0+1)-dimensional maximally supersymmetric U(N) gauge theory, which represents the low-energy effective theory of D0-branes. In the large-N limit, the gauge-gravity duality predicts power-law behaviors in the infrared region for the two-point correlation functions of operators corresponding to supergravity modes. We evaluate such correlation functions on the gauge theory side by the Monte Carlo method. Clear power-law behaviors are observed at N=3, and the predicted exponents are confirmed consistently. Our results suggest that the agreement extends to the M-theory regime, where the supergravity analysis in 10 dimensions may not be justified a priori.
Accounting for the Role of Long Walks on Networks via a New Matrix Function
Estrada, Ernesto
2016-01-01
We introduce a new matrix function for studying graphs and real-world networks based on a double-factorial penalization of walks between nodes in a graph. This new matrix function is based on the matrix error function. We find a very good approximation of this function using a matrix hyperbolic tangent function. We derive a communicability function, a subgraph centrality and a double-factorial Estrada index based on this new matrix function. We obtain upper and lower bounds for the double-factorial Estrada index of graphs, showing that they are similar to those of the single-factorial Estrada index. We then compare these indices with the single-factorial one for simple graphs and real-world networks. In particular, we study the problem of identification of essential proteins in yeast. We conclude that for this practical problem the structural information contained in the longer walks on graphs is not as relevant as the one contained in the shorter ones for characterizing network structure. More practical appl...
Orbital functionals in density-matrix- and current-density-functional theory
Helbig, N.
2006-05-15
Density-Functional Theory (DFT), although widely used and very successful in the calculation of several observables, fails to correctly describe strongly correlated materials. In the first part of this work we, therefore, introduce reduced-densitymatrix- functional theory (RDMFT) which is one possible way to treat electron correlation beyond DFT. Within this theory the one-body reduced density matrix (1- RDM) is used as the basic variable. Our main interest is the calculation of the fundamental gap which proves very problematic within DFT. In order to calculate the fundamental gap we generalize RDMFT to fractional particle numbers M by describing the system as an ensemble of an N and an N+1 particle system (with N{<=}M{<=}N+1). For each fixed particle number, M, the total energy is minimized with respect to the natural orbitals and their occupation numbers. This leads to the total energy as a function of M. The derivative of this function with respect to the particle number has a discontinuity at integer particle number which is identical to the gap. In addition, we investigate the necessary and sufficient conditions for the 1- RDM of a system with fractional particle number to be N-representable. Numerical results are presented for alkali atoms, small molecules, and periodic systems. Another problem within DFT is the description of non-relativistic many-electron systems in the presence of magnetic fields. It requires the paramagnetic current density and the spin magnetization to be used as basic variables besides the electron density. However, electron-gas-based functionals of current-spin-density-functional Theory (CSDFT) exhibit derivative discontinuities as a function of the magnetic field whenever a new Landau level is occupied, which makes them difficult to use in practice. Since the appearance of Landau levels is, intrinsically, an orbital effect it is appealing to use orbital-dependent functionals. We have developed a CSDFT version of the optimized
TTG IgA in Functional Constipation: Is It Rational to Be Evaluated?
Iraj Shahramian
2016-06-01
Full Text Available Background: It is suggested that constipation could be due to celiac disease (CD; therefore, this study aimed to determine the prevalence of positive tissue transglutaminase (tTG IgA test among children with functional constipation (FC. Methods: In this case-control study, 182 consecutive patients with FC who fulfilled the Rome III criteria as cases were compared with 240 healthy children as the control group in terms of suspicious CD by measuring the serum tTG IgA level. Results: There was a significant difference in favor of the case group in terms of serum tTG IgA levels (P = 0.000. The probability of having CD would change based on belonging to each group (case/control odds ratio [OR] = 0.222. Conclusion: With respect to these data, tTG IgA level was observed to be significantly higher in patients relative to healthy children; therefore, it is recommended that patients be screened for CD through the tTG IgA.
Macmillan, C. J. B.
1985-01-01
The recognition of teaching as a special relationship among individuals is currently being overlooked in much contemporary educational research and policymaking. The author examines the philosophy of rationality in teaching and relates it to the educational vision presented in George Orwell's novel, "Nineteen Eighty-Four." (CB)
Lam, Chi-Ming
2014-01-01
Nowadays, there is still a widely held view that the Chinese and Western modes of thought are quite distinct from each other. In particular, the Chinese mode of thought derived from Confucianism is considered as comparatively less rational than the Western one. In this article, I first argue that although the analogical mode of argumentation,…
Caglayan, Günhan
2014-01-01
This study investigates prospective secondary mathematics teachers' visual representations of polynomial and rational inequalities, and graphs of exponential and logarithmic functions with GeoGebra Dynamic Software. Five prospective teachers in a university in the United States participated in this research study, which was situated within a…
Gupta, Nikhil; Paramsothy, Muralidharan
2014-06-01
The special topic "Metal- and Polymer-Matrix Composites" is intended to capture the state of the art in the research and practice of functional composites. The current set of articles related to metal-matrix composites includes reviews on functionalities such as self-healing, self-lubricating, and self-cleaning capabilities; research results on a variety of aluminum-matrix composites; and investigations on advanced composites manufacturing methods. In addition, the processing and properties of carbon nanotube-reinforced polymer-matrix composites and adhesive bonding of laminated composites are discussed. The literature on functional metal-matrix composites is relatively scarce compared to functional polymer-matrix composites. The demand for lightweight composites in the transportation sector is fueling the rapid development in this field, which is captured in the current set of articles. The possibility of simultaneously tailoring several desired properties is attractive but very challenging, and it requires significant advancements in the science and technology of composite materials. The progress captured in the current set of articles shows promise for developing materials that seem capable of moving this field from laboratory-scale prototypes to actual industrial applications.
Trace-Inequalities and Matrix-Convex Functions
Tsuyoshi Ando
2010-01-01
Full Text Available A real-valued continuous function f(t on an interval (α,β gives rise to a map X↦f(X via functional calculus from the convex set of n×n Hermitian matrices all of whose eigenvalues belong to the interval. Since the subpace of Hermitian matrices is provided with the order structure induced by the cone of positive semidefinite matrices, one can consider convexity of this map. We will characterize its convexity by the following trace-inequalities: Tr(f(B−f(A(C−B≤Tr(f(C−f(B(B−A for A≤B≤C. A related topic will be also discussed.
On tau functions for orthogonal polynomials and matrix models
Blower, Gordon
2010-01-01
Let v be a real polynomial of even degree, and let \\rho be the equilibrium probability measure for v with support S; so that v(x)\\geq 2\\int \\log |x-y| \\rho (dy)+C_v for some constant C_v with support S. Then S is the union of finitely many bounded intervals with endpoints delta_j, and \\rho is given by an algebrais weight w(x) on S. The system of orthogonal polynomials for w gives rise to the Magnus--Schlesinger differential equations. This paper identifies the tau function of this system with the Hankel determinant det[\\in x^{j+k}\\rho (dx)] of \\rho. The solutions of the Magnus--Schlesinger equations are realised by a linear system, which is used to compute the tau function in terms of a Gelfand--Levitan equaiton. The tau function is associated with a potential q and a scattering problem for the Schrodinger operator with potential q. For some algebro-geometric potentials, the paper solves the scattering problem in terms of linear systems. The theory extends naturally to elliptic curves and resolves the case wh...
Druskin, V.; Lee, Ping [Schlumberger-Doll Research, Ridgefield, CT (United States); Knizhnerman, L. [Central Geophysical Expedition, Moscow (Russian Federation)
1996-12-31
There is now a growing interest in the area of using Krylov subspace approximations to compute the actions of matrix functions. The main application of this approach is the solution of ODE systems, obtained after discretization of partial differential equations by method of lines. In the event that the cost of computing the matrix inverse is relatively inexpensive, it is sometimes attractive to solve the ODE using the extended Krylov subspaces, originated by actions of both positive and negative matrix powers. Examples of such problems can be found frequently in computational electromagnetics.
Callier, F. M.; Nahum, C. D.
1975-01-01
The series connection of two linear time-invariant systems that have minimal state space system descriptions is considered. From these descriptions, strict-system-equivalent polynomial matrix system descriptions in the manner of Rosenbrock are derived. They are based on the factorization of the transfer matrix of the subsystems as a ratio of two right or left coprime polynomial matrices. They give rise to a simple polynomial matrix system description of the tandem connection. Theorem 1 states that for the complete controllability and observability of the state space system description of the series connection, it is necessary and sufficient that certain 'denominator' and 'numerator' groups are coprime. Consequences for feedback systems are drawn in Corollary 1. The role of pole-zero cancellations is explained by Lemma 3 and Corollaires 2 and 3.
Moyal's Characteristic Function, the Density Matrix and von Neumann's Idempotent
Hiley, Basil J.
2014-01-01
In the Wigner-Moyal approach to quantum mechanics, we show that Moyal's starting point, the characteristic function $M(\\tau,\\theta)=\\int \\psi^{*}(x)e^{i(\\tau {\\hat p}+\\theta{\\hat x})}\\psi(x)dx$, is essentially the primitive idempotent used by von Neumann in his classic paper "Die Eindeutigkeit der Schr\\"odingerschen Operatoren". This paper provides the original proof of the Stone-von Neumann equation. Thus the mathematical structure Moyal develops is simply a re-expression of what is at the h...
Chung, H; Jung, K-Y; Tee, X T; Bermel, P
2014-05-05
Amorphous silicon/crystalline silicon (a-Si/c-Si) micromorph tandem cells, with best confirmed efficiency of 12.3%, have yet to fully approach their theoretical performance limits. In this work, we consider a strategy for improving the light trapping and charge collection of a-Si/c-Si micromorph tandem cells using random texturing with adjustable short-range correlations and long-range periodicity. In order to consider the full-spectrum absorption of a-Si and c-Si, a novel dispersion model known as a quadratic complex rational function (QCRF) is applied to photovoltaic materials (e.g., a-Si, c-Si and silver). It has the advantage of accurately modeling experimental semiconductor dielectric values over the entire relevant solar bandwidth from 300-1000 nm in a single simulation. This wide-band dispersion model is then used to model a silicon tandem cell stack (ITO/a-Si:H/c-Si:H/silver), as two parameters are varied: maximum texturing height h and correlation parameter f. Even without any other light trapping methods, our front texturing method demonstrates 12.37% stabilized cell efficiency and 12.79 mA/cm² in a 2 μm-thick active layer.
E. H. Doha
2014-01-01
Full Text Available A new Legendre rational pseudospectral scheme is proposed and developed for solving numerically systems of linear and nonlinear multipantograph equations on a semi-infinite interval. A Legendre rational collocation method based on Legendre rational-Gauss quadrature points is utilized to reduce the solution of such systems to systems of linear and nonlinear algebraic equations. In addition, accurate approximations are achieved by selecting few Legendre rational-Gauss collocation points. The numerical results obtained by this method have been compared with various exact solutions in order to demonstrate the accuracy and efficiency of the proposed method. Indeed, for relatively limited nodes used, the absolute error in our numerical solutions is sufficiently small.
A real-space stochastic density matrix approach for density functional electronic structure.
Beck, Thomas L
2015-12-21
The recent development of real-space grid methods has led to more efficient, accurate, and adaptable approaches for large-scale electrostatics and density functional electronic structure modeling. With the incorporation of multiscale techniques, linear-scaling real-space solvers are possible for density functional problems if localized orbitals are used to represent the Kohn-Sham energy functional. These methods still suffer from high computational and storage overheads, however, due to extensive matrix operations related to the underlying wave function grid representation. In this paper, an alternative stochastic method is outlined that aims to solve directly for the one-electron density matrix in real space. In order to illustrate aspects of the method, model calculations are performed for simple one-dimensional problems that display some features of the more general problem, such as spatial nodes in the density matrix. This orbital-free approach may prove helpful considering a future involving increasingly parallel computing architectures. Its primary advantage is the near-locality of the random walks, allowing for simultaneous updates of the density matrix in different regions of space partitioned across the processors. In addition, it allows for testing and enforcement of the particle number and idempotency constraints through stabilization of a Feynman-Kac functional integral as opposed to the extensive matrix operations in traditional approaches.
Random matrix theory and discrete moments of the Riemann zeta function
Hughes, C P [Raymond and Beverly Sackler School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)
2003-03-28
We calculate the discrete moments of the characteristic polynomial of a random unitary matrix, evaluated a small distance away from an eigenangle. Such results allow us to make conjectures about similar moments for the Riemann zeta function, and provide a uniform approach to understanding moments of the zeta function and its derivative.
Scattering in Three Dimensions from Rational Maps
Cachazo, Freddy; Yuan, Ellis Ye
2013-01-01
The complete tree-level S-matrix of four dimensional ${\\cal N}=4$ super Yang-Mills and ${\\cal N} = 8$ supergravity has compact forms as integrals over the moduli space of certain rational maps. In this note we derive formulas for amplitudes in three dimensions by using the fact that when amplitudes are dressed with proper wave functions dimensional reduction becomes straightforward. This procedure leads to formulas in terms of rational maps for three dimensional maximally supersymmetric Yang-Mills and gravity theories. The integrand of the new formulas contains three basic structures: Parke-Taylor-like factors, Vandermonde determinants and resultants. Integrating out some of the Grassmann directions produces formulas for theories with less than maximal supersymmetry, which exposes yet a fourth kind of structure. Combining all four basic structures we start a search for consistent S-matrices in three dimensions. Very nicely, the most natural ones are those corresponding to ABJM and BLG theories. We also make a...
Adiabatic approximation of time-dependent density matrix functional response theory.
Pernal, Katarzyna; Giesbertz, Klaas; Gritsenko, Oleg; Baerends, Evert Jan
2007-12-07
Time-dependent density matrix functional theory can be formulated in terms of coupled-perturbed response equations, in which a coupling matrix K(omega) features, analogous to the well-known time-dependent density functional theory (TDDFT) case. An adiabatic approximation is needed to solve these equations, but the adiabatic approximation is much more critical since there is not a good "zero order" as in TDDFT, in which the virtual-occupied Kohn-Sham orbital energy differences serve this purpose. We discuss a simple approximation proposed earlier which uses only results from static calculations, called the static approximation (SA), and show that it is deficient, since it leads to zero response of the natural orbital occupation numbers. This leads to wrong behavior in the omega-->0 limit. An improved adiabatic approximation (AA) is formulated. The two-electron system affords a derivation of exact coupled-perturbed equations for the density matrix response, permitting analytical comparison of the adiabatic approximation with the exact equations. For the two-electron system also, the exact density matrix functional (2-matrix in terms of 1-matrix) is known, enabling testing of the static and adiabatic approximations unobscured by approximations in the functional. The two-electron HeH(+) molecule shows that at the equilibrium distance, SA consistently underestimates the frequency-dependent polarizability alpha(omega), the adiabatic TDDFT overestimates alpha(omega), while AA improves upon SA and, indeed, AA produces the correct alpha(0). For stretched HeH(+), adiabatic density matrix functional theory corrects the too low first excitation energy and overpolarization of adiabatic TDDFT methods and exhibits excellent agreement with high-quality CCSD ("exact") results over a large omega range.
Georg Spielthenner
2007-01-01
Full Text Available Valuations are ubiquitous. We may be for or against genetically modified food; we find some politicians irresponsible; we prefer Beethoven to rock ‘n’ roll or vice versa; some enjoy bird-watching while others find it boring; and we may think that we have to tighten up on green-house gas emissions. Valuing is pervasive and often we are not even aware that we are valuing. However, many of ourvaluations are ill grounded and rationally defective. They are frequently based on misinformation, sloppy thinking, prejudice, and are biased in many ways as psychological research shows. For this reason there is widespread agreement among phi-losophers that we need an account of substantive valuational rationality, both for the theory of practical reasoning and for ethics as well. My main objectin this paper is to outline such an account and to present a principle that allows a non-technical rational criticism of valuations
Pernal, Katarzyna; Giesbertz, Klaas J H
2016-01-01
Recent advances in reduced density matrix functional theory (RDMFT) and linear response time-dependent reduced density matrix functional theory (TD-RDMFT) are reviewed. In particular, we present various approaches to develop approximate density matrix functionals which have been employed in RDMFT. We discuss the properties and performance of most available density matrix functionals. Progress in the development of functionals has been paralleled by formulation of novel RDMFT-based methods for predicting properties of molecular systems and solids. We give an overview of these methods. The time-dependent extension, TD-RDMFT, is a relatively new theory still awaiting practical and generally useful functionals which would work within the adiabatic approximation. In this chapter we concentrate on the formulation of TD-RDMFT response equations and various adiabatic approximations. None of the adiabatic approximations is fully satisfactory, so we also discuss a phase-dependent extension to TD-RDMFT employing the concept of phase-including-natural-spinorbitals (PINOs). We focus on applications of the linear response formulations to two-electron systems, for which the (almost) exact functional is known.
Functional Metal Matrix Composites: Self-lubricating, Self-healing, and Nanocomposites-An Outlook
Dorri Moghadam, Afsaneh; Schultz, Benjamin F.; Ferguson, J. B.; Omrani, Emad; Rohatgi, Pradeep K.; Gupta, Nikhil
2014-06-01
Many different types of advanced metal matrix composites are now available, some of which possess functional properties. Recent work on particle-reinforced, self-lubricating and self-healing metals and metal matrix nanocomposites (MMNCs) synthesized by solidification synthesis is reviewed. Particle-based MMNCs have been developed by several modern processing tools based on either solid- or liquid-phase synthesis techniques that are claimed to exhibit exciting mechanical properties including improvements of modulus, yield strength, and ultimate tensile strength. This article presents a brief and objective review of the work done over the last decade to identify the challenges and future opportunities in the area of functional nanocomposites. Increasing interest in lightweight materials has resulted in studies on hollow particle-filled metal matrix syntactic foams. Syntactic foams seem especially suitable for development with functional properties such as self-healing and self-lubrication. The metal matrix micro and nanocomposites, and syntactic foams having combinations of ultrahigh strength and wear resistance, self-lubricating, and/or self-healing properties can lead to increased energy efficiency, reliability, comfort of operation, reparability, and safety of vehicles. The focus of the present review is aluminum and magnesium matrix functional materials.
Exploring the "Middle Earth" of network spectra via a Gaussian matrix function
Estrada, Ernesto; Alhomaidhi, Alhanouf Ali; Al-Thukair, Fawzi
2017-02-01
We study a Gaussian matrix function of the adjacency matrix of artificial and real-world networks. We motivate the use of this function on the basis of a dynamical process modeled by the time-dependent Schrödinger equation with a squared Hamiltonian. In particular, we study the Gaussian Estrada index—an index characterizing the importance of eigenvalues close to zero. This index accounts for the information contained in the eigenvalues close to zero in the spectra of networks. Such a method is a generalization of the so-called "Folded Spectrum Method" used in quantum molecular sciences. Here, we obtain bounds for this index in simple graphs, proving that it reaches its maximum for star graphs followed by complete bipartite graphs. We also obtain formulas for the Estrada Gaussian index of Erdős-Rényi random graphs and for the Barabási-Albert graphs. We also show that in real-world networks, this index is related to the existence of important structural patterns, such as complete bipartite subgraphs (bicliques). Such bicliques appear naturally in many real-world networks as a consequence of the evolutionary processes giving rise to them. In general, the Gaussian matrix function of the adjacency matrix of networks characterizes important structural information not described in previously used matrix functions of graphs.
Ballester Pla, Coralio
2012-03-01
Full Text Available The observation of the actual behavior by economic decision makers in the lab and in the field justifies that bounded rationality has been a generally accepted assumption in many socio-economic models. The goal of this paper is to illustrate the difficulties involved in providing a correct definition of what a rational (or irrational agent is. In this paper we describe two frameworks that employ different approaches for analyzing bounded rationality. The first is a spatial segregation set-up that encompasses two optimization methodologies: backward induction and forward induction. The main result is that, even under the same state of knowledge, rational and non-rational agents may match their actions. The second framework elaborates on the relationship between irrationality and informational restrictions. We use the beauty contest (Nagel, 1995 as a device to explain this relationship.
La observación del comportamiento de los agentes económicos tanto en el laboratorio como en la vida real justifica que la racionalidad acotada sea un supuesto aceptado en numerosos modelos socio-económicos. El objetivo de este artículo es ilustrar las dificultades que conlleva una correcta definición de qué es un agente racional (irracional. En este artículo se describen dos marcos que emplean diferentes metodologías para analizar la racionalidad acotada. El primero es un modelo de segregación espacial donde se contrastan dos metodologías de optimización: inducción hacia atrás y hacia adelante. El resultado principal es que, incluso con el mismo nivel de conocimiento, tanto agentes racionales como irracionales podrían coincidir en sus acciones. El segundo marco trabaja sobre la relación entre irracionalidad y restricción de información. Se utiliza el juego llamado “beauty contest” (Nagel 1995 como mecanismo para explicar dicha relación.
Matrix intensification alters avian functional group composition in adjacent rainforest fragments.
Justus P Deikumah
Full Text Available Conversion of farmland land-use matrices to surface mining is an increasing threat to the habitat quality of forest remnants and their constituent biota, with consequences for ecosystem functionality. We evaluated the effects of matrix type on bird community composition and the abundance and evenness within avian functional groups in south-west Ghana. We hypothesized that surface mining near remnants may result in a shift in functional composition of avifaunal communities, potentially disrupting ecological processes within tropical forest ecosystems. Matrix intensification and proximity to the remnant edge strongly influenced the abundance of members of several functional guilds. Obligate frugivores, strict terrestrial insectivores, lower and upper strata birds, and insect gleaners were most negatively affected by adjacent mining matrices, suggesting certain ecosystem processes such as seed dispersal may be disrupted by landscape change in this region. Evenness of these functional guilds was also lower in remnants adjacent to surface mining, regardless of the distance from remnant edge, with the exception of strict terrestrial insectivores. These shifts suggest matrix intensification can influence avian functional group composition and related ecosystem-level processes in adjacent forest remnants. The management of matrix habitat quality near and within mine concessions is important for improving efforts to preserveavian biodiversity in landscapes undergoing intensification such as through increased surface mining.
A Method for Data Classification Based on Discernibility Matrix and Discernibility Function
无
2006-01-01
A method for data classification will influence the efficiency of classification. Attributes reduction based on discernibility matrix and discernibility function in rough sets can use in data classification, so we put forward a method for data classification. Namely, firstly, we use discernibility matrix and discernibility function to delete superfluous attributes in formation system and get a necessary attribute set. Secondly, we delete superfluous attribute values and get decision rules. Finally, we classify data by means of decision rules. The experiments show that data classification using this method is simpler in the structure, and can improve the efficiency of classification.
One-point Functions in AdS/dCFT from Matrix Product States
Buhl-Mortensen, Isak; Kristjansen, Charlotte; Zarembo, Konstantin
2015-01-01
One-point functions of certain non-protected scalar operators in the defect CFT dual to the D3-D5 probe brane system with k units of world volume flux can be expressed as overlaps between Bethe eigenstates of the Heisenberg spin chain and a matrix product state. We present a closed expression of determinant form for these one-point functions, valid for any value of k. The determinant formula factorizes into the k=2 result times a k-dependent prefactor. Making use of the transfer matrix of the Heisenberg spin chain we recursively relate the matrix product state for higher even and odd k to the matrix product state for k=2 and k=3 respectively. We furthermore find evidence that the matrix product states for k=2 and k=3 are related via a ratio of Baxter's Q-operators. The general k formula has an interesting thermodynamical limit involving a non-trivial scaling of k, which indicates that the match between string and field theory one-point functions found for chiral primaries might be tested for non-protected ope...
One-point functions in AdS/dCFT from matrix product states
Buhl-Mortensen, Isak; Leeuw, Marius de; Kristjansen, Charlotte [The Niels Bohr Institute, University of Copenhagen,Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark); Zarembo, Konstantin [NORDITA, KTH Royal Institute of Technology and Stockholm University,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Department of Physics and Astronomy, Uppsala University,SE-751 08 Uppsala (Sweden)
2016-02-08
One-point functions of certain non-protected scalar operators in the defect CFT dual to the D3-D5 probe brane system with k units of world volume flux can be expressed as overlaps between Bethe eigenstates of the Heisenberg spin chain and a matrix product state. We present a closed expression of determinant form for these one-point functions, valid for any value of k. The determinant formula factorizes into the k=2 result times a k-dependent pre-factor. Making use of the transfer matrix of the Heisenberg spin chain we recursively relate the matrix product state for higher even and odd k to the matrix product state for k=2 and k=3 respectively. We furthermore find evidence that the matrix product states for k=2 and k=3 are related via a ratio of Baxter’s Q-operators. The general k formula has an interesting thermodynamical limit involving a non-trivial scaling of k, which indicates that the match between string and field theory one-point functions found for chiral primaries might be tested for non-protected operators as well. We revisit the string computation for chiral primaries and discuss how it can be extended to non-protected operators.
Lakshmanan, Rajesh; Kumaraswamy, Priyadharshini; Krishnan, Uma Maheswari; Sethuraman, Swaminathan
2016-08-01
The major loss of tissue extracellular matrix (ECM) after myocardial ischemia is a serious burden that gradually leads to heart failure. Due to lack of available treatment methods to restore the cardiac function, various research strategies have come up to treat the ischemic myocardium. However these have met with limited success due to the complexity of the cardiac tissue, which exhibits a nanofibrous collagenous matrix with spatio-temporal localization of a combination of growth factors. To mimic the topographical and chemical cues of the natural cardiac tissue, we have fabricated a growth factor embedded nanofibrous scaffold through electrospinning. In our previous work, we have reported a nanofibrous matrix made of PLCL and PEOz with an average diameter of 500 nm. The scaffold properties were specifically characterized in vitro for cardio-compatibility. In the present study, we have loaded dual growth factors VEGF and bFGF in the nanofiber matrix and investigated its suitability for cardiac tissue engineering. The encapsulation and release of dual growth factors from the matrix were studied using XPS and ELISA. Bioactivity of the loaded growth factors towards proliferation and migration of endothelial cells (HUVECs) was evaluated through MTS and Boyden chamber assays respectively. The efficiency of growth factors on the nanofibrous matrix to activate signaling molecules was studied in HUVECs through gene expression analysis. Preclinical evaluation of the growth factor embedded nanofibrous patch in a rabbit acute myocardial infarction (AMI) model was studied and cardiac function assessment was made through ECG and echocardiography. The evidence for angiogenesis in the patch secured regions was analyzed through histopathology and immunohistochemistry. Our results confirm the effectiveness of growth factor embedded nanofiber matrix in restoration of cardiac function after ischemia when compared to conventional patch material thereby exhibiting promise as a
Credit rationing and firm size
G. CALCAGNINI
2013-10-01
Full Text Available This paper examines the likelihood of credit rationing faced by firms of different size. Contrary to common thought, several recent contributions on this topic argue that, when rationing credit, size alone is not a sufficient condition for discriminating between firms. We show that this result can be predicted using a framework based on the Stiglitz-Weiss model. In particular, in an environment of asymmetric information, we highlight how the likelihood of credit rationing depends upon the shape of the distribution function of project returns, especially its asymmetry and Kurtosis. Our empirical results do not support the hypothesis that small firms face more credit rationing than larger firms.
Binmore, Ken
2008-01-01
It is widely held that Bayesian decision theory is the final word on how a rational person should make decisions. However, Leonard Savage--the inventor of Bayesian decision theory--argued that it would be ridiculous to use his theory outside the kind of small world in which it is always possible to ""look before you leap."" If taken seriously, this view makes Bayesian decision theory inappropriate for the large worlds of scientific discovery and macroeconomic enterprise. When is it correct to use Bayesian decision theory--and when does it need to be modified? Using a minimum of mathematics,
Skewis, Lynell R.; Reinhard, Björn M.
2010-01-01
Here we describe a simple yet efficient gel matrix assisted preparation method which improves synthetic control over the interface between inorganic nanomaterials and biopolymers and yields stable biofunctionalized silver nanoparticles. Covalent functionalization of the noble metal surface is aided by the confinement of polyethylene glycol acetate functionalized silver nanoparticles in thin slabs of a 1% agarose gel. The gel confined nanoparticles can be transferred between reaction and washing media simply by immersing the gel slab in the solution of interest. The agarose matrix retains nanoparticles but is swiftly penetrated by the antibodies of interest. The antibodies are covalently anchored to the nanoparticles using conventional crosslinking strategies, and the resulting antibody functionalized nanoparticles are recovered from the gel through electroelution. We demonstrate the efficacy of this nanoparticle functionalization approach by labeling specific receptors on cellular surfaces with functionalized silver nanoparticles that are stable under physiological conditions. PMID:20161660
A nonorthogonal state-interaction approach for matrix product state wave functions
Knecht, Stefan; Autschbach, Jochen; Reiher, Markus
2016-01-01
We present a state-interaction approach for matrix product state (MPS) wave functions in a nonorthogonal molecular orbital basis. Our approach allows us to calculate for example transition and spin-orbit coupling matrix elements between arbitrary electronic states provided that they share the same one-electron basis functions and active orbital space, respectively. The key element is the transformation of the MPS wave functions of different states from a nonorthogonal to a biorthonormal molecular orbital basis representation exploiting a sequence of non-unitary transformations following a proposal by Malmqvist (Int. J. Quantum Chem. 30, 479 (1986)). This is well-known for traditional wave-function parametrizations but has not yet been exploited for MPS wave functions.
Convolution symmetries of integrable hierarchies, matrix models and $\\tau$-functions
Harnad, J
2009-01-01
Generalized convolution symmetries of integrable hierarchies of KP-Toda and 2KP-Toda type have the effect of multiplying the Fourier coefficients of the Baker-Akhiezer function by a specified sequence of constants. The induced action on the associated fermionic Fock space is diagonal in the standard orthonormal base determined by occupation sites and labeled by partitions. The coefficients in the single and double Schur function expansions of the associated $\\tau$-functions, which are the Pl\\"ucker coordinates of a decomposable element, are multiplied by the corresponding diagonal factors. Applying such transformations to matrix integrals, we obtain new matrix models of externally coupled type which are also KP-Toda or 2KP-Toda $\\tau$-functions. More general multiple integral representations of tau functions are similarly obtained, as well as finite determinantal expressions for them.
Structural and functional features of a collagen-binding matrix protein from the mussel byssus.
Suhre, Michael H; Gertz, Melanie; Steegborn, Clemens; Scheibel, Thomas
2014-02-26
Blue mussels adhere to surfaces by the byssus, a holdfast structure composed of individual threads representing a collagen fibre reinforced composite. Here, we present the crystal structure and function of one of its matrix proteins, the proximal thread matrix protein 1, which is present in the proximal section of the byssus. The structure reveals two von Willebrand factor type A domains linked by a two-β-stranded linker yielding a novel structural arrangement. In vitro, the protein binds heterologous collagens with high affinity and affects collagen assembly, morphology and arrangement of its fibrils. By providing charged surface clusters as well as insufficiently coordinated metal ions, the proximal thread matrix protein 1 might interconnect other byssal proteins and thereby contribute to the integrity of the byssal threads in vivo. Moreover, the protein could be used for adjusting the mechanical properties of collagen materials, a function likely important in the natural byssus.
Projected gradient algorithms for Hartree-Fock and density matrix functional theory calculations
Cancès, Eric; Pernal, Katarzyna
2008-04-01
We present projected gradient algorithms designed for optimizing various functionals defined on the set of N-representable one-electron reduced density matrices. We show that projected gradient algorithms are efficient in minimizing the Hartree-Fock or the Müller-Buijse-Baerends functional. On the other hand, they converge very slowly when applied to the recently proposed BBk (k =1,2,3) functionals [O. Gritsenko et al., J. Chem. Phys. 122, 204102 (2005)]. This is due to the fact that the BBk functionals are not proper functionals of the density matrix.
Rationalization: A Bibliography.
Pedrini, D. T.; Pedrini, Bonnie C.
Rationalization was studied by Sigmund Freud and was specifically labeled by Ernest Jones. Rationalization ought to be differentiated from rational, rationality, logical analysis, etc. On the one hand, rationalization is considered a defense mechanism, on the other hand, rationality is not. Haan has done much work with self-report inventories and…
WAVELET RATIONAL FILTERS AND REGULARITY ANALYSIS
Zheng Kuang; Ming-gen Cui
2000-01-01
In this paper, we choose the trigonometric rational functions as wavelet filters and use them to derive various wavelets. Especially for a certain family of wavelets generated by the rational filters, the better smoothness results than Daubechies' are obtained.
On the expected value function of a simple integer recourse problem with random technology matrix
Klein Haneveld, Willem K.; van der Vlerk, Maarten H.
1994-01-01
In this paper we consider the expected value function of a stochastic simple recourse program with random technology matrix and integer variables in the second stage. Due to its separability the analysis is straightforward. Conditions for finiteness, continuity, Lipschitz continuity and
A functional cutin matrix is required for plant protection against water loss.
Chen, Guoxiong; Komatsuda, Takao; Ma, Jian Feng; Li, Chao; Yamaji, Naoki; Nevo, Eviatar
2011-09-01
The plant cuticle, a cutin matrix embedded with and covered by wax, seals the aerial organ's surface to protect the plant against uncontrolled water loss. The cutin matrix is essential for the cuticle to function as a barrier to water loss. Recently, we identified from wild barley a drought supersensitive mutant, eibi1, which is caused by a defective cutin matrix as the result of the loss of function of HvABCG31, an ABCG full transporter. Here, we report that eibi1 epidermal cells contain lipid-like droplets, which are supposed to consist of cutin monomers that have not been transported out of the cells. The eibi1 cuticle is fragile due to a defective cutin matrix. The rice ortholog of the EIBI1 gene has a similar pattern of expression, young shoot but not flag leaf blade, as the barley gene. The model of the function of Eibi1 is discussed. The HvABCG31 full transporter functions in the export of cutin components and contributed to land plant colonization, hence also to terrestrial life evolution.
Kragstrup, Tue Wenzel; Kjaer, M; Mackey, A L
2011-01-01
The extracellular matrix (ECM) of skeletal muscle is critical for force transmission and for the passive elastic response of skeletal muscle. Structural, biochemical, cellular, and functional changes in skeletal muscle ECM contribute to the deterioration in muscle mechanical properties with aging...
Hermitean Téodorescu Transform Decomposition of Continuous Matrix Functions on Fractal Hypersurfaces
Hennie De Schepper
2010-01-01
Full Text Available We consider Hölder continuous circulant (2×2 matrix functions G21 defined on the fractal boundary Γ of a domain Ω in ℝ2n. The main goal is to study under which conditions such a function G21 can be decomposed as G21=G21+−G21−, where the components G21± are extendable to H-monogenic functions in the interior and the exterior of Ω, respectively. H-monogenicity are a concept from the framework of Hermitean Clifford analysis, a higher-dimensional function theory centered around the simultaneous null solutions of two first-order vector-valued differential operators, called Hermitean Dirac operators. H-monogenic functions then are the null solutions of a (2×2 matrix Dirac operator, having these Hermitean Dirac operators as its entries; such matrix functions play an important role in the function theoretic development of Hermitean Clifford analysis. In the present paper a matricial Hermitean Téodorescu transform is the key to solve the problem under consideration. The obtained results are then shown to include the ones where domains with an Ahlfors-David regular boundary were considered.
Hermitean Téodorescu Transform Decomposition of Continuous Matrix Functions on Fractal Hypersurfaces
Bory-Reyes Juan
2010-01-01
Full Text Available We consider Hölder continuous circulant ( matrix functions defined on the fractal boundary of a domain in . The main goal is to study under which conditions such a function can be decomposed as , where the components are extendable to -monogenic functions in the interior and the exterior of , respectively. -monogenicity are a concept from the framework of Hermitean Clifford analysis, a higher-dimensional function theory centered around the simultaneous null solutions of two first-order vector-valued differential operators, called Hermitean Dirac operators. -monogenic functions then are the null solutions of a ( matrix Dirac operator, having these Hermitean Dirac operators as its entries; such matrix functions play an important role in the function theoretic development of Hermitean Clifford analysis. In the present paper a matricial Hermitean Téodorescu transform is the key to solve the problem under consideration. The obtained results are then shown to include the ones where domains with an Ahlfors-David regular boundary were considered.
Pernal, Katarzyna
2012-05-14
Time-dependent density functional theory (TD-DFT) in the adiabatic formulation exhibits known failures when applied to predicting excitation energies. One of them is the lack of the doubly excited configurations. On the other hand, the time-dependent theory based on a one-electron reduced density matrix functional (time-dependent density matrix functional theory, TD-DMFT) has proven accurate in determining single and double excitations of H(2) molecule if the exact functional is employed in the adiabatic approximation. We propose a new approach for computing excited state energies that relies on functionals of electron density and one-electron reduced density matrix, where the latter is applied in the long-range region of electron-electron interactions. A similar approach has been recently successfully employed in predicting ground state potential energy curves of diatomic molecules even in the dissociation limit, where static correlation effects are dominating. In the paper, a time-dependent functional theory based on the range-separation of electronic interaction operator is rigorously formulated. To turn the approach into a practical scheme the adiabatic approximation is proposed for the short- and long-range components of the coupling matrix present in the linear response equations. In the end, the problem of finding excitation energies is turned into an eigenproblem for a symmetric matrix. Assignment of obtained excitations is discussed and it is shown how to identify double excitations from the analysis of approximate transition density matrix elements. The proposed method used with the short-range local density approximation (srLDA) and the long-range Buijse-Baerends density matrix functional (lrBB) is applied to H(2) molecule (at equilibrium geometry and in the dissociation limit) and to Be atom. The method accounts for double excitations in the investigated systems but, unfortunately, the accuracy of some of them is poor. The quality of the other
Rational inattention or rational overreaction?
