WorldWideScience

Sample records for rate doses effects

  1. Bayesian estimation of dose rate effectiveness

    International Nuclear Information System (INIS)

    Arnish, J.J.; Groer, P.G.

    2000-01-01

    A Bayesian statistical method was used to quantify the effectiveness of high dose rate 137 Cs gamma radiation at inducing fatal mammary tumours and increasing the overall mortality rate in BALB/c female mice. The Bayesian approach considers both the temporal and dose dependence of radiation carcinogenesis and total mortality. This paper provides the first direct estimation of dose rate effectiveness using Bayesian statistics. This statistical approach provides a quantitative description of the uncertainty of the factor characterising the dose rate in terms of a probability density function. The results show that a fixed dose from 137 Cs gamma radiation delivered at a high dose rate is more effective at inducing fatal mammary tumours and increasing the overall mortality rate in BALB/c female mice than the same dose delivered at a low dose rate. (author)

  2. Gamma dose rate effect on JFET transistors

    International Nuclear Information System (INIS)

    Assaf, J.

    2011-04-01

    The effect of Gamma dose rate on JFET transistors is presented. The irradiation was accomplished at the following available dose rates: 1, 2.38, 5, 10 , 17 and 19 kGy/h at a constant dose of 600 kGy. A non proportional relationship between the noise and dose rate in the medium range (between 2.38 and 5 kGy/h) was observed. While in the low and high ranges, the noise was proportional to the dose rate as the case of the dose effect. This may be explained as follows: the obtained result is considered as the yield of a competition between many reactions and events which are dependent on the dose rate. At a given values of that events parameters, a proportional or a non proportional dose rate effects are generated. No dependence effects between the dose rate and thermal annealing recovery after irradiation was observed . (author)

  3. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice

    International Nuclear Information System (INIS)

    Ware, J.H.; Rusek, A.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X.S.; Kennedy, A.R.

    2010-01-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  4. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice.

    Science.gov (United States)

    Ware, J H; Sanzari, J; Avery, S; Sayers, C; Krigsfeld, G; Nuth, M; Wan, X S; Rusek, A; Kennedy, A R

    2010-09-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  5. Low doses effects and gamma radiations low dose rates

    International Nuclear Information System (INIS)

    Averbeck, D.

    1999-01-01

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  6. Dose Rate Effects in Linear Bipolar Transistors

    Science.gov (United States)

    Johnston, Allan; Swimm, Randall; Harris, R. D.; Thorbourn, Dennis

    2011-01-01

    Dose rate effects are examined in linear bipolar transistors at high and low dose rates. At high dose rates, approximately 50% of the damage anneals at room temperature, even though these devices exhibit enhanced damage at low dose rate. The unexpected recovery of a significant fraction of the damage after tests at high dose rate requires changes in existing test standards. Tests at low temperature with a one-second radiation pulse width show that damage continues to increase for more than 3000 seconds afterward, consistent with predictions of the CTRW model for oxides with a thickness of 700 nm.

  7. Dose-rate effects in external beam radiotherapy redux

    International Nuclear Information System (INIS)

    Ling, C. Clifton; Gerweck, Leo E.; Zaider, Marco; Yorke, Ellen

    2010-01-01

    Recent developments in external beam radiotherapy, both in technical advances and in clinical approaches, have prompted renewed discussions on the potential influence of dose-rate on radio-response in certain treatment scenarios. We consider the multiple factors that influence the dose-rate effect, e.g. radical recombination, the kinetics of sublethal damage repair for tumors and normal tissues, the difference in α/β ratio for early and late reacting tissues, and perform a comprehensive literature review. Based on radiobiological considerations and the linear-quadratic (LQ) model we estimate the influence of overall treatment time on radio-response for specific clinical situations. As the influence of dose-rate applies to both the tumor and normal tissues, in oligo-fractionated treatment using large doses per fraction, the influence of delivery prolongation is likely important, with late reacting normal tissues being generally more sensitive to the dose-rate effect than tumors and early reacting tissues. In conventional fractionated treatment using 1.8-2 Gy per fraction and treatment times of 2-10 min, the influence of dose-rate is relatively small. Lastly, the dose-rate effect in external beam radiotherapy is governed by the overall beam-on-time, not by the average linac dose-rate, nor by the instantaneous dose-rate within individual linac pulses which could be as high as 3 x 10 6 MU/min.

  8. Health effect of low dose/low dose rate radiation

    International Nuclear Information System (INIS)

    Kodama, Seiji

    2012-01-01

    The clarified and non-clarified scientific knowledge is discussed to consider the cause of confusion of explanation of the title subject. The low dose is defined roughly lower than 200 mGy and low dose rate, 0.05 mGy/min. The health effect is evaluated from 2 aspects of clinical symptom/radiation hazard protection. In the clinical aspect, the effect is classified in physical (early and late) and genetic ones, and is classified in stochastic (no threshold value, TV) and deterministic (with TV) ones from the radioprotection aspect. Although the absence of TV in the carcinogenic and genetic effects has not been proved, ICRP employs the stochastic standpoint from the safety aspect for radioprotection. The lowest human TV known now is 100 mGy, meaning that human deterministic effect would not be generated below this dose. Genetic deterministic effect can be observable only in animal experiments. These facts suggest that the practical risk of exposure to <100 mGy in human is the carcinogenesis. The relationship between carcinogenic risk in A-bomb survivors and their exposed dose are found fitted to the linear no TV model, but the epidemiologic data, because of restriction of subject number analyzed, do not always mean that the model is applicable even below the dose <100 mGy. This would be one of confusing causes in explanation: no carcinogenic risk at <100 mGy or risk linear to dose even at <100 mGy, neither of which is scientifically conclusive at present. Also mentioned is the scarce risk of cancer in residents living in the high background radiation regions in the world in comparison with that in the A-bomb survivors exposed to the chronic or acute low dose/dose rate. Molecular events are explained for the low-dose radiation-induced DNA damage and its repair, gene mutation and chromosome aberration, hypothesis of carcinogenesis by mutation, and non-targeting effect of radiation (bystander effect and gene instability). Further researches to elucidate the low dose

  9. Late effects of low doses and dose rates

    International Nuclear Information System (INIS)

    Paretzke, H.G.

    1980-01-01

    This paper outlines the spectrum of problems and approaches used in work on the derivation of quantitative prognoses of late effects in man of low doses and dose rates. The origins of principal problems encountered in radiation risks assessments, definitions and explanations of useful quantities, methods of deriving risk factors from biological and epidemiological data, and concepts of risk evaluation and problems of acceptance are individually discussed

  10. Review of low dose-rate epidemiological studies and biological mechanisms of dose-rate effects on radiation induced carcinogenesis

    International Nuclear Information System (INIS)

    Iwasaki, Toshiyasu; Otsuka, Kensuke; Yoshida, Kazuo

    2015-01-01

    Radiation protection system adopts the linear non-threshold model with using dose and dose-rate effectiveness factor (DDREF). The dose-rate range where DDREF is applied is below 100 mGy per hour, and it is regarded that there are no dose-rate effects at very low dose rate, less than of the order of 10 mGy per year, even from the biological risk evaluation model based on cellular and molecular level mechanisms for maintenance of genetic integrity. Among low dose-rate epidemiological studies, studies of residents in high natural background areas showed no increase of cancer risks at less than about 10 mGy per year. On the other hand, some studies include a study of the Techa River cohort suggested the increase of cancer risks to the similar degree of Atomic bomb survivor data. The difference of those results was supposed due to the difference of dose rate. In 2014, International Commission on Radiological Protection opened a draft report on stem cell biology for public consultations. The report proposed a hypothesis based on the new idea of stem cell competition as a tissue level quality control mechanism, and suggested that it could explain the dose-rate effects around a few milligray per year. To verify this hypothesis, it would be needed to clarify the existence and the lowest dose of radiation-induced stem cell competition, and to elucidate the rate of stem cell turnover and radiation effects on it. As for the turnover, replenishment of damaged stem cells would be the important biological process. It would be meaningful to collect the information to show the difference of dose rates where the competition and the replenishment would be the predominant processes. (author)

  11. Dose-rate effects on mammalian cells exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Mitchell, J.B.

    1978-01-01

    The effect of irradiation on the life cycle and on cell survival was studied for a range of different dose rates. Log phase, plateau phase and synchronized cultures of different mammalian cells were used. Cell cycle redistribution during the radiation exposure was found to be a very important factor in determining the overall dose-rate effect for log phase and synchronized cells. In fact, cell cycle redistribution during the exposure, in some instances, resulted in a lower dose rate being more effective in cell killing per unit dose than a higher dose rate. For plateau phase cultures, where cell cycle times are greatly lengthened, the effects of redistribution in regard to cell killing was virtually eliminated. Both fed and unfed plateau phase cultures exhibited a dose-rate effect, but it was found that below dose rates of 154 rad/h there is no further loss in effectiveness

  12. Radiobiological modelling of dose-gradient effects in low dose rate, high dose rate and pulsed brachytherapy

    International Nuclear Information System (INIS)

    Armpilia, C; Dale, R G; Sandilos, P; Vlachos, L

    2006-01-01

    This paper presents a generalization of a previously published methodology which quantified the radiobiological consequences of dose-gradient effects in brachytherapy applications. The methodology uses the linear-quadratic (LQ) formulation to identify an equivalent biologically effective dose (BED eq ) which, if applied uniformly to a specified tissue volume, would produce the same net cell survival as that achieved by a given non-uniform brachytherapy application. Multiplying factors (MFs), which enable the equivalent BED for an enclosed volume to be estimated from the BED calculated at the dose reference surface, have been calculated and tabulated for both spherical and cylindrical geometries. The main types of brachytherapy (high dose rate (HDR), low dose rate (LDR) and pulsed (PB)) have been examined for a range of radiobiological parameters/dimensions. Equivalent BEDs are consistently higher than the BEDs calculated at the reference surface by an amount which depends on the treatment prescription (magnitude of the prescribed dose) at the reference point. MFs are closely related to the numerical BED values, irrespective of how the original BED was attained (e.g., via HDR, LDR or PB). Thus, an average MF can be used for a given prescribed BED as it will be largely independent of the assumed radiobiological parameters (radiosensitivity and α/β) and standardized look-up tables may be applicable to all types of brachytherapy treatment. This analysis opens the way to more systematic approaches for correlating physical and biological effects in several types of brachytherapy and for the improved quantitative assessment and ranking of clinical treatments which involve a brachytherapy component

  13. Dose and Dose-Rate Effectiveness Factor (DDREF); Der Dosis- und Dosisleistungs-Effektivitaetsfaktor (DDREF)

    Energy Technology Data Exchange (ETDEWEB)

    Breckow, Joachim [Fachhochschule Giessen-Friedberg, Giessen (Germany). Inst. fuer Medizinische Physik und Strahlenschutz

    2016-08-01

    For practical radiation protection purposes it is supposed that stochastic radiation effects a determined by a proportional dose relation (LNT). Radiobiological and radiation epidemiological studies indicated that in the low dose range a dependence on dose rates might exist. This would trigger an overestimation of radiation risks based on the LNT model. OCRP had recommended a concept to combine all effects in a single factor DDREF (dose and dose-Rate effectiveness factor). There is still too low information on cellular mechanisms of low dose irradiation including possible repair and other processes. The Strahlenschutzkommission cannot identify a sufficient scientific justification for DDREF and recommends an adaption to the actual state of science.

  14. [Dose rate-dependent cellular and molecular effects of ionizing radiation].

    Science.gov (United States)

    Przybyszewski, Waldemar M; Wideł, Maria; Szurko, Agnieszka; Maniakowski, Zbigniew

    2008-09-11

    The aim of radiation therapy is to kill tumor cells while minimizing damage to normal cells. The ultimate effect of radiation can be apoptotic or necrotic cell death as well as cytogenetic damage resulting in genetic instability and/or cell death. The destructive effects of radiation arise from direct and indirect ionization events leading to peroxidation of macromolecules, especially those present in lipid-rich membrane structures as well as chromatin lipids. Lipid peroxidative end-products may damage DNA and proteins. A characteristic feature of radiation-induced peroxidation is an inverse dose-rate effect (IDRE), defined as an increase in the degree of oxidation(at constant absorbed dose) accompanying a lower dose rate. On the other hand, a low dose rate can lead to the accumulation of cells in G2, the radiosensitive phase of the cell cycle since cell cycle control points are not sensitive to low dose rates. Radiation dose rate may potentially be the main factor improving radiotherapy efficacy as well as affecting the intensity of normal tissue and whole-body side effects. A better understanding of dose rate-dependent biological effects may lead to improved therapeutic intervention and limit normal tissue reaction. The study reviews basic biological effects that depend on the dose rate of ionizing radiation.

  15. Biological effect of Pulsed Dose Rate brachytherapy with stepping sources

    International Nuclear Information System (INIS)

    Limbergen, Erik F.M. van; Fowler, Jack F.

    1996-01-01

    Purpose: To explore the possible increase of radiation effect in tissues irradiated by pulsed brachytherapy (PDR), for local tissue dose-rates between those 'averaged over the whole pulse' and the instantaneous high dose rates close to the dwell positions. An earlier publication (Fowler and Mount 1992) had shown that, for dose rates (averaged for the duration of the pulse) up to 3 Gy/h, little change of isoeffect doses from continuous low dose rate (CLDR) are expected, unless larger doses per fraction than 1 Gy are used, and especially if components of very rapid repair are present with half-times of less than about 0.5 hours. However, local and transient dose rates close to stepping sources can be up to several Gy per minute. Methods: Calculations were done assuming the linear quadratic formula for radiation damage, in which only the dose-squared term is subject to repair, at a constant exponential rate. The formula developed by Dale for fractionated low-dose-rate radiotherapy was used. A constant overall time of 140 hours and constant total dose of 70 Gy were assumed throughout, the continuous low dose-rate of 0.5 Gy/h (CLDR) providing the unitary standard effects for each PDR condition. Effects of dose-rates ranging from 4 Gy/h to 120 Gy/h (HDR at 2 Gy/min) were studied, and T (1(2)) from 4 minutes to 1.5 hours. Results: Curves are presented relating the ratio of increased biological effect (proportional to log cell kill) calculated for PDR relative to CLDR. Ratios as high as 1.5 can be found for large doses per pulse (> 1 Gy) at high instantaneous dose-rates if T (1(2)) in tissues is as short as a few minutes. The major influences on effect are dose per pulse, half-time of repair in the tissue, and - when T (1(2)) is short - the instantaneous dose-rate. Maximum ratios of PDR/CLDR effect occur when the dose-rate is such that pulse duration is approximately equal to T (1(2)) of repair. Results are presented for late-responding tissues, the differences from CLDR

  16. Dose-rate effects of low-dropout voltage regulator at various biases

    International Nuclear Information System (INIS)

    Wang Yiyuan; Zheng Yuzhan; Gao Bo; Chen Rui; Fei Wuxiong; Lu Wu; Ren Diyuan

    2010-01-01

    A low-dropout voltage regulator, LM2941, was irradiated by 60 Co γ-rays at various dose rates and biases for investigating the total dose and dose rate effects. The radiation responses show that the key electrical parameters, including its output and dropout voltage, and the maximum output current, are sensitive to total dose and dose rates, and are significantly degraded at low dose rate and zero bias. The integrated circuits damage change with the dose rates and biases, and the dose-rate effects are relative to its electric field. (authors)

  17. Dose and dose-rate effects of ionizing radiation: a discussion in the light of radiological protection

    Energy Technology Data Exchange (ETDEWEB)

    Ruehm, Werner [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Radiation Protection, Neuherberg (Germany); Woloschak, Gayle E. [Northwestern University, Department of Radiation Oncology, Feinberg School of Medicine, Chicago, IL (United States); Shore, Roy E. [Radiation Effects Research Foundation (RERF), Hiroshima City (Japan); Azizova, Tamara V. [Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk Region (Russian Federation); Grosche, Bernd [Federal Office for Radiation Protection, Oberschleissheim (Germany); Niwa, Ohtsura [Fukushima Medical University, Fukushima (Japan); Akiba, Suminori [Kagoshima University Graduate School of Medical and Dental Sciences, Department of Epidemiology and Preventive Medicine, Kagoshima City (Japan); Ono, Tetsuya [Institute for Environmental Sciences, Rokkasho, Aomori-ken (Japan); Suzuki, Keiji [Nagasaki University, Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki (Japan); Iwasaki, Toshiyasu [Central Research Institute of Electric Power Industry (CRIEPI), Radiation Safety Research Center, Nuclear Technology Research Laboratory, Tokyo (Japan); Ban, Nobuhiko [Tokyo Healthcare University, Faculty of Nursing, Tokyo (Japan); Kai, Michiaki [Oita University of Nursing and Health Sciences, Department of Environmental Health Science, Oita (Japan); Clement, Christopher H.; Hamada, Nobuyuki [International Commission on Radiological Protection (ICRP), PO Box 1046, Ottawa, ON (Canada); Bouffler, Simon [Public Health England (PHE), Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot (United Kingdom); Toma, Hideki [JAPAN NUS Co., Ltd. (JANUS), Tokyo (Japan)

    2015-11-15

    The biological effects on humans of low-dose and low-dose-rate exposures to ionizing radiation have always been of major interest. The most recent concept as suggested by the International Commission on Radiological Protection (ICRP) is to extrapolate existing epidemiological data at high doses and dose rates down to low doses and low dose rates relevant to radiological protection, using the so-called dose and dose-rate effectiveness factor (DDREF). The present paper summarizes what was presented and discussed by experts from ICRP and Japan at a dedicated workshop on this topic held in May 2015 in Kyoto, Japan. This paper describes the historical development of the DDREF concept in light of emerging scientific evidence on dose and dose-rate effects, summarizes the conclusions recently drawn by a number of international organizations (e.g., BEIR VII, ICRP, SSK, UNSCEAR, and WHO), mentions current scientific efforts to obtain more data on low-dose and low-dose-rate effects at molecular, cellular, animal and human levels, and discusses future options that could be useful to improve and optimize the DDREF concept for the purpose of radiological protection. (orig.)

  18. Dose rate effect on low-dose hyper-radiosensitivity with cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Min; Kim, Eun-Hee [Seoul National University, Seoul (Korea, Republic of)

    2016-10-15

    Low-dose hyper-radiosensitivity (HRS) is the phenomenon that mammalian cells exhibit higher sensitivity to radiation at low doses (< 0.5 Gy) than expected by the linear-quadratic model. At doses above 0.5Gy, the cellular response is recovered to the level expected by the linear-quadratic model. This transition is called the increased radio-resistance (IRR). HRS was first verified using Chinese hamster V79 cells in vitro by Marples and has been confirmed in studies with other cell lines including human normal and tumor cells. HRS is known to be induced by inactivation of ataxia telangiectasia-mutated (ATM), which plays a key role in repairing DNA damages. Considering the connection between ATM and HRS, one can infer that dose rate may affect cellular response regarding HRS at low doses. In this study, we quantitated the effect of dose rate on HRS by clonogenic assay with normal and tumor cells. The HRS of cells at low dose exposures is a phenomenon already known. In this study, we observed HRS of rat normal diencephalon cells and rat gliosarcoma cells at doses below 1 Gy. In addition, we found that dose rate mattered. HRS occurred at low doses, but only when total dose was delivered at a rate below certain level.

  19. Effective dose rate coefficients for exposure to contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Veinot, K.G. [Easterly Scientific, Knoxville, TN (United States); Y-12 National Security Complex, Oak Ridge, TN (United States); Eckerman, K.F.; Easterly, C.E. [Easterly Scientific, Knoxville, TN (United States); Bellamy, M.B.; Hiller, M.M.; Dewji, S.A. [Oak Ridge National Laboratory, Center for Radiation Protection Knowledge, Oak Ridge, TN (United States); Hertel, N.E. [Oak Ridge National Laboratory, Center for Radiation Protection Knowledge, Oak Ridge, TN (United States); Georgia Institute of Technology, Atlanta, GA (United States); Manger, R. [University of California San Diego, Department of Radiation Medicine and Applied Sciences, La Jolla, CA (United States)

    2017-08-15

    The Oak Ridge National Laboratory Center for Radiation Protection Knowledge has undertaken calculations related to various environmental exposure scenarios. A previous paper reported the results for submersion in radioactive air and immersion in water using age-specific mathematical phantoms. This paper presents age-specific effective dose rate coefficients derived using stylized mathematical phantoms for exposure to contaminated soils. Dose rate coefficients for photon, electron, and positrons of discrete energies were calculated and folded with emissions of 1252 radionuclides addressed in ICRP Publication 107 to determine equivalent and effective dose rate coefficients. The MCNP6 radiation transport code was used for organ dose rate calculations for photons and the contribution of electrons to skin dose rate was derived using point-kernels. Bremsstrahlung and annihilation photons of positron emission were evaluated as discrete photons. The coefficients calculated in this work compare favorably to those reported in the US Federal Guidance Report 12 as well as by other authors who employed voxel phantoms for similar exposure scenarios. (orig.)

  20. Dose rate effect on material aging due to radiation. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Shin-ichi (Radiation Center of Osaka Prefecture, Sakai (Japan)); Hayakawa, Chikara; Takeya, Chikashi

    1982-12-01

    Although many reports have been presented on the radiation aging of the organic materials for electric cables, those have been based on the experiments carried out at high dose rate near 1 x 10/sup 6/ rad/h, assuming that aging effect depends on only radiation dose. Therefore, to investigate the aging behaviour in low dose rate range is an important subject to predict their practical life time. In this report, the results of having investigated the aging behaviour of six types of materials are described, (polyethylene for general insulation purpose, chemically cross-linked polyethylene, fire-retardant chemically cross-linked polyethylene, fire-retardant ethylene-propylene rubber, fire-retardant chloro-sulfonated polyethylene for sheaths, and fire-retardant, low hydrochloric acid, special heat-resistant vinyl for insulation purpose or chloroclean). They were irradiated with /sup 60/Co ..gamma..-ray at the dose from 5 x 10/sup 3/ to 1 x 10/sup 6/ rad/h, and their deterioration was tested for the items of elongation, tensile strength, resistivity, dielectric tangent and gel fraction. The aging mechanism and dose rate effect were also considered. The dose rate effect appeared or did not appear depending on the types of materials and also their properties. The materials that showed the dose rate effect included the typical ones whose characteristics degraded with the decreasing dose rate, and the peculiar ones whose deterioration of characteristics did not appear constantly. Aging mechanism may vary in the case of high dose rate and low dose rate. Also, if the life time at respective dose rate in relatively higher dose rate region is clarified, the life time in low dose rate region may possibly be predicted.

  1. Dose-rate dependent stochastic effects in radiation cell-survival models

    International Nuclear Information System (INIS)

    Sachs, R.K.; Hlatky, L.R.

    1990-01-01

    When cells are subjected to ionizing radiation the specific energy rate (microscopic analog of dose-rate) varies from cell to cell. Within one cell, this rate fluctuates during the course of time; a crossing of a sensitive cellular site by a high energy charged particle produces many ionizations almost simultaneously, but during the interval between events no ionizations occur. In any cell-survival model one can incorporate the effect of such fluctuations without changing the basic biological assumptions. Using stochastic differential equations and Monte Carlo methods to take into account stochastic effects we calculated the dose-survival rfelationships in a number of current cell survival models. Some of the models assume quadratic misrepair; others assume saturable repair enzyme systems. It was found that a significant effect of random fluctuations is to decrease the theoretically predicted amount of dose-rate sparing. In the limit of low dose-rates neglecting the stochastic nature of specific energy rates often leads to qualitatively misleading results by overestimating the surviving fraction drastically. In the opposite limit of acute irradiation, analyzing the fluctuations in rates merely amounts to analyzing fluctuations in total specific energy via the usual microdosimetric specific energy distribution function, and neglecting fluctuations usually underestimates the surviving fraction. The Monte Carlo methods interpolate systematically between the low dose-rate and high dose-rate limits. As in other approaches, the slope of the survival curve at low dose-rates is virtually independent of dose and equals the initial slope of the survival curve for acute radiation. (orig.)

  2. Radiobiological aspects of continuous low dose-rate irradiation and fractionated high dose-rate irradiation

    International Nuclear Information System (INIS)

    Turesson, I.

    1990-01-01

    The biological effects of continuous low dose-rate irradiation and fractionated high dose-rate irradiation in interstitial and intracavitary radiotherapy and total body irradiation are discussed in terms of dose-rate fractionation sensitivity for various tissues. A scaling between dose-rate and fraction size was established for acute and late normal-tissue effects which can serve as a guideline for local treatment in the range of dose rates between 0.02 and 0.005 Gy/min and fraction sizes between 8.5 and 2.5 Gy. This is valid provided cell-cycle progression and proliferation can be ignored. Assuming that the acute and late tissue responses are characterized by α/β values of about 10 and 3 Gy and a mono-exponential repair half-time of about 3 h, the same total doses given with either of the two methods are approximately equivalent. The equivalence for acute and late non-hemopoietic normal tissue damage is 0.02 Gy/min and 8.5 Gy per fraction; 0.01 Gy/min and 5.5 Gy per fraction; and 0.005 Gy/min and 2.5Gy per fraction. A very low dose rate, below 0.005 Gy/min, is thus necessary to simulate high dose-rate radiotherapy with fraction sizes of about 2Gy. The scaling factor is, however, dependent on the repair half-time of the tissue. A review of published data on dose-rate effects for normal tissue response showed a significantly stronger dose-rate dependence for late than for acute effects below 0.02 Gy/min. There was no significant difference in dose-rate dependence between various acute non-hemopoietic effects or between various late effects. The consistent dose-rate dependence, which justifies the use of a general scaling factor between fraction size and dose rate, contrasts with the wide range of values for repair half-time calculated for various normal-tissue effects. This indicates that the model currently used for repair kinetics is not satisfactory. There are also few experimental data in the clinical dose-rate range, below 0.02 Gy/min. It is therefore

  3. Dose-rate effects for apoptosis and micronucleus formation in gamma-irradiated human lymphocytes

    International Nuclear Information System (INIS)

    Boreham, D.R.; Dolling, J.-A.; Maves, S.R.; Siwarungsun, N.; Mitchel, R.E.J.

    2000-01-01

    We have compared dose-rate effects for γ-radiation-induced apoptosis and micronucleus formation in human lymphocytes. Long-term assessment of individual radiation-induced apoptosis showed little intraindividual variation but significant interindividual variation. The effectiveness of radiation exposure to cause apoptosis or micronucleus formation was reduced by low-dose-rate exposures, but the reduction was apparent at different dose rates for these two end points. Micronucleus formation showed a dose-rate effect when the dose rate was lowered to 0.29 cGy/min, but there was no accompanying cell cycle delay. A further increase in the dose-rate effect was seen at 0.15 cGy/min, but was now accompanied by cell cycle delay. There was no dose-rate effect for the induction of apoptosis until the dose rate was reduced to 0.15 cGy/min, indicating that the mechanisms or signals for processing radiation-induced lesions for these two end points must be different at least in part. There appear to be two mechanisms that contribute to the dose-rate effect for micronucleus formation. One of these does not affect binucleate cell frequency and occurs at dose rates higher than that required to produce a dose-rate effect for apoptosis, and one affects binucleate cell frequency, induced only at the very low dose rate which coincidentally produces a dose-rate effect for apoptosis. Since the dose rate at which cells showed reduced apoptosis as well as a further reduction in micronucleus formation was very low, we conclude that the processing of the radiation-induced lesions that induce apoptosis, and some micronuclei, is very slow in quiescent and PHA-stimulated lymphocytes, respectively. (author)

  4. Dose-rate effects for apoptosis and micronucleus formation in gamma-irradiated human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Boreham, D.R.; Dolling, J.-A.; Maves, S.R. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Siwarungsun, N. [Chulalongkorn Univ., Bangkok (Thailand); Mitchel, R.E.J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2000-07-01

    We have compared dose-rate effects for {gamma}-radiation-induced apoptosis and micronucleus formation in human lymphocytes. Long-term assessment of individual radiation-induced apoptosis showed little intraindividual variation but significant interindividual variation. The effectiveness of radiation exposure to cause apoptosis or micronucleus formation was reduced by low-dose-rate exposures, but the reduction was apparent at different dose rates for these two end points. Micronucleus formation showed a dose-rate effect when the dose rate was lowered to 0.29 cGy/min, but there was no accompanying cell cycle delay. A further increase in the dose-rate effect was seen at 0.15 cGy/min, but was now accompanied by cell cycle delay. There was no dose-rate effect for the induction of apoptosis until the dose rate was reduced to 0.15 cGy/min, indicating that the mechanisms or signals for processing radiation-induced lesions for these two end points must be different at least in part. There appear to be two mechanisms that contribute to the dose-rate effect for micronucleus formation. One of these does not affect binucleate cell frequency and occurs at dose rates higher than that required to produce a dose-rate effect for apoptosis, and one affects binucleate cell frequency, induced only at the very low dose rate which coincidentally produces a dose-rate effect for apoptosis. Since the dose rate at which cells showed reduced apoptosis as well as a further reduction in micronucleus formation was very low, we conclude that the processing of the radiation-induced lesions that induce apoptosis, and some micronuclei, is very slow in quiescent and PHA-stimulated lymphocytes, respectively. (author)

  5. Biological effects of low doses of radiation at low dose rate

    International Nuclear Information System (INIS)

    1996-05-01

    The purpose of this report was to examine available scientific data and models relevant to the hypothesis that induction of genetic changes and cancers by low doses of ionizing radiation at low dose rate is a stochastic process with no threshold or apparent threshold. Assessment of the effects of higher doses of radiation is based on a wealth of data from both humans and other organisms. 234 refs., 26 figs., 14 tabs

  6. Mathematical model for evaluation of dose-rate effect on biological responses to low dose γ-radiation

    International Nuclear Information System (INIS)

    Ogata, H.; Kawakami, Y.; Magae, J.

