WorldWideScience

Sample records for ratio sodium fast

  1. Minor Actinide Transmutation Physics for Low Conversion Ratio Sodium Fast Reactors

    International Nuclear Information System (INIS)

    Mehdi Asgari; Samuel E. Bays; Benoit Forget; Rodolfo Ferrer

    2007-01-01

    The effects of varying the reprocessing strategy used in the closed cycle of a Sodium Fast Reactor (SNF) prototype are presented in this paper. The isotopic vector from the aqueous separation of transuranic (TRU) elements in Light Water Reactor (LWR) spent nuclear fuel (SNF) is assumed to also vary according to the reprocessing strategy of the closed fuel cycle. The decay heat, gamma energy, and neutron emission of the fuel discharge at equilibrium are found to vary depending on the separation strategy. The SFR core used in this study corresponds to a burner configuration with a conversion ratio of ∼0.5 based on the Super-PRISM design. The reprocessing strategies stemming from the choice of either metal or oxide fuel for the SFR are found to have a large impact on the equilibrium discharge decay heat, gamma energy, and neutron emission. Specifically, metal fuel SFR with pyroprocessing of the discharge produces the largest amount of TRU consumption (166 kg per Effective Full Power Year or EFPY), but also the highest decay heat, gamma energy, and neutron emission. On the other hand, an oxide fuel SFR with PUREX reprocessing minimizes the decay heat and related parameters of interest to a minimum, even when compared to thermal Mixed Oxide (MOX) or Inert Matrix Fuel (IMF) on a per mass basis. On an assembly basis, however, the metal SFR discharge has a lower decay heat than an equivalent oxide SFR assembly for similar minor actinide consumptions (∼160 kg/EFPY.) Another disadvantage in the oxide PUREX reprocessing scenario is that there is no consumption of americium and curium, since PUREX reprocessing separates these minor actinides (MA) and requires them to be disposed of externally

  2. Physics and safety studies of a low conversion ratio sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Cahalan, J. E.; Smith, M. A.; Hill, R. N.; Dunn, F. E.

    2004-01-01

    This paper explores the feasibility of a compact fast burner reactor that can achieve a low transuranic conversion ratio. The major design option considered is the reduction of fissile breeding by the removal of fertile material from the fast reactor system. Reductions in the fuel pin diameter and thus fuel loading were employed to remove fertile material. Reactor performance parameters and reactivity coefficients were evaluated for a compact core design with a targeted conversion ratio of 0.25. To assess the safety implications, a detailed transient analysis model was employed using the SAS4A/SASSYS-1 computer code. A series of calculations was performed to assess the behavior of the reactor and plant in an unprotected loss-of-flow accident (ULOF). A parametric study was also carried out using increasingly conservative modeling assumptions. The computational results show that for nominal, best-estimate analysis assumptions and input data, the low conversion ratio reactor design responds to the ULOF with a very high level of self-protection. Both short-term and long-term quasi-equilibrium reactor conditions predicted in the analysis indicate very large margins of safety. (authors)

  3. Sodium-cooled Fast Reactor Cores using Uranium-Free Metallic Fuels for Maximizing TRU Support Ratio

    International Nuclear Information System (INIS)

    You, WuSeung; Hong, Ser Gi

    2014-01-01

    The depleted uranium plays important roles in the SFR burner cores because it substantially contributes to the inherent safety of the core through the negative Doppler coefficient and large delayed neutron. However, the use of depleted uranium as a diluent nuclide leads to a limited value of TRU support ratio due to the generation of TRUs through the breeding. In this paper, we designed sodium cooled fast reactor (SFR) cores having uranium-free fuels 3,4 for maximization of TRU consumption rate. However, the uranium-free fuelled burner cores can be penalized by unacceptably small values of the Doppler coefficient and small delayed neutron fraction. In this work, metallic fuels of TRU-(W or Ni)-Zr are considered to improve the performances of the uranium-free cores. The objective of this work is to consistently compare the neutronic performances of uranium-free sodium cooled fast reactor cores having TRU-Zr metallic fuels added with Ni or W and also to clarify what are the problematic features to be resolved. In this paper, a consistent comparative study of 400MWe sodium cooled burner cores having uranium-based fuels and uranium-free fuels was done to analyze the relative core neutronic features. Also, we proposed a uranium-free metallic fuel based on Nickel. From the results, it is found that tungsten-based uranium-free metallic fuel gives large negative Doppler coefficient due to high resonance of tungsten isotopes but this core has large sodium void worth and small effective delayed neutron fraction while the nickel-based uranium-free metallic fuelled core has less negative Doppler coefficient but smaller sodium void worth and larger effective delayed neutron fraction than the tungsten-based one. On the other hand, the core having TRU-Zr has very high burnup reactivity swing which may be problematic in compensating it using control rods and the least negative Doppler coefficient

  4. Sodium cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hokkyo, N; Inoue, K; Maeda, H

    1968-11-21

    In a sodium cooled fast neutron reactor, an ultrasonic generator is installed at a fuel assembly hold-down mechanism positioned above a blanket or fission gas reservoir located above the core. During operation of the reactor an ultrsonic wave of frequency 10/sup 3/ - 10/sup 4/ Hz is constantly transmitted to the core to resonantly inject the primary bubble with ultrasonic energy to thereby facilitate its growth. Hence, small bubbles grow gradually to prevent the sudden boiling of sodium if an accident occurs in the cooling system during operation of the reactor.

  5. The dismantling of fast reactors: sodium processing

    International Nuclear Information System (INIS)

    Rodriguez, G.; Berte, M.; Serpante, J.P.

    1999-01-01

    Fast reactors require a coolant that does not slow down neutrons so water can not be used. Metallic sodium has been chosen because of its outstanding neutronic and thermal properties but sodium reacts easily with air and water and this implies that sodium-smeary components can not be considered as usual nuclear wastes. A stage of sodium neutralizing is necessary in the processing of wastes from fast reactors. Metallic sodium is turned into a chemically stable compound: soda, carbonates or sodium salts. This article presents several methods used by Framatome in an industrial way when dismantling sodium-cooled reactors. (A.C.)

  6. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Neil Todreas; Pavel Hejzlar

    2008-06-30

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

  7. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    International Nuclear Information System (INIS)

    Neil Todreas; Pavel Hejzlar

    2008-01-01

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores treated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcome the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better thermal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor

  8. Sodium fast reactors with closed fuel cycle

    CERN Document Server

    Raj, Baldev; Vasudeva Rao, PR 0

    2015-01-01

    Sodium Fast Reactors with Closed Fuel Cycle delivers a detailed discussion of an important technology that is being harnessed for commercial energy production in many parts of the world. Presenting the state of the art of sodium-cooled fast reactors with closed fuel cycles, this book:Offers in-depth coverage of reactor physics, materials, design, safety analysis, validations, engineering, construction, and commissioning aspectsFeatures a special chapter on allied sciences to highlight advanced reactor core materials, specialized manufacturing technologies, chemical sensors, in-service inspecti

  9. Decommissioning of fast reactors after sodium draining

    International Nuclear Information System (INIS)

    2009-11-01

    Acknowledging the importance of passing on knowledge and experience, as well mentoring the next generation of scientists and engineers, and in response to expressed needs by Member States, the IAEA has undertaken concrete steps towards the implementation of a fast reactor data retrieval and knowledge preservation initiative. Decommissioning of fast reactors and other sodium bearing facilities is a domain in which considerable experience has been accumulated. Within the framework and drawing on the wide expertise of the Technical Working Group on Fast Reactors (TWG-FR), the IAEA has initiated activities aiming at preserving the feedback (lessons learned) from this experience and condensing those to technical recommendations on fast reactor design features that would ease their decommissioning. Following a recommendation by the TWG-FR, the IAEA had convened a topical Technical Meeting (TM) on 'Operational and Decommissioning Experience with Fast Reactors', hosted by CEA, Centre d'Etudes de Cadarache, France, from 11 to 15 March 2002 (IAEA-TECDOC- 1405). The participants in that TM exchanged detailed technical information on fast reactor operation and decommissioning experience with various sodium cooled fast reactors, and, in particular, reviewed the status of the various decommissioning programmes. The TM concluded that the decommissioning of fast reactors to reach safe enclosure presented no major difficulties, and that this had been accomplished mainly through judicious adaptation of processes and procedures implemented during the reactor operation phase, and the development of safe sodium waste treatment processes. However, the TM also concluded that, on the path to achieving total dismantling, challenges remain with regard to the decommissioning of components after sodium draining, and suggested that a follow-on TM be convened, that would provide a forum for in-depth scientific and technical exchange on this topic. This publication constitutes the Proceedings of

  10. A resting bottom sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Costes, D.

    2012-01-01

    This follows ICAPP 2011 paper 11059 'Fast Reactor with a Cold Bottom Vessel', on sodium cooled reactor vessels in thermal gradient, resting on soil. Sodium is frozen on vessel bottom plate, temperature increasing to the top. The vault cover rests on the safety vessel, the core diagrid welded to a toric collector forms a slab, supported by skirts resting on the bottom plate. Intermediate exchangers and pumps, fixed on the cover, plunge on the collector. At the vessel top, a skirt hanging from the cover plunges into sodium, leaving a thin circular slit partially filled by sodium covered by argon, providing leak-tightness and allowing vessel dilatation, as well as a radial relative holding due to sodium inertia. No 'air conditioning' at 400 deg. C is needed as for hanging vessels, and this allows a large economy. The sodium volume below the slab contains isolating refractory elements, stopping a hypothetical corium flow. The small gas volume around the vessel limits any LOCA. The liner cooling system of the concrete safety vessel may contribute to reactor cooling. The cold resting bottom vessel, proposed by the author for many years, could avoid the complete visual inspection required for hanging vessels. However, a double vessel, containing support skirts, would allow introduction of inspecting devices. Stress limiting thermal gradient is obtained by filling secondary sodium in the intermediate space. (authors)

  11. Advanced sodium fast reactor accident source terms :

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Dana Auburn; Clement, Bernard; Denning, Richard; Ohno, Shuji; Zeyen, Roland

    2010-09-01

    An expert opinion elicitation has been used to evaluate phenomena that could affect releases of radionuclides during accidents at sodium-cooled fast reactors. The intent was to identify research needed to develop a mechanistic model of radionuclide release for licensing and risk assessment purposes. Experts from the USA, France, the European Union, and Japan identified phenomena that could affect the release of radionuclides under hypothesized accident conditions. They qualitatively evaluated the importance of these phenomena and the need for additional experimental research. The experts identified seven phenomena that are of high importance and have a high need for additional experimental research: High temperature release of radionuclides from fuel during an energetic event Energetic interactions between molten reactor fuel and sodium coolant and associated transfer of radionuclides from the fuel to the coolant Entrainment of fuel and sodium bond material during the depressurization of a fuel rod with breached cladding Rates of radionuclide leaching from fuel by liquid sodium Surface enrichment of sodium pools by dissolved and suspended radionuclides Thermal decomposition of sodium iodide in the containment atmosphere Reactions of iodine species in the containment to form volatile organic iodides. Other issues of high importance were identified that might merit further research as development of the mechanistic model of radionuclide release progressed.

  12. Effect of sodium adsorption ratio and electric conductivity of the ...

    African Journals Online (AJOL)

    of the water and its sodium content relative to calcium and magnesium content. ... calcium and magnesium is the sodium adsorption ratio (SAR). It is a measure of the ..... comparison of ANN and geo statistics methods for estimating spatial distribution of sodium adsorption ratio (SAR) in groundwater. Int. J. Agric. Crop Sci.

  13. Analysis of fuel sodium interaction in a fast breeder reactor

    International Nuclear Information System (INIS)

    Tezuka, M.; Suzuki, K.; Sasanuma, K.; Nagasima, K.; Kawaguchi, O.

    A code ''SUGAR'' has been developed to evaluate molten Fuel Sodium Interaction (FSI) in a fast breeder reactor. This code computes thermohydrodynamic behavior by heat transfer from fuel to sodium and dynamic deformation of reactor structures simultaneously. It was applied to evaluate FSI in local fuel melting accident in a fuel assembly and in core disassembly accident for the 300MWe fast breeder reactor under development in Japan. The analytical methods of the SUGAR code are mainly shown in the following: 1) the thermal and dynamic model of FSI is mainly based on Cho-Wright's model; 2) the axial and radial expansions of surroundings of FSI region are calculated with one-dimensional and compressive hydrodynamics equation; 3) the structure response is calculated with one-dimensional and dynamic stress equation. Our studies show that mass of fuel interacted with sodium, ratio of fuel mass to sodium mass, fuel particle size, heat transfer coefficient from fuel to sodium, and structure's force have great effect on pressure amplitude and deformation of reactor structures

  14. Fast Flux Test Facility primary sodium valves

    International Nuclear Information System (INIS)

    Rabe, G.B.; Ezra, B.C.

    1977-01-01

    The design and development of the valves used in the primary sodium coolant loop of the Fast Flux Test Facility is described. One tilting-disk check valve is used in the cold leg of the coolant loop. It is designed to limit flow reversal in the loop while maintaining a low pressure drop during forward flow. Two isolation valves are used in each coolant loop--one in the cold leg and one in the hot leg. They are of the motor-operated swinging-gate type. The design, analysis, and testing programs undertaken to develop and qualify these valves are described

  15. Fast sodium ion conductivity in supertetrahedral phosphidosilicates.

    Science.gov (United States)

    Johrendt, Dirk; Haffner, Arthur; Hatz, Anna Katharina; Moudrakovski, Igor; Lotsch, Bettina Valeska

    2018-04-03

    Fast sodium ion conductors are key components of sodium-based all-solid-state batteries which hold promise as safe systems for large-scale storage of electrical power. Here, we report the synthesis, crystal structure determination and Na+ ion conductivities of six new sodium ion conductors, the phosphidosilicates Na19Si13P25, Na23Si19P33, Na23Si28P45, Na23Si37P57, LT-NaSi2P3 and HT-NaSi2P3, which are entirely based on earth-abundant elements. The new structures exhibit SiP4 tetrahedra assembling interpenetrating networks of T3 to T5 supertetrahedral clusters which can be hierarchically assigned to sphalerite- or diamond-type structures. 23Na solid-state NMR spectra and geometrical pathway analysis indicate Na+ ion mobility between the supertetrahedral cluster networks. Electrochemical impedance spectroscopy revealed Na+ ion conductivities up to σ (Na+) = 4 ∙ 10-4 Scm-1 with an activation energy of Ea = 0.25 eV in HT-NaSi2P3 at 25 °C. The conductivities increase with the size of the supertetrahedral clusters due to the dilution of Na+ ions as the charge density of the anionic supertetrahedral networks decreases. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Methods for the sodium cooled fast reactor fire safety provisions

    International Nuclear Information System (INIS)

    Gryaznov, B.V.; Dergachev, N.P.

    1983-01-01

    Problems of fire safety provision on NPPs with sodium cooled fast reactor are under discussion. Methods of sodium leak localization, measures eliminating sodium flaring up during leaks and main means of sodium fire extinguishing are considered. An extinguishing of sodium flaring up is performed by means of sodium temperatUre decrease and by limitation of hydrogen access to the flaring up surface. A conclusion is made that the most effective methods of extinguishing are the following: self-extinguishing (due to hydrogen burning out in a limiting volume); extinguishing by a gas mixture of nitrogen and carbonic acid (initial filling and blowing of rooms during sodium flaring up); extinguishing by special powders

  17. Transformation of sodium from the Rapsodie fast breeder reactor into sodium hydroxide

    International Nuclear Information System (INIS)

    Roger, J.; Latge, C.; Rodriguez, G.

    1994-01-01

    One of the major problems raised by decommissioning a fast breeder reactor (FBR) concerns the disposal of the sodium coolant. The Desora operation was undertaken to eliminate the Rapsodie primary sodium as part of the partial decommissioning program, and to develop an operational sodium treatment unit for other needs. The process involves reacting small quantities of sodium in water inside a closed vessel, producing aqueous sodium hydroxide and hydrogen gas. It is described in this work. (O.L.). 4 figs

  18. Sodium fast reactor safety and licensing research plan. Volume II.

    Energy Technology Data Exchange (ETDEWEB)

    Ludewig, H. (Brokhaven National Laboratory, Upton, NY); Powers, D. A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A. (Argonne National Laboratory, Argonne, IL); Phillips, J.; Zeyen, R. (Institute for Energy Petten, Saint-Paul-lez-Durance, France); Clement, B. (IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France); Garner, Frank (Radiation Effects Consulting, Richland, WA); Walters, Leon (Advanced Reactor Concepts, Los Alamos, NM); Wright, Steve; Ott, Larry J. (Oak Ridge National Laboratory, Oak Ridge, TN); Suo-Anttila, Ahti Jorma; Denning, Richard (Ohio State University, Columbus, OH); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki, Japan); Ohno, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Miyhara, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Yacout, Abdellatif (Argonne National Laboratory, Argonne, IL); Farmer, M. (Argonne National Laboratory, Argonne, IL); Wade, D. (Argonne National Laboratory, Argonne, IL); Grandy, C. (Argonne National Laboratory, Argonne, IL); Schmidt, R.; Cahalen, J. (Argonne National Laboratory, Argonne, IL); Olivier, Tara Jean; Budnitz, R. (Lawrence Berkeley National Laboratory, Berkeley, CA); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki, Japan); Serre, Frederic (Centre d' %C3%94etudes nucl%C3%94eaires de Cadarache, Cea, France); Natesan, Ken (Argonne National Laboratory, Argonne, IL); Carbajo, Juan J. (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin-Madison, Madison, WI); Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Flanagan, George F. (Oak Ridge National Laboratory, Oak Ridge, TN); Bari, R. (Brokhaven National Laboratory, Upton, NY); Porter D. (Idaho National Laboratory, Idaho Falls, ID); Lambert, J. (Argonne National Laboratory, Argonne, IL); Hayes, S. (Idaho National Laboratory, Idaho Falls, ID); Sackett, J. (Idaho National Laboratory, Idaho Falls, ID); Denman, Matthew R.

    2012-05-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  19. Sodium fast reactor safety and licensing research plan - Volume II

    International Nuclear Information System (INIS)

    Ludewig, H.; Powers, D.A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A.; Phillips, J.; Zeyen, R.; Clement, B.; Garner, Frank; Walters, Leon; Wright, Steve; Ott, Larry J.; Suo-Anttila, Ahti Jorma; Denning, Richard; Ohshima, Hiroyuki; Ohno, S.; Miyhara, S.; Yacout, Abdellatif; Farmer, M.; Wade, D.; Grandy, C.; Schmidt, R.; Cahalen, J.; Olivier, Tara Jean; Budnitz, R.; Tobita, Yoshiharu; Serre, Frederic; Natesan, Ken; Carbajo, Juan J.; Jeong, Hae-Yong; Wigeland, Roald; Corradini, Michael; Thomas, Justin; Wei, Tom; Sofu, Tanju; Flanagan, George F.; Bari, R.; Porter D.

    2012-01-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  20. Risk Management for Sodium Fast Reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Denman, Matthew R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Groth, Katrina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cardoni, Jeffrey N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wheeler, Timothy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Accident management is an important component to maintaining risk at acceptable levels for all complex systems, such as nuclear power plants. With the introduction of self - correcting, or inherently safe, reactor designs the focus has shifted from management by operators to allowing the syste m's design to manage the accident. While inherently and passively safe designs are laudable, extreme boundary conditions can interfere with the design attributes which facilitate inherent safety , thus resulting in unanticipated and undesirable end states. This report examines an inherently safe and small sodium fast reactor experiencing a beyond design basis seismic event with the intend of exploring two issues : (1) can human intervention either improve or worsen the potential end states and (2) can a Bayes ian Network be constructed to infer the state of the reactor to inform (1). ACKNOWLEDGEMENTS The author s would like to acknowledge the U.S. Department of E nergy's Office of Nuclear Energy for funding this research through Work Package SR - 14SN100303 under the Advanced Reactor Concepts program. The authors also acknowledge the PRA teams at A rgonne N ational L aborator y , O ak R idge N ational L aborator y , and I daho N ational L aborator y for their continue d contributions to the advanced reactor PRA mission area.

  1. Sodium fires at fast reactors: RF status report

    International Nuclear Information System (INIS)

    Bagdasarov, Yu.E.; Buksha, Yu.K.; Drobyshev, A.V.; Zybin, V.A.; Ivanenko, V.N.; Kardash, D.Yu.; Kulikov, E.V.; Yagodkin, I.V.

    1996-01-01

    Scientific and engineering studies carried out in Russian Federation since 1992 up to 1996 in the sodium fire area and their main results are described. A review of activities on modification of the computer codes BOX and AERO developed at IPPE for calculating sodium fire consequences is given. Results of analysis of possible accidental situations at currently designed BN-800 reactor NPP with the use of these codes are presented. Sodium leaks occurring at our domestic fast reactors are briefly analyzed. Experimental work performed are described. Results of comparative analysis of common-cause and sodium fire hazards for fast reactor NPP are presented. (author)

  2. Fast Flux Test Facility replacement of a primary sodium pump

    International Nuclear Information System (INIS)

    Krieg, S.A.; Thomson, J.D.

    1985-01-01

    The Fast Flux Test Facility is a 400 MW Thermal Sodium Cooled Fast Reactor operated by Westinghouse Hanford Company for the US Department of Energy. During startup testing in 1979, the sodium level in one of the primary sodium pumps was inadvertently raised above the normal height. This resulted in distortion of the pump shaft. Pump replacement was carried out using special maintenance equipment. Nuclear radiation and contamination were not significant problems since replacement operations were carried out shortly after startup of the Fast Flux Test Facility

  3. Implications of Fast Reactor Transuranic Conversion Ratio

    International Nuclear Information System (INIS)

    Piet, Steven J.; Hoffman, Edward A.; Bays, Samuel E.

    2010-01-01

    Theoretically, the transuranic conversion ratio (CR), i.e. the transuranic production divided by transuranic destruction, in a fast reactor can range from near zero to about 1.9, which is the average neutron yield from Pu239 minus 1. In practice, the possible range will be somewhat less. We have studied the implications of transuranic conversion ratio of 0.0 to 1.7 using the fresh and discharge fuel compositions calculated elsewhere. The corresponding fissile breeding ratio ranges from 0.2 to 1.6. The cases below CR=1 ('burners') do not have blankets; the cases above CR=1 ('breeders') have breeding blankets. The burnup was allowed to float while holding the maximum fluence to the cladding constant. We graph the fuel burnup and composition change. As a function of transuranic conversion ratio, we calculate and graph the heat, gamma, and neutron emission of fresh fuel; whether the material is 'attractive' for direct weapon use using published criteria; the uranium utilization and rate of consumption of natural uranium; and the long-term radiotoxicity after fuel discharge. For context, other cases and analyses are included, primarily once-through light water reactor (LWR) uranium oxide fuel at 51 MWth-day/kg-iHM burnup (UOX-51). For CR 1, heat, gamma, and neutron emission decrease with recycling. The uranium utilization exceeds 1%, especially as all the transuranic elements are recycled. exceeds 1%, especially as all the transuranic elements are recycled. At the system equilibrium, heat and gamma vary by somewhat over an order of magnitude as a function of CR. Isotopes that dominate heat and gamma emission are scattered throughout the actinide chain, so the modest impact of CR is unsurprising. Neutron emitters are preferentially found among the higher actinides, so the neutron emission varies much stronger with CR, about three orders of magnitude.

  4. Sodium pool fire analysis of sodium-cooled fast reactor by calculation

    International Nuclear Information System (INIS)

    Yu Hong; Xu Mi; Jin Degui

    2002-01-01

    Theoretical models were established according to the characteristic of sodium pool fire, and the SPOOL code was created independently. Some transient processes in sodium pool fire were modeled, including chemical reaction of sodium and oxygen; sodium combustion heat transfer modes in several kids of media; production, deposition and discharge of sodium aerosol; mass and energy exchange between different media in different ventilating conditions. The important characteristic parameters were calculated, such as pressure and temperature of gas, temperature of building materials, mass concentration of sodium aerosol, and so on. The SPOOL code, which provided available safety analysis tool for sodium pool fire accidents in sodium-cooled fast reactor, was well demonstrated with experimental data

  5. Fast ultrasonic visualisation under sodium. Application to the fast neutron reactors

    International Nuclear Information System (INIS)

    Imbert, Ch.

    1997-01-01

    The fast ultrasonic visualization under sodium is in the programme of research and development on the inspection inside the fast neutron reactors. This work is about the development of a such system of fast ultrasonic imaging under sodium, in order to improve the existing visualization systems. This system is based on the principle of orthogonal imaging, it uses two linear antennas with an important dephasing having 128 piezo-composite elements of central frequency equal to 1.6 MHz. (N.C.)

  6. Sodium tests on an integrated purification prototype for a sodium-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Abramson, R.

    1984-04-01

    This paper describes sodium tests performed on the integrated primary sodium purification prototype of the Creys Malville Super Phenix 1 fast breeder reactor. These tests comprised: - hydrostatic test, - thermal tests, - handling tests. They enabled a number of new technological arrangements to be qualified and provided the necessary information for the design and construction of the Super Phenix 1 purification units

  7. Effect of sodium adsorption ratio and electric conductivity of the ...

    African Journals Online (AJOL)

    Infiltration measurements using a double-ring infiltrometer were conducted on a sandy-loam soil located in Saudi Arabia. The measurements were performed for an undisturbed soil. The effect of sodium adsorption ratio (SAR) and electric conductivity (EC) of the applied water on infiltration rate was examined. The infiltration ...

  8. Teaching Sodium Fast Reactors in CEA-INSTN

    International Nuclear Information System (INIS)

    Dufour, Ph.; Latgé, C.; Gicquel, L.

    2013-01-01

    Conclusion: Education and Training: - a key element for the future of the development of Sodium Fast Reactors, and more particularly ASTRID project. - a tool to create a new generation of skilled nuclear engineers in the field. - a unique mean to share basic knowledge, operational feedback, safety approaches. The two entities aimed to deliver Training sessions, i.e. Sodium School in Cadarache, and INSTN-Cadarache, are ready: - to conceive and propose tailored sessions, - to collaborate with other foreign Education and Training Entities

  9. Atmospheric dispersion of sodium aerosol due to a sodium leak in a fast breeder reactor complex

    International Nuclear Information System (INIS)

    Punitha, G.; Sudha, A. Jasmin; Kasinathan, N.; Rajan, M.

    2008-01-01

    Liquid sodium at high temperatures (470 K to 825 K) is used as the primary and secondary coolant in Liquid Metal cooled Fast Breeder Reactors (LMFBR). In the event of a postulated sodium leak in the Steam Generator Building (SGB) of a LMFBR, sodium readily combusts in the ambient air, especially at temperatures above 523 K. Intense sodium fire results and sodium oxide fumes are released as sodium aerosols. Sodium oxides are readily converted to sodium hydroxide in air due to the presence of moisture in it. Hence, sodium aerosols are invariably in the form of particulate sodium hydroxide. These aerosols damage not only the equipment and instruments due to their corrosive nature but also pose health hazard to humans. Hence, it is essential to estimate the concentration of sodium aerosols within the plant boundary for a sodium leak event. The Gaussian Plume Dispersion Model can obtain the atmospheric dispersion of sodium aerosols in an open terrain. However, this model dose not give accurate results for dispersion in spaces close to the point of release and with buildings in between. The velocity field due to the wind is altered to a large extent by the intervening buildings and structures. Therefore, a detailed 3-D estimation of the velocity field and concentration has to be obtained through rigorous computational fluid dynamics (CFD) approach. PHOENICS code has been employed to determine concentration of sodium aerosols at various distances from the point of release. The dispersion studies have been carried out for the release of sodium aerosols at different elevations from the ground and for different wind directions. (author)

  10. Fast reactors bulk sodium coolant disposal NOAH process application

    International Nuclear Information System (INIS)

    Magny, E. de; Berte, M.

    1997-01-01

    Within the frame of the fast reactors decommissioning, the becoming of contaminated sodium coolant from primary, secondary and auxiliary circuits is an important aspect. The 'NOAH' sodium disposal process, developed by the French Atomic Energy Commission (CEA), is presented as the only process, for destroying large quantities of contaminated sodium, that has attained industrial status. The principles and technical options of the process are described and main advantages such as safety , operating simplicity and compactness of the plant are put forward. The process has been industrially validated in 1993/1994 by successfully reacting the 37 metric tons of primary contaminated sodium from the French Rapsodie experimental reactor. The main outstanding aspects and experience gained from this so called 'DESORA' operation (DEstruction of SOdium from RApsodie) are recalled. Another industrial application concerns the current project for destroying more than 1500 metric tons of contaminated sodium from the British PFR (Prototype Fast Reactor) in Scotland. Although the design is in the continuity of DESORA, it has taken into account the specific requirements of PFR application and the experience feed back from Rapsodie. The main technical options and performances of the PFR sodium reaction unit are presented while mentioning the design evolution. (author)

  11. Estimating 24-h urinary sodium/potassium ratio from casual ('spot') urinary sodium/potassium ratio: the INTERSALT Study.

    Science.gov (United States)

    Iwahori, Toshiyuki; Miura, Katsuyuki; Ueshima, Hirotsugu; Chan, Queenie; Dyer, Alan R; Elliott, Paul; Stamler, Jeremiah

    2017-10-01

    Association between casual and 24-h urinary sodium-to-potassium (Na/K) ratio is well recognized, although it has not been validated in diverse demographic groups. Our aim was to assess utility across and within populations of casual urine to estimate 24-h urinary Na/K ratio using data from the INTERSALT Study. The INTERSALT Study collected cross-sectional standardized data on casual urinary sodium and potassium and also on timed 24-h urinary sodium and potassium for 10 065 individuals from 52 population samples in 32 countries (1985-87). Pearson correlation coefficients and agreement were computed for Na/K ratio of casual urine against 24-h urinary Na/K ratio both at population and individual levels. Pearson correlation coefficients relating means of 24-h urine and casual urine Na/K ratio were r = 0.96 and r = 0.69 in analyses across populations and individuals, respectively. Correlations of casual urine Na/creatinine and K/creatinine ratios with 24-h urinary Na and K excretion, respectively, were lower than correlation of casual and 24-h urinary Na/K ratio in analyses across populations and individuals. The bias estimate with the Bland-Altman method, defined as the difference between Na/K ratio of 24-h urine and casual urine, was approximately 0.4 across both populations and individuals. Spread around, the mean bias was higher for individuals than populations. With appropriate bias correction, casual urine Na/K ratio may be a useful, low-burden alternative method to 24-h urine for estimation of population urinary Na/K ratio. It may also be applicable for assessment of the urinary Na/K ratio of individuals, with use of repeated measurements to reduce measurement error and increase precision. © The Author 2016. Published by Oxford University Press on behalf of the International Epidemiological Association

  12. Safety Design Criteria of Indian Sodium Cooled Fast Reactors

    International Nuclear Information System (INIS)

    Pillai, P.; Chellapandi, P.; Chetal, S.C.; Vasudeva Rao, P.R.

    2013-01-01

    • Important feedback has been gained through the design and safety review of PFBR. • The safety criteria document prepared by AERB and IGCAR would provide important input to prepare the dedicated document for the Sodium cooled Fast Reactors at the national and international level. • A common approach with regard to safety, among countries pursuing fast reactor program, is desirable. • Sharing knowledge and experimental facilities on collaborative basis. • Evolution of strong safety criteria – fundamental to assure safety

  13. Sodium flow measurement in large pipelines of sodium cooled fast breeder reactors with bypass type flow meters

    International Nuclear Information System (INIS)

    Rajan, K.K.; Jayakumar, T.; Aggarwal, P.K.; Vinod, V.

    2016-01-01

    Highlights: • Bypass type permanent magnet flow meters are more suitable for sodium flow measurement. • A higher sodium velocity through the PMFM sensor will increase its sensitivity and resolution. • By modifying the geometry of bypass line, higher sodium velocity through sensor is achieved. • With optimized geometry the sensitivity of bypass flow meter system was increased by 70%. - Abstract: Liquid sodium flow through the pipelines of sodium cooled fast breeder reactor circuits are measured using electromagnetic flow meters. Bypass type flow meter with a permanent magnet flow meter as sensor in the bypass line is selected for the flow measurement in the 800 NB main secondary pipe line of 500 MWe Prototype Fast Breeder Reactor (PFBR), which is at the advanced stage of construction at Kalpakkam. For increasing the sensitivity of bypass flow meters in future SFRs, alternative bypass geometry was considered. The performance enhancement of the proposed geometry was evaluated by experimental and numerical methods using scaled down models. From the studies it is observed that the new configuration increases the sensitivity of bypass flow meter system by around 70%. Using experimentally validated numerical tools the volumetric flow ratio for the bypass configurations is established for the operating range of Reynolds numbers.

  14. Actinides burnup in a sodium fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Pineda A, R.; Martinez C, E.; Alonso, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2017-09-15

    The burnup of actinides in a nuclear reactor is been proposed as part of an advanced nuclear fuel cycle, this process would close the fuel cycle recycling some of the radioactive material produced in the open nuclear fuel cycle. These actinides are found in the spent nuclear fuel from nuclear power reactors at the end of their burnup in the reactor. Previous studies of actinides recycling in thermal reactors show that would be possible reduce the amounts of actinides at least in 50% of the recycled amounts. in this work, the amounts of actinides that can be burned in a fast reactor is calculated, very interesting results surge from the calculations, first, the amounts of actinides generated by the fuel is higher than for thermal fuel and the composition of the actinides vector is different as in fuel for thermal reactor the main isotope is the {sup 237}Np in the fuel for fast reactor the main isotope is the {sup 241}Am, finally it is concluded that the fast reactor, also generates important amounts of waste. (Author)

  15. Materials science research for sodium cooled fast reactors

    Indian Academy of Sciences (India)

    The paper gives an insight into basic as well as applied research being carried out at the Indira Gandhi Centre for Atomic Research for the development of advanced materials for sodium cooled fast reactors towards extending the life of reactors to nearly 100 years and the burnup of fuel to 2,00,000 MWd/t with an objective ...

  16. Fast flux test facility primary sodium check valve

    International Nuclear Information System (INIS)

    Rabe, G.B.; Nash, C.F.

    1975-01-01

    The design and development of a tilting-disc check valve for the primary sodium coolant loop of the Fast Flux Test Facility is described. The demanding design requirements specified for this system dictated a design with unique features. These features, along with the structural design and analysis requirements and the testing program used to develop and justify the design, are described

  17. Design and selection of materials for sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Chetal, S.C.

    2011-01-01

    Sodium cooled fast reactors are currently in operation, under construction or under design by a number of countries. The design of sodium cooled fast reactor is covered by French RCC - MR code and ASME code NH. The codes cover rules as regards to materials, design and construction. These codes do not cover the effect of irradiation and environment. Elevated temperature design criteria in nuclear codes are much stringent in comparison to non nuclear codes. Sodium corrosion is not an issue in selection of materials provided oxygen impurity in sodium is controlled for which excellent reactor operating experience is available. Austenitic stainless steels have remained the choice for the permanent structures of primary sodium system. Stabilized austenitic stainless steel are rejected because of poor operating experience and non inclusion in the design codes. Route for improved creep behaviour lies in compositional modifications in 316 class steel. However, the weldability needs to be ensured. For cold leg component is non creep regime, SS 304 class steel is favoured from overall economics. Enhanced fuel burn up can be realized by the use of 9-12%Cr 1%Mo class steel for the wrapper of MOX fuel design, and cladding and wrapper for metal fuel reactors. Minor compositional modifications of 20% cold worked 15Cr-15Ni class austenitic stainless steel will be a strong candidate for the cladding of MOX fuel design in the short term. Long term objective for the cladding will be to develop oxide dispersion strengthened steel. 9%Cr 1%Mo class steel (Gr 91) is an ideal choice for integrated once through sodium heated steam generators. One needs to incorporate operating experience from reactors and thermal power stations, industrial capability and R and D feedback in preparing the technical specifications for procurement of wrought products and welding consumables to ensure reliable operation of the components and systems over the design life. The paper highlights the design approach

  18. Fast-slow asymptotics for a Markov chain model of fast sodium current

    Science.gov (United States)

    Starý, Tomáš; Biktashev, Vadim N.

    2017-09-01

    We explore the feasibility of using fast-slow asymptotics to eliminate the computational stiffness of discrete-state, continuous-time deterministic Markov chain models of ionic channels underlying cardiac excitability. We focus on a Markov chain model of fast sodium current, and investigate its asymptotic behaviour with respect to small parameters identified in different ways.

  19. Shape optimization of a sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Schmitt, D.; Allaire, G.; Pantz, O.; Pozin, N.

    2013-01-01

    Traditional designs of sodium cooled fast reactors have a positive sodium expansion feedback. During a loss of flow transient without scram, sodium heating and boiling thus insert a positive reactivity and prevents the power from decreasing. Recent studies led at CEA, AREVA and EDF show that cores with complex geometries can feature a very low or even a negative sodium void worth. Usual optimization methods for core conception are based on a parametric description of a given core design. New core concepts and shapes can then only be found by hand. Shape optimization methods have proven very efficient in the conception of optimal structures under thermal or mechanical constraints. First studies show that these methods could be applied to sodium cooled core conception. In this paper, a shape optimization method is applied to the conception of a sodium cooled fast reactor core with low sodium void worth. An objective function to be minimized is defined. It includes the reactivity change induced by a 1% sodium density decrease. The optimization variable is a displacement field changing the core geometry from one shape to another. Additionally, a parametric optimization of the plutonium content distribution of the core is made, so as to ensure that the core is kept critical, and that the power shape is flat enough. The final shape obtained must then be adjusted to a given realistic core layout. Its characteristics can be checked with reference neutronic codes such as ERANOS. Thanks to this method, new shapes of reactor cores could be inferred, and lead to new design ideas. (authors)

  20. The effect of steam cycle conditions upon the economics and design of a sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Philpott, E.F.; Pounder, F.; Willby, C.R.

    1978-01-01

    The paper studies the effect of variation of steam and feedwater conditions upon the economics, design and layout of a sodium-cooled fast reactor. The parameters investigated are steam temperature and pressure, feedwater temperature, and boiler recirculation ratio. The paper also includes an assessment of the effects of associating the fast reactor with saturated steam cycle conditions. (author)

  1. Analysis of a small Fast Sodium Reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Gilberti, Mauricio, E-mail: mgilber@eletronuclear.gov.br [Eletrobrás Termonuclear S.A. (ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil); Velasquez, Carlos E.; Vargas, Matheus L.; Martins, Felipe; Costa, Antonella L.; Veloso, Maria Auxiliadora F.; Pereira, Claubia, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    This paper presents the analyses and initial results of a Small Fast Sodium Reactor (SFSR) simulated using MCNPX. The goal is to build a nuclear model and determine the main core neutronic parameters over the cycle. Neutronics parameters such as burnup neutronic behavior, depletion fuel composition, absorbing elements, core reactivity control and reactivity coefficients that affect the reactor cooled by sodium along its operation cycle have been analyzed. The parameters are evaluated in terms of the reactivity coefficients at different cycle stages. The results present a comparison and discussion of the differences found between the model developed and some information available in the literature for a similar project. (author)

  2. Fast Flux Test Facility sodium pump operating experience - mechanical

    International Nuclear Information System (INIS)

    Buonamici, R.

    1987-11-01

    The Heat Transport System (HTS) pumps were designed, fabricated, tested, and installed in the Fast Flux Test Facility (FFTF) Plant during the period from September 1970 through July 1977. Since completion of the installation and sodium fill in December 1978, the FFTF Plant pumps have undergone extensive testing and operation with HTS testing and reactor operation. Steady-state hydraulic and mechanical performances have been and are excellent. In all, FFTF primary and secondary pumps have operated in sodium for approximately 75,000 hours and 79,000 hours, respectively, to August 24, 1987

  3. UK fast reactor components - sodium removal decontamination and requalification

    International Nuclear Information System (INIS)

    Donaldson, D.M.; Bray, J.A.; Newson, I.H.

    1978-01-01

    Over the past two decades extensive experience on sodium removal techniques has been gained at the UKAEA's Dounreay Nuclear Establishment from both the Dounreay Fact Reactor (DFR) and the Prototype Fast Reactor (PFR). This experience has created confidence that complex components can be cleaned of sodium, maintenance or repair operations carried out, and the components successfully re-used. Part 2 of the paper, which describes recent operations associated with the PFR, demonstrates the background to these views. This past and continuing experience is being used in forming the basis of the plant to be provided for sodium removal, decontamination and requalification of components in the UK's future commercial fast reactors. Further improvements in techniques and in component designs can be expected in the course of the next few years. Consequently UK philosophy and approach with respect to maintenance and repair operations is sufficiently flexible to enable relevant improvements to be incorporated into the next scheduled fast reactor - the Commercial Demonstration Fast Reactor (CUR). This paper summarises the factors which are being taken into consideration in this continuously advancing field

  4. UK fast reactor components - sodium removal decontamination and requalification

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, D M [FRDD, UKAEA, Risley (United Kingdom); Bray, J A; Newson, I H [UKAEA, Dounreay Nuclear Power Establishment, Thurso (United Kingdom)

    1978-08-01

    Over the past two decades extensive experience on sodium removal techniques has been gained at the UKAEA's Dounreay Nuclear Establishment from both the Dounreay Fact Reactor (DFR) and the Prototype Fast Reactor (PFR). This experience has created confidence that complex components can be cleaned of sodium, maintenance or repair operations carried out, and the components successfully re-used. Part 2 of the paper, which describes recent operations associated with the PFR, demonstrates the background to these views. This past and continuing experience is being used in forming the basis of the plant to be provided for sodium removal, decontamination and requalification of components in the UK's future commercial fast reactors. Further improvements in techniques and in component designs can be expected in the course of the next few years. Consequently UK philosophy and approach with respect to maintenance and repair operations is sufficiently flexible to enable relevant improvements to be incorporated into the next scheduled fast reactor - the Commercial Demonstration Fast Reactor (CUR). This paper summarises the factors which are being taken into consideration in this continuously advancing field.

  5. Sodium environment effects to structural materials for fast reactors

    International Nuclear Information System (INIS)

    Hasegawa, Masayoshi; Fujimura, Tadato; Kondo, Tatsuo; Okabayashi, Kunio; Matsumoto, Keishi.

    1976-03-01

    Among the material technology for liquid metal-cooling fast breeder reactors, the characteristic points are high temperature, liquid sodium as a heat medium, and high energy-high density neutron energy spectra, accordingly the secular change of materials due to these factors must be taken into the design. The project of material tests in sodium was started from the metallographical studies on corrosion and mass transfer phenomena in sodium environment, and was evolved to the tests and studies on short time strength, creep strength, fatigue strength, and embrittlement in sodium environment. Concerning the corrosion and mass transfer tests, low purity and medium purity material testing loops were employed, and the test of immersion in sodium was carried out. Domestically produced austenitic stainless steel and Cr-Mo steel were tested, and the measurement of weight change, surface inspection, and the observation of cross sectional structure were carried out before and after the immersion. The decrease of thickness due to the leaching of surface metal and the lowering of strength due to the change of composition or structure come into question only in case of very thin walled stainless tubes, and the lowering of heat transfer is negligible. Cr-Mo steel also showed good corrosion resistance in sodium, but the effect of decarbonization on the strength needs some investigation in the production specifications. (Kako, I.)

  6. Mapping of sodium void worth and doppler effect for sodium-cooled fast reactor - 15458

    International Nuclear Information System (INIS)

    Krepel, J.; Pelloni, S.; Bortot, S.; Panadero, A.L.; Mikityuk, K.

    2015-01-01

    The sodium-cooled fast reactor (SFR) represents the reference and the most technologically mastered system among the Generation-IV reactors. Nevertheless, the sodium void worth in the fuel regions of SFR is usually positive. To overcome this safety drawback, low-void sodium-cooled fast spectrum core (CFV) was proposed by CEA. Such a CFV core is used in the frame of WP6 'Core safety' of the FP7 Euratom ESNII+ project as a reference SFR design. The overall sodium void effect is negative for the CFV core. Nevertheless, locally it is positive in the fuel region and negative in the sodium plenum. Similarly, also the Doppler effect is spatially dependent and it varies between the inner and outer fuel regions and between the middle and lower blankets. Accordingly, knowledge of the local distributions or actually mappings of the two safety-related parameters will be necessary, before safety assessment and transient analysis can be done. In this study these maps have been produced using the deterministic code ERANOS. The obtained mapping shows strong local dependency of both safety-related effects. A sensitivity of the void effect to the sodium plenum modeling was also demonstrated. The results may serve as an input for the transient analysis of the CFV core or as a cross-check for the Monte Carlo method based maps. (authors)

  7. The detection of sodium vapor bubble collapse in a liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    Carey, W.M.; Gavin, A.P.; Bobis, J.P.; Sheen, S.H.; Anderson, T.T.; Doolittle, R.D.; Albrecht, R.W.

    1977-01-01

    Sodium boiling detection utilizing the sound pressure emanated during the collapse of a sodium vapour bubble in a subcooled media is discussed in terms of the sound characteristic, the reactor ambient noise background, transmission loss considerations and performance criteria. Data obtained in several loss of flow experiments on Fast Test Reactor Fuel Elements indicate that the collapse of the sodium vapour bubble depends on the presence of a subcooled structure or sodium. The collapse pressure pulse was observed in all cases to be on the order of a kPa, indicating a soft type of cavitational collapse. Spectral examination of the pulses indicates the response function of the test structure and geometry is important. The sodium boiling observed in these experiments was observed to occur at a low ( 0 C) liquid superheat with the rate of occurrence of sodium vapor bubble collapse in the 3 to 30 Hz range. Reactor ambient noise data were found to be due to machinery induced vibrations flow induced vibrations, and flow noise. These data were further found to be weakly stationary enhancing the possibility of acoustic surveillance of an operating Liquid Metal Fast Breeder Reactor. Based on these noise characteristics and extrapolating the noise measurements from the Fast Flux Test Facility Pump (FFTP), one would expect a signal to noise ratio of up to 20 dB in the absence of transmission loss. The requirement of a low false alarm probability is shown to necessitate post detection analysis of the collapse event sequence and the cross correlation with the second derivative of the neutronic boiling detection signal. Sodium boiling detection using the sounds emitted during sodium vapor bubble collapse are shown to be feasible but a need for in-reactor demonstration is necessary. (author)

  8. Core Seismic Tests for a Sodium-Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Gyeong Hoi; Lee, J. H

    2007-01-15

    This report describes the results of the comparison of the core seismic responses between the test and the analysis for the reduced core mock-up of a sodium-cooled fast reactor to verify the FAMD (Fluid Added Mass and Damping) code and SAC-CORE (Seismic Analysis Code for CORE) code, which implement the application algorithm of a consistent fluid added mass matrix including the coupling terms. It was verified that the narrow fluid gaps between the duct assemblies significantly affect the dynamic characteristics of the core duct assemblies and it becomes stronger as a number of duct increases within a certain level. As conclusion, from the comparison of the results between the tests and the analyses, it is verified that the FAMD code and the SAC-CORE code can give an accurate prediction of a complex core seismic behavior of the sodium-cooled fast reactor.

  9. Delayed gamma power measurement for sodium-cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Coulon, R., E-mail: romain.coulon@cea.f [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France); Normand, S., E-mail: stephane.normand@cea.f [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France); Ban, G., E-mail: ban@lpccaen.in2p3.f [ENSICAEN, 6 Boulevard Marechal Juin, F-14050 Caen Cedex 4 (France); Barat, E.; Montagu, T.; Dautremer, T. [CEA, LIST, Laboratoire Modelisation Simulation et Systemes, F-91191 Gif-sur-Yvette (France); Brau, H.-P. [ICSM, Centre de Marcoule, BP 17171 F-30207 Bagnols sur Ceze (France); Dumarcher, V. [AREVA NP, SET, F-84500 Bollene (France); Michel, M.; Barbot, L.; Domenech, T.; Boudergui, K.; Bourbotte, J.-M. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France); Jousset, P. [CEA, LIST, Departement des Capteurs, du Signal et de l' Information, F-91191 Gif-sur-Yvette (France); Barouch, G.; Ravaux, S.; Carrel, F. [CEA, LIST, Laboratoire Modelisation Simulation et Systemes, F-91191 Gif-sur-Yvette (France); Saurel, N. [CEA, DAM, Laboratoire Mesure de Dechets et Expertise, F-21120 Is-sur-Tille (France); Frelin-Labalme, A.-M.; Hamrita, H. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France)

    2011-01-15

    Graphical abstract: Display Omitted Research highlights: {sup 20}F and {sup 23}Ne tagging agents are produced by fast neutron flux. {sup 20}F signal has been measured at the SFR Phenix prototype. A random error of only 3% for an integration time of 2 s could be achieved. {sup 20}F and {sup 23}Ne power measurement has a reduced temperature influence. Burn-up impact could be limited by simultaneous {sup 20}F and {sup 23}Ne measurement. - Abstract: Previous works on pressurized water reactors show that the nitrogen 16 activation product can be used to measure thermal power. Power monitoring using a more stable indicator than ex-core neutron measurements is required for operational sodium-cooled fast reactors, in order to improve their economic efficiency at the nominal operating point. The fluorine 20 and neon 23 produced by (n,{alpha}) and (n,p) capture in the sodium coolant have this type of convenient characteristic, suitable for power measurements with low build-up effects and a potentially limited temperature, flow rate, burn-up and breeding dependence. This method was tested for the first time during the final tests program of the French Phenix sodium-cooled fast reactor at CEA Marcoule, using the ADONIS gamma pulse analyzer. Despite a non-optimal experimental configuration for this application, the delayed gamma power measurement was pre-validated, and found to provide promising results.

  10. Assessment of sodium status in large ruminants by measuring the sodium-to-potassium ratio in muzzle secretions.

    Science.gov (United States)

    Singh, S P; Rani, D

    1999-09-01

    To develop a simple diagnostic test to assess sodium status in large ruminants on the basis of the sodium-to-potassium ratio (Na:K) and to determine its relevance. 7 buffalo heifers and 21 lactating, pregnant, and nonpregnant dairy cows and heifers. Buffalo heifers were subjected in 2 experiments to variable dietary sodium intake or sodium depletion and changes in sodium and potassium concentrations; Na:K was simultaneously monitored in various body fluids to study its value for indicating sodium status. Validity of the muzzle secretion test was assessed. Muzzle secretion and urinary Na:K and sodium concentration, but not serum electrolyte concentrations, reflected the sodium status of buffalo heifers in response to the widely variable intake of sodium (0.03 to 0.16% of dry matter [DM]). Progressive sodium depletion during an 11-day period, using saliva deprivation caused reciprocal changes in sodium and potassium concentrations in saliva and muzzle secretion, but not in urine. Decreasing urine sodium concentration was associated with decreasing urine potassium concentration. Saliva, urine, and muzzle secretion Na:K closely reflected the degree of sodium deficit. Buffaloes or dairy cows maintained on optimal sodium intake had muzzle secretion and urine Na:K > 0.30. Muzzle secretion or urine Na:K muzzle secretion Na:K, and to a large extent urine Na:K, may be used as a convenient diagnostic tool to assess sodium status in large ruminants. It has accuracy similar to that of saliva Na:K.

  11. Study of thermophysical and thermohydraulic properties of sodium for fast sodium cooled reactors

    International Nuclear Information System (INIS)

    Vega R, A. K.; Espinosa P, G.; Gomez T, A. M.

    2016-09-01

    The importance of liquid sodium lies in its use as a coolant for fast reactors, but why should liquid metal be used as a coolant instead of water? Water is difficult to use as a coolant for a fast nuclear reactor because its acts as a neutron moderator, that is, stop the fast neutrons and converts them to thermal neutrons. Nuclear reactors such as the Pressurized Water Reactor or the Boiling Water Reactor are thermal reactors, which mean they need thermal neutrons for their operation. However, is necessary for fast reactors to conserve as much fast neutrons, so that the liquid metal coolants that do have this capability are implemented. Sodium does not need to be pressurized, its low melting point and its high boiling point, higher than the operating temperature of the reactor, make it an adequate coolant, also has a high thermal conductivity, which is necessary to transfer thermal energy and its viscosity is close to that of the water, which indicates that is an easily transportable liquid and does not corrode the steel parts of the reactor. This paper presents a brief state of the art of the rapid nuclear reactors that operated and currently operate, as well as projects in the door in some countries; types of nuclear reactors which are cooled by liquid sodium and their operation; the mathematical models for obtaining the properties of liquid sodium in a range of 393 to 1673 Kelvin degrees and a pressure atmosphere. Finally a program is presented in FORTRAN named Thermo-Sodium for the calculation of the properties, which requires as input data the Kelvin temperature in which the liquid sodium is found and provides at the user the thermo-physical and thermo-hydraulic properties for that data temperature. Additional to this the user is asked the Reynolds number and the hydraulic diameter in case of knowing them, and in this way the program will provide the value of the convective coefficient and that of the dimensionless numbers: Nusselt, Prandtl and Peclet. (Author)

  12. Feasibility Study on Ultrasonic Waveguide Sensor for Under-Sodium Visualization of Sodium Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Young-Sang; Park, Chang-Gyu; Lee, Jae-Han; Lim, Sa-Hoe

    2008-01-15

    The reactor core and internal structures of a sodium-cooled fast reactor (SFR) can not be visually examined due to the opaque sodium. The examination of the internal structures is possible by using ultrasonics to penetrate the sodium. The under-sodium viewing technique using an ultrasonic wave should be applied for the in-service inspection of the reactor internals. Immersion sensors and waveguide sensors have been utilized for the under-sodium viewing application. The immersion sensor has a precise imaging capability, but may have high temperature restrictions and an uncertain life. The waveguide sensor can operate in a hostile environment, such as liquid metal at a high temperature in the presence of high radiation. The waveguide sensor has the advantages of simplicity and reliability, but limits in its movement. A new plate-type waveguide sensor has been developed to overcome the limitations of previous waveguide sensors. And a novel ultrasonic technique has been suggested. The technique is capable of steering a radiation beam of a waveguide sensor without a mechanical movement of the waveguide sensor. The control of the radiation beam angle can be achieved by a frequency tuning method of the excitation pulse in the dispersive low frequency range of the A{sub 0} Lamb wave. A waveguide sensor assembly has been designed for the actual application of undersodium visual inspection in sodium-cooled fast reactor. The main purpose of this study is achievement of feasibility of ultrasonic waveguide sensor technology to the application of undersodium viewing. Under-water C-scan imaging test was carried out by using 10 m long waveguide sensor assembly. It was confirmed that the test target could be clearly visualized and the resolution of C-scan image could be less than 2 mm.

  13. Feasibility Study on Ultrasonic Waveguide Sensor for Under-Sodium Visualization of Sodium Fast Reactor

    International Nuclear Information System (INIS)

    Joo, Young-Sang; Park, Chang-Gyu; Lee, Jae-Han; Lim, Sa-Hoe

    2008-01-01

    The reactor core and internal structures of a sodium-cooled fast reactor (SFR) can not be visually examined due to the opaque sodium. The examination of the internal structures is possible by using ultrasonics to penetrate the sodium. The under-sodium viewing technique using an ultrasonic wave should be applied for the in-service inspection of the reactor internals. Immersion sensors and waveguide sensors have been utilized for the under-sodium viewing application. The immersion sensor has a precise imaging capability, but may have high temperature restrictions and an uncertain life. The waveguide sensor can operate in a hostile environment, such as liquid metal at a high temperature in the presence of high radiation. The waveguide sensor has the advantages of simplicity and reliability, but limits in its movement. A new plate-type waveguide sensor has been developed to overcome the limitations of previous waveguide sensors. And a novel ultrasonic technique has been suggested. The technique is capable of steering a radiation beam of a waveguide sensor without a mechanical movement of the waveguide sensor. The control of the radiation beam angle can be achieved by a frequency tuning method of the excitation pulse in the dispersive low frequency range of the A 0 Lamb wave. A waveguide sensor assembly has been designed for the actual application of undersodium visual inspection in sodium-cooled fast reactor. The main purpose of this study is achievement of feasibility of ultrasonic waveguide sensor technology to the application of undersodium viewing. Under-water C-scan imaging test was carried out by using 10 m long waveguide sensor assembly. It was confirmed that the test target could be clearly visualized and the resolution of C-scan image could be less than 2 mm

  14. Materials challenges supporting new sodium fast reactor designs

    International Nuclear Information System (INIS)

    Gelineau, O.; Goff, S. Dubiez-le; Dubuisson, Ph.; Dalle, F.; Blat, M.

    2009-01-01

    Sodium Fast Reactor is considered in France as the most mature technology of the different Generation IV systems. In the short-term the designing work is focused on the identification of the potential tracks to improve competitiveness, safety, efficiency and to reduce cost. In that frame the materials have a key role to play. This paper is focused on the new materials envisaged and on the Research and Development program launched in France by Areva NP, CEA and EDF in order to sustain the innovative design options: ferritic steels as candidates for exchangers, steam generators and possibly sodium circuits, optimization of materials and fabrication processes to improve safety and risk management, extension of material databases to take into account the 60 years life duration including irradiation and ageing effect. (author)

  15. Fast breeder reactors secondary piping potential sodium leakage rate assessment

    International Nuclear Information System (INIS)

    Alicino, F.; Cardini, S.

    1989-01-01

    In the liquid metal fast breeder reactors (LMFBRs) it must always be taken under control any possible air-sodium contact, because of the elevated air-sodium reactivity. This requires that LMFBRs be carefully designed so that over the entire plant life such an event can't occur in an uncontrolled way. For these reactors the operating conditions usually impose that a lot of life be spent in the creep regime and moreover generally severe hot and cold thermal transients are anticipated, which increases the potential of crack propagation. Then, a useful means to ascertain if this event can occur is to adopt a fracture mechanics approach. This paper presents a computer program to perform fracture mechanics calculations

  16. Utility industry evaluation of the Sodium Advanced Fast Reactor

    International Nuclear Information System (INIS)

    Burstein, S.; DelGeorge, L.O.; Tramm, T.R.; Gibbons, J.P.; High, M.D.; Neils, G.H.; Pilmer, D.F.; Tomonto, J.R.; Wells, J.T.

    1990-02-01

    A team of utility industry representatives evaluated the Sodium Advanced Fast Reactor plant design, a current liquid metal reactor design created by an industrial team led by Rockwell International under Department of Energy sponsorship. The utility industry team concluded that the plant design offers several attractive characteristics, especially in the safety arena, as well as preserving the traditional attraction of liquid metal reactors, very high fuel utilization. Specific comments and recommendations are provided as a contribution towards improving an already attractive plant design. 18 refs

  17. Sodium Fast Reactor Safety and Licensing Research Plan

    International Nuclear Information System (INIS)

    Denman, Matthew; Lachance, Jeff; Sofu, Tanju; Wigeland, Roald; Flanagan, George; Bari, Robert

    2013-01-01

    Conclusions: The Sodium Fast Reactor Safety and Licensing Research Plan reports conclude a multi-year expert elicitation process. All information included in the studies are publicly available and the reports are UUR. These reports are intended to guide SFR researchers in the safety and licensing arena to important and outstanding issues Two (and a half) projects have been funded based on the recommendations in this report: • Modernization of SAS4A; • Incorporation of Contain/LMR with MELCOR; • (Data recovery at INL and PNNL)

  18. Application of hafnium hydride control rod to large sodium cooled fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Kazumi, E-mail: kazumi_ikeda@mfbr.mhi.co.jp [Mitsubishi FBR Systems, Inc., 34-17, Jingumae 2-Chome, Shibuya-ku, Tokyo 150-0001 (Japan); Moriwaki, Hiroyuki, E-mail: hiroyuki_moriwaki@mfbr.mhi.co.jp [Mitsubishi FBR Systems, Inc., 34-17, Jingumae 2-Chome, Shibuya-ku, Tokyo 150-0001 (Japan); Ohkubo, Yoshiyuki, E-mail: yoshiyuki_okubo@mfbr.mhi.co.jp [Mitsubishi FBR Systems, Inc., 34-17, Jingumae 2-Chome, Shibuya-ku, Tokyo 150-0001 (Japan); Iwasaki, Tomohiko, E-mail: tomohiko.iwasaki@qse.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai-shi, Miyagi-ken 980-8579 (Japan); Konashi, Kenji, E-mail: konashi@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, Narita-cho, Oarai-machi, Higashi-Ibaraki-gun, Ibaraki-ken 311-1313 (Japan)

    2014-10-15

    Highlights: • Application of hafnium hydride control rod to large sodium cooled fast breeder reactor. • This paper treats application of an innovative hafnium hydride control rod to a large sodium cooled fast breeder reactor. • Hydrogen absorption triples the reactivity worth by neutron spectrum shift at H/Hf ratio of 1.3. • Lifetime of the control rod quadruples because produced daughters of hafnium isotopes are absorbers. • Nuclear and thermal hydraulic characteristics of the reactor are as good as or better than B-10 enriched boron carbide. - Abstract: This study treats the feasibility of long-lived hafnium hydride control rod in a large sodium-cooled fast breeder reactor by nuclear and thermal analyses. According to the nuclear calculations, it is found that hydrogen absorption of hafnium triples the reactivity by the neutron spectrum shift at the H/Hf ratio of 1.3, and a hafnium transmutation mechanism that produced daughters are absorbers quadruples the lifetime due to a low incineration rate of absorbing nuclides under irradiation. That is to say, the control rod can function well for a long time because an irradiation of 2400 EFPD reduces the reactivity by only 4%. The calculation also reveals that the hafnium hydride control rod can apply to the reactor in that nuclear and thermal characteristics become as good as or better than 80% B-10 enriched boron carbide. For example, the maximum linear heat rate becomes 3% lower. Owing to the better power distribution, the required flow rate decreases approximately by 1%. Consequently, it is concluded on desk analyses that the long lived hafnium hydride control rod is feasible in the large sodium-cooled fast breeder reactor.

  19. Decreased Urinary Sodium-to-urinary Creatinine Ratio Identifies Sodium Depletion in Pediatric Acute Gastroenteritis.

    Science.gov (United States)

    Heinz-Erian, P; Akdar, Z; Haerter, B; Waldegger, S; Giner, T; Scholl-Bürgi, S; Mueller, T

    2016-01-01

    In acute gastroenteritis (AG) fecal losses may cause depletion of sodium (NaD) which may not be recognized because of normal plasma Na (pNa) concentrations. We studied the incidence of this state of normonatremic sodium depletion (NNaD) and the suitability of the urinary Na/urinary creatinine ratio (uNa/uCr) for diagnosing NNaD. 16 AG- and 16 healthy control children aged 0.8-15.0 years. Prospective cross sectional pilot study. Measurements of Na, K and creatinine in plasma (p) and urine (u). Calculation of uNa/uCr Ratio, fractional excretion of Na (FENa) and uNa/uK ratio as the hitherto best known parameters of prerenal Na depletion, respectively. pNa concentrations were normal in 15/16 AG patients (93.8%) with only one subnormal value of 133 mmol/L, and a mean value of 137.9±2.3 mmol/L not different from the normal control group (139.4±2.2 mmol/L). Also, mean uNa concentrations and uNa/uK ratios did not differ between both groups. However, uNa/uCr ratios were below normal in 13/16 AG children (81.3%) but normal in all healthy controls with a significantly lower mean value in the AG group (12.6±8.8 vs. 31.2±8.3 mmol/mmol; phigh correlation coefficient of r=0.9333. The majority of AG patients was found to have NNaD as determined by uNa/uCr and FENa. Calculation of uNa/uCr may be useful for diagnosing NNaD in AG. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Under sodium ultrasonic viewing for Fast Breeder Reactors: a review

    International Nuclear Information System (INIS)

    Tarpara, Eaglekumar G.; Patankar, V.H.; Vijayan Varier, N.

    2016-09-01

    Liquid Metal Fast Breeder Reactors (LMFBR/FBR) are of two types: Loop type and Pool type. Many countries like USA, Japan, UK, Russia, China, France, Lithuania, Belgium, Korea, and India have worked extensively on these types of FBRs. FBRs are capable of breeding more fissionable fuel than it consumes like breeding of Plutonium-239 from non-fissionable Uranium-238. In FBR, heat is released by fission process and it must be captured and transferred to the electric generator by the liquid metal coolant (i.e. Sodium). Due to continuous operation and for safety and licensing reasons, periodic inspection and maintenance is required for reactor fuel assemblies which carry nuclear fuels. For this reason, under sodium ultrasonic imaging technique is adopted as in-service inspection activity for viewing of core of FBRs. Since liquid sodium is optically opaque, ultrasonic technique is the only method which can be employed for imaging in liquid sodium. In harsh conditions like high temperature and high radiation, there is a restriction on the development of possible ultrasonic visualization systems and selection of the transducer materials which can operate in the core region of reactor at around 200 °C during shutdown of reactor. This report provides a review of works related to ultrasonic imaging in sodium, different materials used in high temperature transducer assemblies and their different coupling/bonding techniques to achieve maximum transmission efficiency in high temperature sodium environment. The report also provides the overview of different architectures and imaging methods of transducer array elements which were used in LMFBRs for inspection and visualization of the reactor core sub-assemblies. The report is focused on a review of some possible beam forming techniques which may be used for nuclear applications for high temperature environment. Published information of the different simulation models are also reviewed which can be adopted to simulate the

  1. Fast ultrasonic visualisation under sodium. Application to the fast neutron reactors; Visualisation ultrasonore rapide sous sodium. application aux reacteurs a neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Imbert, Ch

    1997-05-30

    The fast ultrasonic visualization under sodium is in the programme of research and development on the inspection inside the fast neutron reactors. This work is about the development of a such system of fast ultrasonic imaging under sodium, in order to improve the existing visualization systems. This system is based on the principle of orthogonal imaging, it uses two linear antennas with an important dephasing having 128 piezo-composite elements of central frequency equal to 1.6 MHz. (N.C.)

  2. Neutronics studies on the feasibility of developing fast breeder reactor with flexible breeding ratio

    International Nuclear Information System (INIS)

    Xiao Yunlong; Wu Hongchun; Zheng Youqi; Wang Kunpeng

    2016-01-01

    This paper investigates the feasibility of designing a flexible fast breeder reactor from the view of neutronics. It requires that the variable breeding ratio can be achieved in operating a fast reactor without significant changes of the core, including the minimum change of fuel assembly design, the minimum change of the core configuration and the same control system arrangement in the core. The sodium cooled fast reactor is investigated. Two difficulties are overcome: (1) the different excess reactivity is well controlled for different cores, especially for the one with small breeding ratio; (2) the maximum linear power density is well controlled while the breeding ratio changes. The optimizations are done to meet the requirements. The U–Pu–Zr alloy is applied to enhance the breeding. The enrichment-zoning technique with unfixed blanket assembly loading position is searched to get acceptable power distributions when the breeding ratio changes. And the control system is designed redundantly to fulfill the control needs. Then, the achieved breeding ratio can be adjusted from 1.1 to 1.4. The reactivity coefficients, temperature distributions and preliminary safety performances are evaluated to investigate the feasibility of the new concept. All the results show that it is feasible to develop the fast reactor with flexible breeding ratios, although it still highly relies on the advancement of the coolant flow control technology. (author)

  3. Selection of steam generator materials for sodium cooled fast breeders

    International Nuclear Information System (INIS)

    Berge, P.

    1977-01-01

    The sodium water heat exchangers are now considered as the stumbling block in the development of liquid metal cooled fast breeders, due to the risk of sodium-water reactions. The selection of the materials for these tube-bundles has been very broad, for the different existing, or in-project, reactors in the world: low alloy 2 1/4 Cr - 1 Mo steels (unstabilized or stabilized); 9 Cr - 1 Mo ferritic steel; 18 Cr - 10 Ni austenitic stainless steels; alloy 800. On can also add other ferritic steels, as 9 Cr - 2 Mo stabilized, which are studied for this application. In the framework of the E.D.F.-C.E.A. working group a major effort was undertaken to study the characteristics of these various materials with respect to the main criteria governing construction of the tube bundles and their performance in service: mechanical characteristics at high temperature; fabrication and welding; behavior with respect to mass transfer in sodium; carburization and decarburization; corrosion resistance. The main lines and results of this program are described [fr

  4. Sodium fast reactor power monitoring using gamma spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Coulon, R.; Normand, S.; Barbot, L.; Domenech, T.; Kondrasovs, V.; Corre, G.; Frelin, A.M. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, CEA - Saclay DRT/LIST/DETECS/SSTM, Batiment 516 - P.C. no 72, Gif sur Yvette, F-91191 (France); Montagu, T.; Dautremer, T.; Barat, E. [CEA, LIST, Laboratoire Processus Stochastiques et Spectres (France); Ban, G. [ENSICAEN (France)

    2009-06-15

    This work deals with the use of high flux gamma spectrometry to monitor the fourth generation of sodium fast reactor (SFR) power. The simulation study part of this work has shown that power monitoring in a short time response and with a good accuracy is possible. An experimental test is under preparation at the French SFR Phenix experimental reactor to validate simulation studies. First, physical calculations have been done to correlate gamma activity to the released thermal power. Gamma emitter production rate in the reactor core was calculated with technical and nuclear data as the sodium velocity, the atomic densities, Phenix neutron spectrum and incident neutron cross-sections of reactions producing gamma emitters. A thermal hydraulic transfer function was used for modeling primary sodium flow in our calculations. For the power monitoring problematic, use of a short decay period gamma emitter will allow to have a very fast response system without cumulative effect. We have determined that the best tagging agent is 20F which emits 1634 keV energy photons with a decay period of 11 s. The gamma spectrum was determined by flux point and a pulse high tally MCNP5.1.40 simulation and shown the possibility to measure the signal of this radionuclide. The experiment will be set during the reactor 'end life testing'. The Delayed Neutron Detection (DND) room has been chosen as the best available location on Phenix reactor to measure this kind of radionuclide due to a short transit time from reactor core to measurement sample. This location is optimum for global power measurement because homogenized sampling in the reactor hot pool. The main spectrometer is composed of a coaxial high purity germanium diode (HPGe) coupled with a transistor reset preamplifier. The HPGe diode signal will be processed by the Adonis digital signal processing due to high flux and fast activity measurement. Post-processing softwares will be used to limit statistical problems of the

  5. CFD Modeling of Sodium-Oxide Deposition in Sodium-Cooled Fast Reactor Compact Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Tatli, Emre; Ferroni, Paolo; Mazzoccoli, Jason

    2015-09-02

    The possible use of compact heat exchangers (HXs) in sodium-cooled fast reactors (SFR) employing a Brayton cycle is promising due to their high power density and resulting small volume in comparison with conventional shell-and-tube HXs. However, the small diameter of their channels makes them more susceptible to plugging due to Na2O deposition during accident conditions. Although cold traps are designed to reduce oxygen impurity levels in the sodium coolant, their failure, in conjunction with accidental air ingress into the sodium boundary, could result in coolant oxygen levels that are above the saturation limit in the cooler parts of the HX channels. This can result in Na2O crystallization and the formation of solid deposits on cooled channel surfaces, limiting or even blocking coolant flow. The development of analysis tools capable of modeling the formation of these deposits in the presence of sodium flow will allow designers of SFRs to properly size the HX channels so that, in the scenario mentioned above, the reactor operator has sufficient time to detect and react to the affected HX. Until now, analytical methodologies to predict the formation of these deposits have been developed, but never implemented in a high-fidelity computational tool suited to modern reactor design techniques. This paper summarizes the challenges and the current status in the development of a Computational Fluid Dynamics (CFD) methodology to predict deposit formation, with particular emphasis on sensitivity studies on some parameters affecting deposition.