Browning, Martin; Hansen, Lars Gårn; Smed, Sinne
We investigate differences in how consumers of fish react to health information in the mass media. We specify a dynamic empirical model that allows for heterogeneity in all basic parameters of consumer behavior as well as in how consumers react to information. We estimate the model using a unique...... houshold panel tracking consumption, prices, news stories and media habits over 24 quarters. We fi nd that the consumers most likely to be ’rationally ignorant’ of health effects react more dramatically to health news than the consumers who most likely are well informed....
Rational inattention or rational overreaction?
Browning, Martin; Hansen, Lars Gårn; Smed, Sinne
We investigate differences in how consumers of fish react to health information in the mass media. We specify a dynamic empirical model that allows for heterogeneity in all basic parameters of consumer behavior as well as in how consumers react to information. We estimate the model using a unique...... houshold panel tracking consumption, prices, news stories and media habits over 24 quarters. We fi nd that the consumers most likely to be ’rationally ignorant’ of health effects react more dramatically to health news than the consumers who most likely are well informed....
Poulsen, Jesper Buchhave; Andersen, Kasper Røjkjær; Kjær, Karina Hansen
2011-01-01
. Interestingly, 2′-PDE shares both functionally and structurally characteristics with the CCR4-type exonuclease–endonuclease–phosphatase family of deadenylases. Here we show that 2′-PDE locates to the mitochondrial matrix of human cells, and comprise an active 3′–5′ exoribonuclease exhibiting a preference...... a role in the cellular immune system, may also function in mitochondrial RNA turnover....
Sequential optimization of matrix chain multiplication relative to different cost functions
Chikalov, Igor
2011-01-01
In this paper, we present a methodology to optimize matrix chain multiplication sequentially relative to different cost functions such as total number of scalar multiplications, communication overhead in a multiprocessor environment, etc. For n matrices our optimization procedure requires O(n 3) arithmetic operations per one cost function. This work is done in the framework of a dynamic programming extension that allows sequential optimization relative to different criteria. © 2011 Springer-Verlag Berlin Heidelberg.
Three-loop SM beta-functions for matrix Yukawa couplings
A.V. Bednyakov
2014-10-01
Full Text Available We present the extension of our previous results for three-loop Yukawa coupling beta-functions to the case of complex Yukawa matrices describing the flavour structure of the SM. The calculation is carried out in the context of unbroken phase of the SM with the help of the MINCER program in a general linear gauge and cross-checked by means of MATAD/BAMBA codes. In addition, ambiguities in Yukawa matrix beta-functions are studied.
Rational and real positive semidefinite rank can be different
Gouveia, João; Fawzi, Hamza; Robinson, Richard Z.
2014-01-01
Given a nonnegative matrix M with rational entries, we consider two quantities: the usual positive semidefinite (psd) rank, where the matrix is factored through the cone of real symmetric psd matrices, and the rational-restricted psd rank, where the matrix factors are required to be rational symmetric psd matrices. It is clear that the rational-restricted psd rank is always an upper bound to the usual psd rank. We show that this inequality may be strict by exhibiting a matrix with psd rank fo...
Nanoscale Structural Plasticity of the Active Zone Matrix Modulates Presynaptic Function.
Glebov, Oleg O; Jackson, Rachel E; Winterflood, Christian M; Owen, Dylan M; Barker, Ellen A; Doherty, Patrick; Ewers, Helge; Burrone, Juan
2017-03-14
The active zone (AZ) matrix of presynaptic terminals coordinates the recruitment of voltage-gated calcium channels (VGCCs) and synaptic vesicles to orchestrate neurotransmitter release. However, the spatial organization of the AZ and how it controls vesicle fusion remain poorly understood. Here, we employ super-resolution microscopy and ratiometric imaging to visualize the AZ structure on the nanoscale, revealing segregation between the AZ matrix, VGCCs, and putative release sites. Long-term blockade of neuronal activity leads to reversible AZ matrix unclustering and presynaptic actin depolymerization, allowing for enrichment of AZ machinery. Conversely, patterned optogenetic stimulation of postsynaptic neurons retrogradely enhanced AZ clustering. In individual synapses, AZ clustering was inversely correlated with local VGCC recruitment and vesicle cycling. Acute actin depolymerization led to rapid (5 min) nanoscale AZ matrix unclustering. We propose a model whereby neuronal activity modulates presynaptic function in a homeostatic manner by altering the clustering state of the AZ matrix. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Targeting a single function of the multifunctional matrix metalloprotease MT1-MMP
Ingvarsen, Signe; Porse, Astrid; Erpicum, Charlotte
2013-01-01
the enzyme ability to activate proMMP-2 without interfering with the collagenolytic function or the general proteolytic activity of MT1-MMP. Using this antibody, we have shown that the MT1-MMP-catalyzed activation of proMMP-2 is involved in the outgrowth of cultured lymphatic endothelial cells in a collagen......-documented importance in matrix degradation but which takes part in more than one pathway in this regard. In this report, we describe the selective targeting of a single function of this enzyme by means of a specific monoclonal antibody against MT1-MMP, raised in an MT1-MMP knock-out mouse. The antibody blocks...... matrix in vitro, as well as in lymphatic vessel sprouting assayed ex vivo. This is the first example of the complete inactivation of a single function of a multifunctional MMP and the use of this strategy to pursue its role....
Ohsaku, T; Yamaki, D; Yamaguchi, K
2002-01-01
For studying the group theoretical classification of the solutions of the density functional theory in relativistic framework, we propose quantum electrodynamical density-matrix functional theory (QED-DMFT). QED-DMFT gives the energy as a functional of a local one-body $4\\times4$ matrix $Q(x)\\equiv -$, where $\\psi$ and $\\bar{\\psi}$ are 4-component Dirac field and its Dirac conjugate, respectively. We examine some characters of QED-DMFT. After these preparations, by using Q(x), we classify the solutions of QED-DMFT under O(3) rotation, time reversal and spatial inversion. The behavior of Q(x) under nonrelativistic and ultrarelativistic limits are also presented. Finally, we give plans for several extensions and applications of QED-DMFT.
函数矩阵的积分%Integral of Function Matrix
许佰雁
2014-01-01
n this paper , the definitions of function matrix ’ s integral are presented by research on function ma-a11(x) a12(x) … a1n(x) a21(x) a22(x) … a2n(x) trix A( x) =.Several conclusions about function matrix ’ s integral are ob-…… … …am1(x) am2(x) … amn(x) tained.%a11（x） a12（x）… a1n（x） a21（x） a22（x）… a2n（x）通过对函数矩阵A（ x）＝的研究，得出关于函数矩阵积分的一些知识。…………am1（x） am2（x）… amn（x）
Akemann, G. [Department of Mathematical Sciences and BURSt Research Centre, School of Information Systems, Computing and Mathematics, Brunel University West London, Uxbridge UB8 3PH (United Kingdom)]. E-mail: gernot.akemann@brunel.ac.uk; Basile, F. [Department of Mathematical Sciences and BURSt Research Centre, School of Information Systems, Computing and Mathematics, Brunel University West London, Uxbridge UB8 3PH (United Kingdom); Dipartimento di Fisica dell' Universita di Pisa and INFN, Via Buonarroti, 56127 Pisa (Italy)
2007-03-26
We compute all massive partition functions or characteristic polynomials and their complex eigenvalue correlation functions for non-Hermitean extensions of the symplectic and chiral symplectic ensemble of random matrices. Our results are valid for general weight functions without degeneracies of the mass parameters. The expressions we derive are given in terms of the Pfaffian of skew orthogonal polynomials in the complex plane and their kernel. They are much simpler than the corresponding expressions for symplectic matrix models with real eigenvalues, and we explicitly show how to recover these in the Hermitean limit. This explains the appearance of three different kernels as quaternion matrix elements there in terms of derivatives of a single kernel here.
Functional role of EMMPRIN in the formation and mineralisation of dental matrix in mouse molars.
Xie, Ming; Xing, Guofang; Hou, Liwen; Bao, Jing; Chen, Yuqing; Jiao, Ting; Zhang, Fuqiang
2015-02-01
Our previous research has shown that the extracellular matrix metalloproteinase inducer (EMMPRIN) is expressed during and may function in the early development of tooth germs. In the present study, we observed the specific expression of EMMPRIN in ameloblasts and odontoblasts during the middle and late stages of tooth germ development using immunohistochemistry. Furthermore, to extend our understanding of the function of EMMPRIN in odontogenesis, we used an anti-EMMPRIN function-blocking antibody to remove EMMPRIN activity in tooth germ culture in vitro. Both the formation and mineralisation of dental hard tissues were suppressed in the tooth germ culture after the abrogation of EMMPRIN. Meanwhile, significant reductions in VEGF, MMP-9, ALPL, ameloblastin, amelogenin and enamelin expression were observed in antibody-treated tooth germ explants compared to control and normal serum-treated explants. The current results illustrate that EMMPRIN may play a critical role in the processing and maturation of the dental matrix.
Exploring the "Middle Earth" of Network Spectra via a Gaussian Matrix Function
Estrada, Ernesto; Al-Thukair, Fawzi
2016-01-01
We study a Gaussian matrix function of the adjacency matrix of graphs and real-world networks. In particular, we study the Gaussian Estrada index---an index characterizing the importance of eigenvalues close to zero. This index accounts for the information contained in the eigenvalues close to zero in the spectra of networks. Here we obtain bounds for this index in simple graphs, proving that it reaches its maximum for star graphs followed by complete bipartite graphs. We also obtain formulae for the Estrada Gaussian index of Erd\\H{o}s-R\\'enyi random graphs as well as for the Barab\\'asi-Albert graphs. We also show that in real-world networks this index is related to the existence of important structural patterns, such as complete bipartite subgraphs (bicliques). Such bicliques appear naturally in many real-world networks as a consequence of the evolutionary processes giving rise to them. In general, the Gaussian matrix function of the adjacency matrix of graphs characterizes important structural information n...
Sarkadi, L.
2017-03-01
The program MTRXCOUL [1] calculates the matrix elements of the Coulomb interaction between a charged particle and an atomic electron, ∫ ψf∗ (r) | R - r | - 1ψi(r) d r. Bound-free transitions are considered, and non-relativistic hydrogenic wave functions are used. In this revised version a bug discovered in the F3Y CPC Program Library (PL) subprogram [2] is fixed. Furthermore, the COULCC CPC PL subprogram [3] applied for the calculations of the radial wave functions of the free states and the Bessel functions is replaced by the CPC PL subprogram DCOUL [4].
Analysis of the segmented contraction of basis functions using density matrix theory.
Custodio, Rogério; Gomes, André Severo Pereira; Sensato, Fabrício Ronil; Trevas, Júlio Murilo Dos Santos
2006-11-30
A particular formulation based on density matrix (DM) theory at the Hartree-Fock level of theory and the description of the atomic orbitals as integral transforms is introduced. This formulation leads to a continuous representation of the density matrices as functions of a generator coordinate and to the possibility of plotting either the continuous or discrete density matrices as functions of the exponents of primitive Gaussian basis functions. The analysis of these diagrams provides useful information allowing: (a) the determination of the most important primitives for a given orbital, (b) the core-valence separation, and (c) support for the development of contracted basis sets by the segmented method.
Angeles, Jorge
1988-01-01
A rational study of kinematics is a treatment of the subject based on invariants, i.e., quantities that remain essentially unchanged under a change of observer. An observer is understood to be a reference frame supplied with a clock (Truesdell 1966). This study will therefore include an introduction to invariants. The language of these is tensor analysis and multilinear algebra, both of which share many isomorphic relations, These subjects are treated in full detail in Ericksen (1960) and Bowen and Wang (1976), and hence will not be included here. Only a short account of notation and definitions will be presented. Moreover, definitions and basic concepts pertaining to the kinematics of rigid bodies will be also included. Although the kinematics of rigid bodies can be regarded as a particular case of the kinematics of continua, the former deserves attention on its own merits for several reasons. One of these is that it describes locally the motions undergone by continua. Another reason is that a whole area of ...
Gao Haichun
2007-08-01
Full Text Available Abstract Background Large-scale sequencing of entire genomes has ushered in a new age in biology. One of the next grand challenges is to dissect the cellular networks consisting of many individual functional modules. Defining co-expression networks without ambiguity based on genome-wide microarray data is difficult and current methods are not robust and consistent with different data sets. This is particularly problematic for little understood organisms since not much existing biological knowledge can be exploited for determining the threshold to differentiate true correlation from random noise. Random matrix theory (RMT, which has been widely and successfully used in physics, is a powerful approach to distinguish system-specific, non-random properties embedded in complex systems from random noise. Here, we have hypothesized that the universal predictions of RMT are also applicable to biological systems and the correlation threshold can be determined by characterizing the correlation matrix of microarray profiles using random matrix theory. Results Application of random matrix theory to microarray data of S. oneidensis, E. coli, yeast, A. thaliana, Drosophila, mouse and human indicates that there is a sharp transition of nearest neighbour spacing distribution (NNSD of correlation matrix after gradually removing certain elements insider the matrix. Testing on an in silico modular model has demonstrated that this transition can be used to determine the correlation threshold for revealing modular co-expression networks. The co-expression network derived from yeast cell cycling microarray data is supported by gene annotation. The topological properties of the resulting co-expression network agree well with the general properties of biological networks. Computational evaluations have showed that RMT approach is sensitive and robust. Furthermore, evaluation on sampled expression data of an in silico modular gene system has showed that under
Structure and function of the interphotoreceptor matrix surrounding retinal photoreceptor cells.
Ishikawa, Makoto; Sawada, Yu; Yoshitomi, Takeshi
2015-04-01
The interphotoreceptor matrix (IPM) is a highly organized structure with interconnected domains surrounding cone and rod photoreceptor cells and extends throughout the subretinal space. Based on known roles of the extracellular matrix in other tissues, the IPM is thought to have several prominent functions including serving as a receptor for growth factors, regulating retinoid transport, participating in cytoskeletal organization in surrounding cells, and regulation of oxygen and nutrient transport. In addition, a number of studies suggest that the IPM also may play a significant role in the etiology of retinal degenerative disorders. In this review, we describe the present knowledge concerning the structure and function of the IPM under physiological and pathological conditions. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Conditions for describing triplet states in reduced density matrix functional theory
Theophilou, Iris; Helbig, Nicole
2016-01-01
We consider necessary conditions for the one body-reduced density matrix (1RDM) to correspond to a triplet wave-function of a two electron system. The conditions concern the occupation numbers and are different for the high spin projections, $S_z=\\pm 1$, and the $S_z=0$ projection. We employ these conditions in reduced density matrix functional theory calculations for the triplet excitations of two electron systems. In addition, we propose that these conditions can be used in the calculation of triplet states of systems with more than two electrons by restricting the active space and assess this procedure in calculations for a few atomic and molecular systems. We show that the quality of the optimal 1RDMs improves by applying the conditions in all the cases we studied.
Sarkadi, L.
2017-03-01
The program MTRDCOUL [1] calculates the matrix elements of the Coulomb interaction between a charged particle and an atomic electron, ∫ ψf∗ (r) ∣ R - r∣-1ψi(r) d r. Bound-free transitions are considered, and relativistic hydrogenic wave functions are used. In this revised version a bug discovered in the F3Y CPC Program Library subprogram [2] is fixed.
Selin Kanyas; Derya Aydın; Riza Kizilel; A Levent Demirel; Seda Kizilel
2014-01-01
Nanoparticle and Gelation Stabilized Functional Composites of an Ionic Salt in a Hydrophobic Polymer Matrix Selin Kanyas1, Derya Aydın2, Riza Kizilel3, A. Levent Demirel1,4, Seda Kizilel1,2* 1 Material Science and Engineering, Koc University, Sariyer, Istanbul, Turkey, 2 Department of Chemical and Biological Engineering, Koc University, Sariyer, Istanbul, Turkey, 3 Koc University-TUPRAS Energy Center (KUTEM), Koc University, Sariyer, Istanbul, Turkey, 4 Department of Chemistry,...
Optimization of Triangular Matrix Functions in BLAS Library on Loongson2F
2010-01-01
International audience; BLAS (Basic Linear Algebra Subprograms) plays a very important role in scientific computing and engineering applications. ATLAS is often recommended as a way to generate an optimized BLAS library. Based on ATLAS, this paper optimizes the algorithms of triangular matrix functions on 750 MHZ Loongson 2F processor-specific architecture. Using loop unrolling, instruction scheduling and data pre-fetching techniques, computing time and memory access delay are both reduced, a...
Ayşe Betül Koç
2014-01-01
Full Text Available A pseudospectral method based on the Fibonacci operational matrix is proposed to solve generalized pantograph equations with linear functional arguments. By using this method, approximate solutions of the problems are easily obtained in form of the truncated Fibonacci series. Some illustrative examples are given to verify the efficiency and effectiveness of the proposed method. Then, the numerical results are compared with other methods.
$_{3}$F$_{2}$(1) hypergeometric function and quadratic R-matrix algebra
Kuznetsov, V B
1994-01-01
We construct a class of representations of the quadratic R-matrix algebra, given by the reflection equation with the spectral parameter, in terms of certain ordinary difference operators. These operators turn out to act as parameter shifting operators on the 3_F_2(1) hypergeometric function and its limit cases and on classical orthogonal polynomials. The relationship with the factorization method will be discussed.
Functional biogeography of ocean microbes revealed through non-negative matrix factorization.
Xingpeng Jiang
Full Text Available The direct "metagenomic" sequencing of genomic material from complex assemblages of bacteria, archaea, viruses and microeukaryotes has yielded new insights into the structure of microbial communities. For example, analysis of metagenomic data has revealed the existence of previously unknown microbial taxa whose spatial distributions are limited by environmental conditions, ecological competition, and dispersal mechanisms. However, differences in genotypes that might lead biologists to designate two microbes as taxonomically distinct need not necessarily imply differences in ecological function. Hence, there is a growing need for large-scale analysis of the distribution of microbial function across habitats. Here, we present a framework for investigating the biogeography of microbial function by analyzing the distribution of protein families inferred from environmental sequence data across a global collection of sites. We map over 6,000,000 protein sequences from unassembled reads from the Global Ocean Survey dataset to [Formula: see text] protein families, generating a protein family relative abundance matrix that describes the distribution of each protein family across sites. We then use non-negative matrix factorization (NMF to approximate these protein family profiles as linear combinations of a small number of ecological components. Each component has a characteristic functional profile and site profile. Our approach identifies common functional signatures within several of the components. We use our method as a filter to estimate functional distance between sites, and find that an NMF-filtered measure of functional distance is more strongly correlated with environmental distance than a comparable PCA-filtered measure. We also find that functional distance is more strongly correlated with environmental distance than with geographic distance, in agreement with prior studies. We identify similar protein functions in several components and
RATIONAL QUADRATIC B-SPLINE INTERPOLATION OF FUNCTION SEGMENTS%函数的分段有理二次B样条插值
梁锡坤
2012-01-01
Based on the proper segmentation of complicated functions, the triangle convex hull of functions segment is introduced. We propose a scheme of control polygon determination by the tangent of the endpoints of the segment intervals. The algorithm of the segment rational quadratic B-spline interpolation of complicated functions is discussed in details. The interpolation keeps many important geometric features of the original function such as convexity, monotonicity and G1 continuity. The numerical experiments show that the algorithm provides an efficient approach to approximate representation of complicated functions.%0引 言 科学和工程计算中,函数的近似表示一直是一个重要课题.近似方法一般可归结为插值、逼近和拟合三种基本类型,经历长期发展,函数逼近方法[1-3]十分丰富.
The role of the non-collagenous matrix in tendon function.
Thorpe, Chavaunne T; Birch, Helen L; Clegg, Peter D; Screen, Hazel R C
2013-08-01
Tendon consists of highly ordered type I collagen molecules that are grouped together to form subunits of increasing diameter. At each hierarchical level, the type I collagen is interspersed with a predominantly non-collagenous matrix (NCM) (Connect. Tissue Res., 6, 1978, 11). Whilst many studies have investigated the structure, organization and function of the collagenous matrix within tendon, relatively few have studied the non-collagenous components. However, there is a growing body of research suggesting the NCM plays an important role within tendon; adaptations to this matrix may confer the specific properties required by tendons with different functions. Furthermore, age-related alterations to non-collagenous proteins have been identified, which may affect tendon resistance to injury. This review focuses on the NCM within the tensional region of developing and mature tendon, discussing the current knowledge and identifying areas that require further study to fully understand structure-function relationships within tendon. This information will aid in the development of appropriate techniques for tendon injury prevention and treatment. © 2013 The Authors. International Journal of Experimental Pathology © 2013 International Journal of Experimental Pathology.
A role for matrix stiffness in the regulation of cardiac side population cell function.
Qiu, Yiling; Bayomy, Ahmad F; Gomez, Marcus V; Bauer, Michael; Du, Ping; Yang, Yanfei; Zhang, Xin; Liao, Ronglih
2015-05-01
The mechanical properties of the local microenvironment may have important influence on the fate and function of adult tissue progenitor cells, altering the regenerative process. This is particularly critical following a myocardial infarction, in which the normal, compliant myocardial tissue is replaced with fibrotic, stiff scar tissue. In this study, we examined the effects of matrix stiffness on adult cardiac side population (CSP) progenitor cell behavior. Ovine and murine CSP cells were isolated and cultured on polydimethylsiloxane substrates, replicating the elastic moduli of normal and fibrotic myocardium. Proliferation capacity and cell cycling were increased in CSP cells cultured on the stiff substrate with an associated reduction in cardiomyogeneic differentiation and accelerated cell ageing. In addition, culture on stiff substrate stimulated upregulation of extracellular matrix and adhesion proteins gene expression in CSP cells. Collectively, we demonstrate that microenvironment properties, including matrix stiffness, play a critical role in regulating progenitor cell functions of endogenous resident CSP cells. Understanding the effects of the tissue microenvironment on resident cardiac progenitor cells is a critical step toward achieving functional cardiac regeneration.
Haitao Zhu
2017-01-01
Full Text Available The metal-organic framework (MOFs of MIL-53 was functionalized by aminosilane grafting and then incorporated into Ultem®1000 polymer matrix to fabricate mixed matrix hollow fiber membrane (MMHFM with high separation performance. SEM, XRD, and TGA were performed to characterize the functionalized MIL-53 and prepared MMHFM. The filler particles were embedded in membrane successfully and dispersed well in the polymer matrix. The incorporation of MOFs endowed MMHFM better thermal stability. Moreover, effects of solvent ratio in spinning dope, spinning condition, and testing temperature on gas separation performance of MMHFM were investigated. By optimizing dope composition, air gap distance, and bore fluid composition, MMHFM containing functionalized MIL-53 achieved excellent gas permeance and CO2/N2 selectivity. The CO2 permeance increased from 12.2 GPU for pure Ultem HFM to 30.9 GPU and the ideal CO2/N2 selectivity was enhanced from 25.4 to 34.7 simultaneously. Additionally, gas permeance increased but the selectivity decreased with the temperature increase, which followed the solution-diffusion based transport mechanism.
The role of the non-collagenous matrix in tendon function
Thorpe, Chavaunne T; Birch, Helen L; Clegg, Peter D; Screen, Hazel RC
2013-01-01
Tendon consists of highly ordered type I collagen molecules that are grouped together to form subunits of increasing diameter. At each hierarchical level, the type I collagen is interspersed with a predominantly non-collagenous matrix (NCM) (Connect. Tissue Res., 6, 1978, 11). Whilst many studies have investigated the structure, organization and function of the collagenous matrix within tendon, relatively few have studied the non-collagenous components. However, there is a growing body of research suggesting the NCM plays an important role within tendon; adaptations to this matrix may confer the specific properties required by tendons with different functions. Furthermore, age-related alterations to non-collagenous proteins have been identified, which may affect tendon resistance to injury. This review focuses on the NCM within the tensional region of developing and mature tendon, discussing the current knowledge and identifying areas that require further study to fully understand structure–function relationships within tendon. This information will aid in the development of appropriate techniques for tendon injury prevention and treatment. PMID:23718692
Ubiquitylation functions in the calcium carbonate biomineralization in the extracellular matrix.
Dong Fang
Full Text Available Mollusks shell formation is mediated by matrix proteins and many of these proteins have been identified and characterized. However, the mechanisms of protein control remain unknown. Here, we report the ubiquitylation of matrix proteins in the prismatic layer of the pearl oyster, Pinctada fucata. The presence of ubiquitylated proteins in the prismatic layer of the shell was detected with a combination of western blot and immunogold assays. The coupled ubiquitins were separated and identified by Edman degradation and liquid chromatography/mass spectrometry (LC/MS. Antibody injection in vivo resulted in large amounts of calcium carbonate randomly accumulating on the surface of the nacreous layer. These ubiquitylated proteins could bind to specific faces of calcite and aragonite, which are the two main mineral components of the shell. In the in vitro calcium carbonate crystallization assay, they could reduce the rate of calcium carbonate precipitation and induce the calcite formation. Furthermore, when the attached ubiquitins were removed, the functions of the EDTA-soluble matrix of the prismatic layer were changed. Their potency to inhibit precipitation of calcium carbonate was decreased and their influence on the morphology of calcium carbonate crystals was changed. Taken together, ubiquitylation is involved in shell formation. Although the ubiquitylation is supposed to be involved in every aspect of biophysical processes, our work connected the biomineralization-related proteins and the ubiquitylation mechanism in the extracellular matrix for the first time. This would promote our understanding of the shell biomineralization and the ubiquitylation processes.
A functional neural network computing some eigenvalues and eigenvectors of a special real matrix.
Liu, Yiguang; You, Zhisheng; Cao, Liping
2005-12-01
How to quickly compute eigenvalues and eigenvectors of a matrix, especially, a general real matrix, is significant in engineering. Since neural network runs in asynchronous and concurrent manner, and can achieve high rapidity, this paper designs a concise functional neural network (FNN) to extract some eigenvalues and eigenvectors of a special real matrix. After equivalent transforming the FNN into a complex differential equation and obtaining the analytic solution, the convergence properties of the FNN are analyzed. If the eigenvalue whose imaginary part is nonzero and the largest of all eigenvalues is unique, the FNN will converge to the eigenvector corresponding to this special eigenvalue with general nonzero initial vector. If all eigenvalues are real numbers or there are more than one eigenvalue whose imaginary part equals the largest, the FNN will converge to zero point or fall into a cycle procedure. Comparing with other neural networks designed for the same domain, the restriction to matrix is very slack. At last, three examples are employed to illustrate the performance of the FNN.
Wang, Rong; Wang, Li; Yang, Yong; Li, Jiajia; Wu, Ying; Lin, Pan
2016-11-01
Attention deficit hyperactivity disorder (ADHD) is the most common childhood neuropsychiatric disorder and affects approximately 6-7% of children worldwide. Here, we investigate the statistical properties of undirected and directed brain functional networks in ADHD patients based on random matrix theory (RMT), in which the undirected functional connectivity is constructed based on correlation coefficient and the directed functional connectivity is measured based on cross-correlation coefficient and mutual information. We first analyze the functional connectivity and the eigenvalues of the brain functional network. We find that ADHD patients have increased undirected functional connectivity, reflecting a higher degree of linear dependence between regions, and increased directed functional connectivity, indicating stronger causality and more transmission of information among brain regions. More importantly, we explore the randomness of the undirected and directed functional networks using RMT. We find that for ADHD patients, the undirected functional network is more orderly than that for normal subjects, which indicates an abnormal increase in undirected functional connectivity. In addition, we find that the directed functional networks are more random, which reveals greater disorder in causality and more chaotic information flow among brain regions in ADHD patients. Our results not only further confirm the efficacy of RMT in characterizing the intrinsic properties of brain functional networks but also provide insights into the possibilities RMT offers for improving clinical diagnoses and treatment evaluations for ADHD patients.
Wang, Rong; Wang, Li; Yang, Yong; Li, Jiajia; Wu, Ying; Lin, Pan
2016-11-01
Attention deficit hyperactivity disorder (ADHD) is the most common childhood neuropsychiatric disorder and affects approximately 6 -7 % of children worldwide. Here, we investigate the statistical properties of undirected and directed brain functional networks in ADHD patients based on random matrix theory (RMT), in which the undirected functional connectivity is constructed based on correlation coefficient and the directed functional connectivity is measured based on cross-correlation coefficient and mutual information. We first analyze the functional connectivity and the eigenvalues of the brain functional network. We find that ADHD patients have increased undirected functional connectivity, reflecting a higher degree of linear dependence between regions, and increased directed functional connectivity, indicating stronger causality and more transmission of information among brain regions. More importantly, we explore the randomness of the undirected and directed functional networks using RMT. We find that for ADHD patients, the undirected functional network is more orderly than that for normal subjects, which indicates an abnormal increase in undirected functional connectivity. In addition, we find that the directed functional networks are more random, which reveals greater disorder in causality and more chaotic information flow among brain regions in ADHD patients. Our results not only further confirm the efficacy of RMT in characterizing the intrinsic properties of brain functional networks but also provide insights into the possibilities RMT offers for improving clinical diagnoses and treatment evaluations for ADHD patients.
2007-01-01
The Bonami-Beckner hypercontractive inequality is a powerful tool in Fourier analysis of real-valued functions on the Boolean cube. In this paper we present a version of this inequality for matrix-valued functions on the Boolean cube. Its proof is based on a powerful inequality by Ball, Carlen, and Lieb. We also present a number of applications. First, we analyze maps that encode $n$ classical bits into $m$ qubits, in such a way that each set of $k$ bits can be recovered with some probability...
构造向量值有理插值函数的一种新方法%A NEW METHOD OF CONSTRUCTING VECTOR-VALUED RATIONAL INTERPOLATION FUNCTION
郑林; 朱功勤
2011-01-01
There is no general conclusion for the existence of vector-valued rational interpolation function based on the continued fraction expression, then the suitability of the construction method is restricted. This paper presents a new interpolation method and gives a simple algorithm to compute the vector-valued rational interpolation function. This method uses a special polynomial which is not based on the continued fraction form. The numerical example given illustrates the efficiency of the method.
Jose Roberto Mandujano
2014-03-01
Full Text Available We present a direct algebraic method for obtaining the matrix exponential function exp(tA, expressed as an explicit function of t for any square matrix A whose eigenvalues are known. The explicit form can be used to determine how a given eigenvalue affects the behavior of exp(tA. We use an algebraic convolution formula for basic exponential polynomials to obtain the dynamic solution g(t associated with the characteristic (or minimal polynomial w(x of A. Then exp(tA is expressed as $\\sum_k g_k(t w_k(A$, where the $g_k(t$ are successive derivatives of g and the $w_k$ are the Horner polynomials associated with w(x. Our method also gives a number $\\delta$ that measures how well the computed approximation satisfies the matrix differential equation F'(tA=A F(tA at some given point $t=\\beta$. Some numerical experiments with random matrices indicate that the proposed method can be applied to matrices of order up to 40.
Matrix stiffness-modulated proliferation and secretory function of the airway smooth muscle cells.
Shkumatov, Artem; Thompson, Michael; Choi, Kyoung M; Sicard, Delphine; Baek, Kwanghyun; Kim, Dong Hyun; Tschumperlin, Daniel J; Prakash, Y S; Kong, Hyunjoon
2015-06-01
Multiple pulmonary conditions are characterized by an abnormal misbalance between various tissue components, for example, an increase in the fibrous connective tissue and loss/increase in extracellular matrix proteins (ECM). Such tissue remodeling may adversely impact physiological function of airway smooth muscle cells (ASMCs) responsible for contraction of airways and release of a variety of bioactive molecules. However, few efforts have been made to understand the potentially significant impact of tissue remodeling on ASMCs. Therefore, this study reports how ASMCs respond to a change in mechanical stiffness of a matrix, to which ASMCs adhere because mechanical stiffness of the remodeled airways is often different from the physiological stiffness. Accordingly, using atomic force microscopy (AFM) measurements, we found that the elastic modulus of the mouse bronchus has an arithmetic mean of 23.1 ± 14 kPa (SD) (median 18.6 kPa). By culturing ASMCs on collagen-conjugated polyacrylamide hydrogels with controlled elastic moduli, we found that gels designed to be softer than average airway tissue significantly increased cellular secretion of vascular endothelial growth factor (VEGF). Conversely, gels stiffer than average airways stimulated cell proliferation, while reducing VEGF secretion and agonist-induced calcium responses of ASMCs. These dependencies of cellular activities on elastic modulus of the gel were correlated with changes in the expression of integrin-β1 and integrin-linked kinase (ILK). Overall, the results of this study demonstrate that changes in matrix mechanics alter cell proliferation, calcium signaling, and proangiogenic functions in ASMCs.
Ma'zoozeh E. Abu-Amra
2008-04-01
Full Text Available In this paper we derive close form for the matrix elements for $hat H=-Delta +V$, where $V$ is a pure power-law potential. We use trial functions of the form $$ psi _n(r= sqrt{{frac{2eta ^{gamma/2}(gamma _n} {n!Gamma(gamma }}} r^{gamma - 1/2} e^{-frac{sqrt{eta }}{2}r^q} _pF_1 ( -n,a_2,ldots ,a_p;gamma;sqrt {eta } r^q, $$ for $eta, q,gamma >0$ to obtain the matrix elements for $hat H$. These formulas are then optimized with respect to variational parameters $eta ,q$ and $gamma $ to obtain accurate upper bounds for the given nonsolvable eigenvalue problem in quantum mechanics. Moreover, we write the matrix elements in terms of the generalized hypergeomtric functions. These results are generalization of those found earlier in [2], [8-16] for power-law potentials. Applications and comparisons with earlier work are presented.
Rational management of epilepsy.
Viswanathan, Venkataraman
2014-09-01
Management of epilepsies in children has improved considerably over the last decade, all over the world due to the advances seen in the understanding of the patho-physiology of epileptogenesis, availability of both structural and functional imaging studies along with better quality EEG/video-EEG recordings and the availability of a plethora of newer anti-epileptic drugs which are tailormade to act on specific pathways. In spite of this, there is still a long way to go before one is able to be absolutely rational about which drug to use for which type of epilepsy. There have been a lot of advances in the area of epilepsy surgery and is certainly gaining ground for specific cases. Better understanding of the genetic basis of epilepsies will hopefully lead to a more rational treatment plan in the future. Also, a lot of work needs to be done to dispel various misunderstandings and myths about epilepsy which still exists in our country.
Adhesion protein networks reveal functions proximal and distal to cell-matrix contacts.
Byron, Adam; Frame, Margaret C
2016-04-01
Cell adhesion to the extracellular matrix is generally mediated by integrin receptors, which bind to intracellular adhesion proteins that form multi-molecular scaffolding and signalling complexes. The networks of proteins, and their interactions, are dynamic, mechanosensitive and extremely complex. Recent efforts to characterise adhesions using a variety of technologies, including imaging, proteomics and bioinformatics, have provided new insights into their composition, organisation and how they are regulated, and have also begun to reveal unexpected roles for so-called adhesion proteins in other cellular compartments (for example, the nucleus or centrosomes) in diseases such as cancer. We believe this is opening a new chapter on understanding the wider functions of adhesion proteins, both proximal and distal to cell-matrix contacts.
Effective functionalization of carbon nanotubes for bisphenol F epoxy matrix composites
Zhe Wang
2012-08-01
Full Text Available A brand-new type of multifunctional nanocomposites with high DC conductivity and enhanced mechanical strength was fabricated. Ionic liquid functionalized Carbon Nanotubes (CNTs-IL were embedded into epoxy matrix with covalent bonding by the attached epoxy groups. The highest DC conductivity was 8.38 x 10-3 S.m-1 with 1.0 wt. (% loading of CNTs-IL and the tensile strength was increased by 36.4% only at a 0.5 wt. (% concentration. A mixing solvent was used to disperse CNTs-IL in the epoxy monomer. The dispersion and distribution of CNTs-IL in the polymer matrix were measured by utilizing both optical microscopy and scanning electron microscopy, respectively.
Robust Validation Of Approximate 1-Matrix Functionals With Few-Electron Harmonium Atoms
Cioslowski, Jerzy; Matito, Eduard
2015-01-01
A simple comparison between the exact and approximate correlation components U of the electron-electron repulsion energy of several states of few-electron harmonium atoms with varying confinement strengths provides a superior validation tool for 1-matrix functionals. The robustness of this tool is clearly demonstrated in a survey of 14 known functionals, which reveals their substandard performance within different electron correlation regimes. Unlike spot-testing that employs dissociation curves of diatomic molecules or more extensive benchmarking against experimental atomization energies of molecules comprising one of standard sets, the present approach not only uncovers the flaws and patent failures of the functionals but, even more importantly, allows for pinpointing their root causes. Since the approximate values of U are computed at exact 1-densities, the testing requires minimal programming, and thus is particularly useful in quick screening of new functionals.