    2003-01-01

    Full text: To evaluate quantitative dose-response relationship on the biological response to radiation, it is necessary to consider a model including cumulative dose, dose-rate and irradiation time. In this study, we measured micronucleus formation and [ 3 H] thymidine uptake in human cells as indices of biological response to gamma radiation, and analyzed mathematically and statistically the data for quantitative evaluation of radiation risk at low dose/low dose-rate. Effective dose (ED x ) was mathematically estimated by fitting a general function of logistic model to the dose-response relationship. Assuming that biological response depends on not only cumulative dose but also dose-rate and irradiation time, a multiple logistic function was applied to express the relationship of the three variables. Moreover, to estimate the effect of radiation at very low dose, we proposed a modified exponential model. From the results of fitting curves to the inhibition of [ 3 H] thymidine uptake and micronucleus formation, it was obvious that ED 50 in proportion of inhibition of [ 3 H] thymidine uptake increased with longer irradiation time. As for the micronuclei, ED 30 also increased with longer irradiation times. These results suggest that the biological response depends on not only total dose but also irradiation time. The estimated response surface using the three variables showed that the biological response declined sharply when the dose-rate was less than 0.01 Gy/h. These results suggest that the response does not depend on total cumulative dose at very low dose-rates. Further, to investigate the effect of dose-rate within a wider range, we analyzed the relationship between ED x and dose-rate. Fitted curves indicated that ED x increased sharply when dose-rate was less than 10 -2 Gy/h. The increase of ED x signifies the decline of the response or the risk and suggests that the risk approaches to 0 at infinitely low dose-rate

  7. Dose-rate effects and chronological changes of chromosome aberration rates in spleen cells from mice that are chronically exposed to gamma-ray at low dose rates

    International Nuclear Information System (INIS)

    Tanaka, Kimio; Kohda, Atsushi; Ichinohe, Kazuaki; Matsumoto, Tsuneya; Oghiso, Yoichi

    2006-01-01

    Dose-rate effects have not been examined in the low dose-rate regions of less than 60-600 mGy/h. Mice were chronically exposed to gamma-ray at 20 mGy/day (approximately 1 mGy/h) up to 700 days and at 1 mGy/day (approximately 0.05 mGy/h) for 500 days under SPF conditions. Chronological changes of chromosome aberration rates in spleen cells were observed along with accumulated doses at both low dose-rates. Unstable aberrations increased in a biphasic manner within 0-2 Gy and 4-14 Gy in 20 mGy/day irradiation. They slightly increased up to 0.5 Gy in 1 mGy/day irradiation. Chromosome aberration rates at 20 mGy/day and 1 mGy/day were compared at the same total doses of 0.5 Gy and 0.25 Gy. They were 2.0 vs. 0.53, and 1.0 vs. 0.47 respectively. Thus, dose-rate effects were observed in these low dose-rate regions. (author)

  8. Dose-rate effects on the bulk etch-rate of CR-39 track detector exposed to low-LET radiations

    CERN Document Server

    Yamauchi, T; Oda, K; Ikeda, T; Honda, Y; Tagawa, S

    1999-01-01

    The effect of gamma-rays and pulsed electrons has been investigated on the bulk etch rate of CR-39 detector at doses up to 100 kGy under various dose-rate between 0.0044 and 35.0 Gy/s. The bulk etch rate increased exponentially with the dose at every examined dose-rates. It was reveled to be strongly depend on the dose-rate: the bulk etch rate was decreased with increasing dose-rate at the same total dose. A primitive model was proposed to explain the dose-rate effect in which oxygen dissolved was assumed to dominate the damage formation process.

  9. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    Science.gov (United States)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  10. Dose rate effect models for biological reaction to ionizing radiation in human cell lines

    International Nuclear Information System (INIS)

    Magae, Junji; Ogata, Hiromitsu

    2008-01-01

    Full text: Because of biological responses to ionizing radiation are dependent on irradiation time or dose rate as well as dose, simultaneous inclusion of dose and dose rate is required to evaluate the risk of long term irradiation at low dose rates. We previously published a novel statistical model for dose rate effect, modified exponential (MOE) model, which predicts irradiation time-dependent biological response to low dose rate ionizing radiation, by analyzing micronucleus formation and growth inhibition in a human osteosarcoma cell line, exposed to wide range of doses and dose rates of gamma-rays. MOE model demonstrates that logarithm of median effective dose exponentially increases in low dose rates, and thus suggests that the risk approaches to zero at infinitely low dose rate. In this paper, we extend the analysis in various kinds of human cell lines exposed to ionizing radiation for more than a year. We measured micronucleus formation and [ 3 H]thymidine uptake in human cell lines including an osteosarcoma, a DNA-dependent protein kinase-deficient glioma, a SV40-transformed fibroblast derived from an ataxia telangiectasia patient, a normal fibroblast, and leukemia cell lines. Cells were exposed to gamma-rays in irradiation room bearing 50,000 Ci of cobalt-60. After the irradiation, they were cultured for 24 h in the presence of cytochalasin B to block cytokinesis, and cytoplasm and nucleus were stained with DAPI and prospidium iodide. The number of binuclear cells bearing a micronucleus was counted under a fluorescence microscope. For proliferation inhibition, cells were cultured for 48 h after the irradiation and [ 3 H] thymidine was pulsed for 4 h before harvesting. We statistically analyzed the data for quantitative evaluation of radiation risk. While dose and dose rate relationship cultured within one month followed MOE model in cell lines holding wild-type DNA repair system, dose rate effect was greatly impaired in DNA repair-deficient cell lines

  11. A comparison of anti-tumor effects of high dose rate fractionated and low dose rate continuous irradiation in multicellular spheroids

    International Nuclear Information System (INIS)

    Kubota, Nobuo; Omura, Motoko; Matsubara, Sho.

    1997-01-01

    In a clinical experience, high dose rate (HDR) fractionated interstitial radiotherapy can be an alternative to traditional low dose rate (LDR) continuous interstitial radiotherapy for head and neck cancers. To investigate biological effect of HDR, compared to LDR, comparisons have been made using spheroids of human squamous carcinoma cells. Both LDR and HDR were delivered by 137 Cs at 37degC. Dose rate of LDR was 8 Gy/day and HDR irradiations of fraction size of 4, 5 or 6 Gy were applied twice a day with an interval time of more than 6 hr. We estimated HDR fractionated dose of 31 Gy with 4 Gy/fr to give the same biological effects of 38 Gy by continuous LDR for spheroids. The ratio of HDR/LDR doses to control 50% spheroids was 0.82. (author)

  12. Dose rate effects during damage accumulation in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Caturla, M.J.; Diaz de la Rubia, T.

    1997-01-01

    We combine molecular dynamics and Monte Carlo simulations to study damage accumulation and dose rate effects during irradiation of Silicon. We obtain the initial stage of the damage produced by heavy and light ions using classical molecular dynamics simulations. While heavy ions like As or Pt induce amorphization by single ion impact, light ions like B only produce point defects or small clusters of defects. The amorphous pockets generated by heavy ions are stable below room temperature and recrystallize at temperatures below the threshold for recrystallization of a planar amorphous-crystalline interface. The damage accumulation during light ion irradiation is simulated using a Monte Carlo model for defect diffusion. In this approach, we study the damage in the lattice as a function of dose and dose rate. A strong reduction in the total number of defects left in the lattice is observed for lower dose rates.

  13. Dose rate effects during damage accumulation in silicon

    International Nuclear Information System (INIS)

    Caturla, M.J.; Diaz de la Rubia, T.

    1997-01-01

    The authors combine molecular dynamics and Monte Carlo simulations to study damage accumulation and dose rate effects during irradiation of silicon. They obtain the initial stage of the damage produced by heavy and light ions using classical molecular dynamics simulations. While heavy ions like As or Pt induce amorphization by single ion impact, light ions like B only produce point defects or small clusters of defects. The amorphous pockets generated by heavy ions are stable below room temperature and recrystallize at temperatures below the threshold for recrystallization of a planar amorphous-crystalline interface. The damage accumulation during light ion irradiation is simulated using a Monte Carlo model for defect diffusion. In this approach, the authors study the damage in the lattice as a function of dose and dose rate. A strong reduction in the total number of defects left in the lattice is observed for lower dose rates

  14. Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines

    Science.gov (United States)

    Gridley, D. S.; Pecaut, M. J.; Miller, G. M.; Moyers, M. F.; Nelson, G. A.

    2001-01-01

    The goal of part II of this study was to evaluate the effects of gamma-radiation on circulating blood cells, functional characteristics of splenocytes, and cytokine expression after whole-body irradiation at varying total doses and at low- and high-dose-rates (LDR, HDR). Young adult C57BL/6 mice (n = 75) were irradiated with either 1 cGy/min or 80 cGy/min photons from a 60Co source to cumulative doses of 0.5, 1.5, and 3.0 Gy. The animals were euthanized at 4 days post-exposure for in vitro assays. Significant dose- (but not dose-rate-) dependent decreases were observed in erythrocyte and blood leukocyte counts, hemoglobin, hematocrit, lipopolysaccharide (LPS)-induced 3H-thymidine incorporation, and interleukin-2 (IL-2) secretion by activated spleen cells when compared to sham-irradiated controls (p < 0.05). Basal proliferation of leukocytes in the blood and spleen increased significantly with increasing dose (p < 0.05). Significant dose rate effects were observed only in thrombocyte counts. Plasma levels of transforming growth factor-beta 1 (TGF-beta 1) and splenocyte secretion of tumor necrosis factor-alpha (TNF-alpha) were not affected by either the dose or dose rate of radiation. The data demonstrate that the responses of blood and spleen were largely dependent upon the total dose of radiation employed and that an 80-fold difference in the dose rate was not a significant factor in the great majority of measurements.

  15. Genotoxic effects of high dose rate X-ray and low dose rate gamma radiation in ApcMin/+ mice.

    Science.gov (United States)

    Graupner, Anne; Eide, Dag M; Brede, Dag A; Ellender, Michele; Lindbo Hansen, Elisabeth; Oughton, Deborah H; Bouffler, Simon D; Brunborg, Gunnar; Olsen, Ann Karin

    2017-10-01

    Risk estimates for radiation-induced cancer in humans are based on epidemiological data largely drawn from the Japanese atomic bomb survivor studies, which received an acute high dose rate (HDR) ionising radiation. Limited knowledge exists about the effects of chronic low dose rate (LDR) exposure, particularly with respect to the application of the dose and dose rate effectiveness factor. As part of a study to investigate the development of colon cancer following chronic LDR vs. acute HDR radiation, this study presents the results of genotoxic effects in blood of exposed mice. CBAB6 F1 Apc +/+ (wild type) and Apc Min/+ mice were chronically exposed to estimated whole body absorbed doses of 1.7 or 3.2 Gy 60 Co-γ-rays at a LDR (2.2 mGy h -1 ) or acutely exposed to 2.6 Gy HDR X-rays (1.3 Gy min -1 ). Genotoxic endpoints assessed in blood included chromosomal damage (flow cytometry based micronuclei (MN) assay), mutation analyses (Pig-a gene mutation assay), and levels of DNA lesions (Comet assay, single-strand breaks (ssb), alkali labile sites (als), oxidized DNA bases). Ionising radiation (ca. 3 Gy) induced genotoxic effects dependent on the dose rate. Chromosomal aberrations (MN assay) increased 3- and 10-fold after chronic LDR and acute HDR, respectively. Phenotypic mutation frequencies as well as DNA lesions (ssb/als) were modulated after acute HDR but not after chronic LDR. The Apc Min/+ genotype did not influence the outcome in any of the investigated endpoints. The results herein will add to the scant data available on genotoxic effects following chronic LDR of ionising radiation. Environ. Mol. Mutagen. 58:560-569, 2017. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.

  16. LDR brachytherapy: can low dose rate hypersensitivity from the "inverse" dose rate effect cause excessive cell killing to peripherial connective tissues and organs?

    Science.gov (United States)

    Leonard, B E; Lucas, A C

    2009-02-01

    Examined here are the possible effects of the "inverse" dose rate effect (IDRE) on low dose rate (LDR) brachytherapy. The hyper-radiosensitivity and induced radioresistance (HRS/IRR) effect benefits cell killing in radiotherapy, and IDRE and HRS/IRR seem to be generated from the same radioprotective mechanisms. We have computed the IDRE excess cell killing experienced in LDR brachytherapy using permanent seed implants. We conclude, firstly, that IDRE is a dose rate-dependent manifestation of HRS/IRR. Secondly, the presence of HRS/IRR or IDRE in a cell species or tissue must be determined by direct dose-response measurements. Thirdly, a reasonable estimate is that 50-80% of human adjoining connective and organ tissues experience IDRE from permanent implanted LDR brachytherapy. If IDRE occurs for tissues at point A for cervical cancer, the excess cell killing will be about a factor of 3.5-4.0 if the initial dose rate is 50-70 cGy h(-1). It is greater for adjacent tissues at lower dose rates and higher for lower initial dose rates at point A. Finally, higher post-treatment complications are observed in LDR brachytherapy, often for unknown reasons. Some of these are probably a result of IDRE excess cell killing. Measurements of IDRE need be performed for connective and adjacent organ tissues, i.e. bladder, rectum, urinary tract and small bowels. The measured dose rate-dependent dose responses should extended to tissues and organs remain above IDRE thresholds).

  17. Dose-rate effects on gamma-induced genetic injury in rat spermatogonia

    International Nuclear Information System (INIS)

    Vyglenov, A.

    1990-01-01

    Data for correlation between the reciprocal translocations (RT) yield in rat germ cells and the doses of 0.5 - 3.0 Gy are presented. A 60 Co source has been used with dose rates of 0.25, 8 x 10 -2 and 7 x 10 -3 Gy/min. The results from the cytogenetic analysis made 6 months after irradiation have shown an increase of the yield with the increase of the dose, which can be described as a linear unthreshold dependence. The dose rate effect is expressed in decrease of mutation frequency. The comparison with earlier author's data from similar experiments for acute irradiation allows to determine the RBE of gamma irradiation at the three dose rates investigated as 0.6, 0.2 and 0.1 respectively. The reported results are connected with the problem of variety specificity of the dose rate effect. 2 figs., 2 tabs., 15 refs

  18. Conditioned instrumental behaviour in the rat: Effects of prenatal irradiation with various low dose-rate doses

    International Nuclear Information System (INIS)

    Klug, H.

    1986-01-01

    4 groups of rats of the Wistar-strain were subjected to γ-irradiation on the 16th day of gestation. 5 rats received 0,6 Gy low dose rate irradiation, 5 animals received 0,9 Gy low dose and 6 high dose irradiation, 3 females were shamirradiated. The male offspring of these 3 irradiation groups and 1 control group were tested for locomotor coordination on parallel bars and in a water maze. The female offspring were used in an operant conditioning test. The locomotor test showed slight impairment of locomotor coordination in those animals irradiated with 0,9 Gy high dose rate. Swimming ability was significantly impaired by irradiation with 0,9 Gy high dose rate. Performance in the operant conditioning task was improved by irradiation with 0,9 Gy both low and high dose rate. The 0,9 Gy high dose rate group learned faster than all the other groups. For the dose of 0,9 Gy a significant dose rate effect could be observed. For the dose of 0,6 Gy a similar tendency was observed, differences between 0,6 Gy high and low dose rate and controls not being significant. (orig./MG) [de

  19. Towards a new dose and dose-rate effectiveness factor (DDREF)? Some comments.

    Science.gov (United States)

    Chadwick, K H

    2017-06-26

    The aim of this article is to offer a broader, mechanism-based, analytical tool than that used by (Rühm et al 2016 Ann. ICRP 45 262-79) for the interpretation of cancer induction relationships. The article explains the limitations of this broader analytical tool and the implications of its use in view of the publications by Leuraud et al 2015 (Lancet Haematol. 2 e276-81) and Richardson et al 2015 (Br. Med. J. 351 h5359). The publication by Rühm et al 2016 (Ann. ICRP 45 262-79), which is clearly work in progress, reviews the current status of the dose and dose-rate effectiveness factor (DDREF) as recommended by the ICRP. It also considers the issues which might influence a reassessment of both the value of the DDREF as well as its application in radiological protection. In this article, the problem is approached from a different perspective and starts by commenting on the limited scientific data used by Rühm et al 2016 (Ann. ICRP 45 262-79) to develop their analysis which ultimately leads them to use a linear-quadratic dose effect relationship to fit solid cancer mortality data from the Japanese life span study of atomic bomb survivors. The approach taken here includes more data on the induction of DNA double strand breaks and, using experimental data taken from the literature, directly relates the breaks to cell killing, chromosomal aberrations and somatic mutations. The relationships are expanded to describe the induction of cancer as arising from radiation induced cytological damage coupled to cell killing since the cancer mutated cell has to survive to express its malignant nature. Equations are derived for the induction of cancer after both acute and chronic exposure to sparsely ionising radiation. The equations are fitted to the induction of cancer in mice to illustrate a dose effect relationship over the total dose range. The 'DDREF' derived from the two equations varies with dose and the DDREF concept is called into question. Although the equation for

  20. Dose rate-dependent marrow toxicity of TBI in dogs and marrow sparing effect at high dose rate by dose fractionation.

    Science.gov (United States)

    Storb, R; Raff, R F; Graham, T; Appelbaum, F R; Deeg, H J; Schuening, F G; Sale, G; Seidel, K

    1999-01-01

    We evaluated the marrow toxicity of 200 and 300 cGy total-body irradiation (TBI) delivered at 10 and 60 cGy/min, respectively, in dogs not rescued by marrow transplant. Additionally, we compared toxicities after 300 cGy fractionated TBI (100 cGy fractions) to that after single-dose TBI at 10 and 60 cGy/min. Marrow toxicities were assessed on the basis of peripheral blood cell count changes and mortality from radiation-induced pancytopenia. TBI doses studied were just below the dose at which all dogs die despite optimal support. Specifically, 18 dogs were given single doses of 200 cGy TBI, delivered at either 10 (n=13) or 60 (n=5) cGy/min. Thirty-one dogs received 300 cGy TBI at 10 cGy/min, delivered as either single doses (n=21) or three fractions of 100 cGy each (n=10). Seventeen dogs were given 300 cGy TBI at 60 cGy/min, administered either as single doses (n=5) or three fractions of 100 cGy each (n=10). Within the limitations of the experimental design, three conclusions were drawn: 1) with 200 and 300 cGy single-dose TBI, an increase of dose rate from 10 to 60 cGy/min, respectively, caused significant increases in marrow toxicity; 2) at 60 cGy/min, dose fractionation resulted in a significant decrease in marrow toxicities, whereas such a protective effect was not seen at 10 cGy/min; and 3) with fractionated TBI, no significant differences in marrow toxicity were seen between dogs irradiated at 60 and 10 cGy/min. The reduced effectiveness of TBI when a dose of 300 cGy was divided into three fractions of 100 cGy or when dose rate was reduced from 60 cGy/min to 10 cGy/min was consistent with models of radiation toxicity that allow for repair of sublethal injury in DNA.

  1. The dose-rate effect

    International Nuclear Information System (INIS)

    Steel, G.G.

    1989-01-01

    This paper presents calculations that illustrate two conclusions; for any particular cell type there will be a critical radius at which tumor control breaks down, and the radius at which this occurs is strongly dependent upon the low-dose-rate radiosensitivity of the cells

  2. Dose rate effects of low-LET ionizing radiation on fish cells

    Energy Technology Data Exchange (ETDEWEB)

    Vo, Nguyen T.K. [McMaster University, Radiation Sciences Program, School of Graduate and Postdoctoral Studies, Hamilton, ON (Canada); Seymour, Colin B.; Mothersill, Carmel E. [McMaster University, Radiation Sciences Program, School of Graduate and Postdoctoral Studies, Hamilton, ON (Canada); McMaster University, Department of Biology, Hamilton, ON (Canada)

    2017-11-15

    Radiobiological responses of a highly clonogenic fish cell line, eelB, to low-LET ionizing radiation and effects of dose rates were studied. In acute exposure to 0.1-12 Gy of gamma rays, eelB's cell survival curve displayed a linear-quadratic (LQ) relationship. In the LQ model, α, β, and α/β ratio were 0.0024, 0.037, and 0.065, respectively; for the first time that these values were reported for fish cells. In the multi-target model, n, D{sub o}, and D{sub q} values were determined to be 4.42, 2.16, and 3.21 Gy, respectively, and were the smallest among fish cell lines being examined to date. The mitochondrial potential response to gamma radiation in eelB cells was at least biphasic: mitochondria hyperpolarized 2 h and then depolarized 5 h post-irradiation. Upon receiving gamma rays with a total dose of 5 Gy, dose rates (ranging between 83 and 1366 mGy/min) had different effects on the clonogenic survival but not the mitochondrial potential. The clonogenic survival was significantly higher at the lowest dose rate of 83 mGy/min than at the other higher dose rates. Upon continuous irradiation with beta particles from tritium at 0.5, 5, 50, and 500 mGy/day for 7 days, mitochondria significantly depolarized at the three higher dose rates. Clearly, dose rates had differential effects on the clonogenic survival of and mitochondrial membrane potential in fish cells. (orig.)

  3. Effects of emitter junction and passive base region on low dose rate effect in bipolar devices

    International Nuclear Information System (INIS)

    Pershenkov, V.S.; Cherepko, S.V.; Maslov, V.B.; Belyakov, V.V.; Sogoyan, A.V.; Ulimov, N.; Emelianov, V.V.

    1999-01-01

    Low dose rate effect in bipolar devices consists in the increase of peripheral surface recombination current with dose rate decrease. This is due to the more rapid positive oxide charge and interface trap density build-up as the dose rate becomes lower. High dose rate elevated temperature irradiation is proposed for simulation if the low dose rate effect. In the present we tried to separate the effect of radiation-induced charge in the thick passivation oxide over the emitter junction and passive base regions of npn bipolar transistor. Its goal is to improve bipolar device design for use in space environments and nuclear installations. Three experiments were made during this work. 1. Experiment on radiation-induced charge neutralization (RICN) effect under elevated temperature was performed to show transistor degradation dependence on emitter-base bias. 2. High dose rate elevated and room temperature irradiation of bipolar transistors were performed to separate effects of emitter-junction and passive base regions. 3. Pre- and post- irradiation hydrogen ambient storage was used to investigate its effect on radiation-induced charge build-up over the passive base region. All experiments were performed with npn and pnp transistors. (authors)

  4. Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines

    Science.gov (United States)

    Gridley, D. S.; Pecaut, M. J.; Miller, G. M.; Moyers, M. F.; Nelson, G. A.

    2001-01-01

    The goal of part II of this study was to evaluate the effects of gamma-radiation on circulating blood cells, functional characteristics of splenocytes, and cytokine expression after whole-body irradiation at varying total doses and at low- and high-dose-rates (LDR, HDR). Young adult C57BL/6 mice (n = 75) were irradiated with either 1 cGy/min or 80 cGy/min photons from a 60Co source to cumulative doses of 0.5, 1.5, and 3.0 Gy. The animals were euthanized at 4 days post-exposure for in vitro assays. Significant dose- (but not dose-rate-) dependent decreases were observed in erythrocyte and blood leukocyte counts, hemoglobin, hematocrit, lipopolysaccharide (LPS)-induced 3H-thymidine incorporation, and interleukin-2 (IL-2) secretion by activated spleen cells when compared to sham-irradiated controls (p factor-beta 1 (TGF-beta 1) and splenocyte secretion of tumor necrosis factor-alpha (TNF-alpha) were not affected by either the dose or dose rate of radiation. The data demonstrate that the responses of blood and spleen were largely dependent upon the total dose of radiation employed and that an 80-fold difference in the dose rate was not a significant factor in the great majority of measurements.

  5. Dose/dose-rate responses of shrimp larvae to UV-B radiation

    International Nuclear Information System (INIS)

    Damkaer, D.M.

    1981-01-01

    Previous work indicated dose-rate thresholds in the effects of UV-B on the near-surface larvae of three shrimp species. Additional observations suggest that the total dose response varies with dose-rate. Below 0.002 Wm -2 sub([DNA]) irradiance no significant effect is noted in activity, development, or survival. Beyond that dose-rate threshold, shrimp larvae are significantly affected if the total dose exceeds about 85 Jm -2 sub([DNA]). Predictions cannot be made without both the dose-rate and the dose. These dose/dose-rate thresholds are compared to four-year mean dose/dose-rate solar UV-B irradiances at the experimental site, measured at the surface and calculated for 1 m depth. The probability that the shrimp larvae would receive lethal irradiance is low for the first half of the season of surface occurrence, even with a 44% increase in damaging UV radiation. (orig.)

  6. Dose/dose-rate responses of shrimp larvae to UV-B radiation

    Energy Technology Data Exchange (ETDEWEB)

    Damkaer, D.M.; Dey, D.B.; Heron, G.A.

    1981-01-01

    Previous work indicated dose-rate thresholds in the effects of UV-B on the near-surface larvae of three shrimp species. Additional observations suggest that the total dose response varies with dose-rate. Below 0.002 Wm/sup -2/sub((DNA)) irradiance no significant effect is noted in activity, development, or survival. Beyond that dose-rate threshold, shrimp larvae are significantly affected if the total dose exceeds about 85 Jm/sup -2/sub((DNA)). Predictions cannot be made without both the dose-rate and the dose. These dose/dose-rate thresholds are compared to four-year mean dose/dose-rate solar UV-B irradiances at the experimental site, measured at the surface and calculated for 1 m depth. The probability that the shrimp larvae would receive lethal irradiance is low for the first half of the season of surface occurrence, even with a 44% increase in damaging UV radiation.

  7. Development of Real-Time Measurement of Effective Dose for High Dose Rate Neutron Fields

    International Nuclear Information System (INIS)

    Braby, L. A.; Reece, W. D.; Hsu, W. H.

    2003-01-01

    Studies of the effects of low doses of ionizing radiation require sources of radiation which are well characterized in terms of the dose and the quality of the radiation. One of the best measures of the quality of neutron irradiation is the dose mean lineal energy. At very low dose rates this can be determined by measuring individual energy deposition events, and calculating the dose mean of the event size. However, at the dose rates that are normally required for biology experiments, the individual events can not be separated by radiation detectors. However, the total energy deposited in a specified time interval can be measured. This total energy has a random variation which depends on the size of the individual events, so the dose mean lineal energy can be calculated from the variance of repeated measurements of the energy deposited in a fixed time. We have developed a specialized charge integration circuit for the measurement of the charge produced in a small ion chamber in typical neutron irradiation experiments. We have also developed 4.3 mm diameter ion chambers with both tissue equivalent and carbon walls for the purpose of measuring dose mean lineal energy due to all radiations and due to all radiations except neutrons, respectively. By adjusting the gas pressure in the ion chamber, it can be made to simulate tissue volumes from a few nanometers to a few millimeters in diameter. The charge is integrated for 0.1 seconds, and the resulting pulse height is recorded by a multi channel analyzer. The system has been used in a variety of photon and neutron radiation fields, and measured values of dose and dose mean lineal energy are consistent with values extrapolated from measurements made by other techniques at much lower dose rates. It is expected that this technique will prove to be much more reliable than extrapolations from measurements made at low dose rates because these low dose rate exposures generally do not accurately reproduce the attenuation and

  8. Effect of dose rate on intestinal tolerance in mice. Implications in radiotherapy

    International Nuclear Information System (INIS)

    Wambersie, A.; Stienon-Smoes, M.R.; Octave-Prignot, M.

    1978-01-01

    Effect of dose rate on intestinal tolerance after 60 Co irradiation was studied in BALB/c mice. Intestinal tolerance was assessed from LD50, after selective abdominal irradiation and after total body irradiation. Three dose rates were compared, corresponding to irradiation times of about 15-20 minutes ('acute irradiation' taken as reference), 5-6 hours and 10-15 hours. Irradiations were performed simultaneously, with three telecobaltherapy units, the dose rates being adjusted with lead shields and by increasing the distances. Comparison of the experimental data already published indicates that, for some biological systems and effects, additional dose necessary to reach a given effect when passing from 'acute' to 'continuous low dose rate' irradiation is comparable to that expected when considering only repair of sublethal lesions. For other biological systems and effects, it is necessary to consider, besides repair of sublethal lesions, other mechanisms such as cell distribution and, for tumours, the oxygen effect. A differential effect then appears to be possible. However, as far as the clinical applications are concerned, a general agreement is not yet reached on the exact shape of the iso-effect curves as a function of irradiation time for the effects relevant to radiation therapy [fr

  9. Dose rate effect in food irradiation

    International Nuclear Information System (INIS)

    Singh, H.