  6. Under-Sodium-Viewing as one technique for periodic inspections in sodium-cooled fast reactors-- possibilities and limits

    International Nuclear Information System (INIS)

    Weiss, H.

    1979-07-01

    Periodic inspections are gaining increasingly technical importance for fast sodium cooled reactors. Among others the reactor tank and its internals have to be inspected, whereby licensing experts partly are requesting the standards of Light Water Reactors. This leads to difficulties in sodium cooled reactors because of the non-transparent coolant sodium and their compact structure. In order to avoid the complete dumping of the sodium, the under sodium viewing shall be applied besides other inspection methods. Since this is a new method, which is still in its development phase, this report presents and discusses the technical and physical basis and outlines possibilities and limits [de

  7. Recent developments in the analysis of coolant sodium for fast breeder reactors

    International Nuclear Information System (INIS)

    Keough, R.F.; McCown, J.J.

    1976-01-01

    The measurement of impurities in sodium is an important part of the sodium technology for the fast breeder reactor program. A knowledge of impurity levels in sodium provides an important source of information on such things as corrosion rates, air and water leak location and detection, and the effectiveness of the sodium purification systems. A discussion is presented of some of the analytical techniques for sodium characterization in reactor heat transfer systems. Emphasis is placed on some recently developed alternatives to laboratory analysis

  8. Towards the Characterization of the Bubble Presence in Liquid Sodium of Sodium Cooled Fast Reactors

    International Nuclear Information System (INIS)

    Cavaro, M.; Jeannot, J.P.; Payan, C.

    2013-06-01

    In a Sodium cooled Fast Reactors (SFR), different phenomena such as gas entrainment or nucleation can lead to gaseous micro-bubbles presence in the liquid sodium of the primary vessel. Although this free gas presence has no direct impact on the core neutronics, the French Atomic Energy and Alternative Energies Commission (CEA) currently works on its characterization to, among others, check the absence of risk of large gas pocket formation and to assess the induced modifications of the sodium acoustic properties. The main objective is to evaluate the void fraction values (volume fraction of free gas) and the radii histogram of the bubbles present in liquid sodium. Acoustics and electromagnetic techniques are currently developed at CEA: - The low-frequency speed of sound measurement, which allows us to link - thanks to Wood's model - the measured speed of sound to the actual void fraction. - The nonlinear mixing of two frequencies, based on the nonlinear resonance behavior of a bubble. This technique allows knowing the radius histogram associated to a bubble cloud. Two different mixing techniques are presented in this paper: the mixing of two high frequencies and the mixing of a high and a low frequency. - The Eddy-current flowmeter (ECFM), the output signal of which is perturbed by free gas presence and in consequence allows detecting bubbles. For each technique, initial results are presented. Some of them are really promising. So far, acoustic experiments have been led with an air-water experimental set-up. Micro-bubbles clouds are generated with a dissolved air flotation device and monitored by an optical device which provides reference measurements. Generated bubbles have radii range from few micrometers to several tens of micrometers. Present and future air/water experiments are presented. Furthermore, a development plan of in-sodium tests is presented in terms of a device set-up, instrumentation, modeling tools and experiments. (authors)

  9. Modeling and Validation of Sodium Plugging for Heat Exchangers in Sodium-cooled Fast Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ferroni, Paolo [Westinghouse Electric Company LLC, Cranberry Township, PA (United States). Global Technology Development; Tatli, Emre [Westinghouse Electric Company LLC, Cranberry Township, PA (United States); Czerniak, Luke [Westinghouse Electric Company LLC, Cranberry Township, PA (United States); Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States); Chien, Hual-Te [Argonne National Lab. (ANL), Argonne, IL (United States); Yoichi, Momozaki [Argonne National Lab. (ANL), Argonne, IL (United States); Bakhtiari, Sasan [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-06-29

    The project “Modeling and Validation of Sodium Plugging for Heat Exchangers in Sodium-cooled Fast Reactor Systems” was conducted jointly by Westinghouse Electric Company (Westinghouse) and Argonne National Laboratory (ANL), over the period October 1, 2013- March 31, 2016. The project’s motivation was the need to provide designers of Sodium Fast Reactors (SFRs) with a validated, state-of-the-art computational tool for the prediction of sodium oxide (Na2O) deposition in small-diameter sodium heat exchanger (HX) channels, such as those in the diffusion bonded HXs proposed for SFRs coupled with a supercritical CO2 (sCO2) Brayton cycle power conversion system. In SFRs, Na2O deposition can potentially occur following accidental air ingress in the intermediate heat transport system (IHTS) sodium and simultaneous failure of the IHTS sodium cold trap. In this scenario, oxygen can travel through the IHTS loop and reach the coldest regions, represented by the cold end of the sodium channels of the HXs, where Na2O precipitation may initiate and continue. In addition to deteriorating HX heat transfer and pressure drop performance, Na2O deposition can lead to channel plugging especially when the size of the sodium channels is small, which is the case for diffusion bonded HXs whose sodium channel hydraulic diameter is generally below 5 mm. Sodium oxide melts at a high temperature well above the sodium melting temperature such that removal of a solid plug such as through dissolution by pure sodium could take a lengthy time. The Sodium Plugging Phenomena Loop (SPPL) was developed at ANL, prior to this project, for investigating Na2O deposition phenomena within sodium channels that are prototypical of the diffusion bonded HX channels envisioned for SFR-sCO2 systems. In this project, a Computational Fluid Dynamic (CFD) model capable of simulating the thermal-hydraulics of the SPPL test

  10. Deterioration of limestone aggregate mortars by liquid sodium in fast breeder reactor environment

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed Haneefa, K., E-mail: mhkolakkadan@gmail.com [Department of Civil Engineering, IIT Madras, Chennai (India); Santhanam, Manu [Department of Civil Engineering, IIT Madras, Chennai (India); Parida, F.C. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2014-08-15

    Highlights: • Limestone mortars were exposed to liquid sodium exposure at 550 °C. • Micro-analytical techniques were used to characterize the exposed specimens. • The performance of limestone mortar was greatly influenced by w/c. • The fundamental degradation mechanisms of limestone mortars were identified. - Abstract: Hot liquid sodium at 550 °C can interact with concrete in the scenario of an accidental spillage of sodium in liquid metal cooled fast breeder reactors. To protect the structural concrete from thermo-chemical degradation, a sacrificial layer of limestone aggregate concrete is provided over it. This study investigates the fundamental mechanisms of thermo-chemical interaction between the hot liquid sodium and limestone mortars at 550 °C for a duration of 30 min in open air. The investigation involves four different types of cement with variation of water-to-cement ratios (w/c) from 0.4 to 0.6. Comprehensive analysis of experimental results reveals that the degree of damage experienced by limestone mortars displayed an upward trend with increase in w/c ratios for a given type of cement. Performance of fly ash based Portland pozzolana cement was superior to other types of cements for a w/c of 0.55. The fundamental degradation mechanisms of limestone mortars during hot liquid sodium interactions include alterations in cement paste phase, formation of sodium compounds from the interaction between solid phases of cement paste and aggregate, modifications of interfacial transition zone (ITZ), decomposition of CaCO{sub 3}, widening and etching of rhombohedral cleavages, and subsequent breaking through the weakest rhombohedral cleavage planes of calcite, staining, ferric oxidation in grain boundaries and disintegration of impurity minerals in limestone.

  11. Deterioration of limestone aggregate mortars by liquid sodium in fast breeder reactor environment

    International Nuclear Information System (INIS)

    Mohammed Haneefa, K.; Santhanam, Manu; Parida, F.C.

    2014-01-01

    Highlights: • Limestone mortars were exposed to liquid sodium exposure at 550 °C. • Micro-analytical techniques were used to characterize the exposed specimens. • The performance of limestone mortar was greatly influenced by w/c. • The fundamental degradation mechanisms of limestone mortars were identified. - Abstract: Hot liquid sodium at 550 °C can interact with concrete in the scenario of an accidental spillage of sodium in liquid metal cooled fast breeder reactors. To protect the structural concrete from thermo-chemical degradation, a sacrificial layer of limestone aggregate concrete is provided over it. This study investigates the fundamental mechanisms of thermo-chemical interaction between the hot liquid sodium and limestone mortars at 550 °C for a duration of 30 min in open air. The investigation involves four different types of cement with variation of water-to-cement ratios (w/c) from 0.4 to 0.6. Comprehensive analysis of experimental results reveals that the degree of damage experienced by limestone mortars displayed an upward trend with increase in w/c ratios for a given type of cement. Performance of fly ash based Portland pozzolana cement was superior to other types of cements for a w/c of 0.55. The fundamental degradation mechanisms of limestone mortars during hot liquid sodium interactions include alterations in cement paste phase, formation of sodium compounds from the interaction between solid phases of cement paste and aggregate, modifications of interfacial transition zone (ITZ), decomposition of CaCO 3 , widening and etching of rhombohedral cleavages, and subsequent breaking through the weakest rhombohedral cleavage planes of calcite, staining, ferric oxidation in grain boundaries and disintegration of impurity minerals in limestone

  12. Design considerations for economically competitive sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Zhang, Hongbin; Zhao, Haihua; Mousseau, Vincent; Szilard, Ronaldo

    2009-01-01

    The technological viability of sodium cooled fast reactors (SFR) has been established by various experimental and prototype (demonstration) reactors such as EBR-II, FFTF, Phenix, JOYO, BN-600 etc. However, the economic competitiveness of SFR has not been proven yet. The perceived high cost premium of SFRs over LWRs has been the primary impediment to the commercial expansion of SFR technologies. In this paper, cost reduction options are discussed for advanced SFR designs. These include a hybrid loop-pool design to optimize the primary system, multiple reheat and intercooling helium Brayton cycle for the power conversion system and the potential for suppression of intermediate heat transport system. The design options for the fully passive decay heat removal systems are also thoroughly examined. These include direct reactor auxiliary cooling system (DRACS), reactor vessel auxiliary cooling system (RVACS) and the newly proposed pool reactor auxiliary cooling system (PRACS) in the context of the hybrid loop-pool design. (author)

  13. Development Status on Innovative Sodium-Cooled Fast Reactor (JSFR)

    International Nuclear Information System (INIS)

    Yanagisawa, Tsutomu; Sato, Kazujiro

    2006-01-01

    The first step in Japan's nuclear fuel cycle policy is to introduce MOX recycle in light water reactors (LWRs) and the final step is to establish multiple TRU recycle in fast reactors (FRs), with the goal of realizing a stable supply, effective use of nuclear fuel resources, and the environmentally friendly production of energy. Therefore, a feasibility study on commercialized FR cycle systems has been launched since July 1999 by a Japanese joint project team of Japan Atomic Energy Agency (JAEA) and the Japan Atomic Power Company (JAPC: the representative of the electric utilities) in cooperation with Central Research Institute of Electric Power Industry (CRIEPI) and vendors. In the period from July 1999 to March 2001, the feasibility study phase-I was conducted to screen out representative FR cycle concepts. In the feasibility study phase-II (April 2001 - March 2006), investigations in to the representative FR concepts were carried out to clarify the most promising concept for commercial deployment. This paper describes an innovative sodium-cooled FR, which is named as the JAEA Sodium-cooled FR (JSFR), as the most promising FR concept that meets the Generation-IV performance target. The JSFR employs several advanced technologies, such as an oxide dispersion strengthened (ODS) cladding for higher burn-up, a short-piping configuration with less elbows by adopting high chromium steel, a large scale integrated intermediate heat exchanger with a primary circulation pump, etc. Based on the design, construction and operation experiences of JOYO and MONJU, there are extensive technology bases for sodium-cooled FRs. Nevertheless, several innovative technologies implemented into the JSFR have to be developed in order to realize higher economic competitiveness by reducing construction costs and improving plant availability

  14. Sodium fast reactor safety and licensing research plan. Volume I.

    Energy Technology Data Exchange (ETDEWEB)

    Sofu, Tanju (Argonne National Laboratory, Argonne, IL); LaChance, Jeffrey L.; Bari, R. (Brokhaven National Laboratory Upton, NY); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Denman, Matthew R.; Flanagan, George F. (Oak Ridge National Laboratory, Oak Ridge, TN)

    2012-05-01

    This report proposes potential research priorities for the Department of Energy (DOE) with the intent of improving the licensability of the Sodium Fast Reactor (SFR). In support of this project, five panels were tasked with identifying potential safety-related gaps in available information, data, and models needed to support the licensing of a SFR. The areas examined were sodium technology, accident sequences and initiators, source term characterization, codes and methods, and fuels and materials. It is the intent of this report to utilize a structured and transparent process that incorporates feedback from all interested stakeholders to suggest future funding priorities for the SFR research and development. While numerous gaps were identified, two cross-cutting gaps related to knowledge preservation were agreed upon by all panels and should be addressed in the near future. The first gap is a need to re-evaluate the current procedures for removing the Applied Technology designation from old documents. The second cross-cutting gap is the need for a robust Knowledge Management and Preservation system in all SFR research areas. Closure of these and the other identified gaps will require both a reprioritization of funding within DOE as well as a re-evaluation of existing bureaucratic procedures within the DOE associated with Applied Technology and Knowledge Management.

  15. UK fast reactor components. Sodium removal decontamination and requalification

    International Nuclear Information System (INIS)

    Donaldson, D.M.; Bray, J.A.; Newson, I.H.

    1978-01-01

    Extensive experience gained at the U.K.A.E.A. Dounreay Nuclear Power Development Establishment is being applied to form the basis of the plant to be provided for sodium removal, decontamination, and requalification of components in future commercial fast reactors. In the first part of a three part paper, the factors to be taken into account, showing the UK philosophy and approach to maintenance and repair operations are discussed. In the second part, PFR facilities for sodium removal and decontamination are described and some examples are given of cleaning components such as pumps, charge machine, cold trap baskets, and steam generator units. Similar facilities at DFR are briefly described. In the third part of the paper a short description is given of the Harwell mass transfer loop, currently used to study the deposition of activated stainless steel corrosion products. Decontamination method for pipework specimens cut from the loop are described and results of first screening tests of various chemical decontaminants are presented. (U.K.)

  16. Sodium Fast Reactor Safety and Licensing Research Plan

    International Nuclear Information System (INIS)

    Denman, M.; Lachance, J.; Sofu, T.; Bari, R.; Flanagon, G.; Wigeland, R.

    2015-01-01

    This paper summarizes potential research priorities for the US Department of Energy (DOE) with the intent of improving the licensability of the sodium cooled fast reactor (SFR). In support of this project, five panels were tasked with identifying potential safety related gaps in the available information, data and models needed to support the licensing of an SFR. The areas examined were sodium technology; accident sequences and initiators; source term characterization, codes and methods; and fuels and materials. It is the intent of this paper to utilize a structured and transparent process that incorporates feedback from all interested stakeholders to suggest future funding priorities for SFR research and development. While numerous gaps were identified, two cross-cutting gaps related to knowledge preservation were agreed upon by all panels and should be addressed in the near future. The first gap is a need to re-evaluate the current procedures for removing the applied technology access control designation from old documents. The second cross-cutting gap is the need for a robust knowledge management and preservation system in all SFR research areas. Closure of these and the other identified gaps will require both a reprioritization of funding within DOE as well as a re-evaluation of existing bureaucratic procedures within the DOE associated with applied technology and knowledge management. (author)

  17. Review of the Safety Design Approaches in Sodium Fast Reactors

    International Nuclear Information System (INIS)

    Suk, Soo Dong; Lee, Yong Bum

    2009-12-01

    The principle of the Defense in depth is essential in securing the safety of nuclear power plants, that is, to prevent cores-damaging severs accidents and to minimize the radiological consequences of the accidents 'as low as possible' (ALARA). One of the major design features of sodium fast reactors (SFRs) is that it has a large amount of sodium in the reactor vessel, providing a large heat capacity, such that it is feasible to contain the consequences of sever core damaging accidents in the vessel and primary system boundary. Containment of a severe accident in the primary system boundary, that is called in-vessel retention(IVR), is not a licensing requirement but set up as a design goal in most of the SFR design in the context of risk minimization. The objective of this report is to broadly review and compare the approaches and efforts made in the some of the major SFR designs of the US, Europe and Japan to prevent severe accidents and mitigate their consequences should they occur. Specifically, the subjects described in this report include design criteria or requirements, accident categorization and acceptance criteria, design features to prevent and contain severs accidents

  18. Sodium fast reactor safety and licensing research plan - Volume I

    International Nuclear Information System (INIS)

    Sofu, Tanju; LaChance, Jeffrey L.; Bari, R.; Wigeland, Roald; Denman, Matthew R.; Flanagan, George F.

    2012-01-01

    This report proposes potential research priorities for the Department of Energy (DOE) with the intent of improving the licensability of the Sodium Fast Reactor (SFR). In support of this project, five panels were tasked with identifying potential safety-related gaps in available information, data, and models needed to support the licensing of a SFR. The areas examined were sodium technology, accident sequences and initiators, source term characterization, codes and methods, and fuels and materials. It is the intent of this report to utilize a structured and transparent process that incorporates feedback from all interested stakeholders to suggest future funding priorities for the SFR research and development. While numerous gaps were identified, two cross-cutting gaps related to knowledge preservation were agreed upon by all panels and should be addressed in the near future. The first gap is a need to re-evaluate the current procedures for removing the Applied Technology designation from old documents. The second cross-cutting gap is the need for a robust Knowledge Management and Preservation system in all SFR research areas. Closure of these and the other identified gaps will require both a reprioritization of funding within DOE as well as a re-evaluation of existing bureaucratic procedures within the DOE associated with Applied Technology and Knowledge Management.

  19. Thermal analysis experiment for elucidating sodium-water chemical reaction mechanism in steam generator of sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki

    2012-01-01

    For the purpose of elucidating the mechanism of the sodium-water surface reaction in a steam generator of sodium-cooled fast reactors, kinetic study of the sodium (Na)-sodium hydroxide (NaOH) reaction has been carried out by using Differential Thermal Analysis (DTA) technique. The parameters, including melting points of Na and NaOH, phase transition temperature of NaOH, Na-NaOH reaction temperature, and decomposition temperature of sodium hydride (NaH) have been identified from DTA curves. Based on the measured reaction temperature, rate constant of sodium monoxide (Na 2 O) generation was obtained. Thermal analysis results indicated that Na 2 O generation at the secondary overall reaction should be considered during the sodium-water reaction. (author)

  20. Sodium and potassium content and their ratio in meatballs in tomato sauce produced with lower amounts of sodium

    Science.gov (United States)

    Lilić, S.; Nikolić, D.; Pejkovski, Z.; Velebit, B.; Lakićević, B.; Korićanac, V.; Vranić, D.

    2017-09-01

    The goal of this study was to examine the possibility of partial replacement of sodium chloride with potassium chloride and ammonium chloride, with the target of achieving less sodium content in meatballs and tomato sauce as well as achieving a better Na:K ratio. The trial consisted of five groups. In the control group of meatballs and sauce, only sodium chloride was added. In group 1, half of the sodium chloride was replaced with potassium chloride related to control group while in group 2 one third of the sodium chloride was replaced with potassium chloride. In group 3, one third of the sodium chloride was replaced with ammonium chloride, and in group 4, sodium chloride was reduced to half the amount in the control group, and 1 g (0.25%) of ammonium chloride was also added. All products were acceptable according to sensory analyses. The largest reductions of sodium content were 44.64%, achieved in meatballs from group 1 and 50.62% in tomato sauce from group 4 in relation to meatballs and tomato sauce from control group. The highest Na:K ratio was calculated in meatballs and tomato sauce from control group, 2.88 and 4.39, respectively. The best Na:K ratio was in meatballs and tomato sauce from group 1, 0.60 and 0.92, respectively, in which half of sodium chloride was replaced with potassium chloride. However, in meatballs and tomato sauce from group 4, with only half the amount of sodium chloride related to control group, the Na:K ratio was worse because in these products, potassium chloride was not added.

  1. Control rod homogenization in heterogeneous sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Andersson, Mikael

    2016-01-01

    The sodium-cooled fast reactor is one of the candidates for a sustainable nuclear reactor system. In particular, the French ASTRID project employs an axially heterogeneous design, proposed in the so-called CFV (low sodium effect) core, to enhance the inherent safety features of the reactor. This thesis focuses on the accurate modeling of the control rods, through the homogenization method. The control rods in a sodium-cooled fast reactor are used for reactivity compensation during the cycle, power shaping, and to shutdown the reactor. In previous control rod homogenization procedures, only a radial description of the geometry was implemented, hence the axially heterogeneous features of the CFV core could not be taken into account. This thesis investigates the different axial variations the control rod experiences in a CFV core, to determine the impact that these axial environments have on the control rod modeling. The methodology used in this work is based on previous homogenization procedures, the so-called equivalence procedure. The procedure was newly implemented in the PARIS code system in order to be able to use 3D geometries, and thereby be take axial effects into account. The thesis is divided into three parts. The first part investigates the impact of different neutron spectra on the homogeneous control-rod cross sections. The second part investigates the cases where the traditional radial control-rod homogenization procedure is no longer applicable in the CFV core, which was found to be 5-10 cm away from any material interface. In the third part, based on the results from the second part, a 3D model of the control rod is used to calculate homogenized control-rod cross sections. In a full core model, a study is made to investigate the impact these axial effects have on control rod-related core parameters, such as the control rod worth, the capture rates in the control rod, and the power in the adjacent fuel assemblies. All results were compared to a Monte

  2. Using graphitic foam as the bonding material in metal fuel pins for sodium fast reactors

    International Nuclear Information System (INIS)

    Karahan, Aydın; Kazimi, Mujid S.

    2013-01-01

    The study evaluates the possible use of graphite foam as the bonding material between U–Pu–Zr metallic fuel and steel clad for sodium fast reactor applications using FEAST-METAL fuel performance code. Furthermore, the applicability of FEAST-METAL to the advanced fuel designs is demonstrated. Replacing the sodium bond with a chemically stable foam material would eliminate fuel clad metallurgical interactions, and allow for fuel swelling under low external stress. Hence, a significant improvement is expected for the steady state and transient performance. FEAST-METAL was used to assess the thermo-mechanical behavior of the new fuel form and a reference metallic fuel pin. Nearly unity conversion ratio, 75% smear density U–15Pu–6Zr metallic fuel pin with sodium bond, and T91 cladding was selected as a reference case. It was found that operating the reference case at high clad temperatures (600–660 °C) results in (1) excessive clad wastage formation/clad thinning due to lanthanide migration and formation of brittle phases at clad inner surface, and (2) excessive clad hoop strain at the upper axial section due mainly to the occurrence of thermal creep. The combination of these two factors may lead to cladding breach. The work concludes that replacing the sodium bond with 80% porous graphite foam and reducing the fuel smear density to 70%, it is likely that the fuel clad metallurgical interaction would be eliminated while the fuel swelling is allowed without excessive fuel clad mechanical interaction. The suggested design appears as an alternative for a high performance metallic fuel design for sodium fast reactors

  3. Using graphitic foam as the bonding material in metal fuel pins for sodium fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karahan, Aydın, E-mail: karahan@alum.mit.edu; Kazimi, Mujid S.

    2013-10-15

    The study evaluates the possible use of graphite foam as the bonding material between U–Pu–Zr metallic fuel and steel clad for sodium fast reactor applications using FEAST-METAL fuel performance code. Furthermore, the applicability of FEAST-METAL to the advanced fuel designs is demonstrated. Replacing the sodium bond with a chemically stable foam material would eliminate fuel clad metallurgical interactions, and allow for fuel swelling under low external stress. Hence, a significant improvement is expected for the steady state and transient performance. FEAST-METAL was used to assess the thermo-mechanical behavior of the new fuel form and a reference metallic fuel pin. Nearly unity conversion ratio, 75% smear density U–15Pu–6Zr metallic fuel pin with sodium bond, and T91 cladding was selected as a reference case. It was found that operating the reference case at high clad temperatures (600–660 °C) results in (1) excessive clad wastage formation/clad thinning due to lanthanide migration and formation of brittle phases at clad inner surface, and (2) excessive clad hoop strain at the upper axial section due mainly to the occurrence of thermal creep. The combination of these two factors may lead to cladding breach. The work concludes that replacing the sodium bond with 80% porous graphite foam and reducing the fuel smear density to 70%, it is likely that the fuel clad metallurgical interaction would be eliminated while the fuel swelling is allowed without excessive fuel clad mechanical interaction. The suggested design appears as an alternative for a high performance metallic fuel design for sodium fast reactors.

  4. FAST and SAFE Passive Safety Devices for Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hartanto, Donny; Kim, Chihyung; Kim, In-Hyung; Kim, Yonghee [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    The major factor is the impact of the neutron spectral hardening. The second factor that affects the CVR is reduced capture by the coolant when the coolant voiding occurs. To improve the CVR, many ideas and concepts have been proposed, which include introduction of an internal blanket, spectrum softening, or increasing the neutron leakage. These ideas may reduce the CVR, but they deteriorate the neutron economy. Another potential solution is to adopt a passive safety injection device such as the ARC (autonomous reactivity control) system, which is still under development. In this paper, two new concepts of passive safety devices are proposed. The devices are called FAST (Floating Absorber for Safety at Transient) and SAFE (Static Absorber Feedback Equipment). Their purpose is to enhance the negative reactivity feedback originating from the coolant in fast reactors. SAFE is derived to balance the positive reactivity feedback due to sodium coolant temperature increases. It has been demonstrated that SAFE allows a low-leakage SFR to achieve a self-shutdown and self-controllability even though the generic coolant temperature coefficient is quite positive and the coolant void reactivity can be largely managed by the new FAST device. It is concluded that both FAST and SAFE devices will improve substantially the fast reactor safety and they deserve more detailed investigations.

  5. Technical committee meeting on evaluation of radioactive materials release and sodium fires in fast reactors

    International Nuclear Information System (INIS)

    1996-01-01

    The objectives of the Technical Committee Meeting was to review the activities of research on radioactive materials release and sodium fires in fast reactors in each of the participating countries. It covered: out-of-pile experiments and analysis codes on source term; in-pile experiments on source term; core disruptive accidents; sodium leak experience in liquid metal fast reactors; evaluation of sodium fire; and aerosol behaviour

  6. Technical committee meeting on evaluation of radioactive materials release and sodium fires in fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The objectives of the Technical Committee Meeting was to review the activities of research on radioactive materials release and sodium fires in fast reactors in each of the participating countries. It covered: out-of-pile experiments and analysis codes on source term; in-pile experiments on source term; core disruptive accidents; sodium leak experience in liquid metal fast reactors; evaluation of sodium fire; and aerosol behaviour.

  7. Methodology for sodium fire vulnerability assessment of sodium cooled fast reactor based on the Monte-Carlo principle

    International Nuclear Information System (INIS)

    Song, Wei; Wu, Yuanyu; Hu, Wenjun; Zuo, Jiaxu

    2015-01-01

    Highlights: • Monte-Carlo principle coupling with fire dynamic code is adopted to perform sodium fire vulnerability assessment. • The method can be used to calculate the failure probability of sodium fire scenarios. • A calculation example and results are given to illustrate the feasibility of the methodology. • Some critical parameters and experience are shared. - Abstract: Sodium fire is a typical and distinctive hazard in sodium cooled fast reactors, which is significant for nuclear safety. In this paper, a method of sodium fire vulnerability assessment based on the Monte-Carlo principle was introduced, which could be used to calculate the probabilities of every failure mode in sodium fire scenarios. After that, the sodium fire scenario vulnerability assessment of primary cold trap room of China Experimental Fast Reactor was performed to illustrate the feasibility of the methodology. The calculation result of the example shows that the conditional failure probability of key cable is 23.6% in the sodium fire scenario which is caused by continuous sodium leakage because of the isolation device failure, but the wall temperature, the room pressure and the aerosol discharge mass are all lower than the safety limits.

  8. Methodology for sodium fire vulnerability assessment of sodium cooled fast reactor based on the Monte-Carlo principle

    Energy Technology Data Exchange (ETDEWEB)

    Song, Wei [Nuclear and Radiation Safety Center, P. O. Box 8088, Beijing (China); Wu, Yuanyu [ITER Organization, Route de Vinon-sur-Verdon, 13115 Saint-Paul-lès-Durance (France); Hu, Wenjun [China Institute of Atomic Energy, P. O. Box 275(34), Beijing (China); Zuo, Jiaxu, E-mail: zuojiaxu@chinansc.cn [Nuclear and Radiation Safety Center, P. O. Box 8088, Beijing (China)

    2015-11-15

    Highlights: • Monte-Carlo principle coupling with fire dynamic code is adopted to perform sodium fire vulnerability assessment. • The method can be used to calculate the failure probability of sodium fire scenarios. • A calculation example and results are given to illustrate the feasibility of the methodology. • Some critical parameters and experience are shared. - Abstract: Sodium fire is a typical and distinctive hazard in sodium cooled fast reactors, which is significant for nuclear safety. In this paper, a method of sodium fire vulnerability assessment based on the Monte-Carlo principle was introduced, which could be used to calculate the probabilities of every failure mode in sodium fire scenarios. After that, the sodium fire scenario vulnerability assessment of primary cold trap room of China Experimental Fast Reactor was performed to illustrate the feasibility of the methodology. The calculation result of the example shows that the conditional failure probability of key cable is 23.6% in the sodium fire scenario which is caused by continuous sodium leakage because of the isolation device failure, but the wall temperature, the room pressure and the aerosol discharge mass are all lower than the safety limits.

  9. Distinct molecular sites of anaesthetic action: pentobarbital block of human brain sodium channels is alleviated by removal of fast inactivation

    NARCIS (Netherlands)

    Wartenberg, H. C.; Urban, B. W.; Duch, D. S.

    1999-01-01

    Fast inactivation of sodium channel function is modified by anaesthetics. Its quantitative contribution to the overall anaesthetic effect is assessed by removing the fast inactivation mechanism enzymatically. Sodium channels from human brain cortex were incorporated into planar lipid bilayers. After

  10. Analysis of advanced sodium-cooled fast reactor core designs with improved safety characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Sun, K.

    2012-09-15

    Currently, the large majority of nuclear power plants are operated with thermal-neutron spectra and need regular fuel loading of enriched uranium. According to the identified conventional uranium resources and their current consumption rate, only about 100 years’ nuclear fuel supply is foreseen. A reactor operated with a fast-neutron spectrum, on the other hand, can induce self-sustaining, or even breeding, conditions for its inventory of fissile material, which effectively allow it, after the initial loading, to be refueled using simply natural or depleted uranium. This implies a much more efficient use of uranium resources. Moreover, minor actinides become fissionable in a fast-neutron spectrum, enabling full closure of the fuel cycle and leading to a minimization of long-lived radioactive wastes. The sodium-cooled fast reactor (SFR) is one of the most promising candidates to meet the Generation IV International Forum (GIF) declared goals. In comparison to other Generation IV systems, there is considerable design experience related to the SFR, and also more than 300 reactor years of practical operation. As a fast-neutron-spectrum system, the long-term operation of an SFR core in a closed fuel cycle will lead to an equilibrium state, where both reactivity and fuel mass flow stabilize. Although the SFR has many advantageous characteristics, it has one dominating neutronics drawback: there is generally a positive reactivity effect when sodium coolant is removed from the core. This so-called sodium void effect becomes even stronger in the equilibrium closed fuel cycle. The goal of the present doctoral research is to improve the safety characteristics of advanced SFR core designs, in particular, from the viewpoint of the positive sodium void reactivity effect. In this context, particular importance has been given to the dynamic core behavior under a hypothetical unprotected loss-of-flow (ULOF) accident scenario, in which sodium boiling occurs. The proposed

  11. Analysis of advanced sodium-cooled fast reactor core designs with improved safety characteristics

    International Nuclear Information System (INIS)

    Sun, K.

    2012-09-01

    Currently, the large majority of nuclear power plants are operated with thermal-neutron spectra and need regular fuel loading of enriched uranium. According to the identified conventional uranium resources and their current consumption rate, only about 100 years’ nuclear fuel supply is foreseen. A reactor operated with a fast-neutron spectrum, on the other hand, can induce self-sustaining, or even breeding, conditions for its inventory of fissile material, which effectively allow it, after the initial loading, to be refueled using simply natural or depleted uranium. This implies a much more efficient use of uranium resources. Moreover, minor actinides become fissionable in a fast-neutron spectrum, enabling full closure of the fuel cycle and leading to a minimization of long-lived radioactive wastes. The sodium-cooled fast reactor (SFR) is one of the most promising candidates to meet the Generation IV International Forum (GIF) declared goals. In comparison to other Generation IV systems, there is considerable design experience related to the SFR, and also more than 300 reactor years of practical operation. As a fast-neutron-spectrum system, the long-term operation of an SFR core in a closed fuel cycle will lead to an equilibrium state, where both reactivity and fuel mass flow stabilize. Although the SFR has many advantageous characteristics, it has one dominating neutronics drawback: there is generally a positive reactivity effect when sodium coolant is removed from the core. This so-called sodium void effect becomes even stronger in the equilibrium closed fuel cycle. The goal of the present doctoral research is to improve the safety characteristics of advanced SFR core designs, in particular, from the viewpoint of the positive sodium void reactivity effect. In this context, particular importance has been given to the dynamic core behavior under a hypothetical unprotected loss-of-flow (ULOF) accident scenario, in which sodium boiling occurs. The proposed

  12. Modelling of an ULOF transient in a sodium fast reactor

    International Nuclear Information System (INIS)

    Droin, Jean-Baptiste

    2016-01-01

    Within the framework of the Generation IV Sodium-cooled Fast Reactor (SFR) R and D program of CEA (French Commissariat a l'Energie Atomique et aux Energies Alternatives), safety in case of severe accidents is assessed.Such transients are usually simulated with mechanistic codes (such as SAS-SFR and SIMMER III). as a complement to these codes, which give reference accidental transient calculations, a new physico-statistical approach is currently followed by the CEA; its final objective being to derive the variability of the main results of interest for safety. This approach involves a fast-running description of extended accident sequences coupling physical models for the main phenomena to advanced statistical analysis techniques. It enables to perform a large number of simulations in a reasonable computational time and to describe all the possible bifurcations of the accident transient.In this context, this PhD work presents the physical tool (models and results assessment) dedicated to the initiation and primary phases of an Unprotected Loss Of Flow accident (i.e. until the end of sub-assemblies degradation and before large molten pools formation). The accident phenomenology during these phases is described and illustrated by numerous experimental evidences.It is underlined that the features of the new heterogeneous core concept (called CFV of the French ASTRID prototype) leads to different kinds of ULOF transients than those occurring in the previous past homogeneous cores (SuperPhenix, Phenix...). Indeed, its negative void effect drops the nuclear power when sodium heats-up and possibly boils. This enables three types of ULOF transients characterized by various core final states; the first two types leading to final coolable core states in natural circulation flow (the first one in single phase, the second one in stabilized two-phase flow) whereas the core undergoes a flow excursion followed by sub-assemblies degradation in the last type. In this study, a

  13. Fast fission ratio and relative conversion ratio measurements in gadolinium poisoned water moderated UO2 lattices

    International Nuclear Information System (INIS)

    Murphy, M.F.

    1984-01-01

    A programme of criticality experiments has been carried out for BNFL by the Battelle reactor facility at Pacific Northwest Laboratories in Washington State, USA. A series of water moderated lattices of 4.3% enriched, 12.7 mm diameter, UO 2 fuel rods was studied, the fuel pitch was varied and the effects of gadolinium poison were measured. This report deals with the measurement of Fast Fission Ratios and Relative Conversion Ratios at the centre of five of the critical lattices. The Fast Fission Ratio (FFR) is defined here as the ratio of the fission rate per atom of U238, to the fission rate per atom of U235. The Relative Conversion Ratio (RCR) is defined as the ratio of the capture rate per ,atom of U238, to the fission rate per atom of U235, in the reactor fuel, relative to the corresponding ratio in a well thermalised neutron spectrum. A major aspect of these measurements was that the packs of foils were prepared at AEEW Winfrith, despatched to the USA for irradiation and returned to Winfrith for counting. This resulted in a considerable logistics problem but by good planning and the co-operation and diligence of all concerned this problem was overcome. However, the long distance involved inevitably meant that samples were not available for measurement until about 28 hours after the irradiation. It was therefore necessary to modify the techniques that are normally used in the Reactor Physics Division Counting Laboratory, where samples are normally available about two hours after shut-down. The techniques used and the results obtained are given below

  14. Sodium coolant of fast reactors: Experience and problems

    International Nuclear Information System (INIS)

    Kozlov, F.A.; Volchkov, L.G.; Drobyshev, A.V.; Nikulin, M.P.; Kochetkov, L.A.; Alexeev, V.V.

    1997-01-01

    In present report the following subjects are considered: state of the coolant and sodium systems under normal operating condition as well as under decommissioning, disclosing of sodium circuits and liquidation of its consequences, cleaning from sodium and decontamination under repairing works of equipment and circuits. Cleaning of coolant and sodium systems under normal operating conditions and under accident contamination. Cleaning of the equipment under repairing works and during decommissioning from sodium and products of its interaction with water and air. Treatment of sodium waste, taking into account a possibility of sodium fires. It is shown that the state of coolant, cover gas, surfaces of constructive materials which are in contact with them, cleaning systems, formed during installation operation require development of specific technologies. Developed technologies ensured safety operation of sodium cooled installations as in normal operating conditions so in abnormal situations. R and D activities in this field and experience gained provided a solid base for coping with problems arising during decommissioning. Prospective research problems are emphasized where the future efforts should be concentrated in order to improve characteristics of sodium cooled reactors and to make their decommissioning optimal and safe. (author)

  15. Improvement of Sodium Leaching Ratio of Ferric Bauxite Sinter after Direct Reduction

    Directory of Open Access Journals (Sweden)

    Wentao Hu

    2017-01-01

    Full Text Available The sodium leaching ratio (ηN of ferric bauxite direct reduction process is much lower than that of ordinary bauxite; thus, the former consumes more sodium than the latter. ηN can be promoted by increasing the dosage of sodium or restricted by increasing the heating temperature and time. However, the restriction effect of heating temperature is 16.67 times larger than that of heating time, and the restriction effect decreases 47.03 times faster when heating temperature increases than that process of heating time. These imply that ηN improves with the increasing sodium carbonate dosage and the decreasing heating temperature.

  16. Fast reactor sodium systems operation experience and 'leak-before-break' criterion

    International Nuclear Information System (INIS)

    Ivanenko, V.N.; Zybin, V.A.

    1996-01-01

    In the paper sodium leakage detection systems used at fast reactors are described. Requirements on their main characteristics (sensitivity, response lime) are formulated. Results of tests are presented on studying the parameters of sodium leak detection systems including experiments on the measurement of size distribution of aerosol particles that have passed through sodium systems thermal insulation after leak initiation. Comparison of these data with dispersion of particles formed at free burning is carried out. Experience of real leaks that occurred at fast reactor sodium systems is analyzed. It has been shown that initiation and development of real leaks do not always follow the theoretical scheme. A substantial role of human factor for sodium systems reliability relative to sodium leaks is stressed. (author)

  17. Materials Options of Steam Generator for Sodium-Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Fu Xiaogang; Long Bin; Han Liqing; Qin Bo; Zhang Jinquan; Wang Shuxing

    2013-01-01

    Overview of the material options of steam generator for sodium-cooled fast reactors, the method to calculate the service life, the thinning of wall thickness and the sodium corrosion rate, the degradation of mechanical properties (thermal aging and decarburization) and the calculation results of theoretical models

  18. Design, in-sodium testing and performance evaluation of annular linear induction pump for a sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Nashine, B.K.; Rao, B.P.C.

    2014-01-01

    Highlights: • Derivation of applicable design equations. • Design of an annular induction pump based on these equations. • Testing of the designed pump in a sodium test facility. • Performance evaluation of the designed pump. - Abstract: Annular linear induction pumps (ALIPs) are used for pumping electrically conducting liquid metals. These pumps find wide application in fast reactors since the coolant in fast reactors is liquid sodium which a good conductor of electricity. The design of these pumps is usually done using equivalent circuit approach in combination with numerical simulation models. The equivalent circuit of ALIP is similar to that of an induction motor. This paper presents the derivation of equivalent circuit parameters using first principle approach. Sodium testing of designed ALIP using the equivalent circuit approach is also described and experimental results of the testing are presented. Comparison between experimental and analytical calculations has also been carried out. Some of the reasons for variation have also been listed in this paper

  19. EFFECT OF SODIUM SILICATE TO SODIUM HYDROXIDE RATIOS ON DURABILITY OF GEOPOLYMER MORTARS CONTAINING NATURAL AND ARTIFICIAL POZZOLANS

    Directory of Open Access Journals (Sweden)

    F. Nurhayat Degirmenci

    2017-09-01

    Full Text Available This study aims to provide the experimental data on the sulphate and acid performance of geopolymer mortar containing pozzolanic materials such as fly ash (FA, ground granulated blast furnace slag (GGBS and natural zeolite (NZ. The alkaline solution was the combination of sodium silicate and sodium hydroxide solution with the ratio (Na ₂SiO₃/NaOH of 1.0, 2.0 and 3.0. The molarity of sodium hydroxide was fixed as 10. The performances of geopolymer mortar were measured in terms of sodium and magnesium sulphate resistance and sulphuric and hydrochlorich acid resistance with 5% and 10 % concentration after 24 weeks. The evaluations were measured as visual observation, measurement of weight change and residual compressive strength. It has been observed that Na ₂SiO₃/NaOH ratio is effective on residual compressive strength of geopolymer mortar in both sulphate and acid exposure. The higher ratio of Na ₂SiO₃/NaOH results in a higher residual compressive strength. The GGBS based geopolymer mortar has a very good resistance in acid media in terms of weight loss and residual compressive strength. The inclusion of FA in the GGBS based geopolymer mixture was found to be a suitable base of geopolymer mortar under ambient curing conditions.

  20. Monte Carlo transport correction of sodium reactivity worth spatial distribution in perspective Sodium-Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Raskach, K.F.; Blyskavka, V; Kislitsyna, T.S.

    2011-01-01

    In this paper we apply Monte Carlo for calculating spatial distribution of sodium reactivity worth in the perspective Russian sodium-cooled fast reactor BN-1200. A special Monte Carlo technique applicable for calculating perturbations and derivatives of the effective multiplication factor is used. The numerical results obtained show that Monte Carlo has a good perspective to deal with such problems and to be used as a reference solution for engineering codes based on the diffusion approximation. They also allow to conclude that in the sodium blanket and in the neighboring region of the core the diffusion code used likely overestimates sodium reactivity worth. This conclusion has to be verified in future work. (author)

  1. Discussion on safety analysis approach for sodium fast reactors

    International Nuclear Information System (INIS)

    Hong, Soon Joon; Choo, Yeon Joon; Suh, Nam Duk; Shin, Ahn Dong; Bae, Moo Hoon

    2012-01-01

    Utilization of nuclear energy is increasingly necessary not only because of the increasing energy consumption but also because of the controls on greenhouse emissions against global warming. To keep step with such demands, advanced reactors are now world widely under development with the aims of highly economical advances, and enhanced safety. Recently, further elaborating is encouraged on the research and development program for Generation IV (GEN IV) reactors, and in collaboration with other interested countries through the Generation IV International Forum (GIF). Sodium cooled Fast Reactor (SFR) is a strong contender amongst the GEN IV reactor concepts. Korea also takes part in that program and plans to construct demonstration reactor of SFR. SFR is under the development for a candidate of small modular reactors, for example, PRISM (Power Reactor Innovative Small Module). Understanding of safety analysis approach has also advanced by the demand of increasing comprehensive safety requirement. Reviewing the past development of the licensing and safety basis in the advanced reactors, such approaches seemed primarily not so satisfactory because the reference framework of licensing and safety analysis approach in the advanced reactors was always the one in water reactors. And, the framework is very plant specific one and thereby the advanced reactors and their frameworks don't look like a well assorted couple. Recently as a result of considerable advances in probabilistic safety assessment (PSA), risk informed approaches are increasingly applied together with some of the deterministic approaches like as the ones in water reactors. Technology neutral framework (TNF) can be said to be the utmost works of such risk informed approaches, even though an intensive assessment of the applicability has not been sufficiently accomplished. This study discusses the viable safety analysis approaches for the urgent application to the construction of pool type SFR. As discussed in

  2. Sodium levels in Canadian fast-food and sit-down restaurants.

    Science.gov (United States)

    Scourboutakos, Mary J; L'Abbé, Mary R

    2013-01-31

    To evaluate the sodium levels in Canadian restaurant and fast-food chain menu items. Nutrition information was collected from the websites of major sit-down (n=20) and fast-food (n=65) restaurants across Canada in 2010 and a database was constructed. Four thousand and forty-four meal items, baked goods, side dishes and children's items were analyzed. Sodium levels were compared to the recommended adequate intake level (AI), tolerable upper intake level (UL) and the US National Sodium Reduction Initiative (NSRI) targets. On average, individual sit-down restaurant menu items contained 1455 mg sodium/serving (or 97% of the AI level of 1500 mg/day). Forty percent of all sit-down restaurant items exceeded the AI for sodium and more than 22% of sit-down restaurant stir fry entrées, sandwiches/wraps, ribs, and pasta entrées with meat/seafood exceeded the daily UL for sodium (2300 mg). Fast-food restaurant meal items contained, on average, 1011 mg sodium (68% of the daily AI), while side dishes (from sit-down and fast-food restaurants) contained 736 mg (49%). Children's meal items contained, on average, 790 mg/serving (66% of the sodium AI for children of 1200 mg/day); a small number of children's items exceeded the children's daily UL. On average, 52% of establishments exceeded the 2012 NSRI density targets and 69% exceeded the 2014 targets. The sodium content in Canadian restaurant foods is alarmingly high. A population-wide sodium reduction strategy needs to address the high levels of sodium in restaurant foods.

  3. Assessment of the dry process fuel sodium-cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Gyu Hong; Choi, Hang Bok

    2004-04-01

    The feasibility of using dry-processed oxide fuel in a Sodium-cooled Fast Reactor (SFR) was analyzed for the equilibrium fuel cycle of two reference cores: Hybrid BN-600 benchmark core with a enlarged lattice pitch and modified BN-600 core. The dry process technology assumed in this study based on the molten-salt process, which was developed by Russian scientists for recycling oxide fuels. The core calculation was performed by the REBUS-3 code and the reactor characteristics such as the transuranic enrichment, breeding ratio, peak linear power, burnup reactivity swing, etc. were calculated for the equilibrium core under a fixed fuel management scheme. The results showed that a self-sustainable breakeven core was achievable without blanket fuels when the fuel volume fraction was {approx}50% and most of the fission products were removed.

  4. Assessment of the dry process fuel sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Roh, Gyu Hong; Choi, Hang Bok

    2004-04-01

    The feasibility of using dry-processed oxide fuel in a Sodium-cooled Fast Reactor (SFR) was analyzed for the equilibrium fuel cycle of two reference cores: Hybrid BN-600 benchmark core with a enlarged lattice pitch and modified BN-600 core. The dry process technology assumed in this study based on the molten-salt process, which was developed by Russian scientists for recycling oxide fuels. The core calculation was performed by the REBUS-3 code and the reactor characteristics such as the transuranic enrichment, breeding ratio, peak linear power, burnup reactivity swing, etc. were calculated for the equilibrium core under a fixed fuel management scheme. The results showed that a self-sustainable breakeven core was achievable without blanket fuels when the fuel volume fraction was ∼50% and most of the fission products were removed

  5. Computational methodology of sodium-water reaction phenomenon in steam generator of sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Takata, Takashi; Yamaguchi, Akira; Uchibori, Akihiro; Ohshima, Hiroyuki

    2009-01-01

    A new computational methodology of sodium-water reaction (SWR), which occurs in a steam generator of a liquid-sodium-cooled fast reactor when a heat transfer tube in the steam generator fails, has been developed considering multidimensional and multiphysics thermal hydraulics. Two kinds of reaction models are proposed in accordance with a phase of sodium as a reactant. One is the surface reaction model in which water vapor reacts directly with liquid sodium at the interface between the liquid sodium and the water vapor. The reaction heat will lead to a vigorous evaporation of liquid sodium, resulting in a reaction of gas-phase sodium. This is designated as the gas-phase reaction model. These two models are coupled with a multidimensional, multicomponent gas, and multiphase thermal hydraulics simulation method with compressibility (named the 'SERAPHIM' code). Using the present methodology, a numerical investigation of the SWR under a pin-bundle configuration (a benchmark analysis of the SWAT-1R experiment) has been carried out. As a result, the maximum gas temperature of approximately 1,300degC is predicted stably, which lies within the range of previous experimental observations. It is also demonstrated that the maximum temperature of the mass weighted average in the analysis agrees reasonably well with the experimental result measured by thermocouples. The present methodology will be promising to establish a theoretical and mechanical modeling of secondary failure propagation of heat transfer tubes due to such as an overheating rupture and a wastage. (author)

  6. Sodium spray release accident analysis for fast reactor safety studies

    International Nuclear Information System (INIS)

    Shire, P.R.

    1976-01-01

    A computer code has been developed to model the effects of postulated sodium spray release from LMFBR piping, although this is an event of extremely low probability. The calculation method utilizes gas convection and droplet combustion theory to calculate the pressure and temperature effects in a range of 0 to 21 mole percent oxygen with humidity. Droplet motion and large aggregate sodium surface area result in rapid release of combustion and sensible heat causing a nearly adiabatic pressure rise which peaks in several seconds. This analytical tool has indicated reasonable agreement with prototypic test data for a range of oxygen and water vapor concentrations, cell volumes and droplet sizes

  7. Sodium spray release accident analysis for fast reactor safety studies

    International Nuclear Information System (INIS)

    Shire, P.R.

    1976-10-01

    A computer code has been developed to model the effects of postulated sodium spray release from LMFBR piping. The calculation method utilizes gas convection and droplet combustion theory to calculate the pressure and temperature effects in a range of 0 to 21% oxygen. Droplet motion and large aggregate sodium surface area result in rapid release of combustion and sensible heat causing a nearly adiabtic pressure pulse peaking in a matter of seconds. This analytical tool has indicated good agreement with prototypic test data for a range of oxygen concentrations, cell volumes and droplet sizes

  8. Technical meeting on decommissioning of fast reactors after sodium draining. Working material

    International Nuclear Information System (INIS)

    2005-01-01

    The objective of the technical meeting was to provide a forum for in-depth scientific and technical exchange on topics related to the decommissioning experience with fast reactors, in particular with regard to the decommissioning of components after sodium draining. Accordingly, the scope of the meeting covers the review and analyses of the experience gained from the decommissioning of both active sodium loops and sodium cooled fast reactors (e.g., KNK II, Superphenix, RAPSODIE, EBR-II, FERMI, BN-350, BR-10). It is expected that the outcome of the meeting will contribute to the Agency initiative to preserve fast reactor data and knowledge. The main focus of the technical meeting was given on the decommissioning of both active loop and reactor components (e.g., the primary vessel of a sodium-cooled reactor) that have been drained of sodium, but that still conserve some residual amounts of sodium (e.g., films covering the entire surface of the component, or particular sodium heels that cannot be drained)

  9. Water leaks in sodium-heated fast reactor boilers

    International Nuclear Information System (INIS)

    Hayes, D.J.

    1978-01-01

    Constraints on plant design which may result from considerations of leak behaviour and leak detection limits are briefly considered. The sodium-water interface and reactions, the behaviour of small leaks, hydrogen bubbles and detection methods, including galvanic cell methods, are included. (UK)

  10. Sodium-to-Potassium Ratio and Blood Pressure, Hypertension, and Related Factors12

    Science.gov (United States)

    Perez, Vanessa; Chang, Ellen T.

    2014-01-01

    The potential cost-effectiveness and feasibility of dietary interventions aimed at reducing hypertension risk are of considerable interest and significance in public health. In particular, the effectiveness of restricted sodium or increased potassium intake on mitigating hypertension risk has been demonstrated in clinical and observational research. The role that modified sodium or potassium intake plays in influencing the renin-angiotensin system, arterial stiffness, and endothelial dysfunction remains of interest in current research. Up to the present date, no known systematic review has examined whether the sodium-to-potassium ratio or either sodium or potassium alone is more strongly associated with blood pressure and related factors, including the renin-angiotensin system, arterial stiffness, the augmentation index, and endothelial dysfunction, in humans. This article presents a systematic review and synthesis of the randomized controlled trials and observational research related to this issue. The main findings show that, among the randomized controlled trials reviewed, the sodium-to-potassium ratio appears to be more strongly associated with blood pressure outcomes than either sodium or potassium alone in hypertensive adult populations. Recent data from the observational studies reviewed provide additional support for the sodium-to-potassium ratio as a superior metric to either sodium or potassium alone in the evaluation of blood pressure outcomes and incident hypertension. It remains unclear whether this is true in normotensive populations and in children and for related outcomes including the renin-angiotensin system, arterial stiffness, the augmentation index, and endothelial dysfunction. Future study in these populations is warranted. PMID:25398734

  11. An Assessment of Fission Product Scrubbing in Sodium Pools Following a Core Damage Event in a Sodium Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bucknor, M.; Farmer, M.; Grabaskas, D.

    2017-06-26

    The U.S. Nuclear Regulatory Commission has stated that mechanistic source term (MST) calculations are expected to be required as part of the advanced reactor licensing process. A recent study by Argonne National Laboratory has concluded that fission product scrubbing in sodium pools is an important aspect of an MST calculation for a sodium-cooled fast reactor (SFR). To model the phenomena associated with sodium pool scrubbing, a computational tool, developed as part of the Integral Fast Reactor (IFR) program, was utilized in an MST trial calculation. This tool was developed by applying classical theories of aerosol scrubbing to the decontamination of gases produced as a result of postulated fuel pin failures during an SFR accident scenario. The model currently considers aerosol capture by Brownian diffusion, inertial deposition, and gravitational sedimentation. The effects of sodium vapour condensation on aerosol scrubbing are also treated. This paper provides details of the individual scrubbing mechanisms utilized in the IFR code as well as results from a trial mechanistic source term assessment led by Argonne National Laboratory in 2016.

  12. Conceptual core design study for Japan sodium-cooled fast reactor: Review of sodium void reactivity worth evaluation

    International Nuclear Information System (INIS)

    Ohki, Shigeo

    2012-01-01

    The conceptual core design study for a large-scale Japan sodium-cooled fast reactor (JSFR) have been carried out in the framework of the FaCT project. The reference “High-internal conversion” core can satisfy the requirements for enhanced safety, as well as achieving economic competitiveness. In order to increase the design reliability, more rigorous uncertainty evaluation is important. Development of the verification and validation methodology of the core neutronic design method is currently underway. (author)

  13. The effect of zeolite treatment by acids on sodium adsorption ratio of coal seam gas water.

    Science.gov (United States)

    Wang, Xiaoyu; Ozdemir, Orhan; Hampton, Marc A; Nguyen, Anh V; Do, Duong D

    2012-10-15

    Many coal seam gas (CSG) waters contain a sodium ion concentration which is too high relative to calcium and magnesium ions for environment acceptance. Natural zeolites can be used as a cheap and effective method to control sodium adsorption ratio (SAR, which is a measure of the relative preponderance of sodium to calcium and magnesium) due to its high cation exchange capacity. In this study, a natural zeolite from Queensland was examined for its potential to treat CSG water to remove sodium ions to lower SAR and reduce the pH value. The results demonstrate that acid activated zeolite at 30%wt solid ratio can reduce the sodium content from 563.0 to 182.7 ppm; the pH from 8.74 to 6.95; and SAR from 70.3 to 18.5. Based on the results of the batch experiments, the sodium adsorption capacity of the acid-treated zeolite is three times greater than that of the untreated zeolite. Both the untreated and acid-treated zeolite samples were characterized using zeta potential, surface characterization, DTA/TG and particle size distribution in order to explain their adsorption behaviours. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Inverted Steam Generators for Sodium Cooled Fast Reactors

    International Nuclear Information System (INIS)

    Matal, Oldřich; Šimo, Tomáš; Matal, Oldřich Jr.

    2013-01-01

    Conclusions: Two inverted steam generators of the Czech industry provenience have still been in successful operation with no water into sodium leaks at BOR 60 (RIAR Dimitrovgrad, Russian Federation). Micromodular inverted steam generator (MMISG) since 1981 and modular inverted steam generator (MISG) since 1991. In the framework of the CP ESFR project predesign studies of 100 MW (thermal) ISG modules were performed with the consideration of MMISG and MISG design, operational and safety benefits and experience. Development of material and technology for sodium heated steam generators components reflecting contemporary domestic industrial conditions in the Czech Republic was restarted in the years 2003 to 2004 and supported in the years 2008 to 2011 by the European CP ESFR project and by the Ministry of Industry and Trade of the Czech Republic

  15. Acoustic Waves: A Route to Enhance Sodium Fast Reactor Safety

    International Nuclear Information System (INIS)

    Jeannot, Jean-Philippe; Baque, François; Cavaro, Matthieu; Gastaldi, Olivier; Lhuilier, Christian; Massacret, Nicolas; Moriot, Jérémy; Paumel, Kévin; Vandergaegen, Matthias; Rodriguez, Gilles

    2013-01-01

    Improvement to prevent core meltdown and to provide a more robust safety demonstration → Safety objectives: - A level of safety at least equivalent to EPR’s level, - Consolidation of the defence-in-depth principle, - A more robust safety demonstration than those of the Phenix and Superphenix reactor. Acoustic techniques: - Low attenuation by the sodium medium - High velocity of US wave (2289 m.s-1 at 550°C) →

  16. Teaching sodium fast reactor technology and operation for the present and future generations of SFR users

    International Nuclear Information System (INIS)

    Latge, Christian; Rodriguez, Gilles; Baque, Francois; Leclerc, Arnaud; Martin, Laurent; Vray, Bernard; Romanetti, Pascale

    2011-01-01

    This paper provides a description of the education and training activities related to sodium fast reactors, carried out respectively in the French Sodium and Liquid Metal School (ESML) created in 1975 and located in France (at the CEA Cadarache Research Centre), in the Fast Reactor Operation and Safety School (FROSS) created in 2005 at the Phenix plant, and in the Institut National des Sciences et Techniques Nucleaires (INSTN). It presents their recent developments and the current collaborations throughout the world with some other nuclear organizations and industrial companies. Owing to these three entities, CEA provides education and training sessions for students, researchers, and operators involved in the operation or development of sodium fast reactors and related experimental facilities. The sum of courses provided by CEA through its sodium school, FROSS, and INSTN organizations is a unique valuable amount of knowledge on sodium fast reactor design, technology, safety and operation experience, decommissioning aspects and practical exercises. It is provided for the national demand and, since the last ten years, it is extensively opened to foreign countries. Over more than 35 years, the ESML, FROSS, and INSTN have demonstrated their flexibility in adapting their courses to the changing demand in the sodium fast reactor field, operation of PHENIX and SUPERPHENIX plants, and decommissioning and dismantling operations. The results of this ambitious and constant strategy are first sharing of knowledge obtained from experimental studies carried out in research laboratories and operational feedback from reactors, secondly standardized information on safety, and finally the creation of a 'sodium community' that debates, shares the knowledge, and suggests new tracks for a better definition of design and operating rules. (author)

  17. Sodium in commonly consumed fast foods in New Zealand: a public health opportunity.

    Science.gov (United States)

    Prentice, Celia A; Smith, Claire; McLean, Rachael M

    2016-04-01

    (i) To determine the Na content of commonly consumed fast foods in New Zealand and (ii) to estimate Na intake from savoury fast foods for the New Zealand adult population. Commonly consumed fast foods were identified from the 2008/09 New Zealand Adult Nutrition Survey. Na values from all savoury fast foods from chain restaurants (n 471) were obtained from nutrition information on company websites, while the twelve most popular fast-food types from independent outlets (n 52) were determined using laboratory analysis. Results were compared with the UK Food Standards Agency 2012 sodium targets. Nutrient analysis was completed to estimate Na intake from savoury fast foods for the New Zealand population using the 2008/09 New Zealand Adult Nutrition Survey. New Zealand. Adults aged 15 years and above. From chain restaurants, sauces/salad dressings and fried chicken had the highest Na content (per 100 g) and from independent outlets, sausage rolls, battered hotdogs and mince and cheese pies were highest in Na (per 100 g). The majority of fast foods exceeded the UK Food Standards Agency 2012 sodium targets. The mean daily Na intake from savoury fast foods was 283 mg/d for the total adult population and 1229 mg/d for fast-food consumers. Taking into account the Na content and frequency of consumption, potato dishes, filled rolls, hamburgers and battered fish contributed substantially to Na intake for fast-food consumers in New Zealand. These foods should be targeted for Na reduction reformulation.

  18. Performance characterization of geopolymer composites for hot sodium exposed sacrificial layer in fast breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Haneefa, K. Mohammed, E-mail: mhkolakkadan@gmail.com [Department of Civil Engineering, IIT Madras, Chennai (India); Santhanam, Manu [Department of Civil Engineering, IIT Madras, Chennai (India); Parida, F. C. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2013-12-15

    Highlights: • Performance evaluation of geopolymers subjected to hot liquid sodium is performed. • Apart from mechanical properties, micro-analytical techniques are used for material characterization. • The geopolymer composite showed comparatively lesser damage than conventional cement composites. • Geopolymer technology can emerge as a new choice for sacrificial layer in SCFBRs. - Abstract: A sacrificial layer of concrete is used in sodium cooled fast breeder reactors (SCFBRs) to mitigate thermo-chemical effect of accidentally spilled sodium at and above 550 °C on structural concrete. Performance of this layer is governed by thermo-chemical stability of the ingredients of sacrificial layer concrete. Concrete with limestone aggregate is generally used as a sacrificial layer. Conventional cement based systems exhibit instability in hot liquid sodium environment. Geo-polymer composites are well known to perform excellently at elevated temperatures compared to conventional cement systems. This paper discusses performance of such composites subjected to exposure of hot liquid sodium in air. The investigation includes comprehensive evaluation of various geo-polymer composites before any exposure, after heating to 550 °C in air, and after immersing in hot liquid sodium initially heated to 550 °C in air. Results from the current study indicate that hot liquid sodium produces less damage to geopolymer composites than to the existing conventional cement based system. Hence, the geopolymer technology has potential application in mitigating the degrading effects of sodium fires and can emerge as a new choice for sodium exposed sacrificial layer in SCFBRs.

  19. Core concept of fast power reactor with zero sodium void reactivity

    International Nuclear Information System (INIS)

    Matveev, V.I.; Chebeskov, A.N.; Krivitsky, I.Y.

    1991-01-01

    The paper presents a core concept of BN-800 - type fast power reactor with zero sodium void reactivity (SVR). Consideration is given to the layout-and some design features of such a core. Some considerations on the determination of the required SVR value as one of the fast reactor safety criteria in accidents with coolant boiling are presented. Some methodical considerations an the development of calculation models that give a correct description of the new core features are stated. The results of the integral SVR calculation studies are included. reactivity excursions under different scenarios of sodium boiling are estimated, some corrections into the calculated SVR value are discussed. (author)

  20. Cold trap dismantling and sodium removal at a fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Anja; Petrick, Holger; Stutz, Uwe [WAK GmbH, Eggenstein-Leopoldshafen (Germany). Hauptabt. Dekontaminationsbetriebe Rueckbau Kompakte Natriumgekuehlte Kernreaktoranlage (KNK); Hosking, Paul [Nuclear Decommissioning Services Limited (NDSL), Sutherland, Dornoch (United Kingdom)

    2013-11-15

    The first German prototype Fast Breeder Nuclear Reactor (KNK) is currently being dismantled after being the only operating Fast Breeder-type reactor in Germany. As this reactor type used sodium as a coolant in its primary and secondary circuit, 7 cold traps containing various amounts of partially activated sodium needed to be disposed of as part of the dismantling. The resulting combined difficulties of radioactive contamination and high chemical reactivity were handled by treating the cold traps differently depending on their size and the amount of sodium contained inside. Six small cold traps were processed on-site by cutting them up into small parts using a band saw under a protective atmosphere. The sodium was then converted to sodium hydroxide by using water. The remaining large cold trap could not be handled in the same way due to its dimensions (2.9 m x 1.1 m) and the declared amount of sodium inside (1,700 kg). It was therefore manually dismantled inside a large box filled with a protective atmosphere, while the resulting pieces were packaged for later burning in a special facility. The experiences gained by KNK during this process may be advantageous for future dismantling projects in similar sodium-cooled reactors worldwide. (orig.)

  1. Validation of CONTAIN-LMR code for accident analysis of sodium-cooled fast reactor containments

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, S.; Hering, W.; Schikorr, M.; Stieglitz, R. [Inst. for Neutron Physic and Reactor Technology, Karlsruhe Inst. of Technology, Campus Nord (Germany)

    2012-07-01

    CONTAIN-LMR 1 is an analytical tool for the containment performance of sodium cooled fast reactors. In this code, the modelling for the sodium fire is included: the oxygen diffusion model for the sodium pool fire, and the liquid droplet model for the sodium spray fire. CONTAIN-LMR is also able to model the interaction of liquid sodium with concrete structure. It may be applicable to different concrete compositions. Testing and validation of these models will help to qualify the simulation results. Three experiments with sodium performed in the FAUNA facility at FZK have been used for the validation of CONTAIN-LMR. For pool fire tests, calculations have been performed with two models. The first model consists of one gas cell representing the volume of the burn compartment. The volume of the second model is subdivided into 32 coupled gas cells. The agreement between calculations and experimental data is acceptable. The detailed pool fire model shows less deviation from experiments. In the spray fire, the direct heating from the sodium burning in the media is dominant. Therefore, single cell modeling is enough to describe the phenomena. Calculation results have reasonable agreement with experimental data. Limitations of the implemented spray model can cause the overestimation of predicted pressure and temperature in the cell atmosphere. The ability of the CONTAIN-LMR to simulate the sodium pool fire accompanied by sodium-concrete reactions was tested using the experimental study of sodium-concrete interactions for construction concrete as well as for shielding concrete. The model provides a reasonably good representation of chemical processes during sodium-concrete interaction. The comparison of time-temperature profiles of sodium and concrete shows, that the model requires modifications for predictions of the test results. (authors)

  2. Long-lived sodium activity from a fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Martini, M; Moioli, P; Romanelli, C M

    1973-06-05

    The /sup 23/Na(n,2n)/sup 22/Na cross section was measured in two different ways; the first in the TRIGA reactor, with the sodium sample surrounded by a natural boron shield, the second in the central channel of the TAPIRO reactor. Irradiated samples were investigated either to measure the /sup 23/ Na(n,2n)/sup 22/Na cross section or to determine the impurities present and their activation cross sections. Unsatisfactory results for the second problem suggested evaluation of the impurity activations by calculation; therefore, a set of group constants for reactions of interest was prepared. (3 figures, 3 tables) (auth)

  3. IAEA Workshop (Training Course) on Codes and Standards for Sodium Cooled Fast Reactors. Working Material

    International Nuclear Information System (INIS)

    2010-01-01

    The training course consisted of lectures and Q&A sessions. The lectures dealt with the history of the development of Design Codes and Standards for Sodium Cooled Fast Reactors (SFRs) in the respective country, the detailed description of the current design Codes and Standards for SFRs and their application to ongoing Fast Reactor design projects, as well as the ongoing development work and plans for the future in this area. Annex 1 contains the detailed Workshop program

  4. Development of a transfer model for design of sodium purification systems for Fast Breeder Reactors

    International Nuclear Information System (INIS)

    Khatcheressian, N.

    2013-01-01

    Operating a Sodium Fast Reactor (SFR) in reliable and safe conditions requires to master the quality of the sodium fluid coolant, regarding oxygen and hydrogen impurities contents. A cold trap is a purification unit in SFR, designed for maintaining oxygen and hydrogen contents within acceptable limits. The purification of these impurities is based on crystallization of sodium hydride on cold walls and sodium oxide or hydride on wire mesh packing. Indeed, as oxygen and hydrogen solubilities are nearly nil at temperatures close to the sodium fusion point, i.e. 97.8 C, on line sodium purification can be performed by crystallization of sodium oxide and hydride from liquid sodium flows. However, the management of cold trap performances is necessary to prevent from unforeseen maintenance operations, which could induce shut-down of the reactor. It is thus essential to understand how a cold trap fills up with impurities crystallization in order to optimize the design of this system and to overcome any problems during nominal operation. The objective is to develop a design and simulation tool for cold traps able to predict the location and the amount of the impurities deposited. Crystallization model involve phenomena coupling in a porous medium with hydrodynamics, heat and mass transfer, distinguishing nucleation and growth phases for each impurity. It enables to understand how thermo hydraulic conditions and growing impurities interact on each other. This analysis will adapt operating and management conditions in order to optimize purification requirements. (author) [fr

  5. Sodium components cleaning status in the Italian fast reactor program

    Energy Technology Data Exchange (ETDEWEB)

    De Luca, B [CNEN-RIT/MAT - Laboratorio Sviluppo Processi - C.S.N. Cassacia, Rome (Italy); Labanti, V [CNEN-DRV, Bologna (Italy); Mennucci, M [NIRA, Genoa (Italy)

    1978-08-01

    As a consequence of the Italian Fast Reactor Development, mainly aimed to the PEC project and to the participation in the French Superphenix project, it is of increasing importance to set up a reliable method for specific reactor components and related test loops. The first problem was the cleaning of the PEC fuelling machine. In order to perform the routine maintenance of the machine an alcohol cleaning method based on the use of 2-butoxyethanol-NN dimethylformamide mixture has been proposed.

  6. The simulation of the process of sodium freezing in the tubes for the optimization of fast breeder reactor units maintenance

    International Nuclear Information System (INIS)

    Tashlykov, O.L.; Shcheklein, S.E.; Annikov, S.V.

    2013-01-01

    The peculiarities of the repair works of the fast breeder reactor sodium systems are considered. The requirements for the sodium melting exclusion inside the equipment and piping during their opening and repair are given. The results of the sodium cooling process simulation with SolidWorks software are also described [ru

  7. Fast reactor shield sensitivity studies for steel--sodium--iron systems

    International Nuclear Information System (INIS)

    Oblow, E.M.; Weisbin, C.R.