Bultinck, Patrick; Clarisse, Dorien; Ayers, Paul W; Carbo-Dorca, Ramon
2011-04-07
The Fukui matrix is introduced as the derivative of the one-electron reduced density matrix with respect to a change in the number of electrons under constant external potential. The Fukui matrix extends the Fukui function concept: the diagonal of the Fukui matrix is the Fukui function. Diagonalizing the Fukui matrix gives a set of eigenvectors, the Fukui orbitals, and accompanying eigenvalues. At the level of theory used, there is always one dominant eigenvector, with an eigenvalue equal to 1. The remaining eigenvalues are either zero or come in pairs with eigenvalues of the same magnitude but opposite sign. Analysis of the frontier molecular orbital coefficient in the eigenvector with eigenvalue 1 gives information on the quality of the frontier molecular orbital picture. The occurrence of negative Fukui functions can be easily interpreted in terms of the nodal character of the dominant eigenvector versus the characteristics of the remaining eigenvectors and eigenvalues.
Genin, Guy M; Birman, Victor
2009-05-15
Reinforcement of fibrous composites by stiff particles embedded in the matrix offers the potential for simple, economical functional grading, enhanced response to mechanical loads, and improved functioning at high temperatures. Here, we consider laminated plates made of such a material, with spherical reinforcement tailored by layer. The moduli for this material lie within relatively narrow bounds. Two separate moduli estimates are considered: a "two-step" approach in which fibers are embedded in a homogenized particulate matrix, and the Kanaun-Jeulin (2001) approach, which we re-derive in a simple way using the Benveniste (1988) method. Optimal tailoring of a plate is explored, and functional grading is shown to improve the performance of the structures considered. In the example of a square, simply supported, cross-ply laminated panel subjected to uniform transverse pressure, a modest functional grading offers significant improvement in performance. A second example suggests superior blast resistance of the panel achieved at the expense of only a small increase in weight.
Sobreira, F.; Rosenfeld, R. [Universidade Estadual Paulista Julio de Mesquita Filho (IFT/UNESP), Sao Paulo, SP (Brazil). Inst. Fisica Teorica; Simoni, F. de; Costa, L.A.N. da; Gaia, M.A.G.; Ramos, B.; Ogando, R.; Makler, M. [Laboratorio Interinstitucional de e-Astronomia (LIneA), Rio de Janeiro, RJ (Brazil)
2011-07-01
Full text: We study the cosmological constraints expected for the upcoming project Dark Energy Survey (DES) with the full functional form of the 2-point angular correlation function. The angular correlation function model applied in this work includes the effects of linear redshift-space distortion, photometric redshift errors (assumed to be Gaussian) and non-linearities prevenient from gravitational infall. The Fisher information matrix is constructed with the full covariance matrix, which takes the correlation between nearby redshift shells in a proper manner. The survey was sliced into 20 redshift shells in the range 0:4 {<=} z {<=} 1:40 with a variable angular scale in order to search only the scale around the signal from the baryon acoustic oscillation, therefore well within the validity of the non-linear model employed. We found that under those assumptions and with a flat {Lambda}CDM WMAP7 fiducial model, the DES will be able to constrain the dark energy equation of state parameter w with a precision of {approx} 20% and the cold dark matter with {approx} 11% when marginalizing over the other 25 parameters (bias is treated as a free parameter for each shell). When applying WMAP7 priors on {Omega}{sub baryon}, {Omega} c{sub dm}, n{sub s}, and HST priors on the Hubble parameter, w is constrained with {approx} 9% precision. This shows that the full shape of the angular correlation function with DES data will be a powerful probe to constrain cosmological parameters. (author)
Novel insights into the function and dynamics of extracellular matrix in liver fibrosis
Karsdal, Morten A; Manon-Jensen, Tina; Genovese, Federica
2015-01-01
Emerging evidence suggests that altered components and posttranslational modifications of proteins in the extracellular matrix (ECM) may both initiate and drive disease progression. The ECM is a complex grid consisting of multiple proteins, most of which play a vital role in containing the essent......Emerging evidence suggests that altered components and posttranslational modifications of proteins in the extracellular matrix (ECM) may both initiate and drive disease progression. The ECM is a complex grid consisting of multiple proteins, most of which play a vital role in containing......) explore key structural and functional components of the ECM as exemplified by monogenetic disorders leading to severe pathologies, 2) discuss selected pathological posttranslational modifications of ECM proteins resulting in altered functional (signaling) properties from the original structural proteins......, and 3) discuss how these findings support the novel concept that an increasing number of components of the ECM harbor signaling functions that can modulate fibrotic liver disease. The ECM entails functions in addition to anchoring cells and modulating their migratory behavior. Key ECM components...
Fan, Kaiqi; Yang, Jun; Wang, Xiaobo; Song, Jian
2014-11-07
A gelator containing a sorbitol moiety and a naphthalene-based salicylideneaniline group exhibits macroscopic gel-sol behavior in response to four complementary input stimuli: temperature, UV light, OH(-), and Cu(2+). On the basis of its multiple-stimuli responsive properties, we constructed a rational gel-based supramolecular logic gate that performed OR and INH types of reversible stimulus responsive gel-sol transition in the presence of various combinations of the four stimuli when the gel state was defined as an output. Moreover, a combination two-output logic gate was obtained, owing to the existence of the naked eye as an additional output. Hence, gelator 1 could construct not only a basic logic gate, but also a two-input-two-output logic gate because of its response to multiple chemical stimuli and multiple output signals, in which one input could erase the effect of another input.
On Counting the Rational Numbers
Almada, Carlos
2010-01-01
In this study, we show how to construct a function from the set N of natural numbers that explicitly counts the set Q[superscript +] of all positive rational numbers using a very intuitive approach. The function has the appeal of Cantor's function and it has the advantage that any high school student can understand the main idea at a glance…
Lima, F M S
2009-01-01
In a recent work [JNT \\textbf{118}, 192 (2006)], Dancs and He found an Euler-type formula for $ \\zeta{(2 n+1)}$, $ n $ being a positive integer, which contains an alternating series that seems not to be reducible to a finite closed-form. This certainly reflects a greater complexity in comparison to $\\zeta(2n)$, which is a rational multiple of $\\pi^{2n}$ according to a well-known formula by Euler. For the Dirichlet beta function, the things are "inverse": $\\beta(2n+1)$ is a rational multiple of $\\pi^{2n+1}$, whereas no closed-form expression is known for the numbers $\\beta(2n)$. Here in this work, I use the Dancs-He strategy for deriving an Euler-type formula for the Dirichlet beta function at even values of the argument, including $\\beta{(2)}$, i.e. the Catalan's constant. This yields a new series representation for these numbers. Finally, by converting the summand of these series into even zeta values and then making use of a formula by Milgran, I derive an exact closed-form expression for an important class...
Bisetti, Fabrizio
2012-06-01
Recent trends in hydrocarbon fuel research indicate that the number of species and reactions in chemical kinetic mechanisms is rapidly increasing in an effort to provide predictive capabilities for fuels of practical interest. In order to cope with the computational cost associated with the time integration of stiff, large chemical systems, a novel approach is proposed. The approach combines an exponential integrator and Krylov subspace approximations to the exponential function of the Jacobian matrix. The components of the approach are described in detail and applied to the ignition of stoichiometric methane-air and iso-octane-air mixtures, here described by two widely adopted chemical kinetic mechanisms. The approach is found to be robust even at relatively large time steps and the global error displays a nominal third-order convergence. The performance of the approach is improved by utilising an adaptive algorithm for the selection of the Krylov subspace size, which guarantees an approximation to the matrix exponential within user-defined error tolerance. The Krylov projection of the Jacobian matrix onto a low-dimensional space is interpreted as a local model reduction with a well-defined error control strategy. Finally, the performance of the approach is discussed with regard to the optimal selection of the parameters governing the accuracy of its individual components. © 2012 Copyright Taylor and Francis Group, LLC.
Michelitsch, Thomas; Riascos, Alejandro; Nowakowski, Andrzej F; Nicolleau, Franck C G A
2016-01-01
We introduce positive elastic potentials in the harmonic approximation leading by Hamilton's variational principle to fractional Laplacian matrices having the forms of power law matrix functions of the simple local Bornvon Karman Laplacian. The fractional Laplacian matrices are well defined on periodic and infinite lattices in $n=1,2,3,..$ dimensions. The present approach generalizes the central symmetric second differenceoperator (Born von Karman Laplacian) to its fractional central symmetric counterpart (Fractional Laplacian matrix).For non-integer powers of the Born von Karman Laplacian, the fractional Laplacian matrix is nondiagonal with nonzero matrix elements everywhere, corresponding to nonlocal behavior: For large lattices the matrix elements far from the diagonal expose power law asymptotics leading to continuum limit kernels of Riesz fractional derivative type. We present explicit results for the fractional Laplacian matrix in 1D for finite periodic and infinite linear chains and their Riesz fractio...
Mo, Yuxiang; Tao, Jianmin
2016-01-01
Recently, Tao and Mo proposed an accurate meta-generalized gradient approximation for the exchange-correlation energy. The exchange part is derived from the density matrix expansion, while the correlation part is obtained by improving the TPSS correlation in the low-density limit. To better understand this exchange functional, in this work, we combine the TM exchange with the original TPSS correlation, which we call TMTPSS, and make a systematic assessment on molecular properties. The test sets include the 223 G3/99 enthalpies of formation, 58 electron affinities, 8 proton affinities, 96 bond lengths, 82 harmonic frequencies, and 10 hydrogen-bonded molecular complexes. Our calculations show that the TMTPSS functional is competitive with or even more accurate than TM functional for some properties. In particular, it is the most accurate nonempirical semilocal DFT for the enthalpies of formation and harmonic vibrational frequencies, suggesting the robustness of TM exchange.
Nocera, A.; Alvarez, G.
2016-11-01
Frequency-dependent correlations, such as the spectral function and the dynamical structure factor, help illustrate condensed matter experiments. Within the density matrix renormalization group (DMRG) framework, an accurate method for calculating spectral functions directly in frequency is the correction-vector method. The correction vector can be computed by solving a linear equation or by minimizing a functional. This paper proposes an alternative to calculate the correction vector: to use the Krylov-space approach. This paper then studies the accuracy and performance of the Krylov-space approach, when applied to the Heisenberg, the t-J, and the Hubbard models. The cases studied indicate that the Krylov-space approach can be more accurate and efficient than the conjugate gradient, and that the error of the former integrates best when a Krylov-space decomposition is also used for ground state DMRG.
Cohen, D; Kottos, T
2001-03-01
We study a classically chaotic system that is described by a Hamiltonian H(Q,P;x), where (Q,P) are the canonical coordinates of a particle in a two-dimensional well, and x is a parameter. By changing x we can deform the "shape" of the well. The quantum eigenstates of the system are /n(x)>. We analyze numerically how the parametric kernel P(n/m)=//(2) evolves as a function of delta(x)[triple bond](x-x(0)). This kernel, regarded as a function of n-m, characterizes the shape of the wave functions, and it also can be interpreted as the local density of states. The kernel P(n/m) has a well-defined classical limit, and the study addresses the issue of quantum-classical correspondence. Both the perturbative and the nonperturbative regimes are explored. The limitations of the random matrix theory approach are demonstrated.
Nocera, A; Alvarez, G
2016-11-01
Frequency-dependent correlations, such as the spectral function and the dynamical structure factor, help illustrate condensed matter experiments. Within the density matrix renormalization group (DMRG) framework, an accurate method for calculating spectral functions directly in frequency is the correction-vector method. The correction vector can be computed by solving a linear equation or by minimizing a functional. This paper proposes an alternative to calculate the correction vector: to use the Krylov-space approach. This paper then studies the accuracy and performance of the Krylov-space approach, when applied to the Heisenberg, the t-J, and the Hubbard models. The cases studied indicate that the Krylov-space approach can be more accurate and efficient than the conjugate gradient, and that the error of the former integrates best when a Krylov-space decomposition is also used for ground state DMRG.
Patchwork structure-function analysis of the Sendai virus matrix protein.
Mottet-Osman, Geneviève; Miazza, Vincent; Vidalain, Pierre-Olivier; Roux, Laurent
2014-09-01
Paramyxoviruses contain a bi-lipidic envelope decorated by two transmembrane glycoproteins and carpeted on the inner surface with a layer of matrix proteins (M), thought to bridge the glycoproteins with the viral nucleocapsids. To characterize M structure-function features, a set of M domains were mutated or deleted. The genes encoding these modified M were incorporated into recombinant Sendai viruses and expressed as supplemental proteins. Using a method of integrated suppression complementation system (ISCS), the functions of these M mutants were analyzed in the context of the infection. Cellular membrane association, localization at the cell periphery, nucleocapsid binding, cellular protein interactions and promotion of viral particle formation were characterized in relation with the mutations. At the end, lack of nucleocapsid binding go together with lack of cell surface localization and both features definitely correlate with loss of M global function estimated by viral particle production.
Deng, X. D.; Monnier, T.; Guy, P.; Courbon, J.
2013-06-01
Acoustic microscopy of multilayered media as well as functionally graded coatings on substrate necessitates to model acoustic wave propagation in such materials. In particular, we chose to use Stroh formalism and the recursive stiffness matrix method to obtain the reflection coefficient of acoustic waves on these systems because this allows us to address the numerical instability of the conventional transfer matrix method. In addition, remarkable simplification and computational efficiency are obtained. We proposed a modified formulation of the angular spectrum of the transducer based on the theoretical analysis of a line-focus transducer for broadband acoustic microscopy. A thermally sprayed coating on substrate is treated as a functionally graded material along the depth of the coating and is approximately represented by a number of homogeneous elastic layers with exponentially graded elastic properties. The agreement between our experimental and numerical analyses on such thermal sprayed coatings with different thicknesses confirms the efficiency of the method. We proved the ability of the inversion procedure to independently determine both thickness and gradient of elastic properties. The perspective of this work is the opportunity to non-destructively measure these features in functionally graded materials.
Performance of the density matrix functional theory in the quantum theory of atoms in molecules.
García-Revilla, Marco; Francisco, E; Costales, A; Martín Pendás, A
2012-02-02
The generalization to arbitrary molecular geometries of the energetic partitioning provided by the atomic virial theorem of the quantum theory of atoms in molecules (QTAIM) leads to an exact and chemically intuitive energy partitioning scheme, the interacting quantum atoms (IQA) approach, that depends on the availability of second-order reduced density matrices (2-RDMs). This work explores the performance of this approach in particular and of the QTAIM in general with approximate 2-RDMs obtained from the density matrix functional theory (DMFT), which rests on the natural expansion (natural orbitals and their corresponding occupation numbers) of the first-order reduced density matrix (1-RDM). A number of these functionals have been implemented in the promolden code and used to perform QTAIM and IQA analyses on several representative molecules and model chemical reactions. Total energies, covalent intra- and interbasin exchange-correlation interactions, as well as localization and delocalization indices have been determined with these functionals from 1-RDMs obtained at different levels of theory. Results are compared to the values computed from the exact 2-RDMs, whenever possible.
Zhang, Youlai; Zeng, Yuanlin; Xin, Guohua; Zou, Lijin; Ding, Yuewei; Duyin, Jiang
2017-08-18
In the field of burns repairs, many problems exist in the shortage of donor skin, the expense of allograft or xenograft skin, temporary substitution and unsatisfactory extremity function after wound healing. Previous studies showed that burn-denatured skin could return to normal dermis formation and function. This study investigates the application of laser micro-pore burn-denatured acellular dermis matrix (DADM) from an escharotomy in the repair of burn wounds and evaluates the biological properties and wound repair effects of DADM in implantation experiments in Kunming mice. Specific-pathogen-free (SPF) Kunming mice were used in this study. A deep II° burn wound was created on the dorsum of the mice by an electric heated water bath. The full-thickness wound tissue was harvested. The necrotic tissue and subcutaneous tissue were removed. The denatured dermis was preserved and treated with 0.25% trypsin, 0.5% Triton X-100. The DADM was drilled by laser micro-pore. The biological properties and grafting effects of laser micro-pore burn-DADM were evaluated by morphology, cytokine expression levels and subcutaneous implantation experiments in Kunming mice. We found statistical significance (Plaser micro-pore burn-DADM (experimental group) compared to the control group (no laser micro-pore burn-DADM). Cytokine expression level was different in the dermal matrixes harvested at various time points after burn (24h, 48h, 72h and infected wound group). Comparing the dermal matrix from 24h burn tissue to infected wound tissue, the expression level of IL-6, MMP-24, VE-cadherin and VEGF were decreased. We found no inflammatory cells infiltration in the dermal matrix were observed in both experimental and control groups (24h burn group), while the obviously vascular infiltration and fiber fusion were observed in the experimental group after subcutaneous implantation experiments. There was better bio-performance, low immunogenicity and better dermal incorporation after treated
Functional porphyrin thin films deposited by matrix assisted pulsed laser evaporation
Cristescu, R., E-mail: rodica.cristescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Atomistilor 409, Bucharest-Magurele (Romania); Popescu, C.; Popescu, A.C.; Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, P.O. Box MG-36, Atomistilor 409, Bucharest-Magurele (Romania); Ciucu, A.A. [Univeristy of Bucharest, Chemistry Department, Bucharest (Romania); Andronie, A.; Iordache, S.; Stamatin, I. [University of Bucharest, 3 Nano-SAE Research Center, P.O. Box MG-38, Bucharest-Magurele (Romania); Fagadar-Cosma, E. [Institute of Chemistry Timisoara of Romanian Academy, Department of Organic Chemistry, 300223 Timisoara (Romania); Chrisey, D.B. [Rensselaer Polytechnic Institute, School of Engineering, Department of Materials Science and Engineering, Troy 12180-3590, NY (United States)
2010-05-25
We report the first successful deposition of functionalized and nanostructured Zn(II)- and Co(II)-metalloporphyrin thin films by matrix assisted pulsed laser evaporation onto silicon wafers, quartz plates and screen-printed electrodes. The deposited nanostructures have been characterized by Raman spectrometry and cyclic voltammetry. The novelty of our contribution consists of the evaluation of the sensitivity of the MAPLE-deposited Zn(II)- and Co(II)-metalloporphyrin thin films on screen-printed carbon nanotube electrodes when challenged with dopamine.
Wave Function of the Universe from a Matrix Valued First-Order Formalism
Kruglov, Sergey I
2014-01-01
In this paper, we obtain the wave function of the universe for a universe filled with a constant energy density and radiation. First, the Wheeler-DeWitt equation for this model in minisuperspace approximation is considered. Then, we represent the Wheeler-DeWitt equation in a matrix valued first-order formalism. We note that the Wheeler-DeWitt equation can be expressed as an eigenvalue equation in this formalism. So, projection operators for the Wheeler-DeWitt equation are constructed. Using these projection operators we obtain a solution for the Wheeler-DeWitt equation.
Martin, Marta; Gergely, Csilla [GES-UMR 5650, CNRS, Universite Montpellier 2, Pl. Eugene Bataillon 34095, Montpellier Cedex 5 (France); Taleb Bendiab, Chakib; Massif, Laurent; Cuisinier, Frederic [EA4203, Faculte d' Odontologie, Universite Montpellier 1, Montpellier Cedex 5 (France); Palestino, Gabriela [Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Salvador Nava 6, 78000 San Luis Potosi (Mexico); Agarwal, Vivechana [CIICAP, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col Chamilpa, Cuernavaca, Mor. (Mexico)
2011-06-15
Porous silicon microcavity (PSiMc) structures were used as support material for specific sensing of matrix metalloproteinases (MMPs). For lower concentrations of MMP-8, the structures were tested with two types of functionalization methods. Silanization of the oxidized porous silicon structures, followed by glutaraldehyde chemistry was found to give very inconsistent results. The use of biotinilated bovine serum albumin linked to the naked PSiMc was found to be an alternative method to attach the anti MMP-8 human antibody, previously modified with streptavidin, which was further used to sense MMP-8 (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Kuroki, Tsunehide, E-mail: kuroki@dg.kagawa-nct.ac.jp [General Eduction, National Institute of Technology, Kagawa College, 551 Kohda, Takuma-cho, Mitoyo, Kagawa 769-1192 (Japan); Sugino, Fumihiko, E-mail: fusugino@gmail.com [Okayama Institute for Quantum Physics, Furugyocho 1-7-36, Naka-ku, Okayama 703-8278 (Japan)
2017-06-15
In the previous paper, the authors pointed out correspondence between a supersymmetric double-well matrix model and two-dimensional type IIA superstring theory on a Ramond–Ramond background from the viewpoint of symmetry and spectrum. This was confirmed by agreement between planar correlation functions in the matrix model and tree-level amplitudes in the superstring theory. In order to investigate the correspondence further, in this paper we compute correlation functions to all order of genus expansion in the double scaling limit of the matrix model. One-point functions of operators protected by supersymmetry terminate at some finite order, whereas those of unprotected operators yield non-Borel summable series. The behavior of the latter is characteristic in string perturbation series, providing further evidence that the matrix model describes a string theory. Moreover, instanton corrections to the planar one-point functions are also computed, and universal logarithmic scaling behavior is found for non-supersymmetric operators.
Kuroki, Tsunehide
2016-01-01
In the previous paper, the authors pointed out correspondence between a supersymmetric double-well matrix model and two-dimensional type IIA superstring theory on a Ramond-Ramond background from the viewpoint of symmetry and spectrum. This was confirmed by agreement between planar correlation functions in the matrix model and tree-level amplitudes in the superstring theory. In order to investigate the correspondence further, in this paper we compute correlation functions to all order of genus expansion in the double scaling limit of the matrix model. One-point functions of operators protected by supersymmetry terminate at some finite order, whereas those of unprotected operators yield non-Borel summable series. The behavior of the latter is characteristic in string perturbation series, providing further evidence that the matrix model describes a string theory. Moreover, instanton corrections to the planar one-point functions are also computed, and universal logarithmic scaling behavior is found for non-supers...
Kuroki, Tsunehide; Sugino, Fumihiko
2017-06-01
In the previous paper, the authors pointed out correspondence between a supersymmetric double-well matrix model and two-dimensional type IIA superstring theory on a Ramond-Ramond background from the viewpoint of symmetry and spectrum. This was confirmed by agreement between planar correlation functions in the matrix model and tree-level amplitudes in the superstring theory. In order to investigate the correspondence further, in this paper we compute correlation functions to all order of genus expansion in the double scaling limit of the matrix model. One-point functions of operators protected by supersymmetry terminate at some finite order, whereas those of unprotected operators yield non-Borel summable series. The behavior of the latter is characteristic in string perturbation series, providing further evidence that the matrix model describes a string theory. Moreover, instanton corrections to the planar one-point functions are also computed, and universal logarithmic scaling behavior is found for non-supersymmetric operators.
何春山; 李志兵
2003-01-01
The correlation function of a two-dimensionalIsing model is calculated by the corner transfer matrix renormalization group method.We obtain the critical exponent η= 0.2496 with few computer resources.
Giesbertz, K J H
2015-08-07
A theorem for the invertibility of arbitrary response functions is presented under the following conditions: the time dependence of the potentials should be Laplace transformable and the initial state should be a ground state, though it might be degenerate. This theorem provides a rigorous foundation for all density-functional-like theories in the time-dependent linear response regime. Especially for time-dependent one-body reduced density matrix (1RDM) functional theory, this is an important step forward, since a solid foundation has currently been lacking. The theorem is equally valid for static response functions in the non-degenerate case, so can be used to characterize the uniqueness of the potential in the ground state version of the corresponding density-functional-like theory. Such a classification of the uniqueness of the non-local potential in ground state 1RDM functional theory has been lacking for decades. With the aid of presented invertibility theorem presented here, a complete classification of the non-uniqueness of the non-local potential in 1RDM functional theory can be given for the first time.
Rohr, Daniel R; Pernal, Katarzyna; Gritsenko, Oleg V; Baerends, Evert Jan
2008-10-28
A recently proposed series of corrections to the earliest JK-only functionals has considerably improved the prospects of density matrix functional theory (DMFT). Still, the most advanced of these functionals (correction C3) requires a preselection of the terms in the pair density Gamma(r(1),r(2)) involving the bonding and antibonding natural orbitals (NOs) belonging to an electron pair bond. Ideally, a DMFT functional should only depend on the NOs and their occupation numbers, and we propose a functional with an occupation number driven weighing of terms in the pair density. These are formulated as "damping" for certain ranges of occupation numbers of the two-electron cumulant that arises in the expansion of the two-particle density matrix of the paradigmatic two-electron system. This automatic version of C3, which we denote AC3, provides the correct dissociation limit for electron pair bonds and it excellently reproduces the potential energy curves of the multireference configuration interaction (MRCI) method for the dissociation of the electron pair bond in the series of the ten-electron hydrides CH(4), NH(3), H(2)O, and HF. AC3 reproduces closely the experimental equilibrium distances and at R(e) it yields correlation energies of the ten-electron systems with an average error in the absolute values of only 3.3% compared to the MRCI values. We stress the importance of treatment of strong correlation cases (NO occupation numbers differing significantly from 2.0 and 0.0) by appropriate terms in the cumulant.
MacColl, Elisabeth; Khalil, Raouf A
2015-12-01
Lower-extremity veins have efficient wall structure and function and competent valves that permit upward movement of deoxygenated blood toward the heart against hydrostatic venous pressure. Matrix metalloproteinases (MMPs) play an important role in maintaining vein wall structure and function. MMPs are zinc-binding endopeptidases secreted as inactive pro-MMPs by fibroblasts, vascular smooth muscle (VSM), and leukocytes. Pro-MMPs are activated by various activators including other MMPs and proteinases. MMPs cause degradation of extracellular matrix (ECM) proteins such as collagen and elastin, and could have additional effects on the endothelium, as well as VSM cell migration, proliferation, Ca(2+) signaling, and contraction. Increased lower-extremity hydrostatic venous pressure is thought to induce hypoxia-inducible factors and other MMP inducers/activators such as extracellular matrix metalloproteinase inducer, prostanoids, chymase, and hormones, leading to increased MMP expression/activity, ECM degradation, VSM relaxation, and venous dilation. Leukocyte infiltration and inflammation of the vein wall cause further increases in MMPs, vein wall dilation, valve degradation, and different clinical stages of chronic venous disease (CVD), including varicose veins (VVs). VVs are characterized by ECM imbalance, incompetent valves, venous reflux, wall dilation, and tortuosity. VVs often show increased MMP levels, but may show no change or decreased levels, depending on the VV region (atrophic regions with little ECM versus hypertrophic regions with abundant ECM) and MMP form (inactive pro-MMP versus active MMP). Management of VVs includes compression stockings, venotonics, and surgical obliteration or removal. Because these approaches do not treat the causes of VVs, alternative methods are being developed. In addition to endogenous tissue inhibitors of MMPs, synthetic MMP inhibitors have been developed, and their effects in the treatment of VVs need to be examined.
The structure and function of the pericellular matrix of articular cartilage.
Wilusz, Rebecca E; Sanchez-Adams, Johannah; Guilak, Farshid
2014-10-01
Chondrocytes in articular cartilage are surrounded by a narrow pericellular matrix (PCM) that is both biochemically and biomechanically distinct from the extracellular matrix (ECM) of the tissue. While the PCM was first observed nearly a century ago, its role is still under investigation. In support of early hypotheses regarding its function, increasing evidence indicates that the PCM serves as a transducer of biochemical and biomechanical signals to the chondrocyte. Work over the past two decades has established that the PCM in adult tissue is defined biochemically by several molecular components, including type VI collagen and perlecan. On the other hand, the biomechanical properties of this structure have only recently been measured. Techniques such as micropipette aspiration, in situ imaging, computational modeling, and atomic force microscopy have determined that the PCM exhibits distinct mechanical properties as compared to the ECM, and that these properties are influenced by specific PCM components as well as disease state. Importantly, the unique relationships among the mechanical properties of the chondrocyte, PCM, and ECM in different zones of cartilage suggest that this region significantly influences the stress-strain environment of the chondrocyte. In this review, we discuss recent advances in the measurement of PCM mechanical properties and structure that further increase our understanding of PCM function. Taken together, these studies suggest that the PCM plays a critical role in controlling the mechanical environment and mechanobiology of cells in cartilage and other cartilaginous tissues, such as the meniscus or intervertebral disc.
Love waves in functionally graded piezoelectric materials by stiffness matrix method.
Ben Salah, Issam; Wali, Yassine; Ben Ghozlen, Mohamed Hédi
2011-04-01
A numerical matrix method relative to the propagation of ultrasonic guided waves in functionally graded piezoelectric heterostructure is given in order to make a comparative study with the respective performances of analytical methods proposed in literature. The preliminary obtained results show a good agreement, however numerical approach has the advantage of conceptual simplicity and flexibility brought about by the stiffness matrix method. The propagation behaviour of Love waves in a functionally graded piezoelectric material (FGPM) is investigated in this article. It involves a thin FGPM layer bonded perfectly to an elastic substrate. The inhomogeneous FGPM heterostructure has been stratified along the depth direction, hence each state can be considered as homogeneous and the ordinary differential equation method is applied. The obtained solutions are used to study the effect of an exponential gradient applied to physical properties. Such numerical approach allows applying different gradient variation for mechanical and electrical properties. For this case, the obtained results reveal opposite effects. The dispersive curves and phase velocities of the Love wave propagation in the layered piezoelectric film are obtained for electrical open and short cases on the free surface, respectively. The effect of gradient coefficients on coupled electromechanical factor, on the stress fields, the electrical potential and the mechanical displacement are discussed, respectively. Illustration is achieved on the well known heterostructure PZT-5H/SiO(2), the obtained results are especially useful in the design of high-performance acoustic surface devices and accurately prediction of the Love wave propagation behaviour.
ANALYTIC SOLUTIONS OF MATRIX RICCATI EQUATIONS WITH ANALYTIC COEFFICIENTS
Curtain, Ruth; Rodman, Leiba
2010-01-01
For matrix Riccati equations of platoon-type systems and of systems arising from PDEs, assuming the coefficients are analytic or rational functions in a suitable domain, analyticity of the stabilizing solution is proved under various hypotheses. General results on analytic behavior of stabilizing so
Garima Srivastava
Full Text Available β-Amylase finds application in food and pharmaceutical industries. Functionalized graphene sheets were customised as a matrix for covalent immobilization of Fenugreek β-amylase using glutaraldehyde as a cross-linker. The factors affecting the process were optimized using Response Surface Methodology based Box-Behnken design of experiment which resulted in 84% immobilization efficiency. Scanning and Transmission Electron Microscopy (SEM, TEM and Fourier Tansform Infrared (FTIR spectroscopy were employed for the purpose of characterization of attachment of enzyme on the graphene. The enzyme kinetic studies were carried out for obtaining best catalytic performance and enhanced reusability. Optimum temperature remained unchanged, whereas optimum pH showed shift towards acidic range for immobilized enzyme. Increase in thermal stability of immobilized enzyme and non-toxic nature of functionalized graphene can be exploited for production of maltose in food and pharmaceutical industries.
Gubreev, Gennady M; Latushkin, Yurii D
2011-04-30
We consider unbounded continuously invertible operators A, A{sub 0} on a Hilbert space H such that the operator A{sup -1}-A{sup -1}{sub 0} has finite rank. Assuming that {sigma}(A{sub 0})= nothing and the semigroup V{sub +}(t):= exp{l_brace}iA{sub 0}t{r_brace}, t{>=}0, is of class C{sub 0}, we state criteria under which the semigroups U{sub {+-}}(t):= exp{l_brace}{+-}iAt{r_brace}, t{>=}0, are also of class C{sub 0}. We give applications to the theory of mean-periodic functions. The investigation is based on functional models of non-selfadjoint operators and on the technique of matrix Muckenhoupt weights.
Matrix Product Approximations to Multipoint Functions in Two-Dimensional Conformal Field Theory
König, Robert; Scholz, Volkher B.
2016-09-01
Matrix product states (MPSs) illustrate the suitability of tensor networks for the description of interacting many-body systems: ground states of gapped 1D systems are approximable by MPSs, as shown by Hastings [M. B. Hastings, J. Stat. Mech. (2007) P08024]. By contrast, whether MPSs and more general tensor networks can accurately reproduce correlations in critical quantum systems or quantum field theories has not been established rigorously. Ample evidence exists: entropic considerations provide restrictions on the form of suitable ansatz states, and numerical studies show that certain tensor networks can indeed approximate the associated correlation functions. Here, we provide a complete positive answer to this question in the case of MPSs and 2D conformal field theory: we give quantitative estimates for the approximation error when approximating correlation functions by MPSs. Our work is constructive and yields an explicit MPS, thus providing both suitable initial values and a rigorous justification of variational methods.
Miller, Sandi G.; Bauer, Jonathan L.; Maryanski, Michael J.; Heimann, Paula J.; Barlow, Jeremy P.; Gosau, Jan-Michael; Allred, Ronald E.
2010-01-01
This work presents a novel approach to the functionalization of graphite nanoparticles. The technique provides a mechanism for covalent bonding between the filler and matrix, with minimal disruption to the sp2 hybridization of the pristine graphene sheet. Functionalization proceeded by covalently bonding an epoxy monomer to the surface of expanded graphite, via a coupling agent, such that the epoxy concentration was measured as approximately 4 wt.%. The impact of dispersing this material into an epoxy resin was evaluated with respect to the mechanical properties and electrical conductivity of the graphite-epoxy nanocomposite. At a loading as low as 0.5 wt.%, the electrical conductivity was increased by five orders of magnitude relative to the base resin. The material yield strength was increased by 30% and Young s modulus by 50%. These results were realized without compromise to the resin toughness.
Vector-Valued Polynomials and a Matrix Weight Function with B2-Action
Charles F. Dunkl
2013-01-01
Full Text Available The structure of orthogonal polynomials on $mathbb{R}^{2}$ with the weight function $vert x_{1}^{2}-x_{2}^{2}vert ^{2k_{0}}vertx_{1}x_{2}vert ^{2k_{1}}e^{-( x_{1}^{2}+x_{2}^{2}/2}$ is based on the Dunkl operators of type $B_{2}$. This refers to the full symmetry group of the square, generated by reflections in the lines $x_{1}=0$ and $x_{1}-x_{2}=0$. The weight function is integrable if $k_{0},k_{1},k_{0} +k_{1}>-frac{1}{2}$. Dunkl operators can be defined for polynomials taking values in a module of the associated reflection group, that is, a vector space on which the group has an irreducible representation. The unique $2$-dimensional representation of the group $B_{2}$ is used here. The specific operators for this group and an analysis of the inner products on the harmonic vector-valued polynomials are presented in this paper. An orthogonal basis for the harmonic polynomials is constructed, and is used to define an exponential-type kernel. In contrast to the ordinary scalar case the inner product structure is positive only when $( k_{0},k_{1}$ satisfy $-frac{1}{2} < k_{0}pm k_{1} < frac{1}{2}$. For vector polynomials $(f_{i}_{i=1}^{2}$, $(g_{i}_{i=1}^{2}$ the inner product has the form $iint_{mathbb{R}^{2}}f(x K(x g(x^{T}e^{-( x_{1}^{2}+x_{2}^{2}/2}dx_{1}dx_{2}$ where the matrix function $K(x$ has to satisfy various transformation and boundary conditions. The matrix $K$ is expressed in terms of hypergeometric functions.
A REMARK ON IMPLICITIZING RATIONAL CURVES WITH BASE POINTS
CHENFALAI
1998-01-01
A simple relationship between the Bezout matrix corresponding to a rational curve with base points and the Bezout matrix corresponding to the same rational curve except that whose base points are eliminated is clarified. Based on this relationship,the author proves that the implicit equation of a rational curve with base points is the largest rton-zero leading principal minor of the gezout resultant corresponding to the rational curve assuming that the rational curve doesn't have triva/base point 0,and thus provides a simple approach to Jmplicitze rational curves with base points. Furthermore，as a by-product ，art algorithm is presented to compute the base points of a rational curve.
Frandsen, Gudmund Skovbjerg; Frandsen, Peter Frands
2009-01-01
We consider maintaining information about the rank of a matrix under changes of the entries. For n×n matrices, we show an upper bound of O(n1.575) arithmetic operations and a lower bound of Ω(n) arithmetic operations per element change. The upper bound is valid when changing up to O(n0.575) entri...... closed fields. The upper bound for element updates uses fast rectangular matrix multiplication, and the lower bound involves further development of an earlier technique for proving lower bounds for dynamic computation of rational functions.......We consider maintaining information about the rank of a matrix under changes of the entries. For n×n matrices, we show an upper bound of O(n1.575) arithmetic operations and a lower bound of Ω(n) arithmetic operations per element change. The upper bound is valid when changing up to O(n0.575) entries...... in a single column of the matrix. We also give an algorithm that maintains the rank using O(n2) arithmetic operations per rank one update. These bounds appear to be the first nontrivial bounds for the problem. The upper bounds are valid for arbitrary fields, whereas the lower bound is valid for algebraically...
