WorldWideScience

Sample records for ratio nozzle extension

  1. Arcjet nozzle area ratio effects

    Science.gov (United States)

    Curran, Francis M.; Sarmiento, Charles J.; Birkner, Bjorn W.; Kwasny, James

    1990-01-01

    An experimental investigation was conducted to determine the effect of nozzle area ratio on the operating characteristics and performance of a low power dc arcjet thruster. Conical thoriated tungsten nozzle inserts were tested in a modular laboratory arcjet thruster run on hydrogen/nitrogen mixtures simulating the decomposition products of hydrazine. The converging and diverging sides of the inserts had half angles of 30 and 20 degrees, respectively, similar to a flight type unit currently under development. The length of the diverging side was varied to change the area ratio. The nozzle inserts were run over a wide range of specific power. Current, voltage, mass flow rate, and thrust were monitored to provide accurate comparisons between tests. While small differences in performance were observed between the two nozzle inserts, it was determined that for each nozzle insert, arcjet performance improved with increasing nozzle area ratio to the highest area ratio tested and that the losses become very pronounced for area ratios below 50. These trends are somewhat different than those obtained in previous experimental and analytical studies of low Re number nozzles. It appears that arcjet performance can be enhanced via area ratio optimization.

  2. Arcjet Nozzle Area Ratio Effects

    Science.gov (United States)

    Curran, Francis M.; Sarmiento, Charles J.; Birkner, Bjorn W.; Kwasny, James

    1990-01-01

    An experimental investigation was conducted to determine the effect of nozzle area ratio on the operating characteristics and performance of a low power dc arcjet thruster. Conical thoriated tungsten nozzle inserts were tested in a modular laboratory arcjet thruster run on hydrogen/nitrogen mixtures simulating the decomposition products of hydrazine. The converging and diverging sides of the inserts had half angles of 30 and 20 degrees, respectively, similar to a flight type unit currently under development. The length of the diverging side was varied to change the area ratio. The nozzle inserts were run over a wide range of specific power. Current, voltage, mass flow rate, and thrust were monitored to provide accurate comparisons between tests. While small differences in performance were observed between the two nozzle inserts, it was determined that for each nozzle insert, arcjet performance improved with increasing nozzle area ratio to the highest area ratio tested and that the losses become very pronounced for area ratios below 50. These trends are somewhat different than those obtained in previous experimental and analytical studies of low Re number nozzles. It appears that arcjet performance can be enhanced via area ratio optimization.

  3. Integrated Composite Rocket Nozzle Extension, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop and demonstrate an Integrated Composite Rocket Nozzle Extension (ICRNE) for use in rocket thrust chambers. The ICRNE will utilize an...

  4. Elliptic nozzle aspect ratio effect on controlled jet propagation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S M Aravindh; Rathakrishnan, Ethirajan, E-mail: aravinds@iitk.ac.in, E-mail: erath@iitk.ac.in [Department of Aerospace Engineering, Indian Institute of Technology, Kanpur (India)

    2017-04-15

    The present study deals with the control of a Mach 2 elliptic jet from a convergent–divergent elliptic nozzle of aspect ratio 4 using tabs at the nozzle exit. The experiments were carried out for rectangular and triangular tabs of the same blockage, placed along the major and minor axes of the nozzle exit, at different levels of nozzle expansion. The triangular tabs along the minor axis promoted superior mixing compared to the other controlled jets and caused substantial core length reduction at all the nozzle pressure ratios studied. The rectangular tabs along the minor axis caused core length reduction at all pressure ratios, but the values were minimal compared to that of triangular tabs along the minor axis. For all the test conditions, the mixing promotion caused by tabs along the major axis was inferior to that of tabs along the minor axis. The waves present in the core of controlled jets were visualized using a shadowgraph. Comparison of the present results with the results of a controlled Mach 2 elliptic jet of aspect ratio 2 (Aravindh Kumar and Sathakrishnan 2016 J. Propulsion Power 32 121–33, Aravindh Kumar and Rathakrishnan 2016 J. Aerospace Eng. at press (doi:10.1177/0954410016652921)) show that for all levels of expansion, the mixing effectiveness of triangular tabs along the minor axis of an aspect ratio 4 nozzle is better than rectangular or triangular tabs along the minor axis of an aspect ratio 2 nozzle. (paper)

  5. Elliptic nozzle aspect ratio effect on controlled jet propagation

    International Nuclear Information System (INIS)

    Kumar, S M Aravindh; Rathakrishnan, Ethirajan

    2017-01-01

    The present study deals with the control of a Mach 2 elliptic jet from a convergent–divergent elliptic nozzle of aspect ratio 4 using tabs at the nozzle exit. The experiments were carried out for rectangular and triangular tabs of the same blockage, placed along the major and minor axes of the nozzle exit, at different levels of nozzle expansion. The triangular tabs along the minor axis promoted superior mixing compared to the other controlled jets and caused substantial core length reduction at all the nozzle pressure ratios studied. The rectangular tabs along the minor axis caused core length reduction at all pressure ratios, but the values were minimal compared to that of triangular tabs along the minor axis. For all the test conditions, the mixing promotion caused by tabs along the major axis was inferior to that of tabs along the minor axis. The waves present in the core of controlled jets were visualized using a shadowgraph. Comparison of the present results with the results of a controlled Mach 2 elliptic jet of aspect ratio 2 (Aravindh Kumar and Sathakrishnan 2016 J. Propulsion Power 32 121–33, Aravindh Kumar and Rathakrishnan 2016 J. Aerospace Eng. at press (doi:10.1177/0954410016652921)) show that for all levels of expansion, the mixing effectiveness of triangular tabs along the minor axis of an aspect ratio 4 nozzle is better than rectangular or triangular tabs along the minor axis of an aspect ratio 2 nozzle. (paper)

  6. Jet-Surface Interaction: High Aspect Ratio Nozzle Test, Nozzle Design and Preliminary Data

    Science.gov (United States)

    Brown, Clifford; Dippold, Vance

    2015-01-01

    The Jet-Surface Interaction High Aspect Ratio (JSI-HAR) nozzle test is part of an ongoing effort to measure and predict the noise created when an aircraft engine exhausts close to an airframe surface. The JSI-HAR test is focused on parameters derived from the Turbo-electric Distributed Propulsion (TeDP) concept aircraft which include a high-aspect ratio mailslot exhaust nozzle, internal septa, and an aft deck. The size and mass flow rate limits of the test rig also limited the test nozzle to a 16:1 aspect ratio, half the approximately 32:1 on the TeDP concept. Also, unlike the aircraft, the test nozzle must transition from a single round duct on the High Flow Jet Exit Rig, located in the AeroAcoustic Propulsion Laboratory at the NASA Glenn Research Center, to the rectangular shape at the nozzle exit. A parametric nozzle design method was developed to design three low noise round-to-rectangular transitions, with 8:1, 12:1, and 16: aspect ratios, that minimizes flow separations and shocks while providing a flat flow profile at the nozzle exit. These designs validated using the WIND-US CFD code. A preliminary analysis of the test data shows that the actual flow profile is close to that predicted and that the noise results appear consistent with data from previous, smaller scale, tests. The JSI-HAR test is ongoing through October 2015. The results shown in the presentation are intended to provide an overview of the test and a first look at the preliminary results.

  7. High-Melt Carbon-Carbon Coating for Nozzle Extensions

    Science.gov (United States)

    Thompson, James

    2015-01-01

    Carbon-Carbon Advanced Technologies, Inc. (C-CAT), has developed a high-melt coating for use in nozzle extensions in next-generation spacecraft. The coating is composed primarily of carbon-carbon, a carbon-fiber and carbon-matrix composite material that has gained a spaceworthy reputation due to its ability to withstand ultrahigh temperatures. C-CAT's high-melt coating embeds hafnium carbide (HfC) and zirconium diboride (ZrB2) within the outer layers of a carbon-carbon structure. The coating demonstrated enhanced high-temperature durability and suffered no erosion during a test in NASA's Arc Jet Complex. (Test parameters: stagnation heat flux=198 BTD/sq ft-sec; pressure=.265 atm; temperature=3,100 F; four cycles totaling 28 minutes) In Phase I of the project, C-CAT successfully demonstrated large-scale manufacturability with a 40-inch cylinder representing the end of a nozzle extension and a 16-inch flanged cylinder representing the attach flange of a nozzle extension. These demonstrators were manufactured without spalling or delaminations. In Phase II, C-CAT worked with engine designers to develop a nozzle extension stub skirt interfaced with an Aerojet Rocketdyne RL10 engine. All objectives for Phase II were successfully met. Additional nonengine applications for the coating include thermal protection systems (TPS) for next-generation spacecraft and hypersonic aircraft.

  8. Shelf life extension for the lot AAE nozzle severance LSCs

    Science.gov (United States)

    Cook, M.

    1990-01-01

    Shelf life extension tests for the remaining lot AAE linear shaped charges for redesigned solid rocket motor nozzle aft exit cone severance were completed in the small motor conditioning and firing bay, T-11. Five linear shaped charge test articles were thermally conditioned and detonated, demonstrating proper end-to-end charge propagation. Penetration depth requirements were exceeded. Results indicate that there was no degradation in performance due to aging or the linear shaped charge curving process. It is recommended that the shelf life of the lot AAE nozzle severance linear shaped charges be extended through January 1992.

  9. Design and Analyses of High Aspect Ratio Nozzles for Distributed Propulsion Acoustic Measurements

    Science.gov (United States)

    Dippold, Vance F., III

    2016-01-01

    A series of three convergent round-to-rectangular high-aspect ratio nozzles were designed for acoustics measurements. The nozzles have exit area aspect ratios of 8:1, 12:1, and 16:1. With septa inserts, these nozzles will mimic an array of distributed propulsion system nozzles, as found on hybrid wing-body aircraft concepts. Analyses were performed for the three nozzle designs and showed that the flow through the nozzles was free of separated flow and shocks. The exit flow was mostly uniform with the exception of a pair of vortices at each span-wise end of the nozzle.

  10. Subscale Carbon-Carbon Nozzle Extension Development and Hot Fire Testing in Support of Upper Stage Liquid Rocket Engines

    Science.gov (United States)

    Gradl, Paul; Valentine, Peter; Crisanti, Matthew; Greene, Sandy Elam

    2016-01-01

    Upper stage and in-space liquid rocket engines are optimized for performance through the use of high area ratio nozzles to fully expand combustion gases to low exit pressures increasing exhaust velocities. Due to the large size of such nozzles and the related engine performance requirements, carbon-carbon (C/C) composite nozzle extensions are being considered for use in order to reduce weight impacts. NASA and industry partner Carbon-Carbon Advanced Technologies (C-CAT) are working towards advancing the technology readiness level of large-scale, domestically-fabricated, C/C nozzle extensions. These C/C extensions have the ability to reduce the overall costs of extensions relative to heritage metallic and composite extensions and to decrease weight by 50%. Material process and coating developments have advanced over the last several years, but hot fire testing to fully evaluate C/C nozzle extensions in relevant environments has been very limited. NASA and C-CAT have designed, fabricated and hot fire tested multiple subscale nozzle extension test articles of various C/C material systems, with the goal of assessing and advancing the manufacturability of these domestically producible materials as well as characterizing their performance when subjected to the typical environments found in a variety of liquid rocket and scramjet engines. Testing at the MSFC Test Stand 115 evaluated heritage and state-of-the-art C/C materials and coatings, demonstrating the capabilities of the high temperature materials and their fabrication methods. This paper discusses the design and fabrication of the 1.2k-lbf sized carbon-carbon nozzle extensions, provides an overview of the test campaign, presents results of the hot fire testing, and discusses potential follow-on development work.

  11. Transient Side Load Analysis of Out-of-Round Film-Cooled Nozzle Extensions

    Science.gov (United States)

    Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike

    2012-01-01

    There was interest in understanding the impact of out-of-round nozzle extension on the nozzle side load during transient startup operations. The out-of-round nozzle extension could be the result of asymmetric internal stresses, deformation induced by previous tests, and asymmetric loads induced by hardware attached to the nozzle. The objective of this study was therefore to computationally investigate the effect of out-of-round nozzle extension on the nozzle side loads during an engine startup transient. The rocket engine studied encompasses a regeneratively cooled chamber and nozzle, along with a film cooled nozzle extension. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and transient inlet boundary flow properties derived from an engine system simulation. Six three-dimensional cases were performed with the out-of-roundness achieved by three different degrees of ovalization, elongated on lateral y and z axes: one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The results show that the separation line jump was the primary source of the peak side loads. Comparing to the peak side load of the perfectly round nozzle, the peak side loads increased for the slightly and more ovalized nozzle extensions, and either increased or decreased for the two significantly ovalized nozzle extensions. A theory based on the counteraction of the flow destabilizing effect of an exacerbated asymmetrical flow caused by a lower degree of ovalization, and the flow stabilizing effect of a more symmetrical flow, created also by ovalization, is presented to explain the observations obtained in this effort.

  12. Rocket nozzle expansion ratio analysis for dual-fuel earth-to-orbit vehicles

    Science.gov (United States)

    Martin, James A.

    1989-01-01

    Results are reported from a recent study of the effects of Space Shuttle Main Engine expansion ratio modifications, in the cases of both single-stage and two-stage systems. Two-position nozzles were employed; after varying the lower expansion ratio while the higher was held constant at 120, the lower expansion ratio was held constant at 40 or 60 while the higher expansion ratio was varied. The expansion ratios for minimum vehicle dry mass are different for single-stage and two-stage systems. For two-stage systems, a single expansion ratio of 77.5 provides a lower dry mass than any two-position nozzle.

  13. Structural strengthening of rocket nozzle extension by means of laser metal deposition

    Science.gov (United States)

    Honoré, M.; Brox, L.; Hallberg, M.

    2012-03-01

    Commercial space operations strive to maximize the payload per launch in order to minimize the costs of each kg launched into orbit; this yields demand for ever larger launchers with larger, more powerful rocket engines. Volvo Aero Corporation in collaboration with Snecma and Astrium has designed and tested a new, upgraded Nozzle extension for the Vulcain 2 engine configuration, denoted Vulcain 2+ NE Demonstrator The manufacturing process for the welding of the sandwich wall and the stiffening structure is developed in close cooperation with FORCE Technology. The upgrade is intended to be available for future development programs for the European Space Agency's (ESA) highly successful commercial launch vehicle, the ARIANE 5. The Vulcain 2+ Nozzle Extension Demonstrator [1] features a novel, thin-sheet laser-welded configuration, with laser metal deposition built-up 3D-features for the mounting of stiffening structure, flanges and for structural strengthening, in order to cope with the extreme load- and thermal conditions, to which the rocket nozzle extension is exposed during launch of the 750 ton ARIANE 5 launcher. Several millimeters of material thickness has been deposited by laser metal deposition without disturbing the intricate flow geometry of the nozzle cooling channels. The laser metal deposition process has been applied on a full-scale rocket nozzle demonstrator, and in excess of 15 kilometers of filler wire has been successfully applied to the rocket nozzle. The laser metal deposition has proven successful in two full-throttle, full-scale tests, firing the rocket engine and nozzle in the ESA test facility P5 by DLR in Lampoldshausen, Germany.

  14. Base Flow and Heat Transfer Characteristics of a Four-Nozzle Clustered Rocket Engine: Effect of Nozzle Pressure Ratio

    Science.gov (United States)

    Nallasamy, R.; Kandula, M.; Duncil, L.; Schallhorn, P.

    2010-01-01

    The base pressure and heating characteristics of a four-nozzle clustered rocket configuration is studied numerically with the aid of OVERFLOW Navier-Stokes code. A pressure ratio (chamber pressure to freestream static pressure) range of 990 to 5,920 and a freestream Mach number range of 2.5 to 3.5 are studied. The qualitative trends of decreasing base pressure with increasing pressure ratio and increasing base heat flux with increasing pressure ratio are correctly predicted. However, the predictions for base pressure and base heat flux show deviations from the wind tunnel data. The differences in absolute values between the computation and the data are attributed to factors such as perfect gas (thermally and calorically perfect) assumption, turbulence model inaccuracies in the simulation, and lack of grid adaptation.

  15. Jet-Surface Interaction - High Aspect Ratio Nozzle Test: Test Summary

    Science.gov (United States)

    Brown, Clifford A.

    2016-01-01

    The Jet-Surface Interaction High Aspect Ratio Nozzle Test was conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center in the fall of 2015. There were four primary goals specified for this test: (1) extend the current noise database for rectangular nozzles to higher aspect ratios, (2) verify data previously acquired at small-scale with data from a larger model, (3) acquired jet-surface interaction noise data suitable for creating verifying empirical noise models and (4) investigate the effect of nozzle septa on the jet-mixing and jet-surface interaction noise. These slides give a summary of the test with representative results for each goal.

  16. Optimization study on pin tip diameter of an impact-pin nozzle at high pressure ratio

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, C. Palani; Lee, Kwon Hee [FMTRC, Daejoo Machinery Co. Ltd., Daegu (Korea, Republic of); Park, Tae Choon; Cha, Bong Jun [Engine Components Research Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Kim, Heuy Dong [Dept. of Mechanical Engineering, Andong National University, Andong (Korea, Republic of)

    2016-09-15

    Wet compression system is typically installed in a gas turbine engine to increase the net power output and efficiency. A crucial component of the wet compression system is the nozzle which generates fine water droplets for injection into the compressor. The main objective of present work is to optimize a kind of nozzle called impact-pin spray nozzle and thereby produce better quality droplets. To achieve this, the dynamics occurring in the water jet impinging on the pin tip, the subsequent formation of water sheet, which finally breaks into water droplets, must be studied. In this manuscript, the progress on the numerical studies on impact-pin nozzle are reported. A small computational domain covering the orifice, pin tip and the region where primary atomization occurs is selected for numerical analysis. The governing equations are selected in three dimensional cartesian form and simulations are performed to predict the dynamics of water jet impinging on the pin. Systematic studies were carried out and the results leading to the choice of turbulence model and the effect of pin tip diameter are reported here. Further studies are proposed to show the future directions of the present research work.

  17. Fatigue crack extension in nozzle junctions; comparison of analytical approximations with experimental data

    International Nuclear Information System (INIS)

    Broekhoven, M.J.G.; Ruijtenbeek, M.G. van de

    1975-01-01

    The fracture mechanics based stress intensity factor (K-factor) concept has obtained wide-spread acceptance as a tool for quantitative analysis of both fatigue crack growth and instable fracture. The present study discusses the applicability of various simple analytical approximations by comparing results with experimental data. A semi-analytical procedure has been developed whose main characteristics are: the true stress distribution perpendicular to the crack plane for the uncracked structure is used as input data; an extended version of the Shah and Kobayashi solution for elliptical cracks, loaded on their surfaces by tractions described by fourth order double symmetrical polynomials fit through the data of previous step is used to calculate full K-factor variations along the crack fronts; several corrections, a.o. to correct for free surfaces and for a corner radius are incorporated. The experiments concern careful monitoring crack growth rates (da/dN) under uniaxial fatigue loading of precracked nozzle-on-plate models, a.o. using a closed T.V. circuit. Resulting da/dN versus crack length (a) curves are converted into K versus a curves using da/dN versus ΔK curves for the same material (ASTM A 508 C12) obtained by standard procedures. Comparison of theoretical and experimental data yields the conclusion that: simple analytical approximations as sometimes recommended in literature may largely overestimate or underestimate K-factors for nozzle corner cracks; a computer program based on the semi-analytical procedure yields results within seconds of CPU-time once the input data have been generated. These results compare well with experimental and available finite element data for the range of crack depths of practical concern

  18. Development of acoustically lined ejector technology for multitube jet noise suppressor nozzles by model and engine tests over a wide range of jet pressure ratios and temperatures

    Science.gov (United States)

    Atvars, J.; Paynter, G. C.; Walker, D. Q.; Wintermeyer, C. F.

    1974-01-01

    An experimental program comprising model nozzle and full-scale engine tests was undertaken to acquire parametric data for acoustically lined ejectors applied to primary jet noise suppression. Ejector lining design technology and acoustical scaling of lined ejector configurations were the major objectives. Ground static tests were run with a J-75 turbojet engine fitted with a 37-tube, area ratio 3.3 suppressor nozzle and two lengths of ejector shroud (L/D = 1 and 2). Seven ejector lining configurations were tested over the engine pressure ratio range of 1.40 to 2.40 with corresponding jet velocities between 305 and 610 M/sec. One-fourth scale model nozzles were tested over a pressure ratio range of 1.40 to 4.0 with jet total temperatures between ambient and 1088 K. Scaling of multielement nozzle ejector configurations was also studied using a single element of the nozzle array with identical ejector lengths and lining materials. Acoustic far field and near field data together with nozzle thrust performance and jet aerodynamic flow profiles are presented.

  19. Advanced exhaust nozzle technology

    Energy Technology Data Exchange (ETDEWEB)

    Glidewell, R J; Warburton, R E

    1981-01-01

    Recent developments in turbine engine exhaust nozzle technology include nonaxisymmetric nozzles, thrust reversing, and thrust vectoring. Trade studies have been performed to determine the impact of these developments on the thrust-to-weight ratio and specific fuel consumption of an advanced high performance, augmented turbofan engine. Results are presented in a manner which provides an understanding of the sources and magnitudes of differences in the basic elements of nozzle internal performance and weight as they relate to conventional, axisymmetric nozzle technology. Conclusions are presented and recommendations are made with regard to future directions of advanced development and demonstration. 5 refs.

  20. Combined slope ratio analysis and linear-subtraction: An extension of the Pearce ratio method

    Science.gov (United States)

    De Waal, Sybrand A.

    1996-07-01

    A new technique, called combined slope ratio analysis, has been developed by extending the Pearce element ratio or conserved-denominator method (Pearce, 1968) to its logical conclusions. If two stoichiometric substances are mixed and certain chemical components are uniquely contained in either one of the two mixing substances, then by treating these unique components as conserved, the composition of the substance not containing the relevant component can be accurately calculated within the limits allowed by analytical and geological error. The calculated composition can then be subjected to rigorous statistical testing using the linear-subtraction method recently advanced by Woronow (1994). Application of combined slope ratio analysis to the rocks of the Uwekahuna Laccolith, Hawaii, USA, and the lavas of the 1959-summit eruption of Kilauea Volcano, Hawaii, USA, yields results that are consistent with field observations.

  1. Axisymmetric thrust-vectoring nozzle performance prediction

    International Nuclear Information System (INIS)

    Wilson, E. A.; Adler, D.; Bar-Yoseph, P.Z

    1998-01-01

    Throat-hinged geometrically variable converging-diverging thrust-vectoring nozzles directly affect the jet flow geometry and rotation angle at the nozzle exit as a function of the nozzle geometry, the nozzle pressure ratio and flight velocity. The consideration of nozzle divergence in the effective-geometric nozzle relation is theoretically considered here for the first time. In this study, an explicit calculation procedure is presented as a function of nozzle geometry at constant nozzle pressure ratio, zero velocity and altitude, and compared with experimental results in a civil thrust-vectoring scenario. This procedure may be used in dynamic thrust-vectoring nozzle design performance predictions or analysis for civil and military nozzles as well as in the definition of initial jet flow conditions in future numerical VSTOL/TV jet performance studies

  2. Simulation of the charge ratio of cosmic ray muons in extensive air showers using CORSIKA

    Energy Technology Data Exchange (ETDEWEB)

    Ochilo, Livingstone [University of Siegen (Germany); Kenyatta University, Nairobi (Kenya); Hashim, Nadir; Okumu, John [Kenyatta University, Nairobi (Kenya)

    2013-07-01

    The interaction of primary cosmic rays in the atmosphere produces, among other particles, pions and kaons. They decay to muons, which form an important component of extensive air showers. The ratio of positively to negatively charged muons, called the muon charge ratio, provides important information about the cosmic ray interactions in the atmosphere. In this study, the theoretical hadronic interaction models in the cosmic ray simulation code CORSIKA have been used to study the charge ratio of cosmic ray muons simulated in extensive air showers. An East - West effect on the charge ratio of simulated cosmic ray muons is observed. It is more pronounced for inclined and low-energy muons (momentum less than 100 GeV/c and zenith angle greater than 80 ). Experimental data from ''MINOS Near'' experiment gives similar results.

  3. Multielement suppressor nozzles for thrust augmentation systems.

    Science.gov (United States)

    Lawrence, R. L.; O'Keefe, J. V.; Tate, R. B.

    1972-01-01

    The noise reduction and nozzle performance characteristics of large-scale, high-aspect-ratio multielement nozzle arrays operated at low velocities were determined by test. The nozzles are selected for application to high-aspect-ratio augmentor suppressors to be used for augmentor wing airplanes. Significant improvements in noise characteristics for multielement nozzles over those of round or high-aspect-ratio slot nozzles are obtained. Elliptical noise patterns typical of slot nozzles are presented for high-aspect-ratio multielement nozzle arrays. Additional advantages are available in OASPL noise reduction from the element size and spacing. Augmentor-suppressor systems can be designed for maximum beam pattern directivity and frequency spectrum shaping advantages. Measurements of the nozzle wakes show a correlation with noise level data and frequency spectrum peaks. The noise and jet wake results are compared with existing prediction procedures based on empirical jet flow equations, Lighthill relationships, Strouhal number, and empirical shock-induced screech noise effects.

  4. Nozzle seal

    International Nuclear Information System (INIS)

    Herman, R.F.

    1977-01-01

    In an illustrative embodiment of the invention, a nuclear reactor pressure vessel, having an internal hoop from which the heated coolant emerges from the reactor core and passes through to the reactor outlet nozzles, is provided with sealing members operatively disposed between the outlet nozzle and the hoop. The sealing members are biased against the pressure vessel and the hoop and are connected by a leak restraining member establishing a leak-proof condition between the inlet and outlet coolants in the region about the outlet nozzle. Furthermore, the flexible responsiveness of the seal assures that the seal will not structurally couple the hoop to the pressure vessel

  5. Nozzle seal

    International Nuclear Information System (INIS)

    Walling, G.A.

    1977-01-01

    In an illustrative embodiment of the invention, a nuclear reactor pressure vessel, having an internal hoop from which the heated coolant emerges from the reactor core and passes through to the reactor outlet nozzles, is provided with sealing rings operatively disposed between the outlet nozzles and the hoop. The sealing rings connected by flexible members are biased against the pressure vessel and the hoop, establishing a leak-proof condition between the inlet and outlet coolants in the region about the outlet nozzle. Furthermore, the flexible responsiveness of the seal assures that the seal will not structurally couple the hoop to the pressure vessel. 4 claims, 2 figures

  6. Effect of compression ratio, nozzle opening pressure, engine load, and butanol addition on nanoparticle emissions from a non-road diesel engine.

    Science.gov (United States)

    Maurya, Rakesh Kumar; Saxena, Mohit Raj; Rai, Piyush; Bhardwaj, Aashish

    2018-05-01

    Currently, diesel engines are more preferred over gasoline engines due to their higher torque output and fuel economy. However, diesel engines confront major challenge of meeting the future stringent emission norms (especially soot particle emissions) while maintaining the same fuel economy. In this study, nanosize range soot particle emission characteristics of a stationary (non-road) diesel engine have been experimentally investigated. Experiments are conducted at a constant speed of 1500 rpm for three compression ratios and nozzle opening pressures at different engine loads. In-cylinder pressure history for 2000 consecutive engine cycles is recorded and averaged data is used for analysis of combustion characteristics. An electrical mobility-based fast particle sizer is used for analyzing particle size and mass distributions of engine exhaust particles at different test conditions. Soot particle distribution from 5 to 1000 nm was recorded. Results show that total particle concentration decreases with an increase in engine operating loads. Moreover, the addition of butanol in the diesel fuel leads to the reduction in soot particle concentration. Regression analysis was also conducted to derive a correlation between combustion parameters and particle number emissions for different compression ratios. Regression analysis shows a strong correlation between cylinder pressure-based combustion parameters and particle number emission.

  7. Acoustic and aerodynamic performance investigation of inverted velocity profile coannular plug nozzles. [variable cycle engines

    Science.gov (United States)

    Knott, P. R.; Blozy, J. T.; Staid, P. S.

    1981-01-01

    The results of model scale parametric static and wind tunnel aerodynamic performance tests on unsuppressed coannular plug nozzle configurations with inverted velocity profile are discussed. The nozzle configurations are high-radius-ratio coannular plug nozzles applicable to dual-stream exhaust systems typical of a variable cycle engine for Advanced Supersonic Transport application. In all, seven acoustic models and eight aerodynamic performance models were tested. The nozzle geometric variables included outer stream radius ratio, inner stream to outer stream ratio, and inner stream plug shape. When compared to a conical nozzle at the same specific thrust, the results of the static acoustic tests with the coannular nozzles showed noise reductions of up to 7 PNdB. Extensive data analysis showed that the overall acoustic results can be well correlated using the mixed stream velocity and the mixed stream density. Results also showed that suppression levels are geometry and flow regulation dependent with the outer stream radius ratio, inner stream-to-outer stream velocity ratio and inner stream velocity ratio and inner stream plug shape, as the primary suppression parameters. In addition, high-radius ratio coannular plug nozzles were found to yield shock associated noise level reductions relative to a conical nozzle. The wind tunnel aerodynamic tests showed that static and simulated flight thrust coefficient at typical takeoff conditions are quite good - up to 0.98 at static conditions and 0.974 at a takeoff Mach number of 0.36. At low inner stream flow conditions significant thrust loss was observed. Using an inner stream conical plug resulted in 1% to 2% higher performance levels than nozzle geometries using a bent inner plug.

  8. Flow-throttling orifice nozzle

    International Nuclear Information System (INIS)

    Sletten, H.L.

    1975-01-01

    A series-parallel-flow type throttling apparatus to restrict coolant flow to certain fuel assemblies of a nuclear reactor is comprised of an axial extension nozzle of the fuel assembly. The nozzle has a series of concentric tubes with parallel-flow orifice holes in each tube. Flow passes from a high pressure plenum chamber outside the nozzle through the holes in each tube in series to the inside of the innermost tube where the coolant, having dissipated most of its pressure, flows axially to the fuel element. (U.S.)

  9. Fuel nozzle assembly

    Science.gov (United States)

    Johnson, Thomas Edward [Greer, SC; Ziminsky, Willy Steve [Simpsonville, SC; Lacey, Benjamin Paul [Greer, SC; York, William David [Greer, SC; Stevenson, Christian Xavier [Inman, SC

    2011-08-30

    A fuel nozzle assembly is provided. The assembly includes an outer nozzle body having a first end and a second end and at least one inner nozzle tube having a first end and a second end. One of the nozzle body or nozzle tube includes a fuel plenum and a fuel passage extending therefrom, while the other of the nozzle body or nozzle tube includes a fuel injection hole slidably aligned with the fuel passage to form a fuel flow path therebetween at an interface between the body and the tube. The nozzle body and the nozzle tube are fixed against relative movement at the first ends of the nozzle body and nozzle tube, enabling the fuel flow path to close at the interface due to thermal growth after a flame enters the nozzle tube.

  10. High ratio of triglycerides to hdl-cholesterol predicts extensive coronary disease

    Directory of Open Access Journals (Sweden)

    Protasio Lemos da Luz

    2008-01-01

    Full Text Available An abnormal ratio of triglycerides to HDL-cholesterol (TG/HDL-c indicates an atherogenic lipid profile and a risk for the development of coronary disease. OBJECTIVE: To investigate the association between lipid levels, specifically TG/HDL-c, and the extent of coronary disease. METHODS: High-risk patients (n = 374 submitted for coronary angiography had their lipid variables measured and coronary disease extent scored by the Friesinger index. RESULTS: The subjects consisted of 220 males and 154 females, age 57.2 ± 11.1 years, with total cholesterol of 210± 50.3 mg/dL, triglycerides of 173.8 ± 169.8 mg/dL, HDL-cholesterol (HDL-c of 40.1 ± 12.8 mg/dL, LDL-cholesterol (LDL-c of 137.3 ± 46.2 mg/dL, TG/HDL-c of 5.1 ± 5.3, and a Friesinger index of 6.6 ± 4.7. The relationship between the extent of coronary disease (dichotomized by a Friesenger index of 5 and lipid levels (normal vs. abnormal was statistically significant for the following: triglycerides, odds ratio of 2.02 (1.31-3.1; p = 0.0018; HDL-c, odds ratio of 2.21 (1.42-3.43; p = 0.0005; and TG/HDL-c, odds ratio of 2.01(1.30-3.09; p = 0.0018. However, the relationship was not significant between extent of coronary disease and total cholesterol [1.25 (0.82-1.91; p = 0.33] or LDL-c [1.47 (0.96-2.25; p = 0.0842]. The chi-square for linear trends for Friesinger > 4 and lipid quartiles was statistically significant for triglycerides (p = 0.0017, HDL-c (p = 0.0001, and TG/HDL-c (p = 0.0018, but not for total cholesterol (p = 0.393 or LDL-c (p = 0.0568. The multivariate analysis by logistic regression OR gave 1.3 ± 0.79 (p = .0001 for TG/HDL-c, 0.779 ± 0.074 (p = .0001 for HDL-c, and 1.234 ± 0.097 (p = 0.03 for LDL. Analysis of receiver operating characteristic curves showed that only TG/HDL-c and HDL-c were useful for detecting extensive coronary disease, with the former more strongly associated with disease. CONCLUSIONS: Although some lipid variables were associated with the extent of

  11. Equivalent nozzle in thermomechanical problems

    International Nuclear Information System (INIS)

    Cesari, F.

    1977-01-01

    When analyzing nuclear vessels, it is most important to study the behavior of the nozzle cylinder-cylinder intersection. For the elastic field, this analysis in three dimensions is quite easy using the method of finite elements. The same analysis in the non-linear field becomes difficult for designs in 3-D. It is therefore necessary to resolve a nozzle in two dimensions equivalent to a 3-D nozzle. The purpose of the present work is to find an equivalent nozzle both with a mechanical and thermal load. This has been achieved by the analysis in three dimensions of a nozzle and a nozzle cylinder-sphere intersection, of a different radius. The equivalent nozzle will be a nozzle with a sphere radius in a given ratio to the radius of a cylinder; thus, the maximum equivalent stress is the same in both 2-D and 3-D. The nozzle examined derived from the intersection of a cylindrical vessel of radius R=191.4 mm and thickness T=6.7 mm with a cylindrical nozzle of radius r=24.675 mm and thickness t=1.350 mm, for which the experimental results for an internal pressure load are known. The structure was subdivided into 96 finite, three-dimensional and isoparametric elements with 60 degrees of freedom and 661 total nodes. Both the analysis with a mechanical load as well as the analysis with a thermal load were carried out on this structure according to the Bersafe system. The thermal load consisted of a transient typical of an accident occurring in a sodium-cooled fast reactor, with a peak of the temperature (540 0 C) for the sodium inside the vessel with an insulating argon temperature constant at 525 0 C. The maximum value of the equivalent tension was found in the internal area at the union towards the vessel side. The analysis of the nozzle in 2-D consists in schematizing the structure as a cylinder-sphere intersection, where the sphere has a given relation to the

  12. Fluid Structure Interaction in a Cold Flow Test and Transient CFD Analysis of Out-of-Round Nozzles

    Science.gov (United States)

    Ruf, Joseph; Brown, Andrew; McDaniels, David; Wang, Ten-See

    2010-01-01

    This viewgraph presentation describes two nozzle fluid flow interactions. They include: 1) Cold flow nozzle tests with fluid-structure interaction at nozzle separated flow; and 2) CFD analysis for nozzle flow and side loads of nozzle extensions with various out-of-round cases.

  13. Computational study of performance characteristics for truncated conical aerospike nozzles

    Science.gov (United States)

    Nair, Prasanth P.; Suryan, Abhilash; Kim, Heuy Dong

    2017-12-01

    Aerospike nozzles are advanced rocket nozzles that can maintain its aerodynamic efficiency over a wide range of altitudes. It belongs to class of altitude compensating nozzles. A vehicle with an aerospike nozzle uses less fuel at low altitudes due to its altitude adaptability, where most missions have the greatest need for thrust. Aerospike nozzles are better suited to Single Stage to Orbit (SSTO) missions compared to conventional nozzles. In the current study, the flow through 20% and 40% aerospike nozzle is analyzed in detail using computational fluid dynamics technique. Steady state analysis with implicit formulation is carried out. Reynolds averaged Navier-Stokes equations are solved with the Spalart-Allmaras turbulence model. The results are compared with experimental results from previous work. The transition from open wake to closed wake happens in lower Nozzle Pressure Ratio for 20% as compared to 40% aerospike nozzle.

  14. Nozzle airfoil having movable nozzle ribs

    Science.gov (United States)

    Yu, Yufeng Phillip; Itzel, Gary Michael

    2002-01-01

    A nozzle vane or airfoil structure is provided in which the nozzle ribs are connected to the side walls of the vane or airfoil in such a way that the ribs provide the requisite mechanical support between the concave side and convex side of the airfoil but are not locked in the radial direction of the assembly, longitudinally of the airfoil. The ribs may be bi-cast onto a preformed airfoil side wall structure or fastened to the airfoil by an interlocking slide connection and/or welding. By attaching the nozzle ribs to the nozzle airfoil metal in such a way that allows play longitudinally of the airfoil, the temperature difference induced radial thermal stresses at the nozzle airfoil/rib joint area are reduced while maintaining proper mechanical support of the nozzle side walls.

  15. Sex Ratios, Economic Power, and Women's Roles: A Theoretical Extension and Empirical Test.

    Science.gov (United States)

    South, Scott J.

    1988-01-01

    Tested hypotheses concerning sex ratios, women's roles, and economic power with data from 111 countries. Found undersupply of women positively associated with proportion of women who marry and fertility rate; inversely associated with women's average age at marriage, literacy rate, and divorce rate. Suggests women's economic power may counteract…

  16. Cold spray nozzle design

    Science.gov (United States)

    Haynes, Jeffrey D [Stuart, FL; Sanders, Stuart A [Palm Beach Gardens, FL

    2009-06-09

    A nozzle for use in a cold spray technique is described. The nozzle has a passageway for spraying a powder material, the passageway having a converging section and a diverging section, and at least the diverging section being formed from polybenzimidazole. In one embodiment of the nozzle, the converging section is also formed from polybenzimidazole.

  17. Prototype Morphing Fan Nozzle Demonstrated

    Science.gov (United States)

    Lee, Ho-Jun; Song, Gang-Bing

    2004-01-01

    Ongoing research in NASA Glenn Research Center's Structural Mechanics and Dynamics Branch to develop smart materials technologies for aeropropulsion structural components has resulted in the design of the prototype morphing fan nozzle shown in the photograph. This prototype exploits the potential of smart materials to significantly improve the performance of existing aircraft engines by introducing new inherent capabilities for shape control, vibration damping, noise reduction, health monitoring, and flow manipulation. The novel design employs two different smart materials, a shape-memory alloy and magnetorheological fluids, to reduce the nozzle area by up to 30 percent. The prototype of the variable-area fan nozzle implements an overlapping spring leaf assembly to simplify the initial design and to provide ease of structural control. A single bundle of shape memory alloy wire actuators is used to reduce the nozzle geometry. The nozzle is subsequently held in the reduced-area configuration by using magnetorheological fluid brakes. This prototype uses the inherent advantages of shape memory alloys in providing large induced strains and of magnetorheological fluids in generating large resistive forces. In addition, the spring leaf design also functions as a return spring, once the magnetorheological fluid brakes are released, to help force the shape memory alloy wires to return to their original position. A computerized real-time control system uses the derivative-gain and proportional-gain algorithms to operate the system. This design represents a novel approach to the active control of high-bypass-ratio turbofan engines. Researchers have estimated that such engines will reduce thrust specific fuel consumption by 9 percent over that of fixed-geometry fan nozzles. This research was conducted under a cooperative agreement (NCC3-839) at the University of Akron.

  18. Altitude Compensating Nozzle

    Science.gov (United States)

    Ruf, Joseph H.; Jones, Daniel

    2015-01-01

    The dual-bell nozzle (fig. 1) is an altitude-compensating nozzle that has an inner contour consisting of two overlapped bells. At low altitudes, the dual-bell nozzle operates in mode 1, only utilizing the smaller, first bell of the nozzle. In mode 1, the nozzle flow separates from the wall at the inflection point between the two bell contours. As the vehicle reaches higher altitudes, the dual-bell nozzle flow transitions to mode 2, to flow full into the second, larger bell. This dual-mode operation allows near optimal expansion at two altitudes, enabling a higher mission average specific impulse (Isp) relative to that of a conventional, single-bell nozzle. Dual-bell nozzles have been studied analytically and subscale nozzle tests have been completed.1 This higher mission averaged Isp can provide up to a 5% increase2 in payload to orbit for existing launch vehicles. The next important step for the dual-bell nozzle is to confirm its potential in a relevant flight environment. Toward this end, NASA Marshall Space Flight Center (MSFC) and Armstrong Flight Research Center (AFRC) have been working to develop a subscale, hot-fire, dual-bell nozzle test article for flight testing on AFRC's F15-D flight test bed (figs. 2 and 3). Flight test data demonstrating a dual-bell ability to control the mode transition and result in a sufficient increase in a rocket's mission averaged Isp should help convince the launch service providers that the dual-bell nozzle would provide a return on the required investment to bring a dual-bell into flight operation. The Game Changing Department provided 0.2 FTE to ER42 for this effort in 2014.

  19. Firefighter Nozzle Reaction

    DEFF Research Database (Denmark)

    Chin, Selena K.; Sunderland, Peter B.; Jomaas, Grunde

    2017-01-01

    to anchor forces, the hose becomes straight. The nozzle reaction is found to equal the jet momentum flow rate, and it does not change when an elbow connects the hose to the nozzle. A forward force must be exerted by a firefighter or another anchor that matches the forward force that the jet would exert...... on a perpendicular wall. Three reaction expressions are derived, allowing it to be determined in terms of hose diameter, jet diameter, flow rate, and static pressure upstream of the nozzle. The nozzle reaction predictions used by the fire service are 56% to 90% of those obtained here for typical firefighting hand...

  20. Noise Measurements of High Aspect Ratio Distributed Exhaust Systems

    Science.gov (United States)

    Bridges, James E.

    2015-01-01

    This paper covers far-field acoustic measurements of a family of rectangular nozzles with aspect ratio 8, in the high subsonic flow regime. Several variations of nozzle geometry, commonly found in embedded exhaust systems, are explored, including bevels, slants, single broad chevrons and notches, and internal septae. Far-field acoustic results, presented previously for the simple rectangular nozzle, showed that increasing aspect ratio increases the high frequency noise, especially directed in the plane containing the minor axis of the nozzle. Detailed changes to the nozzle geometry generally made little difference in the noise, and the differences were greatest at low speed. Having an extended lip on one broad side (bevel) did produce up to 3 decibels more noise in all directions, while extending the lip on the narrow side (slant) produced up to 2 decibels more noise, primarily on the side with the extension. Adding a single, non-intrusive chevron, made no significant change to the noise, while inverting the chevron (notch) produced up to 2decibels increase in the noise. Having internal walls (septae) within the nozzle, such as would be required for structural support or when multiple fan ducts are aggregated, reduced the noise of the rectangular jet, but could produce a highly directional shedding tone from the septae trailing edges. Finally, a nozzle with both septae and a beveled nozzle, representative of the exhaust system envisioned for a distributed electric propulsion aircraft with a common rectangular duct, produced almost as much noise as the beveled nozzle, with the septae not contributing much reduction in noise.

  1. Firefighter Nozzle Reaction

    DEFF Research Database (Denmark)

    Chin, Selena K.; Sunderland, Peter B.; Jomaas, Grunde

    2017-01-01

    Nozzle reaction and hose tension are analyzed using conservation of fluid momentum and assuming steady, inviscid flow and a flexible hose in frictionless contact with the ground. An expression that is independent of the bend angle is derived for the hose tension. If this tension is exceeded owing...... to anchor forces, the hose becomes straight. The nozzle reaction is found to equal the jet momentum flow rate, and it does not change when an elbow connects the hose to the nozzle. A forward force must be exerted by a firefighter or another anchor that matches the forward force that the jet would exert...... on a perpendicular wall. Three reaction expressions are derived, allowing it to be determined in terms of hose diameter, jet diameter, flow rate, and static pressure upstream of the nozzle. The nozzle reaction predictions used by the fire service are 56% to 90% of those obtained here for typical firefighting hand...

  2. Extension of the beam theory for polymer bio-transducers with low aspect ratios and viscoelastic characteristics

    International Nuclear Information System (INIS)

    Du, Ping; Lin, I-Kuan; Zhang, Xin; Lu, Hongbing

    2010-01-01

    Polydimethylsiloxane (PDMS)-based micropillars (or microcantilevers) have been used as bio-transducers for measuring cellular forces on the order of pN to µN. The measurement accuracy of these sensitive devices depends on appropriate modeling to convert the micropillar deformations into the corresponding reaction forces. The traditional approach to calculating the reaction force is based on the Euler beam theory with consideration of a linear elastic slender beam for the micropillar. However, the low aspect ratio in geometry of PDMS micropillars does not satisfy the slender beam requirement. Consequently, the Timoshenko beam theory, appropriate for a beam with a low aspect ratio, should be used. In addition, the inherently time-dependent behavior in PDMS has to be considered for accurate force conversion. In this paper, the Timoshenko beam theory, along with the consideration of viscoelastic behavior of PDMS, was used to model the mechanical response of micropillars. The viscoelastic behavior of PDMS was characterized by stress relaxation nanoindentation using a circular flat punch. A correction procedure was developed to determine the load–displacement relationship with consideration of ramp loading. The relaxation function was extracted and described by a generalized Maxwell model. The bending of rectangular micropillars was performed by a wedge indenter tip. The viscoelastic Timoshenko beam formula was used to calculate the mechanical response of the micropillar, and the results were compared with measurement data. The calculated reaction forces agreed well with the experimental data at three different loading rates. A parametric study was conducted to evaluate the accuracy of the viscoelastic Timoshenko beam model by comparing the reaction forces calculated from the elastic Euler beam, elastic Timoshenko beam and viscoelastic Euler beam models at various aspect ratios and loading rates. The extension of modeling from the elastic Euler beam theory to the

  3. Cold water injection nozzles

    International Nuclear Information System (INIS)

    Kura, Masaaki; Maeda, Masamitsu; Endo, Takio.

    1979-01-01

    Purpose: To inject cold water in a reactor without applying heat cycles to a reactor container and to the inner wall of a feedwater nozzle by securing a perforated plate at the outlet of the cold water injection nozzle. Constitution: A disc-like cap is secured to the final end of a return nozzle of a control rod drive. The cap prevents the flow of a high temperature water flowing downward in the reactor from entering into the nozzle. The cap is perforated with a plurality of bore holes for injecting cold water into the reactor. The cap is made to about 100 mm in thickness so that the cold water passing through the bore holes is heated by the heat conduction in the cap. Accordingly, the flow of high temperature water flowing downwardly in the reactor is inhibited by the cap from backward flowing into the nozzle. Moreover, the flow of the cold water in the nozzle is controlled and rectified when passed through the bore holes in the cap and then injected into the reactor. (Yoshino, Y.)

  4. Gas flows in radial micro-nozzles with pseudo-shocks

    Science.gov (United States)

    Kiselev, S. P.; Kiselev, V. P.; Zaikovskii, V. N.

    2017-12-01

    In the present paper, results of an experimental and numerical study of supersonic gas flows in radial micro-nozzles are reported. A distinguishing feature of such flows is the fact that two factors, the nozzle divergence and the wall friction force, exert a substantial influence on the flow structure. Under the action of the wall friction force, in the micro-nozzle there forms a pseudo-shock that separates the supersonic from subsonic flow region. The position of the pseudo-shock can be evaluated from the condition of flow blockage in the nozzle exit section. A detailed qualitative and quantitative analysis of gas flows in radial micro-nozzles is given. It is shown that the gas flow in a micro-nozzle is defined by the complicated structure of the boundary layer in the micro-nozzle, this structure being dependent on the width-to-radius ratio of the nozzle and its inlet-to-outlet pressure ratio.

  5. Finite element analysis of inclined nozzle-plate junctions

    International Nuclear Information System (INIS)

    Dixit, K.B.; Seth, V.K.; Krishnan, A.; Ramamurthy, T.S.; Dattaguru, B.; Rao, A.K.

    1979-01-01

    Estimation of stress concentration at nozzle to plate or shell junctions is a significant problem in the stress analysis of nuclear reactors. The topic is a subject matter of extensive investigations and earlier considerable success has been reported on analysis for the cases when the nozzle is perpendicular to the plate or is radial to the shell. Analytical methods for the estimation of stress concentrations for the practical situations when the intersecting nozzle is inclined to the plate or is non-radial to the shell is rather scanty. Specific complications arise in dealing with the junction region when the nozzle with circular cross-section meets the non-circular cut-out on the plate or shell. In this paper a finite element analysis is developed for inclined nozzles and results are presented for nozzle-plate junctions. A method of analysis is developed with a view to achieving simultaneously accuracy of results and simplicity in the choice of elements and their connectivity. The circular nozzle is treated by axisymmetric conical shell elements. The nozzle portion in the region around the junction and the flat plate is dealt with by triangular flat shell elements. Special transition elements are developed for joining the flat shell elements with the axisymmetric elements under non-axisymmetric loading. A substructure method of analysis is adopted which achieves considerable economy in handling the structure and also conveniently combines the different types of elements in the structure. (orig.)

  6. Characterisation of subsonic axisymmetric nozzles

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2008-01-01

    Roč. 86, č. 11 (2008), s. 1253-1262 ISSN 0263-8762 R&D Projects: GA AV ČR IAA200760705 Institutional research plan: CEZ:AV0Z20760514 Keywords : nozzle * characterisation * nozzle properties * nozzle invariants Subject RIV: BK - Fluid Dynamics Impact factor: 0.989, year: 2008

  7. A Parametric Investigation of Nozzle Planform and Internal/External Geometry at Transonic Speeds

    Science.gov (United States)

    Cler, Daniel L.

    1995-01-01

    An experimental investigation of multidisciplinary (scarfed trailing edge) nozzle divergent flap geometry was conducted at transonic speeds in the NASA Langley 16-Foot Transonic Tunnel. The geometric parameters investigated include nozzle planform, nozzle contouring location (internal and/or external), and nozzle area ratio (area ratio 1.2 and 2.0). Data were acquired over a range of Mach Numbers from 0.6 to 1.2, angle-of-attack from 0.0 degrees to 9.6 degrees and nozzle pressure ratios from 1.0 to 20.0. Results showed that increasing the rate of change internal divergence angle across the width of the nozzle or increasing internal contouring will decrease static, aeropropulsive and thrust removed drag performance regardless of the speed regime. Also, increasing the rate of change in boattail angle across the width of the nozzle or increasing external contouring will provide the lowest thrust removed drag. Scarfing of the nozzle trailing edges reduces the aeropropulsive performance for the most part and adversely affects the nozzle plume shape at higher nozzle pressure ratios thus increasing the thrust removed drag. The effects of contouring were primary in nature and the effects of planform were secondary in nature. Larger losses occur supersonically than subsonically when scarfing of nozzle trailing edges occurs. The single sawtooth nozzle almost always provided lower thrust removed drag than the double sawtooth nozzles regardless the speed regime. If internal contouring is required, the double sawtooth nozzle planform provides better static and aeropropulsive performance than the single sawtooth nozzle and if no internal contouring is required the single sawtooth provides the highest static and aeropropulsive performance.

  8. Duplex tab exhaust nozzle

    Science.gov (United States)

    Gutmark, Ephraim Jeff (Inventor); Martens, Steven (nmn) (Inventor)

    2012-01-01

    An exhaust nozzle includes a conical duct terminating in an annular outlet. A row of vortex generating duplex tabs are mounted in the outlet. The tabs have compound radial and circumferential aft inclination inside the outlet for generating streamwise vortices for attenuating exhaust noise while reducing performance loss.

  9. Reactor vessel nozzle cracks: a photoelastic study

    International Nuclear Information System (INIS)

    Smith, C.W.

    1979-01-01

    A method consisting of a marriage between the ''frozen stress'' photoelastic approach and the local stress field equations of linear elastic fracture mechanics for estimating stress intensity factor distributions in three dimensional, finite cracked body problems is reviewed and extensions of the method are indicated. The method is then applied to the nuclear reactor vessel nozzle corner crack problem for both Intermediate Test Vessel and Boiling Water Reactor geometries. Results are compared with those of other investigators. 35 refs

  10. Noise from Aft Deck Exhaust Nozzles: Differences in Experimental Embodiments

    Science.gov (United States)

    Bridges, James E.

    2014-01-01

    Two embodiments of a rectangular nozzle on an aft deck are compared. In one embodiment the lower lip of the nozzle was extended with the sidewalls becoming triangles. In a second embodiment a rectangular nozzle was fitted with a surface that fit flush to the lower lip and extended outward from the sides of the nozzle, approximating a semi-infinite plane. For the purpose of scale-model testing, making the aft deck an integral part of the nozzle is possible for relatively short deck lengths, but a separate plate model is more flexible, accounts for the expanse of deck to the sides of the nozzle, and allows the nozzle to stand off from the deck. Both embodiments were tested and acoustic far-field results were compared. In both embodiments the extended deck introduces a new noise source, but the amplitude of the new source was dependent upon the span (cross-stream dimension) of the aft deck. The noise increased with deck length (streamwise dimension), and in the case of the beveled nozzle it increased with increasing aspect ratio. In previous studies of slot jets in wings it was noted that the increased noise from the extended aft deck appears as a dipole at the aft deck trailing edge, an acoustic source type with different dependence on velocity than jet mixing noise. The extraneous noise produced by the aft deck in the present studies also shows this behavior both in directivity and in velocity scaling.

  11. Premixed direct injection nozzle

    Science.gov (United States)

    Zuo, Baifang [Simpsonville, SC; Johnson, Thomas Edward [Greer, SC; Lacy, Benjamin Paul [Greer, SC; Ziminsky, Willy Steve [Simpsonville, SC

    2011-02-15

    An injection nozzle having a main body portion with an outer peripheral wall is disclosed. The nozzle includes a plurality of fuel/air mixing tubes disposed within the main body portion and a fuel flow passage fluidly connected to the plurality of fuel/air mixing tubes. Fuel and air are partially premixed inside the plurality of the tubes. A second body portion, having an outer peripheral wall extending between a first end and an opposite second end, is connected to the main body portion. The partially premixed fuel and air mixture from the first body portion gets further mixed inside the second body portion. The second body portion converges from the first end toward said second end. The second body portion also includes cooling passages that extend along all the walls around the second body to provide thermal damage resistance for occasional flame flash back into the second body.

  12. Limit loads in nozzles

    International Nuclear Information System (INIS)

    Zouain, N.

    1983-01-01

    The static method for the evaluation of the limit loads of a perfectly elasto-plastic structure is presented. Using the static theorem of Limit Analysis and the Finite Element Method, a lower bound for the colapso load can be obtained through a linear programming problem. This formulation if then applied to symmetrically loaded shells of revolution and some numerical results of limit loads in nozzles are also presented. (Author) [pt

  13. Experimental and numerical investigation of the cap-shock structure in over expanded thrust-optimized nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Reijasse, P.; Bouvier, F.; Servel, P.

    2002-07-01

    This paper deals with the aerodynamics of an over-expanded nozzle, when the internal parabolic contour of the nozzle extension is highly thrust-optimized in terms of specific impulse-to-weight ratio. This optimization leads to an internal focusing shock issuing from a little downstream from the throat, even when the nozzle is running at nearly vacuum conditions. When such a nozzle is over-expanded, the focusing shock thus interferes with the over-expansion shock, and it forms from this shock interference a particular shock system, named 'cap-shock' because of the cap-like luminous shape seen in the over-expanded plumes of some real engines. Navier-Stokes calcinations performed in Europe had permitted to numerically analyze such a flow pattern, and they have revealed notably a recirculation bubble on the centerline downstream of the Mach disk, which had never been measured yet. A test campaign characterizing the flow separation in over-expanded sub-scale nozzles has been performed in the R2Ch blowdown wind tunnel of the Onera Chalais-Meudon center. Schlieren photographs of the exhaust jet have authorized a detailed description of the cap-shock pattern. Two-components Laser Doppler Velocimetry measurements have confirmed the existence of a recirculation bubble surrounded by an annular supersonic jet and has given its size. In addition to the calculations and the Schlieren interpretative sketches, these first quantitative experimental characterization of the cap-shock structure permit to state a physical description of the cap-shock induced flow field in the thrust-optimized nozzles. (authors)

  14. Pressure Distribution and Performance Impacts of Aerospike Nozzles on Rotating Detonation Engines

    Science.gov (United States)

    2017-06-01

    Nozzle Exit Plane at Various Pressure Ratios for the Quiescent Air Hydrogen Fuel Case, PRdesign = 10:1...81 Figure 55. Mach Number Distribution along the Nozzle Exit Plane at Various Pressure Ratios for the Supersonic...budget constraints, have spurred engineers to focus on improving the specific fuel consumption of these engines. One technology that promises

  15. Effects of injection nozzle exit width on rotating detonation engine

    Science.gov (United States)

    Sun, Jian; Zhou, Jin; Liu, Shijie; Lin, Zhiyong; Cai, Jianhua

    2017-11-01

    A series of numerical simulations of RDE modeling real injection nozzles with different exit widths are performed in this paper. The effects of nozzle exit width on chamber inlet state, plenum flowfield and detonation propagation are analyzed. The results are compared with that using an ideal injection model. Although the ideal injection model is a good approximation method to model RDE inlet, the two-dimensional effects of real nozzles are ignored in the ideal injection model so that some complicated phenomena such as the reflected waves caused by the nozzle walls and the reversed flow into the nozzles can not be modeled accurately. Additionally, the ideal injection model overpredicts the block ratio. In all the cases that stabilize at one-wave mode, the block ratio increases as the nozzle exit width gets smaller. The dual-wave mode case also has a relatively high block ratio. A pressure oscillation in the plenum with the same main frequency with the rotating detonation wave is observed. A parameter σ is applied to describe the non-uniformity in the plenum. σ increases as the nozzle exit width gets larger. Under some condition, the heat release on the interface of fresh premixed gas layer and detonation products can be strong enough to induce a new detonation wave. A spontaneous mode-transition process is observed for the smallest exit width case. Due to the detonation products existing in the premixed gas layer before the detonation wave, the detonation wave will propagate through reactants and products alternately, and therefore its strength will vary with time, especially near the chamber inlet. This tendency gets weaker as the injection nozzle exit width increases.

  16. Nozzle flow calculation for real gases

    International Nuclear Information System (INIS)

    Bier, K.; Ehrler, F.; Hartz, U.; Kissau, G.

    1977-01-01

    The flow of CHF 2 Cl vapor (refrigerant R 22) through a Laval nozzle of annular geometry has been investigated in the region near the saturation line with stagnation pressures up to 85 per cent of the critical pressure. Static pressure profiles measured along the nozzle axis were found in good agreement with profiles calculated for one-dimensional isentropic flow of the real gas the thermal properties of which were derived from an equation of state proposed previously by Rombusch. Minor deviations between measured and calculated static pressure curves occur in the supersonic part of the mozzle, especially when supersaturated states of the vapour are passed. These deviations can be attributed to uncertainties in the calculation of the enthalpy and to a small influence of the static pressure probe. An additional investigation was concerned with an approximate calculation of the nozzle flow of real gases. In this approximation the well known relations of ideal gas dynamics are applied, the ratio of specific heats for the ideal gas being replaced, however, by a suitably adapted isentropic exponent, which can be determined e.g. from measured values of the Laval pressure or of the mass flow. For pressure ratios p/po between 1 and approximately 0.1, corresponding to Mach numbers up to approximately 2.2, all the interesting properties of the investigated flow of CHF 2 Cl vapour are approximated within a few per cent. (orig.) [de

  17. Separation of a light additive gas by separation nozzle cascades

    International Nuclear Information System (INIS)

    Becker, E.; Bley, P.; Ehrfeld, W.; Fritz, W.; Steinhaus, H.

    1984-01-01

    Double-turn separation nozzles, in comparison with single-turn separation nozzles, offer much greater advantages in the separation of UF6 and H2 than in the separation of the U isotopes, for which the double-turn separation nozzles were conceived. By using a double-turn separation-nozzle stage as a preseparation stage in combination with a low-temperature separator, one can reduce the ratio of the buffer input stream to the product stream, in contrast with the solution used up to this time, with only a slight increase in cost of about an order of magnitude. The control program in the case of return feeding of the UF6 from the buffer and the danger of production losses connected with it are thereby correspondingly diminished. An example is given of the enrichment of 235U using the title facility with UF6. (orig./PW)

  18. Design and Checkout of a High Speed Research Nozzle Evaluation Rig

    Science.gov (United States)

    Castner, Raymond S.; Wolter, John D.

    1997-01-01

    The High Flow Jet Exit Rig (HFJER) was designed to provide simulated mixed flow turbojet engine exhaust for one- seventh scale models of advanced High Speed Research test nozzles. The new rig was designed to be used at NASA Lewis Research Center in the Nozzle Acoustic Test Rig and the 8x6 Supersonic Wind Tunnel. Capabilities were also designed to collect nozzle thrust measurement, aerodynamic measurements, and acoustic measurements when installed at the Nozzle Acoustic Test Rig. Simulated engine exhaust can be supplied from a high pressure air source at 33 pounds of air per second at 530 degrees Rankine and nozzle pressure ratios of 4.0. In addition, a combustion unit was designed from a J-58 aircraft engine burner to provide 20 pounds of air per second at 2000 degrees Rankine, also at nozzle pressure ratios of 4.0. These airflow capacities were designed to test High Speed Research nozzles with exhaust areas from eighteen square inches to twenty-two square inches. Nozzle inlet flow measurement is available through pressure and temperature sensors installed in the rig. Research instrumentation on High Speed Research nozzles is available with a maximum of 200 individual pressure and 100 individual temperature measurements. Checkout testing was performed in May 1997 with a 22 square inch ASME long radius flow nozzle. Checkout test results will be summarized and compared to the stated design goals.

  19. Design and performance of atomizing nozzles for spray calcination of high-level wastes

    International Nuclear Information System (INIS)

    Miller, F.A.; Stout, L.A.