    1977-01-01

    A study was made of the adequacy of the current ENDF/B-IV sodium and iron neutron cross section data files for fast reactor shield design work. Experimental data from 21 fast reactor shield configurations containing large thicknesses of steel, sodium, and iron were analyzed with discrete ordinates calculations and sensitivity methods to assess the data files. This study represents the largest full-scale sensitivity analysis of benchmark quality experimental data to date. Included in the sensitivity studies were the results of the new cross section adjustment algorithms added to the FORSS code system. Conclusions were drawn about the need for more accurate data for sodium and iron elastic and discrete inelastic cross sections above 1 MeV and the values of the total cross section in the vicinity of important minima

  8. Modeling of under-expanded reactive CO2-into-sodium jets, in the frame of sodium fast reactors

    International Nuclear Information System (INIS)

    Vivaldi, D.

    2013-01-01

    This PhD work was motivated by the investigations in the frame of supercritical CO 2 Brayton cycles as possible energy conversion cycles for the Sodium-cooled Fast nuclear Reactors (SFRs). This technology represents an alternative to conventional steam Rankine cycles, with the main advantage represented by the elimination of the accidental sodium-water reaction scenario. Nevertheless, CO 2 chemically reacts with sodium, through an exothermic reaction leading to solid reaction products, mainly sodium carbonate. Following an accidental leakage inside the sodium-CO 2 heat exchanger of a SFR, the CO 2 , having an operating pressure of about 200 bars, would be injected into the low-operating pressure liquid sodium, creating an under-expanded reactive CO 2 -into-sodium jet. The under-expanded jet features a sonic gas injection velocity and an under-expansion in the first region downstream the leakage, where the CO 2 is accelerated to supersonic velocities. The exothermic reaction between the CO 2 and the sodium causes an increasing of the temperature inside the heat exchanger. An experimental facility was built at CEA Cadarache, for the realization of CO 2 -into-sodium jets: this facility has provided preliminary results in terms of temperature variations inside the jet due to the exothermic reaction. However, this type of experimental tests are complicated to realize and to analyse, due to the technical difficulties of realizing the contact between CO 2 and sodium, and to the incertitude of temperature measurement inside a two-phase high velocity jet. It follows that a numerical model of this kind of jets is required, in order to understand the CO 2 -sodium kinetics of reaction inside the jet and being able to transpose the phenomenon to relevant SFR sodium-CO 2 heat exchangers. This would allow to understand the consequences of a leakage inside a sodium-CO 2 heat exchanger, in terms of, for instance, temperature profiles inside the heat exchanger and on tube surfaces

  9. Innovative technologies on fuel assemblies cleaning for sodium fast reactors: First considerations on cleaning process

    International Nuclear Information System (INIS)

    Simon, N.; Lorcet, H.; Beauchamp, F.; Guigues, E.; Lovera, P.; Fleche, J. L.; Lacroix, M.; Carra, O.; Dechelette, F.; Prele, G.; Rodriguez, G.

    2012-01-01

    Within the framework of Sodium Fast Reactor development, innovative fuel assembly cleaning operations are investigated to meet the GEN IV goals of safety and of process development. One of the challenges is to mitigate the Sodium Water Reaction currently used in these processes. The potential applications of aqueous solutions of mineral salts (including the possibility of using redox chemical reactions) to mitigate the Sodium Water Reaction are considered in a first part and a new experimental bench, dedicated to this study, is described. Anhydrous alternative options based on Na/CO 2 interaction are also presented. Then, in a second part, a functional study conducted on the cleaning pit is proposed. Based on experimental feedback, some calculations are carried out to estimate the sodium inventory on the fuel elements, and physical methods like hot inert gas sweeping to reduce this inventory are also presented. Finally, the implementation of these innovative solutions in cleaning pits is studied in regard to the expected performances. (authors)

  10. Compatibility of steels for fast breeder reactor in high temperature sodium

    International Nuclear Information System (INIS)

    Yuhara, Shunichi

    1981-01-01

    In recent years, considerable progress has been made and experience has been obtained for material applicability in sodium-cooled fast breeder reactors. In this report, materials, principal dimensions and sodium conditions for the reactor system components, which include fuel pin cladding, intermediate heat exchangers, steam generators and pipings, are reviewed with emphasis on the thin-walled, high temperature and high strength components. The corrosion, mechanical and tribological behavior in sodium of important materials used for the reactor components, such as Types 304 and 316 stainless steel and 2 1/4Cr-1Mo steel, are discussed on the basis of characteristic testing results. Furthermore, material requirements concerned with compatibility in sodium are summarized from this review and discussion. (author)

  11. Numerical prediction of fire extinguishment characteristics of sodium leak collection tray in a fast breeder reactor

    International Nuclear Information System (INIS)

    Diwakar, S.V.; Mangarjuna Rao, P.; Kasinathan, N.; Das, Sarit K.; Sundararajan, T.

    2011-01-01

    Highlights: ► Sodium fire extinguishment in a leak collection tray is modeled by lumped approach. ► Hydrodynamics of liquid sodium on tray is emulated through a draining/sloshing model. ► Pool burning rates in the tray and holdup vessel are numerically estimated. ► The model directly yields the mass of sodium recovered after extinction of fire. ► Model predictions are in reasonable agreement with the available experimental data. - Abstract: Sodium leak collection tray (LCT) is an efficient passive device used for the extinguishment of liquid sodium fire in case of an accidental leakage from the secondary circuit of a fast breeder reactor. The LCT essentially isolates the leaking sodium into closed containers where the resulting fire is extinguished due to limited availability of oxygen. The current work aims to highlight the combustion extinguishment characteristics of LCT through a lumped formulation by conserving the mass and energy of liquid sodium and constituent gases in various parts of the LCT. Here, the complex hydrodynamics of liquid sodium is emulated through a semi-analytical draining/sloshing model and its burning rates are predicted through a three-dimensional open pool combustion model for the tray region and a closed pool combustion model for the holdup vessel. These simulations evaluate the burning rates at discrete levels of liquid sodium which are subsequently interpolated to establish correlations involving instantaneous liquid levels and oxygen concentration. Using the correlations obtained from the draining and combustion models, the overall lumped formulation directly predicts the un-burnt sodium recoverable after the extinguishment of fire in the LCT. The predicted results of this model compare well with the available experimental data.

  12. Example Work Domain Analysis for a Reference Sodium Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hugo, Jacques [Idaho National Lab. (INL), Idaho Falls, ID (United States); Oxstrand, Johanna [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    The nuclear industry is currently designing and building a new generation of reactors that will include different structural, functional, and environmental aspects, all of which are likely to have a significant impact on the way these plants are operated. In order to meet economic and safety objectives, these new reactors will all use advanced technologies to some extent, including new materials and advanced digital instrumentation and control systems. New technologies will affect not only operational strategies, but will also require a new approach to how functions are allocated to humans or machines to ensure optimal performance. Uncertainty about the effect of large scale changes in plant design will remain until sound technical bases are developed for new operational concepts and strategies. Up-to-date models and guidance are required for the development of operational concepts for complex socio-technical systems. This report describes how the classical Work Domain Analysis method was adapted to develop operational concept frameworks for new plants. This adaptation of the method is better able to deal with the uncertainty and incomplete information typical of first-of-a-kind designs. Practical examples are provided of the systematic application of the method in the operational analysis of sodium-cooled reactors. Insights from this application and its utility are reviewed and arguments for the formal adoption of Work Domain Analysis as a value-added part of the Systems Engineering process are presented.

  13. Methods of preventing fast breeder reactor shield plug from adhesion of sodium

    International Nuclear Information System (INIS)

    Hashiguchi, Koh; Hara, Johji; Nei, Hiromichi; Daiku, Motoichi; Wagatsuma, Kenji

    1980-01-01

    The shield plug, which is located at the upper part of a reactor vessel of a sodium-cooled fast breeder reactor, is composed of a rotating and a stationary plug. Fuel exchange is performed easily by the rotation of the rotating plug. The vapor or mist of sodium evaporated from liquid sodium deposits on the gap surfaces of the rotating and stationary plugs and is solidified or changed into a solid reactant. If such condition continues for a long period, harmful effects are exerted on the fuel exchange operation. In order to develop methods of preventing the sodium deposition, investigation was made on the phenomenon of sodium deposition. By the use of the testing equipment simulating the shield plug, deposition tests and specimen measurements were made for different gap width test section size and condition. On the basis of the effects of these parameters clarified by experiments, the effectiveness of three kinds of mechanism for preventing sodium deposition were investigated experimentally. In addition, by using a thermo-siphon analogical model, analysis was performed to deduce experimental equations for sodium deposition. (author)

  14. A porous medium model for predicting the duct wall temperature of sodium fast reactor fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yiqi, E-mail: yyu@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Merzari, Elia; Obabko, Aleksandr [Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Thomas, Justin [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60439 (United States)

    2015-12-15

    Highlights: • The proposed models are 400 times less computationally expensive than CFD simulations. • The proposed models show good duct wall temperature agreement with CFD simulations. • The paper provides an efficient tool for coupled radial core expansion calculation. - Abstract: Porous medium models have been established for predicting duct wall temperature of sodium fast reactor rod bundle assembly, which is much less computationally expensive than conventional CFD simulations that explicitly represent the wire-wrap and fuel pin geometry. Three porous medium models are proposed in this paper. Porous medium model 1 takes the whole assembly as one porous medium of uniform characteristics in the conventional approach. Porous medium model 2 distinguishes the pins along the assembly's edge from those in the interior with two distinct regions, each with a distinct porosity, resistance, and volumetric heat source. This accounts for the different fuel-to-coolant volume ratio in the two regions, which is important for predicting the temperature of the assembly's exterior duct wall. In Porous medium model 3, a precise resistance distribution was employed to define the characteristic of the porous medium. The results show that both porous medium model 2 and 3 can capture the average duct wall temperature well. Furthermore, the local duct wall variations due to different sub-channel patterns in bare rod bundles are well captured by porous medium model 3, although the wire effect on the duct wall temperature in wire wrap rod bundle has not been fully reproduced yet.

  15. Uncertainty analysis of infinite homogeneous lead and sodium cooled fast reactors at beginning of life

    International Nuclear Information System (INIS)

    Vanhanen, R.

    2015-01-01

    The objective of the present work is to estimate breeding ratio, radiation damage rate and minor actinide transmutation rate of infinite homogeneous lead and sodium cooled fast reactors. Uncertainty analysis is performed taking into account uncertainty in nuclear data and composition of the reactors. We use the recently released ENDF/B-VII.1 nuclear data library and restrict the work to the beginning of reactor life. We work under multigroup approximation. The Bondarenko method is used to acquire effective cross sections for the homogeneous reactor. Modeling error and numerical error are estimated. The adjoint sensitivity analysis is performed to calculate generalized adjoint fluxes for the responses. The generalized adjoint fluxes are used to calculate first order sensitivities of the responses to model parameters. The acquired sensitivities are used to propagate uncertainties in the input data to find out uncertainties in the responses. We show that the uncertainty in model parameters is the dominant source of uncertainty, followed by modeling error, input data precision and numerical error. The uncertainty due to composition of the reactor is low. We identify main sources of uncertainty and note that the low-fidelity evaluation of 16 O is problematic due to lack of correlation between total and elastic reactions

  16. Uncertainty analysis of infinite homogeneous lead and sodium cooled fast reactors at beginning of life

    Energy Technology Data Exchange (ETDEWEB)

    Vanhanen, R., E-mail: risto.vanhanen@aalto.fi

    2015-03-15

    The objective of the present work is to estimate breeding ratio, radiation damage rate and minor actinide transmutation rate of infinite homogeneous lead and sodium cooled fast reactors. Uncertainty analysis is performed taking into account uncertainty in nuclear data and composition of the reactors. We use the recently released ENDF/B-VII.1 nuclear data library and restrict the work to the beginning of reactor life. We work under multigroup approximation. The Bondarenko method is used to acquire effective cross sections for the homogeneous reactor. Modeling error and numerical error are estimated. The adjoint sensitivity analysis is performed to calculate generalized adjoint fluxes for the responses. The generalized adjoint fluxes are used to calculate first order sensitivities of the responses to model parameters. The acquired sensitivities are used to propagate uncertainties in the input data to find out uncertainties in the responses. We show that the uncertainty in model parameters is the dominant source of uncertainty, followed by modeling error, input data precision and numerical error. The uncertainty due to composition of the reactor is low. We identify main sources of uncertainty and note that the low-fidelity evaluation of {sup 16}O is problematic due to lack of correlation between total and elastic reactions.

  17. Stable carbon and nitrogen isotope ratios of sodium and potassium cyanide as a forensic signature.

    Science.gov (United States)

    Kreuzer, Helen W; Horita, Juske; Moran, James J; Tomkins, Bruce A; Janszen, Derek B; Carman, April

    2012-01-01

    Sodium and potassium cyanide are highly toxic, produced in large amounts by the chemical industry, and linked to numerous high-profile crimes. The U.S. Centers for Disease Control and Prevention has identified cyanide as one of the most probable agents to be used in a chemical terrorism event. We investigated whether stable C and N isotopic content of sodium and potassium cyanide could serve as a forensic signature for sample matching, using a collection of 65 cyanide samples. Upon analysis, a few of the cyanide samples displayed nonhomogeneous isotopic content associated with degradation to a carbonate salt and loss of hydrogen cyanide. Most samples had highly reproducible isotope content. Of the 65 cyanide samples, >95% could be properly matched based on C and N isotope ratios, with a false match rate <3%. These results suggest that stable C and N isotope ratios are a useful forensic signature for matching cyanide samples. © 2011 American Academy of Forensic Sciences.

  18. Fast Disintegrating Combination Tablet of Taste Masked Levocetrizine Dihydrochloride and Montelukast Sodium: Formulation Design, Development, and Characterization

    Directory of Open Access Journals (Sweden)

    M. M. Gupta

    2014-01-01

    Full Text Available The aim of this study was to prepare fast disintegrating combination tablet of taste masked Levocetrizine dihydrochloride and Montelukast sodium by using direct compression method. To prevent bitter taste and unacceptable odour of the Levocetrizine dihydrochloride drug, the drug was taste masked with ion exchange resins like Kyron-T-104 and Tulsion-412. Among the two resins, Kyron-T-104 was selected for further studies because of high drug loading capacity, low cost, and better drug release profile. An ion exchange resin complex was prepared by the batch technique and various parameters; namely, resin activation, drug: resin ratio, pH, temperature, and stirring time, and swelling time were optimized to successfully formulate the tasteless drug resin complex (DRC. The tablets were prepared using microcrystalline cellulose (MCC PH 102 as diluent along with crospovidone (CP, croscarmellose sodium (CCM, and sodium starch glycolate (SSG as a superdisintegrants. The tablets were evaluated for weight variation, hardness, friability, wetting time, water absorption ratio, disintegration time (DT, and dissolution study and it was concluded that the tablet formulation prepared with 2% SSG + CCS showed better disintegration time in comparison with other formulation and good drug release. The stability studies were carried out for the optimized batch for three months and it showed acceptable results.

  19. Association of urinary sodium/creatinine ratio with bone mineral density in postmenopausal women: KNHANES 2008-2011.

    Science.gov (United States)

    Kim, Sung-Woo; Jeon, Jae-Han; Choi, Yeon-Kyung; Lee, Won-Kee; Hwang, In-Ryang; Kim, Jung-Guk; Lee, In-Kyu; Park, Keun-Gyu

    2015-08-01

    Accumulating evidence shows that high sodium chloride intake increases urinary calcium excretion and may be a risk factor for osteoporosis. However, the effect of oral sodium chloride intake on bone mineral density (BMD) and risk of osteoporosis has been inadequately researched. The aim of the present study was to determine whether urinary sodium excretion (reflecting oral sodium chloride intake) associates with BMD and prevalence of osteoporosis in postmenopausal women. This cross-sectional study involved a nationally representative sample consisting of 2,779 postmenopausal women who participated in the Korea National Health and Nutritional Examination Surveys in 2008-2011. The association of urinary sodium/creatinine ratio with BMD and other osteoporosis risk factors was assessed. In addition, the prevalence of osteoporosis was assessed in four groups with different urinary sodium/creatinine ratios. Participants with osteoporosis had significantly higher urinary sodium/creatinine ratios than the participants without osteoporosis. After adjusting for multiple confounding factors, urinary sodium/creatinine ratio correlated inversely with lumbar spine BMD (P = 0.001). Similarly, when participants were divided into quartile groups according to urinary sodium/creatinine ratio, the average BMD dropped as the urinary sodium/creatinine ratio increased. Multiple logistic regression analysis revealed that compared to quartile 1, quartile 4 had a significantly increased prevalence of lumbar spine osteoporosis (odds ratios 1.346, P for trend = 0.044). High urinary sodium excretion was significantly associated with low BMD and high prevalence of osteoporosis in lumbar spine. These results suggest that high sodium chloride intake decreases lumbar spine BMD and increases the risk of osteoporosis in postmenopausal women.

  20. Stabilization of magnet assemblies of permanent magnet sodium flowmeters used in fast breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, K.K., E-mail: kkrajan@igcar.gov.in; Vijayakumar, G.

    2014-08-15

    Highlights: • Stabilization procedure for ALNICO-5 permanent magnet material is evolved. • Effect of time and temperature on ALNICO-5 assembly is determined. • Suitability of ALNICO-5 flowmeters at high temperatures is established. • Temperature coefficient of flux density is determined. - Abstract: Permanent magnet flow meters (PMFMs) are used to measure the sodium flow in sodium cooled Fast Breeder Reactor Circuits. Prototype fast breeder reactor (PFBR) which is under construction at Kalpakkam is a 500 MWe, sodium cooled, pool type reactor. Sodium flow measurement in various loops of the reactor is of prime importance from operational and safety point of view. To measure the flow of electrically conducting liquid sodium, in primary and secondary circuit pipe lines of PFBR, permanent magnet flow meters are used. PMFM is a non-invasive device, which works on the principle of generation of motional EMF by magnetic forces exerted on the charges in a moving conductor. Flowmeters of different pipe sizes ranging from 10 mm to 200 mm pipe diameter are required for PFBR. Long term performance of the flowmeters mainly depends on stability of permanent magnets used in flowmeters to generate constant magnetic field in stainless steel (SS) pipes. This paper describes the effects of time and temperature on permanent magnet assemblies made of ALNICO-V used in PFBR flowmeters. The stabilization methodology for ALNICO-V permanent magnet assemblies is evolved and established. Loss of magnetic field strength with respect to time and temperatures is determined by experiments and found negligible.

  1. Progress Report on Sodium Cooled Fast Breeder Reactor Development in Japan, April 1975

    International Nuclear Information System (INIS)

    Tomabechi, K.

    1975-01-01

    The progress of the sodium cooled fast Breeder Reactor development in Japan in the past 12 months can be summarized as follows. Installation of all the components of the Experimental Fast Reactor, ''JOYO'', was completed in the end of the last year and various commissioning tests of the reactor began in January 1975. It is planned to charge sodium into the reactor in coming fall and the first criticality experiment is currently planned in the summer 1976. Most of the research and development works for ''JOYO'' are nearing completion. These include an endurance test of 3 prototype primary sodium pump for 12,000 hours. 86 core fuel subassemblies and 220 blanket subassemblies, a sufficient number for composing the initial core, have already been fabricated. Concerning the Prototype Fast Breeder Reactor, ''MONJU'', design activity as well as relevant research and development works are continued. A siting problem exists and it is hoped to be resolved soon. Of the research and development works, a significant achievement in the past 12 months can be a successful operation at full power of the 50 MW Steam Generator Test Facility. This facility was put into operation at full power in June 1974. No leak of water into sodium has been experienced with operation of the steam generator tested. The steam generator is being dismantled for a detailed inspection originally planned

  2. Minutes of the 2. Meeting of the WPRS / EGRPANS / Sodium Fast Reactor Task Force (SFR)

    International Nuclear Information System (INIS)

    Ivanov, Evgeny; Kereszturi, Andras; Pataki, I.; Tota, A.; Vertes, P.; Kim, Taek K.; Taiwo, T.A.; Kugo, Teruhiko; Lee, Yi Kang; Messaoudi, Nadia; Michel-Sendis, Franco; ); Pascal, Vincent; Buiron, Laurent; Varaine, Frederic; Ponomarev, Alexander

    2012-01-01

    Five organizations (SCK/CEN, KIT, KFKI, CEA, ANL) participated in the Sodium-cooled fast reactor (SFR) Benchmark calculations and all results were collected and compiled by CEA and ANL. The compiled results of the large size cores and medium size cores were presented by V. Pascal (CEA) and T. K. Kim (ANL), respectively. Separately, A. Kereszturi presented his recently updated results. It was observed that there is wide variation in core multiplication factor, kinetics parameters, and reactivity feedback coefficients. In particular, compared to the CEA results, ANL calculated smaller k-eff, Doppler constant, but higher sodium void worth and control rod worth. The core modeling issue (heterogeneous vs. homogeneous) and solution method (diffusion vs. transport) were identified as the potential reasons of these discrepancies, including the minor impacts from the depletion chains and lumped fission product modeling. All participants agreed that additional investigation was needed to identify the reasons of these discrepancies. In addition, V. Pascal presented the informative notes of the reactivity feedback calculations methodology proposed by CEA. This document brings together the 5 presentations (slides) given at this meeting: 1 - SFR Task Force : Core behavior during transient as a function of power size and fuel nature (L. Buiron, V. Pascal, F. Varaine); 2 - Sodium Fast Reactor core Feedback and Transient response (SFRFT) Expert Group: preliminary benchmark results for large cores (L. Buiron, V. Pascal, F. Varaine); 3 - Numerical Benchmark Results for 1000 MWth Sodium-cooled Fast Reactor (T.K. Kim and T.A. Taiwo); 4 - Preliminary results of the WPRS Sodium-Cooled Fast Reactor Benchmark problems (A. Kereszturi, I. Pataki, A. Tota, P. Vertes); 5 - SFR Task Force : proposal for Feedback coefficients estimation methodology (L. Buiron, V.Pascal, F. Varaine)

  3. Forced convection boiling of sodium. Study carried out in the framework of fast neutrons reactors safety

    International Nuclear Information System (INIS)

    Charlety, Paul

    1971-01-01

    Within the framework of the safety of fast neutron reactors, this research thesis reports the study of sodium boiling in order to assess safety margins, and to predict the consequences of some accidents. The author thus addresses issues related to sodium boiling by notably focussing on boiling physics. He first defines these issues and presents the adopted approach for this research, and then describes the experimental installation. He reports the experimental study which comprised different types of tests, and presents experimental results. He reports the development of a calculation model which could report phenomena which have been experimentally noticed [fr

  4. Sodium fast reactor power monitoring using {sup 20}F tagging agent

    Energy Technology Data Exchange (ETDEWEB)

    Coulon, R.; Normand, S. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, Centre de Saclay, 91191 Gif sur Yvette Cedex (France); Ban, G. [ENSICAEN, F-14050 Caen (France); Dumarcher, V.; Brau, H. P.; Barbot, L.; Domenech, T.; Kondrasovs, V.; Corre, G.; Frelin, A. M.; Montagu, T.; Dautremer, T.; Barat, E.

    2009-07-01

    This work deals with the use of gamma spectrometry to monitor the fourth generation sodium fast reactor (SFR) power. Simulation part has shown that power monitoring in short response time and with high accuracy is possible measuring delayed gamma emitters produced in the liquid sodium. An experimental test is under preparation at French SFR Phenix experimental reactor to validate simulation studies. Physical calculations have been done to correlate gamma activity to the released thermal power. Gamma emitter production rate in the reactor core was calculated with technical and nuclear data as sodium velocity, atomic densities, neutron spectra and incident neutron cross-sections of fission reactions, and also sodium activation reactions producing gamma emitters. Then, a thermal hydraulic transfer function was used for taking into account primary sodium flow in our calculations. Gamma spectra were then determined by Monte-Carlo simulations. The experiment will be set during the reactor 'ultimate testing'. The Delayed Neutron Detection (DND) system cell has been chosen as the best available primary sodium sample for gamma power monitoring on Phenix reactor due to short sodium transit time from reactor core to measurement sample and homogenized sampling in the reactor hot pool. The main gamma spectrometer is composed of a coaxial high purity germanium diode (HPGe) coupled with a transistor reset preamplifier. The signal is then processed by a digital signal processing system (called Adonis) which always gives optimum answer even for high count rate and various time activity measurements. For power monitoring problematic, use of a short decay period gamma emitter as the {sup 20}F will allow to obtain a very fast response system without cumulative and flow distortion effects. These works introduce advantages and performances of this new power monitoring system for future SFR. (authors)

  5. Transport of sodium through the cover gas of a sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Clement, C.F.; Hawtin, P.

    1977-01-01

    Idealised models are presented for sodium vapour transport through argon or helium and the subsequent roof condensation. For both gases the dominant heat transfer mechanism from the pool is radiation but the mass transport process is convection for argon and diffusion for helium. For argon a theory based on work of Hills and Szekely is presented which predicts a heat transfer rate independent of the actual amount of condensation occurring in the cavity, and which suggests a mass transfer rate close to that calculated in the absence of condensation. Experimental determination of the temperature and velocity flow characteristics are desirable to examine and improve on the suspect basic assumption of the theory that the velocity flow pattern is unaffected by condensation. For helium diffusion theory predicts a mass transfer rate an order of magnitude smaller than for argon, but only a slightly smaller overall heat transfer rate because of the dominance of radiation. (author)

  6. Interaction between Single Nucleotide Polymorphism and Urinary Sodium, Potassium, and Sodium-Potassium Ratio on the Risk of Hypertension in Korean Adults

    Directory of Open Access Journals (Sweden)

    Yeong Mi Park

    2017-03-01

    Full Text Available Hypertension is a complex disease explained with diverse factors including environmental factors and genetic factors. The objectives of this study were to determine the interaction effects between gene variants and 24 h estimated urinary sodium and potassium excretion and sodium-potassium excretion ratios on the risk of hypertension. A total of 8839 participants were included in the genome-wide association study (GWAS to find genetic factors associated with hypertension. Tanaka and Kawasaki formulas were applied to estimate 24 h urinary sodium and potassium excretion. A total of 4414 participants were included in interaction analyses to identify the interaction effects of gene variants according to 24 h estimated urinary factors on the risk of hypertension. CSK rs1378942 and CSK-MIR4513 rs3784789 were significantly modified by urinary sodium-potassium excretion ratio. In addition, MKLN rs1643270 with urinary potassium excretion, LOC101929750 rs7554672 with urinary sodium and potassium excretion, and TENM4 rs10466739 with urinary sodium-potassium excretion ratio showed significant interaction effects. The present study results indicated that the mutant alleles of CSK rs1378942 and CSK-MIR4513 rs3784789 had the strongest protective effects against hypertension in the middle group of 24 h estimated urinary sodium-potassium excretion ratio. Further studies are needed to replicate these analyses in other populations.

  7. A design study of high breeding ratio sodium cooled metal fuel core without blanket fuels

    International Nuclear Information System (INIS)

    Kobayashi, Noboru; Ogawa, Takashi; Ohki, Shigeo; Mizuno, Tomoyasu; Ogata, Takanari

    2009-01-01

    The metal fuel core is superior to the mixed oxide fuel core because of its high breeding ratio and compact core size resulting from hard neutron spectrum and high heavy metal densities. Utilizing these characteristics, a conceptual design for a high breeding ratio was performed without blanket fuels. The design conditions were set so a sodium void worth of less than 8 $, a core height of less than 150 cm, the maximum cladding temperature of 650degC, and the maximum fuel pin bundle pressure drop of 0.4 MPa. The breeding ratio of the resultant core was 1.34 with 6wt% zirconium content fuel. Applying 3wt% zirconium content fuel enhanced the breeding ratio up to 1.40. (author)

  8. R and D program for French sodium fast reactor: On the description and detection of sodium boiling phenomena during sub-assembly blockages

    International Nuclear Information System (INIS)

    Vanderhaegen, M.; Paumel, K.; Seiler, J. M.; Tourin, A.; Jeannot, J. P.; Rodriguez, G.

    2011-01-01

    In support of the French ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) reactor program, which aims to demonstrate the industrial applicability of sodium fast reactors with an increased level of safety demonstration and availability compared to the past French sodium fast reactors, emphasis is placed on reactor instrumentation. It is in this framework that CEA studies continuous core monitoring to detect as early as possible the onset of sodium boiling. Such a detection system is of particular interest due to the rapid progress and the consequences of a Total Instantaneous Blockage (TIB) at a subassembly inlet, where sodium boiling intervenes in an early phase. In this paper, the authors describe all the particularities which intervene during the different boiling stages and explore possibilities for their detection. (authors)

  9. Study on integrated TRU multi-recycling in sodium cooled fast reactor CDFR

    International Nuclear Information System (INIS)

    Hu Yun; Xu Mi; Wang Kan

    2010-01-01

    In view of recently proposed closed fuel cycle strategy which would recycle the integrated transuranics (TRU) from PWR spent fuel in the fast reactors, the neutronics characteristics of TRU recycled in China Demonstration Fast Reactor (CDFR) are studied in this paper. The results show that loading integrated TRU to substitute pure Pu as driver fuel will mainly make the influence on sodium void worth and negligible effects on other parameters, and hence TRU recycling in CDFR is feasible from viewpoint of core neutronics. If TRU is multi-recycled, the variation of TRU composition depends on fuel types and the ratio of TRU and U when recycling. It is indicated that, when TRU is multi-recycled in CDFR with MOX fuel, the minor actinides (MA) fraction in TRU will firstly decrease to ∼7.24% (minimum) within 8 TRU recycle times and then slowly increase to ∼7.7% after 20 TRU recycle times; while when TRU is multi-recycled in CDFR with metal fuel (TRU-U-10Zr), the MA fraction in TRU will gradually approach to an equilibrium state with the MA fraction of ∼3.8%, demonstrating better MA transmutation effect in metal fuel core. No matter 7.7 or 3.8%, they are both lower than ∼10% in PWR spent fuel with burnup of 45 GWd/tU, which presents satisfying effect of MA amount controlling for TRU multi-recycling strategy. On the other hand, the corresponding recycling parameters such as TRU heat release and neutron emission rate are also much lower in metal fuel than those in MOX fuel. Moreover, TRU recycled in metal fuel will bring greater fissile Pu isotopes equilibrium fraction due to better breeding capability of metal fuel. Finally, it could be summarized that integrated TRU multi-recycling in fast reactor can make contributions to both breeding and transmutation, and such strategy is a prospective closed fuel cycle manner to achieve the object of effective control of cumulated MA amount and sustainable development of nuclear energy.

  10. Numerical approach for quantification of self wastage phenomena in sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Jang, Sung Hyun; Takata, Takashi; Yamaguchi, Akira; Uchbori, Akihiro; Kurihara, Akikazu; Ohshima, Hiroyuki

    2015-01-01

    Sodium-cooled fast breeder reactors use liquid sodium as a moderator and coolant to transfer heat from the reactor core. The main hazard associated with sodium is its rapid reaction with water. Sodium-water reaction (SWR) takes place when water or vapor leak into the sodium side through a crack on a heat-transfer tube in a steam generator. If the SWR continues for some time, the SWR will damage the surface of the defective area, causing it to enlarge. This self-enlargement of the crack is called 'self-wastage phenomena'. A stepwise numerical evaluation model of the self-wastage phenomena was devised using a computational code of multicomponent multiphase flow involving a sodium-water chemical reaction: sodium-water reaction analysis physics of interdisciplinary multiphase flow (SERAPHIM). The temperature of gas mixture and the concentration of NaOH at the surface of the tube wall are obtained by a numerical calculation using SERAPHIM. Averaged thermophysical properties are used to assess the local wastage depth at the tube surface. By reflecting the wastage depth to the computational grid, the self-wastage phenomena are evaluated. A two-dimensional benchmark analysis of an SWAT (Sodium-Water reAction Test rig) experiment is carried out to evaluate the feasibility of the numerical model. Numerical results show that the geometry and scale of enlarged cracks show good agreement with the experimental result. Enlarged cracks appear to taper inward to a significantly smaller opening on the inside of the tube wall. The enlarged outer diameter of the crack is 4.72 mm, which shows good agreement with the experimental data (4.96 mm)

  11. Numerical approach for quantification of self wastage phenomena in sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Sung Hyun; Takata, Takashi [Graduate School of Engineering, Osaka University, Osaka (Japan); Yamaguchi, Akira [Graduate School of Engineering, The University of Tokyo, Ibaraki (Japan); Uchbori, Akihiro; Kurihara, Akikazu; Ohshima, Hiroyuki [Japan Atomic Energy Agency, Ibaraki (Japan)

    2015-10-15

    Sodium-cooled fast breeder reactors use liquid sodium as a moderator and coolant to transfer heat from the reactor core. The main hazard associated with sodium is its rapid reaction with water. Sodium-water reaction (SWR) takes place when water or vapor leak into the sodium side through a crack on a heat-transfer tube in a steam generator. If the SWR continues for some time, the SWR will damage the surface of the defective area, causing it to enlarge. This self-enlargement of the crack is called 'self-wastage phenomena'. A stepwise numerical evaluation model of the self-wastage phenomena was devised using a computational code of multicomponent multiphase flow involving a sodium-water chemical reaction: sodium-water reaction analysis physics of interdisciplinary multiphase flow (SERAPHIM). The temperature of gas mixture and the concentration of NaOH at the surface of the tube wall are obtained by a numerical calculation using SERAPHIM. Averaged thermophysical properties are used to assess the local wastage depth at the tube surface. By reflecting the wastage depth to the computational grid, the self-wastage phenomena are evaluated. A two-dimensional benchmark analysis of an SWAT (Sodium-Water reAction Test rig) experiment is carried out to evaluate the feasibility of the numerical model. Numerical results show that the geometry and scale of enlarged cracks show good agreement with the experimental result. Enlarged cracks appear to taper inward to a significantly smaller opening on the inside of the tube wall. The enlarged outer diameter of the crack is 4.72 mm, which shows good agreement with the experimental data (4.96 mm)

  12. Overview of 9Cr steels properties for structural application in sodium fast reactors

    International Nuclear Information System (INIS)

    Cabet, Celine; Courouau, Jean-Louis; Dalle, France; Desgranges, Clara; Forest, Laurent; Martinelli, Laure; Sauzay, Maxime

    2015-01-01

    A research and development programme has been launched by CEA, EDF and AREVA for the choice and qualification of material for sodium fast reactor (SFR) structural components. The requirements on steam generator (SG) are demanding, with operating temperatures ranging from 240 deg. C to 530 deg. C in water/steam and in sodium for an extended design life of several decades. The selection of the SG materials is based on many characteristics: fabrication, welding, thermal properties, mechanical strength at low and high temperature, environmental resistance. 9%Cr steels which are relevant candidate alloys for different designs of SGs have been extensively studied in the past decade. The objective of this paper is to review some advances made at CEA on determining properties of the X10CrMoVNb9-1 steel (hereafter named 'grade 91'): welding, modelling of cyclic softening, modelling of long-term creep, compatibility with liquid sodium, corrosion in steam. (authors)

  13. A moderation layer to improve the safety behavior of sodium cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Merk, B.; Weiß, F.P., E-mail: b.merk@fzd.de [Forschungszentrum Dresden-Rossendorf, Institut für Sicherheitsforschung, Dresden (germany)

    2011-07-01

    The nature of the sodium void effect in an infinite lattice is discussed and for a reduction of the effect the insertion of moderating material is proposed. The effect of three different moderating layers on the sodium void defect and the feedback effects is investigated. Especially the uranium zirconium hydride UzrH layer causes a strong reduction of the sodium void effect. Additionally, this layer improves the fuel temperature effect and the coolant effect of the system significantly. All changes caused by the insertion of the UZrH layer lead to a significant increase in stability of the fast reactor system against transients. The moderating layers have only a small influence on the breeding effect and on the production of minor actinides. (author)

  14. A moderation layer to improve the safety behavior of sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Merk, B.; Weiß, F.P.

    2011-01-01

    The nature of the sodium void effect in an infinite lattice is discussed and for a reduction of the effect the insertion of moderating material is proposed. The effect of three different moderating layers on the sodium void defect and the feedback effects is investigated. Especially the uranium zirconium hydride UzrH layer causes a strong reduction of the sodium void effect. Additionally, this layer improves the fuel temperature effect and the coolant effect of the system significantly. All changes caused by the insertion of the UZrH layer lead to a significant increase in stability of the fast reactor system against transients. The moderating layers have only a small influence on the breeding effect and on the production of minor actinides. (author)

  15. Preliminary safety evaluation (PSE) for Sodium Storage Facility at the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Bowman, B.R.

    1994-01-01

    This evaluation was performed for the Sodium Storage Facility (SSF) which will be constructed at the Fast Flux Test Facility (FFTF) in the area adjacent to the South and West Dump Heat Exchanger (DHX) pits. The purpose of the facility is to allow unloading the sodium from the FFTF plant tanks and piping. The significant conclusion of this Preliminary Safety Evaluation (PSE) is that the only Safety Class 2 components are the four sodium storage tanks and their foundations. The building, because of its imminent risk to the tanks under an earthquake or high winds, will be Safety Class 3/2, which means the building has a Safety Class 3 function with the Safety Class 2 loads of seismic and wind factored into the design

  16. Development and application of modeling tools for sodium fast reactor inspection

    Energy Technology Data Exchange (ETDEWEB)

    Le Bourdais, Florian; Marchand, Benoît; Baronian, Vahan [CEA LIST, Centre de Saclay F-91191 Gif-sur-Yvette (France)

    2014-02-18

    To support the development of in-service inspection methods for the Advanced Sodium Test Reactor for Industrial Demonstration (ASTRID) project led by the French Atomic Energy Commission (CEA), several tools that allow situations specific to Sodium cooled Fast Reactors (SFR) to be modeled have been implemented in the CIVA software and exploited. This paper details specific applications and results obtained. For instance, a new specular reflection model allows the calculation of complex echoes from scattering structures inside the reactor vessel. EMAT transducer simulation models have been implemented to develop new transducers for sodium visualization and imaging. Guided wave analysis tools have been developed to permit defect detection in the vessel shell. Application examples and comparisons with experimental data are presented.

  17. Effects of Nuclear Energy on Sustainable Development and Energy Security: Sodium-Cooled Fast Reactor Case

    Directory of Open Access Journals (Sweden)

    Sungjoo Lee

    2016-09-01

    Full Text Available We propose a stepwise method of selecting appropriate indicators to measure effects of a specific nuclear energy option on sustainable development and energy security, and also to compare an energy option with another. Focusing on the sodium-cooled fast reactor, one of the highlighted Generation IV reactors, we measure and compare its effects with the standard pressurized water reactor-based nuclear power, and then with coal power. Collecting 36 indicators, five experts select seven key indicators to meet data availability, nuclear energy relevancy, comparability among energy options, and fit with Korean energy policy objectives. The results show that sodium-cooled fast reactors is a better alternative than existing nuclear power as well as coal electricity generation across social, economic and environmental dimensions. Our method makes comparison between energy alternatives easier, thereby clarifying consequences of different energy policy decisions.

  18. Thermal hydraulics of sodium-cooled fast reactors - key issues and highlights

    International Nuclear Information System (INIS)

    Ninokata, H.; Kamide, H.

    2011-01-01

    In this paper key issues and highlighted topics in thermal hydraulics are discussed in connection to the current Japan's sodium-cooled fast reactor development efforts. In particular, design study and related researches of the Japan Sodium-cooled Fast Reactor (JSFR) are focused. Several innovative technologies, e.g., compact reactor vessel, two-loop system, fully natural circulation decay heat removal, and recriticality free core, have been investigated in order to reduce construction cost and to achieve higher level of reactor safety. Preliminary evaluations of innovative technologies to be applied to JSFR are on-going. Here, progress of design study is introduced. Then, research and development activities on the thermal hydraulics related to the innovative technologies are briefly reviewed. (author)

  19. A preliminary safety analysis for the prototype Gen IV Sodium-Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwi Lim; Ha, Kwi Seok; Jeong, Jae Ho; Choi, Chi Woong; Jeong, Tae Kyeong; Ahn, Sang June; Lee, Seung Won; Chang, Won Pyo; Kang, Seok Hun; Yoo, Jae Woon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Korea Atomic Energy Research Institute has been developing a pool-type sodium-cooled fast reactor of the Prototype Gen-IV Sodium-cooled Fast Reactor (PGSFR). To assess the effectiveness of the inherent safety features of the PGSFR, the system transients during design basis accidents and design extended conditions are analyzed with MARS-LMR and the subchannel blockage events are analyzed with MATRA-LMR-FB. In addition, the in-vessel source term is calculated based on the super-safe, small, and simple reactor methodology. The results show that the PGSFR meets safety acceptance criteria with a sufficient margin during the events and keeps accidents from deteriorating into more severe accidents.

  20. New version of the reactor dynamics code DYN3D for Sodium cooled Fast Reactor analyses

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, Evgeny [Ecole Polytechnique Federale de Lausanne (Switzerland); Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany); Fridman, Emil; Bilodid, Yuri; Kliem, Soeren [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany)

    2017-07-15

    The reactor dynamics code DYN3D being developed at the Helmholtz-Zentrum Dresden-Rossendorf is currently under extension for Sodium cooled Fast Reactor analyses. This paper provides an overview on the new version of DYN3D to be used for SFR core calculations. The current article shortly describes the newly implemented thermal mechanical models, which can account for thermal expansion effects of the reactor core. Furthermore, the methodology used in Sodium cooled Fast Reactor analyses to generate homogenized few-group cross sections is summarized. The conducted and planned verification and validation studies are briefly presented. Related publications containing more detailed descriptions are outlined for the completeness of this overview.

  1. Lead-cooled flexible conversion ratio fast reactor

    International Nuclear Information System (INIS)

    Nikiforova, Anna; Hejzlar, Pavel; Todreas, Neil E.

    2009-01-01

    Lead-cooled reactor systems capable of accepting either zero or unity conversion ratio cores depending on the need to burn actinides or operate in a sustained cycle are presented. This flexible conversion ratio reactor is a pool-type 2400 MWt reactor coupled to four 600 MWt supercritical CO 2 (S-CO 2 ) power conversion system (PCS) trains through intermediate heat exchangers. The cores which achieve a power density of 112 kW/l adopt transuranic metallic fuel and reactivity feedbacks to achieve inherent shutdown in anticipated transients without scram, and lead coolant in a pool vessel arrangement. Decay heat removal is accomplished using a reactor vessel auxiliary cooling system (RVACS) complemented by a passive secondary auxiliary cooling system (PSACS). The transient simulation of station blackout (SBO) using the RELAP5-3D/ATHENA code shows that inherent shutdown without scram can be accommodated within the cladding temperature limit by the enhanced RVACS and a minimum (two) number of PSACS trains. The design of the passive safety systems also prevents coolant freezing in case all four of the PSACS trains are in operation. Both cores are also shown able to accommodate unprotected loss of flow (ULOF) and unprotected transient overpower (UTOP) accidents using the S-CO 2 PCS.

  2. Education & Training in Support to Sodium Fast Reactors Around the World

    International Nuclear Information System (INIS)

    Latgé, C.; Soucille, M.; Grandy, C.; Xu Mi; Garbil, R.; Monti, S.; Sai Baba, M.; Chellapandi, P.; Kitabata, T.; Kim, Y-G

    2013-01-01

    The results of these ambitious and long term strategies are: - first the creation of a new generation of skilled nuclear engineers in the field. - secondly a share of knowledge gained through experimental studies carried out in research laboratories as well as feedback from fast reactors operation, - thirdly a standardized information on safety, - and finally the creation of a “Sodium Fast Reactor community” is promoted, able to debate, share the knowledge and suggest new tracks for a better definition of design and operating rules

  3. Application of objective provision tree to development of standard review plan for sodium-cooled fast reactor nuclear design

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Moo-Hoon; Suh, Namduk; Choi, Yongwon; Shin, Andong [Korea Institute of Nuclear Safety, Daejon (Korea, Republic of)

    2016-06-15

    A systematic methodology was developed for the standard review plan for sodium-cooled fast reactor nuclear design. The process is first to develop an objective provision tree of sodium-cooled fast reactor for the reactivity control safety function. The provision tree is generally developed by designer to confirm whether the design satisfies the defense-in-depth concept. Then applicability of the current standard review plan of nuclear design for light water reactor to sodium-cooled fast reactor was evaluated and complemented by the developed objective provision tree.

  4. The fast neutrons reactors, the sodium, the fuel cycle: evaluation of the knowledge, innovation potential and forecast

    International Nuclear Information System (INIS)

    Moreau, J.

    2002-01-01

    This document presents the study, the design and the construction of fast neutrons reactors, cooled with sodium. From this evaluation, it details the innovation possibilities of this sector in the sustainable development context of the nuclear energy. Chapter one presents the physical and physico-chemical properties of the sodium. Chapter two analyzes the properties of the fast cores and the sodium advantages. Chapter three analyzes the great contribution of the EFR project. Chapter four takes stock on the innovation possibilities. And before the conclusion, chapter five shows that the fast neutrons reactors allow the electric power production in agreement with a sustainable development. (A.L.B.)

  5. Analysis of the formation of local cooling disturbances in sodium-cooled fast breeder reactors

    International Nuclear Information System (INIS)

    Schultheiss, G.F.

    1976-09-01

    The aim of this analysis of the formation of local cooling disturbances in sodium-cooled fast breeder reactors is to get results on the possible extent of blockages and the time necessary for growth which may be used for a safety evaluation. After an introduction where the thermohydraulic and physical/chemical aspects of the problems are considered, the causes for the local cooling disturbances and the phenomena arising with it are freated in more detail. (orig./TK) [de

  6. Nuclear Data Uncertainty Propagation to Reactivity Coefficients of a Sodium Fast Reactor

    Science.gov (United States)

    Herrero, J. J.; Ochoa, R.; Martínez, J. S.; Díez, C. J.; García-Herranz, N.; Cabellos, O.

    2014-04-01

    The assessment of the uncertainty levels on the design and safety parameters for the innovative European Sodium Fast Reactor (ESFR) is mandatory. Some of these relevant safety quantities are the Doppler and void reactivity coefficients, whose uncertainties are quantified. Besides, the nuclear reaction data where an improvement will certainly benefit the design accuracy are identified. This work has been performed with the SCALE 6.1 codes suite and its multigroups cross sections library based on ENDF/B-VII.0 evaluation.

  7. Development of a Neutron Flux Monitoring System for Sodium-cooled Fast Reactors

    OpenAIRE

    Verma, Vasudha

    2017-01-01

    Safety and reliability are one of the key objectives for future Generation IV nuclear energy systems. The neutron flux monitoring system forms an integral part of the safety design of a nuclear reactor and must be able to detect any irregularities during all states of reactor operation. The work in this thesis mainly concerns the detection of in-core perturbations arising from unwanted movements of control rods with in-vessel neutron detectors in a sodium-cooled fast reactor. Feasibility stud...

  8. A summary of sodium vapor trap experience at the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Schuck, W.J.

    1986-09-01

    Sodium vapor trap operation at the Fast Flux Test Facility has been successful although not uneventful. Analysis and evaluation of the behavior of the vapor traps associated with reactor cover gas processing and analysis systems has confirmed their design and has led to an improved understanding of these components and the environment in which they operate. This knowledge will permit simplification and reduced costs for future designs

  9. A summary of sodium vapor trap experience at the Fast Flux Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Schuck, W J [Westinghouse Hanford Company, Richland, WA (United States)

    1987-07-01

    Sodium vapor trap operation at the Fast Flux Test Facility has been successful although not uneventful. Analysis and evaluation of the behavior of the vapor traps associated with reactor cover gas processing and analysis systems has confirmed their design and has led to an improved understanding of these components and the environment in which they operate. This knowledge will permit simplification and reduced costs for future designs (author)

  10. Design Concept of Advanced Sodium-Cooled Fast Reactor and Related R&D in Korea

    Directory of Open Access Journals (Sweden)

    Yeong-il Kim

    2013-01-01

    Full Text Available Korea imports about 97% of its energy resources due to a lack of available energy resources. In this status, the role of nuclear power in electricity generation is expected to become more important in future years. In particular, a fast reactor system is one of the most promising reactor types for electricity generation, because it can utilize efficiently uranium resources and reduce radioactive waste. Acknowledging the importance of a fast reactor in a future energy policy, the long-term advanced SFR development plan was authorized by KAEC in 2008 and updated in 2011 which will be carried out toward the construction of an advanced SFR prototype plant by 2028. Based upon the experiences gained during the development of the conceptual designs for KALIMER, KAERI recently developed advanced sodium-cooled fast reactor (SFR design concepts of TRU burner that can better meet the generation IV technology goals. The current status of nuclear power and SFR design technology development program in Korea will be discussed. The developments of design concepts including core, fuel, fluid system, mechanical structure, and safety evaluation have been performed. In addition, the advanced SFR technologies necessary for its commercialization and the basic key technologies have been developed including a large-scale sodium thermal-hydraulic test facility, super-critical Brayton cycle system, under-sodium viewing techniques, metal fuel development, and developments of codes, and validations are described as R&D activities.

  11. 4. generation sodium-cooled fast reactors. The ASTRID technological demonstrator

    International Nuclear Information System (INIS)

    2012-12-01

    The sodium-cooled fast reactor (SFR) concept is one of the four fast neutron concepts selected by the Generation IV International Forum (GIF). SFRs have favourable technical characteristics and they are the sole type of reactor for which significant industrial experience feedback is available. After a discussion of the past experience gained on fast breeder reactors in the world (benefits, difficulties and problematics), the authors discuss the main improvement domains and the associated R and D advances (reactor safety, prevention and mitigation of severe accidents, the sodium-water risk, detection of sodium leaks, increased availability, instrumentation and inspection, control and repairability, assembly handling and washing). Then, they describe the technical requirements and safety objectives of the ASTRID experimental project, notably with its reactivity management, cooling management, and radiological containment management functions. They describe and discuss requirements to be met and choices made for Astrid, and the design options for its various components (core and fuels, nuclear heater, energy conversion system, fuel assembly handling, instrumentation and in-service inspection, control and command). They present the installations which are associated with the ASTRID cycle, evoke the development and use of simulations and codes, describe the industrial organization and the international collaboration about the ASTRID project, present the planning and cost definition

  12. European commission - 7th framework programme. The collaborative project on European sodium fast reactor (CP ESFR)

    International Nuclear Information System (INIS)

    Fiorini, G.L.

    2009-01-01

    The paper summarizes the key characteristics of the four years large Collaborative Project on European Sodium Fast Reactor (CP ESFR - 2009-2012); the CP ESFR follows the 6th FP project named 'Roadmap for a European Innovative SOdium cooled FAst Reactor - EISOFAR' further identifying, organizing and implementing a significant part of the needed R and D effort. The CP ESFR merges the contribution of 25 european partners; it will be realized under the aegis of the 7th FP under the Area - Advanced Nuclear Systems with a refund from the European Commission of 5.8 M euro (11.55 M euro total budget). It will be a key component of the European Sustainable Nuclear Energy Technology Platform (SNE TP) and its Strategic Research Agenda (SRA). The inputs for the project are the key research goals for fourth generation of European sodium cooled fast reactors which can be summarized as follow: an improved safety with in particular the achievement of a robust architecture vis a vis of abnormal situations and the robustness of the safety demonstrations; the guarantee of a financial risk comparable to that of the other means of energy production; a flexible and robust management of the nuclear materials and especially the waste reduction through the Minor Actinides burning. (author)

  13. The collaborative project on European sodium fast reactor (CP ESFR project)

    International Nuclear Information System (INIS)

    Fiorini, Gian-Luigi

    2010-01-01

    The paper summarizes the key characteristics of the four years large Collaborative Project on European Sodium Fast Reactor (CP ESFR - 2009-2012); the CP ESFR follows the 6th FP project named 'Roadmap for a European Innovative SOdium cooled FAst Reactor - EISOFAR' further identifying, organizing and implementing a significant part of the needed R and D effort. The paper also gives insights concerning the so called 'working horses' cores and systems which are provided by CEA and AREVA and that will be used as a basis to test the performances and assess the pertinence of innovative solutions. The CP ESFR merges the contribution of 25 European partners (EU + CH); it will be performed under the aegis of the 7th Euratom FP under the Area - Advanced Nuclear Systems with a refund from the European Commission. It will be a key component of the European Sustainable Nuclear Energy Technology Platform (SNE TP) and its Strategic Research Agenda (SRA). The inputs for the project are the key research goals for fourth generation of European sodium cooled fast reactors which can be summarized as follows: an improved safety with in particular the achievement of a robust architecture vis-a-vis of abnormal situations and the robustness of the safety demonstrations; the guarantee of a financial risk similar to that of the other means of energy production; a flexible and robust management of nuclear materials and especially waste reduction through Minor Actinides burning

  14. Innovating analytical spectroscopies for the improvement of liquid sodium cooled fast neutron reactors safety

    International Nuclear Information System (INIS)

    Maury, C.

    2012-01-01

    In the context of the project of sodium fast reactor ASTRID, CEA is currently developing new analytical techniques to monitor the chemical purity of liquid sodium. Indeed, incidental situations occurring in the reactor, such as fuel clad failures, leakages in the steam generator or in the coolant pumps, and accelerated corrosion, might release several elements in the sodium. Analytical techniques based on laser ablation and emission spectroscopy are well suited for this application. They do not require any sample preparation, and can perform direct on-line analysis. Amongst them, Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation coupled to Laser-Induced Fluorescence (LA-LIF) have been selected for this study. The objective of this work was to characterize the sensitivity of those two techniques for the detection of impurities in liquid sodium. Their limits of detection were calculated for model analytes using calibration lines. Then results were theoretically extrapolated to other analytes of interest. This study shows the feasibility of the detection of steel corrosion products in liquid sodium. However, the LIBS technique is more robust and easier to implement, and would therefore be more suited to nuclear conditions. (author) [fr

  15. Chemical and physical changes at sodium-stainless steel interfaces in fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, C K [Bhabha Atomic Research Centre, Bombay (India). Radiochemistry Div.

    1977-01-01

    In the sodium loops of a fast reactor, mass transfer occurs due to the interaction of flowing sodium on stainless steel surfaces. Under the non-isothermal conditions prevailing in the loop some elements are preferentially leached from the surface layers of the hot zone and transported by sodium to the cooled zone where deposition may take place. The available information on the mass transport in non-isothermal sodium loops has been summarised, and an attempt has been made to understand the mechanisms involved, of which the chemical reactions at the sodium-stainless steel interface are especially important. The rate of diffusion towards the solid/liquid interface may be the rate-determining step in some of these reactions. When a ferritic surface layer is formed by the selective removal of austenitic stabilizing elements, diffusion of alloying constituents through the ferritic layer limits the growth of this layer. Only when the surface film is adherent, the diffusion across this layer becomes important. NaCrO/sub 2/, for instance, has poor adherence, and a surface film of this compound may not inhibit further corrosion.

  16. Validation study of computer code SPHINCS for sodium fire safety evaluation of fast reactor

    International Nuclear Information System (INIS)

    Yamaguchi, Akira; Tajima, Yuji

    2003-01-01

    A computer code SPHINCS solves coupled phenomena of thermal hydraulics and sodium fire based on a multi-zone model. It deals with an arbitrary number of rooms, each of which is connected mutually by doorways and penetrations. With regard to the combustion phenomena, a flame sheet model and a liquid droplet combustion model are used for pool and spray fires, respectively, with the chemical equilibrium model based on the Gibbs free energy minimization method. The chemical reaction and mass and heat transfer are solved interactively. A specific feature of SPHINCS is detailed representation of thermalhydraulics of a sodium pool and a steel liner, which is placed on the floor to prevent sodium-concrete contact. The authors analyzed a series of pool combustion experiments, in which gas and liner temperatures are measured in detail. It has been found that good agreement is obtained and the SPHINCS code has been validated with regard to pool combustion phenomena. Further research needs are identified for pool spreading modeling considering thermal deformation of steel liner and measurement of pool fluidity property as a mixture of liquid sodium and reaction products. The SPHINCS code is to be used mainly in the safety evaluation of the consequence of a sodium fire accident in a liquid metal cooled fast reactor as well as fire safety analysis in general

  17. Comparison of In-Vessel Shielding Design Concepts between Sodium-cooled Fast Burner Reactor and the Sodium-cooled Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Yun, Sunghwan; Kim, Sang Ji

    2015-01-01

    In this study, quantities of in-vessel shields were derived and compared each other based on the replaceable shield assembly concept for both of the breeder and burner SFRs. Korean Prototype Gen-IV Sodium-cooled Fast Reactor (PGSFR) like SFR was used as the reference reactor and calculation method reported in the reference was used for shielding analysis. In this paper, characteristics of in-vessel shielding design were studied for the burner SFR and breeder SFR based on the replaceable shield assembly concept. An in-vessel shield to prevent secondary sodium activation (SSA) in the intermediate heat exchangers (IHXs) is one of the most important structures for the pool type Sodium-cooled Fast Reactor (SFR). In our previous work, two in-vessel shielding design concepts were compared each other for the burner SFR. However, a number of SFRs have been designed and operated with the breeder concept, in which axial and radial blankets were loaded for fuel breeding, during the past several decades. Since axial and radial blanket plays a role of neutron shield, comparison of required in-vessel shield amount between the breeder and burner SFRs may be an interesting work for SFR designer. Due to the blanket, the breeder SFR showed better performance in axial neutron shielding. Hence, 10.1 m diameter reactor vessel satisfied the design limit of SSA at the IHXs. In case of the burner SFR, due to more significant axial fast neutron leakage, 10.6 m diameter reactor vessel was required to satisfy the design limit of SSA at the IHXs. Although more efficient axial shied such as a mixture of ZrH 2 and B 4 C can improve shielding performance of the burner SFR, additional fabrication difficulty may mitigate the advantage of improved shielding performance. Therefore, it can be concluded that the breeder SFR has better characteristic in invessel shielding design to prevent SSA at the IHXs than the burner SFR in the pool-type reactor

  18. Measurements of fast neutron spectra in iron, uranium and sodium-iron assemblies

    International Nuclear Information System (INIS)

    Kappler, F.; Pieroni, N.; Rusch, D.; Schmidt, A.; Wattecamps, E.; Werle, H.

    1979-01-01

    Spectrum measurements were performed at the fast subcritical facility SUAK to test nuclear data and computer codes used in fast reactor calculations. In order to obtain a specific and quantitative interpretation of discrepancies between measured and calculated spectrum, homogeneous assemblies consisting of single materials were investigated. The leakage spectrum of iron and uranium cylinders was measured by time-of-flight and proportional counters. Time-dependent leakage spectra were measured by a NE 213 liquid scintillator. It was demonstrated that the investigation of time-dependent spectra is a sensitive test of inelastic scattering cross section data. The effect of an interface on fast neutron spectra was also investigated by measuring space dependent spectra across a sodium-iron interface. The measured spectra of these assemblies are suitable for testing the adequacy of computational approximations and cross section data. (author)

  19. Proceedings of the third specialist meeting on sodium/fuel interaction in fast reactors

    International Nuclear Information System (INIS)

    1976-01-01

    This specialist meeting, sponsored by the OECD-NEA and organized by the Power Reactor and Nuclear Fuel Development Corporation, was attended by 56 delegates from 6 countries and the CEC (Commission of the European Communities). The purpose of the meeting was to bring together and discuss in depth the Fuel-Sodium Interaction, a phenomenon of major importance in the assessment of the Hypothetical Core Disruptive Accident in the Liquid Metal Fast Breeder Reactor. The meeting was essentially a follow-up of an earlier meeting held at Ispra in December 1973. In all, 29 papers were presented, covering the following topics: 1. Current perspective on sodium-fuel interaction in LMFBR safety; 2. Basic experimental and theoretical studies including other materials; 3. In-pile and out-of-pile experimental studies on sodium-fuel interaction; 4. Theoretical models for the interpretation of experiments and for application to reactor situations. The meeting is considered useful in narrowing down the chain of events necessary to get energetic interaction, large work potential, but many points are being clarified on the gap between the basic vapor explosions and the real fuel sodium interactions in the HCDA scenario of LMFBR. Finally another meeting of the same nature as this one has been recommended

  20. Innovative technologies on fuel assemblies cleaning for sodium fast reactors: First considerations on cleaning process

    Energy Technology Data Exchange (ETDEWEB)

    Simon, N.; Lorcet, H.; Beauchamp, F.; Guigues, E. [CEA, DEN, DTN Cadarache, F-13108 Saint-Paul-lez-Durance (France); Lovera, P.; Fleche, J. L. [CEA, DEN, DPC Saclay, F-91191 Gif-sur-Yvette (France); Lacroix, M. [CEA, DEN, DTN Cadarache, F-13108 Saint-Paul-lez-Durance (France); Carra, O. [AREVA / NP, 10 Rue Juliette Recamier, 69003 Lyon (France); Dechelette, F. [CEA, DEN, DTN Cadarache, F-13108 Saint-Paul-lez-Durance (France); Prele, G. [EDF/SEPTEN, 12-14 avenue Dutrievoz, 69628 Villeurbane Cedex (France); Rodriguez, G. [CEA, DEN, DTN Cadarache, F-13108 Saint-Paul-lez-Durance (France)

    2012-07-01

    Within the framework of Sodium Fast Reactor development, innovative fuel assembly cleaning operations are investigated to meet the GEN IV goals of safety and of process development. One of the challenges is to mitigate the Sodium Water Reaction currently used in these processes. The potential applications of aqueous solutions of mineral salts (including the possibility of using redox chemical reactions) to mitigate the Sodium Water Reaction are considered in a first part and a new experimental bench, dedicated to this study, is described. Anhydrous alternative options based on Na/CO{sub 2} interaction are also presented. Then, in a second part, a functional study conducted on the cleaning pit is proposed. Based on experimental feedback, some calculations are carried out to estimate the sodium inventory on the fuel elements, and physical methods like hot inert gas sweeping to reduce this inventory are also presented. Finally, the implementation of these innovative solutions in cleaning pits is studied in regard to the expected performances. (authors)

  1. Accident alarm in steam generators in sodium cooled fast reactor power plants. II

    International Nuclear Information System (INIS)

    Matal, O.; Martoch, J.; Taraba, O.; Hanke, V.

    1978-01-01

    Conditions were simulated in the economizer of a steam generator of water leaks in sodium at a sodium flow of O.62x10 -3 to 1.24x10 -3 m 3 /s and a sodium temperature of 320 to 380 degC by injecting water at a pressure of 6 to 10 MPa which roughly corresponds to conditions in an economizer of an actual steam generator with leaks within the limits of 0.01 to 0.3 g/s. The leak was recorded by acoustic detectors at all observed sodium flow rates and temperatures. The mean signal-to-noise ratio was in all cases greater than 2. At the assumed 25 dB noise level of the real steam generator of micromodular design it may be assumed that using existing acoustic detectors with waveguides a 0.02 g/s leak of water into sodium may be detected. The measurements showed that the technical standard of the equipment is at least as good as that of the flowmeter system of accident monitoring. (J.B.)

  2. Tentative design-philosophy for bellows in sodium cooled fast breeder reactors pipings

    Energy Technology Data Exchange (ETDEWEB)

    Scaller, K; Vrillon, B

    1980-02-01

    Expansion joints have proved to be reliable components, when properly designed and realized, in normal industrial equipment. But nevertheless bellows have not been employed widely in nuclear reactors and almost not in sodium cooled fast breeder reactors, where use of expansion-joints could considerably shorten the length of pipelines and, in consequence, lower the cost of the power plant. In the framework of its research and development program on fast reactors the French Atomic Energy.Commission, in cooperation with the industry, develops guidelines, backed up by experiments, to allow a safe design of pipe-lines and compensating-devices. The main points of these guidelines are discussed in this paper with the understanding, that they are tentative rules subject to changes. The guidelines are a complement to existing rules, like ASME - Code III, Code Case 1481, standards of the EJMA Preliminary Draft for Code Case Class I, Expansion Joints in Piping systems and suppliers' rules for the special case of application to sodium cooled fast breeder reactors. Relatively small diameters and easily accessible expansion joints, on control rods and valves for example, are not concerned. These guidelines do not apply to the bellows which are used as an integral part of a component.

  3. Tentative design-philosophy for bellows in sodium cooled fast breeder reactors pipings

    International Nuclear Information System (INIS)

    Scaller, K.; Vrillon, B.

    1980-01-01

    Expansion joints have proved to be reliable components, when properly designed and realized, in normal industrial equipment. But nevertheless bellows have not been employed widely in nuclear reactors and almost not in sodium cooled fast breeder reactors, where use of expansion-joints could considerably shorten the length of pipelines and, in consequence, lower the cost of the power plant. In the framework of its research and development program on fast reactors the French Atomic Energy.Commission, in cooperation with the industry, develops guidelines, backed up by experiments, to allow a safe design of pipe-lines and compensating-devices. The main points of these guidelines are discussed in this paper with the understanding, that they are tentative rules subject to changes. The guidelines are a complement to existing rules, like ASME - Code III, Code Case 1481, standards of the EJMA Preliminary Draft for Code Case Class I, Expansion Joints in Piping systems and suppliers' rules for the special case of application to sodium cooled fast breeder reactors. Relatively small diameters and easily accessible expansion joints, on control rods and valves for example, are not concerned. These guidelines do not apply to the bellows which are used as an integral part of a component

  4. Performance comparison of metallic, actinide burning fuel in lead-bismuth and sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Weaver, K.D.; Herring, J.S.; Macdonald, P.E.

    2001-01-01

    Various methods have been proposed to ''incinerate'' or ''transmute'' the current inventory of transuranic waste (TRU) that exits in spent light-water-reactor (LWR) fuel, and weapons plutonium. These methods include both critical (e.g., fast reactors) and non-critical (e.g., accelerator transmutation) systems. The work discussed here is part of a larger effort at the Idaho National Engineering and Environmental Laboratory (INEEL) and at the Massachusetts Institute of Technology (MIT) to investigate the suitability of lead and lead-alloy cooled fast reactors for producing low-cost electricity as well as for actinide burning. The neutronics of non fertile fuel loaded with 20 or 30-wt% light water reactor (LWR) plutonium plus minor actinides for use in a lead-bismuth cooled fast reactor are discussed in this paper, with an emphasis on the fuel cycle life and isotopic content. Calculations show that the average actinide burn rate is similar for both the sodium and lead-bismuth cooled cases ranging from -1.02 to -1.16 g/MWd, compared to a typical LWR actinide generation rate of 0.303 g/MWd. However, when using the same parameters, the sodium-cooled case went subcritical after 0.2 to 0.8 effective full power years, and the lead-bismuth cooled case ranged from 1.5 to 4.5 effective full power years. (author)

  5. Minor actinides transmutation potential: state of art for GEN IV sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Buiron, Laurent

    2015-01-01

    In the frame of the R and D program relative to the 1991 French act on nuclear waste management, fast neutron systems have shown relevant characteristics that meet both requirements on sustainable resources management and waste minimization. They also offer flexibility by mean of burner or breeder configurations allowing mastering plutonium inventory without significant impact on core safety. From the technological point of view, sodium cooled fast reactor are considered in order to achieve mean term industrial deployment. The present document summaries the main results of R and D program on minor actinides transmutation in sodium fast reactor since 2006 following recommendation of the first part of the 1991 French act. Both homogeneous and heterogeneous management achievable performances are presented for 'evolutionary' SFR V2B core as well as low void worth CFV core for industrial scale configurations (1500 MWe). Minor actinides transmutation could be demonstrated in the ASTRID reactor with the following configurations: - a 2%vol Americium content for the homogeneous mode, - a 10%vol Americium content for the heterogeneous mode, without any substantial modification of the main core safety parameters and only limited impacts on the associated fuel cycle (manufacturing issues are not considered here). In order to achieve such goal, a wide range of experimental irradiations driven by transmutation scenarios have to be performed for both homogeneous and heterogeneous minor actinides management. (author) [fr

  6. Consumer underestimation of sodium in fast food restaurant meals: Results from a cross-sectional observational study.

    Science.gov (United States)

    Moran, Alyssa J; Ramirez, Maricelle; Block, Jason P

    2017-06-01

    Restaurants are key venues for reducing sodium intake in the U.S. but little is known about consumer perceptions of sodium in restaurant foods. This study quantifies the difference between estimated and actual sodium content of restaurant meals and examines predictors of underestimation in adult and adolescent diners at fast food restaurants. In 2013 and 2014, meal receipts and questionnaires were collected from adults and adolescents dining at six restaurant chains in four New England cities. The sample included 993 adults surveyed during 229 dinnertime visits to 44 restaurants and 794 adolescents surveyed during 298 visits to 49 restaurants after school or at lunchtime. Diners were asked to estimate the amount of sodium (mg) in the meal they had just purchased. Sodium estimates were compared with actual sodium in the meal, calculated by matching all items that the respondent purchased for personal consumption to sodium information on chain restaurant websites. Mean (SD) actual sodium (mg) content of meals was 1292 (970) for adults and 1128 (891) for adolescents. One-quarter of diners (176 (23%) adults, 155 (25%) adolescents) were unable or unwilling to provide estimates of the sodium content of their meals. Of those who provided estimates, 90% of adults and 88% of adolescents underestimated sodium in their meals, with adults underestimating sodium by a mean (SD) of 1013 mg (1,055) and adolescents underestimating by 876 mg (1,021). Respondents underestimated sodium content more for meals with greater sodium content. Education about sodium at point-of-purchase, such as provision of sodium information on restaurant menu boards, may help correct consumer underestimation, particularly for meals of high sodium content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A neutronics study for improving the safety and performance parameters of a 3600 MWth Sodium-cooled Fast Reactor

    International Nuclear Information System (INIS)

    Sun, Kaichao; Krepel, Jiri; Mikityuk, Konstantin; Chawla, Rakesh

    2013-01-01

    Highlights: ► The potential for neutronics design optimization is assessed for a large SFR core. ► Both beginning-of-life and equilibrium fuel cycle conditions are considered. ► The sodium void effect is decomposed via a neutron balance based methodology. ► The optimized core options adopt an appropriate sodium plenum design to reduce the void effect. ► The introduction of moderator pins is considered for enhancing the Doppler effect. - Abstract: The Sodium-cooled Fast Reactor (SFR) is one of the most promising Generation IV systems with many performance advantages, but has one dominating neutronics drawback – a positive sodium void reactivity. The starting point for the present study is an SFR core design considered in the Collaborative Project on the European Sodium-cooled Fast Reactor (CP-ESFR). The aim is to analyze, for this reference core, four safety and performance parameters from the viewpoint of four different optimization options, and to propose possible optimized core designs. In doing so, the study focuses not only on the beginning-of-life state of the core, but also on the beginning of equilibrium closed fuel cycle. The four studied optimization options are: (a) introducing an upper sodium plenum and boron layer, (b) varying the core height-to-diameter (H/D) ratio, (c) introducing moderator pins into the fuel assembly, and (d) modifying the initial plutonium content. The sensitivity of the void reactivity, Doppler constant, nominal reactivity and breeding gain has been evaluated. In particular, the void reactivity, which is the most crucial safety parameter for the SFR, has been decomposed into its reaction-wise, isotope-wise and energy-group-wise components using a methodology based on the neutron balance equation. Extended voiding in the upper sodium plenum region – in conjunction with the effect of a boron layer introduced above the plenum – is found to be particularly effective in the void effect reduction while, at the same time

  8. Basic concept of fuel safety design and assessment for sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Nakae, Nobuo; Baba, Toshikazu; Kamimura, Katsuichiro

    2013-03-01

    'Philosophy in Safety Evaluation of Fast Breeder Reactors' was published as a guideline for safety design and safety evaluation of Sodium-Cooled Fast Reactor in Japan. This guideline points out that cladding creep and swelling due to internal pressure should be taken into account since the fuel is used under high temperature and high burnup, and that fuel assembly deformation and the prevention from coolant channel blockage should be taken into account in viewpoints of nuclear and thermal hydraulic design. However, the requirements including their criteria and evaluation items are not described. Two other domestic guidelines related to core design are applied for fuel design of fast reactor, but the description is considered to not be enough to practically use. In addition, technical standard for nuclear fuel used in power reactors is also applied for fuel inspection. Therefore, the technical standard and guideline for fuel design and safety evaluation are considered to be very important issue for nuclear safety regulation. This document has been developed according to the following steps: The guidelines and the technical standards, which are prepared in foreign countries and international organization, were reviewed. The technical background concerning fuel design and safety evaluation for fast reactor was collected and summarized in the world wide scale. The basic concept of fuel safety design and assessment for sodium-cooled fast reactor was developed by considering a wide range of views of the specialists in Japan. In order to discuss the content with foreign specialists IAEA Consultancy Meetings have been held on January, 2011 and January, 2012. The participants of the meeting came from USA, UK, EC, India, China and South Korea. The specialists of IAEA and JNES were also joined. Although this document is prepared for application to 'Monju'(prototype LMFR), it may be applied to experimental, demonstration and commercial types of LMFR after revising it by taking

  9. Intermittent fasting prompted recovery from dextran sulfate sodium-induced colitis in mice.

    Science.gov (United States)

    Okada, Toshihiko; Otsubo, Takeshi; Hagiwara, Teruki; Inazuka, Fumika; Kobayashi, Eiko; Fukuda, Shinji; Inoue, Takuya; Higuchi, Kazuhide; Kawamura, Yuki I; Dohi, Taeko

    2017-09-01

    Fasting-refeeding in mice induces transient hyperproliferation of colonic epithelial cells, which is dependent on the lactate produced as a metabolite of commensal bacteria. We attempted to manipulate colonic epithelial cell turnover with intermittent fasting to prompt recovery from acute colitis. Acute colitis was induced in C57BL/6 mice by administration of dextran sulfate sodium in the drinking water for 5 days. From day 6, mice were fasted for 36 h and refed normal bait, glucose powder, or lactylated high-amylose starch. On day 9, colon tissues were subjected to analysis of histology and cytokine expression. The effect of lactate on the proliferation of colonocytes was assessed by enema in vivo and primary culture in vitro . Intermittent fasting resulted in restored colonic crypts and less expression of interleukin-1β and interleukin-17 in the colon than in mice fed ad libitum . Administration of lactate in the colon at refeeding time by enema or by feeding lactylated high-amylose starch increased the number of regenerating crypts. Addition of lactate but not butyrate or acetate supported colony formation of colonocytes in vitro . In conclusion, intermittent fasting in the resolution phase of acute colitis resulted in better recovery of epithelial cells and reduced inflammation.