COMPUTATION OF VECTOR VALUED BLENDING RATIONAL INTERPOLANTS
檀结庆
2003-01-01
As we know, Newton's interpolation polynomial is based on divided differ-ences which can be calculated recursively by the divided-difference scheme while Thiele'sinterpolating continued fractions are geared towards determining a rational functionwhich can also be calculated recursively by so-called inverse differences. In this paper,both Newton's interpolation polynomial and Thiele's interpolating continued fractionsare incorporated to yield a kind of bivariate vector valued blending rational interpolantsby means of the Samelson inverse. Blending differences are introduced to calculate theblending rational interpolants recursively, algorithm and matrix-valued case are dis-cussed and a numerical example is given to illustrate the efficiency of the algorithm.
Normal response function method for mass and stiffness matrix updating using complex FRFs
Pradhan, S.; Modak, S. V.
2012-10-01
Quite often a structural dynamic finite element model is required to be updated so as to accurately predict the dynamic characteristics like natural frequencies and the mode shapes. Since in many situations undamped natural frequencies and mode shapes need to be predicted, it has generally been the practice in these situations to seek updating of only mass and stiffness matrix so as to obtain a reliable prediction model. Updating using frequency response functions (FRFs) has been one of the widely used approaches for updating, including updating of mass and stiffness matrices. However, the problem with FRF based methods, for updating mass and stiffness matrices, is that these methods are based on use of complex FRFs. Use of complex FRFs to update mass and stiffness matrices is not theoretically correct as complex FRFs are not only affected by these two matrices but also by the damping matrix. Therefore, in situations where updating of only mass and stiffness matrices using FRFs is required, the use of complex FRFs based updating formulation is not fully justified and would lead to inaccurate updated models. This paper addresses this difficulty and proposes an improved FRF based finite element model updating procedure using the concept of normal FRFs. The proposed method is a modified version of the existing response function method that is based on the complex FRFs. The effectiveness of the proposed method is validated through a numerical study of a simple but representative beam structure. The effect of coordinate incompleteness and robustness of method under presence of noise is investigated. The results of updating obtained by the improved method are compared with the existing response function method. The performance of the two approaches is compared for cases of light, medium and heavily damped structures. It is found that the proposed improved method is effective in updating of mass and stiffness matrices in all the cases of complete and incomplete data and
Kim, E-K; Ha, S-G; Lee, J; Park, Y B; Jung, K-Y
2015-01-26
Efficient unconditionally stable FDTD method is developed for the electromagnetic analysis of dispersive media. Toward this purpose, a quadratic complex rational function (QCRF) dispersion model is applied to the alternating-direction-implicit finite-difference time-domain (ADI-FDTD) method. The 3-D update equations of QCRF-ADI-FDTD are derived using Maxwell's curl equations and the constitutive relation. The periodic boundary condition of QCRF-ADI-FDTD is discussed in detail. A 3-D numerical example shows that the time-step size can be increased by the proposed QCRF-ADI-FDTD beyond the Courant-Friedrich-Levy (CFL) number, without numerical instability. It is observed that, for refined computational cells, the computational time of QCRF-ADI-FDTD is reduced to 28.08 % of QCRF-FDTD, while the L2 relative error norm of a field distribution is 6.92 %.
Improved Asymmetric Cipher Based on Matrix Power Function with Provable Security
Eligijus Sakalauskas
2017-01-01
Full Text Available The improved version of the author’s previously declared asymmetric cipher protocol based on matrix power function (MPF is presented. Proposed modification avoids discrete logarithm attack (DLA which could be applied to the previously declared protocol. This attack allows us to transform the initial system of MPF equations to so-called matrix multivariate quadratic (MMQ system of equations, which is a system representing a subclass of multivariate quadratic (MQ systems of equations. We are making a conjecture that avoidance of DLA in protocol, presented here, should increase its security, since an attempt to solve the initial system of MPF equations would appear to be no less complex than solving the system of MMQ equations. No algorithms are known to solve such a system of equations. Security parameters and their secure values are defined. Security analysis against chosen plaintext attack (CPA and chosen ciphertext attack (CCA is presented. Measures taken to prevent DLA attack increase the security of this protocol with respect to the previously declated protocol.
Dimerization of matrix metalloproteinase-2 (MMP-2): functional implication in MMP-2 activation.
Koo, Bon-Hun; Kim, Yeon Hyang; Han, Jung Ho; Kim, Doo-Sik
2012-06-29
Matrix metalloproteinase-2 (MMP-2) functions in diverse biological processes through the degradation of extracellular and non-extracellular matrix molecules. Because of its potential for tissue damage, there are several ways to regulate MMP-2 activity, including gene expression, compartmentalization, zymogen activation, and enzyme inactivation by extracellular inhibitors. Enzyme regulation through zymogen activation is important for the regulation of MMP-2 activity. In our previous studies, we showed that thrombin directly cleaved the propeptide of MMP-2 at specific sites for enzyme activation. We also demonstrated that heparan sulfate was required for thrombin-mediated activation of pro-MMP-2 by binding to thrombin, presumably through conformational changes at the active site of the enzyme. This suggests a regulatory mechanism for thrombin-mediated activation of pro-MMP-2. In this study, we found that MMP-2 formed a reduction-sensitive homodimer in a controlled manner and that Ca(2+) ion was essential for homodimerization of MMP-2. Homodimerization was not associated with protein kinase C-mediated phosphorylation of MMP-2. MMP-2 formed a homodimer through an intermolecular disulfide bond between Cys(102) and the neighboring Cys(102). Homodimerization of MMP-2 enhanced thrombin-mediated activation of pro-MMP-2. Moreover, the MMP-2 homodimer could cleave a small peptide substrate without removal of the propeptide. Taken together, our experimental data suggest a novel regulatory mechanism for pro-MMP-2 activation that is modulated through homodimerization of MMP-2.
Decoherence effects in the Stern-Gerlach experiment using matrix Wigner functions
Gomis, P.; Pérez, A.
2016-07-01
We analyze the Stern-Gerlach experiment in phase space with the help of the matrix Wigner function, which includes the spin degree of freedom. Such analysis allows for an intuitive visualization of the quantum dynamics of the device. We include the interaction with the environment, as described by the Caldeira-Leggett model. The diagonal terms of the matrix provide us with information about the two components of the state that arise from interaction with the magnetic field gradient. In particular, from the marginals of these components, we obtain an analytical formula for the position and momentum probability distributions in the presence of decoherence that shows a diffusive behavior for large values of the decoherence parameter. These features limit the dynamics of the present model. We also observe the decay of the nondiagonal terms with time and use this fact to quantify the amount of decoherence from the norm of those terms in phase space. From here, we can define a decoherence time scale, which differs from previous results that make use of the same model. We analyze a typical experiment and show that, for that setup, the decoherence time is much smaller than the characteristic time scale for the separation of the two beams, implying that they can be described as an incoherent mixture of atoms traveling in the up and down directions with opposite values of the spin projection. Therefore, entanglement is quickly destroyed in the setup we analyzed.
Bailoni, Alberto; Amendola, Luca
2016-01-01
The Fisher matrix is a widely used tool to forecast the performance of future experiments and approximate the likelihood of large data sets. Most of the forecasts for cosmological parameters in galaxy clustering studies rely on the Fisher matrix approach for large-scale experiments like DES, Euclid, or SKA. Here we improve upon the standard method by taking into account three effects: the finite window function, the correlation between redshift bins, and the uncertainty on the bin redshift. The first two effects are negligible only in the limit of infinite surveys. The third effect, on the contrary, is negligible for infinitely small bins. Here we show how to take into account these effects and what the impact on forecasts of a Euclid-type experiment will be. The main result of this article is that the windowing and the bin cross-correlation induce a considerable change in the forecasted errors, of the order of 10-30% for most cosmological parameters, while the redshift bin uncertainty can be neglected for bi...
Functional localization of two poly(ADP-ribose)-degrading enzymes to the mitochondrial matrix.
Niere, Marc; Kernstock, Stefan; Koch-Nolte, Friedrich; Ziegler, Mathias
2008-01-01
Recent discoveries of NAD-mediated regulatory processes in mitochondria have documented important roles of this compartmentalized nucleotide pool in addition to energy transduction. Moreover, mitochondria respond to excessive nuclear NAD consumption arising from DNA damage-induced poly-ADP-ribosylation because poly(ADP-ribose) (PAR) can trigger the release of apoptosis-inducing factor from the organelles. To functionally assess mitochondrial NAD metabolism, we overexpressed the catalytic domain of nuclear PAR polymerase 1 (PARP1) and targeted it to the matrix, which resulted in the constitutive presence of PAR within the organelles. As a result, stably transfected HEK293 cells exhibited a decrease in NAD content and typical features of respiratory deficiency. Remarkably, inhibiting PARP activity revealed PAR degradation within mitochondria. Two enzymes, PAR glycohydrolase (PARG) and ADP-ribosylhydrolase 3 (ARH3), are known to cleave PAR. Both full-length ARH3 and a PARG isoform, which arises from alternative splicing, localized to the mitochondrial matrix. This conclusion was based on the direct demonstration of their PAR-degrading activity within mitochondria of living cells. The visualization of catalytic activity establishes a new approach to identify submitochondrial localization of proteins involved in the metabolism of NAD derivatives. In addition, targeted PARP expression may serve as a compartment-specific "knock-down" of the NAD content which is readily detectable by PAR formation.
Kanyas, Selin; Aydın, Derya; Kizilel, Riza; Demirel, A Levent; Kizilel, Seda
2014-01-01
Polymer composites consisted of small hydrophilic pockets homogeneously dispersed in a hydrophobic polymer matrix are important in many applications where controlled release of the functional agent from the hydrophilic phase is needed. As an example, a release of biomolecules or drugs from therapeutic formulations or release of salt in anti-icing application can be mentioned. Here, we report a method for preparation of such a composite material consisted of small KCOOH salt pockets distributed in the styrene-butadiene-styrene (SBS) polymer matrix and demonstrate its effectiveness in anti-icing coatings. The mixtures of the aqueous KCOOH and SBS-cyclohexane solutions were firstly stabilized by adding silica nanoparticles to the emulsions and, even more, by gelation of the aqueous phase by agarose. The emulsions were observed in optical microscope to check its stability in time and characterized by rheological measurements. The dry composite materials were obtained via casting the emulsions onto the glass substrates and evaporations of the organic solvent. Composite polymer films were characterized by water contact angle (WCA) measurements. The release of KCOOH salt into water and the freezing delay experiments of water droplets on dry composite films demonstrated their anti-icing properties. It has been concluded that hydrophobic and thermoplastic SBS polymer allows incorporation of the hydrophilic pockets/phases through our technique that opens the possibility for controlled delivering of anti-icing agents from the composite.
Koenig, Gerald C; Rowe, R Grant; Day, Sharlene M; Sabeh, Farideh; Atkinson, Jeffrey J; Cooke, Kenneth R; Weiss, Stephen J
2012-05-01
The myocardial extracellular matrix (ECM), an interwoven meshwork of proteins, glycoproteins, proteoglycans, and glycosaminoglycans that is dominated by polymeric fibrils of type I collagen, serves as the mechanical scaffold on which myocytes are arrayed for coordinated and synergistic force transduction. Following ischemic injury, cardiac ECM remodeling is initiated via localized proteolysis, the bulk of which has been assigned to matrix metalloproteinase (MMP) family members. Nevertheless, the key effector(s) of myocardial type I collagenolysis both in vitro and in vivo have remained unidentified. In this study, using cardiac explants from mice deficient in each of the major type I collagenolytic MMPs, including MMP-13, MMP-8, MMP-2, MMP-9, or MT1-MMP, we identify the membrane-anchored MMP, MT1-MMP, as the dominant collagenase that is operative within myocardial tissues in vitro. Extending these observations to an in vivo setting, mice heterozygous for an MT1-MMP-null allele display a distinct survival advantage and retain myocardial function relative to wild-type littermates in an experimental model of myocardial infarction, effects associated with preservation of the myocardial type I collagen network as a consequence of the decreased collagenolytic potential of cardiac fibroblasts. This study identifies MT1-MMP as a key MMP responsible for effecting postinfarction cardiac ECM remodeling and cardiac dysfunction.
Selin Kanyas
Full Text Available Polymer composites consisted of small hydrophilic pockets homogeneously dispersed in a hydrophobic polymer matrix are important in many applications where controlled release of the functional agent from the hydrophilic phase is needed. As an example, a release of biomolecules or drugs from therapeutic formulations or release of salt in anti-icing application can be mentioned. Here, we report a method for preparation of such a composite material consisted of small KCOOH salt pockets distributed in the styrene-butadiene-styrene (SBS polymer matrix and demonstrate its effectiveness in anti-icing coatings. The mixtures of the aqueous KCOOH and SBS-cyclohexane solutions were firstly stabilized by adding silica nanoparticles to the emulsions and, even more, by gelation of the aqueous phase by agarose. The emulsions were observed in optical microscope to check its stability in time and characterized by rheological measurements. The dry composite materials were obtained via casting the emulsions onto the glass substrates and evaporations of the organic solvent. Composite polymer films were characterized by water contact angle (WCA measurements. The release of KCOOH salt into water and the freezing delay experiments of water droplets on dry composite films demonstrated their anti-icing properties. It has been concluded that hydrophobic and thermoplastic SBS polymer allows incorporation of the hydrophilic pockets/phases through our technique that opens the possibility for controlled delivering of anti-icing agents from the composite.
Andrews, Lester
2004-02-20
Metal hydrides are of considerable importance in chemical synthesis as intermediates in catalytic hydrogenation reactions. Transition metal atoms react with dihydrogen to produce metal dihydrides or dihydrogen complexes and these may be trapped in solid matrix samples for infrared spectroscopic study. The MH(2) or M(H(2)) molecules so formed react further to form higher MH(4), (H(2))MH(2), or M(H(2))(2), and MH(6), (H(2))(2)MH(2), or M(H(2))(3) hydrides or complexes depending on the metal. In this critical review these transition metal and dihydrogen reaction products are surveyed for Groups 3 though 12 and the contrasting behaviour in Groups 6 and 10 is discussed. Minimum energy structures and vibrational frequencies predicted by Density Functional Theory agree with the experimental results, strongly supporting the identification of novel binary transition metal hydride species, which the matrix-isolation method is well-suited to investigate. 104 references are cited.
Synergistic effects of matrix nanotopography and stiffness on vascular smooth muscle cell function.
Chaterji, Somali; Kim, Peter; Choe, Seung H; Tsui, Jonathan H; Lam, Christoffer H; Ho, Derek S; Baker, Aaron B; Kim, Deok-Ho
2014-08-01
Vascular smooth muscle cells (vSMCs) retain the ability to undergo modulation in their phenotypic continuum, ranging from a mature contractile state to a proliferative, secretory state. vSMC differentiation is modulated by a complex array of microenvironmental cues, which include the biochemical milieu of the cells and the architecture and stiffness of the extracellular matrix. In this study, we demonstrate that by using UV-assisted capillary force lithography (CFL) to engineer a polyurethane substratum of defined nanotopography and stiffness, we can facilitate the differentiation of cultured vSMCs, reduce their inflammatory signature, and potentially promote the optimal functioning of the vSMC contractile and cytoskeletal machinery. Specifically, we found that the combination of medial tissue-like stiffness (11 MPa) and anisotropic nanotopography (ridge width_groove width_ridge height of 800_800_600 nm) resulted in significant upregulation of calponin, desmin, and smoothelin, in addition to the downregulation of intercellular adhesion molecule-1, tissue factor, interleukin-6, and monocyte chemoattractant protein-1. Further, our results allude to the mechanistic role of the RhoA/ROCK pathway and caveolin-1 in altered cellular mechanotransduction pathways via differential matrix nanotopography and stiffness. Notably, the nanopatterning of the stiffer substrata (1.1 GPa) resulted in the significant upregulation of RhoA, ROCK1, and ROCK2. This indicates that nanopatterning an 800_800_600 nm pattern on a stiff substratum may trigger the mechanical plasticity of vSMCs resulting in a hypercontractile vSMC phenotype, as observed in diabetes or hypertension. Given that matrix stiffness is an independent risk factor for cardiovascular disease and that CFL can create different matrix nanotopographic patterns with high pattern fidelity, we are poised to create a combinatorial library of arterial test beds, whether they are healthy, diseased, injured, or aged. Such
Metalloproteinases: A parade of functions in matrix biology and an outlook for the future.
Apte, Suneel S; Parks, William C
2015-01-01
This issue of Matrix Biology is devoted to exploring how metalloproteinases - here inclusive of related families of extracellular proteinases - act on extracellular matrix (ECM) proteins to influence an astonishing diversity of biological systems and diseases. Since their discovery in the 1960's, matrix metalloproteinases (MMPs) have oft and widely been considered as the principal mediators of ECM destruction. However, as becomes clear from several articles in this issue, MMPs affect processes that both promote and limit ECM assembly, structure, and quantity. Furthermore, it has become increasingly apparent that ECM proteolysis is neither the exclusive function of MMPs nor their only sphere of influence. Thus, other enzymes may be important participants in ECM proteolysis, and indeed they are. The ADAMTS (a disintegrin-like and metalloproteinase domain with thrombospondin type 1 repeat) proteinases, BMP/tolloid proteases, and meprins have all emerged as major mechanisms of ECM proteolysis. An aggregate view of proteolysis as an exquisitely specific and crucial post-translational modification of secreted proteins emerges from these reviews. The cumulative evidence strongly suggests that although some MMPs can and do cleave ECM components, notably fibrillar collagens, the majority of these proteinases are not key physiological participants in morphogenesis nor in control of matrix metabolism in homeostasis or disease. In contrast, deficiency of ADAMTS proteases leads to a remarkable array of morphogenetic defects and connective tissue disorders consistent with a specialized role in turnover of the embryonic provisional ECM and in ECM assembly. Astacin-related proteases emerge into crucial positions in ECM assembly and turnover, although they also have numerous roles related to morphogen and growth factor regulation. To further turn the traditional view on its head, it is clear that many MMPs are key participants in many, diverse immune and inflammation processes
Giesbertz, K J H; Pernal, K; Gritsenko, O V; Baerends, E J
2009-03-21
Time-dependent density functional theory in its current adiabatic implementations exhibits three striking failures: (a) Totally wrong behavior of the excited state surface along a bond-breaking coordinate, (b) lack of doubly excited configurations, affecting again excited state surfaces, and (c) much too low charge transfer excitation energies. We address these problems with time-dependent density matrix functional theory (TDDMFT). For two-electron systems the exact exchange-correlation functional is known in DMFT, hence exact response equations can be formulated. This affords a study of the performance of TDDMFT in the TDDFT failure cases mentioned (which are all strikingly exhibited by prototype two-electron systems such as dissociating H(2) and HeH(+)). At the same time, adiabatic approximations, which will eventually be necessary, can be tested without being obscured by approximations in the functional. We find the following: (a) In the fully nonadiabatic (omega-dependent, exact) formulation of linear response TDDMFT, it can be shown that linear response (LR)-TDDMFT is able to provide exact excitation energies, in particular, the first order (linear response) formulation does not prohibit the correct representation of doubly excited states; (b) within previously formulated simple adiabatic approximations the bonding-to-antibonding excited state surface as well as charge transfer excitations are described without problems, but not the double excitations; (c) an adiabatic approximation is formulated in which also the double excitations are fully accounted for.
Schreiber, Roberto; Paim, Layde R; de Rossi, Guilherme; Matos-Souza, José R; Costa E Silva, Anselmo de A; Souza, Cristiane M; Borges, Mariane; Azevedo, Eliza R; Alonso, Karina C; Gorla, José I; Cliquet, Alberto; Nadruz, Wilson
2014-11-01
Subjects with spinal cord injury (SCI) exhibit impaired left ventricular (LV) diastolic function, which has been reported to be attenuated by regular physical activity. This study investigated the relationship between circulating matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) and echocardiographic parameters in SCI subjects and the role of physical activity in this regard. Forty-two men with SCI [19 sedentary (S-SCI) and 23 physically-active (PA-SCI)] were evaluated by clinical, anthropometric, laboratory, and echocardiographic analysis. Plasmatic pro-MMP-2, MMP-2, MMP-8, pro-MMP-9, MMP-9, TIMP-1 and TIMP-2 levels were determined by enzyme-linked immunosorbent assay and zymography. PA-SCI subjects presented lower pro-MMP-2 and pro-MMP-2/TIMP-2 levels and improved markers of LV diastolic function (lower E/Em and higher Em and E/A values) than S-SCI ones. Bivariate analysis showed that pro-MMP-2 correlated inversely with Em and directly with E/Em, while MMP-9 correlated directly with LV mass index and LV end-diastolic diameter in the whole sample. Following multiple regression analysis, pro-MMP-2, but not physical activity, remained associated with Em, while MMP-9 was associated with LV mass index in the whole sample. These findings suggest differing roles for MMPs in LV structure and function regulation and an interaction among pro-MMP-2, diastolic function and physical activity in SCI subjects.
Hougaard, Jens Leth; Moreno-Ternero, Juan D.; Østerdal, Lars Peter Raahave
2013-01-01
We introduce a new operator for general rationing problems in which, besides conflicting claims, individual baselines play an important role in the rationing process. The operator builds onto ideas of composition, which are not only frequent in rationing, but also in related problems...... such as bargaining, choice, and queuing. We characterize the operator and show how it preserves some standard axioms in the literature on rationing. We also relate it to recent contributions in such literature....
周轩伟; 孟晓娟
2013-01-01
The problem of revealed preference representation of Suzumura-consistency rational choice function is investigated. Based on the revealed preference defining, revealed preference axiom of Suzumura-consistency rational choice function is proposed. It is shown that a choice function is rationalized by Suzumura-consistency if and only if it satisfies the axiom.% 研究了Suzumura一致性选择函数的展示偏好描述，在已有的展示偏好定义基础上，给出了Suzumura一致性选择函数的展示偏好公理，并证明了该公理是Suzumura一致性选择函数理性化的充要条件。
Monolithic ionizing particle detector based on active matrix of functionally integrated structures
Murashev, V.N. [National University of Science and Technology “MISIS” (Russian Federation); Legotin, S.A., E-mail: serlego@mail.ru [National University of Science and Technology “MISIS” (Russian Federation); Karmanov, D.E. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics (MSU SINP) (Russian Federation); Baryshnikov, F.M.; Didenko, S.I. [National University of Science and Technology “MISIS” (Russian Federation)
2014-02-15
Highlights: • A new type of monolithic silicon position detector is presented. • An operating principle, design and technology of the detector are described. • Calculated estimations of the detecting efficiency are carried out. • Experimental results of alpha-particle and electron detection are shown. -- Abstract: An operating principle, design and technology of a new type of the monolithic silicon position detector (MSPD) for registration of ionizing particles and photons are described. The detector represents a specialized monolithic silicon VLSI that contains a two-dimensional detecting matrix of active functionally integrated bipolar structures and peripheral electronic circuitry for signal amplification and processing. This paper presents experimental results of α-particles and electrons detection with position accuracy and operation speed better than 12.5 μm and 1 ns, respectively. The given estimations show the capabilities of this detector and its advantages in comparison with analogs.
Siminovitch, David; Untidt, Thomas; Nielsen, Niels Chr
2004-01-01
Our recent exact effective Hamiltonian theory (EEHT) for exact analysis of nuclear magnetic resonance (NMR) experiments relied on a novel entanglement of unitary exponential operators via finite expansion of the logarithmic mapping function. In the present study, we introduce simple alternant quotient expressions for the coefficients of the polynomial matrix expansion of these entangled operators. These expressions facilitate an extension of our previous closed solution to the Baker-Campbell-Hausdorff problem for SU(N) systems from Nfunction. The general applicability of these expressions is demonstrated by several examples with relevance for NMR spectroscopy. The specific form of the alternant quotients is also used to demonstrate the fundamentally important equivalence of Sylvester's theorem (also known as the spectral theorem) and the EEHT expansion.
Xue, Bing; Zhu, Qingshuai; Shi, Xiaoliang; Zhai, Wenzheng; Yang, Kang; Huang, Yuchun
2016-10-01
Microstructure and functional mechanism of friction layer need to be further researched. In the present work, the friction coefficients and wear rates are analyzed through response surface methodology to obtain an empirical model for the best response. Fitting results show that the tribological performance of Ni3Al matrix composites (NMCs) with graphene nanoplatelets (GNPs) is better than that of NMCs without GNPs, especially at high sliding velocities and high loads. Further research suggests that the formation of integrated friction layer, which consists of a soft microfilm on a hard coating, is the major reason to cause the differences. Of which, the wear debris layer (WDL) with a low shear strength can reduce the shear force. The ultrafine layer (UL), which is much harder and finer, can effectively avoid fracture and improve the load support capacity. Moreover, the GNPs in WDL and UL can be easily sheared and help to withstand the loads, trending to be parallel to the direction of shear force.
Sharma, Sandeep
2014-01-01
We describe a formulation of multi-reference perturbation theory that obtains a rigorous upper bound to the second order energy by minimizing the Hylleraas functional in the space of matrix product states (MPS). The first order wavefunctions so obtained can also be used to compute the third order energy with little overhead. Our formulation has several advantages including (i) flexibility with respect to the choice of zeroth order Hamiltonian, (ii) recovery of the exact uncontracted multi-reference perturbation theory energies in the limit of large MPS bond dimension, (iii) no requirement to compute high body density matrices, (iv) an embarrassingly parallel algorithm (scaling up to the number of virtual orbitals, squared, processors). Preliminary numerical examples show that the MPS bond dimension required for accurate first order wavefunctions scales sub-linearly with the size of the basis.
Alumina Matrix Composites with Non-Oxide Nanoparticle Addition and Enhanced Functionalities
Dušan Galusek
2015-01-01
Full Text Available The addition of SiC or TiC nanoparticles to polycrystalline alumina matrix has long been known as an efficient way of improving the mechanical properties of alumina-based ceramics, especially strength, creep, and wear resistance. Recently, new types of nano-additives, such as carbon nanotubes (CNT, carbon nanofibers (CNF, and graphene sheets have been studied in order not only to improve the mechanical properties, but also to prepare materials with added functionalities, such as thermal and electrical conductivity. This paper provides a concise review of several types of alumina-based nanocomposites, evaluating the efficiency of various preparation methods and additives in terms of their influence on the properties of composites.
Catalin Croitoru
2016-01-01
Full Text Available This paper presents a possible alternative to traditional cellulose nanofibers functionalization, by treatment of the material at low temperatures (25–35°C with electron-beam irradiated 1-hexyl-3-methylimidazolium chloride ionic liquid. The treatment promotes decreasing the crystallinity of the cellulose with up to 45% and possible imidazolium moieties grafting to cellulose, as demonstrated from FTIR, XRD, and elemental analysis. The grafting determines water vapors uptake values with 50–70% lower and water vapors uptake rate with 50% lower than those of reference cellulose nanofibers. The grafting determined also improved adhesion of the cellulose nanofibers to HDPE, thus contributing to the obtaining of polymer matrix composites with improved properties.
Duax, William L.; Thomas, James; Pletnev, Vladimir; Addlagatta, Anthony; Huether, Robert; Habegger, Lukas; Weeks, Charles M.
2005-01-01
The short-chain oxidoreductase (SCOR) family of enzymes includes over 6,000 members identified in sequenced genomes. Of these enzymes, ~300 have been characterized functionally, and the three-dimensional crystal structures of ~40 have been reported. Since some SCOR enzymes are steroid dehydrogenases involved in hypertension, diabetes, breast cancer, and polycystic kidney disease, it is important to characterize the other members of the family for which the biological functions are currently u...
Ahmad Mustafa; Tutuk Djoko Kusworo; Abdullah Busairi; Ahmad Fauzi Ismail
2010-01-01
A new type of mixed matrix membrane consisting of functionalized carbon nanotubes (CNTs) and polyethersulfone (PES) is prepared for biogas purification. PES mixed matrix membrane with and without modification of carbon nanotubes were prepared by a dry/wet phase inversion technique using a pneumatically flat sheet membrane casting machine system. The modified carbon nanotubes were prepared by treating the carbon nanotubes with chemical modification using Dynasylan Ameo (DA) silane agent to all...
Xin, Fan; Ming-Kai, Yun; Xiao-Li, Sun; Xue-Xiang, Cao; Shuang-Quanm, Liu; Pei, Chai; Dao-Wu, Li; Long, Wei
2014-01-01
In positron emission tomography (PET) imaging, statistical iterative reconstruction (IR) techniques appear particularly promising since they can provide accurate physical model and geometric system description. The reconstructed image quality mainly depends on the system matrix model which describes the relationship between image space and projection space for the IR method. The system matrix can contain some physics factors of detection such as geometrical component and blurring component. Point spread function (PSF) is generally used to describe the blurring component. This paper proposes an IR method based on the PSF system matrix, which is derived from the single photon incidence response function. More specifically, the gamma photon incidence on a crystal array is simulated by the Monte Carlo (MC) simulation, and then the single photon incidence response functions are obtained. Subsequently, using the single photon incidence response functions, the coincidence blurring factor is acquired according to the...
2012-01-01
Introduction The pathology of ankylosing spondylitis (AS) suggests that certain cytokines and matrix metalloproteinases (MMPs) might provide useful markers of disease activity. Serum levels of some cytokines and MMPs have been found to be elevated in active disease, but there is a general lack of information about biomarker profiles in AS and how these are related to disease activity and function. The purpose of this study was to investigate whether clinical measures of disease activity and function in AS are associated with particular profiles of circulating cytokines and MMPs. Methods Measurement of 30 cytokines, five MMPs and four tissue inhibitors of metalloproteinases was carried out using Luminex® technology on a well-characterised population of AS patients (n = 157). The relationship between biomarker levels and measures of disease activity (Bath ankylosing spondylitis disease activity index (BASDAI)), function (Bath ankylosing spondylitis functional index) and global health (Bath ankylosing spondylitis global health) was investigated. Principal component analysis was used to reduce the large number of biomarkers to a smaller set of independent components, which were investigated for their association with clinical measures. Further analyses were carried out using hierarchical clustering, multiple regression or multivariate logistic regression. Results Principal component analysis identified eight clusters consisting of various combinations of cytokines and MMPs. The strongest association with the BASDAI was found with a component consisting of MMP-8, MMP-9, hepatocyte growth factor and CXCL8, and was independent of C-reactive protein levels. This component was also associated with current smoking. Hierarchical clustering revealed two distinct patient clusters that could be separated on the basis of MMP levels. The high MMP cluster was associated with increased C-reactive protein, the BASDAI and the Bath ankylosing spondylitis functional index. Conclusions
Hesse, Eliane; Freudenberg, Uwe; Niemietz, Thomas; Greth, Carina; Weisser, Melanie; Hagmann, Sébastien; Binner, Marcus; Werner, Carsten; Richter, Wiltrud
2017-01-13
Cell-based tissue engineering is a promising approach for treating cartilage lesions, but available strategies still provide a distinct composition of the extracellular matrix and an inferior mechanical property compared to native cartilage. To achieve fully functional tissue replacement more rationally designed biomaterials may be needed, introducing bioactive molecules which modulate cell behavior and guide tissue regeneration. This study aimed at exploring the impact of cell instructive, adhesion (GCWGGRGDSP called RGD) and collagen-binding (CKLER/CWYRGRL) peptides, incorporated in a tunable, matrixmetalloprotease (MMP)-responsive multi-arm poly(ethylene glycol) (starPEG)/heparin hydrogel on cartilage regeneration parameters in vitro and in vivo. MMP-responsive-starPEG-conjugates with cysteine termini and heparin-maleimide, optionally pre-functionalized with RGD, CKLER, CWYRGRL or control peptides, were cross-linked by Michael type addition to embed and grow mesenchymal stromal cells (MSC) or chondrocytes. While starPEG/heparin-hydrogel strongly supported chondrogenesis of MSC according to COL2A1, BGN and ACAN induction, MMP-degradability enhanced cell viability and proliferation. RGD-modification of the gels promoted cell spreading with intense cell network formation without negative effects on chondrogenesis. However, CKLER and CWYRGRL were unable to enhance the collagen content of constructs. RGD-modification allowed more even collagen type II distribution by chondrocytes throughout the MMP-responsive constructs especially in vivo. Collectively, peptide-instruction via heparin-enriched MMP-degradable starPEG allowed adjustment of self-renewal, cell morphology and cartilage matrix distribution in order to guide MSC and chondrocyte-based cartilage regeneration towards an improved outcome.
Wang, Zhenming; Jia, Zhanrong; Jiang, Yanan; Li, Pengfei; Han, Lu; Lu, Xiong; Ren, Fuzeng; Wang, Kefeng; Yuan, Huiping
2017-08-03
The assembly of nano-building blocks is an effective way to produce artificial extracellular matrix microenvironments with hierarchical micro/nano structures. However, it is hard to assemble different types of nano-building blocks, to form composite coatings with multiple functions, by traditional layer-by-layer (LbL) self-assembly methods. Inspired by the mussel adhesion mechanism, we developed polydopamine (PDA)-decorated bovine serum albumin microspheres (BSA-MS) and nano-hydroxyapatite (nano-HA), and assembled them to form bioactive coatings with micro/nano structures encapsulating bone morphogenetic protein-2 (BMP-2). First, PDA-decorated nano-HA (nano-pHA) was obtained by oxidative polymerization of dopamine on nano-HA. Second, BMP-2-encapsulated BSA microspheres were prepared through desolvation, and then were also decorated by PDA (pBSA-MS). Finally, the nano-pHA and pBSA-MS were assembled using the adhesive properties of PDA. Bone marrow stromal cell cultures and in vivo implantation, showed that the pHA/pBSA (BMP-2) coatings can promote cell adhesion, proliferation, and benefited for osteoinductivity. PDA decoration was also applied to assemble various functional nanoparticles, such as nano-HA, polystyrene, and Fe3O4 nanoparticles. In summary, this study provides a novel strategy for the assembly of biofunctional nano-building blocks, which surpasses traditional LbL self-assembly of polyelectrolytes, and can find broad applications in bioactive agents delivery or multi-functional coatings.
What makes plants different? Principles of extracellular matrix function in 'soft' plant tissues.
Peters, W S; Hagemann, W; Deri Tomos, A
2000-02-01
An overview of the biomechanic and morphogenetic function of the plant extracellular matrix (ECM) in its primary state is given. ECMs can play a pivotal role in cellular osmo- and volume-regulation, if they enclose the cell hermetically and constrain hydrostatic pressure evoked by osmotic gradients between the cell and its environment. From an engineering viewpoint, such cell walls turn cells into hydraulic machines, which establishes a crucial functional differences between cell walls and other cellular surface structures. Examples of such hydraulic machineries are discussed. The function of cell walls in the control of pressure, volume, and shape establishes constructional evolutionary constraints, which can explain aspects commonly considered typical of plants (sessility, autotrophy). In plants, 'cell division' by insertion of a new cell wall is a process of internal cytoplasmic differentiation. As such it differs fundamentally from cell separation during cytokinesis in animals, by leaving the coherence of the dividing protoplast basically intact. The resulting symplastic coherence appears more important for plant morphogenesis than histological structure; similar morphologies are realized on the basis of distinct tissue architectures in different plant taxa. The shape of a plant cell is determined by the shape its cell wall attains under multiaxial tensile stress. Consequently, the development of form in plants is achieved by a differential plastic deformation of the complex ECM in response to this multiaxial force (hydrostatic pressure). Current concepts of the regulation of these deformation processes are briefly evaluated.
Random matrix theory, the exceptional Lie groups and L-functions
Keating, J P [School of Mathematics, University of Bristol, Bristol BS8 1TW, UK (United Kingdom); Linden, N [School of Mathematics, University of Bristol, Bristol BS8 1TW, UK (United Kingdom); Rudnick, Z [Raymond and Beverly Sackler School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)
2003-03-28
There has recently been interest in relating properties of matrices drawn at random from the classical compact groups to statistical characteristics of number-theoretical L-functions. One example is the relationship conjectured to hold between the value distributions of the characteristic polynomials of such matrices and value distributions within families of L-functions. These connections are extended here to non-classical groups. We focus on an explicit example: the exceptional Lie group G{sub 2}. The value distributions for characteristic polynomials associated with the 7- and 14-dimensional representations of G{sub 2}, defined with respect to the uniform invariant (Haar) measure, are calculated using two of the Macdonald constant term identities. A one-parameter family of L-functions over a finite field is described whose value distribution in the limit as the size of the finite field grows is related to that of the characteristic polynomials associated with the seven-dimensional representation of G{sub 2}. The random matrix calculations extend to all exceptional Lie groups.