    1981-05-01

    A key aspect of high-level liquid-waste spray calcination is waste-feed atomization by using air atomizing nozzles. Atomization substantially increases the heat transfer area of the waste solution, which enhances rapid drying. Experience from the spray-calciner operations has demonstrated that nozzle flow conditions that produce 70-μ median-volume-diameter or smaller spray droplets are required for small-scale spray calciners (drying capacity less than 80 L/h). For large-scale calciners (drying capacity greater than 300 L/h), nozzle flow conditions that produce 100-μ median-volume-diameter or smaller spray droplets are required. Mass flow ratios of 0.2 to 0.4, depending on nozzle size, are required for proper operation of internal-mix atomizing nozzles. Both internal-mix and external-mix nozzles have been tested at PNL. Due to the lower airflow requirements and fewer large droplets produced, the internal-mix nozzle has been chosen for primary development in the spray calciner program at PNL. Several nozzle air-cap materials for internal-mix nozzles have been tested for wear resistance. Results show that nozzle air caps of stainless steel and Cer-vit (a machineable glass ceramic) are suceptible to rapid wear by abrasive slurries, whereas air caps of alumina and reaction-bonded silicon nitride show only slow wear. Longer-term testing is necessary to determine more accurately the actual frequency of nozzle replacement. Atomizing nozzle air caps of alumina are subject to fracture from thermal shock, whereas air caps of silicon nitride and Cer-vit are not. Fractured nozzles are held in place by the air-cap retaining ring and continue to atomize satisfactorily. Therefore, fractures caused by thermal shocking do not necessarily result in nozzle failure

  20. Injection nozzle for a turbomachine

    Science.gov (United States)

    Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo

    2012-09-11

    A turbomachine includes a compressor, a combustor operatively connected to the compressor, an end cover mounted to the combustor, and an injection nozzle assembly operatively connected to the combustor. The injection nozzle assembly includes a first end portion that extends to a second end portion, and a plurality of tube elements provided at the second end portion. Each of the plurality of tube elements defining a fluid passage includes a body having a first end section that extends to a second end section. The second end section projects beyond the second end portion of the injection nozzle assembly.

  1. Airfoil nozzle and shroud assembly

    Science.gov (United States)

    Shaffer, J.E.; Norton, P.F.

    1997-06-03

    An airfoil and nozzle assembly are disclosed including an outer shroud having a plurality of vane members attached to an inner surface and having a cantilevered end. The assembly further includes a inner shroud being formed by a plurality of segments. Each of the segments having a first end and a second end and having a recess positioned in each of the ends. The cantilevered end of the vane member being positioned in the recess. The airfoil and nozzle assembly being made from a material having a lower rate of thermal expansion than that of the components to which the airfoil and nozzle assembly is attached. 5 figs.

  2. Modelling of hydrothermal characteristics of centrifugal nozzles

    International Nuclear Information System (INIS)

    Yarkho, A.A.; Omelchenko, M.P.; Borshchev, V.A.

    1990-01-01

    Presented for the first time is a method of recalculating the hydrothermal characteristics of centrifugal nozzles obtained in laboratory conditions for full-scale nozzles. From the experimental hydrothermal characteristics of nozzles observed in the laboratory it is allowed to calculate the hydrothermal characteristics of any other centrifugal nozzle whose diameter and dimensionless geometric characteristic are known

  3. A preliminary investigation of the design parameters of an air induction nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Vashahi, Foad; Ra, Sothea; Lee, Jeekeun [Chonbuk National University, Jeonju (Korea, Republic of); Choi, Yong [National Academy of Agricultural Science, Wanju (Korea, Republic of)

    2017-07-15

    In the present study, an experimental study on design parameters of an air induction nozzle was performed. These nozzles are capable of producing large size droplets, including microbubbles, which in turn results in high drift reduction. A magnified 2D version of an air induction nozzle was designed and manufactured. The manufactured geometries have the ability to be disassembled easily, thus several geometrical parameters are replaced sequentially. The effects of a venturi throat, air orifices and discharge orifice diameters along with the length of the mixing chamber are analyzed. Analysis of the parameters revealed their strength of prediction on the air liquid ratio and the nozzle performance.

  4. Annular Internal-External-Expansion Rocket Nozzles for Large Booster Applications

    Science.gov (United States)

    Connors, James F.; Cubbison, Robert W.; Mitchell, Glenn A.

    1961-01-01

    For large-thrust booster applications, annular rocket nozzles employing both internal and external expansion are investigated. In these nozzles, free-stream air flows through the center as well as around the outside of the exiting jet. Flaps for deflecting the rocket exhaust are incorporated on the external-expansion surface for thrust-vector control. In order to define nozzle off-design performance, thrust vectoring effectiveness, and external stream effects, an experimental investigation was conducted on two annular nozzles with area ratios of 15 and 25 at Mach 0, 2, and 3 in the Lewis 10- by 10-foot wind tunnel. Air, pressurized to 600 pounds per square inch absolute, was used to simulate the exhaust flow. For a nozzle-pressure-ratio range of 40 to 1000, the ratio of actual to ideal thrust was essentially constant at 0.98 for both nozzles. Compared with conventional convergent-divergent configurations on hypothetical boost missions, the performance gains of the annular nozzle could yield significant orbital payload increases (possibly 8 to 17 percent). A single flap on the external-expansion surface of the area-ratio-25 annular nozzle produced a side force equal to 4 percent of the axial force with no measurable loss in axial thrust.

  5. Numerical Simulation of Twin Nozzle Injectors

    OpenAIRE

    Milak, Dino

    2015-01-01

    Fuel injectors for marine applications have traditionally utilized nozzles with symmetric equispaced orifice configuration. But in light of the new marine emission legislations the twin nozzle concept has arisen. The twin nozzle differs from the conventional configuration by utilizing two closely spaced orifices to substitute each orifice in the conventional nozzle. Injector manufacturers regard twin nozzle injectors as a promising approach to facilitate stable spray patterns independent of t...

  6. Critical flashing flows in nozzles with subcooled inlet conditions

    International Nuclear Information System (INIS)

    Abuaf, N.; Jones, O.C. Jr.; Wu, B.J.C.

    1983-01-01

    Examination of a large number of experiments dealing with flashing flows in converging and converging-diverging nozzles reveals that knowledge of the flashing inception point is the key to the prediction of critical flow rates. An extension of the static flashing inception correlation of Jones [16] and Alamgir and Lienhard [17] to flowing systems has allowed the determination of the location of flashing inception in nozzle flows with subcooled inlet conditions. It is shown that in all the experiments examined with subcooled inlet regardless of the degree of inlet subcooling, flashing inception invariably occurred very close to the throat. A correlation is given to predict flashing inception in both pipes and nozzles which matches all data available, but is lacking verification in intermediate nozzle geometries where turbulence may be important. A consequence of this behavior is that the critical mass flux may be correlated to the pressure difference between the nozzle inlet and flashing inception, through a single phase liquid discharge coefficient and an accurate prediction of the flashing inception pressure at the throat. Comparison with the available experiments indicate that the predicted mass fluxes are within 5 percent of the measurements

  7. Direct Numerical Simulation of Hypersonic Turbulent Boundary Layer inside an Axisymmetric Nozzle

    Science.gov (United States)

    Huang, Junji; Zhang, Chao; Duan, Lian; Choudhari, Meelan M.

    2017-01-01

    As a first step toward a study of acoustic disturbance field within a conventional, hypersonic wind tunnel, direct numerical simulations (DNS) of a Mach 6 turbulent boundary layer on the inner wall of a straight axisymmetric nozzle are conducted and the results are compared with those for a flat plate. The DNS results for a nozzle radius to boundary-layer thickness ratio of 5:5 show that the turbulence statistics of the nozzle-wall boundary layer are nearly unaffected by the transverse curvature of the nozzle wall. Before the acoustic waves emanating from different parts of the nozzle surface can interfere with each other and undergo reflections from adjacent portions of the nozzle surface, the rms pressure fluctuation beyond the boundary layer edge increases toward the nozzle axis, apparently due to a focusing effect inside the axisymmetric configuration. Spectral analysis of pressure fluctuations at both the wall and the freestream indicates a similar distribution of energy content for both the nozzle and the flat plate, with the peak of the premultiplied frequency spectrum at a frequency of [(omega)(delta)]/U(sub infinity) approximately 6.0 inside the free stream and at [(omega)(delta)]/U(sub infinity) approximately 2.0 along the wall. The present results provide the basis for follow-on simulations involving reverberation effects inside the nozzle.

  8. Nozzle geometry for organic vapor jet printing

    Science.gov (United States)

    Forrest, Stephen R.; McGraw, Gregory

    2017-10-25

    A first device is provided. The device includes a print head. The print head further includes a first nozzle hermetically sealed to a first source of gas. The first nozzle has an aperture having a smallest dimension of 0.5 to 500 microns in a direction perpendicular to a flow direction of the first nozzle. At a distance from the aperture into the first nozzle that is 5 times the smallest dimension of the aperture of the first nozzle, the smallest dimension perpendicular to the flow direction is at least twice the smallest dimension of the aperture of the first nozzle.

  9. Focusing liquid microjets with nozzles

    International Nuclear Information System (INIS)

    Acero, A J; Ferrera, C; Montanero, J M; Gañán-Calvo, A M

    2012-01-01

    The stability of flow focusing taking place in a converging–diverging nozzle, as well as the size of the resulting microjets, is examined experimentally in this paper. The results obtained in most aspects of the problem are similar to those of the classical plate-orifice configuration. There is, however, a notable difference between flow focusing in nozzles and in the plate-orifice configuration. In the former case, the liquid meniscus oscillates laterally (global whipping) for a significant area of the control parameter plane, a phenomenon never observed when focusing with the plate-orifice configuration. Global whipping may constitute an important drawback of flow focusing with nozzles because it reduces the robustness of the technique. (paper)

  10. Shock unsteadiness in a thrust optimized parabolic nozzle

    Science.gov (United States)

    Verma, S. B.

    2009-07-01

    This paper discusses the nature of shock unsteadiness, in an overexpanded thrust optimized parabolic nozzle, prevalent in various flow separation modes experienced during start up {(δ P0 /δ t > 0)} and shut down {(δ P0/δ t The results are based on simultaneously acquired data from real-time wall pressure measurements using Kulite pressure transducers, high-speed schlieren (2 kHz) of the exhaust flow-field and from strain-gauges installed on the nozzle bending tube. Shock unsteadiness in the separation region is seen to increase significantly just before the onset of each flow transition, even during steady nozzle operation. The intensity of this measure ( rms level) is seen to be strongly influenced by relative locations of normal and overexpansion shock, the decrease in radial size of re-circulation zone in the back-flow region, and finally, the local nozzle wall contour. During restricted shock separation, the pressure fluctuations in separation region exhibit periodic characteristics rather than the usually observed characteristics of intermittent separation. The possible physical mechanisms responsible for the generation of flow unsteadiness in various separation modes are discussed. The results are from an experimental study conducted in P6.2 cold-gas subscale test facility using a thrust optimized parabolic nozzle of area-ratio 30.

  11. Nature of convection-stabilized dc arcs in dual-flow nozzle geometry

    International Nuclear Information System (INIS)

    Serbetci, I.; Nagamatsu, H.T.

    1990-01-01

    In this paper, an experimental investigation of the steady-state low-current air arcs in a dual-flow nozzle system is presented. First, the cold flow with no arc as determined for various nozzle geometries, i.e., two- and three-dimensional and orifice nozzles, and nozzle pressure ratios. Supersonic flow separation and oblique and detached shock waves were observed in the flow field. Using a finite-element computer program, the Mach number contours were determined in the flow field for various nozzle-gap spacings and pressure ratios. In addition, the dc arc voltage and current measurements were made for an electrode gap spacing of ∼ 5.5 cm and current levels of I ∼ 25, 50, and 100 A for the three nozzle geometries. The arc voltage and arc power increased rapidly as the flow speed increased from zero to sonic velocity at the nozzle throat. The shock waves in the converging-diverging nozzles resulted in a decrease in the overall resistance by about 15 percent

  12. Turbomachine combustor nozzle including a monolithic nozzle component and method of forming the same

    Science.gov (United States)

    Stoia, Lucas John; Melton, Patrick Benedict; Johnson, Thomas Edward; Stevenson, Christian Xavier; Vanselow, John Drake; Westmoreland, James Harold

    2016-02-23

    A turbomachine combustor nozzle includes a monolithic nozzle component having a plate element and a plurality of nozzle elements. Each of the plurality of nozzle elements includes a first end extending from the plate element to a second end. The plate element and plurality of nozzle elements are formed as a unitary component. A plate member is joined with the nozzle component. The plate member includes an outer edge that defines first and second surfaces and a plurality of openings extending between the first and second surfaces. The plurality of openings are configured and disposed to register with and receive the second end of corresponding ones of the plurality of nozzle elements.

  13. Simulation of a Downsized FDM Nozzle

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pimentel, Rodrigo; Pedersen, David B.

    2015-01-01

    This document discusses the simulat-ion of a downsized nozzle for fused deposition modelling (FDM), namely the E3D HotEnd Extruder with manufactured diameters of 200-400 μm in the nozzle tip. The nozzle has been simulated in terms of heat transfer and fluid flow giving an insight into the physical...

  14. Parametric Study of Sealant Nozzle

    Science.gov (United States)

    Yamamoto, Yoshimi

    It has become apparent in recent years the advancement of manufacturing processes in the aerospace industry. Sealant nozzles are a critical device in the use of fuel tank applications for optimal bonds and for ground service support and repair. Sealants has always been a challenging area for optimizing and understanding the flow patterns. A parametric study was conducted to better understand geometric effects of sealant flow and to determine whether the sealant rheology can be numerically modeled. The Star-CCM+ software was used to successfully develop the parametric model, material model, physics continua, and simulate the fluid flow for the sealant nozzle. The simulation results of Semco sealant nozzles showed the geometric effects of fluid flow patterns and the influences from conical area reduction, tip length, inlet diameter, and tip angle parameters. A smaller outlet diameter induced maximum outlet velocity at the exit, and contributed to a high pressure drop. The conical area reduction, tip angle and inlet diameter contributed most to viscosity variation phenomenon. Developing and simulating 2 different flow models (Segregated Flow and Viscous Flow) proved that both can be used to obtain comparable velocity and pressure drop results, however; differences are seen visually in the non-uniformity of the velocity and viscosity fields for the Viscous Flow Model (VFM). A comprehensive simulation setup for sealant nozzles was developed so other analysts can utilize the data.

  15. Process for manufacturing separating nozzles

    International Nuclear Information System (INIS)

    Bier, W.; Linder, G.; Mayer, E.

    1979-01-01

    The final form of the basic body and the unit consisting of the nozzle and peeling orifice provides immovable fixing of these parts. Surfaces of various components can then be milled, using milling tools, in one operation. Assembly can be made automatic. (DG) [de

  16. Nozzle for electric dispersion reactor

    Science.gov (United States)

    Sisson, W.G.; Basaran, O.A.; Harris, M.T.

    1995-11-07

    A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 4 figs.

  17. Design and testing of low-divergence elliptical-jet nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Rouly, Etienne; Warkentin, Andrew; Bauer, Robert [Dalhousie University, Halifax (China)

    2015-05-15

    A novel approach was developed to design and fabricate nozzles to produce high-pressure low-divergence fluid jets. Rapid-prototype fabrication allowed for myriad experiments investigating effects of different geometric characteristics of nozzle internal geometry on jet divergence angle and fluid distribution. Nozzle apertures were elliptical in shape with aspect ratios between 1.00 and 2.45. The resulting nozzle designs were tested and the lowest elliptical jet divergence angle was 0.4 degrees. Nozzle pressures and flowrates ranged from 0.32 to 4.45 MPa and 13.6 to 37.9 LPM, respectively. CimCool CimTech 310 machining fluid was used in all experiments at a Brix concentration of 6.6 percent.

  18. Jet Noise Scaling in Dual Stream Nozzles

    Science.gov (United States)

    Khavaran, Abbas; Bridges, James

    2010-01-01

    Power spectral laws in dual stream jets are studied by considering such flows a superposition of appropriate single-stream coaxial jets. Noise generation in each mixing region is modeled using spectral power laws developed earlier for single stream jets as a function of jet temperature and observer angle. Similarity arguments indicate that jet noise in dual stream nozzles may be considered as a composite of four single stream jets representing primary/secondary, secondary/ambient, transition, and fully mixed zones. Frequency filter are designed to highlight spectral contribution from each jet. Predictions are provided at an area ratio of 2.0--bypass ratio from 0.80 to 3.40, and are compared with measurements within a wide range of velocity and temperature ratios. These models suggest that the low frequency noise in unheated jets is dominated by the fully mixed region at all velocity ratios, while the high frequency noise is dominated by the secondary when the velocity ratio is larger than 0.80. Transition and fully mixed jets equally dominate the low frequency noise in heated jets. At velocity ratios less than 0.50, the high frequency noise from primary/bypass becomes a significant contributing factor similar to that in the secondary/ambient jet.

  19. Nozzle geometry variations on the discharge coefficient

    Directory of Open Access Journals (Sweden)

    M.M.A. Alam

    2016-03-01

    Full Text Available Numerical works have been conducted to investigate the effect of nozzle geometries on the discharge coefficient. Several contoured converging nozzles with finite radius of curvatures, conically converging nozzles and conical divergent orifices have been employed in this investigation. Each nozzle and orifice has a nominal exit diameter of 12.7×10−3 m. A 3rd order MUSCL finite volume method of ANSYS Fluent 13.0 was used to solve the Reynolds-averaged Navier–Stokes equations in simulating turbulent flows through various nozzle inlet geometries. The numerical model was validated through comparison between the numerical results and experimental data. The results obtained show that the nozzle geometry has pronounced effect on the sonic lines and discharge coefficients. The coefficient of discharge was found differ from unity due to the non-uniformity of flow parameters at the nozzle exit and the presence of boundary layer as well.

  20. Feedback mechanism for smart nozzles and nebulizers

    Science.gov (United States)

    Montaser, Akbar [Potomac, MD; Jorabchi, Kaveh [Arlington, VA; Kahen, Kaveh [Kleinburg, CA

    2009-01-27

    Nozzles and nebulizers able to produce aerosol with optimum and reproducible quality based on feedback information obtained using laser imaging techniques. Two laser-based imaging techniques based on particle image velocimetry (PTV) and optical patternation map and contrast size and velocity distributions for indirect and direct pneumatic nebulizations in plasma spectrometry. Two pulses from thin laser sheet with known time difference illuminate droplets flow field. Charge coupled device (CCL)) captures scattering of laser light from droplets, providing two instantaneous particle images. Pointwise cross-correlation of corresponding images yields two-dimensional velocity map of aerosol velocity field. For droplet size distribution studies, solution is doped with fluorescent dye and both laser induced florescence (LIF) and Mie scattering images are captured simultaneously by two CCDs with the same field of view. Ratio of LIF/Mie images provides relative droplet size information, then scaled by point calibration method via phase Doppler particle analyzer.

  1. Noise Prediction Module for Offset Stream Nozzles

    Science.gov (United States)

    Henderson, Brenda S.

    2011-01-01

    A Modern Design of Experiments (MDOE) analysis of data acquired for an offset stream technology was presented. The data acquisition and concept development were funded under a Supersonics NRA NNX07AC62A awarded to Dimitri Papamoschou at University of California, Irvine. The technology involved the introduction of airfoils in the fan stream of a bypass ratio (BPR) two nozzle system operated at transonic exhaust speeds. The vanes deflected the fan stream relative to the core stream and resulted in reduced sideline noise for polar angles in the peak jet noise direction. Noise prediction models were developed for a range of vane configurations. The models interface with an existing ANOPP module and can be used or future system level studies.

  2. Evaluation of flip-flop jet nozzles for use as practical excitation devices

    Science.gov (United States)

    Raman, Ganesh; Rice, Edward J.; Cornelius, David M.

    1994-01-01

    This paper describes the flowfield characteristics of the flip-flop jet nozzle and the potential for using this nozzle as a practical excitation device. It appears from the existing body of published information that there is a lack of data on the parameters affecting the operation of such nozzles and on the mechanism of operation of these nozzles. An attempt is made in the present work to study the important parameters affecting the operation and performance of a flip-flop jet nozzle. Measurements were carried out to systematically assess the effect of varying the nozzle pressure ratio (NPR) as well as the length and volume of the feedback tube on the frequency of oscillation of this device. Flow visualization was used to obtain a better understanding of the jet flowfield and of the processes occurring within the feedback tube. The frequency of oscillation of the flip-flop jet depended significantly on the feedback tube length and volume as well as on the nozzle pressure ratio. In contrast, the coherent velocity perturbation levels did not depend on the above mentioned parameters. The data presented in this paper would be useful for modeling such flip-flop excitation devices that are potentially useful for controlling practical shear flows.

  3. Fluid flow nozzle energy harvesters

    Science.gov (United States)

    Sherrit, Stewart; Lee, Hyeong Jae; Walkemeyer, Phillip; Winn, Tyler; Tosi, Luis Phillipe; Colonius, Tim

    2015-04-01

    Power generation schemes that could be used downhole in an oil well to produce about 1 Watt average power with long-life (decades) are actively being developed. A variety of proposed energy harvesting schemes could be used to extract energy from this environment but each of these has their own limitations that limit their practical use. Since vibrating piezoelectric structures are solid state and can be driven below their fatigue limit, harvesters based on these structures are capable of operating for very long lifetimes (decades); thereby, possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. An initial survey [1] identified that spline nozzle configurations can be used to excite a vibrating piezoelectric structure in such a way as to convert the abundant flow energy into useful amounts of electrical power. This paper presents current flow energy harvesting designs and experimental results of specific spline nozzle/ bimorph design configurations which have generated suitable power per nozzle at or above well production analogous flow rates. Theoretical models for non-dimensional analysis and constitutive electromechanical model are also presented in this paper to optimize the flow harvesting system.

  4. The separation nozzle process for uranium isotope enrichment

    International Nuclear Information System (INIS)

    Becker, E.W.

    1977-01-01

    In the separation nozzle process, uranium isotope separation is brought about by the mass dependence of the centrifugal forces in a curved flow of a UF 6 /H 2 -mixture. Due to the large excess in hydrogen the high ration of UF 6 flow velocity to thermal velocity required for an effective isotope separation is obtained at relatively low expansion ratios and, accordingly, with relatively low gas-dynamic losses. As the optimum Reynolds number of the curved jet is comparatively low and a high absolute pressure is essential for economic reasons, the characteristic dimensions of the nozzle systems are made as small as possible. For commercial application in the near future systems involving mechanical jet deflection were developed. However, promising results were also obtained with separation nozzle systems generating a streamline curvature by the interaction of opposed jets. Most of the development work has been done at the Nuclear Research Center of Karlsruhe. Since 1970 the German company STEAG has been involved in the commercial implementation of the process. Two industrial-scale separative stages were tested successfully. This work constitutes the basis of planning of a separation nozzle demonstration plant to be built in Brazil

  5. Transient Three-Dimensional Side Load Analysis of a Film Cooled Nozzle

    Science.gov (United States)

    Wang, Ten-See; Guidos, Mike

    2008-01-01

    Transient three-dimensional numerical investigations on the side load physics for an engine encompassing a film cooled nozzle extension and a regeneratively cooled thrust chamber, were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Ultimately, the computational results will be provided to the nozzle designers for estimating of effect of the peak side load on the nozzle structure. Computations simulating engine startup at ambient pressures corresponding to sea level and three high altitudes were performed. In addition, computations for both engine startup and shutdown transients were also performed for a stub nozzle, operating at sea level. For engine with the full nozzle extension, computational result shows starting up at sea level, the peak side load occurs when the lambda shock steps into the turbine exhaust flow, while the side load caused by the transition from free-shock separation to restricted-shock separation comes at second; and the side loads decreasing rapidly and progressively as the ambient pressure decreases. For the stub nozzle operating at sea level, the computed side loads during both startup and shutdown becomes very small due to the much reduced flow area.

  6. Thrust characteristics of a series of convergent-divergent exhaust nozzles at subsonic and supersonic flight speeds

    Science.gov (United States)

    Fradenburgh, Evan A; Gorton, Gerald C; Beke, Andrew

    1954-01-01

    An experimental investigation of a series of four convergent-divergent exhaust nozzles was conducted in the Lewis 8-by-6 foot supersonic wind tunnel at Mach numbers of 0.1, 0.6, 1.6, and 2.0 over a range of nozzle pressure ratios. The thrust characteristics of these nozzles were determined by a pressure-integration technique. From a thrust standpoint, a nozzle designed to give uniform parallel flow at the exit had no advantage over the simple geometric design with conical convergent and divergent sections. The rapid-divergent nozzles might be competitive with the more gradual-divergent nozzles since the relatively short length of these nozzles would be advantageous from a weight standpoint and might result in smaller thrust losses due to friction. The thrusts, with friction losses neglected, were predicted satisfactorily by one-dimensional theory for the nozzles with relatively gradual divergence. The thrusts of the rapid-divergent designs were several percentages below the theoretical values at the design pressure ratio or above, while at low pressure ratios there was a considerable effect of free-stream Mach number, with thrusts considerably above theoretical values at subsonic speeds and somewhat above theoretical values at supersonic speeds. This Mach numb effect appeared to be related to the variation of the model base pressure with free-stream Mach number.

  7. Variable volume combustor with pre-nozzle fuel injection system

    Science.gov (United States)

    Keener, Christopher Paul; Johnson, Thomas Edward; McConnaughhay, Johnie Franklin; Ostebee, Heath Michael

    2016-09-06

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of fuel nozzles, a pre-nozzle fuel injection system supporting the fuel nozzles, and a linear actuator to maneuver the fuel nozzles and the pre-nozzle fuel injection system.

  8. Laval nozzles for cluster-jet targets

    Energy Technology Data Exchange (ETDEWEB)

    Grieser, Silke; Bonaventura, Daniel; Hergemoeller, Ann-Katrin; Hetz, Benjamin; Koehler, Esperanza; Lessmann, Lukas; Khoukaz, Alfons [Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet Muenster, 48149 Muenster (Germany)

    2016-07-01

    Cluster-jet targets are highly suited for storage ring experiments due to the fact that they provide high and constant beam densities. Therefore, a cluster-jet target is planned to be the first internal target for the PANDA experiment at FAIR. A cluster source generates a continuous flow of cryogenic solid clusters by the expansion of pre-cooled gases within fine Laval nozzles. For the production of clusters the geometry of the nozzle is crucial. The production of such nozzles with their complex inner geometry represents a major technical challenge. The possibility to produce new fine Laval nozzles ensures the operation of cluster-jet targets, e.g. for the PANDA experiment, and opens the way for future investigations on the cluster production process to match the required targets performance. Optimizations on the recently developed production process and the fabrication of new glass nozzles were done. Initial measurements of these nozzles at the PANDA cluster-jet target prototype and the investigation of the cluster beam origin within the nozzle will be presented and discussed. For the future more Laval nozzles with different geometries will be produced and additional measurements with these new nozzles at the PANDA cluster-jet target prototype towards higher performance will be realized.

  9. Fractal analysis of agricultural nozzles spray

    Directory of Open Access Journals (Sweden)

    Francisco Agüera

    2012-02-01

    Full Text Available Fractal scaling of the exponential type is used to establish the cumulative volume (V distribution applied through agricultural spray nozzles in size x droplets, smaller than the characteristic size X. From exponent d, we deduced the fractal dimension (Df which measures the degree of irregularity of the medium. This property is known as 'self-similarity'. Assuming that the droplet set from a spray nozzle is self-similar, the objectives of this study were to develop a methodology for calculating a Df factor associated with a given nozzle and to determine regression coefficients in order to predict droplet spectra factors from a nozzle, taking into account its own Df and pressure operating. Based on the iterated function system, we developed an algorithm to relate nozzle types to a particular value of Df. Four nozzles and five operating pressure droplet size characteristics were measured using a Phase Doppler Particle Analyser (PDPA. The data input consisted of droplet size spectra factors derived from these measurements. Estimated Df values showed dependence on nozzle type and independence of operating pressure. We developed an exponential model based on the Df to enable us to predict droplet size spectra factors. Significant coefficients of determination were found for the fitted model. This model could prove useful as a means of comparing the behavior of nozzles which only differ in not measurable geometric parameters and it can predict droplet spectra factors of a nozzle operating under different pressures from data measured only in extreme work pressures.

  10. Shape memory alloy actuation for a variable area fan nozzle

    Science.gov (United States)

    Rey, Nancy; Tillman, Gregory; Miller, Robin M.; Wynosky, Thomas; Larkin, Michael J.; Flamm, Jeffrey D.; Bangert, Linda S.

    2001-06-01

    The ability to control fan nozzle exit area is an enabling technology for next generation high-bypass-ratio turbofan engines. Performance benefits for such designs are estimated at up to 9% in thrust specific fuel consumption (TSFC) relative to current fixed-geometry engines. Conventionally actuated variable area fan nozzle (VAN) concepts tend to be heavy and complicated, with significant aircraft integration, reliability and packaging issues. The goal of this effort was to eliminate these undesirable features and formulate a design that meets or exceeds leakage, durability, reliability, maintenance and manufacturing cost goals. A Shape Memory Alloy (SMA) bundled cable actuator acting to move an array of flaps around the fan nozzle annulus is a concept that meets these requirements. The SMA bundled cable actuator developed by the United Technologies Corporation (Patents Pending) provides significant work output (greater than 2200 in-lb per flap, through the range of motion) in a compact package and minimizes system complexity. Results of a detailed design study indicate substantial engine performance, weight, and range benefits. The SMA- based actuation system is roughly two times lighter than a conventional mechanical system, with significant aircraft direct operating cost savings (2-3%) and range improvements (5-6%) relative to a fixed-geometry nozzle geared turbofan. A full-scale sector model of this VAN system was built and then tested at the Jet Exit Test Facility at NASA Langley to demonstrate the system's ability to achieve 20% area variation of the nozzle under full scale aerodynamic loads. The actuator exceeded requirements, achieving repeated actuation against full-scale loads representative of typical cruise as well as greater than worst-case (ultimate) aerodynamic conditions. Based on these encouraging results, work is continuing with the goal of a flight test on a C-17 transport aircraft.

  11. Through an Annular Turbine Nozzle

    Directory of Open Access Journals (Sweden)

    Rainer Kurz

    1995-01-01

    is located in the gas turbine. The experiments were performed using total pressure probes and wall static pressure taps. The pitch variation modifies the flow field both upstream and downstream of the nozzle, although the experiments show that the effect is localized to the immediate neighborhood of the involved blades. The effects on the wakes and on the inviscid flow are discussed separately. The mean velocities show a strong sensitivity to the changes of the pitch, which is due to a potential flow effect rather than a viscous effect.

  12. Axisymmetric nozzles with chamfered contraction

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2017-01-01

    Roč. 263, August (2017), s. 147-158 ISSN 0924-4247 Institutional support: RVO:61388998 Keywords : nozzles * chamfering * invariant Subject RIV: BK - Fluid Dynamics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.499, year: 2016 http://ac.els-cdn.com/S0924424716310329/1-s2.0-S0924424716310329-main.pdf?_tid=f953dc4c-873c-11e7-b8d0-00000aacb35d&acdnat=1503408341_51527a384c272a3c4e8f43e6046d789d

  13. Effect of jet nozzle geometry on flow and heat transfer performance of vortex cooling for gas turbine blade leading edge

    International Nuclear Information System (INIS)

    Du, Changhe; Li, Liang; Wu, Xin; Feng, Zhenping

    2016-01-01

    Highlights: • We establish a suitable vortex chamber model for gas turbine blade leading edge. • Mechanism of vortex cooling is further discussed and presented. • Influences of jet nozzle geometry on vortex cooling characteristics are researched. • This paper focuses on assessment of flow field and thermal performance for different jet nozzle aspect ratio and area. - Abstract: In this paper, 3D viscous steady Reynolds Averaged Navier–Stokes (RANS) equations are utilized to investigate the influence of jet nozzle geometry on flow and thermal behavior of vortex cooling for gas turbine blades. Comparison between calculation with different turbulence models and the experimental data is conducted, and results show that the standard k-ω model provides the best accuracy. The grid independence analysis is performed to obtain the proper mesh number. First, the mechanism of vortex cooling is further discussed, and the pronounced impact of kinetic turbulence intensity, thin thermal boundary layer, violent radial convection and complex vortices on enhanced heat transfer performance is confirmed. Then, seven jet nozzle aspect ratios and seven jet nozzle to chamber cross section area ratios are selected to research the flow field and thermal characteristics of vortex cooling focusing on the streamline, static pressure ratio, total pressure loss ratio and Nusselt number. It is presented that the jet nozzle aspect ratio and jet nozzle to chamber cross section area ratio both impose a significant effect on the flow and thermal parameters. The averaged Nusselt number decreases at first and then increases with the increasing jet nozzle aspect ratio, reaching highest when aspect ratio equals to 1. The effect of area ratio on averaged Nusselt number is complex. Finally, the heat transfer results in this study are compared with other previous works. Results indicate that good agreement with previous data is achieved, and the enhanced thermal behavior may be acquired by

  14. Pengaruh Jarak dan Posisi Nozzle terhadap Daya Turbin Pelton

    OpenAIRE

    Kurniawan, Yani; Pane, Erlanda Augupta; Ismail, Ismail

    2017-01-01

    Pelton Turbine is a turbine which use nozzle as officers the direction of a stream water in order to move around of blade turbine. The rotating of turbine blade efected by some parameters such as the distance of the nozzle, position of nozzle, diameter of nozzle, number of nozzle, and the geometry shape of the blade turbine. An experimental study to analyze the affect of distance and position nozzle to Pelton Turbine of performance. The research method used experiment parameter was position o...

  15. Pengaruh Jarak dan Posisi Nozzle Terhadap Daya Turbin Pelton

    OpenAIRE

    Yani Kurniawan; Erlanda Augupta Pane; Ismail

    2017-01-01

    Pelton Turbine is a turbine which use nozzle as officers the direction of a stream water in order to move around of blade turbine. The rotating of turbine blade efected by some parameters such as the distance of the nozzle, position of nozzle, diameter of nozzle, number of nozzle, and the geometry shape of the blade turbine. An experimental study to analyze the affect of distance and position nozzle to Pelton Turbine of performance. The research method used experiment parameter was position o...

  16. Palo Verde Unit 3 BMI nozzle modification

    International Nuclear Information System (INIS)

    Waskey, D.

    2015-01-01

    The 61 BMI (Bottom Mount Instrumentation) nozzles of the unit 3 of the Palo Verde plant have been examined through ASME Code Case N722. The nozzle 3 was the only one with leakage noted. The ultrasound testing results are characteristic of PWSCC (Primary Water Stress Corrosion Cracking). The initiation likely occurred at a weld defect which was exposed to the primary water environment resulting in PWSCC. All other nozzles (60) showed no unacceptable indications. Concerning nozzle 3 one crack in J-groove weld connected large defect to primary water. An environmental model has been used to simulate and optimize the repair. The AREVA crew was on site 18 days after contract award and the job was completed in 12 days, 30 hours ahead of baseline schedule. This series of slides describes the examination of the BMI nozzles, the repair steps, and alternative design concepts

  17. Determine spray droplets on water sensitive paper (WSP) for low pressure deflector nozzle using image J

    Science.gov (United States)

    Sies, M. F.; Madzlan, N. F.; Asmuin, N.; Sadikin, A.; Zakaria, H.

    2017-09-01

    In this study, determine of spray droplets size (SMD) using water sensitive paper (WSP) at low fluid pressure with deflector nozzle or tangential flow nozzle model Delavan AL75 and New Design Nozzle with two different type of swirl (ND2.5 A1.0 & ND2.5 B1.0). These three deflected flat sprays have used at different liquid mixing ratio. These liquid mixture ratios are pure water, 10% of lime juice + 90% of water (L10W90) and 30% of lime juice + 70% of water (L30W70). WSP is used to collect the spray droplets from nozzles. The operational liquid pressure of each nozzle is 3 bar, while air operational pressures are 3 bar and 6 bar. Then, the WSP were scanned using scanner then it was analyzed using ImageJ software. ImageJ can be used for determining the diameter of droplets size on the WSP. As the results from an experiment, the AL75 nozzle recorded the lowest Sauter mean diameter which is 193.69μm at 6 bar of pressurized air while ND2.5 A1.0 recorded the highest Sauter mean diameter which is 353.61µm at 3 bar of pressurized air. Summary from the experiment shows that the higher of droplet size is because of the lower air pressure (3 Bar). Then, increasing of liquid viscosity also increase the SMD. The orifice diameter for New Design nozzle (ND-2.5) is smaller than AL75, which are 2.5mm and 2.8mm respectively. The different nozzle design also gives effect the SMD. WSP is an alternative method to determine SMD for spray droplets with the low cost if compared to Phase Doppler Anemometry (PDA).

  18. External Cylindrical Nozzle with Controlled Vacuum

    Directory of Open Access Journals (Sweden)

    V. N. Pil'gunov

    2015-01-01

    Full Text Available There is a developed design of the external cylindrical nozzle with a vacuum camera. The paper studies the nozzle controllability of flow rate via regulated connection of the evacuated chamber to the atmosphere through an air throttle. Working capacity of the nozzle with inlet round or triangular orifice are researched. The gap is provided in the nozzle design between the external wall of the inlet orifice and the end face of the straight case in the nozzle case. The presented mathematical model of the nozzle with the evacuated chamber allows us to estimate the expected vacuum amount in the compressed section of a stream and maximum permissible absolute pressure at the inlet orifice. The paper gives experimental characteristics of the fluid flow process through the nozzle for different values of internal diameter of a straight case and an extent of its end face remoteness from an external wall of the inlet orifice. It estimates how geometry of nozzle constructive elements influences on the volume flow rate. It is established that the nozzle capacity significantly depends on the shape of inlet orifice. Triangular orifice nozzles steadily work in the mode of completely filled flow area of the straight case at much more amounts of the limit pressure of the flow. Vacuum depth in the evacuated chamber also depends on the shape of inlet orifice: the greatest vacuum is reached in a nozzle with the triangular orifice which 1.5 times exceeds the greatest vacuum with the round orifice. Possibility to control nozzle capacity through the regulated connection of the evacuated chamber to the atmosphere was experimentally estimated, thus depth of flow rate regulation of the nozzle with a triangular orifice was 45% in comparison with 10% regulation depth of the nozzle with a round orifice. Depth of regulation calculated by a mathematical model appeared to be much more. The paper presents experimental dependences of the flow coefficients of nozzle input orifice

  19. Experimental aerodynamic and acoustic model testing of the Variable Cycle Engine (VCE) testbed coannular exhaust nozzle system

    Science.gov (United States)

    Nelson, D. P.; Morris, P. M.

    1980-01-01

    Aerodynamic performance and jet noise characteristics of a one sixth scale model of the variable cycle engine testbed exhaust system were obtained in a series of static tests over a range of simulated engine operating conditions. Model acoustic data were acquired. Data were compared to predictions of coannular model nozzle performance. The model, tested with an without a hardwall ejector, had a total flow area equivalent to a 0.127 meter (5 inch) diameter conical nozzle with a 0.65 fan to primary nozzle area ratio and a 0.82 fan nozzle radius ratio. Fan stream temperatures and velocities were varied from 422 K to 1089 K (760 R to 1960 R) and 434 to 755 meters per second (1423 to 2477 feet per second). Primary stream properties were varied from 589 to 1089 K (1060 R to 1960 R) and 353 to 600 meters per second (1158 to 1968 feet per second). Exhaust plume velocity surveys were conducted at one operating condition with and without the ejector installed. Thirty aerodynamic performance data points were obtained with an unheated air supply. Fan nozzle pressure ratio was varied from 1.8 to 3.2 at a constant primary pressure ratio of 1.6; primary pressure ratio was varied from 1.4 to 2.4 while holding fan pressure ratio constant at 2.4. Operation with the ejector increased nozzle thrust coefficient 0.2 to 0.4 percent.

  20. The effects of finite rate chemical processes on high enthalpy nozzle performance - A comparison between SPARK and SEAGULL

    Science.gov (United States)

    Carpenter, M. H.

    1988-01-01

    The generalized chemistry version of the computer code SPARK is extended to include two higher-order numerical schemes, yielding fourth-order spatial accuracy for the inviscid terms. The new and old formulations are used to study the influences of finite rate chemical processes on nozzle performance. A determination is made of the computationally optimum reaction scheme for use in high-enthalpy nozzles. Finite rate calculations are compared with the frozen and equilibrium limits to assess the validity of each formulation. In addition, the finite rate SPARK results are compared with the constant ratio of specific heats (gamma) SEAGULL code, to determine its accuracy in variable gamma flow situations. Finally, the higher-order SPARK code is used to calculate nozzle flows having species stratification. Flame quenching occurs at low nozzle pressures, while for high pressures, significant burning continues in the nozzle.

  1. Supersonic flaw detection device for nozzle

    International Nuclear Information System (INIS)

    Hata, Moriki.

    1996-01-01

    In a supersonic flaw detection device to be attached to a body surface of a reactor pressure vessel for automatically detecting flaws of a welded portion of a horizontally connected nozzle by using supersonic waves, a running vehicle automatically running along a circumferential direction of the nozzle comprises a supersonic flaw detection means for detecting flaws of the welded portion of the nozzle by using supersonic waves, and an inclination angle sensor for detecting the inclination angle of the running vehicle relative to the central axis of the nozzle. The running distance of the vehicle running along the circumference of the nozzle, namely, the position of the running vehicle from a reference point of the nozzle can be detected accurately by dividing the distance around the nozzle by the inclination angle detected by the inclination angle sensor. Accordingly, disadvantages in the prior art, for example, that the detected values obtained by using an encoder are changed by slipping or idle running of the magnet wheels are eliminated, and accurate flaw detection can be conducted. In addition, an operation of visually adjusting the reference point for the device can be eliminated. An operator's exposure dose can be reduced. (N.H.)

  2. CFD Models of a Serpentine Inlet, Fan, and Nozzle

    Science.gov (United States)

    Chima, R. V.; Arend, D. J.; Castner, R. S.; Slater, J. W.; Truax, P. P.

    2010-01-01

    Several computational fluid dynamics (CFD) codes were used to analyze the Versatile Integrated Inlet Propulsion Aerodynamics Rig (VIIPAR) located at NASA Glenn Research Center. The rig consists of a serpentine inlet, a rake assembly, inlet guide vanes, a 12-in. diameter tip-turbine driven fan stage, exit rakes or probes, and an exhaust nozzle with a translating centerbody. The analyses were done to develop computational capabilities for modeling inlet/fan interaction and to help interpret experimental data. Three-dimensional Reynolds averaged Navier-Stokes (RANS) calculations of the fan stage were used to predict the operating line of the stage, the effects of leakage from the turbine stream, and the effects of inlet guide vane (IGV) setting angle. Coupled axisymmetric calculations of a bellmouth, fan, and nozzle were used to develop techniques for coupling codes together and to investigate possible effects of the nozzle on the fan. RANS calculations of the serpentine inlet were coupled to Euler calculations of the fan to investigate the complete inlet/fan system. Computed wall static pressures along the inlet centerline agreed reasonably well with experimental data but computed total pressures at the aerodynamic interface plane (AIP) showed significant differences from the data. Inlet distortion was shown to reduce the fan corrected flow and pressure ratio, and was not completely eliminated by passage through the fan

  3. Research on characteristics of varying conditions for nozzle governing stage based on dimensional analysis

    International Nuclear Information System (INIS)

    Xu, Jian-qun; Ma, Lin; Sun, You-yuan; Cao, Zu-qing

    2014-01-01

    In this paper, thermodynamic calculations of nozzle governing stage are taken based on APROS (Advanced Process Simulation), and verify through the comparison of experiment table data. The influence of partial admission on pressure ratio within the governing stage is also analyzed. The results show that partial admission not only leads to partial admission losses, but also makes an impact on pressure ratio, enthalpy and reaction degree, in turn, causes the change of efficiency. Then, the nozzle pressure ratio after the full-open valve and semi-open valve respectively, is expressed as a function of flow ratio based on dimensional analysis. This paper presents a method of thermodynamic calculation for nozzle governing stage. Comparing with the results calculated through APROS and discussing the change of pressure ratio and reaction degree, it shows that the method can reflect the influence of partial admission on pressure ratio exactly, and further improve the accuracy of existing thermodynamic calculation. - Highlights: • Partial admission is an important factor that affects the characteristics of governing stage. • Simulated test together with thermodynamic calculation to build a simplified efficiency model. • A method of thermodynamic calculation for nozzle governing stage is also proposed in this paper. • This presented method is successfully applied to a 600 MW steam turbine unit

  4. Aerospike Nozzle for Rotating Detonation Engine Application

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal presents a graduate MS research thesis on improving the efficiency of rotating detonation engines by using aerospike nozzle technologies. A rotating...

  5. Cross-talk effect in electrostatic based capillary array nozzles

    International Nuclear Information System (INIS)

    Choi, Kyung Hyun; Rahman, Khalid; Khan, Arshad; Kim, Dong Soo

    2011-01-01

    Electrohydrodynamic printing is a promising technique for printed electronics application. Most researchers working in this field are using a single nozzle configuration. However, for large area printing a multi-nozzle setup will be required for time and cost effective process. In this paper the influence of electric field and flow-rate on jetting angle on multi-nozzle array has been investigated experimentally. A three nozzle setup has been used in a linear array by using glass capillary as a nozzle with independent voltage applied on each nozzle and independent ink supply. The experiments are performed by changing the nozzle to nozzle gap and the effect on the jetting angle has been investigated. It has been observed that by increasing the applied voltage the jetting angle also increases at fixed flow-rate. In case of increasing the flow-rate, the jetting angle first increases with increase in flow-rate, but as the flow-rate increases at certain level the jetting angle decreases; moreover, at a high flow-rate the cone-jet length starts increasing. Numerical simulation has been performed to have a better understanding of the electric-field with respect to jetting angles. The influence of one nozzle on another nozzle is also investigated by operating the nozzle independently by using different operating cases. The cross-talk effect is also minimized by reducing the nozzle diameter. At 250 μm nozzle diameter the cross-talk effect was negligible for 5 mm nozzle-to-nozzle gap. This study will help in better understanding of the interaction between different nozzles in multi-nozzle cases and better design of the multi-nozzle system by minimizing the effects of adjacent nozzles for multi-nozzle electrohydrodynamic printing system

  6. Numerical investigation of the variable nozzle effect on the mixed flow turbine performance characteristics

    Science.gov (United States)

    Meziri, B.; Hamel, M.; Hireche, O.; Hamidou, K.

    2016-09-01

    There are various matching ways between turbocharger and engine, the variable nozzle turbine is the most significant method. The turbine design must be economic with high efficiency and large capacity over a wide range of operational conditions. These design intents are used in order to decrease thermal load and improve thermal efficiency of the engine. This paper presents an original design method of a variable nozzle vane for mixed flow turbines developed from previous experimental and numerical studies. The new device is evaluated with a numerical simulation over a wide range of rotational speeds, pressure ratios, and different vane angles. The compressible turbulent steady flow is solved using the ANSYS CFX software. The numerical results agree well with experimental data in the nozzleless configuration. In the variable nozzle case, the results show that the turbine performance characteristics are well accepted in different open positions and improved significantly in low speed regime and at low pressure ratio.

  7. Prediction of sonic flow conditions at drill bit nozzles to minimize complications in UBD

    Energy Technology Data Exchange (ETDEWEB)

    Guo, B.; Ghalambor, A. [Louisiana Univ., Lafayette, LA (United States); Al-Bemani, A.S. [Sultan Qaboos Univ. (Oman)

    2002-06-01

    Sonic flow at drill bit nozzles can complicate underbalanced drilling (UBD) operations, and should be considered when choosing bit nozzles and fluid injection rates. The complications stem from pressure discontinuity and temperature drop at the nozzle. UBD refers to drilling operations where the drilling fluid pressures in the borehole are maintained at less than the pore pressure in the formation rock in the open-hole section. UBD has become a popular drilling method because it offers minimal lost circulation and reduces formation damage. This paper presents an analytical model for calculating the critical pressure ratio where two-phase sonic flow occurs. In particular, it describes how Sachdeva's two-phase choke model can be used to estimate the critical pressure ratio at nozzles that cause sonic flow. The critical pressure ratio charts can be coded in spreadsheets. The critical pressure ratio depends on the in-situ volumetric gas content, or gas-liquid ratio, which depends on gas injection and pressure. 6 refs., 2 tabs., 5 figs.

  8. A Comparative Study of Nozzle/Diffuser Micropumps with Novel Valves

    Directory of Open Access Journals (Sweden)

    Jin-Cherng Shyu

    2012-02-01

    Full Text Available This study conducts an experimental study concerning the improvement of nozzle/diffuser micropump design using some novel no-moving-part valves. A total of three micropumps, including two enhancement structures having two-fin or obstacle structure and one conventional micro nozzle/diffuser design, are made and tested in this study. It is found that dramatic increase of the pressure drops across the designed micro nozzles/diffusers are seen when the obstacle or fin structure is added. The resultant maximum flow rates are 47.07 mm3/s and 53.39 mm3/s, respectively, for the conventional micro nozzle/diffuser and the added two-fin structure in micro nozzle/diffuser operated at a frequency of 400 Hz. Yet the mass flow rate for two-fin design surpasses that of conventional one when the frequency is below 425 Hz but the trend is reversed with a further increase of frequency. This is because the maximum efficiency ratio improvement for added two-fin is appreciably higher than the other design at a lower operating frequency. In the meantime, despite the efficiency ratio of the obstacle structure also reveals a similar trend as that of two-fin design, its significant pressure drop (flow resistance had offset its superiority at low operating frequency, thereby leading to a lesser flow rate throughout the test range.

  9. Brazing and diffusion bonding processes as available repair techniques for gas turbine blades and nozzles

    International Nuclear Information System (INIS)

    Mazur, Z.

    1997-01-01

    The conventionally welding methods are not useful for repair of heavily damaged gas turbine blades and nozzles. It includes thermal fatigue and craze cracks, corrosion, erosion and foreign object damage, which extend to the large areas. Because of required extensive heat input and couponing, it can cause severe distortion of the parts and cracks in the heat affected zone, and can made the repair costs high. For these cases, the available repair methods of gas turbine blades and nozzles, include brazing and diffusion bonding techniques are presented. Detailed analysis of the brazing and diffusion bonding processes applied for gas turbine blades repair with all elements which presented. Detailed analysis of the brazing and diffusion bonding processes applied for gas turbine blades repair with all elements which have influence to get sound joint is carried out. Depend of kind of blades and nozzle damage or deterioration registered a different methods of brazing and diffusion bonding applicability is presented. (Author) 65 refs

  10. Single nozzle spray drift measurements of drift reducing nozzles at two forward speeds

    NARCIS (Netherlands)

    Stallinga, H.; Zande, van de J.C.; Michielsen, J.G.P.; Velde, van P.

    2016-01-01

    In 2011‒2012 single nozzle field experiments were carried out to determine the effect of different flat fan spray nozzles of the spray drift reduction classes 50, 75, 90 and 95% on spray drift at two different forward speeds (7.2 km h-1 and 14.4 km h-1). Experiments were performed with a single

  11. Numerical Study of Controlling Jet Flow and Noise using Pores on Nozzle Inner Wall

    Science.gov (United States)

    Lin, Jian; Shi, Zhixiao; Lai, Huanxin

    2018-04-01

    In this paper, the feasibility of controlling the subsonic jet flow and its noise using pores of blind holes added on the nozzle inner wall is explored numerically. These pores are intended to introduce disturbances to the shear layer so as to change the flow mixing. This passive strategy has not been attempted so far. A convergent nozzle with a cylindrical extension is selected as the baseline case. Three nozzles with pores on the inner wall are set up. Validations of the numerical settings are carried out, then the compressible turbulent jets at the exit Mach number M j = 0.6 in the four nozzles are calculated by large eddy simulations (LES), while the radiated sounds are predicted by the FW-H acoustic analogy. The results show that the blind holes have produced some effects on weakening the turbulence intensity in the shear layer. Comparison reveals that both temporal and spatial correlations of the turbulent fluctuations in the modified cases are suppressed to some extent. Meanwhile, the porous nozzles are shown to suppress the pairing of vortices and enhance the flow mixing, and therefore, the development of shear layer and the fragmentation of large scale vortices are accelerated.

  12. Robotic cleaning of radwaste tank nozzles

    International Nuclear Information System (INIS)

    Boughman, G.; Jones, S.L.

    1992-01-01

    The Susquehanna radwaste processing system includes two reactor water cleanup phase separator tanks and one waste sludge phase separator tank. A system of educator nozzles and associated piping is used to provide mixing in the tanks. The mixture pumped through the nozzles is a dense resin-and-water slurry, and the nozzles tend to plug up during processing. The previous method for clearing the nozzles had been for a worker to enter the tanks and manually insert a hydrolaser into each nozzle, one at a time. The significant radiation exposure and concern for worker safety in the tank led the utility to investigate alternate means for completing this task. The typical tank configuration is shown in a figure. The initial approach investigated was to insert a manipulator arm in the tank. This arm would be installed by workers and then teleoperated from a remote control station. This approach was abandoned because of several considerations including educator location and orientation, excessive installation time, and cost. The next approach was to use a mobile platform that would operate on the tank floor. This approach was selected as being the most feasible solution. After a competitive selection process, REMOTEC was selected to provide the mobile platform. Their proposal was based on the commercial ANDROS Mark 5 platform

  13. Lower nozzle of PWR fuel assembly

    International Nuclear Information System (INIS)

    Furutani, Nobuo.

    1994-01-01

    A lower nozzle comprises a regular square plate and legs. The plate has a plurality of holes for securing thimble tubes and a great number of water flowing ports. Ridges each having a lower end surface inclined toward inner side of the plate are disposed at the outer circumference of the plate. The legs suspend downwardly from the corners of the plate and support the plate at a predetermined gap between a lower reactor core plate and the plate. The inclined surfaces of the ridges disposed at the outer circumference of the plate retain coolants, that were caused to flow to the outside passing between the legs of the nozzle, while dividing them to the inside of the nozzle and circulate the coolants upwardly passing through the water flowing ports of the plate. Further, since obstacles abut against the inclined surfaces of the ridges and flow to the inner side of the lower nozzle, obstacles in the coolants can be captured substantially entirely by the lower nozzle. (I.N.)

  14. Aeroelastic Modeling of a Nozzle Startup Transient

    Science.gov (United States)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2014-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a tightly coupled aeroelastic modeling algorithm by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed under the framework of modal analysis. Transient aeroelastic nozzle startup analyses at sea level were performed, and the computed transient nozzle fluid-structure interaction physics presented,

  15. A Novel Machine Vision System for the Inspection of Micro-Spray Nozzle

    Directory of Open Access Journals (Sweden)

    Kuo-Yi Huang

    2015-06-01

    Full Text Available In this study, we present an application of neural network and image processing techniques for detecting the defects of an internal micro-spray nozzle. The defect regions were segmented by Canny edge detection, a randomized algorithm for detecting circles and a circle inspection (CI algorithm. The gray level co-occurrence matrix (GLCM was further used to evaluate the texture features of the segmented region. These texture features (contrast, entropy, energy, color features (mean and variance of gray level and geometric features (distance variance, mean diameter and diameter ratio were used in the classification procedures. A back-propagation neural network classifier was employed to detect the defects of micro-spray nozzles. The methodology presented herein effectively works for detecting micro-spray nozzle defects to an accuracy of 90.71%.

  16. Li/Li2 supersonic nozzle beam

    International Nuclear Information System (INIS)

    Wu, C.Y.R.; Crooks, J.B.; Yang, S.C.; Way, K.R.; Stwalley, W.C.

    1977-01-01

    The characterization of a lithium supersonic nozzle beam was made using spectroscopic techniques. It is found that at a stagnation pressure of 5.3 kPa (40 torr) and a nozzle throat diameter of 0.4 mm the ground state vibrational population of Li 2 can be described by a Boltzmann distribution with T/sub v/ = 195 +- 30 0 K. The rotational temperature is found to be T/sub r/ = 70 +- 20 0 K by band shape analysis. Measurements by quadrupole mass spectrometer indicates that approximately 10 mole per cent Li 2 dimers are formed at an oven body temperature of 1370 0 K n the supersonic nozzle expansion. This measured mole fraction is in good agreement with the existing dimerization theory

  17. Dual-nozzle microfluidic droplet generator

    Science.gov (United States)

    Choi, Ji Wook; Lee, Jong Min; Kim, Tae Hyun; Ha, Jang Ho; Ahrberg, Christian D.; Chung, Bong Geun

    2018-05-01

    The droplet-generating microfluidics has become an important technique for a variety of applications ranging from single cell analysis to nanoparticle synthesis. Although there are a large number of methods for generating and experimenting with droplets on microfluidic devices, the dispensing of droplets from these microfluidic devices is a challenge due to aggregation and merging of droplets at the interface of microfluidic devices. Here, we present a microfluidic dual-nozzle device for the generation and dispensing of uniform-sized droplets. The first nozzle of the microfluidic device is used for the generation of the droplets, while the second nozzle can accelerate the droplets and increase the spacing between them, allowing for facile dispensing of droplets. Computational fluid dynamic simulations were conducted to optimize the design parameters of the microfluidic device.

  18. Thrust Augmented Nozzle for a Hybrid Rocket with a Helical Fuel Port

    Science.gov (United States)

    Marshall, Joel H.

    A thrust augmented nozzle for hybrid rocket systems is investigated. The design lever-ages 3-D additive manufacturing to embed a helical fuel port into the thrust chamber of a hybrid rocket burning gaseous oxygen and ABS plastic as propellants. The helical port significantly increases how quickly the fuel burns, resulting in a fuel-rich exhaust exiting the nozzle. When a secondary gaseous oxygen flow is injected into the nozzle downstream of the throat, all of the remaining unburned fuel in the plume spontaneously ignites. This secondary reaction produces additional high pressure gases that are captured by the nozzle and significantly increases the motor's performance. Secondary injection and combustion allows a high expansion ratio (area of the nozzle exit divided by area of the throat) to be effective at low altitudes where there would normally be significantly flow separation and possibly an embedded shock wave due. The result is a 15 percent increase in produced thrust level with no loss in engine efficiency due to secondary injection. Core flow efficiency was increased significantly. Control tests performed using cylindrical fuel ports with secondary injection, and helical fuel ports without secondary injection did not exhibit this performance increase. Clearly, both the fuel-rich plume and secondary injection are essential features allowing the hybrid thrust augmentation to occur. Techniques for better design optimization are discussed.

  19. Static investigation of two fluidic thrust-vectoring concepts on a two-dimensional convergent-divergent nozzle

    Science.gov (United States)

    Wing, David J.

    1994-01-01

    A static investigation was conducted in the static test facility of the Langley 16-Foot Transonic Tunnel of two thrust-vectoring concepts which utilize fluidic mechanisms for deflecting the jet of a two-dimensional convergent-divergent nozzle. One concept involved using the Coanda effect to turn a sheet of injected secondary air along a curved sidewall flap and, through entrainment, draw the primary jet in the same direction to produce yaw thrust vectoring. The other concept involved deflecting the primary jet to produce pitch thrust vectoring by injecting secondary air through a transverse slot in the divergent flap, creating an oblique shock in the divergent channel. Utilizing the Coanda effect to produce yaw thrust vectoring was largely unsuccessful. Small vector angles were produced at low primary nozzle pressure ratios, probably because the momentum of the primary jet was low. Significant pitch thrust vector angles were produced by injecting secondary flow through a slot in the divergent flap. Thrust vector angle decreased with increasing nozzle pressure ratio but moderate levels were maintained at the highest nozzle pressure ratio tested. Thrust performance generally increased at low nozzle pressure ratios and decreased near the design pressure ratio with the addition of secondary flow.

  20. Biannular Airbreathing Nozzle Rig (BANR) facility checkout and plug nozzle performance test data

    Science.gov (United States)

    Cummings, Chase B.

    2010-09-01

    The motivation for development of a supersonic business jet (SSBJ) platform lies in its ability to create a paradigm shift in the speed and reach of commercial, private, and government travel. A full understanding of the performance capabilities of exhaust nozzle configurations intended for use in potential SSBJ propulsion systems is critical to the design of an aircraft of this type. Purdue University's newly operational Biannular Airbreathing Nozzle Rig (BANR) is a highly capable facility devoted to the testing of subscale nozzles of this type. The high accuracy, six-axis force measurement system and complementary mass flowrate measurement capabilities of the BANR facility make it rather ideally suited for exhaust nozzle performance appraisal. Detailed accounts pertaining to methods utilized in the proper checkout of these diagnostic capabilities are contained herein. Efforts to quantify uncertainties associated with critical BANR test measurements are recounted, as well. Results of a second hot-fire test campaign of a subscale Gulfstream Aerospace Corporation (GAC) axisymmetric, shrouded plug nozzle are presented. Determined test article performance parameters (nozzle thrust efficiencies and discharge coefficients) are compared to those of a previous test campaign and numerical simulations of the experimental set-up. Recently acquired data is compared to published findings pertaining to plug nozzle experiments of similar scale and operating range. Suggestions relating to the future advancement and improvement of the BANR facility are provided. Lessons learned with regards to test operations and calibration procedures are divulged in an attempt to aid future facility users, as well.

  1. Evolutionary Optimization of Centrifugal Nozzles for Organic Vapours

    Science.gov (United States)

    Persico, Giacomo

    2017-03-01

    This paper discusses the shape-optimization of non-conventional centrifugal turbine nozzles for Organic Rankine Cycle applications. The optimal aerodynamic design is supported by the use of a non-intrusive, gradient-free technique specifically developed for shape optimization of turbomachinery profiles. The method is constructed as a combination of a geometrical parametrization technique based on B-Splines, a high-fidelity and experimentally validated Computational Fluid Dynamic solver, and a surrogate-based evolutionary algorithm. The non-ideal gas behaviour featuring the flow of organic fluids in the cascades of interest is introduced via a look-up-table approach, which is rigorously applied throughout the whole optimization process. Two transonic centrifugal nozzles are considered, featuring very different loading and radial extension. The use of a systematic and automatic design method to such a non-conventional configuration highlights the character of centrifugal cascades; the blades require a specific and non-trivial definition of the shape, especially in the rear part, to avoid the onset of shock waves. It is shown that the optimization acts in similar way for the two cascades, identifying an optimal curvature of the blade that both provides a relevant increase of cascade performance and a reduction of downstream gradients.

  2. Combustor nozzles in gas turbine engines

    Science.gov (United States)

    Johnson, Thomas Edward; Keener, Christopher Paul; Stewart, Jason Thurman; Ostebee, Heath Michael

    2017-09-12

    A micro-mixer nozzle for use in a combustor of a combustion turbine engine, the micro-mixer nozzle including: a fuel plenum defined by a shroud wall connecting a periphery of a forward tube sheet to a periphery of an aft tubesheet; a plurality of mixing tubes extending across the fuel plenum for mixing a supply of compressed air and fuel, each of the mixing tubes forming a passageway between an inlet formed through the forward tubesheet and an outlet formed through the aft tubesheet; and a wall mixing tube formed in the shroud wall.

  3. Separation of a light additive gas by separation nozzle cascades. Verfahren zur Abtrennung von leichtem Zusatzgas bei Trennduesenkaskaden

    Energy Technology Data Exchange (ETDEWEB)

    Becker, E.; Bley, P.; Ehrfeld, W.; Fritz, W.; Steinhaus, H.