  10. Increased renal sodium absorption by inhibition of prostaglandin synthesis during fasting in healthy man. A possible role of the epithelial sodium channels

    Directory of Open Access Journals (Sweden)

    Graffe Carolina C

    2010-10-01

    Full Text Available Abstract Background Treatment with prostaglandin inhibitors can reduce renal function and impair renal water and sodium excretion. We tested the hypotheses that a reduction in prostaglandin synthesis by ibuprofen treatment during fasting decreased renal water and sodium excretion by increased absorption of water and sodium via the aquaporin2 water channels and the epithelial sodium channels. Methods The effect of ibuprofen, 600 mg thrice daily, was measured during fasting in a randomized, placebo-controlled, double-blinded crossover study of 17 healthy humans. The subjects received a standardized diet on day 1, fasted at day 2, and received an IV infusion of 3% NaCl on day 3. The effect variables were urinary excretions of aquaporin2 (u-AQP2, the beta-fraction of the epithelial sodium channel (u-ENaCbeta, cyclic-AMP (u-cAMP, prostaglandin E2 (u-PGE2. Free water clearance (CH2O, fractional excretion of sodium (FENa, and plasma concentrations of vasopressin, angiotensin II, aldosterone, atrial-, and brain natriuretic peptide. Results Ibuprofen decreased u-AQP2, u-PGE2, and FENa at all parts of the study. During the same time, ibuprofen significantly increased u-ENaCbeta. Ibuprofen did not change the response in p-AVP, u-c-AMP, urinary output, and free water clearance during any of these periods. Atrial-and brain natriuretic peptide were higher. Conclusion During inhibition of prostaglandin synthesis, urinary sodium excretion decreased in parallel with an increase in sodium absorption and increase in u-ENaCbeta. U-AQP2 decreased indicating that water transport via AQP2 fell. The vasopressin-c-AMP-axis did not mediate this effect, but it may be a consequence of the changes in the natriuretic peptide system and/or the angiotensin-aldosterone system Trial Registration Clinical Trials Identifier: NCT00281762

  11. A fast track approach to commercializing the sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Boardman, C.E.; Hui, Marvin; Carroll, Douglas

    1999-01-01

    As a result of more than 50 years of Liquid Metal Reactor design and development work the basic technology is well understood. However, commercialization of the Fast Breeder Reactor (FBR) has been delayed while various approaches to achieving competitive plant and fuel cycle costs are explored, developed, and demonstrated in prototype systems. Most designers have elected to take advantage of the economy of scale but are burdened by the cost and risk associated with the need for incremental scale up through the design, construction, and operation of multiple demonstration plants. An alternative commercialization path developed by GE would utilize a modular plant design to reduce the plant construction, R and D, and economic risk associated with the need to build multiple demonstration plants to reach a competitive size'. The key question is can a modular FBR compete with alternative electrical generation systems? Recently completed studies indicate that the answer to this question is yes if the modular plant designers keep the design simple by incorporating passive safety features and optimizing the manner in which supporting service systems are shared. (author)

  12. Neutronic/Thermal-hydraulic Coupling Technigues for Sodium Cooled Fast Reactor Simulations

    International Nuclear Information System (INIS)

    Ragusa, Jean; Siegel, Andrew; Ruggieri, Jean-Michel

    2010-01-01

    The objective of this project was to test new coupling algorithms and enable efficient and scalable multi-physics simulations of advanced nuclear reactors, with considerations regarding the implementation of such algorithms in massively parallel environments. Numerical tests were carried out to verify the proposed approach and the examples included some reactor transients. The project was directly related to the Sodium Fast Reactor program element of the Generation IV Nuclear Energy Systems Initiative and the Advanced Fuel cycle Initiative, and, supported the requirement of high-fidelity simulation as a mean of achieving the goals of the presidential Global Nuclear Energy Partnership (GNEP) vision.

  13. Qualification of Simulation Software for Safety Assessment of Sodium Cooled Fast Reactors. Requirements and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pointer, William David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sieger, Matt [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Flanagan, George F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moe, Wayne [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); HolbrookINL, Mark [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    The goal of this review is to enable application of codes or software packages for safety assessment of advanced sodium-cooled fast reactor (SFR) designs. To address near-term programmatic needs, the authors have focused on two objectives. First, the authors have focused on identification of requirements for software QA that must be satisfied to enable the application of software to future safety analyses. Second, the authors have collected best practices applied by other code development teams to minimize cost and time of initial code qualification activities and to recommend a path to the stated goal.

  14. Neutronic/Thermalhydraulic Coupling Technigues for Sodium Cooled Fast Reactor Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Jean Ragusa; Andrew Siegel; Jean-Michel Ruggieri

    2010-09-28

    The objective of this project was to test new coupling algorithms and enable efficient and scalable multi-physics simulations of advanced nuclear reactors, with considerations regarding the implementation of such algorithms in massively parallel environments. Numerical tests were carried out to verify the proposed approach and the examples included some reactor transients. The project was directly related to the Sodium Fast Reactor program element of the Generation IV Nuclear Energy Systems Initiative and the Advanced Fuel cycle Initiative, and, supported the requirement of high-fidelity simulation as a mean of achieving the goals of the presidential Global Nuclear Energy Partnership (GNEP) vision.

  15. Report and analysis on 'PR and PP evaluation. Example sodium fast reactor full system case study'

    International Nuclear Information System (INIS)

    Sagara, Hiroshi; Inoue, Naoko; Kawakubo, Yoko; Watahiki, Masaru

    2011-01-01

    The Generation IV (GEN IV) Nuclear Energy Systems International Forum (GIF) Proliferation Resistance and Physical Protection Working Group (PRPP WG) was established in December 2002 in order to develop the PR and valuation methodology for GEN IV nuclear energy systems. In the final report of 'PR and PP Evaluation: Example Sodium Fast Reactor (ESFR) Full System Case Study,' issued in October 2009, the demonstration study of PR and PP evaluation with the qualitative approach are summarized using ESFR with four scenario threats. The present paper reviews and analyzes some results of the ESFR case study, and identifies the challenges and direction for the PR and PP evaluation methodology with quantitative approach. (author)

  16. Sodium fire studies in France. Safety experiments applied to fast reactors

    International Nuclear Information System (INIS)

    Fruchard, Y.; Colome, J.; Malet, J.C.; Berlin, M.; Duverger de Cuy, G.; Justin, J.; Duco, J.

    1976-01-01

    In fast reactors, the risk of sodium fires must be analyzed in detail and the consequences of an accidental fire must be known precisely. Beyond the search for prevention and detection means, techniques must be developed to set up a limit to damages created by an accidental fire: extinguishing, aerosol confinement, protection of the reactor structures. The program developed by the Nuclear Safety Department of the Commissariat a l'Energie Atomique to solve these various problems is described. The main results and their applications to the Super-Phenix reactor are presented [fr

  17. Under-Sodium Viewing: A Review of Ultrasonic Imaging Technology for Liquid Metal Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Jeffrey W.; Peters, Timothy J.; Posakony, Gerald J.; Chien, Hual-Te; Bond, Leonard J.; Denslow, Kayte M.; Sheen, Shuh-Haw; Raptis, Paul

    2009-03-27

    This current report is a summary of information obtained in the "Information Capture" task of the U.S. DOE-funded "Under Sodium Viewing (USV) Project." The goal of the multi-year USV project is to design, build, and demonstrate a state-of-the-art prototype ultrasonic viewing system tailored for periodic reactor core in-service monitoring and maintenance inspections. The study seeks to optimize system parameters, improve performance, and re-establish this key technology area which will be required to support any new U.S. liquid-metal cooled fast reactors.

  18. Comparison of KANEXT and SERPENT for fuel depletion calculations of a sodium fast reactor

    International Nuclear Information System (INIS)

    Lopez-Solis, R.C.; Francois, J.L.; Becker, M.; Sanchez-Espinoza, V.H.

    2014-01-01

    As most of Generation-IV systems are in development, efficient and reliable computational tools are needed to obtain accurate results in reasonably computer time. In this study, KANEXT code system is presented and validated against the well-known Monte Carlo SERPENT code, for fuel depletion calculations of a sodium fast reactor (SFR). The KArlsruhe Neutronic EXtended Tool (KANEXT) is a modular code system for deterministic reactor calculations, consisting of one kernel and several modules. Results obtained with KANEXT for the SFR core are in good agreement with the ones of SERPENT, e.g. the neutron multiplication factor and the isotopes evolution with burn-up. (author)

  19. Under-Sodium Viewing: A Review of Ultrasonic Imaging Technology for Liquid Metal Fast Reactors

    International Nuclear Information System (INIS)

    Griffin, Jeffrey W.; Peters, Timothy J.; Posakony, Gerald J.; Chien, Hual-Te; Bond, Leonard J.; Denslow, Kayte M.; Sheen, Shuh-Haw; Raptis, Paul

    2009-01-01

    This current report is a summary of information obtained in the 'Information Capture' task of the U.S. DOE-funded 'Under Sodium Viewing (USV) Project.' The goal of the multi-year USV project is to design, build, and demonstrate a state-of-the-art prototype ultrasonic viewing system tailored for periodic reactor core in-service monitoring and maintenance inspections. The study seeks to optimize system parameters, improve performance, and re-establish this key technology area which will be required to support any new U.S. liquid-metal cooled fast reactors.

  20. The replacement of an electromagnetic primary sodium sampling pump in the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Grygiel, M.L.; McCargar, C.G.

    1985-01-01

    On November 16, 1984 a leak was discovered in one of the Fast Flux Test Facility (FFTF) Primary Sodium Sampling System electromagnetic pumps. The leak was discovered in the course of routine cell entry to investigate a shorted trace heat element. The purpose of this paper is to describe the circumstances surrounding the occurrence of the leak, the actions taken to replace the damaged pump and the additional steps which were necessary to return the plant to power. In addition, the processes involved in producing the leak are described briefly. The relative ease of recovery from this incident is indicative of the overall feasibility of the Liquid Metal Reactor (LMR) operational concept

  1. Problems specific to the piping of sodium-cooled fast breeder reactors

    International Nuclear Information System (INIS)

    Vrillon, B.; Befre, J.; Schaller, K.

    1975-01-01

    A certain number of specific problems arising in connection with the sodium pipes in fast neutron reactors, especially those of large diameter, are presented. The supporting system must be designed to achieve the best compromise among stresses due to weight and various stresses of thermal origin. Large-scale experimental studies carried out on actual elements of the intermediate circuit of the Phenix reactor showed that the circuits can withstand considerable deformation collapse of the walls without danger of leakage. Protection studies against earthquakes are mentionned [fr

  2. Development of electro-magnetic pump for the ASTRID Sodium-cooled Fast Reactor

    International Nuclear Information System (INIS)

    Suzuki, Tetsu; Aizawa, Rie; Wakasaki, Shingo; Dechelette, Frank; Benoit, Fabrice

    2017-01-01

    In the framework of the SFR (Sodium-cooled Fast Reactor) prototype called ASTRID (Advance Sodium Technological Reactor for Industrial Demonstration), the large capacity Electro-Magnetic Pumps (EMP) as main circulating pumps on the intermediate sodium circuits has been considered instead of mechanical pumps by CEA. The use of EMP has several decisive technological merits compared with mechanical pump in the reactor design, operation and maintenance. Nevertheless, some theoretical and technological developments have to be carried out in order to validate the design tools which take Magneto Hydro Dynamic (MHD) phenomena into account and the applicability of the EMP to the steady state and transient operating conditions of ASTRID. To move forward to developments, a collaboration agreement between the CEA and TOSHIBA Corporation was made and entered into to carry out a joint work program on the EMP for ASTRID design and development. CEA performed the theoretical analysis, and the EMP experimental model is constructed by CEA to support these theoretical developments. This model consists of a middle-size annular EMP for the liquid metal sodium. The various testing program using this model has been started in 2016. TOSHIBA performed the examination of design specification for ASTRID, an electromagnetic design, a structural design and various analyses. The structure design has been examined the placement of the sodium boundary and the withstand pressure, etc. And, if the thicknesses of the structure increase for withstanding pressure, the pump efficiency falls because the loss of the electromagnetic force increases. Therefore the balance between withstanding pressure and the efficiency has been considered by an electromagnetism design. This paper presents the design studies and experimental activities for the EMP development in the framework of the CEA-TOSHIBA collaborations. (author)

  3. Thermal-hydraulic numerical simulation of fuel sub-assembly for Sodium-cooled Fast Reactor

    International Nuclear Information System (INIS)

    Saxena, Aakanksha

    2014-01-01

    The thesis focuses on the numerical simulation of sodium flow in wire wrapped sub-assembly of Sodium-cooled Fast Reactor (SFR). First calculations were carried out by a time averaging approach called RANS (Reynolds- Averaged Navier-Stokes equations) using industrial code STAR-CCM+. This study gives a clear understanding of heat transfer between the fuel pin and sodium. The main variables of the macroscopic flow are in agreement with correlations used hitherto. However, to obtain a detailed description of temperature fluctuations around the spacer wire, more accurate approaches like LES (Large Eddy Simulation) and DNS (Direct Numerical Simulation) are clearly needed. For LES approach, the code TRIO U was used and for the DNS approach, a research code was used. These approaches require a considerable long calculation time which leads to the need of representative but simplified geometry. The DNS approach enables us to study the thermal hydraulics of sodium that has very low Prandtl number inducing a very different behavior of thermal field in comparison to the hydraulic field. The LES approach is used to study the local region of sub-assembly. This study shows that spacer wire generates the local hot spots (∼20 C) on the wake side of spacer wire with respect to the sodium flow at the region of contact with the fuel pin. Temperature fluctuations around the spacer wire are low (∼1 C-2 C). Under nominal operation, the spectral analysis shows the absence of any dominant peak for temperature oscillations at low frequency (2-10 Hz). The obtained spectra of temperature oscillations can be used as an input for further mechanical studies to determine its impact on the solid structures. (author) [fr

  4. Calcium reduces the sodium permeability of luminal membrane vesicles from toad bladder. Studies using a fast-reaction apparatus

    International Nuclear Information System (INIS)

    Chase, H.S. Jr.; Al-Awqati, Q.

    1983-01-01

    Regulation of the sodium permeability of the luminal membrane is the major mechanism by which the net rate of sodium transport across tight epithelia is varied. Previous evidence has suggested that the permeability of the luminal membrane might be regulated by changes in intracellular sodium or calcium activities. To test this directly, we isolated a fraction of the plasma membrane from the toad urinary bladder, which contains a fast, amiloride-sensitive sodium flux with characteristics similar to those of the native luminal membrane. Using a flow-quench apparatus to measure the initial rate of sodium efflux from these vesicles in the millisecond time range, we have demonstrated that the isotope exchange permeability of these vesicles is very sensitive to calcium. Calcium reduces the sodium permeability, and the half-maximal inhibitory concentration is 0.5 microM, well within the range of calcium activity found in cells. Also, the permeability of the luminal membrane vesicles is little affected by the ambient sodium concentration. These results, when taken together with studies on whole tissue, suggest that cell calcium may be an important regulator of transepithelial sodium transport by its effect on luminal sodium permeability. The effect of cell sodium on permeability may be mediated by calcium rather than by sodium itself

  5. An assessment of the low seismic risk of the inherently safe sodium advanced fast reactor (SAFR)

    International Nuclear Information System (INIS)

    Rutherford, P.D.

    1988-01-01

    A recent probabilistic risk assessment (PRA) of the sodium advanced fast reactor (SAFR) demonstrated the inherently low risk of advanced liquid-metal, pool-type fast reactors with inherent safety systems. As a result, it was recognized that external events, especially seismic events, may not only be a major contributor to risk (as shown in several LWR PRAs) but also may completely dominate the risk. Accordingly, a seismic risk assessment has been completed for SAFR, which resulted in a core damage frequency of 2 x 10 -7 /year and a large release frequency of 4 x 10 -9 /year. This paper reports that public health risk in terms of early fatality risk and latent fatality risk were also several orders of magnitude below the NRC safety goals and below recent LWR risks reported in NUREB/CR1150

  6. Sodium

    Science.gov (United States)

    Table salt is a combination of two minerals - sodium and chloride Your body needs some sodium to work properly. It helps with the function ... in your body. Your kidneys control how much sodium is in your body. If you have too ...

  7. On the extension of the analytic nodal diffusion solver ANDES to sodium fast reactors

    International Nuclear Information System (INIS)

    Ochoa, R.; Herrero, J.J.; Garcia-Herranz, N.

    2011-01-01

    Within the framework of the Collaborative Project for a European Sodium Fast Reactor, the reactor physics group at UPM is working on the extension of its in-house multi-scale advanced deterministic code COBAYA3 to Sodium Fast Reactors (SFR). COBAYA3 is a 3D multigroup neutron kinetics diffusion code that can be used either as a pin-by-pin code or as a stand-alone nodal code by using the analytic nodal diffusion solver ANDES. It is coupled with thermal-hydraulics codes such as COBRA-TF and FLICA, allowing transient analysis of LWR at both fine-mesh and coarse-mesh scales. In order to enable also 3D pin-by-pin and nodal coupled NK-TH simulations of SFR, different developments are in progress. This paper presents the first steps towards the application of COBAYA3 to this type of reactors. ANDES solver, already extended to triangular-Z geometry, has been applied to fast reactor steady-state calculations. The required cross section libraries were generated with ERANOS code for several configurations. Here some of the limitations encountered when attempting to apply the Analytical Coarse Mesh Finite Difference (ACMFD) method - implemented inside ANDES - to fast reactor calculations are discussed and the sensitivity of the method to the energy-group structure is studied. In order to reinforce some of the conclusions obtained two calculations are presented. The first one involves a 3D mini-core model in 33 groups, where the ANDES solver presents several issues. And secondly, a benchmark from the NEA for a small 3D FBR in hexagonal-Z geometry in 4 energy groups is used to verify the good convergence of the code in a few-energy-group structure. (author)

  8. Effect of turbulent natural convection on sodium pool combustion in the steam generator building of a fast breeder reactor

    International Nuclear Information System (INIS)

    Karthikeyan, S.; Sundararajan, T.; Shet, U.S.P.; Selvaraj, P.

    2009-01-01

    A computational model is proposed to simulate sodium pool combustion considering the effect of turbulent natural convection in a vented enclosure of the steam generator building (SGB) of a fast breeder reactor. The model is validated by comparing the simulated results with the experimental results available in literature for sodium pool combustion in a CSTF vessel. After validation, the effects of vents and the location of the pool on the burning rate of sodium and the associated heat transfer to the walls are studied in an enclosure comparable in size to one floor of the steam generator building. In the presence of ventilation, the burning rate of sodium increases, but the total heat transferred to the walls of the enclosure is reduced. It is also found that the burning rate of sodium pool and the heat transfer to the walls of the enclosures vary significantly with the location of sodium pool.

  9. Dietary sodium to potassium ratio and the incidence of hypertension and cardiovascular disease: A population-based longitudinal study.

    Science.gov (United States)

    Mirmiran, Parvin; Bahadoran, Zahra; Nazeri, Pantea; Azizi, Fereidoun

    2018-01-30

    There is an interaction between dietary sodium/potassium intake in the pathogenesis of hypertension (HTN) and cardiovascular disease (CVD). The aim of this study was to investigate the association of dietary sodium to potassium (Na/K) ratio and the risk of HTN and CVD in a general population of Iranian adults. In this prospective cohort study, adults men and women with complete baseline data were selected from among participants of the Tehran Lipid and Glucose Study and were followed up for 6.3 years for incidence of HTN and CVD outcomes. Dietary sodium and potassium were assessed using a valid and reliable 168-item food frequency questionnaire. Cox proportional hazards regression models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between dietary sodium, potassium and their ratio and risk of outcomes. During the study follow-up, 291 (15.1%) and 79 (5.0%) new cases of HTN and CVD were identified, respectively. No significant association was observed between usual intakes of sodium, potassium and dietary Na/K ratio with the incidence of HTN. There was no significant association between dietary intakes of sodium and potassium per se and the risk of CVD, whereas when dietary sodium to potassium ratio was considered as exposure in the fully-adjusted Cox regression model, and participants in the highest compared to lowest tertile had a significantly increased risk of CVD (HR = 2.19, 95% CI = 1.16-4.14). Our findings suggest that high dietary Na/K ratio could contribute to increased risk of CVD events.

  10. Sodium-cooled fast reactor core designs for transmutation of MHR spent fuel

    International Nuclear Information System (INIS)

    Hong, S. G.; Kim, Y. H.; Venneri, F.

    2010-01-01

    In this paper, the core design analyses of sodium cooled fast reactors (SFR) are performed for the effective transmutation of the DB (Deep Burn)-MHR (Modular Helium Reactor). In this concept, the spent fuels of DB-MHR are transmuted in SFRs with a closed fuel cycle after TRUs from LWR are first incinerated in a DB-MHR. We introduced two different type SFR core designs for this purpose, and evaluated their core performance parameters including the safety-related parameters. In particular, the cores are designed to have lower transmutation rate relatively to our previous work so as to make the fuel characteristics more feasible. The first type cores which consist of two enrichment regions are typical homogeneous annular cores and they rate 900 MWt power. On the other hand, the second type cores which consist of a central non-fuel region and a single enrichment fuel region rate relatively higher power of 1500 MWt. For these cores, the moderator rods (YH 1.8 ) are used to achieve less positive sodium void worth and the more negative Doppler coefficient because the loading of DB-MHR spent fuel leads to the degradation of these safety parameters. The analysis results show that these cores have low sodium void worth and negative reactivity coefficients except for the one related with the coolant expansion but the coolant expansion reactivity coefficient is within the typical range of the typical SFR cores. (authors)

  11. Demonstration of leak-before-break in Japan Sodium cooled Fast Reactor (JSFR) pipes

    International Nuclear Information System (INIS)

    Wakai, Takashi; Machida, Hideo; Yoshida, Shinji; Xu, Yang; Tsukimori, Kazuyuki

    2014-01-01

    This paper describes the leak-before-break (LBB) assessment procedure applicable to Japan Sodium cooled Fast Reactor (JSFR) pipes made of modified 9Cr–1Mo steel. For the sodium pipes of JSFR, the continuous leak monitoring will be adopted as an alternative to a volumetric test of the weld joints under conditions that satisfy LBB. Firstly, a LBB assessment flowchart eliminating uncertainty resulted from small scale leakage, such as self plugging phenomenon and influence of crack surface roughness on leak rate, was proposed. Secondly, a rational unstable fracture assessment technique, taking the compliance changing with crack extension into account, was also proposed. Thirdly, a crack opening displacement (COD) assessment technique was developed, because COD assessment method applicable to JSFR pipes – thin wall and small work hardening material – had not been proposed yet. In addition, fracture toughness tests were performed using compact tension (CT) specimens to obtain the fracture toughness, J IC , and the crack growth resistance (J–R) curve at elevated temperature. Finally, by using the flowchart, proposed techniques and collected data, LBB assessment for the primary sodium pipes of JSFR was conducted. As a result, LBB aspect was successfully demonstrated with sufficient margins

  12. Preliminary Design of Compressor Impeller for innovative Sodium Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jekyoung; Cho, Seongkuk; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Cha, Jae Eun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    For nuclear power plant application, applying S-CO{sub 2} Brayton cycle to Sodium cooled Fast Reactors and Small Modular Reactors are currently considered and active research is being performed by various research institutions and universities. As a part of research activities on the SCO{sub 2} Brayton cycle development for a nuclear power system, KAIST joint research team is currently working on an innovative Sodium cooled Fast Reactor (iSFR) development which utilizes S-CO{sub 2} Brayton cycle as its power conversion system. Various research subjects including reactor physics, thermo-hydraulics, material, cycle analysis and system integration are being considered as research issues currently. However, technical issues rising from dramatic change of thermodynamic property of CO{sub 2} near the critical point still remain as problems to be solved. As a result, 3D impeller model generation based on 1D mean stream line analysis results was successfully performed for non-airfoil blades. Since 3D model generation module works successfully, KAIST{sub T}MD can support 3D CFD analysis for internal flow structure in the designed impeller. Compressor loss mechanisms are complex phenomena and these are difficulties to be modeled while considering each loss mechanism separately.

  13. A computationally efficient method for full-core conjugate heat transfer modeling of sodium fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Rui, E-mail: rhu@anl.gov; Yu, Yiqi

    2016-11-15

    Highlights: • Developed a computationally efficient method for full-core conjugate heat transfer modeling of sodium fast reactors. • Applied fully-coupled JFNK solution scheme to avoid the operator-splitting errors. • The accuracy and efficiency of the method is confirmed with a 7-assembly test problem. • The effects of different spatial discretization schemes are investigated and compared to the RANS-based CFD simulations. - Abstract: For efficient and accurate temperature predictions of sodium fast reactor structures, a 3-D full-core conjugate heat transfer modeling capability is developed for an advanced system analysis tool, SAM. The hexagon lattice core is modeled with 1-D parallel channels representing the subassembly flow, and 2-D duct walls and inter-assembly gaps. The six sides of the hexagon duct wall and near-wall coolant region are modeled separately to account for different temperatures and heat transfer between coolant flow and each side of the duct wall. The Jacobian Free Newton Krylov (JFNK) solution method is applied to solve the fluid and solid field simultaneously in a fully coupled fashion. The 3-D full-core conjugate heat transfer modeling capability in SAM has been demonstrated by a verification test problem with 7 fuel assemblies in a hexagon lattice layout. Additionally, the SAM simulation results are compared with RANS-based CFD simulations. Very good agreements have been achieved between the results of the two approaches.

  14. Conceptual core designs for a 1200 MWe sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Joo, H. K.; Lee, K. B.; Yoo, J. W.; Kim, Y. I.

    2008-01-01

    The conceptual core design for a 1200 MWe sodium cooled fast reactor is being developed under the framework of the Gen-IV SFR development program. To this end, three core concepts have been tested during the development of a core concept: a core with an enrichment split fuel, a core with a single-enrichment fuel with a region-wise varying clad thickness, and a core with a single-enrichment fuel with non-fuel rods. In order to optimize a conceptual core configuration which satisfies the design targets, a sensitivity study of the core design parameters has been performed. Two core concepts, the core with an enrichment-split fuel and the core with a single-enrichment fuel with a region-wise varying clad thickness, have been proposed as the candidates of the conceptual core for a 1200 MWe sodium cooled fast reactor. The detailed core neutronic, fuel behavior, thermal, and safety analyses will be performed for the proposed candidate core concepts to finalize the core design concept. (authors)

  15. The use of gas based energy conversion cycles for sodium fast reactors

    International Nuclear Information System (INIS)

    Saez, M.; Haubensack, D.; Alpy, N.; Gerber, A.; Daid, F.

    2008-01-01

    In the frame of Sodium Fast Reactors, CEA, AREVA and EDF are involved in a substantial effort providing both significant expertise and original work in order to investigate the interest to use a gas based energy conversion cycle as an alternative to the classical steam cycle. These gas cycles consist in different versions of the Brayton cycle, various types of gas being considered (helium, nitrogen, argon, separately or mixed, sub or supercritical carbon dioxide) as well as various cycle arrangements (indirect, indirect / combined cycles). The interest of such cycles is analysed in details by thermodynamic calculations and cycle optimisations. The objective of this paper is to provide a comparison between gas based energy conversion cycles from the viewpoint of the overall plant efficiency. Key factors affecting the Brayton cycle efficiency include the turbine inlet temperature, compressors and turbine efficiencies, recuperator effectiveness and cycle pressure losses. A nitrogen Brayton cycle at high pressure (between 100 and 180 bar) could appear as a potential near-term solution of classical gas power conversion system for maximizing the plant efficiency. At long-term, supercritical carbon dioxide Brayton cycle appears very promising for Sodium Fast Reactors, with a potential of high efficiency using even at a core outlet temperature of 545 deg. C. (authors)

  16. An assessment of methods of calculating sodium voiding reactivity in plutonium fuelled fast reactors

    International Nuclear Information System (INIS)

    Butland, A.T.D.; Simmons, W.N.; Stevenson, J.M.

    1979-01-01

    After a survey of the requirements an assessment of the accuracy of calculations of the sodium void effect using UK methods and data is made on the basis of the following work. First, the analysis of small and large sodium voids in the MOZART and Zebra 13 small (300 MW(E)) fast reactor mock-ups and the BIZET large fast reactor mock-ups, all of conventional design. The analysis was carried out using the UK FGL5 fine group nuclear data library, the MURAL cell code, whole reactor diffusion theory calculations of the neutron flux and perturbation theory methods. Exact perturbation theory was used in many cases, otherwise first order perturbation theory calculations were adjusted to give results equivalent to exact perturbation theory. Second, theoretical studies of some effects, including, the effects of extrapolating to fuel operating temperatures, fuel cycle and burn-up effects, and the heterogeneity effects of large fuelled subassemblies in pin geometry. Third, theoretical studies of approximations in the calculational methods including, the importance in the whole reactor calculation of the energy group structure and the spatial mesh, the importance of reactor material boundaries in the calculation of resonance shielding effects, and the use of neutron fluxes calculated using neutron diffusion theory rather than transport theory. (U.K.)

  17. {sup 20}F power measurement for generation IV sodium fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Coulon, R.; Normand, S.; Michel, M.; Barbot, L.; Domenech, T.; Boudergui, K.; Bourbotte, J.M.; Kondrasovs, V.; Frelin-Labalme, A.M.; Hamrita, H. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France); BAN, G. [ENSICAEN, 6 Boulevard Marechal Juin, F-14050 Caen Cedex 4 (France); Barat, E.; Dautremer, T.; Montagu, T.; Carrel, F. [CEA, LIST, Laboratoire Modelisation Simulation et Systemes, F-91191 Gif-sur-Yvette (France); Brau, H.P. [ICSM, Centre de Marcoule, BP 17171 F-30207 Bagnols sur Ceze (France); Dumarcher, V. [AREVA NP, SET, F-84500 Bollene (France); Portier, J.L. [Centrale PHENIX, Centre de Marcoule, Groupe Essais Statistiques, F-30207 Bagnols sur Ceze (France); Jousset, P. [CEA, LIST, Laboratoire Capteurs Diamant, F-91191 Gif-sur-Yvette (France); Saurel, N. [CEA, DAM, Laboratoire Mesure de Dechets et Expertise, F-21120 Is-sur-Tille, France.F-84500 Bollene (France)

    2010-07-01

    The Phenix nuclear power plant has been a French Sodium Fast Reactor (SFR) prototype producing electrical power between 1973 and 2010. The power was monitored using ex-core neutron measurements. This kind of measurement instantly estimates the power but needs to be often calibrated with the heat balance thermodynamic measurement. Large safety and security margins have then been set not to derive above the nominal operating point. It is important for future SFR to reduce this margin and working closer to the nominal operating point. This work deals with the use of delayed gamma to measure the power. The main activation product contained in the primary sodium coolant is the {sup 24}Na which is not convenient for neutron flux measurement due to its long decay period. The experimental study done at the Phenix reactor shows that the use of {sup 20}F as power tagging agent gives a fast and accurate power measurement closed to the thermal balance measurement thanks to its high energy photon emission (1.634 MeV) and its short decay period (11 s). (authors)

  18. An evaluation of the fluid-elastic instability for Intermediate Heat Exchanger of Prototype Sodium-cooled fast Reactor

    International Nuclear Information System (INIS)

    Cho, Jaehun; Kim, Sungkyun; Koo, Gyeonghoi

    2014-01-01

    The sodium-cooled fast reactor (SFR) module consists of the vessel, containment vessel, head, rotating plug (RP), upper internal structure (UIS), intermediate heat exchanger (IHX), decay heat exchanger (DHX), primary pump, internal structure, internal components and reactor core. The IHXs transfer heat from the radioactive sodium coolant (primary sodium) in the primary heat transport system to the nonradioactive sodium coolant (secondary sodium) in the intermediate heat transport system. Each sodium flows like Fig. 1. Primary sodium flows inside of tube and secondary sodium flows outside. During transferring heat two sodium to sodium, the fluid-elastic instability is occurred among tube bundle by cross flow. Large amplitude vibration occurred by the fluid-elastic instability is caused such as crack and wear of tube. Thus it is important to decrease the fluid-elastic instability in terms of a safety. The purpose of this paper is to evaluate the fluid-elastic instability for tube bundle in the IHX following ASME code. This paper evaluated the fluid-elastic instability of tube bundle in the SFR IHX. According evaluation results, the fluid-elastic instability of IHX tube bundle is occurred. A installing an additional TSP under the upper tubesheet can decrease a probability of fluid-elastic instability. If a location of an additional TSP does not exceed tube length to become a 750 mm, tube bundle of IHX is safety from the fluid-elastic instability

  19. Acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor from autoregressive models

    International Nuclear Information System (INIS)

    Geraldo, Issa Cherif; Bose, Tanmoy; Pekpe, Komi Midzodzi; Cassar, Jean-Philippe; Mohanty, A.R.; Paumel, Kévin

    2014-01-01

    Highlights: • The work deals with sodium boiling detection in a liquid metal fast breeder reactor. • The authors choose to use acoustic data instead of thermal data. • The method is designed to not to be disturbed by the environment noises. • A real time boiling detection methods are proposed in the paper. - Abstract: This paper deals with acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor (LMFBR) based on auto regressive (AR) models which have low computational complexities. Some authors have used AR models for sodium boiling or sodium–water reaction detection. These works are based on the characterization of the difference between fault free condition and current functioning of the system. However, even in absence of faults, it is possible to observe a change in the AR models due to the change of operating mode of the LMFBR. This sets up the delicate problem of how to distinguish a change in operating mode in absence of faults and a change due to presence of faults. In this paper we propose a new approach for boiling detection based on the estimation of AR models on sliding windows. Afterwards, classification of the models into boiling or non-boiling models is made by comparing their coefficients by two statistical methods, multiple linear regression (LR) and support vectors machines (SVM). The proposed approach takes into account operating mode information in order to avoid false alarms. Experimental data include non-boiling background noise data collected from Phenix power plant (France) and provided by the CEA (Commissariat à l’Energie Atomique et aux énergies alternatives, France) and boiling condition data generated in laboratory. High boiling detection rates as well as low false alarms rates obtained on these experimental data show that the proposed method is efficient for boiling detection. Most importantly, it shows that the boiling phenomenon introduces a disturbance into the AR models that can be clearly detected

  20. Study on In-Service Inspection Program and Inspection Technologies for Commercialized Sodium-Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Masato Ando; Shigenobu Kubo; Yoshio Kamishima; Toru Iitsuka

    2006-01-01

    The objective of in-service inspection of a nuclear power plant is to confirm integrity of function of components necessary to safety, and satisfy the needs to protect plant investment and to achieve high plant ability. The sodium-cooled fast reactor, which is designed in the feasibility study on commercialized fast reactor cycle systems in Japan, has two characteristics related to in-service inspection. The first is that all sodium coolant boundary structures have double-wall system. Continuous monitoring of the sodium coolant boundary structures are adopted for inspection. The second characteristic is the steam generator with double-wall-tubes. Volumetric testing is adopted to make sure that one of the tubes can maintain the boundary function in case of the other tube failure. A rational in-service inspection concept was developed taking these features into account. The inspection technologies were developed to implement in-service inspection plan. The under-sodium viewing system consisted of multi ultrasonic scanning transducers, which was used for imaging under-sodium structures. The under-sodium viewing system was mounted on the under-sodium vehicle and delivered to core internals. The prototype of under-sodium viewing system and vehicle were fabricated and performance tests were carried out under water. The laboratory experiments of volumetric testing for double-wall-tubes of steam generator, such as ultrasonic testing and remote-field eddy current testing, were performed and technical feasibility was assessed. (authors)

  1. Regulatory Technology Development Plan - Sodium Fast Reactor. Mechanistic Source Term - Metal Fuel Radionuclide Release

    International Nuclear Information System (INIS)

    Grabaskas, David; Bucknor, Matthew; Jerden, James

    2016-01-01

    The development of an accurate and defensible mechanistic source term will be vital for the future licensing efforts of metal fuel, pool-type sodium fast reactors. To assist in the creation of a comprehensive mechanistic source term, the current effort sought to estimate the release fraction of radionuclides from metal fuel pins to the primary sodium coolant during fuel pin failures at a variety of temperature conditions. These release estimates were based on the findings of an extensive literature search, which reviewed past experimentation and reactor fuel damage accidents. Data sources for each radionuclide of interest were reviewed to establish release fractions, along with possible release dependencies, and the corresponding uncertainty levels. Although the current knowledge base is substantial, and radionuclide release fractions were established for the elements deemed important for the determination of offsite consequences following a reactor accident, gaps were found pertaining to several radionuclides. First, there is uncertainty regarding the transport behavior of several radionuclides (iodine, barium, strontium, tellurium, and europium) during metal fuel irradiation to high burnup levels. The migration of these radionuclides within the fuel matrix and bond sodium region can greatly affect their release during pin failure incidents. Post-irradiation examination of existing high burnup metal fuel can likely resolve this knowledge gap. Second, data regarding the radionuclide release from molten high burnup metal fuel in sodium is sparse, which makes the assessment of radionuclide release from fuel melting accidents at high fuel burnup levels difficult. This gap could be addressed through fuel melting experimentation with samples from the existing high burnup metal fuel inventory.

  2. Regulatory Technology Development Plan - Sodium Fast Reactor. Mechanistic Source Term - Metal Fuel Radionuclide Release

    Energy Technology Data Exchange (ETDEWEB)

    Grabaskas, David [Argonne National Lab. (ANL), Argonne, IL (United States); Bucknor, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States); Jerden, James [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-01

    The development of an accurate and defensible mechanistic source term will be vital for the future licensing efforts of metal fuel, pool-type sodium fast reactors. To assist in the creation of a comprehensive mechanistic source term, the current effort sought to estimate the release fraction of radionuclides from metal fuel pins to the primary sodium coolant during fuel pin failures at a variety of temperature conditions. These release estimates were based on the findings of an extensive literature search, which reviewed past experimentation and reactor fuel damage accidents. Data sources for each radionuclide of interest were reviewed to establish release fractions, along with possible release dependencies, and the corresponding uncertainty levels. Although the current knowledge base is substantial, and radionuclide release fractions were established for the elements deemed important for the determination of offsite consequences following a reactor accident, gaps were found pertaining to several radionuclides. First, there is uncertainty regarding the transport behavior of several radionuclides (iodine, barium, strontium, tellurium, and europium) during metal fuel irradiation to high burnup levels. The migration of these radionuclides within the fuel matrix and bond sodium region can greatly affect their release during pin failure incidents. Post-irradiation examination of existing high burnup metal fuel can likely resolve this knowledge gap. Second, data regarding the radionuclide release from molten high burnup metal fuel in sodium is sparse, which makes the assessment of radionuclide release from fuel melting accidents at high fuel burnup levels difficult. This gap could be addressed through fuel melting experimentation with samples from the existing high burnup metal fuel inventory.

  3. The fast ratio: A rapid measure for testing the dominance of the fast component in the initial OSL signal from quartz

    International Nuclear Information System (INIS)

    Durcan, Julie A.; Duller, Geoff A.T.

    2011-01-01

    The signal from the fast component is usually considered preferable for quartz optically stimulated luminescence (OSL) dating, however its presence in a continuous wave (CW) OSL signal is often assumed, rather than verified. This paper presents an objective measure (termed the fast ratio) for testing the dominance of the fast component in the initial part of a quartz OSL signal. The ratio is based upon the photo ionisation cross-sections of the fast and medium components and the power of the measurement equipment used to record the OSL signal, and it compares parts of the OSL signal selected to represent the fast and medium components. The ability of the fast ratio to distinguish between samples whose CW-OSL signal is dominated by the fast and non-fast components is demonstrated by comparing the fast ratio with the contribution of the fast component calculated from curve deconvolution of measured OSL signals and from simulated data. The ratio offers a rapid method for screening a large number of OSL signals obtained for individual equivalent dose estimates, it can be calculated and applied as easily as other routine screening methods, and is transferrable between different aliquots, samples and measurement equipment. - Highlights: → Fast ratio is a measure which tests dominance of fast component in quartz OSL signals. → A fast ratio above 20 implies a CW-OSL signal is dominated by fast component. → Fast ratio can be easily and rapidly applied to a large number of OSL signals. → Uses include signal comparison, data screening, identify need for further analysis.

  4. Core concepts for ''zero-sodium-void-worth core'' in metal fuelled fast reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.; Hill, R.N.; Fujita, E.K.; Wade, D.C.; Kumaoka, Y.; Suzuki, M.; Kawashima, M.; Nakagawa, H.

    1991-01-01

    Core design options to reduce the sodium void worth in metal fueled LMRs are investigated. Two core designs which achieve a zero sodium void worth are analyzed in detail. The first design is a ''pancaked'' and annular core with enhanced transuranic burning capabilities; the high leakage in this design yields a low breeding ratio and small void worth. The second design is an axially multilayered annular core which is fissile self-sufficient; in this design, the upper and lower core regions are neutronically decoupled for reduced void worth while fissile self-sufficiency is achieved using internal axial blankets plus external radial and axial blanket zones. The neutronic performance characteristics of these low void worth designs are assessed here; their passive safety properties are discussed in a companion paper. 16 refs., 2 figs., 3 tabs

  5. Core concepts for 'zero-sodium-void-worth core' in metal fuelled fast reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.; Hill, R.N.; Fujita, E.K.; Wade, D.C.; Kumaoka, Y.; Suzuki, M.; Kawashima, M.; Nakagawa, H.

    1991-01-01

    Core design options to reduce the sodium void worth in metal fuelled LMRs are investigated. Two core designs which achieve a zero sodium void worth are analyzed in detail. The first design is a 'pancaked' and annular core with enhanced transuranic burning capabilities; the high leakage in this design yields a low breeding ratio and small void worth. The second design is an axially multilayered annular core which is fissile self-sufficient; in this design, the upper and lower core regions are neutronically decoupled for reduced void worth while fissile self-sufficiency is achieved using internal axial blankets plus external radial and axial blanket-zones. The neutronic performance characteristics of these low void worth designs are assessed here; their passive safety properties are discussed in a companion paper. (author)

  6. Sr/Ca mass ratio determination in bones using fast neutron activation analysis

    International Nuclear Information System (INIS)

    Hult, Mikael; Fessler, Andreas

    1998-01-01

    The Sr/Ca mass ratio in human bones reveals information regarding the diet which is of interest in archaeology. By using fast neutron activation analysis this ratio can be measured in a non-destructive manner, which is important when bones are considered too precious to allow for destructive analysis. Simulations and measurements showed that the nuclear reactions 88 Sr(n, 2n) 87m Sr and 44 Ca(n, p) 44 K are highly useful for the purpose

  7. Comparison of Core Performance with Various Oxide fuels on Sodium Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Ha; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2016-05-15

    The system is called Prototype GenIV Sodium-cooled Fast Reactor (PGSFR). Ultimate goal of PGSFR is test for capability of TRU transmutation. Purpose of this study is test for evaluation of in-core performance and TRU transmutation performance by applying various oxide fuel loaded TRU. Fuel type of reference core is changed to uranium-based oxide fuel. Oxide fuel has a lot of experience through fuel fabrication and reactor operation. This study performed by compared and analyzed a core performance of various oxide fuels. (U,Pu)O{sub 2} and (U,TRU)O{sub 2} which various oxide fuel types are selected as extreme case for comparison with core performance and transmutation capability of TRU isotopes. Thorium-based fuel is known that it has good performance for burner reactor due to low proliferation characteristic. To check the performance of TRU incineration for comparison with uranium-based fuel on prototype SFR, Thorium-based fuel, (Th,U)O{sub 2}, (Th,Pu)O{sub 2} and (Th,TRU)O{sub 2}, is selected. Calculations of core performance for various oxide fuel are performed using the fast calculation tool, TRANSX / DANTSTS / REBUS-3. In this study, comparison of core performance and transmutation performance is conducted with various fuel types in a sodium-cooled fast reactor. Mixed oxide fuel with TRU can produce the energy with small amount of fissile material. However, the TRU fuel is confirmed to bring a potential decline of the safety parameters. In case of (Th,U)O2 fuel, the flux level in thermal neutron region becomes lower because of higher capture cross-section of Th-232 than U-238. However, Th-232 has difficulty in converting to TRU isotopes. Therefore, the TRU consumption mass is relatively high in mixed oxide fuel with thorium and TRU.

  8. Comparison of Core Performance with Various Oxide fuels on Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Choi, Jin Ha; Kim, Myung Hyun

    2016-01-01

    The system is called Prototype GenIV Sodium-cooled Fast Reactor (PGSFR). Ultimate goal of PGSFR is test for capability of TRU transmutation. Purpose of this study is test for evaluation of in-core performance and TRU transmutation performance by applying various oxide fuel loaded TRU. Fuel type of reference core is changed to uranium-based oxide fuel. Oxide fuel has a lot of experience through fuel fabrication and reactor operation. This study performed by compared and analyzed a core performance of various oxide fuels. (U,Pu)O_2 and (U,TRU)O_2 which various oxide fuel types are selected as extreme case for comparison with core performance and transmutation capability of TRU isotopes. Thorium-based fuel is known that it has good performance for burner reactor due to low proliferation characteristic. To check the performance of TRU incineration for comparison with uranium-based fuel on prototype SFR, Thorium-based fuel, (Th,U)O_2, (Th,Pu)O_2 and (Th,TRU)O_2, is selected. Calculations of core performance for various oxide fuel are performed using the fast calculation tool, TRANSX / DANTSTS / REBUS-3. In this study, comparison of core performance and transmutation performance is conducted with various fuel types in a sodium-cooled fast reactor. Mixed oxide fuel with TRU can produce the energy with small amount of fissile material. However, the TRU fuel is confirmed to bring a potential decline of the safety parameters. In case of (Th,U)O2 fuel, the flux level in thermal neutron region becomes lower because of higher capture cross-section of Th-232 than U-238. However, Th-232 has difficulty in converting to TRU isotopes. Therefore, the TRU consumption mass is relatively high in mixed oxide fuel with thorium and TRU.

  9. Conceptual design report, Sodium Storage Facility, Fast Flux Test Facility, Project F-031

    International Nuclear Information System (INIS)

    Shank, D.R.

    1995-01-01

    The Sodium Storage Facility Conceptual Design Report provides conceptual design for construction of a new facility for storage of the 260,000 gallons of sodium presently in the FFTF plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium

  10. Progress reports for Gen IV sodium fast reactor activities FY 2007

    International Nuclear Information System (INIS)

    Cahalan, J. E.; Tentner, A. M.

    2007-01-01

    An important goal of the US DOE Sodium Fast Reactor (SFR) program is to develop the technology necessary to increase safety margins in future fast reactor systems. Although no decision has been made yet about who will build the next demonstration fast reactor, it seems likely that the construction team will include a combination of international companies, and the safety design philosophy for the reactor will reflect a consensus of the participating countries. A significant amount of experience in the design and safety analysis of Sodium Fast Reactors (SFR) using oxide fuel has been developed in both Japan and France during last few decades. In the US, the traditional approach to reactor safety is based on the principle of defense-in-depth, which is usually expressed in physical terms as multiple barriers to release of radioactive material (e.g. cladding, reactor vessel, containment building), but it is understood that the 'barriers' may consist of active systems or even procedures. As implemented in a reactor design, defense-in-depth is classed in levels of safety. Level 1 includes measures to specify and build a reliable design with significant safety margins that will perform according to the intentions of the designers. Level 2 consists of additional design measures, usually active systems, to protect against unlikely accidental events that may occur during the life of the plant. Level 3 design measures are intended to protect the public in the event of an extremely unlikely accident not foreseen to occur during the plant's life. All of the design measures that make up the first three levels of safety are within the design basis of the plant. Beyond Level 3, and beyond the normal design basis, there are accidents that are not expected to occur in a whole generation of plants, and it is in this class that severe accidents, i.e. accidents involving core melting, are included. Beyond design basis measures to address severe accidents are usually identified as being

  11. Importance of Sodium Fuel Interaction in Fast Reactor Safety Evaluation - CEA Point of View

    International Nuclear Information System (INIS)

    Tanguy, P.

    1976-01-01

    The consequences of interactions between molten metal (aluminium-uranium alloy) and water have long been a subject of concern for those in charge of reactor safety, following accidents observed or induced in certain reactors (BORAX, SL1, SPERT 1 D). In such accidents, as in similar cases occurring in traditional industries (aluminium foundries, steel works, paper mills...) the contact between the hot liquid product and the coolant entails rapid vaporization of the latter with effects identical to that of an explosive. Although chemical reactions of water decomposition occur in some cases, the main phenomenon is the conversion of the thermal energy stored in the hot substance into mechanical energy. Despite the fact that a molten oxide fuel differs from an aluminium-uranium alloy, as does sodium from water, the consequences of possible contact between the molten mixed uranium and plutonium oxide and sodium must be carefully studied since such a contact may occur in accident conditions in sodium-cooled fast neutron reactors. The essential purpose of an evaluation of reactor safety in accident conditions is in fact to ensure the containment of dangerous products Consequently, any phenomenon likely to endanger containment barriers must be carefully examined. In conclusion: Whereas an accident within an assembly seems to show little likelihood of creating conditions seriously endangering fuel containment, the gravity of problems associated with an overall accident on the core is worthy of thorough and attentive study. In the case of an overall accident on the core of a fast reactor, the interaction between the molten fuel and the sodium is of consequence at two levels. The first is the retention of mechanical energy which may be considerable. The second is the recovery of fuel fragments in an overall cooled configuration but where local cooling problems may give rise to interaction. A greater effort is required in performing tests and mastering their results to

  12. Development of fast reactor containment safety analysis code, CONTAIN-LMR. (3) Improvement of sodium-concrete reaction model

    International Nuclear Information System (INIS)

    Kawaguchi, Munemichi; Doi, Daisuke; Seino, Hiroshi; Miyahara, Shinya

    2015-01-01

    A computer code, CONTAIN-LMR, is an integrated analysis tool to predict the consequence of severe accident in a liquid metal fast reactor. Because a sodium-concrete reaction behavior is one of the most important phenomena in the accident, a Sodium-Limestone Concrete Ablation Model (SLAM) has been developed and installed into the original CONTAIN code at Sandia National Laboratories (SNL) in the U.S. The SLAM treats chemical reaction kinetics between the sodium and the concrete compositions mechanistically using a three-region model, containing a pool (sodium and reaction debris) region, a dry (boundary layer (B/L) and dehydrated concrete) region, and a wet (hydrated concrete) region, the application is limited to the reaction between sodium and limestone concrete. In order to apply SLAM to the reaction between sodium and siliceous concrete which is an ordinary structural concrete in Japan, the chemical reaction kinetics model has been improved to consider the new chemical reactions between sodium and silicon dioxide. The improved model was validated to analyze a series of sodium-concrete experiments which were conducted in Japan Atomic Energy Agency (JAEA). It has been found that relatively good agreement between calculation and experimental results is obtained and the CONTAIN-LMR code has been validated with regard to the sodium-concrete reaction phenomena. (author)

  13. Modeling of Hydrodynamic Processes at a Large Leak of Water into Sodium in the Fast Reactor Coolant Circuit

    Directory of Open Access Journals (Sweden)

    Sergey Perevoznikov

    2016-10-01

    Full Text Available In this paper, we describe a physicomathematical model of the processes that occur in a sodium circuit with a variable flow cross-section in the case of a water leak into sodium. The application area for this technique includes the possibility of analyzing consequences of this leak as applied to sodium–water steam generators in fast neutron reactors. Hydrodynamic processes that occur in sodium circuits in the event of a water leak are described within the framework of a one-dimensional thermally nonequilibrium three-component gas–liquid flow model (sodium–hydrogen–sodium hydroxide. Consideration is given to the results of a mathematical modeling of experiments involving steam injection into the sodium loop of a circulation test facility. That was done by means of the computer code in which the proposed model had been implemented.

  14. Pressure drop and heat transfer in the sodium to air heat exchanger tube banks on advanced sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Kang, H.; Eoh, J.; Cha, J.; Kim, S.

    2011-01-01

    A numerical study was performed to investigate the thermal and hydraulic characteristics and build up design model of the AHX (sodium-to-air heat exchanger) unit of a sodium-cooled fast reactor. Helical-coiled tube banks in the AHX were modeled as porous media and simulated heat and momentum transfer. Two-dimensional flow characteristic appeared at the most region of AHX annulus. Pressure drop and heat transfer coefficient for rectangular, parallelogram and staggered tube banks as the main components of the AHX were evaluated and compared with Zhukauskas empirical correlations. (author)

  15. Fertile assembly for a fast neutron nuclear reactor cooled by liquid sodium, with regulation of the cooling rate

    International Nuclear Information System (INIS)

    Pradal, L.; Berte, M.; Chiarelli, C.

    1985-01-01

    The assembly has a casing in which are arranged the fertile elements, the liquid sodium flowing through the casing along these elements. It includes several apertured diaphragms transverse to the rods to regulate the liquid sodium flow rate. At least one diaphragm, in its central part around its aperture, of a material soluble in liquid sodium, such as copper. The invention applies, more particularly, to fast neutron nuclear reactor having a heterogeneous core. The coolant flow can increase with time to match the increased power generated by the fertile assembly along its life [fr

  16. Void reactivity decomposition for the Sodium-cooled Fast Reactor in equilibrium fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sun Kaichao, E-mail: kaichao.sun@psi.ch [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Krepel, Jiri; Mikityuk, Konstantin; Pelloni, Sandro [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Chawla, Rakesh [Paul Scherrer Institut (PSI), 5232 Villigen PSI (Switzerland); Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2011-07-15

    Highlights: > We analyze the void reactivity effect for three ESFR core fuel cycle states. > The void reactivity effect is decomposed by neutron balance method. > Novelly, the normalization to the integral flux in the active core is applied. > The decomposition is compared with the perturbation theory based results. > The mechanism and the differences of the void reactivity effect are explained. - Abstract: The Sodium-cooled Fast Reactor (SFR) is one of the most promising Generation IV systems with many advantages, but has one dominating neutronic drawback - a positive sodium void reactivity. The aim of this study is to develop and apply a methodology, which should help better understand the causes and consequences of the sodium void effect. It focuses not only on the beginning-of-life (BOL) state of the core, but also on the beginning of open and closed equilibrium (BOC and BEC, respectively) fuel cycle conditions. The deeper understanding of the principal phenomena involved may subsequently lead to appropriate optimization studies. Various voiding scenarios, corresponding to different spatial zones, e.g. node or assembly, have been analyzed, and the most conservative case - the voiding of both inner and outer fuel zones - has been selected as the reference scenario. On the basis of the neutron balance method, the corresponding SFR void reactivity has been decomposed reaction-, isotope-, and energy-group-wise. Complementary results, based on generalized perturbation theory and sensitivity analysis, are also presented. The numerical analysis for both neutron balance and perturbation theory methods has been carried out using appropriate modules of the ERANOS code system. A strong correlation between the flux worth, i.e. the product of flux and adjoint flux, and the void reactivity importance distributions has been found for the node- and assembly-wise voiding scenarios. The neutron balance based decomposition has shown that the void effect is caused mainly by the

  17. Void reactivity decomposition for the Sodium-cooled Fast Reactor in equilibrium fuel cycle

    International Nuclear Information System (INIS)

    Sun Kaichao; Krepel, Jiri; Mikityuk, Konstantin; Pelloni, Sandro; Chawla, Rakesh

    2011-01-01

    Highlights: → We analyze the void reactivity effect for three ESFR core fuel cycle states. → The void reactivity effect is decomposed by neutron balance method. → Novelly, the normalization to the integral flux in the active core is applied. → The decomposition is compared with the perturbation theory based results. → The mechanism and the differences of the void reactivity effect are explained. - Abstract: The Sodium-cooled Fast Reactor (SFR) is one of the most promising Generation IV systems with many advantages, but has one dominating neutronic drawback - a positive sodium void reactivity. The aim of this study is to develop and apply a methodology, which should help better understand the causes and consequences of the sodium void effect. It focuses not only on the beginning-of-life (BOL) state of the core, but also on the beginning of open and closed equilibrium (BOC and BEC, respectively) fuel cycle conditions. The deeper understanding of the principal phenomena involved may subsequently lead to appropriate optimization studies. Various voiding scenarios, corresponding to different spatial zones, e.g. node or assembly, have been analyzed, and the most conservative case - the voiding of both inner and outer fuel zones - has been selected as the reference scenario. On the basis of the neutron balance method, the corresponding SFR void reactivity has been decomposed reaction-, isotope-, and energy-group-wise. Complementary results, based on generalized perturbation theory and sensitivity analysis, are also presented. The numerical analysis for both neutron balance and perturbation theory methods has been carried out using appropriate modules of the ERANOS code system. A strong correlation between the flux worth, i.e. the product of flux and adjoint flux, and the void reactivity importance distributions has been found for the node- and assembly-wise voiding scenarios. The neutron balance based decomposition has shown that the void effect is caused mainly

  18. Distinguishing Pu Metal from Pu Oxide and Determining alpha-ratio using Fast Neutron Counting

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, J. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chapline, G. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nakae, L. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Prasad, M. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sheets, S. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Snyderman, N. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-07

    We describe a new method for determining the ratio of the rate of (α, n) source neutrons to the rate of spontaneous fission neutrons, the so called α-ratio. This method is made possible by fast neutron counting with liquid scintillator detectors, which can determine the shape of the fast neutron spectrum. The method utilizes the spectral difference between fission spectrum neutrons from Pu metal and the spectrum of (α, n) neutrons from PuO2. Our method is a generalization of the Cifarelli-Hage method for determining keff for fissile assemblies, and also simultaneously determines keff along with the α-ratio.

  19. Identification of important phenomena under sodium fire accidents based on PIRT process with factor analysis in sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Aoyagi, Mitsuhiro; Uchibori, Akihiro; Kikuchi, Shin; Takata, Takashi; Ohno, Shuji; Ohshima, Hiroyuki

    2016-01-01

    The PIRT (Phenomena Identification and Ranking Table) process is an effective method to identify key phenomena involved in safety issues in nuclear power plants. The present PIRT process is aimed to validate sodium fire analysis codes. Because a sodium fire accident in sodium-cooled fast reactor (SFR) involves complex phenomena, various figures of merit (FOMs) could exist in this PIRT process. In addition, importance evaluation of phenomena for each FOM should be implemented in an objective manner under the PIRT process. This paper describes the methodology for specification of FOMs, identification of associated phenomena and importance evaluation of each associated phenomenon in order to complete a ranking table of important phenomena involved in a sodium fire accident in an SFR. The FOMs were specified through factor analysis in this PIRT process. Physical parameters to be quantified by a sodium fire analysis code were identified by considering concerns resulting from sodium fire in the factor analysis. Associated phenomena were identified through the element- and sequence-based phenomena analyses as is often conducted in PIRT processes. Importance of each associated phenomenon was evaluated by considering the sequence-based analysis of associated phenomena correlated with the FOMs. Then, we complete the ranking table through the factor and phenomenon analyses. (author)

  20. Study on MAs transmutation of accelerator-driven system sodium-cooled fast reactor loaded with metallic fuel

    International Nuclear Information System (INIS)

    Han Song; Yang Yongwei

    2007-01-01

    Through the analysis of the effect of heavy metal actinides on the effective multiplication constant (k eff ) of the core in accelerator-driven system (ADS) sodium-cooled fast reactor loaded with metallic fuel, we gave the method for determining fuel components. the characteristics of minor actinides (MAs) transmutation was analyzed in detail. 3D burn-up code COUPLE, which couples MCNP4c3 and ORIGEN2, was applied to the neutron simulation and burn up calculation. The results of optimized scheme shows that adjusting the proportion of 239 Pu and maintaining the value during the burn-up cycle is an efficient method of designing k eff and keeping stable during the burn-up cycle. Spallation neutrons lead to the neutron spectrum harder at inner core than that at outer core. It is in favor of improving MA's fission cross sections and the capture-to-fission ratio. The total MAs transmutation support ratio 8.3 achieves excellent transmutation effect. For higher flux at inner core leads to obvious differences on transmutation efficiency,only disposing MAs at inner core is in favor of decreasing the loading mass and improving MAs transmutation effect. (authors)

  1. Impact of nuclear data on sodium-cooled fast reactor calculations

    International Nuclear Information System (INIS)

    Aures, A.; Bostelmann, F.; Zwermann, W.; Velkov, K.

    2016-01-01

    Neutron transport and depletion calculations are performed in combination with various nuclear data libraries in order to assess the impact of nuclear data on safety-relevant parameters of sodium-cooled fast reactors. These calculations are supplemented by systematic uncertainty analyses with respect to nuclear data. Analysed quantities are the multiplication factor and nuclide densities as a function of burn-up and the Doppler and Na-void reactivity coefficients at begin of cycle. While ENDF/B-VII.0 / -VII.1 yield rather consistent results, larger discrepancies are observed between the JEFF libraries. While the newest evaluation, JEFF-3.2, agrees with the ENDF/B-VII libraries, the JEFF-3.1.2 library yields significant larger multiplication factors. (authors)

  2. Effect of Reflector Material on the Neutronic Characteristics of the Small Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Sung Hwan; Baek, Min Ho; Yoo, Jae Woon; Kim, Sang Ji [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    The sodium-cooled fast reactor (SFR) has been chosen as a candidate for the Gen-IV Nuclear Energy Systems Initiative due to the advantages in utilization of uranium resources and reduction of radioactive wastes. Recently, the uranium blanket concept is omitted for a purpose of the non-proliferation, hence the reflector material plays a more important role in reactor core design. Moreover, especially in the Korean prototype SFR, the initial core should startup with low-enriched uranium ({<=} 20 w/o) for 100 {approx} 150 MWe power. This restriction causes significant difficulties to achieve sufficient excess reactivity. Thus, in this paper, core characteristic studies of various reflector materials (HT9, BeO, MgO, and ZrH{sub 1.6}) are performed to enhance the initial core excess reactivity

  3. Linear programming optimization of nuclear energy strategy with sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Lee, Je Whan; Jeong, Yong Hoon; Chang, Yoon Il; Chang, Soon Heung

    2011-01-01

    Nuclear power has become an essential part of electricity generation to meet the continuous growth of electricity demand. A Sodium-cooled Fast Reactor (SFR) was developed to extend uranium resource utilization under a growing nuclear energy scenario while concomitantly providing a nuclear waste management solution. Key questions in this scenario are when to introduce SFRs and how many reactors should be introduced. In this study, a methodology using Linear Programming is employed in order to quantify an optimized growth pattern of a nuclear energy system comprising light water reactors and SFRs. The optimization involves tradeoffs between SFR capital cost premiums and the total system U3O8 price premiums. Optimum nuclear growth patterns for several scenarios are presented, as well as sensitivity analyses of important input parameters

  4. A Mechanistic Source Term Calculation for a Metal Fuel Sodium Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Grabaskas, David; Bucknor, Matthew; Jerden, James

    2017-06-26

    A mechanistic source term (MST) calculation attempts to realistically assess the transport and release of radionuclides from a reactor system to the environment during a specific accident sequence. The U.S. Nuclear Regulatory Commission (NRC) has repeatedly stated its expectation that advanced reactor vendors will utilize an MST during the U.S. reactor licensing process. As part of a project to examine possible impediments to sodium fast reactor (SFR) licensing in the U.S., an analysis was conducted regarding the current capabilities to perform an MST for a metal fuel SFR. The purpose of the project was to identify and prioritize any gaps in current computational tools, and the associated database, for the accurate assessment of an MST. The results of the study demonstrate that an SFR MST is possible with current tools and data, but several gaps exist that may lead to possibly unacceptable levels of uncertainty, depending on the goals of the MST analysis.

  5. Lecture background notes on transient sodium boiling and voiding in fast reactors

    International Nuclear Information System (INIS)

    Okrent, D.; Fauske, H.K.

    1972-01-01

    This set of lecture background notes includes the following: (1) Introductory remarks on fast reactor safety, which are intended to provide some perspective on the role played by sodium boiling. (2) A discussion of superheat which reviews the experimental data and nucleation models with emphasis on the pressure-temperature history effect on radius of active cavity sites, including the role played by inert gas. (3) A discussion of the growth and collapse of spherical bubbles. (4) A historical description of the development of computer codes to describe voiding and a detailed description of the analytical formulation of typical models for calculating voiding due to boiling, fission gas release, and molten fuel-coolant interaction. (U.S.)

  6. Overall system description and safety characteristics of Prototype Gen IV Sodium Cooled Fast Reactor in Korea

    International Nuclear Information System (INIS)

    Yoo, Jae Woon; Chang, Jin Wook; Lim, Jae Yong; Cheon, Jin Sik; Lee, Tae Ho; Kim, Sung Kyun; Lee, Kwi Lim; Joo, Hyung Kook

    2016-01-01

    The Prototype Gen IV sodium cooled fast reactor (PGSFR) has been developed for the last 4 years, fulfilling the technology demonstration of the burning capability of transuranic elements included in light water reactor spent nuclear fuel. The PGSFR design has been focused on the robustness of safety systems by enhancing inherent safety characteristics of metal fuel and strengthening passive safety features using natural circulation and thermal expansion. The preliminary safety information document as a major outcome of the first design phase of PGSFR development was issued at the end of 2015. The project entered the second design phase at the beginning of 2016. This paper summarizes the overall structures, systems, and components of nuclear steam supply system and safety characteristics of the PGSFR. The research and development activities to demonstrate the safety performance are also briefly introduced in the paper

  7. Performance of the diffusion barrier in the metallic fuel in sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Kim, Jun Hwan; Ryu, Ho Jin; Yang, Seong Woo; Lee, Byoung Oon; Oh, Seok Jin; Lee, Chan Bock; Hahn, Dohee

    2009-01-01

    The objectives in this study are to propose several kinds of barrier materials and to evaluate their performance to prevent a fuel-clad interaction situation between the metallic fuel and the clad material in the Sodium-cooled Fast Reactor (SFR). Metallic foil made from refractory element, electrodeposition of the Cr on the clad surface, and the vapor deposition of the Zr were used as the barrier layers. The diffusion couple test was performed at the temperature of 800degC for 25 hour. The results showed that considerable amount of reaction occurred at the specimen without barrier, whereas excellent performance was observed in that neither reaction nor inter-diffusion occurred in the case of metallic foil made of Cr or V. Electrodeposition was revealed to be excellent provided that optimum deposition condition can be found. Similar to the electro-deposition result, excellent performance observed in the case of vapor deposition condition. (author)

  8. Overall System Description and Safety Characteristics of Prototype Gen IV Sodium Cooled Fast Reactor in Korea

    Directory of Open Access Journals (Sweden)

    Jaewoon Yoo

    2016-10-01

    Full Text Available The Prototype Gen IV sodium cooled fast reactor (PGSFR has been developed for the last 4 years, fulfilling the technology demonstration of the burning capability of transuranic elements included in light water reactor spent nuclear fuel. The PGSFR design has been focused on the robustness of safety systems by enhancing inherent safety characteristics of metal fuel and strengthening passive safety features using natural circulation and thermal expansion. The preliminary safety information document as a major outcome of the first design phase of PGSFR development was issued at the end of 2015. The project entered the second design phase at the beginning of 2016. This paper summarizes the overall structures, systems, and components of nuclear steam supply system and safety characteristics of the PGSFR. The research and development activities to demonstrate the safety performance are also briefly introduced in the paper.