More on rotations as spin matrix polynomials
Curtright, Thomas L. [Department of Physics, University of Miami, Coral Gables, Florida 33124-8046 (United States)
2015-09-15
Any nonsingular function of spin j matrices always reduces to a matrix polynomial of order 2j. The challenge is to find a convenient form for the coefficients of the matrix polynomial. The theory of biorthogonal systems is a useful framework to meet this challenge. Central factorial numbers play a key role in the theoretical development. Explicit polynomial coefficients for rotations expressed either as exponentials or as rational Cayley transforms are considered here. Structural features of the results are discussed and compared, and large j limits of the coefficients are examined.
Jacques, Sylvain A; Leriche, Geoffray; Mosser, Michel; Nothisen, Marc; Muller, Christian D; Remy, Jean-Serge; Wagner, Alain
2016-06-07
pH-Sensitive linkers designed to undergo selective hydrolysis at acidic pH compared to physiological pH can be used for the selective release of therapeutics at their site of action. In this paper, the hydrolytic cleavage of a wide variety of molecular structures that have been reported for their use in pH-sensitive delivery systems was examined. A wide variety of hydrolytic stability profiles were found among the panel of tested chemical functionalities. Even within a structural family, a slight modification of the substitution pattern has an unsuspected outcome on the hydrolysis stability. This work led us to establish a first classification of these groups based on their reactivities at pH 5.5 and their relative hydrolysis at pH 5.5 vs. pH 7.4. From this classification, four representative chemical functions were selected and studied in-vitro. The results revealed that only the most reactive functions underwent significant lysosomal cleavage, according to flow cytometry measurements. These last results question the acid-based mechanism of action of known drug release systems and advocate for the importance of an in-depth structure-reactivity study, using a tailored methodology, for the rational design and development of bio-responsive linkers.
Bubin, Sergiy; Adamowicz, Ludwik
2008-03-21
In this work we consider explicitly correlated complex Gaussian basis functions for expanding the wave function of an N-particle system with the L=1 total orbital angular momentum. We derive analytical expressions for various matrix elements with these basis functions including the overlap, kinetic energy, and potential energy (Coulomb interaction) matrix elements, as well as matrix elements of other quantities. The derivatives of the overlap, kinetic, and potential energy integrals with respect to the Gaussian exponential parameters are also derived and used to calculate the energy gradient. All the derivations are performed using the formalism of the matrix differential calculus that facilitates a way of expressing the integrals in an elegant matrix form, which is convenient for the theoretical analysis and the computer implementation. The new method is tested in calculations of two systems: the lowest P state of the beryllium atom and the bound P state of the positronium molecule (with the negative parity). Both calculations yielded new, lowest-to-date, variational upper bounds, while the number of basis functions used was significantly smaller than in previous studies. It was possible to accomplish this due to the use of the analytic energy gradient in the minimization of the variational energy.
Duax, William L; Thomas, James; Pletnev, Vladimir; Addlagatta, Anthony; Huether, Robert; Habegger, Lukas; Weeks, Charles M
2005-12-01
The short-chain oxidoreductase (SCOR) family of enzymes includes over 6,000 members identified in sequenced genomes. Of these enzymes, approximately 300 have been characterized functionally, and the three-dimensional crystal structures of approximately 40 have been reported. Since some SCOR enzymes are steroid dehydrogenases involved in hypertension, diabetes, breast cancer, and polycystic kidney disease, it is important to characterize the other members of the family for which the biological functions are currently unknown and to determine their three-dimensional structure and mechanism of action. Although the SCOR family appears to have only a single fully conserved residue, it was possible, using bioinformatics methods, to determine characteristic fingerprints composed of 30-40 residues that are conserved at the 70% or greater level in SCOR subgroups. These fingerprints permit reliable prediction of several important structure-function features including cofactor preference, catalytic residues, and substrate specificity. Human type 1 3beta-hydroxysteroid dehydrogenase isomerase (3beta-HSDI) has 30% sequence identity with a human UDP galactose 4-epimerase (UDPGE), a SCOR family enzyme for which an X-ray structure has been reported. Both UDPGE and 3-HSDI appear to trace their origins back to bacterial 3alpha,20beta-HSD. Combining three-dimensional structural information and sequence data on the 3alpha,20beta-HSD, UDPGE, and 3beta-HSDI subfamilies with mutational analysis, we were able to identify the residues critical to the dehydrogenase function of 3-HSDI. We also identified the residues most probably responsible for the isomerase activity of 3beta-HSDI. We test our predictions by specific mutations based on sequence analysis and our structure-based model.
Wu Yunli; Duan Guangren
2006-01-01
A simple method for disturbance decoupling for matrix second-order linear systems is proposed directly in matrix second-order framework via Luenberger function observers based on complete parametric eigenstructure assignment.By introducing the H2 norm of the transfer function from disturbance to estimation error, sufficient and necessary conditions for disturbance decoupling in matrix second-order linear systems are established and are arranged into constraints on the design parameters via Luenberger function observers in terms of the closed-loop eigenvalues and the group of design parameters provided by the eigenstructure assignment approach. Therefore, the disturbance decoupling problem is converted into an eigenstructure assignment problem with extra parameter constraints. A simple example is investigated to show the effect and simplicity of the approach.
Mental health as rational autonomy.
Edwards, R B
1981-08-01
Rather than eliminate the terms "mental health and illness" because of the grave moral consequences of psychiatric labeling, conservative definitions are proposed and defended. Mental health is rational autonomy, and mental illness is the sustained loss of such. Key terms are explained, advantages are explored, and alternative concepts are criticized. The value and descriptive components of all such definitions are consciously acknowledged. Where rational autonomy is intact, mental hospitals and psychotherapists should not think of themselves as treating an illness. Instead, they are functioning as applied axiologists, moral educators, spiritual mentors, etc. They deal with what Szasz has called "personal, social, and ethical problems in living." But mental illness is real.
Brown, Lloyd; Joyce, Peter; Radice, Joshua; Gregorian, Dro; Gobble, Michael
2012-07-01
Strain rate dependency of mechanical properties of tungsten carbide (WC)-filled bronze castings fabricated by centrifugal and sedimentation-casting techniques are examined, in this study. Both casting techniques are an attempt to produce a functionally graded material with high wear resistance at a chosen surface. Potential applications of such materials include shaft bushings, electrical contact surfaces, and brake rotors. Knowledge of strain rate-dependent mechanical properties is recommended for predicting component response due to dynamic loading or impact events. A brief overview of the casting techniques for the materials considered in this study is followed by an explanation of the test matrix and testing techniques. Hardness testing, density measurement, and determination of the volume fraction of WC particles are performed throughout the castings using both image analysis and optical microscopy. The effects of particle filling on mechanical properties are first evaluated through a microhardness survey of the castings. The volume fraction of WC particles is validated using a thorough density survey and a rule-of-mixtures model. Split Hopkinson Pressure Bar (SHPB) testing of various volume fraction specimens is conducted to determine strain dependence of mechanical properties and to compare the process-property relationships between the two casting techniques. The baseline performances of C95400 bronze are provided for comparison. The results show that the addition of WC particles improves microhardness significantly for the centrifugally cast specimens, and, to a lesser extent, in the sedimentation-cast specimens, largely because the WC particles are more concentrated as a result of the centrifugal-casting process. Both metal matrix composites (MMCs) demonstrate strain rate dependency, with sedimentation casting having a greater, but variable, effects on material response. This difference is attributed to legacy effects from the casting process, namely
Netzel-Arnett, Sarah Joann
The matrix metalloproteinases (MMPs) are a family of zinc proteinases that is collectively capable of degrading the major components of the extracellular matrix. A variety of synthetic peptides has been prepared which are models for the human MMP and their substrates to study structure -function relationships in this enzyme-substrate system. To elucidate the sequence specificity of the MMP, the k _{cat}/K_ M values for the hydrolysis of over 50 synthetic octapeptides has been investigated. Similarities, as well as distinct differences have been found between the individual MMP with the largest differences occurring at subsites P_1, P_1^' and P_3 ^'. Based on these data, quenched -fluorescence substrates with optimized sequences have been developed for five human MMP. The key features of these heptapeptides are a tryptophan on the P_ n^' side and a dinitrophenol quenching group on the amino terminus. To assess the role of the triple helical conformation in the collagenase-collagen system, a series of triple helical peptides has been prepared and shown to compete with collagen in collagenase assays. This provides evidence for the existence of a triple helical recognition site distinct from the active site. All of the MMP are secreted as zymogens and it has been postulated that the portion of the propeptide surrounding a critical cysteine is responsible for maintaining latency. Conformational energy calculations and mutagenesis studies have suggested that this region adopts a specific conformation that stabilizes the latent form. Peptide models of this region of the propeptide have been prepared and shown to inhibit the MMP. CD and NMR studies, however, have failed to provide evidence for the predicted peptide conformation. Thus, the observed inhibition may reflect their propensity to adopt the propeptide conformation upon binding to the enzyme.
Naik, Ronak; Johnson, Jason; Kumar, T K S; Philip, Ranjit; Boston, Umar; Knott-Craig, Christopher J
2017-05-29
The porcine small intestinal extracellular matrix reportedly has the potential to differentiate into viable myocardial cells. When used in tetralogy of Fallot repair, it may improve right ventricular function. We evaluated right ventricular function after repair of tetralogy of Fallot with extracellular matrix versus bovine pericardium. Subjects with non-transannular repair of tetralogy of Fallot with at least 1 year of follow-up were selected. The extracellular matrix and bovine pericardium groups were compared. We used three-dimensional right ventricular ejection fraction, right ventricle global longitudinal strain, and tricuspid annular plane systolic excursion to assess right ventricular function. The extracellular matrix group had 11 patients, whereas the bovine pericardium group had 10 patients. No differences between the groups were found regarding sex ratio, age at surgery, and cardiopulmonary bypass time. The follow-up period was 28±12.6 months in the extracellular matrix group and 50.05±17.6 months in the bovine pericardium group (p=0.001). The mean three-dimensional right ventricular ejection fraction (55.7±5.0% versus 55.3±5.2%, p=0.73), right ventricular global longitudinal strain (-18.5±3.0% versus -18.0±2.2%, p=0.44), and tricuspid annular plane systolic excursions (1.59±0.16 versus 1.59±0.2, p=0.93) were similar in the extracellular matrix group and in the bovine pericardium group, respectively. Right ventricular global longitudinal strain in healthy children is reported at -29±3% in literature. In a small cohort of the patients undergoing non-transannular repair of tetralogy of Fallot, there was no significant difference in right ventricular function between groups having extracellular matrix versus bovine pericardium patches followed-up for more than 1 year. Lower right ventricular longitudinal strain noted in both the groups compared to healthy children.
clickECM: Development of a cell-derived extracellular matrix with azide functionalities.
Ruff, S M; Keller, S; Wieland, D E; Wittmann, V; Tovar, G E M; Bach, M; Kluger, P J
2016-12-10
In vitro cultured cells produce a complex extracellular matrix (ECM) that remains intact after decellularization. The biological complexity derived from the variety of distinct ECM molecules makes these matrices ideal candidates for biomaterials. Biomaterials with the ability to guide cell function are a topic of high interest in biomaterial development. However, these matrices lack specific addressable functional groups, which are often required for their use as a biomaterial. Due to the biological complexity of the cell-derived ECM, it is a challenge to incorporate such functional groups without affecting the integrity of the biomolecules within the ECM. The azide-alkyne cycloaddition (click reaction, Huisgen-reaction) is an efficient and specific ligation reaction that is known to be biocompatible when strained alkynes are used to avoid the use of copper (I) as a catalyst. In our work, the ubiquitous modification of a fibroblast cell-derived ECM with azides was achieved through metabolic oligosaccharide engineering by adding the azide-modified monosaccharide Ac4GalNAz (1,3,4,6-tetra-O-acetyl-N-azidoacetylgalactosamine) to the cell culture medium. The resulting azide-modified network remained intact after removing the cells by lysis and the molecular structure of the ECM proteins was unimpaired after a gentle homogenization process. The biological composition was characterized in order to show that the functionalization does not impair the complexity and integrity of the ECM. The azides within this "clickECM" could be accessed by small molecules (such as an alkyne-modified fluorophore) or by surface-bound cyclooctynes to achieve a covalent coating with clickECM.
Sherratt, Michael J; Bax, Daniel V; Chaudhry, Shazia S; Hodson, Nigel; Lu, Jian R; Saravanapavan, Priya; Kielty, Cay M
2005-12-01
In addition to mediating cell signalling events, native extracellular matrix (ECM) assemblies interact with other ECM components, act as reservoirs for soluble signalling molecules and perform structural roles. The potential of native ECM assemblies in the manufacture of biomimetic materials has not been fully exploited due, in part, to the effects of substrate interactions on their morphology. We have previously demonstrated that the ECM components, fibrillin and type VI collagen microfibrils, exhibit substrate dependent morphologies on chemically and topographically variable heterogeneous surfaces. Using both cleaning and coating approaches on silicon wafers and glass coverslips we have produced chemically homogeneous, topographically similar substrates which cover a large amphiphilic range. Extremes of substrate amphiphilicity induced morphological changes in periodicity, curvature and lateral spreading which may mask binding sites or disrupt domain structure. Biological functionality, as assayed by the ability to support cell spreading, was significantly reduced for fibrillin microfibrils adsorbed on highly hydrophilic substrates (contact angle 20.7 degrees) compared with less hydrophilic (contact angle 38.3 degrees) and hydrophobic (contact angle 92.8 degrees) substrates. With an appropriate choice of surface chemistry, multifunctional ECM assemblies retain their native morphology and biological functionality.
Kim, Euitae; Shidahara, Miho; Tsoumpas, Charalampos; McGinnity, Colm J; Kwon, Jun Soo; Howes, Oliver D; Turkheimer, Federico E
2013-06-01
We validated the use of a novel image-based method for partial volume correction (PVC), structural-functional synergistic resolution recovery (SFS-RR) for the accurate quantification of dopamine synthesis capacity measured using [(18)F]DOPA positron emission tomography. The bias and reliability of SFS-RR were compared with the geometric transfer matrix (GTM) method. Both methodologies were applied to the parametric maps of [(18)F]DOPA utilization rates (ki(cer)). Validation was first performed by measuring repeatability on test-retest scans. The precision of the methodologies instead was quantified using simulated [(18)F]DOPA images. The sensitivity to the misspecification of the full-width-half-maximum (FWHM) of the scanner point-spread-function on both approaches was also assessed. In the in-vivo data, the ki(cer) was significantly increased by application of both PVC procedures while the reliability remained high (intraclass correlation coefficients >0.85). The variability was not significantly affected by either PVC approach (<10% variability in both cases). The corrected ki(cer) was significantly influenced by the FWHM applied in both the acquired and simulated data. This study shows that SFS-RR can effectively correct for partial volume effects to a comparable degree to GTM but with the added advantage that it enables voxelwise analyses, and that the FWHM used can affect the PVC result indicating the importance of accurately calibrating the FWHM used in the recovery model.
Effects of extracellular matrix proteins in chondrocyte-derived matrices on chondrocyte functions.
Hoshiba, Takashi; Lu, Hongxu; Kawazoe, Naoki; Yamada, Tomoe; Chen, Guoping
2013-01-01
Loss of cartilaginous phenotype during in vitro expansion culture of chondrocytes is a major barrier to the application of chondrocytes for tissue engineering. In previous study, we showed that dedifferentiation of chondrocytes during the passage culture was delayed by matrices formed by primary chondrocytes (P0-ECM). In this study, we investigated bovine chondrocyte functions when being cultured on isolated extracellular matrix (ECM) protein-coated substrata and P0-ECM. Low chondrocyte attachment was observed on aggrecan-coated substratum and P0-ECM. Cell proliferation on aggrecan- and type II collagen/aggrecan-coated substrata and P0-ECM was lower than that on the other ECM protein (type I collagen and type II collagen)-coated substrata. When chondrocytes were subcultured on aggrecan-coated substratum, decline of cartilaginous gene expression was delayed, which was similar to the cells subcultured on P0-ECM. These results indicate that aggrecan plays an important role in the regulation of chondrocyte functions and P0-ECM may be a good experimental control for investigating the role of each ECM protein in cartilage ECM.
On the structure and functions of gelatinase B/matrix metalloproteinase-9 in neuroinflammation.
Vandooren, Jennifer; Van Damme, Jo; Opdenakker, Ghislain
2014-01-01
The blood-brain barrier (BBB) is a specific structure that is composed of two basement membranes (BMs) and that contributes to the control of neuroinflammation. As long as the BBB is intact, extravasated leukocytes may accumulate between two BMs, generating vascular cuffs. Specific matrix metalloproteinases, MMP-2 and MMP-9, have been shown to cleave BBB beta-dystroglycan and to disintegrate thereby the parenchymal BM, resulting in encephalomyelitis. This knowledge has been added to the molecular basis of the REGA model to understand the pathogenesis of multiple sclerosis, and it gives further ground for the use of MMP inhibitors for the treatment of acute neuroinflammation. MMP-9 is associated with central nervous system inflammation and occurs in various forms: monomers and multimers. None of the various neurological and neuropathologic functions of MMP-9 have been associated with either molecular structure or molecular form, and therefore, in-depth structure-function studies are needed before medical intervention with MMP-9-specific inhibitors is initiated.
曹俊鹏; 侯伯宇; 岳瑞宏
2001-01-01
We propose the eigenstates and eigenvalues of Hamiltonians of the rational SU(N) Gaudin model based onthe quasi-classical limit of the SU ( N) chain under the periodic boundary condition. Using the quantum inversescattering method, we also obtain the eigenvalues of the generation function of the rational SU ( N) Gaudin model.
Sun, Huanli; Meng, Fenghua; Dias, Aylvin A; Hendriks, Marc; Feijen, Jan; Zhong, Zhiyuan
2011-06-13
Currently, biomedical engineering is rapidly expanding, especially in the areas of drug delivery, gene transfer, tissue engineering, and regenerative medicine. A prerequisite for further development is the design and synthesis of novel multifunctional biomaterials that are biocompatible and biologically active, are biodegradable with a controlled degradation rate, and have tunable mechanical properties. In the past decades, different types of α-amino acid-containing degradable polymers have been actively developed with the aim to obtain biomimicking functional biomaterials. The use of α-amino acids as building units for degradable polymers may offer several advantages: (i) imparting chemical functionality, such as hydroxyl, amine, carboxyl, and thiol groups, which not only results in improved hydrophilicity and possible interactions with proteins and genes, but also facilitates further modification with bioactive molecules (e.g., drugs or biological cues); (ii) possibly improving materials biological properties, including cell-materials interactions (e.g., cell adhesion, migration) and degradability; (iii) enhancing thermal and mechanical properties; and (iv) providing metabolizable building units/blocks. In this paper, recent developments in the field of α-amino acid-containing degradable polymers are reviewed. First, synthetic approaches to prepare α-amino acid-containing degradable polymers will be discussed. Subsequently, the biomedical applications of these polymers in areas such as drug delivery, gene delivery and tissue engineering will be reviewed. Finally, the future perspectives of α-amino acid-containing degradable polymers will be evaluated.
王君平; 赵洁莹; 冯达; 康鑫淳; 孙云雨; 赵玲玲; 梁洪泽
2016-01-01
Four ionic liquids (ILs): 3-(diethoxyphosphoryl)propyl triphenylphosphinium hexafluorophosphate [Ph3PC3P(OEt)2][PF6] (IL-1), 3-(ethoxyphenylphosphoryl)propyl triphenylphosphinium hexafluorophosphate [Ph3PC3PPh(OEt)][PF6] (IL-2), 3-(diphenyl-phosphoryl)propyl triphenylphosphinium hexafluorophosphate [Ph3PC3P(Ph)2][PF6] (IL-3), and 3-(diethoxyphosphoryl)propyl triphenylphosphinium bis(trifluoromethanesulfonyl)imide [Ph3PC3P(OEt)2][NTf2] (IL-4) were synthesized and characterized by IR and31P,1H,13C NMR spectroscopy. The liquid-liquid extraction of neodymium(III) by these phosphorus functionalized ionic liquids (PFILs) diluted with common room temperature ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C6mim][NTf2] was studied. The extraction percentage of Nd(III) was measured as a function of various parameters, such as the ini-tial pH of aqueous phase, equilibrium time, temperature, and concentration of PFIL extractant. The influence of the nature of diluents and salting-out reagents on extraction was also investigated. The results indicated that the extraction process was exothermical and the extraction percentage of Nd(III) by IL-1 was the highest among the PFILs investigated. A possible metal complexation mechanism was proposed for the present PFIL/IL extraction system. And the loaded Nd(III) ions by PFIL could be stripped completely from the ionic liquid phase by 1 mol/L nitric acid.
Chang, K Y Samuel
2015-01-01
"Alchemical" interpolation paths, i.e.~coupling systems along fictitious paths that without realistic correspondence, are frequently used within materials and molecular modeling and simulation protocols for the estimation of relative changes in state functions such as free energies. We discuss alchemical changes in the context of quantum chemistry, and present illustrative numerical results for the changes of HOMO eigenvalues of the He atom due to a linear alchemical teleportation---the simultaneous annihilation and creation of nuclear charges at different locations. To demonstrate the predictive power of alchemical first order derivatives (Hellmann-Feynman) the covalent bond potential of hydrogen fluoride and hydrogen chloride is investigated, as well as the van-der-Waals binding in the water-water and water-hydrogen fluoride dimer, respectively. Based on converged electron densities for one configuration, the versatility of alchemical derivatives is exemplified for the screening of entire binding potentials...
Block Toeplitz operators with rational symbols (II)
Hwang, In Sung [Department of Mathematics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, Woo Young [Department of Mathematics, Seoul National University, Seoul 151-742 (Korea, Republic of)], E-mail: ishwang@skku.edu, E-mail: wylee@math.snu.ac.kr
2008-09-26
In this paper we derive a formula for the rank of the self-commutator of hyponormal block Toeplitz operators T{sub {phi}} with matrix-valued rational symbols {phi} in L{sup {infinity}}(C{sup nxn}) via the classical Hermite-Fejer interpolation problem.
Block Toeplitz operators with rational symbols
Hwang, In Sung [Department of Mathematics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, Woo Young [Department of Mathematics, Seoul National University, Seoul 151-742 (Korea, Republic of)], E-mail: ishwang@skku.edu, E-mail: wylee@math.snu.ac.kr
2008-05-09
In this paper we show that the hyponormality of block Toeplitz operators T{sub {phi}} with matrix-valued rational symbols {phi} in L{sup {infinity}}(C{sup nxn}) is completely determined by the tangential Hermite-Fejer interpolation problem.
Olga Tatti
Full Text Available In primary human melanoma, the membrane-type matrix metalloproteinase, MT3-MMP, is overexpressed in the most aggressive nodular-type tumors. Unlike MT1-MMP and MT2-MMP, which promote cell invasion through basement membranes and collagen type I-rich tissues, the function of MT3-MMP in tumor progression remains unclear. Here, we demonstrate that MT3-MMP inhibits MT1-MMP-driven melanoma cell invasion in three-dimensional collagen, while yielding an altered, yet MT1-MMP-dependent, form of expansive growth behavior that phenocopies the formation of nodular cell colonies. In melanoma cell lines originating from advanced primary or metastatic lesions, endogenous MT3-MMP expression was associated with limited collagen-invasive potential. In the cell lines with highest MT3-MMP expression relative to MT1-MMP, collagen-invasive activity was increased following stable MT3-MMP gene silencing. Consistently, MT3-MMP overexpression in cells derived from less advanced superficially spreading melanoma lesions, or in the MT3-MMP knockdown cells, reduced MT1-MMP-dependent collagen invasion. Rather than altering MT1-MMP transcription, MT3-MMP interacted with MT1-MMP in membrane complexes and reduced its cell surface expression. By contrast, as a potent fibrinolytic enzyme, MT3-MMP induced efficient invasion of the cells in fibrin, a provisional matrix component frequently found at tumor-host tissue interfaces and perivascular spaces of melanoma. Since MT3-MMP was significantly upregulated in biopsies of human melanoma metastases, these results identify MT3-MMP as a matrix-dependent modifier of the invasive tumor cell functions during melanoma progression.
Digit sets for connected tiles via similar matrices I: Dilation matrices with rational eigenvalues
Laarakker, Avra S
2010-01-01
Given any m-dimensional dilation matrix A with rational eigenvalues, we demonstrate the existence of a digit set D such that the attractor T(A,D) of the iterated function system generated by A and D is connected. We give an easily verified sufficient condition on A for a specific digit set, which we call the centered canonical digit set for A, to give rise to a connected attractor T(A,D).
Rational approximation of vertical segments
Salazar Celis, Oliver; Cuyt, Annie; Verdonk, Brigitte
2007-08-01
In many applications, observations are prone to imprecise measurements. When constructing a model based on such data, an approximation rather than an interpolation approach is needed. Very often a least squares approximation is used. Here we follow a different approach. A natural way for dealing with uncertainty in the data is by means of an uncertainty interval. We assume that the uncertainty in the independent variables is negligible and that for each observation an uncertainty interval can be given which contains the (unknown) exact value. To approximate such data we look for functions which intersect all uncertainty intervals. In the past this problem has been studied for polynomials, or more generally for functions which are linear in the unknown coefficients. Here we study the problem for a particular class of functions which are nonlinear in the unknown coefficients, namely rational functions. We show how to reduce the problem to a quadratic programming problem with a strictly convex objective function, yielding a unique rational function which intersects all uncertainty intervals and satisfies some additional properties. Compared to rational least squares approximation which reduces to a nonlinear optimization problem where the objective function may have many local minima, this makes the new approach attractive.
Nandan, R; Nanda, K K
2017-08-31
Geometrical tunability offers sharp edges and an open-armed structure accompanied with a high electrochemical active surface area to ensure the efficient and effective utilization of materials by exposing the electrochemical active sites for facile accessibility of reactant species. Herein, we report a one-step, single-pot, surfactant-free, electroless, and economic route to synthesize palladium sulfide nanostructures with different geometries at mild temperatures and their catalytic properties towards the oxygen reduction reaction (ORR) and methanol electro-oxidation (MOR). For ORR, the positive on-set, half wave potentials, smaller Tafel slope, high electrochemical active surface area, large roughness factor, and better cyclic stability of the proposed nanostructures as compared to those of the commercial state-of-the-art Pt-C/PdS catalysts suggest their superiority in an alkaline medium. In addition, high mass activity (Jf ∼ 715 mA mg(-1)), in comparison with that of the commercial state-of-the-art Pt-C/PdS catalysts (Jf ∼ 138/41 mA mg(-1), respectively), and high Jf/Jb (1.52) along with the superior operational stability of the multi-arm palladium sulfide nanostructures towards MOR advocates the bi-functional behavior of the catalyst and its potential as a promising Pt-free anode/cathode electrocatalyst in fuel cells.
The Schur algorithm for generalized Schur functions III : J-unitary matrix polynomials on the circle
Alpay, Daniel; Azizov, Tomas; Dijksma, Aad; Langer, Heinz
2003-01-01
The main result is that for J = ((1)(0) (0)(-1)) every J-unitary 2 x 2-matrix polynomial on the unit circle is an essentially unique product of elementary J-unitary 2 x 2-matrix polynomials which are either of degree 1 or 2k. This is shown by means of the generalized Schur transformation introduced
Simple Equational Specifications of Rational Arithmetic
Lawrence S. Moss
2001-12-01
Full Text Available We exhibit an initial specification of the rational numbers equipped with addition, subtraction, multiplication, greatest integer function, and absolute value. Our specification uses only the sort of rational numbers. It uses one hidden function; that function is unary. But it does not use an error constant, or extra (hidden sorts, or conditional equations. All of our work is elementary and self-contained.
The nuclear matrix and the regulation of chromatin organization and function.
Davie, J R
1995-01-01
Nuclear DNA is organized into loop domains, with the base of the loop being bound to the nuclear matrix. Loops with transcriptionally active and/or potentially active genes have a DNase I-sensitive chromatin structure, while repressed chromatin loops have a condensed configuration that is essentially invisible to the transcription machinery. Core histone acetylation and torsional stress appear to be responsible for the generation and/or maintenance of the open potentially active chromatin loops. The transcriptionally active region of the loop makes several dynamic attachments with the nuclear matrix and is associated with core histones that are dynamically acetylated. Histone acetyltransferase and deacetylase, which catalyze this rapid acetylation and deacetylation, are bound to the nuclear matrix. Several transcription factors are components of the nuclear matrix. Histone acetyltransferase, deacetylase, and transcription factors may contribute to the dynamic attachment of the active chromatin domains with the nuclear matrix at sites of ongoing transcription.
Isolation of pea matrix attachment region and study on its function in transgenic tobaccos
李旭刚; 朱祯; 徐军望; 吴茜; 徐鸿林
2001-01-01
A DNA fragment containing consensus sequence of matrix attachment region (MAR) has been isolated from pea genome. Compared with original DNA sequence, one 115 bp-long repeat sequence is deleted in the obtained DNA sequence. DNA fragments located upstream and down-stream of repeat DNA sequence respectively share 84% and 93% homology to the corresponding original sequence, and contain A-box or T-box and TATAA sequence, which is characteristics short sequence of MARs. To test the function of the DNA sequence, the plant expression vectors in which b-glucuronidase gene (GUS, uidA) was used as reporter gene were constructed and transferred into tobaccos via Agrobacterium-mediated transformation procedure. Quantitative GUS assay showed that the average level of uidA expression was increased twofold for the presence of MAR, and the highest level of GUS activity of transgenic plants could be increased six times. The results cited above suggest that the isolated DNA sequence contains consensus sequence of MARs and has capability to increase expression level of gene in transgenic plants.
Chen, Changming; Niu, Xiaoyan; Han, Chao; Shi, Zuosen; Wang, Xinbin; Sun, Xiaoqiang; Wang, Fei; Cui, Zhanchen; Zhang, Daming
2014-08-25
A transparent reconfigurable optical interleaver module composed of cascaded AWGs-based wavelength-channel-selector/interleaver monolithically integrated with multimode interference (MMI) variable optical attenuators (VOAs) and Mach-Zehnder interferometer (MZI) switch arrays was designed and fabricated using polymer photonic lightwave circuits. Highly fluorinated photopolymer and grafting modified organic-inorganic hybrid material were synthesized as the waveguide core and caldding, respectively. Thermo-optic (TO) tunable wavelength transfer matrix (WTM) function of the module can be achieved for optical routing network. The one-chip transmission loss is ~ 6 dB and crosstalk is less than ~25 dB for transverse-magnetic (TM) mode. The crosstalk and extinction ratio of the MMI VOAs were measured as -15.2 dB and 17.5 dB with driving current 8 mA, respectively. The modulation depth of the TO switches is obtained as ~18.2 dB with 2.2 V bias. Proposed novel interleaver module could be well suited for DWDM optical communication systems.
Rotation Matrix Method Based on Ambiguity Function for GNSS Attitude Determination.
Yang, Yingdong; Mao, Xuchu; Tian, Weifeng
2016-06-08
Global navigation satellite systems (GNSS) are well suited for attitude determination. In this study, we use the rotation matrix method to resolve the attitude angle. This method achieves better performance in reducing computational complexity and selecting satellites. The condition of the baseline length is combined with the ambiguity function method (AFM) to search for integer ambiguity, and it is validated in reducing the span of candidates. The noise error is always the key factor to the success rate. It is closely related to the satellite geometry model. In contrast to the AFM, the LAMBDA (Least-squares AMBiguity Decorrelation Adjustment) method gets better results in solving the relationship of the geometric model and the noise error. Although the AFM is more flexible, it is lack of analysis on this aspect. In this study, the influence of the satellite geometry model on the success rate is analyzed in detail. The computation error and the noise error are effectively treated. Not only is the flexibility of the AFM inherited, but the success rate is also increased. An experiment is conducted in a selected campus, and the performance is proved to be effective. Our results are based on simulated and real-time GNSS data and are applied on single-frequency processing, which is known as one of the challenging case of GNSS attitude determination.
Fattah Sotoodehnejadnematalahi
2013-11-01
Full Text Available One of the main members of the large aggregating proteoglycans (PGs family is versican which is able to bind to hyaluronate. Versican is a chondroitin sulfate proteoglycan and is a key ingredient of the extracellular matrix. Due to its widespread expression in the body, versican is involved in cell adhesion, proliferation and migration. Induced expression of versican is often observed in tissues such as breast, brain, ovary, gastrointestinal tract, prostate, and melanoma. In addition, versican has important role in development. For example, versican conducts the embryonic cell migration which is essential in the formation of the heart and outlining the path for neural crest cell migration. Several studies in the past decade up to now have shown that versican produced by mononuclear cells has an important role in wound healing and blood vessel formation and suggested that it promotes tumorigenesis and angiogenesis. In this mini-review, we summarise and discuss the role of versican in healthy and pathological tissues and suggest the possible function of transcription factors and signalling pathway in regulation of versican.
Daniel W Youngstrom
Full Text Available Natural extracellular matrix provides a number of distinct advantages for engineering replacement orthopedic tissue due to its intrinsic functional properties. The goal of this study was to optimize a biologically derived scaffold for tendon tissue engineering using equine flexor digitorum superficialis tendons. We investigated changes in scaffold composition and ultrastructure in response to several mechanical, detergent and enzymatic decellularization protocols using microscopic techniques and a panel of biochemical assays to evaluate total protein, collagen, glycosaminoglycan, and deoxyribonucleic acid content. Biocompatibility was also assessed with static mesenchymal stem cell (MSC culture. Implementation of a combination of freeze/thaw cycles, incubation in 2% sodium dodecyl sulfate (SDS, trypsinization, treatment with DNase-I, and ethanol sterilization produced a non-cytotoxic biomaterial free of appreciable residual cellular debris with no significant modification of biomechanical properties. These decellularized tendon scaffolds (DTS are suitable for complex tissue engineering applications, as they provide a clean slate for cell culture while maintaining native three-dimensional architecture.
The structure-function relationship of MSI7, a matrix protein from pearl oyster Pinctada fucata
Qiaoli Feng; Zi Fang; Zhenguang Yan; Rui Xing; Liping Xie; Rongqing Zhang
2009-01-01
We previously identified a matrix protein, MSI7, from pearl oyster Pinctada fucata. According to the struc-tural analysis, the DGD site in the N-terminal of MSI7 is crucial for its role in the shell formation. In this study, we expressed a series of recombinant MSI7 pro-teins, including the wild-type and several mutants directed at the DGD site, using an Escherichia coli expression system to reveal the structure-function relationship of MSI7. Furthermore, in vitro crystalliza-tion, crystallization speed assay, and circular dichroism spectrometry were carried out. Results indicated that wild-type MSI7 could induce the nucleation of arago-nite and inhibit the crystallization of calcite. However, none of the mutants could induce the nucleation of ara-gonite, but all of them could inhibit the crystallization of calcite to some extent. And all the proteins acceler-ated the crystallization process. Taken together, the results indicated that MSI7 could contribute to arago-nite crystallization by inducing the nucleation of arago-nite and inhibiting the crystallization of calcite, which agrees with our prediction about its role in the nacr-eous layer formation of the shell. The DGD site was critical for the induction of the nucleation of aragonite.
Electrical response and functionality of polymer matrix-titanium carbide composites
2010-04-01
Full Text Available The dielectric response and conductivity of polymer matrix-titanium carbide composites was examined by means of Broadband Dielectric Spectroscopy in the frequency range of 10–1–107 Hz and over the temperature range of 40–150°C, varying the filler content. Dielectric data were analyzed via the electric modulus formalism. Recorded relaxations were attributed to interfacial polarization, glass to rubber transition and local motions of polar side groups. Alternating current conductivity varies up to seven orders of magnitude with both frequency and temperature. Direct current conductivity increases with temperature, although the rate of its alteration does not remain constant in the examined temperature range. In the low temperature region (up to 60°C increases at a higher rate, while right afterwards approaches rather constant values. Finally, in the high temperature range (above 90°C conductivity raises again but at a lower rate. This behaviour adds functionality to the composites’ performance and could be exploited in developing self-current regulators.
Amine functionalization of cholecyst-derived extracellular matrix with generation 1 PAMAM dendrimer.
Chan, Jeffrey C Y
2008-02-01
A method to functionalize cholecyst-derived extracellular matrix (CEM) with free amine groups was established in an attempt to improve its potential for tethering of bioactive molecules. CEM was incorporated with Generation-1 polyamidoamine (G1 PAMAM) dendrimer by using N-(3-dimethylaminopropyl)-N\\'-ethylcarbodiimide and N-hydroxysuccinimide cross-linking system. The nature of incorporation of PAMAM dendrimer was evaluated using shrink temperature measurements, Fourier transform infrared (FTIR) assessment, ninhydrin assay, and swellability. The effects of PAMAM incorporation on mechanical and degradation properties of CEM were evaluated using a uniaxial mechanical test and collagenase degradation assay, respectively. Ninhydrin assay and FTIR assessment confirmed the presence of increasing free amine groups with increasing quantity of PAMAM in dendrimer-incorporated CEM (DENCEM) scaffolds. The amount of dendrimer used was found to be critical in controlling scaffold degradation, shrink temperature, and free amine content. Cell culture studies showed that fibroblasts seeded on DENCEM maintained their metabolic activity and ability to proliferate in vitro. In addition, fluorescence cell staining and scanning electron microscopy analysis of cell-seeded DENCEM showed preservation of normal fibroblast morphology and phenotype.