    1984-02-02

    Double-turn separation nozzles, in comparison with single-turn separation nozzles, offer much greater advantages in the separation of UF6 and H2 than in the separation of the U isotopes, for which the double-turn separation nozzles were conceived. By using a double-turn separation-nozzle stage as a preseparation stage in combination with a low-temperature separator, one can reduce the ratio of the buffer input stream to the product stream, in contrast with the solution used up to this time, with only a slight increase in cost of about an order of magnitude. The control program in the case of return feeding of the UF6 from the buffer and the danger of production losses connected with it are thereby correspondingly diminished. An example is given of the enrichment of 235U using the title facility with UF6.

  4. Pitot-Pressure Measurements in Flow Fields Behind a Rectangular Nozzle with Exhaust Jet for Free-Stream Mach Numbers of 0.00, 0.60, and 1.20

    Science.gov (United States)

    Putnam, L. E.; Mercer, C. E.

    1986-01-01

    An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to measure the flow field in and around the jet exhaust from a nonaxisymmetric nozzle configuration. The nozzle had a rectangular exit with a width-to-height ratio of 2.38. Pitot-pressure measurements were made at five longitudinal locations downstream of the nozzle exit. The maximum distance downstream of the exit was about 5 nozzle heights. These measurements were made at free-stream Mach numbers of 0.00, 0.60, and 1.20 with the nozzle operating at a ratio of nozzle total pressure to free-stream static pressure of 4.0. The jet exhaust was simulated with high-pressure air that had an exit total temperature essentially equal to the free-stream total temperature.

  5. Turbocharger with variable nozzle having vane sealing surfaces

    Science.gov (United States)

    Arnold, Philippe [Hennecourt, FR; Petitjean, Dominique [Julienrupt, FR; Ruquart, Anthony [Thaon les Vosges, FR; Dupont, Guillaume [Thaon les Vosges, FR; Jeckel, Denis [Thaon les Vosges, FR

    2011-11-15

    A variable nozzle for a turbocharger includes a plurality of vanes rotatably mounted on a nozzle ring and disposed in a nozzle flow path defined between the nozzle ring and an opposite nozzle wall. Either or both of the faces of the nozzle ring and nozzle wall include(s) at least one step that defines sealing surfaces positioned to be substantially abutted by airfoil surfaces of the vanes in the closed position of the vanes and to be spaced from the airfoil surfaces in positions other than the closed position. This substantial abutment between the airfoil surfaces and the sealing surfaces serves to substantially prevent exhaust gas from leaking past the ends of the airfoil portions. At the same time, clearances between the nozzle ring face and the end faces of the airfoil portions can be sufficiently large to prevent binding of the vanes under all operating conditions.

  6. Effect of Injector Nozzle Holes on Diesel Engine Performance

    OpenAIRE

    Semin,; Yusof, Mohd Yuzri Mohd; Arof, Aminuddin Md; Shaharudin, Daneil Tomo; Ismail, Abdul Rahim

    2010-01-01

    All of the injector nozzle holes have examined and the results are shown that the seven holes nozzle have provided the best burning result for the fuel in-cylinder burned in any different engine speeds and the best burning is in low speed engine. In engine performance effect, all of the nozzles have examined and the five holes nozzle provided the best result in indicted power, indicated torque and ISFC in any different engine speeds.

  7. Reconstitutable nuclear reactor fuel assembly with unitary removable top nozzle subassembly

    International Nuclear Information System (INIS)

    Shallenberger, J.M.

    1987-01-01

    A reconstitutable fuel assembly is described having at least one control rod guide thimble and a top nozzle, the guide thimble including an upper extension, the top nozzle including at least one hold-down spring, an upper hold-down plate and a lower adapter plate, an improved attaching structure removably mounting the top nozzle as a unitary subassembly on the guide thimble. The attaching structure comprises: (a) a coupling member interfitting the lower adapter plate, the upper hold-down plate and the hold-down spring disposed between the plates so as to capture and retain the plates and spring together as a unitary subassembly in which the upper plate is slidably moveable along the coupling member relative to the lower plate with the spring biasing the upper plate away from the lower plate. The coupling member has spaced apart upper and lower portions with a central passageway extending for slidably receiving the upper extension of the guide thimble in a nonattached relationship in which the coupling member is slidably movable relative to the guide thimble extension for respectively inserting and removing the coupling member on and from the guide thimble extension

  8. CFD Analysis On The Performance Of Wind Turbine With Nozzles

    Directory of Open Access Journals (Sweden)

    Chunkyraj Kh

    2015-08-01

    Full Text Available In this paper an effort has been made in dealing with fluid characteristic that enters a converging nozzle and analysis of the nozzle is carried out using Computational Fluid Dynamics package ANSYS WORKBENCH 14.5. The paper is the continuation of earlier work Analytical and Experimental performance evaluation of Wind turbine with Nozzles. First the CFD analysis will be carried out on nozzle in-front of wind turbine where streamline velocity at the exit volume flow rate in the nozzle and pressure distribution across the nozzle will be studied. Experiments were conducted on the Wind turbine with nozzles and the corresponding power output at different air speed and different size of nozzles were calculated. Different shapes and dimensions with special contours and profiles of nozzles were studied. It was observed that the special contour nozzles have superior outlet velocity and low pressure at nozzle exit the design has maximum Kinetic energy. These indicators conclude that the contraction designed with the new profile is a good enhancing of the nozzle performance.

  9. A fundamental study of a variable critical nozzle flow

    International Nuclear Information System (INIS)

    Kim, Jea Hyung; Kim, Heuy Dong; Park, Kyung Am

    2003-01-01

    The mass flow rate of gas flow through critical nozzle depends on the nozzle supply conditions and the cross-sectional area at the nozzle throat. In order that the critical nozzle can be operated at a wide range of supply conditions, the nozzle throat diameter should be controlled to change the flow passage area. This can be achieved by means of a variable critical nozzle. In the present study, both experimental and computational works are performed to develop variable critical nozzle. A cone-cylinder with a diameter of d is inserted into conventional critical nozzle. It can move both upstream and downstream, thereby changing the cross-sectional area of the nozzle throat. Computational work using the axisymmetric, compressible Navier-Stokes equations is carried out to simulate the variable critical nozzle flow. An experiment is performed to measure the mass flow rate through variable critical nozzle. The present computational results are in close agreement with measured ones. The boundary layer displacement and momentum thickness are given as a function of Reynolds number. An empirical equation is obtained to predict the discharge coefficient of variable critical nozzle

  10. Shock wave fabricated ceramic-metal nozzles

    NARCIS (Netherlands)

    Carton, E.P.; Stuivinga, M.E.C.; Keizers, H.L.J.; Verbeek, H.J.; Put, P.J. van der

    1999-01-01

    Shock compaction was used in the fabrication of high temperature ceramic-based materials. The materials' development was geared towards the fabrication of nozzles for rocket engines using solid propellants, for which the following metal-ceramic (cermet) materials were fabricated and tested: B4C-Ti

  11. New atomization nozzle for spray drying

    NARCIS (Netherlands)

    Deventer, H.C. van; Houben, R.J.; Koldeweij, R.B.J.

    2013-01-01

    A new atomization nozzle based on ink jet technology is introduced for spray drying. Application areas are the food and dairy industry, in the first instance, because in these industries the quality demands on the final powders are high with respect to heat load, powder shape, and size distribution.

  12. Clamp and Gas Nozzle for TIG Welding

    Science.gov (United States)

    Gue, G. B.; Goller, H. L.

    1982-01-01

    Tool that combines clamp with gas nozzle is aid to tungsten/inert-gas (TIG) welding in hard-to-reach spots. Tool holds work to be welded while directing a stream of argon gas at weld joint, providing an oxygen-free environment for tungsten-arc welding.

  13. Fabrication of Microglass Nozzle for Microdroplet Jetting

    Directory of Open Access Journals (Sweden)

    Dan Xie

    2015-02-01

    Full Text Available An ejection aperture nozzle is the essential part for all microdrop generation techniques. The diameter size, the flow channel geometry, and fluid impedance are the key factors affecting the ejection capacity. A novel low-cost fabrication method of microglass nozzle involving four steps is developed in this work. In the first heating step, the glass pipette is melted and pulled. Then, the second heating step is to determine the tip cone angle and modify the flow channel geometry. The desired included angle is usually of 30~45 degrees. Fine grind can determine the exact diameter of the hole. Postheating step is the final process and it can reduce the sharpness of the edges of the hole. Micronozzles with hole diameters varying from 30 to 100 µm are fabricated by the homemade inexpensive and easy-to-operate setup. Hydrophobic treating method of microglass nozzle to ensure stable and accurate injection is also introduced in this work. According to the jetting results of aqueous solution, UV curing adhesive, and solder, the fabricated microglass nozzle can satisfy the need of microdroplet jetting of multimaterials.

  14. Microalgal cell disruption via ultrasonic nozzle spraying.

    Science.gov (United States)

    Wang, M; Yuan, W

    2015-01-01

    The objective of this study was to understand the effect of operating parameters, including ultrasound amplitude, spraying pressure, nozzle orifice diameter, and initial cell concentration on microalgal cell disruption and lipid extraction in an ultrasonic nozzle spraying system (UNSS). Two algal species including Scenedesmus dimorphus and Nannochloropsis oculata were evaluated. Experimental results demonstrated that the UNSS was effective in the disruption of microalgal cells indicated by significant changes in cell concentration and Nile red-stained lipid fluorescence density between all treatments and the control. It was found that increasing ultrasound amplitude generally enhanced cell disruption and lipid recovery although excessive input energy was not necessary for best results. The effect of spraying pressure and nozzle orifice diameter on cell disruption and lipid recovery was believed to be dependent on the competition between ultrasound-induced cavitation and spraying-generated shear forces. Optimal cell disruption was not always achieved at the highest spraying pressure or biggest nozzle orifice diameter; instead, they appeared at moderate levels depending on the algal strain and specific settings. Increasing initial algal cell concentration significantly reduced cell disruption efficiency. In all UNSS treatments, the effectiveness of cell disruption and lipid recovery was found to be dependent on the algal species treated.

  15. Design criteria for piping and nozzles program

    International Nuclear Information System (INIS)

    Moore, S.E.; Bryson, J.W.

    1977-01-01

    This report reviews the activities and accomplishments of the Design Criteria for Piping and Nozzles program being conducted by the Oak Ridge National Laboratory for the period July 1, 1975, to September 30, 1976. The objectives of the program are to conduct integrated experimental and analytical stress analysis studies of piping system components and isolated and closely-spaced pressure vessel nozzles in order to confirm and/or improve the adequacy of structural design criteria and analytical methods used to assure the safe design of nuclear power plants. Activities this year included the development of a finite-element program for analyzing two closely spaced nozzles in a cylindrical pressure vessel; a limited-parameter study of vessels with isolated nozzles, finite-element studies of piping elbows, a fatigue test of an out-of-round elbow, summary and evaluation of experimental studies on the elastic-response and fatigue failure of tees, parameter studies on the behavior of flanged joints, publication of fifteen topical reports and papers on various experimental and analytical studies; and the development and acceptance of a number of design rules changes to the ASME Code. 2 figures, 2 tables

  16. Static Internal Performance of a Two-Dimensional Convergent-Divergent Nozzle with External Shelf

    Science.gov (United States)

    Lamb, Milton; Taylor, John G.; Frassinelli, Mark C.

    1996-01-01

    An investigation was conducted in the static test facility of the Langley 16-Foot Transonic Tunnel to determine the internal performance of a two-dimensional convergent-divergent nozzle. The nozzle design was tested with dry and afterburning throat areas, which represent different power settings and three expansion ratios. For each of these configurations, three trailing-edge geometries were tested. The baseline geometry had a straight trailing edge. Two different shaping techniques were applied to the baseline nozzle design to reduce radar observables: the scarfed design and the sawtooth design. A flat plate extended downstream of the lower divergent flap trailing edge parallel to the model centerline to form a shelf-like expansion surface. This shelf was designed to shield the plume from ground observation (infrared radiation (IR) signature suppression). The shelf represents the part of the aircraft structure that might be present in an installed configuration. These configurations were tested at nozzle pressure ratios from 2.0 to 12.0.

  17. Improving accuracy of ET measurement of LISS nozzle to calandria tube clearance

    International Nuclear Information System (INIS)

    Craig, S.T.; Krause, T.W.; Schankula, J.J.

    2006-01-01

    The AECL Fuel Channel Inspection System (AFCIS) has been used in an in-reactor field trial to successfully measure the clearance between Liquid Injection Shutdown System (LISS) nozzles and calandria tubes. Each measurement over the full length of a channel added only 15 minutes to the on-channel inspection time. No changes were required to the inspection heads. The only equipment changes made were the addition of a Remote Field Eddy Current (RFEC) module to the eddy current instrument, and minor wiring changes, at the instrument, to achieve a RFEC configuration. With the experience gained from the field trial, factors potentially limiting accuracy were identified. These, and other factors, were investigated and are discussed herein. The RFEC probe is delivered inside the pressure tube. Magnetic fields from the RFEC probe extend through the conducting walls of the pressure tube and calandria tube to interact with the LISS nozzle. Data acquired during the field trial showed the LISS nozzle signal is distinct and the signal-to-noise ratio is very favourable. Nevertheless, comparison of the RFEC measurements to a visual examination, made during the same outage, had the RFEC method underestimating the clearance by 2.5 mm on average. By way of laboratory tests, the following factors were investigated as potential sources of error: resistivity and geometry of LISS nozzle reference/calibration pieces, pressure-tube wall thickness, diameter and resistivity variations, pressure-tube to calandria-tube gap, and radial offsets of the probe within the pressure-tube. The sensitivity to these various noise sources was established. A model, based on fundamental electromagnetic principles, was developed and was used to normalize the effects of LISS nozzle conductivity and geometry. This enabled compensation for various sources of error, and made it possible to produce a correction factor for the field trial data, reducing the average difference from the visual inspection of LISS

  18. Design and analysis approach for linear aerospike nozzle

    International Nuclear Information System (INIS)

    Khan, S.U.; Khan, A.A.; Munir, A.

    2014-01-01

    The paper presents an aerodynamic design of a simplified linear aerospike nozzle and its detailed exhaust flow analysis with no spike truncation. Analytical method with isentropic planar flow was used to generate the nozzle contour through MATLAB . The developed code produces a number of outputs comprising nozzle wall profile, flow properties along the nozzle wall, thrust coefficient, thrust, as well as amount of nozzle truncation. Results acquired from design code and numerical analyses are compared for observing differences. The numerical analysis adopted an inviscid model carried out through commercially available and reliable computational fluid dynamics (CFD) software. Use of the developed code would assist the readers to perform quick analysis of different aerodynamic design parameters for the aerospike nozzle that has tremendous scope of application in future launch vehicles. Keyword: Rocket propulsion, Aerospike Nozzle, Control Design, Computational Fluid Dynamics. (author)

  19. Nuclear thermal rocket nozzle testing and evaluation program

    International Nuclear Information System (INIS)

    Davidian, K.O.; Kacynski, K.J.

    1993-01-01

    Performance characteristics of the Nuclear Thermal Rocket can be enhanced through the use of unconventional nozzles as part of the propulsion system. In this report, the Nuclear Thermal Rocket nozzle testing and evaluation program being conducted at the NASA Lewis Research Center is outlined and the advantages of a plug nozzle are described. A facility description, experimental designs and schematics are given. Results of pretest performance analyses show that high nozzle performance can be attained despite substantial nozzle length reduction through the use of plug nozzles as compared to a convergent-divergent nozzle. Pretest measurement uncertainty analyses indicate that specific impulse values are expected to be within plus or minus 1.17%

  20. Duoplasmatron with a nozzle type plasma expension cup

    International Nuclear Information System (INIS)

    Kobayashi, M.; Nishikawa, T.; Takagi, A.

    1974-01-01

    Various tests are described which were carried out in order to clarify the cause of the aberration existing in the beams extracted from a nozzle type plasma expansion cup. The tests involve the extraction electrodes having different edge shapes, gridded extraction electrodes, high-voltage facing electrodes at the cup exit making different angles with the axis, plasma cups having different contours at the exit, plasma cups gridded at the exit, biasing the cup exit with respect to anode, plasma cups having different ratios of the exit area to axial length, etc. The results show that the inward meniscus type distortion of the plasma boundary near the rim of plasma cup will be a dominant source for the aberration. Both proper shaping of the contour of the cup exit and biasing the cup exit reduced the aberration

  1. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model.

    Science.gov (United States)

    Raben, Jaime S; Hariharan, Prasanna; Robinson, Ronald; Malinauskas, Richard; Vlachos, Pavlos P

    2016-03-01

    We present advanced particle image velocimetry (PIV) processing, post-processing, and uncertainty estimation techniques to support the validation of computational fluid dynamics analyses of medical devices. This work is an extension of a previous FDA-sponsored multi-laboratory study, which used a medical device mimicking geometry referred to as the FDA benchmark nozzle model. Experimental measurements were performed using time-resolved PIV at five overlapping regions of the model for Reynolds numbers in the nozzle throat of 500, 2000, 5000, and 8000. Images included a twofold increase in spatial resolution in comparison to the previous study. Data was processed using ensemble correlation, dynamic range enhancement, and phase correlations to increase signal-to-noise ratios and measurement accuracy, and to resolve flow regions with large velocity ranges and gradients, which is typical of many blood-contacting medical devices. Parameters relevant to device safety, including shear stress at the wall and in bulk flow, were computed using radial basis functions. In addition, in-field spatially resolved pressure distributions, Reynolds stresses, and energy dissipation rates were computed from PIV measurements. Velocity measurement uncertainty was estimated directly from the PIV correlation plane, and uncertainty analysis for wall shear stress at each measurement location was performed using a Monte Carlo model. Local velocity uncertainty varied greatly and depended largely on local conditions such as particle seeding, velocity gradients, and particle displacements. Uncertainty in low velocity regions in the sudden expansion section of the nozzle was greatly reduced by over an order of magnitude when dynamic range enhancement was applied. Wall shear stress uncertainty was dominated by uncertainty contributions from velocity estimations, which were shown to account for 90-99% of the total uncertainty. This study provides advancements in the PIV processing methodologies over

  2. Analysis of film cooling in rocket nozzles

    Science.gov (United States)

    Woodbury, Keith A.

    1992-01-01

    Computational Fluid Dynamics (CFD) programs are customarily used to compute details of a flow field, such as velocity fields or species concentrations. Generally they are not used to determine the resulting conditions at a solid boundary such as wall shear stress or heat flux. However, determination of this information should be within the capability of a CFD code, as the code supposedly contains appropriate models for these wall conditions. Before such predictions from CFD analyses can be accepted, the credibility of the CFD codes upon which they are based must be established. This report details the progress made in constructing a CFD model to predict the heat transfer to the wall in a film cooled rocket nozzle. Specifically, the objective of this work is to use the NASA code FDNS to predict the heat transfer which will occur during the upcoming hot-firing of the Pratt & Whitney 40K subscale nozzle (1Q93). Toward this end, an M = 3 wall jet is considered, and the resulting heat transfer to the wall is computed. The values are compared against experimental data available in Reference 1. Also, FDNS's ability to compute heat flux in a reacting flow will be determined by comparing the code's predictions against calorimeter data from the hot firing of a 40K combustor. The process of modeling the flow of combusting gases through the Pratt & Whitney 40K subscale combustor and nozzle is outlined. What follows in this report is a brief description of the FDNS code, with special emphasis on how it handles solid wall boundary conditions. The test cases and some FDNS solution are presented next, along with comparison to experimental data. The process of modeling the flow through a chamber and a nozzle using the FDNS code will also be outlined.

  3. Transient Three-Dimensional Analysis of Nozzle Side Load in Regeneratively Cooled Engines

    Science.gov (United States)

    Wang, Ten-See

    2005-01-01

    Three-dimensional numerical investigations on the start-up side load physics for a regeneratively cooled, high-aspect-ratio nozzle were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system simulation. Computations were performed for both the adiabatic and cooled walls in order to understand the effect of boundary conditions. Finite-rate chemistry was used throughout the study so that combustion effect is always included. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with oscillation of shocks across the lip. Wall boundary conditions drastically affect the computed side load physics: the adiabatic nozzle prefers free-shock separation while the cooled nozzle favors restricted-shock separation, resulting in higher peak side load for the cooled nozzle than that of the adiabatic nozzle. By comparing the computed physics with those of test observations, it is concluded that cooled wall is a more realistic boundary condition, and the oscillation of the restricted-shock separation flow pattern across the lip along with its associated tangential shock motion are the dominant side load physics for a regeneratively cooled, high aspect-ratio rocket engine.

  4. Coherent structures in a supersonic complex nozzle

    Science.gov (United States)

    Magstadt, Andrew; Berry, Matthew; Glauser, Mark

    2016-11-01

    The jet flow from a complex supersonic nozzle is studied through experimental measurements. The nozzle's geometry is motivated by future engine designs for high-performance civilian and military aircraft. This rectangular jet has a single plane of symmetry, an additional shear layer (referred to as a wall jet), and an aft deck representative of airframe integration. The core flow operates at a Mach number of Mj , c = 1 . 6 , and the wall jet is choked (Mj , w = 1 . 0). This high Reynolds number jet flow is comprised of intense turbulence levels, an intricate shock structure, shear and boundary layers, and powerful corner vortices. In the present study, stereo PIV measurements are simultaneously sampled with high-speed pressure measurements, which are embedded in the aft deck, and far-field acoustics in the anechoic chamber at Syracuse University. Time-resolved schlieren measurements have indicated the existence of strong flow events at high frequencies, at a Strouhal number of St = 3 . 4 . These appear to result from von Kàrmàn vortex shedding within the nozzle and pervade the entire flow and acoustic domain. Proper orthogonal decomposition is applied on the current data to identify coherent structures in the jet and study the influence of this vortex street. AFOSR Turbulence and Transition Program (Grant No. FA9550-15-1-0435) with program managers Dr. I. Leyva and Dr. R. Ponnappan.

  5. Head spray nozzle in reactor pressure vessel

    International Nuclear Information System (INIS)

    Hatano, Shun-ichi.

    1990-01-01

    In a reactor pressure vessel of a BWR type reactor, a head spray nozzle is used for cooling the head of the pressure vessel and, in view of the thermal stresses, it is desirable that cooling is applied as uniformly as possible. A conventional head spray is constituted by combining full cone type nozzles. Since the sprayed water is flown down upon water spraying and the sprayed water in the vertical direction is overlapped, the flow rate distribution has a high sharpness to form a shape as having a maximum value near the center and it is difficult to obtain a uniform flow rate distribution in the circumferential direction. Then, in the present invention, flat nozzles each having a spray water cross section of laterally long shape, having less sharpness in the circumferential distribution upon spraying water to the inner wall of the pressure vessel and having a wide angle of water spray are combined, to make the flow rate distribution of spray water uniform in the inner wall of the pressure vessel. Accordingly, the pressure vessel can be cooled uniformly and thermal stresses upon cooling can be decreased. (N.H.)

  6. Stress analysis of PCV nozzle junction

    International Nuclear Information System (INIS)

    Uchiyama, Shoichi; Oikawa, Tsuneo; Hoshino, Seizo

    1976-01-01

    Most of various pressure vessels comprise each one cylindrical shell and one or more nozzles. In this study, in order to analyze the stress in the structures of this type as minutely and exactly as possible, the program for stress analysis by the finite element method was made, which is required for the strength analysis for three-dimensional structures. Especially, the problem of the stress distribution around nozzle junctions was solved theoretically with the program. The program for the analysis developed in this study is provided with various functions, such as the input generator for cylindrical, conical and spherical shells, and plotter, and is very covenient. The accuracy of analysis is very good. The method of analysis and the calculation of the rigidity matrices for the deformation in plane and bending are explained. The result of the stress analysis around the nozzle junctions of a containment vessel with this program was in good agreement with experimental data and the result with SAP-4 code, therefore the propriety of the calculated result with this program was proved. Also calculations were carried out on three cases, namely a flat plate fixed at one end with distributed load, a cylinder fixed at one end with internal pressure, and an I-beam fixed at one end with concentrated load. The calculated results agreed well with theoretical solutions in all cases. (Kako, I.)

  7. Flow energy piezoelectric bimorph nozzle harvester

    Science.gov (United States)

    Sherrit, Stewart; Lee, Hyeong Jae; Walkemeyer, Phillip; Hasenoehrl, Jennifer; Hall, Jeffrey L.; Colonius, Tim; Tosi, Luis Phillipe; Arrazola, Alvaro; Kim, Namhyo; Sun, Kai; Corbett, Gary

    2014-04-01

    There is a need for a long-life power generation scheme that could be used downhole in an oil well to produce 1 Watt average power. There are a variety of existing or proposed energy harvesting schemes that could be used in this environment but each of these has its own limitations. The vibrating piezoelectric structure is in principle capable of operating for very long lifetimes (decades) thereby possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. In order to determine the feasibility of using piezoelectrics to produce suitable flow energy harvesting, we surveyed experimentally a variety of nozzle configurations that could be used to excite a vibrating piezoelectric structure in such a way as to enable conversion of flow energy into useful amounts of electrical power. These included reed structures, spring mass-structures, drag and lift bluff bodies and a variety of nozzles with varying flow profiles. Although not an exhaustive survey we identified a spline nozzle/piezoelectric bimorph system that experimentally produced up to 3.4 mW per bimorph. This paper will discuss these results and present our initial analyses of the device using dimensional analysis and constitutive electromechanical modeling. The analysis suggests that an order-of-magnitude improvement in power generation from the current design is possible.

  8. Pengaruh Jarak dan Posisi Nozzle Terhadap Daya Turbin Pelton

    Directory of Open Access Journals (Sweden)

    Yani Kurniawan

    2017-12-01

    Full Text Available Pelton Turbine is a turbine which use nozzle as officers the direction of a stream water in order to move around of blade turbine. The rotating of turbine blade efected by some parameters such as the distance of the nozzle, position of nozzle, diameter of nozzle, number of nozzle, and the geometry shape of the blade turbine. An experimental study to analyze the affect of distance and position nozzle to Pelton Turbine of performance. The research method used experiment parameter was position of nozzle with three variations, first position is the right side horizontal of bottom shaft turbine, second position is vertical to down direction, and third position is the left side horizontal of upper shaft turbine. The parameter of nozzle distance used five variations was 24 cm, 23 cm, 22 cm, 21 cm, dan 20 cm, which measured from the end of position nozzle to blade turbine. The result shows that the right side horizontal of bottom shaft turbine with distance of nozzle 23 cm had the maximum performance to produce a power 125 Watt with the rotation of shaft turbine 263 rpm.

  9. Designs of contraction nozzle and concave back-wall for IFMIF target

    Energy Technology Data Exchange (ETDEWEB)

    Ida, Mizuho E-mail: ida@ifmif.tokai.jaeri.go.jp; Nakamura, Hideo; Nakamura, Hiroo; Takeuchi, Hiroshi

    2004-02-01

    For the liquid lithium flow target of International Fusion Materials Irradiation Facility (IFMIF), the double reducer (two-step contraction) nozzle with a high-contraction ratio of 10 which generated high-speed uniform jet flows up to 20 m/s was proposed. Multi-dimensional hydraulic analyses were carried out to verify the performance of the proposed nozzle. The analytical results showed that the double reducer nozzle would well generate high-speed uniform flow, while one-step contraction nozzle generated non-uniform flow and resulted in flow thickening at the beam footprint. For the target design, the range of the concave back-wall radius with no lithium boiling due to the centrifugal force and proper component arrangement in the irradiation test cell was determined by the thermal-hydraulic analysis of a free-surface flow. It was verified that the back-wall radius from 0.25 to 10 m was acceptable in the velocity range of 10-20 m/s.

  10. Designs of contraction nozzle and concave back-wall for IFMIF target

    International Nuclear Information System (INIS)

    Ida, Mizuho; Nakamura, Hideo; Nakamura, Hiroo; Takeuchi, Hiroshi

    2004-01-01

    For the liquid lithium flow target of International Fusion Materials Irradiation Facility (IFMIF), the double reducer (two-step contraction) nozzle with a high-contraction ratio of 10 which generated high-speed uniform jet flows up to 20 m/s was proposed. Multi-dimensional hydraulic analyses were carried out to verify the performance of the proposed nozzle. The analytical results showed that the double reducer nozzle would well generate high-speed uniform flow, while one-step contraction nozzle generated non-uniform flow and resulted in flow thickening at the beam footprint. For the target design, the range of the concave back-wall radius with no lithium boiling due to the centrifugal force and proper component arrangement in the irradiation test cell was determined by the thermal-hydraulic analysis of a free-surface flow. It was verified that the back-wall radius from 0.25 to 10 m was acceptable in the velocity range of 10-20 m/s

  11. Influence of Fluid–Thermal–Structural Interaction on Boundary Layer Flow in Rectangular Supersonic Nozzles

    Directory of Open Access Journals (Sweden)

    Kalyani Bhide

    2018-03-01

    Full Text Available The aim of this work is to highlight the significance of Fluid–Thermal–Structural Interaction (FTSI as a diagnosis of existing designs, and as a means of preliminary investigation to ensure the feasibility of new designs before conducting experimental and field tests. The novelty of this work lies in the multi-physics simulations, which are, for the first time, performed on rectangular nozzles. An existing experimental supersonic rectangular converging/diverging nozzle geometry is considered for multi-physics 3D simulations. A design that has been improved by eliminating the sharp throat is further investigated to evaluate its structural integrity at design Nozzle Pressure Ratio (NPR 3.67 and off-design (NPR 4.5 conditions. Static structural analysis is performed by unidirectional coupling of pressure loads from steady 3D Computational Fluid Dynamics (CFD and thermal loads from steady thermal conduction simulations, such that the simulations represent the experimental set up. Structural deformation in the existing design is far less than the boundary layer thickness, because the impact of Shock wave Boundary Layer Interaction (SBLI is not as severe. FTSI demonstrates that the discharge coefficient of the improved design is 0.99, and its structural integrity remains intact at off-design conditions. This proves the feasibility of the improved design. Although FTSI influence is shown for a nozzle, the approach can be applied to any product design cycle, or as a prelude to building prototypes.

  12. Preliminary study of the primary nozzle position of a supersonic air ejector with a constant-area mixing chamber

    Directory of Open Access Journals (Sweden)

    Kracik Jan

    2017-01-01

    Full Text Available This work aims at investigating the primary nozzle position in a proposed supersonic air ejector device. The ejector is primarily made up of a supersonic primary nozzle, which is located in the axis of the ejector, a suction chamber or secondary stream inlet, a mixing chamber and a diffuser. The ejector design allows to translate the primary nozzle in the axis direction and fix it in a chosen distance from the beginning of the mixing chamber and hence influence the secondary mass flow rate. In a limit case, it is possible to set the nozzle to such a position where no secondary flow occurs. If we ignore the case where no secondary flow occurs, five different nozzle distances have been investigated in this paper. Some cases seem to be alike and there are no significant dissimilarities between them. Courses of relative back-pressure ratio are carried out against the entrainment ratio and transition between on-design and off-design regimes is determined. Measurements of the mixed flow based on the standard ISO 5167 are performed by means of orifice plate method. In addition, a comparison between experiments and simulations performed by Ansys Fluent software is presented in order to indicate further improvements to the numerical model.

  13. Transient Three-Dimensional Side Load Analysis of Out-of-Round Film Cooled Nozzles

    Science.gov (United States)

    Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike

    2010-01-01

    The objective of this study is to investigate the effect of nozzle out-of-roundness on the transient startup side loads at a high altitude, with an anchored computational methodology. The out-of-roundness could be the result of asymmetric loads induced by hardware attached to the nozzle, asymmetric internal stresses induced by previous tests, and deformation, such as creep, from previous tests. The rocket engine studied encompasses a regeneratively cooled thrust chamber and a film cooled nozzle extension with film coolant distributed from a turbine exhaust manifold. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Transient startup computations were performed with the out-of-roundness achieved by four different degrees of ovalization: one perfectly round, one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The results show that the separation-line-jump is the peak side load physics for the round, slightly our-of-round, and more out-of-round cases, and the peak side load increases as the degree of out-of-roundness increases. For the significantly out-of-round nozzle, however, the peak side load reduces to comparable to that of the round nozzle and the separation line jump is not the peak side load physics. The counter-intuitive result of the significantly out-of-round case is found to be related to a side force reduction mechanism that splits the effect of the separation-line-jump into two parts, not only in the circumferential direction and most importantly in time.

  14. Method for generating small and ultra small apertures, slits, nozzles and orifices

    Science.gov (United States)

    Khounsary, Ali M [Hinsdale, IL

    2012-05-22

    A method and device for one or more small apertures, slits, nozzles and orifices, preferably having a high aspect ratio. In one embodiment, one or more alternating layers of sacrificial layers and blocking layers are deposited onto a substrate. Each sacrificial layer is made of a material which preferably allows a radiation to substantially pass through. Each blocking layer is made of a material which substantially blocks the radiation.

  15. Development of top nozzle for Korean standard LWR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. K.; Kim, I. K.; Choi, K. S.; Kim, Y. H.; Lee, J. N.; Kim, H. K. [KNFC, Taejon (Korea, Republic of)

    2001-10-01

    Performance evaluation was executed for each component and its assembly for the deduced Top Nozzles to develop the new Top Nozzle for LWR. This new Top Nozzle is composed of the optimum components among the derived Top Nozzles that have been evaluated in the viewpoint of structural integrity, simpleness of dismantle and assembly, manufacturability etc. In this study, the developed Top Nozzle satisfied all the related design criteria. In special, it makes fuel repair time reduced by assembling and disassembling itself as one body, and improves Fuel Assembly holddown ability by revising the design parameters of its spring and the structural integrity through the betterment of its geometrical shpae of Flange and Holddown Plate as compared with the existing LWR Top Nozzles.

  16. Mounting apparatus for a nozzle guide vane assembly

    Science.gov (United States)

    Boyd, Gary L.; Shaffer, James E.

    1995-01-01

    The present invention provides a ceramic nozzle guide assembly with an apparatus for mounting it to a metal nozzle case that includes an intermediate ceramic mounting ring. The mounting ring includes a plurality of projections that are received within a plurality of receptacles formed in the nozzle case. The projections of the mounting ring are secured within the receptacles by a ceramic retainer that allows contact between the two components only along arcuate surfaces thus eliminating sliding contact between the components.

  17. Fluidized-bed calciner with combustion nozzle and shroud

    International Nuclear Information System (INIS)

    Wielang, J.A.; Palmer, W.B.; Kerr, W.B.

    1977-01-01

    A nozzle employed as a burner within a fluidized bed is coaxially enclosed within a tubular shroud that extends beyond the nozzle length into the fluidized bed. The open-ended shroud portion beyond the nozzle end provides an antechamber for mixture and combustion of atomized fuel with an oxygen-containing gas. The arrangement provides improved combustion efficiency and excludes bed particles from the high-velocity, high-temperature portions of the flame to reduce particle attrition. 4 claims, 2 figures

  18. Fracture analyses and test of regions with nozzle and hole and curvature influence in nuclear vessel

    International Nuclear Information System (INIS)

    Wang Baisong; Xu Dinggen; Ye Weijuan; Hu Yinbiao; Liang Xingyun; Gu Shaode; Zhou Peiying

    1993-08-01

    For the calculations of stress intensity factor K 1 of surface crack in the regions with nozzle and hole and the curvature influence on nuclear vessel, a improved 3-D collapsed isoparametric singular element with quarter-points was presented. The square root singularity in the vertical planes of crack was derived. The methods of transitional element and calculating K 1 from displacements were extensively used in 3- D case. The SIF K 1 of the corner crack in inner wall of the nozzle of RPV (reactor pressure vessel) for a typical 300 MW nuclear plant was calculated, and it was verified by 3-D photo-elastic test and diffusion of light test. The engineering fracture analysis and evaluation of the outside surface crack in the circular are transitional region of the head flange of RPV are also completed

  19. Variable volume combustor with aerodynamic fuel flanges for nozzle mounting

    Science.gov (United States)

    McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward; Ostebee, Heath Michael

    2016-09-20

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and for providing the flow of fuel therethrough. The fuel injection system also may include a number of aerodynamic fuel flanges connecting the micro-mixer fuel nozzles and the support struts.

  20. Analysis of Nozzle Jet Plume Effects on Sonic Boom Signature

    Science.gov (United States)

    Bui, Trong

    2010-01-01

    An axisymmetric full Navier-Stokes computational fluid dynamics (CFD) study was conducted to examine nozzle exhaust jet plume effects on the sonic boom signature of a supersonic aircraft. A simplified axisymmetric nozzle geometry, representative of the nozzle on the NASA Dryden NF-15B Lift and Nozzle Change Effects on Tail Shock (LaNCETS) research airplane, was considered. The highly underexpanded nozzle flow is found to provide significantly more reduction in the tail shock strength in the sonic boom N-wave pressure signature than perfectly expanded and overexpanded nozzle flows. A tail shock train in the sonic boom signature, similar to what was observed in the LaNCETS flight data, is observed for the highly underexpanded nozzle flow. The CFD results provide a detailed description of the nozzle flow physics involved in the LaNCETS nozzle at different nozzle expansion conditions and help in interpreting LaNCETS flight data as well as in the eventual CFD analysis of a full LaNCETS aircraft. The current study also provided important information on proper modeling of the LaNCETS aircraft nozzle. The primary objective of the current CFD research effort was to support the LaNCETS flight research data analysis effort by studying the detailed nozzle exhaust jet plume s imperfect expansion effects on the sonic boom signature of a supersonic aircraft. Figure 1 illustrates the primary flow physics present in the interaction between the exhaust jet plume shock and the sonic boom coming off of an axisymmetric body in supersonic flight. The steeper tail shock from highly expanded jet plume reduces the dip of the sonic boom N-wave signature. A structured finite-volume compressible full Navier-Stokes CFD code was used in the current study. This approach is not limited by the simplifying assumptions inherent in previous sonic boom analysis efforts. Also, this study was the first known jet plume sonic boom CFD study in which the full viscous nozzle flow field was modeled, without

  1. Experimental study of subsonic microjet escaping from a rectangular nozzle

    Science.gov (United States)

    Aniskin, V. M.; Maslov, A. A.; Mukhin, K. A.

    2016-10-01

    The first experiments on the subsonic laminar microjets escaping from the nozzles of rectangular shape are carried out. The nozzle size is 83.3x3823 microns. Reynolds number calculated by the nozzle height and the average flow velocity at the nozzle exit ranged from 58 to 154. The working gas was air at room temperature. The velocity decay and velocity fluctuations along the center line of the jet are determined. The fundamental difference between the laminar microjets characteristics and subsonic turbulent jets of macro size is shown. Based on measurements of velocity fluctuations it is shown the presence of laminar-turbulent transition in microjets and its location is determined.

  2. Heat and fluid flow properties of circular impinging jet with a low nozzle to plate spacing. Improvement by nothched nozzle; Nozzle heibankan kyori ga chiisai baai no enkei shototsu funryu no ryudo dennetsu tokusei. Kirikaki nozzle ni yoru kaizen kojo

    Energy Technology Data Exchange (ETDEWEB)

    Shakouchih, T. [Mie University, Mie (Japan). Faculty of Engineering; Matsumoto, A.; Watanabe, A.

    2000-10-25

    It is well known that as decreasing the nozzle to plate spacing considerably the heat transfer coefficient of circular impinging jet, which impinges to the plate normally, increases remarkably. At that time, the flow resistance of nozzle-plate system also increases rapidly. In this study, in order to reduce the flow resistance and to enhance the heat transfer coefficient of the circular impinging jet with a considerably low nozzle to plate spacing, a special nozzle with notches is proposed, and considerable improvement of the flow and heat transfer properties are shown. The mechanism of enhancement of the heat transfer properties is also discussed. (author)

  3. Effect of Orifice Nozzle Design and Input Power on Two-Phase Flow and Mass Transfer Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hei Cheon [Chonnam Nat’l Univ., Gwangju (Korea, Republic of)

    2016-04-15

    It is necessary to investigate the input power as well as the mass transfer characteristics of the aeration process in order to improve the energy efficiency of an aerobic water treatment. The objective of this study is to experimentally investigate the effect of orifice nozzle design and input power on the flow and mass transfer characteristics of a vertical two-phase flow. The mass ratio, input power, volumetric mass transfer coefficient, and mass transfer efficiency were calculated using the measured data. It was found that as the input power increases the volumetric mass transfer coefficient increases, while the mass ratio and mass transfer efficiency decrease. The mass ratio, volumetric mass transfer coefficient, and mass transfer efficiency were higher for the orifice configuration with a smaller orifice nozzle area ratio. An empirical correlation was proposed to estimate the effect of mass ratio, input power, and Froude number on the volumetric mass transfer coefficient.

  4. BWR feedwater nozzle and control-rod-drive return line nozzle cracking

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    In its 1978 Annual Report to Congress, the Nuclear Regulatory Commission identified as an unresolved safety issue the appearance of cracks in feedwater nozzles at boiling-water reactors (BWRs). Later similar cracking, detected in return water lines for control-rod-drive systems at BWRs, was designated Part II of the issue. This article outlines the resolution of these cracking problems

  5. Nozzle evaluation for Project W-314

    International Nuclear Information System (INIS)

    Galbraith, J.D.

    1998-01-01

    Revisions to the waste transfer system piping to be implemented by Project W-314 will eliminate the need to access a majority of interfarm jumper connections associated with specific process pits. Additionally, connections that formerly facilitated waste transfers from the Plutonium-Uranium Extraction (PUREX) Plant are no longer required. This document identified unneeded process pit jumper connections, describes former designated routing, denotes current status (i.e., open or blanked), and recommends appropriate disposition for all. Blanking of identified nozzles should be accomplished by Project W-314 upon installation of jumpers and acceptance by Tank Waste Remediation System (TWRS) Tank Farm Operations

  6. Bottom nozzle of a LWR fuel assembly

    International Nuclear Information System (INIS)

    Leroux, J.C.

    1991-01-01

    The bottom nozzle consists of a transverse element in form of box having a bending resistant grid structure which has an outer peripheral frame of cross-section corresponding to that of the fuel assembly and which has walls defining large cells. The transverse element has a retainer plate with a regular array of openings. The retainer plate is fixed above and parallel to the grid structure with a spacing in order to form, between the grid structure and the retainer plate a free space for tranquil flow of cooling water and for debris collection [fr

  7. Airfoil shape for a turbine nozzle

    Science.gov (United States)

    Burdgick, Steven Sebastian; Patik, Joseph Francis; Itzel, Gary Michael

    2002-01-01

    A first-stage nozzle vane includes an airfoil having a profile according to Table I. The annulus profile of the hot gas path is defined in conjunction with the airfoil profile and the profile of the inner and outer walls by the Cartesian coordinate values given in Tables I and II, respectively. The airfoil is a three-dimensional bowed design, both in the airfoil body and in the trailing edge. The airfoil is steam and air-cooled by flowing cooling mediums through cavities extending in the vane between inner and outer walls.

  8. Study of nozzle deposit formation mechanism for direct injection gasoline engines; Chokufun gasoline engine yo nozzle no deposit seisei kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, M; Saito, A [Toyota Central Research and Development Labs., Inc., Aichi (Japan); Matsushita, S [Toyota Motor Corp., Aichi (Japan); Shibata, H [Nippon Soken, Inc., Tokyo (Japan); Niwa, Y [Denso Corp., Aichi (Japan)

    1997-10-01

    Nozzles in fuel injectors for direct injection gasoline engines are exposed to high temperature combustion gases and soot. In such a rigorous environment, it is a fear that fuel flow rate changes in injectors by deposit formation on nozzles. Fundamental factors of nozzle deposit formation were investigated through injector bench tests and engine dynamometer tests. Deposit formation processes were observed by SEM through engine dynamometer tests. The investigation results reveal nozzle deposit formation mechanism and how to suppress the deposit. 4 refs., 8 figs., 3 tabs.

  9. EURCYL. A program to generate finite element meshes for pressure vessel nozzles

    International Nuclear Information System (INIS)

    De Windt, P.; Reynen, J.

    1974-12-01

    EURCYL is a program dealing with the automatic generation of finite element meshes for pressure vessel nozzles, using isoparametric elements with 8, 20 or 32 nodes. Options exist to generate BWR nozzles as well as PWR nozzles

  10. Nozzle design study for a quasi-axisymmetric scramjet-powered vehicle at Mach 7.9 flight conditions

    Science.gov (United States)

    Tanimizu, Katsuyoshi; Mee, David J.; Stalker, Raymond J.; Jacobs, Peter A.

    2013-09-01

    A nozzle shape optimization study for a quasi-axisymmetric scramjet has been performed for a Mach 7.9 operating condition with hydrogen fuel, aiming at the application of a hypersonic airbreathing vehicle. In this study, the nozzle geometry which is parameterized by a set of design variables, is optimized for the single objective of maximum net thrust using an in-house CFD solver for inviscid flowfields with a simple force prediction methodology. The combustion is modelled using a simple chemical reaction code. The effects of the nozzle design on the overall vehicle performance are discussed. For the present geometry, net thrust is achieved for the optimized vehicle design. The results of the nozzle-optimization study show that performance is limited by the nozzle area ratio that can be incorporated into the vehicle without leading to too large a base diameter of the vehicle and increasing the external drag of the vehicle. This study indicates that it is very difficult to achieve positive thrust at Mach 7.9 using the basic geometry investigated.

  11. Analysis of film cooling in rocket nozzles

    Science.gov (United States)

    Woodbury, Keith A.

    1993-01-01

    This report summarizes the findings on the NASA contract NAG8-212, Task No. 3. The overall project consists of three tasks, all of which have been successfully completed. In addition, some supporting supplemental work, not required by the contract, has been performed and is documented herein. Task 1 involved the modification of the wall functions in the code FDNS (Finite Difference Navier-Stokes) to use a Reynolds Analogy-based method. This task was completed in August, 1992. Task 2 involved the verification of the code against experimentally available data. The data chosen for comparison was from an experiment involving the injection of helium from a wall jet. Results obtained in completing this task also show the sensitivity of the FDNS code to unknown conditions at the injection slot. This task was completed in September, 1992. Task 3 required the computation of the flow of hot exhaust gases through the P&W 40K subscale nozzle. Computations were performed both with and without film coolant injection. This task was completed in July, 1993. The FDNS program tends to overpredict heat fluxes, but, with suitable modeling of backside cooling, may give reasonable wall temperature predictions. For film cooling in the P&W 40K calorimeter subscale nozzle, the average wall temperature is reduced from 1750R to about 1050R by the film cooling. The average wall heat flux is reduced by a factor of 3.

  12. Pitot pressure measurements in flow fields behind circular-arc nozzles with exhaust jets at subsonic free-stream Mach numbers. [langley 16 foot transonic tunnel

    Science.gov (United States)

    Mason, M. L.; Putnam, L. E.

    1979-01-01

    The flow field behind a circular arc nozzle with exhaust jet was studied at subsonic free stream Mach numbers. A conical probe was used to measure the pitot pressure in the jet and free stream regions. Pressure data were recorded for two nozzle configurations at nozzle pressure ratios of 2.0, 2.9, and 5.0. At each set of test conditions, the probe was traversed from the jet center line into the free stream region at seven data acquisition stations. The survey began at the nozzle exit and extended downstream at intervals. The pitot pressure data may be applied to the evaluation of computational flow field models, as illustrated by a comparison of the flow field data with results of inviscid jet plume theory.

  13. Effect of nozzle and vertical-tail variables on the performance of a 3-surface F-15 model at transonic Mach numbers. [Langley 16 foot transonic tunnel

    Science.gov (United States)

    Pendergraft, O. C., Jr.; Bare, E. A.

    1982-01-01

    An investigation was conducted in the Langley 16 foot transonic tunnel to determine the longitudinal aerodynamic characteristics of twin two dimensional nozzles and twin baseline axisymmetric nozzles installed on a fully metric 0.047 scale model of the F-15 three surface configuration (canards, wing, horizontal tails). The effects on performance of two dimensional nozzle in flight thrust reversing, locations and orientation of the vertical tails, and deflections of the horizontal tails were also determined. Test data were obtained at static conditions and at Mach numbers from 0.60 to 1.20 over an angle of attack range from -2 deg to 15 deg. Nozzle pressure ratio was varied from jet off to about 6.5.

  14. Grit blasting nozzle fabricated from mild tool steel proves satisfactory

    Science.gov (United States)

    Mc Farland, J. E.; Turbitt, B.

    1966-01-01

    Dry blasting with glass beads through a nozzle assembly descales both the outside and inside surfaces of tubes of Inconel 718 used for the distribution of gaseous oxygen. The inside of the nozzle is coated with polyurethane and the deflector with a commercially available liquid urethane rubber.

  15. Numerical analysis of choked converging nozzle flows with surface ...

    Indian Academy of Sciences (India)

    Choked converging nozzle flow and heat transfer characteristics are numerically investigated by means of a recent computational model that integrates the axisymmetric continuity, state, momentum and energy equations. To predict the combined effects of nozzle geometry, friction and heat transfer rates, analyses are ...

  16. Multi-orifice deposition nozzle for additive manufacturing

    Science.gov (United States)

    Lind, Randall F.; Post, Brian K.; Cini, Colin L.

    2017-11-21

    An additive manufacturing extrusion head includes a nozzle for accepting and depositing a heated material onto a work surface and/or part. The nozzle includes a valve body and an internal poppet body moveable between positions to permit deposition of at least two bead sizes of heated material onto a work surface and/or part.

  17. Combustor nozzle for a fuel-flexible combustion system

    Science.gov (United States)

    Haynes, Joel Meier [Niskayuna, NY; Mosbacher, David Matthew [Cohoes, NY; Janssen, Jonathan Sebastian [Troy, NY; Iyer, Venkatraman Ananthakrishnan [Mason, OH

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  18. Ultrasonic pattern recognition study of feedwater nozzle inner radius indication

    International Nuclear Information System (INIS)

    Yoneyama, H.; Takama, S.; Kishigami, M.; Sasahara, T.; Ando, H.

    1983-01-01

    A study was made to distinguish defects on feed-water nozzle inner radius from noise echo caused by stainless steel cladding by using ultrasonic pattern recognition method with frequency analysis technique. Experiment has been successfully performed on flat clad plates and nozzle mock-up containing fatigue cracks and the following results which shows the high capability of frequency analysis technique are obtained

  19. Effect of the nozzle tip’s geometrical shape on electrospray deposition of organic thin films

    Science.gov (United States)

    Ueda, Hiroyuki; Takeuchi, Keita; Kikuchi, Akihiko

    2017-04-01

    Electrospray deposition (ESD) is a favorable wet fabrication technique for organic thin films. We investigated the effects of the nozzle tip’s geometrical shape on the spraying properties of an organic solution used for ESD. Five types of cylindrical metal nozzles with zero (flat end) to four protrusions at the tips were prepared for depositing a solution of a small-molecule compound, tris(8-hydroxyquinolinato)aluminum (Alq3) solution. We confirmed that the diameter of the deposited droplets and their size dispersion decreased with an increase in the number of protrusions. The area occupation ratio of small droplets with a diameter smaller than 2 µm increased from 21 to 83% as the number of protrusions was increased from zero to four. The surface roughness root mean square of 60-nm-thick Alq3 films substantially improved from 32.5 to 6.8 nm with increasing number of protrusions.

  20. Study on steam pressure characteristics in various types of nozzles

    Science.gov (United States)

    Firman; Anshar, Muhammad

    2018-03-01

    Steam Jet Refrigeration (SJR) is one of the most widely applied technologies in the industry. The SJR system was utilizes residual steam from the steam generator and then flowed through the nozzle to a tank that was containing liquid. The nozzle converts the pressure energy into kinetic energy. Thus, it can evaporate the liquid briefly and release it to the condenser. The chilled water, was produced from the condenser, can be used to cool the product through a heat transfer process. This research aims to study the characteristics of vapor pressure in different types of nozzles using a simulation. The Simulation was performed using ANSYS FLUENT software for nozzle types such as convergent, convrgent-parallel, and convergent-divergent. The results of this study was presented the visualization of pressure in nozzles and was been validated with experiment data.

  1. TMI-2 instrument nozzle examinations at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Neimark, L.A.; Shearer, T.L.; Purohit, A.; Hins, A.G.

    1993-09-01

    Six of the 14 instrument-penetration-tube nozzles removed from the lower head of TMI-2 were examined to identify damage mechanisms, provide insight to the fuel relocation scenario, and provide input data to the margin-to-failure analysis. Visual inspection, gamma scanning, metallography, microhardness measurements, and scanning electron microscopy were used to obtain the desired information. The results showed varying degrees of damage to the lower head nozzles, from ∼50% melt-off to no damage at all to near-neighbor nozzles. The elevations of nozzle damage suggested that the lower elevations (near the lower head) were protected from molten fuel, apparently by an insulating layer of fuel debris. The pattern of nozzle damage was consistent with fuel movement toward the hot-spot location identified in the vessel wall. Evidence was found for the existence of a significant quantity of control assembly debris on the lower head before the massive relocation of fuel occurred

  2. Five-hole pitot probe measurements of swirl, confinement and nozzle effects on confined turbulent flow

    Science.gov (United States)

    Lilley, D. G.; Scharrer, G. L.

    1984-01-01

    The results of a time-mean flow characterization of nonswirling and swirling inert flows in a combustor are reported. The five-hole pitot probe technique was used in axisymmetric test sections with expansion ratios of 1 and 1.5. A prominent corner recirculation zone identified in nonswirling expanding flows decreased in size with swirling flows. The presence of a downstream nozzle led to an adverse pressure gradient at the wall and a favorable gradient near the centerline. Reducing the expansion ratio reduced the central recirculation length. No significant effect was introduced in the flowfield by a gradual expansion.

  3. Altitude Performance Characteristics of Tail-pipe Burner with Variable-area Exhaust Nozzle

    Science.gov (United States)

    Jansen, Emmert T; Thorman, H Carl

    1950-01-01

    An investigation was conducted in the NACA Lewis altitude wind tunnel to determine effect of altitude and flight Mach number on performance of tail-pipe burner equipped with variable-area exhaust nozzle and installed on full-scale turbojet engine. At a given flight Mach number, with constant exhaust-gas and turbine-outlet temperatures, increasing altitude lowered the tail-pipe combustion efficiency and raised the specific fuel consumption while the augmented thrust ratio remained approximately constant. At a given altitude, increasing flight Mach number raised the combustion efficiency and augmented thrust ratio and lowered the specific fuel consumption.

  4. Novel design for transparent high-pressure fuel injector nozzles

    Science.gov (United States)

    Falgout, Z.; Linne, M.

    2016-08-01

    The efficiency and emissions of internal combustion (IC) engines are closely tied to the formation of the combustible air-fuel mixture. Direct-injection engines have become more common due to their increased practical flexibility and efficiency, and sprays dominate mixture formation in these engines. Spray formation, or rather the transition from a cylindrical liquid jet to a field of isolated droplets, is not completely understood. However, it is known that nozzle orifice flow and cavitation have an important effect on the formation of fuel injector sprays, even if the exact details of this effect remain unknown. A number of studies in recent years have used injectors with optically transparent nozzles (OTN) to allow observation of the nozzle orifice flow. Our goal in this work is to design various OTN concepts that mimic the flow inside commercial injector nozzles, at realistic fuel pressures, and yet still allow access to the very near nozzle region of the spray so that interior flow structure can be correlated with primary breakup dynamics. This goal has not been achieved until now because interior structures can be very complex, and the most appropriate optical materials are brittle and easily fractured by realistic fuel pressures. An OTN design that achieves realistic injection pressures and grants visual access to the interior flow and spray formation will be explained in detail. The design uses an acrylic nozzle, which is ideal for imaging the interior flow. This nozzle is supported from the outside with sapphire clamps, which reduces tensile stresses in the nozzle and increases the nozzle's injection pressure capacity. An ensemble of nozzles were mechanically tested to prove this design concept.

  5. Test of 6-in.-thick pressure vessels. Series 4: intermediate test vessels V-5 and V-9 with inside nozzle corner cracks

    International Nuclear Information System (INIS)

    Merkle, J.G.; Robinson, G.C.; Holz, P.P.; Smith, J.E.

    1977-01-01

    Failure testing is described for two 99-cm-diam (39-in.), 15.2-cm-thick (6-in.) steel pressure vessels, each containing one flawed nozzle. Vessel V-5 was tested at 88 0 C (190 0 F) and failed by leaking without fracturing after extensive stable crack growth. Vessel V-9 was tested at 25 0 C (75 0 F) and failed by fracturing. Material properties measured before the tests were used for pretest and posttest fracture analyses. Test results supported by analysis indicate that inside nozzle corner cracks are not subject to plane strain under pressure loading. The preparation of inside nozzle corner cracks is described in detail. Extensive experimental data are tabulated and plotted

  6. A Basic Study on the Ejection of ICI Nozzle under Severe Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jong Rae; Bae, Ji Hoon; Bang, Kwang Hyun [Korea Maritime and Ocean University, Busan (Korea, Republic of); Park, Jong Woong [Dongguk University, Gyeongju (Korea, Republic of)

    2016-05-15

    Nozzle injection should be blocked because it affect to the environment if its melting core exposes outside. The purpose of this study is to carry out the thermos mechanical analysis due to debris relocation under severe accidents and to predict the nozzle ejection calculated considering the contact between the nozzle and lower head, and the supports of pipe cables. As a result of analyzing process of severe accidents, there was melting reaction between nozzle and the lower head. In this situation, we might predict the non-uniform contact region of nozzle hole of lower head and nozzle outside, delaying ejection of nozzles. But after melting, the average remaining length of the nozzle was 120mm and the maximum vertical displacement of lower nozzle near the weld is 3.3mm so there would be no nozzle this model, because the cable supports restrains the vertical displacement of nozzle.

  7. PULSED MOLECULAR BEAM PRODUCTION WITH NOZZLES

    Energy Technology Data Exchange (ETDEWEB)

    Hagena, Otto-Friedrich

    1963-05-15

    Molecular beam experiments that can be carried out in pulsed operation may be performed at considerably reduced expense for apparatus if, for pulse generation, the gas supply to the beam production system is interrupted as opposed to the usual steady molecular beam. This technique is studied by measuring intensity vs time of molecular beam impulses of varying length, how fast and through which intermediate states the initial intensity of the impulse attains equilibrium, and in which way the intensity of the molecular-beam impulse is affected by the pulse length and by increasing pressure in the first pressure stage. For production of pulses, a magnetically actuated, quick shutting, valve is used whose scaling area is the inlet cone of the nozzle used for the beam generation. The shortest pulses produced had a pulse length of 1.6 ms. (auth)

  8. Specific decontamination methods: water nozzle, cavitation erosion

    International Nuclear Information System (INIS)

    Boulitrop, D.; Gauchon, J.P.; Lecoffre, Y.

    1984-05-01

    The erosion and decontamination tests carried out in the framework of this study, allowed to specify the fields favourable to the use of the high pressure jet taking into account the determinant parameters that are the pressure and the target-nozzle distance. The previous spraying of gels with chemical reagents (sulfuric acid anf hydrazine) allows to get better decontamination factors. Then, the feasibility study of a decontamination method by cavitation erosion is presented. Gelled compounds for decontamination have been developed; their decontamination quality has been evaluated by comparative contamination tests in laboratory and decontamination tests of samples of materials used in nuclear industry; this last method is adapted to remote handling devices and produces a low quantity of secondary effluents, so it allows to clean high contaminated installation on the site without additional exposure of the personnel [fr

  9. Golden Ratio

    Indian Academy of Sciences (India)

    Our attraction to another body increases if the body is symmetricaland in proportion. If a face or a structure is in proportion,we are more likely to notice it and find it beautiful.The universal ratio of beauty is the 'Golden Ratio', found inmany structures. This ratio comes from Fibonacci numbers.In this article, we explore this ...

  10. Golden Ratio

    Indian Academy of Sciences (India)

    Keywords. Fibonacci numbers, golden ratio, Sanskrit prosody, solar panel. Abstract. Our attraction to another body increases if the body is symmetricaland in proportion. If a face or a structure is in proportion,we are more likely to notice it and find it beautiful.The universal ratio of beauty is the 'Golden Ratio', found inmany ...

  11. Golden Ratio

    Indian Academy of Sciences (India)

    Our attraction to another body increases if the body is sym- metrical and in proportion. If a face or a structure is in pro- portion, we are more likely to notice it and find it beautiful. The universal ratio of beauty is the 'Golden Ratio', found in many structures. This ratio comes from Fibonacci numbers. In this article, we explore this ...

  12. Flame Interactions and Thermoacoustics in Multiple-Nozzle Combustors

    Science.gov (United States)

    Dolan, Brian

    The first major chapter of original research (Chapter 3) examines thermoacoustic oscillations in a low-emission staged multiple-nozzle lean direct injection (MLDI) combustor. This experimental program investigated a relatively practical combustor sector that was designed and built as part of a commercial development program. The research questions are both practical, such as under what conditions the combustor can be safely operated, and fundamental, including what is most significant to driving the combustion oscillations in this system. A comprehensive survey of operating conditions finds that the low-emission (and low-stability) intermediate and outer stages are necessary to drive significant thermoacoustics. Phase-averaged and time-resolved OH* imaging show that dramatic periodic strengthening and weakening of the reaction zone downstream of the low-emission combustion stages. An acoustic modal analysis shows the pressure wave shapes and identifies the dominant thermoacoustic behavior as the first longitudinal mode for this combustor geometry. Finally, a discussion of the likely significant coupling mechanisms is given. Periodic reaction zone behavior in the low-emission fuel stages is the primary contributor to unsteady heat release. Differences between the fuel stages in the air swirler design, the fuel number of the injectors, the lean blowout point, and the nominal operating conditions all likely contribute to the limit cycle behavior of the low-emission stages. Chapter 4 investigates the effects of interaction between two adjacent swirl-stabilized nozzles using experimental and numerical tools. These studies are more fundamental; while the nozzle hardware is the same as the lean direct injection nozzles used in the MLDI combustion concept, the findings are generally applicable to other swirl-stabilized combustion systems as well. Much of the work utilizes a new experiment where the distance between nozzles was varied to change the level of interaction

  13. Application of LBB to a nozzle-pipe interface

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Y.J.; Sohn, G.H.; Kim, Y.J. [and others

    1997-04-01

    Typical LBB (Leak-Before-Break) analysis is performed for the highest stress location for each different type of material in the high energy pipe line. In most cases, the highest stress occurs at the nozzle and pipe interface location at the terminal end. The standard finite element analysis approach to calculate J-Integral values at the crack tip utilizes symmetry conditions when modeling near the nozzle as well as away from the nozzle region to minimize the model size and simplify the calculation of J-integral values at the crack tip. A factor of two is typically applied to the J-integral value to account for symmetric conditions. This simplified analysis can lead to conservative results especially for small diameter pipes where the asymmetry of the nozzle-pipe interface is ignored. The stiffness of the residual piping system and non-symmetries of geometry along with different material for the nozzle, safe end and pipe are usually omitted in current LBB methodology. In this paper, the effects of non-symmetries due to geometry and material at the pipe-nozzle interface are presented. Various LBB analyses are performed for a small diameter piping system to evaluate the effect a nozzle has on the J-integral calculation, crack opening area and crack stability. In addition, material differences between the nozzle and pipe are evaluated. Comparison is made between a pipe model and a nozzle-pipe interface model, and a LBB PED (Piping Evaluation Diagram) curve is developed to summarize the results for use by piping designers.