  9. Development of the Sodium-cooled Fast Reactor R and D and Technology Monitoring System

    International Nuclear Information System (INIS)

    Lee, Dong Uk; Won, Byung Chool; Kim, Young In; Hahn, Do Hee

    2008-01-01

    This study presents a R and D performance monitoring system that is applicable for managing the generation IV sodium-cooled fast reactor development. The prime goal of this system is to furnish project manager with reliable and accurate information of status of progress, performance and resource allocation, and attain traceability and visibility of project implementation for effective project management. In this study, the work breakdown structure, the related schedule and the expected outputs were established to derive the interfaces between projects and the above parameters was loaded PCs. The R and D performance monitoring system is composed of about 750 R and D activities within 'Development of Basic Key Technologies for Gen IV SFR' project in 2007. The Microsoft Project Professional software was used to monitor the progress, evaluate the results and analyze the resource distribution to activities

  10. Passive acoustic leak detection for sodium cooled fast reactors using hidden Markov models

    Energy Technology Data Exchange (ETDEWEB)

    Riber Marklund, A. [CEA, Cadarache, DEN/DTN/STCP/LIET, Batiment 202, 13108 St Paul-lez-Durance, (France); Kishore, S. [Fast Reactor Technology Group of IGCAR, (India); Prakash, V. [Vibrations Diagnostics Division, Fast Reactor Technology Group of IGCAR, (India); Rajan, K.K. [Fast Reactor Technology Group and Engineering Services Group of IGCAR, (India)

    2015-07-01

    Acoustic leak detection for steam generators of sodium fast reactors have been an active research topic since the early 1970's and several methods have been tested over the years. Inspired by its success in the field of automatic speech recognition, we here apply hidden Markov models (HMM) in combination with Gaussian mixture models (GMM) to the problem. To achieve this, we propose a new feature calculation scheme, based on the temporal evolution of the power spectral density (PSD) of the signal. Using acoustic signals recorded during steam/water injection experiments done at the Indira Gandhi Centre for Atomic Research (IGCAR), the proposed method is tested. We perform parametric studies on the HMM+GMM model size and demonstrate that the proposed method a) performs well without a priori knowledge of injection noise, b) can incorporate several noise models and c) has an output distribution that simplifies false alarm rate control. (authors)

  11. BRENDA: a dynamic simulator for a sodium-cooled fast reactor power plant

    International Nuclear Information System (INIS)

    Hetrick, D.L.; Sowers, G.W.

    1978-06-01

    This report is a users' manual for one version of BRENDA (Breeder Reactor Nuclear Dynamic Analysis), which is a digital program for simulating the dynamic behavior of a sodium-cooled fast reactor power plant. This version, which contains 57 differential equations, represents a simplified model of the Clinch River Breeder Reactor Project (CRBRP). BRENDA is an input deck for DARE P (Differential Analyzer Replacement, Portable), which is a continuous-system simulation language developed at the University of Arizona. This report contains brief descriptions of DARE P and BRENDA, instructions for using BRENDA in conjunction with DARE P, and some sample output. A list of variable names and a listing for BRENDA are included as appendices

  12. U.S. Sodium Fast Reactor Codes and Methods: Current Capabilities and Path Forward

    Energy Technology Data Exchange (ETDEWEB)

    Brunett, A. J.; Fanning, T. H.

    2017-06-26

    The United States has extensive experience with the design, construction, and operation of sodium cooled fast reactors (SFRs) over the last six decades. Despite the closure of various facilities, the U.S. continues to dedicate research and development (R&D) efforts to the design of innovative experimental, prototype, and commercial facilities. Accordingly, in support of the rich operating history and ongoing design efforts, the U.S. has been developing and maintaining a series of tools with capabilities that envelope all facets of SFR design and safety analyses. This paper provides an overview of the current U.S. SFR analysis toolset, including codes such as SAS4A/SASSYS-1, MC2-3, SE2-ANL, PERSENT, NUBOW-3D, and LIFE-METAL, as well as the higher-fidelity tools (e.g. PROTEUS) being integrated into the toolset. Current capabilities of the codes are described and key ongoing development efforts are highlighted for some codes.

  13. Minor Actinide Recycle in Sodium Cooled Fast Reactors Using Heterogeneous Targets

    International Nuclear Information System (INIS)

    Bays, Samuel; Medvedev, Pavel; Pope, Michael; Ferrer, Rodolfo; Forget, Benoit; Asgari, Mehdi

    2009-01-01

    This paper investigates the plausible design of transmutation target assemblies for minor actinides (MA) in Sodium Fast Reactors (SFR). A heterogeneous recycling strategy is investigated, whereby after each reactor pass, un-burned MAs from the targets are blended with MAs produced by the driver fuel and additional MAs from Spent Nuclear Fuel (SNF). A design iteration methodology was adopted for customizing the core design, target assembly design and matrix composition design. The overall design was constrained against allowable peak or maximum in-core performances. While respecting these criteria, the overall design was adjusted to reduce the total number of assemblies fabricated per refueling cycle. It was found that an inert metal-hydride MA-Zr-Hx target matrix gave the highest transmutation efficiency, thus allowing for the least number of targets to be fabricated per reactor cycle.

  14. Development of the Sodium-cooled Fast Reactor R and D and Technology Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Uk; Won, Byung Chool; Kim, Young In; Hahn, Do Hee

    2008-01-15

    This study presents a R and D performance monitoring system that is applicable for managing the generation IV sodium-cooled fast reactor development. The prime goal of this system is to furnish project manager with reliable and accurate information of status of progress, performance and resource allocation, and attain traceability and visibility of project implementation for effective project management. In this study, the work breakdown structure, the related schedule and the expected outputs were established to derive the interfaces between projects and the above parameters was loaded PCs. The R and D performance monitoring system is composed of about 750 R and D activities within 'Development of Basic Key Technologies for Gen IV SFR' project in 2007. The Microsoft Project Professional software was used to monitor the progress, evaluate the results and analyze the resource distribution to activities.

  15. Development of Preliminary HT9 Cladding Tube for Sodium-cooled Fast Reactor (SFR)

    International Nuclear Information System (INIS)

    Kim, Jun Hwan; Baek, Jong Hyuk; Heo, Hyeong Min; Park, Sang Gyu; Kim, Sung Ho; Lee, Chan Bock

    2013-01-01

    To achieve manufacturing technology of the fuel cladding tube in order to keep pace with the predetermined schedule in developing SFR fuel, KAERI has launched in developing fuel cladding tube in cooperation with a domestic steelmaking company. After fabricating medium-sized 1.1 ton HT9 ingot, followed by the multiple processes of hot and cold working, preliminary samples of HT9 seamless cladding tube having 7.4mm in outer diameter, 0.56mm in thickness, and 3m in length were fabricated. The objective of this study is to summarize the brief development status of the HT9 cladding tubes. Mechanical properties like axial tension, biaxial burst, pressurized creep and sodium compatibility of the cladding tubes were carried out to set up the performance evaluation technology to test the prototype FMS cladding tube which is going to be manufactured in next stage. As a part of developing fuel cladding for the Sodium-cooled Fast Reactor (SFR), preliminary HT9 cladding tube was fabricated in cooperation with a domestic steelmaking company. Microstructure as well as mechanical tests like axial tensile test, biaxial burst test, and pressurized creep test of the fuel cladding were carried out. Performance of the domestic HT9 tube was revealed to be similar in the previously fabricated foreign HT9 tube. Further prototype FMS cladding tube is going to be manufactured in next year based on this experience. Various test items like mechanical test, sodium compatibility test, microstructural analysis, basic property, cladding performance under transient situation, and performance under ion and neutron irradiation are going be performed in the future to set up the relevant technology for the licensing of the SFR cladding tube

  16. Infiltration into cropped soils: effect of rain and sodium adsorption ratio-impacted irrigation water.

    Science.gov (United States)

    Suarez, Donald L; Wood, James D; Lesch, Scott M

    2008-01-01

    The sodium adsorption ratio (SAR) and salinity criteria for water suitability for irrigation have been developed for conditions where irrigation water is the only water source. It is not clear that these criteria are applicable to environments where there is a combination of rain and irrigation during the growing season. The interaction of rainfall with irrigation water is expected to result in increased sodicity hazard because of the low electrical conductivity of rain. In this study we examined the effects of irrigation waters of SAR 2, 4, 6, 8, and 10 mmol(1/2) L(-1/2) and electrical conductivities of 1 and 2 dS m(-1) on the infiltration rate of two soils with alternating cycles of rain (simulated with a rainfall sprinkler) and irrigation water, separated by drying cycles. The infiltration rate of surface samples from two soils, Kobase silty clay (fine, smectitic, frigid, Torrertic Haplustept) and Glendive very fine sandy loam (coarse-loamy, mixed superactive, calcareous, frigid Aridic Ustifluvent) were evaluated under alfalfa (Medicago sativa) cropped conditions for over 140 d and under full canopy cover. Reductions in infiltration were observed for both soils for SAR above 2, and the reductions became more severe with increasing SAR. Saturated hydraulic conductivity measurements taken from undisturbed cores at the end of the experiment were highly variable, suggesting that in situ infiltration measurements may be preferred when evaluating SAR effects.

  17. Materials Performance in Sodium-Cooled Fast Reactors: Past, Present, and Future

    International Nuclear Information System (INIS)

    Natesan, K.; Li Meimei

    2013-01-01

    • This paper gives an overview of the requirements, selection, and performance of materials for in-core and out-of-core components in SFRs. • Globally, sodium-cooled fast reactors have been designed, built, and operated in several countries. A substantial database exists for the existing materials on their functional and mechanical performance. • The 60-yr design life of the SFR presents a significant challenge to the development of database, extrapolation/prediction of long-term performance, and high-temperature design methodology for the structural components. • Licensing of SFR requires a valid assessment of the environmental effects (irradiation, thermal aging, and sodium) on materials performance. • Advanced materials such as, ODS alloys for cladding, Gr91 and 92 F/M steels, and austenitic alloys such as NF709 for structures can improve the economy, safety, and flexibility of SFRs. A substantial database is needed for all these materials and global effort is underway to develop the needed information through experimentation and modeling

  18. Pumps modelling of a sodium fast reactor design and analysis of hydrodynamic behavior - 15294

    International Nuclear Information System (INIS)

    Ordonez, J.; Lazaro, A.; Martorell, S.

    2015-01-01

    One of the goals of Generation IV reactors is to increase safety from those of previous generations. Different research platforms have identified the need to improve the reliability of the simulation tools to ensure the capability of the plant to accommodate the design basis transients established in preliminary safety studies. The paper describes the modeling of recirculation pumps in advanced sodium cooled reactors using the TRACE code. Following the implementation of the models, the results obtained in the analysis of different design basis transients are compared with the simplifying approximations used in reference models. The paper shows the process to obtain a consistent pump model of the ESFR (European Sodium Fast Reactor) design and the analysis of loss of flow transients triggered by pumps coast-down analyzing the thermal hydraulic neutronic coupled system response. A sensitivity analysis of the system pressure drops effect and the other relevant parameters that influence the natural convection after the pumps coast-down is also included. (authors)

  19. Pumps modelling of a sodium fast reactor design and analysis of hydrodynamic behavior

    Directory of Open Access Journals (Sweden)

    Ordóñez Ródenas José

    2016-01-01

    Full Text Available One of the goals of Generation IV reactors is to increase safety from those of previous generations. Different research platforms have been identified the need to improve the reliability of the simulation tools to ensure the capability of the plant to accommodate the design basis transients established in preliminary safety studies. The paper describes the modelling of primary pumps in advanced sodium cooled reactors using the TRACE code. Following the implementation of the models, the results obtained in the analysis of different design basis transients are compared with the simplifying approximations used in reference models. The paper shows the process to obtain a consistent pump model of the ESFR (European Sodium Fast Reactor design and the analysis of loss of flow transients triggered by pumps coast–down analyzing the thermal hydraulic neutronic coupled system response. A sensitivity analysis of the system pressure drops effect and the other relevant parameters that influence the natural convection after the pumps coast–down is also included.

  20. Leakage limits for inflatable seals of sodium cooled fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, N.K., E-mail: nksinha@igcar.gov.in; Raj, Baldev

    2014-01-15

    Highlights: • All possible types/modes of gas escape covered. • Limits include simultaneous contributions from bypass and permeation leakage modes. • Leakage of radioactive cover gas with fission products assumed. • Possibility of sodium frost deposition in sealed gap considered. • Cover gas activity decay during fuel handling and relative importance of types/modes of leakage considered for realistic results and simpler seal design. -- Abstract: Estimation and stipulation of allowable leakage for inflatable seals of 500 MWe Prototype Fast Breeder Reactor is depicted. Leakage limits are specified using a conservative approach, which assumes escape of radioactive cover gas with fission products across the seals in bypass and permeation modes and possibility of sodium frost deposition in sealed gaps because of permeation leakage of inflation gas. Procedures to arrive at the allowable leakages of argon cover gas (normal-operation/fuel-handling: 10{sup −3}/10{sup −2} scc/s/m length of seal) and argon inflation gas (10{sup −3} scc/s/m length of seal) is described.

  1. Level-1 PSA to support the design of the KALIMER-600 Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Han, Sang Hoon; Kim, Tae-Woon; Jeong, Hae-Yong; Han, Seok Joong; Ahn, Kwang-Il; Yang, Joon-Eon

    2012-01-01

    A sodium-cooled fast reactor, KALIMER-600, is under development. Its fuel is the metal fuel of U-TRU-Zr and it uses sodium as a coolant. KALIMER-600 has passive safety features such as passive shutdown functions, passive pump coast-down features, and passive decay heat removal systems. It has inherent reactivity feedback effects. The probabilistic safety assessment (PSA) will be one of the initiating subjects for designing KALIMER-600 from the aspects of risk informed design. A preliminary level-1 internal full power PSA has been performed to evaluate the safety level and its applicability for the KALIMER-600 conceptual design. Various design alternatives are evaluated from the viewpoint of PSA in order to support the design of the KALIMER-600. Sensitivity studies are also performed to evaluate the assumptions made for the PSA. The applicability and weakness of the KALIMER-600 PSA are discussed. The technical issues to be solved in performing the PSA will be discussed. (authors)

  2. Study of various Brayton cycle designs for small modular sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Ahn, Yoonhan; Lee, Jeong Ik

    2014-01-01

    Highlights: • Application of closed Brayton cycle for small and medium sized SFRs is reviewed. • S-CO 2 , helium and nitrogen cycle designs for small modular SFR applications are analyzed and compared in terms of cycle efficiency, component performance and physical size. • Several new layouts for each Brayton cycle are suggested to simplify the turbomachinery designs. • S-CO 2 cycle design shows the best efficiency and compact size compared to other Brayton cycles. - Abstract: Many previous sodium cooled fast reactors (SFRs) adopted steam Rankine cycle as the power conversion system. However, the concern of sodium water reaction has been one of the major design issues of a SFR system. As an alternative to the steam Rankine cycle, several closed Brayton cycles including supercritical CO 2 cycle, helium cycle and nitrogen cycle have been suggested recently. In this paper, these alternative gas Brayton cycles will be compared to each other in terms of cycle performance and physical size for small modular SFR application. Several new layouts are suggested for each fluid while considering the turbomachinery design and the total system volume

  3. R and D Trends For The Future Sodium Fast Reactors In France

    International Nuclear Information System (INIS)

    Dufour, Ph.; Anzieu, P.; Lecarpentier, D.; Serpantie, JP.

    2006-01-01

    The sodium fast reactors are the natural Generation IV candidate, thanks to their strong potential for incineration and/or breeding that allow drastic fissile materials economy and fission waste products recycling or transmutation. The question is now to make evolve the existing or past projects of reactors to systems fully compatible with Generation IV objectives, in particular with regard to the economy, durability and safety. This work must be achieved in an international frame which requires a sharing of the objectives and will allow, in the long term, the sharing of the activities. However, in order to ensure the overall coherence of the various development programs defined within the Gen-IV framework, it is necessary to define a new SFR development plan based on the experience gained in France (Phenix, Superphenix) and Europe, in the EFR project. The commonly agreed SFR system issues to be improved or further investigated are its capital cost, safety issues (sodium risks, core criticality accidents), and in-service inspection and maintenance technology. (authors)

  4. Experimental Development and Demonstration of Ultrasonic Measurement Diagnostics for Sodium Fast Reactor Thermal-hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Tokuhiro, Akira; Jones, Byron

    2013-09-13

    This research project will address some of the principal technology issues related to sodium-cooled fast reactors (SFR), primarily the development and demonstration of ultrasonic measurement diagnostics linked to effective thermal convective sensing under normatl and off-normal conditions. Sodium is well-suited as a heat transfer medium for the SFR. However, because it is chemically reactive and optically opaque, it presents engineering accessibility constraints relative to operations and maintenance (O&M) and in-service inspection (ISI) technologies that are currently used for light water reactors. Thus, there are limited sensing options for conducting thermohydraulic measurements under normal conditions and off-normal events (maintenance, unanticipated events). Acoustic methods, primarily ultrasonics, are a key measurement technology with applications in non-destructive testing, component imaging, thermometry, and velocimetry. THis project would have yielded a better quantitative and qualitative understanding of the thermohydraulic condition of solium under varied flow conditions. THe scope of work will evaluate and demonstrate ultrasonic technologies and define instrumentation options for the SFR.

  5. Advanced surrogate model and sensitivity analysis methods for sodium fast reactor accident assessment

    International Nuclear Information System (INIS)

    Marrel, A.; Marie, N.; De Lozzo, M.

    2015-01-01

    Within the framework of the generation IV Sodium Fast Reactors, the safety in case of severe accidents is assessed. From this statement, CEA has developed a new physical tool to model the accident initiated by the Total Instantaneous Blockage (TIB) of a sub-assembly. This TIB simulator depends on many uncertain input parameters. This paper aims at proposing a global methodology combining several advanced statistical techniques in order to perform a global sensitivity analysis of this TIB simulator. The objective is to identify the most influential uncertain inputs for the various TIB outputs involved in the safety analysis. The proposed statistical methodology combining several advanced statistical techniques enables to take into account the constraints on the TIB simulator outputs (positivity constraints) and to deal simultaneously with various outputs. To do this, a space-filling design is used and the corresponding TIB model simulations are performed. Based on this learning sample, an efficient constrained Gaussian process metamodel is fitted on each TIB model outputs. Then, using the metamodels, classical sensitivity analyses are made for each TIB output. Multivariate global sensitivity analyses based on aggregated indices are also performed, providing additional valuable information. Main conclusions on the influence of each uncertain input are derived. - Highlights: • Physical-statistical tool for Sodium Fast Reactors TIB accident. • 27 uncertain parameters (core state, lack of physical knowledge) are highlighted. • Constrained Gaussian process efficiently predicts TIB outputs (safety criteria). • Multivariate sensitivity analyses reveal that three inputs are mainly influential. • The type of corium propagation (thermal or hydrodynamic) is the most influential

  6. Fuel burn analysis of a sodium fast reactor with KANEXT and Serpent

    International Nuclear Information System (INIS)

    Lopez S, R. C.; Francois L, J. L.

    2015-09-01

    The fast reactors cooled by sodium are one of the options considered in the Generation IV. Since most of the reactors of Fourth Generation are still in development stage, is necessary to have efficient and reliable computational tools, this in order to obtain accurate results in reasonable computational times. In this paper is introduced and describes the deterministic code KANEXT (KArlsruhe Neutronic EXtended Tool) and is compared against a Monte Carlo code of more diffusion: Serpent. KANEXT, being a modular code requires the interaction of different modules to perform a job, this interaction of modules is described in this article. The parameters to be compared are the results of the neutron multiplication effective factor and the evolution of isotopes during the burning. The mentioned comparison is carried out for a fast reactor cooled by sodium of relatively small size compared to commercial size reactors. In this paper the particularities of the reactor are described, important for the analysis such as geometry, enrichments, reflector, etc. The considerations in the implementation in both codes are also described, as are simplifications, length of the burning steps, possible solutions of the Bateman equations for the burning fuel in Serpent and the solution options for transport (P3) and diffusion (P1) in KANEXT. The results show good correspondence between Serpent and KANEXT, which give confidence to continue using KANEXT as the main tool. Respect to computation time, time saving is evident with the use of deterministic codes instead of Monte Carlo codes, in this particular case, the time savings using KANEXT is about 98.5% of the time used by Serpent. (Author)

  7. Proliferation Resistance and Material Type considerations within the Collaborative Project for a European Sodium Fast Reactor

    International Nuclear Information System (INIS)

    Renda, Guido; Alim, Fatih; Cojazzi, Giacomo GM.

    2015-01-01

    The collaborative project for a European Sodium Fast Reactor (CP‑ESFR) is an international project where 25 European partners developed Research & Development solutions and concepts for a European sodium fast reactor. The project was funded by the 7. European Union Framework Programme and covered topics such as the reactor architectures and components, the fuel, the fuel element and the fuel cycle, and the safety concepts. Within sub‑project 3, dedicated to safety, a task addressed proliferation resistance considerations. The Generation IV International Forum (GIF) Proliferation Resistance and Physical Protection (PR and PP) Evaluation Methodology has been selected as the general framework for this work, complemented by punctual aspects of the IAEA‑INPRO Proliferation Resistance methodology and other literature studies - in particular for material type characterization. The activity has been carried out taking the GIF PR and PP Evaluation Methodology and its Addendum as the general guideline for identifying potential nuclear material diversion targets. The targets proliferation attractiveness has been analyzed in terms of the suitability of the targets’ nuclear material as the basis for its use in nuclear explosives. To this aim the PR and PP Fissile Material Type measure was supplemented by other literature studies, whose related metrics have been applied to the nuclear material items present in the considered core alternatives. This paper will firstly summarize the main ESFR design aspects relevant for PR following the structure of the GIF PR and PP White Paper template. An analysis on proliferation targets is then discussed, with emphasis on their characterization from a nuclear material point of view. Finally, a high‑level ESFR PR analysis according to the four main proliferation strategies identified by the GIF PR and PP Evaluation Methodology (concealed diversion, concealed misuse, breakout, clandestine production in clandestine facilities) is

  8. An assessment of methods of calculating sodium-voiding reactivity in plutonium-fuelled fast reactors

    International Nuclear Information System (INIS)

    Butland, A.T.D.; Simmons, W.N.; Stevenson, J.M.

    1980-01-01

    After a survey of the requirements an assessment of the accuracy of calculations of the sodium-void effect using UK methods and data is made on the basis of the following work: (a) The analysis of small and large sodium voids in the MOZART and Zebra 13 small (300 MW(e)) fast reactor mock-ups and the BIZET large fast reactor mock-ups, all of conventional design. The analysis was carried out using the UK FGL5 fine group nuclear data library, the MURAL cell code, whole reactor diffusion theory calculations of the neutron flux and perturbation theory methods. Exact perturbation theory was used in many cases, otherwise first-order perturbation theory calculations were adjusted to give results equivalent to exact perturbation theory. (b) Theoretical studies of some effects, including the following: (i) The effects of extrapolating to fuel operating temperature; (ii) Fuel-cycle and burnup effects, including the gradual replacement through a fuel cycle of control-rod absorption by fission product absorption, the loss of fissile material and the change in fuel nuclide relative composition; (iii) The heterogeneity effects of large fuelled subassemblies in pin geometry. (c) Theoretical studies of approximations in the calculational methods, including the following: (i) The importance in the whole reactor calculation of the energy group structure and the spatial mesh, including comparisons of calculations in two (RZ) and three-dimensional geometry; (ii) The importance of reactor material boundaries in the calculation of resonance shielding effects; (iii) The use of neutron fluxes calculated using neutron diffusion theory rather than transport theory. (author)

  9. Study of thermophysical and thermohydraulic properties of sodium for fast sodium cooled reactors; Estudio de las propiedades termofisicas y termohidraulicas del sodio para reactores rapidos enfriados por sodio

    Energy Technology Data Exchange (ETDEWEB)

    Vega R, A. K.; Espinosa P, G. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico); Gomez T, A. M., E-mail: a.karen.vr@gmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-09-15

    The importance of liquid sodium lies in its use as a coolant for fast reactors, but why should liquid metal be used as a coolant instead of water? Water is difficult to use as a coolant for a fast nuclear reactor because its acts as a neutron moderator, that is, stop the fast neutrons and converts them to thermal neutrons. Nuclear reactors such as the Pressurized Water Reactor or the Boiling Water Reactor are thermal reactors, which mean they need thermal neutrons for their operation. However, is necessary for fast reactors to conserve as much fast neutrons, so that the liquid metal coolants that do have this capability are implemented. Sodium does not need to be pressurized, its low melting point and its high boiling point, higher than the operating temperature of the reactor, make it an adequate coolant, also has a high thermal conductivity, which is necessary to transfer thermal energy and its viscosity is close to that of the water, which indicates that is an easily transportable liquid and does not corrode the steel parts of the reactor. This paper presents a brief state of the art of the rapid nuclear reactors that operated and currently operate, as well as projects in the door in some countries; types of nuclear reactors which are cooled by liquid sodium and their operation; the mathematical models for obtaining the properties of liquid sodium in a range of 393 to 1673 Kelvin degrees and a pressure atmosphere. Finally a program is presented in FORTRAN named Thermo-Sodium for the calculation of the properties, which requires as input data the Kelvin temperature in which the liquid sodium is found and provides at the user the thermo-physical and thermo-hydraulic properties for that data temperature. Additional to this the user is asked the Reynolds number and the hydraulic diameter in case of knowing them, and in this way the program will provide the value of the convective coefficient and that of the dimensionless numbers: Nusselt, Prandtl and Peclet. (Author)

  10. Preliminary conceptual design of the secondary sodium circuit-eliminated JSFR (Japan Sodium Fast Reactor) adopting a supercritical CO2 turbine system (2). Turbine system and plant size

    International Nuclear Information System (INIS)

    Kisohara, Naoyuki; Sakamoto, Yoshihiko; Kotake, Shoji

    2014-09-01

    Research and development of the supercritical CO 2 (S-CO 2 ) cycle turbine system is underway in various countries for further improvement of the safety and economy of sodium-cooled fast reactors. The Component Design and Balance-Of-Plant (CD and BOP) of the Generation IV International Nuclear Forum (Gen-IV) has addressed this study, and their analytical and experimental results have been discussed between the relevant countries. JAEA, who is a member of the CD and BOP, has performed a design study of an S-CO 2 gas turbine system applied to the Japan Sodium-cooled Fast Reactor (JSFR). In this study, the S-CO 2 cycle turbine system was directly connected to the primary sodium system of the JSFR to eliminate the secondary sodium circuit, aiming for further economical improvement. This is because there is no risk of sodium-water reaction in the S-CO 2 cycle turbine system of SFRs. This report describes the system configuration, heat/mass balance, and main components of the S-CO 2 turbine system, based on the JSFR specifications. The layout of components and piping in the reactor and turbine buildings were examined and the dimensions of the buildings were estimated. The study has revealed that the reactor and turbine buildings could be reduced by 7% and 40%, respectively, in comparison with those in the existing JSFR design with the secondary sodium circuit employing the steam turbine. The cycle thermal was also calculated as 41.9-42.3%, which is nearly the same as that of the JSFR with the water/steam system. (author)

  11. Domain IV voltage-sensor movement is both sufficient and rate limiting for fast inactivation in sodium channels.

    Science.gov (United States)

    Capes, Deborah L; Goldschen-Ohm, Marcel P; Arcisio-Miranda, Manoel; Bezanilla, Francisco; Chanda, Baron

    2013-08-01

    Voltage-gated sodium channels are critical for the generation and propagation of electrical signals in most excitable cells. Activation of Na(+) channels initiates an action potential, and fast inactivation facilitates repolarization of the membrane by the outward K(+) current. Fast inactivation is also the main determinant of the refractory period between successive electrical impulses. Although the voltage sensor of domain IV (DIV) has been implicated in fast inactivation, it remains unclear whether the activation of DIV alone is sufficient for fast inactivation to occur. Here, we functionally neutralize each specific voltage sensor by mutating several critical arginines in the S4 segment to glutamines. We assess the individual role of each voltage-sensing domain in the voltage dependence and kinetics of fast inactivation upon its specific inhibition. We show that movement of the DIV voltage sensor is the rate-limiting step for both development and recovery from fast inactivation. Our data suggest that activation of the DIV voltage sensor alone is sufficient for fast inactivation to occur, and that activation of DIV before channel opening is the molecular mechanism for closed-state inactivation. We propose a kinetic model of sodium channel gating that can account for our major findings over a wide voltage range by postulating that DIV movement is both necessary and sufficient for fast inactivation.

  12. Status of conceptual safety design study of Japanese sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Kubo, Shigenobu; Kurisaka, Kenichi; Niwa, Hajime; Shimakawa, Yoshio

    2005-01-01

    In this paper, the current conceptual safety design and related evaluation of Japanese Sodium-cooled Fast Reactor which is studied in the framework of the Feasibility Study (FS) on commercialized Fast Reactor Cycle Systems in Japan are described. The purpose of the safety design is to establish a feasible safety concept of FBR which aims at a sustainable energy source of the next generations. The safety targets and the safety design principle are set aiming at realizing worldwide acceptability of the safety level. The basic safety design concept, which can meet the safety targets, was formulated taking along with the defense-in-depth philosophy as the basic safety design principle. In order to cope with wide range of energy and resource demands, there are some various designs both of oxide and metal fuel for JSFR. Some analytical results of typical design basis events, design extension conditions and core damage frequency estimation show the feasibility of the safety design concept for them. (author)

  13. Mechanical Design Concept of Fuel Assembly for Prototype GEN-IV Sodium-cooled Fast Reactor

    International Nuclear Information System (INIS)

    Yoon, K. H.; Lee, C. B.

    2014-01-01

    The prototype GEN-IV sodium-cooled fast reactor (PGSFR) is an advanced fast reactor plant design that utilizes compact modular pool-type reactors sized to enable factory fabrication and an affordable prototype test for design certification at minimum cost and risk. The design concepts of the fuel assembly (FA) were introduced for a PGSFR. Unlike that for the pressurized water reactor, there is a neutron shielding concept in the FA and recycling metal fuel. The PGSFR core is a heterogeneous, uranium-10% zirconium (U-10Zr) metal alloy fuel design with 112 assemblies: 52 inner core fuel assemblies, 60 outer core fuel assemblies, 6 primary control assemblies, 3 secondary control assemblies, 90 reflector assemblies and 102 B4C shield assemblies. This configuration is shown in Fig. 1. The core is designed to produce 150 MWe with an average temperature rise of 155 .deg. C. The inlet temperature is 390 .deg. C and the bulk outlet temperature is 545 .deg. C. The core height is 900 mm and the gas plenum length is 1,250 mm. A mechanical design of a fuel assembly for a PGSFR was established. The mechanical design concepts are well realized in the design. In addition to this, the analytical and experimental works will be carries out for verifying the design soundness

  14. Metal fuel development and verification for prototype generation- IV Sodium- Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chan Bock; Cheon, Jin Sik; Kim, Sung Ho; Park, Jeong Yong; Joo, Hyung Kook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Metal fuel is being developed for the prototype generation-IV sodium-cooled fast reactor (PGSFR) to be built by 2028. U-Zr fuel is a driver for the initial core of the PGSFR, and U -transuranics (TRU)-Zr fuel will gradually replace U-Zr fuel through its qualification in the PGSFR. Based on the vast worldwide experiences of U-Zr fuel, work on U-Zr fuel is focused on fuel design, fabrication of fuel components, and fuel verification tests. U-TRU-Zr fuel uses TRU recovered through pyroelectrochemical processing of spent PWR (pressurized water reactor) fuels, which contains highly radioactive minor actinides and chemically active lanthanide or rare earth elements as carryover impurities. An advanced fuel slug casting system, which can prevent vaporization of volatile elements through a control of the atmospheric pressure of the casting chamber and also deal with chemically active lanthanide elements using protective coatings in the casting crucible, was developed. Fuel cladding of the ferritic-martensitic steel FC92, which has higher mechanical strength at a high temperature than conventional HT9 cladding, was developed and fabricated, and is being irradiated in the fast reactor.

  15. Metal Fuel Development and Verification for Prototype Generation IV Sodium-Cooled Fast Reactor

    Directory of Open Access Journals (Sweden)

    Chan Bock Lee

    2016-10-01

    Full Text Available Metal fuel is being developed for the prototype generation-IV sodium-cooled fast reactor (PGSFR to be built by 2028. U–Zr fuel is a driver for the initial core of the PGSFR, and U–transuranics (TRU–Zr fuel will gradually replace U–Zr fuel through its qualification in the PGSFR. Based on the vast worldwide experiences of U–Zr fuel, work on U–Zr fuel is focused on fuel design, fabrication of fuel components, and fuel verification tests. U–TRU–Zr fuel uses TRU recovered through pyroelectrochemical processing of spent PWR (pressurized water reactor fuels, which contains highly radioactive minor actinides and chemically active lanthanide or rare earth elements as carryover impurities. An advanced fuel slug casting system, which can prevent vaporization of volatile elements through a control of the atmospheric pressure of the casting chamber and also deal with chemically active lanthanide elements using protective coatings in the casting crucible, was developed. Fuel cladding of the ferritic–martensitic steel FC92, which has higher mechanical strength at a high temperature than conventional HT9 cladding, was developed and fabricated, and is being irradiated in the fast reactor.

  16. Mechanical Design Concept of Fuel Assembly for Prototype GEN-IV Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, K. H.; Lee, C. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The prototype GEN-IV sodium-cooled fast reactor (PGSFR) is an advanced fast reactor plant design that utilizes compact modular pool-type reactors sized to enable factory fabrication and an affordable prototype test for design certification at minimum cost and risk. The design concepts of the fuel assembly (FA) were introduced for a PGSFR. Unlike that for the pressurized water reactor, there is a neutron shielding concept in the FA and recycling metal fuel. The PGSFR core is a heterogeneous, uranium-10% zirconium (U-10Zr) metal alloy fuel design with 112 assemblies: 52 inner core fuel assemblies, 60 outer core fuel assemblies, 6 primary control assemblies, 3 secondary control assemblies, 90 reflector assemblies and 102 B4C shield assemblies. This configuration is shown in Fig. 1. The core is designed to produce 150 MWe with an average temperature rise of 155 .deg. C. The inlet temperature is 390 .deg. C and the bulk outlet temperature is 545 .deg. C. The core height is 900 mm and the gas plenum length is 1,250 mm. A mechanical design of a fuel assembly for a PGSFR was established. The mechanical design concepts are well realized in the design. In addition to this, the analytical and experimental works will be carries out for verifying the design soundness.

  17. Review of aerosol problems and the theory of aerosol physics with particular reference to sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Williams, R.J.

    1978-01-01

    Processes that would govern the development, transport, and removal of aerosols, which are of interest in the study of hypothetical core disruptive situations in pool type sodium cooled fast reactors, are discussed. Theoretical descriptions of these processes are presented and known inadequacies indicated. The interpretation of experimental data and numeric solution of the governing equations is briefly considered. (author)

  18. Passive vibro-acoustic detection of a sodium-water reaction in a steam generator of a sodium-cooled fast neutrons nuclear reactor by beam forming

    International Nuclear Information System (INIS)

    Moriot, Jeremy

    2013-01-01

    This thesis deals with a new method to detect a sodium-water reaction in a steam generator of a fast sodium-cooled nuclear reactor. More precisely, the objective is to detect a micro-leak of water (flow ≤ 1 g/s) in less than 10 seconds by measuring the external shell vibrations of the component. The strong background noise in operation makes impossible the use of a detection system based on a threshold overrun. A beam forming method applied to vibrations measured by a linear array of accelerometers is developed in this thesis to increase the signal-to-noise ratio and to detect and locate the leak in the steam generator. A numerical study is first realized. Two models are developed in order to simulate the signals measured by the accelerometers of the array. The performances of the beam forming are then studied in function of several parameters, such as the source location and frequency, the damping factor, the background noise considered. The first model consists in an infinite plate in contact with a heavy fluid, excited by an acoustic monopole located in this fluid. Analyzing the transverse displacements in the wavenumber domain is useful to establish a criterion to sample correctly the vibration field of the plate. A second model, more representative of the system is also proposed. In this model, an elastic infinite cylindrical shell, filled with a heavy fluid is considered. The finite dimensions in the radial and circumferential directions lead to a modal behavior of the system which impacts the beam forming. Finally, the method is tested on an experimental mock-up which consists in a cylindrical pipe made in stainless steel and filled with water connected to hydraulic circuit. The water flow speed can be controlled by varying the speed of the pump. The acoustic source is generated by a hydro-phone. The performances of the beam forming are studied for different water flow speeds and different amplitude and frequencies of the source. (author) [fr

  19. Status of sodium cooled fast reactors with closed fuel cycle in India

    International Nuclear Information System (INIS)

    Raj, B.

    2007-01-01

    Fast reactors form the second stage of India's 3-stage nuclear power programme. The seed for India's fast reactor programme was sown through the construction of the Fast Breeder Test Reactor (FBTR) at IGCAR, Kalpakkam, that was commissioned in 1985. FBTR has operated with an unique, indigenously developed plutonium rich mixed carbide fuel, which has reached a burn up as high as 155 GWd/t without any fuel failure in the core. The sodium systems in the reactor have performed excellently. The availability of the reactor has been as high as 92% in the recent campaigns. The fuel discharged from FBTR up to 100 GWd/t has been reprocessed successfully. The experience gained in the construction, commissioning and operation of FBTR has provided the necessary confidence to launch a Prototype FBR of 500 MWe capacity (PFBR). This reactor will be fuelled by uranium, plutonium mixed oxide. The reactor construction started in 2003 and the reactor is scheduled to be commissioned by 2010. The design of the reactor has incorporated the worldwide operating experience from the FBRs and has addressed various safety issues reported in literature, besides introducing a number of innovative features which have reduced the unit energy cost and contributed to its enhanced safety. Simultaneous with the construction of the reactor, the fuel cycle of the reactor has been addressed in a comprehensive manner and construction of a fuel cycle facility has been initiated. Subsequent to the PFBR, 4 more reactors with identical design are proposed to be constructed. Various elements of reactor design are being carefully analysed with the aim of introducing innovative features towards further reduction in unit energy cost and enhancing safety in these reactors

  20. New biomarkers for increased intestinal permeability induced by dextran sodium sulphate and fasting in chickens.

    Science.gov (United States)

    Gilani, S; Howarth, G S; Kitessa, S M; Tran, C D; Forder, R E A; Hughes, R J

    2017-10-01

    Increased intestinal permeability (IP) can lead to compromised health in chickens. As there is limited literature on in vivo biomarkers to assess increased IP in chickens, the objective of this study was to identify a reliable biomarker of IP using DSS ingestion and fasting models. Male Ross chickens (n = 48) were reared until day 14 on the floor pen in an animal care facility, randomized into the following groups: control, DSS and fasting (each with n = 16), and then placed in metabolism cages. DSS was administered in drinking water at 0.75% from days 16 to 21, while controls and fasted groups received water. All birds had free access to feed and water except the birds in the fasting group that were denied feed for 19.5 h on day 20. On day 21, all chickens were given two separate oral gavages comprising fluorescein isothiocyanate dextran (FITC-d, 2.2 mg in 1 ml/bird) at time zero and lactulose, mannitol and rhamnose (LMR) sugars (0.25 g L, 0.05 g M and 0.05 g R in 2 ml/bird) at 60 min. Whole blood was collected from the brachial vein in a syringe 90 min post-LMR sugar gavage. Serum FITC-d and plasma LMR sugar concentrations were measured by spectrophotometry and high-performance ion chromatography respectively. Plasma concentrations of intestinal fatty acid binding protein, diamine oxidase, tight junction protein (TJP), d-lactate and faecal α-antitrypsin inhibitor concentration were also analysed by ELISA. FITC-d increased significantly (p fasting compared with control. L/M and L/R ratios for fasting and L/M ratio for DSS increased compared with control chickens (p fasting but not DSS treatment, compared with controls. Other tests did not indicate changes in IP (p > 0.05). We concluded that FITC-d and LMR sugar tests can be used in chickens to assess changes in IP. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  1. Sodium-cooled fast reactor (SFR) fuel assembly design with graphite-moderating rods to reduce the sodium void reactivity coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Won, Jong Hyuck; Cho, Nam Zin, E-mail: nzcho@kaist.ac.kr; Park, Hae Min; Jeong, Yong Hoon, E-mail: jeongyh@kaist.ac.kr

    2014-12-15

    Highlights: • The graphite rod-inserted SFR fuel assembly is proposed to achieve low sodium void reactivity. • The neutronics/thermal-hydraulics analyses are performed for the proposed SFR cores. • The sodium void reactivity is improved about 960–1030 pcm compared to reference design. - Abstract: The concept of a graphite-moderating rod-inserted sodium-cooled fast reactor (SFR) fuel assembly is proposed in this study to achieve a low sodium void reactivity coefficient. Using this concept, two types of SFR cores are analyzed; the proposed SFR type 1 core has new SFR fuel assemblies at the inner/mid core regions while the proposed SFR type 2 core has a B{sub 4}C absorber sandwich in the middle of the active core region as well as new SFR fuel assemblies at the inner/mid core regions. For the proposed SFR core designs, neutronics and thermal-hydraulic analyses are performed using the DIF3D, REBUS3, and the MATRA-LMR codes. In the neutronics analysis, the sodium void reactivity coefficient is obtained in various void situations. The two types of proposed core designs reduce the sodium void reactivity coefficient by about 960–1030 pcm compared to the reference design. However, the TRU enrichment for the proposed SFR core designs is increased. In the thermal hydraulic analysis, the temperature distributions are calculated for the two types of proposed core designs and the mass flow rate is optimized to satisfy the design constraints for the highest power generating assembly. The results of this study indicate that the proposed SFR assembly design concept, which adopts graphite-moderating rods which are inserted into the fuel assembly, can feasibly minimize the sodium void reactivity coefficient. Single TRU enrichment and an identical fuel slug diameter throughout the SFR core are also achieved because the radial power peak can be flattened by varying the number of moderating rods in each core region.

  2. Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan

    International Nuclear Information System (INIS)

    Shank, D.R.

    1994-01-01

    This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium

  3. Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan

    Energy Technology Data Exchange (ETDEWEB)

    Shank, D.R.

    1994-12-29

    This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium.

  4. Experimental investigations of heat transfer during sodium boiling in fuel assembly model in justification of advanced fast reactor safety

    International Nuclear Information System (INIS)

    Khafizov, R.R.; Poplavskij, V.M.; Rachkov, V.I.; Sorokin, A.P.; Ashurko, Yu.M.; Volkov, A.V.; Ivanov, E.F.; Privezentsev, V.V.

    2015-01-01

    The experimental facility is built up and investigation of heat exchange during sodium boiling in simulated fast reactor core assembly in conditions of natural and forced circulation with sodium plenum and upper end shield model are conducted. It is shown that in the presence of sodium plenum there is possibility to provide long-term cooling of fuel assembly when heat flux density on the surface of fuel element simulator up to 140 and 170 kW/m 2 in conditions of natural and forced circulation, respectively. The obtained data is used for improving calculational model of sodium boiling process in fuel assembly and calculational code COREMELT verification. It is pointed out that heat transfer coefficients in the case of liquid metal boiling in fuel assemblies are slightly over the ones in the case of liquid metals boiling in pipes and pool boiling [ru

  5. A Neutronic Feasibility Study on the Recycling of an Oxide Fuel in Sodium-Cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Gyu Hong; Choi, Hang Bok

    2006-06-15

    Neutronic feasibility was implemented for the recycling of a mixed oxide fuel in sodium-cooled fast reactors (SFR) through a thermal/mechanical dry process, which is recognized as one of the most proliferation- resistant recycling processes. In order to assess the applicability of a simple dry process which is not capable of completely removing all the fission products from a spent fuel, sensitivity calculations were performed for the reactor physics parameters with a dependency on the fission product removal rate of the recycled spent fuel. The equilibrium core calculations were performed by the REBUS-3 code for a BN-600 core without blanket fuels and a modified core with an increased fuel volume fraction. The reactor performance parameters such as the transuranic content, breeding ratio, peak linear power, burnup reactivity swing and reactivity coefficients were calculated for an equilibrium core under a fixed fuel management scheme. The results showed that a recycling of the oxide fuel in the SFR is feasible if the fission products are removed by more than 70% through the dry process as far as the material balance is concerned. However the physics analysis also showed that some of the physics design parameters are slightly deteriorated. The results of this study indicate that the recycling characteristics can be improved if the dry process can remove more fission products, and the reactor configuration is further optimized or the spent fuel composition is adjusted.

  6. A Neutronic Feasibility Study on the Recycling of an Oxide Fuel in Sodium-Cooled Fast Reactors

    International Nuclear Information System (INIS)

    Roh, Gyu Hong; Choi, Hang Bok

    2006-06-01

    Neutronic feasibility was implemented for the recycling of a mixed oxide fuel in sodium-cooled fast reactors (SFR) through a thermal/mechanical dry process, which is recognized as one of the most proliferation- resistant recycling processes. In order to assess the applicability of a simple dry process which is not capable of completely removing all the fission products from a spent fuel, sensitivity calculations were performed for the reactor physics parameters with a dependency on the fission product removal rate of the recycled spent fuel. The equilibrium core calculations were performed by the REBUS-3 code for a BN-600 core without blanket fuels and a modified core with an increased fuel volume fraction. The reactor performance parameters such as the transuranic content, breeding ratio, peak linear power, burnup reactivity swing and reactivity coefficients were calculated for an equilibrium core under a fixed fuel management scheme. The results showed that a recycling of the oxide fuel in the SFR is feasible if the fission products are removed by more than 70% through the dry process as far as the material balance is concerned. However the physics analysis also showed that some of the physics design parameters are slightly deteriorated. The results of this study indicate that the recycling characteristics can be improved if the dry process can remove more fission products, and the reactor configuration is further optimized or the spent fuel composition is adjusted

  7. Recycling option search for a 600 MWE sodium-cooled transmutation fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Kyo; Kim, Myung Hyun [Dept. of Nuclear Engineering, Kyung Hee University, Yongin (Korea, Republic of)

    2015-02-15

    Four recycling scenarios involving pyroprocessing of spent fuel (SF) have been investigated for a 600-MWe transmutation sodium-cooled fast reactor (SFR), KALIMER. Performance evaluation was done with code system REBUS connected with TRANSX and TWODANT. Scenario Number 1 is the pyroprocessing of Canada deuterium uranium (CANDU) SF. Because the recycling of CANDU SF does not have any safety problems, the CANDU-Pyro- SFR system will be possible if the pyroprocessing capacity is large enough. Scenario Number 2 is a feasibility test of feed SF from a pressurized water reactor PWR. The sensitivity of cooling time before prior to pyro-processing was studied. As the cooling time increases, excess reactivity at the beginning of the equilibrium cycle (BOEC) decreases, thereby creating advantageous reactivity control and improving the transmutation performance of minor actinides. Scenario Number 3 is a case study for various levels of recovery factors of transuranic isotopes (TRUs). If long-lived fission products can be separated during pyroprocessing, the waste that is not recovered is classified as low- and intermediate-level waste, and it is sufficient to be disposed of in an underground site due to very low-heat-generation rate when the waste cooling time becomes >300 years at a TRU recovery factor of 99.9%. Scenario Number 4 is a case study for the recovery factor of rare earth (RE) isotopes. The RE isotope recovery factor should be lowered to 20% in order to make sodium void reactivity less than <7$, which is the design limit of a metal fuel.

  8. Recycling option search for a 600-MWe sodium-cooled transmutation fast reactor

    Directory of Open Access Journals (Sweden)

    Yong Kyo Lee

    2015-02-01

    Full Text Available Four recycling scenarios involving pyroprocessing of spent fuel (SF have been investigated for a 600-MWe transmutation sodium-cooled fast reactor (SFR, KALIMER. Performance evaluation was done with code system REBUS connected with TRANSX and TWODANT. Scenario Number 1 is the pyroprocessing of Canada deuterium uranium (CANDU SF. Because the recycling of CANDU SF does not have any safety problems, the CANDU-Pyro-SFR system will be possible if the pyroprocessing capacity is large enough. Scenario Number 2 is a feasibility test of feed SF from a pressurized water reactor PWR. The sensitivity of cooling time before prior to pyro-processing was studied. As the cooling time increases, excess reactivity at the beginning of the equilibrium cycle (BOEC decreases, thereby creating advantageous reactivity control and improving the transmutation performance of minor actinides. Scenario Number 3 is a case study for various levels of recovery factors of transuranic isotopes (TRUs. If long-lived fission products can be separated during pyroprocessing, the waste that is not recovered is classified as low- and intermediate-level waste, and it is sufficient to be disposed of in an underground site due to very low-heat-generation rate when the waste cooling time becomes >300 years at a TRU recovery factor of 99.9%. Scenario Number 4 is a case study for the recovery factor of rare earth (RE isotopes. The RE isotope recovery factor should be lowered to ≤20% in order to make sodium void reactivity less than <7$, which is the design limit of a metal fuel.

  9. Developments and application of neutron noise diagnostics of sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Zylbersztejn, F.

    2013-01-01

    The Sodium cooled Fast Reactor (SFR) is one of the six reactor types selected by the Generation-IV international forum (GIF), and the building of an industrial prototype is planned in France. The safety standard of the future SFR has to be equivalent to the EPR's. The general improvement of the safety of the new reactor goes through the examination of all the potentially harmful scenarios and both the study and monitoring of early signs. The mechanical deformations of the core can have harmful consequences in sodium fast reactors, such as unexpected power variations due to the reactivity increase in case of core compaction, or the excessive deterioration of the mechanical structures. The monitoring of such phenomena and of their potential early signs is then needed. The monitoring of such phenomena can be done with neutron detectors placed inside and outside the tank. This PhD thesis deals with the study of the neutron noise generated by the periodic deformation of the SFR core, restricted to the so-called core compaction or core flowering phenomenon, a deformation consisting in the variation of the inter-assembly sodium width by a radial bending the assemblies (the assemblies in SFR are held by the base). The PhD thesis has been performed within collaboration between CEA (France) and Chalmers Institute of Technology (Sweden). The work realized during the thesis led to the publication of 3 articles as first author and another as second author. This work has embraced the following topics: A state of the art of the monitoring of the core deformation phenomenon by interpretation of the noise measurements in SFR has been done. The PHENIX reactor multi physics measurements database has been scrutinized to provide an interpretation of the neutron noise bringing out mechanical vibration phenomena. An important conclusion was that the lack of theoretical knowledge about the neutron noise induced by the vibration phenomenon and the ill positioning of the neutron detectors

  10. CFD modeling and thermal-hydraulic analysis for the passive decay heat removal of a sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Hung, T.C.; Dhir, V.K.; Chang, J.C.; Wang, S.K.

    2011-01-01

    Research highlights: → The COOLOD/N2 and PARET/ANL codes were used for a steady-state thermal-hydraulic and safety analysis of the 2 MW TRIGA MARK II reactor located at the Nuclear Studies Center of Maamora (CENM), Morocco. → The main objective of this study is to ensure the safety margins of different safety related parameters by steady-state calculations at full power level (2 MW). → The most important conclusion is that all obtained values of DNBR, fuel center and surface temperature, cladding surface temperature and coolant temperature across the hottest channel are largely far to compromise safety of the reactor. - Abstract: In this study, a pool-typed design similar to sodium-cooled fast reactor (SFR) of the fourth generation reactors has been modeled using CFD simulations to investigate the characteristics of a passive mechanism of Shutdown Heat Removal System (SHRS). The main aim is to refine the reactor pool design in terms of temperature safety margin of the sodium pool. Thus, an appropriate protection mechanism is maintained in order to ensure the safety and integrity of the reactor system during a shutdown mode without using any active heat removal system. The impacts on the pool temperature are evaluated based on the following considerations: (1) the aspect ratio of pool diameter to depth, (2) the values of thermal emissivity of the surface materials of reactor and guard vessels, and (3) innerpool liner and core periphery structures. The computational results show that an optimal pool design in geometry can reduce the maximum pool temperature down to ∼551 o C which is substantially lower than ∼627 o C as calculated for the reference case. It is also concluded that the passive Reactor Air Cooling System (RACS) is effective in removing decay heat after shutdown. Furthermore, thermal radiation from the surface of the reactor vessel is found to be important; and thus, the selection of the vessel surface materials with a high emissivity would be a

  11. Regulatory Technology Development Plan Sodium Fast Reactor. Mechanistic Source Term Development

    Energy Technology Data Exchange (ETDEWEB)

    Grabaskas, David S. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, Acacia Joann [Argonne National Lab. (ANL), Argonne, IL (United States); Bucknor, Matthew D. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sofu, Tanju [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-02-28

    Construction and operation of a nuclear power installation in the U.S. requires licensing by the U.S. Nuclear Regulatory Commission (NRC). A vital part of this licensing process and integrated safety assessment entails the analysis of a source term (or source terms) that represents the release of radionuclides during normal operation and accident sequences. Historically, nuclear plant source term analyses have utilized deterministic, bounding assessments of the radionuclides released to the environment. Significant advancements in technical capabilities and the knowledge state have enabled the development of more realistic analyses such that a mechanistic source term (MST) assessment is now expected to be a requirement of advanced reactor licensing. This report focuses on the state of development of an MST for a sodium fast reactor (SFR), with the intent of aiding in the process of MST definition by qualitatively identifying and characterizing the major sources and transport processes of radionuclides. Due to common design characteristics among current U.S. SFR vendor designs, a metal-fuel, pool-type SFR has been selected as the reference design for this work, with all phenomenological discussions geared toward this specific reactor configuration. This works also aims to identify the key gaps and uncertainties in the current knowledge state that must be addressed for SFR MST development. It is anticipated that this knowledge state assessment can enable the coordination of technology and analysis tool development discussions such that any knowledge gaps may be addressed. Sources of radionuclides considered in this report include releases originating both in-vessel and ex-vessel, including in-core fuel, primary sodium and cover gas cleanup systems, and spent fuel movement and handling. Transport phenomena affecting various release groups are identified and qualitatively discussed, including fuel pin and primary coolant retention, and behavior in the cover gas and

  12. Proliferation resistance of a hypothetical sodium fast reactor under an assumed breakout scenario

    Energy Technology Data Exchange (ETDEWEB)

    Whitlock, Jeremy [Non-Proliferation and Safeguards, AECL Chalk River Laboratories, Stn. 91, Chalk River, Ontario, K0J 1J0 (Canada); Inoue, Naoko; Senzaki, Masao [Japan Atomic Energy Agency - JAEA (Japan); Bley, Dennis [Buttonwood Consulting Inc., Oakton, VA (United States); Wonder, Ed [National Nuclear Security Administration, Department of Energy (United States)

    2009-06-15

    The Proliferation Resistance and Physical Protection (PR and PP) Working Group of the Generation IV International Forum (GIF) conducted a high-level pathway analysis of a hypothetical sodium fast reactor and integral fuel processing facility (called collectively the 'Example Sodium Fast Reactor' or ESFR), as a test of the effectiveness of its analysis methodology. From a common set of assumed host-state capabilities and objectives, a number of threat scenarios emerge (Concealed Diversion, Concealed Misuse, Breakout or Overt Misuse, and Theft/Sabotage). This paper presents the results of the analysis based on the Breakout scenario. A distinguishing aspect of Breakout scenario consideration concerns the optimal use of the time from breakout to weapons readiness, which is related to the Proliferation Time measure. The goal of analyzing the breakout scenario was therefore to complement other analyses involving the Concealed Misuse and Diversion scenarios by exploring the minimum post-breakout time to weapons readiness. Four target strategies were chosen for analysis: (1) Diversion of LEU feed material at front-end of the ESFR facility; (2) Misuse of the reactor facility to irradiate fertile material; (3) Misuse of the reactor facility to irradiate material in the in-core fuel storage basket; and (4) Misuse of the fuel processing facility to higher-purity TRU. The investigation identified several general 'sub-strategies' within the Breakout scenario, dependent upon the aggressiveness with which a State pursues its intent to break out (including its aversion to the risk of detection). The sub-strategy chosen by a proliferant state will affect both the time available and potential complexity for proliferation activities. The sub-strategy chosen is itself affected by political factors (foreign relations agenda of state, probability of external intervention after breakout, external dependence of proliferant state's supply chain, etc.) These factors

  13. The collaboration of Japan and France on the design of ASTRID sodium fast reactor

    International Nuclear Information System (INIS)

    Varaine, Frederic; Rodriguez, Gilles; Hamy, Jean-Marie; Hayafune, Hiroki; Iitsuka, Toru; Mochida, Haruo

    2017-01-01

    Since the beginning (2010), the management of ASTRID project was organized around a strong involvement of industrial partners in the reactor design. The ASTRID project has now entered into its Basic Design phase (duration from year 2016 to 2019) with fourteen industrial partners. Since 2014, a partnership with Japanese nuclear institutes and industries is effective on two main items: ASTRID reactor design studies and R and D in support of Sodium Fast Reactors (SFR). This French-Japanese collaboration on ASTRID Program and Sodium Fast Reactor has been set up in two steps: the signature of a General Arrangement between CEA and the representatives of MEXT and METI on May 5th, 2014; and in a second step, an Implementing Arrangement signed the same year on August 7th by CEA, AREVA NP, JAEA, MHI and MFBR. This collaboration of a significant level is foreseen to run at least up to the end of 2019. At the beginning, the collaborative work (input data, planning and deliverables) was divided in 29 Task Sheets covering ASTRID design (3 Task Sheets) and R and D (26 Tasks Sheets). Since 2016, the contribution of JAEA / MHI-MFBR to the ASTRID reactor engineering studies has significantly raised, passing from 3 to 9 Design Task Sheets. Thus, even if the cooperation is recent, the cooperation between CEA, AREVA NP, JAEA, MHI-MFBR is fruitful and it has been planned by all parties to enlarge Japanese contribution to a process called “Joint Evaluation” to prepare future Joint Design. This paper aims at the overview of the significant involvement of JAEA / MHI-MFBR in the ASTRID design studies through these 9 Task Sheets, covering in particular the design of an active decay heat removal system, and of a passive reactor shutdown system based on a Curie point electromagnet system. MHI / MFBR teams are also implies in fabricability studies of complex component such as the Above Core Structure or the Polar Table. In addition the new Task Sheets are now focusing on thermal

  14. On the use of a moderation layer to improve the safety behavior in sodium cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Merk, Bruno, E-mail: b.merk@fzd.de [Institute of Safety Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Fridman, Emil; Weiss, Frank-Peter [Institute of Safety Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany)

    2011-05-15

    Research highlights: > Using a moderation layer can reduce the sodium void effect in a SFR. > Inserting the moderation layer improves the Doppler effect significantly. > The uniform layer distribution avoids effects on power and burnup distribution. > Hydride containing material like uranium-zirconium hydride is most efficient. - Abstract: This work shows the effect of the use of moderating layers on the sodium void effect in sodium cooled fast breeder reactors. The moderating layers consisting of either boron carbide B{sub 4}C or uranium-zirconium hydride UZrH cause a strong reduction of the sodium void effect. Additionally these layers improve the fuel temperature effect and the coolant effect of the system. The use of the UZrH is significantly more effective for the reduction of the sodium void effect as well as for the improvement of the fuel temperature and the coolant effect. All changes cause by the insertion of the UZrH layer cause a significantly increased stability of the fast reactor system against transients. The moderating layers have only a small influence on the breeding effect and on the production of minor actinides.

  15. Treatment of Residual Sodium and Sodium Potassium from Fast Reactors. Review of Recent Accomplishments, Challenges and Technologies

    International Nuclear Information System (INIS)

    2015-08-01

    In addition to the usual radiation and conventional hazards present during the decommissioning of disused nuclear installations, the presence of residual sodium or the alloy sodium potassium — used in primary, secondary and support systems in reactors using liquid metal as a coolant — presents additional technical, safety and cost challenges for decommissioning. This results from the propensity of these materials to react exothermically with water and moisture in the air potentially resulting in toxic and explosive reactionsThis publication discusses a variety of treatment methods to be considered when dismantling components that still contain residual quantities of sodium or sodium potassium, several of which were presented as contributed papers to the IAEA session during the 5. International Conference and Exhibition on Decommissioning Challenges, in Avignon, France, 7–11 April 2013. The publication provides a synthesis of information presented during the session, which was developed further at a consultants meeting held in Vienna, 2–6 December 2013. Decommissioning challenges faced at eight different facilities in five different countries are discussed, as well as the achievements and lessons learned that are of value to the worldwide decommissioning community

  16. Self powered neutron detectors as in-core detectors for Sodium-cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Verma, V., E-mail: vasudha.verma@physics.uu.se [Division of Applied Nuclear Physics, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-lez-Durance (France); Barbot, L.; Filliatre, P. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-lez-Durance (France); Hellesen, C. [Division of Applied Nuclear Physics, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Jammes, C. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-lez-Durance (France); Svärd, S. Jacobsson [Division of Applied Nuclear Physics, Uppsala University, Box 516, SE-75120 Uppsala (Sweden)

    2017-07-11

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor. Diverse possibilities of detector system installation must be studied for various locations in the reactor vessel in order to detect any perturbations in the core. Results from a previous paper indicated that it is possible to detect changes in neutron source distribution initiated by an inadvertent withdrawal of outer control rod with in-vessel fission chambers located azimuthally around the core. It is, however, not possible to follow inner control rod withdrawal and precisely know the location of the perturbation in the core. Hence the use of complimentary in-core detectors coupled with the peripheral fission chambers is proposed to enable robust core monitoring across the radial direction. In this paper, we assess the feasibility of using self-powered neutron detectors (SPNDs) as in-core detectors in fast reactors for detecting local changes in the power distribution when the reactor is operated at nominal power. We study the neutron and gamma contributions to the total output current of the detector modelled with Platinum as the emitter material. It is shown that this SPND placed in an SFR-like environment would give a sufficiently measurable prompt neutron induced current of the order of 600 nA/m. The corresponding induced current in the connecting cable is two orders of magnitude lower and can be neglected. This means that the SPND can follow in-core power fluctuations. This validates the operability of an SPND in an SFR-like environment. - Highlights: • Studied possibility of using SPNDs as in-core detectors in SFRs. • Study done to detect local power profile changes when reactor is at nominal power. • SPND with a Pt-emitter gives measurable prompt current of the order of 600 nA/m. • Dominant proportion of prompt response is maintained throughout the operation. • Detector signal gives dynamic information on the power fluctuations.

  17. RANS-based CFD simulations of sodium fast reactor wire-wrapped pin bundles

    International Nuclear Information System (INIS)

    Pointer, W. D.; Thomas, J.; Fanning, T.; Fischer, P.; Siegel, A.; Smith, J.; Tokuhiro, A.

    2009-01-01

    In response to recent renewed interest in the development of advanced fast reactors, an effort is underway to develop a high-performance computational multi-physics simulation suite for the design and safety analysis of sodium cooled fast reactors. Within the multi-resolution thermal-hydraulics simulation component of this framework, high-resolution spectral large eddy simulation methods are used to improve turbulence models from coarser resolution Reynolds-averaged Navier-Stokes methods, and in turn, that data is used to improve or extend correlations used in traditional sub-channel tools. These ongoing studies provide the foundation for the development of the intermediate RANS-based resolution level. Prior work has focused on the benchmarking of flow field predictions on in 7-pin, 19-pin, and 37-pin fuel assemblies. The present work extends these studies to 217-pin assemblies in support of initial efforts to benchmark heat transfer predictions using the RANS models against conventional sub-channel models. In an effort to reduce the number of computational cells required to describe a 217-pin geometry, the effects of simplification of the geometric description of the contact point between the wire and the pin are investigated. The advantages of using polyhedral-based meshing methods rather than trimmed cell meshing methods have been demonstrated, and the effects of changes in axial mesh resolution in these meshes have been investigated. Results show that the geometric simplification has little impact on predicted flow fields, as does the use of a polyhedral mesh of comparable mesh density in place of the original trimmed cell mesh. While reducing axial mesh density has a notable impact on the velocity field, reducing predicted exchange velocities between adjacent subchannels by as much 25%, the impact on predicted temperature fields is negligible. (authors)

  18. Self powered neutron detectors as in-core detectors for Sodium-cooled Fast Reactors

    Science.gov (United States)

    Verma, V.; Barbot, L.; Filliatre, P.; Hellesen, C.; Jammes, C.; Svärd, S. Jacobsson

    2017-07-01

    Neutron flux monitoring system forms an integral part of the design of a Generation IV sodium cooled fast reactor. Diverse possibilities of detector system installation must be studied for various locations in the reactor vessel in order to detect any perturbations in the core. Results from a previous paper indicated that it is possible to detect changes in neutron source distribution initiated by an inadvertent withdrawal of outer control rod with in-vessel fission chambers located azimuthally around the core. It is, however, not possible to follow inner control rod withdrawal and precisely know the location of the perturbation in the core. Hence the use of complimentary in-core detectors coupled with the peripheral fission chambers is proposed to enable robust core monitoring across the radial direction. In this paper, we assess the feasibility of using self-powered neutron detectors (SPNDs) as in-core detectors in fast reactors for detecting local changes in the power distribution when the reactor is operated at nominal power. We study the neutron and gamma contributions to the total output current of the detector modelled with Platinum as the emitter material. It is shown that this SPND placed in an SFR-like environment would give a sufficiently measurable prompt neutron induced current of the order of 600 nA/m. The corresponding induced current in the connecting cable is two orders of magnitude lower and can be neglected. This means that the SPND can follow in-core power fluctuations. This validates the operability of an SPND in an SFR-like environment.

  19. Optimization of material and production to develop fluoroelastomer inflatable seals for sodium cooled fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, N.K., E-mail: nksinha@igcar.gov.i [Indira Gandhi Centre for Atomic Research (IGCAR), Department of Atomic Energy (DAE), Kalpakkam, Tamilnadu 603102 (India); Raj, Baldev, E-mail: dir@igcar.gov.i [Indira Gandhi Centre for Atomic Research (IGCAR), Department of Atomic Energy (DAE), Kalpakkam, Tamilnadu 603102 (India)

    2011-03-15

    Research highlights: Production of thin fluoroelastomer profiles by cold feed extrusion and continuous cure involving microwave and hot air heating. Use of peroxide curing in air during production. Use of fluoroelastomers based on advanced polymer architecture (APA) for the production of profiles. Use of the profiles in inflatable seals for critical application of Prototype Fast Breeder Reactor. Tailoring of material formulation by synchronized optimization of material and production technologies to ensure that the produced seal ensures significant gains in terms of performance and safety in reactor under synergistic influences of temperature, radiation, air and sodium aerosol. - Abstract: The feasibility of producing thin-walled fluoroelastomer profiles under continuous, atmospheric-pressure vulcanization conditions in air has been demonstrated by successful manufacture of {approx}2 m diameter test inflatable seals for the 500 MWe, Prototype Fast Breeder Reactor (PFBR) using a 50/50 blend formulation of Viton GBL-200S/600S based on advanced polymer architecture (APA). A commercial cold feed screw extruder with 90 mm diameter screw was used along with continuous cure by microwave (2.45 GHz) and hot air heating (190 {sup o}C) at a line speed of 1 m/min to produce the seals. The blend formulation promises significant improvement in the performance and safety of the seals. This article depicts the relevant characteristics of the original inflatable seal compound that was used as reference to achieve the objectives through synchronized optimization of material and production technologies. The production trials are outlined and the blend formulation used with minor factory modifications to produce the test seals is reported. Progressive refinements of the original, Viton A-401C based compound to the blend formulation is presented along with an assessment of potential performance gains. Possible uses of the reported formulation and production technique for other large

  20. Optimization of material and production to develop fluoroelastomer inflatable seals for sodium cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Sinha, N.K.; Raj, Baldev

    2011-01-01

    Research highlights: → Production of thin fluoroelastomer profiles by cold feed extrusion and continuous cure involving microwave and hot air heating. → Use of peroxide curing in air during production. → Use of fluoroelastomers based on advanced polymer architecture (APA) for the production of profiles. → Use of the profiles in inflatable seals for critical application of Prototype Fast Breeder Reactor. → Tailoring of material formulation by synchronized optimization of material and production technologies to ensure that the produced seal ensures significant gains in terms of performance and safety in reactor under synergistic influences of temperature, radiation, air and sodium aerosol. - Abstract: The feasibility of producing thin-walled fluoroelastomer profiles under continuous, atmospheric-pressure vulcanization conditions in air has been demonstrated by successful manufacture of ∼2 m diameter test inflatable seals for the 500 MWe, Prototype Fast Breeder Reactor (PFBR) using a 50/50 blend formulation of Viton GBL-200S/600S based on advanced polymer architecture (APA). A commercial cold feed screw extruder with 90 mm diameter screw was used along with continuous cure by microwave (2.45 GHz) and hot air heating (190 o C) at a line speed of 1 m/min to produce the seals. The blend formulation promises significant improvement in the performance and safety of the seals. This article depicts the relevant characteristics of the original inflatable seal compound that was used as reference to achieve the objectives through synchronized optimization of material and production technologies. The production trials are outlined and the blend formulation used with minor factory modifications to produce the test seals is reported. Progressive refinements of the original, Viton A-401C based compound to the blend formulation is presented along with an assessment of potential performance gains. Possible uses of the reported formulation and production technique for

  1. Radiation heat transfer through the gas of a sodium cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Pradel, P.; Frachet, S.; Petit, D.

    1984-04-01

    Analysis based on results from the COCA test campaign and Germinal mockup of Super Phenix upper shuttings, of the heat transfers and radiation attenuation due to sodium aerosols between the free surface of sodium and the upper shuttings

  2. Contribution to the prediction of sodium-water reactions effects: application to confinement losses inside a steam generator building of a sodium fast reactor

    International Nuclear Information System (INIS)

    Daudin, Kevin

    2015-01-01

    Study of sodium-water reaction (SWR) consequences in open air represents a challenge in the frame of safety assessments of sodium fast reactors (SFR). In case of major accident and to predict consequences of SWR, it is necessary to better appreciate phenomena and especially quantity and rate of the energy release. The objective is thus to strengthen the understanding of such reactions in order to predict with lore accuracy its consequences on mechanical equipment in the surroundings. This work focuses on three areas : research of accidental sequences, experimental investigation, and phenomenological analysis before the explosive contact. At first, a tree structure risk analysis with calculations of dangerous phenomena permitted to suggest how the contact between reactants may happen. Then, demonstrative experimental studies were performed to deepen some practical aspects of the phenomenology, like the influence of the way the reactants get in contact. Data analysis conducted to the development of a phenomenological model, implemented into a software platform for numerical simulations. Although numerous hypothesis, transient heat transfer consideration enables to reproduce experimental observations, especially the influence of mixing conditions (sodium mass and initial temperatures) on the phenomenology. This study of the premixing step of sodium-water explosion is relevant in the frame of current prediction methods of mechanical loadings on structures. (author) [fr

  3. Numerical study of the underexpanded nitrogen jets submerged into liquid sodium in the frame of Sodium-cooled Fast Reactor (SFRs)

    International Nuclear Information System (INIS)

    Chen, F.; Allou, A.; Parisse, J.D.