    1991-08-01

    It has been suggested that the minor losses of nutrients associated with radiation processing may be further reduced by irradiating foods at the high dose rates generally associated with electron beams from accelerators, rather than at the low dose rates typical of gamma irradiation (e.g. 60 Co). This review briefly examines available comparative data on gamma and electron irradiation of foods to evaluate these suggestions. (137 refs., 27 tabs., 11 figs.)

  10. Biological influence from low dose and low-dose rate radiation

    International Nuclear Information System (INIS)

    Magae, Junji

    2007-01-01

    Although living organisms have defense mechanisms for radioadaptive response, the influence is considered to vary qualitatively and quantitatively for low dose and high dose, as well as for low-dose rate and high-dose rate. This article describes the bioresponse to low dose and low-dose rate. Among various biomolecules, DNA is the most sensitive to radiation, and accurate replication of DNA is an essential requirement for the survival of living organisms. Also, the influence of active enzymes resulted from the effect of radiation on enzymes in the body is larger than the direct influence of radiation on the body. After this, the article describes the carcinogenic risk by low-dose radiation, and then so-called Hormesis effect to create cancer inhibition effect by stimulating active physiology. (S.K.)

  11. Dose and dose rate effects on coherent-to-incoherent transition of precipitates upon irradiation

    Institute of Scientific and Technical Information of China (English)

    LI Zhengchao

    2006-01-01

    A typical precipitation hardened alloy, Cu-Co dilute alloy was selected to study the precipitation behavior and irradiation effect on precipitates. It is found that the principal effect of ion irradiation on the coherent precipitates is loss of coherency, and TEM cross-section observations show that the fraction of the incoherent precipitates is dependent on dose but not on dose rate during heavy ion irradiation.

  12. Ageing effects of polymers at very low dose-rates

    International Nuclear Information System (INIS)

    Chenion, J.; Armand, X.; Berthet, J.; Carlin, F.; Gaussens, G.; Le Meur, M.

    1987-10-01

    The equipment irradiation dose-rate into the containment is variable from 10 -6 to 10 -4 gray per second for the most exposed materials. During qualification, safety equipments are submitted in France to dose-rates around 0.28 gray per second. This study purpose is to now if a so large irradiation dose-rate increase is reasonable. Three elastomeric materials used in electrical cables, o'rings seals and connectors, are exposed to a very large dose-rates scale between 2.1.10 -4 and 1.4 gray per second, to 49 KGy dose. This work was carried out during 3.5 years. Oxygen consumption measurement of the air in contact with polymer materials, as mechanical properties measurement show that: - at very low dose-rate, oxygen consumption is maximum at the same time (1.4 year) for the three elastomeric samples. Also, mechanical properties simultaneously change with oxygen consumption. At very low dose-rate, for the low irradiation doses, oxygen consumption is at least 10 times more important that it is showed when irradiation is carried out with usual material qualification dose-rate. At very low dose-rate, oxygen consumption decreases when absorbed irradiation dose by samples increases. The polymer samples irradiation dose is not still sufficient (49 KGy) to certainly determine, for the three chosen polymer materials, the reasonable irradiation acceleration boundary during nuclear qualification tests [fr

  13. Effect of dose and dose rate of gamma radiation on catalytic activity of catalase

    International Nuclear Information System (INIS)

    Vaclav Cuba; Tereza Pavelkova; Viliam Mucka

    2010-01-01

    Catalytic activity of gamma irradiated catalase from bovine liver was studied for hydrogen peroxide decomposition at constant temperature and pressure. The measurement was performed at temperatures 27, 32, 37, 42 and 47 deg C. Solutions containing 1 and 0.01 g dm -3 of catalase in phosphate buffer were used for the study. Repeatability of both sample preparation and kinetics measurement was experimentally verified. Rate constants of the reaction were determined for all temperatures and the activation energy was evaluated from Arrhenius plot. Gamma irradiation was performed using 60 Co radionuclide source Gammacell 220 at two different dose rates 5.5 and 70 Gy h -1 , with doses ranging from 10 to 1000 Gy. The observed reaction of irradiated and non-irradiated catalase with hydrogen peroxide is of the first order. Irradiation significantly decreases catalytic activity of catalase, but the activation energy does not depend markedly on the dose. The effect of irradiation is more significant at higher dose rate. (author)

  14. Development of Real-Time Measurement of Effective Dose for High Dose Rate Neutron Fields

    CERN Document Server

    Braby, L A; Reece, W D

    2003-01-01

    Studies of the effects of low doses of ionizing radiation require sources of radiation which are well characterized in terms of the dose and the quality of the radiation. One of the best measures of the quality of neutron irradiation is the dose mean lineal energy. At very low dose rates this can be determined by measuring individual energy deposition events, and calculating the dose mean of the event size. However, at the dose rates that are normally required for biology experiments, the individual events can not be separated by radiation detectors. However, the total energy deposited in a specified time interval can be measured. This total energy has a random variation which depends on the size of the individual events, so the dose mean lineal energy can be calculated from the variance of repeated measurements of the energy deposited in a fixed time. We have developed a specialized charge integration circuit for the measurement of the charge produced in a small ion chamber in typical neutron irradiation exp...

  15. Quantitative analysis of biological responses to low dose-rate γ-radiation, including dose, irradiation time, and dose-rate

    International Nuclear Information System (INIS)

    Magae, J.; Furukawa, C.; Kawakami, Y.; Hoshi, Y.; Ogata, H.

    2003-01-01

    Full text: Because biological responses to radiation are complex processes dependent on irradiation time as well as total dose, it is necessary to include dose, dose-rate and irradiation time simultaneously to predict the risk of low dose-rate irradiation. In this study, we analyzed quantitative relationship among dose, irradiation time and dose-rate, using chromosomal breakage and proliferation inhibition of human cells. For evaluation of chromosome breakage we assessed micronuclei induced by radiation. U2OS cells, a human osteosarcoma cell line, were exposed to gamma-ray in irradiation room bearing 50,000 Ci 60 Co. After the irradiation, they were cultured for 24 h in the presence of cytochalasin B to block cytokinesis, cytoplasm and nucleus were stained with DAPI and propidium iodide, and the number of binuclear cells bearing micronuclei was determined by fluorescent microscopy. For proliferation inhibition, cells were cultured for 48 h after the irradiation and [3H] thymidine was pulsed for 4 h before harvesting. Dose-rate in the irradiation room was measured with photoluminescence dosimeter. While irradiation time less than 24 h did not affect dose-response curves for both biological responses, they were remarkably attenuated as exposure time increased to more than 7 days. These biological responses were dependent on dose-rate rather than dose when cells were irradiated for 30 days. Moreover, percentage of micronucleus-forming cells cultured continuously for more than 60 days at the constant dose-rate, was gradually decreased in spite of the total dose accumulation. These results suggest that biological responses at low dose-rate, are remarkably affected by exposure time, that they are dependent on dose-rate rather than total dose in the case of long-term irradiation, and that cells are getting resistant to radiation after the continuous irradiation for 2 months. It is necessary to include effect of irradiation time and dose-rate sufficiently to evaluate risk

  16. Risk of solid cancer in low dose-rate radiation epidemiological studies and the dose-rate effectiveness factor.

    Science.gov (United States)

    Shore, Roy; Walsh, Linda; Azizova, Tamara; Rühm, Werner

    2017-10-01

    Estimated radiation risks used for radiation protection purposes have been based primarily on the Life Span Study (LSS) of atomic bomb survivors who received brief exposures at high dose rates, many with high doses. Information is needed regarding radiation risks from low dose-rate (LDR) exposures to low linear-energy-transfer (low-LET) radiation. We conducted a meta-analysis of LDR epidemiologic studies that provide dose-response estimates of total solid cancer risk in adulthood in comparison to corresponding LSS risks, in order to estimate a dose rate effectiveness factor (DREF). We identified 22 LDR studies with dose-response risk estimates for solid cancer after minimizing information overlap. For each study, a parallel risk estimate was derived from the LSS risk model using matching values for sex, mean ages at first exposure and attained age, targeted cancer types, and accounting for type of dosimetric assessment. For each LDR study, a ratio of the excess relative risk per Gy (ERR Gy -1 ) to the matching LSS ERR risk estimate (LDR/LSS) was calculated, and a meta-analysis of the risk ratios was conducted. The reciprocal of the resultant risk ratio provided an estimate of the DREF. The meta-analysis showed a LDR/LSS risk ratio of 0.36 (95% confidence interval [CI] 0.14, 0.57) for the 19 studies of solid cancer mortality and 0.33 (95% CI 0.13, 0.54) when three cohorts with only incidence data also were added, implying a DREF with values around 3, but statistically compatible with 2. However, the analyses were highly dominated by the Mayak worker study. When the Mayak study was excluded the LDR/LSS risk ratios increased: 1.12 (95% CI 0.40, 1.84) for mortality and 0.54 (95% CI 0.09, 0.99) for mortality + incidence, implying a lower DREF in the range of 1-2. Meta-analyses that included only cohorts in which the mean dose was LDR data provide direct evidence regarding risk from exposures at low dose rates as an important complement to the LSS risk estimates used

  17. Calculation of the effective environmental dose rate for ESR and luminescence dating

    International Nuclear Information System (INIS)

    Brennan, B.J.

    2001-01-01

    The determination of the age of a sample using luminescence and ESR dating techniques requires knowledge of the sample's average effective environmental dose rate due to natural radiation sources (alpha, beta, gamma, and cosmic), and age estimates can never be more accurate than the estimate of this dose rate. The estimation process is often complicated by spatial and temporal inhomogeneities in the distribution of natural radiation sources. This paper discusses applications of radiation physics in modelling the effects of these inhomogeneities to ensure accurate estimation of the average dose rate for the sample. For natural alpha, beta, and gamma sources, 'dose point kernels' are employed in calculations using an assumed model for the spatial and temporal dependence of source concentrations. These three types of radiation have rather different penetration properties, with their typical effective ranges being multiples of 10 micrometre, 1 mm, and 100 mm respectively. For each type of radiation, applications are discussed where spatial inhomogeneity in the distribution of sources around and in a sample has a serious effect on the average dose rate to the sample. In some cases, (e.g. gamma dose estimation in 'lumpy' environments) lack of detailed knowledge precludes accurate modelling of the site for a particular sample, but useful statistical information can still be obtained. Temporal variation of radioactive source concentrations is usually coupled with spatial effects and can arise from processes such as parent-daughter disequilibrium, uptake or leaching of sources, or variation in burial depth or water saturation. Again, calculations based non a known or assumed history can be employed to obtain a time-averaged dose rate for a sample. The accuracy with which these calculations can reflect the true environmental dose rate is limited principally by the reliability of the model assumed, which in turn depends on the state of knowledge of the site and its history

  18. In vitro study of dose rate effect on Leksell Gamma Knife Perfexion

    International Nuclear Information System (INIS)

    Pastykova, V.; Novotny, J. jr.; Vachelova, J.; Davidkova, M.; Liscak, R.

    2018-01-01

    The main purpose of the study is to evaluate the radiobiological effect of the dose rate changes in Leksell Gamma Knife (LGK) clinical conditions. In principle there are two reasons why dose rate on LGK is reduced during patient irradiation: 1) Co-60 sources decay with a half-life of 5.26 years and 2) using multiple iso-centers and conformal treatment plans (e.g. with blocked beams). This pilot study is an experimental work performed in vitro with medulloblastoma DAOY cells. Are there effects caused by low dose rate which could negatively influence the clinical outcome of the radiosurgery? (authors)

  19. Low doses effects and gamma radiations low dose rates; Les effets des faibles doses et des faibles debits de doses de rayons gamma

    Energy Technology Data Exchange (ETDEWEB)

    Averbeck, D [Institut Curie, CNRS UMR 2027, 75 - Paris (France)

    1999-07-01

    This expose wishes for bringing some definitions and base facts relative to the problematics of low doses effects and low dose rates effects. It shows some already used methods and some actual experimental approaches by focusing on the effects of ionizing radiations with a low linear energy transfer. (N.C.)

  20. Ameliorative effects of low dose/low dose-rate irradiation on reactive oxygen species-related diseases model mice

    International Nuclear Information System (INIS)

    Nomura, Takaharu

    2008-01-01

    Living organisms have developed complex biological system which protects themselves against environmental radiation, and irradiation with proper dose, dose-rate and irradiation time can stimulate their biological responses against oxidative stress evoked by the irradiation. Because reactive oxygen species are involved in various human diseases, non-toxic low dose/low dose-rate radiation can be utilized for the amelioration of such diseases. In this study, we used mouse experimental models for fatty liver, nephritis, diabetes, and ageing to elucidate the ameliorative effect of low dose/low dose-rate radiation in relation to endogenous antioxidant activity. Single irradiation at 0.5 Gy ameliorates carbon tetrachloride-induced fatty liver. The irradiation increases hepatic anti-oxidative system involving glutathione and glutathione peroxidase, suggesting that endogenous radical scavenger is essential for the ameliorative effect of low dose radiation on carbon tetrachloride-induced fatty liver. Single irradiation at 0.5 Gy ameliorates ferric nitrilotriacetate-induced nephritis. The irradiation increases catalase and decreases superoxide dismutase in kidney. The result suggests that low dose radiation reduced generation of hydroxide radical generation by reducing cellular hydroperoxide level. Single irradiation at 0.5 Gy at 12 week of age ameliorates incidence of type I diabetes in non-obese diabetic (NOD) mice through the suppression of inflammatory activity of splenocytes, and resultant apoptosis of β-cells in pancreas. The irradiation activities of superoxide dismutase and catalase, which coordinately diminish intracellular reactive oxygen species. Continuous irradiation at 0.70 mGy/hr from 10 week of age elongates life span, and suppresses alopecia in type II diabetesmice. The irradiation improved glucose clearance without affecting insulin-resistance, and increased pancreatic catalase activity. The results suggest that continuous low dose-rate irradiation protect

  1. γ-ray dose rate effect in DNA double-strand break repair deficient murine cells

    International Nuclear Information System (INIS)

    Li Liya; Li Peiwen

    2002-01-01

    Objective: To analyze the dose rate effect and potentially lethal damage repair in DNA double-strand break repair deficient murine cells (SCID) irradiated by γ-ray. Methods: The wild type (CB.17+/+) and SCID cells were exposed to γ-ray at high and low dose rates. The high dose rate exposure was fractionated into two equal doses at 24 h intervals. The survival rates of irradiated cells were calculated by clone-forming analysis. Results: When γ-ray was given to wild type (CB.17+/+) cells in two fractions at 24 h intervals, the survival rate was significantly higher than that when the same total dose was given singly. In contrast, there was no difference in the survival rates between the single and fractionated exposure in SCID cells. SCID cells were more sensitive than CB.17+/+ cells to both low and high dose rates γ-ray exposure for cell killing. The survival rate by low dose rate exposure was significantly higher than that by high dose rate exposure, not only in CB.17+/+ cells but also in SCID cells. Conclusions: SCID cells are deficient in repairing γ-ray induced double-strand breaks. There is dose rate effect in both SCID and CB.17+/+ cells

  2. Effects of low dose rate irradiation on induction of myeloid leukemia in mice

    International Nuclear Information System (INIS)

    Furuse, Takeshi

    1999-01-01

    We investigated the induction of myeloid leukemia and other kinds of neoplasias in C3H male mice irradiated at several dose rate levels. We compared the incidence of neoplasias among these groups, obtained dose and dose rate effectiveness factors (DDREF) for myeloid leukemia. C3H/He male mice were exposed to whole body gamma-ray irradiation at 8 weeks of age. All mice were maintained for their entire life span and teh pathologically examined after their death. Radiation at a high dose-rate of 882 mGy/min (group H), a medium dose-rate of 95.6 mGy/min (group M), and low dose-rates of 0.298 mGy/min (group L-A), 0.067 mGy/min (group L-B) or 0.016 mGy/min (group L-C) were delivered from 137 Cs sources. The mice in group L were irradiated continuously for 22 hours daily up to total doses of 1, 2, 3, 4, 10 Gy over a period of 3 days to 200 days. As for the induction of neoplasias, myeloid leukemia developed significantly more frequently in irradiated groups than in unirradiated groups. The time distribution of mice dying from myeloid leukemia did not show a difference between groups H and L. The incidence of myeloid leukemia showed a greater increase in the high dose-rate groups than in the low and medium dose-rate groups in the dose range over 2 Gy, it also showed significant increases in the groups irradiated with 1 Gy of various dose rate, but the difference between these groups was not clear. These dose effect curves had their highest values on each curve at about 3 Gy. We obtained DDREF values of 2-3 by linear fittings for their dose response curves of dose ranges in which leukemia incidences were increasing. (author)

  3. CONTRASTING DOSE-RATE EFFECTS OF GAMMA-IRRADIATION ON RAT SALIVARY-GLAND FUNCTION

    NARCIS (Netherlands)

    VISSINK, A; DOWN, JD; KONINGS, AWT

    The aim of this study was to investigate the effects of Co-60 irradiation delivered at high (HDR) and low (LDR) dose-rates on rat salivary gland function. Total-body irradiation (TBI; total doses 7.5, 10 and 12.5 Gy) was applied from a Co-60 source at dose-rates of 1 cGy/min (LDR) and 40 cGy/min

  4. In vitro and in vivo effects of low dose HTO contamination modulated by dose rate

    International Nuclear Information System (INIS)

    Petcu, I.; Savu, D.; Moisoi, N.; Koeteles, G.J.

    1997-01-01

    The experiment performed in vitro intended to examine whether an adaptive response could be elicited on lymphocytes by low-level contamination of whole blood with tritiated water and if the modification of the dose rate has any influence on it. Lymphocytes pre-exposed to 3 HOH (0.2 - 6.6 MBq/ml) and subsequently irradiated with I Gy γ-rays showed micronuclei frequency significantly lower (40% - 45%) than the expected member (sum of the yields induced by 3 HOH and γ-rays separately). The degree of the radioresistance induced by HTO pre-treatments became higher with decreasing dose-rate for a rather similar total adapting dose. In vivo, the aim of the study was to investigate if different dose rates are inducing modulation of the lipid peroxidation level and of the thymidine uptake in different tissues of animals contaminated by HTO ingestion. The total doses varied between 5 and 20 cGy and were delivered as chronic (100 days) or acute contamination (5 days). It was observed that only doses about 20 cGy caused a dose-rate dependent increase of the lipid peroxidation level in the tissues of small intestine, kidney and spleen. Both chronic and acute contamination did produce reduced incorporation of thymidine in the cells of bone marrow. The most effective decrease of thymidine uptake was induced by the acute contamination in the lower dose domain (approx. 5 cGy). Our hypothesis is that in this dose domain the modification of thymidine uptake could be due to changes at the level of membrane transport. (author)

  5. Dose-rate effects in plateau-phase cultures of S3 HeLa and V79 cells

    International Nuclear Information System (INIS)

    Mitchell, J.B.; Bedford, J.S.; Bailey, S.M.

    1979-01-01

    Dose-rate effects on cell survival were studied for log-, fed plateau-, and unfed plateau-phase cultures of V79 and S3 HeLa cells. For log-phase cultures, repair, cell-cycle redistribution, and cell division during exposure can contribute to the overall dose-rate effect, but their relative contributions are difficult to determine. With plateau-phase cultures, the cell-cycle times are greatly lengthened, for those cells that are in cycle. Hence, the contribution to the overall dose-rate effect of cell-cycle redistribution and cell division during the exposure could be minimized using plateau-phase cultures. With respect to the acute dose-survival curves, there was a clear loss in effectiveness when the dose rate was lowered to 154 rad/hr for both fed and unfed plateau-phase HeLa and V79 cells. There was no further reduction in effectiveness per unit dose, however, when the dose rate was reduced to 55 rad/hr. Since there was virtually no cell division or cell-cycle redistribution, it may be that a limit to the repair-dependent dose-rate effect at 37 0 C has been reached at a dose rate of 154 rad/hr

  6. Effects of high dose rate gamma radiation on survival and reproduction of Biomphalaria glabrata

    Energy Technology Data Exchange (ETDEWEB)

    Cantinha, Rebeca S.; Nakano, Eliana [Instituto Butantan, Sao Paulo, SP (Brazil). Lab. de Parasitologia], e-mail: rebecanuclear@gmail.com, e-mail: eliananakano@butantan.gov.br; Borrely, Sueli I. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes], e-mail: sborrely@ipen.br; Amaral, Ademir; Melo, Ana M.M.A. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear. Grupo de Estudos em Radioprotecao e Radioecologia (GERAR)], e-mail: amaral@ufpe.br; Silva, Luanna R.S. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Biofisica e Radiobiologia. Lab. de Radiobiologia], e-mail: amdemelo@hotmail.com, e-mail: luannaribeiro_lua@hotmail.com

    2009-07-01

    Ionizing radiations are known as mutagenic agents, causing lethality and infertility. This characteristic has motivated its application on animal biological control. In this context, the freshwater snail Biomphalaria glabrata can be considered an excellent experimental model to study effects of ionizing radiations on lethality and reproduction. This work was designed to evaluate effects of {sup 60}Co gamma radiation at high dose rate (10.04 kGy/h) on B. glabrata. For this purpose, adult snails were selected and exposed to doses ranging from 20 to 100 Gy, with 10 Gy intervals; one group was kept as control. There was not effect of dose rate in the lethality of gamma radiation; the value of 64,3 Gy of LD{sub 50} obtained in our study was similar to that obtained by other authors with low dose rates. Nevertheless, our data suggest that there was a dose rate effect in the reproduction. On all dose levels, radiation improved the production of embryos for all exposed individuals. However, viability indexes were below 6% and, even 65 days after irradiation, fertility was not recovered. These results are not in agreement with other studies using low dose rates. Lethality was obtained in all groups irradiated, and the highest doses presented percentiles of dead animals above 50%. The results demonstrated that doses of 20 and 30 Gy were ideal for population control of B. glabrata. Further studies are needed; nevertheless, this research evidenced great potential of high dose rate gamma radiation on B. glabrata reproductive control. (author)

  7. Effects of high dose rate gamma radiation on survival and reproduction of Biomphalaria glabrata

    International Nuclear Information System (INIS)

    Cantinha, Rebeca S.; Nakano, Eliana; Silva, Luanna R.S.

    2009-01-01

    Ionizing radiations are known as mutagenic agents, causing lethality and infertility. This characteristic has motivated its application on animal biological control. In this context, the freshwater snail Biomphalaria glabrata can be considered an excellent experimental model to study effects of ionizing radiations on lethality and reproduction. This work was designed to evaluate effects of 60 Co gamma radiation at high dose rate (10.04 kGy/h) on B. glabrata. For this purpose, adult snails were selected and exposed to doses ranging from 20 to 100 Gy, with 10 Gy intervals; one group was kept as control. There was not effect of dose rate in the lethality of gamma radiation; the value of 64,3 Gy of LD 50 obtained in our study was similar to that obtained by other authors with low dose rates. Nevertheless, our data suggest that there was a dose rate effect in the reproduction. On all dose levels, radiation improved the production of embryos for all exposed individuals. However, viability indexes were below 6% and, even 65 days after irradiation, fertility was not recovered. These results are not in agreement with other studies using low dose rates. Lethality was obtained in all groups irradiated, and the highest doses presented percentiles of dead animals above 50%. The results demonstrated that doses of 20 and 30 Gy were ideal for population control of B. glabrata. Further studies are needed; nevertheless, this research evidenced great potential of high dose rate gamma radiation on B. glabrata reproductive control. (author)

  8. Late effects of chronic low dose-rate γ-rays irradiation on mice

    International Nuclear Information System (INIS)

    Tanaka, Satoshi; Sasagawa, Sumiko; Ichinohe, Kazuaki; Matsumoto, Tsuneya; Otsu, Hiroshi; Sato, Fumiaki

    2002-01-01

    To evaluate late biological effects of chronic low dose-rate radiation, we are conducting two experiments. Experiment 1 - Late effects of chronic low dose-rate g-rays irradiation on SPF mice, using life-span and pathological changes as parameters. Continuous irradiation with g-rays for 400 days was performed using 137 Cs γ-rays at dose-rates of 20 mGy/day, 1 mGy/day and 0.05 mGy/day with accumulated doses equivalent to 8,000 mGy, 400 mGy and 20 mGy, respectively. All mice were kept until they died a natural death. As of 2002 March 31, 3,999 of the total 4,000 mice have died. Preliminary analyses of data show that 20 mGy/day suggested a shortened life span in both sexes. Partial results show that the most common lethal neoplasms in the pooled data of non-irradiated control and irradiated male mice, in order of frequency, were neoplasms of the lymphohematopoietic system, liver, and lung. In female mice, neoplasms of the lymphohematopoietic system, soft tissue, and endocrine system were common. Experiment 2 - Effects on the progeny of chronic low dose-rate g-ray irradiated SPF mice: pilot study, was started in 1999 and is currently in progress. (author)

  9. Effects of trapped proton flux anisotropy on dose rates in low Earth orbit

    International Nuclear Information System (INIS)

    Badhwar, G.D.; Kushin, V.V.; Akatov, Yu A.; Myltseva, V.A.

    1999-01-01

    Trapped protons in the South Atlantic Anomaly (SAA) have a rather narrow pitch angle distribution and exhibit east-west anisotropy. In low Earth orbits, the E-W effect results in different amounts of radiation dose received by different sections of the spacecraft. This effect is best studied on missions in which the spacecraft flies in a fixed orientation. The magnitude of the effect depends on the particle energy and altitude through the SAA. In this paper, we describe a clear example of this effect from measurements of radiation dose rates and linear energy transfer spectra made on Space Shuttle flight STS-94 (28.5 deg. inclination x 296 km altitude). The ratio of dose rates from the two directions at this location in the mid-deck was 2.7. As expected from model calculations, the spectra from the two directions are different, that is the ratio is energy dependent. The data can be used to distinguish the anisotropy models. The flight carried an active tissue equivalent proportional counter (TEPC), and passive thermoluminscent detectors (TLDs), and two types of nuclear emulsions. Using nuclear emulsions, charged particles and secondary neutron energy spectra were measured. The combined galactic cosmic radiation+trapped charged particle lineal energy spectra measured by the TEPC and the linear energy transfer spectrum measured by nuclear emulsions are in good agreement. The charged particle absorbed dose rates varied from 112 to 175 μGy/day, and dose equivalent rates from 264.3 to 413 μSv/day. Neutrons in the 1-10 MeV contributed a dose rate of 3.7 μGy/day and dose equivalent rate of 30.8 μSv/day, respectively

  10. Effects of trapped proton flux anisotropy on dose rates in low Earth orbit.

    Science.gov (United States)

    Badhwar, G D; Kushin, V V; Akatov YuA; Myltseva, V A

    1999-06-01

    Trapped protons in the South Atlantic Anomaly (SAA) have a rather narrow pitch angle distribution and exhibit east-west anisotropy. In low Earth orbits, the E-W effect results in different amounts of radiation dose received by different sections of the spacecraft. This effect is best studied on missions in which the spacecraft flies in a fixed orientation. The magnitude of the effect depends on the particle energy and altitude through the SAA. In this paper, we describe a clear example of this effect from measurements of radiation dose rates and linear energy transfer spectra made on Space Shuttle flight STS-94 (28.5 degree inclination x 296 km altitude). The ratio of dose rates from the two directions at this location in the mid-deck was 2.7. As expected from model calculations, the spectra from the two directions are different, that is the ratio is energy dependent. The data can be used to distinguish the anisotropy models. The flight carried an active tissue equivalent proportional counter (TEPC), and passive thermoluminscent detectors (TLDs), and two types of nuclear emulsions. Using nuclear emulsions, charged particles and secondary neutron energy spectra were measured. The combined galactic cosmic radiation+trapped charged particle lineal energy spectra measured by the TEPC and the linear energy transfer spectrum measured by nuclear emulsions are in good agreement. The charged particle absorbed dose rates varied from 112 to 175 microGy/day, and dose equivalent rates from 264.3 to 413 microSv/day. Neutrons in the 1-10 MeV contributed a dose rate of 3.7 microGy/day and dose equivalent rate of 30.8 microSv/day, respectively.