  14. Fuel injector nozzle for an internal combustion engine

    Science.gov (United States)

    Cavanagh, Mark S.; Urven, Jr., Roger L.; Lawrence, Keith E.

    2008-11-04

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  15. The fabrication of nozzles for nuclear components by welding

    International Nuclear Information System (INIS)

    Moraes, M.M.; Krausser, P.; Echeverria, J.A.V.

    1986-01-01

    A nozzle with medium outside diameter of 1000 mm and medium thickness of 150 mm composed integrally by deposited metal by submerged-arc (wire S3NiMo1, 0.5mm) was fabricated in NUCLEP. The nondestructive, mechanical, metallographic and chemical testing carried out in a test sample made by the same procedure and welding parameters, showed results according to specifications established for primary components for nuclear power plants, and the tests presented mechanical properties and tenacity better than similar nozzle samples. This nozzle is cheapest concerning to importations, in respecting to its forged similar. (M.C.K.) [pt

  16. Static thrust-vectoring performance of nonaxisymmetric convergent-divergent nozzles with post-exit yaw vanes. M.S. Thesis - George Washington Univ., Aug. 1988

    Science.gov (United States)

    Foley, Robert J.; Pendergraft, Odis C., Jr.

    1991-01-01

    A static (wind-off) test was conducted in the Static Test Facility of the 16-ft transonic tunnel to determine the performance and turning effectiveness of post-exit yaw vanes installed on two-dimensional convergent-divergent nozzles. One nozzle design that was previously tested was used as a baseline, simulating dry power and afterburning power nozzles at both 0 and 20 degree pitch vectoring conditions. Vanes were installed on these four nozzle configurations to study the effects of vane deflection angle, longitudinal and lateral location, size, and camber. All vanes were hinged at the nozzle sidewall exit, and in addition, some were also hinged at the vane quarter chord (double-hinged). The vane concepts tested generally produced yaw thrust vectoring angles much less than the geometric vane angles, for (up to 8 percent) resultant thrust losses. When the nozzles were pitch vectored, yawing effectiveness decreased as the vanes were moved downstream. Thrust penalties and yawing effectiveness both decreased rapidly as the vanes were moved outboard (laterally). Vane length and height changes increased yawing effectiveness and thrust ratio losses, while using vane camber, and double-hinged vanes increased resultant yaw angles by 50 to 100 percent.

  17. Structural Evaluation of the RSRM Nozzle Replacement Adhesive

    Science.gov (United States)

    Batista-Rodriguez, A.; McLennan, M. L.; Palumbos, A. V.; Richardson, D. E.

    1999-01-01

    This paper describes the structural performance evaluation of a replacement adhesive for the Reusable Solid Rocket Motor (RSRM) nozzle utilizing finite element analysis. Due to material obsolescence and industrial safety issues, the two current structural adhesives, EA 913 and EA 946 are to be replaced with a new adhesive. TIGA 321. The structural evaluation in support of the adhesive replacement effort includes residual stress, transportation, and flight analyses. Factors of safety are calculated using the stress response from each analysis. The factors of safety are used as the limiting criteria to compare the replacement adhesive against the current adhesives. Included in this paper are the analytical approach, assumptions and modeling techniques as well as the results of the evaluation. An important factor to the evaluation is the similarity in constitutive material properties (elastic modulus and Poisson's ratio) between TIGA 321 and EA 913. This similarity leads to equivalent material response from the two adhesives. However, TIGA 321 surpasses EA 913's performance due to higher material capabilities. Conversely, the change in stress response from EA 946 to TIGA 321 is more apparent: this is primarily attributed to the difference in the modulii of the two adhesives, which differ by two orders of magnitude. The results of the bondline evaluation indicate that the replacement adhesive provides superior performance than the current adhesives with only minor exceptions. Furthermore, TIGA 321 causes only a minor chance in the response of the phenolic and metal components.

  18. Two-phase flow in a diverging nozzle

    International Nuclear Information System (INIS)

    Wadle, M.

    1986-05-01

    Stationary two-phase flow experiments were performed with steam-water and air-water mixtures in a well-instrumented horizontal diverging nozzle. The test section consisted of a constant diameter tube, the friction-section, followed by an expansion, the diffusor, which has a tanh-contour and finally another constant diameter tube. The diameter ratio sigma=D1/D2 is 16/80. For the steam-water experiments the flow parameters were: 0 2 and for air-water mixtures (0 2 ). The initial conditions were varied to achieve subcritical and critical mass flow rates. A new model for the pressure recovery in an abrupt expansion is presented. It is based on the superficial velocity concept and agrees well with the steam-water and the water-air experimental data as well as with the experiments of other authors. The experiments were also calculated with the two-phase code DUESE. The Drift-Flux models in this code as well as the constitutive correlations and their empirical constants could be tested. It is shown, that a 1D Drift-Flux code can handle the highly transient flow in the diffusor if the proper drift model is used. In a 1D simulation it is only necessary that the computational flow area is expanded to its full width within an axial length which is equivalent to the real contour. (orig./GL) [de

  19. Sex ratios

    OpenAIRE

    West, Stuart A; Reece, S E; Sheldon, Ben C

    2002-01-01

    Sex ratio theory attempts to explain variation at all levels (species, population, individual, brood) in the proportion of offspring that are male (the sex ratio). In many cases this work has been extremely successful, providing qualitative and even quantitative explanations of sex ratio variation. However, this is not always the situation, and one of the greatest remaining problems is explaining broad taxonomic patterns. Specifically, why do different organisms show so ...

  20. Journal of Agricultural Extension Vol.17 (2) December, 2013 ISSN ...

    African Journals Online (AJOL)

    ONIKOYI

    National Agricultural Extension Research Liaison Services (NAERGLS), ... agricultural extension, the organization is meant to serve the extension, ... farm families ratio, extension agents (EAs) training, and the likely causes of the problem.

  1. Altitude Compensating Nozzle Transonic Performance Flight Demonstration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Altitude compensating nozzles continue to be of interest for use on future launch vehicle boosters and upper stages because of their higher mission average Isp and...

  2. Design methods of Coanda effect nozzle with two streams

    Directory of Open Access Journals (Sweden)

    Michele TRANCOSSI

    2014-03-01

    Full Text Available This paper continues recent research of the authors about the ACHEON Coanda effect two streams nozzle. This nozzle aims to produce an effective deflection of a propulsive jet with a correspondent deviation of the thrust vector in a 2D plane. On the basis of a previously published mathematical model, based on integral equations, it tries to produce an effective design guideline, which can be adopted for design activities of the nozzle for aeronautic propulsion. The presented model allows defining a governing method for this innovative two stream synthetic jet nozzle. The uncertainness level of the model are discussed and novel aircraft architectures based on it are presented. A CFD validation campaign is produced focusing on validating the model and the designs produced.

  3. Characteristics of Multiplexed Grooved Nozzles for High Flow Rate Electrospray

    International Nuclear Information System (INIS)

    Kim, Kyoung Tae; Kim, Woo Jin; Kim, Sang Soo

    2007-01-01

    The electrospray operated in the cone-jet mode can generate highly charged micro droplets in an almost uniform size at flow rates. Therefore, the multiplexing system which can retain the characteristics of the cone-jet mode is inevitable for the electrospray application. This experiment reports the multiplexed grooved nozzle system with the extractor. The effects of the grooves and the extractor on the performance of the electrospray were evaluated through experiments. Using the grooved nozzle, the stable cone-jet mode can be achieved at the each groove in the grooved mode. Furthermore, the number of nozzles per unit area is increased by the extractor. The multiplexing density is 12 jets per cm 2 at 30 mm distance from the nozzle tip to the ground plate. The multiplexing system for the high flow rate electrospray is realized with the extractor which can diminish the space charge effect without sacrificing characteristics of the cone-jet mode

  4. Characterization of Plasmadynamics within a Small Magnetic Nozzle

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal presents an experimental and theoretical research project intended to develop a more refined model of the underlying physics of magnetic nozzles. The...

  5. Optimal Thrust Vectoring for an Annular Aerospike Nozzle, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent success of an annular aerospike flight test by NASA Dryden has prompted keen interest in providing thrust vector capability to the annular aerospike nozzle...

  6. Study of Liquid Breakup Process in Solid Rocket Motor Nozzle

    Science.gov (United States)

    2016-02-16

    Laboratory, Edwards, CA Abstract In a solid rocket motor (SRM), when the aluminum based propellant combusts, the fuel is oxidized into alumina (Al2O3...34Chemical Erosion of Refractory-Metal Nozzle Inserts in Solid - Propellant Rocket Motors," J. Propulsion and Power, Vol. 25, no.1,, 2009. [4] E. Y. Wong...34 Solid Rocket Nozzle Design Summary," in 4th AIAA Propulsion Joint Specialist Conference, Cleveland, OH, 1968. [5] Nayfeh, A. H.; Saric, W. S

  7. Nozzle Mounting Method Optimization Based on Robot Kinematic Analysis

    Science.gov (United States)

    Chen, Chaoyue; Liao, Hanlin; Montavon, Ghislain; Deng, Sihao

    2016-08-01

    Nowadays, the application of industrial robots in thermal spray is gaining more and more importance. A desired coating quality depends on factors such as a balanced robot performance, a uniform scanning trajectory and stable parameters (e.g. nozzle speed, scanning step, spray angle, standoff distance). These factors also affect the mass and heat transfer as well as the coating formation. Thus, the kinematic optimization of all these aspects plays a key role in order to obtain an optimal coating quality. In this study, the robot performance was optimized from the aspect of nozzle mounting on the robot. An optimized nozzle mounting for a type F4 nozzle was designed, based on the conventional mounting method from the point of view of robot kinematics validated on a virtual robot. Robot kinematic parameters were obtained from the simulation by offline programming software and analyzed by statistical methods. The energy consumptions of different nozzle mounting methods were also compared. The results showed that it was possible to reasonably assign the amount of robot motion to each axis during the process, so achieving a constant nozzle speed. Thus, it is possible optimize robot performance and to economize robot energy.

  8. Stresses in reactor pressure vessel nozzles -- Calculations and experiments

    International Nuclear Information System (INIS)

    Brumovsky, M.; Polachova, H.

    1995-01-01

    Reactor pressure vessel nozzles are characterized by a high stress concentration which is critical in their low-cycle fatigue assessment. Program of experimental verification of stress/strain field distribution during elastic-plastic loading of a reactor pressure vessel WWER-1000 primary nozzle model in scale 1:3 is presented. While primary nozzle has an ID equal to 850 mm, the model nozzle has ID equal to 280 mm, and was made from 15Kh2NMFA type of steel. Calculation using analytical methods was performed. Comparison of results using different analytical methods -- Neuber's, Hardrath-Ohman's as well as equivalent energy ones, used in different reactor Codes -- is shown. Experimental verification was carried out on model nozzles loaded statically as well as by repeated loading, both in elastic-plastic region. Strain fields were measured using high-strain gauges, which were located in different distances from center of nozzle radius, thus different stress concentration values were reached. Comparison of calculated and experimental data are shown and compared

  9. Effect of nozzle arrangement on Venturi scrubber performance

    Energy Technology Data Exchange (ETDEWEB)

    Ananthanarayanan, N.V.; Viswanathan, S.

    1999-12-01

    The effect of nozzle arrangement on flux distribution is studied in a rectangular, pilot-scale, Pease-Anthony-type Venturi scrubber. The annular, two-phase, heterogeneous, three-dimensional gas-liquid flow inside the scrubber is modeled using a commercial computational fluid dynamic (CFD) package, FLUENT. The comparison of predicted liquid drop concentration shows good agreement with experimental data. The model predicts the fraction of liquid flowing as film on the walls reasonably well. Visualization of flux patterns studied using four typical nozzle configurations indicate that the nonuniformity in flux distribution increases when the nozzle-to-nozzle distance is greater than 10% of the width of the side on which the nozzles are placed. An analysis of the effect of multiple jet penetration lengths on liquid flux distribution yielded a comparable distribution at 10--45% less liquid than uniform penetration for a particular nozzle configuration. This would lead to significant improvements in scrubber performance by achieving comparable collection efficiency at a lower pressure drop.

  10. Reverse flow through a large scale multichannel nozzle

    International Nuclear Information System (INIS)

    Duignan, M.R.; Nash, C.A.

    1992-01-01

    A database was developed for the flow of water through a scaled nozzle of a Savannah River Site reactor inlet plenum. The water flow in the nozzle was such that it ranged from stratified to water solid conditions. Data on the entry of air into the nozzle and plenum as a function of water flow are of interest in loss-of-coolant studies. The scaled nozzle was 44 cm long, had an entrance diameter of 95 mm, an exit opening of 58 mm x 356 mm, and an exit hydraulic diameter approximately equal to that of the inlet. Within the nozzle were three flow-straightening vanes which divided the flow path into four channels. All data were taken at steady-state and isothermal (300 K ± 1.5 K) conditions. During the reverse flow of water through the nozzle the point at which air begins to enter was predicted within 90% by a critical weir-flow calculation. The point of air entry into the plenum itself was found to be a function of flow conditions

  11. Remedial measures for nozzles susceptible to PWSCC

    International Nuclear Information System (INIS)

    Hunt, E.S.

    1992-01-01

    Remediating primary water stress corrosion cracking (PWSCC) is usually directed towards one of the three causes of PWSCC, material susceptiability, tensile stress, and an aggressive environment. The most practical remedial measures for primary loop penetration of PWSCC are considered to be shot peening, electropolishing, stress relief, and electroplating. The objective of shot peening is to induce a comprehensive residual stress on surfaces of Inconel 600 which are exposed to aggressive environments. Experience with steam generator tubes has shown this method is most effective if applied before PWSCC occurs. If it has already occurred, then the peening may retard but not arrest the corrosion. Electroplating consists of plating the inside surface of the Inconel 600 penetration with pure nickel. One of the major problems with this method was in obtaining surfaces uniformly free from pitting and roughness. Electropolishing for PWSCC remediation would remove the high strength cold work surfaces on the insides of nozzles which are produced by mechanical working e.g. machining. 5 figs

  12. Generation of reconstruction algorithms for the testing of complex geometries with the ALOK technique: Testing of the nozzle inner corner from the outside with regard to cladding influence and manipulator movements

    International Nuclear Information System (INIS)

    Stanger, K.H.; Licht, R.

    1989-01-01

    At a nozzle of the full-size pressure vessel which contains six artificial defects in the nozzle inner corner ALOK measurement data were recorded and the defect geometry was reconstructed with a special software package. The acoustic irradiation conditions and the operating parameters of the manipulators were selected in such a way that an essentially improved signal-to-noise ratio was achieved by typical ALOK noise suppression in the measurement data. (orig.) [de

  13. Thermal-Hydraulic Performance of Scrubbing Nozzle Used for CFVS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Chul; Lee, Doo Yong; Jung, Woo Young; Lee, Jong Chan; Kim, Gyu Tae [FNC TECH, Yongin (Korea, Republic of)

    2016-05-15

    A Containment Filtered Venting System (CFVS) is the most interested device to mitigate a threat against containment integrity under the severe accident of nuclear power plant by venting with the filtration of the fission products. FNC technology and partners have been developed the self-priming scrubbing nozzle used for the CFVS which is based on the venturi effect. The thermal-hydraulic performances such as passive scrubbing water suction as well as pressure drop across the nozzle have been tested under various thermal-hydraulic conditions. The two types of test section have been built for testing the thermal-hydraulic performance of the self-priming scrubbing nozzle. Through the visualization loop, the liquid suction performance through the slit, pressure drop across the nozzle are measured. The passive water suction flow through the suction slit at the throat is important parameter to define the scrubbing performance of the self-priming scrubbing nozzle. The water suction flow is increased with the increase of the overhead water level at the same inlet gas flow. It is not so much changed with the change of inlet gas flow at the overhead water level.

  14. Extending cavitation models to subcooled and superheated nozzle flow

    International Nuclear Information System (INIS)

    Schmidt, D.P.; Corradini, M.L.

    1997-01-01

    Existing models for cavitating flow are extended to apply to discharge of hot liquid through nozzles. Two types of models are considered: an analytical model and a two-dimensional numerical model. The analytical model of cavitating nozzle flow is reviewed and shown to apply to critical nozzle flow where the liquid is subcooled with respect to the downstream conditions. In this model the liquid and vapor are assumed to be in thermodynamic equilibrium. The success of this analytical model suggests that hydrodynamic effects dominate the subcooled nozzle flow. For more detailed predictions an existing multi-dimensional cavitation model based on hydrodynamic non-equilibrium is modified to apply to discharge of hot liquid. Non-equilibrium rate data from experimental measurements are used to close the equations. The governing equations are solved numerically in time and in two spatial dimensions on a boundary fitted grid. Results are shown for flow through sharp nozzles, and the coefficient of discharge is found to agree with experimental measurements for both subcooled and flashing fluid. (author)

  15. Next-generation nozzle check valve significantly reduces operating costs

    Energy Technology Data Exchange (ETDEWEB)

    Roorda, O. [SMX International, Toronto, ON (Canada)

    2009-01-15

    Check valves perform an important function in preventing reverse flow and protecting plant and mechanical equipment. However, the variety of different types of valves and extreme differences in performance even within one type can change maintenance requirements and life cycle costs, amounting to millions of dollars over the typical 15-year design life of piping components. A next-generation non-slam nozzle check valve which prevents return flow has greatly reduced operating costs by protecting the mechanical equipment in a piping system. This article described the check valve varieties such as the swing check valve, a dual-plate check valve, and nozzle check valves. Advancements in optimized design of a non-slam nozzle check valve were also discussed, with particular reference to computer flow modelling such as computational fluid dynamics; computer stress modelling such as finite element analysis; and flow testing (using rapid prototype development and flow loop testing), both to improve dynamic performance and reduce hydraulic losses. The benefits of maximized dynamic performance and minimized pressure loss from the new designed valve were also outlined. It was concluded that this latest non-slam nozzle check valve design has potential applications in natural gas, liquefied natural gas, and oil pipelines, including subsea applications, as well as refineries, and petrochemical plants among others, and is suitable for horizontal and vertical installation. The result of this next-generation nozzle check valve design is not only superior performance, and effective protection of mechanical equipment but also minimized life cycle costs. 1 fig.

  16. The role of nozzle convergence in diesel combustion

    Energy Technology Data Exchange (ETDEWEB)

    J. Benajes; S. Molina; C. Gonzaalez; R. Donde [CMT-Motores Termicos, Universidad Politecnica de Valencia, Valencia (Spain)

    2008-08-15

    An experimental study has been performed for identifying the role of injector nozzle hole convergence and cavitation in diesel engine combustion and pollutant emissions. For doing so, five nozzles were tested under different operating and experimental conditions. The critical cavitation number of each nozzle was analyzed. With this value, an estimation of the mixing process at different conditions obtained. This data is used to explain the combustion results which are analyzed in terms of the apparent combustion time, rate of heat release, in-cylinder pressures, adiabatic temperatures and soot and NOx emissions. Special emphasis is put in developing an expression to explicitly link the mixing process and the injection rate with the rate of heat release. The results show that the fuel-air mixing process can be improved by the use of both convergent and cavitating nozzles, thus lowering the soot emissions. The NOx production, being dependent of the injection rate and the mixing process, does not necessarily increase with the use of more convergent nozzles. 40 refs., 8 fig., tabs.

  17. Device and method for unfastening and lifting a top nozzle subassembly from a reconstitutable fuel assembly

    International Nuclear Information System (INIS)

    Wilson, J.F.

    1987-01-01

    This patent describes a reconstitutable fuel assembly including at least one guide thimble having an upper end portion and a top nozzle subassembly having a lower adapter plate with at least one opening, and an upper hold-down plate with at least one passageway positioned above and aligned with the lower adapter plate opening. At least one hold-down spring is disposed and extends between the upper and lower plates and at least one elongated tubular hollow sleeve is disposed and extends between the upper and lower plates. The upper end portion of the guide thimble extends upwardly through the opening in the lower adapter plate and has a threaded terminal end disposed above the adapter plate. The threaded terminal end of the guide thimble and an upper end extend upwardly through the passageway of the upper hold-down plate. A device is described for unfastening and lifting the top nozzle subassembly from the guide thimble of the fuel assembly, comprising: (a) at least one hollow gripper tube, the tube having an open lower end; (b) means mounting the gripper tube for vertical alignment with and insertion of its lower end portion into the elongated sleeve of the top nozzle subassembly to a position therein located above and adjacent to the threaded lower end of the sleeve; (c) force-generating means disposed within the gripper tube for rotatable movement and concurrent axial movement upwardly and downwardly within the tube and also disposed at the open lower end of the gripper tube for extension into and from the gripper tube open lower end upon axial movement upwardly and downwardly within the gripper tube

  18. Stress analyses of flat plates with attached nozzles. Vol. 2: Experimental stress analyses of a flat plate with one nozzle attached

    International Nuclear Information System (INIS)

    Battiste, R.L.; Peters, W.H.; Ranson, W.F.; Swinson, W.F.

    1975-07-01

    Vol. 1 of this report compares experimental results with theoretical stress distributions for a flat plate with one nozzle configuration and for a flat plate with two closely spaced nozzles attached. This volume contains the complete test results for a flat plate with one nozzle attached that was subjected to 1:1 and 1:2 biaxial planar loadings on the plate, to a thrust loading on the nozzle, and to a moment loading on the nozzle. The plate tested was 36 x 36 x 0.375 in., and the attached nozzle had an outer dia of 2.625 in. and a 0.250-in.-thick wall. The nozzle was located in the center of the plate and was considered to be free of weld distortions and irregularities in the junction area. (U.S.)

  19. Plasma acceleration by magnetic nozzles and shock waves

    International Nuclear Information System (INIS)

    Hattori, Kunihiko; Murakami, Fumitake; Miyazaki, Hiroyuki; Imasaki, Atsushi; Yoshinuma, Mikirou; Ando, Akira; Inutake, Masaaki

    2001-01-01

    We have measured axial profiles of ion acoustic Mach number, M i , of a plasma flow blowing off from an MPD (magneto-plasma-dynamic) arc-jet in various magnetic configurations. It is found that the Mach number increases in a divergent nozzle up to 3, while it stays at about unity in a uniform magnetic channel. When a magnetic bump is added in the exit of the divergent magnetic nozzle, the Mach number suddenly decreases below unity, due to an occurrence of shock wave. The subsonic flow after the shock wave is re-accelerated to a supersonic flow through a magnetic Laval nozzle. This behavior is explained well by the one-dimensional isotropic flow model. The shock wave is discussed in relation to the Rankine-Hugoniot relation. (author)

  20. Nuclear reactor fuel assembly with a removably top nozzle

    International Nuclear Information System (INIS)

    Shallenberger, J.M.; Ferlan, S.J.

    1985-01-01

    The invention relates to a nuclear fuel assembly having an improved attaching structure for removably mounting the top nozzle of the fuel assembly on the upper end of a control-rod guide thimble. The attaching structure comprises an outer socket defined in a portion of the top nozzle, an inner socket extending from the upper end of the guide thimble and removably received in the outer socket for interlocking engagement therewith, and an elongate locking member adapted to be inserted into the inner socket to maintain said interlocking engagement. Removal of the locking member from the inner socket enables the latter to be withdrawn from the outer socket, thereby enabling the top nozzle to be removed from the guide thimble

  1. Top-nozzle mounted replacement guide pin assemblies

    International Nuclear Information System (INIS)

    Gilmore, C.B.; Andrews, W.H.

    1993-01-01

    A replacement guide pin assembly is provided for aligning a nuclear fuel assembly with an upper core plate of a nuclear reactor core. The guide pin assembly includes a guide pin body having a radially expandable base insertable within a hole in the top nozzle, a ferrule insertable within the guide pin base and capable of imparting a radially and outwardly directed force on the expandable base to expand it within the hole of the top nozzle and thereby secure the guide pin body to the top nozzle in response to a predetermined displacement of the ferrule relative to the guide pin body along its longitudinal axis, and a lock screw interfitted with the ferrule and threaded into the guide pin body so as to produce the predetermined displacement of the ferrule. (author)

  2. Effect of nozzle geometry for swirl type twin-fluid water mist nozzle on the spray characteristic

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Soon Hyun; Kim, Do Yeon; Kim, Dong Keon [Pusan National University, Busan (Korea, Republic of); Kim, Bong Hwan [Jinju National University, Jinju (Korea, Republic of)

    2011-07-15

    Experimental investigations on the atomization characteristics of twin-fluid water mist nozzle were conducted using particle image velocimetry (PIV) system and particle motion analysis system (PMAS). The twin-fluid water mist nozzles with swirlers designed two types of swirl angles such as 0 .deg. , 90 .deg. and three different size nozzle hole diameters such as 0.5mm, 1mm, 1.5mm were employed. The experiments were carried out by the injection pressure of water and air divided into 1bar, 2bar respectively. The droplet size of the spray was measured using PMAS. The velocity and turbulence intensity were measured using PIV. The velocity, turbulence intensity and SMD distributions of the sprays were measured along the centerline and radial direction. As the experimental results, swirl angle controlled to droplet sizes. It was found that SMD distribution decreases with the increase of swirl angle. The developed twin-fluid water mist nozzle was satisfied to the criteria of NFPA 750, Class 1. It was proven that the developed nozzle under low pressures could be applied to fire protection system.

  3. Effect of nozzle geometry for swirl type twin-fluid water mist nozzle on the spray characteristic

    International Nuclear Information System (INIS)

    Yoon, Soon Hyun; Kim, Do Yeon; Kim, Dong Keon; Kim, Bong Hwan

    2011-01-01

    Experimental investigations on the atomization characteristics of twin-fluid water mist nozzle were conducted using particle image velocimetry (PIV) system and particle motion analysis system (PMAS). The twin-fluid water mist nozzles with swirlers designed two types of swirl angles such as 0 .deg. , 90 .deg. and three different size nozzle hole diameters such as 0.5mm, 1mm, 1.5mm were employed. The experiments were carried out by the injection pressure of water and air divided into 1bar, 2bar respectively. The droplet size of the spray was measured using PMAS. The velocity and turbulence intensity were measured using PIV. The velocity, turbulence intensity and SMD distributions of the sprays were measured along the centerline and radial direction. As the experimental results, swirl angle controlled to droplet sizes. It was found that SMD distribution decreases with the increase of swirl angle. The developed twin-fluid water mist nozzle was satisfied to the criteria of NFPA 750, Class 1. It was proven that the developed nozzle under low pressures could be applied to fire protection system

  4. The modelling of an SF6 arc in a supersonic nozzle: II. Current zero behaviour of the nozzle arc

    International Nuclear Information System (INIS)

    Zhang, Q; Liu, J; Yan, J D; Fang, M T C

    2016-01-01

    The present work (part II) forms the second part of an investigation into the behaviour of SF 6 nozzle arc. It is concerned with the aerodynamic and electrical behaviour of a transient nozzle arc under a current ramp specified by a rate of current decay (d i /d t ) before current zero and a voltage ramp (d V /d t ) after current zero. The five flow models used in part I [1] for cold gas flow and DC nozzle arcs have been applied to study the transient arc at three stagnation pressures ( P 0 ) and two values of d i /d t for the current ramp, representing a wide range of arcing conditions. An analysis of the physical mechanisms encompassed in each flow model is given with an emphasis on the adequacy of a particular model in describing the rapidly varying arc around current zero. The critical rate of rise of recovery voltage (RRRV) is found computationally and compared with test results of Benenson et al [2]. For transient nozzle arcs, the RRRV is proportional to the square of P 0 , rather than to the square root of P 0 for DC nozzle arcs. The physical mechanisms responsible for the strong dependence of RRRV on P 0 have been investigated. The relative merits of the flow models employed are discussed. (paper)

  5. The Effect of Bypass Nozzle Exit Area on Fan Aerodynamic Performance and Noise in a Model Turbofan Simulator

    Science.gov (United States)

    Hughes, Christopher E.; Podboy, Gary, G.; Woodward, Richard P.; Jeracki, Robert, J.

    2013-01-01

    The design of effective new technologies to reduce aircraft propulsion noise is dependent on identifying and understanding the noise sources and noise generation mechanisms in the modern turbofan engine, as well as determining their contribution to the overall aircraft noise signature. Therefore, a comprehensive aeroacoustic wind tunnel test program was conducted called the Fan Broadband Source Diagnostic Test as part of the NASA Quiet Aircraft Technology program. The test was performed in the anechoic NASA Glenn 9- by 15-Foot Low Speed Wind Tunnel using a 1/5 scale model turbofan simulator which represented a current generation, medium pressure ratio, high bypass turbofan aircraft engine. The investigation focused on simulating in model scale only the bypass section of the turbofan engine. The test objectives were to: identify the noise sources within the model and determine their noise level; investigate several component design technologies by determining their impact on the aerodynamic and acoustic performance of the fan stage; and conduct detailed flow diagnostics within the fan flow field to characterize the physics of the noise generation mechanisms in a turbofan model. This report discusses results obtained for one aspect of the Source Diagnostic Test that investigated the effect of the bypass or fan nozzle exit area on the bypass stage aerodynamic performance, specifically the fan and outlet guide vanes or stators, as well as the farfield acoustic noise level. The aerodynamic performance, farfield acoustics, and Laser Doppler Velocimeter flow diagnostic results are presented for the fan and four different fixed-area bypass nozzle configurations. The nozzles simulated fixed engine operating lines and encompassed the fan stage operating envelope from near stall to cruise. One nozzle was selected as a baseline reference, representing the nozzle area which would achieve the design point operating conditions and fan stage performance. The total area change from

  6. RSRM Nozzle-to-Case Joint J-leg Development

    Science.gov (United States)

    Albrechtsen, Kevin U.; Eddy, Norman F.; Ewing, Mark E.; McGuire, John R.

    2003-01-01

    Since the beginning of the Space Shuttle Reusable Solid Rocket Motor (RSRM) program, nozzle-to-case joint polysulfide adhesive gas paths have occurred on several flight motors. These gas paths have allowed hot motor gases to reach the wiper O-ring. Even though these motors continue to fly safely with this condition, a desire was to reduce such occurrences. The RSRM currently uses a J-leg joint configuration on case field joints and igniter inner and outer joints. The J-leg joint configuration has been successfully demonstrated on numerous RSRM flight and static test motors, eliminating hot gas intrusion to the critical O-ring seals on these joints. Using the proven technology demonstrated on the case field joints and igniter joints, a nozzle-to-case joint J-leg design was developed for implementation on RSRM flight motors. This configuration provides an interference fit with nozzle fixed housing phenolics at assembly, with a series of pressurization gaps incorporated outboard of the joint mating surface to aid in joint pressurization and to eliminate any circumferential flow in this region. The joint insulation is bonded to the nozzle phenolics using the same pressure sensitive adhesive used in the case field joints and igniter joints. An enhancement to the nozzle-to-case joint J-leg configuration is the implementation of a carbon rope thermal barrier. The thermal barrier is located downstream of the joint bondline and is positioned within the joint in a manner where any hot gas intrusion into the joint passes through the thermal barrier, reducing gas temperatures to a level that would not affect O-rings downstream of the thermal barrier. This paper discusses the processes used in reaching a final nozzle-to-case joint J-leg design, provides structural and thermal results in support of the design, and identifies fabrication techniques and demonstrations used in arriving at the final configuration.

  7. Optimization design of energy deposition on single expansion ramp nozzle

    Science.gov (United States)

    Ju, Shengjun; Yan, Chao; Wang, Xiaoyong; Qin, Yupei; Ye, Zhifei

    2017-11-01

    Optimization design has been widely used in the aerodynamic design process of scramjets. The single expansion ramp nozzle is an important component for scramjets to produces most of thrust force. A new concept of increasing the aerodynamics of the scramjet nozzle with energy deposition is presented. The essence of the method is to create a heated region in the inner flow field of the scramjet nozzle. In the current study, the two-dimensional coupled implicit compressible Reynolds Averaged Navier-Stokes and Menter's shear stress transport turbulence model have been applied to numerically simulate the flow fields of the single expansion ramp nozzle with and without energy deposition. The numerical results show that the proposal of energy deposition can be an effective method to increase force characteristics of the scramjet nozzle, the thrust coefficient CT increase by 6.94% and lift coefficient CN decrease by 26.89%. Further, the non-dominated sorting genetic algorithm coupled with the Radial Basis Function neural network surrogate model has been employed to determine optimum location and density of the energy deposition. The thrust coefficient CT and lift coefficient CN are selected as objective functions, and the sampling points are obtained numerically by using a Latin hypercube design method. The optimized thrust coefficient CT further increase by 1.94%, meanwhile, the optimized lift coefficient CN further decrease by 15.02% respectively. At the same time, the optimized performances are in good and reasonable agreement with the numerical predictions. The findings suggest that scramjet nozzle design and performance can benefit from the application of energy deposition.

  8. Spray droplet velocity characterization for convergent nozzles with three different diameters

    Energy Technology Data Exchange (ETDEWEB)

    R. Payri; B. Tormos; F.J. Salvador; L. Araneo [Universidad Politecnica de Valencia, Valencia (Spain). CMT-Motores Termicos

    2008-11-15

    The core of the present work consists of the phase-Doppler anemometry non-intrusive measurements performed at various points of diesel direct injection sprays in order to obtain the local speed of fuel droplets. The main objective was to perform extensive sets of measurements on convergent nozzles with various orifices diameters, observe and justify the differences and compare the experimental data with a theoretical approach derived by the authors in a previous work which takes into account the spray momentum flux. Experimental axial velocity profiles in different sections of the spray showed a radial distribution that was fitted with a high level of agreement to a Gaussian profile and so proving that this type of profile is a reasonable approach for the type of sprays within the scope of the present work. The experimental results showed that the velocity in the spray's axis inversely depends on axial position and that for a given axial position; higher axial velocity has been measured for the nozzles with higher spray momentum. 16 refs., 5 figs., 5 tabs.

  9. TMI-2 instrument nozzle examinations at Argonne National Laboratory, February 1991--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Neimark, L.A.; Shearer, T.L.; Purohit, A.; Hins, A.G.

    1994-06-01

    The accident at the Three Mile Island Unit 2 (TMI-2) reactor in March 1979 resulted in the relocation of approximately 19,000 kg of molten core material to the lower head of the reactor vessel. This material caused extensive damage to the instrument guide tubes and nozzles and was suspected of having caused significant metallurgical changes in the condition of the lower head itself. These changes and their effect on the margin-to-failure of the lower head became the focal point of an investigation co-sponsored by the United States Nuclear Regulatory Commission (NRC) and the Organization for Economic Co-operation and Development (OECD). The TMI-2 Vessel Investigation Project (VIP) was formed to determine the metallurgical state of the vessel at the lower head and to assess the margin-to-failure of the vessel under the conditions existing during the accident. This report was prepared under the auspices of the OECD/NEA Three Mile Island Vessel Investigation Project. Under the auspices of the VIP, specimens of the reactor vessel were removed in February 1990 by MPR Associates, Inc. In addition to these specimens, fourteen instrument nozzle segments and two segments of instrument guide tubes were retrieved for metallurgical evaluation. The purpose of this evaluation was to provide additional information on the thermal conditions on the lower head that would influence the margin-to-failure, and to provide insight into the progression of the accident scenario, specifically the movement of the molten fuel across the lower head.

  10. AND - Advanced Nozzle Design; Entwurf eines fortgeschrittenen Stutzendesigns

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, A.; Wernicke, R. [TUEV NORD SysTec, Hamburg (Germany). Mechanische Analyse; Friedrich, M. [FE-DESIGN GmbH, Karlsruhe (Germany). Engineering Services

    2006-07-01

    In this paper it is shown by the example of a nozzle optimisation that the improvement of the traditional component design like nozzles and high pressure header may lead to an increase of the long-time creep resistance. In a next step - on the basis of these results - software tools could be developed, which enable the designing engineer to accomplish a design without complex and costly FEM computations. In the context of a prototype building the manufacturing conditions are to be specified. (orig.)

  11. Measurement of unsteady airflow velocity at nozzle outlet

    Science.gov (United States)

    Pyszko, René; Machů, Mário

    2017-09-01

    The paper deals with a method of measuring and evaluating the cooling air flow velocity at the outlet of the flat nozzle for cooling a rolled steel product. The selected properties of the Prandtl and Pitot sensing tubes were measured and compared. A Pitot tube was used for operational measurements of unsteady dynamic pressure of the air flowing from nozzles to abtain the flow velocity. The article also discusses the effects of air temperature, pressure and relative air humidity on air density, as well as the influence of dynamic pressure filtering on the error of averaged velocity.

  12. Numerical study on drop formation through a micro nozzle

    International Nuclear Information System (INIS)

    Kim, Sung Il; Son, Gi Hun

    2005-01-01

    The drop ejection process from a micro nozzle is investigated by numerically solving the conservation equations for mass and momentum. The liquid-gas interface is tracked by a level set method which is extended for two-fluid flows with irregular solid boundaries. Based on the numerical results, the liquid jet breaking and droplet formation behavior is found to depend strongly on the pulse type of forcing pressure and the contact angle at the gas-liquid-solid interline. The negative pressure forcing can be used to control the formation of satelite droplets. Also, various nozzle shapes are tested to investigate their effect on droplet formation

  13. Multiple-Nozzle Spray Head Applies Foam Insulation

    Science.gov (United States)

    Walls, Joe T.

    1993-01-01

    Spray head equipped with four-nozzle turret mixes two reactive components of polyurethane and polyisocyanurate foam insulating material and sprays reacting mixture onto surface to be insulated. If nozzle in use becomes clogged, fresh one automatically rotated into position, with minimal interruption of spraying process. Incorporates features recirculating and controlling pressures of reactive components to maintain quality of foam by ensuring proper blend at outset. Also used to spray protective coats on or in ships, aircraft, and pipelines. Sprays such reactive adhesives as epoxy/polyurethane mixtures. Components of spray contain solid-particle fillers for strength, fire retardance, toughness, resistance to abrasion, or radar absorption.

  14. Control of Surge in Centrifugal Compressor by Using a Nozzle Injection System: Universality in Optimal Position of Injection Nozzle

    Directory of Open Access Journals (Sweden)

    Toshiyuki Hirano

    2012-01-01

    Full Text Available The passive control method for surge and rotating stall in centrifugal compressors by using a nozzle injection system was proposed to extend the stable operating range to the low flow rate. A part of the flow at the scroll outlet of a compressor was recirculated to an injection nozzle installed on the inner wall of the suction pipe of the compressor through the bypass pipe and injected to the impeller inlet. Two types of compressors were tested at the rotational speeds of 50,000 rpm and 60,000 rpm with the parameter of the circumferential position of the injection nozzle. The present experimental results revealed that the optimum circumferential position, which most effectively reduced the flow rate for the surge inception, existed at the opposite side of the tongue of the scroll against the rotational axis and did not depend on the compressor system and the rotational speeds.

  15. Structure Optimization and Numerical Simulation of Nozzle for High Pressure Water Jetting

    Directory of Open Access Journals (Sweden)

    Shuce Zhang

    2015-01-01

    Full Text Available Three kinds of nozzles normally used in industrial production are numerically simulated, and the structure of nozzle with the best jetting performance out of the three nozzles is optimized. The R90 nozzle displays the most optimal jetting properties, including the smooth transition of the nozzle’s inner surface. Simulation results of all sample nozzles in this study show that the helix nozzle ultimately displays the best jetting performance. Jetting velocity magnitude along Y and Z coordinates is not symmetrical for the helix nozzle. Compared to simply changing the jetting angle, revolving the jet issued from the helix nozzle creates a grinding wheel on the cleaning surface, which makes not only an impact effect but also a shearing action on the cleaning object. This particular shearing action improves the cleaning process overall and forms a wider, effective cleaning range, thus obtaining a broader jet width.

  16. Experimental assessment of heat and mass transfer of modular nozzles of cooling towers

    Science.gov (United States)

    Merentsov, N. A.; Lebedev, V. N.; Golovanchikov, A. B.; Balashov, V. A.; Nefed'eva, E. E.

    2018-01-01

    Data of experimental study of hydrodynamics, heat and mass transfer of modular nozzles of cooling towers and some comparative characteristics of the packed device with nozzles, which have wide industrial application, are given in the article.

  17. Computational Simulation on a Coaxial Substream Powder Feeding Laval Nozzle of Cold Spraying

    Directory of Open Access Journals (Sweden)

    Guosheng HUANG

    2014-09-01

    Full Text Available In this paper, a substream coaxial powder feeding nozzle was investigated for use in cold spraying. The relationship between nozzle structure and gas flow, the acceleration behavior of copper particles were examined by computational simulation method. Also, one of the nozzle was used to spray copper coating on steel substrate. The simulation results indicate that: the velocity of gas at the center of the nozzle is lower than that of the conventional nozzle. Powders are well restrained near the central line of the nozzle, no collision occurred between the nozzle wall and the powders. This type of nozzle with expansion 3.25 can successfully deposit copper coating on steel substrate, the copper coating has low porosity about 3.1 % – 3.8 % and high bonding strength about 23.5 MPa – 26.8 MPa. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4244

  18. High Velocity Jet Noise Source Location and Reduction. Task 6. Noise Abatement Nozzle Design Guide.

    Science.gov (United States)

    1979-04-01

    the Conical Nozzle 255 on the Bertin Aerotrain . xvi ji4 ’ . _______ p .. LIST OF ILLUSTRATIONS (Continued) Figure Page D-37. Predicted and Measured...Moving-Frame Noise from the 256 Conical Nozzle on the Bertin Aerotrain . D-38. Predicted and Measured Static Noise from the 104-Tube 257 Nozzle on the...Bertin Aerotrain . D-39. Predicted and Measured Moving-Frame Noise from the 104- 258 Tube Nozzle on the Bertin Aerotrain . D-40. Relative Velocity Index m

  19. Analysis and design of optimized truncated scarfed nozzles subject to external flow effects

    Science.gov (United States)

    Shyne, Rickey J.; Keith, Theo G., Jr.

    1990-01-01

    Rao's method for computing optimum thrust nozzles is modified to study the effects of external flow on the performance of a class of exhaust nozzles. Members of this class are termed scarfed nozzles. These are two-dimensional, nonsymmetric nozzles with a flat lower wall. The lower wall (the cowl) is truncated in order to save weight. Results from a parametric investigation are presented to show the effects of the external flowfield on performance.

  20. Effects of dimensional size and surface roughness on service performance for a micro Laval nozzle

    International Nuclear Information System (INIS)

    Cai, Yukui; Liu, Zhanqiang; Shi, Zhenyu

    2017-01-01

    Nozzles with large and small dimensions are widely used in various industries. The main objective of this research is to investigate the effects of dimensional size and surface roughness on the service performance of a micro Laval nozzle. The variation of nozzle service performance from the conventional macro to micro scale is presented in this paper. This shows that the dimensional nozzle size has a serious effect on the nozzle gas flow friction. With the decrease of nozzle size, the velocity performance and thrust performance deteriorate. The micro nozzle performance has less sensitivity to the variation of surface roughness than the large scale nozzle does. Surface quality improvement and burr prevention technologies are proposed to reduce the friction effect on the micro nozzle performance. A novel process is then developed to control and depress the burr generation during micro nozzle machining. The polymethyl-methacrylate as a coating material is coated on the rough machined surface before finish machining. Finally, the micro nozzle with a throat diameter of 1 mm is machined successfully. Thrust test results show that the implement and application of this machining process benefit the service performance improvement of the micro nozzle. (paper)

  1. Nuclear reactor fuel assembly with a removable top nozzle

    International Nuclear Information System (INIS)

    Shallenberger, J.M.; Ferlan, S.J.

    1986-01-01

    This patent describes a fuel assembly having at least one control rod guide thimble and a top nozzle, the top nozzle including a transversely extending adapter plate. An improved attaching structure is described for removably mounting the top nozzle on the guide thimble comprising: (a) means defining an outer socket in the top nozzle, the outer socket defining means including a passageway extending through the adapter plate and having a first mating element defined in the adapter plate within the passageway; (b) means on an upper end of the guide thimble defining an inner socket, the inner socket defining means including an elongated sleeve having an upper end portion. The upper end portion of the sleeve has a second mating element formed thereon and at least one elongated axial slot defined therein for permitting radial movement of the sleeve upper end portion between a compressed releasing position for removing and inserting the inner socket from and into the outer socket and an expanded locking position for locking the inner and outer sockets together

  2. SHINE Tritium Nozzle Design: Activity 6, Task 1 Report

    Energy Technology Data Exchange (ETDEWEB)

    Okhuysen, Brett S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pulliam, Elias Noel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-05

    In FY14, we studied the qualitative and quantitative behavior of a SHINE/PNL tritium nozzle under varying operating conditions. The result is an understanding of the nozzle’s performance in terms of important flow features that manifest themselves under different parametric profiles. In FY15, we will consider nozzle design with a focus on nozzle geometry and integration. From FY14 work, we will understand how the SHINE/PNL nozzle behaves under different operating scenarios. The first task for FY15 is to evaluate the FY14 model as a predictor of the actual flow. Considering different geometries is more time-intensive than parameter studies, therefore we recommend considering any relevant flow features that were not included in the FY14 model. In the absence of experimental data, it is particularly important to consider any sources of heat in the domain or boundary conditions that may affect the flow and incorporate these into the simulation if they are significant. Additionally, any geometric features of the beamline segment should be added to the model such as the orifice plate. The FY14 model works with hydrogen. An improvement that can be made for FY15 is to develop CFD properties for tritium and incorporate those properties into the new models.

  3. Calibration of nozzle for air mass flow measurement

    Science.gov (United States)

    Uher, Jan; Kanta, Lukáš

    2017-09-01

    The effort to make calibration measurement of mass flow through a nozzle was not satisfying. Traversing across the pipe radius with Pitot probe was done. The presence of overshoot behind the bend in the pipe was found. The overshoot led to an asymmetric velocity profile.

  4. 46 CFR 181.320 - Fire hoses and nozzles.

    Science.gov (United States)

    2010-10-01

    ... fittings of brass or other suitable corrosion-resistant material that comply with NFPA 1963 (incorporated..., and an outer cover of rubber or equivalent material, and of sufficient strength to withstand the... corrosion-resistant material. (d) Each nozzle must be of corrosion-resistant material and be capable of...

  5. Separation of finest dusts in Venturi scrubber with hybrid nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Reither, K. [Reither Venturiwaescher GmbH, Troisdorf (Germany); Boerger, G.G.; Listner, U.; Schweitzer, M. [Bayer AG, Leverkusen (Germany)

    2001-03-01

    Venturi scrubbers are high-performance dust separators whose efficiency is closely connected with high pressure losses. The tube-slot Venturi scrubber with hybrid nozzles is a novel scrubber type of simple and compact design, by means of which high separation efficiency is reached with pressure losses practically tending to zero. This new wet scrubber is particularly suitable for refitting existing plants. (orig.)

  6. The jet nozzle process for uranium 235 isotopic enrichment

    International Nuclear Information System (INIS)

    Jordan, I.; Umeda, K.; Brown, A.E.P.

    1979-01-01

    A general survey of the isotopic enrichment of Uranium - 235, principally by jet nozzle process, is made. Theoretical treatment of a single stage and cascade of separation stages of the above process with its development in Germany until 1976 is presented [pt

  7. Design and Analysis of Elliptical Nozzle in AJM Process using ...

    African Journals Online (AJOL)

    Abrasive jet machining (AJM) is a micromachining process, where material is removed from the work piece by the erosion effect of a high speed stream of abrasive particles carried in a gas medium, which are emerging from a nozzle. Abrasive machining includes grinding super finishing honing, lapping polishing etc.

  8. Ayame/PAM-D apogee kick motor nozzle failure analysis

    Science.gov (United States)

    1981-01-01

    The failure of two communication satellites during firing sequence were examined. The correlation/comparison of the circumstances of the Ayame incidents and the failure of the STAR 48 (DM-2) motor are reviewed. The massive nozzle failure of the AKM to determine the impact on spacecraft performance is examined. It is recommended that a closer watch is kept on systems techniques,

  9. Development of rapid mixing fuel nozzle for premixed combustion

    International Nuclear Information System (INIS)

    Katsuki, Masashi; Chung, Jin Do; Kim, Jang Woo; Hwang, Seung Min; Kim, Seung Mo; Ahn, Chul Ju

    2009-01-01

    Combustion in high-preheat and low oxygen concentration atmosphere is one of the attractive measures to reduce nitric oxide emission as well as greenhouse gases from combustion devices, and it is expected to be a key technology for the industrial applications in heating devices and furnaces. Before proceeding to the practical applications, we need to elucidate combustion characteristics of non-premixed and premixed flames in high-preheat and low oxygen concentration conditions from scientific point of view. For the purpose, we have developed a special mixing nozzle to create a homogeneous mixture of fuel and air by rapid mixing, and applied this rapidmixing nozzle to a Bunsen-type burner to observe combustion characteristics of the rapid-mixture. As a result, the combustion of rapid-mixture exhibited the same flame structure and combustion characteristics as the perfectly prepared premixed flame, even though the mixing time of the rapid-mixing nozzle was extremely short as a few milliseconds. Therefore, the rapid-mixing nozzle in this paper can be used to create preheated premixed flames as far as the mixing time is shorter than the ignition delay time of the fuel

  10. Highly stabilized partially premixed flames of propane in a concentric flow conical nozzle burner with coflow

    KAUST Repository

    Elbaz, Ayman M.

    2018-01-11

    Partially premixed turbulent flames with non-homogeneous jet of propane were generated in a concentric flow conical nozzle burner in order to investigate the effect of the coflow on the stability and flame structure. The flame stability is first mapped and then high-speed stereoscopic particle image velocimetry, SPIV, plus OH planar laser-induced fluorescence, OH-PLIF, measurements were conducted on a subset of four flames. The jet equivalence ratio Φ = 2, Jet exit Reynolds number Re = 10,000, and degree of premixing are kept constant for the selected flames, while the coflow velocity, Uc, is progressively changed from 0 to 15 m/s. The results showed that the flame is stable between two extinction limits of mixture inhomogeneity, and the optimum stability is obtained at certain degree of mixture inhomogeneity. Increasing Φ, increases the span between these two extinction limits, while these limits converge to a single point (corresponding to optimum mixture inhomogeneity) with increasing Re. Regardless the value of Φ, increasing the coflow velocity improves the flame stability. The correlation between recessed distance of the burner tubes and the fluctuation of the mixture fraction, Δξ, shows that at Δξ around 40% of the flammability limits leads to optimum flame stability. The time averaged SPIV results show that the coflow induces a big annular recirculation zone surrounds the jet flames. The size and the location of this zone is seen to be sensitive to Uc. However, the instantaneous images show the existence of a small vortical structure close to the shear layer, where the flame resides there in the case of no-coflow. These small vertical structures are seen playing a vital role in the flame structure, and increasing the flame corrugation close to the nozzle exit. Increasing the coflow velocity expands the central jet at the expense of the jet velocity, and drags the flame in the early flame regions towards the recirculation zone, where the flame tracks

  11. High Pressure Water Stripping Using Multi-Orifice Nozzles

    Science.gov (United States)

    Hoppe, David

    1999-01-01

    The use of multi-orifice rotary nozzles greatly increases the speed and stripping effectiveness of high pressure water blasting systems, but also greatly increases the complexity of selecting and optimizing the operating parameters. The rotational speed of the nozzle must be coupled with its transverse velocity as it passes across the surface of the substrate being stripped. The radial and angular positions of each orifice must be included in the analysis of the nozzle configuration. Orifices at the outer edge of the nozzle head move at a faster rate than the orifices located near the center. The energy transmitted to the surface from the impact force of the water stream from an outer orifice is therefore spread over a larger area than energy from an inner orifice. Utilizing a larger diameter orifice in the outer radial positions increases the total energy transmitted from the outer orifice to compensate for the wider distribution of energy. The total flow rate from the combination of all orifices must be monitored and should be kept below the pump capacity while choosing orifice to insert in each position. The energy distribution from the orifice pattern is further complicated since the rotary path of all the orifices in the nozzle head pass through the center section. All orifices contribute to the stripping in the center of the path while only the outer most orifice contributes to the stripping at the edge of the nozzle. Additional orifices contribute to the stripping from the outer edge toward the center section. With all these parameters to configure and each parameter change affecting the others, a computer model was developed to track and coordinate these parameters. The computer simulation graphically indicates the cumulative affect from each parameter selected. The result from the proper choices in parameters is a well designed, highly efficient stripping system. A poorly chosen set of parameters will cause the nozzle to strip aggressively in some areas

  12. Analysis of the combined effect of hydrogrinding process and inclination angle on hydraulic performance of diesel injection nozzles

    International Nuclear Information System (INIS)

    Salvador, F.J.; Carreres, M.; Jaramillo, D.; Martínez-López, J.

    2015-01-01

    Highlights: • Effect of inclination angle and rounding radius of diesel nozzle holes is explored. • The study starts with experimental tests and is extended by CFD simulations. • A CFD code with a HEM model for two-phase flow and a RANS approach is used. • Differences in flow parameters, cavitation inception and morphology are analysed. • The flow is generally favoured by low inclination angles and high rounding radius. - Abstract: A computational study to investigate the influence of the orifices inclination and the rounding radius at the orifice inlet (consequence of the hydro-erosive grinding process applied after the orifices machining) over the internal nozzle flow is performed in this paper. The study starts with the analysis of experimental results where the mass flow and momentum flux of two nozzles with very different values of these two variables are compared. This analysis shows relatively small differences in terms of mass flow and momentum flux, since the higher losses associated to the higher deflection of the streamlines with a higher inclination of the orifices are counteracted by the higher rounding radius, which favours the flow entrance to the orifice. To explain this experimental outcome, an extensive computational study involving nine geometries that combine different inclination angles and rounding radius is conducted, in order to quantify the influence of both parameters on the flow separately, as well as to assess the potential of their combination. These geometries are compared in terms of discharge coefficient, critical cavitation conditions and effective injection velocity, among others. Results show differences up to 15% in terms of mass flow rate and 8% for the effective injection velocity among the two extreme cases (lowest inclination and highest hydro-erosion level versus the nozzle with the highest inclination and lowest hydro-erosion level). Given the importance of these phenomena on the subsequent mixing and combustion

  13. Nozzle Printed-PEDOT:PSS for Organic Light Emitting Diodes with Various Dilution Rates of Ethanol

    Directory of Open Access Journals (Sweden)

    Dai Geon Yoon

    2018-01-01

    Full Text Available In this study, we investigated the ink formulation of poly(3,4-ethylenedioxythiophene polystyrene sulfonate (PEDOT:PSS as the hole injection layer (HIL in an organic light emitting diode (OLED structure. Generally, in a PEDOT:PSS solution, water is incorporated in the solution for the solution process. However, the fabrication of thin film which contained the water, main solvent, could not easily form by using printing technology except spin-coating process because of the high surface tension of water. On the other hand, mixing PEDOT:PSS solution and ethanol (EtOH, a dilution solvent, could restrain the non-uniform layer that forms by the high surface tension and low volatility of water. Therefore, we printed a PEDOT:PSS solution with various concentrations of EtOH by using a nozzle printer and obtained a uniform pattern. The line width of PEDOT:PSS diluted with 90% (volume ratio ehtanol was measured as about 4 mm with good uniformity with a 0.1 mm nozzle. Also, imaging software and a scanning electron microscope (SEM were used to measure the uniformity of PEDOT:PSS coated on a substrate. Finally, we fabricated a green phosphorescent OLED device with printed-PEDOT:PSS with specific concentrations of EtOH and we achieved a current efficiency of 27 cd/A with uniform quality of luminance in the case of device containing 90% EtOH.

  14. Large-eddy simulation of cavitating nozzle flow and primary jet break-up

    Energy Technology Data Exchange (ETDEWEB)

    Örley, F., E-mail: felix.oerley@aer.mw.tum.de; Trummler, T.; Mihatsch, M. S.; Schmidt, S. J.; Adams, N. A. [Institute of Aerodynamics and Fluid Mechanics, Technische Universität München, Boltzmannstr. 15, 85748 Garching bei München (Germany); Hickel, S. [Institute of Aerodynamics and Fluid Mechanics, Technische Universität München, Boltzmannstr. 15, 85748 Garching bei München (Germany); Chair of Computational Aerodynamics, Faculty of Aerospace Engineering, TU Delft, Kluyverweg 1, 2629 HS Delft (Netherlands)

    2015-08-15

    We employ a barotropic two-phase/two-fluid model to study the primary break-up of cavitating liquid jets emanating from a rectangular nozzle, which resembles a high aspect-ratio slot flow. All components (i.e., gas, liquid, and vapor) are represented by a homogeneous mixture approach. The cavitating fluid model is based on a thermodynamic-equilibrium assumption. Compressibility of all phases enables full resolution of collapse-induced pressure wave dynamics. The thermodynamic model is embedded into an implicit large-eddy simulation (LES) environment. The considered configuration follows the general setup of a reference experiment and is a generic reproduction of a scaled-up fuel injector or control valve as found in an automotive engine. Due to the experimental conditions, it operates, however, at significantly lower pressures. LES results are compared to the experimental reference for validation. Three different operating points are studied, which differ in terms of the development of cavitation regions and the jet break-up characteristics. Observed differences between experimental and numerical data in some of the investigated cases can be caused by uncertainties in meeting nominal parameters by the experiment. The investigation reveals that three main mechanisms promote primary jet break-up: collapse-induced turbulent fluctuations near the outlet, entrainment of free gas into the nozzle, and collapse events inside the jet near the liquid-gas interface.

  15. Heat exchanger nozzle stresses due to pipe vibration

    International Nuclear Information System (INIS)

    Wolgemuth, G.A.

    1983-01-01

    A large diameter pipe in a heavy water production plant was excited into a low frequency vibration due to void collapse of the pipe contents at a sharp vertical drop in the pipe run. Fears that this vibration would fatigue the inlet nozzle to the heat exchanger prompted the introduction of a flow of cold water into the pipe to prevent the two-phase flow from developing but at the cost of reduced heat exchanger efficiency. An investigation was carried out to determine the stress levels in the nozzle with the quenching flow off and suggest means of reducing them if excessive. A finite element dynamic simulation of the pipe run was performed to determine the likely mode shapes. This information was used to optimize the placement of velocity probes on the pipe. Field measurements of vibration were taken for several operating conditions. This data was analyzed and the results used to refine the support stiffness used in the finite element simulation. The finite element model was then used to predict the nozzle forces and moments. In turn this data was used to determine the local stresses in the nozzle. The ASME Section III code was used to determine the allowable fully reversing stresses for the unit in question. It was found that the endurance limit of 83 MPa was exceeded in the analysis only when using the most conservative estimates for each uncertainty. It was recommended that if the safety factor was not deemed high enough, the nozzle should be built up with a reinforcing pad no thicker than 12 mm

  16. Vortex flow and cavitation in diesel injector nozzles

    Science.gov (United States)

    Andriotis, A.; Gavaises, M.; Arcoumanis, C.

    Flow visualization as well as three-dimensional cavitating flow simulations have been employed for characterizing the formation of cavitation inside transparent replicas of fuel injector valves used in low-speed two-stroke diesel engines. The designs tested have incorporated five-hole nozzles with cylindrical as well as tapered holes operating at different fixed needle lift positions. High-speed images have revealed the formation of an unsteady vapour structure upstream of the injection holes inside the nozzle volume, which is referred to as . Computation of the flow distribution and combination with three-dimensional reconstruction of the location of the strings inside the nozzle volume has revealed that strings are found at the core of recirculation zones; they originate either from pre-existing cavitation sites forming at sharp corners inside the nozzle where the pressure falls below the vapour pressure of the flowing liquid, or even from suction of outside air downstream of the hole exit. Processing of the acquired images has allowed estimation of the mean location and probability of appearance of the cavitating strings in the three-dimensional space as a function of needle lift, cavitation and Reynolds number. The frequency of appearance of the strings has been correlated with the Strouhal number of the vortices developing inside the sac volume; the latter has been found to be a function of needle lift and hole shape. The presence of strings has significantly affected the flow conditions at the nozzle exit, influencing the injected spray. The cavitation structures formed inside the injection holes are significantly altered by the presence of cavitation strings and are jointly responsible for up to 10% variation in the instantaneous fuel injection quantity. Extrapolation using model predictions for real-size injectors operating at realistic injection pressures indicates that cavitation strings are expected to appear within the time scales of typical injection

  17. Dual Nozzle Aerodynamic and Cooling Analysis Study.

    Science.gov (United States)

    1981-02-27

    SSTO ) and Heavy Lift Launch Vehicle (HLLV), may embrace such capabili- ties as dual-mode operation and in-flight changes in area ratio for altitude...engines with resultant advantages. The baseline engine application, analzyed in this and earlier studies, is a tripropellant single-stage-to-orbit ( SSTO ...potential 8 1, Introduction (cont.) power cycles and generate parametric data for a tripropellant SSTO vehicle engine. A preliminary performance prediction

  18. Turbine combustor with fuel nozzles having inner and outer fuel circuits

    Science.gov (United States)

    Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo

    2013-12-24

    A combustor cap assembly for a turbine engine includes a combustor cap and a plurality of fuel nozzles mounted on the combustor cap. One or more of the fuel nozzles would include two separate fuel circuits which are individually controllable. The combustor cap assembly would be controlled so that individual fuel circuits of the fuel nozzles are operated or deliberately shut off to provide for physical separation between the flow of fuel delivered by adjacent fuel nozzles and/or so that adjacent fuel nozzles operate at different pressure differentials. Operating a combustor cap assembly in this fashion helps to reduce or eliminate the generation of undesirable and potentially harmful noise.

  19. Integration of Flex Nozzle System and Electro Hydraulic Actuators to Solid Rocket Motors

    Science.gov (United States)

    Nayani, Kishore Nath; Bajaj, Dinesh Kumar

    2017-10-01

    A rocket motor assembly comprised of solid rocket motor and flex nozzle system. Integration of flex nozzle system and hydraulic actuators to the solid rocket motors are done after transportation to the required place where integration occurred. The flex nozzle system is integrated to the rocket motor in horizontal condition and the electro hydraulic actuators are assembled to the flex nozzle systems. The electro hydraulic actuators are connected to the hydraulic power pack to operate the actuators. The nozzle-motor critical interface are insulation diametrical compression, inhibition resin-28, insulation facial compression, shaft seal `O' ring compression and face seal `O' ring compression.