    2017-01-01

    The study of the consequences of a gas leakage in the secondary/ tertiary heat exchangers is one of the essential points in the safety analysis of Sodium-cooled Fast nuclear Reactors (SFRs). This work is in the frame of the technology of the Compact plates Sodium-Gas heat Exchangers (ECSG) which is an alternative to conventional steam Rankine cycles. The overpressure of the tertiary nitrogen loop causes the formation of underexpanded gas jets submerged in the liquid sodium. In order to establish a safety evaluation, it would be an asset to be able to estimate the leakage. The gas leak detection by the acoustic method based on the bubbles field has been proposed. It requires then a delicate knowledge of the bubble field. This work contributes to development a numerical tool and its validation to model the transport and the production of bubbles in the downstream of underexpanded gas jets. The code CANOP modeling bi-phasic compressible flow is investigated under the actual condition of the underexpanded nitrogen jets submerged in the liquid sodium in an ECSG channel. Expensive computational cost is limited by using an Adaptive Mesh Refinement. (author)

  4. Urinary potassium to urinary potassium plus sodium ratio can accurately identify hypovolemia in nephrotic syndrome: a provisional study.

    Science.gov (United States)

    Keenswijk, Werner; Ilias, Mohamad Ikram; Raes, Ann; Donckerwolcke, Raymond; Walle, Johan Vande

    2018-01-01

    There is evidence pointing to a decrease of the glomerular filtration rate (GFR) in a subgroup of nephrotic children, likely secondary to hypovolemia. The aim of this study is to validate the use of urinary potassium to the sum of potassium plus sodium ratio (UK/UK+UNa) as an indicator of hypovolemia in nephrotic syndrome, enabling detection of those patients who will benefit from albumin infusion. We prospectively studied 44 nephrotic children and compared different parameters to a control group (36 children). Renal perfusion and glomerular permeability were assessed by measuring clearance of para-aminohippurate and inulin. Vaso-active hormones and urinary sodium and potassium were also measured. Subjects were grouped into low, normal, and high GFR groups. In the low GFR group, significantly lower renal plasma flow (p = 0.01), filtration fraction (p = 0.01), and higher UK/UK+UNa (p = 0.03) ratio were noted. In addition, non-significant higher plasma renin activity (p = 0.11) and aldosteron (p = 0.09) were also seen in the low GFR group. A subgroup of patients in nephrotic syndrome has a decrease in glomerular filtration, apparently related to hypovolemia which likely can be detected by a urinary potassium to potassium plus sodium ratio > 0.5-0.6 suggesting benefit of albumin infusion in this subgroup. What is Known: • Volume status can be difficult to assess based on clinical parameters in nephrotic syndrome, and albumin infusion can be associated with development of pulmonary edema and fluid overload in these patients. What is New: • Urinary potassium to the sum of urinary potassium plus sodium ratio can accurately detect hypovolemia in nephrotic syndrome and thus identify those children who would probably respond to albumin infusion.

  5. Objective Provision Trees of Reactivity Control Safety Function for Sodium-Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Kang, Bongsuk; Yang, Huichang; Suh, Namduk

    2014-01-01

    The purpose of this OPT is first to assure the DiD design during the licensing of Sf, but it will also contribute in evaluating the completeness of regulatory requirements under development by Korea Institute of Nuclear Safety (KINS). Based on the definition of Defense-in-Depth (DiD) levels and safety functions for KALIMER Sodium-Cooled Fast Reactor (SFR), suggested in the reference and, Objective Provision Trees (OPTs) of reactivity control function for level 1, 2, 3 and 4 DiD were developed and suggested in this paper. The challenges and mechanisms and provisions were briefly explained in this paper. Comparing the mechanisms and provisions with the requirements will contribute in identifying the missing requirements. Since the design of Prototype Gen-IV Sf (PGSFR) is not mature yet, the OPT is developed for KALIMER design. Developed level 1 to 4 OPTs in this study can be used for the identification of potential design vulnerabilities. When detailed identification of provisions in terms of design features were achieved through the next step of this study, it can contribute to the establishment of defense-in-depth evaluation frame for the regulatory reviews for the licensing process. In the next stage of this study, other safety function will be researched and findings can be suggested as recommendations for the safety improvement

  6. Compact sodium cooled nuclear power plant with fast core (KNK II- Karlsruhe), Safety Report

    International Nuclear Information System (INIS)

    1977-09-01

    After the operation of the KNK plant with a thermal core (KNK I), the installation of a fast core (KNK II) had been realized. The planning of the core and the necessary reconstruction work was done by INTERATOM. Owner and customer was the Nuclear Research Center Karlsruhe (KfK), while the operating company was the Kernkraftwerk-Betriebsgesellschaft mbH (KBG) Karlsruhe. The main goals of the KNK II project and its special experimental test program were to gather experience for the construction, the licensing and operation of future larger plants, to develop and to test fuel and absorber assemblies and to further develop the sodium technology and the associated components. The present safety report consists of three parts. Part 1 contains the description of the nuclear plant. Hereby, the reactor and its components, the handling facilities, the instrumentation with the plant protection, the design of the plant including the reactor core and the nominal operation processes are described. Part 2 contains the safety related investigation and measures. This concerns the reactivity accidents, local cooling perturbations, radiological consequences with the surveillance measures and the justification of the choice of structural materials. Part three finally is the appendix with the figures, showing the different buildings, the reactor and its components, the heat transfer systems and the different auxiliary facilities [de

  7. Objective Provision Trees of Reactivity Control Safety Function for Sodium-Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Bongsuk; Yang, Huichang [TUEV Rheinland Korea Ltd., Seoul (Korea, Republic of); Suh, Namduk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-05-15

    The purpose of this OPT is first to assure the DiD design during the licensing of Sf, but it will also contribute in evaluating the completeness of regulatory requirements under development by Korea Institute of Nuclear Safety (KINS). Based on the definition of Defense-in-Depth (DiD) levels and safety functions for KALIMER Sodium-Cooled Fast Reactor (SFR), suggested in the reference and, Objective Provision Trees (OPTs) of reactivity control function for level 1, 2, 3 and 4 DiD were developed and suggested in this paper. The challenges and mechanisms and provisions were briefly explained in this paper. Comparing the mechanisms and provisions with the requirements will contribute in identifying the missing requirements. Since the design of Prototype Gen-IV Sf (PGSFR) is not mature yet, the OPT is developed for KALIMER design. Developed level 1 to 4 OPTs in this study can be used for the identification of potential design vulnerabilities. When detailed identification of provisions in terms of design features were achieved through the next step of this study, it can contribute to the establishment of defense-in-depth evaluation frame for the regulatory reviews for the licensing process. In the next stage of this study, other safety function will be researched and findings can be suggested as recommendations for the safety improvement.

  8. Safety approach and R and D program for future french sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Beils, Stephane; Carluec, Bernard; Devictor, Nicolas; Fiorini, Gian Luigi; Sauvage, Jean Francois

    2011-01-01

    This paper presents briefly the safety approach as well as the R and D program that is underway to support the deployment of future French Sodium-Cooled fast Reactors (SFRs): A) Safety objectives and principles for future reactors. The content of the first section reflects the works of AREVA, CEA, and EDF concerning the safety orientations for the future reactors. The availability of such orientations and requirements for the SFRs has to allow introducing and managing the process that will lead to the detailed definition of the safety approach, to the selection of the corresponding safety options, and to the identification and motivation of the supporting R and D. B) Strategy and roadmap in support of the R and D for future SFRs. This section describes the R and D program led jointly by CEA, EDF, and AREVA, which has been developed with the objectives to be able to preliminarily define, by 2012, the safety orientations for the future SFRs, and to deduce from them the characteristics of the ASTRID prototype. (author)

  9. Fabrication of uranium alloy fuel slug for sodium-cooled fast reactor by injection casting

    International Nuclear Information System (INIS)

    Jong Hwan Kim; Hoon Song; Ki Hwan Kim; Chan Bock Lee

    2014-01-01

    Metal fuel slugs of U-Zr alloys for a sodium-cooled fast reactor (SFR) have been fabricated using an injection casting method. However, casting alloys containing volatile radioactive constituents such as Am can cause problems in a conventional injection casting method. Therefore, in this study, several injection-casting methods were applied to evaluate the volatility of the metal-fuel elements and control the transport of volatile elements. Mn was selected as a volatile surrogate alloy since it possesses a total vapor pressure equivalent to that of minor actinide-bearing fuels for SFRs. U-10 wt% Zr and U-10 wt% Zr-5 wt% Mn metal fuels were prepared, and the casting processes were evaluated. The casting soundness of the fuel slugs was characterized by gamma-ray radiography and immersion density measurements. Inductively coupled plasma atomic emission spectroscopy was used to determine the chemical composition of fuel slugs. Fuel losses after casting were also evaluated according to the casting conditions. (author)

  10. Uranium and thorium cycles for sodium fast reactors: Neutronic aspects and associated wastes

    International Nuclear Information System (INIS)

    Brizi, J.

    2010-10-01

    Sodium fast reactors (SFR-Na) with uranium 238/plutonium 239(U/Pu) cycle, its technical feasibility has already proven, allow to overcome the problem of natural uranium resources in achieving the regeneration of the fuel fissile element. In addition, a waste management can be performed to reduce the radiotoxicity of actinides produced by the reactor in transmuting the AM in the core (homogeneous transmutation). Another alternative to minimize waste is to use another couple fertile-fissile: the thorium 232 and the uranium 233 (Th/U). The comparison is performed on neutronic and safety aspects and on waste production, in using an evolutive Monte Carlo. Although one does not disclose real clear advantages concerning the radiotoxicity of wastes for a particular cycle, the Th/U cycle reduces the radiotoxicity during periods when it is the highest. The homogeneous transmutation minimizes significantly for both cycles, radiotoxicity of wastes, with different factors depending on the considered time period. However, it is done to the detriment of an important increase of AM in the core. If we consider the nuclear stop, the inventory of the reactor core becomes a waste. The gain provided by the transmutation, taking into account both the core and accumulated waste radio-toxicities, will be quantified, and shows the transmutation does not provide a significant gain if the burning of main fissile elements is not considered when the nuclear is stopped. (author)

  11. Definition of a Robust Supervisory Control Scheme for Sodium-Cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ponciroli, R.; Passerini, S.; Vilim, R. B.

    2016-04-17

    In this work, an innovative control approach for metal-fueled Sodium-cooled Fast Reactors is proposed. With respect to the classical approach adopted for base-load Nuclear Power Plants, an alternative control strategy for operating the reactor at different power levels by respecting the system physical constraints is presented. In order to achieve a higher operational flexibility along with ensuring that the implemented control loops do not influence the system inherent passive safety features, a dedicated supervisory control scheme for the dynamic definition of the corresponding set-points to be supplied to the PID controllers is designed. In particular, the traditional approach based on the adoption of tabulated lookup tables for the set-point definition is found not to be robust enough when failures of the implemented SISO (Single Input Single Output) actuators occur. Therefore, a feedback algorithm based on the Reference Governor approach, which allows for the optimization of reference signals according to the system operating conditions, is proposed.

  12. Conceptual Design for BOP of the Sodium-Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Yoo, Tae Geun; Kim, Seong O; Kim, Eui Kwang; Seong, Seung Hwan

    2010-01-01

    The heavy dependence on nuclear power eventually raise the issues of an efficient utilization of uranium resources, which Korea presently imports from abroad, end of a spent fuel storage. From the viewpoint that sodium-cooled fast Reactors (SFR s ) have the potential of an enhanced safety by utilizing inherent safety characteristics, trans-uranics (TRU) reduction and resolving the spent fuel storage problems through a proliferation-resistant actinide recycling. SFR s are sure to be most promising nuclear power operation. The Korea Atomic Energy Research Institute (KAERI) has been developing SFR design technologies since 1997. And nowadays, the preliminary heat balance of the demonstration SFR is calculated. However, in order to verify design condition of the NSSS, it is necessary to set the heat balance and the conceptual design for BOP of the SFR as a part of the SFR design technique development business. Moreover, in order to confirm whether the heat balance can actually appropriate via the turbine characteristic, it is required to carry out the performance analysis of the turbine cycle. For that, the main purposes of this study are; 1) to derivate the conceptual design for BOP, 2) to analyze the performance of the turbine cycle, 3) to derivate the main consideration for BOP design

  13. Preapplication safety evaluation report for the Sodium Advanced Fast Reactor (SAFR) liquid-metal reactor

    International Nuclear Information System (INIS)

    King, T.L.; Landry, R.R.; Throm, E.D.; Wilson, J.N.

    1991-12-01

    This safety evaluation report (SER) presents the final results of a preapplication design review for the Sodium Advanced Fast Reactor (SAFR) liquid metal reactor (Project 673). The SAFR conceptual design was submitted by the US Department of Energy (DOE) in accordance with the US Nuclear Regulatory Commission (NRC) ''Statement of Policy for the Regulation of Advanced Nuclear Power Plants'' (51 FR 24643 which provides for the early Commission review and interaction). The standard SAFR plant design consists of four identical reactor modules, referred to as ''paks,'' each with a thermal output rating of 900 MWt, coupled with four steam turbine-generator sets. The total electrical output was held to be 1400 MWe. This SER represents the NRC staff's preliminary technical evaluation of the safety features in the SAFR design. It must be recognized that final conclusions in all matters discussed in this SER require approval by the Commission. During the NRC staff review of the SAFR conceptual design, DOE terminated work on this design in September 1988. This SER documents the work done to that date and no additional work is planned for the SAFR

  14. A prospective study of power cycles based on the expected sodium fast reactor parameters

    International Nuclear Information System (INIS)

    Herranz, L. E.; Linares, J. I.; Moratilla, B. Y.; Perez, G. D.

    2010-01-01

    One of the main issues that has not been solved yet in the frame of Sodium Fast Reactors (SFR) is to choose the most appropriate power conversion system. This paper explores the performance of different power cycles, from traditional to innovative layouts trying to find the optimized solution. Based on the expected reactor parameters (i.e., inlet and outlet coolant temperatures, 395 deg.C and 545 deg.C, respectively), a subcritical Rankine similar to those of fossil power plant cycles has been proposed as a reference layout. Then, alternative layouts based on innovative Rankine and Brayton cycles have been investigated. Two Rankine supercritical layouts have been modeled and analyzed: one of them, adopted from the Supercritical Water Reactor of GIV (one reheater, nine pre-heaters and one moisture separator) and the other similar to some fossil plants (two reheaters, nine pre-heaters with no moisture separator). Simple Brayton cycle configurations based on Helium has been also studied. Several layouts have been modeled to study the effects of: inter-cooling between compression stages, absence of an intermediate loop and coupling of an organic Rankine cycle (ORC). (authors)

  15. Development of extreme rainfall PRA methodology for sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Nishino, Hiroyuki; Kurisaka, Kenichi; Yamano, Hidemasa

    2016-01-01

    The objective of this study is to develop a probabilistic risk assessment (PRA) methodology for extreme rainfall with focusing on decay heat removal system of a sodium-cooled fast reactor. For the extreme rainfall, annual excess probability depending on the hazard intensity was statistically estimated based on meteorological data. To identify core damage sequence, event trees were developed by assuming scenarios that structures, systems and components (SSCs) important to safety are flooded with rainwater coming into the buildings through gaps in the doors and the SSCs fail when the level of rainwater on the ground or on the roof of the building becomes higher than thresholds of doors on first floor or on the roof during the rainfall. To estimate the failure probability of the SSCs, the level of water rise was estimated by comparing the difference between precipitation and drainage capacity. By combining annual excess probability and the failure probability of SSCs, the event trees led to quantification of core damage frequency, and therefore the PRA methodology for rainfall was developed. (author)

  16. sodium

    International Development Research Centre (IDRC) Digital Library (Canada)

    Les initiatives de réduction de la consommation de sel qui visent l'ensemble de la population et qui ciblent la teneur en sodium des aliments et sensibilisent les consommateurs sont susceptibles de réduire la consommation de sel dans toutes les couches de la population et d'améliorer la santé cardiovasculaire. Ce projet a ...

  17. Sodium aerosol behavior in liquid-metal fast breeder reactor containments

    International Nuclear Information System (INIS)

    Jordan, S.; Cherdron, W.; Malet, J.C.; Rzekiecki, R.; Himeno, Y.

    1988-01-01

    A tripartite consortium DEBENE (Deutschland-Belgium-Netherlands), Japan, and France studied the sodium evaporation process of aerosols in a sodium fire. In an inert atmosphere, experimental and theoretical condensation rates were compared and indicated sodium hydride (NaH) to be the foreign nucleus for mist formation. In a normal atmosphere, the physicochemical characteristics of the aerosols produced by a sodium fire and their evolution in containment or in the environment were determined; models enabling the various countries to achieve harmonious results were derived. The proper functioning of the components, guaranteeing perfect operation during and after a sodium fire accident, was tested

  18. Study on flow-induced vibration of large-diameter pipings in a sodium-cooled fast reactor. Influence of elbow curvature on velocity fluctuation field

    International Nuclear Information System (INIS)

    Ono, Ayako; Kimura, Nobuyuki; Kamide, Hideki; Tobita, Akira

    2010-02-01

    The main cooling system of Japan Sodium-cooled Fast Reactor (JSFR) consists of two loops to reduce the plant construction cost. In the design of JSFR, sodium coolant velocity is beyond 9m/s in the primary hot leg pipe with large-diameter (1.3m). The maximum Reynolds number in the piping reaches 4.2x10 7 . The hot leg pipe having a 90 degree elbow with curvature ratio of r/D=1.0, so-called 'short elbow', which enables a compact reactor vessel. In sodium cooled fast reactors, the system pressure is so low that thickness of pipings in the cooling system is thinner than that in LWRs. Under such a system condition in the cooling system, the flow-induced vibration (FIV) is concerned at the short elbow. The evaluation of the structural integrity of pipings in JSFR should be conducted based on a mechanistic approach of FIV at the elbow. It is significant to obtain the knowledge of the fluctuation intensity and spectra of velocity and pressure fluctuations in order to grasp the mechanism of the FIV. In this study, water experiments were conducted. Two types of 1/8 scaled elbows with different curvature ratio, r/D=1.0, 1.5, were used to investigate the influence of curvature on velocity fluctuation at the elbow. The velocity fields in the elbows were measured using a high speed PIV method. Unsteady behavior of secondary flow at the elbow outlet and separation flow at the inner wall of elbow were observed in the two types of elbows. It was found that the growth of secondary flow correlated with the flow fluctuation near the inside wall of the elbow. (author)

  19. Temporal trends in fast-food restaurant energy, sodium, saturated fat, and trans fat content, United States, 1996-2013.

    Science.gov (United States)

    Urban, Lorien E; Roberts, Susan B; Fierstein, Jamie L; Gary, Christine E; Lichtenstein, Alice H

    2014-12-31

    Excess intakes of energy, sodium, saturated fat, and trans fat are associated with increased risk for cardiometabolic syndrome. Trends in fast-food restaurant portion sizes can inform policy decisions. We examined the variability of popular food items in 3 fast-food restaurants in the United States by portion size during the past 18 years. Items from 3 national fast-food chains were selected: French fries, cheeseburgers, grilled chicken sandwich, and regular cola. Data on energy, sodium, saturated fat, and trans fat content were collated from 1996 through 2013 using an archival website. Time trends were assessed using simple linear regression models, using energy or a nutrient component as the dependent variable and the year as the independent variable. For most items, energy content per serving differed among chain restaurants for all menu items (P ≤ .04); energy content of 56% of items decreased (β range, -0.1 to -5.8 kcal) and the content of 44% increased (β range, 0.6-10.6 kcal). For sodium, the content of 18% of the items significantly decreased (β range, -4.1 to -24.0 mg) and the content for 33% increased (β range, 1.9-29.6 mg). Absolute differences were modest. The saturated and trans fat content, post-2009, was modest for French fries. In 2013, the energy content of a large-sized bundled meal (cheeseburger, French fries, and regular cola) represented 65% to 80% of a 2,000-calorie-per-day diet, and sodium content represented 63% to 91% of the 2,300-mg-per-day recommendation and 97% to 139% of the 1,500-mg-per-day recommendation. Findings suggest that efforts to promote reductions in energy, sodium, saturated fat, and trans fat intakes need to be shifted from emphasizing portion-size labels to additional factors such as total calories, frequency of eating, number of items ordered, menu choices, and energy-containing beverages.

  20. Calculation of the neutron noise induced by periodic deformations of a large sodium-cooled fast reactor core

    International Nuclear Information System (INIS)

    Zylbersztejn, F.; Tran, H.N.; Pazsit, I.; Filliatre, P.; Jammes, C.

    2014-01-01

    The subject of this paper is the calculation of the neutron noise induced by small-amplitude stationary radial variations of the core size (core expansion/compaction, also called core flowering) of a large sodium-cooled fast reactor. The calculations were performed on a realistic model of the European Sodium Fast Reactor (ESFR) core with a thermal output of 3600 MW(thermal), using a multigroup neutron noise simulator. The multigroup cross sections and their fluctuations that represent the core geometry changes for the neutron noise calculations were generated by the code ERANOS. The space and energy dependences of the noise source represented by the core expansion/compaction and the induced neutron noise are calculated and discussed. (authors)

  1. Development of numerical simulation system for thermal-hydraulic analysis in fuel assembly of sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ohshima, Hiroyuki; Uwaba, Tomoyuki [Japan Atomic Energy Agency (4002 Narita, O-arai, Ibaraki 311-1393, Japan) (Japan); Hashimoto, Akihiko; Imai, Yasutomo [NDD Corporation (1-1-6 Jounan, Mito, Ibaraki 310-0803, Japan) (Japan); Ito, Masahiro [NESI Inc. (4002 Narita, O-arai, Ibaraki 311-1393, Japan) (Japan)

    2015-12-31

    A numerical simulation system, which consists of a deformation analysis program and three kinds of thermal-hydraulics analysis programs, is being developed in Japan Atomic Energy Agency in order to offer methodologies to clarify thermal-hydraulic phenomena in fuel assemblies of sodium-cooled fast reactors under various operating conditions. This paper gives the outline of the system and its applications to fuel assembly analyses as a validation study.

  2. Comparative assessment of thermophysical and thermohydraulic characteristics of lead, lead-bismuth and sodium coolants for fast reactors

    International Nuclear Information System (INIS)

    2002-06-01

    All prototype, demonstration and commercial liquid metal cooled fast reactors (LMFRs) have used liquid sodium as a coolant. Sodium cooled systems, operating at low pressure, are characterised by very large thermal margins relative to the coolant boiling temperature and a very low structural material corrosion rate. In spite of the negligible thermal energy stored in the liquid sodium available for release in case of leakage, there is some safety concern because of its chemical reactivity with respect to air and water. Lead, lead-bismuth or other alloys of lead, appear to eliminate these concerns because the chemical reactivity of these coolants with respect to air and water is very low. Some experts believe that conceptually, these systems could be attractive if high corrosion activity inherent in lead, long term materials compatibility and other problems will be resolved. Extensive research and development work is required to meet this goal. Preliminary studies on lead-bismuth and lead cooled reactors and ADS (accelerator driven systems) have been initiated in France, Japan, the United States of America, Italy, and other countries. Considerable experience has been gained in the Russian Federation in the course of development and operation of reactors cooled with lead-bismuth eutectic, in particular, propulsion reactors. Studies on lead cooled fast reactors are also under way in this country. The need to exchange information on alternative fast reactor coolants was a major consideration in the recommendation by the Technical Working Group on Fast Reactors (TWGFRs) to collect, review and document the information on lead and lead-bismuth alloy coolants: technology, thermohydraulics, physical and chemical properties, as well as to make an assessment and comparison with respective sodium characteristics

  3. Application of the SHARP Toolkit to Sodium-Cooled Fast Reactor Challenge Problems

    Energy Technology Data Exchange (ETDEWEB)

    Shemon, E. R. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Yu, Y. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Kim, T. K. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2017-09-30

    The Simulation-based High-efficiency Advanced Reactor Prototyping (SHARP) toolkit is under development by the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign of the U.S. Department of Energy, Office of Nuclear Energy. To better understand and exploit the benefits of advanced modeling simulations, the NEAMS Campaign initiated the “Sodium-Cooled Fast Reactor (SFR) Challenge Problems” task, which include the assessment of hot channel factors (HCFs) and the demonstration of zooming capability using the SHARP toolkit. If both challenge problems are resolved through advanced modeling and simulation using the SHARP toolkit, the economic competitiveness of a SFR can be significantly improved. The efforts in the first year of this project focused on the development of computational models, meshes, and coupling procedures for multi-physics calculations using the neutronics (PROTEUS) and thermal-hydraulic (Nek5000) components of the SHARP toolkit, as well as demonstration of the HCF calculation capability for the 100 MWe Advanced Fast Reactor (AFR-100) design. Testing the feasibility of the SHARP zooming capability is planned in FY 2018. The HCFs developed for the earlier SFRs (FFTF, CRBR, and EBR-II) were reviewed, and a subset of these were identified as potential candidates for reduction or elimination through high-fidelity simulations. A one-way offline coupling method was used to evaluate the HCFs where the neutronics solver PROTEUS computes the power profile based on an assumed temperature, and the computational fluid dynamics solver Nek5000 evaluates the peak temperatures using the neutronics power profile. If the initial temperature profile used in the neutronics calculation is reasonably accurate, the one-way offline method is valid because the neutronics power profile has weak dependence on small temperature variation. In order to get more precise results, the proper temperature profile for initial neutronics calculations was obtained from the

  4. Development of probabilistic risk assessment methodology against extreme snow for sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yamano, Hidemasa, E-mail: yamano.hidemasa@jaea.go.jp; Nishino, Hiroyuki; Kurisaka, Kenichi

    2016-11-15

    Highlights: • Snow PRA methodology was developed. • Snow hazard category was defined as the combination of daily snowfall depth (speed) and snowfall duration. • Failure probability models of snow removal action, manual operation of the air cooler dampers and the access route were developed. • Snow PRA showed less than 10{sup −6}/reactor-year of core damage frequency. - Abstract: This paper describes snow probabilistic risk assessment (PRA) methodology development through external hazard and event sequence evaluations mainly in terms of decay heat removal (DHR) function of a sodium-cooled fast reactor (SFR). Using recent 50-year weather data at a typical Japanese SFR site, snow hazard categories were set for the combination of daily snowfall depth (snowfall speed) and snowfall duration which can be calculated by dividing the snow depth by the snowfall speed. For each snow hazard category, the event sequence was evaluated by event trees which consist of several headings representing the loss of DHR. Snow removal action and manual operation of the air cooler dampers were introduced into the event trees as accident managements. Access route failure probability model was also developed for the quantification of the event tree. In this paper, the snow PRA showed less than 10{sup −6}/reactor-year of core damage frequency. The dominant snow hazard category was the combination of 1–2 m/day of snowfall speed and 0.5–0.75 day of snowfall duration. Importance and sensitivity analyses indicated a high risk contribution of the securing of the access routes.

  5. Neutronics aspects associated to irregular lattices in sodium fast reactors cores

    International Nuclear Information System (INIS)

    Gentili, Michele

    2015-01-01

    The fuel assemblies of SFR cores (sodium fast reactors) are normally arranged in hexagonal regular lattices, whose compactness is ensured in nominal operating conditions by thermal expansion of assemblies pads disposed on the six assembly wrapper faces. During the reactor operations, thermal expansion phenomena and irradiation creep phenomena occur and they cause the fuel assemblies to bow and to deform both radially and axially. The main goal of this PhD is the understanding of the neutronic aspects and phenomena occurring in case of core and lattice deformations, as much as the design and implementation of deterministic neutronic calculation schemes and methods in order to evaluate the consequences for the core design activities and the safety analysis. The first part of this work is focused on the development of an analytical model with the purpose to identify the neutronic phenomena that are the main contributors to the reactivity changes induced by lattice and core deformations. A first scheme based on the spatial mesh projection method has been conceived and implemented for the ERANOS codes (BISTRO, H3D and VARIANT) and to the SNATCH solver. The second calculation scheme propose is based on mesh deformation: the computing mesh is deformed as a function of the assembly displacement field. This methodology has been implemented for the solver SNATCH, which normally allows the Boltzmann equation to be solved for a regular mesh. Finally, an iterative method has been developed in order to fulfill an a-priori estimation of the maximal reactivity insertion as a function of the postulated mechanical energy provided to the core, as much as the deformation causing it. (author) [fr

  6. Sodium fast reactor gaps analysis of computer codes and models for accident analysis and reactor safety.

    Energy Technology Data Exchange (ETDEWEB)

    Carbajo, Juan (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin, Madison, WI); Schmidt, Rodney Cannon; Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Ludewig, Hans (Brookhaven National Laboratory, Upton, NY); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki-ken, Japan); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki-ken, Japan); Serre, Frederic (Centre d' %C3%94etudes nucl%C3%94eaires de Cadarache %3CU%2B2013%3E CEA, France)

    2011-06-01

    This report summarizes the results of an expert-opinion elicitation activity designed to qualitatively assess the status and capabilities of currently available computer codes and models for accident analysis and reactor safety calculations of advanced sodium fast reactors, and identify important gaps. The twelve-member panel consisted of representatives from five U.S. National Laboratories (SNL, ANL, INL, ORNL, and BNL), the University of Wisconsin, the KAERI, the JAEA, and the CEA. The major portion of this elicitation activity occurred during a two-day meeting held on Aug. 10-11, 2010 at Argonne National Laboratory. There were two primary objectives of this work: (1) Identify computer codes currently available for SFR accident analysis and reactor safety calculations; and (2) Assess the status and capability of current US computer codes to adequately model the required accident scenarios and associated phenomena, and identify important gaps. During the review, panel members identified over 60 computer codes that are currently available in the international community to perform different aspects of SFR safety analysis for various event scenarios and accident categories. A brief description of each of these codes together with references (when available) is provided. An adaptation of the Predictive Capability Maturity Model (PCMM) for computational modeling and simulation is described for use in this work. The panel's assessment of the available US codes is presented in the form of nine tables, organized into groups of three for each of three risk categories considered: anticipated operational occurrences (AOOs), design basis accidents (DBA), and beyond design basis accidents (BDBA). A set of summary conclusions are drawn from the results obtained. At the highest level, the panel judged that current US code capabilities are adequate for licensing given reasonable margins, but expressed concern that US code development activities had stagnated and that the

  7. Regulatory Technology Development Plan - Sodium Fast Reactor: Mechanistic Source Term - Trial Calculation

    International Nuclear Information System (INIS)

    Grabaskas, David

    2016-01-01

    The potential release of radioactive material during a plant incident, referred to as the source term, is a vital design metric and will be a major focus of advanced reactor licensing. The U.S. Nuclear Regulatory Commission has stated an expectation for advanced reactor vendors to present a mechanistic assessment of the potential source term in their license applications. The mechanistic source term presents an opportunity for vendors to realistically assess the radiological consequences of an incident, and may allow reduced emergency planning zones and smaller plant sites. However, the development of a mechanistic source term for advanced reactors is not without challenges, as there are often numerous phenomena impacting the transportation and retention of radionuclides. This project sought to evaluate U.S. capabilities regarding the mechanistic assessment of radionuclide release from core damage incidents at metal fueled, pool-type sodium fast reactors (SFRs). The purpose of the analysis was to identify, and prioritize, any gaps regarding computational tools or data necessary for the modeling of radionuclide transport and retention phenomena. To accomplish this task, a parallel-path analysis approach was utilized. One path, led by Argonne and Sandia National Laboratories, sought to perform a mechanistic source term assessment using available codes, data, and models, with the goal to identify gaps in the current knowledge base. The second path, performed by an independent contractor, performed sensitivity analyses to determine the importance of particular radionuclides and transport phenomena in regards to offsite consequences. The results of the two pathways were combined to prioritize gaps in current capabilities.

  8. Safeguards Considerations for the Design of a Future Fast Neutron Sodium Cooled Reactor

    International Nuclear Information System (INIS)

    Cazalet, J.; Raymond, P.; Masson, M.; Saturnin, A.

    2015-01-01

    Incorporating safeguards at an early stage of a reactor design is a way to increase the effectiveness and efficiency of safeguards measures minimizing the possibilities of misuse of the plant or nuclear material diversion. It also reduces the impact on the construction and operation cost. At the preliminary phase, the design will integrate: confinement, containment, surveillance features and non-destructive assay equipment. Taking into account these requirements will help the operator in the approval of the plant at the design phase by national and international authorities in charge of Nuclear Material accounting and safeguards. A large amount of work has been made by the GEN IV International Forum to assess the proliferation resistance of nuclear systems. The IAEA has developed guidelines on ''Safeguards by design'' describing reference requirements for future nuclear facilities. Based on these studies, this communication details implementation of safeguards in the design of a sodium cooled fast neutron reactor (SFR) currently studied in France. Specificities are the use of MOX fuel with high concentration of plutonium and the potential capacity of breeding. A great attention should be paid to avoid diversion of nuclear material contained in fresh or irradiated fuel. Scenarios of reactor misuse are analyzed. The identification of diversion pathways and requirements for nuclear material accountancy, leads to an approach of safeguards, specific to SFR: Material Balance Areas (MBA) and some key measurement points (KMP) are characterized. Specific instrumentation assay helping in the identification and/or characterization of fuel elements and the inventory of nuclear material is described. As concerns the fuel cycle, the safeguards of the reprocessing unit will be progressively increased through the development of materials monitoring and the implementation of these measures at strategic locations of buildings, thus providing real-time information

  9. Development of probabilistic risk assessment methodology against extreme snow for sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Yamano, Hidemasa; Nishino, Hiroyuki; Kurisaka, Kenichi

    2016-01-01

    Highlights: • Snow PRA methodology was developed. • Snow hazard category was defined as the combination of daily snowfall depth (speed) and snowfall duration. • Failure probability models of snow removal action, manual operation of the air cooler dampers and the access route were developed. • Snow PRA showed less than 10"−"6/reactor-year of core damage frequency. - Abstract: This paper describes snow probabilistic risk assessment (PRA) methodology development through external hazard and event sequence evaluations mainly in terms of decay heat removal (DHR) function of a sodium-cooled fast reactor (SFR). Using recent 50-year weather data at a typical Japanese SFR site, snow hazard categories were set for the combination of daily snowfall depth (snowfall speed) and snowfall duration which can be calculated by dividing the snow depth by the snowfall speed. For each snow hazard category, the event sequence was evaluated by event trees which consist of several headings representing the loss of DHR. Snow removal action and manual operation of the air cooler dampers were introduced into the event trees as accident managements. Access route failure probability model was also developed for the quantification of the event tree. In this paper, the snow PRA showed less than 10"−"6/reactor-year of core damage frequency. The dominant snow hazard category was the combination of 1–2 m/day of snowfall speed and 0.5–0.75 day of snowfall duration. Importance and sensitivity analyses indicated a high risk contribution of the securing of the access routes.

  10. EXCURS: a computing programme for analysis of core transient behaviour in a sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Saito, Shinzo

    1977-09-01

    In the code EXCURS developed for core transient behaviour calculation of a sodium-cooled fast reactor, a one-channel model is used to represent thermal behaviour of the reactor core. Calculations are made for three different channels; i.e. average, hot and hottest. In the average channel the power density and coolant velocity are equal to the mean values of the whole core. In the hot channel, a maximum power density of the core and a specific coolant velocity are introduced. In the hottest channel, engineering hot channel factors are considered to the hot channel. A one-point neutron kinetics equation with six delayed neutron groups is used to calculate the time-dependent power behaviour. Externally introduced reactivity effect and control rod movement in the case of a scram are taken into account. In the feedback effects evaluated on the basis of the average channel temperatures are considered Doppler effect, fuel axial expansion, cladding expansion, coolant expansion and structure expansion. The decay heat after reactor scram is also considered. Heat balance is taken in each cross section, neglecting the axial heat transfer except for the coolant region. Temperature dependence of the physical properties of materials is considered by second-order polynomials approximation, and also the fuel melting process. Each channel can be divided into a maximum of 20 regions in both radially and axially. The reactor core transient behaviour due to reactivity insertion or loss-of-coolant flow can be studied by EXCURS. The calculated results are plotted optionally by connected code EXPLOT. (auth.)

  11. Potential application of Rankine and He-Brayton cycles to sodium fast reactors

    International Nuclear Information System (INIS)

    Perez-Pichel, G.D.; Linares, J.I.; Herranz, L.E.; Moratilla, B.Y.

    2011-01-01

    Highlights: → This paper has been focused on thermal efficiency of several Rankine and Brayton cycles for SFR. → A sub-critical Rankine configuration could reach a thermal efficiency higher than 43%. → It could be increased to almost 45% using super-critical configurations. → Brayton cycles thermal performance can be enhanced by adding a super-critical organic fluid Rankine cycle. → The moderate coolant temperature at the reactor makes Brayton configurations have poorer. - Abstract: Traditionally all the demos and/or prototypes of the sodium fast reactor (SFR) technology with power output, have used a steam sub-critical Rankine cycle. Sustainability requirement of Gen. IV reactors recommends exploring alternate power cycle configurations capable of reaching high thermal efficiency. By adopting the anticipated working parameters of next SFRs, this paper investigates the potential of some Rankine and He-Brayton layouts to reach thermal efficiencies as high as feasible, so that they could become alternates for SFR reactor balance of plant. The assessment has encompassed from sub-critical to super-critical Rankine cycles and combined cycles based on He-Brayton gas cycles of different complexity coupled to Organic Rankine Cycles. The sub-critical Rankine configuration reached at thermal efficiency higher than 43%, which has been shown to be a superior performance than any of the He-Brayton configurations analyzed. By adopting a super-critical Rankine arrangement, thermal efficiency would increase less than 1.5%. In short, according to the present study a sub-critical layout seems to be the most promising configuration for all those upcoming prototypes to be operated in the short term (10-15 years). The potential of super-critical CO 2 -Brayton cycles should be explored for future SFRs to be deployed in a longer run.

  12. Regulatory Technology Development Plan - Sodium Fast Reactor: Mechanistic Source Term – Trial Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Grabaskas, David [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Bucknor, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Jerden, James [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Brunett, Acacia J. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Denman, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nuclear Engineering Division; Clark, Andrew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nuclear Engineering Division; Denning, Richard S. [Consultant, Columbus, OH (United States)

    2016-10-01

    The potential release of radioactive material during a plant incident, referred to as the source term, is a vital design metric and will be a major focus of advanced reactor licensing. The U.S. Nuclear Regulatory Commission has stated an expectation for advanced reactor vendors to present a mechanistic assessment of the potential source term in their license applications. The mechanistic source term presents an opportunity for vendors to realistically assess the radiological consequences of an incident, and may allow reduced emergency planning zones and smaller plant sites. However, the development of a mechanistic source term for advanced reactors is not without challenges, as there are often numerous phenomena impacting the transportation and retention of radionuclides. This project sought to evaluate U.S. capabilities regarding the mechanistic assessment of radionuclide release from core damage incidents at metal fueled, pool-type sodium fast reactors (SFRs). The purpose of the analysis was to identify, and prioritize, any gaps regarding computational tools or data necessary for the modeling of radionuclide transport and retention phenomena. To accomplish this task, a parallel-path analysis approach was utilized. One path, led by Argonne and Sandia National Laboratories, sought to perform a mechanistic source term assessment using available codes, data, and models, with the goal to identify gaps in the current knowledge base. The second path, performed by an independent contractor, performed sensitivity analyses to determine the importance of particular radionuclides and transport phenomena in regards to offsite consequences. The results of the two pathways were combined to prioritize gaps in current capabilities.

  13. Modeling of thermo-mechanical and irradiation behavior of mixed oxide fuel for sodium fast reactors

    International Nuclear Information System (INIS)

    Karahan, Aydin; Buongiorno, Jacopo

    2010-01-01

    An engineering code to model the irradiation behavior of UO 2 -PuO 2 mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named fuel engineering and structural analysis tool (FEAST-OXIDE). FEAST-OXIDE has several modules working in coupled form with an explicit numerical algorithm. These modules describe: (1) fission gas release and swelling, (2) fuel chemistry and restructuring, (3) temperature distribution, (4) fuel-clad chemical interaction and (5) fuel-clad mechanical analysis. Given the fuel pin geometry, composition and irradiation history, FEAST-OXIDE can analyze fuel and cladding thermo-mechanical behavior at both steady-state and design-basis transient scenarios. The code was written in FORTRAN-90 program language. The mechanical analysis module implements the LIFE algorithm. Fission gas release and swelling behavior is described by the OGRES and NEFIG models. However, the original OGRES model has been extended to include the effects of joint oxide gain (JOG) formation on fission gas release and swelling. A detailed fuel chemistry model has been included to describe the cesium radial migration and JOG formation, oxygen and plutonium radial distribution and the axial migration of cesium. The fuel restructuring model includes the effects of as-fabricated porosity migration, irradiation-induced fuel densification, grain growth, hot pressing and fuel cracking and relocation. Finally, a kinetics model is included to predict the clad wastage formation. FEAST-OXIDE predictions have been compared to the available FFTF, EBR-II and JOYO databases, as well as the LIFE-4 code predictions. The agreement was found to be satisfactory for steady-state and slow-ramp over-power accidents.

  14. Modeling of thermo-mechanical and irradiation behavior of mixed oxide fuel for sodium fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karahan, Aydin, E-mail: karahan@mit.ed [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering Department, Massachusetts Institute of Technology, MA (United States); Buongiorno, Jacopo [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering Department, Massachusetts Institute of Technology, MA (United States)

    2010-01-31

    An engineering code to model the irradiation behavior of UO{sub 2}-PuO{sub 2} mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named fuel engineering and structural analysis tool (FEAST-OXIDE). FEAST-OXIDE has several modules working in coupled form with an explicit numerical algorithm. These modules describe: (1) fission gas release and swelling, (2) fuel chemistry and restructuring, (3) temperature distribution, (4) fuel-clad chemical interaction and (5) fuel-clad mechanical analysis. Given the fuel pin geometry, composition and irradiation history, FEAST-OXIDE can analyze fuel and cladding thermo-mechanical behavior at both steady-state and design-basis transient scenarios. The code was written in FORTRAN-90 program language. The mechanical analysis module implements the LIFE algorithm. Fission gas release and swelling behavior is described by the OGRES and NEFIG models. However, the original OGRES model has been extended to include the effects of joint oxide gain (JOG) formation on fission gas release and swelling. A detailed fuel chemistry model has been included to describe the cesium radial migration and JOG formation, oxygen and plutonium radial distribution and the axial migration of cesium. The fuel restructuring model includes the effects of as-fabricated porosity migration, irradiation-induced fuel densification, grain growth, hot pressing and fuel cracking and relocation. Finally, a kinetics model is included to predict the clad wastage formation. FEAST-OXIDE predictions have been compared to the available FFTF, EBR-II and JOYO databases, as well as the LIFE-4 code predictions. The agreement was found to be satisfactory for steady-state and slow-ramp over-power accidents.

  15. A numerical design and feasibility study of self-wastage experiment using simulant material in a sodium fast reactor

    International Nuclear Information System (INIS)

    Jang, Sung Hyun; Takata, Takashi; Yamaguchi, Akira

    2016-01-01

    A sodium-water reaction takes place when high-pressured water vapor leaks into sodium through a tiny defect on the surface of the heat transfer tube in a steam generator of the sodium-cooled fast reactor. The sodium-water reaction brings deterioration of the mechanical strength of the heat transfer tube at the initial leakage site. As a result, it damages the crack itself, which may eventually enlarge into a larger opening. This self-enlargement is called 'self-wastage phenomenon.' In this study, a simulant experiment was proposed to reproduce the self-enlargement of a crack and to evaluate the mechanism of the self-wastage. The damage on the surface of the crack was simulated by making the neutralization reaction with hydrochloric acid solution and sodium hydroxide solution. A numerical investigation was carried out to validate the feasibility of the approach and to determine experimental conditions. From the computation results, it is observed that when 5M HCl is injected into 5M of NaOH with 0.05 m/s inlet velocity, the temperature at the surface near the crack increased over 319.26 K. The computational results show that the self-wastage phenomenon is capable of being reproduced by the simulant experiment

  16. Design study of an IHX support structure for a POOL-TYPE Sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Park, Chang Gyu; Kim, Jong Bum; Lee, Jae Han

    2009-01-01

    The IHX (Intermediate Heat eXchanger) for a pool-type SFR (Sodium-cooled Fast Reactor) system transfers heat from the primary high temperature sodium to the intermediate cold temperature sodium. The upper structure of the IHX is a coaxial structure designed to form a flow path for both the secondary high temperature and low temperature sodium. The coaxial structure of the IHX consists of a central downcomer and riser for the incoming and outgoing intermediate sodium, respectively. The IHX of a pool-type SFR is supported at the upper surface of the reactor head with an IHX support structure that connects the IHX riser cylinder to the reactor head. The reactor head is generally maintained at the low temperature regime, but the riser cylinder is exposed in the elevated temperature region. The resultant complicated temperature distribution of the co-axial structure including the IHX support structure may induce a severe thermal stress distribution. In this study, the structural feasibility of the current upper support structure concept is investigated through a preliminary stress analysis and an alternative design concept to accommodate the IHTS (Intermediate Heat Transport System) piping expansion loads and severe thermal stress is proposed. Through the structural analysis it is found that the alternative design concept is effective in reducing the thermal stress and acquiring structural integrity

  17. A numerical design and feasibility study of self-wastage experiment using simulant material in a sodium fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Sung Hyun; Takata, Takashi [Graduate School of Engineering, Osaka University, Osaka (Japan); Yamaguchi, Akira [Nuclear Professional School, The University of Tokyo, Ibaraki (Japan)

    2016-04-15

    A sodium-water reaction takes place when high-pressured water vapor leaks into sodium through a tiny defect on the surface of the heat transfer tube in a steam generator of the sodium-cooled fast reactor. The sodium-water reaction brings deterioration of the mechanical strength of the heat transfer tube at the initial leakage site. As a result, it damages the crack itself, which may eventually enlarge into a larger opening. This self-enlargement is called 'self-wastage phenomenon.' In this study, a simulant experiment was proposed to reproduce the self-enlargement of a crack and to evaluate the mechanism of the self-wastage. The damage on the surface of the crack was simulated by making the neutralization reaction with hydrochloric acid solution and sodium hydroxide solution. A numerical investigation was carried out to validate the feasibility of the approach and to determine experimental conditions. From the computation results, it is observed that when 5M HCl is injected into 5M of NaOH with 0.05 m/s inlet velocity, the temperature at the surface near the crack increased over 319.26 K. The computational results show that the self-wastage phenomenon is capable of being reproduced by the simulant experiment.

  18. Numerical study on pressure drop and heat transfer for designing sodium-to-air heat exchanger tube banks on advanced sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Kang, Hie-Chan; Eoh, Jae-Hyuk; Cha, Jae-Eun; Kim, Seong-O.

    2013-01-01

    Highlights: ► Numerical simulation for the heat flow characteristic of the sodium-to-air heat exchanger (AHX) and tube banks. ► Parallelogram tube banks showed almost similar thermal and hydraulic characteristics to the rectangular tube banks. ► Pressure drop and heat transfer of the staggered and rectangular tube banks compared with Zhukauskas’ correlation. ► AHX was modeled as porous media and suggested design guide to enhance the performance. - Abstract: A numerical study is performed to investigate the thermal and hydraulic characteristics and build up design model of the AHX (sodium-to-air heat exchanger) unit of a sodium-cooled fast reactor. Helical-coiled tube banks in the AHX are modeled as porous media and simulated heat and momentum transfer by a commercial program. Two-dimensional flow characteristic appears differently at the inlet region of the AHX annulus, and the required length of the inlet region is shorter for an inlet having a 45 degree chamber or a round shape than for one with a perpendicular corner. Pressure drop and heat transfer coefficient for rectangular, parallelogram and staggered tube banks as the main components of the AHX are evaluated and discussed. Pressure drop and heat transfer shows similar trends and underestimated values, respectively, when compared with Zhukauskas empirical correlations. The parallelogram tube bank shows similar results to the rectangular arrangement.

  19. Simplified modeling of liquid sodium medium with temperature and velocity gradient using real thermal-hydraulic data. Application to ultrasonic thermometry in sodium fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Massacret, N.; Jeannot, J. P. [DEN/DTN/STPA/LIET, CEA Cadarache, Saint Paul Lez Durance (France); Moysan, J.; Ploix, M. A.; Corneloup, G. [Aix-Marseille Univ, LMA UPR 7051 CNRS, site LCND, 13625 Aix-en-Provence (France)

    2013-01-25

    In the framework of the French R and D program for the Generation IV reactors and specifically for the sodium cooled fast reactors (SFR), studies are carried out on innovative instrumentation methods in order to improve safety and to simplify the monitoring of fundamental physical parameters during reactor operation. The aim of the present work is to develop an acoustic thermometry method to follow up the sodium temperature at the outlet of subassemblies. The medium is a turbulent flow of liquid sodium at 550 Degree-Sign C with temperature inhomogeneities. To understand the effect of disturbance created by this medium, numerical simulations are proposed. A ray tracing code has been developed with Matlab Copyright-Sign in order to predict acoustic paths in this medium. This complex medium is accurately described by thermal-hydraulic data which are issued from a simulation of a real experiment in Japan. The analysis of these results allows understanding the effects of medium inhomogeneities on the further thermometric acoustic measurement.

  20. Evaluation of a sodium-water reaction event caused by steam generator tubes break in the prototype generation IV sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sang June; Ha, Kwi Seok; Chang, Won Pyo; Kang, Seok Hun; Lee, Kwi Lim; Choi, Chi Woong; Lee, Seung Won; Yoo, Jin; Jeong, Jae Ho; Jeong, Tae Kyeong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-08-15

    The prototype generation IV sodium-cooled fast reactor (PGSFR) has been developed by the Korea Atomic Energy Research Institute. This reactor uses sodium as a reactor coolant to transfer the core heat energy to the turbine. Sodium has chemical characteristics that allow it to violently react with materials such as a water or steam. When a sodium–water reaction (SWR) occurs due to leakage or breakage of steam generator tubes, high-pressure waves and corrosive reaction products are produced, which threaten the structural integrity of the components of the intermediate heat-transfer system (IHTS) and the safety of the primary heat-transfer system (PHTS). In the PGSFR, SWR events are included in the design-basis event. This event should be analyzed from the viewpoint of the integrities of the IHTS and fuel rods. To evaluate the integrity of the IHTS based on the consequences of the SWR, the behaviors of the generated high-pressure waves are analyzed at the major positions of a failed IHTS loop using a sodium–water advanced analysis method-II code. The integrity of the fuel rods must be consistently maintained below the safety acceptance criteria to avoid the consequences of the SWR. The integrity of the PHTS is evaluated using the multidimensional analysis of reactor safety-liquid metal reactor code to model the whole plant.

  1. Measurements of Relative Biological Effectiveness and Oxygen Enhancement Ratio of Fast Neutrons of Different Energies

    Energy Technology Data Exchange (ETDEWEB)

    Barendsen, G. W.; Broerse, J. J. [Radiobiological Institute of the Health Research Council TNO, Rijswijk (ZH) (Netherlands)

    1968-03-15

    Impairment of the reproductive capacity of cultured cells of human kidney origin (T-l{sub g} cells) has been measured by the Puck cloning technique. From the dose-survival curves obtained in these experiments by irradiation of cells in equilibrium with air and nitrogen, respectively, the relative biological effectiveness (RBE) and the oxygen enhancement ratios (OER) were determined for different beams of fast neutrons. Monoenergetic neutrons of 3 and 15 MeV energy, fission spectrum fast neutrons (mean energy about 1.5 MeV), neutrons produced by bombarding Be with cyclotron-accelerated 16 MeV deuterons (mean energy about 6 MeV) and neutrons produced by bombarding Be with cyclotron- accelerated 20 MeV {sup 3}He ions (mean energy about 10 MeV) have been compared with 250 kVp X-rays as a standard reference. The RBE for 50% cell survival varies from 4.7 for fission-spectrum fast neutrons to 2.7 for 15 MeV monoenergetic neutrons. The OER is not strongly dependent on the neutron energy for the various beams investigated. For the neutrons with the highest and lowest energies used OER values of 1.6 {+-} 0.2 and 1.5 {+-} 0.1 were measured. An interpretation of these data on the basis of the shapes of the LET spectra is proposed and an approximate verification of this hypothesis is provided from measurements in which secondary particle equilibrium was either provided for or deliberately eliminated. (author)

  2. Method of preventing sodium from flowing when pipes of a fast breeder reactor are injured

    International Nuclear Information System (INIS)

    Nakai, Yasushi; Yamagishi, Yoshiaki; Koga, Tomonari.

    1975-01-01

    Object: To inject high pressure sodium into an inlet nozzle portion when fluid pressure in the inlet nozzle portion of a core cooling pipe on the inlet side is in an abnormal condition, to thereby quickly and positively prevent the flow of sodium in a high pressure chamber in a reactor vessel, when pipes are injured. Structure: When the core cooling pipe on the inlet side is injured and as a consequence the pressure gage detects an abnormal condition of fluid pressure in the inlet nozzle, the valve is opened to allow high pressure sodium to inject into the inlet nozzle through a high pressure sodium supply pipe, thereby blocking a back-flow of sodium in the high pressure chamber into the core cooling pipe. (Kamimura, M.)

  3. A COMPARISON OF ELEMENTAL ABUNDANCE RATIOS IN SEP EVENTS IN FAST AND SLOW SOLAR WIND REGIONS

    International Nuclear Information System (INIS)

    Kahler, S. W.; Tylka, A. J.; Reames, D. V.

    2009-01-01

    The solar energetic (E > 1 MeV nucleon -1 ) particles (SEPs) observed in gradual events at 1 AU are assumed to be accelerated by coronal/interplanetary shocks from ambient thermal or suprathermal seed particles. If so, then the elemental abundances of SEPs produced in different solar wind (SW) stream types (transient, fast, and slow) might be systematically distinguished from each other. We look for these differences in SEP energy spectra and in elemental abundance ratios (including Mg/Ne and Fe/C, which compare low/high first ionization potential elements), in a large number of SEP time intervals over the past solar cycle. The SW regions are characterized by the three-component stream classification of Richardson et al. Our survey shows no significant compositional or energy spectral differences in the 5-10 MeV nucleon -1 range for SEP events of different SW stream types. This result extends the earlier finding that SEP events are observed frequently in fast SW streams, although their higher Alfven and SW flow speeds should constrain SEP production by coronal mass ejection-driven shocks in those regions. We discuss the implications of our results for shock seed populations and cross-field propagation.

  4. Preliminary conceptual design of the secondary sodium circuit-eliminated JSFR (Japan Sodium Fast Reactor) adopting a supercritical CO2 turbine system (1). Sodium/CO2 heat exchanger

    International Nuclear Information System (INIS)

    Kisohara, Naoyuki; Sakamoto, Yoshihiko; Kotake, Shoji

    2014-09-01

    Research and development of the supercritical CO 2 (S-CO 2 ) cycle turbine system is underway in various countries for further improvement of the safety and economy of sodium-cooled fast reactors. The Component Design and Balance-Of-Plant (CD and BOP) of the Generation IV International Nuclear Forum (Gen-IV) has addressed this study, and their analytical and experimental results have been discussed between the relevant countries. JAEA, who is a member of the CD and BOP, has performed a design study of an S-CO 2 gas turbine system applied to the Japan Sodium-cooled Fast Reactor (JSFR). In this study, the S-CO 2 cycle turbine system was directly connected to the primary sodium system of the JSFR to eliminate the secondary sodium circuit, aiming for further economical improvement. This is because there is no risk of sodium-water reaction in the S-CO 2 cycle turbine system of SFRs. The Na/CO 2 heat exchanger is one of the key components for the secondary sodium system eliminated SFR, and this report describes its structure and the safety in case of CO 2 leak. A Printed Circuit Heat Exchanger (PCHE), which has a greater heat transfer performance, is employed to the heat exchanger. Another advantage of the PCHE is to limit the area affected by a leak of CO 2 because of its partitioned flow path structure. A SiC/SiC ceramic composite material is used for the PCHE to prevent crack growth and to reduce thermal stress. The Na/CO 2 heat exchanger has been designed in such a way that a number of small heat transfer modules are combined in the vessel in consideration of manufacture and repair. The primary sodium pump is installed in the center of the heat exchanger vessel. CO 2 leak events in the heat exchanger have been also evaluated, and it revealed that no significant effect has arisen on the core or the primary sodium boundary. (author)

  5. Morphology evolution of gold nanoparticles as function of time, temperature, and Au(III)/sodium ascorbate molar ratio

    Energy Technology Data Exchange (ETDEWEB)

    Priolisi, Ornella, E-mail: ornella.priolisi@depretto.gov.it [ITIS “De Pretto” (Italy); Fabrizi, Alberto, E-mail: fabrizi@gest.unipd.it [University of Padova, Department of Management and Engineering (Italy); Deon, Giovanna, E-mail: giovanna.deon@depretto-vi.it [ITIS “De Pretto” (Italy); Bonollo, Franco, E-mail: bonollo@gest.unipd.it [University of Padova, Department of Management and Engineering (Italy); Cattini, Stefano, E-mail: stefano.cattini@unimore.it [University of Modena and Reggio Emilia, Department of Engineering Enzo Ferrari (Italy)

    2016-01-15

    In this work the morphology evolution of Au nanoparticles (AuNPs), obtained by direct reduction, was studied as a function of time, temperature, and Au(III)/sodium ascorbate molar ratio. The NPs morphology was examined by transmission electron microscope with image analysis, while time evolution was investigated by visible and near-infrared absorption spectroscopy and dynamic light scattering. It is found that initially formed star-like NPs transform in more spheroidal particles and the evolution appears more rapid by increasing the temperature while a large amount of reducing agent prevents the remodeling of AuNPs. An explication of morphology evolution is proposed.

  6. An examination of the association of cognitive functioning, adherence to sodium restriction and Na/K ratios in Korean heart failure patients.

    Science.gov (United States)

    Hwang, Seon Young; Kim, JinShil

    2016-06-01

    Maintaining adequate ratios of sodium-to-potassium requires heart failure patients to be adherent to recommended dietary guidelines. A potential deterrent to adherence is poor cognitive functioning. The aims of this study were to (1) estimate dietary sodium and potassium intake and sodium-to-potassium ratios and (2) examine the associations between cognitive functioning and sodium-to-potassium ratios. Cognitive impairment may impact levels of adherence and subsequently sodium-to-potassium ratios; however, little is known about the relationship of cognitive functioning, adherence to dietary restrictions and sodium-to-potassium ratios. This study used a descriptive correlational design. Face-to-face interviews were conducted with heart failure patients with preserved or reduced left ventricular ejection fraction. Standard cognitive measures were used and included neuropsychological tests of global cognition, immediate and delayed recall, and executive function. Further, patients were instructed to complete a three-day food diary as an indirect measure of sodium-to-potassium intake. Ninety-one Korean patients with heart failure participated in this study (age 57 years, women 33%, education 10 years). A major underlying cause for heart failure was dilated cardiomyopathy (40%), followed by ischaemic cause (24%); the mean heart failure duration was 37 months. Average sodium intake was 3982 mg/day, with men consuming a significantly higher amount than women (4207 vs. 3523 mg). Potassium intake was 2583 mg/day, with both men and women consuming similarly insufficient amounts. Sodium-to-potassium ratio was 1·60, with men having a significantly elevated ratio compared with women (1·68 vs. 1·44). Cognitive function by sodium-to-potassium quartile groups showed nonlinear associations. Participants in the study consumed excessive sodium and insufficient potassium; correspondingly, elevated sodium-to-potassium ratios showed significant associations with cognitive

  7. The technical and economic impact of minor actinide transmutation in a sodium fast reactor

    International Nuclear Information System (INIS)

    Gautier, G. M.; Morin, F.; Dechelette, F.; Sanseigne, E.; Chabert, C.

    2012-01-01

    Within the frame work of the French National Act of June 28, 2006 pertaining to the management of high activity, long-lived radioactive waste, one of the proposed processes consists in transmuting the Minor Actinides (MA) in the radial blankets of a Sodium Fast Reactor (SFR). With this option, we may assess the additional cost of the reactor by comparing two SFR designs, one with no Minor Actinides, and the other involving their transmutation. To perform this exercise, we define a reference design called SFRref, of 1500 MWe that is considered to be representative of the Reactor System. The SFRref mainly features a pool architecture with three pumps, six loops with one steam generator per loop. The reference core is the V2B core that was defined by the CEA a few years ago for the Reactor System. This architecture is designed to meet current safety requirements. In the case of transmutation, for this exercise we consider that the fertile blanket is replaced by two rows of assemblies having either 20% of Minor Actinides or 20% of Americium. The assessment work is performed in two phases. - The first consists in identifying and quantifying the technical differences between the two designs: the reference design without Minor Actinides and the design with Minor Actinides. The main differences are located in the reactor vessel, in the fuel handling system and in the intermediate storage area for spent fuel. An assessment of the availability is also performed so that the impact of the transmutation can be known. - The second consists in making an economic appraisal of the two designs. This work is performed using the CEA's SEMER code. The economic results are shown in relative values. For a transmutation of 20% of MA in the assemblies (S/As) and a hypothesis of 4 kW allowable for the washing device, there is a large external storage demanding a very long cooling time of the S/As. In this case, the economic impact may reach 5% on the capital part of the Levelized Unit

  8. Coupled MCNP - SAS-SFR calculations for sodium fast reactor core at steady-state - 15460

    International Nuclear Information System (INIS)

    Ponomarev, A.; Travleev, A.; Pfrang, W.; Sanchez, V.

    2015-01-01

    The prediction of core parameters at steady state is the first step when studying core accident transient behaviour. At this step thermal hydraulics (TH) and core geometry parameters are calculated corresponding to initial operating conditions. In this study we present the coupling of the SAS-SFR code to the Monte-Carlo neutron transport code MCNP at steady state together with application to the European Sodium Fast Reactor (ESFR). The SAS-SFR code employs a multi-channel core representation where each channel represents subassemblies with similar power, thermal-hydraulics and pin mechanics conditions. For every axial node of every channel the individual geometry and material compositions parameters are calculated in accord with power and cooling conditions. This requires supplying the SAS-SFR-code with nodal power values which should be calculated by neutron physics code with given realistic core parameters. In the conventional approach the neutron physics model employs some core averaged TH and geometry data (fuel temperature, coolant density, core axial and radial expansion). In this study we organize a new approach coupling the MCNP neutron physics models and the SAS-SFR models, so that calculations of power can be improved by using distributed core parameters (TH and geometry) taken from SAS-SFR. The MCNP code is capable to describe cores with distributed TH parameters and even to model non-uniform axial expansion of fuel subassemblies. In this way, core TH and geometrical data calculated by SAS-SFR are taken into account accurately in the neutronics model. The coupling implementation is done by data exchange between two codes with help of processing routines managed by driver routine. Currently it is model-specific and realized for the ESFR 'Reference Oxide' core. The Beginning-Of-Life core state is considered with 10 channel representation for fuel subassemblies. For this model several sets of coupled calculations are performed, in which different

  9. BN800: The advanced sodium cooled fast reactor plant based on close fuel cycle

    International Nuclear Information System (INIS)

    Wu Xingman

    2011-01-01

    As one of the advanced countries with actually fastest reactor technology, Russia has always taken a leading role in the forefront of the development of fast reactor technology. After successful operation of BN600 fast reactor nuclear power station with a capacity of six hundred thousand kilowatts of electric power for nearly 30 years, and after a few decades of several design optimization improved and completed on its basis, it is finally decided to build Unit 4 of Beloyarsk nuclear power station (BN800 fast reactor power station). The BN800 fast reactor nuclear power station is considered to be the project of the world's most advanced fast reactor nuclear power being put into implementation. The fast reactor technology in China has been developed for decades. With the Chinese pilot fast reactor to be put into operation soon, the Chinese model fast reactor power station has been put on the agenda. Meanwhile, the closed fuel cycle development strategy with fast reactor as key aspect has given rise to the concern of experts and decision-making level in relevant areas. Based on the experiences accumulated in many years in dealing the Sino-Russian cooperation in fast reactor technology, with reference to the latest Russian published and authoritative literatures regarding BN800 fast reactor nuclear power station, the author compiled this article into a comprehensive introduction for reference by leaders and experts dealing in the related fields of nuclear fuel cycle strategy and fast reactor technology development researches, etc. (authors)

  10. A Qualitative Assessment of Diversion Scenarios for a GEN IV Example Sodium Fast Reactor Using the GEN IV PR and PP Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Zentner, M.D.; Coles, G.A. [PNNL, P.O. Box 999, 902 Battelle Boulvard, Richland, WA 99336 (United States); Therios, I.U. [Argonne National Lab. - ANL (United States)

    2009-06-15

    An experts working group was created in 2002 by The Generation IV International Forum for the purpose of developing an internationally accepted methodology for assessing the proliferation resistance of a nuclear energy system (NES) and its individual elements. A two year case study was performed by the working group using this methodology to assess the proliferation resistance of a hypothetical NES called the Example Sodium Fast Reactor (ESFR). This work demonstrates how the PR and PP methodology can be used to provide important information to designers at various levels of details, including pre-conceptual design stage. The study analyzes the response of the ESFR entire nuclear energy system to different proliferation and theft strategies. The challenges considered comprise concealed diversion, concealed misuse and abrogation strategies. This paper describes the work done in performing a qualitative assessment of potential concealed diversion scenarios from the ESFR, and includes an evaluation of the potential effect of changes in the conversion ratio on diversion strategies. (authors)

  11. Analysis of self-wastage phenomena of micro leak caused by sodium-water reaction in sodium-cooled fast breeder reactor through simulant experiment

    International Nuclear Information System (INIS)

    Jang, Sunghyon; Takata, Takashi; Yamaguchi, Akira

    2014-01-01

    Self-wastage phenomena are an enlargement of a leak on the heat transfer tube caused by a corrosive sodium-water reaction (SWR) in a steam generator (SG) of sodium-cooled fast breeder reactor (SFR). If the steam generator operates for sometimes under this condition, the self-wastage phenomena start from the sodium side and advance through the tube thickness. The leak rate stays almost constant level until the wastage reaches the sodium side, however, when the thin diaphragm of the tube wall is removed, the leak rate sharply increase, and it may bring a secondary failure of the surrounding heat transfer tubes. The design and safety concern is a possibility of the secondary failure of nearby SG tubes that could cause undesirable development of the accidents. One needs to evaluate the increased resultant leak rate due to the self-wastage phenomenon. Therefore, a quantification of the diameter of enlarged leak is needed to estimate the resultant leak rate. For this purpose, a simulant self-wastage experiment was proposed to investigate the self-enlargement of the leak so that evaluate the mechanism of the Self-wastage. In the experiment, high concentrated hydrochloric acid (HCl) is injected to the reaction tank that is filled sodium hydroxide (NaOH) solution through a nozzle made by paraffin wax. The self-enlargement of the leak was evaluated by considering the melted nozzle due to the reaction heat released from the Neutralization reaction. Also, a numerical investigation has been carried out to evaluate the enlarged nozzle and validate the results of experimental methodology. Based on the experimental and computational results, it is found that despite initial leak rate, there is an upper limit in the enlarged nozzle. These results show a similar tendency with the experimental result of SWAT-4 experiment carried out by Power Reactor and Nuclear Fuel Development Corporation (PNC), Japan. Furthermore, the increased resultant leak rate is evaluated using the enlarged

  12. Fire protection at the Fast Flux Test Facility (a sodium cooled test reactor)

    International Nuclear Information System (INIS)

    Bell, J.R.

    1980-01-01

    For purposes of this presentation, fire protection at the FFTF is subdivided into two catagories; protection for non-sodium areas and protection for areas containing sodium. Fire protection systems and philosophies for non-sodium areas at the FFTF are very similar to those used at conventional power plants being constructed throughout the country. They follow, essentially, the NRC rules and guidelines and ANSI 59.4 Generic Requirements for Light Water Nuclear Power Plant Fire Protection. The FFTF with its support facilities have their own water system comprised of a looped 8'' and 10'' underground distribution system, three 1500 GPM fire pumps and three ground level storage tanks totaling 736,000 gallons with 420,000 reserved for fire protection. Fire hydrants are enclosed with hose houses outfitted for use by the Emergency Response Team (ERT). Fire prevention systems for sodium areas of the FFTF are also described

  13. Effectiveness of a Self-monitoring Device for Urinary Sodium-to-Potassium Ratio on Dietary Improvement in Free-Living Adults: a Randomized Controlled Trial.

    Science.gov (United States)

    Iwahori, Toshiyuki; Ueshima, Hirotsugu; Ohgami, Naoto; Yamashita, Hideyuki; Miyagawa, Naoko; Kondo, Keiko; Torii, Sayuki; Yoshita, Katsushi; Shiga, Toshikazu; Ohkubo, Takayoshi; Arima, Hisatomi; Miura, Katsuyuki

    2018-01-05

    Reducing the urinary sodium-to-potassium ratio is important for reducing both blood pressure and risk of cardiovascular disease. Among free-living Japanese individuals, we carried out a randomized trial to clarify the effect of lifestyle modification for lowering urinary sodium-to-potassium ratio using a self-monitoring device. This was an open, prospective, parallel randomized, controlled trial. Ninety-two individuals were recruited from Japanese volunteers. Participants were randomly allocated into intervention and control groups. A month-long dietary intervention on self-monitoring urinary sodium-to-potassium ratio was carried out using monitors (HEU-001F, OMRON Healthcare Co., Ltd., Kyoto, Japan). All participants had brief dietary education and received a leaflet as usual care. Monitors were handed out to the intervention group, but not to the control group. The intervention group was asked to measure at least one spot urine sodium-to-potassium ratio daily, and advised to lower their sodium-to-potassium ratio toward the target of less than 1. Outcomes included changes in 24-hour urinary sodium-to-potassium ratio, sodium excretion, potassium excretion, blood pressure, and body weight in both groups. Mean measurement frequency of monitoring was 2.8 times/day during the intervention. Changes in urinary sodium-to-potassium ratio were -0.55 in the intervention group and -0.06 in the control group (P = 0.088); respective sodium excretion changes were -18.5 mmol/24 hours and -8.7 mmol/24 hours (P = 0.528); and corresponding potassium excretion was 2.6 mmol/24 hours and -1.5 mmol/24 hours (P = 0.300). No significant reductions were observed in either blood pressure or body weight after the intervention. Providing the device to self-monitor a sodium-to-potassium ratio did not achieve the targeted reduction of the ratio in "pure self-management" settings, indicating further needs to study an effective method to enhance the synergetic effect of dietary programs and self

  14. Effectiveness of a Self-monitoring Device for Urinary Sodium-to-Potassium Ratio on Dietary Improvement in Free-Living Adults: a Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Toshiyuki Iwahori

    2018-01-01

    Full Text Available Background: Reducing the urinary sodium-to-potassium ratio is important for reducing both blood pressure and risk of cardiovascular disease. Among free-living Japanese individuals, we carried out a randomized trial to clarify the effect of lifestyle modification for lowering urinary sodium-to-potassium ratio using a self-monitoring device. Methods: This was an open, prospective, parallel randomized, controlled trial. Ninety-two individuals were recruited from Japanese volunteers. Participants were randomly allocated into intervention and control groups. A month-long dietary intervention on self-monitoring urinary sodium-to-potassium ratio was carried out using monitors (HEU-001F, OMRON Healthcare Co., Ltd., Kyoto, Japan. All participants had brief dietary education and received a leaflet as usual care. Monitors were handed out to the intervention group, but not to the control group. The intervention group was asked to measure at least one spot urine sodium-to-potassium ratio daily, and advised to lower their sodium-to-potassium ratio toward the target of less than 1. Outcomes included changes in 24-hour urinary sodium-to-potassium ratio, sodium excretion, potassium excretion, blood pressure, and body weight in both groups. Results: Mean measurement frequency of monitoring was 2.8 times/day during the intervention. Changes in urinary sodium-to-potassium ratio were −0.55 in the intervention group and −0.06 in the control group (P = 0.088; respective sodium excretion changes were −18.5 mmol/24 hours and −8.7 mmol/24 hours (P = 0.528; and corresponding potassium excretion was 2.6 mmol/24 hours and −1.5 mmol/24 hours (P = 0.300. No significant reductions were observed in either blood pressure or body weight after the intervention. Conclusions: Providing the device to self-monitor a sodium-to-potassium ratio did not achieve the targeted reduction of the ratio in “pure self-management” settings, indicating further needs to study an

  15. Zinc sorption in two vertisol and one aridisol series as affected by electrolyte concentration and sodium adsorption ratio

    International Nuclear Information System (INIS)

    Hussein, A. A.; Elamin, E. A.; El Mahi, Y. E.