  11. Cytogenetic biodosimetry and dose-rate effect after radioiodine therapy for thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Khvostunov, Igor K. [Russian Ministry of Health Care, A.F. Tsyb Medical Radiological Research Center, Branch of the National Medical Research Radiological Centre, Obninsk, Kaluga Region (Russian Federation); Nagasaki University, Department of Radiation Molecular Epidemiology, Atomic Bomb Disease Institute, Nagasaki (Japan); Saenko, Vladimir A.; Yamashita, Shunichi [Nagasaki University, Department of Radiation Molecular Epidemiology, Atomic Bomb Disease Institute, Nagasaki (Japan); Krylov, Valeri; Rodichev, Andrei [Russian Ministry of Health Care, A.F. Tsyb Medical Radiological Research Center, Branch of the National Medical Research Radiological Centre, Obninsk, Kaluga Region (Russian Federation)

    2017-08-15

    This study set out to investigate chromosomal damage in peripheral blood lymphocytes of thyroid cancer patients receiving {sup 131}I for thyroid remnant ablation or treatment of metastatic disease. The observed chromosomal damage was further converted to the estimates of whole-body dose to project the adverse side effects. Chromosomal aberration analysis was performed in 24 patients treated for the first time or after multiple courses. Blood samples were collected before treatment and 3 or 4 days after administration of 2-4 GBq of {sup 131}I. Both conventional cytogenetic and chromosome 2, 4 and 12 painting assays were used. To account for dose-rate effect, a dose-protraction factor was applied to calculate the whole-body dose. The mean dose was 0.62 Gy (95% CI: 0.44-0.77 Gy) in the subgroup of patients treated one time and 0.67 Gy (95% CI: 0.03-1.00 Gy) in re-treated patients. These dose estimates are about 1.7-fold higher than those disregarding the effect of exposure duration. In re-treated patients, the neglected dose-rate effect can result in underestimation of the cumulative whole-body dose by the factor ranging from 2.6 to 6.8. Elevated frequency of chromosomal aberrations observed in re-treated patients before radioiodine therapy allows estimation of a cumulative dose received from all previous treatments. (orig.)

  12. Pulse and integral optically stimulated luminescence (OSL). Similarities and dissimilarities to thermoluminescence (TL) dose dependence and dose-rate effects

    International Nuclear Information System (INIS)

    Chen, R.; Leung, P.L.

    2000-01-01

    Optically stimulated luminescence (OSL) and thermoluminescence (Tl) are two possible methods to monitor the absorbed radiation in solid samples, and therefore are utilized for dosimetry. For this application, two properties are desirable, namely, linear dose dependence of the measured quantity and dose-rate independence. For Tl, different kinds of super linear dose dependence have been reported in the literature in different materials, and in some cases, dose-rate dependence has also been found. These have been explained as being the result of competition. In OSL, some recent works reported on super linear dose dependence in annealed samples. In the present work, we explain the possible occurrence of these phenomena in OSL by solving numerically the relevant rate equations governing the process during irradiation, relaxation and read-out (heating or light stimulation). The results show that for short pulse OSL, quadratic dose dependence can be expected when only one trapping state and one kind of recombination center are involved and when the excitation starts with empty traps and centers. With the short pulse OSL, the calculation also reveals a possible dose-rate effect. Under the same circumstances, the area under the OSL curve depends linearly on the dose. The dependence of the whole area under the OSL curve on the dose is shown to be super linear when a disconnected trapping state or radiationless center take part in the process. Also, dose-rate effect can be expected in these cases, although no experimental effect of this sort has been reported so far. In pulse OSL, the analogy is made between the measured intensity and the initial rise range of non-first order Tl, whereas for the total area OSL, there is a nearly full analogy with the dose behavior of the Tl maximum. (Author)

  13. Dose rate effect from the relationship between ICRU rectal dose and local control rate in intracavitary radiotherapy for carcinoma of the uterine cervix. Six fraction HDR and three-fraction LDR in three weeks

    International Nuclear Information System (INIS)

    Jingu, Kenichi; Akita, Yuzou; Ohmagari, Jyunichi

    2001-01-01

    The dose rate effect, low dose rate radiotherapy (LDR)/high dose rate radiotherapy (HDR), was calculated using the isoeffect ICRU rectal dose by intracavitary radiotherapy (ICRT) for uterine cervix cancer. The subjects analyzed consisted of 78 LDR and 74 HDR patients whose ICRU rectal dose could be calculated and whose local control as stage II/III cases could be evaluated. The point A dose in ICRT was 45-55 Gy/3 fractions/3 weeks for LDR and 30 Gy/6 fractions/3 weeks for HDR. The dose effect relationships associated with local control at each whole pelvis external radiation dose were calculated using the double integration method and Probit analysis, and the 50% and 90% local control ICRU rectal doses were calculated from this relationship. Finally, the dose rate effect LDR/HDR was determined from 50% and 90% local control doses. The dose rate effect calculated from the 50% local control dose was 1.24 and that from the 90% local control dose was 1.14. (author)

  14. Dose rate effects in the radiation damage of the plastic scintillators of the CMS Hadron Endcap Calorimeter

    CERN Document Server

    INSPIRE-00314584

    2016-10-07

    We present measurements of the reduction of light output by plastic scintillators irradiated in the CMS detector during the 8 TeV run of the Large Hadron Collider and show that they indicate a strong dose rate effect. The damage for a given dose is larger for lower dose rate exposures. The results agree with previous measurements of dose rate effects, but are stronger due to the very low dose rates probed. We show that the scaling with dose rate is consistent with that expected from diffusion effects.

  15. Radiobiological responses for two cell lines following continuous low dose-rate (CLDR) and pulsed dose rate (PDR) brachytherapy

    International Nuclear Information System (INIS)

    Hanisch, Per Henrik; Furre, Torbjoern; Olsen, Dag Rune; Pettersen, Erik O.

    2007-01-01

    The iso-effective irradiation of continuous low-dose-rate (CLDR) irradiation was compared with that of various schedules of pulsed dose rate (PDR) irradiation for cells of two established human lines, T-47D and NHIK 3025. Complete single-dose response curves were obtained for determination of parameters α and β by fitting of the linear quadratic formula. Sublethal damage repair constants μ and T 1/2 were determined by split-dose recovery experiments. On basis of the acquired parameters of each cell type the relative effectiveness of the two regimens of irradiation (CLDR and PDR) was calculated by use of Fowler's radiobiological model for iso-effect irradiation for repeated fractions of dose delivered at medium dose rates. For both cell types the predicted and observed relative effectiveness was compared at low and high iso-effect levels. The results indicate that the effect of PDR irradiation predicted by Fowler's model is equal to that of CLDR irradiation for both small and large doses with T-47D cells. With NHIK 3025 cells PDR irradiation induces a larger effect than predicted by the model for small doses, while it induces the predicted effect for high doses. The underlying cause of this difference is unclear, but cell-cycle parameters, like G2-accumulation is tested and found to be the same for the two cell lines

  16. Dose and dose rate effects of whole-body gamma-irradiation: I. Lymphocytes and lymphoid organs

    Science.gov (United States)

    Pecaut, M. J.; Nelson, G. A.; Gridley, D. S.

    2001-01-01

    The major goal of part I of this study was to compare varying doses and dose rates of whole-body gamma-radiation on lymphoid cells and organs. C57BL/6 mice (n = 75) were exposed to 0, 0.5, 1.5, and 3.0 Gy gamma-rays (60Co) at 1 cGy/min (low-dose rate, LDR) and 80 cGy/min (high-dose rate, HDR) and euthanized 4 days later. A significant dose-dependent loss of spleen mass was observed with both LDR and HDR irradiation; for the thymus this was true only with HDR. Decreasing leukocyte and lymphocyte numbers occurred with increasing dose in blood and spleen at both dose rates. The numbers (not percentages) of CD3+ T lymphocytes decreased in the blood in a dose-dependent manner at both HDR and LDR. Splenic T cell counts decreased with dose only in HDR groups; percentages increased with dose at both dose rates. Dose-dependent decreases occurred in CD4+ T helper and CD8+ T cytotoxic cell counts at HDR and LDR. In the blood the percentages of CD4+ cells increased with increasing dose at both dose rates, whereas in the spleen the counts decreased only in the HDR groups. The percentages of the CD8+ population remained stable in both blood and spleen. CD19+ B cell counts and percentages in both compartments declined markedly with increasing HDR and LDR radiation. NK1.1+ natural killer cell numbers and proportions remained relatively stable. Overall, these data indicate that the observed changes were highly dependent on the dose, but not dose rate, and that cells in the spleen are more affected by dose rate than those in blood. The results also suggest that the response of lymphocytes in different body compartments may be variable.

  17. Dose-rate dependence of thermoluminescence response

    International Nuclear Information System (INIS)

    McKeever, S.W.S.; Chen, R.; Groom, P.J.; Durrani, S.A.

    1980-01-01

    The previously observed dose-rate effect of thermoluminescence in quartz at high dose-rates is given at theoretical formulation. Computer calculations simulating the experimental conditions yield similar results to the experimental ones. (orig.)

  18. A graphical review of radiogenic animal cancer data using the 'dose and dose-rate map'

    International Nuclear Information System (INIS)

    Yoshida, Kazuo; Hoshi, Yuko; Sakai, Kazuo

    2008-01-01

    We have been investigating the effects of low dose or low dose rate irradiation on mice, using our low dose-rate irradiation facilities. In these studies, we found that the effects were highly dependent on both total dose and dose rate. To show this visually, we proposed the 'dose/dose rate map', and plotted the results of our laboratory and our co-workers. The map demonstrated that dose/dose rate plane could be divided into three areas; 1) An area where harmful effects are observed, 2) An area where no harmful effects are observed, and 3) Another area, between previous two areas, where certain protective functions are enhanced. As this map would be a powerful tool to find some trend among the vast numbers of data relating the biological effects of ionizing radiation, we have developed a computer program which plots the collected data on the dose/dose rate map sorting by experimental conditions. In this study, we graphically reviewed and analyzed the data relating to the lifespan studies of animals with a view to determining the relationships between doses and dose rates of ionizing radiation and cancer incidence. The data contains about 800 sets of experiments, which concerns 187,000 animals exposed to gamma ray or X-ray and their 112,000 controls, and total of about 30,000 cancers in exposed animals and 14,000 cancers in controls. About 800 points of data were plotted on the dose/dose rate map. The plot showed that 1) The divided three areas in the dose/dose rate map were generally confirmed by these 800 points of data, and 2) In some particular conditions, e.g. sarcoma by X-rays, the biologically effective area is extended to relatively high dose/dose rate area. (author)

  19. Effect of radiation doses rate on SOS response induction in irradiated Escherichia coli Cells

    International Nuclear Information System (INIS)

    Cuetara Lugo, Elizabeth B.; Fuentes Lorenzo, Jorge L.; Almeida Varela, Eliseo; Prieto Miranda, Enrique F.; Sanchez Lamar, Angel; Llagostera Casal, Montserrat

    2005-01-01

    The present work is aimed to study the effect of radiation dose rate on the induction of SOS response in Escherichia coli cells. We measured the induction of sul A reporter gene in PQ-37 (SOS Chromotest) cells. Lead devises were built with different diameter and these were used for diminishing the dose rate of PX- -30M irradiator. Our results show that radiation doses rate significantly modifies the induction of SOS response. Induction factor increases proportionally to doses rate in Escherichia coli cells defective to nucleotide excision repair (uvrA), but not in wild type cells. We conclude that the dose rate affects the level of induction of SOS response

  20. Dependence of total dose response of bipolar linear microcircuits on applied dose rate

    International Nuclear Information System (INIS)

    McClure, S.; Will, W.; Perry, G.; Pease, R.L.

    1994-01-01

    The effect of dose rate on the total dose radiation hardness of three commercial bipolar linear microcircuits is investigated. Total dose tests of linear bipolar microcircuits show larger degradation at 0.167 rad/s than at 90 rad/s even after the high dose rate test is followed by a room temperature plus a 100 C anneal. No systematic correlation could be found for degradation at low dose rate versus high dose rate and anneal. Comparison of the low dose rate with the high dose rate anneal data indicates that MIL-STD-883, method 1019.4 is not a worst-case test method when applied to bipolar microcircuits for low dose rate space applications

  1. Effect of dose rate on radical and property of gelatin

    International Nuclear Information System (INIS)

    Geng Shengrong; Chen Yuxia; Zu Xiaoyan; Li Xin; Jiang Hongyou

    2015-01-01

    The gelatin was irradiated respectively in the range of 0-32 kGy by dose rates of 60 Gy/min 60 Co, 480 Gy/min 60 Co and 12000 Gy/min accelerator, and the relationships of the radical character and gelatin property with dose rate were investigated through electron spin resonance (ESR) and gelatin permeation chromatogram. The results show that there is weak ESR signal from unirradiated gelatin, but irradiated one presents typical double peak. The order of ESR signal intensity of gelatin with the same absorbed dosage from high to low is 60 Gy/min 60 Co, 480 Gy/min 60 Co and 12000 Gy/min accelerator. The linear relationship between ESR signal intensity from 60 Co irradiated gelatin and absorbed dose is y= 26.983x 2 +1 641.8x-205.69. The intrinsic viscosity, average relative molecular weight, gelatin strength and breaking elongation of irradiated gelatin from high to low are 480 Gy/min 60 Co, 12000 Gy/min accelerator and 60 Gy/min 60 Co. The protection mechanism of high dose rate radiation on gelatin degradation is that the production of effective long life free radicals reduces. (authors)

  2. Inverse dose-rate-effects on the expressions of extra-cellular matrix-related genes in low-dose-rate γ-ray irradiated murine cells

    International Nuclear Information System (INIS)

    Sugihara, Takashi; Tanaka, Kimio; Oghiso, Yoichi; Murano, Hayato

    2008-01-01

    Based on the results of previous microarray analyses of murine NIH3T3/PG13Luc cells irradiated with continuous low-dose-rate (LDR) γ-ray or end-high-dose-rate-irradiations (end-HDR) at the end of the LDR-irradiation period, the inverse dose-rate-effects on gene expression levels were observed. To compare differences of the effects between LDR-irradiation and HDR-irradiation, HDR-irradiations at 2 different times, one (ini-HDR) at the same time at the start of LDR-irradiation and the other (end-HDR), were performed. The up-regulated genes were classified into two types, in which one was up-regulated in LDR-, ini-HDR-, and end-HDR irradiation such as Cdkn1a and Ccng1, which were reported as p53-dependent genes, and the other was up-regulated in LDR- and ini-HDR irradiations such as pro-collagen TypeIa2/Colla2, TenascinC/Tnc, and Fibulin5/Fbln5, which were reported as extra-cellular matrix-related (ECM) genes. The time dependent gene expression patterns in LDR-irradiation were also classified into two types, in which one was an early response such as in Cdkn1a and Ccng1 and the other was a delayed response such as the ECM genes which have no linearity to total dose. The protein expression pattern of Cdkn1a increased dose dependently in LDR- and end-HDR-irradiations, but those of p53Ser15/18 and MDM2 in LDR-irradiations were different from end-HDR-irradiations. Furthermore, the gene expression levels of the ECM genes in embryonic fibroblasts from p53-deficient mice were not increased by LDR- and end-HDR-irradiation, so the delayed expressions of the ECM genes seem to be regulated by p53. Consequently, the inverse dose-rate-effects on the expression levels of the ECM genes in LDR- and end-HDR-irradiations may be explained from different time responses by p53 status. (author)

  3. Carcinogenesis in mice after low doses and dose rates

    International Nuclear Information System (INIS)

    Ullrich, R.L.

    1979-01-01

    The results from the experimental systems reported here indicate that the dose-response curves for tumor induction in various tissues cannot be described by a single model. Furthermore, although the understanding of the mechanisms involved in different systems is incomplete, it is clear that very different mechanisms for induction are involved. For some tumors the mechanism of carcinogenesis may be mainly a result of direct effects on the target cell, perhaps involving one or more mutations. While induction may occur, in many instances, through such direct effects, the eventual expression of the tumor can be influenced by a variety of host factors including endocrine status, competence of the immune system, and kinetics of target and interacting cell populations. In other tumors, indirect effects may play a major role in the initiation or expression of tumors. Some of the hormone-modulated tumors would fall into this class. Despite the complexities of the experimental systems and the lack of understanding of the types of mechanisms involved, in nearly every example the tumorigenic effectiveness per rad of low-LET radiation tends to decrease with decreasing dose rate. For some tumor types the differences may be small or may appear only with very low dose rates, while for others the dose-rate effects may be large

  4. Dose rate constants for new dose quantities

    International Nuclear Information System (INIS)

    Tschurlovits, M.; Daverda, G.; Leitner, A.

    1992-01-01

    Conceptual changes and new quantities made is necessary to reassess dose rate quantities. Calculations of the dose rate constant were done for air kerma, ambient dose equivalent and directional dose equivalent. The number of radionuclides is more than 200. The threshold energy is selected as 20 keV for the dose equivalent constants. The dose rate constant for the photon equivalent dose as used mainly in German speaking countries as a temporary quantity is also included. (Author)

  5. Estimation of outdoor and indoor effective dose and excess lifetime cancer risk from Gamma dose rates in Gonabad, Iran

    Energy Technology Data Exchange (ETDEWEB)

    Jafaria, R.; Zarghania, H.; Mohammadia, A., E-mail: rvzreza@gmail.com [Paramedical faculty, Birjand University of Medical Sciences, Birjand (Iran, Islamic Republic of)

    2017-07-01

    Background gamma irradiation in the indoor and outdoor environments is a major concern in the world. The study area was Gonabad city. Three stations and buildings for background radiation measurement of outdoor and indoor were randomly selected and the Geiger-Muller detector (X5C plus) was used. All dose rates on display of survey meter were recorded and mean of all data in each station and buildings was computed and taken as measured dose rate of that particular station. The average dose rates of background radiation were 84.2 nSv/h for outdoor and 108.6 nSv/h for indoor, maximum and minimum dose rates were 88.9 nSv/h and 77.7 nSv/h for outdoor measurements and 125.4 nSv/h and 94.1 nSv/h for indoor measurements, respectively. Results show that the annual effective dose is 0.64 mSv, which compare to global level of the annual effective dose 0.48 mSv is high. Estimated excess lifetime cancer risk was 2.24×10{sup -3} , indicated that it is large compared to the world average value of 0.25×10{sup -3}. (author)

  6. Study of the effect of dose-rate on radiation-induced damage to human erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Krokosz, Anita [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, Lodz (Poland)]. E-mail: krokosz@biol.uni.lodz.pl; Koziczak, Renata [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, Lodz (Poland); Gonciarz, Marta [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, Lodz (Poland); Szweda-Lewandowska, Zofia [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, Lodz (Poland)

    2006-01-15

    Human erythrocytes suspended in an isotonic Na-phosphate buffer, pH 7.4 (hematocrit of 2%) were irradiated with {gamma}-rays at three dose-rates of 66.7, 36.7, 25 Gy min{sup -1} in order to investigate the influence of the dose-rate on radiation-induced membrane damage, hemoglobin oxidation and loss of reduced glutathione. The obtained results showed that such processes as erythrocyte hemolysis, lipid and protein destruction depend on the radiation dose-rate. The parameter values describing these processes showed an inverse dose-rate effect.

  7. Study of the effect of dose-rate on radiation-induced damage to human erythrocytes

    International Nuclear Information System (INIS)

    Krokosz, Anita; Koziczak, Renata; Gonciarz, Marta; Szweda-Lewandowska, Zofia

    2006-01-01

    Human erythrocytes suspended in an isotonic Na-phosphate buffer, pH 7.4 (hematocrit of 2%) were irradiated with γ-rays at three dose-rates of 66.7, 36.7, 25 Gy min -1 in order to investigate the influence of the dose-rate on radiation-induced membrane damage, hemoglobin oxidation and loss of reduced glutathione. The obtained results showed that such processes as erythrocyte hemolysis, lipid and protein destruction depend on the radiation dose-rate. The parameter values describing these processes showed an inverse dose-rate effect

  8. Biological effective doses in the intracavitary high dose rate brachytherapy of cervical cancer

    Directory of Open Access Journals (Sweden)

    Y. Sobita Devi

    2011-12-01

    Full Text Available Purpose: The aim of this study is to evaluate the decrease of biological equivalent dose and its correlation withlocal/loco-regional control of tumour in the treatment of cervical cancer when the strength of the Ir-192 high dose rate(HDR brachytherapy (BT source is reduced to single, double and triple half life in relation to original strength of10 Ci (~ 4.081 cGy x m2 x h–1. Material and methods: A retrospective study was carried out on 52 cervical cancer patients with stage II and IIItreated with fractionated HDR-BT following external beam radiation therapy (EBRT. International Commission onRadiation Units and Measurement (ICRU points were defined according to ICRU Report 38, using two orthogonal radiographimages taken by Simulator (Simulix HQ. Biologically effective dose (BED was calculated at point A for diffe -rent Ir-192 source strength and its possible correlation with local/loco-regional tumour control was discussed. Result: The increase of treatment time per fraction of dose due to the fall of dose rate especially in HDR-BT of cervicalcancer results in reduction in BED of 2.59%, 7.02% and 13.68% with single, double and triple half life reduction ofsource strength, respectively. The probabilities of disease recurrence (local/loco-regional within 26 months are expectedas 0.12, 0.12, 0.16, 0.39 and 0.80 for source strength of 4.081, 2.041, 1.020, 0.510 and 0.347 cGy x m2 x h–1, respectively.The percentages of dose increase required to maintain the same BED with respect to initial BED were estimated as1.71, 5.00, 11.00 and 15.86 for the dose rate of 24.7, 12.4, 6.2 and 4.2 Gy/hr at point A, respectively. Conclusions: This retrospective study of cervical cancer patients treated with HDR-BT at different Ir-192 sourcestrength shows reduction in disease free survival according to the increase in treatment time duration per fraction.The probable result could be associated with the decrease of biological equivalent dose to point A. Clinical

  9. Effect of radiation dose-rate on hematopoietic cell engraftment in adult zebrafish.

    Directory of Open Access Journals (Sweden)

    Tiffany J Glass

    Full Text Available Although exceptionally high radiation dose-rates are currently attaining clinical feasibility, there have been relatively few studies reporting the biological consequences of these dose-rates in hematopoietic cell transplant (HCT. In zebrafish models of HCT, preconditioning before transplant is typically achieved through radiation alone. We report the comparison of outcomes in adult zebrafish irradiated with 20 Gy at either 25 or 800 cGy/min in the context of experimental HCT. In non-transplanted irradiated fish we observed no substantial differences between dose-rate groups as assessed by fish mortality, cell death in the kidney, endogenous hematopoietic reconstitution, or gene expression levels of p53 and ddb2 (damage-specific DNA binding protein 2 in the kidney. However, following HCT, recipients conditioned with the higher dose rate showed significantly improved donor-derived engraftment at 9 days post transplant (p ≤ 0.0001, and improved engraftment persisted at 31 days post transplant. Analysis for sdf-1a expression, as well as transplant of hematopoietic cells from cxcr4b -/- zebrafish, (odysseus, cumulatively suggest that the sdf-1a/cxcr4b axis is not required of donor-derived cells for the observed dose-rate effect on engraftment. Overall, the adult zebrafish model of HCT indicates that exceptionally high radiation dose-rates can impact HCT outcome, and offers a new system for radiobiological and mechanistic interrogation of this phenomenon. Key words: Radiation dose rate, Total Marrow Irradiation (TMI, Total body irradiation (TBI, SDF-1, Zebrafish, hematopoietic cell transplant.

  10. Dose rate effect of 125I irradiation on normal rabbit eyes and experimental choroidal melanoma

    International Nuclear Information System (INIS)

    Yang, C.M.; Olsen, K.R.; Schwade, J.G.; Houdek, P.V.; Markoe, A.M.; Pisciotta, V.; Xiaodong Wu

    1993-01-01

    The dose rate effect of radiation by 125 I plaque on choroidal melanoma and normal intraocular tissue was studied. In the first part of the experiment, high activity plaques (HAP) and low activity plagues (LAP) were implanted on rabbit eyes with experimental Greene choroidal melanoma to deliver a total dose of 10 000 cGy to the tumor apex. The mean dose rate calculated at 0.5 mm from the inner sclera in eight eyes with high activity plaques was 3341.5 cGy hr -1 while that in ten eyes with low activity plaques was 239.9 cGy hr -1 . For tumors less than 1.0 mm in height, both groups showed complete tumor regression at the tumor implantation site after plaque treatment. For tumours more than 1.0 mm in height, two out of two eyes in the low activity plaque group and one of four eyes in the high activity plaque group failed to show complete tumor regression. In the second part of the experiment, 125 I plaques were implanted on the sclera of 12 normal rabbits' eyes. Six received high dose rate plaque treatment, while the other six received low dose rate plaque treatment. Clinical and histologic examinations demonstrated more damaging effects to the normal chorioretinal tissues at the plaque implantation site in the high dose rate plaque group. These results suggest that high dose rate plaques are more effective than low dose rate plaques when tumor height is statistically controlled. (Author)

  11. Outdoor γ-ray dose rate in Shariki Village and environmental factors affecting outdoor γ-ray dose rate in IES

    International Nuclear Information System (INIS)

    Iyogi, Takashi; Hisamatsu, Shun'ichi; Inaba, Jiro

    2000-01-01

    Previously, we surveyed the outdoor γ-ray dose rate throughout Aomori Prefecture from 1992 to 1995, and found an annual mean dose rate of 51 nGy h -1 . Relatively high dose rates were also observed in several areas (municipalities) of the survey locations. In this study, we examined the detailed distribution of the γ-ray dose rate in one such high dose rate area, Shariki Village. Glass dosemeters were used for the monitoring of cumulative γ-ray dose rate at 10 locations in the village. The dose rate from each radioactive nuclide in the ground at the monitoring locations was measured by using an in situ γ-ray spectrometer with a Ge detector. The results obtained with the glass dosemeters showed that the γ-ray dose rates in Shariki Village varied from 49 to 55 nGy h -1 . Although the dose rates were generally higher than the mean dose in Aomori Prefecture (1992-1995), the rates were lower than other high dose rate areas which had already been measured. The in situ γ-ray spectrometry revealed that these relatively high dose rates were mainly caused by 40 K and Th series radionuclides in the village. The effect of meteorological conditions on the γ-ray dose rate was studied at a monitoring station in the IES site. The dose rate was continuously recorded by a DBM NaI(Tl) scintillation detector system. The mean dose rate obtained when precipitation was sensed was 27 nGy h -1 and higher than when no precipitation was sensed (25 nGy h -1 ). (author)

  12. Outdoor γ-ray dose rate in Mutsu city and environmental factors affecting outdoor γ-ray dose rate in IES

    International Nuclear Information System (INIS)

    Iyogi, Takashi; Hisamatsu, Shun'ichi; Inaba, Jiro

    2001-01-01

    Previously, we surveyed outdoor γ-ray dose rates throughout Aomori Prefecture from 1992 to 1995, and found a mean annual dose rate of 28 nGy h -1 . Relatively high dose rates were also observed in several areas (municipalities) of the survey locations. In this study, we examined the detailed distribution of the γ-ray dose rate in one such high dose rate area, Mutsu City. Glass dosemeters were used for the monitoring of cumulative γ-ray dose rate at 10 locations in the city. The dose rate from each radioactive nuclide in the ground at the monitoring locations was measured by using an in situ γ-ray spectrometer with a Ge detector. The results obtained with the glass dosemeters showed that the γ-ray dose rates in Mutsu City varied from 17 to 32 nGy h -1 . Although the dose rates were almost the same as the mean dose in Aomori Prefecture (1992-1995), the rates were lower than other high dose rate areas which had already been measured. The in situ γ-ray spectrometry revealed that these relatively high dose rates were mainly caused by 40 K and Th series radionuclides in the local ground. The effect of meteorological conditions on the γ-ray dose rate was studied at a monitoring station in the IES site. The dose rate was continuously recorded by a DBM NaI(Tl) scintillation detector system. The mean dose rate obtained when precipitation was sensed was 26 nGy h -1 and higher than when no precipitation was sensed (24 nGy h -1 ). (author)

  13. The limiting dose rate and its importance in radiation protection

    International Nuclear Information System (INIS)

    Bakkiam, D.; Sonwani, Swetha; Arul Ananthakumar, A.; Mohankumar, Mary N.

    2012-01-01

    The concept of defining a low dose of ionizing radiation still remains unclear. Before attempting to define a low dose, it is more important to define a low-dose rate since effects at low dose-rates are different from those observed at higher dose-rates. Hence, it follows that low dose-rates rather than a low dose is an important criteria to determine radio-biological effects and risk factors i.e. stochastic health effects. Chromosomal aberrations induced by ionizing radiations are well fitted by quadratic model Y= áD + âD 2 + C with the linear coefficient of dose predominating for high LET radiations and low doses of low LET. At higher doses and dose rates of sparsely ionizing radiation, break pairs produced by inter-track action leads to the formation of exchange type aberrations and is dependent on dose rate. Whereas at lower doses and dose rates, intra-track action produces break pairs and resulting aberrations are in direct proportion to absorbed dose and independent of dose rate. The dose rate at which inter-track ceases to be observable and where intra-track action effectively becomes the sole contributor of lesion-pair formation is referred to as limiting dose rate (LDR). Once the LDR is reached further reduction in dose rates will not affect the slope of DR since breaks produced by independent charged particle tracks are widely separated in time to interact with each other for aberration yield. This linear dependency is also noticed for acute exposures at very low doses. Existing reports emphasizes the existence of LDR likely to be e6.3cGyh -1 . However no systematic studies have been conducted so far to determine LDR. In the present investigation DR curves were constructed for the dose rates 0.002 and 0.003 Gy/min and to define LDR at which a coefficient approaches zero. Extrapolation of limiting low dose rate data can be used to predict low dose effects regardless of dose rate and its definition ought to serve as a useful index for studies pertaining

  14. Dose rate effect on the yield of radiation induced response with thermal fading

    International Nuclear Information System (INIS)

    Chernov, V.; Rogalev, B.; Barboza-Flores, M.