Adam, Marion; Urbanski, Henryk F.; Garyfallou, Vasilios T.; Welsch, Ulrich; Köhn, Frank M.; Schwarzer, J. Ullrich; Strauss, Leena; Poutanen, Matti; Mayerhofer, Artur
2011-01-01
Decorin (DCN), a component of the extracellular matrix of the peritubular wall and the interstitial areas of the human testis, can interact with growth factor (GF) signaling, thereby blocking downstream actions of GFs. In the present study the expression and regulation of DCN using both human testes and two experimental animal models, namely the rhesus monkey and mouse, were examined. DCN protein was present in peritubular and interstitial areas of adult human and monkey testes, while it was almost undetectable in adult wild-type mice. Interestingly, the levels and sites of testicular DCN expression in the monkeys were inversely correlated with testicular maturation markers. A strong DCN expression associated with the abundant connective tissue of the interstitial areas in the postnatal through prepubertal phases was observed. In adult and old monkeys the DCN pattern was similar to the one in normal human testes, presenting strong expression at the peritubular region. In the testes of both infertile men and in a mouse model of inflammation associated infertility (aromatase-overexpressing transgenic mice), the fibrotic changes and increased numbers of Tumor necrosis factor (TNF)-α-producing immune cells were shown to be associated with increased production of DCN. Furthermore, studies with human testicular peritubular cells isolated from fibrotic testis indicated that TNF-α significantly increased DCN production. The data, thus, show that an increased DCN level is associated with impaired testicular function, supporting our hypothesis that DCN interferes with paracrine signaling of the testis in health and disease. PMID:22413766
Energy-dependent correlations in the S-matrix of chaotic systems
Novaes, Marcel
2016-12-01
The M-dimensional unitary matrix S(E), which describes scattering of waves, is a strongly fluctuating function of the energy for complex systems such as ballistic cavities, whose geometry induces chaotic ray dynamics. Its statistical behaviour can be expressed by means of correlation functions of the kind , which have been much studied within the random matrix approach. In this work, we consider correlations involving an arbitrary number of matrix elements and express them as infinite series in 1/M, whose coefficients are rational functions of ɛ. From a mathematical point of view, this may be seen as a generalization of the Weingarten functions of circular ensembles.
Determinants of Actor Rationality
Ellegaard, Chris
Industrial companies must exercise influence on their suppliers (or supplier actors). Actor rationality is a central theme connected to this management task. In this article, relevant literature is studied with the purpose of shedding light on determinants of actor rationality. Two buyer......-supplier relations are investigated in a multiple case study, leading to the proposal of various additional factors that determine and shape actor rationality. Moreover a conceptual model of rationality determinants in the buyer-supplier relation is proposed, a model that may help supply managers analyse...
Jayaraman, Arthi; Nair, Nitish
2011-03-01
Significant interest has grown around the ability to create hybrid materials with controlled spatial arrangement of nanoparticles mediated by a polymer matrix. By functionalizing or grafting polymers on to nanoparticle surfaces and systematically tuning the composition, chemistry, molecular weight and grafting density of the grafted polymers one can tailor the inter-particle interactions and control the assembly/dispersion of the particles in the polymer matrix. In our recent work using self-consistent Polymer Reference Interaction Site Model (PRISM) theory- Monte Carlo simulations we have shown that tailoring the monomer sequences in the grafted copolymers provides a novel route to tuning the effective inter-particle interactions between the functionalized nanoparticles in a polymer matrix. In this talk I will present how monomer sequence and molecular weights (with and without polydispersity) of the grafted polymers, compatibility of the graft and matrix polymers, and nanoparticle size affect the chain conformations of the grafted polymers and the potential of mean force between the grafted nanoparticles in the matrix.
Galea, Charles A; Nguyen, Hai M; George Chandy, K; Smith, Brian J; Norton, Raymond S
2014-04-01
MMP23 is a member of the matrix metalloprotease family of zinc- and calcium-dependent endopeptidases, which are involved in a wide variety of cellular functions. Its catalytic domain displays a high degree of structural homology with those of other metalloproteases, but its atypical domain architecture suggests that it may possess unique functional properties. The N-terminal MMP23 pro-domain contains a type-II transmembrane domain that anchors the protein to the plasma membrane and lacks the cysteine-switch motif that is required to maintain other MMPs in a latent state during passage to the cell surface. Instead of the C-terminal hemopexin domain common to other MMPs, MMP23 contains a small toxin-like domain (TxD) and an immunoglobulin-like cell adhesion molecule (IgCAM) domain. The MMP23 pro-domain can trap Kv1.3 but not closely-related Kv1.2 channels in the endoplasmic reticulum, preventing their passage to the cell surface, while the TxD can bind to the channel pore and block the passage of potassium ions. The MMP23 C-terminal IgCAM domain displays some similarity to Ig-like C2-type domains found in IgCAMs of the immunoglobulin superfamily, which are known to mediate protein-protein and protein-lipid interactions. MMP23 and Kv1.3 are co-expressed in a variety of tissues and together are implicated in diseases including cancer and inflammatory disorders. Further studies are required to elucidate the mechanism of action of this unique member of the MMP family.
Tsunehide Kuroki
2017-06-01
Full Text Available In the previous paper, the authors pointed out correspondence between a supersymmetric double-well matrix model and two-dimensional type IIA superstring theory on a Ramond–Ramond background from the viewpoint of symmetry and spectrum. This was confirmed by agreement between planar correlation functions in the matrix model and tree-level amplitudes in the superstring theory. In order to investigate the correspondence further, in this paper we compute correlation functions to all order of genus expansion in the double scaling limit of the matrix model. One-point functions of operators protected by supersymmetry terminate at some finite order, whereas those of unprotected operators yield non-Borel summable series. The behavior of the latter is characteristic in string perturbation series, providing further evidence that the matrix model describes a string theory. Moreover, instanton corrections to the planar one-point functions are also computed, and universal logarithmic scaling behavior is found for non-supersymmetric operators.
Llacua Carrasco, Luis; de Haan, Bart J; Smink, Sandra A; de Vos, Paul
2016-01-01
In the pancreas, extracellular matrix (ECM) components play an import role in providing mechanical and physiological support, and also contribute to the function of islets. These ECM-connections are damaged during islet-isolation from the pancreas and are not fully recovered after encapsulation and
Da Silva, Rafael
In nanomaterials there is a strong correlation between structure and properties. Thus, the design and synthesis of nanomaterials with well-defined structures and morphology is essential in order to produce materials with not only unique but also tailorable properties. The unique properties of nanomaterials in turn can be taken advantage of to create materials and nanoscale devices that can help address important societal issues, such as meeting renewable energy sources and efficient therapeutic and diagnostic methods to cure a range of diseases. In this thesis, the different synthetic approaches I have developed to produce functional nanomaterials composed of earth-abundant elements (mainly carbon and silica) at low cost in a very sustainable manner are discussed. In Chapter 1, the fundamental properties of nanomaterials and their properties and potential applications in many areas are introduced. In chapter 2, a novel synthetic method that allows polymerization of polyaniline (PANI), a conducting polymer, inside cylindrical channel pores of nanoporous silica (SBA-15) is discussed. In addition, the properties of the III resulting conducting polymer in the confined nanochannel spaces of SBA-15, and more importantly, experimental demonstration of the use of the resulting hybrid material (PANI/SBA-15 material) as electocatalyst for electrooxidation reactions with good overpotential, close to zero, are detailed. In chapter 3, the synthetic approach discussed in Chapter 2 is further extended to afford nitrogen- and oxygen-doped mesoporous carbons. This is possible by pyrolysis of the PANI/SBA-15 composite materials under inert atmosphere, followed by etching away their silica framework. The high catalytic activity of resulting carbon-based materials towards oxygen reduction reaction despite they do not possess any metal dopants is also included. The potential uses of nanomaterials in areas such as nanomedicine need deep understanding of the biocompatibility/ toxicity of
Singh, Samir P.; Schwartz, Michael P.; Lee, Justin Y.; Fairbanks, Benjamin D.; Kristi S Anseth
2014-01-01
To address the challenges associated with defined control over matrix properties in 3D cell culture systems, we employed a peptide functionalized poly(ethylene glycol) (PEG) hydrogel matrix in which mechanical modulus and adhesive properties were tuned. An HT-1080 human fibrosarcoma cell line was chosen as a model for probing matrix influences on tumor cell migration using the PEG hydrogel platform. HT-1080 speed varied with a complex dependence on both matrix modulus and Cys-Arg-Gly-Asp-Ser ...
Heterogeneity of the state and functionality of water molecules sorbed in an amorphous sugar matrix.
Imamura, Koreyoshi; Kagotani, Ryo; Nomura, Mayo; Kinugawa, Kohshi; Nakanishi, Kazuhiro
2012-04-01
An amorphous matrix, comprised of sugar molecules, is frequently used in the pharmaceutical industry. An amorphous sugar matrix exhibits high hygroscopicity, and it has been established that the sorbed water lowers the glass transition temperature T(g) of the amorphous sugar matrix. It is naturally expected that the random allocation and configuration of sugar molecules would result in heterogeneity of states for sorbed water. However, most analyses of the behavior of water, when sorbed to an amorphous sugar matrix, have implicitly assumed that all of the sorbed water molecules are in a single state. In this study, the states of water molecules sorbed in an amorphous sugar matrix were analyzed by Fourier-transform IR spectroscopy and a Fourier self-deconvolution technique. When sorbed water molecules were classified into five states, according to the extent to which they are restricted, three of the states resulted in a lowering of T(g) of an amorphous sugar matrix, while the other two were independent of the plasticization of the matrix. This finding provides an explanation for the paradoxical fact that compression at several hundreds of MPa significantly decreases the equilibrium water content at a given RH, while the T(g) remains unchanged.
FAN Hong-Yi
2002-01-01
We show that the Wigner function W = Tr(△ρ) (an ensemble average of the density operator ρ, △ is theWigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting fromquantum master equations to time-evolution equation of the Wigner functions seems direct and concise. The entangledstates are defined in the enlarged Fock space with a fictitious freedom.
Kawaguchi, Nobuko; Sundberg, Christina; Kveiborg, Marie
2003-01-01
-100 from cells overexpressing ADAM12 than from control cells. Collectively, these results show that surface expression of ADAM12 impairs the function of beta1 integrins and, consequently, alters the organization of the actin cytoskeleton and extracellular matrix. These events may be necessary....... Moreover, ADAM12-expressing cells were more prone to apoptosis, which could be prevented by treating the cells with beta1-activating antibodies. A reduced and re-organized fibronectin-rich extracellular matrix accompanied these changes. In addition, beta1 integrin was more readily extracted with Triton X...
Brimblecombe, Katherine R; Cragg, Stephanie J
2017-02-15
The striatum is a heterogeneous structure with a diverse range of neuron types and neuromodulators. Three decades of anatomical and biochemical studies have established that the neurochemical organization of striatum is not uniformly heterogeneous, but rather, can be differentiated into neurochemically discrete compartments known as striosomes (also known as patches) and matrix. These compartments are well understood to differ in their expression of neurochemical markers, with some differences in afferent and efferent connectivity and have also been suggested to have different involvement in a range of neurological diseases. However, the functional outcomes of striosome-matrix organization are poorly understood. Now, recent findings and new experimental tools are beginning to reveal that the distinctions between striosomes and matrix have distinct consequences for striatal synapse function. Here, we review recent findings that suggest there can be distinct regulation of neural function in striosome versus matrix compartments, particularly compartment-specific neurochemical interactions. We highlight that new transgenic and viral tools are becoming available that should now accelerate the pace of advances in understanding of these long-mysterious striatal compartments.
Morgado, Leonor; Lourenço, Sílvia; Londer, Yuri Y; Schiffer, Marianne; Pokkuluri, P Raj; Salgueiro, Carlos A
2014-01-01
PpcA is the most abundant member of a family of five triheme cytochromes c7 in the bacterium Geobacter sulfurreducens (Gs) and is the most likely carrier of electrons destined for outer surface during respiration on solid metal oxides, a process that requires extracellular electron transfer. This cytochrome has the highest content of lysine residues (24%) among the family, and it was suggested to be involved in e-/H(+) energy transduction processes. In the present work, we investigated the functional role of lysine residues strategically located in the vicinity of each heme group. Each lysine was replaced by glutamine or glutamic acid to evaluate the effects of a neutral or negatively charged residue in each position. The results showed that replacing Lys9 (located near heme IV), Lys18 (near heme I) or Lys22 (between hemes I and III) has essentially no effect on the redox properties of the heme groups and are probably involved in redox partner recognition. On the other hand, Lys43 (near heme IV), Lys52 (between hemes III and IV) and Lys60 (near heme III) are crucial in the regulation of the functional mechanism of PpcA, namely in the selection of microstates that allow the protein to establish preferential e-/H(+) transfer pathways. The results showed that the preferred e-/H(+) transfer pathways are only established when heme III is the last heme to oxidize, a feature reinforced by a higher difference between its reduction potential and that of its predecessor in the order of oxidation. We also showed that K43 and K52 mutants keep the mechanistic features of PpcA by establishing preferential e-/H+ transfer pathways at lower reduction potential values than the wild-type protein, a property that can enable rational design of Gs strains with optimized extracellular electron transfer capabilities.
Morgado, Leonor; Lourenço, Sílvia; Londer, Yuri Y.; Schiffer, Marianne; Pokkuluri, P. Raj; Salgueiro, Carlos A.
2014-01-01
PpcA is the most abundant member of a family of five triheme cytochromes c7 in the bacterium Geobacter sulfurreducens (Gs) and is the most likely carrier of electrons destined for outer surface during respiration on solid metal oxides, a process that requires extracellular electron transfer. This cytochrome has the highest content of lysine residues (24%) among the family, and it was suggested to be involved in e−/H+ energy transduction processes. In the present work, we investigated the functional role of lysine residues strategically located in the vicinity of each heme group. Each lysine was replaced by glutamine or glutamic acid to evaluate the effects of a neutral or negatively charged residue in each position. The results showed that replacing Lys9 (located near heme IV), Lys18 (near heme I) or Lys22 (between hemes I and III) has essentially no effect on the redox properties of the heme groups and are probably involved in redox partner recognition. On the other hand, Lys43 (near heme IV), Lys52 (between hemes III and IV) and Lys60 (near heme III) are crucial in the regulation of the functional mechanism of PpcA, namely in the selection of microstates that allow the protein to establish preferential e−/H+ transfer pathways. The results showed that the preferred e−/H+ transfer pathways are only established when heme III is the last heme to oxidize, a feature reinforced by a higher difference between its reduction potential and that of its predecessor in the order of oxidation. We also showed that K43 and K52 mutants keep the mechanistic features of PpcA by establishing preferential e−/H+ transfer pathways at lower reduction potential values than the wild-type protein, a property that can enable rational design of Gs strains with optimized extracellular electron transfer capabilities. PMID:25153891
Leonor Morgado
Full Text Available PpcA is the most abundant member of a family of five triheme cytochromes c7 in the bacterium Geobacter sulfurreducens (Gs and is the most likely carrier of electrons destined for outer surface during respiration on solid metal oxides, a process that requires extracellular electron transfer. This cytochrome has the highest content of lysine residues (24% among the family, and it was suggested to be involved in e-/H(+ energy transduction processes. In the present work, we investigated the functional role of lysine residues strategically located in the vicinity of each heme group. Each lysine was replaced by glutamine or glutamic acid to evaluate the effects of a neutral or negatively charged residue in each position. The results showed that replacing Lys9 (located near heme IV, Lys18 (near heme I or Lys22 (between hemes I and III has essentially no effect on the redox properties of the heme groups and are probably involved in redox partner recognition. On the other hand, Lys43 (near heme IV, Lys52 (between hemes III and IV and Lys60 (near heme III are crucial in the regulation of the functional mechanism of PpcA, namely in the selection of microstates that allow the protein to establish preferential e-/H(+ transfer pathways. The results showed that the preferred e-/H(+ transfer pathways are only established when heme III is the last heme to oxidize, a feature reinforced by a higher difference between its reduction potential and that of its predecessor in the order of oxidation. We also showed that K43 and K52 mutants keep the mechanistic features of PpcA by establishing preferential e-/H+ transfer pathways at lower reduction potential values than the wild-type protein, a property that can enable rational design of Gs strains with optimized extracellular electron transfer capabilities.
Standby Gasoline Rationing Plan
None
1980-06-01
The final rules adopted by the President for a Standby Gasoline Rationing Plan are presented. The plan provides that eligibility for ration allotments will be determined primarily on the basis of motor vehicle registrations, taking into account historical differences in the use of gasoline among states. The regulations also provide authority for supplemental allotments to firms so that their allotment will equal a specified percentage of gasoline use during a base period. Priority classifications, i.e., agriculture, defense, etc., are established to assure adequate gasoline supplies for designated essential services. Ration rights must be provided by end-users to their suppliers for each gallon sold. DOE will regulate the distribution of gasoline at the wholesale level according to the transfer by suppliers of redeemed ration rights and the gasoline allocation regulations. Ration rights are transferable. A ration banking system is created to facilitate transfers of ration rights. Each state will be provided with a reserve of ration rights to provide for hardship needs and to alleviate inequities. (DC)
Paul W Ayers; Mel Levy
2005-09-01
Using the constrained search and Legendre-transform formalisms, one can derive ``generalized” density-functional theories, in which the fundamental variable is either the electron pair density or the second-order reduced density matrix. In both approaches, the -representability problem is solved by the functional, and the variational principle is with respect to all pair densities (density matrices) that are nonnegative and appropriately normalized. The Legendre-transform formulation provides a lower bound on the constrained-search functional. Noting that experience in density-functional and density-matrix theories suggests that it is easier to approximate functionals than it is to approximate the set of -representable densities sheds some light on the significance of this work.
Cai Ning; Gong Yingxue; Chan, Vincent; Liao Kin [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Chian, Kerm Sin [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)], E-mail: askliao@ntu.edu.sg
2008-03-01
Effective attachment of esophageal cells on biomaterials is one important requirement in designing engineered esophagus substitute for esophageal cancer treatment. In this study, poly(lactic acid) (PLA) was subjected to surface modification by coupling extracellular matrix (ECM) proteins on its surface to promote cell adhesion. Two typical ECM proteins, collagen type I (COL) and fibronectin (FN), were immobilized on the PLA surface with the aid of glutaraldehyde as a cross linker between aminolyzed PLA and ECM proteins. By using confocal reflectance interference contrast microscopy (C-RICM) integrating with phase contrast microscopy, the long-term adhesion dynamics of porcine esophageal fibroblasts (PEFs) on four types of surfaces (unmodified PLA, PLA-COOH, PLA-COL and PLA-FN) was investigated during 24 h of culture. It is demonstrated by C-RICM results that PEFs form strong adhesion contact on all four types of surfaces at different stages of cell seeding. Among the four surfaces, PEFs on the PLA-FN surface reach the maximum adhesion energy (9.5 x 10{sup -7} J m{sup -2}) in the shortest time (20 min) during the initial stage of cell seeding. After adhesion energy reaches the maximum value, PEFs maintain their highly deformed geometries till they reached a steady state after 20 h of culture. F-actin immunostaining results show that the evolvement of spatial organization of F-actin is tightly correlated with the formation of adhesion contact and cell spreading. Furthermore, the cell attachment ratio of PEFs on PLA in 2 h is only 26% compared with 88% on PLA-FN, 73% on PLA-COL and 36% on PLA-COOH. All the results demonstrate the effect of surface functionalization on the biophysical responses of PEFs in cell adhesion. Fibronectin-immobilized PLA demonstrates promising potential for application as an engineered esophagus substitute.
Irrational Rationality of Terrorism
Robert Nalbandov
2013-12-01
Full Text Available The present article deals with the ontological problem of applying the rational choice frameworks to the study of terrorism. It testing the application of the rational choice to the “old” (before the end of the Cold War and the “new” (after the end of the Cold War terrorisms. It starts with analyzing the fundamentals of rationality and applies it at two levels: the individual (actors and group (collective via two outlooks: tactical (short-term and strategic (long-term. The main argument of the article is that while the “old” terrorism can be explained by the rational choice theory its “new” version represents a substantial departure from rationality.
Ahmad Mustafa
2010-07-01
Full Text Available A new type of mixed matrix membrane consisting of functionalized carbon nanotubes (CNTs and polyethersulfone (PES is prepared for biogas purification. PES mixed matrix membrane with and without modification of carbon nanotubes were prepared by a dry/wet phase inversion technique using a pneumatically flat sheet membrane casting machine system. The modified carbon nanotubes were prepared by treating the carbon nanotubes with chemical modification using Dynasylan Ameo (DA silane agent to allow PES chains to be grafted on carbon nanotubes surface. The results from the FESEM, DSC and FTIR analysis confirmed that chemical modification on carbon nanotubes surface had taken place. Meanwhile, the nanogaps in the interface of polymer and carbon nanotubes were appeared in the PES mixed matrix membrane with unmodified of carbon nanotubes. The modified carbon nanotubes mixed matrix membrane increases the mechanical properties, the productivity and purity of biogas. For PES-modified carbon nanotubes mixed matrix membrane the maximum selectivity achieved for CO2/CH4 is 36.78
Beenken-Rothkopf, Liese N; Karfeld-Sulzer, Lindsay S; Davis, Nicolynn E; Forster, Ryan; Barron, Annelise E; Fontaine, Magali J
2013-01-01
Biomaterial encapsulation of islets has been proposed to improve the long-term success of islet transplantation by recreating a suitable microenvironment and enhancing cell-matrix interactions that affect cellular function. Protein polymer hydrogels previously showed promise as a biocompatible scaffold by maintaining high cell viability. Here, enzymatically-crosslinked protein polymers were used to investigate the effects of varying scaffold properties and of introducing ECM proteins on the viability and function of encapsulated MIN6 β-cells. Chemical and mechanical properties of the hydrogel were modified by altering the protein concentrations while collagen IV, fibronectin, and laminin were incorporated to reestablish cell-matrix interactions lost during cell isolation. Rheology indicated all hydrogels formed quickly, resulting in robust, elastic hydrogels with Young's moduli similar to soft tissue. All hydrogels tested supported both high MIN6 β-cell viability and function and have the potential to serve as an encapsulation platform for islet cell delivery in vivo.
Multinode rational operators for univariate interpolation
Dell'Accio, Francesco; Di Tommaso, Filomena; Hormann, Kai
2016-10-01
Birkhoff (or lacunary) interpolation is an extension of polynomial interpolation that appears when observation gives irregular information about function and its derivatives. A Birkhoff interpolation problem is not always solvable even in the appropriate polynomial or rational space. In this talk we split up the initial problem in subproblems having a unique polynomial solution and use multinode rational basis functions in order to obtain a global interpolant.
The Rational Hybrid Monte Carlo Algorithm
Clark, M A
2006-01-01
The past few years have seen considerable progress in algorithmic development for the generation of gauge fields including the effects of dynamical fermions. The Rational Hybrid Monte Carlo (RHMC) algorithm, where Hybrid Monte Carlo is performed using a rational approximation in place the usual inverse quark matrix kernel is one of these developments. This algorithm has been found to be extremely beneficial in many areas of lattice QCD (chiral fermions, finite temperature, Wilson fermions etc.). We review the algorithm and some of these benefits, and we compare against other recent algorithm developements. We conclude with an update of the Berlin wall plot comparing costs of all popular fermion formulations.
The Rational Hybrid Monte Carlo algorithm
Clark, Michael
2006-12-01
The past few years have seen considerable progress in algorithmic development for the generation of gauge fields including the effects of dynamical fermions. The Rational Hybrid Monte Carlo (RHMC) algorithm, where Hybrid Monte Carlo is performed using a rational approximation in place the usual inverse quark matrix kernel is one of these developments. This algorithm has been found to be extremely beneficial in many areas of lattice QCD (chiral fermions, finite temperature, Wilson fermions etc.). We review the algorithm and some of these benefits, and we compare against other recent algorithm developements. We conclude with an update of the Berlin wall plot comparing costs of all popular fermion formulations.
Coping More Effectively Through Rational Self-Counseling.
Rogers, George W., Jr.
1981-01-01
Rational Self-Counseling, a variation of rational-emotive therapy, is a self-help therapeutic technique in which students are encouraged to be responsible for their own behavior and emotions. The primary function of self-counseling is to evaluate whether thoughts are rational. A list of questions which students might ask themselves is presented.…
Oberhofer, Harald; Blumberger, Jochen
2010-12-01
We present a plane wave basis set implementation for the calculation of electronic coupling matrix elements of electron transfer reactions within the framework of constrained density functional theory (CDFT). Following the work of Wu and Van Voorhis [J. Chem. Phys. 125, 164105 (2006)], the diabatic wavefunctions are approximated by the Kohn-Sham determinants obtained from CDFT calculations, and the coupling matrix element calculated by an efficient integration scheme. Our results for intermolecular electron transfer in small systems agree very well with high-level ab initio calculations based on generalized Mulliken-Hush theory, and with previous local basis set CDFT calculations. The effect of thermal fluctuations on the coupling matrix element is demonstrated for intramolecular electron transfer in the tetrathiafulvalene-diquinone (Q-TTF-Q-) anion. Sampling the electronic coupling along density functional based molecular dynamics trajectories, we find that thermal fluctuations, in particular the slow bending motion of the molecule, can lead to changes in the instantaneous electron transfer rate by more than an order of magnitude. The thermal average, ( { } )^{1/2} = 6.7 {mH}, is significantly higher than the value obtained for the minimum energy structure, | {H_ab } | = 3.8 {mH}. While CDFT in combination with generalized gradient approximation (GGA) functionals describes the intermolecular electron transfer in the studied systems well, exact exchange is required for Q-TTF-Q- in order to obtain coupling matrix elements in agreement with experiment (3.9 mH). The implementation presented opens up the possibility to compute electronic coupling matrix elements for extended systems where donor, acceptor, and the environment are treated at the quantum mechanical (QM) level.
Exploring rationality in schizophrenia
Revsbech, Rasmus; Mortensen, Erik Lykke; Owen, Gareth
2015-01-01
Background Empirical studies of rationality (syllogisms) in patients with schizophrenia have obtained different results. One study found that patients reason more logically if the syllogism is presented through an unusual content. Aims To explore syllogism-based rationality in schizophrenia. Method...... Thirty-eight first-admitted patients with schizophrenia and 38 healthy controls solved 29 syllogisms that varied in presentation content (ordinary v. unusual) and validity (valid v. invalid). Statistical tests were made of unadjusted and adjusted group differences in models adjusting for intelligence...... differences became non-significant. Conclusions When taking intelligence and neuropsychological performance into account, patients with schizophrenia and controls perform similarly on syllogism tests of rationality....
Chuang, Christine Y; Degendorfer, Georg; Hammer, Astrid; Whitelock, John M; Malle, Ernst; Davies, Michael J
2014-04-15
ECM (extracellular matrix) materials, such as laminin, perlecan, type IV collagen and fibronectin, play a key role in determining the structure of the arterial wall and the properties of cells that interact with the ECM. The aim of the present study was to investigate the effect of peroxynitrous acid, an oxidant generated by activated macrophages, on the structure and function of the ECM laid down by HCAECs (human coronary artery endothelial cells) in vitro and in vivo. We show that exposure of HCAEC-derived native matrix components to peroxynitrous acid (but not decomposed oxidant) at concentrations >1 μM results in a loss of antibody recognition of perlecan, collagen IV, and cell-binding sites on laminin and fibronectin. Loss of recognition was accompanied by decreased HCAEC adhesion. Real-time PCR showed up-regulation of inflammation-associated genes, including MMP7 (matrix metalloproteinase 7) and MMP13, as well as down-regulation of the laminin α2 chain, in HCAECs cultured on peroxynitrous acid-treated matrix compared with native matrix. Immunohistochemical studies provided evidence of co-localization of laminin with 3-nitrotyrosine, a biomarker of peroxynitrous acid damage, in type II-III/IV human atherosclerotic lesions, consistent with matrix damage occurring during disease development in vivo. The results of the present study suggest a mechanism through which peroxynitrous acid modifies endothelial cell-derived native ECM proteins of the arterial basement membrane in atherosclerotic lesions. These changes to ECM and particularly perlecan and laminin may be important in inducing cellular dysfunction and contribute to atherogenesis.
Wanga, Shaynah; Ceron, Carla S; Delgado, Cynthia; Joshi, Sunil K; Spaulding, Kimberly; Walker, Joy P; Song, Sangheon; Olson, Jean L; Lovett, David H
2015-01-01
Delayed graft function (DGF) is a frequent complication of renal transplantation, particularly in the setting of transplantation of kidneys derived from deceased donors and expanded-criteria donors. DGF results from tubular epithelial cell injury and has immediate and long term consequences. These include requirement for post-transplantation dialysis, increased incidence of acute rejection, and poorer long-term outcomes. DGF represents one of the clearest clinical examples of renal acute ischemia/reperfusion injury. Experimental studies have demonstrated that ischemia/reperfusion injury induces the synthesis of the full length secreted isoform of matrix metalloproteinase-2 (FL-MMP-2), as well as an intracellular N-terminal truncated MMP-2 isoform (NTT-MMP-2) that initiates an innate immune response. We hypothesized that the two MMP-2 isoforms mediate tubular epithelial cell injury in DGF. Archival renal biopsy sections from 10 protocol biopsy controls and 41 cases with a clinical diagnosis of DGF were analyzed for the extent of tubular injury, expression of the FL-MMP-2 and NTT-MMP-2 isoforms by immunohistochemistry (IHC), in situ hybridization, and qPCR to determine isoform abundance. Differences in transcript abundance were related to tubular injury score. Markers of MMP-2-mediated injury included TUNEL staining and assessment of peritubular capillary density. There was a clear relationship between tubular epithelial cell expression of both FL-MMP-2 and NTT-MMP-2 IHC with the extent of tubular injury. The MMP-2 isoforms were detected in the same tubular segments and were present at sites of tubular injury. qPCR demonstrated highly significant increases in both the FL-MMP-2 and NTT-MMP-2 transcripts. Statistical analysis revealed highly significant associations between FL-MMP-2 and NTT-MMP-2 transcript abundance and the extent of tubular injury, with NTT-MMP-2 having the strongest association. We conclude that two distinct MMP-2 isoforms are associated with
Shaynah Wanga
Full Text Available Delayed graft function (DGF is a frequent complication of renal transplantation, particularly in the setting of transplantation of kidneys derived from deceased donors and expanded-criteria donors. DGF results from tubular epithelial cell injury and has immediate and long term consequences. These include requirement for post-transplantation dialysis, increased incidence of acute rejection, and poorer long-term outcomes. DGF represents one of the clearest clinical examples of renal acute ischemia/reperfusion injury. Experimental studies have demonstrated that ischemia/reperfusion injury induces the synthesis of the full length secreted isoform of matrix metalloproteinase-2 (FL-MMP-2, as well as an intracellular N-terminal truncated MMP-2 isoform (NTT-MMP-2 that initiates an innate immune response. We hypothesized that the two MMP-2 isoforms mediate tubular epithelial cell injury in DGF. Archival renal biopsy sections from 10 protocol biopsy controls and 41 cases with a clinical diagnosis of DGF were analyzed for the extent of tubular injury, expression of the FL-MMP-2 and NTT-MMP-2 isoforms by immunohistochemistry (IHC, in situ hybridization, and qPCR to determine isoform abundance. Differences in transcript abundance were related to tubular injury score. Markers of MMP-2-mediated injury included TUNEL staining and assessment of peritubular capillary density. There was a clear relationship between tubular epithelial cell expression of both FL-MMP-2 and NTT-MMP-2 IHC with the extent of tubular injury. The MMP-2 isoforms were detected in the same tubular segments and were present at sites of tubular injury. qPCR demonstrated highly significant increases in both the FL-MMP-2 and NTT-MMP-2 transcripts. Statistical analysis revealed highly significant associations between FL-MMP-2 and NTT-MMP-2 transcript abundance and the extent of tubular injury, with NTT-MMP-2 having the strongest association. We conclude that two distinct MMP-2 isoforms are
Halbig, Michael C.; Cawley, James D.; Eckel, Andrew J.
2003-01-01
The oxidation model simulates the oxidation of the reinforcing carbon fibers within a ceramic matrix composite material containing as-fabricated microcracks. The physics-based oxidation model uses theoretically and experimentally determined variables as input for the model. The model simulates the ingress of oxygen through microcracks into a two-dimensional plane within the composite material. Model input includes temperature, oxygen concentration, the reaction rate constant, the diffusion coefficient, and the crack opening width as a function of the mechanical and thermal loads. The model is run in an iterative process for a two-dimensional grid system in which oxygen diffuses through the porous and cracked regions of the material and reacts with carbon in short time steps. The model allows the local oxygen concentrations and carbon volumes from the edge to the interior of the composite to be determined over time. Oxidation damage predicted by the model was compared with that observed from microstructural analysis of experimentally tested composite material to validate the model for two temperatures of interest. When the model is run for low-temperature conditions, the kinetics are reaction controlled. Carbon and oxygen reactions occur relatively slowly. Therefore, oxygen can bypass the carbon near the outer edge and diffuse into the interior so that it saturates the entire composite at relatively high concentrations. The kinetics are limited by the reaction rate between carbon and oxygen. This results in an interior that has high local concentrations of oxygen and a similar amount of consumed carbon throughout the cross section. When the model is run for high-temperature conditions, the kinetics are diffusion controlled. Carbon and oxygen reactions occur very quickly. The carbon consumes oxygen as soon as it is supplied. The kinetics are limited by the relatively slow rate at which oxygen is supplied in comparison to the relatively fast rate at which carbon and
Sreenivasan, Ashwin; Heintz, Ron
2016-10-01
Pacific cod (Gadus macrocephalus) are generalist predators in the Gulf of Alaska (GOA), and are an important predator on other commercially important species. Efficient management of this species can benefit by knowing how these fish adapt to changing environmental conditions, with a focus on how growth and condition are affected by changes in temperature and diet. We conducted a feeding study to understand the relationship between growth, ration, and temperature, and how these factors interact to affect energy allocation strategies. Since growth and condition of juveniles can determine recruitment into the population, this study focused on growth and consumption of age 1+Pacific cod held over 4 temperature treatments (4 °C, 8 °C, 12 °C, and 16 °C) and 3 ration levels (unlimited ration, medium ration, and low ration). We also compared cellular nucleic acid (RNA/DNA) ratios, an instantaneous growth index, total-body lipid, and proximate composition between fish. At 4 °C, 8 °C, and 12 °C, fish at medium and low rations had higher growth rates relative to fish at high rations. Higher food consumption appears to negatively affect digestive ability, assimilation efficiency, and nutrient utilization. RNA/DNA was clearly correlated with growth rates at 4 °C and 8 °C, but this relationship did not hold at higher temperatures. A secondary growth study was conducted to test the reliability of the growth/consumption models derived from the main growth study. Temperature influenced energy reserves (lipid) while tissue growth (protein) was influenced by ration level. Average lipid values were higher at 4 °C than at 8 °C or 12 °C, suggesting a predisposition to heightened lipid synthesis at colder temperatures. Longer durations of warmer water temperature in the GOA could consequently affect energy allocation strategies, with dietary changes in the field potentially amplifying this effect in cold and warm years. This energy allocation strategy could be detrimental
Predicting the function of eukaryotic scaffold/matrix attachment regions via DNA mechanics
Li, Ming; Ou-Yang, Zhong-can
2005-08-01
Eukaryotic chromatin undergoes a few steps of compaction to form a chromosome. Among the several levels of chromatin assembly, successive chromatin loops (5-100 kb) demarcated by the nuclear matrix are of primary importance since they behave as topologically independent domains for coordinate regulation of harboured genes. The bases of the loops are called SMARs (scaffold/matrix attachment regions). On one hand, this chromosome structure imposes stress on the DNA molecule since the double-stranded DNA is actually unwound and bent by histones and other proteins. On the other hand, the stressed DNA itself affects chromatin assembly inversely, e.g., the unwinding stress may promote SMAR binding to the matrix. The interplay between chromosome structure and unwinding stress contributes significantly to eukaryotic gene regulation. In this paper, we investigate two issues: how torsional stress may promote SMAR anchorage to the matrix; and how the formation of chromatin loops may affect basic biochemical processes. We employ the Benham model for these purposes. Our analysis gives theoretical evidence that at least some SMARs are unwound under torsional stress and at the same time could serve as topological barriers for retaining the torsional stress on the chromatin loop which may be necessary for gene transcription.
Lyapunov Functions and Solutions of the Lyapunov Matrix Equation for Marginally Stable Systems
Kliem, Wolfhard; Pommer, Christian
2000-01-01
of the Lyapunov matrix equation and characterize the set of matrices $(B, C)$ which guarantees marginal stability. The theory is applied to gyroscopic systems, to indefinite damped systems, and to circulatory systems, showing how to choose certain parameter matrices to get sufficient conditions for marginal...