    2002-01-01

    The effects of electrolyte concentration (C) and sodium adsorption ratio (SAR) on zinc sorption was studied. Top soil samples (0-30 cm) were taken from soils representing three arid-zon smectitc sites in the Gezira Scheme (Sudan). The orders of these soils are vertisol (El-Hosh (now Wad El Ataya) and El-Suleimi) and aridisol (El-Laota). These soils had no previous history of zinc application, and were previously equilibrated with mixed NaCl-CaCl 2 solutions to render different levels of SAR and salt concentration. Zinc retention decreased as electrolyte concentration increased, where maximum sorption occurred at low electrolyte concentration soils having high pH and high negative charge. Sodium adsorption ratio had little effect on Zn sorption as precipitation prevailed at high pH. It was also found that the sorption capacity of three soils were similar despite the variation in CaCO 3 and clay contents, hence cation exchange capacity and surface area. The results indicated that Zn was more soluble in the saline phases of Gezira soils, whereas sodicity had little effect.(Author)

  16. Fundamental validation of simulation method for thermal stratification in upper plenum of fast reactors. Analysis of sodium experiment

    International Nuclear Information System (INIS)

    Ohno, Shuji; Ohshima, Hiroyuki; Sugahara, Akihiro; Ohki, Hiroshi

    2010-01-01

    Three-dimensional thermal-hydraulic analyses have been carried out for a sodium experiment in a relatively simple axis-symmetric geometry using a commercial CFD code in order to validate simulating methods for thermal stratification behavior in an upper plenum of sodium-cooled fast reactor. Detailed comparison between simulated results and experimental measurement has demonstrated that the code reproduced fairly well the fundamental thermal stratification behaviors such as vertical temperature gradient and upward movement of a stratification interface when utilizing high-order discretization scheme and appropriate mesh size. Furthermore, the investigation has clarified the influence of RANS type turbulence models on phenomena predictability; i.e. the standard k-ε model, the RNG k-ε model and the Reynolds Stress Model. (author)

  17. Identifying subassemblies by ultrasound to prevent fuel handling error in sodium fast reactors: First test performed in water

    International Nuclear Information System (INIS)

    Paumel, Kevin; Lhuillier, Christian

    2015-01-01

    Identifying subassemblies by ultrasound is a method that is being considered to prevent handling errors in sodium fast reactors. It is based on the reading of a code (aligned notches) engraved on the subassembly head by an emitting/receiving ultrasonic sensor. This reading is carried out in sodium with high temperature transducers. The resulting one-dimensional C-scan can be likened to a binary code expressing the subassembly type and number. The first test performed in water investigated two parameters: width and depth of the notches. The code remained legible for notches as thin as 1.6 mm wide. The impact of the depth seems minor in the range under investigation. (authors)

  18. Improvement the value of sodium void reactivity effect of the fast neutron reactor by the instrumentality of the Monte Carlo code

    OpenAIRE

    P.A. Maslov; V.I. Matveev; I.V. Malysheva

    2015-01-01

    To fulfill safety of fast sodium reactors in a beyond design-basis accident (BDBA) like unprotected loss of flow accident (ULOF), the sodium void reactivity effect (SVRE) should be close to zero. Its value depends on the fuel burnup – the higher burnup the higher value of SVRE. We analyze limitation of the fuel burnup in the core of a large sodium reactor imposed by SVRE. The model of a large sodium-cooled reactor core is chosen for analysis. Two fuel types are considered – MOX and nitride...

  19. Experimental study of the attenuation waves oriented to transients caused by the sodium-water explosive reaction in fast reactors

    International Nuclear Information System (INIS)

    Pedroso, L.J.

    1990-01-01

    One of the problems related to fluid-structure interaction that can compromise the structural integrity of components of a fast reactor is the explosion caused by the sodium-water reaction, in the case of a flood at the level of the thermic exchange wall at the steam generator. In this paper we have considered the aspects of the pressure-waves damping caused by the reaction, when these waves transverse certain perforated structures. In order to solve this problem, we also adopted a parametric experimental approach, using a scale model (RIO test rig). (author)

  20. Intercomparison of auto- and cross-power spectral density surveillance systems for sodium boiling detection in fast reactors

    International Nuclear Information System (INIS)

    Ehrhardt, J.

    1979-01-01

    Theoretical and experimental investigations on detection systems for small narrow-band components in noise signals were conducted. These detectionn systems are based on the continuous surveillance of the power spectral density for characteristic peaks. Detection sensitivity for auto- and cross-correlation measurements was computed for signals with normally distributed amplitudes in dependence of signal coherence. The derived detection criteria allowed the comparison of auto- and cross-power spectral density surveillance. Theoretical results were confirmed in a number of experimental parameter studies. Special theoretical investigations were done for the optimal detection of local sodium boiling in liquid-metal fast breeder reactors

  1. A Review of PSA Technology Applications according to the Development of Sodium-cooled Fast Reactors in the World

    International Nuclear Information System (INIS)

    Kim, Tae Woon; Lee, Yong Bum; Jung, Hae Yong; Kim, Sang Ji; Hahn, Do Hee; Yang, Joon Eon

    2008-12-01

    The international nuclear societies request to perform Probabilistic Safety Assessment (PSA) according to the development of Gen IV Sodium-cooled Fast Reactors (SFR). One of the major tasks of the PSA is to identify various sequences of events which could lead to the release of radioactivity. However, due to the limited operating and SFR PSA experiences, it will be difficult to derive and to quantify core damage frequency for SFR under development in Korea, so called KALIMER. Hence, in this report, the foreign PSA results, such as USA and Japan, are analyzed based on the obtained documents. Finally an approach on how to perform PSA for KALIMER is suggested

  2. The BN-1800 advanced sodium cooled fast reactor meeting requirements to nuclear power engineering of the XXI century

    International Nuclear Information System (INIS)

    Poplavskij, V.M.; Tsibulya, A.M.; Kamaev, A.A.

    2004-01-01

    Basic principles and direction of the elaboration of sodium fast reactor BN-1800 are discussed. The elaboration of the BN-1800 reactor is based on the scientific justified technical feasibilities of BN-350, BN-600 and BN-800 reactors. Descriptions of power blocks and reactor core of the elaborated reactor are presented. Characteristics of the BN-1800 steam generator are given. Safety of reactor unit is estimated, fundamental technical and economic indexes of BN-1800 are discussed. Economic indexes of the BN-1800 reactor are noted to be on the level of WWER-1000 and WWER-1500 reactors [ru

  3. The sodium coolant

    International Nuclear Information System (INIS)

    Rodriguez, G.

    2004-01-01

    The sodium is the best appropriate coolant for the fast neutrons reactors technology. Thus the fast neutrons reactors development is intimately bound to the sodium technology. This document presents the sodium as a coolant point of view: atomic structure and characteristics, sodium impacts on the fast neutron reactors technology, chemical properties of the sodium and the consequences, quality control in a nuclear reactor, sodium treatment. (A.L.B.)

  4. Interactions with Small and Large Sodium to UO2 Mass Ratios

    International Nuclear Information System (INIS)

    Clerici, G.; Holtbecker, H.; Schins, H.; Schlittenbardt, P.

    1976-01-01

    This paper is divided into the following three parts: - Presentation of final results of the Ispra dropping experiments; - Discussion of preliminary Na entrapment tests; - Presentation of the Press I and II codes. The experiments for which the Ispra UO 2 dropping facility was originally designed were completed in 1975. The experimental facility which initially had had difficulties in reaching the predefined working conditions gave in the last year a series of results. For this reason Ispra decided to built a similar plant for dropping experiments into water which started working in 1975. Concerning the entrapment tests it was originally foreseen to built in collaboration with GfK Karlsruhe a test section having subassembly geometry and in which the UO 2 would have been violently dispersed into the surrounding Na by the expansion of a small quantity of superheated sodium. Preliminary tests and the design work for the facility could be completed. The Press I + II codes were developed to support the above mentioned experiment - al activity. A 1-D analysis is made to investigate phenomena like UO 2 crust formation and calculate delay times between the time of the Na injection into UO 2 and the violent expansion of superheated Na. An estimate was also made of the available mechanical work in such a process which should allow to get an idea of possible energy release in a reactor core. First conclusions can be drawn from this estimate concerning the mechanical energy release in a WCA due to SPI. The result is that considerably lower energies are calculated from Na entrapment in a reactor core due to the limited amount of molten UO 2 present in the core

  5. Future work in the DeBeNeLux research centres on the sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Goedkoop, J.A.

    1976-01-01

    The general objectives as they now apply over the world in the further development of the sodium cooled fast reactor are to realize a reactor and the associated fuel cycle, that will ensure a good fuel utilization; secondly, as long as we live in a more or less free market economy, such a system will only be acceptable if it is competitive, which means that the difference in investment cost between the fast reactor and the presently used light water reactors has to be brought down; thirdly, to justify the investment the system should work reliably; finally the developments in reactor design should not be at the expense of reactor safety. The pursuit of these objectives during the coming years will require the DeBeNeLuX laboratories to do work in a number of fields. (Auth.)

  6. A Qualitative Assessment of Diversion Scenarios for an Example Sodium Fast Reactor Using the GEN IV PR and PP Methodology

    International Nuclear Information System (INIS)

    Zentner, Michael D.; Coles, Garill A.; Therios, Ike

    2012-01-01

    FAST REACTORS;NUCLEAR ENERGY;NUCLEAR MATERIALS MANAGEMENT;PROLIFERATION;SAFEGUARDS;THEFT; A working group was created in 2002 by the Generation IV International Forum (GIF) for the purpose of developing an internationally accepted methodology for assessing the Proliferation Resistance of a nuclear energy system (NES) and its individual elements. A two year case study is being performed by the experts group using this methodology to assess the proliferation resistance of a hypothetical NES called the Example Sodium Fast Reactor (ESFR). This work demonstrates how the PR and PP methodology can be used to provide important information at various levels of details to NES designers, safeguard administrators and decision makers. The study analyzes the response of the complete ESFR nuclear energy system to different proliferation and theft strategies. The challenges considered include concealed diversion, concealed misuse and 'break out' strategies. This paper describes the work done in performing a qualitative assessment of concealed diversion scenarios from the ESFR.

  7. Level II Probabilistic Safety Analysis Methodology for the Application to GEN-IV Sodium-cooled Fast Reactor

    International Nuclear Information System (INIS)

    Park, S. Y.; Kim, T. W.; Han, S. H.; Jeong, H. Y.

    2010-03-01

    The Korea Atomic Energy Research Institute (KAERI) has been developing liquid metal reactor (LMR) design technologies under a National Nuclear R and D Program. Nevertheless, there is no experience of the probabilistic safety assessment (PSA) domestically for a fast reactor with the metal fuel. Therefore, the objective of this study is to establish the methodologies of risk assessment for the reference design of GEN-IV sodium fast reactor (SFR). An applicability of the PSA methodology of U. S. NRC and PRISM plant to the domestic GEN-IV SFR has been studied. The study contains a plant damage state analysis, a containment event tree analysis, and a source-term release category binning process

  8. Fast evolution and waveform generator for extreme-mass-ratio inspirals in equatorial-circular orbits

    International Nuclear Information System (INIS)

    Han, Wen-Biao

    2016-01-01

    In this paper we discuss the development of a fast and accurate waveform model for the quasi-circular orbital evolution of extreme-mass-ratio inspirals (EMRIs). This model simply employs the data of a few numerical Teukoulsky-based energy fluxes and waveforms to fit out a set of polynomials for the entire fluxes and waveforms. These obtained polynomials are accurate enough in the entire evolution domain, and much more accurate than the resummation post-Newtonian (PN) energy fluxes and waveforms, especially when the spin of a black hole becomes large. The dynamical equation we adopted for orbital revolution is the effective-one-body (EOB) formalism. Because of the simplified expressions, the efficiency of calculating the orbital evolution with our polynomials is also better than the traditional method which uses the resummed PN analytical fluxes. Our model should be useful in calculations of waveform templates of EMRIs for gravitational wave (GW) detectors such as the evolved Laser Interferometer Space Antenna (eLISA). (paper)

  9. Four stream breakup of molten IFR [Integral Fast Reactor] metal fuel in sodium

    International Nuclear Information System (INIS)

    Gabor, J.D.; Purviance, R.T.; Aeschlimann, R.W.; Spencer, B.W.

    1988-01-01

    Tests have been conducted in which the breakup behavior of kilogram quantities of molten uranium, uranium-zirconium alloy, and uranium-iron alloy pour streams in 600C sodium was studied. A sodium depth of less than 0.3 m was required for hydrodynamic breakup and freezing of 25-mm pour streams of uranium and uranium-zirconium alloy with up to 400C melt superheat. The breakup material was primarily in the form of filaments and sheets with a settled bed voidage on the order of 0.9. The uranium-iron alloy with 800C melt superheat exhibited similar behavior except a sodium depth somewhat greater than 0.3 m was required for breakup and freezing of the particles

  10. Application of general multilevel factorial design with formulation of fast disintegrating tablets containing croscaremellose sodium and Disintequick MCC-25.

    Science.gov (United States)

    Solaiman, Amanda; Suliman, Ammar Said; Shinde, Swapnil; Naz, Sidra; Elkordy, Amal Ali

    2016-03-30

    Despite the popularity of orally fast disintegrating tablets (FDTs), their formulation can sometimes be challenging, producing tablets with either poor mechanical properties or high disintegration times. The aim of this research was to enhance the properties of FDTs produced by direct compression to have both sufficient hardness to withstand manual handling, and rapid disintegration time. General multilevel factorial design was applied to optimise and evaluate main and interaction effects of independent variables (i) disintegrant concentration, (ii) % filler (Disintequick MCC-25) to mannitol on the responses hardness, tensile strength and disintegration time. In this experiment mannitol was used as a diluent, Disintequick MCC-25 (to best of our knowledge there is no publication available yet for its use with FDTs) was termed in this study as a filler and croscaremellose sodium was used as the superdisintegrant. Seven formulations were prepared following a progressive two-stage approach. Each stage involved the change in the ratio of excipients (Mannitol:Filler) (1:0), (1:0.25), (1:0.50), (1:1), (0.50:1), (0.25:1), (0:1) w/w and concentration of superdisintegrant (1%, 3%, 5%, 7%, 10% w/w). All FDTs were tested for different parameters such as diameter, hardness, tensile strength, thickness, friability and disintegration time. The results of multiple linear regression analysis show a good degree of correlation between experimental (R(2):0.84, 0.94, 0.91) and predicted response (R(2):0.83, 0.96, 0.95) for hardness, tensile strength and disintegration time respectively. The optimum formulations (regarding disintegration time with acceptable hardness and friability properties) consisted of: (i) 5% w/w disintegrant and 20% w/w filler to mannitol, showing a disintegration time of 30s, a hardness of 66.6N (6.8 kg/cm(2)) and friability of 2.2%; (ii) 7% or 10% w/w disintegrant with 33.33% w/w filler to mannitol, showing disintegration time of 84 s (for 7% disintegrant) and

  11. Effect of sludge solids to mono-sodium titanate (MST) ratio on MST-treated sludge

    International Nuclear Information System (INIS)

    Saito, H.H.

    1999-01-01

    The Salt Disposition Systems Engineering Team has selected two cesium removal technologies for further development to replace the In-Tank Precipitation process: small tank tetraphenylborate (TPB) precipitation and crystalline silicotitanate (CST) ion exchange. In the CST ion exchange process, incoming salt solution from storage tanks containing entrained sludge solids is pretreated with monosodium titanate (MST) to adsorb strontium and plutonium. The resulting slurry is filtered using a cross-flow filter, with the permeate sent forward to CST ion exchange columns for cesium removal prior to conversion into Class A grout at the Saltstone Facility. The MST and sludge solids are to be sent for vitrification at the Defense Waste Processing Facility (DWPF). The High Level Waste Division (HLWD) requested that the Waste Processing Technology Section (WPTS) study varying the insoluble sludge solids to MST ratio to determine the relative impact of sludge and MST on filter performance. The purpose of this study was not for an exhaustive comprehensive search for an optimized insoluble sludge solids to monosodium titanate (MST) ratio, but as a scoping study to identify any effects of having an excess of either material. This document reports the results obtained

  12. A Numerical Design and Feasibility Study of Self-Wastage Experiment Using Simulant Material in a Sodium Fast Reactor

    Directory of Open Access Journals (Sweden)

    Sunghyon Jang

    2016-04-01

    Full Text Available A sodium–water reaction takes place when high-pressured water vapor leaks into sodium through a tiny defect on the surface of the heat transfer tube in a steam generator of the sodium-cooled fast reactor. The sodium–water reaction brings deterioration of the mechanical strength of the heat transfer tube at the initial leakage site. As a result, it damages the crack itself, which may eventually enlarge into a larger opening. This self-enlargement is called “self-wastage phenomenon.” In this study, a simulant experiment was proposed to reproduce the self-enlargement of a crack and to evaluate the mechanism of the self-wastage. The damage on the surface of the crack was simulated by making the neutralization reaction with hydrochloric acid solution and sodium hydroxide solution. A numerical investigation was carried out to validate the feasibility of the approach and to determine experimental conditions. From the computation results, it is observed that when 5M HCl is injected into 5M of NaOH with 0.05 m/s inlet velocity, the temperature at the surface near the crack increased over 319.26 K. The computational results show that the self-wastage phenomenon is capable of being reproduced by the simulant experiment.

  13. An Advanced Sodium-Cooled Fast Reactor Core Concept Using Uranium-Free Metallic Fuels for Maximizing TRU Burning Rate

    Directory of Open Access Journals (Sweden)

    Wuseong You

    2017-12-01

    Full Text Available In this paper, we designed and analyzed advanced sodium-cooled fast reactor cores using uranium-free metallic fuels for maximizing burning rate of transuranics (TRU nuclides from PWR spent fuels. It is well known that the removal of fertile nuclides such as 238U from fuels in liquid metal cooled fast reactor leads to the degradation of important safety parameters such as the Doppler coefficient, coolant void worth, and delayed neutron fraction. To resolve the degradation of the Doppler coefficient, we considered adding resonant nuclides to the uranium-free metallic fuels. The analysis results showed that the cores using uranium-free fuels loaded with tungsten instead of uranium have a significantly lower burnup reactivity swing and more negative Doppler coefficients than the core using uranium-free fuels without resonant nuclides. In addition, we considered the use of axially central B4C absorber region and moderator rods to further improve safety parameters such as sodium void worth, burnup reactivity swing, and the Doppler coefficient. The results of the analysis showed that the final design core can consume ~353 kg per cycle and satisfies self-controllability under unprotected accidents. The fuel cycle analysis showed that the PWR–SFR coupling fuel cycle option drastically reduces the amount of waste going to repository and the SFR burner can consume the amount of TRUs discharged from 3.72 PWRs generating the same electricity.

  14. Development of Core Heat Removal Objective Provision Trees for Sodium-Cooled Fast Reactor Defense-in-Depth Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Huichang; Kang, Bongsuk; Lee, Youngho [TUEV Rheinland Korea Ltd., Seoul (Korea, Republic of); Suh, Namduk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    Based on the definition of Defense-in-Depth levels and safety functions for KALIMER sodium-cooled fast reactor, suggested in the reference and, OPTs for level 1, 2, and 3 defense-in-depth and core heat removal safety function, were developed and suggested in this paper. The purpose of this OPT is first to assure the defensein-depth design during the licensing of Sodium-Cooled Fast Reactors (SFR), but it will also contribute in evaluating the completeness of regulatory requirements under development by Korea Institute of Nuclear Safety (KINS). The challenges and mechanisms and provisions were briefly explained in this paper. Comparing the mechanisms and provisions with the requirements will contribute in identifying the missing requirements. Since the design of PGSFR (Prototype Gen-IV SFR) is not mature yet, the OPT is developed for KALIMER design. Developed OPTs in this study can be used for the identification of potential design vulnerabilities. When detailed identification of provisions in terms of design features were achieved through the next step of this study, it can contribute to the establishment of defensein-depth evaluation frame for the regulatory reviews for the licensing process. At this moment, the identified provisions have both aspects as requirements and design features already adopted in KALIMER design. In the next stage of this study, derived provisions to be adopted will be compared with the actual design features and findings can be suggested as recommendations for the safety improvement.

  15. Mathematical modelling of performance of safety rod and its drive mechanism in sodium cooled fast reactor during scram action

    International Nuclear Information System (INIS)

    Rajan Babu, V.; Thanigaiyarasu, G.; Chellapandi, P.

    2014-01-01

    Highlights: • Mathematical modelling of dynamic behaviour of safety rod during scram action in fast reactor. • Effects of hydraulics, structural interaction and geometry on drop time of safety rod are understood. • Using simplified model, drop time can be assessed replacing detailed CFD analysis. • Sensitivities of the related parameters on drop time are understood. • Experimental validation qualifies the modelling and computer software developed. - Abstract: Performance of safety rod and its drive mechanism which are parts of shutdown systems in sodium cooled fast reactor (SFR) plays a major role in ensuring safe operation of the plant during all the design basis events. The safety rods are to be inserted into the core within a stipulated time during off-normal conditions of the reactor. Mathematical modelling of dynamic behaviour of a safety rod and its drive mechanism in a typical 500 MWe SFR during scram action is considered in the present study. A full-scale prototype system has undergone qualification tests in air, water and in sodium simulating the operating conditions in the reactor. In this paper, the salient features of the safety rod and its mechanism, details related to mathematical modelling and sensitivity of the parameters having influence on drop time are presented. The outcomes of the numerical analysis are compared with the experimental results. In this process, the mathematical model and the computer software developed are validated

  16. Two neural network based strategies for the detection of a total instantaneous blockage of a sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Martinez-Martinez, Sinuhe; Messai, Nadhir; Jeannot, Jean-Philippe; Nuzillard, Danielle

    2015-01-01

    The total instantaneous blockage (TIB) of an assembly in the core of a sodium-cooled fast reactor (SFR) is investigated. Such incident could appear as an abnormal rise in temperature on the assemblies neighbouring the blockage. Its detection relies on a dataset of temperature measurements of the assemblies making up the core of the French Phenix Nuclear Reactor. The data are provided by the French Commission of Atomic and Alternatives Energies (CEA). Here, two strategies are proposed depending on whether the sensor measurement of the suspected assembly is reliable or not. The proposed methodology implements a time-lagged feed-forward neural (TLFFN) Network in order to predict the one-step-ahead temperature of a given assembly. The incident is declared if the difference between the predicted process and the actual one exceeds a threshold. In these simulated conditions, the method is efficient to detect small gradients as expected in reality. - Highlights: • We study the total instantaneous blockage (TIB) of a sodium-cooled fast reactor. • The TIB symptom is simulated as an abrupt rise on temperature (0.1–1 °C/s). • The goal is to improve the early detection of the incident. • Two strategies laying on neural networks are proposed. • TIB is detected in 3 s for 1 °C/s and 18–21 s for 0.1 °C/s

  17. Treatment of sodium spills and leakage detection at loop-type fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, K; Fortmann, M; Lang, H; Moellerfeld, H [Interatom, Bergisch Gladbach (Germany)

    1979-03-01

    Sodium spills are of great importance in the safety analysis for sodium cooled nuclear plants. Large leakages can lead to a depletion of the heat transfer system and cause the loss of cooling of the reactor. Further the hot sodium may attack structural materials. In areas with air atmosphere large amounts of sodium can burn and cause great damages. Therefore the control of large leakages is an indispensable task in design and construction of sodium cooled reactor systems. Because of the typical arrangement of widespread long pipe systems loop type plants are subject to a gradually greater risk of damage than pool type plants. The sodium catching devices of the SNR-300 are described and their function is illustrated as an example for the treatment of large spills. Since the equipment for the control of large amounts of leaking sodium is very expensive, great efforts are made in order to save costs and to decrease safety problems. It is aimed to minimize the probability of such events to a degree that they no longer are to be considered realistic. The advantageous operating conditions and the favourable material properties support this aim. Under the well known keyword 'leak-before-rupture' criterion this task is pursued. Crack growth measurements are made at structural materials under LMFBR conditions, and leakage detecting systems are being developed. Some test results concerning this task are described. Despite the fact that there are good chances to verify the leak-before-rupture criterion it is assumed that certain hypothetical accidents occur, which are to be considered in the design of the reactor plant. The extremely improbable Bethe-Tait-accident (HCDA) is such an event. It would lead to a super spill, that means to the complete depletion of the reactor tank. For the SNR-300 plant a system is provided that is able to catch this super spill and the core melt. This core catcher must withstand the high temperatures and remove the decay heat. The purpose of this

  18. Treatment of sodium spills and leakage detection at loop-type fast reactors

    International Nuclear Information System (INIS)

    Foerster, K.; Fortmann, M.; Lang, H.; Moellerfeld, H.

    1979-01-01

    Sodium spills are of great importance in the safety analysis for sodium cooled nuclear plants. Large leakages can lead to a depletion of the heat transfer system and cause the loss of cooling of the reactor. Further the hot sodium may attack structural materials. In areas with air atmosphere large amounts of sodium can burn and cause great damages. Therefore the control of large leakages is an indispensable task in design and construction of sodium cooled reactor systems. Because of the typical arrangement of widespread long pipe systems loop type plants are subject to a gradually greater risk of damage than pool type plants. The sodium catching devices of the SNR-300 are described and their function is illustrated as an example for the treatment of large spills. Since the equipment for the control of large amounts of leaking sodium is very expensive, great efforts are made in order to save costs and to decrease safety problems. It is aimed to minimize the probability of such events to a degree that they no longer are to be considered realistic. The advantageous operating conditions and the favourable material properties support this aim. Under the well known keyword 'leak-before-rupture' criterion this task is pursued. Crack growth measurements are made at structural materials under LMFBR conditions, and leakage detecting systems are being developed. Some test results concerning this task are described. Despite the fact that there are good chances to verify the leak-before-rupture criterion it is assumed that certain hypothetical accidents occur, which are to be considered in the design of the reactor plant. The extremely improbable Bethe-Tait-accident (HCDA) is such an event. It would lead to a super spill, that means to the complete depletion of the reactor tank. For the SNR-300 plant a system is provided that is able to catch this super spill and the core melt. This core catcher must withstand the high temperatures and remove the decay heat. The purpose of this

  19. Sodium/water reactions in steam generators of liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    Hori, M.

    1980-01-01

    The status of the research and development on sodium/water reactions resulting from the leakage of water into sodium in LMFBR steam generators is reviewed. The importance of sodium/water reaction phenomena in the design and operation of steam generators is discussed. The effects of sodium/water reactions are evaluated and methods of protection against these phenomena are surveyed. The products of chemical reactions between sodium and water under steam generator conditions are H 2 , NaOH, Na 2 O and NaH. Together with the temperature rise due to the associated exothermic reaction, these reaction products cause effects such as self-wastage, single- and multi-target wastage, and rapid pressure increase, depending on the size of the leak hole or the magnitude of leak rate. As for the wastage phenomena of small leaks, the effects of various factors have been studied and experimental correlations, as well as some theoretical work, have been performed. To investigate the pressure phenomena of a large leak, large-scale tests have been conducted by various organizations, and the computer codes to analyse these phenomena have been developed and verified by experiments. In the design of steam generators, an initial failure up to a hypothetical double-ended guillotine rupture of a single heat transfer tube is widely used as the design basis leak. Protection systems for LMFBR plants consist of leak detection devices, leak termination devices, and reaction pressure relief devices. From analyses based on research and development activities, as well as from experience with leaks in steam generator test loops and reactor plants, it has been confirmed that protection systems can satisfactorily be designed to accommodate leak incidents in LMFBR plants. (author)

  20. Dietary Sodium to Potassium Ratio and Risk of Stroke in a Multiethnic Urban Population: The Northern Manhattan Study.

    Science.gov (United States)

    Willey, Joshua; Gardener, Hannah; Cespedes, Sandino; Cheung, Ying K; Sacco, Ralph L; Elkind, Mitchell S V

    2017-11-01

    There is growing evidence that increased dietary sodium (Na) intake increases the risk of vascular diseases, including stroke, at least in part via an increase in blood pressure. Higher dietary potassium (K), seen with increased intake of fruits and vegetables, is associated with lower blood pressure. The goal of this study was to determine the association of a dietary Na:K with risk of stroke in a multiethnic urban population. Stroke-free participants from the Northern Manhattan Study, a population-based cohort study of stroke incidence, were followed-up for incident stroke. Baseline food frequency questionnaires were analyzed for Na and K intake. We estimated the hazard ratios and 95% confidence intervals for the association of Na:K with incident total stroke using multivariable Cox proportional hazards models. Among 2570 participants with dietary data (mean age, 69±10 years; 64% women; 21% white; 55% Hispanic; 24% black), the mean Na:K ratio was 1.22±0.43. Over a mean follow-up of 12 years, there were 274 strokes. In adjusted models, a higher Na:K ratio was associated with increased risk for stroke (hazard ratio, 1.6; 95% confidence interval, 1.2-2.1) and specifically ischemic stroke (hazard ratio, 1.6; 95% confidence interval, 1.2-2.1). Na:K intake is an independent predictor of stroke risk. Further studies are required to understand the joint effect of Na and K intake on risk of cardiovascular disease. © 2017 American Heart Association, Inc.

  1. A study of sodium-cooled fast breeder reactor with thorium blanket for supply of U-233 to high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Yoshida, H.; Nishimura, H.; Osugi, T.

    1978-08-01

    Symbiotic energy system between fast breeder reactor and thermal reactor would have a potential merit for nuclear proliferation problem. And when using HTGR as the thermal reactor in the system, the energy system appears to be promising as an energy system self-sufficient in fuels, which can generate both electricity and high temperature process heat. In the system the fast breeder reactor has to supply sufficient amount of fissile plutonium to keep the reactor going, and also produce U-233 necessary to the associated U-233 fuelled process heat production HTGR. Three types of LMFBR concepts with thorium blanket, conventional homogeneous core LMFBR, and axial and radial parfait heterogeneous core LMFBRs, have been investigated to find out suitable configurations of LMFBR for supply of U-233 to the HTGR with relatively high conversion ratio of 0.85, in the symbiotic energy system between LMFBR and HTGR. The investigation on LMFBR has been made on fuel sufficiency of the system, inherent safety such as sodium-void and Doppler coefficients, and fuel cycle cost. The followings were revealed; (1) Conventional homogeneous core LMFBR with thorium radial blanket well satisfies the condition of fuel sufficiency, if adequate radial blanket thickness is chosen. However, the sodium-void coefficient and fuel cycle cost are inferior to the other concepts. (2) Axial parfait heterogeneous core LMFBR can be regarded as one of the best LMFBR concepts installed in the symbiotic energy system, from the viewpoints of fuel sufficiency, inherent safety and fuel cycle cost. However, further investigations should be needed on reliability and operationability of the concept. (3) Radial parfait heterogeneous core LMFBR seems inadequate as the LMFBR in the system, because the configurations based on this concept does not satisfy plutonium and U-233 breedings, simultaneously. This LMFBR concept, however, has excellent breeding performance in the internal radial blanket. So further

  2. BN-800 as a new stage in development of fast neutron sodium cooled reactors

    International Nuclear Information System (INIS)

    Poplavskij, V.M.; Chebeskov, A.N.; Matveev, V.I.

    2004-01-01

    The role of fast reactors in the strategy of evolution of the nuclear power of Russia is discussed, BN-800 under construction, where unique technical and construction decisions are used, is viewed. Economical estimations of expenses with regard for all life cycle demonstrate that fast reactors may be no higher-priced than the most popular in the world water moderated reactors. Closing of nuclear fuel cycle of BN-800 makes possible decision of the problem of plutonium and actinide utilization, that makes the fast reactor more safety for the environment [ru

  3. Toward a Mechanistic Source Term in Advanced Reactors: Characterization of Radionuclide Transport and Retention in a Sodium Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Brunett, Acacia J.; Bucknor, Matthew; Grabaskas, David

    2016-04-17

    A vital component of the U.S. reactor licensing process is an integrated safety analysis in which a source term representing the release of radionuclides during normal operation and accident sequences is analyzed. Historically, source term analyses have utilized bounding, deterministic assumptions regarding radionuclide release. However, advancements in technical capabilities and the knowledge state have enabled the development of more realistic and best-estimate retention and release models such that a mechanistic source term assessment can be expected to be a required component of future licensing of advanced reactors. Recently, as part of a Regulatory Technology Development Plan effort for sodium cooled fast reactors (SFRs), Argonne National Laboratory has investigated the current state of knowledge of potential source terms in an SFR via an extensive review of previous domestic experiments, accidents, and operation. As part of this work, the significant sources and transport processes of radionuclides in an SFR have been identified and characterized. This effort examines all stages of release and source term evolution, beginning with release from the fuel pin and ending with retention in containment. Radionuclide sources considered in this effort include releases originating both in-vessel (e.g. in-core fuel, primary sodium, cover gas cleanup system, etc.) and ex-vessel (e.g. spent fuel storage, handling, and movement). Releases resulting from a primary sodium fire are also considered as a potential source. For each release group, dominant transport phenomena are identified and qualitatively discussed. The key product of this effort was the development of concise, inclusive diagrams that illustrate the release and retention mechanisms at a high level, where unique schematics have been developed for in-vessel, ex-vessel and sodium fire releases. This review effort has also found that despite the substantial range of phenomena affecting radionuclide release, the

  4. Behaviour of 29Si NMR and infrared spectra of aqueous sodium and potassium silica solutions as a function of (SiO2/M2+O) ratio

    International Nuclear Information System (INIS)

    Couty, R.; Fernandez, L.

    1996-01-01

    Sodium and potassium solutions of silica with silica concentration of 1,4 mo/kg and R ms = SiO 2 /M + 2 O ratios of 4.56 to 1.6 were obtained by depolymerization of amorphous silica gel in sodium and potassium hydroxide. Solutions have been characterized by 29 Si NMR and infrared spectroscopy. The results indicated that Na + and K + exhibit the same behaviour during the depolymerization of silica. (authors). 11 refs., 4 figs., 2 tabs

  5. Breeding gains of sodium-cooled oxide-fueled fast reactors

    International Nuclear Information System (INIS)

    Mougniot, J.C.; Barre, J.Y.; Clauzon, P.; Ciacometti, C.; Neviere, G.; Ravier, J.; Sichard, B.

    Calculated values are presented for the breeding gains of French fast reactors, and the experimental uncertainties are discussed. The effect of various choices of planning on the breeding gains is next analyzed within the framework of classical concepts. In the final part, a new concept involving ''heterogeneous cores'' with a single enrichment zone is presented. This concept permits a significant improvement in the breeding gain and doubling time of fast reactors. (U.S.)

  6. JSFR design progress related to development of safety design criteria for Generation IV sodium-cooled fast reactors. (1) Overview

    International Nuclear Information System (INIS)

    Kamide, Hideki; Ando, Masato; Ito, Takaya

    2015-01-01

    JAEA, JAPC and MFBR have been conducting design study for the Japan Sodium-cooled Fast Reactor (JSFR), which is a design concept aiming at future commercial use as sustainable electric power source. As the result of the design study and R and D activity related the innovative technologies incorporated in the design in the Fast Reactor Cycle Technology Development (FaCT) project up to 2010, basic design concept of JSFR was established and its development process to the commercialization including construction and operation of a demonstration version of JSFR was outlined. JSFR is a looptype next generation sodium-cooled fast reactor (SFR), which is aiming at achieving development targets of Generation IV reactors concerning sustainability, safety and reliability, economics and proliferation resistance and physical protection by introducing the innovative technologies such as shortened high-chromium steel piping. The output power is assumed for the design study as 1,500 MWe for the commercial version and 750 MWe for the demonstration version. In FaCT phase I up to 2010, in order to evaluate feasibility to achieve the development targets, the design study has been conducted on the main components and systems. Since 2011, in order to contribute to the development of safety design criteria (SDC) and safety design guideline (SDG), which include the lessons learned from the TEPCO's Fukushima Dai-ichi nuclear power plants accident, in the frame work of Generation IV International Forum (GIF), the design study is focusing on the design measures against severe external events such as earthquake and tsunami. At the same time, the design study is going into detail and paying much attention to the maintenance and repair to make surer its feasibility. This paper summarizes the design concept of the demonstration version of JSFR in which progress of design work was incorporated for the safety issues on SDC and SDG of a SFR. (author)

  7. Fasting respiratory exchange ratio and resting metabolic rate as predictors of weight gain : the Baltimore Longitudinal Study on Aging

    NARCIS (Netherlands)

    Seidell, J C; Muller, D C; Sorkin, J D; Andres, R.

    The authors followed 775 men (aged 18-98 years) participating in the Baltimore Longitudinal Study in Aging for an average of ten years. Resting metabolic rate and fasting respiratory exchange ratio (RER) were measured by indirect calorimetry on their first visit and related to subsequent weight

  8. CP ESFR: Collaborative Project for a European Sodium Fast Reactor Core studies

    International Nuclear Information System (INIS)

    Buiron, L.; Vasile, A.; Sunderland, R.

    2013-01-01

    • Significant progress has been made in optimizing both the oxide and carbide ESFR cores; • For the oxide core the optimisation process concentrated on the reduction of the sodium void reactivity effect and on the evaluation of MA burning performances. The CONF2 axial configuration has provided a significant overall reduction of the sodium void reactivity effect. • The carbide core had a significantly higher reactivity loss over the fuel cycle compared to the oxide one. By increasing slightly the fuel pin diameter, whilst still retaining the advantages of lower fuel temperatures of carbide fuel, and making changes in the core layout, the reactivity loss over the cycle has been reduced to a level similar to that of the oxide core. By adopting the CONF2 axial configuration initially developed for the oxide core, the sodium void reactivity of the carbide core has also been reduced appreciably. • The MA transmutation performances of the optimized ESFR oxide core have been investigated with respect to two boundary configurations. The HET2 configuration shows a low MA transmutation rate sufficient to burn the MA produced by the ESFR core without affecting the safety parameters. The HOM4 configuration (where 4%wt. MA are loaded homogeneously in each core SA) is the most challenging configuration due to its impact on safety coefficients but it shows an high MA burning rate suitable for burning also MA accumulated by a thermal reactor fleet

  9. Thermodynamics of material properties degradation in fast reactor steam generator under effect of liquid sodium

    International Nuclear Information System (INIS)

    Walder, V.

    1984-01-01

    The possibility is discussed of a quantitative approach to the evaluation of changes in Nb-stabilized low alloy steel due to the effect of liquid sodium. The numerical finite difference method was applied to diffusion processes using the variability of all thermodynamic values entering the calculation. At thermodynamic balance with existing carbides, it will be possible to take into account the temperature gradient, the effect of the size of carbides and the effect of applied strain. The fact that the diffusion coefficient of carbide-forming niobium is by seven orders lower than that of carbon led to the use of the model of quasi-steady state diffusion. The dissolution of carbides and the diffusion of both elements is studied and the activities are investigated of carbon and niobium. The dissolution of NbC is controlled by the diffusion of niobium; the diffusion of niobium and carbon is induced by the balancing of their activities at the steel/sodium boundary. The local activity of carbon is at any moment determined via the steady state constant from the activity of niobium considering the type of carbide. The Nb-stabilized steel is characterized by a great difference in carbide sizes. Small carbides are accompanied by high carbon and niobium activities. Spontaneous diffusion occurs from the near vicinity of the carbides and the carbides dissolve. Stress increases activity thereby accelerating the process of decarburization of the steel in sodium. (Pu)

  10. Comparison calculation of a large sodium-cooled fast breeder reactor using the cell code MICROX-2 in connection with ENDF/B-VI and JEF-1.1 neutron data

    International Nuclear Information System (INIS)

    Pelloni, S.

    1992-02-01

    We have obtained results for a large sodium-cooled fast breeder reactor benchmark using data from the ENDF/B-VI and from Revision 1 of the JEF-1 (JEF-1.1) evaluation. The required cross sections were processed with the NJOY code system (Version 89.62) and homogenized with the spectrum cell code MICROX-2. Multigroup transport-theory calculations in 33 neutron groups (forward and adjoint) were performed using the two-dimensional code TWODANT and kinetic parameters were determined using the first-order perturbation-theory code PERT-V. We calculated eigenvalues, neutron balance data, global and regional breeding and conversion ratios, central rate ratios and reactivity worths with and without sodium, effective delayed neutron fraction and inhour reactivity, regional sodium void reactivity, and isothermal core fuel Doppler-reactivities. In particular, it is shown that good agreement (generally within one standard deviation) is achieved between these results and the average values over sixteen benchmark solutions obtained in the past. The eigenvalues predicted with ENDF/B-VI are up to 0.7% larger than those calculated with JEF-1.1 cross sections. This discrepancy is mainly due to different inelastic scattering cross sections for 23 Na and 238 U, and to different fast fission and nubar data for 239 Pu. (author) 5 figs., 30 tabs., 24 refs

  11. On the concept of resting potential--pumping ratio of the Na⁺/K⁺ pump and concentration ratios of potassium ions outside and inside the cell to sodium ions inside and outside the cell.

    Science.gov (United States)

    Xu, Ning

    2013-01-01

    In animal cells, the resting potential is established by the concentration gradients of sodium and potassium ions and the different permeabilities of the cell membrane to them. The large concentration gradients of sodium and potassium ions are maintained by the Na⁺/K⁺ pump. Under physiological conditions, the pump transports three sodium ions out of and two potassium ions into the cell per ATP hydrolyzed. However, unlike other primary or secondary active transporters, the Na⁺/K⁺ pump does not work at the equilibrium state, so the pumping ratio is not a thermodynamic property of the pump. In this article, I propose a dipole-charging model of the Na⁺/K⁺ pump to prove that the three Na⁺ to two K⁺ pumping ratio of the Na⁺/K⁺ pump is determined by the ratio of the ionic mobilities of potassium to sodium ions, which is to ensure the time constant τ and the τ-dependent processes, such as the normal working state of the Na⁺/K⁺ pump and the propagation of an action potential. Further, the concentration ratios of potassium ions outside and inside the cell to sodium ions inside and outside the cell are 0.3027 and 0.9788, respectively, and the sum of the potassium and sodium equilibrium potentials is -30.3 mV. A comparative study on these constants is made for some marine, freshwater and terrestrial animals. These findings suggest that the pumping ratio of the Na⁺/K⁺ pump and the ion concentration ratios play a role in the evolution of animal cells.

  12. Instrumentation and control of future sodium cooled fast reactors - Design improvements

    International Nuclear Information System (INIS)

    Madhusoodanan, K.; Sakthivel, M.; Chellapandi, P.

    2013-06-01

    India's fast reactor program started with the 40 MWt Fast Breeder Test Reactor. 500 MWe Prototype Fast Breeder Reactor (PFBR) is currently under construction at Kalpakkam. Safety of PFBR is enhanced by improved design features of I and C system. Since the design of Instrumentation and control (I and C) of PFBR, considerable improvements in terms of advancement in technology and indigenization has taken place. Further improvements in I and C is proposed for solving many of the difficulties faced during the design and construction phases of PFBR. Design improvements proposed are covered in this paper which will make the implementation and maintenance of I and C of future SFRs easier. (authors)

  13. Breeding characteristics analysis of a commercial fast reactor cooled with sodium liquid

    International Nuclear Information System (INIS)

    Kosaka, N.; Shigehiro, A.

    1982-01-01

    The fast reactor breeding characteristics and its safety is analysed. As reference, for a preliminar analysis, the specifications of Super-Phenix, reactor french of 1200 MWe, are used, varying some parameters after aiming to verify its effects on duplication time. (E.G.) [pt

  14. Phase characteristics of rare earth elements in metallic fuel for a sodium-cooled fast reactor by injection casting

    Energy Technology Data Exchange (ETDEWEB)

    Kuk, Seoung Woo, E-mail: swkuk@kaeri.re.kr [Next Generation Fuel Development Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, 34057 (Korea, Republic of); Kim, Ki Hwan; Kim, Jong Hwan; Song, Hoon; Oh, Seok Jin; Park, Jeong-Yong; Lee, Chan Bock [Next Generation Fuel Development Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, 34057 (Korea, Republic of); Youn, Young-Sang [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, 34057 (Korea, Republic of); Kim, Jong-Yun [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, 34057 (Korea, Republic of); Radiochemistry & Nuclear Nonproliferation, University of Science & Technology, Gajeong-ro 217, Yuseong-gu, Daejeon, 34113 (Korea, Republic of)

    2017-04-01

    Uranium-zirconium-rare earth (U-Zr-RE) fuel slugs for a sodium-cooled fast reactor were manufactured using a modified injection casting method, and investigated with respect to their uniformity, distribution, composition, and phase behavior according to RE content. Nd, Ce, Pr, and La were chosen as four representative lanthanide elements because they are considered to be major RE components of fuel ingots after pyroprocessing. Immiscible layers were found on the top layers of the melt-residue commensurate with higher fuel slug RE content. Scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) data showed that RE elements in the melt-residue were distributed uniformly throughout the fuel slugs. RE element agglomeration did not contaminate the fuel slugs but strongly affected the RE content of the slugs.

  15. A Qualitative Assessment Of Diversion Scenarios For A Example Sodium Fast Reactor Using The Gen IV PR And PP Methodology

    International Nuclear Information System (INIS)

    Zentner, Michael D.

    2008-01-01

    A working group was created in 2002 by the Generation IV International Forum (GIF) for the purpose of developing an internationally accepted methodology for assessing the Proliferation Resistance of a nuclear energy system (NES) and its individual elements. A two year case study is being performed by the experts group using this methodology to assess the proliferation resistance of a hypothetical NES called the Example Sodium Fast Reactor (ESFR). This work demonstrates how the PR and PP methodology can be used to provide important information at various levels of details to NES designers, safeguard administrators and decision makers. The study analyzes the response of the complete ESFR nuclear energy system to different proliferation and theft strategies. The challenges considered include concealed diversion, concealed misuse and 'break out' strategies. This paper describes the work done in performing a qualitative assessment of concealed diversion scenarios from the ESFR.

  16. Nuclear Power Station Kalkar, 300 MWe Prototype Nuclear Power Plant with Fast Sodium Cooled Reactor (SNR-300), Plant description

    International Nuclear Information System (INIS)

    1984-06-01

    The nuclear power station Kalkar (SNR-300) is a prototype with a sodium cooled fast reactor and a thermal power of 762 MW. The present plant description has been made available in parallel to the licensing procedure for the reactor plant and its core Mark-Ia as supplementary information for the public. The report gives a detailed description of the whole plant including the prevention measures against the impact of external and plant internal events. The radioactive materials within the reactor cooling system and the irradiation protection and surveillance measures are outlined. Finally, the operation of the plant is described with the start-up procedures, power operation, shutdown phases with decay heat removal and handling procedures

  17. THE INVESTIGATION OF BURNUP CHARACTERISTICS USING THE SERPENT MONTE CARLO CODE FOR A SODIUM COOLED FAST REACTOR

    Directory of Open Access Journals (Sweden)

    MEHMET E. KORKMAZ

    2014-06-01

    Full Text Available In this research, we investigated the burnup characteristics and the conversion of fertile 232Th into fissile 233U in the core of a Sodium-Cooled Fast Reactor (SFR. The SFR fuel assemblies were designed for burning 232Th fuel (fuel pin 1 and 233U fuel (fuel pin 2 and include mixed minor actinide compositions. Monte Carlo simulations were performed using Serpent Code1.1.19 to compare with CRAM (Chebyshev Rational Approximation Method and TTA (Transmutation Trajectory Analysis method in the burnup calculation mode. The total heating power generated in the system was assumed to be 2000 MWth. During the reactor operation period of 600 days, the effective multiplication factor (keff was between 0.964 and 0.954 and peaking factor is 1.88867.

  18. Patent Analysis of Ferritic/Martensitic Steels for the Fuel Cladding in Sodium-cooled Fast Reactor

    International Nuclear Information System (INIS)

    Baek, Jong Hyuk; Kim, Sung Ho; Kim, Tae Kyu; Kim, Woo Gon; Jang, Jin Sung; Kim, Dae Whan; Han, Chang Hee; Lee, Chan Bock

    2007-09-01

    The Korean, Japanese, U.S. and European patents related to the ferritic/martensitic steels were systematically surveyed to evaluate their patent status, which would be applicable to the fuel cladding materials for the Sodium-cooled Fast Reactor (SFR). From the surveys, totally 38 patents were finally selected for the quantitative and qualitative analysis. Among them, 28 patents (74%) were processed by Japanese companies and Sumitomo Metal industries Ltd. was top-ranked in the number (9) of priority patents. On the basis of these surveys, most patents could be applicable to the fuel cladding materials for SFR and, especially, some useful patents as the cladding were registered by the Russian and the Korean

  19. Patent Analysis of Ferritic/Martensitic Steels for the Fuel Cladding in Sodium-cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Jong Hyuk; Kim, Sung Ho; Kim, Tae Kyu; Kim, Woo Gon; Jang, Jin Sung; Kim, Dae Whan; Han, Chang Hee; Lee, Chan Bock

    2007-09-15

    The Korean, Japanese, U.S. and European patents related to the ferritic/martensitic steels were systematically surveyed to evaluate their patent status, which would be applicable to the fuel cladding materials for the Sodium-cooled Fast Reactor (SFR). From the surveys, totally 38 patents were finally selected for the quantitative and qualitative analysis. Among them, 28 patents (74%) were processed by Japanese companies and Sumitomo Metal industries Ltd. was top-ranked in the number (9) of priority patents. On the basis of these surveys, most patents could be applicable to the fuel cladding materials for SFR and, especially, some useful patents as the cladding were registered by the Russian and the Korean.

  20. Three-dimensional tsunami analysis for the plot plan of a sodium-cooled fast reactor plant

    International Nuclear Information System (INIS)

    Hayakawa, Satoshi; Watanabe, Osamu; Itoh, Kei; Yamamoto, Tomohiko

    2013-01-01

    As the practical evaluation method of the effect of tsunami on buildings, the formula of tsunami force has been used. However, it cannot be applied to complex geometry of buildings. In this study, to analyze the effect of tsunami on the buildings of sodium-cooled fast reactor plant more accurately, three-dimensional tsunami analysis was performed. In the analysis, VOF (Volume of Fluid) method was used to capture free surface of tsunami. At the beginning, it was confirmed that the tsunami experiment results was reproduced by VOF method accurately. Next, the three-dimensional tsunami analysis was performed with VOF method to evaluate the flow field around the buildings of the plant from the beginning of the tsunami until the backwash of that. (author)

  1. Thermal-hydraulics verification of a coarse-mesh OpenFOAM-based solver for a Sodium Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bonet López, M.

    2015-07-01

    Recently, in the Institute Swiss Paul Scherrer Institut, is has developed a platform Multiphysics, based in OpenFOAM, that is capable of performing an analysis multidimensional of a reactor nuclear. One of the main objectives of this project is to verify the part of the code responsible for the Thermo-hydraulic analysis of the reactor. To carry out simulations this part of the code uses the approximation of thick mesh based on the equations of a porous medium. Therefore, the other objective is demonstrate that this method is applicable to the analysis of a reactor nuclear fast of sodium, focusing is in his capacity of predict the transfer of heat between a subset and the space vacuum between subsets of the core of the reactor. (Author)

  2. Thermodynamic Data to Model the Interaction Between Coolant and Fuel in Gen IV Sodium Cooled Fast Reactors

    International Nuclear Information System (INIS)

    Dinsdale, Alan; Gisby, John; Davies, Hugh; Konings, Rudy; Benes, Ondrej

    2013-06-01

    Understanding the behaviour of nuclear fuels in various environments is vital to the design and safe operation of nuclear reactors. While this is true if the reactor is operating within its design specification, it is even more so if accidents occur and the fuel is exposed to unexpected temperatures, pressures or chemical environments. It is clearly hazardous and costly to explore all such scenarios experimentally and therefore it is necessary to undertake modelling where possible using well-grounded theoretical approaches. This paper will show examples of where calculations of chemical and phase equilibria have been applied successfully to the long term storage of nuclear waste, phase formation during core meltdown and prediction of fission product release into the atmosphere. It will also highlight the development of thermodynamic data carried out during the European Metrology Research Project Metrofission required to model the potential interaction between the coolant, nuclear fuel, containment materials and atmosphere of a sodium cooled fast reactor. (authors)

  3. Characterization of a sodium-cooled fast reactor in an MHR-SFR synergy for TRU transmutation

    International Nuclear Information System (INIS)

    Hong, Ser Gi; Kim, Yonghee; Venneri, Francesco

    2008-01-01

    In the task of destroying the light water reactor (LWR) transuranics (TRUs), we consider the concept of a synergistic combination of a deep-burn (DB) gas-cooled reactor followed by a sodium-cooled fast reactor (SFR), as an alternative way to the direct feeding of the LWR TRUs to the SFR. In the synergy concept, TRUs from LWR are first deeply incinerated in a graphite-moderated DB-MHR (modular helium reactor) and then the spent fuels of DB-MHR are recycled into the closed-cycle SFR. The DB-MHR core is 100% TRU-loaded and a deep-burning (50-65%) is achieved in a safe manner (as discussed in our previous work). In this analysis, the SFR fuel cycle is closed with a pyro-processing technology to minimize the waste stream to a final repository. Neutronic characteristics of the SFR core in the MHR-SFR synergy have been evaluated from the core physics point of view. Also, we have compared core characteristics of the synergy SFR with those of a stand-alone SFR transuranic burner. For a consistent comparison, the two SFRs are designed to have the same TRU consumption rate of ∼250 kg/GW EFPY that corresponds to the TRU discharge rate from three 600 MW DB-MHRs. The results of our work show that the synergy SFR, fed with TRUs from DB-MHR, has a much smaller burnup reactivity swing, a slightly greater delayed neutron fraction (both positive features) but also a higher sodium void worth and a less negative Doppler coefficients than the conventional SFR, fed with TRUs directly from the LWRs. In addition, several design measures have been considered to reduce the sodium void worth in the synergy SFR core

  4. Study and Evaluation of Innovative Fuel Handling Systems for Sodium-Cooled Fast Reactors: Fuel Handling Route Optimization

    Directory of Open Access Journals (Sweden)

    Franck Dechelette

    2014-01-01

    Full Text Available The research for technological improvement and innovation in sodium-cooled fast reactor is a matter of concern in fuel handling systems in a view to perform a better load factor of the reactor thanks to a quicker fuelling/defueling process. An optimized fuel handling route will also limit its investment cost. In that field, CEA has engaged some innovation study either of complete FHR or on the optimization of some specific components. This paper presents the study of three SFR fuel handling route fully described and compared to a reference FHR option. In those three FHR, two use a gas corridor to transfer spent and fresh fuel assembly and the third uses two casks with a sodium pot to evacuate and load an assembly in parallel. All of them are designed for the ASTRID reactor (1500 MWth but can be extrapolated to power reactors and are compatible with the mutualisation of one FHS coupled with two reactors. These three concepts are then intercompared and evaluated with the reference FHR according to four criteria: performances, risk assessment, investment cost, and qualification time. This analysis reveals that the “mixed way” FHR presents interesting solutions mainly in terms of design simplicity and time reduction. Therefore its study will be pursued for ASTRID as an alternative option.

  5. Impact of nuclear data uncertainties on the reactivity of an AN ASTRID-like sodium fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Martínez, A.; García-Herranz, N.; Romojaro, P.; Alvarez-Velarde, F.; López, D.

    2015-07-01

    The EU 7 th Framework Project ESNII+ was launched in 2013 in support of the initiative ESNII (European Sustainable Nuclear Industrial Initiative) whose purpose is to design, license, construct and begin the operation of the Sodium Fast Reactor Prototype, ASTRID, before 2025. An ASTRID-like core design has been analyzed (see other paper in this conference) and it was found to have a global negative reactivity feedback to sodium voiding. Taking into account the importance of feedback coefficients on core safety, the influence of the uncertainties in nuclear data should be assessed to have an exhaustive picture of the actual safety margins of ASTRID design. The objective of this work is to contribute to the improvement of the safety of ASTRID nuclear design by assessing different uncertainty propagation methodologies of the TSUNAMI-3D module of the SCALE system [ 1 ]. In this work, TSUNAMI-3D is applied to a pin-cell of the inner zone of the ASTRID core in order to select the optimal TSUNAMI-3D parameters. These parameters will be applied in future works to the Sensitivity and Uncertainty (S/U) analysis of the full core. (Author)

  6. Effect of geometric factors on performance of a sodium to air heat exchanger in a fast breeder reactor

    International Nuclear Information System (INIS)

    Kannan, K.; Vinod, V.; Padmakumar, G.; Rudramoorthy, R.; Rajan, K.K.

    2015-01-01

    Highlights: • A heat exchanger analysis (HE) before scale up reduces excess heat transfer area. • Representative Elementary Volume analysis of a HE speeds up the solution. • The error in air temperature rise prediction by numerical across HE is within 5%. • When both pitches are reduced, the maximum increase in heat flux is experienced. • The experience has resulted in better design of next level heat exchangers. - Abstract: Prototype fast breeder reactor (PFBR) has a safety grade decay heat removal system whose performance depends on the effective functioning of natural convection heat exchangers called sodium to air heat exchangers. The development of Representative Elementary Volume (REV) model for the sodium to air heat exchanger is necessary to envisage its design and to study the effect of various factors for continuous improvement in design. With a Representative Elementary Volume, the hydrodynamic and heat transfer characteristics of the heat exchanger was studied and the results agree well with experimental data. The effect of longitudinal pitch and transverse pitch on the heat exchanger performance has been studied and an improvement of 22% in heat transfer is predicted

  7. The development of a realistic source term for sodium-cooled fast reactors : assessment of current status and future needs.

    Energy Technology Data Exchange (ETDEWEB)

    LaChance, Jeffrey L.; Phillips, Jesse; Parma, Edward J., Jr.; Olivier, Tara Jean; Middleton, Bobby D.

    2011-06-01

    Sodium-cooled fast reactors (SFRs) continue to be proposed and designed throughout the United States and the world. Although the number of SFRs actually operating has declined substantially since the 1980s, a significant interest in advancing these types of reactor systems remains. Of the many issues associated with the development and deployment of SFRs, one of high regulatory importance is the source term to be used in the siting of the reactor. A substantial amount of modeling and experimental work has been performed over the past four decades on accident analysis, sodium coolant behavior, and radionuclide release for SFRs. The objective of this report is to aid in determining the gaps and issues related to the development of a realistic, mechanistically derived source term for SFRs. This report will allow the reader to become familiar with the severe accident source term concept and gain a broad understanding of the current status of the models and experimental work. Further, this report will allow insight into future work, in terms of both model development and experimental validation, which is necessary in order to develop a realistic source term for SFRs.

  8. Thermal analysis of supercritical CO{sub 2} power cycles: Assessment of their suitability to the forthcoming sodium fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Pichel, G.D., E-mail: gdp@icai.es [Rafael Marino Chair on New Energy Technologies, Comillas Pontifical University, Madrid (Spain); Linares, J.I. [Rafael Marino Chair on New Energy Technologies, Comillas Pontifical University, Madrid (Spain); Herranz, L.E.; Moratilla, B.Y. [Unit of Nuclear Safety Research, CIEMAT, Madrid (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer This paper investigates the potential use of S-CO{sub 2} cycles in SFRs. Black-Right-Pointing-Pointer A wide range of configurations have been explored. Black-Right-Pointing-Pointer It is feasible to reach a thermal efficiency as high as 43.5%. Black-Right-Pointing-Pointer A sensitivity analysis together with an exergy study have been done. Black-Right-Pointing-Pointer Potential use in SFRs of recompression S-CO{sub 2} cycles for their balance of plant. - Abstract: Sodium fast reactors (SFRs) potential to meet Gen. IV requirements is broadly acknowledged worldwide. The scientific and technological experience accumulated by operating test reactors and, even, by running commercial reactors, makes them be considered as the closest Gen. IV option in the near future. In the past their balance of plant has been always based on Rankine cycles. This paper investigates the potential use of supercritical recompression CO{sub 2} cycles (S-CO{sub 2}) in SFRs on the basis of the working parameters foreseen within the European Sodium Fast Reactor (ESFR) project. A wide range of configurations have been explored, from the simplest one to combined cycles (with organic Rankine cycles, ORC), and a comparison has been set in terms of thermal efficiency. As a result, it has been found out that the most basic configuration could reach a thermal efficiency as high as 43.31%, which is comparable to that obtained through super-critical Rankine cycles proposed elsewhere. A sensitivity analysis together with an exergy study of this configuration, pointed the pre-cooler and IHX{sub Na-CO{sub 2}} as key components in the cycle performance. These results highlight a main conclusion: the potential use in SFRs of recompression S-CO{sub 2} cycles for their balance of plant, whenever a sound and extensive database is built-up on S-CO{sub 2} turbo-machinery and IHX performance.

  9. Three-dimensional multi-physics model of the European sodium fast reactor design applied to DBA analysis - 15293

    International Nuclear Information System (INIS)

    Lazaro, A.; Ordonez, J.; Martorell, S.; Przemyslaw, S.; Ammirabile, L.; Tsige-Tamirat, H.

    2015-01-01

    The sodium cooled fast reactor (SFR) is one of the reactor types selected by the Generation IV International Forum. SFR stand out due to its remarkable past operational experience in related projects and its potential to achieve the ambitious goals laid for the new generation of nuclear reactors. Regardless its operational experience, there is a need to apply computational tools able to simulate the system behaviour under conditions that may overtake the reactor safety limits from the early stages of the design process, including the three-dimensional phenomena that may arise in these transients. This paper presents the different steps followed towards the development of a multi-physics platform with capabilities to simulate complex phenomena using a coupled neutronic-thermal-hydraulic scheme. The development started with a one-dimensional thermal-hydraulic model of the European Sodium Fast Reactor (ESFR) design with point kinetic neutronic feedback benchmarked with its peers in the framework of the FP7-CP-ESFR project using the state-of-the-art thermal-hydraulic system code TRACE. The model was successively extended into a three-dimensional model coupled with the spatial kinetic neutronic code PARCS able to simulate three-dimensional multi-physic phenomena along with the comparison of the results for symmetric cases. The last part of the paper shows the application of the developed tool to the analysis of transients involving asymmetrical effects, such as the coast-down of a primary and secondary pump or the withdrawal of a peripheral control rod bank, demonstrating the unique capability of the code to simulate such transients and the capability of the design to withstand them under design basis

  10. An Analysis of Methanol and Hydrogen Production via High-Temperature Electrolysis Using the Sodium Cooled Advanced Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shannon M. Bragg-Sitton; Richard D. Boardman; Robert S. Cherry; Wesley R. Deason; Michael G. McKellar

    2014-03-01

    Integration of an advanced, sodium-cooled fast spectrum reactor into nuclear hybrid energy system (NHES) architectures is the focus of the present study. A techno-economic evaluation of several conceptual system designs was performed for the integration of a sodium-cooled Advanced Fast Reactor (AFR) with the electric grid in conjunction with wind-generated electricity. Cases in which excess thermal and electrical energy would be reapportioned within an integrated energy system to a chemical plant are presented. The process applications evaluated include hydrogen production via high temperature steam electrolysis and methanol production via steam methane reforming to produce carbon monoxide and hydrogen which feed a methanol synthesis reactor. Three power cycles were considered for integration with the AFR, including subcritical and supercritical Rankine cycles and a modified supercritical carbon dioxide modified Brayton cycle. The thermal efficiencies of all of the modeled power conversions units were greater than 40%. A thermal efficiency of 42% was adopted in economic studies because two of the cycles either performed at that level or could potentially do so (subcritical Rankine and S-CO2 Brayton). Each of the evaluated hybrid architectures would be technically feasible but would demonstrate a different internal rate of return (IRR) as a function of multiple parameters; all evaluated configurations showed a positive IRR. As expected, integration of an AFR with a chemical plant increases the IRR when “must-take” wind-generated electricity is added to the energy system. Additional dynamic system analyses are recommended to draw detailed conclusions on the feasibility and economic benefits associated with AFR-hybrid energy system operation.

  11. Thermal analysis of supercritical CO2 power cycles: Assessment of their suitability to the forthcoming sodium fast reactors

    International Nuclear Information System (INIS)

    Pérez-Pichel, G.D.; Linares, J.I.; Herranz, L.E.; Moratilla, B.Y.

    2012-01-01

    Highlights: ► This paper investigates the potential use of S-CO 2 cycles in SFRs. ► A wide range of configurations have been explored. ► It is feasible to reach a thermal efficiency as high as 43.5%. ► A sensitivity analysis together with an exergy study have been done. ► Potential use in SFRs of recompression S-CO 2 cycles for their balance of plant. - Abstract: Sodium fast reactors (SFRs) potential to meet Gen. IV requirements is broadly acknowledged worldwide. The scientific and technological experience accumulated by operating test reactors and, even, by running commercial reactors, makes them be considered as the closest Gen. IV option in the near future. In the past their balance of plant has been always based on Rankine cycles. This paper investigates the potential use of supercritical recompression CO 2 cycles (S-CO 2 ) in SFRs on the basis of the working parameters foreseen within the European Sodium Fast Reactor (ESFR) project. A wide range of configurations have been explored, from the simplest one to combined cycles (with organic Rankine cycles, ORC), and a comparison has been set in terms of thermal efficiency. As a result, it has been found out that the most basic configuration could reach a thermal efficiency as high as 43.31%, which is comparable to that obtained through super-critical Rankine cycles proposed elsewhere. A sensitivity analysis together with an exergy study of this configuration, pointed the pre-cooler and IHX Na–CO 2 as key components in the cycle performance. These results highlight a main conclusion: the potential use in SFRs of recompression S-CO 2 cycles for their balance of plant, whenever a sound and extensive database is built-up on S-CO 2 turbo-machinery and IHX performance.

  12. Optimization of intermediate heat exchangers for sodium cooled fast breeder reactors

    International Nuclear Information System (INIS)

    Barratt, R.O.; Cox, J.; Beith, R.M.V.

    1978-01-01

    Design evolution of the Intermediate Heat Exchanger for the U.S. Fast Breeder Programme is traced from the initial FFTF through to the Clinch River Designs and anticipated onward Commercial Plant Concepts. Supporting development work is outlined. Technical merits of certain features, such as sine wave tube banks and replaceable tube banks (in-situ), are weighed up against quantified cost advantages with simpler arrangements. Future design trends are outlined which will lead eventually to fully optimised designs. (author)

  13. Fully iterative scatter corrected digital breast tomosynthesis using GPU-based fast Monte Carlo simulation and composition ratio update

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyungsang; Ye, Jong Chul, E-mail: jong.ye@kaist.ac.kr [Bio Imaging and Signal Processing Laboratory, Department of Bio and Brain Engineering, KAIST 291, Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Lee, Taewon; Cho, Seungryong [Medical Imaging and Radiotherapeutics Laboratory, Department of Nuclear and Quantum Engineering, KAIST 291, Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Seong, Younghun; Lee, Jongha; Jang, Kwang Eun [Samsung Advanced Institute of Technology, Samsung Electronics, 130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-803 (Korea, Republic of); Choi, Jaegu; Choi, Young Wook [Korea Electrotechnology Research Institute (KERI), 111, Hanggaul-ro, Sangnok-gu, Ansan-si, Gyeonggi-do, 426-170 (Korea, Republic of); Kim, Hak Hee; Shin, Hee Jung; Cha, Joo Hee [Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 138-736 (Korea, Republic of)

    2015-09-15

    Purpose: In digital breast tomosynthesis (DBT), scatter correction is highly desirable, as it improves image quality at low doses. Because the DBT detector panel is typically stationary during the source rotation, antiscatter grids are not generally compatible with DBT; thus, a software-based scatter correction is required. This work proposes a fully iterative scatter correction method that uses a novel fast Monte Carlo simulation (MCS) with a tissue-composition ratio estimation technique for DBT imaging. Methods: To apply MCS to scatter estimation, the material composition in each voxel should be known. To overcome the lack of prior accurate knowledge of tissue composition for DBT, a tissue-composition ratio is estimated based on the observation that the breast tissues are principally composed of adipose and glandular tissues. Using this approximation, the composition ratio can be estimated from the reconstructed attenuation coefficients, and the scatter distribution can then be estimated by MCS using the composition ratio. The scatter estimation and image reconstruction procedures can be performed iteratively until an acceptable accuracy is achieved. For practical use, (i) the authors have implemented a fast MCS using a graphics processing unit (GPU), (ii) the MCS is simplified to transport only x-rays in the energy range of 10–50 keV, modeling Rayleigh and Compton scattering and the photoelectric effect using the tissue-composition ratio of adipose and glandular tissues, and (iii) downsampling is used because the scatter distribution varies rather smoothly. Results: The authors have demonstrated that the proposed method can accurately estimate the scatter distribution, and that the contrast-to-noise ratio of the final reconstructed image is significantly improved. The authors validated the performance of the MCS by changing the tissue thickness, composition ratio, and x-ray energy. The authors confirmed that the tissue-composition ratio estimation was quite

  14. Four to seven random casual urine specimens are sufficient to estimate 24-h urinary sodium/potassium ratio in individuals with high blood pressure.