    2005-01-01

    A model describing the dependences of the accumulation of thermally unstable radiation induced defects on the dose and dose rate is proposed. The model directly takes into account the track nature of the ionizing radiation represented as accumulation processes of defects in tracks averaged over a crystal volume considering various degrees of overlapping in space and time. The accumulation of the defects in the tracks is phenomenologically described. General expressions are obtained that allows radiation yield simulation of defects involving known creation and transformation processes. The cases considered, of linear accumulation (constant increment of the defects in tracks) and accumulation with saturation (complete saturation of the defects in one track), lead to a set of linear dose dependences with saturation, which are routinely used in luminescence and ESR dating. The accumulation, with increase of sensitivity in regions overlapped by two or more tracks, gave a set of dose dependences, from linear-sublinear-linear-saturation, distinctive of quartz up to linear-supralinear-linear-saturation. It is shown that the effect of the dose rate on dose dependences is determined by a dimensionless parameter a=Pτ/D0, where P is the dose rate, τ is the defect lifetime and D0 is the track dose. At a-bar 1 the dose rate influences basically the accumulation of thermally unstable defects. In the reverse case the dose dependences did not seems to be influenced by the dose rate

  15. A model for inverse dose-rate effects - low dose-rate hyper-sensibility in response to targeted radionuclide therapy

    International Nuclear Information System (INIS)

    Murray, I.; Mather, S.J.

    2015-01-01

    Full text of publication follows. The aim of this work was to test the hypothesis that the Linear-Quadratic (LQ) model of cell survival, developed for external beam radiotherapy (EBRT), could be extended to targeted radionuclide therapy (TRT) in order to predict dose-response relationships in a cell line exhibiting low dose hypersensitivity (LDH). Methods: aliquots of the PC-3 cancer cell line were treated with either EBRT or an in-vitro model of TRT (Irradiation of cell culture with Y-90 EDTA over 24, 48, 72 or 96 hours). Dosimetry for the TRT was calculated using radiation transport simulations with the Monte Carlo PENELOPE code. Clonogenic as well as functional biological assays were used to assess cell response. An extension of the LQ model was developed which incorporated a dose-rate threshold for activation of repair mechanisms. Results: accurate dosimetry for in-vitro exposures of cell cultures to radioactivity was established. LQ parameters of cell survival were established for the PC-3 cell line in response to EBRT. The standard LQ model did not predict survival in PC-3 cells exposed to Y 90 irradiation over periods of up to 96 hours. In fact cells were more sensitive to the same dose when irradiation was carried out over 96 hours than 24 hours. I.e. at a lower dose-rate. Deviations from the LQ predictions were most pronounced below a threshold dose-rate of 0.5 Gy/hr. These results led to an extension of the LQ model based upon a dose-rate dependent sigmoid model of single strand DNA repair. This extension to the model resulted in predicted cell survival curves that closely matched the experimental data. Conclusion: the LQ model of cell survival to radiation has been shown to be largely predictive of response to low dose-rate irradiation. However, in cells displaying LDH, further adaptation of the model was required. (authors)

  16. Dose rate correction in medium dose rate brachytherapy for carcinoma cervix

    International Nuclear Information System (INIS)

    Patel, F.D.; Negi, P.S.; Sharma, S.C.; Kapoor, R.; Singh, D.P.; Ghoshal, S.

    1998-01-01

    Purpose: To establish the magnitude of brachytherapy dose reduction required for stage IIB and III carcinoma cervix patients treated by external radiation and medium dose rate (MDR) brachytherapy at a dose rate of 220±10 cGy/h at point A.Materials and methods: In study-I, at the time of MDR brachytherapy application at a dose rate of 220±10 cGy/h at point A, patients received either 3060 cGy, a 12.5% dose reduction (MDR-12.5), or 2450 cGy, a 30% dose reduction (MDR-30), to point A and they were compared to a group of previously treated LDR patients who received 3500 cGy to point A at a dose rate of 55-65 cGy/h. Study-II was a prospective randomized trial and patients received either 2450 cGy, a 30% dose reduction (MDR-II (30)) or 2800 cGy, a 20% dose reduction (MDR-II (20)), at point A. Patients were evaluated for local control of disease and morbidity. Results: In study-I the 5-year actuarial local control rate in the MDR-30 and MDR-12.5 groups was 71.7±10% and 70.5±10%, respectively, compared to 63.4±10% in the LDR group. However, the actuarial morbidity (all grades) in the MDR-12.5 group was 58.5±14% as against 34.9±9% in the LDR group (P 3 developed complication as against 62.5% of those receiving a rectal BED of (140 3 (χ 2 =46.43; P<0.001). Conclusion: We suggest that at a dose rate of 220±10 cGy/h at point A the brachytherapy dose reduction factor should be around 30%, as suggested by radiobiological data, to keep the morbidity as low as possible without compromising the local control rates. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  17. Influence of variations in dose and dose rates on biological effects of inhaled beta-emitting radionuclides

    International Nuclear Information System (INIS)

    McClellan, R.O.; Benjamin, S.A.; Boecker, B.B.; Hahn, F.F.; Hobbs, C.H.; Jones, R.K.; Lundgren, D.L.

    1976-01-01

    The biological effects of inhaled β-emitting radionuclides, 90 Y, 91 Y, 144 Ce and 90 Sr, are being investigated in beagle dogs that received single acute exposures at 12 to 14 months of age. The aerosols studied have included 91 YC1 3 , 144 CeC1 3 , 90 SrC1 2 , and 90 Y, 91 Y, 144 Ce or 90 Sr in aluminosilicate particles. Thus, 91 YCl 3 , 144 CeCl 3 and the aluminosilicate containing radionuclide particles all resulted in significant exposures to lung; 91 YC1 3 , 144 CeC1 3 an 90 SrC1 2 resulted in significant exposures to bone; 91 YC1 3 and 144 CeC1 3 resulted in significant exposures to liver. The higher initial doserate exposures have been more effective than low dose-rate exposures on a per-rad basis in producing early effects. To date ( 144 CeO 2 , it was observed that, on a μCi initial lung burden per kilogram body weight basis, mice did not develop pulmonary tumours whereas beagle dogs did. To fid out the reason for this observation mice have been repeatedly exposed by inhalation to 144 CeO 2 to maintain lung burdens of 144 Ce that resulted in radiation dose rates similar to that observed in beagle dogs. Several of the repeatedly exposed mice developed malignant pulmonary tumours. Thus, with similar dose rates and cumulative doses to the lung, mice and dogs responded in a similar manner to chronic β radiation

  18. Dose rate effects on survival of two insect species which commonly infest stored corn

    International Nuclear Information System (INIS)

    Adem, E.; Uribe, R.M.; Watters, F.L.

    1979-01-01

    A study of the dose rate effects on survival of two species of insects which commonly infest commercial maize in Mexico was undertaken using 60 Co γ radiation and 1.0 MeV electrons, to determine whether an optimum dose rate exists for the irradiation of grain infested with these insects. Experiments have shown that the effectiveness of γ and electron irradiation were not influenced by dose rates from 10 to 120 Gy/min for 60 Co and 35 to 300 Gy/min for electrons when the insects were irradiated at 2500 Gy. Survival curves for each species are presented for both types of radiation. (author)

  19. Late biological effects of ionizing radiation as influenced by dose, dose rate, age at exposure, and genetic sensitivity to neoplastic transformation

    International Nuclear Information System (INIS)

    Spalding, J.F.; Prine, J.R.; Tietjen, G.L.

    1978-01-01

    A most comprehensive investigation is in progress at the Los Alamos Scientific Laboratory to study the late biological effects of whole-body exposure to gamma irradiation as they may be influenced by total dose, dose rate, age at exposure, and genetic background. Strain C57B1/6J mice of four age groups (newborn, 2, 6, and 15 months) were given five doses (20, 60, 180, 540, and 1620 rad) of gamma rays, with each dose being delivered at six dose rates (0.7, 2.1, 6.3, 18.9, 56.7 rad/day and 25 rad/min). Forty to sixty mice were used in each of the approximately 110 dose/dose-rate and age combinations. The study was done in two replications with an equal number of mice per replication. Strain RF/J mice were used in a companion study to investigate the influence of genetic background on the type and magnitude of effect. Results of the first and second replications of the 15-month-old age group and data on the influence of genetic background on biological response have been completed, and the results show no significant life shortening within the dose and dose-rate range used

  20. Effect of γ-dose rate and total dose interrelation on the polymeric hydrogel: A novel injectable male contraceptive

    International Nuclear Information System (INIS)

    Jha, Pradeep K.; Jha, Rakhi; Gupta, B.L.; Guha, Sujoy K.

    2010-01-01

    Functional necessity to use a particular range of dose rate and total dose of γ-initiated polymerization to manufacture a novel polymeric hydrogel RISUG (reversible inhibition of sperm under guidance) made of styrene maleic anhydride (SMA) dissolved in dimethyl sulphoxide (DMSO), for its broad biomedical application explores new dimension of research. The present work involves 16 irradiated samples. They were tested by fourier transform infrared spectroscopy, matrix assisted laser desorption/ionization-TOF, field emission scanning electron microscopy, high resolution transmission electron microscopy, etc. to see the interrelation effect of gamma dose rates (8.25, 17.29, 20.01 and 25.00 Gy/min) and four sets of doses (1.8, 2.0, 2.2 and 2.4 kGy) on the molecular weight, molecular weight distribution and porosity analysis of the biopolymeric drug RISUG. The results of randomized experiment indicated that a range of 18-24 Gy/min γ-dose rate and 2.0-2.4 kGy γ-total doses is suitable for the desirable in vivo performance of the contraceptive copolymer.

  1. Effect of the rate and dose rate of irradiation on the quality of mushrooms, shrimps and marinated poultry

    International Nuclear Information System (INIS)

    Lacroix, M.; Mahrour, A.; Beaulieu, M.; Jobin, M.; Nketsa-Tabiri, J.; Gagnon, M.

    1998-01-01

    In this research programme, three investigations involving irradiation in combination with other preservation treatments are described. The first study evaluated the effect of the gamma irradiation dose rate combined with control storage at 15 deg. C and 90% relative humidity on the biochemical, microbiological and physical quality of mushrooms (Agaricus bisporus). A 2 kGy dose was necessary to control the pathogenic microorganisms and to decrease the ageing process of mushrooms. The shelf-life of the mushrooms, as assessed by colour, was extended by 4 days at the lower dose rate (4.5 kGy/h) and by only 2 days at the higher dose rate (32 kGy/h). The higher dose rate caused stress to the cells and altered cell permeability. The second study was to verify the efficacy of ionizing radiation ( 60 Co) on frozen shrimps in eliminating or reducing the pathogenic bacteria that may occasionally be present and to increase the cold storage life of thawed shrimps. A dose of 2.5 kGy permitted storage at 4 deg. C for 1 month without affecting the quality of the product. The third study investigated the anti-oxidant and anti-microbial properties of the natural substances added to fresh poultry before irradiation. Irradiation of poultry at 5 kGy was found to be highly effective in eliminating Salmonella and reducing the number of spoilage microorganisms to ensure safety and quality. Moreover, use of marinating techniques had a synergistic effect with irradiation in reducing the microbial load and the oxidation rate of unsaturated fatty acids, particularly C18:2. The essential oils in rosemary and thyme were the most potent anti-microbial agents investigated and prevented the deterioration of stored foods by bacteria. Several phenolic compounds with anti-oxidant activities were also isolated from rosemary. (author)

  2. Dose-rate and humidity effects upon the gamma-radiation response of nylon-based radiachromic film dosimeters

    International Nuclear Information System (INIS)

    Gehringer, P.; Eschweiler, H.; Proksch, E.

    1979-10-01

    At dose-rates typical for 60 Co gamma irradiation sources, the radiation response of hexahydroxyethyl pararosaniline cyanide/ 50μm nylon radiachromic films is dependent upon dose-rate as well as upon the moisture content of the films, or the relative humidity of the surrounding atmosphere, respectively. Under equilibrium moisture conditions, the response measured at 606 nm 24 hours after end of irradiation shows its highest dose-rate dependence at about 32 % r.h. A decrease in dose-rate from 2.8 to 0.039 Gy.s -1 results in a decrease in response by 17%. At higher humidities, the sensitivity of the film as well as the rate dependence decreases and at 86% r.h. no discernible dose-rate effect could be found. At lower humidities than 32% a flat maximum in response follows. At nominal 0% r.h. a second absorption band at 412 nm appears which is converted completely to an additional 606 nm absorption by exposure to a humid atmosphere. After that procedure the resultant response is somewhat lower than but shows almost the same dose-rate dependence as at 32% r.h. or else to eliminate the dose-rate effect by an extrapolation procedure based on the fact that the rate dependence vanishes at zero dose. (author)

  3. The Primary Origin of Dose Rate Effects on Microstructural Evolution of Austenitic Alloys During Neutron Irradiation

    International Nuclear Information System (INIS)

    Okita, Taira; Sato, Toshihiko; Sekimura, Naoto; Garner, Francis A.; Greenwood, Lawrence R.

    2002-01-01

    The effect of dose rate on neutron-induced microstructural evolution was experimentally estimated. Solution-annealed austenitic model alloys were irradiated at approximately 400 degrees C with fast neutrons at seven different dose rates that vary more than two orders difference in magnitude, and two different doses were achieved at each dose rate. Both cavity nucleation and growth were found to be enhanced at lower dose rate. The net vacancy flux is calculated from the growth rate of cavities that had already nucleated during the first cycle of irradiation and grown during the second cycle. The net vacancy flux was found to be proportional to (dpa/sec) exp (1/2) up to 28.8 dpa and 8.4 x 10 exp (-7) dpa/sec. This implies that mutual recombination dominates point defect annihilation, in this experiment even though point defect sinks such as cavities and dislocations were well developed. Thus, mutual recombination is thought to be the primary origin of the effect of dose rate on microstructural evolution

  4. Effect of dose rate and exposure time on the stimulation effect of tube growth of Pinus sylvestris pollen

    International Nuclear Information System (INIS)

    Zelles, L.; Fendrik, I.; Technische Univ. Hannover

    1975-01-01

    The stimulating effect of ionizing radiation in respect to dose rate and exposure time was studied using the tube growth of Pinus silvestris pollen. Stimulation was registered with a small dose (50 rad) supplied at low dose rates (0.5; 1.0; 3.0 and 5.0 rad/sec) and with higher doses (300; 800 and 1,400 rad) supplied at higher dose rates (10; 40 and 50 rad/sec). This suggests that only the exposure time is of importance for radiation-induced stimulation provided that the exposure time does not exceed 100 sec. (orig.) [de

  5. Biological responses to low dose rate gamma radiation

    International Nuclear Information System (INIS)

    Magae, Junji; Ogata, Hiromitsu

    2003-01-01

    Linear non-threshold (LNT) theory is a basic theory for radioprotection. While LNT dose not consider irradiation time or dose-rate, biological responses to radiation are complex processes dependent on irradiation time as well as total dose. Moreover, experimental and epidemiological studies that can evaluate LNT at low dose/low dose-rate are not sufficiently accumulated. Here we analyzed quantitative relationship among dose, dose-rate and irradiation time using chromosomal breakage and proliferation inhibition of human cells as indicators of biological responses. We also acquired quantitative data at low doses that can evaluate adaptability of LNT with statistically sufficient accuracy. Our results demonstrate that biological responses at low dose-rate are remarkably affected by exposure time, and they are dependent on dose-rate rather than total dose in long-term irradiation. We also found that change of biological responses at low dose was not linearly correlated to dose. These results suggest that it is necessary for us to create a new model which sufficiently includes dose-rate effect and correctly fits of actual experimental and epidemiological results to evaluate risk of radiation at low dose/low dose-rate. (author)

  6. Dose-rate effects of ethylene oxide exposure on developmental toxicity.

    Science.gov (United States)

    Weller, E; Long, N; Smith, A; Williams, P; Ravi, S; Gill, J; Henessey, R; Skornik, W; Brain, J; Kimmel, C; Kimmel, G; Holmes, L; Ryan, L

    1999-08-01

    In risk assessment, evaluating a health effect at a duration of exposure that is untested involves assuming that equivalent multiples of concentration (C) and duration (T) of exposure have the same effect. The limitations of this approach (attributed to F. Haber, Zur Geschichte des Gaskrieges [On the history of gas warfare], in Funf Vortrage aus den Jahren 1920-1923 [Five lectures from the years 1920-1923], 1924, Springer, Berlin, pp. 76-92), have been noted in several studies. The study presented in this paper was designed to specifically look at dose-rate (C x T) effects, and it forms an ideal case study to implement statistical models and to examine the statistical issues in risk assessment. Pregnant female C57BL/6J mice were exposed, on gestational day 7, to ethylene oxide (EtO) via inhalation for 1.5, 3, or 6 h at exposures that result in C x T multiples of 2100 or 2700 ppm-h. EtO was selected because of its short half-life, documented developmental toxicity, and relevance to exposures that occur in occupational settings. Concurrent experiments were run with animals exposed to air for similar periods. Statistical analysis using models developed to assess dose-rate effects revealed significant effects with respect to fetal death and resorptions, malformations, crown-to-rump length, and fetal weight. Animals exposed to short, high exposures of EtO on day 7 of gestation were found to have more adverse effects than animals exposed to the same C x T multiple but at longer, lower exposures. The implication for risk assessment is that applying Haber's Law could potentially lead to an underestimation of risk at a shorter duration of exposure and an overestimation of risk at a longer duration of exposure. Further research, toxicological and statistical, are required to understand the mechanism of the dose-rate effects, and how to incorporate the mechanistic information into the risk assessment decision process.

  7. The biological effect of 125I seed continuous low dose rate irradiation in CL187 cells

    Directory of Open Access Journals (Sweden)

    Zhuang Hong-Qing

    2009-01-01

    Full Text Available Abstract Background To investigate the effectiveness and mechanism of 125I seed continuous low-dose-rate irradiation on colonic cell line CL187 in vitro. Methods The CL187 cell line was exposed to radiation of 60Coγ ray at high dose rate of 2 Gy/min and 125I seed at low dose rate of 2.77 cGy/h. Radiation responses to different doses and dose rates were evaluated by colony-forming assay. Under 125I seed low dose rate irradiation, a total of 12 culture dishes were randomly divided into 4 groups: Control group, and 2, 5, and 10 Gy irradiation groups. At 48 h after irradiation, apoptosis was detected by Annexin and Propidium iodide (PI staining. Cell cycle arrests were detected by PI staining. In order to investigate the influence of low dose rate irradiation on the MAPK signal transduction, the expression changes of epidermal growth factor receptor (EGFR and Raf under continuous low dose rate irradiation (CLDR and/or EGFR monoclonal antibodies were determined by indirect immunofluorescence. Results The relative biological effect (RBE for 125I seeds compared with 60Co γ ray was 1.41. Apoptosis rates of CL187 cancer cells were 13.74% ± 1.63%, 32.58% ± 3.61%, and 46.27% ± 3.82% after 2 Gy, 5 Gy, and 10 Gy irradiation, respectively; however, the control group apoptosis rate was 1.67% ± 0.19%. G2/M cell cycle arrests of CL187 cancer cells were 42.59% ± 3.21%, 59.84% ± 4.96%, and 34.61% ± 2.79% after 2 Gy, 5 Gy, and 10 Gy irradiation, respectively; however, the control group apoptosis rate was 26.44% ± 2.53%. P 2/M cell cycle arrest. After low dose rate irradiation, EGFR and Raf expression increased, but when EGFR was blocked by a monoclonal antibody, EGFR and Raf expression did not change. Conclusion 125I seeds resulted in more effective inhibition than 60Co γ ray high dose rate irradiation in CL187 cells. Apoptosis following G2/M cell cycle arrest was the main mechanism of cell-killing effects under low dose rate irradiation. CLDR could

  8. Cancer risk of low dose/low dose rate radiation: a meta-analysis of cancer data of mammals exposed to low doses of radiation

    International Nuclear Information System (INIS)

    Ogata, Hiromitsu; Magae, Junji

    2008-01-01

    Full text: Linear No Threshold (LNT) model is a basic theory for radioprotection, but the adaptability of this hypothesis to biological responses at low doses or at low dose rates is not sufficiently investigated. Simultaneous consideration of the cumulative dose and the dose rate is necessary for evaluating the risk of long-term exposure to ionizing radiation at low dose. This study intends to examine several numerical relationships between doses and dose rates in biological responses to gamma radiation. Collected datasets on the relationship between dose and the incidence of cancer in mammals exposed to low doses of radiation were analysed using meta-regression models and modified exponential (MOE) model, which we previously published, that predicts irradiation time-dependent biological response at low dose rate ionizing radiation. Minimum doses of observable risk and effective doses with a variety of dose rates were calculated using parameters estimated by fitting meta-regression models to the data and compared them with other statistical models that find values corresponding to 'threshold limits'. By fitting a weighted regression model (fixed-effects meta-regression model) to the data on risk of all cancers, it was found that the log relative risk [log(RR)] increased as the total exposure dose increased. The intersection of this regression line with the x-axis denotes the minimum dose of observable risk. These estimated minimum doses and effective doses increased with decrease of dose rate. The goodness of fits of MOE-model depended on cancer types, but the total cancer risk is reduced when dose rates are very low. The results suggest that dose response curve for cancer risk is remarkably affected by dose rate and that dose rate effect changes as a function of dose rate. For scientific discussion on the low dose exposure risk and its uncertainty, the term 'threshold' should be statistically defined, and dose rate effects should be included in the risk

  9. Late biological effects of ionizing radiation as influenced by dose, dose rate, age at exposure and genetic sensitivity to neoplastic transformation

    International Nuclear Information System (INIS)

    Spalding, J.F.; Prine, J.R.; Tietjen, G.L.

    1978-01-01

    A most comprehensive investigation is in progress at the Los Alamos Scientific Laboratory to study the late biological effects of whole-body exposure to gamma irradiation as they may be influenced by total dose, dose rate, age at exposure and genetic background. Strain C57B1/6J mice of four age groups (newborn, 2, 6 and l5 months) were given five doses (20, 60, 180, 540, and 1620 rads) of gamma rays, with each dose being delivered at six dose rates (0.7, 2.1, 6.3, 18.9, 56.7 rads/day and 25 rads/min). Forty to sixty mice were used in each of the approximately 119 dose/dose-rate and age combinations. The study was done in two replications with an equal number of mice per replicaton. Strain RF/J mice were used in a companion study to investigate the influence of genetic background on the type and magnitude of effect. Results of the first and second replications of the l5-month-old age group and data on the influence of genetic background on biological response have been completed, and the results show no significant life shortening within the dose and dose-rate range used. It was also concluded that radiaton-induced neoplastic transformaton was significantly greater in mice with a known genetic sensitivity to neoplastic disease than in mammals which do not normally have a significant incidence of tumours. (author)

  10. Expression of cytoskeletal and matrix genes following exposure to ionizing radiation: Dose-rate effects and protein synthesis requirements

    International Nuclear Information System (INIS)

    Woloschak, G.E.

    1994-01-01

    Experiments were designed to examine the effects Of radiation dose-rate and of the protein synthesis inhibitor cycloheximide on expression of cytoskeletal elements (γ- and β-actin and α-tubulin) and matrix elements (fibronectin) in Syrian hamster embryo cells. Past work from our laboratory had already demonstrated optimum time points and doses for examination of radiation effects on accumulation of specific transcripts. Our results here demonstrated little effect of dose-rate for JANUS fission spectrum neutrons when comparing expression of either α-tubulin or fibronectin genes. Past work had already documented similar results for expression of actin transcripts. Effects of cycloheximide revealed that cycloheximide repressed accumulation of α-tubulin following exposure to high dose-rate neutrons or γ rays; this did not occur following similar low dose-rate exposure. (2) Cycloheximide did not affect accumulation of MRNA for actin genes; and that cycloheximide abrogated the moderate induction of fibronectin-mRNA which occurred following exposure to γ rays and high dose-rate neutrons. These results suggest a role for labile proteins in the maintenance of α-tubulin and fibronectin MRNA accumulation following exposure to ionizing radiation. in addition, they suggest that the cellular/molecular response to low dose-rate neutrons may be different from the response to high dose-rate neutrons

  11. SU-E-T-628: Effect of Dose Rate and Leakage Correction for Dosimetric Leaf Gap Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Feng, W [New York Presbyterian Hospital, Tenafly, NJ (United States); Chu, A [Yale New Haven Hospital, New Haven, CT (United States); Chi, Y [Winter Park Cancer Center, Winter Park, FL (United States); Hu, J [Wayne State University, Detroit, MI (United States)

    2014-06-15

    Purpose: To study the dose rate response of Mapcheck and quantify/correct dose rate/leakage effect on IMRT QA. Evaluate the dose rate/leakage effect on dosimetric leaf gap (DLG) measurement. Methods: Varian Truebeam Linac with HD120 MLC was used for all measurement, it is capable to adjust dose rate from 600MU/min to 5MU/min. Fluke Advanced Therapy Doisemter and PTW 30013 Farmer chamber for chamber measurement; SunNuclear Mapcheck2 with 5cm total buildup for diode measurement. DLG was measured with both chamber and diode.Diode response was measured by varies dose rate, while fixed mapcheck setup and total MU. MLC Leakage was measured with both chamber and diode. Mapcheck measurement was saved as movie file (mcm file), which include measurement updated every 50mSec. The difference between intervals can be converted to dose and dose rate and leakage response correction can be applied to them. Results: DLG measurement results with chamber and diode were showed as follows, the DLG value is 0.36 vs. 0.24mm respectively. Diode dose rate response drops from 100% at 600MU/min to 95.5% at 5MU/min as follows. MLC Leakage measured with diode is 1.021%, which is 9% smaller than 1.112% from chamber measurement. By apply the dose rate and leakage correction, the residue error reduced 2/3. Conclusions: Diode has lower response at lower dose rate, as low as 4.5% for 5MU/min; diode has lower energy response for low energy too, 5% lower for Co-60 than 6MV. It partially explains the leakage difference of 9% between chamber and diode. Lower DLG with diode is because of the lower response at narrower gap, in Eclipse however DLG need to increase to makeup lower response, which is over correction for chamber though. Correction can reduce error by 2/3, the rest 1/3 can be corrected by scatter effect, which is under study.

  12. High dose rate (HDR) and low dose rate (LDR) interstitial irradiation (IRT) of the rat spinal cord

    International Nuclear Information System (INIS)

    Pop, Lucas A.M.; Plas, Mirjam van der; Skwarchuk, Mark W.; Hanssen, Alex E.J.; Kogel, Albert J. van der

    1997-01-01

    /β ratio varies between 1.46 (0.06-3.08 CL) and 2.17 Gy (0.08-4.61). The half time of repair during continuous irradiation is 1.76 h (1.33-2.64), while no indication is found for a biphasic pattern of the kinetics of repair. Conclusion: The implantation technique in our study has shown to be a reliable model to compare the effectiveness of HDR- and LDR-interstitial continuous irradiation at different dose rates

  13. Modeling low-dose-rate effects in irradiated bipolar-base oxides

    International Nuclear Information System (INIS)

    Graves, R.J.; Cirba, C.R.; Schrimpf, R.D.; Milanowski, R.J.; Saigne, F.; Michez, A.; Fleetwood, D.M.; Witczak, S.C.

    1997-02-01

    A physical model is developed to quantify the contribution of oxide-trapped charge to enhanced low-dose-rate gain degradation in BJTs. Simulations show that space charge limited transport is partially responsible for the low-dose-rate enhancement

  14. General extrapolation model for an important chemical dose-rate effect

    International Nuclear Information System (INIS)

    Gillen, K.T.; Clough, R.L.

    1984-12-01

    In order to extrapolate material accelerated aging data, methodologies must be developed based on sufficient understanding of the processes leading to material degradation. One of the most important mechanisms leading to chemical dose-rate effects in polymers involves the breakdown of intermediate hydroperoxide species. A general model for this mechanism is derived based on the underlying chemical steps. The results lead to a general formalism for understanding dose rate and sequential aging effects when hydroperoxide breakdown is important. We apply the model to combined radiation/temperature aging data for a PVC material and show that this data is consistent with the model and that model extrapolations are in excellent agreement with 12-year real-time aging results from an actual nuclear plant. This model and other techniques discussed in this report can aid in the selection of appropriate accelerated aging methods and can also be used to compare and select materials for use in safety-related components. This will result in increased assurance that equipment qualification procedures are adequate

  15. The fitting parameters extraction of conversion model of the low dose rate effect in bipolar devices

    International Nuclear Information System (INIS)

    Bakerenkov, Alexander

    2011-01-01

    The Enhanced Low Dose Rate Sensitivity (ELDRS) in bipolar devices consists of in base current degradation of NPN and PNP transistors increase as the dose rate is decreased. As a result of almost 20-year studying, the some physical models of effect are developed, being described in detail. Accelerated test methods, based on these models use in standards. The conversion model of the effect, that allows to describe the inverse S-shaped excess base current dependence versus dose rate, was proposed. This paper presents the problem of conversion model fitting parameters extraction.