  20. System and method having multi-tube fuel nozzle with differential flow

    Science.gov (United States)

    Hughes, Michael John; Johnson, Thomas Edward; Berry, Jonathan Dwight; York, William David

    2017-01-03

    A system includes a multi-tube fuel nozzle with a fuel nozzle body and a plurality of tubes. The fuel nozzle body includes a nozzle wall surrounding a chamber. The plurality of tubes extend through the chamber, wherein each tube of the plurality of tubes includes an air intake portion, a fuel intake portion, and an air-fuel mixture outlet portion. The multi-tube fuel nozzle also includes a differential configuration of the air intake portions among the plurality of tubes.

  1. Static and wind tunnel near-field/far-field jet noise measurements from model scale single-flow base line and suppressor nozzles. Summary report. [conducted in the Boeing large anechoic test chamber and the NASA-Ames 40by 80-foot wind tunnel

    Science.gov (United States)

    Jaeck, C. L.

    1977-01-01

    A test program was conducted in the Boeing large anechoic test chamber and the NASA-Ames 40- by 80-foot wind tunnel to study the near- and far-field jet noise characteristics of six baseline and suppressor nozzles. Static and wind-on noise source locations were determined. A technique for extrapolating near field jet noise measurements into the far field was established. It was determined if flight effects measured in the near field are the same as those in the far field. The flight effects on the jet noise levels of the baseline and suppressor nozzles were determined. Test models included a 15.24-cm round convergent nozzle, an annular nozzle with and without ejector, a 20-lobe nozzle with and without ejector, and a 57-tube nozzle with lined ejector. The static free-field test in the anechoic chamber covered nozzle pressure ratios from 1.44 to 2.25 and jet velocities from 412 to 594 m/s at a total temperature of 844 K. The wind tunnel flight effects test repeated these nozzle test conditions with ambient velocities of 0 to 92 m/s.

  2. Research on Development of Turbo-generator with Partial Admission Nozzle for Supercritical CO{sub 2} Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Junhyun; Shin, Hyung-ki; Lee, Gilbong; Baik, Young-Jin [Korea Institute of Energy Research (KIER), Daejeon (Korea, Republic of); Kang, Young-Seok [Korea Aerospace Research Institute (KARI), Daejeon (Korea, Republic of); Kim, Byunghui [InGineers Ltd., Seoul (Korea, Republic of)

    2017-04-15

    A Sub-kWe small-scale experimental test loop was manufactured to investigate characteristics of the supercritical carbon dioxide power cycle. A high-speed turbo-generator was also designed and manufactured. The designed rotational speed of this turbo-generator was 200,000 rpm. Because of the low expansion ratio through the turbine and low mass flowrate, the rotational speed of the turbo-generator was high. Therefore, it was difficult to select the rotating parts and design the turbine wheel, axial force balance and rotor dynamics in the lab-scale experimental test loop. Using only one channel of the nozzle, the partial admission method was adapted to reduce the rotational speed of the rotor. This was the world’s first approach to the supercritical carbon dioxide turbo-generator. A cold-run test using nitrogen gas under an atmospheric condition was conducted to observe the effect of the partial admission nozzle on the rotor dynamics. The vibration level of the rotor was obtained using a gap sensor, and the results showed that the effect of the partial admission nozzle on the rotor dynamics was allowable.

  3. Effect of Suction Nozzle Pressure Drop on the Performance of an Ejector-Expansion Transcritical CO2 Refrigeration Cycle

    Directory of Open Access Journals (Sweden)

    Zhenying Zhang

    2014-08-01

    Full Text Available The basic transcritical CO2 systems exhibit low energy efficiency due to their large throttling loss. Replacing the throttle valve with an ejector is an effective measure for recovering some of the energy lost in the expansion process. In this paper, a thermodynamic model of the ejector-expansion transcritical CO2 refrigeration cycle is developed. The effect of the suction nozzle pressure drop (SNPD on the cycle performance is discussed. The results indicate that the SNPD has little impact on entrainment ratio. There exists an optimum SNPD which gives a maximum recovered pressure and COP under a specified condition. The value of the optimum SNPD mainly depends on the efficiencies of the motive nozzle and the suction nozzle, but it is essentially independent of evaporating temperature and gas cooler outlet temperature. Through optimizing the value of SNPD, the maximum COP of the ejector-expansion cycle can be up to 45.1% higher than that of the basic cycle. The exergy loss of the ejector-expansion cycle is reduced about 43.0% compared with the basic cycle.

  4. The proton therapy nozzles at Samsung Medical Center: A Monte Carlo simulation study using TOPAS

    Science.gov (United States)

    Chung, Kwangzoo; Kim, Jinsung; Kim, Dae-Hyun; Ahn, Sunghwan; Han, Youngyih

    2015-07-01

    To expedite the commissioning process of the proton therapy system at Samsung Medical Center (SMC), we have developed a Monte Carlo simulation model of the proton therapy nozzles by using TOol for PArticle Simulation (TOPAS). At SMC proton therapy center, we have two gantry rooms with different types of nozzles: a multi-purpose nozzle and a dedicated scanning nozzle. Each nozzle has been modeled in detail following the geometry information provided by the manufacturer, Sumitomo Heavy Industries, Ltd. For this purpose, the novel features of TOPAS, such as the time feature or the ridge filter class, have been used, and the appropriate physics models for proton nozzle simulation have been defined. Dosimetric properties, like percent depth dose curve, spreadout Bragg peak (SOBP), and beam spot size, have been simulated and verified against measured beam data. Beyond the Monte Carlo nozzle modeling, we have developed an interface between TOPAS and the treatment planning system (TPS), RayStation. An exported radiotherapy (RT) plan from the TPS is interpreted by using an interface and is then translated into the TOPAS input text. The developed Monte Carlo nozzle model can be used to estimate the non-beam performance, such as the neutron background, of the nozzles. Furthermore, the nozzle model can be used to study the mechanical optimization of the design of the nozzle.

  5. The effects of a spray slurry nozzle on copper CMP for reduction in slurry consumption

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Da Sol; Jeong, Hae Do [Pusan National University, Busan (Korea, Republic of); Lee, Hyun Seop [Tongmyong University, Busan (Korea, Republic of)

    2015-12-15

    The environmental impact of semiconductor manufacturing has been a big social problem, like greenhouse gas emission. Chemical mechanical planarization (CMP), a wet process which consumes chemical slurries, seriously impacts environmental sustain ability and cost-effectiveness. This paper demonstrates the superiority of a full-cone spray slurry nozzle to the conventional tube-type slurry nozzle in Cu CMP. It was observed that the spray nozzle made a weak slurry wave at the retaining ring unlike a conventional nozzle, because the slurry was supplied uniformly in broader areas. Experiments were implemented with different slurry flow rates and spray nozzle heights. Spray nozzle performance is controlled by the spray angle and spray height. The process temperature was obtained with an infrared (IR) sensor and an IR thermal imaging camera to investigate the cooling effect of the spray. The results show that the spray nozzle provides a higher Material removal rate (MRR), lower non-uniformity (NU), and lower temperature than the conventional nozzle. Computational fluid dynamics techniques show that the turbulence kinetic energy and slurry velocity of the spray nozzle are much higher than those of the conventional nozzle. Finally, it can be summarized that the spray nozzle plays a significant role in slurry efficiency by theory of Minimum quantity lubrication (MQL).

  6. Evaluation of the effects of break nozzle configuration in the Semiscale Mod-1 system

    International Nuclear Information System (INIS)

    Hanson, R.G.

    1977-08-01

    The Semiscale Mod-1 Program has utilized two different break nozzle configurations in the test system. An evaluation has been made to determine the effect these break nozzle configurations have on system thermal-hydraulic response during a 200 percent double-ended cold leg break loss-of-coolant accident simulation. The first nozzle was a convergent-divergent nozzle (Henry nozzle) and the second, an elongated constant area throat nozzle. Analysis is confined primarily to system response phenomena observed to be affected by the nozzle configuration and concentrates on the fluid response at the break and the resulting core behavior during subcooled and saturated blowdown. The evaluation shows that considerable difference in system response occurs as a result of the difference in break nozzle configuration. The elongated throat nozzle was scaled from the Loss-of-Fluid Test (LOFT) nozzle geometry and since the LOFT counterpart tests were designed to provide results for the LOFT Program, the elongated throat nozzle was used in the subsequent LOFT counterpart tests

  7. The effects of a spray slurry nozzle on copper CMP for reduction in slurry consumption

    International Nuclear Information System (INIS)

    Lee, Da Sol; Jeong, Hae Do; Lee, Hyun Seop

    2015-01-01

    The environmental impact of semiconductor manufacturing has been a big social problem, like greenhouse gas emission. Chemical mechanical planarization (CMP), a wet process which consumes chemical slurries, seriously impacts environmental sustain ability and cost-effectiveness. This paper demonstrates the superiority of a full-cone spray slurry nozzle to the conventional tube-type slurry nozzle in Cu CMP. It was observed that the spray nozzle made a weak slurry wave at the retaining ring unlike a conventional nozzle, because the slurry was supplied uniformly in broader areas. Experiments were implemented with different slurry flow rates and spray nozzle heights. Spray nozzle performance is controlled by the spray angle and spray height. The process temperature was obtained with an infrared (IR) sensor and an IR thermal imaging camera to investigate the cooling effect of the spray. The results show that the spray nozzle provides a higher Material removal rate (MRR), lower non-uniformity (NU), and lower temperature than the conventional nozzle. Computational fluid dynamics techniques show that the turbulence kinetic energy and slurry velocity of the spray nozzle are much higher than those of the conventional nozzle. Finally, it can be summarized that the spray nozzle plays a significant role in slurry efficiency by theory of Minimum quantity lubrication (MQL).

  8. Numerical investigation on effects of nozzle’s geometric parameters on the flow and the cavitation characteristics within injector’s nozzle for a high-pressure common-rail DI diesel engine

    International Nuclear Information System (INIS)

    Sun, Zuo-Yu; Li, Guo-Xiu; Chen, Chuan; Yu, Yu-Song; Gao, Guo-Xi

    2015-01-01

    Highlights: • The cavitation characteristics within nozzle were numerical studied. • The studied nozzle is from high pressure common-rail injection system. • The effects of nozzle’s geometrical parameters were considered. - Abstract: In the present paper, the influences of nozzle’s geometric parameters on the flow and the cavitation characteristics within injector’s nozzle have been numerically investigated on basis of a high-pressure common-rail DI diesel engine. For obtaining more beneficial information, five essential parameters (the pressure difference on the nozzle, circular bead of nozzle’s inlet, orifice coefficient, the ratio of nozzle’s length to orifice’s diameter, and the roughness of orifice’s inner wall) have been investigated. The variation regulations of the flow and the cavitation characteristics induced by the mentioned parameters have been observed and analysed in terms of the distributions of essential physical fields (including statistic pressure field, velocity magnitude field, turbulent kinetic energy field, mass transfer coefficient field, and vapour’s volume fraction field) and the variation regulations of crucial physical parameters (including mass flow rate, flow coefficient, average vapour’s volume fraction, average flow velocity at orifice’s outlet, and average turbulent kinetic energy at orifice’s outlet). The main results obtained in the present investigation have illustrated how the cavitation occurs, develops and extinguishes within nozzle; meanwhile, how each geometric parameter affects the flow and the cavitation characteristics within nozzle have been explored

  9. Aerodynamic characteristics of a large-scale semispan model with a swept wing and an augmented jet flap with hypermixing nozzles. [Ames 40- by 80-Foot Wind Tunnel and Static Test Facility

    Science.gov (United States)

    Aiken, T. N.; Falarski, M. D.; Koenin, D. G.

    1979-01-01

    The aerodynamic characteristics of the augmentor wing concept with hypermixing primary nozzles were investigated. A large-scale semispan model in the Ames 40- by 80-Foot Wind Tunnel and Static Test Facility was used. The trailing edge, augmentor flap system occupied 65% of the span and consisted of two fixed pivot flaps. The nozzle system consisted of hypermixing, lobe primary nozzles, and BLC slot nozzles at the forward inlet, both sides and ends of the throat, and at the aft flap. The entire wing leading edge was fitted with a 10% chord slat and a blowing slot. Outboard of the flap was a blown aileron. The model was tested statically and at forward speed. Primary parameters and their ranges included angle of attack from -12 to 32 degrees, flap angles of 20, 30, 45, 60 and 70 degrees, and deflection and diffuser area ratios from 1.16 to 2.22. Thrust coefficients ranged from 0 to 2.73, while nozzle pressure ratios varied from 1.0 to 2.34. Reynolds number per foot varied from 0 to 1.4 million. Analysis of the data indicated a maximum static, gross augmentation of 1.53 at a flap angle of 45 degrees. Analysis also indicated that the configuration was an efficient powered lift device and that the net thrust was comparable with augmentor wings of similar static performance. Performance at forward speed was best at a diffuser area ratio of 1.37.

  10. A static investigation of yaw vectoring concepts on two-dimensional convergent-divergent nozzles

    Science.gov (United States)

    Berrier, B. L.; Mason, M. L.

    1983-01-01

    The flow-turning capability and nozzle internal performance of yaw-vectoring nozzle geometries were tested in the NASA Langley 16-ft Transonic wind tunnel. The concept was investigated as a means of enhancing fighter jet performance. Five two-dimensional convergent-divergent nozzles were equipped for yaw-vectoring and examined. The configurations included a translating left sidewall, left and right sidewall flaps downstream of the nozzle throat, left sidewall flaps or port located upstream of the nozzle throat, and a powered rudder. Trials were also run with 20 deg of pitch thrust vectoring added. The feasibility of providing yaw-thrust vectoring was demonstrated, with the largest yaw vector angles being obtained with sidewall flaps downstream of the nozzle primary throat. It was concluded that yaw vector designs that scoop or capture internal nozzle flow provide the largest yaw-vector capability, but decrease the thrust the most.

  11. Investigation of turbines for driving supersonic compressors II : performance of first configuration with 2.2 percent reduction in nozzle flow area / Warner L. Stewart, Harold J. Schum, Robert Y. Wong

    Science.gov (United States)

    Stewart, Warner L; Schum, Harold J; Wong, Robert Y

    1952-01-01

    The experimental performance of a modified turbine for driving a supersonic compressor is presented and compared with the performance of the original configuration to illustrate the effect of small changes in the ratio of nozzle-throat area to rotor-throat area. Performance is based on the performance of turbines designed to operate with both blade rows close to choking. On the basis of the results of this investigation, the ratio of areas is concluded to become especially critical in the design of turbines such as those designed to drive high-speed, high-specific weight-flow compressors where the turbine nozzles and rotor are both very close to choking.

  12. Construction and evaluation of a hollow cone type nozzle with ceramic nanocomposites

    Directory of Open Access Journals (Sweden)

    F Amirshaghaghi

    2015-09-01

    products. In order to prepare nanocomposite powder mixed with stabilized zirconia alumina, the ratio of 10/90 percent by volume of the powder was poured into the mill for three hours and it was stirred in the mixer. Pressing is placing the powder into a mold, and applying pressure to achieve the desired density. In this study, pressing device with 30 tons was manually used and powder sample in the amount of one gram was placed in a semi-cylindrical small hollow. After making a few samples and determining the optimal pressure and time of pressing in action, samples were manufactured under 90 kg cm-2 pressure at 20 seconds. A high temperature furnace model F3L-1720 was used for zintering. Samples were put into the furnace after forming by a single-axis press. Temperature the of furnace was raised up 1650°C at a rate of 10 degrees per minute and then the samples were exposed for one hour in order for the heat to be evenly applied in all the body of the nozzle. Finally, a hollow cone spray pattern fan nozzle with a major diameter of 15 mm and an inner diameter of 2 mm was built. Equipment for analyzing used in this study included: X-Ray Diffraction device (XRD, Scanning Electron Microscope (SEM. The flow rate output was measured at a pressure of 2 bar in the period of 0-50 hours at 1, 2, 3, 4, 5, 8, 10, 15, 20, 25, 30, 40 and 50 hours. Results and Discussion: XRD analysis of nano-composite stabilizer in the presence of yttria- zirconia- alumina toughness with (Al2O3-ZrO2-Y2O3, yttria stabilized zirconia (ZrO2-Y2O3 and alumina indicates respective phases. For the samples made with better properties, it should be uniformly distributed within it. To evaluate the uniformity, SEM-Mapping test samples were made. The results showed that the distribution of Y, Zr, Al in nanocomposite (Al2O3-ZrO2-Y2O3 is almost uniform. The results of changes in the level of output over time showed that the rate of flow in composite (Al2O3-ZrO2-Y2O3 nozzle versus ceramic conventional (Al2O3 nozzle

  13. SINGLE PHASE ANALYTICAL MODELS FOR TERRY TURBINE NOZZLE

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haihua; Zhang, Hongbin; Zou, Ling; O' Brien, James

    2016-11-01

    All BWR RCIC (Reactor Core Isolation Cooling) systems and PWR AFW (Auxiliary Feed Water) systems use Terry turbine, which is composed of the wheel with turbine buckets and several groups of fixed nozzles and reversing chambers inside the turbine casing. The inlet steam is accelerated through the turbine nozzle and impacts on the wheel buckets, generating work to drive the RCIC pump. As part of the efforts to understand the unexpected “self-regulating” mode of the RCIC systems in Fukushima accidents and extend BWR RCIC and PWR AFW operational range and flexibility, mechanistic models for the Terry turbine, based on Sandia National Laboratories’ original work, has been developed and implemented in the RELAP-7 code to simulate the RCIC system. RELAP-7 is a new reactor system code currently under development with the funding support from U.S. Department of Energy. The RELAP-7 code is a fully implicit code and the preconditioned Jacobian-free Newton-Krylov (JFNK) method is used to solve the discretized nonlinear system. This paper presents a set of analytical models for simulating the flow through the Terry turbine nozzles when inlet fluid is pure steam. The implementation of the models into RELAP-7 will be briefly discussed. In the Sandia model, the turbine bucket inlet velocity is provided according to a reduced-order model, which was obtained from a large number of CFD simulations. In this work, we propose an alternative method, using an under-expanded jet model to obtain the velocity and thermodynamic conditions for the turbine bucket inlet. The models include both adiabatic expansion process inside the nozzle and free expansion process out of the nozzle to reach the ambient pressure. The combined models are able to predict the steam mass flow rate and supersonic velocity to the Terry turbine bucket entrance, which are the necessary input conditions for the Terry Turbine rotor model. The nozzle analytical models were validated with experimental data and

  14. Separation nozzle: an aerodynamic device for large-scale enrichment of uranium-235

    International Nuclear Information System (INIS)

    Becker, E.W.; Bley, P.; Ehrfeld, U.; Ehrfeld, W.

    1977-01-01

    This paper gives a review of the flow and diffusion phenomena in the separation nozzle. It is shown that admixing of a light auxiliary gas offers inherent advantages for the separation of heavy isotopic molecules in a centrifugal flow. The UF 6 is accelerated to a high speed ratio by the light gas already at a low expansion of the mixture--i.e., favorable conditions for centrifugal separation are obtained while aerodynamic losses are kept low. In addition, isotope separation is enhanced because of the different diffusion velocities of the isotopes relative to the light gas. Typical rarefaction phenomena are observed in the curved jet; the molecular velocity distribution is bimodal in large regions of the flow, and a velocity slip between the heavy UF 6 and the light auxiliary gas occurs

  15. Apparatus and method for a gas turbine nozzle

    Science.gov (United States)

    Zuo, Baifang; Ziminsky, Willy Steve; Johnson, Thomas Edward; Intile, John Charles; Lacy, Benjamin Paul

    2013-02-05

    A nozzle includes an inlet, an outlet, and an axial centerline. A shroud surrounding the axial centerline extends from the inlet to the outlet and defines a circumference. The circumference proximate the inlet is greater than the circumference at a first point downstream of the inlet, and the circumference at the first point downstream of the inlet is less than the circumference at a second point downstream of the first point. A method for supplying a fuel through a nozzle directs a first airflow along a first path and a second airflow along a second path separate from the first path. The method further includes injecting the fuel into at least one of the first path or the second path and accelerating at least one of the first airflow or the second airflow.

  16. Three-Dimensional Flow Behavior Inside the Submerged Entry Nozzle

    Science.gov (United States)

    Real-Ramirez, Cesar Augusto; Carvajal-Mariscal, Ignacio; Sanchez-Silva, Florencio; Cervantes-de-la-Torre, Francisco; Diaz-Montes, Jesus; Gonzalez-Trejo, Jesus

    2018-05-01

    According to various authors, the surface quality of steel depends on the dynamic conditions that occur within the continuous casting mold's upper region. The meniscus, found in that upper region, is where the solidification process begins. The liquid steel is distributed into the mold through a submerged entry nozzle (SEN). In this paper, the dynamic behavior inside the SEN is analyzed by means of physical experiments and numerical simulations. The particle imaging velocimetry technique was used to obtain the vector field in different planes and three-dimensional flow patterns inside the SEN volume. Moreover, large eddy simulation was performed, and the turbulence model results were used to understand the nonlinear flow pattern inside the SEN. Using scaled physical and numerical models, quasi-periodic behavior was observed due to the interaction of two three-dimensional vortices that move inside the SEN lower region located between the exit ports of the nozzle.

  17. Analysis of cracked pressure vessel nozzles by finite elements

    International Nuclear Information System (INIS)

    Reynen, J.

    1975-01-01

    In order to assess the safety of pressure vessel nozzles, the analysis should take into account cracks. The paper describes various algorithms, their computer implementations and relative merits to define in an effective way strain energy release rates along the tip front of arbitrary 3 D cracks under arbitary load including thermal strains. These techniques are basically equivalent to substructuring techniques and consequently they can be implemented to only FEM program able to deal with the data handling problems of the substructuring technique. Examples are given carried out with a substructure version of the BERSAFE system. These examples include a corner crack in a pressure vessel nozzle loaded by internal pressure and by thermal stresses. (Auth.)

  18. Hypersonic nozzle/afterbody CFD code validation. I - Experimental measurements

    Science.gov (United States)

    Spaid, Frank W.; Keener, Earl R.

    1993-01-01

    This study was conducted to obtain a detailed experimental description of the flow field created by the interaction of a single-expansion-ramp-nozzle flow with a hypersonic external stream. Data were obtained from a generic nozzle/afterbody model in the 3.5-Foot Hypersonic Wind Tunnel of the NASA Ames Research Center in a cooperative experimental program involving Ames and the McDonnell Douglas Research Laboratories. This paper presents experimental results consisting primarily of surveys obtained with a five-hole total-pressure/flow-direction probe and a total-temperature probe. These surveys were obtained in the flow field created by the interaction between the underexpanded jet plume and the external flow.

  19. Bundled multi-tube nozzle for a turbomachine

    Science.gov (United States)

    Lacy, Benjamin Paul; Ziminsky, Willy Steve; Johnson, Thomas Edward; Zuo, Baifang; York, William David; Uhm, Jong Ho

    2015-09-22

    A turbomachine includes a compressor, a combustor operatively connected to the compressor, an end cover mounted to the combustor, and an injection nozzle assembly operatively connected to the combustor. The injection nozzle assembly includes a cap member having a first surface that extends to a second surface. The cap member further includes a plurality of openings. A plurality of bundled mini-tube assemblies are detachably mounted in the plurality of openings in the cap member. Each of the plurality of bundled mini-tube assemblies includes a main body section having a first end section and a second end section. A fluid plenum is arranged within the main body section. A plurality of tubes extend between the first and second end sections. Each of the plurality of tubes is fluidly connected to the fluid plenum.

  20. Investigation of nozzle contours in the CSIR supersonic wind tunnel

    CSIR Research Space (South Africa)

    Vallabh, Bhavya

    2017-09-01

    Full Text Available Contours in the CSIR Supersonic Wind Tunnel B Vallabha,b and BW Skewsa Received 17 February 2017, in revised form 23 June 2017 and accepted 25 June 2017 R & D Journal of the South African Institution of Mechanical Engineering 2017, 33, 32-41 http... with the Sivells’ nozzle design method and the method of characteristics technique to design the nozzle profiles for the full supersonic Mach number range 𝟏𝟏 ≀ 𝑎𝑎 ≀ 𝟒𝟒.5 of the facility. Automatic computation was used for the profile...

  1. Scalable Fabrication of Supercapacitors by Nozzle-free Electrospinning

    OpenAIRE

    Shi, Kaiyuan; Giapis, Konstantinos P.

    2018-01-01

    Nozzle-free electrospinning was investigated as a facile technique for producing nanoscale materials for supercapacitors. MnO2 nanofibers and their composites with multiwalled carbon nanotubes (MWCNTs) were synthesized in a single step, using polyvinylpyrrolidone (PVP) and Mn(CH_3COO)_2·4H_2O as starting materials, followed up by heat treatment in ambient air. Nanofibers of relatively uniform diameter were produced at high rates. The nanofibers exhibited good electrical contact between MnO_2 ...

  2. Effective hydraulic resistance of actuator nozzle generating a periodic jet

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2012-01-01

    Roč. 179, JUN 2012 (2012), s. 211-222 ISSN 0924-4247 R&D Projects: GA ČR(CZ) GCP101/11/J019; GA TA ČR(CZ) TA02020795 Institutional research plan: CEZ:AV0Z20760514 Keywords : nozzle * periodic flow * compressibility Subject RIV: BK - Fluid Dynamics Impact factor: 1.841, year: 2012 http://www.sciencedirect.com/science/article/pii/S0924424712001781

  3. Ambipolar ion acceleration in an expanding magnetic nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Longmier, Benjamin W; Carter, Mark D; Cassady, Leonard D; Chancery, William J; Diaz, Franklin R Chang; Glover, Tim W; Ilin, Andrew V; McCaskill, Greg E; Olsen, Chris S; Squire, Jared P [Ad Astra Rocket Company, 141 W. Bay Area Blvd, Webster, TX (United States); Bering, Edgar A III [Department of Physics and Department of Electrical and Computer Engineering, University of Houston, 617 Science and Research Building 1, Houston, TX (United States); Hershkowitz, Noah [Department of Engineering Physics, University of Wisconsin, 1500 Engineering Dr., Madison, WI (United States)

    2011-02-15

    The helicon plasma stage in the Variable Specific Impulse Magnetoplasma Rocket (VASIMR (registered)) VX-200i device was used to characterize an axial plasma potential profile within an expanding magnetic nozzle region of the laboratory based device. The ion acceleration mechanism is identified as an ambipolar electric field produced by an electron pressure gradient, resulting in a local axial ion speed of Mach 4 downstream of the magnetic nozzle. A 20 eV argon ion kinetic energy was measured in the helicon source, which had a peak magnetic field strength of 0.17 T. The helicon plasma source was operated with 25 mg s{sup -1} argon propellant and 30 kW of RF power. The maximum measured values of plasma density and electron temperature within the exhaust plume were 1 x 10{sup 20} m{sup -3} and 9 eV, respectively. The measured plasma density is nearly an order of magnitude larger than previously reported steady-state helicon plasma sources. The exhaust plume also exhibits a 95% to 100% ionization fraction. The size scale and spatial location of the plasma potential structure in the expanding magnetic nozzle region appear to follow the size scale and spatial location of the expanding magnetic field. The thickness of the potential structure was found to be 10{sup 4} to 10{sup 5} {lambda}{sub De} depending on the local electron temperature in the magnetic nozzle, many orders of magnitude larger than typical laboratory double layer structures. The background plasma density and neutral argon pressure were 10{sup 15} m{sup -3} and 2 x 10{sup -5} Torr, respectively, in a 150 m{sup 3} vacuum chamber during operation of the helicon plasma source. The agreement between the measured plasma potential and plasma potential that was calculated from an ambipolar ion acceleration analysis over the bulk of the axial distance where the potential drop was located is a strong confirmation of the ambipolar acceleration process.

  4. Characterization of Rotating Detonation Engine Exhaust Through Nozzle Guide Vanes

    Science.gov (United States)

    2013-03-21

    ENY/13-M09 Abstract A Rotating Detonation Engine ( RDE ) has higher thermal efficiencies in comparison to its traditional gas turbine counterparts. Thus...as budgets decrease and fuel costs increase, RDEs have become a research focus for the United States Air Force. An integration assembly for attaching...the first Nozzle Guide Vane (NGV) section from a T63 gas turbine engine to a 6 inch diameter RDE was designed and built for this study. Pressure

  5. Magnetic Nozzles for Plasma Thrusters: Acceleration, Thrust, and Detachment Mechanisms

    Science.gov (United States)

    2011-10-01

    neutral double layer. A very detailed study of this surface discontinuity has been culminated [4]. It had been claimed that the presence of this DL could...field assures that electrons are strongly-magnetized whereas ions are partially-magnetized. The use of the method of characteristic surfaces (i.e...z = const disk. (d) Ambipolar electric field and equipotential lines for plasmas with a 0.2 fraction of 9-times hotter electrons at the nozzle

  6. Device to enrich uranium using the separation nozzle method

    International Nuclear Information System (INIS)

    Wenzel, W.

    1984-01-01

    Separation nozzle units, coolers and the radial-flow compressor are integrated in such manner that the volume of the device is reduced and the efficiency is increased. The radial-flow compressor that is placed in a central and axial position in the cylindrical casing of the tank is concentrically surrounded by the other elements, which are arranged in a way that regular maintenance becomes possible without difficulties. The detailed description is supplemented by drawings. (ori./PW)

  7. Three Dimensional Steady Subsonic Euler Flows in Bounded Nozzles

    OpenAIRE

    Chen, Chao; Xie, Chunjing

    2013-01-01

    In this paper, we study the existence and uniqueness of three dimensional steady Euler flows in rectangular nozzles when prescribing normal component of momentum at both the entrance and exit. If, in addition, the normal component of the voriticity and the variation of Bernoulli's function at the exit are both zero, then there exists a unique subsonic potential flow when the magnitude of the normal component of the momentum is less than a critical number. As the magnitude of the normal compon...

  8. Hot-gas-side heat transfer characteristics of subscale, plug-nozzle rocket calorimeter chamber

    Science.gov (United States)

    Quentmeyer, Richard J.; Roncace, Elizabeth A.

    1993-01-01

    An experimental investigation was conducted to determine the hot-gas-side heat transfer characteristics for a liquid-hydrogen-cooled, subscale, plug-nozzle rocket test apparatus. This apparatus has been used since 1975 to evaluate rocket engine advanced cooling concepts and fabrication techniques, to screen candidate combustion chamber liner materials, and to provide data for model development. In order to obtain the data, a water-cooled calorimeter chamber having the same geometric configuration as the plug-nozzle test apparatus was tested. It also used the same two showerhead injector types that were used on the test apparatus: one having a Rigimesh faceplate and the other having a platelet faceplate. The tests were conducted using liquid oxygen and gaseous hydrogen as the propellants over a mixture ratio range of 5.8 to 6.3 at a nominal chamber pressure of 4.14 MPa abs (600 psia). The two injectors showed similar performance characteristics with the Rigimesh faceplate having a slightly higher average characteristic-exhaust-velocity efficiency of 96 percent versus 94.4 percent for the platelet faceplate. The throat heat flux was 54 MW/m(sup 2) (33 Btu/in.(sup 2)-sec) at the nominal operating condition, which was a chamber pressure of 4.14 MPa abs (600 psia), a hot-gas-side wall temperature of 730 K (1314 R), and a mixture ratio of 6.0. The chamber throat region correlation coefficient C(sub g) for a Nusselt number correlation of the form Nu =C(sub g)Re(sup 0.8)Pr(sup 0.3) averaged 0.023 for the Rigimesh faceplate and 0.026 for the platelet faceplate.

  9. Experimental assessment of ammonia adiabatic absorption into ammonia-lithium nitrate solution using a flat fan nozzle

    International Nuclear Information System (INIS)

    Zacarias, A.; Venegas, M.; Ventas, R.; Lecuona, A.

    2011-01-01

    This paper presents the experimental evaluation of the adiabatic absorption of ammonia vapour into ammonia-lithium nitrate solution using a flat fan nozzle and an upstream single-pass subcooler. Data are representative of the working conditions of adiabatic absorbers in absorption chillers. The nozzle was located at the top of the absorption chamber, separated 205 mm from the bottom surface. The diluted solution mass flow rate was modified between 0.04 and 0.08 kg/s and the solution inlet temperature between 24.5 and 29.7 o C. The influence of these variables on the absorption ratio, mass transfer coefficient, outlet subcooling and approach to equilibrium factor is analysed in the present paper. A linear relation between the inlet subcooling and the absorption ratio is observed. The approach to equilibrium factor for the conditions essayed is always between 0.81 and 0.89. Mass transfer coefficients and correlations for the approach to equilibrium factor and the Sherwood number are obtained. Results are compared with other ones reported in the literature. - Highlights: → Adiabatic absorption of NH 3 vapour into NH 3 -LiNO 3 using flat fan nozzle created spray. → A linear relation exists between solution inlet subcooling and absorption ratio. → The approach to equilibrium factor is always between 0.81 and 0.89 at 205 mm height. → Experimental values of mass transfer coefficient and outlet subcooling are presented. → Correlations for the approach to equilibrium factor and the Sherwood number are given.

  10. Indoor spray measurement of spray drift potential using a spray drift test bench : effect of drift-reducing nozzle types, spray boom height, nozzle spacing and forward speed

    NARCIS (Netherlands)

    Moreno Ruiz, J.R.

    2014-01-01

    In a series of indoor experiments spray drift potential was assessed when spraying over a spray drift testbench with two different driving speeds, 2m/s and 4m/s, two different spray boom heights, 30 cm and 50 cm, and two different nozzle spacing, 25 cm and 50 cm, for six different nozzle types. The

  11. Chemical processes in the turbine and exhaust nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Lukachko, S P; Waitz, I A [Massachusetts Inst. of Tech., Cambridge, MA (United States). Aero-Environmental Lab.; Miake-Lye, R C; Brown, R C; Anderson, M R [Aerodyne Research, Inc., Billerica, MA (United States); Dawes, W N [University Engineering Dept., Cambridge (United Kingdom). Whittle Lab.

    1998-12-31

    The objective is to establish an understanding of primary pollutant, trace species, and aerosol chemical evolution as engine exhaust travels through the nonuniform, unsteady flow fields of the turbine and exhaust nozzle. An understanding of such processes is necessary to provide accurate inputs for plume-wake modeling efforts and is therefore a critical element in an assessment of the atmospheric effects of both current and future aircraft. To perform these studies, a numerical tool was developed combining the calculation of chemical kinetics and one-, two-, or three-dimensional (1-D, 2-D, 3-D) Reynolds-averaged flow equations. Using a chemistry model that includes HO{sub x}, NO{sub y}, SO{sub x}, and CO{sub x} reactions, several 1-D parametric analyses were conducted for the entire turbine and exhaust nozzle flow path of a typical advanced subsonic engine to understand the effects of various flow and chemistry uncertainties on a baseline 1-D result. These calculations were also used to determine parametric criteria for judging 1-D, 2-D, and 3-D modeling requirements as well as to provide information about chemical speciation at the nozzle exit plane. (author) 9 refs.

  12. Nozzle Flow with Vibrational Nonequilibrium. Ph.D. Thesis

    Science.gov (United States)

    Landry, John Gary

    1995-01-01

    Flow of nitrogen gas through a converging-diverging nozzle is simulated. The flow is modeled using the Navier-Stokes equations that have been modified for vibrational nonequilibrium. The energy equation is replaced by two equations. One equation accounts for energy effects due to the translational and rotational degrees of freedom, and the other accounts for the affects due to the vibrational degree of freedom. The energy equations are coupled by a relaxation time which measures the time required for the vibrational energy component to equilibrate with the translational and rotational energy components. An improved relaxation time is used in this thesis. The equations are solved numerically using the Steger-Warming flux vector splitting method and the Implicit MacCormack method. The results show that uniform flow is produced outside of the boundary layer. Nonequilibrium exists in both the converging and diverging nozzle sections. The boundary layer region is characterized by a marked increase in translational-rotational temperature. The vibrational temperature remains frozen downstream of the nozzle, except in the boundary layer.

  13. Inspections of CRDM Nozzle Penetrations in Paks NPP

    International Nuclear Information System (INIS)

    Doszpod, B.; Doczi, M.

    2008-01-01

    During the maintenance outage of Unit 2 of Paks Nuclear Power Plant in 2002, performing the regular drop-test of Control Rod Driving Mechanisms (CRDM) reduced drop-speed was observed in case of one CRDM. In spite of the measured value of speed was inside the acceptance limit, so it was still satisfactory, decision was made to disassemble the CRDM to clarify the cause of the speed-anomaly. After removal of the CRDM, by means of visual inspection deformation (bulge) was observed on the inside surface of the heat protection tube of the CRDM nozzle penetration. Deformation was big enough to obstruct the free movement of CRDM. After the deformed heat protection tube was removed, significant bulge was observed also on the corrosion protection tube, at the same elevation. As the root cause of these deformations, presence of water in the space between the CRDM nozzle and the corrosion protection tube was assumed. Non destructive inspection procedures were worked out and utilized to detect the presence of water in the space in question and to find the possible way of water inlet. Performed inspections successfully localized the place of water inlet. Developed inspection program of CRDM nozzles has to be performed during each outage on each unit. Paper deals with introduction of the phenomenon, the cause of damage, inspection the procedures which were worked out and applied, summarize the results of inspections performed.(author)

  14. Measuring Spray Droplet Size from Agricultural Nozzles Using Laser Diffraction

    Science.gov (United States)

    Fritz, Bradley K.; Hoffmann, W. Clint

    2016-01-01

    When making an application of any crop protection material such as an herbicide or pesticide, the applicator uses a variety of skills and information to make an application so that the material reaches the target site (i.e., plant). Information critical in this process is the droplet size that a particular spray nozzle, spray pressure, and spray solution combination generates, as droplet size greatly influences product efficacy and how the spray moves through the environment. Researchers and product manufacturers commonly use laser diffraction equipment to measure the spray droplet size in laboratory wind tunnels. The work presented here describes methods used in making spray droplet size measurements with laser diffraction equipment for both ground and aerial application scenarios that can be used to ensure inter- and intra-laboratory precision while minimizing sampling bias associated with laser diffraction systems. Maintaining critical measurement distances and concurrent airflow throughout the testing process is key to this precision. Real time data quality analysis is also critical to preventing excess variation in the data or extraneous inclusion of erroneous data. Some limitations of this method include atypical spray nozzles, spray solutions or application conditions that result in spray streams that do not fully atomize within the measurement distances discussed. Successful adaption of this method can provide a highly efficient method for evaluation of the performance of agrochemical spray application nozzles under a variety of operational settings. Also discussed are potential experimental design considerations that can be included to enhance functionality of the data collected. PMID:27684589

  15. Cracking at nozzle corners in the nuclear pressure vessel industry

    International Nuclear Information System (INIS)

    Smith, C.W.

    1986-01-01

    Cracks in nozzle corners at the pressure boundary of nuclear reactors have been frequently observed in service. These cracks tend to form with radial orientations with respect to the nozzle central axis and are believed to be initiated by thermal shock. However, their growth is believed to be primarily due to a steady plus a fluctuating internal pressure. Due to the impracticality of fracture testing of full-scale models, the Oak Ridge National Laboratory instituted the use of an intermediate test vessel (ITV) for use in fracture testing which had the same wall thickness and nozzle size as the prototype but significantly reduced overall length and diameter. In order to determine whether or not these ITVs could provide realistic data for full-scale reactor vessels, laboratory models of full-scale boiling water reactors and ITVs were constructed and tested. After briefly reviewing the laboratory testing and correlating results with service experience, results obtained will be used to draw some general conclusions regarding the stable growth of nonplanar cracks with curved crack fronts which are the most common precursors to fracture of pressure vessel components near junctures. Use of linear elastic fracture mechanics is made in determining stress-intensity distribution along the crack fronts

  16. Chemical processes in the turbine and exhaust nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Lukachko, S.P.; Waitz, I.A. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Aero-Environmental Lab.; Miake-Lye, R.C.; Brown, R.C.; Anderson, M.R. [Aerodyne Research, Inc., Billerica, MA (United States); Dawes, W.N. [University Engineering Dept., Cambridge (United Kingdom). Whittle Lab.

    1997-12-31

    The objective is to establish an understanding of primary pollutant, trace species, and aerosol chemical evolution as engine exhaust travels through the nonuniform, unsteady flow fields of the turbine and exhaust nozzle. An understanding of such processes is necessary to provide accurate inputs for plume-wake modeling efforts and is therefore a critical element in an assessment of the atmospheric effects of both current and future aircraft. To perform these studies, a numerical tool was developed combining the calculation of chemical kinetics and one-, two-, or three-dimensional (1-D, 2-D, 3-D) Reynolds-averaged flow equations. Using a chemistry model that includes HO{sub x}, NO{sub y}, SO{sub x}, and CO{sub x} reactions, several 1-D parametric analyses were conducted for the entire turbine and exhaust nozzle flow path of a typical advanced subsonic engine to understand the effects of various flow and chemistry uncertainties on a baseline 1-D result. These calculations were also used to determine parametric criteria for judging 1-D, 2-D, and 3-D modeling requirements as well as to provide information about chemical speciation at the nozzle exit plane. (author) 9 refs.

  17. Thermal Analysis of the Fastrac Chamber/Nozzle

    Science.gov (United States)

    Davis, Darrell

    2001-01-01

    This paper will describe the thermal analysis techniques used to predict temperatures in the film-cooled ablative rocket nozzle used on the Fastrac 60K rocket engine. A model was developed that predicts char and pyrolysis depths, liner thermal gradients, and temperatures of the bondline between the overwrap and liner. Correlation of the model was accomplished by thermal analog tests performed at Southern Research, and specially instrumented hot fire tests at the Marshall Space Flight Center. Infrared thermography was instrumental in defining nozzle hot wall surface temperatures. In-depth and outboard thermocouple data was used to correlate the kinetic decomposition routine used to predict char and pyrolysis depths. These depths were anchored with measured char and pyrolysis depths from cross-sectioned hot-fire nozzles. For the X-34 flight analysis, the model includes the ablative Thermal Protection System (TPS) material that protects the overwrap from the recirculating plume. Results from model correlation, hot-fire testing, and flight predictions will be discussed.

  18. Thermal Analysis of the MC-1 Chamber/Nozzle

    Science.gov (United States)

    Davis, Darrell W.; Phelps, Lisa H. (Technical Monitor)

    2001-01-01

    This paper will describe the thermal analysis techniques used to predict temperatures in the film-cooled ablative rocket nozzle used on the MC-1 60K rocket engine. A model was developed that predicts char and pyrolysis depths, liner thermal gradients, and temperatures of the bondline between the overwrap and liner. Correlation of the model was accomplished by thermal analog tests performed at Southern Research, and specially instrumented hot fire tests at the Marshall Space Flight Center. Infrared thermography was instrumental in defining nozzle hot wall surface temperatures. In-depth and outboard thermocouple data was used to correlate the kinetic decomposition routine used to predict char and pyrolysis depths. These depths were anchored with measured char and pyrolysis depths from cross-sectioned hot-fire nozzles. For the X-34 flight analysis, the model includes the ablative Thermal Protection System (TPS) material that protects the overwrap from the recirculating plume. Results from model correlation, hot-fire testing, and flight predictions will be discussed.

  19. Sociologists in Extension

    Science.gov (United States)

    Christenson, James A.; And Others

    1977-01-01

    The article describes the work activities of the extension sociologist, the relative advantage and disadvantage of extension roles in relation to teaching/research roles, and the relevance of sociological training and research for extension work. (NQ)

  20. Influence of throttling of the heavy fraction on the uranium isotope separation in the separation nozzle

    International Nuclear Information System (INIS)

    Bley, P.; Ehrfeld, W.; Heiden, U.

    1978-04-01

    In a separation nozzle cascade for enrichment of U-235 the cut of the separation elements is adjusted by throttling the heavy fraction. This control process influences directly the flow properties in the nozzle and may noticeably change its separation characteristics. This paper deals with an experimental investigation of the throttling effect on the separation and control characteristics of the separation nozzle operated with a H 2 /UF 6 mixture. In consideration of the extremely small characteristic dimensions of commercial separation nozzle elements the influence of manufacturing tolerances on the characteristics of the throttled nozzle was analysed in detail. It appears, that the elementary effect of isotope separation increases by throttling of the heavy fraction up to 5% without changing the optimum operating conditions. This increase of the elementary effect is not only obtained for separation nozzles with zero tolerances but also for separation nozzles having finite tolerances of the skimmer position. Tolerances of the nozzle width, however, become increasingly detrimental, when the heavy fraction is throttled. Regarding the control characteristics of the separation nozzle it was found out, that the UF 6 -cut of the throttled nozzle reacts more sensitively to alterations of the operating pressures and less sensitively to alterations of the UF 6 -concentration of the process gas mixture. (orig.) [de

  1. Thrust Augmentation by Airframe-Integrated Linear-Spike Nozzle Concept for High-Speed Aircraft

    Directory of Open Access Journals (Sweden)

    Hidemi Takahashi

    2018-02-01

    Full Text Available The airframe-integrated linear-spike nozzle concept applied to an external nozzle for high-speed aircraft was evaluated with regard to the thrust augmentation capability and the trim balance. The main focus was on the vehicle aftbody. The baseline airframe geometry was first premised to be a hypersonic waverider design. The baseline aftbody case had an external nozzle comprised of a simple divergent nozzle and was hypothetically replaced with linear-spike external nozzle configurations. Performance evaluation was mainly conducted by considering the nozzle thrust generated by the pressure distribution on the external nozzle surface at the aftbody portion calculated by computer simulation at a given cruise condition with zero angle of attack. The thrust performance showed that the proposed linear-spike external nozzle concept was beneficial in thrust enhancement compared to the baseline geometry because the design of the proposed concept had a compression wall for the exhaust flow, which resulted in increasing the wall pressure. The configuration with the boattail and the angled inner nozzle exhibited further improvement in thrust performance. The trim balance evaluation showed that the aerodynamic center location appeared as acceptable. Thus, benefits were obtained by employing the airframe-integrated linear-spike external nozzle concept.

  2. Predictive Modeling of Fast-Curing Thermosets in Nozzle-Based Extrusion

    Science.gov (United States)

    Xie, Jingjin; Randolph, Robert; Simmons, Gary; Hull, Patrick V.; Mazzeo, Aaron D.

    2017-01-01

    This work presents an approach to modeling the dynamic spreading and curing behavior of thermosets in nozzle-based extrusions. Thermosets cover a wide range of materials, some of which permit low-temperature processing with subsequent high-temperature and high-strength working properties. Extruding thermosets may overcome the limited working temperatures and strengths of conventional thermoplastic materials used in additive manufacturing. This project aims to produce technology for the fabrication of thermoset-based structures leveraging advances made in nozzle-based extrusion, such as fused deposition modeling (FDM), material jetting, and direct writing. Understanding the synergistic interactions between spreading and fast curing of extruded thermosetting materials will provide essential insights for applications that require accurate dimensional controls, such as additive manufacturing [1], [2] and centrifugal coating/forming [3]. Two types of thermally curing thermosets -- one being a soft silicone (Ecoflex 0050) and the other being a toughened epoxy (G/Flex) -- served as the test materials in this work to obtain models for cure kinetics and viscosity. The developed models align with extensive measurements made with differential scanning calorimetry (DSC) and rheology. DSC monitors the change in the heat of reaction, which reflects the rate and degree of cure at different crosslinking stages. Rheology measures the change in complex viscosity, shear moduli, yield stress, and other properties dictated by chemical composition. By combining DSC and rheological measurements, it is possible to establish a set of models profiling the cure kinetics and chemorheology without prior knowledge of chemical composition, which is usually necessary for sophisticated mechanistic modeling. In this work, we conducted both isothermal and dynamic measurements with both DSC and rheology. With the developed models, numerical simulations yielded predictions of diameter and height of

  3. Numerical study of base pressure characteristic curve for a four-engine clustered nozzle configuration

    Science.gov (United States)

    Wang, Ten-See

    1993-07-01

    Excessive base heating has been a problem for many launch vehicles. For certain designs such as the direct dump of turbine exhaust in the nozzle section and at the nozzle lip of the Space Transportation Systems Engine (STME), the potential burning of the turbine exhaust in the base region has caused tremendous concern. Two conventional approaches have been considered for predicting the base environment: (1) empirical approach, and (2) experimental approach. The empirical approach uses a combination of data correlations and semi-theoretical calculations. It works best for linear problems, simple physics and geometry. However, it is highly suspicious when complex geometry and flow physics are involved, especially when the subject is out of historical database. The experimental approach is often used to establish database for engineering analysis. However, it is qualitative at best for base flow problems. Other criticisms include the inability to simulate forebody boundary layer correctly, the interference effect from tunnel walls, and the inability to scale all pertinent parameters. Furthermore, there is a contention that the information extrapolated from subscale tests with combustion is not conservative. One potential alternative to the conventional methods is computational fluid dynamics (CFD), which has none of the above restrictions and is becoming more feasible due to maturing algorithms and advancing computer technology. It provides more details of the flowfield and is only limited by computer resources. However, it has its share of criticisms as a predictive tool for base environment. One major concern is that CFD has not been extensively tested for base flow problems. It is therefore imperative that CFD be assessed and benchmarked satisfactorily for base flows. In this study, the turbulent base flowfield of a experimental investigation for a four-engine clustered nozzle is numerically benchmarked using a pressure based CFD method. Since the cold air was the

  4. A computational investigation on the influence of the use of elliptical orifices on the inner nozzle flow and cavitation development in diesel injector nozzles

    International Nuclear Information System (INIS)

    Molina, S.; Salvador, F.J.; Carreres, M.; Jaramillo, D.

    2014-01-01

    Highlights: • The influence of elliptical orifices on the inner nozzle flow is compared. • Five nozzles with different elliptical and circular orifices are simulated. • Differences in the flow coefficients and cavitation morphology are observed. • Horizontal axis orifices are ease to cavitate, with a higher discharge coefficient. • A better mixing process quality is expected for the horizontal major axis nozzles. - Abstract: In this paper a computational study was carried out in order to investigate the influence of the use of elliptical orifices on the inner nozzle flow and cavitation development. With this aim, a large number of injection conditions have been simulated and analysed for 5 different nozzles: four nozzles with different elliptical orifices and one standard nozzle with circular orifices. The four elliptical nozzles differ from each other in the orientation of the major axis (vertical or horizontal) and in the eccentricity value, but keeping the same outlet section in all cases. The comparison has been made in terms of mass flow, momentum flux and other important non-dimensional parameters which help to describe the behaviour of the inner nozzle flow: discharge coefficient (C d ), area coefficient (C a ) and velocity coefficient (C v ). The simulations have been done with a code able to simulate the flow under either cavitating or non-cavitating conditions. This code has been previously validated using experimental measurements over the standard nozzle with circular orifices. The main results of the investigation have shown how the different geometries modify the critical cavitation conditions as well as the discharge coefficient and the effective velocity. In particular, elliptical geometries with vertically oriented major axis are less prone to cavitate and have a lower discharge coefficient, whereas elliptical geometries with horizontally oriented major axis are more prone to cavitate and show a higher discharge coefficient

  5. Shape modification for decreasing the spring stiffness of double-plate nozzle type spacer grid spring

    International Nuclear Information System (INIS)

    Lee, K. H.; Kang, H. S.; Song, K. N.; Yun, K. H.; Kim, H. K.

    2001-01-01

    Nozzle of the double-plated grid plays the role of the spirng to support a fuel rod as well as the coolant path in grid. The nozzle was known to be necessary to reduce the spring stiffness for supporting performance. In this study, the contact analysis between the fuel rod and the newly designed nozzle was performed by ABAQUS computer code to propose the preferable shape in term of spring performance. Two small cut at the upper and lower part of the nozzle appeared to have a minor effect in decreasing the nozzle stiffness. A long slot at the center of the nozzle was turned out not only to decrease the spring constant as desired but also to increase the elastic displacement

  6. Method and apparatus for removably mounting a top nozzle on a nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Wilson, J.F.; Gjertsen, R.K.; Schallenberger, J.M.

    1986-01-01

    In a fuel assembly having a top nozzle and control rod guide thimbles, a method is described of removably mounting the top nozzle on the ends of the guide thimbles, comprising the steps of: (a) releasably mating hollow outer sockets defined in the top nozzle with hollow inner sockets defined on the ends of the guide thimbles. The inner sockets are movable between compressed conditions for removing and inserting the inner sockets from and into the outer sockets in mounting and removing the top nozzle on and from the guide thimbles and expanded conditions for mating the inner and outer sockets together and the top nozzle on the guide thimbles; (b) supporting elongated locking tubes such that end portions thereof extend into the outer sockets defined in the top nozzle; and (c) moving all of the locking tubes at the same time between unlocking and locking positions to displace their end portions axially within the outer sockets between first and second locations

  7. A CFD-based aerodynamic design procedure for hypersonic wind-tunnel nozzles

    Science.gov (United States)

    Korte, John J.

    1993-01-01

    A new procedure which unifies the best of current classical design practices, computational fluid dynamics (CFD), and optimization procedures is demonstrated for designing the aerodynamic lines of hypersonic wind-tunnel nozzles. The new procedure can be used to design hypersonic wind tunnel nozzles with thick boundary layers where the classical design procedure has been shown to break down. An efficient CFD code, which solves the parabolized Navier-Stokes (PNS) equations using an explicit upwind algorithm, is coupled to a least-squares (LS) optimization procedure. A LS problem is formulated to minimize the difference between the computed flow field and the objective function, consisting of the centerline Mach number distribution and the exit Mach number and flow angle profiles. The aerodynamic lines of the nozzle are defined using a cubic spline, the slopes of which are optimized with the design procedure. The advantages of the new procedure are that it allows full use of powerful CFD codes in the design process, solves an optimization problem to determine the new contour, can be used to design new nozzles or improve sections of existing nozzles, and automatically compensates the nozzle contour for viscous effects as part of the unified design procedure. The new procedure is demonstrated by designing two Mach 15, a Mach 12, and a Mach 18 helium nozzles. The flexibility of the procedure is demonstrated by designing the two Mach 15 nozzles using different constraints, the first nozzle for a fixed length and exit diameter and the second nozzle for a fixed length and throat diameter. The computed flow field for the Mach 15 least squares parabolized Navier-Stokes (LS/PNS) designed nozzle is compared with the classically designed nozzle and demonstrates a significant improvement in the flow expansion process and uniform core region.

  8. Measurement of the residual stresses in a PWR Control Rod Drive Mechanism nozzle

    OpenAIRE

    Coules, Harry; Smith, David

    2018-01-01

    Residual stress in the welds that attach Control Rod Drive Mechanism nozzles into the upper head of a PWR reactor vessel can influence the vessel's structural integrity and initiate Primary Water Stress Corrosion Cracking. PWSCC at Alloy 600 CRDM nozzles has caused primary coolant leakage in operating PWRs. We have used Deep Hole Drilling to characterise residual stresses in a PWR vessel head. Measurements of the internal cladding and nozzle attachment weld showed that although modest tensile...

  9. The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions

    Science.gov (United States)

    2014-10-01

    The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions by Matthew Kurman, Luis Bravo, Chol-Bum Kweon...Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions Matthew Kurman, Luis Bravo, and Chol-Bum Kweon Vehicle Technology...March 2014 4. TITLE AND SUBTITLE The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions 5a. CONTRACT NUMBER 5b

  10. INVESTIGATION OF FLOW BEHAVIOR IN MINIMUM QUANTITY LUBRICATION NOZZLE FOR END MILLING PROCESSES

    OpenAIRE

    M.S. Najiha; M.M.Rahman; A.R. Yusoff; K. Kadirgama

    2012-01-01

    Minimum quantity lubrication (MQL) is a sustainable manufacturing technique that has replaced conventional flooded lubrication methods and dry machining. In the MQL technique, the lubricant is sprayed onto the friction surfaces through nozzles through small pneumatically-operated pumps. This paper presents an investigation into the flow behavior of the lubricant and air mixture under certain pressures at the tip of a nozzle specially designed for MQL. The nozzle used is an MQL stainless steel...

  11. Experimental stress analysis of the attachment region of hemispherical shells with attached nozzles. Part 2b. Radial nozzle 7.875 in. O.D.--7.500 in. I.D. 10.00 in. penetration

    International Nuclear Information System (INIS)

    Maxwell, R.L.; Holland, R.W.; Stengl, G.R.

    1970-06-01

    The report presents the results of investigations conducted on a hemisphere with a radial nozzle of 7.875'' O.D. and 7.500'' I.D. and 10'' penetration into the hemisphere. Stress values were determined for the following five types of loadings: (1) internal pressure applied to the hemisphere and nozzle assembly, (2) an axial load applied collinear with nozzle, (3) a pure bending moment, or axial couple, applied to the nozzle, (4) a transverse or shear load applied normal to the nozzle, and (5) a pure torque applied in the radial plane of the nozzle

  12. High performance Solid Rocket Motor (SRM) submerged nozzle/combustion cavity flowfield assessment

    Science.gov (United States)

    Freeman, J. A.; Chan, J. S.; Murph, J. E.; Xiques, K. E.

    1987-01-01

    Two and three dimensional internal flowfield solutions for critical points in the Space Shuttle solid rocket booster burn time were developed using the Lockheed Huntsville GIM/PAID Navier-Stokes solvers. These perfect gas, viscous solutions for the high performance motor characterize the flow in the aft segment and nozzle of the booster. Two dimensional axisymmetric solutions were developed at t = 20 and t = 85 sec motor burn times. The t = 85 sec solution indicates that the aft segment forward inhibitor stub produces vortices with are shed and convected downwards. A three dimensional 3.5 deg gimbaled nozzle flowfield solution was developed for the aft segment and nozzle at t = 9 sec motor burn time. This perfect gas, viscous analysis, provided a steady state solution for the core region and the flow through the nozzle, but indicated that unsteady flow exists in the region under the nozzle nose and near the flexible boot and nozzle/case joint. The flow in the nozzle/case joint region is characterized by low magnitude pressure waves which travel in the circumferential direction. From the two and three dimensional flowfield calculations presented it can be concluded that there is no evidence from these results that steady state gas dynamics is the primary mechanism resulting in the nozzle pocketing erosion experienced on SRM nozzles 8A or 17B. The steady state flowfield results indicate pocketing erosion is not directly initiated by a steady state gas dynamics phenomenon.

  13. An Interactive Method of Characteristics Java Applet to Design and Analyze Supersonic Aircraft Nozzles

    Science.gov (United States)

    Benson, Thomas J.

    2014-01-01

    The Method of Characteristics (MOC) is a classic technique for designing supersonic nozzles. An interactive computer program using MOC has been developed to allow engineers to design and analyze supersonic nozzle flow fields. The program calculates the internal flow for many classic designs, such as a supersonic wind tunnel nozzle, an ideal 2D or axisymmetric nozzle, or a variety of plug nozzles. The program also calculates the plume flow produced by the nozzle and the external flow leading to the nozzle exit. The program can be used to assess the interactions between the internal, external and plume flows. By proper design and operation of the nozzle, it may be possible to lessen the strength of the sonic boom produced at the rear of supersonic aircraft. The program can also calculate non-ideal nozzles, such as simple cone flows, to determine flow divergence and nonuniformities at the exit, and its effect on the plume shape. The computer program is written in Java and is provided as free-ware from the NASA Glenn central software server.

  14. Erosion wear of boron carbide ceramic nozzles by abrasive air-jets

    International Nuclear Information System (INIS)

    Deng Jianxin

    2005-01-01

    Boron carbide nozzles were produced by hot pressing. The erosion wear of this nozzle caused by abrasive particle impact was investigated by abrasive air-jets. Silica, silicon carbide and alumina powders with different hardness were used as the erodent abrasive particles. Results showed that the hardness of the erodent particles played an important role with respect to the erosion wear of the boron carbide nozzles. As the hardness of the erodent particles increases, there is a dramatic increase in erosion rate of the nozzles. The nozzle entrance area suffered from severe abrasive impact under large impact angles, and generated maximum tensile stresses. The wear mechanisms of boron carbide nozzle at this area appeared to be entirely brittle in nature with the evidence of large scale-chipping, and exhibited a brittle fracture induced removal process. While at the nozzle center wall section, most of the particles traveled parallel to the nozzle wall, and showed minimum tensile stresses. The wear mode in this area of the nozzle changed from impact to sliding erosion, and the wear mechanisms appeared to be the lateral cracking owing to a surface fatigue fracture mechanism

  15. Development of built-in debris-filter bottom nozzle for PWR fuel assemblies

    International Nuclear Information System (INIS)

    Juntaro Shimizu; Kazuki Monaka; Masaji Mori; Kazuo Ikeda

    2005-01-01

    Mitsubishi Heavy Industries, Ltd. (MHI) has worked to improve the capability of anti debris bottom nozzle for a PWR fuel assembly. The Current debris filter bottom nozzle (DFBN) having 4mm diameter flow holes can capture the larger size of debris than the flow hole inner diameter. MHI has completed the development of the built-in debris filter bottom nozzle, which is the new idea of the debris-filter for high burnup (55GWd/t assembly average burnup). Built-in debris filter bottom nozzle consists of the blades and nozzle body. The blades made from inconel strip are embedded and welded on the grooved top surface of the bottom nozzle adapter plate. A flow hole is divided by the blade and the trap size of the debris is reduced. Because the blades block the coolant flow, it was anticipated to increase the pressure loss of the nozzle, however, adjusting the relation between blade and taper shape of the flow hole, the pressure loss has been successfully maintained the satisfactory level. Grooves are cut on the nozzle plate; nevertheless, the additional skirts on the four sides of the nozzle compensate the structural strength. (authors)

  16. Stress analysis of the HFIR HB-2 and HB-3 beam tube nozzles

    International Nuclear Information System (INIS)

    Williams, P.T.

    1998-08-01

    The results of three-dimensional linear elastic stress analyses of the HFIR HB-2 and HB-3 nozzles are presented in this report. Finite element models were developed using the PATRAN pre-processing code and translated into ABAQUS input file format. A scoping analysis using simple geometries with internal pressure loading was carried out to assess the capabilities of the ABAQUS/Standard code to calculate maximum principal stress distributions within cylinders with and without holes. These scoping calculations were also used to provide estimates for the variation in tangential stress around the rim of a nozzle using the superposition of published closed-form solutions for the stress around a hole in an infinite flat plate under uniaxial tension. From the results of the detailed finite element models, peak stress concentration factors (based on the maximum principal stresses in tension) were calculated to be 3.0 for the HB-2 nozzle and 2.8 for the HB-3 nozzle. Submodels for each nozzle were built to calculate the maximum principal stress distribution in the weldment region around the nozzle, where displacement boundary conditions for the submodels were automatically calculated by ABAQUS using the results of the global nozzle models. Maximum principal stresses are plotted and tabulated for eight positions around each nozzle and nozzle weldment

  17. Interior flow and near-nozzle spray development in a marine-engine diesel fuel injector

    Science.gov (United States)

    Hult, J.; Simmank, P.; Matlok, S.; Mayer, S.; Falgout, Z.; Linne, M.