    Science.gov (United States)

    Iwahori, T; Ueshima, H; Torii, S; Saito, Y; Fujiyoshi, A; Ohkubo, T; Miura, K

    2016-05-01

    This study was done to clarify the optimal number and type of casual urine specimens required to estimate urinary sodium/potassium (Na/K) ratio in individuals with high blood pressure. A total of 74 individuals with high blood pressure, 43 treated and 31 untreated, were recruited from the Japanese general population. Urinary sodium, potassium and Na/K ratio were measured in both casual urine samples and 7-day 24-h urine samples and then analyzed by correlation and Bland-Altman analyses. Mean Na/K ratio from random casual urine samples on four or more days strongly correlated with the Na/K ratio of 7-day 24-h urine (r=0.80-0.87), which was similar to the correlation between 1 and 2-day 24-h urine and 7-day 24-h urine (r=0.75-0.89). The agreement quality for Na/K ratio of seven random casual urine for estimating the Na/K ratio of 7-day 24-h urine was good (bias: -0.26, limits of agreements: -1.53-1.01), and it was similar to that of 2-day 24-h urine for estimating 7-day 24-h values (bias: 0.07, limits of agreement: -1.03 to 1.18). Stratified analyses comparing individuals using antihypertensive medication and individuals not using antihypertensive medication showed similar results. Correlations of the means of casual urine sodium or potassium concentrations with 7-day 24-h sodium or potassium excretions were relatively weaker than those for Na/K ratio. The mean Na/K ratio of 4-7 random casual urine specimens on different days provides a good substitute for 1-2-day 24-h urinary Na/K ratio for individuals with high blood pressure.

  15. Benchmark for Neutronic Analysis of Sodium-cooled Fast Reactor Cores with Various Fuel Types and Core Sizes

    International Nuclear Information System (INIS)

    Stauff, N.E.; Kim, T.K.; Taiwo, T.A.; Buiron, L.; Rimpault, G.; Brun, E.; Lee, Y.K.; Pataki, I.; Kereszturi, A.; Tota, A.; Parisi, C.; Fridman, E.; Guilliard, N.; Kugo, T.; Sugino, K.; Uematsu, M.M.; Ponomarev, A.; Messaoudi, N.; Lin Tan, R.; Kozlowski, T.; Bernnat, W.; Blanchet, D.; Brun, E.; Buiron, L.; Fridman, E.; Guilliard, N.; Kereszturi, A.; Kim, T.K.; Kozlowski, T.; Kugo, T.; Lee, Y.K.; Lin Tan, R.; Messaoudi, N.; Parisi, C.; Pataki, I.; Ponomarev, A.; Rimpault, G.; Stauff, N.E.; Sugino, K.; Taiwo, T.A.; Tota, A.; Uematsu, M.M.; Monti, S.; Yamaji, A.; Nakahara, Y.; Gulliford, J.

    2016-01-01

    One of the foremost Generation IV International Forum (GIF) objectives is to design nuclear reactor cores that can passively avoid damage of the reactor when control rods fail to scram in response to postulated accident initiators (e.g. inadvertent reactivity insertion or loss of coolant flow). The analysis of such unprotected transients depends primarily on the physical properties of the fuel and the reactivity feedback coefficients of the core. Within the activities of the Working Party on Scientific Issues of Reactor Systems (WPRS), the Sodium Fast Reactor core Feed-back and Transient response (SFR-FT) Task Force was proposed to evaluate core performance characteristics of several Generation IV Sodium-cooled Fast Reactor (SFR) concepts. A set of four numerical benchmark cases was initially developed with different core sizes and fuel types in order to perform neutronic characterisation, evaluation of the feedback coefficients and transient calculations. Two 'large' SFR core designs were proposed by CEA: those generate 3 600 MW(th) and employ oxide and carbide fuel technologies. Two 'medium' SFR core designs proposed by ANL complete the set. These medium SFR cores generate 1 000 MW(th) and employ oxide and metallic fuel technologies. The present report summarises the results obtained by the WPRS for the neutronic characterisation benchmark exercise proposed. The benchmark definition is detailed in Chapter 2. Eleven institutions contributed to this benchmark: Argonne National Laboratory (ANL), Commissariat a l'energie atomique et aux energies alternatives (CEA of Cadarache), Commissariat a l'energie atomique et aux energies alternatives (CEA of Saclay), Centre for Energy Research (CER-EK), Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Nuclear Technology and Energy Systems (IKE), Japan Atomic Energy Agency (JAEA), Karlsruhe Institute of Technology (KIT

  16. Studies on plant dynamics of sodium-cooled fast breeder reactors - verification of a plant model

    International Nuclear Information System (INIS)

    Schubert, B.

    1988-01-01

    For the analysis of sodium-cooled FBR safety and dynamics theoretical models are used, which have to be verified. In this report the verification of the plant model SSC-L is conducted by the comparison of calculated data with measurements of the experimental reactors KNK II and RAPSODIE. For this the plant model is extended and adapted. In general only small differences between calculated and measured data are recognized. The results are used to improve and complete the plant model. The extensions of the plant model applicability are used for the calculation of a loss of heat sink transient with reactor scram, considering pipes as passive heat sinks. (orig./HP) With 69 figs., 10 tabs [de

  17. A safety design approach for sodium cooled fast reactor core toward commercialization in Japan

    International Nuclear Information System (INIS)

    Kubo, Shigenobu

    2012-01-01

    JAEA’s safety approach for SFR core design is based on defence‐in‐depth concept, which includes DBAs and DECs (prevention and mitigation): • The reactor core is designed to have inherent reactivity feedback characteristics with negative power coefficient. • Operation temperature range is set sufficiently below the coolant boiling temperature so as to avoid coolant boiling against anticipated operational occurrences and DBAs. • If the plant state deviates from operational states, the safe reactor shutdown is achieved by automatic insertion of control rods. 2 active reactor shutdown systems are provided. • Failure of active reactor shutdown is assumed in a design extension condition . Passive shutdown capability is provided by SASS under such condition. • As a design extension condition, core disruptive accident is assumed. In order to prevent severe mechanical energy release which might cause containment function failure, core sodium void worth is limited below 6 dollars and molten fuel discharge capability is utilized by FAIDUS. (author)

  18. Reflector and Protections in a Sodium-cooled Fast Reactor: Modelling and Optimization

    Science.gov (United States)

    Blanchet, David; Fontaine, Bruno

    2017-09-01

    The ASTRID project (Advanced Sodium Technological Reactor for Industrial Demonstration) is a Generation IV nuclear reactor concept under development in France [1]. In this frame, studies are underway to optimize radial reflectors and protections. Considering radial protections made in natural boron carbide, this study is conducted to assess the neutronic performances of the MgO as the reference choice for reflector material, in comparison with other possible materials including a more conventional stainless steel. The analysis is based upon a simplified 1-D and 2-D deterministic modelling of the reactor, providing simplified interfaces between core, reflector and protections. Such models allow examining detailed reaction rate distributions; they also provide physical insights into local spectral effects occurring at the Core-Reflector and at the Reflector-Protection interfaces.

  19. Numerical simulation for debris bed behavior in sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Tagami, Hirotaka; Tobita, Yoshiharu

    2014-01-01

    For safety analysis of SFR, it is necessary to evaluate behavior along with coolability of debris bed in lower plenum which is formed in severe accident. In order to analyze debris behavior, model for dense sediment particles behavior was proposed and installed in SFR safety analysis code SIMMER. SIMMER code could adequately reproduce experimental results simulating the self-leveling phenomena with appropriate model parameters for bed stiffness. In reactor condition, the self-leveling experiment for prototypical debris bed has not been performed. Additionally, the prototypical debris bed consists of non-spherical particles and it is difficult to quantify model parameters. This situation brings sensitivity analysis to investigate effect of model parameters on the self-leveling phenomena of prototypical debris bed in present paper. As initial condition for sensitivity analysis, simple mound-like debris bed in sodium-filled lower plenum in reactor vessel is considered. The bed consists of the mixture of fuel debris of 3,300 kg and steel debris of 1,570 kg. Decay heat is given to this fuel debris. The model parameter is chosen as sensitivity parameter. Sensitivity analysis shows that the model parameters can effect on intensity of self-leveling phenomena and eventual flatness of bed. In all analyses, however, coolant and sodium vapor break the debris bed at mainly center part of bed and the debris is relocated to outside of bed. Through this process, the initial debris bed is almost planarized before re-melting of debris. This result shows that the model parameters affect the self-leveling phenomena, but its effect in the safety analysis of SFRs is limited. (author)

  20. Na/Cl molar ratio changes during a salting cycle and its application to the estimation of sodium retention in salted watersheds.

    Science.gov (United States)

    Sun, Hongbing; Huffine, Maria; Husch, Jonathan; Sinpatanasakul, Leeann

    2012-08-01

    Using soil column experiments and data from natural watersheds, this paper analyzes the changes in Na/Cl molar ratios during a salting cycle of aqueous-soil systems. The soil column experiments involved introducing NaCl salt at various initial concentrations into multiple soil columns. At the start of a salting cycle in the column experiments, sodium was adsorbed more than chloride due to cation exchange processes. As a result, the initial Na/Cl molar ratio in column effluent was lower than 1, but increased thereafter. One-dimensional PHREEQC geochemical transport simulations also were conducted to further quantify these trends under more diverse scenarios. The experimentally determined Na/Cl molar ratio pattern was compared to observations in the annual salting cycle of four natural watersheds where NaCl is the dominant applied road deicing salt. Typically, Na/Cl molar ratios were low from mid-winter to early spring and increased after the bulk of the salt was flushed out of the watersheds during the summer, fall and early winter. The established relationship between the Na/Cl molar ratios and the amount of sodium retention derived from the column experiments and computer simulations present an alternative approach to the traditional budget analysis method for estimating sodium retention when the experimental and natural watershed patterns of Na/Cl molar ratio change are similar. Findings from this study enhance the understanding of sodium retention and help improve the scientific basis for future environmental policies intended to suppress the increase of sodium concentrations in salted watersheds. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Development of the evaluation methodology for the material relocation behavior in the core disruptive accident of sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Tobita, Yoshiharu; Kamiyama, Kenji; Tagami, Hirotaka; Matsuba, Ken-ichi; Suzuki, Tohru; Isozaki, Mikio; Yamano, Hidemasa; Morita, Koji; Guo, Liancheng; Zhang, Bin

    2014-01-01

    The in-vessel retention (IVR) of core disruptive accident (CDA) is of prime importance in enhancing safety characteristics of sodium-cooled fast reactors (SFRs). In the CDA of SFRs, molten core material relocates to the lower plenum of reactor vessel and may impose significant thermal load on the structures, resulting in the melt through of the reactor vessel. In order to enable the assessment of this relocation process and prove that IVR of core material is the most probable consequence of the CDA in SFRs, a research program to develop the evaluation methodology for the material relocation behavior in the CDA of SFRs has been conducted. This program consists of three developmental studies, namely the development of the analysis method of molten material discharge from the core region, the development of evaluation methodology of molten material penetration into sodium pool, and the development of the simulation tool of debris bed behavior. The analysis method of molten material discharge was developed based on the computer code SIMMER-III since this code is designed to simulate the multi-phase, multi-component fluid dynamics with phase changes involved in the discharge process. Several experiments simulating the molten material discharge through duct using simulant materials were utilized as the basis of validation study of the physical models in this code. It was shown that SIMMER-III with improved physical models could simulate the molten material discharge behavior including the momentum exchange with duct wall and thermal interaction with coolant. In order to develop evaluation methodology of molten material penetration into sodium pool, a series of experiments simulating jet penetration behavior into sodium pool in SFR thermal condition were performed. These experiments revealed that the molten jet was fragmented in significantly shorter penetration length than the prediction by existing correlation for light water reactor conditions, due to the direct

  2. Analysis of the minority actinides transmutation in a sodium fast reactor with uniform load pattern by the MCNPX-CINDER code

    International Nuclear Information System (INIS)

    Ochoa Valero, R.; Garcia-Herranz, N.; Aragones, J. M.

    2010-01-01

    The aim of this study is to evaluate the minority actinides transmutation in sodium fast reactors (SFR) assuming a uniform load pattern. It is determined the isotopic evolution of the actinides along burn, and the evolution of the reactivity and the reactivity coefficients. For that, it is used the MCNPX neutron transport code coupled with the inventory code CINDER90.

  3. [The fasting calcium/creatinine ratio in patients with calcium stones and the relation with hypercalciuria and phosphocalcium metabolism].

    Science.gov (United States)

    Arrabal-Polo, Miguel Ángel; del Carmen Cano-García, María; Arrabal-Martín, Miguel

    2016-04-01

    To determine the importance of fasting calcium/creatinine ratio in patients with calcium stones and its relation with hypercalciuria and phospho-calcium metabolism. Cross-sectional study including 143 patients divided into two groups according to fasting calcium/creatinine. Group 1: 66 patients (calcium/ creatininecreatinine>0.11). A comparative study is performed between groups including phospho-calcium metabolism parameters and excretion of urinary lithogenic markers. Linear correlation studying calciuria and fasting calcium/ creatinine was performed. SPSS 17.0 statistical analysis software was used, considering p≤0.05. It is noteworthy that group 2 had increased 24 h urine calcium excretion in comparison to group 1 (229.3 vs 158.1; p=0.0001) and calcium/citrate (0.47 vs 0.34; p=0.001). There is a positive and significant correlation between calcium levels in 24 h urine and fasting calcium/creatinine (R=0.455; p=0.0001) and a cutoff is set at 0.127 (sensitivity 72%, specificity 66%) to determine hypercalciuria (>260 mg in 24 h). Increased fasting calcium/creatinine determines increased 24 hours calcium excretion, although the sensitivity and specificity to determine hypercalciuria is not high.

  4. The sodium channel activator Lu AE98134 normalizes the altered firing properties of fast spiking interneurons in Dlx5/6+/- mice

    DEFF Research Database (Denmark)

    von Schoubye, Nadia Lybøl; Frederiksen, Kristen; Kristiansen, Uffe

    2018-01-01

    Mental disorders such as schizophrenia are associated with impaired firing properties of fast spiking inhibitory interneurons (FSINs) causing reduced task-evoked gamma-oscillation in prefrontal cortex. The voltage-gated sodium channel NaV1.1 is highly expressed in PV-positive interneurons, but only...... at low levels in principal cells. Positive modulators of Nav1.1 channels are for this reason considered potential candidates for the treatment of cognitive disorders. Here we examined the effect of the novel positive modulator of voltage-gated sodium channels Lu AE98134. We found that Lu AE98134...... facilitated the sodium current mediated by NaV1.1 expressed in HEK cells by shifting its activation to more negative values, decreasing its inactivation kinetics and promoting a persistent inward current. In a slice preparation from the brain of adult mice, Lu AE98134 promoted the excitability of fast spiking...

  5. Coolant-fuel interaction in Sodium-cooled Fast Reactors: Structural investigations of The Na-An-O (An = U, Np, Pu) systems

    International Nuclear Information System (INIS)

    Smith, A.L.; Raison, P.E.; Bykov, D.M.; Konings, R.J.; Caciuffo, R.; Cheetham, A.K.

    2014-01-01

    Nuclear energy has the potential to provide Europe with a secure and sustainable electricity supply at a competitive price and to make a significant contribution to the reduction of greenhouse gases emissions. The interest for Sodium-cooled-Fast-spectrum Reactors (SFRs), when compared to Pressurized Water Reactors (PWRs), lies in their more efficient management of plutonium and other actinides as well as their ability to use almost all of the energy in the natural uranium versus 1% utilized in thermal spectrum systems. The high fuel efficiency of fast reactors could greatly dampen concerns about fuel supply. But these reactors have also several drawbacks when compared to PWRs (i.e sodium fire, Na reaction with O2 and H2O, interaction of sodium with oxide fuels). Their development at an industrial scale needs therefore an exhaustive safety assessment that comprises both experimental work and development of sophisticated modelling tools able to describe the reactor behaviour in normal or incidental conditions

  6. Formulary for neutron propagation in sodium-steel media for the fast reactor shields

    International Nuclear Information System (INIS)

    Bouteau, F.; Caumette, P.; Khairallah, A.; Oceraies, Y.; Devillers, C.

    1975-01-01

    The simplified calculational tool (''formulary'') for neutron propagation in the shields of fast reactors, being developed at CEA, has two objectives: to reduce the cost of the major part of design calculations, without a significant loss of accuracy; to facilitate the adjustment of the calculational tool with the results of the program of integral propagation experiments, which is conducted in parallel with the development of the calculational method. The version 0 (i.e. before any adjustment) of the formulary and a first test of its validity as compared to the results of integral measurements are presented [fr

  7. Safety of Sodium-Glucose Co-Transporter 2 Inhibitors during Ramadan Fasting: Evidence, Perceptions and Guidelines

    Directory of Open Access Journals (Sweden)

    Salem A. Beshyah

    2016-06-01

    Full Text Available Sodium-glucose co-transporter 2 (SGLT2 inhibitors are a new glucose-lowering therapy for T2DM with documented benefits on blood glucose, hypertension, weight reduction and long term cardiovascular benefit. They have an inherent osmotic diuretic effect and lead to some volume loss and possible dehydration. There is some concern about the safety of using SGLT2 inhibitors in Muslim type 2 diabetes mellitus (T2DM patients during the fast during Ramadan. Currently, there is a dearth of research data to help guide physicians and reassure patients.  One study confirmed good glycemic control with less risk of hypoglycemia and no marked volume depletion. Data in the elderly and in combination with diuretics are reassuring of their safe to use in Ramadan in general. SGLT2 inhibitor-related diabetic ketoacidosis has not been reported during Ramadan and is unlikely to be relevant. Survey of physicians revealed that the majority felt that SGLT2 inhibitors are generally safe in T2DM patients during Ramadan fasting but should be discontinued in certain high risk patients. Some professional groups with interest in diabetes and Ramadan fasting included SGLT2 inhibitors in their guidelines on management of diabetes during Ramadan. They acknowledged the lack of trial data, recommended caution in high risk groups, advised regular monitoring and emphasized pre-Ramadan patients’ education. In conclusion, currently, knowledge, data and experience with SGLT2 inhibitors in Ramadan are limited. Nonetheless, stable patients with normal kidney function and low risk of dehydration may safely use the SGLT2 inhibitors therapy. Higher risk patients should be observed carefully and managed on individual basis.

  8. Challenges and innovative technologies on fuel handling systems for future sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Chassignet, Mathieu; Dumas, Sebastien; Penigot, Christophe; Prele, Gerard; Capitaine, Alain; Rodriguez, Gilles; Sanseigne, Emmanuel; Beauchamp, Francois

    2011-01-01

    The reactor refuelling system provides the means of transporting, storing, and handling reactor core subassemblies. The system consists of the facilities and equipment needed to accomplish the scheduled refuelling operations. The choice of a FHS impacts directly on the general design of the reactor vessel (primary vessel, storage, and final cooling before going to reprocessing), its construction cost, and its availability factor. Fuel handling design must take into account various items and in particular operating strategies such as core design and management and core configuration. Moreover, the FHS will have to cope with safety assessments: a permanent cooling strategy to prevent fuel clad rupture, plus provisions to handle short-cooled fuel and criteria to ensure safety during handling. In addition, the handling and elimination of residual sodium must be investigated; it implies specific cleaning treatment to prevent chemical risks such as corrosion or excess hydrogen production. The objective of this study is to identify the challenges of a SFR fuel handling system. It will then present the range of technical options incorporating innovative technologies under development to answer the GENERATION IV SFR requirements. (author)

  9. Large electro-magnetic pump design for application in the ASTRID sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Laffont, Guy; Rey, Frédéric; Aizawa, Rie; Suziki, Tetsu

    2013-01-01

    Conclusion: • Use of a LEMP motivated by several advantages in terms of the reactor design, operation and maintenance. • Collaboration agreement between the CEA and TOSHIBA Corporation came into force in April 2012 to carry out a joint work program on the ASTRID EMP design and development. • Preliminary LEMP calculations carried out by the CEA and TOSHIBA are in good agreement and provide a good confidence in the feasibility of the annular LEMP for the ASTRID intermediate sodium loop. • Theoretical and experimental investigations are currently underway at the CEA with the aim to improve the numerical tools. • In parallel, the ASTRID EMP conceptual design studies are ongoing at TOSHIBA (thermal and thermo-mechanical analyses to demonstrate the LEMP self-cooling, structural analysis of the casing, the supporting legs and the mechanical interfaces, definition of the power supply unit, instrumentation and remote control procedure). • This program is aiming at consolidating the ASTRID EMP conceptual design report and to support the design option choice for the ASTRID basic design

  10. An assessment of methods of calculating Doppler effects in plutonium fuelled sodium cooled fast reactors

    International Nuclear Information System (INIS)

    Butland, A.T.D.; Reddell, G.

    1979-01-01

    After a survey of the requirements, an assessment of UK methods and data is made on the basis of the following work. First, the analysis of the SEFOR Doppler experiments, carried out using the UK FGL5 fine group nuclear data library, the MURAL cell code and whole reactor diffusion theory calculations of the neutron flux. Second, the analysis of some Japanese FCA central sample perturbation measurements of structural material Doppler effects. Third, an assessment of the accuracy of Doppler predictions in a sodium voided core using results from Zebra 5 and BIZET, and theoretical studies of additional effects relevant to power reactors and not covered by the above analyses, including the following, the calculation of Doppler effects at high temperature, fuel cycle and burn-up effects, and the heterogeneity effects of large fuelled subassemblies in pin geometry. The importance of crystalline binding effects in the fuel are discussed as is the importance of reactor material boundaries in the calculation of resonance shielding effects. Some suggestions for further Doppler studies are made. (U.K.)

  11. Minor Actinides Burnup Enhancement in the European Sodium Fast Reactor through Moderator Material Addition

    International Nuclear Information System (INIS)

    Ramos, R.L.; Buiron, L.

    2013-01-01

    Conclusions: • ZrH 2 was the best moderator material, followed by MgO and MgAl 2 O 4 ; • When the number of moderator pins is increased: – the percentage of minor actinides consumed increases; – the total mass consumed of minor actinides decreases; – the decay heat generated decreases; – the neutron flux in the reactor varies very little. Perspectives: • For future studies it would be possible to evaluate the use of other materials with resonances in the scattering cross section in the fast range that would improve the results obtained with Mg. • It would be necessary to consider how to add moderator material without changing the initial mass of minor actinides. E.g., adding the moderator at the periphery of the minor actinide elements

  12. Power excursion models applied to the study of secundary excursion in sodium cooled fast breeder reactors

    International Nuclear Information System (INIS)

    Messainguiral, Christiane.

    1980-06-01

    An evaluation of the energy that a secondary power excursion could release has been sought throughout the present work. A parametric study was therefore made by means of a power excursion code in fast reactors. The work submitted is therefore made up of the three following parts: Part 1. - (a), the secondary excursion is situated in the generally envisaged programmes and (b) the role of the principal parameters is studied in the calculation effected by the nuclear excursion code that was available at the start of the study. Part 2. - the results obtained for the power excursion calculations made are presented, Part 3. - the insufficient modelling of the reactivity present during the secondary power excursion is deduced from the parametric study just made. A definition is made of the characteristics of a model adapted to the calculation of this hypothetical accident and a new model as worked out within the scope of this work is submitted [fr

  13. Cavity Ring-Down Spectroscopy for Gaseous Fission Products Trace Measurements in Sodium Fast Reactors

    International Nuclear Information System (INIS)

    Jacquet, P.; Pailloux, A.; Doizi, D.; Aoust, G.; Jeannot, J.-P.

    2013-06-01

    Safety and availability are key issues of the generation IV reactors. Hence, the three radionuclide confinement barriers, including fuel cladding, must stay tight during the reactor operation. During the primary gaseous failure, fission products xenon and krypton are released. Their fast and sensitive detection guarantees the first confinement barrier tightness. In the frame of the French ASTRID project, an optical spectroscopy technique - Cavity Ring Down Spectroscopy (CRDS) - is investigated for the gaseous fission products measurement. A dedicated CRDS set-up is needed to detect the rare gases with a commercial laser. Indeed, the CRDS is coupled to a glow discharge plasma, which generates a population of metastable atoms. The xenon plasma conditions are optimized to 110 Pa and 1.3 W (3 mA). The production efficiency of metastable Xe is then 0.8 %, stable within 0.5% during hours. The metastable number density is proportional to the xenon over argon molar fraction. The spectroscopic parameters of the strong 823.16 nm xenon transition are calculated and/or measured in order to optimize the fit of the experimental spectra and make a quantitative measurement of the metastable xenon. The CRDS is coupled to the discharge cell. The laser intensity inside the cavity is limited by the optical saturation process, resulting from the strong optical pumping of the metastable state. The resulting weak CRDS signal requires a fast and very sensitive photodetector. A 600 ppt xenon molar fraction was measured by CRDS. With the present set-up, the detection limits are estimated from the baseline noise to approximately 20 ppt for each even isotope, 60 ppt for the 131 Xe and 55 ppt for the 129 Xe. This sensitivity matches the specifications required for gaseous leak measurement; approximately 100 ppt for 133 Xe (4 GBq/m 3 ) and 10 ppb for stable isotopes. The odd isotopes are selectively measured, whereas the even isotopes overlap, a spectroscopic feature that applies for stable or

  14. Detection of oscillatory components in noise signals and its application to fast detection of sodium boiling in LMFBR's

    International Nuclear Information System (INIS)

    Ehrhardt, J.

    1975-09-01

    In general, the surveillance of technical plants is performed by observating the mean value of measured signals. In this method not all information included in these signals is used. On the other hand - for example in a reactor - disturbances are possible which generate small oscillatory components in the measured signals. In general, these oscillatory components do not influence the mean value of the signals and consequently do not activate the conventional control system; however they can be found by analysis of the signal's noise component. For the detection of these oscillatory signals the observation of the frequency spectra of the noise signals is particularly advantageous because they produce peaks at the oscillation frequencies. In this paper a new detection system for the fast detection of suddenly appearing peaks in the frequency spectra of noise signals is presented. The prototype of a compact detection unit was developed which continuously computes the power spectral density (PSD) of noise signals and simultaneously supervises the PSD for peaks in the relevant frequency range. The detection method is not affected by the frequency dependance of the PSD and is applicable to any noise signal. General criteria were developed to enable the determination of the optimal detection system and its sensitivity. The upper limits of false alarm rate and detection time were taken into account. The detection criteria are applicable to all noise signals with approximately normally distributed amplitudes. Theoretical results were confirmed in a number of experiments; special experimental and theoretical parameter studies were done for the optimal detection of sodium boiling in LMFBR's. Computations based on these results showed that local and integral sodium boiling can be detected in a wide core range of SNR 300 by observing fluctuations of the neutron flux. In this connection it is important to point out that no additional core instrumentation is necessary because the

  15. Minutes of the kick-off Meeting of the WPRS / EGRPANS / Sodium Fast Reactor Task Force (SFR)

    International Nuclear Information System (INIS)

    Buiron, Laurent; Stauff, Nicolas; Varaine, Frederic; Blanchet, D.; Stauff, N.; Ivanov, Evgeny; Michel-Sendis, Franco; ); Mikityuk, Konstantin; Pelloni, Sandro; Ponomarev, Alexander; Kim, Taek K.; Taiwo, Temitope; Kereszturi, Andras; Van den Eynde, Gert; Kotiluoto, Petri; Juutilainen, Pauli; Lepp Anen, Jaakko

    2011-01-01

    The kick-off meeting of the Sodium-cooled fast reactor Task Force (SFR) was an informal one where discussion among participants was encouraged. F. Varaine reminded the participants of the objectives and milestones of the proposed benchmark. A discussion followed on how to define transients in a safety approach. Speaking for ANL, T.A Taiwo anticipated the need to include experts from ANL safety division in the thermal-hydraulics/transient part of the benchmark and observed the initial timeline proposed was too tight to meet. It was agreed the timeline of the benchmark would be modified to a more realistic schedule, keeping the neutronic part as the first stage to finish before the end of the year. It was decided that CEA would provide a spreadsheet template to fill out by benchmark participants to facilitate compilation of results. During the presentations, L. Buiron presented the benchmark in detail and introduced the bibliographic study he has been compiling with the aim to develop a state of the art of feedback calculations. He reported this work is ongoing and could become a contribution for a report of the Expert Group. E. Ivanov presented a proposal for complementary calculations to be included in the benchmark. He reported these calculations would allow for interpretation of the discrepancies that may be observed between the different results obtained by the participants, and commented such an interpretation is essential in any safety analysis presented before decision-makers. A discussion followed on the necessity to include the additional calculations proposed by IRSN at such an early state of the benchmark. The proposal was met with interest, and it was decided that it would be discussed again at the next meeting where first neutronic results could be shown and the importance of these calculations demonstrated. E. Ivanov agreed to provide more detailed specifications of the tallies requested by the next meeting. It was decided that these complementary

  16. Study on in-vessel thermohydraulics phenomena of sodium-cooled fast reactors. 1. Numerical investigation for the rationalization of hydrodynamics in the upper plenum

    International Nuclear Information System (INIS)

    Muramatsu, Toshiharu; Yamaguchi, Akira

    2002-02-01

    A large-scale sodium-cooled fast breeder reactor in feasibility studies on commercialized fast reactors has a tendency of consideration of thorough simplified and compacted system designs to realize drastic economical improvements. Therefore, special attention should be paid to thermohydraulic designs for a gas entrainment behavior from free surfaces, a flow-induced vibration of in-vessel components, a thermal shock for various structures due to high-speed coolant flows, nonsymmetrical coolant flows, etc. in the reactor vessel. In-vessel thermohydraulic analyses were carried out using a multi-dimensional code AQUA to understand the thermohydraulic characteristics in the upper plenum, and to investigate suitable in-vessel structure for the elimination of gas entrainment possibility. From the analysis, the following results were obtained. (1) It is difficult to rationale in-vessel flow patterns through adjustments of porous ratio and pressure loss for a hold down plate and baffle plates installed in an upper core structure. (2) Dummy plug insertion to a slit of the upper core structure is one of effective measures to stabilize in-vessel flow patterns. (3) Flow guide devices such as a baffle ring and a partial inner barrel are also effective measures to eliminate impinging jet to a dipped plate (D/P) and to reduce horizontal flow velocity components at free surface. (4) Installations of labyrinth structures to a R/V - D/P gap is successful for decreasing of free surface horizontal flows. (5) Gap closing of an in-vessel fuel pot and two cold trap components has the effects of reductions for free surface horizontal flows and for the difference of free surface levels. Following future investigations are important preventive measures against the gas entrainment from the free surface. (1) Flattening of spatial axial velocity distributions at the R/V - D/P gap. (2) Alleviation measures of vortex concentration at free surface. (3) Separation measures of 3-dimensional vortex

  17. Thermal hydraulic parametric investigation of decay heat removal from degraded core of a sodium cooled fast Breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Lokesh [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Kumar Sharma, Anil, E-mail: aksharma@igcar.gov.in [Reactor Design Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam (India); Velusamy, K. [Reactor Design Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam (India)

    2017-03-15

    Highlights: • Decay heat removal from degraded core of a typical SFR is highlighted. • Influence of number of DHXs in operation on PAHR is analyzed. • Investigations on structural integrity of the inner vessel and core catcher. • Feasibility study for retention of a part of debris in upper pool of SFR. - Abstract: Ensuring post accident decay heat removal with high degree of reliability following a Core Disruptive Accident (CDA) is very important in the design of sodium cooled fast reactors (SFR). In the recent past, a lot of research has been done towards the design of an in-vessel core catcher below the grid plate to prevent the core debris reaching the main vessel in a pool type SFR. However, during an energetic CDA, the entire core debris is unlikely to reach the core catcher. A significant part of the debris is likely to settle in core periphery between radial shielding subassemblies and the inner vessel. Failure of inner vessel due to the decay heat can lead to core debris reaching the main vessel and threatening its integrity. On the other hand, retention of a part of debris in core periphery can reduce the load on main core catcher. Towards achieving an optimum design of SFR and safety evaluation, it is essential to quantify the amount of heat generating core debris that can be retained safely within the primary vessel. This has been performed by a mathematical simulation comprising solution of 2-D transient form of the governing equations of turbulent sodium flow and heat transfer with Boussinesq approximations. The conjugate conduction-convection model adopted for this purpose is validated against in-house experimental data. Transient evolutions of natural convection in the pools and structural temperatures in critical components have been predicted. It is found that 50% of the core debris can be safely accommodated in the gap between radial shielding subassemblies and inner vessel without exceeding structural temperature limit. It is also

  18. Study of burned optimization for minor actinides in European Sodium Fast Reactor (ESFR) by use of moderator materials

    International Nuclear Information System (INIS)

    Ramos, R L; Villanueva, A J; Buiront, L

    2012-01-01

    The minor actinides (MA) burn up optimization in the European Sodium Fast Reactor (ESFR) core was studied by adding different moderating materials in the Minor Actinides Bearing Blanket subassemblies (MABB SA) using the ERANOS neutron code package. These SA are of hexagonal shape and are composed of pellets inside of pins. These pellets contain a mixture of uranium dioxide (UO 2 ) and americium dioxide (AmO 2 ). If some of these pins are replaced by other identical ones containing moderating material instead of minor actinides, a shift in the spectrum towards lower energies is expected, which might enhance the burn up performance. The results of this work demonstrated that the use of compounds of hydrogen and magnesium as moderators produces a shift in the neutron spectrum, improving the porcentual minor actinides consumption. ZrH 2 moderator material was found to exhibit the best performances for this propose, followed by MgO and MgAl 2 O 4 , in that order. The use of SiC, BeO, TiC, LiO 2 and ZrC material produced no effect on the shift of the neutron spectrum. For safety reasons, it seems hardly realistic to use hydrogenous compounds in sodium fast reactors. So, compounds with magnesium are selected to be placed into the pins to improve the porcentual minor actinides consumption. The ESFR core is composed by 817 SA, 453 of them are fuel SA, 247 are reflectors SA, 84 are MABB (Minor Actinides Bearing Blankets) SA and 33 are control and shutdown rods. When about half of the total pins in each MABB were substituted by moderator pins with MgO pellets (135 of 271 pins), the porcentual consumption of minor actinides was of 30.85 %, i.e., 227.22 kg of minor actinides were consumed out of 736.65 kg in the initial configuration. In the case where all the pins of the MABB contained pellets of minor actinides, the porcentual consumption of minor actinides was of 21.26 %, i.e., 312.13 kg of minor actinides were consumed of 1467.87 kg in the initial configuration (author)

  19. Fast ion loss and radial electric field in high-aspect-ratio stellarator

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Sanuki, Heiji; Itoh, Sanae

    1992-01-01

    Theoretical model is developed to determine the radial electric field and the fast ion loss simultaneously in stellarators, and is applied to the Wendelstein VII-A stellarator. The predicted value of the radial electric field is more close to experiments than the purely neoclassical calculation. The loss rate, which is determined simultaneously, is in the range of experimental observations. The partition of the injection energy by the bulk heating, direct orbit loss and shine through is estimated by using the selfconsistent electric field profile. The orbit loss becomes noticeable as the injection energy increases. The influence of the neutral particles is also studied. Neutral particles enhance the negative radial electric field, and reduce the direct orbit loss by the expense of the charge exchange loss. The impact of the increased radial electric field on the neoclassical ion thermal energy loss is compared to the direct loss of fast ions. The reduction of the neoclassical loss is much smaller than the orbit loss. (author)

  20. Three dimensional conjugated heat transfer analysis in sodium fast reactor wire-wrapped fuel assembly

    International Nuclear Information System (INIS)

    Peniguel, C.; Rupp, I.; Juhel, JP.; Rolfo, S.; Guillaud, M.; Gervais, N.

    2009-01-01

    Fast reactors with liquid metal coolant have recently received a renewed interest owing to a more efficient usage of the primary uranium resources, and they are one of the proposal for the next Generation IV. In order to evaluate nuclear power plant design and safety, 3D analysis of the flow and heat transfer in a wire spacer fuel assembly are ongoing at EDF. The introduction of the wire wrapped spacers, helically wound along the pin axis, enhances the mixing of the coolant between sub-channels and prevents contact between the fuel pins. The mesh generation step constitutes a challenging task if a reasonable amount of cells in conjunction with a suitable spatial discretization is wanted. Several approaches have been investigated and will be presented. Quite complex global flow patterns are found using either k-ε or preferably Reynolds Stress turbulent models. Preliminary conjugated heat transfer calculations using a coupling between the finite element thermal code SYRTHES and the finite volume CFD code Code Saturne are also shown. (author)

  1. The low cycle fatigue factor in the construction of sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Petrequin, Pierre; Mottot, Michel; Valibus, Louis; Grattier, Georges

    1976-01-01

    The working conditions of fast neutron reactors are such that it is essential to know the resistance of the component steels to low cycle fatigue. The behavior of Z2CND17-13 type austenitic stainless steels and of welds was studied in three laboratories. The steels offer an excellent resistance to low cycle fatigue, in keeping with their good ductility and very strong aptitude for cyclic strain hardening. Increasing the testing temperature from 20 to 600 deg C reduces the resistance to some extent (about an order of magnitude on the number of cycles to failure). Steels possessing improved mechanical properties without loss of ductility show greater fatigue resistance. Welds characterized by an austenitic ferritic structure and a slightly cold-hardened state are less ductile than laminated steels. Their resistance to low cycle fatigue is lower at strong deformations. At high temperature (600 deg C) a reduced test frequency or a pause at each cycle leads to a considerable drop in the number of cycles to failure and the appearance of intergranular cracking [fr

  2. Studies of the reactivity effects of hydrogenous material in a sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Ingram, D.; Sweet, D.W.

    1979-01-01

    The reactivity effects of hydrogenous substances, such as the oil used in the primary coolant pumps, which could enter the core of a fast reactor in a hypothetical accident, have been studied in a series of experiments and calculations. Measurements to study the influence of the density of the hydrogen and its location on reactivity were made in two assemblies in the zero power reactor ZEBRA. The first of these was similar in size to PFR and the second was the large BZB assembly of the BIZET programme. The results of this work have been compared with calculations using the FGL5 nuclear data library. Calculations for a 1200 MW (e) CFR have been made using three quantities of material (8, 40 and 160 Kg of hydrocarbon, equivalent to 10, 50 and 200 litres of oil). The calculations have used different geometrical models and hydrocarbon distributions and have explored the influence of core temperature, fuel burn-up and the presence of control rods to estimate the maximum reactivity changes that can be obtained. The results have been analysed in terms of components of the change in neutron balance produced by the material and uncertainties in these have been derived from the ZEBRA work. (author)

  3. Association between salt substitutes/enhancers and changes in sodium levels in fast-food restaurants: a cross-sectional analysis.

    Science.gov (United States)

    Scourboutakos, Mary J; Murphy, Sarah A; L'Abbé, Mary R

    2018-03-07

    Restaurant foods have high sodium levels, and efforts have been made to promote reductions. The objective of this study was to understand if salt substitutes and enhancers are associated with changes in sodium levels in fast-food restaurants. A longitudinal database (MENU-FLIP) containing nutrition information for Canadian chain restaurants with 20 or more locations nationally was created in 2010 and updated in 2013 and 2016. In 2016, when available, ingredient lists were collected from restaurant websites and searched for the presence of salt substitutes/enhancers. Changes in sodium levels (per serving) and the prevalence of salt substitutes/enhancers in 222 foods from 12 of the leading fast-food restaurant chains were compared across 3 time points. Sixty-nine percent of foods contained a salt substitute/enhancer. Substitutes/enhancers were found in every restaurant chain ( n = 12) for which ingredient data were available. The most common substitutes/enhancers were yeast extracts (in 30% of foods), calcium chloride (28%), monosodium glutamate (14%) and potassium chloride (12%). Sodium levels in foods that contained substitutes/enhancers decreased significantly more (190 ± 42 mg/serving) over the study period than those in foods that did not contain a substitute/enhancer (40 ± 17 mg/serving, p restaurant foods and are one means by which restaurants may be lowering sodium levels in their foods. At this time, the potential consequences of these findings, if any, are uncertain. Copyright 2018, Joule Inc. or its licensors.

  4. [Crosslinking sodium hyaluronate gel with different ratio of molecular weight for subcutaneous injection: animal experimental study and clinical trials subcutaneous injection].

    Science.gov (United States)

    Ran, Weizhi; Wang, Xiaoli; Hu, Yuefei; Gao, Songying; Yang, Yahong; Sun, Jian; Sun, Shuming; Liu, Zhongmei; Wang, Jiangling

    2015-05-01

    To investigate the biocompatibility and degradation rate of crosslinking sodium hyaluronate gel with different ratio of molecular weight, so as to choose the effective, safe and totally degraded hyaluronate gel for aesthetic injection. (1) Compound colloid was formed by cross-linking the divinyl sulphone and sodium hyaluronate with different molecular weight (4 x 10(5), 8 x 10(5), 10 x 10(5), 12 x 10(5)). (2) Healthy level KM mice was randomly divided into two groups to receive hyaluronic acid gel or liquid injection. Each group was subdivided into three subgroup to receive hyaluronic acid with different molecular weight. The biocompatibility and degradation rate, of hyaluronate were observed at 7, 90, 180 days after injection. At the same time, different molecular weight of sodium hyaluronate gel is sealed or exposed respectively under the low temperature preservation to observe its natural degradation rate. (3) The most stable colloid was selected as aesthetic injector for volunteers to observe the aesthetic effect. The sodium hyaluronate gel with molecular of 4 x 10(5) was completely degraded 90 days later. The sodium hyaluronate gel with molecular of 8 x 10(5) was completely degraded 180 days later. The sodium hyaluronate gel with molecular of 10 x 10(5) was degraded to 90.0% after 180 days. The sodium hyaluronate liquid can be degraded completely within 7 days. The colloid could be kept for at least 12 months when sealed under low temperature, but was totally degraded when exposed for I d. Sodium hyaluronate gel with molecular 10 x 10(5) was confirmed to be kept for at least 6 months in animal experiment and clinical trials. Under the same condition of material ratio, the higher the molecular weight is, the lower the degradation rate is. But the liquidity of gel is not good for injection when molecular weight is too large. It suggests that Sodium hyaluronate gel with molecular 10 x 10(5) maybe the best choice in cosmetic injections.

  5. Fast predictive control for air-fuel ratio of SI engines using a ...

    African Journals Online (AJOL)

    In this paper MPC based on an adaptive neural network model is attempted for air fuel ratio (AFR), in which the model is adapted on-line to cope with nonlinear dynamics and parameter uncertainties. A radial basis function (RBF) network is employed and the recursive least squares (RLS) algorithm is used for weight ...

  6. Modelling soil sodium and potassium adsorption ratio (SPAR) in the immediate period after a grassland fire in Lithuania.

    Science.gov (United States)

    Pereira, Paulo; Cerda, Artemi; Misiūnė, Ieva

    2015-04-01

    The soil sodium and potassium adsorption ratio (SPAR) is an index that measures the amount of sodium and potassium adsorbed onto clay and organic matter surfaces, in relation to calcium and magnesium. Assess the potential of soil dispersion or flocculation, a process which has implication in soil hydraulic properties and erosion (Sarah, 2004). Depending on severity and the type of ash produced, fire can changes in the immediate period the soil nutrient status (Bodi et al. 2014). Ash releases onto soil surface a large amount of cations, due the high pH. Previous works showed that SPAR from ash slurries is higher than solutions produced from litter (Pereira et al., 2014a). Normally the spatial distribution of topsoil nutrients in the immediate period after the fire is very heterogeneous, due to the different impacts of fire. Thus it is important to identify the most accurate interpolation method in order to identify with better precision the impacts of fire on soil properties. The objective of this work is to test several interpolation methods. The study area is located in near Vilnius (Lithuania) at 54° 42' N, 25° 08 E, 158 masl. Four days after the fire it was designed a plot in a burned area with near Vilnius (Lithuania) at 54° 42' N, 25° 08 E, 158 masl. Twenty five samples were collected from the topsoil. The SPAR index was calculated according to the formula: (Na++K+)/(Ca2++Mg2+)1/2 (Sarah, 2004). Data followed the normal distribution, thus no transformation was required previous to data modelling. Several well know interpolation models were tested, as Inverse Distance to a Weight (IDW) with the power of 1, 2, 3 and 4, Radial Basis Functions (RBF), Inverse Multiquadratic (IMT), Multilog (MTG), Multiquadratic (MTQ), Natural Cubic Spline (NCS) and Thin Plate Spline (TPS) and Local Polynomial (LP) with the power of 1 and 2 and Ordinary Kriging. The best interpolator was the one which had the lowest Root Mean Square Error (RMSE) (Pereira et al., 2014b). The

  7. Investigation of velocity distribution in an inner subchannel of wire wrapped fuel pin bundle of sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Nishimura, Masahiro; Kamide, Hideki; Ohshima, Hiroyuki; Kobayashi, Jun; Sato, Hiroyuki

    2011-01-01

    A sodium cooled fast reactor is designed to attain a high burn-up of core fuel in commercialized fast reactor cycle systems. In high burn-up fuel subassemblies, deformation of fuel pin due to the swelling and thermal bowing may decrease local flow velocity via change of flow area in the subassembly and influence the heat removal capability. Therefore, it is important to obtain the detail of flow velocity distribution in a wire wrapped pin bundle. In this study, water experiments were carried out to investigate the detailed velocity distribution in a subchannel of nominal pin geometry as the first step. These basic data are not only useful for understanding of pin bundle thermal hydraulics but also a code validation. A wire-wrapped 3-pin bundle water model was applied to investigate the detailed velocity distribution in the subchannel which is surrounded by 3 pins with wrapping wire. The test section consists of an irregular hexagonal acrylic duct tube and three pins made of fluorinated resin pins which has nearly the same refractive index with that of water and a high light transmission rate. This enables to visualize the central subchannel through the pins. The velocity distribution in the central subchannel with the wrapping wire was measured by PIV (Particle Image Velocimetry) through a side wall of the duct tube. Typical flow velocity conditions in the pin bundle were 0.36m/s (Re=2,700) and 1.6m/s (Re=13,500). Influence of the wrapping wire on the velocity distributions in vertical and horizontal directions was confirmed. A clockwise swirl flow around the wire was found in subchannel. Significant differences were not recognized between the two cases of Re=2,700 and 13,500 concerning flow patterns. (author)

  8. Sodium fast reactor: an asset for a PWR UOX/MOX fleet - 5327

    International Nuclear Information System (INIS)

    Tiphine, M.; Coquelet-Pascal, C.; Girieud, R.; Eschbach, R.; Chabert, C.; Grosman, R.

    2015-01-01

    Due to its low fissile content, Pu from spent MOX fuels is sometimes regarded as not recyclable in LWR. Based on the existing French nuclear infrastructure (La Hague reprocessing plant and MELOX MOX manufacturing plant), AREVA and CEA have evaluated the conditions of Pu multi recycling in a 100% LWR fleet. As France is currently supporting a Fast Reactor prototype project, scenario studies have also been conducted to evaluate the contribution of a 600 MWe SFR in the LWR fleet. These scenario studies consider a nuclear fleet composed of 8 PWR 900 MWe, with or without the contribution of a SFR, and aim at evaluating the following points: -) the feasibility of Pu multi-recycling in PWR; -) the impact on the spent fuels storage; -) the reduction of the stored separated Pu; -) the impact on waste management and final disposal. The studies have been conducted with the COSI6 code, developed by CEA Nuclear Energy Direction since 1985, that simulates the evolution over time of a nuclear power plants fleet and of its associated fuel cycle facilities and provides material flux and isotopic compositions at each point of the scenario. To multi-recycle Pu into LWR MOX and to ensure flexibility, different reprocessing strategies were evaluated by adjusting the reprocessing order, the choice of used fuel assemblies according to their burn-up and the UOX/MOX proportions. The improvement of the Pu fissile quality and the kinetic of Pu multi-recycling in SFR depending on the initial Pu quality were also evaluated and led to a reintroduction of Pu in PWR MOX after a single irradiation in SFR, still in dilution with Pu from UOX to maintain a sufficient fissile quality. (authors)

  9. Elevations in the Fasting Serum Proinsulin–to–C-Peptide Ratio Precede the Onset of Type 1 Diabetes

    Science.gov (United States)

    Sims, Emily K.; Chaudhry, Zunaira; Watkins, Renecia; Syed, Farooq; Blum, Janice; Ouyang, Fangqian; Perkins, Susan M.; Mirmira, Raghavendra G.; Sosenko, Jay; DiMeglio, Linda A.

    2016-01-01

    OBJECTIVE We tested whether an elevation in the serum proinsulin–to–C-peptide ratio (PI:C), a biomarker of β-cell endoplasmic reticulum (ER) dysfunction, was associated with progression to type 1 diabetes. RESEARCH DESIGN AND METHODS Fasting total PI and C levels were measured in banked serum samples obtained from TrialNet Pathway to Prevention (PTP) participants, a cohort of autoantibody-positive relatives without diabetes of individuals with type 1 diabetes. Samples were obtained ∼12 months before diabetes onset from PTP progressors in whom diabetes developed (n = 60), and were compared with age-, sex-, and BMI-matched nonprogressors who remained normoglycemic (n = 58). PI:C ratios were calculated as molar ratios and were multiplied by 100% to obtain PI levels as a percentage of C levels. RESULTS Although absolute PI levels did not differ between groups, PI:C ratios were significantly increased in antibody-positive subjects in whom there was progression to diabetes compared with nonprogressors (median 1.81% vs. 1.17%, P = 0.03). The difference between groups was most pronounced in subjects who were ≤10 years old, where the median progressor PI:C ratio was nearly triple that of nonprogressors; 90.0% of subjects in this age group within the upper PI:C quartile progressed to the development of diabetes. Logistic regression analysis, adjusted for age and BMI, demonstrated increased odds of progression for higher natural log PI:C ratio values (odds ratio 1.44, 95% CI 1.02, 2.05). CONCLUSIONS These data suggest that β-cell ER dysfunction precedes type 1 diabetes onset, especially in younger children. Elevations in the serum PI:C ratio may have utility in predicting the onset of type 1 diabetes in the presymptomatic phase. PMID:27385327

  10. Elevations in the Fasting Serum Proinsulin-to-C-Peptide Ratio Precede the Onset of Type 1 Diabetes.

    Science.gov (United States)

    Sims, Emily K; Chaudhry, Zunaira; Watkins, Renecia; Syed, Farooq; Blum, Janice; Ouyang, Fangqian; Perkins, Susan M; Mirmira, Raghavendra G; Sosenko, Jay; DiMeglio, Linda A; Evans-Molina, Carmella

    2016-09-01

    We tested whether an elevation in the serum proinsulin-to-C-peptide ratio (PI:C), a biomarker of β-cell endoplasmic reticulum (ER) dysfunction, was associated with progression to type 1 diabetes. Fasting total PI and C levels were measured in banked serum samples obtained from TrialNet Pathway to Prevention (PTP) participants, a cohort of autoantibody-positive relatives without diabetes of individuals with type 1 diabetes. Samples were obtained ∼12 months before diabetes onset from PTP progressors in whom diabetes developed (n = 60), and were compared with age-, sex-, and BMI-matched nonprogressors who remained normoglycemic (n = 58). PI:C ratios were calculated as molar ratios and were multiplied by 100% to obtain PI levels as a percentage of C levels. Although absolute PI levels did not differ between groups, PI:C ratios were significantly increased in antibody-positive subjects in whom there was progression to diabetes compared with nonprogressors (median 1.81% vs. 1.17%, P = 0.03). The difference between groups was most pronounced in subjects who were ≤10 years old, where the median progressor PI:C ratio was nearly triple that of nonprogressors; 90.0% of subjects in this age group within the upper PI:C quartile progressed to the development of diabetes. Logistic regression analysis, adjusted for age and BMI, demonstrated increased odds of progression for higher natural log PI:C ratio values (odds ratio 1.44, 95% CI 1.02, 2.05). These data suggest that β-cell ER dysfunction precedes type 1 diabetes onset, especially in younger children. Elevations in the serum PI:C ratio may have utility in predicting the onset of type 1 diabetes in the presymptomatic phase. © 2016 by the American Diabetes Association.

  11. Basic visualization experiments on eutectic reaction of boron carbide and stainless steel under sodium-cooled fast reactor conditions

    International Nuclear Information System (INIS)

    Yamano, Hidemasa; Suzuki, Tohru; Kamiyama, Kenji; Kudo, Isamu

    2016-01-01

    This paper describes basic visualization experiments on eutectic reaction and relocation of boron carbide (B 4 C) and stainless steel (SS) under a high temperature condition exceeding 1500degC as well as the importance of such behaviors in molten core during a core disruptive accident in a Generation-IV sodium-cooled fast reactor (750 MWe class) designed in Japan. At first, a reactivity history was calculated using an exact perturbation calculation tool taking into account expected behaviors. This calculation indicated the importance of a relocation behavior of the B 4 C-SS eutectic because its behavior has a large uncertainty in the reactivity history. To clarify this behavior, basic experiments were carried out by visualizing the reaction of a B 4 C pellet contacted with molten SS in a high temperature-heating furnace. The experiments have shown the eutectic reaction visualization as well as freezing and relocation of the B 4 C-SS eutectic in upper part of the solidified test piece due to the density separation. (author)

  12. Detailed neutronic study of the power evolution for the European Sodium Fast Reactor during a positive insertion of reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Facchini, A.; Giusti, V.; Ciolini, R. [Department of Civil and Industrial Engineering (DICI), University of Pisa, Largo Lucio Lazzarino 2, I-56126 Pisa (Italy); Tuček, K.; Thomas, D. [Joint Research Centre, Institute for Energy and Transport (JRC - IET), European Commission, P.O. Box 2, NL-1755 ZG Petten (Netherlands); D' Agata, E., E-mail: elio.dagata@ec.europa.eu [Joint Research Centre, Institute for Energy and Transport (JRC - IET), European Commission, P.O. Box 2, NL-1755 ZG Petten (Netherlands)

    2017-03-15

    Highlights: • This paper studies the effect of an unexpected runway of a control rod in the ESFR. • The power peaked fuel pin within the core was identified. • The increase of the fission power density of the fuel pin has been evaluated. • Radial/axial fission power density of the power peaked fuel pin has been evaluated. - Abstract: The new reactor concepts proposed in the Generation IV International Forum require the development and validation of new components and new materials. Inside the Collaborative Project on the European Sodium Fast Reactor, several accidental scenario have been studied. Nevertheless, none of them coped with mechanical safety assessment of the fuel cladding under accidental conditions. Among the accidental conditions considered, there is the unprotected transient of overpower (UTOP), due to the insertion, at the end of the first fuel cycle, of a positive reactivity into the reactor core as a consequence of the unexpected runaway of one control rod. The goal of the study was the search for a detailed distribution of the fission power, in the radial and axial directions, within the power peaked fuel pin under the above accidental conditions. Results show that after the control rod ejection an increase from 658 W/cm{sup 3} to 894 W/cm{sup 3}, i.e. of some 36%, is expected for the power peaked fuel pin. This information will represent the base to investigate, in a future work, the fuel cladding safety margin.

  13. Numerical Analysis on the Free Fall Motion of the Control Rod Assembly for the Sodium Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Se-Hong; Choi, Choengryul; Son, Sung-Man [ELSOLTEC, Yongin (Korea, Republic of); Kim, Jae-Yong; Yoon, Kyung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    On receiving the scram signal, the control rod assemblies are released to fall into the reactor core by its weight. Thus drop time and falling velocity of the control rod assembly must be estimated for the safety evaluation. However, because of its complex shape, it is difficult to estimate the drop time by theoretical method. In this study, numerical analysis has been carried out in order to estimate drop time and falling velocity of the control rod assembly to provide the underlying data for the design optimization. Numerical analysis has been carried out to estimate the drop time and falling velocity of the control rod assembly for sodium-cooled fast reactor. Before performing the numerical analysis for the control rod assembly, sphere dropping experiment has been carried out for verification of the CFD methodology. The result of the numerical analysis for the method verification is almost same as the result of the experiment. Falling velocity and drag force increase rapidly in the beginning. And then it goes to the stable state. When the piston head of the control rod assembly is inserted into the damper, the drag force increases instantaneously and the falling velocity decreases quickly. The falling velocity is reduced about 14 % by damper. The total drop time of the control rod assembly is about 1.47s. In the next study, the experiment for the control rod assembly will be carried out, and its result is going to be compared with the CFD analysis result.

  14. Uranium Enrichment Reduction in the Prototype Gen-IV Sodium-Cooled Fast Reactor (PGSFR with PBO Reflector

    Directory of Open Access Journals (Sweden)

    Chihyung Kim

    2016-04-01

    Full Text Available The Korean Prototype Gen-IV sodium-cooled fast reactor (PGSFR is supposed to be loaded with a relatively-costly low-enriched U fuel, while its envisaged transuranic fuels are not available for transmutation. In this work, the U-enrichment reduction by improving the neutron economy is pursued to save the fuel cost. To improve the neutron economy of the core, a new reflector material, PbO, has been introduced to replace the conventional HT9 reflector in the current PGSFR core. Two types of PbO reflectors are considered: one is the conventional pin-type and the other one is an inverted configuration. The inverted PbO reflector design is intended to maximize the PbO volume fraction in the reflector assembly. In addition, the core radial configuration is also modified to maximize the performance of the PbO reflector. For the baseline PGSFR core with several reflector options, the U enrichment requirement has been analyzed and the fuel depletion analysis is performed to derive the equilibrium cycle parameters. The linear reactivity model is used to determine the equilibrium cycle performances of the core. Impacts of the new PbO reflectors are characterized in terms of the cycle length, neutron leakage, radial power distribution, and operational fuel cost.

  15. Uranium enrichment reduction in the Prototype Gen-IV sodium-cooled fast reactor (PGSFR) with PBO reflector

    Energy Technology Data Exchange (ETDEWEB)

    Hartanto, Donny; Kim, Chi Hyung; Kim, Yong Hee [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of)

    2016-04-15

    The Korean Prototype Gen-IV sodium-cooled fast reactor (PGSFR) is supposed to be loaded with a relatively-costly low-enriched U fuel, while its envisaged transuranic fuels are not available for transmutation. In this work, the U-enrichment reduction by improving the neutron economy is pursued to save the fuel cost. To improve the neutron economy of the core, a new reflector material, PbO, has been introduced to replace the conventional HT9 reflector in the current PGSFR core. Two types of PbO reflectors are considered: one is the conventional pin-type and the other one is an inverted configuration. The inverted PbO reflector design is intended to maximize the PbO volume fraction in the reflector assembly. In addition, the core radial configuration is also modified to maximize the performance of the PbO reflector. For the baseline PGSFR core with several reflector options, the U enrichment requirement has been analyzed and the fuel depletion analysis is performed to derive the equilibrium cycle parameters. The linear reactivity model is used to determine the equilibrium cycle performances of the core. Impacts of the new PbO reflectors are characterized in terms of the cycle length, neutron leakage, radial power distribution, and operational fuel cost.

  16. Drop performance test of conceptually designed control rod assembly for prototype generation IV sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Kyu; Lee, Jae Han; Kim, Hoe Woong; KIm, Sung Kyun; Kim, Jong Bum [Sodium-cooled Fast Reactor NSSS Design Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-06-15

    The control rod assembly controls reactor power by adjusting its position during normal operation and shuts down chain reactions by its free drop under scram conditions. Therefore, the drop performance of the control rod assembly is important for the safety of a nuclear reactor. In this study, the drop performance of the conceptually designed control rod assembly for the prototype generation IV sodium-cooled fast reactor that is being developed at the Korea Atomic Energy Research Institute as a next-generation nuclear reactor was experimentally investigated. For the performance test, the test facility and test procedure were established first, and several free drop performance tests of the control rod assembly under different flow rate conditions were then carried out. Moreover, performance tests under several types and magnitudes of seismic loading conditions were also conducted to investigate the effects of seismic loading on the drop performance of the control rod assembly. The drop time of the conceptually designed control rod assembly for 0% of the tentatively designed flow rate was measured to be 1.527 seconds, and this agrees well with the analytically calculated drop time. It was also observed that the effect of seismic loading on the drop time was not significant.

  17. Structural assessment of intermediate printed circuit heat exchanger for sodium-cooled fast reactor with supercritical CO2 cycle

    International Nuclear Information System (INIS)

    Lee, Youho; Lee, Jeong Ik

    2014-01-01

    Highlights: • We numerically model PCHE stress arising from pressure, and thermal loadings. • Stress levels are the highest around S-CO 2 channels, due to high pressure of S-CO 2 . • The conventional analytic models for PCHE underestimate actual stress levels. • Plasticity sufficiently lowers stress levels at channel tips. • PCHE for SFR-SCO 2 is anticipated to assure compliance with ASME design standards. - Abstract: Structural integrity of intermediate Printed Circuit Heat Exchanger (PCHE) for Sodium-cooled Fast Reactor (SFR) attached to Supercritical CO 2 (S-CO 2 ) is investigated. ANSYS-Mechanical was used to simulate stress fields of representative PCHE channels, with temperature fields imported from FLUENT simulation. Mechanical stress induced by pressure loading is found to be the primary source of stress. As plasticity sufficiently lowers local stress concentration at PCHE channel tips, PCHE type intermediate heat exchangers made of SS316 are anticipated to reliably assure compliance with design standards prescribed in the ASME standards, thanks to the structure temperature that is below the effective creep inducing point. The actual life time of PCHE for SFR-SCO 2 is likely to be affected by mechanical behavior change of SS316 with reactions with S-CO 2 and fatigue

  18. Summary of advanced LMR [Liquid Metal Reactor] evaluations: PRISM [Power Reactor Inherently Safe Module] and SAFR [Sodium Advanced Fast Reactor

    International Nuclear Information System (INIS)

    Van Tuyle, G.J.; Slovik, G.C.; Chan, B.C.; Kennett, R.J.; Cheng, H.S.; Kroeger, P.G.

    1989-10-01

    In support of the US Nuclear Regulatory Commission (NRC), Brookhaven National Laboratory (BNL) has performed independent analyses of two advanced Liquid Metal Reactor (LMR) concepts. The designs, sponsored by the US Department of Energy (DOE), the Power Reactor Inherently Safe Module (PRISM) [Berglund, 1987] and the Sodium Advanced Fast Reactor (SAFR) [Baumeister, 1987], were developed primarily by General Electric (GE) and Rockwell International (RI), respectively. Technical support was provided to DOE, RI, and GE, by the Argonne National Laboratory (ANL), particularly with respect to the characteristics of the metal fuels. There are several examples in both PRISM and SAFR where inherent or passive systems provide for a safe response to off-normal conditions. This is in contrast to the engineered safety systems utilized on current US Light Water Reactor (LWR) designs. One important design inherency in the LMRs is the ''inherent shutdown'', which refers to the tendency of the reactor to transition to a much lower power level whenever temperatures rise significantly. This type of behavior was demonstrated in a series of unscrammed tests at EBR-II [NED, 1986]. The second key design feature is the passive air cooling of the vessel to remove decay heat. These systems, designated RVACS in PRISM and RACS in SAFR, always operate and are believed to be able to prevent core damage in the event that no other means of heat removal is available. 27 refs., 78 figs., 3 tabs

  19. Adoption of nitrogen power conversion system for small scale ultra-long cycle fast reactor eliminating intermediate sodium loop

    International Nuclear Information System (INIS)

    Seo, Seok Bin; Seo, Han; Bang, In Cheol

    2016-01-01

    Highlights: • N 2 power conversion system for both safety and thermal performance aspects. • Sensitivity studies of several controlled parameters on N 2 power conversion system. • The elimination of the intermediate loop increased the cycle thermal efficiency. • The elimination of the intermediate loop expects economic advantages. - Abstract: As one of SFRs, the ultra-long cycle fast reactor with a power rating of 100 MW e (UCFR-100) was introduced for a 60-year operation. As an alternative to the traditional steam Rankine cycle for the power conversion system, gas based Brayton cycle has been considered for UCFR-100. Among Supercritical CO 2 (S-CO 2 ), Helium (He), Nitrogen (N 2 ) as candidates for the power conversion system for UCFR-100, an N 2 power conversion system was chosen considering both safety and thermal performance aspects. The elimination of the intermediate sodium loop could be achieved due to the safety and stable characteristics of nitrogen working fluid. In this paper, sensitivity studies with respect to several controlled parameters on N 2 power conversion system were performed to optimize the system. Furthermore, the elimination of the intermediate loop was evaluated with respect to its impact on the thermodynamic performance and other aspects.

  20. Comparison of neutron diffusion theory codes in two and three space dimensions using a sodium cooled fast reactor benchmark

    International Nuclear Information System (INIS)

    Butland, A.T.D.; Putney, J.; Sweet, D.W.

    1980-04-01

    This report describes work performed to compare two UK neutron diffusion theory codes, TIGAR and SNAP, with published results for eight other codes available abroad. Both mesh edge and mesh centred finite difference diffusion theory codes as well as one axial synthesis code are included in the comparison and a range of iteration procedures are used by them. Comparison is made of calculations for a model of the sodium cooled fast reactor SNR-300 in both triangular and rectangular geometry and for a range of spatial meshes, enabling extrapolations to infinite mesh to be made. Calculated values of the effective multiplication constant, keff, for all the codes, agree very well when extrapolated to infinite mesh, indicating that no significant errors arising from the finite difference approximation but independent of mesh spacing are present in the calculations. The variation of keff with mesh area is found to be linear for the small meshes considered here, with the gradients for the mesh centred and mesh edged codes being of opposite sign. The results obtained using the mesh centred codes TIGAR, SNAP and CITATION agree closely with one another for all the meshes considered; the mesh edge codes agree less closely. (author)

  1. Measurements of Flow Mixing at Subchannels in a Wire-Wrapped 61-Rod Bundle for a Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Lee, Dong Won; Kim, Hyungmo; Ko, Yung Joo; Choi, Hae Seob; Euh, Dong-Jin; Jeong, Ji-Young; Lee, Hyeong-Yeon

    2015-01-01

    For a safety analysis in a core thermal design of a sodium-cooled fast reactor (SFR), flow mixing characteristics at subchannels in a wire-wrapped rod bundle are crucial factor for the design code verification and validation. Wrapped wires make a cross flow in a circumference of the fuel rod, and this effect lets flow be mixed. Therefore the sub-channel analysis method is commonly used for thermal hydraulic analysis of a SFR, a wire wrapped sub-channel type. To measure flow mixing characteristics, a wire mesh sensing technique can be useful method. A wire mesh sensor has been traditionally used to measure the void fraction of a two-phase flow field, i.e. gas and liquid. However, the recent reports that the wire mesh sensor can be used successfully to recognize the flow field in liquid phase by injecting a tracing liquid with a different level of electric conductivity. The subchannel flow characteristics analysis method is commonly used for the thermal hydraulic analysis of a SFR, a wire wrapped subchannel type. In this study, mixing experiments were conducted successfully at a hexagonally arrayed 61-pin wire-wrapped fuel rod bundle test section. Wire mesh sensor was used to measure flow mixing characteristics. The developed post-processing method has its own merits, and flow mixing results were reasonable

  2. Acceleration Test Method for Failure Prediction of the End Cap Contact Region of Sodium Cooled Fast Reactor Fuel Rod

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung-Kyu; Lee, Young-Ho; Lee, Hyun-Seung; Lee, Kang-Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-05-15

    This paper reports the results of an acceleration test to predict the contact-induced failure that could occur at the cylinder-to-hole joint for the fuel rod of a sodium-cooled fast reactor (SFR). To incorporate the fuel life of the SFR currently under development at KAERI (around 35,000 h), the acceleration test method of reliability engineering was adopted in this work. A finite element method was used to evaluate the flow-induced vibration frequency and amplitude for the test parameter values. Five specimens were tested. The failure criterion during the life of the SFR fuel was applied. The S-N curve of the HT-9, the material of concern, was used to obtain the acceleration factor. As a result, a test time of 16.5 h was obtained for each specimen. It was concluded that the B{sub 0.004} life would be guaranteed for the SFR fuel rods with 99% confidence if no failure was observed at any of the contact surfaces of the five specimens.

  3. Development of severe accident evaluation technology (level 2 PSA) for sodium-cooled fast reactors. (5) Identification of dominant factors in ex-vessel accident sequences

    International Nuclear Information System (INIS)

    Ohno, Shuji; Seino, Hiroshi; Miyahara, Shinya

    2009-01-01

    The evaluation of accident progression outside of a reactor vessel (ex-vessel) and subsequent transfer behavior of radioactive materials is of great importance from the viewpoint of Level 2 PSA. Hence typical ex-vessel accident sequences in the JAEA Sodium-cooled Fast Reactor are qualitatively discussed in this paper and dominant behaviors or factors in the sequences are investigated through parametric calculations using the CONTAIN/LMR code. Scenarios to be focused on are, 1) sodium vapor leakage from the reactor vessel and 2) sodium-concrete reaction, which are both to be considered in the accident category of LOHRS (loss of heat removal system) and might be followed by an early containment failure due to the thermal effect of sodium combustion and hydrogen burning respectively. The calculated results clarify that the sodium vapor leak rate and the scale of sodium-concrete reaction are the important factors to dominate the ex-vessel accident progression. In addition to the understandings of the dominant factors, the analyzed results also provide the specific information such as pressure loading value to the containment and the timing of pressurization, which is indispensable as technical base in Level 2 PSA for developing event trees and for quantifying the accident consequences. (author)

  4. On the safety and performance demonstration tests of Prototype Gen-IV Sodium-Cooled Fast Reactor and validation and verification of computational codes

    International Nuclear Information System (INIS)

    Kim, Jong Bum; Jeong, Ji Young; Lee, Tae Ho; Kim, Sung Kyun; Euh, Dong Jin; Joo, Hyung Kook

    2016-01-01

    The design of Prototype Gen-IV Sodium-Cooled Fast Reactor (PGSFR) has been developed and the validation and verification (V and V) activities to demonstrate the system performance and safety are in progress. In this paper, the current status of test activities is described briefly and significant results are discussed. The large-scale sodium thermal-hydraulic test program, Sodium Test Loop for Safety Simulation and Assessment-1 (STELLA-1), produced satisfactory results, which were used for the computer codes V and V, and the performance test results of the model pump in sodium showed good agreement with those in water. The second phase of the STELLA program with the integral effect tests facility, STELLA-2, is in the detailed design stage of the design process. The sodium thermal-hydraulic experiment loop for finned-tube sodium-to-air heat exchanger performance test, the intermediate heat exchanger test facility, and the test facility for the reactor flow distribution are underway. Flow characteristics test in subchannels of a wire-wrapped rod bundle has been carried out for safety analysis in the core and the dynamic characteristic test of upper internal structure has been performed for the seismic analysis model for the PGSFR. The performance tests for control rod assemblies (CRAs) have been conducted for control rod drive mechanism driving parts and drop tests of the CRA under scram condition were performed. Finally, three types of inspection sensors under development for the