  16. Relative biological effectiveness of 125I seeds for low-dose-rate irradiation of PANC-1

    International Nuclear Information System (INIS)

    Wang Jidong; Wang Junjie; Zhuang Hongqing; Liao Anyan; Zhao Yong

    2008-01-01

    Objective: To investigate the relative biological effectiveness(RBE) of National Model 6711 125 I seeds and the response patterns of PANC-1 exposed to 125 I seeds irradiation. Methods: PANC-1 cells in exponential growth were irradiated at initial dose rate of 2.59 cGy/h in vitro and exposed to 1, 2, 4, 6, 8 and 10 Gy. Meanwhile, the other part of cells were exposed to the same doses by 60 Co at dose rate of 2.21 Gy/min. After irradiation, the cells were stained by trypan blue to measure the cellular mortality rate and to compare the changes along with plating times of 12, 24, 48 and 72 h after 4 Gy. The colonies were counted to obtain the plating efficiencies by colony-forming assay and the cell surviving faction was calculated to plot cell survival curves, and RBE of 125 I seeds relative to 60 Co was determined. Results: The cell death rate for continuous low- dose-rate (LDR) irradiation by 125 I seeds was greater than 60 Co at the same doses above or equal to 4 Gy. After 4 Gy irradiation, the cellular mortality rates were increased with times. The difference was significant between 125 I seeds and 60 Co. The survival fractions of 125 I were lower than those of 60 Co, and the RBE of 125 I relative to 60 Co was determined to be 1.45. Conclusion: The cell-killing effects for continuous low-dose-rate (LDR) irradiation by 125 I seeds are greater than acute high-dose-rate of 60 Co. (authors)

  17. Dose and dose rate monitor

    International Nuclear Information System (INIS)

    Novakova, O.; Ryba, J.; Slezak, V.; Svobodova, B.; Viererbl, L.

    1984-10-01

    The methods are discussea of measuring dose rate or dose using a scintillation counte. A plastic scintillator based on polystyrene with PBD and POPOP activators and coated with ZnS(Ag) was chosen for the projected monitor. The scintillators were cylindrical and spherical in shape and of different sizes; black polypropylene tubes were chosen as the best case for the probs. For the counter with different plastic scintillators, the statistical error 2σ for natural background was determined. For determining the suitable thickness of the ZnS(Ag) layer the energy dependence of the counter was measured. Radioisotopes 137 Cs, 241 Am and 109 Cd were chosen as radiation sources. The best suited ZnS(Ag) thickness was found to be 0.5 μm. Experiments were carried out to determine the directional dependence of the detector response and the signal to noise ratio. The temperature dependence of the detector response and its compensation were studied, as were the time stability and fatigue manifestations of the photomultiplier. The design of a laboratory prototype of a dose rate and dose monitor is described. Block diagrams are given of the various functional parts of the instrument. The designed instrument is easiiy portable, battery powered, measures dose rates from natural background in the range of five orders, i.e., 10 -2 to 10 3 nGy/s, and allows to determine a dose of up to 10 mGy. Accouracy of measurement in the energy range of 50 keV to 1 MeV is better than +-20%. (E.S.)

  18. Effect of different ionizing radiation dose rates on the Staphylococcal enterotoxin in mechanically deboned chicken meat

    International Nuclear Information System (INIS)

    Azevedo, Heliana de; Brito, Poliana de Paula; Fukuma, Henrique Takuji; Roque, Claudio Vitor; Custodio, Wilson; Kodama, Yasko; Miya, Norma Terugo Nago; Pereira, Jose Luiz

    2009-01-01

    Samples weighing 50g each were prepared from allotments of back with skin MDCM, to the EEB contamination or not (control). Each sample of MDCM contaminated or not with EEB was conditioned in low density polyethylene bag, frozen (-18 ± 1 deg C) for one night in a tunnel and irradiated with gamma rays from 60 Co source in this state with doses of 0.0 kGy (control), 1.5 kGy (5.7 kGy.h -1 - higher dose rate, 1.8 kGy.h -1 - intermediary dose rate and 0.6 kGy.h -1 - lower dose rate) and 3.0 kGy (8.4 kGy.h - '1 - higher dose rate, 2.4 kGy.h -1 - intermediary dose rate and 0.6 kGy.h -1 - lower dose rate). Irradiated or non irradiated MDCM samples were processed to the EEB extraction, according to the VIDAS Staph enterotoxin II kit (bioMerieux) manufacturer protocol. The calculation to determinate the MDCM EEB recovery after the sample (control or irradiated) processing were carried out applying the principle of mass balance, along the whole process. Described experiment was performed in triplicate. Results showed that the irradiation process was effective to remove the MDCM EEB, to both 1.5 kGy and 3.0 kGy. According to the expected, doses of 3.0 kGy showed the highest values of MDCM EEB removal. Regarding the effect of dose rate of radiation on the removal of EEB of the MDCM, it could be observed only for samples irradiated with 1.5 kGy radiation dose; in these processing conditions, the highest value of EEB removal was obtained for samples processed with low radiation dose rate. (author)

  19. Expression of cytoskeletal and matrix genes following exposure to ionizing radiation: Dose-rate effects and protein synthesis requirements

    International Nuclear Information System (INIS)

    Woloschak, G.E.; Felcher, P.; Chang-Liu, Chin-Mei

    1992-01-01

    Experiments were designed to examine the effects of radiation dose-rate and of the protein synthesis inhibitor cycloheximide on expression of cytoskeletal elements (γ- and β-actin and α-tubulin) and matrix elements (fibronectin) in Syrian hamster embryo cells. Past work from our laboratory had already demonstrated optimum time points and doses for examination of radiation effects on accumulation of specific transcripts. Our results here demonstrated little effect of dose-rate for JANUS fission spectrum neutrons when comparing expression of either α-tubulin or fibronectin genes. Past work had already documented similar results for expression of actin transcripts. Effects of cycloheximide, however, revealed several interesting and novel findings: (1) Cycloheximide repressed accumulation of α-tubulin following exposure to high dose-rate neutrons or γ rays; this did not occur following similar low dose-rate exposure (2) Cycloheximide did not affect accumulation of mRNA for actin genes. Cycloheximide abrogated the moderate induction of fibronectin-mRNA which occurred following exposure to γ rays and high dose-rate neutrons. These results suggest a role for labile proteins in the maintenance of α-tubulin and fibronectin mRNA accumulation following exposure to ionizing radiation. In addition, they suggest that the cellular/molecular response to low dose-rate neutrons may be different from the response to high dose-rate neutrons

  20. Enhanced low dose rate radiation effect test on typical bipolar devices

    International Nuclear Information System (INIS)

    Liu Minbo; Chen Wei; Yao Zhibin; He Baoping; Huang Shaoyan; Sheng Jiangkun; Xiao Zhigang; Wang Zujun

    2014-01-01

    Two types of bipolar transistors and nine types bipolar integrated circuit were selected in the irradiation experiment at different "6"0Co γ dose rate. The base current of bipolar transistor and input bias current of amplifier and comparator was measured, low dose enhance factor of test device was obtained. The results show that bipolar device have enhanced low dose rate sensitivity, enhancement factor of bipolar integrated circuit was bigger than that of transistor, and enhanced low dose rate sensitivity greatly varied with different structure and process of bipolar device. (authors)

  1. Dose escalation using conformal high-dose-rate brachytherapy improves outcome in unfavorable prostate cancer.

    Science.gov (United States)

    Martinez, Alvaro A; Gustafson, Gary; Gonzalez, José; Armour, Elwood; Mitchell, Chris; Edmundson, Gregory; Spencer, William; Stromberg, Jannifer; Huang, Raywin; Vicini, Frank

    2002-06-01

    To overcome radioresistance for patients with unfavorable prostate cancer, a prospective trial of pelvic external beam irradiation (EBRT) interdigitated with dose-escalating conformal high-dose-rate (HDR) prostate brachytherapy was performed. Between November 1991 and August 2000, 207 patients were treated with 46 Gy pelvic EBRT and increasing HDR brachytherapy boost doses (5.50-11.5 Gy/fraction) during 5 weeks. The eligibility criteria were pretreatment prostate-specific antigen level >or=10.0 ng/mL, Gleason score >or=7, or clinical Stage T2b or higher. Patients were divided into 2 dose levels, low-dose biologically effective dose 93 Gy (149 patients). No patient received hormones. We used the American Society for Therapeutic Radiology and Oncology definition for biochemical failure. The median age was 69 years. The mean follow-up for the group was 4.4 years, and for the low and high-dose levels, it was 7.0 and 3.4 years, respectively. The actuarial 5-year biochemical control rate was 74%, and the overall, cause-specific, and disease-free survival rate was 92%, 98%, and 68%, respectively. The 5-year biochemical control rate for the low-dose group was 52%; the rate for the high-dose group was 87% (p failure. The Radiation Therapy Oncology Group Grade 3 gastrointestinal/genitourinary complications ranged from 0.5% to 9%. The actuarial 5-year impotency rate was 51%. Pelvic EBRT interdigitated with transrectal ultrasound-guided real-time conformal HDR prostate brachytherapy boost is both a precise dose delivery system and a very effective treatment for unfavorable prostate cancer. We demonstrated an incremental beneficial effect on biochemical control and cause-specific survival with higher doses. These results, coupled with the low risk of complications, the advantage of not being radioactive after implantation, and the real-time interactive planning, define a new standard for treatment.

  2. Investigation of the dose rate dependency of the PAGAT gel dosimeter at low dose rates

    International Nuclear Information System (INIS)

    Zehtabian, M.; Faghihi, R.; Zahmatkesh, M.H.; Meigooni, A.S.; Mosleh-Shirazi, M.A.; Mehdizadeh, S.; Sina, S.; Bagheri, S.

    2012-01-01

    Medical physicists need dosimeters such as gel dosimeters capable of determining three-dimensional dose distributions with high spatial resolution. To date, in combination with magnetic resonance imaging (MRI), polyacrylamide gel (PAG) polymers are the most promising gel dosimetry systems. The purpose of this work was to investigate the dose rate dependency of the PAGAT gel dosimeter at low dose rates. The gel dosimeter was used for measurement of the dose distribution around a Cs-137 source from a brachytherapy LDR source to have a range of dose rates from 0.97 Gy h −1 to 0.06 Gy h −1 . After irradiation of the PAGAT gel, it was observed that the dose measured by gel dosimetry was almost the same at different distances (different dose rates) from the source, although the points nearer the source had been expected to receive greater doses. Therefore, it was suspected that the PAGAT gel is dose rate dependent at low dose rates. To test this further, three other sets of measurements were performed by placing vials containing gel at different distances from a Cs-137 source. In the first two measurements, several plastic vials were exposed to equal doses at different dose rates. An ionization chamber was used to measure the dose rate at each distance. In addition, three TLD chips were simultaneously irradiated in order to verify the dose to each vial. In the third measurement, to test the oxygen diffusion through plastic vials, the experiment was repeated again using plastic vials in a nitrogen box and glass vials. The study indicates that oxygen diffusion through plastic vials for dose rates lower than 2 Gy h −1 would affect the gel dosimeter response and it is suggested that the plastic vials or (phantoms) in an oxygen free environment or glass vials should be used for the dosimetry of low dose rate sources using PAGAT gel to avoid oxygen diffusion through the vials.

  3. Toxicity bioassay in mice exposed to low dose-rate radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joog Sun; Gong, Eun Ji; Heo, Kyu; Yang, Kwang Mo [Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan (Korea, Republic of)

    2013-04-15

    The systemic effect of radiation increases in proportion to the dose amount and rate. The association between accumulated radiation dose and adverse effects, which is derived according to continuous low dose-rate radiation exposure, is not clearly elucidated. Our previous study showed that low dose-rate radiation exposure did not cause adverse effects in BALB/c mice at dose levels of ≤2 Gy, but the testis weight decreased at a dose of 2 Gy. In this study, we studied the effects of irradiation at the low dose rate (3.49 mGy/h) in the testes of C57BL/6 mice. Mice exposed to a total dose of 0.02, 0.2, and 2 Gy were found to be healthy and did not show any significant changes in body weight and peripheral blood components. However, mice irradiated with a dose of 2 Gy had significantly decreased testis weight. Further, histological studies and sperm evaluation also demonstrated changes consistent with the findings of decreased testis weight. In fertile patients found to have arrest of sperm maturation, the seminiferous tubules lack the DNMT1 and HDAC1 protein. The decrease of DNMT1 and HDAC1 in irradiated testis may be the part of the mechanism via which low dose-rate irradiation results in teticular injury. In conclusion, despite a low dose-rate radiation, our study found that when mice testis were irradiated with 2 Gy at 3.49 mGy/h dose rate, there was significant testicular and sperm damage with decreased DNMT1 and HDAC1 expression.

  4. Work to save dose: contrasting effective dose rates from radon exposure in workplaces and residences against the backdrop of public and occupational limits

    International Nuclear Information System (INIS)

    Whicker, Jeffrey J.; Mcnaughton, Michael W.

    2009-01-01

    Office workers are exposed to radon while at work and at home. Though there has been a multitude of studies reporting the measurements of radon concentrations and potential lung and effective doses associated with radon and progeny exposure in homes, similar studies on the concentrations and subsequent effective dose rates in the non-mine workplaces are lacking. Additionally, there are few, if any, comparative analyses of radon exposures at more 'typical' workplace with residential exposures within the same county. The purposes of this study were to measure radon concentrations in office and residential spaces in the same county and explore the radiation dose implications. Sixty-five track-etch detectors were deployed in office spaces and 47 were deployed in residences, all within Los Alamos County, New Mexico, USA. The sampling periods for these measurements were generally about three months. The measured concentrations were used to calculate and compare effective dose rates resulting from exposure while at work and at home. Results showed that full-time office workers receive on average about 8 times greater exposure at home than while in the office (2.3 mSv yr- versus 0.3 mSv yr-). The estimated effective dose rate for a more homebound person was about 3 mSv yr-. Estimating effective doses from background radon exposure in the same county as Los Alamos National Laboratory, with thousands of'radiological workers,' highlights interesting contrasts in radiation protection standards that span public and occupational settings. For example, the effective dose rate from background radon exposure in unregulated office spaces ranged up to 1.1 mSv yr-, which is similar to the 1 mSv yr- threshold for regulation ofa 'radiological worker,' as defined in the Department of Energy regulations for occupational exposure. Additionally, the estimated average effective dose total of> 3 mSv yf from radon background exposure in homes stands in contrast to the 0.1 mSv yr- air pathway

  5. Work to save dose: contrasting effective dose rates from radon exposure in workplaces and residences against the backdrop of public and occupational limits

    Energy Technology Data Exchange (ETDEWEB)

    Whicker, Jeffrey J [Los Alamos National Laboratory; Mcnaughton, Michael W [Los Alamos National Laboratory

    2009-01-01

    Office workers are exposed to radon while at work and at home. Though there has been a multitude of studies reporting the measurements of radon concentrations and potential lung and effective doses associated with radon and progeny exposure in homes, similar studies on the concentrations and subsequent effective dose rates in the non-mine workplaces are lacking. Additionally, there are few, if any, comparative analyses of radon exposures at more 'typical' workplace with residential exposures within the same county. The purposes of this study were to measure radon concentrations in office and residential spaces in the same county and explore the radiation dose implications. Sixty-five track-etch detectors were deployed in office spaces and 47 were deployed in residences, all within Los Alamos County, New Mexico, USA. The sampling periods for these measurements were generally about three months. The measured concentrations were used to calculate and compare effective dose rates resulting from exposure while at work and at home. Results showed that full-time office workers receive on average about 8 times greater exposure at home than while in the office (2.3 mSv yr-! versus 0.3 mSv yr-!). The estimated effective dose rate for a more homebound person was about 3 mSv yr-!. Estimating effective doses from background radon exposure in the same county as Los Alamos National Laboratory, with thousands of'radiological workers,' highlights interesting contrasts in radiation protection standards that span public and occupational settings. For example, the effective dose rate from background radon exposure in unregulated office spaces ranged up to 1.1 mSv yr-!, which is similar to the 1 mSv yr-! threshold for regulation ofa 'radiological worker,' as defined in the Department of Energy regulations for occupational exposure. Additionally, the estimated average effective dose total of> 3 mSv yf! from radon background exposure in homes stands in

  6. The effects of radiation dose-rate and quality on the induction of dominant lethals in mouse spermatids

    International Nuclear Information System (INIS)

    Searle, A.G.; Beechey, G.V.

    1981-01-01

    Hybrid male mice were given 3 Gy (300 rad) doses of X- or γ-irradiation at dose-rates of either 0.6 or 0.002 Gy/min for each radiation. Germ-cells treated as spermatids were tested for dominant lethality. Effects on spermatogonia were evaluated by studying testis-weight, sperm-count and sperm abnormalities. The rate of induction of dominant lethal mutations was 2.1 times as high after acute X-irradiation as after protracted γ-irradiation. Most of this difference resulted from the change in radiation quality, since the relative effectiveness of X- versus γ-irradiation was 1.9 at low and 1.6 at high dose rates. For each radiation, however, fewer dominant lethals were induced at low dose-rates than at high (low/high ratios of 0.8 and 0.9 respectively) although differences did not reach a significant level. There were no statistically significant effects of dose rate on testis-weight of sperm-count in the X-ray series, but there were significantly less severe effects on both with protraction of the γ-irradiation. Evidence for effects of radiation quality on these characters was conflicting. Frequencies of abnormal spermatozoa were markedly increased 7 weeks after irradiation but there were no consistent effects of radiation intensity or quality. (orig.)

  7. The short term effects of Low-dose-rate Radiation on EL4 Lymphoma Cell

    International Nuclear Information System (INIS)

    Bong, Jin Jong; Kang, Yu Mi; Shin, Suk Chull; Choi, Moo Hyun; Choi, Seung Jin; Kim, Hee Sun; Lee, Kyung Mi

    2012-01-01

    To determine the biological effects of low-dose-rate radiation ( 137 Cs, 2.95 mGy/h) on EL4 lymphoma cells during 24 h, we investigated the expression of genes related to apoptosis, cell cycle arrest, DNA repair, iron transport, and ribonucleotide reductase. EL4 cells were continuously exposed to low-dose-rate radiation (total dose: 70.8 mGy) for 24 h. We analyzed cell proliferation and apoptosis by trypan blue exclusion and flow cytometry, gene expression by real-time PCR, and protein levels with the apoptosis ELISA kit. Apoptosis increased in the Low-dose-rate irradiated cells, but cell number did not differ between non- (Non-IR) and Low-dose-rate irradiated (LDR-IR) cells. In concordance with apoptotic rate, the transcriptional activity of ATM, p53, p21, and Parp was upregulated in the LDR-IR cells. Similarly, Phospho-p53 (Ser15), cleaved caspase 3 (Asp175), and cleaved Parp (Asp214) expression was upregulated in the LDR-IR cells. No difference was observed in the mRNA expression of DNA repair-related genes (Msh2, Msh3, Wrn, Lig4, Neil3, ERCC8, and ERCC6) between Non-IR and LDR-IR cells. Interestingly, the mRNA of Trfc was upregulated in the LDR-IR cells. Therefore, we suggest that short-term Low-dose-rate radiation activates apoptosis in EL4 lymphoma cells.

  8. The short term effects of Low-dose-rate Radiation on EL4 Lymphoma Cell

    Energy Technology Data Exchange (ETDEWEB)

    Bong, Jin Jong; Kang, Yu Mi; Shin, Suk Chull; Choi, Moo Hyun; Choi, Seung Jin; Kim, Hee Sun [Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd, Seoul (Korea, Republic of); Lee, Kyung Mi [Global Research Lab, BAERI Institute, Dept. of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul (Korea, Republic of)

    2012-06-15

    To determine the biological effects of low-dose-rate radiation ({sup 137}Cs, 2.95 mGy/h) on EL4 lymphoma cells during 24 h, we investigated the expression of genes related to apoptosis, cell cycle arrest, DNA repair, iron transport, and ribonucleotide reductase. EL4 cells were continuously exposed to low-dose-rate radiation (total dose: 70.8 mGy) for 24 h. We analyzed cell proliferation and apoptosis by trypan blue exclusion and flow cytometry, gene expression by real-time PCR, and protein levels with the apoptosis ELISA kit. Apoptosis increased in the Low-dose-rate irradiated cells, but cell number did not differ between non- (Non-IR) and Low-dose-rate irradiated (LDR-IR) cells. In concordance with apoptotic rate, the transcriptional activity of ATM, p53, p21, and Parp was upregulated in the LDR-IR cells. Similarly, Phospho-p53 (Ser15), cleaved caspase 3 (Asp175), and cleaved Parp (Asp214) expression was upregulated in the LDR-IR cells. No difference was observed in the mRNA expression of DNA repair-related genes (Msh2, Msh3, Wrn, Lig4, Neil3, ERCC8, and ERCC6) between Non-IR and LDR-IR cells. Interestingly, the mRNA of Trfc was upregulated in the LDR-IR cells. Therefore, we suggest that short-term Low-dose-rate radiation activates apoptosis in EL4 lymphoma cells.

  9. Dose-rate and oxygen effects in models of lipid membranes: linoleic acid

    Energy Technology Data Exchange (ETDEWEB)

    Raleigh, J A; Kremers, W; Gaboury, B [Atomic Energy of Canada Ltd., Pinawa, Manitoba. Whiteshell Nuclear Research Establishment

    1977-03-01

    Cellular membranes have been suggested as possible loci for the development of the oxygen effect in radiobiology. Unsaturated lipids from membranes are subject to very efficient radiation-induced peroxidation, and the deleterious effects generally associated with lipid autoxidation could be initiated by ionizing radiation. Oxidative damage in lipids was characterized not only by high yields but also by a profound dose-rate effect. At dose-rates of x irradiation below 100 rad/min, a very sharp rise occurred in oxidative damage. This damage has been quantified spectrophotometrically in terms of diene conjugation (O.D. 234 mm) and chromatographically in terms of specific 9- and 13-hydroperoxide formation in linoleic acid micelles. Radical scavenging experiments indicated that hydroxyl radical attack initiated the oxidative damage. Dimethyl sulphoxide is exceptional in that it did not protect, but sensitized, linoleic acid to radiation-induced peroxidation. The yields of hydroperoxides were substantial (G = 10 to 40) and could be related to biological changes known to be effected by autoxidizing lipids.

  10. Effects of low dose rate irradiation on life span prolongation of human premature-aging syndrome model mice

    International Nuclear Information System (INIS)

    Nomura, Takaharu

    2006-01-01

    We previously showed that Type II diabetes model mice prolonged of their life span by life long low dose rate irradiation. We also found that antioxidant function in variety tissues of some strain of mice were enhancement after low dose/low dose rate irradiation. The prolongation of life span might depend on certain damaged level of reactive oxygen species. We thought the effect of the prolongation was due to the enhancement of the antioxidant activities after irradiation. We investigated whether the enhancement of antioxidant activities after low dose rate irradiation had an effect on life span prolongation. Four-week-old female human premature-aging syndrome model mice, kl/kl (klotho) mice, which the life span of this model mouse is about 65 days, were irradiated with gamma rays at 0.35, 0.70 or 1.2 mGy/hr. The 0.70 mGy/hr-irradiated group remarkably effected on the prolongation of their life span. Some mice of the group were extremely survived for about and more 100 days. Antioxidant activities in the irradiated groups were enhancement by low dose rate irradiation, however the dependence of the dose rates were not clearly difference. These results suggest that the antioxidant activities in this model mouse were enhanced by the low dose rate irradiation, and may make it possible to prolong the life span of this mouse. (author)

  11. Dose Response Model of Biological Reaction to Low Dose Rate Gamma Radiation

    International Nuclear Information System (INIS)

    Magae, J.; Furikawa, C.; Hoshi, Y.; Kawakami, Y.; Ogata, H.

    2004-01-01

    It is necessary to use reproducible and stable indicators to evaluate biological responses to long term irradiation at low dose-rate. They should be simple and quantitative enough to produce the results statistically accurate, because we have to analyze the subtle changes of biological responses around background level at low dose. For these purposes we chose micronucleus formation of U2OS, a human osteosarcoma cell line, as indicators of biological responses. Cells were exposed to gamma ray in irradiation rom bearing 50,000 Ci 60Co. After irradiation, they were cultured for 24 h in the presence of cytochalasin B to block cytokinesis, and cytoplasm and nucleus were stained with DAPI and prospidium iodide, respectively. the number of binuclear cells bearing micronuclei was counted under a fluorescence microscope. Dose rate in the irradiation room was measured with PLD. Dose response of PLD is linear between 1 mGy to 10 Gy, and standard deviation of triplicate count was several percent of mean value. We fitted statistically dose response curves to the data, and they were plotted on the coordinate of linearly scale response and dose. The results followed to the straight line passing through the origin of the coordinate axes between 0.1-5 Gy, and dose and does rate effectiveness factor (DDREF) was less than 2 when cells were irradiated for 1-10 min. Difference of the percent binuclear cells bearing micronucleus between irradiated cells and control cells was not statistically significant at the dose above 0.1 Gy when 5,000 binuclear cells were analyzed. In contrast, dose response curves never followed LNT, when cells were irradiated for 7 to 124 days. Difference of the percent binuclear cells bearing micronucleus between irradiated cells and control cells was not statistically significant at the dose below 6 Gy, when cells were continuously irradiated for 124 days. These results suggest that dose response curve of biological reaction is remarkably affected by exposure

  12. Effects of irradiation at different dose rates on the onset of type I diabetes in model mice

    International Nuclear Information System (INIS)

    Nomura, Takashi; Sakai, Kazuo

    2003-01-01

    We previously demonstrated that low-dose irradiation (0.5 Gy) increased the level of antioxidants and decreased the level of lipid peroxide in normal mice. We also found that 0.5 Gy-irradiation of NOD mice suppressed the onset of type I diabetes. These results were obtained by the irradiation at high dose rate. The aim of the present study is to examine the effects at the low dose rate. The mice were acutely irradiated with 0.5 Gy of X-rays (300 kVp) at 94.2 Gy/hr at 10, 11, 12, 13 or 14 weeks of age, or chronically irradiated with 0.5 Gy of 137 Cs γ-rays at 0.95 mGy/hr starting at 10,11,12,13 or 14 weeks of age. When irradiated at 12th week with the high dose rate X-rays, the onset of diabetes suppressed, and the increase in the specific activity of superoxide dismutase (SOD) in pancreas was observed. On the other hand, the low dose rate γ-rays delivered from 12th week of age to 14th was less effective in the suppression of the incidence of diabetes than the high dose rate X-rays at the 12-14 weeks of age. Furthermore, the significant increase in pancreatic SOD activity was not observed after the low dose irradiation. Splenic macrophage activities of superoxide generation were not affected by the high dose rate irradiation nor the low dose rate irradiation. (author)

  13. Radioactivities (dose rates) of rocks in Japan

    International Nuclear Information System (INIS)

    Matsuda, Hideharu; Minato, Susumu

    1995-01-01

    The radioactive distribution (radiation doses) of major rocks in Japan was monitored to clarify the factors influencing terrestrial gamma-ray absorbed dose rates. The rock samples were reduced to powder and analyzed by well-type NaI(Tl) scintillation detector and pulse height analyzer. Terrestrial gamma-ray dose rates were estimated in terms of gamma radiation dose rate 1 m above the ground. The radioactivity concentration was highest in acidic rock which contains much SiO 2 among igneous rock, followed by neutral rock, basic rock, and ultrabasic rock. The radioactive concentration was 30-40% lower in acidic and clastic rocks than those of the world average concentration. Higher radioactive concentration was observed in soils than the parent rocks of sedimentary rock and metamorphic rock. The gamma radiation dose rate was in proportion to the radioactive concentration of the rocks. To clarify the radioactive effect in the change course of rocks into soils, comparative measurement of outcrop and soil radioactive concentrations is important. (S.Y.)

  14. Biology of dose rate in brachytherapy

    International Nuclear Information System (INIS)

    Brenner, David J.