Differences in Functional Trait Distribution between Inselberg and Adjacent Matrix Floras
John T. Hunter
2016-01-01
Full Text Available Inselbergs and the adjacent matrix represent extremes of different environmental conditions and should shed light on the changing allocation of plant resources across strong and abrupt resource gradients. Here I use collated life history trait data from 840 taxa found within typical insular inselberg and adjacent matrix floras from the New England Batholith region of eastern Australia. These species were sorted into guilds of specificity to the inselberg environment. Scored traits include life form, plant height, leaf area, fruit size, seed size, mono- or polycarpy, underground storage organs, regenerative/clonality, and flowering phenology. With reduced water and nutrient resources, typical of inselbergs, allocation of plant resources to vegetative reproduction and storage organs is a disadvantage. Plants restricted to inselbergs were shorter, usually polycarpic shrubs, with smaller leaves, fruits, and seeds. Flowering time was found to be earlier and reduced in length; diaspores often have dormancy and are dispersed locally in comparison to the matrix. The results show that with limited resources the creation of underground storage organs or vegetative reproduction becomes unviable on habitats characterised by shallow soil. Inselberg taxa of the study region are likely to be under greater threat than the matrix due to anthropogenic climate change.
Information, Utility & Bounded Rationality
Ortega, Pedro A
2011-01-01
Perfectly rational decision-makers maximize expected utility, but crucially ignore the resource costs incurred when determining optimal actions. Here we employ an axiomatic framework for bounded rational decision-making based on a thermodynamic interpretation of resource costs as information costs. This leads to a variational "free utility" principle akin to thermodynamical free energy that trades off utility and information costs. We show that bounded optimal control solutions can be derived from this variational principle, which leads in general to stochastic policies. Furthermore, we show that risk-sensitive and robust (minimax) control schemes fall out naturally from this framework if the environment is considered as a bounded rational and perfectly rational opponent, respectively. When resource costs are ignored, the maximum expected utility principle is recovered.
Uncertainty, rationality, and agency
Hoek, Wiebe van der
2006-01-01
Goes across 'classical' borderlines of disciplinesUnifies logic, game theory, and epistemics and studies them in an agent-settingCombines classical and novel approaches to uncertainty, rationality, and agency
Crab Rationalization Permit Program
National Oceanic and Atmospheric Administration, Department of Commerce — The Crab Rationalization Program (Program) allocates BSAI crab resources among harvesters, processors, and coastal communities. The North Pacific Fishery Management...
Janusz J. Charatonik
1994-05-01
Full Text Available Spaces which are metrizable completions of the space Q of rationals are described. A characterization of metrizable spaces having the same family of metrizable completions as Q is deduced.
Brics, Martins; Kapoor, Varun; Bauer, Dieter [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany)
2013-07-01
Time-dependent density functional theory (TDDFT) with known and practicable exchange-correlation potentials does not capture highly correlated electron dynamics such as single-photon double ionization, autoionization, or nonsequential ionization. Time-dependent reduced density matrix functional theory (TDRDMFT) may remedy these problems. The key ingredients in TDRDMFT are the natural orbitals (NOs), i.e., the eigenfunctions of the one-body reduced density matrix (1-RDM), and the occupation numbers (OCs), i.e., the respective eigenvalues. The two-body reduced density matrix (2-RDM) is then expanded in NOs, and equations of motion for the NOs can be derived. If the expansion coefficients of the 2-RDM were known exactly, the problem at hand would be solved. In practice, approximations have to be made. We study the prospects of TDRDMFT following a top-down approach. We solve the exact two-electron time-dependent Schroedinger equation for a model Helium atom in intense laser fields in order to study highly correlated phenomena such as the population of autoionizing states or single-photon double ionization. From the exact wave function we calculate the exact NOs, OCs, the exact expansion coefficients of the 2-RDM, and the exact potentials in the equations of motion. In that way we can identify how many NOs and which level of approximations are necessary to capture such phenomena.
[Concepts of rational taxonomy].
Pavlinov, I Ia
2011-01-01
The problems are discussed related to development of concepts of rational taxonomy and rational classifications (taxonomic systems) in biology. Rational taxonomy is based on the assumption that the key characteristic of rationality is deductive inference of certain partial judgments about reality under study from other judgments taken as more general and a priory true. Respectively, two forms of rationality are discriminated--ontological and epistemological ones. The former implies inference of classifications properties from general (essential) properties of the reality being investigated. The latter implies inference of the partial rules of judgments about classifications from more general (formal) rules. The following principal concepts of ontologically rational biological taxonomy are considered: "crystallographic" approach, inference of the orderliness of organismal diversity from general laws of Nature, inference of the above orderliness from the orderliness of ontogenetic development programs, based on the concept of natural kind and Cassirer's series theory, based on the systemic concept, based on the idea of periodic systems. Various concepts of ontologically rational taxonomy can be generalized by an idea of the causal taxonomy, according to which any biologically sound classification is founded on a contentwise model of biological diversity that includes explicit indication of general causes responsible for that diversity. It is asserted that each category of general causation and respective background model may serve as a basis for a particular ontologically rational taxonomy as a distinctive research program. Concepts of epistemologically rational taxonomy and classifications (taxonomic systems) can be interpreted in terms of application of certain epistemological criteria of substantiation of scientific status of taxonomy in general and of taxonomic systems in particular. These concepts include: consideration of taxonomy consistency from the
Controllability under rational expectations.
Hughes Hallett Andrew; Di Bartolomeo Giovanni; Acocella Nicola
2008-01-01
We show that rational expectations do not affect the controllability of an economic system, either in its static or in its dynamic version, even though their introduction in many other circumstances may make it impossible for the policymaker to affect certain variables due to policy invariance, policy neutrality or time inconsistency problems. The controllability conditions stated by Tinbergen and subsequent authors continue to hold under rational expectations; and when they are satisfied rat...
Phronesis – hermeneutic rationality
Michał Januszkiewicz
2016-01-01
The paper is an attempt to rethink the problem of rationality in the humanities in the context of hermeneutics. The author argues that this concept of rationality must be founded on the Aristotelian concept of practical reason (phronesis). Phronesis is a need for discernment of the self or rather to find itself in its own, tangible, specific situation. This understanding concerns Being-inthe-world and belongs to what in Martin Heidegger’s ontohermeneutics we can determine precisely as underst...
Ghalei, Behnam; Sakurai, Kento; Kinoshita, Yosuke; Wakimoto, Kazuki; Isfahani, Ali Pournaghshband; Song, Qilei; Doitomi, Kazuki; Furukawa, Shuhei; Hirao, Hajime; Kusuda, Hiromu; Kitagawa, Susumu; Sivaniah, Easan
2017-07-01
Mixed matrix membranes (MMMs) for gas separation applications have enhanced selectivity when compared with the pure polymer matrix, but are commonly reported with low intrinsic permeability, which has major cost implications for implementation of membrane technologies in large-scale carbon capture projects. High-permeability polymers rarely generate sufficient selectivity for energy-efficient CO2 capture. Here we report substantial selectivity enhancements within high-permeability polymers as a result of the efficient dispersion of amine-functionalized, nanosized metal-organic framework (MOF) additives. The enhancement effects under optimal mixing conditions occur with minimal loss in overall permeability. Nanosizing of the MOF enhances its dispersion within the polymer matrix to minimize non-selective microvoid formation around the particles. Amination of such MOFs increases their interaction with thepolymer matrix, resulting in a measured rigidification and enhanced selectivity of the overall composite. The optimal MOF MMM performance was verified in three different polymer systems, and also over pressure and temperature ranges suitable for carbon capture.
Davidson on Turing: Rationality Misunderstood?
John-Michael Kuczynski
2005-12-01
Full Text Available Alan Turing advocated a kind of functionalism: A machine M is a thinker provided that it responds in certain ways to certain inputs. Davidson argues that Turing’s functionalism is inconsistent with a cer-tain kind of epistemic externalism, and is therefore false. In Davidson’s view, concepts consist of causal liasons of a certain kind between subject and object. Turing’s machine doesn’t have the right kinds of causal li-asons to its environment. Therefore it doesn’t have concepts. Therefore it doesn’t think. I argue that this reasoning is entirely fallacious. It is true that, in some cases, a causal liason between subject and object is part of one’s concept of that object. Consequently, to grasp certain propositions, one must have certain kids of causal ties to one’s environment. But this means that we must rethink some old views on what rationality is. It does not mean, pace Davidson, that a precondition for being rational is being causally embedded in one’s environment in a certain way. If Tur-ing’s machine isn’t capable of thinking (I leave it open whether it is or is not, that has nothing to do with its lacking certain kinds of causal con-nections to the environment. The larger significance of our discussion is this: rationality consists either in one’s ability to see the bearing of purely existential propositions on one another or rationality is simply not to be understood as the ability see the bearing that propositions have on one another.
2-rational Cubic Spline Involving Tension Parameters
M Shrivastava; J Joseph
2000-08-01
In the present paper, 1-piecewise rational cubic spline function involving tension parameters is considered which produces a monotonic interpolant to a given monotonic data set. It is observed that under certain conditions the interpolant preserves the convexity property of the data set. The existence and uniqueness of a 2-rational cubic spline interpolant are established. The error analysis of the spline interpolant is also given.
The neural basis of bounded rational behavior
Coricelli, Giorgio; Nagel, Rosemarie
2010-01-01
Bounded rational behaviour is commonly observed in experimental games and in real life situations. Neuroeconomics can help to understand the mental processing underlying bounded rationality and out-of-equilibrium behaviour. Here we report results from recent studies on the neural basis of limited steps of reasoning in a competitive setting —the beauty contest game. We use functional magnetic resonance imaging (fMRI) to study the neural correlates of human mental processes in strategic games. ...
RATIONAL SOLUTIONS FOR DEVELOPMENT OF TELECOMMUNICATIONS NETWORKS
Sokolov, A.; Sokolov, N.
2014-01-01
The number of complicated problems has to be solved during modernization of the telecommunication networks. Some problems can be defined as a search for rational solutions instead of the traditional approach that consists in finding the cost function optimum. This new approach minimizes the risk that inevitably arises when elaborating a long term plan for the telecommunication networks development. The article discusses the proposed methodological approach of finding rational solutions. Probl...
Kinetic-energy matrix elements for atomic Hylleraas-CI wave functions.
Harris, Frank E
2016-05-28
Hylleraas-CI is a superposition-of-configurations method in which each configuration is constructed from a Slater-type orbital (STO) product to which is appended (linearly) at most one interelectron distance rij. Computations of the kinetic energy for atoms by this method have been difficult due to the lack of formulas expressing these matrix elements for general angular momentum in terms of overlap and potential-energy integrals. It is shown here that a strategic application of angular-momentum theory, including the use of vector spherical harmonics, enables the reduction of all atomic kinetic-energy integrals to overlap and potential-energy matrix elements. The new formulas are validated by showing that they yield correct results for a large number of integrals published by other investigators.
Veis, Libor; Neese, Frank; Legeza, Örs; Pittner, Jiří
2016-01-01
We present an alternative method for accurate treatment of strongly correlated systems which combines the coupled cluster (CC) theory with the density matrix renormalization group method (DMRG). The connection is done in the spirit of the tailored CC method [T. Kinoshita, O. Hino, and R. J. Bartlett, \\textit{J. Chem. Phys.} {\\bf 123} (2005) 074106]. In the first step, the configuration interaction (CI) coefficients corresponding to single and double excitations within the DMRG active space are computed by contraction of the matrix product state (MPS) matrices. These coefficients are subsequently transformed into CC amplitudes. In the second step, the CC amplitudes are used to define a "tailored" single reference CCSD wavefunction. As a result, the DMRG method is responsible for the proper description of non-dynamic correlation, whereas the dynamic correlation is incorporated through the framework of the CC theory. We illustrate the potential of this method on prominent multireference model systems like N$_2$ ...
On some 3-point functions in the W{sub 4} CFT and related braiding matrix
Furlan, P. [Dipartimento di Fisica dell’Università di Trieste,Trieste (Italy); Petkova, V.B. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences,Sofia (Bulgaria)
2015-12-14
We construct a class of 3-point constants in the sl(4) Toda conformal theory W{sub 4}, extending the examples in Fateev and Litvinov http://dx.doi.org/10.1088/1126-6708/2007/11/002. Their knowledge allows to determine the braiding/fusing matrix transforming 4-point conformal blocks of one fundamental, labelled by the 6-dimensional sl(4) representation, and three partially degenerate vertex operators. It is a 3×3 submatrix of the generic 6×6 fusing matrix consistent with the fusion rules for the particular class of representations. We check a braiding relation which has wider applications to conformal models with sl(4) symmetry. The 3-point constants in dual regions of central charge are compared in preparation for a BPS like relation in the (sl)-hat (4) WZW model.
From Function to System: Advances in Choosing a Matrix Structure of the Translation Process
Ирина Николаевна Ремхе
2016-12-01
Full Text Available This article presents the authors’ view on the transition towards a new paradigm in the study of the translation process based on synergy, collaboration, networking and the cognitive structure of the translator’s mind. In the search for a hypothetical cognitive model of translation, a matrix model is represented to further enrich the interdisciplinary platform through understanding the conglomerate of the many sources involved in the act of translation and focusing on the role of the individual human being in translational cognition. The Map-Matrix Model comprises three levels of the translator’s mental space: Neurological, Representational and Conceptual. Each level corresponds to the inheritance relations between mapping patterns, clusters and frames. The model will be presented and interrogated through the results of a practical Think-aloud protocols experiment in order to give a better insight into the translation efficiency in terms of information processing and a clearer assumption of the feasibility of the concept.
Application of random matrix theory to microarray data for discovering functional gene modules.
Luo, Feng; Zhong, Jianxin; Yang, Yunfeng; Zhou, Jizhong
2006-03-01
We show that spectral fluctuation of coexpression correlation matrices of yeast gene microarray profiles follows the description of the Gaussian orthogonal ensemble (GOE) of the random matrix theory (RMT) and removal of small values of the correlation coefficients results in a transition from the GOE statistics to the Poisson statistics of the RMT. This transition is directly related to the structural change of the gene expression network from a global network to a network of isolated modules.
Oscillation Criteria Based on a New Weighted Function for Linear Matrix Hamiltonian Systems
Yingxin Guo
2011-01-01
Full Text Available By employing a generalized Riccati technique and an integral averaging technique, some new oscillation criteria are established for the second-order matrix differential system U′=A(xU+B(tV, V′=C(xU−A∗(tV, where A(t, B(t, and C(t are (n×n-matrices, and B, C are Hermitian. These results are sharper than some previous results.
Function-Based Access Control (FBAC): From Access Control Matrix to Access Control Tensor
Desmedt, Yvo; Shaghaghi, Arash
2016-01-01
Security researchers have stated that the core concept behind current implementations of access control predates the Internet. These assertions are made to pinpoint that there is a foundational gap in this field, and one should consider revisiting the concepts from the ground up. Moreover, Insider threats, which are an increasing threat vector against organizations are also associated with the failure of access control. Access control models derived from access control matrix encompass three ...
Application of random matrix theory to microarray data for discovering functional gene modules
Luo, F. [Xiangtan University, Xiangtan Hunan, China; Zhong, Jianxin [ORNL; Yang, Y. F. [unknown; Zhou, Jizhong [ORNL
2006-03-01
We show that spectral fluctuation of coexpression correlation matrices of yeast gene microarray profiles follows the description of the Gaussian orthogonal ensemble (GOE) of the random matrix theory (RMT) and removal of small values of the correlation coefficients results in a transition from the GOE statistics to the Poisson statistics of the RMT. This transition is directly related to the structural change of the gene expression network from a global network to a network of isolated modules.
Pan, Hongbo; Tao, Chao; Zou, Zhengrong
2016-09-01
The rigorous sensor model (RSM) and the rational function model (RFM) are the most widely used geometric models for georeferencing. Even though geometric calibration and bundle adjustment with the RFM has been carried out for the ZiYuan-3 (ZY-3) earth observation satellite, few studies determined the major error sources affecting the three line cameras (TLCs). In this work, we propose a new set of compensation parameters, the shift and drift of both pitch and roll angle, for the RSM, since the yaw angle error is not as significant as the pitch angle for very narrow field of view images. Corresponding bias compensation methods are also validated for the RFM. Seven continuous strip scenes from the ZY-3 TLCs are used for the experiments, for which the root mean square error (RMSE) in the image space and object space are calculated. The experimental results demonstrate that the proposed method can model the major errors and achieve the same accuracy as the use of redundant parameters. With this model, the RMSEs of the checkpoints are 2.048 m in planimetry and 1.256 m in height. The RMSEs would increase to 2.522 m in planimetry and 2.635 m in height if the drift parameters were ignored. However, subpixel georeferencing accuracy is not as sensitive as the RMSE in the object space, since the RMSE of the height increases to 2.6 m compared to 1.3 m, while the change of the RMSE in the image space is within 0.1 pixels. In addition, the relationships among the TLCs are dynamic during imaging. Compensation for the TLCs as a unit introduces a height error of about 1 m, while maintaining subpixel georeferencing accuracy. Two ground control points (GCPs) placed at the beginning and the end of a strip are preferred to reduce oscillation and point picking errors. Compared with the RSM, the RFM can achieve similar accuracy when the drift compensation model and shift compensation model are applied.
Rational approximations and quantum algorithms with postselection
Mahadev, U.; de Wolf, R.
2015-01-01
We study the close connection between rational functions that approximate a given Boolean function, and quantum algorithms that compute the same function using post-selection. We show that the minimal degree of the former equals (up to a factor of 2) the minimal query complexity of the latter. We gi
Sharareh Shojaie
2015-03-01
Full Text Available Efficient differentiation of pluripotent cells to proximal and distal lung epithelial cell populations remains a challenging task. The 3D extracellular matrix (ECM scaffold is a key component that regulates the interaction of secreted factors with cells during development by often binding to and limiting their diffusion within local gradients. Here we examined the role of the lung ECM in differentiation of pluripotent cells in vitro and demonstrate the robust inductive capacity of the native lung matrix alone. Extended culture of stem cell-derived definitive endoderm on decellularized lung scaffolds in defined, serum-free medium resulted in differentiation into mature airway epithelia, complete with ciliated cells, club cells, and basal cells with morphological and functional similarities to native airways. Heparitinase I, but not chondroitinase ABC, treatment of scaffolds revealed that the differentiation achieved is dependent on heparan sulfate proteoglycans and its bound factors remaining on decellularized scaffolds.
Liu, Quanhua; Simmer, C.; Ruprecht, E.
1991-05-01
An analytical expression has been derived for the radiation source function for a thermally emitting and scattering medium within the Matrix-Operator-Method (MOM). The final formulation is equivalent to the one found by Aronson and Yarmush (1966), who applied the transfer matrix to gamma-ray and neutron penetration and to transport problems in slab geometry. For the thermal infrared case, the general analytical expression reduces to a simple formula, which depends only on the zenith angle. The formula is incorporated in the MOM together with analytical expressions of the transmission and reflection operators following Liu (1990). With the aid of these formulations, expressions are derived as parameterizations of the scattering effects of clouds in nonscattering radiative transfer models by a modification of the emissivity and transmittance of clouds. The accuracy is better than 0.5 percent in the 11.5 micron window region for clouds of arbitrary optical depths.
Buecking, N. [Technische Universitaet Berlin, Institut fuer Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Berlin (Germany); Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin (Germany); Scheffler, M. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin (Germany); Kratzer, P. [Universitaet Duisburg-Essen, Fachbereich Physik - Theoretische Physik, Duisburg (Germany); Knorr, A. [Technische Universitaet Berlin, Institut fuer Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Berlin (Germany)
2007-08-15
A theory for the description of optical excitation and the subsequent phonon-induced relaxation dynamics of nonequilibrium electrons at semiconductor surfaces is presented. In the first part, the fundamental dynamical equations for electronic occupations and polarisations are derived using density matrix formalism (DMT) for a surface-bulk system including the interaction of electrons with the optical field and electron-phonon interactions. The matrix elements entering these equations are either determined empirically or by density functional theory (DFT) calculations. In the subsequent parts of the paper, the dynamics at two specific semiconductor surfaces are discussed in detail. The electron relaxation dynamics underlying a time-resolved two photon photoemission experiment at an InP surface is investigated in the limit of a parabolic four band model. Moreover, the electron relaxation dynamics at a Si(100) surface is analysed. Here, the coupling parameters and the band structure are obtained from an DFT calculations. (orig.)
Wu, Su-Yong; Long, Xing-Wu; Yang, Kai-Yong
2009-09-01
To improve the current status of home multilayer optical coating design with low speed and poor efficiency when a large layer number occurs, the accurate calculation and fast realization of merit function’s gradient and Hesse matrix is pointed out. Based on the matrix method to calculate the spectral properties of multilayer optical coating, an analytic model is established theoretically. And the corresponding accurate and fast computation is successfully achieved by programming with Matlab. Theoretical and simulated results indicate that this model is mathematically strict and accurate, and its maximal precision can reach floating-point operations in the computer, with short time and fast speed. Thus it is very suitable to improve the optimal search speed and efficiency of local optimization methods based on the derivatives of merit function. It has outstanding performance in multilayer optical coating design with a large layer number.
Ellina, Maria-Ioanna; Bouris, Panagiotis; Aletras, Alexios J; Theocharis, Achilleas D; Kletsas, Dimitris; Karamanos, Nikos K
2014-08-01
ErbB receptors, EGFR and HER2, have been implicated in the development and progression of colon cancer. Several intracellular pathways are mediated upon activation of EGFR and/or HER2 by EGF. However, there are limited data regarding the EGF-mediated signaling affecting functional cell properties and the expression of extracellular matrix macromolecules implicated in cancer progression. Functional assays, such as cell proliferation, transwell invasion assay and migration were performed to evaluate the impact of EGFR/HER2 in constitutive and EGF-treated Caco-2 cells. Signaling pathways were evaluated using specific intracellular inhibitors. Western blot was also utilized to examine the phosphorylation levels of ERK1/2. Real time PCR was performed to evaluate gene expression of matrix macromolecules. EGF increases cell proliferation, invasion and migration and importantly, EGF mediates overexpression of EGFR and downregulation of HER2. The EGF-EGFR axis is the main pathway affecting colon cancer's invasive potential, proliferative and migratory ability. Intracellular pathways (PI3K-Akt, MEK1/2-Erk and JAK-STAT) are all implicated in the migratory profile. Notably, MT1- and MT2-MMP as well as TIMP-2 are downregulated, whereas uPA is upregulated via an EGF-EGFR network. The EGF-EGFR axis is also implicated in the expression of syndecan-4 and TIMP-1. However, glypican-1 upregulation by EGF is mainly mediated via HER2. The obtained data highlight the crucial importance of EGF on the expression of both receptors and on the EGF-EGFR/HER2 signaling network, reveal the distinct roles of EGFR and HER2 on expression of matrix macromolecules and open a new area in designing novel agents in targeting colon cancer. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties. Copyright © 2014 Elsevier B.V. All rights reserved.
What Information Theory Says about Bounded Rational Best Response
Wolpert, David H.
2005-01-01
Probability Collectives (PC) provides the information-theoretic extension of conventional full-rationality game theory to bounded rational games. Here an explicit solution to the equations giving the bounded rationality equilibrium of a game is presented. Then PC is used to investigate games in which the players use bounded rational best-response strategies. Next it is shown that in the continuum-time limit, bounded rational best response games result in a variant of the replicator dynamics of evolutionary game theory. It is then shown that for team (shared-payoff) games, this variant of replicator dynamics is identical to Newton-Raphson iterative optimization of the shared utility function.
[Rational use of antibiotics].
Walger, P
2016-06-01
International and national campaigns draw attention worldwide to the rational use of the available antibiotics. This has been stimulated by the high prevalence rates of drug-resistant pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE), a threatening spread of development of resistance in Gram-negative rod-shaped bacteria and the selection of Clostridium difficile with a simultaneous clear reduction in the development of new antibiotics. The implementation of antibiotic stewardship programs aims to maintain their effectiveness by a rational use of the available antibiotics. The essential target of therapy with antibiotics is successful treatment of individual patients with bacterial infections. The optimal clinical treatment results can only be achieved when the toxicity, selection of pathogens and development of resistance are minimized. This article presents the principles of a rational antibiotic therapy.
Balawender, Robert
2009-01-01
A unified formulation of the equilibrium state of a many-electron system in terms of an ensemble (mixed-state) density matrix, which applies the maximum entropy principle combined with the use of Massieu-Planck function, is presented. The properties of the characteristic functionals for macrocanonical ensemble are established. Their extension to other ensembles is accomplished via a Legendre transform. The relations between equilibrium states defined by a formal mathematical procedure and by criteria adopted for traditional (Gibbs, Helmholtz) potentials are investigated using Massieu-Planck transform. The preeminence of the Massieu-Planck function over the traditional thermodynamic potentials is discussed in detail on an example of their second derivatives. Introduced functions are suitable for application to the extensions of the density functional theory, both at finite and zero temperatures.
Algebraic Topology, Rational Homotopy
1988-01-01
This proceedings volume centers on new developments in rational homotopy and on their influence on algebra and algebraic topology. Most of the papers are original research papers dealing with rational homotopy and tame homotopy, cyclic homology, Moore conjectures on the exponents of the homotopy groups of a finite CW-c-complex and homology of loop spaces. Of particular interest for specialists are papers on construction of the minimal model in tame theory and computation of the Lusternik-Schnirelmann category by means articles on Moore conjectures, on tame homotopy and on the properties of Poincaré series of loop spaces.
Phronesis – hermeneutic rationality
Michał Januszkiewicz
2016-06-01
Full Text Available The paper is an attempt to rethink the problem of rationality in the humanities in the context of hermeneutics. The author argues that this concept of rationality must be founded on the Aristotelian concept of practical reason (phronesis. Phronesis is a need for discernment of the self or rather to find itself in its own, tangible, specific situation. This understanding concerns Being-inthe-world and belongs to what in Martin Heidegger’s ontohermeneutics we can determine precisely as understanding in the hermeneutic sense.
Monotone data visualization using rational trigonometric spline interpolation.
Ibraheem, Farheen; Hussain, Maria; Hussain, Malik Zawwar
2014-01-01
Rational cubic and bicubic trigonometric schemes are developed to conserve monotonicity of curve and surface data, respectively. The rational cubic function has four parameters in each subinterval, while the rational bicubic partially blended function has eight parameters in each rectangular patch. The monotonicity of curve and surface data is retained by developing constraints on some of these parameters in description of rational cubic and bicubic trigonometric functions. The remaining parameters are kept free to modify the shape of curve and surface if required. The developed algorithm is verified mathematically and demonstrated graphically.
Monotone Data Visualization Using Rational Trigonometric Spline Interpolation
Farheen Ibraheem
2014-01-01
Full Text Available Rational cubic and bicubic trigonometric schemes are developed to conserve monotonicity of curve and surface data, respectively. The rational cubic function has four parameters in each subinterval, while the rational bicubic partially blended function has eight parameters in each rectangular patch. The monotonicity of curve and surface data is retained by developing constraints on some of these parameters in description of rational cubic and bicubic trigonometric functions. The remaining parameters are kept free to modify the shape of curve and surface if required. The developed algorithm is verified mathematically and demonstrated graphically.
Tezvergil-Mutluay, Arzu; Agee, Kelli A; Hoshika, Tomohiro; Tay, Franklin R; Pashley, David H
2010-10-01
This study has examined the use of polyvinylphosphonic acid (PVPA) as a potential matrix metalloproteinase (MMP) inhibitor and how brief cross-linking of demineralized dentin matrix that did not affect its mechanical properties enhanced the anti-MMP activity of PVPA. The anti-MMP potential of five PVPA concentrations (100-3000 microgml(-1)) was initially screened using a rhMMP-9 colorimetic assay. Demineralized dentin beams were treated with the same five concentrations of PVPA to collagen and then aged for 30 days in a calcium- and zinc-containing medium. The changes in modulus of elasticity, loss of dry mass and dissolution of collagen peptides were measured via three-point bending, precision weighing and hydroxyproline assay, respectively. All tested PVPA concentrations were highly effective (P<0.05) in inhibiting MMP-9. Ageing in the incubation medium did not significantly alter the modulus of elasticity of the five PVPA treatment groups. Conversely, aged dentin beams from the control group exhibited a significant decline in their modulus of elasticity (P<0.05) over time. Mass loss from the dentin beams and the corresponding increase in hydroxyproline in the medium in the five PVPA treatment groups were significantly lower than for the control (P<0.05). PVPA is a potent inhibitor of endogenous MMP activities in demineralized dentin. It may be used as an alternative to chlorhexidine to prevent collagen degradation within hybrid layers to extend the longevity of resin-dentin bonds.
Mentel, Ł. M.; Meer, R. van; Gritsenko, O. V. [Section Theoretical Chemistry, VU University, Amsterdam (Netherlands); Pohang University of Science and Technology, Pohang (Korea, Republic of); Baerends, E. J. [Section Theoretical Chemistry, VU University, Amsterdam (Netherlands); Pohang University of Science and Technology, Pohang (Korea, Republic of); Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)
2014-06-07
For chemistry an accurate description of bond weakening and breaking is vital. The great advantage of density matrix functionals, as opposed to density functionals, is their ability to describe such processes since they naturally cover both nondynamical and dynamical correlation. This is obvious in the Löwdin-Shull functional, the exact natural orbital functional for two-electron systems. We present in this paper extensions of this functional for the breaking of a single electron pair bond in N-electron molecules, using LiH, BeH{sup +}, and Li{sub 2} molecules as prototypes. Attention is given to the proper formulation of the functional in terms of not just J and K integrals but also the two-electron L integrals (K integrals with a different distribution of the complex conjugation of the orbitals), which is crucial for the calculation of response functions. Accurate energy curves are obtained with extended Löwdin-Shull functionals along the complete dissociation coordinate using full CI calculations as benchmark.
Noguchi, Yoshifumi [Department of Physics, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan); Computational Materials Science Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)], E-mail: NOGUCHI.Yoshifumi@nims.go.jp; Ishii, Soh; Ohno, Kaoru [Department of Physics, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan)
2007-05-15
Short-range electron correlation plays a very important role in small systems and significantly affects the double ionization energy (DIE) spectra and the two-electron distribution functions of a CO molecule, for example. In our calculations, the local density approximation (LDA) of the density functional theory is chosen as a starting point, the GW approximation (GWA) is performed in a next step, and finally the Bethe-Salpeter equation for the T-matrix, describing the particle-particle ladder diagrams up to the infinite order, is solved via the eigenvalue problem. The calculated DIE spectra, which are directly given by the eigenvalues, reflect the short-range electron correlation and are in good agreement with the experiment. We confirm that the Coulomb hole appears in the two-electron distribution function constructed from the eigenfunction.
Smeyers, Y.G.; Delgado-Barrio, G.
1976-05-01
The half-projected Hartree--Fock function for singlet states (HPHF) is analyzed in terms of natural electronic configurations. For this purpose the HPHF spinless density matrix and its natural orbitals are first deduced. It is found that the HPHF function does not contain any contribution from odd-times excited configurations. It is seen in addition, in the case of the singlet ground states, this function is approximately equivalent to two closed-shell configurations, although the nature of the excited one depends on the nuclear geometry. An example is given in the case of the LiH ground state. Finally, the application of this model for studying systems of more than two atoms is criticized.
Plotkin, Marian; Vaibavi, Srirangam Ramanujam; Rufaihah, Abdul Jalil; Nithya, Venkateswaran; Wang, Jing; Shachaf, Yonatan; Kofidis, Theo; Seliktar, Dror
2014-02-01
This study compares the effect of four injectable hydrogels with different mechanical properties on the post-myocardial infarction left ventricle (LV) remodeling process. The bioactive hydrogels were synthesized from Tetronic-fibrinogen (TF) and PEG-fibrinogen (PF) conjugates; each hydrogel was supplemented with two levels of additional cross-linker to increase the matrix stiffness as measured by the shear storage modulus (G'). Infarcts created by ligating the left anterior descending coronary artery in a rodent model were treated with the hydrogels, and all four treatment groups showed an increase in wall thickness, arterial density, and viable cardiac tissue in the peri-infarct areas of the LV. Echocardiography and hemodynamics data of the PF/TF treated groups showed significant improvement of heart function associated with the attenuated effects of the remodeling process. Multi-factorial regression analysis indicated that the group with the highest modulus exhibited the best rescue of heart function and highest neovascularization. The results of this study demonstrate that multiple properties of an injectable bioactive biomaterial, and notably the matrix stiffness, provide the multifaceted stimulation necessary to preserve cardiac function and prevent adverse remodeling following a heart attack.
Witała H.
2010-04-01
Full Text Available For a sharply cut-oﬀ Coulomb potential we derive analytically the asymptotic form of the threedimensional wave function and the related scattering amplitude. We show a failure of the standard renormalization factor which is believed to be generally valid for any type of screening. We obtain also the asymptotic form of the corresponding three-dimensional half-shell t-matrix. Our results are fully supported by the numerical solutions of the three-dimensional Lippmann-Schwinger equation.
SONG Li-Na; ZHANG Hong-Qing
2006-01-01
Taking the Konopelchenko-Dubrovsky system as a simple example, some families of rational formal hyperbolic function solutions, rational formal triangular periodic solutions, and rational solutions are constructed by using the extended Riccati equation rational expansion method presented by us. The method can also be applied to solve more nonlinear partial differential equation or equations.
Craps, Ben; Nguyen, Kévin
2016-01-01
Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.
Transmission-matrix-based point-spread-function engineering through a complex medium
Boniface, Antoine; Blochet, Baptiste; Piestun, Rafael; Gigan, Sylvain
2016-01-01
We report a method to design at will the spatial profile of transmitted coherent light after propagation through a scattering sample. We compute an operator based on the experimentally measured transmission matrix, obtained by numerically adding an arbitrary mask in the Fourier domain prior to focusing. We demonstrate the strength of the technique through several examples: propagating Bessel beams, thus generating foci smaller than the diffraction limited speckle grain, donut beams, and helical beams. We characterize the 3D profile of the achieved foci and analyze the fundamental limitations of the technique. Our approach generalizes Fourier optics concepts for random media, and opens in particular interesting perspectives for super-resolution imaging through turbid media.
Ideal Theory, Real Rationality
Flyvbjerg, Bent
Understanding rationality and power are key to understanding actual political and administrative behavior. Political and administrative theory that ignores this fact stand in danger of being at best irrelevant or, at worst part of the problem it whishes to solve. The paper presents Jürgen Haberma...
In Between Magic and Rationality, Vibeke Steffen, Steffen Jöhncke, and Kirsten Marie Raahauge bring together a diverse range of ethnographies that examine and explore the forms of reflection, action, and interaction that govern the ways different contemporary societies create and challenge...
Dryden, Windy
2010-01-01
In this title, highly respected author, Windy Dryden, discusses some of the ideas that are central to the theory underpinning rational emotive behaviour therapy (REBT). Founded in 1955 by Albert Ellis (1913-2007) and developed in the intervening years, REBT was the first approach to be created within what is now known as the cognitive behaviour therapy (CBT) tradition.
Diagnosis, Dogmatism, and Rationality.
Rabinowitz, Jonathan; Efron, Noah J.
1997-01-01
Presents findings suggesting that misdiagnoses frequently stem from flaws in human information processing, particularly in collecting and using information. Claims that improved diagnostic tools will not remedy the problem. Drawing on the work of Karl Popper and Robin Collingwood, proposes operational principles to ensure a rational diagnostic…
Ideal Theory, Real Rationality
Flyvbjerg, Bent
Understanding rationality and power are key to understanding actual political and administrative behavior. Political and administrative theory that ignores this fact stand in danger of being at best irrelevant or, at worst part of the problem it whishes to solve. The paper presents Jürgen Habermas...
Sulcus vocalis: a rational analytical approach to diagnosis and management.
Ford, C N; Inagi, K; Khidr, A; Bless, D M; Gilchrist, K W
1996-03-01
The term sulcus vocalis has been applied to a spectrum of disorders ranging from minor vocal fold indentations to destructive lesions causing severe dysphonia. To clarify the pathophysiology and to develop a more rational approach to treatment, we report a series of sulcus patients including 20 surgical cases. Clinical and histopathologic analysis produced a clinically useful classification: type 1 is a physiologic variant accentuated by atrophy but with intact lamina propria; types 2 (sulcus vergeture) and 3 (sulcus vocalis) are characterized by severe dysphonia, loss of vibratory activity, and destruction of the functional superficial lamina propria. These latter cases respond favorably to microsurgery designed to remove destroyed tissue, release scar contracture, and promote mucosal redraping by regional undermining. Further study of the extracellular matrix of the superficial lamina propria (Reinke's space) might indicate a common pathway in the pathogenesis of sulcus deformities and other related benign vocal fold lesions.
Rationality and social behavior.