    2016-04-01

    A consolidated effort at optically characterising flow patterns, in-nozzle cavitation, and near-nozzle jet structure of a marine diesel fuel injector is presented. A combination of several optical techniques was employed to fully transparent injector models, compound metal-glass and full metal injectors. They were all based on a common real-scale dual nozzle hole geometry for a marine two-stroke diesel engine. In a stationary flow rig, flow velocities in the sac-volume and nozzle holes were measured using PIV, and in-nozzle cavitation visualized using high-resolution shadowgraphs. The effect of varying cavitation number was studied and results compared to CFD predictions. In-nozzle cavitation and near-nozzle jet structure during transient operation were visualized simultaneously, using high-speed imaging in an atmospheric pressure spray rig. Near-nozzle spray formation was investigated using ballistic imaging. Finally, the injector geometry was tested on a full-scale marine diesel engine, where the dynamics of near-nozzle jet development was visualized using high-speed shadowgraphy. The range of studies focused on a single common geometry allows a comprehensive survey of phenomena ranging from first inception of cavitation under well-controlled flow conditions to fuel jet structure at real engine conditions.

  18. Proposed Flight Research of a Dual-Bell Rocket Nozzle Using the NASA F-15 Airplane

    Science.gov (United States)

    Jones, Daniel S.; Bui, Trong T.; Ruf, Joseph H.

    2013-01-01

    For more than a half-century, several types of altitude-compensating rocket nozzles have been proposed and analyzed, but very few have been adequately tested in a relevant flight environment. One type of altitude-compensating nozzle is the dual-bell rocket nozzle, which was first introduced into literature in 1949. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. This paper proposes a method for conducting testing and research with a dual-bell rocket nozzle in a flight environment. We propose to leverage the existing NASA F-15 airplane and Propulsion Flight Test Fixture as the flight testbed, with the dual-bell nozzle operating during captive-carried flights, and with the nozzle subjected to a local flow field similar to that of a launch vehicle. The primary objective of this effort is not only to advance the technology readiness level of the dual-bell nozzle, but also to gain a greater understanding of the nozzle mode transitional sensitivity to local flow-field effects, and to quantify the performance benefits with this technology. The predicted performance benefits are significant, and may result in reducing the cost of delivering payloads to low-Earth orbit.

  19. INVESTIGATION OF FLOW BEHAVIOR IN MINIMUM QUANTITY LUBRICATION NOZZLE FOR END MILLING PROCESSES

    Directory of Open Access Journals (Sweden)

    M.S. Najiha

    2012-12-01

    Full Text Available Minimum quantity lubrication (MQL is a sustainable manufacturing technique that has replaced conventional flooded lubrication methods and dry machining. In the MQL technique, the lubricant is sprayed onto the friction surfaces through nozzles through small pneumatically-operated pumps. This paper presents an investigation into the flow behavior of the lubricant and air mixture under certain pressures at the tip of a nozzle specially designed for MQL. The nozzle used is an MQL stainless steel nozzle, 6.35 mm in diameter. Computational fluid dynamics is used to determine the flow pattern at the tip of the nozzle where the lubricant and compressed air are mixed to form a mist. The lubricant volume flow is approximately 0.08 ml/cycle of the pump. A transient, pressure-based, three-dimensional analysis is performed with a viscous, realizable k-ε model. The results are obtained in the form of vector plots and flow fields. The flow mixing at the tip of the nozzle is wholly shown through the flow fields and vector plots. This study provides an insight into the flow distribution at the tip of the nozzle for a certain pressure to aid modifications in the design of the nozzle for future MQL studies. It attainable aids to determine the correct pressure for the air jet at the nozzle tip.

  20. Optimally growing boundary layer disturbances in a convergent nozzle preceded by a circular pipe

    Science.gov (United States)

    Uzun, Ali; Davis, Timothy B.; Alvi, Farrukh S.; Hussaini, M. Yousuff

    2017-06-01

    We report the findings from a theoretical analysis of optimally growing disturbances in an initially turbulent boundary layer. The motivation behind this study originates from the desire to generate organized structures in an initially turbulent boundary layer via excitation by disturbances that are tailored to be preferentially amplified. Such optimally growing disturbances are of interest for implementation in an active flow control strategy that is investigated for effective jet noise control. Details of the optimal perturbation theory implemented in this study are discussed. The relevant stability equations are derived using both the standard decomposition and the triple decomposition. The chosen test case geometry contains a convergent nozzle, which generates a Mach 0.9 round jet, preceded by a circular pipe. Optimally growing disturbances are introduced at various stations within the circular pipe section to facilitate disturbance energy amplification upstream of the favorable pressure gradient zone within the convergent nozzle, which has a stabilizing effect on disturbance growth. Effects of temporal frequency, disturbance input and output plane locations as well as separation distance between output and input planes are investigated. The results indicate that optimally growing disturbances appear in the form of longitudinal counter-rotating vortex pairs, whose size can be on the order of several times the input plane mean boundary layer thickness. The azimuthal wavenumber, which represents the number of counter-rotating vortex pairs, is found to generally decrease with increasing separation distance. Compared to the standard decomposition, the triple decomposition analysis generally predicts relatively lower azimuthal wavenumbers and significantly reduced energy amplification ratios for the optimal disturbances.

  1. Fracture mechanics evaluation of LOFT lower plenum injection nozzle

    International Nuclear Information System (INIS)

    Nagata, P.K.; Reuter, W.G.

    1977-01-01

    An analysis to establish whether or not a leak-before-break concept would apply to the LOFT lower plenum injection nozzle is described. The analysis encompassed the structure from the inlet side of valve V-2170 to the lower plenum nozzle-to-reactor vessel weld on the left side of the emergency core cooling system (ECCS). The defect that was assumed to exist was of such a size that the probability of its being missed by the applicable inspection technique was near zero. The Inconel 600 nozzle forging with an initial assumed defect size of 0.64 cm (0.25 in.) deep would behave as follows: (1) the axially oriented defect would result in leak before rupture (the number of cycles to rupture was 11,000), (2) the circumferentially oriented defect would result in a rupture before leak. The number of cycles to failure would be in excess of 14,000. Based on the conservative assumption that the thermal stresses were membrane stresses as opposed to a bending stress, the following were found. For the Inconel 82 weld metal (thickness of 1.3 cm [0.53 in.]) and AISI 316 SST valve body, with an initial assumed defect of 0.25 cm (0.1 in.), the crack would grow through the thickness in a minimum of 3950 cycles and to a critical rupture crack length of 5.1 cm (2.0 in.) in an additional 80 cycles. The Inconel 82 weld metal at the shell body (thickness of 9.7 cm or 3.8 in.) with an assumed defect 1.3 cm (0.5 in.) deep would fail in 334 cycles. Calculations made assuming a linear stress gradient instead of the above-mentioned flat distribution through the wall indicated that the number of stress cycles increased to 2200

  2. Numerical modelling of the jet nozzle enrichment process

    International Nuclear Information System (INIS)

    Vercelli, P.

    1983-01-01

    A numerical model was developed for the simulation of the isotopic enrichment produced by the jet nozzle process. The flow was considered stationary and under ideal gas conditions. The model calculates, for any position of the skimmer piece: (a) values of radial mass concentration profiles for each isotopic species and (b) values of elementary separation effect (Σ sub(A)) and uranium cut (theta). The comparison of the numerical results obtained with the experimental values given in the literature proves the validity of the present work as an initial step in the modelling of the process. (Author) [pt

  3. Numerical and experimental study of liquid breakup process in solid rocket motor nozzle

    Science.gov (United States)

    Yen, Yi-Hsin

    Rocket propulsion is an important travel method for space exploration and national defense, rockets needs to be able to withstand wide range of operation environment and also stable and precise enough to carry sophisticated payload into orbit, those engineering requirement makes rocket becomes one of the state of the art industry. The rocket family have been classified into two major group of liquid and solid rocket based on the fuel phase of liquid or solid state. The solid rocket has the advantages of simple working mechanism, less maintenance and preparing procedure and higher storage safety, those characters of solid rocket make it becomes popular in aerospace industry. Aluminum based propellant is widely used in solid rocket motor (SRM) industry due to its avalibility, combusion performance and economical fuel option, however after aluminum react with oxidant of amonimum perchrate (AP), it will generate liquid phase alumina (Al2O3) as product in high temperature (2,700˜3,000 K) combustion chamber enviornment. The liquid phase alumina particles aggromorate inside combustion chamber into larger particle which becomes major erosion calprit on inner nozzle wall while alumina aggromorates impinge on the nozzle wall surface. The erosion mechanism result nozzle throat material removal, increase the performance optimized throat diameter and reduce nozzle exit to throat area ratio which leads to the reduction of exhaust gas velocity, Mach number and lower the propulsion thrust force. The approach to avoid particle erosion phenomenon taking place in SRM's nozzle is to reduce the alumina particle size inside combustion chamber which could be done by further breakup of the alumina droplet size in SRM's combustion chamber. The study of liquid breakup mechanism is an important means to smaller combustion chamber alumina droplet size and mitigate the erosion tack place on rocket nozzle region. In this study, a straight two phase air-water flow channel experiment is set up

  4. BWR feedwater nozzle and control rod drive return line nozzle cracking: resolution of generic technical activity A-10. Technical report

    International Nuclear Information System (INIS)

    Snaider, R.

    1980-11-01

    This report summarizes work performed by the NRC staff in the resolution of Generic Technical Activity A-10, 'BWR Nozzle Cracking'. Generic Technical Activity A-10 is one of the generic technical subjects designated as 'unresolved safety issues' pursuant to Section 210 of the Energy Reorganization Act of 1974. The report describes the technical issues, the technical studies and analyses performed by the General Electric Company and the NRC staff, the staff's technical positions based on these studies, and the staff's plans for continued implementation of its technical positions. It also provides information for further work to resolve the non-destructive examination issue

  5. Experimental stress analysis of the attachment region of hemispherical shells with attached nozzles. Part 5c. Nonradial nozzle at 22-1/2 degrees 2.625 in. O.D.--2.5000 in. I.D., zero penetration

    International Nuclear Information System (INIS)

    Maxwell, R.L.; Holland, R.W.

    1975-06-01

    A continuing series of investigations has been conducted to determine experimentally the stress patterns for the junction region of spherical shells with radially and non-radially attached nozzles when subjected to internal pressure and various types of loadings on the nozzles. Results of the investigations conducted on a nonradially attached nozzle of 2.625 in.-OD, 2.500 in. ID, and finished flush with the inner surface of the hemisphere are reported. The nozzle was inclined at 22 1 / 2 0 from a radial axis. Stress values for the following types of loadings are tabulated: internal pressure applied to the hemisphere and nozzle assembly; an axial load applied collinear with nozzle; a pure torque applied in the radial plane of the nozzle; and a pure bending moment or axial couple applied in various axial planes of the nozzle. Various stress vs. profile curves are presented. These curves present the tabulated stress data in graphical format. (U.S.)

  6. UT inspection of nozzles by 3D raytracing

    International Nuclear Information System (INIS)

    Isenberg, J.; Koshy, M.; Carcione, L.

    2004-01-01

    This paper documents how we have adapted 3D geometric modeling and ray tracing to support design and verification of wedges and preparation of coverage maps for ultrasonic inspection of BWR nozzles. This software is capable of addressing a broad range of modeling issues, including ray tracing in completely general 3D objects comprised of blocky, transversely isotropic material. However, to capitalize on the full range of capability usually requires an investment of time on the part of users. To make 3D modeling accessible to users who have time-urgent requirements or who do not need to utilize the full capabilities of the software, we have developed specialized applications in which restrictions on generality are accepted in exchange for easy access to model building, wedge design and coverage maps for detecting flaws in the bore and inner blend regions of nozzles. This is done by providing partially-completed, parametrized models which give the user latitude to generate general models within a fixed framework. We also provide a graphical user interface which anticipates certain tasks that a user will wish to undertake; other tasks may readily be added. (author)

  7. Analysis of cracked pressure vessel nozzles by finite elements

    International Nuclear Information System (INIS)

    Reynen, J.

    1975-01-01

    The paper describes various algorithms, their computer implementations and relative merits to define in an effective way strain energy release rates along the tip front of arbitrary 3D cracks under arbitrary load including thermal strains. These techniques are basically equivalent to substructuring techniques and consequently they can be implemented to any FEM program able to deal with the data handling problems of the substructuring technique. Special finite elements with a built-in stress-singularity are not necessary although their use contributes to accuracy and the mesh can be coarser. Examples are given carried out with a substructure version of the BERSAFE system. These examples include a corner crack in a pressure vessel nozzle loaded by internal pressure and by thermal stresses. Although not of any fundamental importance, in practice the difficulties consist in generating an appropriate mesh to represent the crack front. For the example of the corner crack in a nozzle the problem has been solved by developing a special purpose mesh generation program (EURCRACK)

  8. Experimental investigation of a two-phase nozzle flow

    International Nuclear Information System (INIS)

    Kedziur, F.; John, H.; Loeffel, R.; Reimann, J.

    1980-07-01

    Stationary two-phase flow experiments with a convergent nozzle are performed. The experimental results are appropriate to validate advanced computer codes, which are applied to the blowdown-phase of a loss-of-coolant accident (LOCA). The steam-water experiments present a broad variety of initial conditions: the pressure varies between 2 and 13 MPa, the void fraction between 0 (subcooled) and about 80%, a great number of critical as well as subcritical experiments with different flow pattern is investigated. Additional air-water experiments serve for the separation of phase transition effects. The transient acceleration of the fluid in the LOCA-case is simulated by a local acceleration in the experiment. The layout of the nozzle and the applied measurement technique allow for a separate testing of blowdown-relevant, physical models and the determination of empirical model parameters, respectively. The measured quantities are essentially the mass flow rate, quality, axial pressure and temperature profiles as well as axial and radial density/void profiles obtained by a γ-ray absorption device. Moreover, impedance probes and a pitot probe are used. Observed phenomena like a flow contraction, radial pressure and void profiles as well as the appearance of two chocking locations are described, because their examination is rather instructive about the refinement of a program. The experimental facilities as well as the data of 36 characteristic experiments are documented. (orig.) [de

  9. Sludge mobilization with submerged nozzles in horizontal cylindrical tanks

    International Nuclear Information System (INIS)

    Hylton, T.D.; Cummins, R.L.; Youngblood, E.L.; Perona, J.J.

    1995-10-01

    The Melton Valley Storage Tanks (MVSTs) and the evaporator service tanks at the Oak Ridge National Laboratory (ORNL) are used for the collection and storage of liquid low-level waste (LLLW). Wastes collected in these tanks are typically acidic when generated and are neutralized with sodium hydroxide to protect the tanks from corrosion; however, the high pH of the solution causes the formation of insoluble compounds that precipitate. These precipitates formed a sludge layer approximately 0.6 to 1.2 m (2 to 4 ft) deep in the bottom of the tanks. The sludge in the MVSTs and the evaporator service tanks will eventually need to be removed from the tanks and treated for final disposal or transferred to another storage facility. The primary options for removing the sludge include single-point sluicing, use of a floating pump, robotic sluicing, and submerged-nozzle sluicing. The objectives of this study were to (1) evaluate the feasibility of submerged-nozzle sluicing in horizontal cylindrical tanks and (2) obtain experimental data to validate the TEMPEST (time-dependent, energy, momentun, pressure, equation solution in three dimensions) computer code

  10. Acoustic Investigation of Jet Mixing Noise in Dual Stream Nozzles

    Science.gov (United States)

    Khavaran, Abbas; Dahl, Milo D.

    2012-01-01

    In an earlier study, a prediction model for jet noise in dual stream jets was proposed that is founded on velocity scaling laws in single stream jets and similarity features of the mean velocity and turbulent kinetic energy in dual stream flows. The model forms a composite spectrum from four component single-stream jets each believed to represent noise-generation from a distinct region in the actual flow. While the methodology worked effectively at conditions considered earlier, recent examination of acoustic data at some unconventional conditions indicate that further improvements are necessary in order to expand the range of applicability of the model. The present work demonstrates how these predictions compare with experimental data gathered by NASA and industry for the purpose of examining the aerodynamic and acoustic performance of such nozzles for a wide range of core and fan stream conditions. Of particular interest are jets with inverted velocity and temperature profiles and the appearance of a second spectral peak at small aft angles to the jet under such conditions. It is shown that a four-component spectrum succeeds in modeling the second peak when the aft angle refraction effects are properly incorporated into the model. A tradeoff of noise emission takes place between two turbulent regions identified as transition and fully mixed regions as the fan stream velocity exceeds that of the core stream. The effect of nozzle discharge coefficients will also be discussed.

  11. Experimental observations of a complex, supersonic nozzle concept

    Science.gov (United States)

    Magstadt, Andrew; Berry, Matthew; Glauser, Mark; Ruscher, Christopher; Gogineni, Sivaram; Kiel, Barry; Skytop Turbulence Labs, Syracuse University Team; Spectral Energies, LLC. Team; Air Force Research Laboratory Team

    2015-11-01

    A complex nozzle concept, which fuses multiple canonical flows together, has been experimentally investigated via pressure, schlieren and PIV in the anechoic chamber at Syracuse University. Motivated by future engine designs of high-performance aircraft, the rectangular, supersonic jet under investigation has a single plane of symmetry, an additional shear layer (referred to as a wall jet) and an aft deck representative of airframe integration. Operating near a Reynolds number of 3 ×106 , the nozzle architecture creates an intricate flow field comprised of high turbulence levels, shocks, shear & boundary layers, and powerful corner vortices. Current data suggest that the wall jet, which is an order of magnitude less energetic than the core, has significant control authority over the acoustic power through some non-linear process. As sound is a direct product of turbulence, experimental and analytical efforts further explore this interesting phenomenon associated with the turbulent flow. The authors acknowledge the funding source, a SBIR Phase II project with Spectral Energies, LLC. and AFRL turbine engine branch under the direction of Dr. Barry Kiel.

  12. Performance modelling of plasma microthruster nozzles in vacuum

    Science.gov (United States)

    Ho, Teck Seng; Charles, Christine; Boswell, Rod

    2018-05-01

    Computational fluid dynamics and plasma simulations of three geometrical variations of the Pocket Rocket radiofrequency plasma electrothermal microthruster are conducted, comparing pulsed plasma to steady state cold gas operation. While numerical limitations prevent plasma modelling in a vacuum environment, results may be obtained by extrapolating from plasma simulations performed in a pressurised environment, using the performance delta from cold gas simulations performed in both environments. Slip regime boundary layer effects are significant at these operating conditions. The present investigation targets a power budget of ˜10 W for applications on CubeSats. During plasma operation, the thrust force increases by ˜30% with a power efficiency of ˜30 μNW-1. These performance metrics represent instantaneous or pulsed operation and will increase over time as the discharge chamber attains thermal equilibrium with the heated propellant. Additionally, the sculpted nozzle geometry achieves plasma confinement facilitated by the formation of a plasma sheath at the nozzle throat, and fast recombination ensures a neutral exhaust plume that avoids the contamination of solar panels and interference with externally mounted instruments.

  13. Study of a flapper-nozzle system for a water hydraulic servovalve; Suiatsu survo ben ni mochiiru nozzle flapper kei no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Urata, E.; Nakao, Y. [Kanagawa University, Kanagawa (Japan). Faculty of Engineering

    1997-06-25

    The paper discusses the characteristics of a flapper-nozzle system for water hydraulic servovalves. High pressure water at the supply port is first used as the working fluid for the hydrostatic bearings supporting the spool. Spool valve stiction induced by poor lubrication with water is thus avoided. The fluid is then led to the ends of the spool and is used as the working fllid of the flapper-nozzle system. In the new flapper-nozzle system the circumferential clearance of the spool becomes a laminar restriction that substitutes fixed orifice used in conventional servovalves. The linearity in the pressure-displacement relationship of the new flapper-nozzle system is better than that of conventional fixed orifice systems. 7 refs., 11 figs., 2 tabs.

  14. Hybrid two fuel system nozzle with a bypass connecting the two fuel systems

    Science.gov (United States)

    Varatharajan, Balachandar [Cincinnati, OH; Ziminsky, Willy Steve [Simpsonville, SC; Yilmaz, Ertan [Albany, NY; Lacy, Benjamin [Greer, SC; Zuo, Baifang [Simpsonville, SC; York, William David [Greer, SC

    2012-05-29

    A hybrid fuel combustion nozzle for use with natural gas, syngas, or other types of fuels. The hybrid fuel combustion nozzle may include a natural gas system with a number of swozzle vanes and a syngas system with a number of co-annular fuel tubes.

  15. Modified computation of the nozzle damping coefficient in solid rocket motors

    Science.gov (United States)

    Liu, Peijin; Wang, Muxin; Yang, Wenjing; Gupta, Vikrant; Guan, Yu; Li, Larry K. B.

    2018-02-01

    In solid rocket motors, the bulk advection of acoustic energy out of the nozzle constitutes a significant source of damping and can thus influence the thermoacoustic stability of the system. In this paper, we propose and test a modified version of a historically accepted method of calculating the nozzle damping coefficient. Building on previous work, we separate the nozzle from the combustor, but compute the acoustic admittance at the nozzle entry using the linearized Euler equations (LEEs) rather than with short nozzle theory. We compute the combustor's acoustic modes also with the LEEs, taking the nozzle admittance as the boundary condition at the combustor exit while accounting for the mean flow field in the combustor using an analytical solution to Taylor-Culick flow. We then compute the nozzle damping coefficient via a balance of the unsteady energy flux through the nozzle. Compared with established methods, the proposed method offers competitive accuracy at reduced computational costs, helping to improve predictions of thermoacoustic instability in solid rocket motors.

  16. 49 CFR 179.100-12 - Manway nozzle, cover and protective housing.

    Science.gov (United States)

    2010-10-01

    ... listed in § 179.101. Manway cover shall be attached to manway nozzle by through or stud bolts not... twenty 3/4-inch studs. The shearing value of the bolts attaching protective housing to manway cover must not exceed 70 percent of the shearing value of bolts attaching manway cover to manway nozzle. Housing...

  17. Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle

    Science.gov (United States)

    Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

    2013-12-17

    A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

  18. The flow field structure of highly stabilized partially premixed flames in a concentric flow conical nozzle burner with coflow

    KAUST Repository

    Elbaz, Ayman M.

    2015-08-29

    The stability limits, the stabilization mechanism, and the flow field structure of highly stabilized partially premixed methane flames in a concentric flow conical nozzle burner with air co-flow have been investigated and presented in this work. The stability map of partial premixed flames illustrates that the flames are stable between two extinction limits. A low extinction limit when partial premixed flames approach non-premixed flame conditions, and a high extinction limit, with the partial premixed flames approach fully premixed flame conditions. These two limits showed that the most stable flame conditions are achieved at a certain degree of partial premixed. The stability is improved by adding air co-flow. As the air co-flow velocity increases the most stable flames are those that approach fully premixed. The turbulent flow field of three flames at 0, 5, 10 m/s co-flow velocity are investigated using Stereo Particle Image Velocimetry (SPIV) in order to explore the improvement of the flame stability due to the use of air co-flow. The three flames are all at a jet equivalence ratio (Φj) of 2, fixed level of partial premixing and jet Reynolds number (Rej) of 10,000. The use of co-flow results in the formation of two vortices at the cone exit. These vortices act like stabilization anchors for the flames to the nozzle tip. With these vortices in the flow field, the reaction zone shifts toward the reduced turbulence intensity at the nozzle rim of the cone. Interesting information about the structure of the flow field with and without co-flow are identified and reported in this work.

  19. Experimental evaluation of ammonia adiabatic absorption into ammonia–lithium nitrate solution using a fog jet nozzle

    International Nuclear Information System (INIS)

    Zacarías, Alejandro; Venegas, María; Lecuona, Antonio; Ventas, Rubén

    2013-01-01

    This paper presents the experimental assessment of the adiabatic absorption of ammonia vapour into an ammonia–lithium nitrate solution using a fog jet nozzle. The ammonia mass fraction was kept constant at 46.08% and the absorber pressure was varied in the range 355–411 kPa. The nozzle was located at the top of the absorption chamber, at a height of 205 mm measured from the bottom surface. The diluted solution flow rate was modified between 0.04 and 0.08 kg s −1 and the solution inlet temperature in the range 25.9–30.2 °C. The influence of these variables on the approach to adiabatic equilibrium factor, outlet subcooling, absorption ratio and mass transfer coefficient is analysed. The approach to adiabatic equilibrium factor for the conditions essayed is always between 0.82 and 0.93. Pressure drop of the solution entering the absorption chamber is also evaluated. Correlations for the approach to adiabatic equilibrium factor and the Sherwood number are given. - Highlights: ► Adiabatic absorption of NH 3 vapour into NH 3 –LiNO 3 using fog jet nozzle created spray. ► Pressure drop of the solution entering to the absorption chamber is evaluated. ► Approach to adiabatic equilibrium factor (F) is between 0.82 and 0.93 at 205 mm height. ► Experimental values of mass transfer coefficient and outlet subcooling are presented. ► Correlations for F and Sherwood number are given.

  20. On the accuracy of X-ray lithography using synchrotron radiation for the fabrication of technical separation nozzle elements

    International Nuclear Information System (INIS)

    Becker, E.W.; Ehrfeld, W.; Muenchmeyer, D.

    1984-04-01

    As a method for the fabrication of technical separation nozzle elements with extremely small characteristic dimensions, the Institut fuer Kernverfahrenstechnik of the University and the Nuclear Research Centre of Karlsruhe in co-operation with the Siemens AG, Munich, and the Fraunhofer Institute for Solid-State Technology, Munich, are developping the LIGA-process. In this process, poly(methylmethacrylate) layers of an approximate thickness of 0.5 mm are structured by means of X-ray depth-lithography using synchrotron radiation. Subsequently, the nozzle structures are electroformed with nickel using the PMMA-layers as a mould. The manufacturing precision which can be obtained by X-ray depth-lithography was investigated by means of computer simulation of both the irradiation and the development step. In the first step the precision is limited by diffraction, photoelectrons, and beam divergency, respectively. It is shown, that under appropriate conditions each of these effects contributes only some 0.1 μm to errors at the structure edges. The simulation of the development step is based on experiments on the dissolution properties of both irradiated and unirradiated PMMA in a special developing agent. From the results of the computer simulation it can be seen, that the ratio of the slit length to the smallest width which is required for the fabrication of separation nozzles and the required precision are already obtainable in the one-step lithographic process at a characteristic wavelength of 0.2 nm. If an extreme structure height in combination with high precision is required or if a radiation source with a longer characteristic wavelength has to be used, the multi-step process can be applied. The calculations may easily be adapted to different manufacturing parameters concerning the radiation source or the developer characteristic. (orig.) [de

  1. Direct Numerical Simulation of Acoustic Noise Generation from the Nozzle Wall of a Hypersonic Wind Tunnel

    Science.gov (United States)

    Huang, Junji; Duan, Lian; Choudhari, Meelan M.

    2017-01-01

    The acoustic radiation from the turbulent boundary layer on the nozzle wall of a Mach 6 Ludwieg Tube is simulated using Direct Numerical Simulations (DNS), with the flow conditions falling within the operational range of the Mach 6 Hypersonic Ludwieg Tube, Braunschweig (HLB). The mean and turbulence statistics of the nozzle-wall boundary layer show good agreement with those predicted by Pate's correlation and Reynolds Averaged Navier-Stokes (RANS) computations. The rms pressure fluctuation P'(rms)/T(w) plateaus in the freestream core of the nozzle. The intensity of the freestream noise within the nozzle is approximately 20% higher than that radiated from a single at pate with a similar freestream Mach number, potentially because of the contributions to the acoustic radiation from multiple azimuthal segments of the nozzle wall.

  2. Thrust distribution for attitude control in a variable thrust propulsion system with four ACS nozzles

    Science.gov (United States)

    Lim, Yeerang; Lee, Wonsuk; Bang, Hyochoong; Lee, Hosung

    2017-04-01

    A thrust distribution approach is proposed in this paper for a variable thrust solid propulsion system with an attitude control system (ACS) that uses a reduced number of nozzles for a three-axis attitude maneuver. Although a conventional variable thrust solid propulsion system needs six ACS nozzles, this paper proposes a thrust system with four ACS nozzles to reduce the complexity and mass of the system. The performance of the new system was analyzed with numerical simulations, and the results show that the performance of the system with four ACS nozzles was similar to the original system while the mass of the whole system was simultaneously reduced. Moreover, a feasibility analysis was performed to determine whether a thrust system with three ACS nozzles is possible.

  3. Modification of Bonding Strength Test of WC HVOF Thermal Spray Coating on Rocket Nozzle

    Directory of Open Access Journals (Sweden)

    Bondan Sofyan

    2010-10-01

    Full Text Available One way to reduce structural weight of RX-100 rocket is by modifying the nozzle material and processing. Nozzle is the main target in weight reduction due to the fact that it contributes 30 % to the total weight of the structur. An alternative for this is by substitution of massive graphite, which is currently used as thermal protector in the nozzle, with thin layer of HVOF (High Velocity Oxy-Fuel thermal spray layer. This paper presents the characterization of nozzle base material as well as the modification of bonding strength test, by designing additional jig to facilitate testing processes while maintaining level of test accuracy. The results showed that the material used for  RX-100 rocket nozzle is confirmed to be S45C steel. Modification of the bonding strength test was conducted by utilizing chains, which improve test flexibility and maintains level of accuracy of the test.

  4. Gas Nozzle Effect on the Deposition of Polysilicon by Monosilane Siemens Reactor

    Directory of Open Access Journals (Sweden)

    Seung Oh Kang

    2012-01-01

    Full Text Available Deposition of polysilicon (poly-Si was tried to increase productivity of poly-Si by using two different types of gas nozzle in a monosilane Bell-jar Siemens (MS-Siemens reactor. In a mass production of poly-Si, deposition rate and energy consumption are very important factors because they are main performance indicators of Siemens reactor and they are directly related with the production cost of poly-Si. Type A and B nozzles were used for investigating gas nozzle effect on the deposition of poly-Si in a MS-Siemens reactor. Nozzle design was analyzed by computation cluid dynamics (CFD. Deposition rate and energy consumption of poly-Si were increased when the type B nozzle was used. The highest deposition rate was 1 mm/h, and the lowest energy consumption was 72 kWh⋅kg-1 in this study.

  5. Computational Fluid Dynamics Modeling of a Supersonic Nozzle and Integration into a Variable Cycle Engine Model

    Science.gov (United States)

    Connolly, Joseph W.; Friedlander, David; Kopasakis, George

    2015-01-01

    This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.

  6. Controllable deposition distance of aligned pattern via dual-nozzle near-field electrospinning

    Science.gov (United States)

    Wang, Zhifeng; Chen, Xindu; Zeng, Jun; Liang, Feng; Wu, Peixuan; Wang, Han

    2017-03-01

    For large area micro/nano pattern printing, multi-nozzle electrohydrodynamic (EHD) printing setup is an efficient method to boost productivity in near-field electrospinning (NFES) process. And controlling EHD multi-jet accurate deposition under the interaction of nozzles and other parameters are crucial concerns during the process. The influence and sensitivity of various parameters such as the needle length, needle spacing, electrode-to-collector distance, voltage etc. on the direct-write patterning performance was investigated by orthogonal experiments with dual-nozzle NFES setup, and then the deposition distance estimated based on a novel model was compared with measurement results and proven. More controllable deposition distance and much denser of aligned naofiber can be achieved by rotating the dual-nozzle setup. This study can be greatly contributed to estimate the deposition distance and helpful to guide the multi-nozzle NFES process to accurate direct-write pattern in manufacturing process in future.

  7. The influence of collapse wall on self-excited oscillation pulsed jet nozzle performance

    International Nuclear Information System (INIS)

    Fang, Z L; Kang, Y; Yang, X F; Yuan, B; Li, D

    2012-01-01

    The self-excited oscillation pulsed jet (SOPJ) is widely used owing to its simple structure and good separation of pressure source and system. The structure of nozzle is one of the main factors that influence the performance of the SOPJ nozzle. Upper collapse wall and lower collapse wall is important to the formation and transmission of eddy in oscillation cavity. In this paper, the influence of collapse wall on SOPJ nozzle was analyzed by numerical simulation. The LES algorithm was used to simulate the flow of different combinations of collapse wall. The result showed that when both collapse walls are of the same type, the SOPJ nozzle will have a good performance; the influence of upper collapse wall is more obvious than lower one; model of two-semi-circle upper collapse wall is the first choice when we design SOPJ nozzle.

  8. Altitude Performance Characteristics of Turbojet-engine Tail-pipe Burner with Variable-area Exhaust Nozzle Using Several Fuel Systems and Flame Holders

    Science.gov (United States)

    Johnson, Lavern A; Meyer, Carl L

    1950-01-01

    A tail-pipe burner with a variable-area exhaust nozzle was investigated. From five configurations a fuel-distribution system and a flame holder were selected. The best configuration was investigated over a range of altitudes and flight Mach numbers. For the best configuration, an increase in altitude lowered the augmented thrust ratio, exhaust-gas total temperature, and tail-pipe combustion efficiency, and raised the specific fuel consumption. An increase in flight Mach number raised the augmented thrust ratio but had no apparent effect on exhaust-gas total temperature, tail-pipe combustion efficiency, or specific fuel consumption.

  9. Crack of reactor vessel upper head penetration nozzles in Korean nuclear plants

    Energy Technology Data Exchange (ETDEWEB)

    Doh, E.; Lee, T-S.; Kim, J-Y.; Lee, C-H. [KEPCO Plant Service and Engineering Co., Ltd., Busan (Korea, Republic of)

    2014-07-01

    Since the first CRDM nozzles of reactor vessel head at Kori unit 1 in Korea were inspected in 2003, no CRDM nozzle cracks had been revealed prior to the inspection at Hanbit unit 3 in October 2012, even though many foreign plants had been reporting PWSCC cracks. In October 2012, seven axial cracks from 6 CRDM nozzles at Hanbit unit 3, and in November 2013, six axial cracks from 6 CRDM nozzles at Hanbit unit 4 were detected by TOFD Ultrasonic testing from ID of nozzles. There were confirmed to be PWSCC by Dye penetrant testing and Replica on the surface of J-groove weld of CRDM nozzles. Both plants are OPR-1000 types. All flaws started from the surface of J-groove weld at interface with OD of nozzle, but did not grow up to the top of J-groove weld, and did not make any Leak path up to head outside. The Performance Demonstration Initiative (PDI) system of CRDM nozzle inspection for Westinghouse type plants has been applied in Korea since July 2011. However, its application for OPR-1000 is still under development in Korea. The experience of PDI inspection for Westinghouse type plant contributed greatly to the detection and evaluation of PWSCC of CRDM nozzles at OPR- 1000 of Hanbit unit 3 & 4. The experimentally based procedure of flaw detection and the enhanced detection technique of examiners made it possible to detect and to determine the PWSCC indications. Embedded Flaw Repair process was approved by government authority, and the repair of the 6 CRDM nozzles in each plant was conducted by a consortium of Westinghouse and KPS. (author)

  10. Compressed air noise reductions from using advanced air gun nozzles in research and development environments.

    Science.gov (United States)

    Prieve, Kurt; Rice, Amanda; Raynor, Peter C

    2017-08-01

    The aims of this study were to evaluate sound levels produced by compressed air guns in research and development (R&D) environments, replace conventional air gun models with advanced noise-reducing air nozzles, and measure changes in sound levels to assess the effectiveness of the advanced nozzles as engineering controls for noise. Ten different R&D manufacturing areas that used compressed air guns were identified and included in the study. A-weighted sound level and Z-weighted octave band measurements were taken simultaneously using a single instrument. In each area, three sets of measurements, each lasting for 20 sec, were taken 1 m away and perpendicular to the air stream of the conventional air gun while a worker simulated typical air gun work use. Two different advanced noise-reducing air nozzles were then installed. Sound level and octave band data were collected for each of these nozzles using the same methods as for the original air guns. Both of the advanced nozzles provided sound level reductions of about 7 dBA, on average. The highest noise reductions measured were 17.2 dBA for one model and 17.7 dBA for the other. In two areas, the advanced nozzles yielded no sound level reduction, or they produced small increases in sound level. The octave band data showed strong similarities in sound level among all air gun nozzles within the 10-1,000 Hz frequency range. However, the advanced air nozzles generally had lower noise contributions in the 1,000-20,000 Hz range. The observed decreases at these higher frequencies caused the overall sound level reductions that were measured. Installing new advanced noise-reducing air nozzles can provide large sound level reductions in comparison to existing conventional nozzles, which has direct benefit for hearing conservation efforts.

  11. PIV Measurements of Chevrons on F400-Series Tactical Aircraft Nozzle Model

    Science.gov (United States)

    Bridges, James; Wernet, Mark P.; Frate, Franco C.

    2011-01-01

    Reducing noise of tactical jet aircraft has taken on fresh urgency as core engine technologies allow higher specific-thrust engines and as society become more concerned for the health of its military workforce. Noise reduction on this application has lagged the commercial field as incentives for quieting military aircraft have not been as strong as in their civilian counterparts. And noise reduction strategies employed on civilian engines may not be directly applicable due to the differences in exhaust system architecture and mission. For instance, the noise reduction technology of chevrons, examined in this study, will need to be modified to take into account the special features of tactical aircraft nozzles. In practice, these nozzles have divergent slats that are tied to throttle position, and at take off the jet flow is highly overexpanded as the nozzle is optimized for cruise altitude rather than sea level. In simple oil flow visualization experiments conducted at the onset of the current test program flow barely stays attached at end of nozzle at takeoff conditions. This adds a new twist to the design of chevrons. Upon reaching the nozzle exit the flow shrinks inward radially, meaning that for a chevron to penetrate the flow it must extend much farther away from the baseline nozzle streamline. Another wrinkle is that with a variable divergence angle on the nozzle, the effective penetration will differ with throttle position and altitude. The final note of realism introduced in these experiments was to simulate the manner in which bypass flow is bled into the nozzle wall in real engines to cool the nozzle, which might cause very fat boundary layer at exit. These factors, along with several other issues specific to the application of chevrons to convergent-divergent nozzles have been explored with particle image velocimetry measurements and are presented in this paper.

  12. Experimental investigation on motive nozzle throat diameter for an ejector expansion refrigeration system

    International Nuclear Information System (INIS)

    Bilir Sag, Nagihan; Ersoy, H. Kursad

    2016-01-01

    Highlights: • Effects of nozzle throat diameter and its location on performance were investigated. • The nozzle has an optimum throat diameter under the experiment condition. • The maximum performance has been achieved by using optimum nozzle throat diameter. • The variation of nozzle throat diameter with condenser water inlet temperature was examined. • Motive nozzle has no optimum position in the ejector refrigeration system. - Abstract: In this study, ejector was used to reduce throttling losses in a vapour compression refrigeration system. Effects on system performance of throat diameter and position of motive nozzle of ejector were investigated experimentally. An ejector was designed based on the established mathematical model and manufactured. The experiments were carried out by using different primary nozzle throat diameters. The experiments were further conducted by changing condenser water inlet temperature, which is one of the external parameters. The experimental results of the ejector system and those of the classic system were compared under same external operating conditions and for the same cooling capacity. In order to obtain same external operating conditions in both systems, the inlet conditions of the brine supplied to the evaporator and inlet water conditions (flow rate and temperature) to the condenser were kept constant. Maximum performance was obtained when the primary nozzle throat diameter was 2.3 mm within the areas considered in this study. When compared, it was experimentally determined that the ejector system that uses the optimum motive nozzle throat diameter exhibits higher COP than the classic system by 5–13%. Furthermore, it was found that the variation of coefficient of performance based on position of motive nozzle in two-phase ejector expander refrigeration cycle is lower than 1%.

  13. EXAMPLE OF FLOW MODELLING CHARACTERISTICS IN DIESEL ENGINE NOZZLE

    Directory of Open Access Journals (Sweden)

    Dušan KOLARIČ

    2016-03-01

    Full Text Available Modern transport is still based on vehicles powered by internal combustion engines. Due to stricter ecological requirements, the designers of engines are continually challenged to develop more environmentally friendly engines with the same power and performance. Unfortunately, there are not any significant novelties and innovations available at present which could significantly change the current direction of the development of this type of propulsion machines. That is why the existing ones should be continually developed and improved or optimized their performance. By optimizing, we tend to minimize fuel consumption and lower exhaust emissions in order to meet the norms defined by standards (i.e. Euro standards. Those propulsion engines are actually developed to such extent that our current thinking will not be able to change their basic functionality, but possible opportunities for improvement, especially the improvement of individual components, could be introduced. The latter is possible by computational fluid dynamics (CFD which can relatively quickly and inexpensively produce calculations prior to prototyping and implementation of accurate measurements on the prototype. This is especially useful in early stages of development or at optimization of dimensional small parts of the object where the physical execution of measurements is impossible or very difficult. With advances of computational fluid dynamics, the studies on the nozzles and outlet channel injectors have been relieved. Recently, the observation and better understanding of the flow in nozzles at large pressure and high velocity is recently being possible. This is very important because the injection process, especially the dispersion of jet fuel, is crucial for the combustion process in the cylinder and consequently for the composition of exhaust gases. And finally, the chemical composition of the fuel has a strong impact on the formation of dangerous emissions, too. The

  14. Two-fluid spray atomisation and pneumatic nozzles for fluid bed coating/agglomeration purposes: A review

    DEFF Research Database (Denmark)

    Hede, Peter Dybdahl; Bach, Poul; Jensen, Anker Degn

    2008-01-01

    understood. This paper provides a systematic and up-to-date review of two-fluid nozzle designs and principles together with a presentation of nozzle fundamentals introducing basic nozzle theory and thermodynamics. Correlations for the prediction of mean droplet diameters are reviewed, compared...

  15. Additional Stress And Fracture Mechanics Analyses Of Pressurized Water Reactor Pressure Vessel Nozzles

    International Nuclear Information System (INIS)

    Walter, Matthew; Yin, Shengjun; Stevens, Gary; Sommerville, Daniel; Palm, Nathan; Heinecke, Carol

    2012-01-01

    In past years, the authors have undertaken various studies of nozzles in both boiling water reactors (BWRs) and pressurized water reactors (PWRs) located in the reactor pressure vessel (RPV) adjacent to the core beltline region. Those studies described stress and fracture mechanics analyses performed to assess various RPV nozzle geometries, which were selected based on their proximity to the core beltline region, i.e., those nozzle configurations that are located close enough to the core region such that they may receive sufficient fluence prior to end-of-life (EOL) to require evaluation of embrittlement as part of the RPV analyses associated with pressure-temperature (P-T) limits. In this paper, additional stress and fracture analyses are summarized that were performed for additional PWR nozzles with the following objectives: To expand the population of PWR nozzle configurations evaluated, which was limited in the previous work to just two nozzles (one inlet and one outlet nozzle). To model and understand differences in stress results obtained for an internal pressure load case using a two-dimensional (2-D) axi-symmetric finite element model (FEM) vs. a three-dimensional (3-D) FEM for these PWR nozzles. In particular, the ovalization (stress concentration) effect of two intersecting cylinders, which is typical of RPV nozzle configurations, was investigated. To investigate the applicability of previously recommended linear elastic fracture mechanics (LEFM) hand solutions for calculating the Mode I stress intensity factor for a postulated nozzle corner crack for pressure loading for these PWR nozzles. These analyses were performed to further expand earlier work completed to support potential revision and refinement of Title 10 to the U.S. Code of Federal Regulations (CFR), Part 50, Appendix G, Fracture Toughness Requirements, and are intended to supplement similar evaluation of nozzles presented at the 2008, 2009, and 2011 Pressure Vessels and Piping (PVP

  16. Computer Graphic Design Using Auto-CAD and Plug Nozzle Research

    Science.gov (United States)

    Rogers, Rayna C.

    2004-01-01

    The purpose of creating computer generated images varies widely. They can be use for computational fluid dynamics (CFD), or as a blueprint for designing parts. The schematic that I will be working on the summer will be used to create nozzles that are a part of a larger system. At this phase in the project, the nozzles needed for the systems have been fabricated. One part of my mission is to create both three dimensional and two dimensional models on Auto-CAD 2002 of the nozzles. The research on plug nozzles will allow me to have a better understanding of how they assist in the thrust need for a missile to take off. NASA and the United States military are working together to develop a new design concept. On most missiles a convergent-divergent nozzle is used to create thrust. However, the two are looking into different concepts for the nozzle. The standard convergent-divergent nozzle forces a mixture of combustible fluids and air through a smaller area in comparison to where the combination was mixed. Once it passes through the smaller area known as A8 it comes out the end of the nozzle which is larger the first or area A9. This creates enough thrust for the mechanism whether it is an F-18 fighter jet or a missile. The A9 section of the convergent-divergent nozzle has a mechanism that controls how large A9 can be. This is needed because the pressure of the air coming out nozzle must be equal to that of the ambient pressure other wise there will be a loss of performance in the machine. The plug nozzle however does not need to have an A9 that can vary. When the air flow comes out it can automatically sense what the ambient pressure is and will adjust accordingly. The objective of this design is to create a plug nozzle that is not as complicated mechanically as it counterpart the convergent-divergent nozzle.

  17. Gas dynamic virtual nozzle for generation of microscopic droplet streams

    Energy Technology Data Exchange (ETDEWEB)

    DePonte, D P; Weierstall, U; Schmidt, K; Warner, J; Starodub, D; Spence, J C H; Doak, R B [Department of Physics, Arizona State University, Tempe, AZ 85287-1504 (United States)], E-mail: dandeponte@gmail.com

    2008-10-07

    As shown by Ganan-Calvo (1998 Phys. Rev. Lett. 80 285-8), a free liquid jet can be compressed in diameter through gas dynamic forces exerted by a coaxially co-flowing gas, obviating the need for a solid nozzle to form a microscopic liquid jet and thereby alleviating the clogging problems that plague conventional droplet sources of small diameter. We describe in this paper a novel form of droplet beam source based on this principle. The source is miniature, robust, dependable, easily fabricated, essentially immune to clogging and eminently suitable for delivery of microscopic liquid droplets, including hydrated biological samples, into vacuum for analysis using vacuum instrumentation. Monodisperse, single-file droplet streams are generated by triggering the device with a piezoelectric actuator.

  18. Fuel injection nozzle and method of manufacturing the same

    Science.gov (United States)

    Monaghan, James Christopher; Johnson, Thomas Edward; Ostebee, Heath Michael

    2017-02-21

    A fuel injection head for use in a fuel injection nozzle comprises a monolithic body portion comprising an upstream face, an opposite downstream face, and a peripheral wall extending therebetween. A plurality of pre-mix tubes are integrally formed with and extend axially through the body portion. Each of the pre-mix tubes comprises an inlet adjacent the upstream face, an outlet adjacent the downstream face, and a channel extending between the inlet and the outlet. Each pre-mix tube also includes at least one fuel injector that at least partially extends outward from an exterior surface of the pre-mix tube, wherein the fuel injector is integrally formed with the pre-mix tube and is configured to facilitate fuel flow between the body portion and the channel.

  19. Adiabatic Expansion of Electron Gas in a Magnetic Nozzle

    Science.gov (United States)

    Takahashi, Kazunori; Charles, Christine; Boswell, Rod; Ando, Akira

    2018-01-01

    A specially constructed experiment shows the near perfect adiabatic expansion of an ideal electron gas resulting in a polytropic index greater than 1.4, approaching the adiabatic value of 5 /3 , when removing electric fields from the system, while the polytropic index close to unity is observed when the electrons are trapped by the electric fields. The measurements were made on collisionless electrons in an argon plasma expanding in a magnetic nozzle. The collision lengths of all electron collision processes are greater than the scale length of the expansion, meaning the system cannot be in thermodynamic equilibrium, yet thermodynamic concepts can be used, with caution, in explaining the results. In particular, a Lorentz force, created by inhomogeneities in the radial plasma density, does work on the expanding magnetic field, reducing the internal energy of the electron gas that behaves as an adiabatically expanding ideal gas.

  20. Ice Control with Brine Spread with Nozzles on Highways

    DEFF Research Database (Denmark)

    Bolet, Lars; Fonnesbech, Jens Kristian

    2010-01-01

    on the major roads (150 km) in the municipality of North Funen from the winter 2007/8. The result has been a dramatically reduction in the number of traffic accidents on slippery roads during the winter season. From 7 and 5 accidents in the previous 2 winters to 1 accident in the winter 2007/8. Neighbouring...... municipalities had an increasing number of traffic accidents on slippery roads in the same period.......During the years 1996-2006, the former county of Funen, Denmark, gradually replaced pre-wetted salt with brine spread with nozzles as anti-icing agent in all her ice control activities. The replacement related to 1000 kilometres of highways. Jeopardizing neither road safety nor traffic flow...

  1. Injection and spray characteristics of a variable orifice nozzle applied the jerk type fuel injection pump for DI diesel engine; Jerk shiki nenryo funsha pump wo mochiita kahen funko nozzle no funsha funmu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, T; Matsui, K; Iwasaki, T; Kobayashi, T [Zexel Corp., Tokyo (Japan); Matsumoto, Y [The University of Tokyo, Tokyo (Japan)

    1997-10-01

    A Variable Orifice Nozzle (VON) by changing a cross-sectional area of the nozzle injection hole, for improving a rate of injection and injection duration, has been developed to study its injection and spray characteristics. The nozzle geometry was optimized to analyze a nozzle internal flow by computational method. Results show that, injection and spray pattern responded to the nozzle orifice cross-sectional area which is changing larger to smaller in the part load range. This results suggest to contribute a combustion improvement which decreasing NOx and soot. 14 refs., 10 figs.

  2. Transient heating effects in high pressure Diesel injector nozzles

    International Nuclear Information System (INIS)

    Strotos, George; Koukouvinis, Phoevos; Theodorakakos, Andreas; Gavaises, Manolis; Bergeles, George

    2015-01-01

    Highlights: • Simulation of friction-induced heating in high pressure Diesel fuel injectors. • Injection pressures up to 3000 bar. • Simulations with variable fuel properties significantly affect predictions. • Needle motion affects flow and temperature fields. • Possible heterogeneous boiling as injection pressures increase above 2000 bar. - Abstract: The tendency of today’s fuel injection systems to reach injection pressures up to 3000 bar in order to meet forthcoming emission regulations may significantly increase liquid temperatures due to friction heating; this paper identifies numerically the importance of fuel pressurization, phase-change due to cavitation, wall heat transfer and needle valve motion on the fluid heating induced in high pressure Diesel fuel injectors. These parameters affect the nozzle discharge coefficient (C d ), fuel exit temperature, cavitation volume fraction and temperature distribution within the nozzle. Variable fuel properties, being a function of the local pressure and temperature are found necessary in order to simulate accurately the effects of depressurization and heating induced by friction forces. Comparison of CFD predictions against a 0-D thermodynamic model, indicates that although the mean exit temperature increase relative to the initial fuel temperature is proportional to (1 − C d 2 ) at fixed needle positions, it can significantly deviate from this value when the motion of the needle valve, controlling the opening and closing of the injection process, is taken into consideration. Increasing the inlet pressure from 2000 bar, which is the pressure utilized in today’s fuel systems to 3000 bar, results to significantly increased fluid temperatures above the boiling point of the Diesel fuel components and therefore regions of potential heterogeneous fuel boiling are identified

  3. Managing BWR plant life extension

    International Nuclear Information System (INIS)

    Ianni, P.W.; Kiss, E.

    1985-01-01

    Recent studies have confirmed that extending the useful life of a large nuclear plant can be justified with very high cost benefit ratio. In turn, experience with large power plant systems and equipment has shown that a well-integrated and -managed plan is essential in order to achieve potential economic benefits. Consequently, General Electric's efforts have been directed at establishing a life extension plan that considers alternative options and cost-effective steps that can be taken in early life, those appropriate during middle life, and those required in late life. This paper briefly describes an approach designed to provide the plant owner a maximum of flexibility in developing a life extension plan

  4. Radiometric probe design for the measurement of heat flux within a solid rocket motor nozzle

    Science.gov (United States)

    Goldey, Charles L.; Laughlin, William T.; Popper, Leslie A.

    1996-11-01

    Improvements to solid rocket motor (SRM) nozzle designs and material performance is based on the ability to instrument motors during test firings to understand the internal combustion processes and the response of nozzle components to the severe heating environment. Measuring the desired parameters is very difficult because the environment inside of an SRM is extremely severe. Instrumentation can be quickly destroyed if exposed to the internal rocket motor environment. An optical method is under development to quantify the heating of the internal nozzle surface. A radiometric probe designed for measuring the thermal response and material surface recession within a nozzle while simultaneously confining the combustion products has been devised and demonstrated. As part of the probe design, optical fibers lead to calibrated detectors that measure the interior nozzle thermal response. This two color radiometric measurement can be used for a direct determination of the total heat flux impinging on interior nozzle surfaces. This measurement has been demonstrated using a high power CO2 laser to simulate SRM nozzle heating conditions on carbon phenolic and graphite phenolic materials.

  5. Effect of Pressure on the Uniformity of Nozzles Transverse Distribution and Mathematical Model Development

    Directory of Open Access Journals (Sweden)

    Vladimir Višacki

    2017-01-01

    Full Text Available Timely and high-quality application of pesticides contributes to environmental protection, economical production and production of healthy food. The efficacy of pesticide application depends not only on the quality of pesticides but also the quality of the application. One of the factor that most influences the quality of applications, from the standpoint of mechanization, are nozzles. They working liquid applied on the surface the plant resulting in the same volume of pesticide is applied to the entire surface of the plants. To achieve this goal, nozzles must be performed uniform application of working liquid per unit area, or tractor sprayer working width. The variable factor in the application of pesticides may be nozzle and operating pressure. With increasing working pressure obtained smaller droplets. The paper presents test of three different nozzles. Each nozzle is characterized by a flat jet with an angle of 110° and a flow rate of 1.6 l∙min−1 at a pressure of 3 bar. Differ from each other are by the way of disintegration of the jet. Exactly this characteristic causes that with pressure change coming to changes in the uniformity of nozzles transverse distribution. So the best distribution has nozzle with a flat jet. The coefficient of variation is between roughly from 4 to 6 % at the pressure application of 2 to 4 bar. Obtained mathematical model that describes changes in the coefficient of variation depending on pressure applications can be a good basis for easy harmonization parameters in the pesticide application.

  6. Use of direct washing of chemical dispense nozzle for defect control

    Science.gov (United States)

    Linnane, Michael; Mack, George; Longstaff, Christopher; Winter, Thomas

    2006-03-01

    Demands for continued defect reduction in 300mm IC manufacturing are driving process engineers to examine all aspects of the chemical apply process for improvement. Historically, the defect contribution from photoresist apply nozzles has been minimized through a carefully controlled process of "dummy dispenses" to keep the photoresist in the tip "fresh" and remove any solidified material, a preventive maintenance regime involving periodic cleaning or replacing of the nozzles, and reliance on a pool of solvent within the nozzle storage block to keep the photoresist from solidifying at the nozzle tip. The industry standard has worked well for the most part but has limitations in terms of cost effectiveness and absolute defect elimination. In this study, we investigate the direct washing of the chemical apply nozzle to reduce defects seen on the coated wafer. Data is presented on how the direct washing of the chemical dispense nozzle can be used to reduce coating related defects, reduce material costs from the reduction of "dummy dispense", and can reduce equipment downtime related to nozzle cleaning or replacement.

  7. Laminar and turbulent nozzle-jet flows and their acoustic near-field

    International Nuclear Information System (INIS)

    Bühler, Stefan; Obrist, Dominik; Kleiser, Leonhard

    2014-01-01

    We investigate numerically the effects of nozzle-exit flow conditions on the jet-flow development and the near-field sound at a diameter-based Reynolds number of Re D = 18 100 and Mach number Ma = 0.9. Our computational setup features the inclusion of a cylindrical nozzle which allows to establish a physical nozzle-exit flow and therefore well-defined initial jet-flow conditions. Within the nozzle, the flow is modeled by a potential flow core and a laminar, transitional, or developing turbulent boundary layer. The goal is to document and to compare the effects of the different jet inflows on the jet flow development and the sound radiation. For laminar and transitional boundary layers, transition to turbulence in the jet shear layer is governed by the development of Kelvin-Helmholtz instabilities. With the turbulent nozzle boundary layer, the jet flow development is characterized by a rapid changeover to a turbulent free shear layer within about one nozzle diameter. Sound pressure levels are strongly enhanced for laminar and transitional exit conditions compared to the turbulent case. However, a frequency and frequency-wavenumber analysis of the near-field pressure indicates that the dominant sound radiation characteristics remain largely unaffected. By applying a recently developed scaling procedure, we obtain a close match of the scaled near-field sound spectra for all nozzle-exit turbulence levels and also a reasonable agreement with experimental far-field data

  8. Pengaruh Variasi Lip Thickness pada Nozzle Terpancung terhadap Karakteristik Api Pembakaran Difusi Concentric Jet Flow

    Directory of Open Access Journals (Sweden)

    Elka Faizal

    2016-05-01

    Full Text Available Nozzle shape greatly influence turbulence between the fuel, air and formation of flow recirculation zone to produce a homogeneous mixing and get a near-perfect combustion. The recirculation zone is area that caused by flow rate breakdown, causing vortex and backflow around the end of nozzle. This backflow that hold up while lowering the flame so the flow rate of fuel and air mixture maintained lower or equal with flame speed. This study used variation of lip thickness of truncated nozzle 0, 4, 8, 12, and 16 mm.To obtain flame stability, fuel velocity and air velocity were variated. Thermocouples were used to measure flame temperature and its distribution. The results showed that stability of concentric jet diffusion flame flow increased with narrow lip thickness on a truncated nozzle. The wider stability area obtained in 4 mm lip thickness. In addition, temperature on diffusion flames concentric jet flow also more evenly distributed evenly with size of the nozzle lip thickness. The highest temperature and temperature distribution in the horizontal direction were occured in in the nozzle with lip thickness of 0 mm. A shadowgrapgh visualization was also used to identify phenomena of the nozzle exit flow.

  9. Aerosol Scrubbing Performance Test for Self-Priming Scrubbing Nozzle Submerged in Water Pool

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Doo Yong; Jung, Woo Young; Lee, Hyun Chul; Lee, Jong Chan; Kim, Gyu Tae; Song, Yong Jae [FNC Technology Co., Yongin (Korea, Republic of)

    2016-10-15

    A scrubbing nozzle is one of the key components for a wet scrubber process based Containment Filtered Venting System (CFVS). As a part of a development of Korean CFVS, a self-priming scrubbing nozzle shown in Fig. 1 has been developed based on the well-known venturi scrubber concept. The thermal-hydraulic performances such as the pressure drop across the nozzle, water suction behavior and droplet generation inside throat have been tested in the non-submerged condition as well as submerged condition. The self-priming scrubbing nozzle used for the wet scrubber based CFVS has been developed, which is submerged in the water pool. When there is gas flow at the inlet of the nozzle, the pool water is passively sucked from the water suction slit. The fine droplets generated inside the throat capture the aerosol particles and is discharged into the water pool. In the water pool, the pool scrubbing happens. The aerosol scrubbing performance tests for the developed self-priming scrubbing nozzle has been conducted under the operational conditions such as different aerosol sizes, different carrier gas steam fractions, different, different pool water level and nozzle inlet pressure. The major findings are as follows. (1) Aerosol scrubbing efficiency increases with the increase of the aerosol size. (2) Aerosol scrubbing efficiency increases with the increase of the carrier gas steam fraction. (3) Aerosol scrubbing.

  10. Aerosol Scrubbing Performance Test for Self-Priming Scrubbing Nozzle Submerged in Water Pool

    International Nuclear Information System (INIS)

    Lee, Doo Yong; Jung, Woo Young; Lee, Hyun Chul; Lee, Jong Chan; Kim, Gyu Tae; Song, Yong Jae

    2016-01-01

    A scrubbing nozzle is one of the key components for a wet scrubber process based Containment Filtered Venting System (CFVS). As a part of a development of Korean CFVS, a self-priming scrubbing nozzle shown in Fig. 1 has been developed based on the well-known venturi scrubber concept. The thermal-hydraulic performances such as the pressure drop across the nozzle, water suction behavior and droplet generation inside throat have been tested in the non-submerged condition as well as submerged condition. The self-priming scrubbing nozzle used for the wet scrubber based CFVS has been developed, which is submerged in the water pool. When there is gas flow at the inlet of the nozzle, the pool water is passively sucked from the water suction slit. The fine droplets generated inside the throat capture the aerosol particles and is discharged into the water pool. In the water pool, the pool scrubbing happens. The aerosol scrubbing performance tests for the developed self-priming scrubbing nozzle has been conducted under the operational conditions such as different aerosol sizes, different carrier gas steam fractions, different, different pool water level and nozzle inlet pressure. The major findings are as follows. (1) Aerosol scrubbing efficiency increases with the increase of the aerosol size. (2) Aerosol scrubbing efficiency increases with the increase of the carrier gas steam fraction. (3) Aerosol scrubbing

  11. A study on mechanism of wear on body seat in nozzle of diesel fuel injector

    Energy Technology Data Exchange (ETDEWEB)

    Jeonggee, Son; Yamashita, Toru; Sato, Susumu; Kosaka, Hidenori; Masuko, Masabumi [Tokyo Institute of Technology (Japan)

    2013-06-01

    Wear of nozzle's body seat of diesel fuel injector, which is caused by the collision of needle on the body seat in a nozzle, affects fuel spray behaviors and injection characteristics. Recently, to reduce the wear of body seat, DLC nozzles are widely used. The DLC on the needle which is called diamond-like carbon has a certain effect in reducing wear of body seat. However, disallowable wear is reported at limited engine operating conditions. Moreover, the wear mechanism of body seat with DLC coated needle has not been made clear yet. In this study, the influence of temperature of the body seat and fuel property on the wear of DLC nozzle was investigated with a newly developed wear testing device which was constructed based on common-rail injection system. Worn surfaces of body seat were observed by FE-SEM, laser scanning microscope and EPMA. The obtained results from the measurements show that DLC nozzle has much less wear amount than non-DLC nozzle on the body seat and the corrosive wear effect is suppressed with DLC nozzle. (orig.)

  12. Pressure drop performance evaluation for test assemblies with the newly developed top and bottom nozzles

    International Nuclear Information System (INIS)

    Lee, S. K.; Park, N. K.; Su, J. M.; Kim, H. K.; Lee, J. N.; Kim, K. T.