    1995-01-01

    Purpose: This course is designed for practitioners and beginners in brachytherapy. The aim is to review biological principles underlying brachytherapy, to understand why current treatment regimes are the way they are, and to discuss what the future may hold in store. Brachytherapy has a long history. It was suggested as long ago as 1903 by Alexander Graham Bell, and the optimal application of this technique has been a subject of debate ever since. 'Brachy' means 'short', and the essential features of conventional brachytherapy are: positioning of the source a short distance from, or in, the tumor, allowing good dose distributions; short overall treatment times, to counter tumor repopulation; low dose rate, enabling a good therapeutic advantage between tumor control and damage to late-responding tissue. The advantages of good dose distributions speak for themselves; in some situations, as we shall see, computer-based dose optimization can be used to improve them still further. The advantages of short overall times stem from the fact that accelerated repopulation of the tumor typically begins a few weeks after the start of a radiation treatment. If all the radiation can be crammed in before that time, the risks of tumor repopulation can be considerably reduced. In fact even external-beam radiotherapy is moving in this direction, with the use of highly accelerated protocols. The advantages of low dose rate stem from the differential response to fractionation of early- and late-responding tissues. Essentially, lowering the dose rate spares late-responding tissue more than it does early-responding tissue such as tumors. We shall also discuss some recent innovations in the context of the general principles that have been outlined. For example, High dose rate brachytherapy, particularly for the uterine cervix: Does it work? If so, when and why? Use of Ir-192 sources, with a half life of 70 days: Should corrections be made for changing biological effectiveness as the dose

  15. Comparison of radiosensitization by 41 deg. C hyperthermia during low dose rate irradiation and during pulsed simulated low dose rate irradiation in human glioma cells

    International Nuclear Information System (INIS)

    Raaphorst, G. Peter; Ng, Cheng E.; Shahine, Bilal

    1999-01-01

    Purpose: Long duration mild hyperthermia has been shown to be an effective radiosensitizer when given concurrently with low dose rate irradiation. Pulsed simulated low dose rate (PSLDR) is now being used clinically, and we have set out to determine whether concurrent mild hyperthermia can be an effective radiosensitizer for the PSLDR protocol. Materials and Methods: Human glioma cells (U-87MG) were grown to plateau phase and treated in plateau phase in order to minimize cell cycle redistribution during protracted treatments. Low dose rate (LDR) irradiation and 41 deg. C hyperthermia were delivered by having a radium irradiator inside a temperature-controlled incubator. PSLDR was given using a 150 kVp X-ray unit and maintaining the cells at 41 deg. C between irradiations. The duration of irradiation and concurrent heating depended on total dose and extended up to 48 h. Results: When 41 deg. C hyperthermia was given currently with LDR or PSLDR, the thermal enhancement ratios (TER) were about the same if the average dose rate for PSLDR was the same as for LDR. At higher average dose rates for PSLDR the TERs became less. Conclusions: Our data show that concurrent mild hyperthermia can be an effective sensitizer for PSLDR. This sensitization can be as effective as for LDR if the same average dose rate is used and the TER increases with decreasing dose rate. Thus mild hyperthermia combined with PSLDR may be an effective clinical protocol

  16. Dose rate effectiveness in radiation-induced teratogenesis in mice

    International Nuclear Information System (INIS)

    Kato, F.; Ootsuyama, A.; Norimura, T.

    2000-01-01

    To investigate the role of p53 gene in tissue repair of teratogenic injury, we compared incidence of radiation-induced malformations in homozygous p53(-/-) mice, heterozygous p53(+/-) mice and wild-type p53(+/+) mice. After X-irradiation with 2 Gy at high dose rate on 9.5 days of gestation, p53(-/-) mice showed higher incidences of anomalies and higher resistance to prenatal deaths than p53(+/+) mice. This reciprocal relationship of radiosensitivity to anomalies and deaths supports the notion that embryos or fetuses have a p53-dependent 'guardian' that aborts cells bearing radiation-induced teratogenic DNA damage. In fact, after X-irradiation, the number of apoptotic cells was greatly increased in p53(+/+) fetuses but not in p53(-/-) fetuses. The same dose of γ-ray exposure at low dose rate on 9.5-10.5 day of gestation produced significant reduction of radiation-induced malformation in p53(+/+) and p53(+/-) mice, remained teratogenic for p53(-/-) mice. These results suggest that complete elimination of teratogenic damage from irradiated tissues requires the concerted cooperation of two mechanisms; proficient DNA repair and the p53-dependent apoptotic tissue repair. When concerted DNA repair and apoptosis functions efficiently, there is a threshold dose-rate for radiation-induced malformations. (author)

  17. Late effects of post-high-dose-rate brachytherapy for oropharyngeal carcinoma: are they severer than post-low-dose-rate?

    International Nuclear Information System (INIS)

    Nose, T.; Koizumi, M.; Nishiyama, K.; Peiffert, D.; Lapeyre, M.; Hoffstetter, S.

    2004-01-01

    Background: late effects by high-dose-rate (HDR) brachytherapy have been believed severer than low-dose-rate (LDR) provided tumor control was constant. Local control of oropharyngeal carcinoma with HDR at Osaka Medical Center was comparable to LDR series from Centre Alexis Vautrin (82%, 79.5%, respectively). To assess the feasibility of HDR brachytherapy, the late effects were compared. Patients and methods: the data of 29 HDR and 24 LDR patients (median follow-up of 27 and 29.5 months, respectively; p = 0.89) were collected. The HDR schedule was 21 Gy/3.5 fractions/2 days following 46 Gy/23 fractions external beam, while 25 Gy/3 days following 50 Gy/25 fractions external beam was for LDR. Late changes were evaluated using RTOG/EORTC late morbidity scoring scheme. For subclinical late changes, mucosa chapter of Dische score was modified for brachytherapy. Scores were discussed through photos and were agreed on by authors. Late sequelae were estimated, by reviewing charts, concerning frequency, severity, and duration of mucosal damages (erosion and ulcer). Results: Late changes were of no difference (p = 0.12 for EORTC/RTOG, and p = 0.45, 0.47, 1.00, 0.12, 0.16, 0.95, 0.27, 0.21 for erythema, ulceration, edema, thinning, pallor, telangiectasia, mobility impairment of tongue/faucial pillars, respectively, of the modified Dische score). Late sequelae showed no differences (p = 0.90, 0.12, 0.40 for frequency, severity, duration, respectively, of mucosal damages). Conclusion: the late effects by HDR were not severer than by LDR. HDR oropharyngeal brachytherapy is as safe as LDR. (orig.)

  18. Effects of dose, dose-rate and fraction on radiation-induced breast and lung cancers

    International Nuclear Information System (INIS)

    Howe, G.R.

    1992-01-01

    Recent results from a large Canadian epidemiologic cohort study of low-LET radiation and cancer will be described. This is a study of 64,172 tuberculosis patients first treated in Canada between 1930 and 1952, of whom many received substantial doses to breast and lung tissue from repeated chest fluoroscopies. The mortality of the cohort between 1950 and 1987 has been determined by computerized record linkage to the National Mortality Data Base. There is a strong positive association between radiation and breast cancer risk among the females in the cohort, but in contrast very little evidence of any increased risk in lung cancer. The results of this and other studies suggest that the effect of dose-rate and/or fractionation on cancer risk may will differ depending upon the particular cancer being considered. (author)

  19. Dose escalation using conformal high-dose-rate brachytherapy improves outcome in unfavorable prostate cancer

    International Nuclear Information System (INIS)

    Martinez, Alvaro A.; Gustafson, Gary; Gonzalez, Jose; Armour, Elwood; Mitchell, Chris; Edmundson, Gregory; Spencer, William; Stromberg, Jannifer; Huang, Raywin; Vicini, Frank

    2002-01-01

    Purpose: To overcome radioresistance for patients with unfavorable prostate cancer, a prospective trial of pelvic external beam irradiation (EBRT) interdigitated with dose-escalating conformal high-dose-rate (HDR) prostate brachytherapy was performed. Methods and Materials: Between November 1991 and August 2000, 207 patients were treated with 46 Gy pelvic EBRT and increasing HDR brachytherapy boost doses (5.50-11.5 Gy/fraction) during 5 weeks. The eligibility criteria were pretreatment prostate-specific antigen level ≥10.0 ng/mL, Gleason score ≥7, or clinical Stage T2b or higher. Patients were divided into 2 dose levels, low-dose biologically effective dose 93 Gy (149 patients). No patient received hormones. We used the American Society for Therapeutic Radiology and Oncology definition for biochemical failure. Results: The median age was 69 years. The mean follow-up for the group was 4.4 years, and for the low and high-dose levels, it was 7.0 and 3.4 years, respectively. The actuarial 5-year biochemical control rate was 74%, and the overall, cause-specific, and disease-free survival rate was 92%, 98%, and 68%, respectively. The 5-year biochemical control rate for the low-dose group was 52%; the rate for the high-dose group was 87% (p<0.001). Improvement occurred in the cause-specific survival in favor of the brachytherapy high-dose level (p=0.014). On multivariate analysis, a low-dose level, higher Gleason score, and higher nadir value were associated with increased biochemical failure. The Radiation Therapy Oncology Group Grade 3 gastrointestinal/genitourinary complications ranged from 0.5% to 9%. The actuarial 5-year impotency rate was 51%. Conclusion: Pelvic EBRT interdigitated with transrectal ultrasound-guided real-time conformal HDR prostate brachytherapy boost is both a precise dose delivery system and a very effective treatment for unfavorable prostate cancer. We demonstrated an incremental beneficial effect on biochemical control and cause

  20. High Dose-Rate Versus Low Dose-Rate Brachytherapy for Lip Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ghadjar, Pirus, E-mail: pirus.ghadjar@insel.ch [Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern (Switzerland); Bojaxhiu, Beat [Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern (Switzerland); Simcock, Mathew [Swiss Group for Clinical Cancer Research Coordinating Center, Bern (Switzerland); Terribilini, Dario; Isaak, Bernhard [Division of Medical Radiation Physics, Inselspital, Bern University Hospital, and University of Bern, Bern (Switzerland); Gut, Philipp; Wolfensberger, Patrick; Broemme, Jens O.; Geretschlaeger, Andreas; Behrensmeier, Frank; Pica, Alessia; Aebersold, Daniel M. [Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern (Switzerland)

    2012-07-15

    Purpose: To analyze the outcome after low-dose-rate (LDR) or high-dose-rate (HDR) brachytherapy for lip cancer. Methods and Materials: One hundred and three patients with newly diagnosed squamous cell carcinoma of the lip were treated between March 1985 and June 2009 either by HDR (n = 33) or LDR brachytherapy (n = 70). Sixty-eight patients received brachytherapy alone, and 35 received tumor excision followed by brachytherapy because of positive resection margins. Acute and late toxicity was assessed according to the Common Terminology Criteria for Adverse Events 3.0. Results: Median follow-up was 3.1 years (range, 0.3-23 years). Clinical and pathological variables did not differ significantly between groups. At 5 years, local recurrence-free survival, regional recurrence-free survival, and overall survival rates were 93%, 90%, and 77%. There was no significant difference for these endpoints when HDR was compared with LDR brachytherapy. Forty-two of 103 patients (41%) experienced acute Grade 2 and 57 of 103 patients (55%) experienced acute Grade 3 toxicity. Late Grade 1 toxicity was experienced by 34 of 103 patients (33%), and 5 of 103 patients (5%) experienced late Grade 2 toxicity; no Grade 3 late toxicity was observed. Acute and late toxicity rates were not significantly different between HDR and LDR brachytherapy. Conclusions: As treatment for lip cancer, HDR and LDR brachytherapy have comparable locoregional control and acute and late toxicity rates. HDR brachytherapy for lip cancer seems to be an effective treatment with acceptable toxicity.

  1. Tank Z-361 dose rate calculations

    International Nuclear Information System (INIS)

    Richard, R.F.

    1998-01-01

    Neutron and gamma ray dose rates were calculated above and around the 6-inch riser of tank Z-361 located at the Plutonium Finishing Plant. Dose rates were also determined off of one side of the tank. The largest dose rate 0.029 mrem/h was a gamma ray dose and occurred 76.2 cm (30 in.) directly above the open riser. All other dose rates were negligible. The ANSI/ANS 1991 flux to dose conversion factor for neutrons and photons were used in this analysis. Dose rates are reported in units of mrem/h with the calculated uncertainty shown within the parentheses

  2. Terrestrial gamma dose rate in Pahang state Malaysia

    International Nuclear Information System (INIS)

    Gabdo, H.T.; Federal College of Education, Yola; Ramli, A.T.; Sanusi, M.S.; Saleh, M.A.; Garba, N.N.; Ahmadu Bello University, Zaria

    2014-01-01

    Environmental terrestrial gamma radiations (TGR) were measured in Pahang state Malaysia between January and April 2013. The TGR dose rates ranged from 26 to 750 nGy h -1 . The measurements were done based on geology and soil types of the area. The mean TGR dose rate was found to be 176 ± 5 nGy h -1 . Few areas of relatively enhanced activity were located in Raub, Temerloh, Bentong and Rompin districts. These areas have external gamma dose rates of between 500 and 750 nGy h -1 . An Isodose map of the state was produced using ArcGIS9 software version 9.3. To evaluate the radiological hazard due to terrestrial gamma dose, the annual effective dose equivalent and the mean population weighted dose rate were calculated and found to be 0.22 mSv year -1 and 168 nGy h -1 respectively. (author)

  3. Effects of gamma irradiation dose rate on microbiological and physical quality of mushrooms (Agaricus bisporus)

    International Nuclear Information System (INIS)

    Beaulieu, M.; Lacroix, M.; Charbonneau, R.; Laberge, I.; Gagnon, M.

    1992-01-01

    The effects of gamma irradiation (2 kGy) and dose rate of irradiation (4.5 and 32.0 kGy/h) on increasing the shelf-life and some quality properties of the mushrooms (Agaricus bisporus) were investigated during storage at 15 deg C and 90% R.H. The retardation of mushroom growth and ageing by reduction of gamma irradiation dose rate (4.5 kGy) was observed by measurements of the cap opening, the stipe increase, the cap diameter, the weight loss and the color of the caps. The color was measured in order to evaluate the lightness with the L value measurement and the color changes were measured in terms of lightness, hue and chroma. The control of fungal and bacterial diseases were also evaluated. The irradiation of mushrooms at both dose rates of irradiation was found to be effective in lowering microorganism counts initially and throughout storage and increased the shelf-life by four days. This study also showed that mushrooms exposed to a lower dose rate (4.5 kGy/h) of irradiation preserve the whiteness and reduce the stripe increase of mushrooms during storage

  4. Atmospheric radiation flight dose rates

    Science.gov (United States)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  5. Dose-rate effects for mammary tumor development in female Sprague-Dawley rats exposed to X and γ radiation

    International Nuclear Information System (INIS)

    Johnson, J.R.; Gragtmans, N.J.; Myers, D.K.; Jones, A.R.

    1989-01-01

    Mammary tumour development was followed in two experiments involving a total of 2229 female Sprague-Dawley rats exposed to various doses of X or γ rays at different dose rates. The data for another 462 rats exposed to tritiated water in one of these experiments were also analyzed. The incidence of adenocarcinomas and fibroadenomas at a given time after exposure increased linearly in proportion to total radiation dose for most groups. However, no significant increase in adenocarcinomas was observed with chronic γ exposures up to 1.1 Gy, and the increase in fibroadenomas observed with chronic gamma exposures at a dose rate of 0.0076 Gy h -1 up to an accumulated dose of 3.3 Gy was small compared to that observed after acute exposures. The incidence of all mammary tumors increased almost linearly with the log of dose rate in the range 0.0076 to 26.3 Gy h -1 for 3 Gy total dose of gamma rays. The effects of X rays appeared to be less influenced by dose rate than were the effects of γ rays. (author)

  6. Effect of repeated oral therapeutic doses of methylphenidate on food intake and growth rate in rats.

    Science.gov (United States)

    Alam, Nausheen; Najam, Rahila

    2015-01-01

    Central nervous system stimulants are known to produce anorexia. Previous data suggest that methylphenidate can have variable effects on caloric intake and growth rate. A dose-response study was performed to monitor caloric intake, liquid intake and growth rate in rats following repeated administration of human oral therapeutic doses 2 mg/kg/day, 5mg/kg/day and 8mg/kg/day of methylphenidate. We found that food intake and water intake, increased in all weeks and at all doses used in the study. Growth rate increased more at higher dose (8mg/kg/day) and at low dose (2mg/kg/day) of methylphenidate in 1(st) and 2(nd) week whereas more decreased by the above doses in 3(rd) week, suggesting that food stimulation leads to initial increase in growth rate but long term administration of methylphenidate attenuate growth rate that is not due to modulation of appetite but may be due to anxiety and increased activity produce by stimulants. A possible role of DA, 5HT receptors in modulation of appetite and anxiety is discussed.

  7. Dose-rate effects in synchronous mammalian cells in culture. II. A comparison of the life cycle of HeLa cells during continuous irradiation or multiple-dose fractionation

    International Nuclear Information System (INIS)

    Mitchell, J.B.; Bedford, J.S.

    1977-01-01

    The life cycle of synchronized S3 HeLa cells was examined during continuous irradiation at a dose rate of approximately 37 rad/hr and during multiple dose fractionation schedules of the same average dose rate (total dose / overall time = average dose rate). For all regimes given at this dose rate the effects on the life cyclee were similar. Cells progressed through G1 and S without appreciable delay and experienced a minimum G2 delay of about 10 hr. Cells eventually entered mitosis but virtually none were able to complete a successful division

  8. Health effects of low doses at low dose rates: dose-response relationship modeling in a cohort of workers of the nuclear industry

    International Nuclear Information System (INIS)

    Metz-Flamant, Camille

    2011-01-01

    The aim of this thesis is to contribute to a better understanding of the health effects of chronic external low doses of ionising radiation. This work is based on the French cohort of CEA-AREVA NC nuclear workers. The mains stages of this thesis were (1) conducting a review of epidemiological studies on nuclear workers, (2) completing the database and performing a descriptive analysis of the cohort, (3) quantifying risk by different statistical methods and (4) modelling the exposure-time-risk relationship. The cohort includes monitored workers employed more than one year between 1950 and 1994 at CEA or AREVA NC companies. Individual annual external exposure, history of work, vital status and causes of death were reconstructed for each worker. Standardized mortality ratios using French national mortality rates as external reference were computed. Exposure-risk analysis was conducted in the cohort using the linear excess relative risk model, based on both Poisson regression and Cox model. Time dependent modifying factors were investigated by adding an interaction term in the model or by using exposure time windows. The cohort includes 36, 769 workers, followed-up until age 60 in average. During the 1968- 2004 period, 5, 443 deaths, 2, 213 cancers, 62 leukemia and 1, 314 cardiovascular diseases were recorded. Among the 57% exposed workers, the mean cumulative dose was 21.5 milli-sieverts (mSv). A strong Healthy Worker Effect is observed in the cohort. Significant elevated risks of pleura cancer and melanoma deaths were observed in the cohort but not associated with dose. No significant association was observed with solid cancers, lung cancer and cardiovascular diseases. A significant dose-response relationship was observed for leukemia excluding chronic lymphatic leukemia, mainly for doses received less than 15 years before and for yearly dose rates higher than 10 mSv. This PhD work contributes to the evaluation of risks associated to chronic external radiation

  9. Estimated effective dose rates from radon exposure in workplaces and residences within Los Alamos county in New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Whicker, Jeffrey J [Los Alamos National Laboratory; Mcnaughton, Michael [Los Alamos National Laboratory

    2009-01-01

    Many millions of office workers are exposed to radon while at work and at home. Though there has been a multitude of studies reporting the measurements of radon concentrations and potential lung and effective doses associated with radon and progeny exposure in homes, similar studies on the concentrations and subsequent effective dose rates in the workplace are lacking. The purposes of this study were to measure radon concentrations in office and residential spaces in the same county and explore the radiation dose implications. Sixty-five track-etch detectors were deployed in office spaces and 47 were deployed in residences, all within Los Alamos County, New Mexico, USA. The sampling periods for these measurements were generally about three months. The measured concentrations were then used to calculate and compare effective dose rates resulting from exposure while at work and at home. Results showed that full-time office workers receive on average about nine times greater exposure at home than while in the office (691 mrem yr{sup -1} versus 78 mrem yr{sup -1}). The estimated effective dose rate for a more homebound person was 896 mrem yr{sup -1}. These effective dose rates are contrasted against the 100 mrem yr{sup -1} threshold for regulation of a 'radiological worker' defined in the Department of Energy regulations occupational exposure and the 10 mrem yr{sup -1} air pathway effective public dose limit regulated by the Environmental Protection Agency.

  10. Posttreatment visual acuity in patients treated with episcleral plaque therapy for choroidal melanomas: dose and dose rate effects

    International Nuclear Information System (INIS)

    Jones, Robert; Gore, Elizabeth; Mieler, William; Murray, Kevin; Gillin, Michael; Albano, Katherine; Erickson, Beth

    2002-01-01

    Purpose: To determine the relationship between the long-term visual function and the dose and dose rates delivered to critical ocular structures in patients with choroidal melanoma treated with 125 I episcleral plaque radiotherapy. Methods and Materials: From 1987 to 1994, 63 patients underwent 125 I episcleral plaque (Collaborative Ocular Melanoma Study [COMS] design) application for the treatment of choroidal melanoma. The mean tumor height was 4.5 mm (range 1.7-8.3). Doses and dose rates at the tumor apex, macula, and optic disc were calculated. Forty-three records were scored to assess whether a decrease in visual acuity of >2 lines on a standard Snellen eye chart had occurred. Patient age and the presence of hypertension or diabetes were noted. Statistical analysis was performed to assess both the rate at which visual decline had occurred and the presence of significant factors that had contributed to this decline. Results: With a median follow-up of 36 months, the 3-year actuarial survival rate was 93.6%. The 3-year actuarial local control rate was 86.9%. The median time to visual loss after therapy was 18.7 months. The 3-year actuarial rate of visual preservation was 40.5%. Multivariate analysis demonstrated higher macula dose rates (p=0.003) to forecast visual decline. Macula dose rates of 111±11.1 cGy/h were associated with a 50% risk of significant visual loss. Conclusion: Patients in our series treated with 125 I plaque brachytherapy for choroidal melanoma experienced favorable tumor control, but with a measurable incidence of visual decline. Higher dose rates to the macula correlated strongly with poorer posttreatment visual outcome. This information may be valuable in selecting the optimal dose rates to treat choroidal melanomas and to predict the risk of visual decline

  11. Relative effect of dose-rate values and fractionation on late responding tissues and tumours

    International Nuclear Information System (INIS)

    Malgieri, F.

    1995-01-01

    There are currently available different facilities for radiotherapy also with regard to the dose-rate values (in the ranges LDR - MDR - HDR), sometimes used alternatively or subsequently for the same tumour. We have set up a 'unitary' L-Q model, based on Liversage's and Dale's works, that explicitly include also the dose-rate value and a correction factor of the β parameter depending on the sublethal damage repair time constant, on the length of time of each irradiation and on the time interval between following irradiation for to realize the effect of the incomplete repair when the time interval is short as, for example, in the PLDR. This 'unitary' L-Q model is, of course, usable in the same way both for external beam therapy and for curietherapy and make possible to compute and compare, for each kind of tumour and normal tissue, the relative effect of the different available modality of radiotherapy also with regard to the dose-rate. We show and discuss the resulting relationships of the ratio BED 'late'/BED tumour changing the time-dose parameters and the values of the biological characteristic parameters T p , α/β and μ, for defined size of tumour control and different value of the doserate

  12. Estimation of dose from chromosome aberration rate

    International Nuclear Information System (INIS)

    Li Deping

    1990-01-01

    The methods and skills of evaluating dose from correctly scored shromsome aberration rate are presented, and supplemented with corresponding BASIC computer code. The possibility and preventive measures of excessive probability of missing score of the aberrations in some of the current routine score methods are discussed. The use of dose-effect relationship with exposure time correction factor G in evaluating doses and their confidence intervals, dose estimation in mixed n-γ exposure, and identification of high by nonuniform acute exposure to low LET radiation and its dose estimation are discussed in more detail. The difference of estimated dose due to whether the interaction between subleisoms produced by n and γ have been taken into account is examined. In fitting the standard dose-aberration rate curve, proper weighing of experiment points and comparison with commonly accepted values are emphasised, and the coefficient of variation σ y √y of the aberration rate y as a function of dose and exposure time is given. In appendix I and II, the dose-aberration rate formula is derived from dual action theory, and the time variation of subleisom is illustrated and in appendix III, the estimation of dose from scores of two different types of aberrations (of other related score) is illustrated. Two computer codes are given in appendix IV, one is a simple code, the other a complete code, including the fitting of standard curve. the skills of using compressed data storage, and the production of simulated 'data ' for testing the curve fitting procedure are also given

  13. High Dose-Rate Versus Low Dose-Rate Brachytherapy for Lip Cancer

    International Nuclear Information System (INIS)

    Ghadjar, Pirus; Bojaxhiu, Beat; Simcock, Mathew; Terribilini, Dario; Isaak, Bernhard; Gut, Philipp; Wolfensberger, Patrick; Brömme, Jens O.; Geretschläger, Andreas; Behrensmeier, Frank; Pica, Alessia; Aebersold, Daniel M.

    2012-01-01

    Purpose: To analyze the outcome after low-dose-rate (LDR) or high-dose-rate (HDR) brachytherapy for lip cancer. Methods and Materials: One hundred and three patients with newly diagnosed squamous cell carcinoma of the lip were treated between March 1985 and June 2009 either by HDR (n = 33) or LDR brachytherapy (n = 70). Sixty-eight patients received brachytherapy alone, and 35 received tumor excision followed by brachytherapy because of positive resection margins. Acute and late toxicity was assessed according to the Common Terminology Criteria for Adverse Events 3.0. Results: Median follow-up was 3.1 years (range, 0.3–23 years). Clinical and pathological variables did not differ significantly between groups. At 5 years, local recurrence-free survival, regional recurrence-free survival, and overall survival rates were 93%, 90%, and 77%. There was no significant difference for these endpoints when HDR was compared with LDR brachytherapy. Forty-two of 103 patients (41%) experienced acute Grade 2 and 57 of 103 patients (55%) experienced acute Grade 3 toxicity. Late Grade 1 toxicity was experienced by 34 of 103 patients (33%), and 5 of 103 patients (5%) experienced late Grade 2 toxicity; no Grade 3 late toxicity was observed. Acute and late toxicity rates were not significantly different between HDR and LDR brachytherapy. Conclusions: As treatment for lip cancer, HDR and LDR brachytherapy have comparable locoregional control and acute and late toxicity rates. HDR brachytherapy for lip cancer seems to be an effective treatment with acceptable toxicity.

  14. In vitro biotransformation rates in fish liver S9: effect of dosing techniques.

    Science.gov (United States)

    Lee, Yung-Shan; Lee, Danny H Y; Delafoulhouze, Maximilien; Otton, S Victoria; Moore, Margo M; Kennedy, Chris J; Gobas, Frank A P C

    2014-08-01

    In vitro biotransformation assays are currently being explored to improve estimates of bioconcentration factors of potentially bioaccumulative organic chemicals in fish. The present study compares thin-film and solvent-delivery dosing techniques as well as single versus multiple chemical dosing for measuring biotransformation rates of selected polycyclic aromatic hydrocarbons in rainbow trout (Oncorhynchus mykiss) liver S9. The findings show that biotransformation rates of very hydrophobic substances can be accurately measured in thin-film sorbent-dosing assays from concentration-time profiles in the incubation medium but not from those in the sorbent phase because of low chemical film-to-incubation-medium mass-transfer rates at the incubation temperature of 13.5 °C required for trout liver assays. Biotransformation rates determined by thin-film dosing were greater than those determined by solvent-delivery dosing for chrysene (octanol-water partition coefficient [KOW ] =10(5.60) ) and benzo[a]pyrene (KOW  =10(6.04) ), whereas there were no statistical differences in pyrene (KOW  =10(5.18) ) biotransformation rates between the 2 methods. In sorbent delivery-based assays, simultaneous multiple-chemical dosing produced biotransformation rates that were not statistically different from those measured in single-chemical dosing experiments for pyrene and benzo[a]pyrene but not for chrysene. In solvent-delivery experiments, multiple-chemical dosing produced biotransformation rates that were much smaller than those in single-chemical dosing experiments for all test chemicals. While thin-film sorbent-phase and solvent delivery-based dosing methods are both suitable methods for measuring biotransformation rates of substances of intermediate hydrophobicity, thin-film sorbent-phase dosing may be more suitable for superhydrophobic chemicals. © 2014 SETAC.

  15. ASTERIX a new facility for simulation of dose rate effects on electronics

    International Nuclear Information System (INIS)

    Johan, A.; Azais, B.; Malaval, C.; Raboisson, G.; Roche, M.