Tullberg, Jan
2003-10-21
This article penetrates the relationship between social behavior and rationality. A critical analysis is made of efforts to classify some behaviors as altruistic, as they simultaneously meet criteria of rationality by not truly being self-destructive. Newcomb's paradox is one attempt to create a hybrid behavior that is both irrational and still meets some criterion of rationality. Such dubious rationality is often seen as a source of altruistic behavior. Group selection is a controversial topic. Sober and Wilson (Unto Others--The Evolution and Psychology of Unselfish Behavior, Harvard University Press, Cambridge, MA, 1998) suggest that a very wide concept of group selection might be used to explain altruism. This concept also includes kin selection and reciprocity, which blurs its focus. The latter mechanisms hardly need further arguments to prove their existence. This article suggests that it is group selection in a strict sense that should be investigated to limit semantic neologism and confusion. In evaluation, the effort to muster a mechanism for altruism out of group selection has not been successful. However, this is not the end to group selection, but rather a good reason to investigate more promising possibilities. There is little reason to burden group selection with the instability of altruism caused by altruistic members of a group having lower fitness than egoistic members. Group selection is much more likely to develop in combination with group egoism. A common project is supported by incitement against free riding, where conformist members joined in solidarity achieve a higher fitness than members pursuing more individualistic options. Group egoism is in no conflict with rationality, and the effects of group selection will be supported rather than threatened by individual selection. Empirical evidence indicates a high level of traits such as conformism and out-group antagonism in line with group egoism. These traits are also likely candidates for
无
2002-01-01
Inclusion of MARs in transgene cassettes enhances their expression and reduces position-effect variations in the transgenic host. Four new MARs (TM2, TM3, AM1 and AM2) were isolated from tobacco and Arabidopsis by PCR method. The nuclei isolated from suspension- cultured cells of rice were used to prepare nuclear matrix. With a characterized MAR (TM1) as a positive control, the Matrix-MAR interactions were tested by an in vitro binding assay to identify the DNA sequences as MARs and their binding strength to nuclear matrix in vitro was compared. The results showed that TM2 and TM3 had stronger binding strength than TM1. To determine the functions of the four new MARs in vivo, binary vectors pBI121 carrying a uidA GUS reporter gene were modified with direct repeat MARs inserted on both sides of the reporter gene cassette and were transferred into tobaccos via Agrobacterium-mediated transformation procedure. Quantitative GUS assays of the transgenic tobaccos showed that when flanking a GUS reporter gene TM1, TM2, TM3 and AM1 increased uidA GUS gene expression level approximately 1.5-fold, 5-fold, 1.35-fold, 1.3-fold respectively and AM2 has no effect on gene expression. TM2 was found to be a strong MAR that could effectively increase gene expression level and could be used as an effective enhancing element to construct high efficient expression vectors. In this note the relations among the sequence features, binding strength in vitro and function in vivo of the five MARs were analyzed, and the potential significance of TM2 in plant genetic engineering was dis- cussed.
Tochowicz, Anna; Goettig, Peter; Evans, Richard; Visse, Robert; Shitomi, Yasuyuki; Palmisano, Ralf; Ito, Noriko; Richter, Klaus; Maskos, Klaus; Franke, Daniel; Svergun, Dmitri; Nagase, Hideaki; Bode, Wolfram; Itoh, Yoshifumi
2011-03-04
Homodimerization is an essential step for membrane type 1 matrix metalloproteinase (MT1-MMP) to activate proMMP-2 and to degrade collagen on the cell surface. To uncover the molecular basis of the hemopexin (Hpx) domain-driven dimerization of MT1-MMP, a crystal structure of the Hpx domain was solved at 1.7 Å resolution. Two interactions were identified as potential biological dimer interfaces in the crystal structure, and mutagenesis studies revealed that the biological dimer possesses a symmetrical interaction where blades II and III of molecule A interact with blades III and II of molecule B. The mutations of amino acids involved in the interaction weakened the dimer interaction of Hpx domains in solution, and incorporation of these mutations into the full-length enzyme significantly inhibited dimer-dependent functions on the cell surface, including proMMP-2 activation, collagen degradation, and invasion into the three-dimensional collagen matrix, whereas dimer-independent functions, including gelatin film degradation and two-dimensional cell migration, were not affected. These results shed light on the structural basis of MT1-MMP dimerization that is crucial to promote cellular invasion.
Shape preserving rational cubic spline for positive and convex data
Malik Zawwar Hussain
2011-11-01
Full Text Available In this paper, the problem of shape preserving C2 rational cubic spline has been proposed. The shapes of the positive and convex data are under discussion of the proposed spline solutions. A C2 rational cubic function with two families of free parameters has been introduced to attain the C2 positive curves from positive data and C2 convex curves from convex data. Simple data dependent constraints are derived on free parameters in the description of rational cubic function to obtain the desired shape of the data. The rational cubic schemes have unique representations.
Tabrisur Rahman Khan, Andreas Erbe, Michael Auinger, Frank Marlow and Michael Rohwerder
2011-01-01
Full Text Available Zinc is a well-known sacrificial coating material for iron and co-deposition of suitable particles is of interest for further improving its corrosion protection performance. However, incorporation of particles that are well dispersible in aqueous electrolytes, such as silica particles, is extremely difficult. Here, we report a detailed study of Zn–SiO2 nanocomposite coatings deposited from a zinc sulfate solution at pH 3. The effect of functionalization of the silica particles on the electro-codeposition was investigated. The best incorporation was achieved for particles modified with SiO2–SH, dithiooxamide or cysteamine; these particles have functional groups that can strongly interact with zinc and therefore incorporate well into the metal matrix. Other modifications (SiO2–NH3+, SiO2–Cl and N,N-dimethyldodecylamine of the silica particles lead to adsorption and entrapment only.
Galle C.
2006-11-01
relationship between the N neutron counting rate and the PorosityNc standard neutron porosity (limestone calibration was analysed (Fig. 2 and Fig. 3. For neutron porosities ranging from 0. 5 to 100%, we also examined the behaviour of N as a function of the borehole diameter (Fig. 4. To avoid the problem of correcting the hole effect and to be able to compare the porosities determined by neutron logging and measurements performed on core samples no matter what the depth was, the neutron counting rate was recalculated (N63 for a constant diameter of 63 mm (chosen arbitrarily, (Fig. 5. Then, a calibration curve between the N63 counting rate and the PorosityNR total reconstituted neutron porosity was determined for all the granite samples. From this relationship, we calculated a PorosityNg neutron porosity, called granitecalibration neutron porosity. Then PorosityNR, PorosityNg and PorosityNc were compared (Fig. 7, Fig. 9 and Fig. 10. By substracting the PorosityNma neutron matrix effect from PorosityNg and PorosityNc, we obtained the ng and nc water content values that we compared to the n water content measured on core samples (Fig. 8 and Fig. 11. PorosityNR, PorosityNg and neutron porosities and n, ng and nc water contents (free water saturation, were compared for the different alteration facies of the Beauvoir granite (Fig. 12. On the whole, there was a better (qualitative and quantitative relationship between the PorosityNR total neutron porosity and the PorosityNg granitecalibration neutron porosity (which are about 9%, than with PorosityNc. The PorosityNc neutron porosity issuing from the limestone calibration was underestimated because the rock neutron matrix effect was not taken into account (around 7% for the Beauvoir granite. Concerning water contents, limestone calibration led to nc water content values that, in 60% of the cases, were less than 0% and hence unusable. On the other hand, the ng water content obtained from the granitecalibration neutron porosity was more
Effects of Mutations on Structure–Function Relationships of Matrix Metalloproteinase-1
Warispreet Singh
2016-10-01
Full Text Available Matrix metalloproteinase-1 (MMP-1 is one of the most widely studied enzymes involved in collagen degradation. Mutations of specific residues in the MMP-1 hemopexin-like (HPX domain have been shown to modulate activity of the MMP-1 catalytic (CAT domain. In order to reveal the structural and conformational effects of such mutations, a molecular dynamics (MD study was performed of in silico mutated residues in the X-ray crystallographic structure of MMP-1 complexed with a collagen-model triple-helical peptide (THP. The results indicate an important role of the mutated residues in MMP-1 interactions with the THP and communication between the CAT and the HPX domains. Each mutation has a distinct impact on the correlated motions in the MMP-1•THP. An increased collagenase activity corresponded to the appearance of a unique anti-correlated motion and decreased correlated motions, while decreased collagenase activity corresponded both to increased and decreased anti-correlated motions.
Effects of Mutations on Structure-Function Relationships of Matrix Metalloproteinase-1.
Singh, Warispreet; Fields, Gregg B; Christov, Christo Z; Karabencheva-Christova, Tatyana G
2016-10-14
Matrix metalloproteinase-1 (MMP-1) is one of the most widely studied enzymes involved in collagen degradation. Mutations of specific residues in the MMP-1 hemopexin-like (HPX) domain have been shown to modulate activity of the MMP-1 catalytic (CAT) domain. In order to reveal the structural and conformational effects of such mutations, a molecular dynamics (MD) study was performed of in silico mutated residues in the X-ray crystallographic structure of MMP-1 complexed with a collagen-model triple-helical peptide (THP). The results indicate an important role of the mutated residues in MMP-1 interactions with the THP and communication between the CAT and the HPX domains. Each mutation has a distinct impact on the correlated motions in the MMP-1•THP. An increased collagenase activity corresponded to the appearance of a unique anti-correlated motion and decreased correlated motions, while decreased collagenase activity corresponded both to increased and decreased anti-correlated motions.
Function of cancer cell-derived extracellular matrix in tumor progression
Gao-Feng Xiong; Ren Xu
2016-01-01
Extracellular matrix (ECM) is an essential component of the tumor microenvironment. Cancer development and progression are associated with increased ECM deposition and crosslink. The chemical and physical signals elicited from ECM are necessary for cancer cell proliferation and invasion. It is well recognized that stromal cells are a major source of ECM proteins. However, recent studies showed that cancer cells are also an active and important component in ECM remodeling. Cancer cells deposit a signiifcant amount of collagen, ifbronectin, and tenascin C (TNC). Recent studies demonstrate that these cancer cell-derived ECM proteins enhance cancer cell survival and promote cancer cell colonization at distant sites. ECM-related enzymes and chaperone proteins, such as prolyl-4-hydroxylase, lysyl-hydroxylase, lysyl oxidase, and heat shock protein 47, are also highly expressed in cancer cells. Inhibition of these enzymes signiifcantly reduces cancer growth, invasion, and metastasis. These factors suggest that the cancer cell-derived ECM is crucial for cancer progression and metastasis. Therefore, targeting these ECM proteins and ECM-related enzymes is a potential strategy for cancer treatment.
Kumar, A; Nune, K C; Misra, R D K
2016-11-01
The 3D printed metallic implants are considered bioinert in nature because of the absence of bioactive molecules. Thus, surface modification of bioinert materials is expected to favorably promote osteoblast functions and differentiation. In this context, the objective of this study is to fundamentally elucidate the effect of cell-derived decellularized extracellular matrix (dECM) ornamented 3D printed Ti-6Al-4V scaffolds on biological functions, involving cell adhesion, proliferation, and synthesis of vinculin and actin proteins. To mimic the natural ECM environment, the mineralized ECM of osteoblasts was deposited on the Ti-6Al-4V porous scaffolds, fabricated by electron beam melting (EBM) method. The process comprised of osteoblast proliferation, differentiation, and freeze-thaw cycles to obtain decellularized extra cellular matrix (dECM), in vitro. The dECM provided a natural environment to restore the natural cell functionality of osteoblasts that were cultured on dECM ornamented Ti-6Al-4V scaffolds. In comparison to the bare Ti-6Al-4V scaffolds, a higher cell functionality such as cell adhesion, proliferation, and growth including cell-cell and cell-material interaction were observed on dECM ornamented Ti-6Al-4V scaffolds, which were characterized by using markers for focal adhesion and cytoskeleton such as vinculin and actin. Moreover, electron microscopy also indicated higher cell-material interaction and enhanced proliferation of cells on dECM ornamented Ti-6Al-4V scaffolds, supported by MTT assay. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2751-2763, 2016. © 2016 Wiley Periodicals, Inc.
Rational approximations to fluid properties
Kincaid, J. M.
1990-05-01
The purpose of this report is to summarize some results that were presented at the Spring AIChE meeting in Orlando, Florida (20 March 1990). We report on recent attempts to develop a systematic method, based on the technique of rational approximation, for creating mathematical models of real-fluid equations of state and related properties. Equation-of-state models for real fluids are usually created by selecting a function tilde p(T,rho) that contains a set of parameters (gamma sub i); the (gamma sub i) is chosen such that tilde p(T,rho) provides a good fit to the experimental data. (Here p is the pressure, T the temperature and rho is the density). In most cases, a nonlinear least-squares numerical method is used to determine (gamma sub i). There are several drawbacks to this method: one has essentially to guess what tilde p(T,rho) should be; the critical region is seldom fit very well and nonlinear numerical methods are time consuming and sometimes not very stable. The rational approximation approach we describe may eliminate all of these drawbacks. In particular, it lets the data choose the function tilde p(T,rho) and its numerical implementation involves only linear algorithms.
Fábri, Csaba; Szidarovszky, Tamás; Magyarfalvi, Gábor; Tarczay, György
2011-05-12
Scaling factors for Pulay's scaled quantum mechanical (SQM) scheme have been determined for four different widely used DFT functionals (PBE, B3LYP, B3PW91, and M06-2X) and for two basis sets (6-31++G** and aug-cc-pVTZ) by fitting computed results to 347 fundamental experimental vibrational frequencies of 33 molecules. Measurements in the gas phase and in solid argon matrices were used independently in the fitting procedure in order to provide a simple method of estimating matrix shifts. The accuracy of the new scaling factors is demonstrated on test molecules including hydrogen-bonded systems and molecules containing chlorine and sulfur atoms.
VT - Vermont Rational Service Areas
Vermont Center for Geographic Information — Data Layer Name: Vermont Rational Service Areas (RSAs)Alternate Name: Vermont RSAsOverview:Rational Service Areas (RSAs), originally developed in 2001 and revised in...
Noble, Linda J; Donovan, Frances; Igarashi, Takuji; Goussev, Staci; Werb, Zena
2002-09-01
Inflammation in general and proteinases generated as a result are likely mediators of early secondary pathogenesis after spinal cord injury. We report that matrix metalloproteinase-9 (MMP-9) plays an important role in blood-spinal cord barrier dysfunction, inflammation, and locomotor recovery. MMP-9 was present in the meninges and neurons of the uninjured cord. MMP-9 increased rapidly after a moderate contusion spinal cord injury, reaching a maximum at 24 hr, becoming markedly reduced by 72 hr, and not detectable at 7 d after injury. It was seen in glia, macrophages, neutrophils, and vascular elements in the injured spinal cord at 24 hr after injury. The natural tissue inhibitors of MMPs were unchanged over this time course. MMP-9-null mice exhibited significantly less disruption of the blood-spinal cord barrier, attenuation of neutrophil infiltration, and significant locomotor recovery compared with wild-type mice. Similar findings were observed in mice treated with a hydroxamic acid MMP inhibitor from 3 hr to 3 d after injury, compared with the vehicle controls. Moreover, the area of residual white matter at the lesion epicenter was significantly greater in the inhibitor-treated group. This study provides evidence that MMP-9 plays a key role in abnormal vascular permeability and inflammation within the first 3 d after spinal cord injury, and that blockade of MMPs during this critical period attenuates these vascular events and leads to improved locomotor recovery. Our findings suggest that early inhibition of MMPs may be an efficacious strategy for the spinal cord-injured patient.
Chen Yong [Nonlinear Science Center and Department of Mathematics, Ningbo University, Ningbo 315211 (China) and Key Laboratory of Mathematics Mechanization, Chinese Academy of Sciences, Beijing 100080 (China)]. E-mail: chenyong@dlut.edu.cn; Wang Qi [Department of Applied Mathematics, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Mathematics Mechanization, Chinese Academy of Sciences, Beijing 100080 (China)
2005-12-05
A series of complexiton solutions of the Whitham-Broer-Kaup equation are found through a multiple Riccati equations rational expansion method presented in this Letter. Many new types of complexiton solutions such as various combination of trigonometric periodic and hyperbolic function solutions, various combination of trigonometric periodic and rational function solutions, various combination of hyperbolic and rational function solutions, etc., are obtained.
Chuanglin Fang
2015-03-01
Full Text Available China’s new urbanization development strategy needs to be supported by rational urban systems. Here, a comprehensive diagnostic index system that uses GIS technology and a Chinese urban scale structure rationality diagnostic model, functional structure rationality diagnostic model, spatial structure rationality diagnostic model and Chinese urban development rationality diagnostic model is used to comprehensively evaluate the rationality of Chinese urban development patterns. The results show that the structure of urban development in China is largely rational, with 70.78% of all cities rational in this respect and with rationality influenced by historical evolution, zoning adjustments and natural conditions; that overall, the scale structure of Chinese cities is rational, with 68.03% of all cities rational in this respect, conforming to Zipf’s law and exhibiting a relatively rational pyramidal pattern with “a slightly larger middle and small bottom end”; that overall, urban spatial structure is rational, with 69.41% of all cities rational in this respect, and irrational cities concentrated in areas with low carrying capacities and regions with few cities with high carrying capacities; and that urban functional structure is largely rational, with 69.11% of all cities rational in this respect, mainly concentrated in urban agglomerations. This study provides a scientific basis for further optimizing the structure of urban development in China and promoting a new type of urbanization.
Alternative Disaster Feeding Ration
2012-06-08
is that a healthy person can last about a week without food, but children are more vulnerable lasting for just a few days. In these scenarios, the...ration bar could be edible across different health or dietary constrained populations. For example, diabetics or those with high cholesterol could...Hurricane Katrina was a powerful Category 5 storm that devastated the southeastern states along the Gulf of Mexico in 2005.2 Having seen the aftermath
Geometric Rationalization for Freeform Architecture
Jiang, Caigui
2016-06-20
The emergence of freeform architecture provides interesting geometric challenges with regards to the design and manufacturing of large-scale structures. To design these architectural structures, we have to consider two types of constraints. First, aesthetic constraints are important because the buildings have to be visually impressive. Sec- ond, functional constraints are important for the performance of a building and its e cient construction. This thesis contributes to the area of architectural geometry. Specifically, we are interested in the geometric rationalization of freeform architec- ture with the goal of combining aesthetic and functional constraints and construction requirements. Aesthetic requirements typically come from designers and architects. To obtain visually pleasing structures, they favor smoothness of the building shape, but also smoothness of the visible patterns on the surface. Functional requirements typically come from the engineers involved in the construction process. For exam- ple, covering freeform structures using planar panels is much cheaper than using non-planar ones. Further, constructed buildings have to be stable and should not collapse. In this thesis, we explore the geometric rationalization of freeform archi- tecture using four specific example problems inspired by real life applications. We achieve our results by developing optimization algorithms and a theoretical study of the underlying geometrical structure of the problems. The four example problems are the following: (1) The design of shading and lighting systems which are torsion-free structures with planar beams based on quad meshes. They satisfy the functionality requirements of preventing light from going inside a building as shad- ing systems or reflecting light into a building as lighting systems. (2) The Design of freeform honeycomb structures that are constructed based on hex-dominant meshes with a planar beam mounted along each edge. The beams intersect without
Realization theory for rational systems
Ně mcová, J.; Schuppen, J.H. van
2008-01-01
In this paper we solve the problem of realization of response maps for rational systems. Sufficient and necessary conditions for a response map to be realizable by a rational system are presented. The properties of rational realizations such as observability, controllability, and minimality are stud
Computational Intelligence Determines Effective Rationality
无
2008-01-01
Rationality is a fundamental concept in economics. Most researchers will accept that human beings are not fully rational.Herbert Simon suggested that we are "bounded rational". However, it is very difficult to quantify "bounded rationality", and therefore it is difficult to pinpoint its impact to all those economic theories that depend on the assumption of full rationality. Ariel Rubinstein proposed to model bounded rationality by explicitly specifying the decision makers' decision-making procedures. This paper takes a computational point of view to Rubinstein's approach. From a computational point of view, decision procedures can be encoded in algorithms and heuristics. We argue that, everything else being equal, the effective rationality of an agent is determined by its computational power - we refer to this as the computational intelligence determines effective rationality (CIDER) theory. This is not an attempt to propose a unifying definition of bounded rationality. It is merely a proposal of a computational point of view of bounded rationality. This way of interpreting bounded rationality enables us to (computationally) reason about economic systems when the full rationality assumption is relaxed.
Leeuwenburgh, MA; Geurink, PP; Klein, T; Kauffman, HF; van der Marel, GA; Bischoff, R; Overkleeft, HS
2006-01-01
A novel solid-phase synthesis strategy toward succinylhydroxamate peptides, using an appropriately protected hydroxamate building block, is described. Rapid and efficient access is gained to amine-functionalized peptides, which can be decorated with, for instance, a fluorescent label. In addition, w
W. Łenski
2015-01-01
Full Text Available The results generalizing some theorems on N, pnE, γ summability are shown. The same degrees of pointwise approximation as in earlier papers by weaker assumptions on considered functions and examined summability methods are obtained. From presented pointwise results, the estimation on norm approximation is derived. Some special cases as corollaries are also formulated.
Smirnov, Andrey
2013-01-01
A torus action on a symplectic variety allows one to construct solutions to the quantum Yang-Baxter equations (R-matrices). For a torus action on cotangent bundles over flag varieties the resulting R-matrices are the standard rational solutions of the Yang-Baxter equation, which are well known in the theory of quantum integrable systems. The torus action on the instanton moduli space leads to more complicated R-matrices, depending additionally on two equivariant parameters t_1 and t_2. In this paper we derive an explicit expression for the R-matrix associated with the instanton moduli space. We study its matrix elements and its Taylor expansion in the powers of the spectral parameter. Certain matrix elements of this R-matrix give a generating function for the characteristic classes of tautological bundles over the Hilbert schemes in terms of the bosonic cut-and-join operators. In particular we rederive from the R-matrix the well known Lehn's formula for the first Chern class. We explicitly compute the first s...
Anne-Mari Moilanen
Full Text Available BACKGROUND: Activation of the renin-angiotensin-system (RAS plays a key pathophysiological role in heart failure in patients with hypertension and myocardial infarction. However, the function of (prorenin receptor ((PRR is not yet solved. We determined here the direct functional and structural effects of (PRR in the heart. METHODOLOGY/PRINCIPAL FINDINGS: (PRR was overexpressed by using adenovirus-mediated gene delivery in normal adult rat hearts up to 2 weeks. (PRR gene delivery into the anterior wall of the left ventricle decreased ejection fraction (P<0.01, fractional shortening (P<0.01, and intraventricular septum diastolic and systolic thickness, associated with approximately 2-fold increase in left ventricular (PRR protein levels at 2 weeks. To test whether the worsening of cardiac function and structure by (PRR gene overexpression was mediated by angiotensin II (Ang II, we infused an AT(1 receptor blocker losartan via osmotic minipumps. Remarkably, cardiac function deteriorated in losartan-treated (PRR overexpressing animals as well. Intramyocardial (PRR gene delivery also resulted in Ang II-independent activation of extracellular-signal-regulated kinase1/2 phosphorylation and myocardial fibrosis, and the expression of transforming growth factor-β1 and connective tissue growth factor genes. In contrast, activation of heat shock protein 27 phosphorylation and apoptotic cell death by (PRR gene delivery was Ang II-dependent. Finally, (PRR overexpression significantly increased direct protein-protein interaction between (PRR and promyelocytic zinc-finger protein. CONCLUSIONS/SIGNIFICANCE: These results indicate for the first time that (PRR triggers distinct Ang II-independent myocardial fibrosis and deterioration of cardiac function in normal adult heart and identify (PRR as a novel therapeutic target to optimize RAS blockade in failing hearts.
Piperigkou, Zoi; Karamanou, Konstantina; Afratis, Nikolaos A; Bouris, Panagiotis; Gialeli, Chrysostomi; Belmiro, Celso L R; Pavão, Mauro S G; Vynios, Dimitrios H; Tsatsakis, Aristidis M
2016-01-05
The glycosaminoglycan heparin and its derivatives act strongly on blood coagulation, controlling the activity of serine protease inhibitors in plasma. Nonetheless, there is accumulating evidence highlighting different anticancer activities of these molecules in numerous types of cancer. Nano-heparins may have great biological significance since they can inhibit cell proliferation and invasion as well as inhibiting proteasome activation. Moreover, they can cause alterations in the expression of major modulators of the tumor microenvironment, regulating cancer cell behavior. In the present study, we evaluated the effects of two nano-heparin formulations: one isolated from porcine intestine and the other from the sea squirt Styela plicata, on a breast cancer cell model. We determined whether these nano-heparins are able to affect cell proliferation, apoptosis and invasion, as well as proteasome activity and the expression of extracellular matrix molecules. Specifically, we observed that nano-Styela compared to nano-Mammalian analogue has higher inhibitory role on cell proliferation, invasion and proteasome activity. Moreover, nano-Styela regulates cell apoptosis, expression of inflammatory molecules, such as IL-6 and IL-8 and reduces the expression levels of extracellular matrix macromolecules, such as the proteolytic enzymes MT1-MMP, uPA and the cell surface proteoglycans syndecan-1 and -2, but not on syndecan-4. The observations reported in the present article indicate that nano-heparins and especially ascidian heparin are effective agents for heparin-induced effects in critical cancer cell functions, providing an important possibility in pharmacological targeting.
RATIONAL PHARMACOTHERAPY IN TAKOTSUBO CARDIOMYOPATHY
S. Marchev
2012-01-01
Full Text Available Rational pharmacotherapy in Takotsubo cardiomyopathy is based on clinical picture and data of functional and laboratory investigations of concrete patient. In patients with hypotension and moderate-to-severe left ventricle outflow tract obstruction inotropic agents must not to be used because they can worsen the degree of obstruction. In these patients beta blockers can improve hemodynamics by causing resolution of the obstruction. If intraventricular thrombus is detected, anticoagulation for at least 3 months is recommended. The duration of anticoagulant therapy may be modified depending on the extent of cardiac function recovery and thrombus resolution. For patients without thrombus but with severe left ventricular dysfunction, anticoagulation is recommended until the akinesis or dyskinesis has resolved but not more than 3 months.
Giesbertz, Klaas J H
2016-01-01
In [J. Chem. Phys. 143, 054102 (2015)] I have derived conditions to characterize the kernel of the retarded response function, under the assumption that the initial state is a ground state. In this article I demonstrate its generalization to mixed states (ensembles). To make the proof work, the weights in the ensemble need to be decreasing for increasing energies of the pure states from which the mixed state is constructed. The resulting conditions are not easy to verify, but under the additional assumptions that the ensemble weights are directly related to the energies and that the full spectrum of the Hamiltonian participates in the ensemble, it is shown that potentials only belong to the kernel of the retarded response function if they commute with the initial Hamiltonian. These additional assumptions are valid for thermodynamic ensembles, which makes this result also physically relevant. The conditions on the potentials for the thermodynamic ensembles are much stronger than in the pure state (zero tempera...
Falcaro, Paolo; Costacurta, Stefano; Malfatti, Luca; Buso, Dario; Patelli, Alessandro; Schiavuta, Piero; Piccinini, Massimo; Grenci, Gianluca; Marmiroli, Benedetta; Amenitsch, Heinz; Innocenzi, Plinio
2011-02-01
A phenyl-based hybrid organic - inorganic coating has been synthesized and processed by hard X-ray lithography. The overall lithography process is performed in a two-step process only (X-rays exposure and chemical etching). The patterns present high aspect ratio, sharp edges, and high homogeneity. The coating has been doped with a variety of polycyclic aromatic hydrocarbon functional molecules, such as anthracene, pentacene, and fullerene. For the first time, hard X-rays have been combined with thick hybrid functional coatings, using the sol-gel thick film directly as resist. A new technique based on a new material combined with hard X-rays is now available to fabricate optical devices. The effect due to the high-energy photon exposure has been investigated using FT-IR and Raman spectroscopy, laser scanner, optical profilometer, and confocal and electron microscope. High-quality thick hybrid fullerene-doped microstructures have been fabricated.
Amado Geroge Stefan
2008-01-01
Full Text Available The paper contains data regarding the processes that occur art normal pressure and the variations of enthalpy, entropy, molar isobar heat, isobar potential. The variations of enthalpy and molar isobar heat are useful in the calculation of the thermic balance-sheet, and those in connection with the isobar potential are useful for the calculation of the balances. The enthalpy and entropy are linear combinations of the temperature functions and, being taken as a basis for the calculation of isobar potential. The indicated proprieties for each component can be calculated, if we know the approximation function for the isobar molar heat and the known value of the propriety at a temperature. In order to find the, coefficients we consider known the values of the molar isobar heat at five values of absolute temperature, after which we apply the linear algebra method.
Direct test of the gauge-gravity correspondence for Matrix theory correlation functions
Hanada, Masanori; Sekino, Yasuhiro; Yoneya, Tamiaki
2011-01-01
We study correlation functions in (0+1)-dimensional maximally supersymmetric U(N) Yang-Mills theory, which was proposed by Banks et al. as a non-perturbative definition of 11-dimensional M-theory in the infinite-momentum frame. We perform first-principle calculations using Monte Carlo simulations, and compare the results against the predictions obtained previously based on the gauge-gravity correspondence from 10 dimensions. After providing a self-contained review on these predictions, we present clear evidence that the predictions in the large-N limit actually hold even at small N such as N=2 and 3. The predicted behavior seems to continue to the far infrared regime, which goes beyond the naive range of validity of the 10D supergravity analysis. This suggests that the correlation functions also contain important information on the M-theory limit.
2016-01-01
One may inaugurate the contemporary post-theory era with thinking beyond the theoretical aspects of literature. Or, in other words, it may facilitate a revision of literary theories in terms of exploring their functionality. But, a complex question involved here is, what may be its implications. How may it affect various disciplines especially the Humanities which are, unlike Sciences, deal with the abstract issues like truth, reality, ethicality, justice and many more like that? With these q...
Continued Fraction Algorithm for Matrix Exponentials
无
2001-01-01
A recursive rational algorithm for matrix exponentials was obtained by making use of the generalized inverse of a matrix in this paper. On the basis of the n-th convergence of Thiele-type continued fraction expansion, a new type of the generalized inverse matrix-valued Padé approximant (GMPA) for matrix exponentials was defined and its remainder formula was proved. The results of this paper were illustrated by some examples.
Azizi, Reza; Legarth, Brian Nyvang; Niordson, Christian Frithiof
2013-01-01
Metal matrix composites with long aligned elastic fibers are studied using an energetic rate independent strain gradient plasticity theory with an isotropic pressure independent yield function at the microscale. The material response is homogenized to obtain a conventional macroscopic model...... that exhibits anisotropic yield properties with a pressure dependence. At the microscale free energy includes both elastic strains and plastic strain gradients, and the theory demands higher order boundary conditions in terms of plastic strain or work conjugate higher order tractions. The mechanical response...... of the composite is inclined compared to a standard pressure independent yield surfaces. The evolution of the macroscopic yield surface is investigated by quantifying both anisotropic hardening (expansion) and kinematic hardening (translation), where the coefficients of anisotropy and the Bauschinger stress...
Elastic modulus of Al-Si/SiC metal matrix composites as a function of volume fraction
Santhosh Kumar, S; Rajasekharan, T [Powder Metallurgy Group, Defence Metallurgical Research Laboratory, Kanchanbagh PO, Hyderabad-500 058 (India); Seshu Bai, V [School of Physics, University of Hyderabad, Central University PO, Hyderabad-500 046 (India); Rajkumar, K V; Sharma, G K; Jayakumar, T, E-mail: dearsanthosh@gmail.co [Non-Destructive Evaluation Division, Indira Gandhi Center for Atomic Research, Kalpakkam, Chennai-603 102 (India)
2009-09-07
Aluminum alloy matrix composites have emerged as candidate materials for electronic packaging applications in the field of aerospace semiconductor electronics. Composites prepared by the pressureless infiltration technique with high volume fractions in the range 0.41-0.70 were studied using ultrasonic velocity measurements. For different volume fractions of SiC, the longitudinal velocity and shear velocity were found to be in the range of 7600-9300 m s{sup -1} and 4400-5500 m s{sup -1}, respectively. The elastic moduli of the composites were determined from ultrasonic velocities and were analysed as a function of the volume fraction of the reinforcement. The observed variation is discussed in the context of existing theoretical models for the effective elastic moduli of two-phase systems.
Jørgensen, Peter; Rattan, Suresh
2014-01-01
The Hayflick system of cellular aging and replicative senescence in vitro has been used widely in both basic and applied research in biogerontology. The state of replicative senescence is generally considered to be irreversible, but is modifiable by genetic and environmental manipulations. Some...... recent observations indicate that replicative lifespan, senescence and functionality of cells in vitro can be significantly affected by the quality of the extra cellular matrix (ECM). Following up on those reports, here we show that using the ECM prepared from early passage young cells, partial...... rejuvenation of serially passaged human facial skin fibroblasts was possible in pre-senescent middle-aged cells, but not in fully senescent late passage cells. ECM from young cells improved the appearance, viability, stress tolerance and wound healing ability of skin fibroblasts. Furthermore, young ECM...
Chakrabarti Ratna
2011-01-01
Full Text Available Abstract Background LIM kinase 1 (LIMK1 is an actin and microtubule cytoskeleton modulatory protein that is overexpressed in a number of cancerous tissues and cells and also promotes invasion and metastasis of prostate and breast cancer cells. Membrane type matrix metalloproteinase 1 (MT1-MMP is a critical modulator of extracellular matrix (ECM turnover through pericellular proteolysis and thus plays crucial roles in neoplastic cell invasion and metastasis. MT1-MMP and its substrates pro-MMP-2 and pro-MMP-9 are often overexpressed in a variety of cancers including prostate cancer and the expression levels correlate with the grade of malignancy in prostate cancer cells. The purpose of this study is to determine any functional relation between LIMK1 and MT1-MMP and its implication in cell invasion. Results Our results showed that treatment with the hydroxamate inhibitor of MT1-MMP, MMP-2 and MMP-9 ilomastat inhibited LIMK1-induced invasion of benign prostate epithelial cells. Over expression of LIMK1 resulted in increased collagenolytic activity of MMP-2, and secretion of pro-MMP2 and pro-MMP-9. Cells over expressing LIMK1 also exhibited increased expression of MT1-MMP, transcriptional activation and its localization to the plasma membrane. LIMK1 physically associates with MT1-MMP and is colocalized with it to the Golgi vesicles. We also noted increased expression of both MT1-MMP and LIMK1 in prostate tumor tissues. Conclusion Our results provide new information on regulation of MT1-MMP function by LIMK1 and showed for the first time, involvement of MMPs in LIMK1 induced cell invasion.
Two-level correlation function of critical random-matrix ensembles
E. Cuevas
2004-01-01
The two-level correlation function $R_{d,\\beta}(s)$ of $d$-dimensional disordered models ($d=1$, 2, and 3) with long-range random-hopping amplitudes is investigated numerically at criticality. We focus on models with orthogonal ($\\beta=1$) or unitary ($\\beta=2$) symmetry in the strong ($b^d \\ll 1$) coupling regime, where the parameter $b^{-d}$ plays the role of the coupling constant of the model. It is found that $R_{d,\\beta}(s)$ is of the form $R_{d,\\beta}(s)=1+\\delta(s)-F_{\\beta}(s^{\\beta}/...
Matrix Structure Exploitation in Generalized Eigenproblems Arising in Density Functional Theory
Di Napoli, Edoardo
2010-01-01
In this short paper, the authors report a new computational approach in the context of Density Functional Theory (DFT). It is shown how it is possible to speed up the self-consistent cycle (iteration) characterizing one of the most well-known DFT implementations: FLAPW. Generating the Hamiltonian and overlap matrices and solving the associated generalized eigenproblems $Ax = \\lambda Bx$ constitute the two most time-consuming fractions of each iteration. Two promising directions, implementing the new methodology, are presented that will ultimately improve the performance of the generalized eigensolver and save computational time.
Rational bargaining in games with coalitional externalities
Borm, Peter; Ju, Y.; Wettstein, D.
This paper provides a flexible strategic framework to analyze bargaining and values in environments with coalitional externalities. Within this framework we propose a new value that extends the Shapley value to partition function form games, the so-called Rational Belief Shapley (RBS) value. We
CONSTRAINED RATIONAL CUBIC SPLINE AND ITS APPLICATION
Qi Duan; Huan-ling Zhang; Xiang Lai; Nan Xie; Fu-hua (Frank) Cheng
2001-01-01
In this paper, a kind of rational cubic interpolation functionwith linear denominator is constructed. The constrained interpolation with constraint on shape of the interpolating curves and on the second-order derivative of the interpolating function is studied by using this interpolation, and as the consequent result, the convex interpolation conditions have been derived.
Rational and Mechanistic Perspectives on Reinforcement Learning
Chater, Nick
2009-01-01
This special issue describes important recent developments in applying reinforcement learning models to capture neural and cognitive function. But reinforcement learning, as a theoretical framework, can apply at two very different levels of description: "mechanistic" and "rational." Reinforcement learning is often viewed in mechanistic terms--as…