    2003-01-01

    To perform the hydraulic test for the newly developed top and bottom nozzles, two kinds of test assemblies were manufactured i. e. one is the test assembly which has the newly developed top and bottom nozzles and the other is Guardian test assembly which is commercially in mass production now. The test results show that the test assembly with one top nozzle and two bottom nozzles has a greater pressure loss coefficient than Guardian test assembly by 60.9% and 90.4% at the bottom nozzle location. This cause is due to the debris filtering plate for bottom nozzle to improve a filtering efficiency aginst foreign material. In the region of mid grid and top nozzle, there is no difference in pressure loss coefficient between the test assemblies since the componet features in these regions are very similar or same each other. The loss coefficients are 14.2% and 21.9% for model A and B respectively in the scale of test assembly, and the value would be within the 10% in the scale of real fuel assembly. As a result of hydraulic performance evaluation, model A is superior to model B

  13. Journal of Agricultural Extension

    African Journals Online (AJOL)

    Scope of journal The Journal of Agricultural Extension" is devoted to the advancement of knowledge of agricultural extension services and practice through the publication of original and empirically based research, ... Vol 22, No 1 (2018) ... Symbol recognition and interpretation of HIV/AIDS pictorial messages among rural ...

  14. Priorities for Extension.

    Science.gov (United States)

    Hayward, J. A.

    Agricultural extension is one component in an array including research, training, education, marketing, international trade, etc. which develop together to bring about growth, and sustained growth determines the priorities for extension. These priorities depend inevitably on the stage of development of a country or region, and on the current…

  15. Nuclear plant life extension

    International Nuclear Information System (INIS)

    Negin, C.A.

    1989-01-01

    The nuclear power industry's addressing of life extension is a natural trend in the maturation of this technology after 20 years of commercial operation. With increasing emphasis on how plants are operated, and less on how to build them, attention is turning on to maximizing the use of these substantial investments. The first studies of life extension were conducted in the period from 1978 and 1982. These were motivated by the initiation, by the Nuclear Regulatory Commission (NRC), of studies to support decommissioning rulemaking. The basic conclusions of those early studies that life extension is feasible and worth pursuing have not been changed by the much more extensive investigations that have since been conducted. From an engineering perspective, life extension for nuclear plants is fundamentally the same as for fossil plants

  16. Thermal-hydraulics of PGV-4 water volume during damage of the feedwater collector nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Logvinov, S.A.; Titov, V.F. [OKB Gidropress (Russian Federation); Notaros, U.; Lenkei, I. [NPP Paks (Hungary)

    1995-12-31

    A number of VVER-440 plants has experienced the distributing nozzles of feedwater collector being damaged due to corrosion-erosion wearing. Such phenomenon could result in feedwater redistribution within the SG inventory with undesirable consequences. The collector with damaged nozzles has to be replaced but a certain time is needed for the preparatory works. The main objective of the investigation conducted is to assess if the safe operation of SG is possible before collector replacement. It was shown that the nozzle damage as observed did not result in the dangerous disturbances of thermobydraulics as compared with the conditions existing at the initial period of operation. (orig.).

  17. Thermal-hydraulics of PGV-4 water volume during damage of the feedwater collector nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Logvinov, S A; Titov, V F [OKB Gidropress (Russian Federation); Notaros, U; Lenkei, I [NPP Paks (Hungary)

    1996-12-31

    A number of VVER-440 plants has experienced the distributing nozzles of feedwater collector being damaged due to corrosion-erosion wearing. Such phenomenon could result in feedwater redistribution within the SG inventory with undesirable consequences. The collector with damaged nozzles has to be replaced but a certain time is needed for the preparatory works. The main objective of the investigation conducted is to assess if the safe operation of SG is possible before collector replacement. It was shown that the nozzle damage as observed did not result in the dangerous disturbances of thermobydraulics as compared with the conditions existing at the initial period of operation. (orig.).

  18. Remotely replaceable fuel and feed nozzles for the NWCF calciner vessel

    International Nuclear Information System (INIS)

    Fletcher, R.D.; Carter, J.A.; May, K.W.

    1978-01-01

    The development and testing of remotely replaceable fuel and feed nozzles for calcination of liquid radioactive wastes in the calciner vessel of the New Waste Calcining Facility (NWCF) being built at the Idaho National Engineering Laboratory are described. A complete fuel nozzle assembly was fabricated and tested at the Remote Maintenance Development Facility to evolve design refinements, identify required support equipment, and develop handling techniques. The design also provided for remote replacement of the nozzle support carriage and adjacent feed and fuel pipe loops using two pairs of master-slave manipulators

  19. Device for detecting the water leak within a feedwater nozzle in water cooled reactors

    International Nuclear Information System (INIS)

    Hattori, Tsunekazu.

    1984-01-01

    Purpose: To enable exact recognition and detection for the state of water leak. Constitution: The detection device comprises a thermocouple disposed to the outer surface of a feedwater nozzle, a distortion meter for detecting the change in the outer diameter of a nozzle and an acoustic emission generator disposed to the inside of the nozzle for generating a signal upon temperature change. These sensors previously monitor the states during normal operation, and thus detect the change in each of the states upon occurrence of water leakage to issue an alarm. (Kamimura, M.)

  20. Determination of two dimensional axisymmetric finite element model for reactor coolant piping nozzles

    International Nuclear Information System (INIS)

    Choi, S. N.; Kim, H. N.; Jang, K. S.; Kim, H. J.

    2000-01-01

    The purpose of this paper is to determine a two dimensional axisymmetric model through a comparative study between a three dimensional and an axisymmetric finite element analysis of the reactor coolant piping nozzle subject to internal pressure. The finite element analysis results show that the stress adopting the axisymmetric model with the radius of equivalent spherical vessel are well agree with that adopting the three dimensional model. The radii of equivalent spherical vessel are 3.5 times and 7.3 times of the radius of the reactor coolant piping for the safety injection nozzle and for the residual heat removal nozzle, respectively

  1. Numerical analysis of ductile crack growth in a simplified nozzle model under pressurized thermoshock loading

    International Nuclear Information System (INIS)

    Kuna, M.; Guth, W.; Nguyen Huy, T.

    1990-01-01

    Cracks in nozzles are failures with a 3D geometry and therefore are a very complicated task for modelling and calculation. A very much simplified 2D model was established of nozzle cracking, which allows less different preliminary examination and a conservative (safe) assessement. The lecture explains the testing and verification of this 2D model with regard to its applicability, analysing the model's suitability for determining the thermo-elastic-plastic loads by means of FE calculations, or the J-dependent crack growth in the nozzle. (orig.) [de

  2. Building of nested components by a double-nozzle droplet deposition process

    Science.gov (United States)

    Li, SuLi; Wei, ZhengYing; Du, Jun; Zhao, Guangxi; Wang, Xin; Lu, BingHeng

    2016-07-01

    According to the nested components jointed with multiple parts,a double-nozzle droplet deposition process was put forward in this paper, and the experimental system was developed. Through the research on the properties of support materials and the process of double-nozzle droplet deposition, the linkage control of the metal droplet deposition and the support material extrusion was realized, and a nested component with complex construction was fabricated directly. Compared with the traditional forming processes, this double-nozzle deposition process has the advantages of short cycle, low cost and so on. It can provide an approach way to build the nested parts.

  3. Remotely replaceable fuel and feed nozzles for the new waste calcining facility calciner vessel

    International Nuclear Information System (INIS)

    Fletcher, R.D.; Carter, J.A.; May, K.W.

    1978-01-01

    The development and testing of remotely replaceable fuel and feed nozzles for calcination of liquid radioactive wastes in the calciner vessel of the New Waste Calcining Facility being built at the Idaho National Engineering Laboratory is described. A complete fuel nozzle assembly was fabricated and tested at the Remote Maintenance Development Facility to evolve design refinements, identify required support equipment, and develop handling techniques. The design also provided for remote replacement of the nozzle support carriage and adjacent feed and fuel pipe loops using two pairs of master-slave manipulators

  4. Conceptual Design for a Dual-Bell Rocket Nozzle System Using a NASA F-15 Airplane as the Flight Testbed

    Science.gov (United States)

    Jones, Daniel S.; Ruf, Joseph H.; Bui, Trong T.; Martinez, Martel; St. John, Clinton W.

    2014-01-01

    The dual-bell rocket nozzle was first proposed in 1949, offering a potential improvement in rocket nozzle performance over the conventional-bell nozzle. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. In 2013 a proposal was constructed that offered a National Aeronautics and Space Administration (NASA) F-15 airplane as the flight testbed, with the plan to operate a dual-bell rocket nozzle during captive-carried flight. If implemented, this capability will permit nozzle operation into an external flow field similar to that of a launch vehicle, and facilitate an improved understanding of dual-bell nozzle plume sensitivity to external flow-field effects. More importantly, this flight testbed can be utilized to help quantify the performance benefit with the dual-bell nozzle, as well as to advance its technology readiness level. Toward this ultimate goal, this report provides plans for future flights to quantify the external flow field of the airplane near the nozzle experiment, as well as details on the conceptual design for the dual-bell nozzle cold-flow propellant feed system integration within the NASA F-15 Propulsion Flight Test Fixture. The current study shows that this concept of flight research is feasible, and could result in valuable flight data for the dual-bell nozzle.

  5. Radiant Energy Measurements from a Scaled Jet Engine Axisymmetric Exhaust Nozzle for a Baseline Code Validation Case

    Science.gov (United States)

    Baumeister, Joseph F.

    1994-01-01

    A non-flowing, electrically heated test rig was developed to verify computer codes that calculate radiant energy propagation from nozzle geometries that represent aircraft propulsion nozzle systems. Since there are a variety of analysis tools used to evaluate thermal radiation propagation from partially enclosed nozzle surfaces, an experimental benchmark test case was developed for code comparison. This paper briefly describes the nozzle test rig and the developed analytical nozzle geometry used to compare the experimental and predicted thermal radiation results. A major objective of this effort was to make available the experimental results and the analytical model in a format to facilitate conversion to existing computer code formats. For code validation purposes this nozzle geometry represents one validation case for one set of analysis conditions. Since each computer code has advantages and disadvantages based on scope, requirements, and desired accuracy, the usefulness of this single nozzle baseline validation case can be limited for some code comparisons.

  6. Formation of vortex pairs with hinged rigid flaps at the nozzle exit

    Science.gov (United States)

    Das, Prashant; Govardhan, Raghuraman; Arakeri, Jaywant

    2013-11-01

    Biological flows related to aquatic propulsion using pulsed jets, or flow through the valves in a human heart, have received considerable attention in the last two decades. Both these flows are associated with starting jets that occur through biological tissue/membranes that are flexible. Motivated by these flows, we explore in the present work, the effect of passive flexibility of the nozzle exit on vortex generation from a starting jet. The starting jet is generated using a two-dimensional piston cylinder mechanism, the cross-section of the cylinder being rectangular with large aspect ratio. The fluid is pushed out of this cylinder or channel using a computer controlled piston. We introduce flexibility at the channel exit by hinging rigid flaps, which are initially parallel to the channel. The hinge used is such that it provides negligible stiffness or damping, thus allowing for the maximum opening of the flaps due to fluid forces. Using this system, we study both the flap kinematics and the vorticity dynamics downstream of the channel exit. Visualizations show large flap motions as the piston starts and this dramatically changes the vorticity distribution downstream of the flaps, with the formation of up to three different kinds of vortex pairs. This idealized configuration opens new opportunities to look at the effect of flexibility in such biological flows.

  7. Influence of the nozzle angle on refrigeration performance of a gas wave refrigerator

    Science.gov (United States)

    Liu, P.; Zhu, Y.; Wang, H.; Zhu, C.; Zou, J.; Wu, J.; Hu, D.

    2017-05-01

    A gas wave refrigerator (GWR) is a novel refrigerating device that refrigerates a medium by shock waves and expansion waves generated by gas pressure energy. In a typical GWR, the injection energy losses between the nozzle and the expansion tube are essential factors which influence the refrigeration efficiency. In this study, numerical simulations are used to analyze the underlying mechanism of the injection energy losses. The results of simulations show that the vortex loss, mixing energy loss, and oblique shock wave reflection loss are the main factors contributing to the injection energy losses in the expansion tube. Furthermore, the jet angle of the gas is found to dominate the injection energy losses. Therefore, the optimum jet angle is theoretically calculated based on the velocity triangle method. The value of the optimum jet angle is found to be 4^{circ }, 8^{circ }, and 12^{circ } when the refrigeration efficiency is the first-order, second-order, and third-order maximum value over all working ranges of jet frequency, respectively. Finally, a series of experiments are conducted with the jet angle ranging from -4^{circ } to 12^{circ } at a constant expansion ratio. The results indicate the optimal jet angle obtained by the experiments is in good agreement with the calculated value. The isentropic refrigeration efficiency increased by about 4 % after the jet angle was optimized.

  8. Upper nozzle welding development transfer of Angra 2/00 fuel element to F.E.C. (Fabrica de Elemento Combustivel)

    International Nuclear Information System (INIS)

    Lorenzo, R.F. di; Almeida, R.C.

    1985-01-01

    The technology development of upper nozzle welding of Angra-2 Combustible element, done at CDTN (Centro de Desenvolvimento da Tecnologia Nuclear), this technology transfer to FEC (Fabrica de Elemento Combustivel), the welders training of FEC in nozzle welding, the radiographic control of nozzle welds and the FEC personnel training in this nozzle welds radiography are presented is this report. (C.M.) [pt

  9. Dettol: Managing Brand Extensions

    OpenAIRE

    Anand Kumar Jaiswal; Arpita Srivastav; Dhwani Kothari

    2009-01-01

    This case is about evolution of a parent brand and its subsequent extensions into different product categories. Dettol as a brand has immense trust and loyalty from the consumers. Since the 1930s when Dettol was introduced in India, it has occupied a distinct position in the mind of its consumers. To achieve fast growth and leverage the strong brand equity of Dettol, Reckitt Benckiser India Limited (RBIL) rolled out a number of brand extensions. Some of these extensions such as Dettol soap an...

  10. Nuclear research reactor IEA-R1 heat exchanger inlet nozzle flow - a preliminary study

    International Nuclear Information System (INIS)

    Angelo, Gabriel; Andrade, Delvonei Alves de; Fainer, Gerson; Angelo, Edvaldo

    2009-01-01

    As a computational fluid mechanics training task, a preliminary model was developed. ANSYS-CFX R code was used in order to study the flow at the inlet nozzle of the heat exchanger of the primary circuit of the nuclear research reactor IEA-R1. The geometry of the inlet nozzle is basically compounded by a cylinder and two radial rings which are welded on the shell. When doing so there is an offset between the holes through the shell and the inlet nozzle. Since it is not standardized by TEMA, the inlet nozzle was chosen for a preliminary study of the flow. Results for the proposed model are presented and discussed. (author)

  11. Post-cast EDM method for reducing the thickness of a turbine nozzle wall

    Science.gov (United States)

    Jones, Raymond Joseph; Bojappa, Parvangada Ganapathy; Kirkpatrick, Francis Lawrence; Schotsch, Margaret Jones; Rajan, Rajiv; Wei, Bin

    2002-01-01

    A post-cast EDM process is used to remove material from the interior surface of a nozzle vane cavity of a turbine. A thin electrode is passed through the cavity between opposite ends of the nozzle vane and displaced along the interior nozzle wall to remove the material along a predetermined path, thus reducing the thickness of the wall between the cavity and the external surface of the nozzle. In another form, an EDM process employing a profile as an electrode is disposed in the cavity and advanced against the wall to remove material from the wall until the final wall thickness is achieved, with the interior wall surface being complementary to the profile surface.

  12. Black hole acoustics in the minimal geometric deformation of a de Laval nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Roldao da [Universidade Federal do ABC-UFABC, Centro de Matematica, Computacao e Cognicao, Santo Andre (Brazil)

    2017-05-15

    The correspondence between sound waves, in a de Laval propelling nozzle, and quasinormal modes emitted by brane-world black holes deformed by a 5D bulk Weyl fluid are here explored and scrutinized. The analysis of sound waves patterns in a de Laval nozzle in the laboratory, reciprocally, is here shown to provide relevant data about the 5D bulk Weyl fluid and its on-brane projection, comprised by the minimal geometrically deformed compact stellar distribution on the brane. Acoustic perturbations of the gas fluid flow in the de Laval nozzle are proved to coincide with the quasinormal modes of black holes solutions deformed by the 5D Weyl fluid, in the geometric deformation procedure. Hence, in a phenomenological Eoetvoes-Friedmann fluid brane-world model, the realistic shape of a de Laval nozzle is derived and its consequences studied. (orig.)

  13. Space Shuttle Redesigned Solid Rocket Motor nozzle natural frequency variations with burn time

    Science.gov (United States)

    Lui, C. Y.; Mason, D. R.

    1991-01-01

    The effects of erosion and thermal degradation on the Space Shuttle Redesigned Solid Rocket Motor (RSRM) nozzle's structural dynamic characteristics were analytically evaluated. Also considered was stiffening of the structure due to internal pressurization. A detailed NASTRAN finite element model of the nozzle was developed and used to evaluate the influence of these effects at several discrete times during motor burn. Methods were developed for treating erosion and thermal degradation, and a procedure was developed to account for internal pressure stiffening using differential stiffness matrix techniques. Results were verified using static firing test accelerometer data. Fast Fourier Transform and Maximum Entropy Method techniques were applied to the data to generate waterfall plots which track modal frequencies with burn time. Results indicate that the lower frequency nozzle 'vectoring' modes are only slightly affected by erosion, thermal effects and internal pressurization. The higher frequency shell modes of the nozzle are, however, significantly reduced.

  14. Facility Effects on a Helicon Plasma Source with a Magnetic Nozzle

    Data.gov (United States)

    National Aeronautics and Space Administration — Proposed here is an analysis of facility effects on a small helicon plasma source with a magnetic nozzle. Backpressure effects will first be recorded and analyzed....

  15. Research on precise control of 3D print nozzle temperature in PEEK material

    Science.gov (United States)

    Liu, Zhichao; Wang, Gong; Huo, Yu; Zhao, Wei

    2017-10-01

    3D printing technology has shown more and more applicability in medication, designing and other fields for its low cost and high timeliness. PEEK (poly-ether-ether-ketone), as a typical high-performance special engineering plastic, become one of the most excellent materials to be used in 3D printing technology because of its excellent mechanical property, good lubricity, chemical resistance, and other properties. But the nozzle of 3D printer for PEEK has also a series of very high requirements. In this paper, we mainly use the nozzle temperature control as the research object, combining with the advantages and disadvantages of PID control and fuzzy control. Finally realize a kind of fuzzy PID controller to solve the problem of the inertia of the temperature system and the seriousness of the temperature control hysteresis in the temperature control of the nozzle, and to meet the requirements of the accuracy of the nozzle temperature control and rapid reaction.

  16. Experiments on the spray nozzles used in the pressurizer of power reactor

    International Nuclear Information System (INIS)

    Diao Wentang

    1989-04-01

    The spray nozzle, which is used in the pressurizer of pressurized water reactor system, usually uses a less differential pressure between the reactor inlet and outlet as the spray drive pressure, but its flow rate is relatively larger. It is difficult to obtain a optimum spray performance of such a nozzle. The experimental results of five types of twenty seven spray nozzles in different structures and sizes with the range of the spray drive pressure from 0.127 to 0.245 MPa and the flow rates from 5 to 50 t/h are given. The main factors affecting spray performances and their distribution characteristics have been found. And some relatively suitable spray structures have been recommended, which can be used as references for improving the spray nozzles used in the pressurizers of existing PWRs or of the PWRs to be built

  17. Method and equipment of separation of gaseous and vaporous materials, particularly isotopes, with separation nozzles

    International Nuclear Information System (INIS)

    Becker, E.W.; Eisenbeiss, G.; Ehrfeld, W.

    1975-01-01

    The invention improves on the already known separation nozzle method by the two following steps: 1) The partial flows produced within the cascade with various shares of additional gas are introduced into the separating nozzle systems in such a manner that with regard to the additional gas, a molar fraction gradient is created which is in the opposite direction to the gradient created by the separation process. 2) The partial flows produced within the cascade with various compositions of the mixture of substances to be separated are introduced into the separating nozzle systems in such a manner that regarding the substances to be separated, a molar fraction gradient is created which is in the same direction as the molar fraction gradient formed by the separation process. Both measures can be separately applied or in combination with one another; flowsheets of the invented cascade circuits and separating nozzle systems are given. (GG/LH) [de

  18. Development of fabrication process of upper nozzle BIBLIS type of PWR fuel element

    International Nuclear Information System (INIS)

    Miranda, O.; Lorenzo, D.F.R.

    1982-01-01

    Process and parameters of milling and welding of a upper nozzle BIBLIS type prototype are presented. Milling process, cutting tools studies, production devices and inspection were developed and researched. (author) [pt

  19. Estimation of residual stress distribution for pressurizer nozzle of Kori nuclear power plant considering safe end

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tae Kwang; Bae, Hong Yeol; Chun, Yun Bae; Oh, Chang Young; Kim, Yun Jae [Korea University, Seoul (Korea, Republic of); Lee, Kyoung Soo; Park, Chi Yong [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-08-15

    In nuclear power plants, ferritic low alloy steel nozzle was connected with austenitic stainless steel piping system through alloy 82/182 butt weld. Accurate estimation of residual stress for weldment is important in the sense that alloy 82/182 is susceptible to stress corrosion cracking. There are many results which predict residual stress distribution for alloy 82/182 weld between nozzle and pipe. However, nozzle and piping system usually connected through safe end which has short length. In this paper, residual stress distribution for pressurizer nozzle of Kori nuclear power plant was predicted using FE analysis, which considered safe end. As a result, existing residual stress profile was redistributed and residual stress of inner surface was decreased specially. It means that safe end should be considered to reduce conservatism when estimating the piping system.

  20. Fluorescence Imaging of Rotational and Vibrational Temperature in a Shock Tunnel Nozzle Flow

    Science.gov (United States)

    Palma, Philip C.; Danehy, Paul M.; Houwing, A. F. P.

    2003-01-01

    Two-dimensional rotational and vibrational temperature measurements were made at the nozzle exit of a free-piston shock tunnel using planar laser-induced fluorescence. The Mach 7 flow consisted predominantly of nitrogen with a trace quantity of nitric oxide. Nitric oxide was employed as the probe species and was excited at 225 nm. Nonuniformities in the distribution of nitric oxide in the test gas were observed and were concluded to be due to contamination of the test gas by driver gas or cold test gas.The nozzle-exit rotational temperature was measured and is in reasonable agreement with computational modeling. Nonlinearities in the detection system were responsible for systematic errors in the measurements. The vibrational temperature was measured to be constant with distance from the nozzle exit, indicating it had frozen during the nozzle expansion.

  1. Fastener locking device for attaching guide thimble to fuel assembly bottom nozzle

    International Nuclear Information System (INIS)

    Widener, W.H.

    1987-01-01

    This patent describes a nuclear reactor fuel assembly including an end nozzle and at least one longitudinally-extending guide thimble projecting away from the end nozzle. The end nozzle has at least one passageway defined therethrough and a ledge defined within the passageway so as to face away from the guide thimble and divide the passageway into a first portion extending from the ledge toward the guide thimble. A second portion extends from the ledge away from the guide thimble. The second passageway portion has a larger cross-sectional size than the first passageway portion, the end nozzle also having recess means defined thereon in the second portion of the passageway. The guide thimble has an end disposed adjacent to the first portion of the passageway with threaded means defined thereon and a fastener locking device

  2. On nitrogen condensation in hypersonic nozzle flows: Numerical method and parametric study

    KAUST Repository

    Lin, Longyuan; Cheng, Wan; Luo, Xisheng; Qin, Fenghua

    2013-01-01

    A numerical method for calculating two-dimensional planar and axisymmetric hypersonic nozzle flows with nitrogen condensation is developed. The classical nucleation theory with an empirical correction function and the modified Gyarmathy model

  3. Technology for assembling and welding of top and bottom nozzles in fuel assembly

    International Nuclear Information System (INIS)

    Xia Chenglie; Wan Longfu

    1989-10-01

    The construction character, technology and sequence of assembling and welding, assembling jig used for preventing from deformation, and acceptance test of welding technology for top and bottom nozzles are presented

  4. Underwater cutting of reactor core internals by CO laser using local-dry-zone creating nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Osa (Mitsubishi Heavy Industries Ltd., Takasago, Hyogo (Japan). Takasago Research and Development Center); Sugihara, Masaaki; Miya, Kenzo

    1992-11-01

    With a view to practical application of the CO laser to underwater cutting of thick steel plates, a nozzle for creating a local dry zone on the workpiece has been developed and tested. The nozzle directed against the workpiece surface discharges a jet of air, which forms the local dry zone, bounded by a cone of high-speed water jet discharged from a concentric annular outlet. Preliminary tests were performed to optimize the nozzle shape and operating conditions. The resulting nozzle was used with a 5 kW CO laser for actual underwater cutting tests on stainless steel plates: Entirely satisfactory cutting performance was confirmed on various workpiece geometries and working positions. (author).

  5. Cavitation inception in nozzle-plate and wire mesh pressure droppers in water and sodium

    International Nuclear Information System (INIS)

    Collinson, A.E.

    1976-01-01

    Cavitation tests on multi-hole nozzle plates and wire meshes approximately 100mm diameter in water at 20 deg C and sodium at 300 deg C are described. These pressure dropping elements were mounted in recirculating loops where cavitation was induced by gradually lowering the back-ground pressure at constant flow. Cavitation was detected acoustically using wall mounted piezoelectric microphones, the signal being displayed on a ratemeter recording individual cavitation events. For nozzle plates, cavitation started intermittently as the pressure was lowered, the noise level suddenly increasing at a critical cavitation number sigma. For meshes the intermittent region was absent. Values of sigma for nozzles and meshes were similar in water and sodium for the conditions prevailing during the tests. It was apparent that cavitation took place on the axes of vortices both in the free stream and close to nozzle curved surfaces

  6. Laboratory Observation of a Plasma-Flow-State Transition from Diverging to Stretching a Magnetic Nozzle.

    Science.gov (United States)

    Takahashi, Kazunori; Ando, Akira

    2017-06-02

    An axial magnetic field induced by a plasma flow in a divergent magnetic nozzle is measured when injecting the plasma flow from a radio frequency (rf) plasma source located upstream of the nozzle. The source is operated with a pulsed rf power of 5 kW, and the high density plasma flow is sustained only for the initial ∼100  μsec of the discharge. The measurement shows a decrease in the axial magnetic field near the source exit, whereas an increase in the field is detected at the downstream side of the magnetic nozzle. These results demonstrate a spatial transition of the plasma-flow state from diverging to stretching the magnetic nozzle, where the importance of both the Alfvén and ion Mach numbers is shown.

  7. The Effect of Variable Gravity on the Cooling Performance of a 16-Nozzle Spray Array

    National Research Council Canada - National Science Library

    Elston, Levi J; Yerkes, Kirk L; Thomas, Scott K; McQuillen, John

    2008-01-01

    The objective of this thesis was to investigate the cooling performance of a 16-nozzle spray array, using FC-72 as the working fluid, in variable gravity conditions with additional emphasis on fluid...

  8. Numerical Analysis of Pelton Nozzle Jet Flow Behavior Considering Elbow Pipe

    Science.gov (United States)

    Chongji, Zeng; Yexiang, Xiao; Wei, Xu; Tao, Wu; Jin, Zhang; Zhengwei, Wang; Yongyao, Luo

    2016-11-01

    In Pelton turbine, the dispersion of cylindrical jet have a great influence on the energy interaction of jet and buckets. This paper simulated the internal flow of nozzle and the downstream free jet flow at 3 different needle strokes. The nozzle model consists of the elbow pipe and the needle rod which supported by 4 ribs. Homogenous model and SST k-ω model were adopted to simulate the unsteady two-phase jet flow. The development of free flow, including a contraction process followed by an expansion process, was analysed detailed as well as the influence of the nozzle geometry on the jet flow pattern. The increase of nozzle opening results in a more dispersion jet, which means a higher hydraulic loss. Upstream bend and ribs induce the secondary flow in the jet and decrease the jet concentration.

  9. Improvement of combustion in a direct injection diesel engine by micro-hole nozzle; Micro hole nozzle wo mochiita chokusetsu funshashiki diesel kikan no nensho kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Murata, M. [Keio University, Tokyo (Japan); Kobori, S. [Tokyo Institute of Technology, Tokyo (Japan); Iida, N. [Keio University, Tokyo (Japan). Faculty of Science and Technology

    2000-07-25

    In an attempt to promote the atomization of fuel spray and the mixing of fuel and air in diesel engines, a micro-hole nozzle which has orifices with a diameter smaller than 0.10mm was developed. In this study, the combustion tests were carried out using a single cylinder diesel engine equipped with a micro-hole nozzle and a common rail type high-pressure fuel injection system. A comparison with the results of a conventional nozzle experiment showed that the peak of initial premixed combustion increased, but the peak of diffusion combustion decreased. As a result, when nozzle orifice diameter become small from {phi} 0.15 mm to {phi} 0.10 mm, the combustion was accompanied by smokeless with the same levels of NO{sub x} emission and fuel economy. And results of a comparison the toroidal type chamber with the shallow dish type chamber revealed that the optimization of combustion chamber is necessary for the increase of the injection stage with increasing of the number of nozzle orifice. If an orifice diameter becomes {phi} 0.06 mm, the diffusion combustion can not be observed and the combustion is formed of only premixed combustion. The combustion in the case of {phi} 0.06 mm was accompanied with the drastic deterioration of fuel economy, smoke and HC with all over load. But the micro-hole nozzle has a potential for the formation of the lean and homogeneous premixed mixture until the fuel-air mixture ignites. (author)

  10. Spacetime extensions Pt. 1

    International Nuclear Information System (INIS)

    Racz, I.

    1991-09-01

    The problem of the existence of local extensions of spacetime is considered. It is shown that for a spacetime including an incomplete inextendible non-coiling causal geodesic curve there exists a particular C k (resp. C k- ) local extension provided that the curvature and its covariant derivatives are well behaved up to order k + 1 (resp. k) along a family of causal geodetics (around the chosen one). (R.P.) 15 refs

  11. Type extension trees

    DEFF Research Database (Denmark)

    Jaeger, Manfred

    2006-01-01

    We introduce type extension trees as a formal representation language for complex combinatorial features of relational data. Based on a very simple syntax this language provides a unified framework for expressing features as diverse as embedded subgraphs on the one hand, and marginal counts...... of attribute values on the other. We show by various examples how many existing relational data mining techniques can be expressed as the problem of constructing a type extension tree and a discriminant function....

  12. Less extensive surgery compared to extensive surgery

    DEFF Research Database (Denmark)

    Lauszus, Finn F; Petersen, Astrid C; Neumann, Gudrun

    2014-01-01

    -up by hospital data files, general practitioner, death certificate, and autopsy report. Revision of histopathology by a single pathologist. Main outcome measures: Survival and relapse by clinical data, stage, and type of surgery. RESULTS: The incidence of AGCT was 1.37 per year per 100,000 women (95% CI: 1.08, 1.......68). The median follow-up time was 15 years and for the 79 surviving women 22 years. Stage I was found in 94% of cases. Relapse occurred in 24% of women in stage I and 100% of the other stages. Survival in stage I was 95%, 89% and 84% after 5, 10 and 20 years respectively. Increased survival of stage I......: The survival of women was better in AGCT than in epithelial ovarian tumor. Age and type of surgery, besides stage, influenced survival. Total abdominal hysterectomy and bilateral salpingo-oophorectomy is the recommended treatment with advancing age. At younger age less extensive surgery was associated...

  13. Influences of Nozzle Material on Laser Droplet Brazing Joints with Cu89Sn11 Preforms

    Science.gov (United States)

    Stein, Stefan; Heberle, Johannes; Gürtler, Franz Josef; Cvecek, Kristian; Roth, Stephan; Schmidt, Michael

    This paper presents latest results on the influences of nozzle material and geometry on the electromechanical contacting of sensitive piezoceramic actuator modules. Two nozzle types have been investigated,a standard WC/Co nozzle which is used for soldering applications and a novelceramic nozzle. Applications for active piezoceramic components integrated in structural parts are e.g. active damping, energy harvesting, or monitoring of vibrations and material failure. Anup to now unsolved problem is the electrical contacting of such components without damaging the conductor or the metallization of the ceramic substrate. Since piezoelectric components are to be integrated into structures made of casted aluminum, requirements are high mechanical strength and temperature resistance. Within this paper a method forcontacting piezoceramic modules is presented. A spherical braze preform of tin bronze Cu89Sn11 with a diameter of 600 μm is located in a ceramic nozzle and is subsequently melted by a laser pulse. The liquid solder is ejected from the nozzlevia nitrogen overpressure and wets the surface of the metallization pad and the Cu-wire, resulting in a brazing joint after solidification. The process is called laser droplet brazing (LDB). To asses the thermal evolution during one cycle WC/Co and ZTA have been simulated numerically for two different geometries enabling a proposition weather the geometry or the material properties have a significant influence on the thermal load during one cycle. To evaluate the influence of the nozzle on the joint the positioning accuracy, joint height and detachment times have been evaluated. Results obtained with the ZTA nozzle show comparable positioning accuracies to a WC/Co nozzle with a lower standard deviation of solder detachment time.

  14. Influence of Diesel Nozzle Geometry on Cavitation Using Eulerian Multi-Fluid Method

    Institute of Scientific and Technical Information of China (English)

    张军; 杜青; 杨延相

    2010-01-01

    Dependent on automatically generated unstructured grids, a comprehensive computational fluid dynamics(CFD)numerical simulation is performed to analyze the influence of nozzle geometry on the internal flow characteristics of a multi-hole diesel injector with the multi-phase flow model based on Eulerian multi-fluid method.The diesel components in nozzle are considered as two continuous phases, diesel liquid and diesel vapor respectively.Considering that both of them are fully coupled and interpenetrated, sepa...

  15. Performance Prediction of Darrieus-Type Hydroturbine with Inlet Nozzle Operated in Open Water Channels

    Science.gov (United States)

    Nakashima, K.; Watanabe, S.; Matsushita, D.; Tsuda, S.; Furukawa, A.

    2016-11-01

    Small hydropower is one of the renewable energies and is expected to be effectively used for local supply of electricity. We have developed Darrieus-type hydro-turbine systems, and among them, the Darrieus-turbine with a weir and a nozzle installed upstream of turbine is, so far, in success to obtain more output power by gathering all water into the turbine. However, there can several cases exist, in which installing the weir covering all the flow channel width is unrealistic, and in such cases, the turbine should be put alone in open channels without upstream weir. Since the output power is very small in such a utilization of small hydropower, it is important to derive more power for the cost reduction. In the present study, we parametrically investigate the preferable shape of the inlet nozzle for the Darrieus-type hydroturbine operated in an open flow channel. Experimental investigation is carried out in the open channel in our lab. Tested inlet nozzles are composed of two flat plates with the various nozzle converging angles and nozzle outlet (runner inlet) widths with the nozzle inlet width kept constant. As a result, the turbine with the nozzles having large converging angle and wide outlet width generates higher power. Two-dimensional unsteady numerical simulation is also carried out to qualitatively understand the flow mechanism leading to the better performance of turbine. Since the depth, the width and the flow rate in the real open flow channels are different from place to place and, in some cases from time to time, it is also important to predict the onsite performance of the hydroturbine from the lab experiment at planning stage. One-dimensional stream-tube model is developed for this purpose, in which the Darrieus-type hydroturbine with the inlet nozzle is considered as an actuator-disk modelled based on our experimental and numerical results.

  16. The Investigation of the Cavitation Phenomenon in the Laval Nozzle with Full and Partial Surface Wetting

    Directory of Open Access Journals (Sweden)

    Jablonská Jana

    2017-04-01

    Full Text Available The article deals with the cavitation phenomenon affected by full and partial wetting of the wall. For the numerical computation of flow in the Laval nozzle the Schnerr-Sauer cavitation model was tested and was used for cavitation research of flow within the nozzle considering partial surface wetting. The coefficient of wetting for various materials was determined using experimental, theoretical and numerical methods of fluid flow due to partial surface wetting.

  17. Elastic stresses at reinforced nozzles in spherical shells with pressure and moment loading

    International Nuclear Information System (INIS)

    Rodabaugh, E.C.; Gwaltney, R.D.

    1976-01-01

    Calculated elastic stresses at reinforced nozzles in spherical shells with pressure and moment loading are presented. The models used in the calculations represent a wide variety of reinforced shapes; all meeting Code requirements. The results show Code stress indices for pressure loading for nozzles with local reinforcement are acceptable with some modification in coverage. Simple equations for stress indices for moment loading are developed. Potential application of the moment-loading stress indices is discussed. Several recommendations for Code changes are included

  18. Characterization of the cavitating flow in converging-diverging nozzle based on experimental investigations

    Directory of Open Access Journals (Sweden)

    Rudolf Pavel

    2014-03-01

    Full Text Available Cavitation phenomena occuring in converging-diverging nozzle (Venturi tube are described in the paper. A closed test circuit with possibility to control both flow rate and static pressure level were used. Loss coefficient was evaluated for different sigma numbers resulting in full „static“ characterization of the nozzle. Visualizations of the cavitation pattern development were acquired and matched with evolution of the loss coefficient. Three cavitation regimes are described: partial cavitation, fully developed cavitation, supercavitation.

  19. Inverse estimation of heat flux and temperature on nozzle throat-insert inner contour

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Tsung-Chien [Department of Power Vehicle and Systems Engineering, Chung Cheng Institute of Technology, National Defense University, Ta-Hsi, Tao-Yuan 33509 (China); Liu, Chiun-Chien [Chung Shan Institute of Science and Technology, Lung-Tan, Tao-Yuan 32526 (China)

    2008-07-01

    During the missile flight, the jet flow with high temperature comes from the heat flux of propellant burning. An enormous heat flux from the nozzle throat-insert inner contour conducted into the nozzle shell will degrade the material strength of nozzle shell and reduce the nozzle thrust efficiency. In this paper, an on-line inverse method based on the input estimation method combined with the finite-element scheme is proposed to inversely estimate the unknown heat flux on the nozzle throat-insert inner contour and the inner wall temperature by applying the temperature measurements of the nozzle throat-insert. The finite-element scheme can easily define the irregularly shaped boundary. The superior capability of the proposed method is demonstrated in two major time-varying estimation cases. The computational results show that the proposed method has good estimation performance and highly facilitates the practical implementation. An effective analytical method can be offered to increase the operation reliability and thermal-resistance layer design in the solid rocket motor. (author)

  20. The effect of nozzle collar on signle phase and boiling heat transfer by planar impinging jet

    International Nuclear Information System (INIS)

    Shin, Chang Hwan; Yim, Seong Hwan; Cho, Hyung Hee; Wu, Seong Je

    2005-01-01

    The water jet impingement cooling is one of the techniques to remove the heat from high heat flux equipment. Local heat transfer of the confined water impinging jet and the effect of nozzle collar to enhance the heat transfer are investigated in the free surface jet and submerged jet. Boiling is initiated from the farthest downstream and increase of the wall temperature is reduced with developing boiling, forming the flat temperature distributions. The reduction in the nozzle-to-surface distance for H/W≤1 causes significant increases and distribution changes of heat transfer. Developed boiling reduces the differences of heat transfer for various conditions. The nozzle collar is employed at the nozzle exit. The distances from heated surface to nozzle collar, H c are 0.25W, 0.5W and 1.0W. The liquid film thickness is reduced and the velocity of wall jet increases as decreased spacing of collar to heated surface. Heat transfer is enhanced for region from the stagnation to x/W∼8 in the free surface jet and to x/W∼5 in the submerged jet. For nucleate boiling region of further downstream, the heat transfer by the nozzle collar is decreased in submerged jet comparing with higher velocity condition. It is because the increased velocity by collar is de-accelerated downstream

  1. Vanishing Viscosity Approach to the Compressible Euler Equations for Transonic Nozzle and Spherically Symmetric Flows

    Science.gov (United States)

    Chen, Gui-Qiang G.; Schrecker, Matthew R. I.

    2018-04-01

    We are concerned with globally defined entropy solutions to the Euler equations for compressible fluid flows in transonic nozzles with general cross-sectional areas. Such nozzles include the de Laval nozzles and other more general nozzles whose cross-sectional area functions are allowed at the nozzle ends to be either zero (closed ends) or infinity (unbounded ends). To achieve this, in this paper, we develop a vanishing viscosity method to construct globally defined approximate solutions and then establish essential uniform estimates in weighted L p norms for the whole range of physical adiabatic exponents γ\\in (1, ∞) , so that the viscosity approximate solutions satisfy the general L p compensated compactness framework. The viscosity method is designed to incorporate artificial viscosity terms with the natural Dirichlet boundary conditions to ensure the uniform estimates. Then such estimates lead to both the convergence of the approximate solutions and the existence theory of globally defined finite-energy entropy solutions to the Euler equations for transonic flows that may have different end-states in the class of nozzles with general cross-sectional areas for all γ\\in (1, ∞) . The approach and techniques developed here apply to other problems with similar difficulties. In particular, we successfully apply them to construct globally defined spherically symmetric entropy solutions to the Euler equations for all γ\\in (1, ∞).

  2. Applicability of fan spray nozzles to stripping insoluble gases from viscous liquids

    International Nuclear Information System (INIS)

    Tseng, H.H.; Johnson, E.F.

    1983-08-01

    Fan spray nozzle stripping appears to be a practical technique for separating dilute volatile solutes from nonvolatile solvents. In particular this technique can be used to strip molecular tritium and tritium fluoride at extremely small concentration (in the parts per million range) from molten salts used as blanket materials in a fusion reactor. Under adjusted operating conditions of the fan spray as it leaves the nozzle, a high percentage of the theoretically maximum achievable stripping would take place from the expanding sheet of the fan spray as it leaves the nozzle and before it breaks up. Although the only available experimental data are for aqueous solutions, a new theoretical analysis of the fan spray sheet demonstrates the applicability of this technique to nonaqueous liquids. The equation derived from this analysis relates the theoretically achievable mass transfer efficiency to the properties of the liquid flowing through the fan spray nozzle and to the operating conditions of the nozzle. Any fluid with viscosity higher than or equal to that of water would be expected to follow this equation as long as a fan-shaped sheet is formed under the operating conditions of the nozzle

  3. Assessment of pressurized water reactor control rod drive mechanism nozzle cracking

    International Nuclear Information System (INIS)

    Shah, V.N.; Ware, A.G.; Porter, A.M.

    1994-10-01

    This report surveys the field experience related to cracking of pressurized water reactor (PWR) control rod drive mechanism nozzles (Alloy 600 material); evaluates design, fabrication, and operating conditions for the nozzles in US PWR; and evaluates the safety significance of nozzle cracking. Inspection at 78 overseas and one US PWR has revealed mainly axial cracks in 101 nozzles. The cracking is caused by primary water stress corrosion cracking, which requires the simultaneous presence of high tensile stresses, high operating temperatures, and susceptible microstructure. CRDM nozzle cracking is not a short-term safety issue. An axial crack is not likely to grow above the vessel head to a critical length because the stresses are not high enough to support the growth away from the attachment weld. Primary coolant leaking through an axial crack could cause a short circumferential crack on the outside surface. However, this crack is not likely to propagate through the nozzle wall to cause rupture. Leakage of the primary coolant from a through-wall crack could cause boric acid corrosion of the vessel head and challenge the structural integrity of the head, but it is very unlikely that the accumulated deposits of boric acid crystals resulting from such leakage could remain undetected

  4. Computation of principal stresses and stress intensity of a nozzle on a spherical pressure vessel

    International Nuclear Information System (INIS)

    Sun, B.C.; Lyow, B.L.; Koplik, B.

    1993-01-01

    This paper presents a Stress Computation Table that systematically computes the local stresses at various locations of the sphere-nozzle intersection. The six components of external loading are: radial load, two overturning moments, two horizontal shear forces, and a torsional moment. The radial and overturning moments induce local membrane and bending stresses in both the circumferential and meridional directions of the sphere around the nozzle. The shear forces and torsional moment produce local shear stresses. In addition, the shear forces induce local membrane and bending stresses around the nozzle. The local stress factors from each external loading component are taken from recent publications by Lyow, Sun and Koplik who have studied this subject through the use of the finite element method. These factors are a function of the nozzle-sphere geometrical parameters, beta, β, (nozzle radius/sphere radius) and gamma, γ, (sphere radius/thickness), with the beta value ranging from 0.1 to 0.5, and the gamma value ranging from 10 to 100. The Stress Table summarizes all the normal and shear stresses at eight different locations around the nozzle, and finally the principal stresses and stress intensity are computed. The stress factor plots from previous publications are replotted in this paper to provide a handy reference as well as consistency. A numerical sample employing a FORTRAN program is also given. (author)

  5. Manufacturing Process Developments for Regeneratively-Cooled Channel Wall Rocket Nozzles

    Science.gov (United States)

    Gradl, Paul; Brandsmeier, Will

    2016-01-01

    Regeneratively cooled channel wall nozzles incorporate a series of integral coolant channels to contain the coolant to maintain adequate wall temperatures and expand hot gas providing engine thrust and specific impulse. NASA has been evaluating manufacturing techniques targeting large scale channel wall nozzles to support affordability of current and future liquid rocket engine nozzles and thrust chamber assemblies. The development of these large scale manufacturing techniques focus on the liner formation, channel slotting with advanced abrasive water-jet milling techniques and closeout of the coolant channels to replace or augment other cost reduction techniques being evaluated for nozzles. NASA is developing a series of channel closeout techniques including large scale additive manufacturing laser deposition and explosively bonded closeouts. A series of subscale nozzles were completed evaluating these processes. Fabrication of mechanical test and metallography samples, in addition to subscale hardware has focused on Inconel 625, 300 series stainless, aluminum alloys as well as other candidate materials. Evaluations of these techniques are demonstrating potential for significant cost reductions for large scale nozzles and chambers. Hot fire testing is planned using these techniques in the future.

  6. Numerical Simulation of Reactive Flows in Overexpanded Supersonic Nozzle with Film Cooling

    Directory of Open Access Journals (Sweden)

    Mohamed Sellam

    2015-01-01

    Full Text Available Reignition phenomena occurring in a supersonic nozzle flow may present a crucial safety issue for rocket propulsion systems. These phenomena concern mainly rocket engines which use H2 gas (GH2 in the film cooling device, particularly when the nozzle operates under over expanded flow conditions at sea level or at low altitudes. Consequently, the induced wall thermal loads can lead to the nozzle geometry alteration, which in turn, leads to the appearance of strong side loads that may be detrimental to the rocket engine structural integrity. It is therefore necessary to understand both aerodynamic and chemical mechanisms that are at the origin of these processes. This paper is a numerical contribution which reports results from CFD analysis carried out for supersonic reactive flows in a planar nozzle cooled with GH2 film. Like the experimental observations, CFD simulations showed their ability to highlight these phenomena for the same nozzle flow conditions. Induced thermal load are also analyzed in terms of cooling efficiency and the results already give an idea on their magnitude. It was also shown that slightly increasing the film injection pressure can avoid the reignition phenomena by moving the separation shock towards the nozzle exit section.

  7. Influence of Water-jet Nozzle Geometry on Cutting Ability of Soft Material

    Directory of Open Access Journals (Sweden)

    Irwansyah Irwansyah

    2012-06-01

    Full Text Available Hygiene is main reason for food processor to use waterjet cutting system. Traditionally food cutting process is low-quality, unsafe products, procedures and direct contact between product and labor. This paper introduced a low cost waterjet system for cutting soft material as identic food material. The low cost waterjet system has been developed by using a commercial pressure pump for cleaning purposes and modified nozzle. In order to enhance waterjet pressure for cutting products, a modified waterjet nozzle was designed. Paramater design of waterjet system was setup on nozzle orifice diameter 0.5 mm, standoff distance 15 mm, length of nozzle cylindrical tube 2.5 mm. Polycarbonate, polysterene, and polyethelene materials are used as sample product with thickness 2 mm, to represent similar properties with agriculture products. The experimental results indicate good possibilities of waterjet system to cut material in appropriate profile surface. The waterjet also can be used to improve cutting finished surface of food products. Therefore, utilizing a low cost commercial pump and modified nozzle for waterjet system reduces equipment price, operational cost and environmental hazards. It indicates viable technology applied to substitute traditional cutting technology in post harvest agriculture products. Keywords: cutting ability, modified nozzle, polymer material, water-jet system

  8. Characterization of the full cone pressure swirl spray nozzles for the nuclear reactor containment spray system

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Manish [Department of Mechanical Engineering, I.I.T., Bombay, Powai, Mumbai (India); John, Benny [Nuclear Power Corporation of India Limited, Mumbai (India); Iyer, K.N. [Department of Mechanical Engineering, I.I.T., Bombay, Powai, Mumbai (India); Prabhu, S.V., E-mail: svprabhu@iitb.ac.in [Department of Mechanical Engineering, I.I.T., Bombay, Powai, Mumbai (India)

    2014-07-01

    Highlights: • Full cone spray pressure swirl nozzle with X-Vane is studied. • Laser illuminated imaging technique is used. • Correlations for coefficient of discharge, spray cone angle and SMD are suggested. • Droplet size and mass fraction distribution is measured. • Inviscid theory predicts the coefficient of discharge. - Abstract: The objective of the present study is to characterize a full cone pressure swirl nozzle for the Containment Spray System (CSS) of Indian Pressurized heavy Water reactors (IPHWR). The influence of Reynolds number and geometric parameters on the coefficient of discharge, spray cone angle, mass flux density distribution, droplet size distribution, Sauter mean diameter (SMD is studied for full cone pressure swirl full cone nozzles. The nozzles of orifice diameter range from 1.3 to 7.2 mm are studied. Experiments are conducted with water at room temperature as the working medium. The nozzles are operated with the pressure ranging from 1 to 8 bar. The measurements of the drop size distributions are performed with laser illuminated imaging technique. The spray cone-angle of the full cone nozzles is measured by the evaluation of images recorded with a camera using IMAGE J software. Correlations for coefficient of discharge, spray cone angle and Sauter mean diameter are suggested on the basis of the experimental results. Rosin–Rammler model and Nukiyama–Tanasawa distributions predict the mass fraction distribution reasonably well. However, the droplet size distribution is predicted by Nukiyama-Tanasawa model only.

  9. Thermal-Hydraulic Integral Effect Test with the ATLS for Investigation on CEDM Penetration Nozzle Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyoungho; Seokcho; Park, Hyunsik; Choi, Namhyun; Park, Yusun; Kim, Jongrok; Bae, Byounguhn; Kim, Yeonsik; Choi, Kiyong; Song, Chulhwa [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    In this study, thermal-hydraulic integral effect test with the ATLAS (Advanced Thermal-Hydraulic Test Loop for Accident Simulation) was performed for simulating a failure of CEDM penetration nozzle. The main objectives of the present test were not only to provide physical insight into the system response during a failure of CEDM penetration nozzle but also to establish an integral effect test database for the validation of the safety analysis codes. Furthermore, present experimental data were utilized to resolve the safety issue raised by the PWSCC at the CEDM penetration nozzle of the YGN-3. Thermal-hydraulic integral effect test with the ATLAS was performed for simulating a failure of CEDM penetration nozzle. Failure of two penetration nozzles of the CEDM in the APR1400 was simulated. Initial and boundary conditions were determined with respect to the reference conditions of the APR1400. However, with an aim of corresponding to the YGN-3 situation, the safety injection water was supplied via CLI mode. Compared to the cold leg break SBLOCA, the consequences of the event were milder in terms of a loop seal clearance, break flow rate, collapsed water level, and PCT. This could be mainly attributed to the small break flow rate in case of the failure in the RPV upper head. Present experimental data were utilized to resolve the safety issue raised by the PWSCC at the CEDM penetration nozzle of the YGN-3.

  10. On nitrogen condensation in hypersonic nozzle flows: Numerical method and parametric study

    KAUST Repository

    Lin, Longyuan

    2013-12-17

    A numerical method for calculating two-dimensional planar and axisymmetric hypersonic nozzle flows with nitrogen condensation is developed. The classical nucleation theory with an empirical correction function and the modified Gyarmathy model are used to describe the nucleation rate and the droplet growth, respectively. The conservation of the liquid phase is described by a finite number of moments of the size distribution function. The moment equations are then combined with the Euler equations and are solved by the finite-volume method. The numerical method is first validated by comparing its prediction with experimental results from the literature. The effects of nitrogen condensation on hypersonic nozzle flows are then numerically examined. The parameters at the nozzle exit under the conditions of condensation and no-condensation are evaluated. For the condensation case, the static pressure, the static temperature, and the amount of condensed fluid at the nozzle exit decrease with the increase of the total temperature. Compared with the no-condensation case, both the static pressure and temperature at the nozzle exit increase, and the Mach number decreases due to the nitrogen condensation. It is also indicated that preheating the nitrogen gas is necessary to avoid the nitrogen condensation even for a hypersonic nozzle with a Mach number of 5 operating at room temperatures. © 2013 Springer-Verlag Berlin Heidelberg.

  11. In-nozzle flow and spray characteristics for mineral diesel, Karanja, and Jatropha biodiesels

    International Nuclear Information System (INIS)

    Agarwal, Avinash Kumar; Som, Sibendu; Shukla, Pravesh Chandra; Goyal, Harsh; Longman, Douglas

    2015-01-01

    Highlights: • In-nozzle flow characterization for biodiesel sprays. • Comparison of experimental spray parameters and nozzle hole simulations. • Effect of Karanja and Jatropha biodiesel on in-nozzle cavitation. • Cavitation formation investigation with diesel and biodiesels. • Nozzle hole outlet fuel velocity profile determination for test fuels. - Abstract: Superior spray behavior of fuels in internal combustion engines lead to improved combustion and emission characteristics therefore it is necessary to investigate fuel spray behavior of new alternative fuels. This study discusses the evolution of the in-nozzle orifice parameters of a numerical simulation and the evolution of spray parameters of fuel spray in a constant-volume spray chamber during an experiment. This study compares mineral diesel, biodiesels (Karanja-and Jatropha-based), and their blends with mineral diesel. The results show that mineral diesel provides superior atomization and evaporation behavior compared to the biodiesel test fuels. Karanja biodiesel provides superior atomization and evaporation characteristics compared to Jatropha biodiesel. The qualitative comparison of simulation and experimental results in tandem shows that nozzle-hole design is a critical parameter for obtaining optimum spray behavior in the engine combustion chamber

  12. Residual stress reduction in the penetration nozzle weld joint by overlay welding

    International Nuclear Information System (INIS)

    Jiang, Wenchun; Luo, Yun; Wang, B.Y.; Tu, S.T.; Gong, J.M.

    2014-01-01

    Highlights: • Residual stress reduction in penetration weld nozzle by overlay welding was studied. • The overlay weld can decrease the residual stress in the weld root. • Long overlay welding is proposed in the actual welding. • Overlay weld to decrease residual stress is more suitable for thin nozzle. - Abstract: Stress corrosion cracking (SCC) in the penetration nozzle weld joint endangers the structural reliability of pressure vessels in nuclear and chemical industries. How to decrease the residual stress is very critical to ensure the structure integrity. In this paper, a new method, which uses overlay welding on the inner surface of nozzle, is proposed to decrease the residual stresses in the penetration joint. Finite element simulation is used to study the change of weld residual stresses before and after overlay welding. It reveals that this method can mainly decrease the residual stress in the weld root. Before overlay welding, large tensile residual stresses are generated in the weld root. After overlay weld, the tensile hoop stress in weld root has been decreased about 45%, and the radial stress has been decreased to compressive stress, which is helpful to decrease the susceptibility to SCC. With the increase of overlay welding length, the residual stress in weld root has been greatly decreased, and thus the long overlay welding is proposed in the actual welding. It also finds that this method is more suitable for thin nozzle rather than thick nozzle

  13. Combustion Dynamics in Multi-Nozzle Combustors Operating on High-Hydrogen Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Santavicca, Dom; Lieuwen, Tim

    2013-09-30

    Actual gas turbine combustors for power generation applications employ multi-nozzle combustor configurations. Researchers at Penn State and Georgia Tech have extended previous work on the flame response in single-nozzle combustors to the more realistic case of multi-nozzle combustors. Research at Georgia Tech has shown that asymmetry of both the flow field and the acoustic forcing can have a significant effect on flame response and that such behavior is important in multi-flame configurations. As a result, the structure of the flame and its response to forcing is three-dimensional. Research at Penn State has led to the development of a three-dimensional chemiluminescence flame imaging technique that can be used to characterize the unforced (steady) and forced (unsteady) flame structure of multi-nozzle combustors. Important aspects of the flame response in multi-nozzle combustors which are being studied include flame-flame and flame-wall interactions. Research at Penn State using the recently developed three-dimensional flame imaging technique has shown that spatial variations in local flame confinement must be accounted for to accurately predict global flame response in a multi-nozzle can combustor.

  14. Two-way coupled simulation of a flow laden with metallic particulates in overexpanded TIC nozzle

    International Nuclear Information System (INIS)

    Moshfegh, Abouzar; Shams, Mehrzad; Ebrahimi, Reza; Farnia, Mohammad Ali

    2009-01-01

    A simulation of non-reacting dilute gas-solid flow in a truncated ideal contour nozzle with consideration of external stream interactions is performed. The Eulerian-Lagrangian approach involving a two-way momentum and thermal coupling between gas and particles phases is also adopted. Of interests are to investigate the effects of particles diameter and mass flow fraction on the flow pattern, Mach number, pressure and temperature contours and their distributions along the nozzle centerline and wall. The main goal is to determine the separation point quantitatively when the particles characteristics change. Particles sample trajectories are illustrated throughout the flow field and a qualitative discussion on the way that physical properties of the nozzle exit flow and particles trajectories oscillate is prepared. The existence of solid particulates delays the separation prominently in the cases studied. The bigger particles and the higher particles mass flow fractions respectively advance and delay the separation occurrence. The particles trajectories oscillate when they expose to the crisscrossing (or diamond-shape) shock waves generated outside the nozzle to approach the exit jet conditions to the ambient. The simulation code is validated and verified, respectively, against a one-phase 2D convergent-divergent nozzle flow and a two-phase Jet Propulsion Laboratory nozzle flow, and acceptable agreements are achieved.

  15. Droplet spectrum of a spray nozzle under different weather conditions

    Directory of Open Access Journals (Sweden)

    Christiam Felipe Silva Maciel

    Full Text Available ABSTRACT The application of pesticides is always susceptible to losses through evaporation and drift of the spray droplets. With these losses, a smaller amount of pesticide reaches the target, possibly impairing the efficiency of phytosanitary control. Due to these concerns, the aim of this study was to evaluate the interference of weather conditions in the droplet spectrum produced by hydraulic spraying. To carry out the work, it was necessary to build an experimental system. This consisted of a laser particle-size analyser, hydraulic nozzle (Jacto JSF 11002, stationary sprayer, gas heater, wind tunnel, climate chamber (with the aim of maintaining the internal psychrometry similar to that of the air exiting the wind tunnel, collector, and temperature and RH sensors. The weather conditions for the study included vapour pressure deficits (VPD of 5, 9.4, 20, 30.6 and 35 hPa, and air velocities of 2, 3.6, 7.4, 11.2 and 12.8 km h-1. A Rotatable Central Composite Design was used, and the data related using Response Surface Methodology. The wind caused such a sharp drift in the fine droplets, that it greatly affected the behaviour of the entire droplet spectrum, as well as hiding the effect of the VPD. However, the conclusion is that drift and evaporation both act on the coarser droplets.

  16. Atom diffraction with a 'natural' metastable atom nozzle beam

    International Nuclear Information System (INIS)

    Karam, J-C; Wipf, N; Grucker, J; Perales, F; Boustimi, M; Vassilev, G; Bocvarski, V; Mainos, C; Baudon, J; Robert, J

    2005-01-01

    The resonant metastability-exchange process is used to obtain a metastable atom beam with intrinsic properties close to those of a ground-state atom nozzle beam (small angular aperture, narrow velocity distribution). The estimated effective source diameter (15 μm) is small enough to provide at a distance of 597 mm a transverse coherence radius of about 873 nm for argon, 1236 nm for neon and 1660 nm for helium. It is demonstrated both by experiment and numerical calculations with He*, Ne* and Ar* metastable atoms, that this beam gives rise to diffraction effects on the transmitted angular pattern of a silicon-nitride nano-slit grating (period 100 nm). Observed patterns are in good agreement with previous measurements with He* and Ne* metastable atoms. For argon, a calculation taking into account the angular aperture of the beam (0.35 mrad) and the effect of the van der Waals interaction-the van der Waals constant C 3 1.83 +0.1 -0.15 au being derived from spectroscopic data-leads to a good agreement with experiment

  17. Nozzle flow and atomization characteristics of ethanol blended biodiesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Su Han; Suh, Hyun Kyu; Lee, Chang Sik [Department of Mechanical Engineering, Graduate School of Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul, 133-791 (Korea)

    2010-01-15

    This study was conducted to investigate the injection and atomization characteristics of biodiesel-ethanol blended fuel. The injection performance of biodiesel-ethanol blended fuel was analyzed from the injection rate characteristics using the injection rate measuring system, and the effective injection velocity and effective spray diameter using the nozzle flow model. Moreover, the atomization characteristics, such as local and overall SMD distributions, overall axial velocity and droplet arrival time were analyzed and compared with these from diesel and biodiesel fuels to obtain the atomization characteristics of biodiesel-ethanol blended fuel. It was revealed that ethanol fuel affects the decrease of the peak injection rate and the shortening of the injection delay due to the decrease of fuel properties, such as fuel density and dynamic viscosity. In addition, the ethanol addition improved the atomization performance of biodiesel fuel, because the ethanol blended fuel has a low kinematic viscosity and surface tension, then that has more active interaction with the ambient gas, compared to BD100. (author)

  18. Improvements in the UT Inspection of vessel nozzles. Array application

    International Nuclear Information System (INIS)

    Tanarro, A.; Garcia, A.; Izquierdo, J.

    1998-01-01

    Automatic ultrasonic inspection of certain components in nuclear power plants, together with problems related to access of same, result in other difficulties due to the complexity of their geometry and the apparent orientation of possible defects. Array technology, recently developed on the basis of the theoretical principals of phased array technique, has meant that it is now possible to advance in the characterisation, localisation, and sizing of the defects in these components. This has been possible thanks to the discovery of synthetic materials which have allowed us to design and manufacture a new group of ultrasonic transducers. To these we may add new developments in electronics and computer sciences which have facilitated the building of high-powered control systems. This report discusses the work carried out by Tecnatom and Iberdrola in the field of automatic ultrasonic inspection of the vessel nozzles by means of array technology in the BWR at the Cofrentes Nuclear Power Station. The aims of this work were: - To facilitate the detection, characterisation, sizing and positioning of defects - To simplify and improve ultrasonic inspection in order to reduce acquisition times and the cost of same In order to achieve these results the following items were developed: - New array transducers were designed and manufactured - A new data acquisition system was developed - New programs for analysing data and for simulating ultrasonic testing was developed - The results have been validated in mock up. (Author)

  19. Top Nozzle Holddown Spring Optimization of KSNP Fuel Assembly

    International Nuclear Information System (INIS)

    Lee, Seong Ki; Park, Nam Kyu; Kim, Hyeong Koo; Lee, Joon Ro; Kim, Jae Won

    2002-01-01

    Nuclear fuel assembly for Korea Standard Nuclear Power (KSNP) Plant has 4 helical compression springs at the upper end of it. The springs, in conjunction with the fuel assembly weight, apply a holddown force against excess of buoyancy forces and the upward hydraulic forces due to the reactor coolant flow. Thus the holddown spring is to be designed such that the positive net downward force will be maintained for all normal and anticipated transient flow and temperature conditions in the nuclear reactor. With satisfying these in-reactor requirements of the fuel assembly holddown spring. Under the assumption that spring density is constant, the volume nozzle holddown spring. Under the assumption that spring density is constant, the volume minimization is executed by using the design variables, viz., wire diameter, mean coil diameter, minimization is executed by using the design variables, viz., wire diameter, mean coil diameter are within the compatible range of the fuel assembly structural components. Based on these conditions, the optimum design of the holddown spring is obtained considering the reactor operating condition and by using ANSYS code. The optimized spring has the properties that are a decreased volume and increased stiffness, compared with the existing one even if the absolute values are very similar each other. The holddown spring design features and the algorithm developed in this study could be directly applicable to the current commercial production. Therefore, it could be used to enhance the design efficiency and the functional performance of the spring, and to reduce a material cost a little

  20. Rebuilding of Rothe's nozzle measurements with OpenFOAM software

    International Nuclear Information System (INIS)

    Arlemark, Erik; Nedea, Silvia; Markelov, Gennady

    2012-01-01

    In this paper the dsmcFoam solver is tested and validated for the the three main solver functionalities of 1) free-stream boundary conditions, 2) kinetic intermolecular collision including internal degrees of freedom and 3) gas/surface interactions. The free-stream utility was improved such that a spatially uniform field of particles gets inserted now yielding reliable results for the cells located close to these patches. Implementation of the collision models were validated for two test cases (monatomic gas mixtures and diatomic gas) by observing the equilibration of both the kinetic and internal energies. It was found that the present code had good agreement to the independent codes of HAWK and SMILE as well as to results by G. Bird. The validation of the present codes treatment for the gas/surface interactions was evaluated using the benchmark case of Rothe's nozzle measurements. Results show that the present version of dsmcFoam obtained good agreements for this case compared to the measurements of Rothe for density and temperature. It was also found that the Navier-Stokes solver of OpenFOAM produced reasonable results, even though the local Knudsen number of the flow exceeds the range of applicability for this method, Kn=0.1.

  1. Three dimensional steady subsonic Euler flows in bounded nozzles

    Science.gov (United States)

    Chen, Chao; Xie, Chunjing

    The existence and uniqueness of three dimensional steady subsonic Euler flows in rectangular nozzles were obtained when prescribing normal component of momentum at both the entrance and exit. If, in addition, the normal component of the voriticity and the variation of Bernoulli's function at the entrance are both zero, then there exists a unique subsonic potential flow when the magnitude of the normal component of the momentum is less than a critical number. As the magnitude of the normal component of the momentum approaches the critical number, the associated flows converge to a subsonic-sonic flow. Furthermore, when the normal component of vorticity and the variation of Bernoulli function are both small, the existence and uniqueness of subsonic Euler flows with non-zero vorticity are established. The proof of these results is based on a new formulation for the Euler system, a priori estimate for nonlinear elliptic equations with nonlinear boundary conditions, detailed study for a linear div-curl system, and delicate estimate for the transport equations.

  2. Optimization of the size and shape of the set-in nozzle for a PWR reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Murtaza, Usman Tariq, E-mail: maniiut@yahoo.com; Javed Hyder, M., E-mail: hyder@pieas.edu.pk

    2015-04-01

    Highlights: • The size and shape of the set-in nozzle of the RPV have been optimized. • The optimized nozzle ensure the reduction of the mass around 198 kg per nozzle. • The mass of the RPV should be minimized for better fracture toughness. - Abstract: The objective of this research work is to optimize the size and shape of the set-in nozzle for a typical reactor pressure vessel (RPV) of a 300 MW pressurized water reactor. The analysis was performed by optimizing the four design variables which control the size and shape of the nozzle. These variables are inner radius of the nozzle, thickness of the nozzle, taper angle at the nozzle-cylinder intersection, and the point where taper of the nozzle starts from. It is concluded that the optimum design of the nozzle is the one that minimizes the two conflicting state variables, i.e., the stress intensity (Tresca yield criterion) and the mass of the RPV.

  3. The influence of cavitation on the flow characteristics of liquid nitrogen through spray nozzles: A CFD study

    Science.gov (United States)

    Xue, Rong; Ruan, Yixiao; Liu, Xiufang; Cao, Feng; Hou, Yu

    2017-09-01

    Spray cooling with cryogen could achieve lower temperature level than refrigerant spray. The internal flow conditions within spray nozzles have crucial impacts on the mass flow rate, particle size, spray angle and spray penetration, thereby influencing the cooling performance. In this paper, CFD simulations based on mixture model are performed to study the cavitating flow of liquid nitrogen in spray nozzles. The cavitation model is verified using the experimental results of liquid nitrogen flow over hydrofoil. The numerical models of spray nozzle are validated against the experimental data of the mass flow rate of liquid nitrogen flow through different types of nozzles including the pressure swirl nozzle and the simple convergent nozzle. The numerical studies are performed under a wide range of pressure difference and inflow temperature, and the vapor volume fraction distribution, outlet vapor quality, mass flow rate and discharge coefficient are obtained. The results show that the outlet diameter, the pressure difference, and the inflow temperature significantly influence the mass flow rate of spray nozzles. The increase of the inflow temperature leads to higher saturation pressure, higher cavitation intensity, and more vapor at nozzle outlet, which can significantly reduce mass flow rate. While the discharge coefficient is mainly determined by the inflow temperature and has little dependence on the pressure difference and outlet diameter. Based on the numerical results, correlations of discharge coefficient are proposed for pressure swirl nozzle and simple convergent nozzles, respectively, and the deviation is less than 20% for 93% of data.

  4. Significance of shock structure on supersonic jet mixing noise of axisymmetric nozzles

    Science.gov (United States)

    Kim, Chan M.; Krejsa, Eugene A.; Khavaran, Abbas

    1994-09-01

    One of the key technical elements in NASA's high speed research program is reducing the noise level to meet the federal noise regulation. The dominant noise source is associated with the supersonic jet discharged from the engine exhaust system. Whereas the turbulence mixing is largely responsible for the generation of the jet noise, a broadband shock-associated noise is also generated when the nozzle operates at conditions other than its design. For both mixing and shock noise components, because the source of the noise is embedded in the jet plume, one can expect that jet noise can be predicted from the jet flowfield computation. Mani et al. developed a unified aerodynamic/acoustic prediction scheme by applying an extension of Reichardt's aerodynamic model to compute turbulent shear stresses which are utilized in estimating the strength of the noise source. Although this method produces a fast and practical estimate of the jet noise, a modification by Khavaran et al. has led to an improvement in aerodynamic solution. The most notable feature in this work is that Reichardt's model is replaced with the computational fluid dynamics (CFD) solution of Reynolds-averaged Navier-Stokes equations. The major advantage of this work is that the essential, noise-related flow quantities such as turbulence intensity and shock strength can be better predicted. The predictions were limited to a shock-free design condition and the effect of shock structure on the jet mixing noise was not addressed. The present work is aimed at investigating this issue. Under imperfectly expanded conditions the existence of the shock cell structure and its interaction with the convecting turbulence structure may not only generate a broadband shock-associated noise but also change the turbulence structure, and thus the strength of the mixing noise source. Failure in capturing shock structures properly could lead to incorrect aeroacoustic predictions.

  5. Financial Key Ratios

    OpenAIRE

    Tănase Alin-Eliodor

    2014-01-01

    This article focuses on computing techniques starting from trial balance data regarding financial key ratios. There are presented activity, liquidity, solvency and profitability financial key ratios. It is presented a computing methodology in three steps based on a trial balance.

  6. Android Access Control Extension

    Directory of Open Access Journals (Sweden)

    Anton Baláž

    2015-12-01

    Full Text Available The main objective of this work is to analyze and extend security model of mobile devices running on Android OS. Provided security extension is a Linux kernel security module that allows the system administrator to restrict program's capabilities with per-program profiles. Profiles can allow capabilities like network access, raw socket access, and the permission to read, write, or execute files on matching paths. Module supplements the traditional Android capability access control model by providing mandatory access control (MAC based on path. This extension increases security of access to system objects in a device and allows creating security sandboxes per application.

  7. Life extension economic analysis

    International Nuclear Information System (INIS)

    Smithling, A.P.

    1992-01-01

    Life extension economic analyses of fossil fueled power plants need the development of consistent methods which consider the capital costs associated with component replacement or repair and estimates of normal station capital expenditures over the units remaining life. In order to link capital and production costs, Niagra Mohawk Power Corp. develops most and worst cases. A most case includes capital components that would definitely need replacement or modification for life extension. The worst case scenario contains must case capital costs plus various components which may need replacement or modification. In addition, two forecasted conditions are used, base case capacity and low capacity

  8. Investigation of stress distribution in normal and oblique partial penetration. Welded nozzles by 3-D photoelastic stress freezing method

    International Nuclear Information System (INIS)

    Miyamoto, H.; Kubo, M.; Katori, T.

    1981-01-01

    Experimental investigation by 3-D photoelasticity has been carried out to measure the stress distribution of partial penetration welded nozzles attached to the bottom head of a pressure vessel. A 3-D photoelastic stress freezing method was chosen as the most effective means of observation of the stress distribution in the vicinity of the nozzle/wall weld. The experimental model was a 1:20 scale spherical bottom head. Both an axisymmetric nozzle and an asymmetric nozzle were investigated. Epoxy resin, which is a thermosetting plastic, was used as the model material. The oblique effect was examined by comparing the stress distribution of the asymmetric nozzle with that of the axisymmetric nozzle. Furthermore, the experimental results were compared with the analytical results using 3-D finite element method (FEM). The stress distributions obtained from the frozen fringe pattern of the 3-D photoelastic model were in good agreement with those by 3-D FEM. (orig.)

  9. Internal performance of a 10 deg conical plug nozzle with a multispoke primary and translating external shroud

    Science.gov (United States)

    Bresnahan, D. L.

    1972-01-01

    An experimental investigation was conducted in a nozzle static test facility to determine the performance characteristics of a cold-flow, 21.59-centimeter-diameter plug nozzle with a multispoke primary. Two multispoke primary nozzles, a 12-spoke and a 24-spoke, were tested and compared with an annular plug nozzle. The supersonic cruise configurations for both spoke primaries performed about the same, with a gross thrust coefficient of 0.974, a decrease of approximately 1.5 percent from the reference nozzle. The takeoff configuration for the 12-spoke primary had a gross thrust coefficient of 0.957, a decrease of 1.5 percent from the reference nozzle, and the 24-spoke primary had a gross thrust coefficient of 0.95.

  10. Three-dimensional analysis of internal flow characteristics in the injection nozzle tip of direct-injection diesel engines; Sanjigen suchi kaiseki ni yoru DI diesel kikan no nenryo funsha nozzle nai ryudo tokusei no kaimei

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, H; Matsui, Y; Kimura, S [Nissan Motor Co. Ltd. Tokyo (Japan)

    1997-10-01

    To reduce the exhaust emissions and fuel consumption of direct-injection diesel engines, it is essential to optimize the fuel injection equipment closely related to combustion and emission characteristics. In this study, three-dimensional computation has been applied to investigate the effects of the injection nozzle specifications (e.g., sac volume, round shape at the inlet of the nozzle hole) and needle tip deviation on internal flow characteristics. The computational results revealed that the effects of the nozzle specifications and needle tip deviation with a smaller needle lift on internal flow characteristics and a general approach to optimize the injection nozzle specifications were obtained. 3 refs., 10 figs., 1 tab.

  11. Simulation and laboratory validation of magnetic nozzle effects for the high power helicon thruster

    International Nuclear Information System (INIS)

    Winglee, R.; Ziemba, T.; Giersch, L.; Prager, J.; Carscadden, J.; Roberson, B. R.

    2007-01-01

    The efficiency of a plasma thruster can be improved if the plasma stream can be highly focused, so that there is maximum conversion of thermal energy to the directed energy. Such focusing can be potentially achieved through the use of magnetic nozzles, but this introduces the potential problem of detachment of plasma from the magnetic field lines tied to the nozzles. Simulations and laboratory testing are used to investigate these processes for the high power helicon (HPH) thruster, which has the capacity of producing a dense (10 18 -10 20 m -3 ) energetic (tens of eV) plasma stream which can be both supersonic and super-Alfvenic within a few antenna wavelengths. In its standard configuration, the plasma plume generated by this device has a large opening angle, due to relatively high thermal velocity and rapid divergence of the magnetic field. With the addition of a magnetic nozzle system, the plasma can be directed/collimated close to the pole of the nozzle system causing an increase in the axial velocity of the plasma, as well as an increase in the Alfven Mach number. As such the magnetic field of the nozzle is insufficient to pull the plasma back to the spacecraft, i.e., plasma attachment is not a problem for the system. Laboratory results show that the specific impulse (Isp) of the system can be increased by ∼30% by the addition of the nozzle due to the conversion of thermal energy into directed energy in association with a highly collimated profile. An interesting feature of the system is that self-collimation of the beam is expected to occur during continuous operation through plasma currents induced downstream from the magnetic nozzle. These currents lead to magnetic fields that have a smaller divergence than the original vacuum magnetic field so that the following plasma will be more collimated than the proceeding plasma. This self-focusing can lead to beam propagation over extended distances

  12. Development of Reactor Vessel Bottom Mount Instrumentation Nozzle Routine Inspection Device

    Energy Technology Data Exchange (ETDEWEB)

    Khaled, Atya Ahmed Abdallah; Ihn, Namgung [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-10-15

    The primary coolant water of pressurized water reactors has created cracks in j-weld of penetrations with Alloy 600 through a process called primary water stress corrosion cracking. On October 6, 2013, BMI nozzle number 3 at Palo Verde Unit 3 (PVNGS-3) exhibited small white de-posits around the annulus. Nozzle attachment to the RV lower head is by J-groove weld to the inside penetration of the nozzle and the weld material is of Alloy 600 material. Above two cases clearly show the necessity of routine inspection of RV lower head penetration during refueling outage. Nondestructive inspection is generally performed to detect fine cracks or defects that may develop during operation. Defects usually occur at weld regions, hence most non-destructive inspection is to scan and check any defects or crack in the weld region. BMI nozzles at the bottom head of a nuclear reactor vessel (RV) are one of such area for inspection. But BMI nozzles have not been inspected during regular refuel outage due to the relative small size of BMI nozzle and limited impact of the consequences of BMI leak. However, there is growing concern since there have been leaks at nuclear power plants (NPPs) as well as recent operating experience. In this study, we propose a system that is conveniently used for nondestructive inspection of BMI nozzles during regular refueling outage without removing all the reactor internals. A 3D model of the inspection system was also developed along with the RV and internals which permits a virtual 3D simulation to check the design concept and usability of the system.

  13. Lagrangian Modeling of Evaporating Sprays at Diesel Engine Conditions: Effects of Multi-Hole Injector Nozzles With JP-8 Surrogates

    Science.gov (United States)

    2014-05-01

    Lagrangian Modeling of Evaporating Sprays at Diesel Engine Conditions: Effects of Multi-Hole Injector Nozzles With JP-8 Surrogates by L...efficiency. In this study, three-dimensional numerical simulations of single and two-hole injector nozzles under diesel conditions are conducted to...numerical simulations of single and two-hole injector nozzles under diesel conditions are conducted to study the spray behavior and the effect of

  14. Mobile Applications for Extension

    Science.gov (United States)

    Drill, Sabrina L.

    2012-01-01

    Mobile computing devices (smart phones, tablets, etc.) are rapidly becoming the dominant means of communication worldwide and are increasingly being used for scientific investigation. This technology can further our Extension mission by increasing our power for data collection, information dissemination, and informed decision-making. Mobile…

  15. Effects of Nozzle Configuration on Rock Erosion Under a Supercritical Carbon Dioxide Jet at Various Pressures and Temperatures

    Directory of Open Access Journals (Sweden)

    Man Huang

    2017-06-01

    Full Text Available The supercritical carbon dioxide (SC-CO2 jet offers many advantages over water jets in the field of oil and gas exploration and development. To take better advantage of the SC-CO2 jet, effects of nozzle configuration on rock erosion characteristics were experimentally investigated with respect to the erosion volume. A convergent nozzle and two Laval nozzles, as well as artificial cores were employed in the experiments. It was found that the Laval nozzle can enhance rock erosion ability, which largely depends on the pressure and temperature conditions. The enhancement increases with rising inlet pressure. Compared with the convergent nozzle, the Laval-1 nozzle maximally enhances the erosion volume by 10%, 21.2% and 30.3% at inlet pressures of 30, 40 and 50 MPa, respectively; while the Laval-2 nozzle maximally increases the erosion volume by 32.5%, 49.2% and 60%. Moreover, the enhancement decreases with increasing ambient pressure under constant inlet pressure or constant pressure drop. The growth of fluid temperature above the critical value can increase the enhancement. In addition, the jet from the Laval-2 nozzle with a smooth inner profile always has a greater erosion ability than that from the Laval-1 nozzle.

  16. Research Amplitudo Vibration On Holder Due To The Process Of Lathe Nozzle Rocket RX 450

    Science.gov (United States)

    Ediwan; Budi Djatmiko, Agus; Dody Arisandi, EfFendy; Purnomo, Heri; Ibadi, Mahfud

    2018-04-01

    The main function of the rocket nozzle is to convert the enthalpy efficiency from combustion gas to kinetic energy and also to make high velocity out of the gas. The rocket nozzle usually consists of a converging and diverging part. With a smaller area on the neck and enlarged at the exit area. The velocity flow through the nozzle enlarges into the speed of sound through the neck and then becomes super sonic in the divergent part. Nozzle making or machining using conventional lathes, first performed is drilling on a massive metal that is bonded to the veneer, then after a sufficient gap is done deep-boring. At the time of the process of lathe in the nozzle RX 450 there is an obstacle that is vibrating tool holder chisel or holder so it is worried about not precision of the process of lathe. This should not happen because it can cause failure in the latter for it needs to be studied and studied further so that the lathe process goes accordingly. The holder material of ST 60 with a modulus of elasticity 200 GPa and a nozzle material of AISI 4340 alloy steel with σyield = 470 MPa, Shear Modulus G = 80 GPa. The purpose of this research is to observe the amplitude of vibration on the holder due to RX- 450 nozzle lathe processing for the purpose of amplitude that occurs in accordance with the desired so that the nozzle structure is no damage process. The result of the research was obtained holder with length (L) 80cm, profile width (B) 5 cm, height of profile (H) 10 cm, turning machine ω = 8.98 rad / sec and natural holder frequency ωn = 89.8 rad / second, Amplitude of vibration of δ = 1.21 mm, while the amplitude of the design X = 1.22 mm From the results of this study it can be said that the holder of a chisel or holder can be used as a tool at the time of RX nozzle retrieval process and is quite safe because it works under the condition ω/ω n Rocket Payload "AKPV Engineering University of Wyoming 2009 )

  17. Effects of Fuel and Nozzle Characteristics on Micro Gas Turbine System: A Review

    Science.gov (United States)

    Akasha Hashim, Muhammad; Khalid, Amir; Salleh, Hamidon; Sunar, Norshuhaila Mohamed

    2017-08-01

    For many decades, gas turbines have been used widely in the internal combustion engine industry. Due to the deficiency of fossil fuel and the concern of global warming, the used of bio-gas have been recognized as one of most clean fuels in the application of engine to improve performance of lean combustion and minimize the production of NOX and PM. This review paper is to understand the combustion performance using dual-fuel nozzle for a micro gas turbine that was basically designed as a natural gas fuelled engine, the nozzle characteristics of the micro gas turbine has been modelled and the effect of multi-fuel used were investigated. The used of biogas (hydrogen) as substitute for liquid fuel (methane) at constant fuel injection velocity, the flame temperature is increased, but the fuel low rate reduced. Applying the blended fuel at constant fuel rate will increased the flame temperature as the hydrogen percentages increased. Micro gas turbines which shows the uniformity of the flow distribution that can be improved without the increase of the pressure drop by applying the variable nozzle diameters into the fuel supply nozzle design. It also identifies the combustion efficiency, better fuel mixing in combustion chamber using duel fuel nozzle with the largest potential for the future. This paper can also be used as a reference source that summarizes the research and development activities on micro gas turbines.

  18. Prediction of the Inlet Nozzle Velocity Profiles for the CANDU-6 Moderator Analysis

    International Nuclear Information System (INIS)

    Yoon, Churl; Park, Joo Hwan

    2006-01-01

    For the moderator analysis of the CANDU reactors in Korea, predicting local moderator subcooling in the Calandria vessels is one of the main concerns for the estimation of heat sink capability of moderator under LOCA transients. The moderator circulation pattern is determined by the combined forces of the inlet jet momentum and the buoyancy flow. Even though the inlet boundary condition plays an important role in determining the moderator circulations, no measured data of detailed inlet velocity profiles is available. The purpose of this study is to produce the velocity profiles at the inlet nozzles by a CFD simulation. To produce the velocity vector fields at the inlet nozzle surfaces, the internal flows in the nozzle assembly were simulated by using a commercial CFD code, CFX-5.7. In the reference, the analytical capability of CFX-5.7 had been estimated by a validation of the CFD code against available experimental data for separate flow phenomena. Various turbulence models and grid spacing had been also tested. In the following section, the interface treatment between the computational domains would be explained. In section 3, the inlet nozzle flow through the CANDU moderator nozzle assembly was predicted by using the obtained technology of the CFD simulation

  19. State-to-state modeling of non-equilibrium air nozzle flows

    Science.gov (United States)

    Nagnibeda, E.; Papina, K.; Kunova, O.

    2018-05-01

    One-dimensional non-equilibrium air flows in nozzles are studied on the basis of the state-to-state description of vibrational-chemical kinetics. Five-component mixture N2/O2/NO/N/O is considered taking into account Zeldovich exchange reactions of NO formation, dissociation, recombination and vibrational energy transitions. The equations for vibrational and chem-ical kinetics in a flow are coupled to the conservation equations of momentum and total energy and solved numerically for different conditions in a nozzle throat. The vibrational distributions of nitrogen and oxygen molecules, number densities of species as well as the gas temperature and flow velocity along a nozzle axis are analysed using the detailed state-to-state flow description and in the frame of the simplified one-temperature thermal equilibrium kinetic model. The comparison of the results showed the influence of non-equilibrium kinetics on macroscopic nozzle flow parameters. In the state-to-state approach, non-Boltzmann vibrational dis-tributions of N2 and O2 molecules with a plateau part at intermediate levels are found. The results are found with the use of the complete and simplified schemes of reactions and the impact of exchange reactions, dissociation and recombination on variation of vibrational level populations, mixture composition, gas velocity and temperature along a nozzle axis is shown.

  20. Design and Analysis of Fused Deposition Modeling 3D Printer Nozzle for Color Mixing

    Directory of Open Access Journals (Sweden)

    Shanling Han

    2017-01-01

    Full Text Available Fused deposition modeling (FDM has been one of the most widely used rapid prototyping (RP technologies leading to the increase in market attention. Obviously it is desirable to print 3D objects; however, existing FDM printers are restricted to printing only monochrome objects because of the entry-level nozzle structure, and literature on the topic is also sparse. In this paper, the CAD model of the nozzle is established first by UG (Unigraphics NX software to show the structure of fused deposition modeling 3D printer nozzle for color mixing. Second, the flow channel model of the nozzle is extracted and simplified. Then, the CAD and finite element model are established by UG and ICEM CFD software, respectively, to prepare for the simulation. The flow field is simulated by Fluent software. The nozzle’s suitable temperature at different extrusion speeds is obtained, and the reason for the blockage at the intersection of the heating block is revealed. Finally, test verification of the nozzle is performed, which can produce mixed-color artifacts stably.

  1. Droplet phase characteristics in liquid-dominated steam--water nozzle flow

    International Nuclear Information System (INIS)

    Alger, T.W.

    1978-01-01

    An experimental study was undertaken to determine the droplet size distribution, the droplet spatial distribution and the mean droplet velocity in low-quality, steam-water flow from a rectangular cross-section, converging-diverging nozzle. A unique forward light scattering technique was developed for droplet size distribution measurements. Droplet spatial variations were investigated using light transmission measurements, and droplet velocities were measured with a laser-Doppler velocimeter (LDV) system incorporating a confocal Fabry-Perot interferometer. Nozzle throat radius of curvature and height were varied to investigte their effects on droplet size. Droplet size distribution measurements yielded a nominal Sauter mean droplet diameter of 1.7 μm and a nominal mass-mean droplet diameter of 2.4 μm. Neither the throat radius of curvature nor the throat height were found to have a significant effect upon the nozzle exit droplet size. The light transmission and LDV measurement results confirmed both the droplet size measurements and demonstrated high spatial uniformity of the droplet phase within the nozzle jet flow. One-dimensional numerical calculations indicated that both the dynamic breakup (thermal equilibrium based on a critical Weber number of 6.0) and the boiling breakup (thermal nonequilibrium based on average droplet temperature) models predicted droplet diameters on the order of 7.5 μm, which are approximately equal to the maximum stable droplet diameters within the nozzle jet flow

  2. Ramjet Nozzle Analysis for Transport Aircraft Configuration for Sustained Hypersonic Flight

    Directory of Open Access Journals (Sweden)

    Raman Baidya

    2018-04-01

    Full Text Available For the past several decades, research dealing with hypersonic flight regimes has been restricted mainly to military applications. Hypersonic transportation could be a possible and affordable solution to travel in the medium term and there is renewed interest from several private organisations for commercial exploitation in this direction. Various combined cycle propulsion configurations have been proposed and the present paper deals with implications for the nozzle component of a ramjet configuration as part of one such combined cycle propulsion configuration. An investigation was undertaken for a method of turbine-based propulsion which enables the hypersonic vehicle to take off under its own power and propel the aircraft under different mission profiles into ramjet operational Mach regimes. The present study details an optimal method of ramjet exhaust expansion to produce sufficient thrust to propel the vehicle into altitudes and Mach regimes where scramjet operation can be initiated. This aspect includes a Computational Fluid Dynamics (CFD-based geometric study to determine the optimal configuration to provide the best thrust values. The CFD parametric analysis investigated three candidate nozzles and indicated that the dual bell nozzle design produced the highest thrust values when compared to other nozzle geometries. The altitude adaptation study also validated the effectiveness of the nozzle thrust at various altitudes without compromising its thrust-producing capabilities. Computational data were validated against published experimental data, which indicated that the computed values correlated well with the experimental data.

  3. An analytical evaluation for the pressure drop characteristics of bottom nozzle flow holes

    International Nuclear Information System (INIS)

    Yang, S. G.; Kim, H. J.; Lim, H. T.; Park, E. J.; Jeon, K. L.

    2002-01-01

    An analytical evaluation for the bottom nozzle flow holes was performed to find a best design concept in terms of pressure drop. For this analysis, Computational Fluid Dynamics (CFD), FLUENT 5.5, code was selected as an analytical evaluation tool. The applicability of CFD code was verified by benchmarking study with Vibration Investigation of Small-scale Test Assemblies (VISTA) test data in several flow conditions and typical flow hole shape. From this verification, the analytical data were benchmarked roughly within 17% to the VISTA test data. And, overall trend under various flow conditions looked very similar between both cases. Based on the evaluated results using CFD code, it is concluded that the deburring and multiple chamfer hole features at leading edge are the excellent design concept to decrease pressure drop across bottom nozzle plate. The deburring and multiple chamfer hole features at leading edge on the bottom nozzle plate have 12% and 17% pressure drop benefit against a single chamfer hole feature on the bottom nozzle plate, respectively. These design features are meaningful and applicable as a low pressure drop design concept of bottom nozzle for Pressurized Water Reactor (PWR) fuel assembly

  4. The effect of nozzle diameter, injection pressure and ambient temperature on spray characteristics in diesel engine

    Science.gov (United States)

    Rhaodah Andsaler, Adiba; Khalid, Amir; Sharifhatul Adila Abdullah, Nor; Sapit, Azwan; Jaat, Norrizam

    2017-04-01

    Mixture formation of the ignition process is a key element in the diesel combustion as it influences the combustion process and exhaust emission. Aim of this study is to elucidate the effects of nozzle diameter, injection pressure and ambient temperature to the formation of spray. This study investigated diesel formation spray using Computational Fluid Dynamics. Multiphase volume of fluid (VOF) behaviour in the chamber are determined by means of transient simulation, Eulerian of two phases is used for implementation of mixing fuel and air. The detail behaviour of spray droplet diameter, spray penetration and spray breakup length was visualised using the ANSYS 16.1. This simulation was done in different nozzle diameter 0.12 mm and 0.2 mm performed at the ambient temperature 500 K and 700 K with different injection pressure 40 MPa, 70 MPa and 140 MPa. Results show that high pressure influence droplet diameter become smaller and the penetration length longer with the high injection pressure apply. Smaller nozzle diameter gives a shorter length of the breakup. It is necessary for nozzle diameter and ambient temperature condition to improve the formation of spray. High injection pressure is most effective in improvement of formation spray under higher ambient temperature and smaller nozzle diameter.

  5. Numerical simulation of internal and near-nozzle flow of a gasoline direct injection fuel injector

    Science.gov (United States)

    Saha, Kaushik; Som, Sibendu; Battistoni, Michele; Li, Yanheng; Quan, Shaoping; Senecal, Peter Kelly

    2015-12-01

    A numerical study of two-phase flow inside the nozzle holes and the issuing spray jets for a multi-hole direct injection gasoline injector has been presented in this work. The injector geometry is representative of the Spray G nozzle, an eight-hole counterbore injector, from, the Engine Combustion Network (ECN). Simulations have been carried out for the fixed needle lift. Effects of turbulence, compressibility and, non-condensable gases have been considered in this work. Standard k—ɛ turbulence model has been used to model the turbulence. Homogeneous Relaxation Model (HRM) coupled with Volume of Fluid (VOF) approach has been utilized to capture the phase change phenomena inside and outside the injector nozzle. Three different boundary conditions for the outlet domain have been imposed to examine non-flashing and evaporative, non-flashing and non-evaporative, and flashing conditions. Inside the nozzle holes mild cavitation-like and in the near-nozzle region flash boiling phenomena have been predicted in this study when liquid fuel is subjected to superheated ambiance. Noticeable hole to hole variation has been also observed in terms of mass flow rates for all the holes under both flashing and non-flashing conditions.

  6. RNL NDT studies related to PWR pressure vessel inlet nozzle inspection

    International Nuclear Information System (INIS)

    Rogerson, A.; Poulter, L.N.J.; Clough, P.; Cooper, A.

    1984-01-01

    Non-destructive examinations of the Reactor Pressure Vessel (RPV) of a Pressurized Water Reactor (PWR) play an important role in assuring vessel integrity throughout its operational life. Automated ultrasonic techniques for the detection and sizing of flaws in thick-section seam welds and near-surface regions in a PWR RPV have been under development at RNL for some time. Techniques for the inspection of complex geometry welds and other regions of the vessel are now being assessed and further developed as part of the UK NDT development programme in support of the Sizewell PWR. One objective of this programme is to demonstrate that the range of ultrasonic techniques already shown to be effective for the inspection of seam welds and inlet nozzle corner regions, through exercises such as the Defect Detection Trials, can also be effective for inspection of these other vessel regions. The nozzle-to-vessel welds and nozzle crotch corners associated with the RPV water inlet and outlet nozzles are two such regions being examined in this programme. In this paper, a review is given of the work performed at RNL in the development of a laboratory-based inspection system for inlet nozzle inspection. The main features of the system in its current stage of development are explained. (author)

  7. Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis

    Science.gov (United States)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2013-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a coupled aeroelastic modeling capability by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed in the framework of modal analysis. Transient aeroelastic nozzle startup analyses of the Block I Space Shuttle Main Engine at sea level were performed. The computed results from the aeroelastic nozzle modeling are presented.

  8. On the influence of the nozzle length on the arc properties in a cutting torch

    International Nuclear Information System (INIS)

    Prevosto, L; Risso, M; Infante, D; Kelly, H

    2009-01-01

    In this work, an experimental study on the influence of the nozzle geometry on the physical properties of a cutting arc is reported. Ion current signals collected by an electrostatic probe sweeping across a 30 A oxygen cutting arc at 3.5 mm from the nozzle exit were registered for different nozzle lengths. The temperature and density radial profiles of the arc plasma were found in each case by an inversion procedure of these signals. A comparison between the obtained results shows that the shorter nozzle (R N = 0.50 mm, L N = 4.5 mm operated at 0.7 MPa and 35 Nl/min) produces a thinner and hotter arc than the larger nozzle (R N = 0.50 mm, L N = 9.0 mm operated at 1.1 MPa and 20 Nl/min). This behavior is attributed to the marked difference of gas flow rate due to the clogging effect. A smaller gas mass flow reduces the convective cooling at the arc border and decreases the power dissipation of the arc column, resulting in small axis temperatures.

  9. On the influence of the nozzle length on the arc properties in a cutting torch

    Energy Technology Data Exchange (ETDEWEB)

    Prevosto, L; Risso, M; Infante, D [Grupo de Descargas Electricas, Departamento Ingenieria Electromecanica, Universidad Tecnologica Nacional, Regional Venado Tuerto, Las Heras 644, Venado Tuerto (2600), Santa Fe (Argentina); Kelly, H, E-mail: prevosto@waycom.com.a [Instituto de FIsica del Plasma (CONICET), Departamento de Fisica, Facultad de Ciencias Exactas y Naturales (UBA) Ciudad Universitaria Pab. I, 1428 Buenos Aires (Argentina)

    2009-05-01

    In this work, an experimental study on the influence of the nozzle geometry on the physical properties of a cutting arc is reported. Ion current signals collected by an electrostatic probe sweeping across a 30 A oxygen cutting arc at 3.5 mm from the nozzle exit were registered for different nozzle lengths. The temperature and density radial profiles of the arc plasma were found in each case by an inversion procedure of these signals. A comparison between the obtained results shows that the shorter nozzle (R{sub N} = 0.50 mm, L{sub N} = 4.5 mm operated at 0.7 MPa and 35 Nl/min) produces a thinner and hotter arc than the larger nozzle (R{sub N} = 0.50 mm, L{sub N} = 9.0 mm operated at 1.1 MPa and 20 Nl/min). This behavior is attributed to the marked difference of gas flow rate due to the clogging effect. A smaller gas mass flow reduces the convective cooling at the arc border and decreases the power dissipation of the arc column, resulting in small axis temperatures.

  10. Strain accumulation in a prototypic lmfbr nozzle: Experimental and analytical correlation

    International Nuclear Information System (INIS)

    Woodward, W.S.; Dhalia, A.K.; Berton, P.A.

    1986-01-01

    At an early stage in the design of the primary inlet nozzle for the Intermediate Heat Exchanger (IHX) of the Fast Flux Test Facility (FFTF), it was predicted that the inelastic strain accumulation during elevated temperature operation (1050 0 F/566 0 C) would exceed the ASME Code design allowables. Therefore, a proof test of a prototypic FFTF IHX nozzle was performed in the Westinghouse Creep Ratcheting Test Facility (CRTF) to measure the ratchet strain increments during the most severe postulated FFTF plant thermal transients. In addition, analytical procedures similar to those used in the plant design, were used to predict strain accumulation in the CRTF nozzle. This paper describes how the proof test was successfully completed, and it shows that both the test measurements and analytical predictions confirm that the FFTF IHX nozzle, subjected to postulated thermal and mechanical loadings, complies with the ASME Code strain limits. Also, these results provide a measure of validation for the analytical procedures used in the design of FFTF as well as demonstrate the structural adequacy of the FFTF IHX primary inlet nozzle

  11. Development of ABWR inertia-increased reactor internal pump and thicker sleeve nozzle

    International Nuclear Information System (INIS)

    Takahashi, Shirou; Shiina, Kouji; Matsumura, Seiichi

    2002-01-01

    The conventional reactor internal pumps (RIPs) in the ABWR have an inertia moment coming from the shafts and Motor-Generator sets, enabling the RIPs to continue running for a few seconds, when a trip of all RIPs event occurs. It is possible to simplify the RIPs' power supply system without affecting the core flow supply when the above event occurs by eliminating M-G sets, if the rotating inertia is increased. This inertia increase due to an additional flywheel, which leads to gains in weight and length, requires the larger diameter nozzle with the thicker sleeve. However, too large a nozzle diameter may change the hydraulic performance. In authors' previous study, the optimum nozzle diameter (492 mm) was selected through 1/5-scale test. In this study, the 492 mm nozzle and the inertia-increased RIP were verified through the full-scale tests. The rotating inertia time constant on coastdown characteristics (behavior of the RIP speed in the event of power loss) for the inertia-increased RIP doubled compared with the current RIP. The casing and the shaft vibration were also confirmed to satisfy the design criteria. Moreover, hydraulic performance and heat increase in the motor casing due to the flywheel were evaluated. The inertia increased RIP with the 492 mm nozzle maintained good performance. (author)

  12. Fuel density effect on near nozzle flow field in small laminar coflow diffusion flames

    KAUST Repository

    Xiong, Yuan

    2015-01-01

    Flow characteristics in small coflow diffusion flames were investigated with a particular focus on the near-nozzle region and on the buoyancy force exerted on fuels with densities lighter and heavier than air (methane, ethylene, propane, and n-butane). The flow-fields were visualized through the trajectories of seed particles. The particle image velocimetry technique was also adopted for quantitative velocity field measurements. The results showed that the buoyancy force exerted on the fuel as well as on burnt gas significantly distorted the near-nozzle flow-fields. In the fuels with densities heavier than air, recirculation zones were formed very close to the nozzle, emphasizing the importance of the relative density of the fuel to that of the air on the flow-field. Nozzle heating influenced the near-nozzle flow-field particularly among lighter fuels (methane and ethylene). Numerical simulations were also conducted, focusing specifically on the effect of specifying inlet boundary conditions for fuel. The results showed that a fuel inlet boundary with a fully developed velocity profile for cases with long tubes should be specified inside the fuel tube to permit satisfactory prediction of the flow-field. The calculated temperature fields also indicated the importance of the selection of the location of the inlet boundary, especially in testing various combustion models that include soot in small coflow diffusion flames. © 2014 The Combustion Institute.

  13. VVER-1000 dominance ratio

    International Nuclear Information System (INIS)

    Gorodkov, S.

    2009-01-01

    Dominance ratio, or more precisely, its closeness to unity, is important characteristic of large reactor. It allows evaluate beforehand the number of source iterations required in deterministic calculations of power spatial distribution. Or the minimal number of histories to be modeled for achievement of statistical error level desired in large core Monte Carlo calculations. In this work relatively simple approach for dominance ratio evaluation is proposed. It essentially uses core symmetry. Dependence of dominance ratio on neutron flux spatial distribution is demonstrated. (author)

  14. WWER-1000 dominance ratio

    International Nuclear Information System (INIS)

    Gorodkov, S.S.

    2009-01-01

    Dominance ratio, or more precisely, its closeness to unity, is important characteristic of large reactor. It allows evaluate beforehand the number of source iterations required in deterministic calculations of power spatial distribution. Or the minimal number of histories to be modeled for achievement of statistical error level desired in large core Monte Carlo calculations. In this work relatively simple approach for dominance ratio evaluation is proposed. It essentially uses core symmetry. Dependence of dominance ratio on neutron flux spatial distribution is demonstrated. (Authors)

  15. Sharpening Sharpe Ratios

    OpenAIRE

    William N. Goetzmann; Jonathan E. Ingersoll Jr.; Matthew I. Spiegel; Ivo Welch

    2002-01-01

    It is now well known that the Sharpe ratio and other related reward-to-risk measures may be manipulated with option-like strategies. In this paper we derive the general conditions for achieving the maximum expected Sharpe ratio. We derive static rules for achieving the maximum Sharpe ratio with two or more options, as well as a continuum of derivative contracts. The optimal strategy has a truncated right tail and a fat left tail. We also derive dynamic rules for increasing the Sharpe ratio. O...

  16. Extension without Cut

    OpenAIRE

    Straßburger , Lutz

    2012-01-01

    International audience; In proof theory one distinguishes sequent proofs with cut and cut-free sequent proofs, while for proof complexity one distinguishes Frege-systems and extended Frege-systems. In this paper we show how deep inference can provide a uniform treatment for both classifications, such that we can define cut-free systems with extension, which is neither possible with Frege-systems, nor with the sequent calculus. We show that the propositional pigeon-hole principle admits polyno...

  17. Dimension and extensions

    CERN Document Server

    Aarts, JM

    1993-01-01

    Two types of seemingly unrelated extension problems are discussed in this book. Their common focus is a long-standing problem of Johannes de Groot, the main conjecture of which was recently resolved. As is true of many important conjectures, a wide range of mathematical investigations had developed, which have been grouped into the two extension problems. The first concerns the extending of spaces, the second concerns extending the theory of dimension by replacing the empty space with other spaces. The problem of de Groot concerned compactifications of spaces by means of an adjunction of a set of minimal dimension. This minimal dimension was called the compactness deficiency of a space. Early success in 1942 lead de Groot to invent a generalization of the dimension function, called the compactness degree of a space, with the hope that this function would internally characterize the compactness deficiency which is a topological invariant of a space that is externally defined by means of compact extensions of a...

  18. Detecting isotopic ratio outliers

    International Nuclear Information System (INIS)

    Bayne, C.K.; Smith, D.H.

    1985-01-01

    An alternative method is proposed for improving isotopic ratio estimates. This method mathematically models pulse-count data and uses iterative reweighted Poisson regression to estimate model parameters to calculate the isotopic ratios. This computer-oriented approach provides theoretically better methods than conventional techniques to establish error limits and to identify outliers. 6 refs., 3 figs., 3 tabs

  19. Detecting isotopic ratio outliers

    Science.gov (United States)

    Bayne, C. K.; Smith, D. H.

    An alternative method is proposed for improving isotopic ratio estimates. This method mathematically models pulse-count data and uses iterative reweighted Poisson regression to estimate model parameters to calculate the isotopic ratios. This computer-oriented approach provides theoretically better methods than conventional techniques to establish error limits and to identify outliers.

  20. Detecting isotopic ratio outliers

    International Nuclear Information System (INIS)

    Bayne, C.K.; Smith, D.H.

    1986-01-01

    An alternative method is proposed for improving isotopic ratio estimates. This method mathematically models pulse-count data and uses iterative reweighted Poisson regression to estimate model parameters to calculate the isotopic ratios. This computer-oriented approach provides theoretically better methods than conventional techniques to establish error limits and to identify outliers

  1. 3D printing of gas jet nozzles for laser-plasma accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Döpp, A.; Guillaume, E.; Thaury, C.; Gautier, J.; Ta Phuoc, K.; Malka, V. [LOA, ENSTA ParisTech, CNRS, École Polytechnique, Université Paris-Saclay, 828 Boulevard des Maréchaux, 91762 Palaiseau Cedex (France)

    2016-07-15

    Recent results on laser wakefield acceleration in tailored plasma channels have underlined the importance of controlling the density profile of the gas target. In particular, it was reported that the appropriate density tailoring can result in improved injection, acceleration, and collimation of laser-accelerated electron beams. To achieve such profiles, innovative target designs are required. For this purpose, we have reviewed the usage of additive layer manufacturing, commonly known as 3D printing, in order to produce gas jet nozzles. Notably we have compared the performance of two industry standard techniques, namely, selective laser sintering (SLS) and stereolithography (SLA). Furthermore we have used the common fused deposition modeling to reproduce basic gas jet designs and used SLA and SLS for more sophisticated nozzle designs. The nozzles are characterized interferometrically and used for electron acceleration experiments with the SALLE JAUNE terawatt laser at Laboratoire d’Optique Appliquée.

  2. Growth of condensed particles at fast cooling-down of moist air in a laval nozzle

    International Nuclear Information System (INIS)

    Krause, B.

    1980-01-01

    The aim of the investigations was to clarify the uncertainty factors contained in the condensation theories as well as to examine different existing growth laws. The measuring method chosen for the study of the progress of condensation was the measurement of the static pressure along the nozzle axis. The investigation of the condensation products with respect to size and number was performed by means of intensity measurements of scattered laser light. The two parameters initial moisture and cooling speed substantially influencing condensation were varied over a wide range. As the scattering behavior of the ice particles formed as condensation products could be described by the Rayleigh-Debye theory, determination of size and number of the condensing particles at every position of the nozzle axis became possible. For the first time particle growth in the nozzle was studied in detail. The results were compared with a number of growth laws. (orig.) [de

  3. CFD Based Erosion Modelling of Abrasive Waterjet Nozzle using Discrete Phase Method

    International Nuclear Information System (INIS)

    Kamarudin, Naqib Hakim; Prasada Rao, A K; Azhari, Azmir

    2016-01-01

    In Abrasive Waterjet (AWJ) machining, the nozzle is the most critical component that influences the performance, precision and economy. Exposure to a high speed jet and abrasives makes it susceptible to wear erosion which requires for frequent replacement. The present works attempts to simulate the erosion of the nozzle wall using computational fluid dynamics. The erosion rate of the nozzle was simulated under different operating conditions. The simulation was carried out in several steps which is flow modelling, particle tracking and erosion rate calculation. Discrete Phase Method (DPM) and K-ε turbulence model was used for the simulation. Result shows that different operating conditions affect the erosion rate as well as the flow interaction of water, air and abrasives. The simulation results correlates well with past work. (paper)

  4. Analysis of LOFT pressurizer spray and surge nozzles to include a 4500F step transient

    International Nuclear Information System (INIS)

    Nitzel, M.E.

    1978-01-01

    This report presents the analysis of the LOFT pressurizer spray and surge nozzles to include a 450 0 F step thermal transient. Previous analysis performed under subcontract by Basic Technology Incorporated was utilized where applicable. The SAASIII finite element computer program was used to determine stress distributions in the nozzles due to the step transient. Computer results were then incorporated in the necessary additional calculations to ascertain that stress limitations were not exceeded. The results of the analysis indicate that both the spray and surge nozzles will be within stress allowables prescribed by subsubarticle NB-3220 of the 1974 edition of the ASME Boiler and Pressure Vessel Code when subjected to currently known design, normal operating, upset, emergency, and faulted condition loads

  5. Ultra low injection angle fuel holes in a combustor fuel nozzle

    Science.gov (United States)

    York, William David

    2012-10-23

    A fuel nozzle for a combustor includes a mixing passage through which fluid is directed toward a combustion area and a plurality of swirler vanes disposed in the mixing passage. Each swirler vane of the plurality of swirler vanes includes at least one fuel hole through which fuel enters the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes thereby decreasing a flameholding tendency of the fuel nozzle. A method of operating a fuel nozzle for a combustor includes flowing a fluid through a mixing passage past a plurality of swirler vanes and injecting a fuel into the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes.

  6. Development of technique to apply induction heating stress improvement to recirculation inlet nozzle

    International Nuclear Information System (INIS)

    Chiba, Kunihiko; Nihei, Kenichi; Ootaka, Minoru

    2009-01-01

    Stress corrosion cracking (SCC) have been found in the primary loop recirculation (PLR) systems of boiling water reactors (BWR). Residual stress in welding heat-affected zone is one of the factors of SCC, and the residual stress improvement is one of the most effective methods to prevent SCC. Induction heating stress improvement (IHSI) is one of the techniques to improve reduce residual stress. However, it is difficult to apply IHSI to the place such as the recirculation inlet nozzle where the flow stagnates. In this present study, the technique to apply IHSI to the recirculation inlet nozzle was developed using water jet which blowed into the crevice between the nozzle safe end and the thermal sleeve. (author)

  7. Study for discharge coefficient of flow nozzles. Prediction by using numerical simulation

    International Nuclear Information System (INIS)

    Ikeda, Hiroshi; Sakai, Norio; Yamamoto, Yasushi; Arai, Kenji; Matsumoto, Masaaki

    2008-01-01

    In nuclear plant, as water feeding into reactor have much effect on thermal power of plant, it is important to measure accurately the flow rate of water. Flow nozzle is on of typical differential pressure type flow meters and the discharge coefficient is used to calculate the flow rate. This coefficient is given by actual experiment and theory. We studied the theoretical assumption of the discharge coefficient curve using numerical simulation and evaluated the effect of flow nozzle configuration on the coefficient numerically and experimentally. As the result, numerical simulation can predict the discharge coefficient of theoretical curve within 0.3%. And we found that the throat length and throat tapping location of flow nozzle have much effect on the coefficient. (author)

  8. Fluid and structural dynamic design considerations of the HYLIFE nozzle plate

    International Nuclear Information System (INIS)

    Pitts, J.H.; Ojalvo, I.U.

    1981-02-01

    The basic concept of the High Yield Lithium Injection Fusion Energy (HYLIFE) reaction chamber involves a falling liquid-metal (lithium) jet array that absorbs 90% of the energy released from inertial confinement fusion reactions. The key element of the chamber that produces the jet array is the nozzle plate. This paper describes the design and analysis of a nozzle plate which can withstand the structural loads and permit the fluid jet array to be reestablished for a 1-Hz fusion reaction frequency. The shape of the nozzle plate and jet array is dictated by considerations of fluid dynamics and neutron-shielding. A vertical jet array, rather than a single annulus, is used because this design enhances fluid momentum interchange and dissipation of the kinetic energy that occurs when the jets disassemble. Less net outward-directed momentum results than with a single liquid annular flow configuration, thus producing lower stresses in the structural components

  9. Stress intensity factors of corner cracks in two nozzle-cylinder intersections

    International Nuclear Information System (INIS)

    Kobayashi, A.S.; Polvanich, N.; Emery, A.F.; Love, W.J.

    1977-01-01

    In a recent paper, the authors presented the stress-intensity-magnification factors of a quarter-elliptical surface crack in a quarter-infinite solid and a circular crack approaching a reentry corner in a three-quarter infinite solid. These stress-intensity-magnification factors were used together with a curvature-correction factor to estimate the stress-intensity factor of a corner crack at a nozzle-cylinder intersection. Through appropriate superposition of the above stress-intensity-magnification factors, stress-intensity factors for hypothetical corner cracks at a nozzle-cylinder intersection subjected to internal pressure and transient thermal-stress loadings can be obtained. A description of a computer code based on this procedure as well as its applications in analyzing two corner-crack problems at a nozzle-cylinder intersection are discussed in this paper

  10. Stress intensity factors of corner cracks in two nozzle-cylinder interactions

    International Nuclear Information System (INIS)

    Kobayashi, A.S.; Polvanich, N.; Emery, A.F.; Love, W.J.

    1977-01-01

    In a recent paper, the authors presented the stress-intensity-magnification factors of a quarter-elliptical surface crack in a quarter-infinite solid and a circular crack approaching a reentry corner in a three-quarter infinite solid. These stress-intensity-magnification factors were used together with a curvature-correction factor to estimate the stress-intensity factor of a corner crack at a nozzle-cylinder interaction. Through appropriate superposition of the above stress-intensity-magnification factors, stress-intensity factors for hypothetical corner cracks at a nozzle-cylinder intersection subjected to internal pressure and transient thermal-stress loadings can be obtained. A description of a computer code based on this procedure as well as its applications in analyzing two corner-crack probems at a nozzle-cylinder intersection are discussed in this paper. (Auth.)

  11. Aerodynamic forces estimation on jet vanes exposed to supersonic exhaust of a CD Nozzle

    International Nuclear Information System (INIS)

    Bukhari, S.B.H.; Jehan, I.; Zahir, S.; Khan, M.A.

    2003-01-01

    A comprehensive study has been made for the estimation of aerodynamic forces on the jet Vane placed in the supersonic exhaust of a Convergent Divergent, CD-Nozzle. Such a system is used to provide the control forces that consist of four orthogonal vanes mounted in the supersonic exhaust of the CD-Nozzles. The flow field parameters for a CD Nozzle were analyzed and validated earlier. In this paper the published experimental and CFD results from RAMPANT Code from Fluent Inc. were used to estimate the axial and normal forces by using PAK-3D, a Computational Fluid Dynamics (CFD) software based on Navier-Stokes Equations solver. Results got verified quantitatively with a maximum error of 8% between PAK-3D and experiment, while 4% between PAK-3D and a CFD code, RAMPANT for the axial force. (author)

  12. CFD Analysis of Nozzle Exit Position Effect in Ejector Gas Removal System in Geothermal Power Plant

    Directory of Open Access Journals (Sweden)

    Setyo Nugroho

    2015-06-01

    Full Text Available The single stage ejector is used to extract the Non CondensableGas (NCG in the condenser using the working principle of the Venturi tube. Three dimensional computational simulation of the ejector according to the operating conditions was conducted to determine the flow in the ejector. Motive steam entering through the convergent – divergent nozzle with increasing flow velocity so that the low pressure exist around the nozzle. Comparison is done also in a two dimensional simulation to know the differences occurring phenomena and flow inside ejector. Different simulation results obtained between two dimensional and three dimensional simulation. Reverse flow which occurs in the mixing chamber made the static pressure in the area has increased dramatically. Then the variation performed on Exit Nozzle Position (NXP to determine the changes of the flow of the NCG and the vacuum level of the ejector. Keywords: Ejector, NCG, CFD, Compressible flow.

  13. Nozzle erosion characterization and minimization for high-pressure rocket motor applications

    Science.gov (United States)

    Evans, Brian

    Understanding of the processes that cause nozzle throat erosion and developing methods for mitigation of erosion rate can allow higher operating pressures for advanced rocket motors. However, erosion of the nozzle throat region, which is a strong function of operating pressure, must be controlled to realize the performance gains of higher operating pressures. The objective of this work was the study the nozzle erosion rates at a broad range of pressures from 7 to 34.5 MPa (1,000 to 5,000 psia) using two different rocket motors. The first is an instrumented solidpropellant motor (ISPM), which uses two baseline solid propellants; one is a non-metallized propellant called Propellant S and the other is a metallized propellant called Propellant M. The second test rig is a non-metallized solid-propellant rocket motor simulator (RMS). The RMS is a gas rocket with the ability to vary the combustion-product species composition by systematically varying the flow rates of gaseous reactants. Several reactant mixtures were utilized in the study to determine the relative importance of different oxidizing species (such as H2O, OH, and CO2). Both test rigs are equipped with a windowed nozzle section for real-time X-ray radiography diagnostics of the instantaneous throat variations for deducing the instantaneous erosion rates. The nozzle test section for both motors can also incorporate a nozzle boundary-layer control system (NBLCS) as a means of nozzle erosion mitigation. The effectiveness of the NBLCS at preventing nozzle throat erosion was demonstrated for both the RMS and the ISPM motors at chamber pressures up to 34 MPa (4930 psia). All tests conducted with the NBLCS showed signs of coning of the propellant surface, leading to increased mass burning rate and resultant chamber pressure. Two correlations were developed for the nozzle erosion rates from solid propellant testing, one for metallized propellant and one for non-metallized propellants. The non-metallized propellant

  14. THE APPLICATION OF LASERS IN MEASUREMENT OF FLUID FLOW THROUGH DRILLING BIT NOZZLES

    Directory of Open Access Journals (Sweden)

    Radenko Drakulić

    1993-12-01

    Full Text Available Two optical methods based on laser and video technology and digital signal and image processing techniques - Laser Doppler velocimetry (LDV and Particle image velocimetry (PIV were applied in highly accurate fluid flow measurement. Their application in jet velocity measurement of flows through drilling bit nozzles is presented. The role of nozzles in drilling technology together with procedures and tests performed on their optimization are reviewed. In addition, some experimental results for circular nozzle obtained both with LDV and PIV are elaborated. The experimental set-up and the testing procedure arc briefly discussed, as well as potential improvements in the design. Possible other applications of LDV and PIV in the domain of petroleum engineering are suggested (the paper is published in Croatian.

  15. F-15B ACTIVE with thrust vectoring nozzles on test stand view from rear

    Science.gov (United States)

    1995-01-01

    This November 13, 1995, photograph of the F-15 Advanced Controls Technology for Integrated Vehicles (ACTIVE) at NASA's Dryden Flight Research Center, Edwards, California, shows the aircraft's two new Pratt & Whitney nozzles that can turn up to 20 degrees in any direction. These nozzles give the aircraft thrust control in the pitch (up and down) and yaw (left and right) directions. This will reduce drag and increase fuel economy or range as compared with conventional aerodynamic controls, which increase the retarding forces (drag) acting upon the aircraft. Ground testing of a new thrust-vectoring concept employing the nozzles took place during the first two weeks of November 1995 and went well, and flight tests began in March 1996. These tests could result in significant performance increases for military and commercial aircraft. The research program is the product of a collaborative effort by NASA, the Air Force's Wright Laboratory, Pratt & Whitney, and McDonnell Douglas Aerospace.

  16. Development and technical implementation of the separation nozzle process for enrichment of uranium 235

    International Nuclear Information System (INIS)

    Syllus Martins Pinto, C.; Voelcker, H.; Becker, E.W.

    1977-12-01

    The separation nozzle process for the enrichment of uranium-235 has been developed at the Karlsruhe Nuclear Research Center as an alternative to the gaseous diffusion and centrifuge process. The separation of uranium isotopes is achieved by the deflection of a jet of uranium hexafluoride mixed with hydrogen. Since 1970, the German company of STEAG, has been involved in the technological development and commercial implementation of the nozzle process. In 1975, the Brazilian company of NUCLEBRAS, and the German company of Interatom, joined the effort. The primary objective of the common activity is the construction of a separation nozzle demonstration plant with an annual capacity of about 200 000 SWU and the development of components of a commercial plant. The paper covers the most important steps in the development and the technical implementation of the process. (orig.) [de

  17. Advanced Supersonic Nozzle Concepts: Experimental Flow Visualization Results Paired With LES

    Science.gov (United States)

    Berry, Matthew; Magstadt, Andrew; Stack, Cory; Gaitonde, Datta; Glauser, Mark; Syracuse University Team; The Ohio State University Team

    2015-11-01

    Advanced supersonic nozzle concepts are currently under investigation, utilizing multiple bypass streams and airframe integration to bolster performance and efficiency. This work focuses on the parametric study of a supersonic, multi-stream jet with aft deck. The single plane of symmetry, rectangular nozzle, displays very complex and unique flow characteristics. Flow visualization techniques in the form of PIV and schlieren capture flow features at various deck lengths and Mach numbers. LES is compared to the experimental results to both validate the computational model and identify limitations of the simulation. By comparing experimental results to LES, this study will help create a foundation of knowledge for advanced nozzle designs in future aircraft. SBIR Phase II with Spectral Energies, LLC under direction of Barry Kiel.

  18. An experimental study of the velocity-forced flame response of a lean-premixed multi-nozzle can combustor for gas turbines

    Science.gov (United States)

    Szedlmayer, Michael Thomas

    The velocity forced flame response of a multi-nozzle, lean-premixed, swirl-stabilized, turbulent combustor was investigated at atmospheric pressure. The purpose of this study was to analyze the mechanisms that allowed velocity fluctuations to cause fluctuations in the rate of heat release in a gas turbine combustor experiencing combustion instability. Controlled velocity fluctuations were introduced to the combustor by a rotating siren device which periodically allowed the air-natural gas mixture to flow. The velocity fluctuation entering the combustor was measured using the two-microphone method. The resulting heat release rate fluctuation was measured using CH* chemiluminescence. The global response of the flame was quantified using the flame transfer function with the velocity fluctuation as the input and the heat release rate fluctuation as the output. Velocity fluctuation amplitude was initially maintained at 5% of the inlet velocity in order to remain in the linear response regime. Flame transfer function measurements were acquired at a wide range of operating conditions and forcing frequencies. The selected range corresponds to the conditions and instability frequencies typical of real gas turbine combustors. Multi-nozzle flame transfer functions were found to bear a qualitative similarity to the single-nozzle flame transfer functions in the literature. The flame transfer function gain exhibited alternating minima and maxima while the phase decreased linearly with increasing forcing frequency. Several normalization techniques were applied to all flame transfer function data in an attempt to collapse the data into a single curve. The best collapse was found to occur using a Strouhal number which was the ratio of the characteristic flame length to the wavelength of the forced disturbance. Critical values of Strouhal number are used to predict the shedding of vortical structures in shear layers. Because of the collapse observed when the flame transfer functions

  19. Space Shuttle main engine powerhead structural modeling, stress and fatigue life analysis. Volume 3: Stress summay of blades and nozzles at FPL and 115 percent RPL loads. SSME HPFTP and HPOTP blades and nozzles

    Science.gov (United States)

    Hammett, J. C.; Hayes, C. H.; Price, J. M.; Robinson, J. K.; Teal, G. A.; Thomson, J. M.; Tilley, D. M.; Welch, C. T.

    1983-01-01

    Gasdynamic environments applied to the turbine blades and nozzles of the HPFTP and HPOTP were analyzed. Centrifugal loads were applied to blades to account for the pump rotation of FPL and 115 percent RPL. The computer models used in the blade analysis with results presented in the form of temperature and stress contour plots are described. Similar information is given for the nozzles.

  20. Periodic equivalence ratio modulation method and apparatus for controlling combustion instability

    Science.gov (United States)

    Richards, George A.; Janus, Michael C.; Griffith, Richard A.

    2000-01-01

    The periodic equivalence ratio modulation (PERM) method and apparatus significantly reduces and/or eliminates unstable conditions within a combustion chamber. The method involves modulating the equivalence ratio for the combustion device, such that the combustion device periodically operates outside of an identified unstable oscillation region. The equivalence ratio is modulated between preselected reference points, according to the shape of the oscillation region and operating parameters of the system. Preferably, the equivalence ratio is modulated from a first stable condition to a second stable condition, and, alternatively, the equivalence ratio is modulated from a stable condition to an unstable condition. The method is further applicable to multi-nozzle combustor designs, whereby individual nozzles are alternately modulated from stable to unstable conditions. Periodic equivalence ratio modulation (PERM) is accomplished by active control involving periodic, low frequency fuel modulation, whereby low frequency fuel pulses are injected into the main fuel delivery. Importantly, the fuel pulses are injected at a rate so as not to affect the desired time-average equivalence ratio for the combustion device.