    1989-01-01

    ASTERIX is a pulsed X-ray generator used to simulate and study dose rate effects on electronic equipments. This generator was built by the Centre de VALDUC of French Atomic Energy Commission, to the request of CEG. The housing of the generator was conceived in such a way as to minimize the stray signals due to electromagnetic radiations emitted by the generator during the shots, or by X-ray direct effects on cables or surrounding electronic equipments associated to components and systems under test. The radiation pulse width is 35 ns (FWHM) with a rise time of 18 ns. In normal use the dose rate amplitude reached inside silicon are respectively: 2 x 10 12 cGy (Si)/s on a 80 cm 2 area in contact with the converter; 1.5 x 10 11 cGy(Si)/s on a 700 cm 2 area and of 2 x 10 10 cGy(Si)/s at 1 meter from the converter [fr

  16. Microfluidic thrombosis under multiple shear rates and antiplatelet therapy doses.

    Directory of Open Access Journals (Sweden)

    Melissa Li

    Full Text Available The mainstay of treatment for thrombosis, the formation of occlusive platelet aggregates that often lead to heart attack and stroke, is antiplatelet therapy. Antiplatelet therapy dosing and resistance are poorly understood, leading to potential incorrect and ineffective dosing. Shear rate is also suspected to play a major role in thrombosis, but instrumentation to measure its influence has been limited by flow conditions, agonist use, and non-systematic and/or non-quantitative studies. In this work we measured occlusion times and thrombus detachment for a range of initial shear rates (500, 1500, 4000, and 10000 s(-1 and therapy concentrations (0-2.4 µM for eptifibatide, 0-2 mM for acetyl-salicylic acid (ASA, 3.5-40 Units/L for heparin using a microfluidic device. We also measured complete blood counts (CBC and platelet activity using whole blood impedance aggregometry. Effects of shear rate and dose were analyzed using general linear models, logistic regressions, and Cox proportional hazards models. Shear rates have significant effects on thrombosis/dose-response curves for all tested therapies. ASA has little effect on high shear occlusion times, even at very high doses (up to 20 times the recommended dose. Under ASA therapy, thrombi formed at high shear rates were 4 times more prone to detachment compared to those formed under control conditions. Eptifibatide reduced occlusion when controlling for shear rate and its efficacy increased with dose concentration. In contrast, the hazard of occlusion from ASA was several orders of magnitude higher than that of eptifibatide. Our results show similar dose efficacy to our low shear measurements using whole blood aggregometry. This quantitative and statistically validated study of the effects of a wide range of shear rate and antiplatelet therapy doses on occlusive thrombosis contributes to more accurate understanding of thrombosis and to models for optimizing patient treatment.

  17. Pulsed dose rate and fractionated high dose rate brachytherapy: choice of brachytherapy schedules to replace low dose rate treatments

    International Nuclear Information System (INIS)

    Visser, Andries G.; Aardweg, Gerard J.M.J. van den; Levendag, Peter C.

    1996-01-01

    to be less need for strong fractionation in PDR schedules. If the overall time is at least as long as that of the LDR schedule and if the total physical dose is (slightly) adapted, PDR schedules can be designed using longer pulse intervals of up to 3 h. Schedules with sufficiently long intervals have significant logistic advantages in terms of patient care and treatment tolerance. However, in general, PDR schedules that apply more fractionation have a lower risk of overdosing normal tissues in comparison to fractionated HDR schedules. Applying probable ranges for the values of α/β and T (1(2)) , the model calculations indicate that the differences in effects between the proposed fractionated HDR and PDR schedules could be rather small. To detect the magnitude of these differences, (randomized) clinical studies with rather large patient groups might be needed. Conclusions: Pulsed dose rate treatment schedules with longer intervals of up to 3 h appear adequate to replace LDR treatment schedules. Whether PDR schedules can, indeed, replace LDR treatment schedules and whether they offer detectable advantages over schedules with less fractionation (fractionated HDR) should be tested in clinical studies

  18. The effect of low dose rate on metabolomic response to radiation in mice

    International Nuclear Information System (INIS)

    Goudarzi, Maryam; Mak, Tytus D.; Chen, Congju; Smilenov, Lubomir B.; Brenner, David J.; Fornace, Albert J.

    2014-01-01

    Metabolomics has been shown to have utility in assessing responses to exposure by ionizing radiation (IR) in easily accessible biofluids such as urine. Most studies to date from our laboratory and others have employed γ-irradiation at relatively high dose rates (HDR), but many environmental exposure scenarios will probably be at relatively low dose rates (LDR). There are well-documented differences in the biologic responses to LDR compared to HDR, so an important question is to assess LDR effects at the metabolomics level. Our study took advantage of a modern mass spectrometry approach in exploring the effects of dose rate on the urinary excretion levels of metabolites 2 days after IR in mice. A wide variety of statistical tools were employed to further focus on metabolites, which showed responses to LDR IR exposure (0.00309 Gy/min) distinguishable from those of HDR. From a total of 709 detected spectral features, more than 100 were determined to be statistically significant when comparing urine from mice irradiated with 1.1 or 4.45 Gy to that of sham-irradiated mice 2 days post-exposure. The results of this study show that LDR and HDR exposures perturb many of the same pathways such as TCA cycle and fatty acid metabolism, which also have been implicated in our previous IR studies. However, it is important to note that dose rate did affect the levels of particular metabolites. Differences in urinary excretion levels of such metabolites could potentially be used to assess an individual's exposure in a radiobiological event and thus would have utility for both triage and injury assessment. (orig.)

  19. Organ and effective dose rate coefficients for submersion exposure in occupational settings

    International Nuclear Information System (INIS)

    Veinot, K.G.; Dewji, S.A.; Hiller, M.M.; Eckerman, K.F.; Easterly, C.E.

    2017-01-01

    External dose coefficients for environmental exposure scenarios are often computed using assumption on infinite or semi-infinite radiation sources. For example, in the case of a person standing on contaminated ground, the source is assumed to be distributed at a given depth (or between various depths) and extending outwards to an essentially infinite distance. In the case of exposure to contaminated air, the person is modeled as standing within a cloud of infinite, or semi-infinite, source distribution. However, these scenarios do not mimic common workplace environments where scatter off walls and ceilings may significantly alter the energy spectrum and dose coefficients. In this paper, dose rate coefficients were calculated using the International Commission on Radiological Protection (ICRP) reference voxel phantoms positioned in rooms of three sizes representing an office, laboratory, and warehouse. For each room size calculations using the reference phantoms were performed for photons, electrons, and positrons as the source particles to derive mono-energetic dose rate coefficients. Since the voxel phantoms lack the resolution to perform dose calculations at the sensitive depth for the skin, a mathematical phantom was developed and calculations were performed in each room size with the three source particle types. Coefficients for the noble gas radionuclides of ICRP Publication 107 (e.g., Ne, Ar, Kr, Xe, and Rn) were generated by folding the corresponding photon, electron, and positron emissions over the mono-energetic dose rate coefficients. Results indicate that the smaller room sizes have a significant impact on the dose rate per unit air concentration compared to the semi-infinite cloud case. For example, for Kr-85 the warehouse dose rate coefficient is 7% higher than the office dose rate coefficient while it is 71% higher for Xe-133. (orig.)

  20. Organ and effective dose rate coefficients for submersion exposure in occupational settings

    Energy Technology Data Exchange (ETDEWEB)

    Veinot, K.G. [Easterly Scientific, Knoxville, TN (United States); Y-12 National Security Complex, Oak Ridge, TN (United States); Dewji, S.A.; Hiller, M.M. [Center for Radiation Protection Knowledge, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Eckerman, K.F.; Easterly, C.E. [Easterly Scientific, Knoxville, TN (United States)

    2017-11-15

    External dose coefficients for environmental exposure scenarios are often computed using assumption on infinite or semi-infinite radiation sources. For example, in the case of a person standing on contaminated ground, the source is assumed to be distributed at a given depth (or between various depths) and extending outwards to an essentially infinite distance. In the case of exposure to contaminated air, the person is modeled as standing within a cloud of infinite, or semi-infinite, source distribution. However, these scenarios do not mimic common workplace environments where scatter off walls and ceilings may significantly alter the energy spectrum and dose coefficients. In this paper, dose rate coefficients were calculated using the International Commission on Radiological Protection (ICRP) reference voxel phantoms positioned in rooms of three sizes representing an office, laboratory, and warehouse. For each room size calculations using the reference phantoms were performed for photons, electrons, and positrons as the source particles to derive mono-energetic dose rate coefficients. Since the voxel phantoms lack the resolution to perform dose calculations at the sensitive depth for the skin, a mathematical phantom was developed and calculations were performed in each room size with the three source particle types. Coefficients for the noble gas radionuclides of ICRP Publication 107 (e.g., Ne, Ar, Kr, Xe, and Rn) were generated by folding the corresponding photon, electron, and positron emissions over the mono-energetic dose rate coefficients. Results indicate that the smaller room sizes have a significant impact on the dose rate per unit air concentration compared to the semi-infinite cloud case. For example, for Kr-85 the warehouse dose rate coefficient is 7% higher than the office dose rate coefficient while it is 71% higher for Xe-133. (orig.)

  1. Dose-rate determination by radiochemical analysis

    International Nuclear Information System (INIS)

    Mangini, A.; Pernicka, E.; Wagner, G.A.

    1983-01-01

    At the previous TL Specialist Seminr we had suggested that α-counting is an unsuitable technique for dose-rate determination due to overcounting effects. This is confirmed by combining α-counting, neutron activation analysis, fission track counting, α-spectrometry on various pottery samples. One result of this study is that disequilibrium in the uranium decay chain alone cannot account for the observed discrepancies between α-counting and chemical analysis. Therefore we propose for routine dose-rate determination in TL dating to apply chemical analysis of the radioactive elements supplemented by an α-spectrometric equilibrium check. (author)

  2. Spontaneous mutation rates and the rate-doubling dose

    International Nuclear Information System (INIS)

    Von Borstel, R.C.; Moustaccki, E.; Latarjet, R.

    1978-01-01

    The amount of radiation required to double the frequency of mutations or tumours over the rate of those that occur spontaneously is called the rate-doubling dose. An equivalent concept has been proposed for exposure to other environmental mutagens. The doubling dose concept is predicated on the assumption that all human populations have the same spontaneous mutation rate, and that this spontaneous mutation rate is known. It is now established for prokaryotes and lower eukaryotes that numerous genes control the spontaneous mutation rate, and it is likely that the same is true for human cells as well. Given that the accepted mode of evolution of human populatons is from small, isolated groups of individuals, it seems likely that each population would have a different spontaneous mutation rate. Given that a minimum of twenty genes control or affect the spontaneous mutation rate, and that each of these in turn is susceptible to spontaneously arising or environmentally induced mutations, it seems likely that every individual within a population (except for siblings from identical multiple births) will have a unique spontaneous mutation rate. If each individual in a population does have a different spontaneous mutation rate, the doubling dose concept, in rigorous terms, is fallacious. Therefore, as with other concepts of risk evaluation, the doubling dose concept is subject to criticism. Nevertheless, until we know individual spontaneous mutation rates with precision, and can evaluate risks based on this information, the doubling dose concept has a heuristic value and is needed for practical assessment of risks for defined populations. (author)

  3. Reference Dose Rates for Fluoroscopy Guided Interventions

    International Nuclear Information System (INIS)

    Geleijns, J.; Broerse, J.J.; Hummel, W.A.; Schalij, M.J.; Schultze Kool, L.J.; Teeuwisse, W.; Zoetelief, J.

    1998-01-01

    The wide diversity of fluoroscopy guided interventions which have become available in recent years has improved patient care. They are being performed in increasing numbers, particularly at departments of cardiology and radiology. Some procedures are very complex and require extended fluoroscopy times, i.e. longer than 30 min, and radiation exposure of patient and medical staff is in some cases rather high. The occurrence of radiation-induced skin injuries on patients has shown that radiation protection for fluoroscopy guided interventions should not only be focused on stochastic effects, i.e. tumour induction and hereditary risks, but also on potential deterministic effects. Reference dose levels are introduced by the Council of the European Communities as an instrument to achieve optimisation of radiation protection in radiology. Reference levels in conventional diagnostic radiology are usually expressed as entrance skin dose or dose-area product. It is not possible to define a standard procedure for complex interventions due to the large inter-patient variations with regard to the complexity of specific interventional procedures. Consequently, it is not realistic to establish a reference skin dose or dose-area product for complex fluoroscopy guided interventions. As an alternative, reference values for fluoroscopy guided interventions can be expressed as the entrance dose rates on a homogeneous phantom and on the image intensifier. A protocol has been developed and applied during a nationwide survey of fluoroscopic dose rate during catheter ablations. From this survey reference entrance dose rates of respectively 30 mGy.min -1 on a polymethylmethacrylate (PMMA) phantom with a thickness of 21 cm, and of 0.8 μGy.s -1 on the image intensifier have been derived. (author)

  4. Total dose and dose rate models for bipolar transistors in circuit simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Phillip Montgomery; Wix, Steven D.

    2013-05-01

    The objective of this work is to develop a model for total dose effects in bipolar junction transistors for use in circuit simulation. The components of the model are an electrical model of device performance that includes the effects of trapped charge on device behavior, and a model that calculates the trapped charge densities in a specific device structure as a function of radiation dose and dose rate. Simulations based on this model are found to agree well with measurements on a number of devices for which data are available.

  5. Dose-rate effects on the cell cycle and survival of S3 HeLa and V79 cells

    International Nuclear Information System (INIS)

    Mitchell, J.B.; Bedford, J.S.; Bailey, S.M.

    1979-01-01

    The effects of continuous irradiation at different dose rates on the cell cycle and on cell survival were studied using synchronized S3 HeLa and V79 cells. The minimum dose rate necessary to stop cell division was found to be approximately 23 rad/hr for HeLa cells and 270 rad/hr for V79 cells. For dose rates that stop cell division, cells progress through G 1 and S, with a small delay in the S phase, and are blocked in G 2 . Appreciable mitotic accumulation was observed for HeLa cells at dose rates which stopped cell division. By comparison, much less mitotic accumulation was observed for V79 cells over a range of dose rates from 37 to 270 rad/hr. Minimum mitotic delays for a variety of dose rates were determined for both cell lines. S3 HeLa cells are much more sensitive in this respect than V79 cells; however, it appeared that for higher dose rates the minimum mitotic delay in HeLa cells asymptotically approached a value of about 35 hr. In addition to the qualitative differences observed for the two cell lines in regard to mitotic accumulation, HeLa cells accumulated for prolonged periods in the presence of colcemid while V79 cells were blocked for only a few hours, HeLa cells show a dramatic effect of redistribution of cells into sensitive phases of the cell cycle during exposure, which was reflected in the survival curves at low dose rate. More cell killing per unit dose was observed at 37 than at 74 rad/hr

  6. Injury of the blood-testies barrier after low-dose-rate chronic radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Young Hoon; Bae Min Ji; Lee, Chang Geun; Yang, Kwang Mo; Jur, Kyu; Kim, Jong Sun [Dongnam Institute of Radiological and Medical Science, Busan (Korea, Republic of)

    2014-04-15

    The systemic effect of radiation increases in proportionally with the dose and dose rate. Little is known concerning the relationships between harmful effects and accumulated dose, which is derived from continuous low-dose rate radiation exposure. Recent our studies show that low-dose-rate chronic radiation exposure (3.49 mGy/h) causes adverse effects in the testis at a dose of 2 Gy (6 mGy/h). However, the mechanism of the low-dose-rate 2 Gy irradiation induced testicular injury remains unclear. The present results indicate that low-dose rate chronic radiation might affect the BTB permeability, possibly by decreasing levels of ZO-1, Occludin-1, and NPC-2. Furthermore, our results suggest that there is a risk of male infertility through BTB impairment even with low-dose-rate radiation if exposure is continuous.

  7. The mass effect model of the survival rate's dose effect of organism irradiated with low energy ion beam

    International Nuclear Information System (INIS)

    Shao Chunlin; Gui Qifu; Yu Zengliang

    1995-01-01

    The main characteristic of the low energy ions mutation is its mass deposition effect. Basing on the theory of 'double strand breaking' and the 'mass deposition effect', the authors suggests that the mass deposition products can repair or further damage the double strand breaking of DNA. According to this consideration the dose effect model of the survival rate of organism irradiated by low energy of N + ion beam is deduced as: S exp{-p[αφ + βφ 2 -Rφ 2 exp(-kφ)-Lφ 3 exp(-kφ)]}, which can be called 'mass effect model'. In the low energy ion beam mutation, the dose effects of many survival rates that can not be imitated by previous models are successfully imitated by this model. The suitable application fields of the model are also discussed

  8. Radiation-thermal degradation of PE and PVC: Mechanism of synergism and dose rate effects

    Science.gov (United States)

    Clough, Roger L.; Gillen, Kenneth T.

    Polyethylene insulation and polyvinyl chloride jacketing materials that had been in use in a nuclear application were recently found to be substantially deteriorated. The damage had occurred under conditions where both the total estimated dose (about 2.5 Mrad) and the operating temperatures (about 43°C average) seemed relatively moderate. These results prompted us to initiate a program to study polyvinyl chloride and polyethylene degradation under conditions of combined γ-radiation and elevated temperature environments. A number of interesting aging effects were observed, including 1) a striking synergism between radiation and temperature and 2) strong dose-rate dependent effects which occur over a wide range of dose rates. The aging effects are explained in terms of a chain branching degradation mechanism involving thermally induced breakdown of peroxides which are formed in reactions initiated by the radiation. Evidence for this mechanism is derived from infrared spectra, from sequential radiation-elevated temperature experiments including experiments under inert atmosphere, from activation energy estimates and from a new technique involving treatment of intact samples with PH 3 for chemical reduction of peroxides. The results of our studies raise significant doubts about the utility of earlier compilations which purportedly serve as radiation life expectancy guides by indicating "tolerable radiation doses" for a variety of polymers.

  9. Dosimetric systems of high dose, dose rate and dose uniformity in food and medical products

    International Nuclear Information System (INIS)

    Vargas, J.; Vivanco, M.; Castro, E.

    2014-08-01

    In the Instituto Peruano de Energia Nuclear (IPEN) we use the chemical dosimetry Astm-E-1026 Fricke as a standard dosimetric system of reference and different routine dosimetric systems of high doses, according to the applied doses to obtain the desired effects in the treated products and the doses range determined for each type of dosimeter. Fricke dosimetry is a chemical dosimeter in aqueous solution indicating the absorbed dose by means an increase in absorbance at a specific wavelength. A calibrated spectrophotometer with controlled temperature is used to measure absorbance. The adsorbed dose range should cover from 20 to 400 Gy, the Fricke solution is extremely sensitive to organic impurities, to traces of metal ions, in preparing chemical products of reactive grade must be used and the water purity is very important. Using the referential standard dosimetric system Fricke, was determined to March 5, 2013, using the referential standard dosimetric system Astm-1026 Fricke, were irradiated in triplicate Fricke dosimeters, to 5 irradiation times (20; 30; 40; 50 and 60 seconds) and by linear regression, the dose rate of 5.400648 kGy /h was determined in the central point of the irradiation chamber (irradiator Gamma cell 220 Excel), applying the decay formula, was compared with the obtained results by manufacturers by means the same dosimetric system in the year of its manufacture, being this to the date 5.44691 kGy /h, with an error rate of 0.85. After considering that the dosimetric solution responds to the results, we proceeded to the irradiation of a sample of 200 g of cereal instant food, 2 dosimeters were placed at the lateral ends of the central position to maximum dose and 2 dosimeters in upper and lower ends as minimum dose, they were applied same irradiation times; for statistical analysis, the maximum dose rate was 6.1006 kGy /h and the minimum dose rate of 5.2185 kGy /h; with a dose uniformity of 1.16. In medical material of micro pulverized bone for

  10. Effect of prolonged irradiation by low dose-rate ionizing radiation on the hemopoiesis of mice

    Energy Technology Data Exchange (ETDEWEB)

    Yanai, Takanori; Shirata, Katsutoshi; Yamada, Yutaka; Saitou, Mikio; Izumi, Jun; Tanaka, Satoshi; Otsu, Hiroshi; Sato, Fumiaki [Institute for Environmental Sciences, Rokkasho, Aomori (Japan)

    2000-07-01

    For evaluation of effects of prolonged irradiation by low dose-rate ionizing radiation on the hemopoiesis of mice, SPF C3H/HeN female mice were irradiated with {sup 137}Cs {gamma}-rays with doses of 1-4 Gy at the dose rate of 20 mGy/22h-day. After irradiation, the number of hemopoietic cells contained in spleen was determined by the methods of CFU-S and CFU-GM assay, and the number of peripheral blood cells was counted. It was shown that the number of CFU-S colonies on day 12, which is in the earlier stage of differentiation, decreased as dose increased. No remarkable changes in the number of peripheral blood cells, however, were observed. (author)

  11. Clastogenic effects in human lymphocytes exposed to low and high dose rate X-ray irradiation and vitamin C

    International Nuclear Information System (INIS)

    Konopacka, M; Rogolinski, J.

    2011-01-01

    In the present work we investigated the ability of vitamin C to modulate clastogenic effects induced in cultured human lymphocytes by X-irradiation delivered at either high (1 Gy/min) or low dose rate (0.24 Gy/min). Biological effects of the irradiation were estimated by cytokinesis-block micronucleus assay including the analysis of the frequency of micronuclei (MN) and apoptotic cells as well as calculation of nuclear division index (NDI). The numbers of micronucleated binucleate lymphocytes (MN-CBL) were 24.85 ± 2.67% and 32.56 ± 3.17% in cultures exposed to X-rays (2 Gy) delivered at low and high dose rates, respectively. Addition of vitamin C (1-20 μg/ml) to the medium of cultures irradiated with the low dose rate reduced the frequency of micronucleated lymphocytes with multiple MN in a concentration-dependent manner. Lymphocytes exposed to the high dose rate radiation showed a U-shape response: low concentration of vitamin C significantly reduced the number of MN, whereas high concentration influenced the radiation-induced total number of micronucleated cells insignificantly, although it increased the number of cells with multiple MN. Addition of vitamin C significantly reduced the fraction of apoptotic cells, irrespective of the X-ray dose rate. These results indicate that radiation dose rate is an important exposure factor, not only in terms of biological cell response to irradiation, but also with respect to the modulating effects of antioxidants. (authors)

  12. GARDEC, Estimation of dose-rates reduction by garden decontamination

    International Nuclear Information System (INIS)

    Togawa, Orihiko

    2006-01-01

    1 - Description of program or function: GARDEC estimates the reduction of dose rates by garden decontamination. It provides the effect of different decontamination Methods, the depth of soil to be considered, dose-rate before and after decontamination and the reduction factor. 2 - Methods: This code takes into account three Methods of decontamination : (i)digging a garden in a special way, (ii) a removal of the upper layer of soil, and (iii) covering with a shielding layer of soil. The dose-rate conversion factor is defined as the external dose-rate, in the air, at a given height above the ground from a unit concentration of a specific radionuclide in each soil layer

  13. Effect of low dose rate irradiation on doped silica core optical fibers

    International Nuclear Information System (INIS)

    Friebele, E.J.; Askins, C.G.; Gingerich, M.E.

    1984-01-01

    The optical attenuation induced in multimode doped silica core optical fiber waveguides by a year's exposure to low dose rate (1 rad/day) ionizing radiation was studied, allowing a characterization of fibers deployed in these environments and a determination of the permanent induced loss in the waveguides. Variations in the induced attenuation at 0.85 μm have been observed with changes in the dose rate between 1 rad/day and 9000 rads/min. These dose rate dependences have been found to derive directly from the recovery that occurs during the exposure; the recovery data predict little or no dose rate dependence of the damage at 1.3 μm. The low dose rate exposure has been found to induce significant permanent attenuation in the 0.7-1.7-μm spectral region in all fibers containing P in the core, whether doped uniformly across the diameter or constrained to a narrow spike on the centerline. Whereas permanent loss was induced at 0.85 μm in a P-free binary Ge-doped silica core fiber by the year's exposure, virtually no damage was observed at 1.3 μm

  14. Radon level and radon effective dose rate determination in Moroccan dwellings using SSNTDs

    International Nuclear Information System (INIS)

    Oufni, L.; Misdaq, M.A.; Amrane, M.

    2005-01-01

    Inhalation of radon ( 222 Rn) and its daughter product are a major source of natural radiation exposure. The measurement of radon activity in dwelling is assuming ever increasing importance. It is known from recent surveys in many countries that radon and its progeny contribute significantly to total inhalation dose and it is fairly established that radon when inhaled in large quantity causes lung disorder. Keeping this in view, the indoor radon activity level and radon effective dose rate were carried out in the dwellings of Beni-Mellal, Khouribgra and Ben Guerir cities, Morocco, using the solid state nuclear track detectors (SSNTD) technique. Assuming an indoor occupancy factor of 0.8 and 0.4 for the equilibrium factor of radon indoors, we found that the 222 Rn effective dose rate in the studied dwellings ranges from 1.01 to 7.90mSvy -1 . The radon activity in the corresponding dwellings was found to vary from 40 to 532Bqm -3 . The radon activity has not only been found to vary with seasonal changes, but also with the age, the construction mode of houses, the ventilation conditions and with specific sites and geological materials

  15. A comparison of larval density and low dose rate irradiation effects on amphibian body size at metamorphosis

    Energy Technology Data Exchange (ETDEWEB)

    Stark, K.; Scott, D.E.; Tsyusko, O.; Coughlin, D.P.; Hinton, T.G.

    2008-07-01

    Amphibian larvae undergo substantial morphological and physiological changes as they metamorphose into adults. This period of rapid change and enhanced cell division could increase their sensitivity to external stressors. In this study, we were interested in possible differences between natural and anthropogenic stressor effects during the period just prior to metamorphosis. We studied this by exposing late-stage Scaphiopus holbrookii tadpoles in different larval densities to four irradiation dose rates (0.13, 2.4, 21, and 222 mGy d-1) from 137Cs. Life history traits important for population dynamics, such as body size at metamorphosis and development rate, were measured. Results suggest that the ecological factor larval density had a much more profound effect on juvenile body size at metamorphosis than low-dose rate radiation. The development rate measured as age at metamorphosis was not effected by the two stressors. Radiation had no impact on the endpoints we measured; giving credence to the IAEA guidance that a dose rate smaller than 10 mGy d-1 is protective of aquatic biota. (author)(tk)

  16. A comparison of larval density and low dose rate irradiation effects on amphibian body size at metamorphosis

    International Nuclear Information System (INIS)

    Stark, K.; Scott, D.E.; Tsyusko, O.; Coughlin, D.P.; Hinton, T.G.

    2008-01-01

    Amphibian larvae undergo substantial morphological and physiological changes as they metamorphose into adults. This period of rapid change and enhanced cell division could increase their sensitivity to external stressors. In this study, we were interested in possible differences between natural and anthropogenic stressor effects during the period just prior to metamorphosis. We studied this by exposing late-stage Scaphiopus holbrookii tadpoles in different larval densities to four irradiation dose rates (0.13, 2.4, 21, and 222 mGy d -1 ) from 137 Cs. Life history traits important for population dynamics, such as body size at metamorphosis and development rate, were measured. Results suggest that the ecological factor larval density had a much more profound effect on juvenile body size at metamorphosis than low-dose rate radiation. The development rate measured as age at metamorphosis was not effected by the two stressors. Radiation had no impact on the endpoints we measured; giving credence to the IAEA guidance that a dose rate smaller than 10 mGy d -1 is protective of aquatic biota. (author)(tk)

  17. Dose rate measuring device and dose rate measuring method using the same

    International Nuclear Information System (INIS)

    Urata, Megumu; Matsushita, Takashi; Hanazawa, Sadao; Konno, Takahiro; Chiba, Yoshinori; Yumitate, Tadahiro

    1998-01-01

    The device of the present invention comprises a scintillation fiber scope having a shape elongated in the direction of the height of a pressure vessel and emitting light by incident of radiation to detect radiation, a radioactivity measuring device for measuring a dose rate based on the detection of the fiber scope and a reel means for dispensing and taking up the fiber scope, and it constituted such that the dose rate of the pressure vessel and that of a shroud are determined independently. Then, when the taken out shroud is contained in an container, excessive shielding is not necessary, in addition, this device can reliably be inserted to or withdrawn from complicated places between the pressure vessel and the shroud, and further, the dose rate of the pressure vessel and that of the shroud can be measured approximately accurately even when the thickness of them is different greatly. (N.H.)

  18. Dose rate measuring device and dose rate measuring method using the same

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Megumu; Matsushita, Takashi; Hanazawa, Sadao; Konno, Takahiro; Chiba, Yoshinori; Yumitate, Tadahiro

    1998-11-13

    The device of the present invention comprises a scintillation fiber scope having a shape elongated in the direction of the height of a pressure vessel and emitting light by incident of radiation to detect radiation, a radioactivity measuring device for measuring a dose rate based on the detection of the fiber scope and a reel means for dispensing and taking up the fiber scope, and it constituted such that the dose rate of the pressure vessel and that of a shroud are determined independently. Then, when the taken out shroud is contained in an container, excessive shielding is not necessary, in addition, this device can reliably be inserted to or withdrawn from complicated places between the pressure vessel and the shroud, and further, the dose rate of the pressure vessel and that of the shroud can be measured approximately accurately even when the thickness of them is different greatly. (N.H.)

  19. High-dose-rate brachytherapy in the treatment of uterine cervix cancer. Analysis of dose effectiveness and late complications

    International Nuclear Information System (INIS)

    Ferrigno, Robson; Novaes, Paulo Eduardo Ribeiro dos Santos; Pellizzon, Antonio Cassio Assis; Maia, Maria Aparecida Conte; Fogarolli, Ricardo Cesar; Gentil, Andre Cavalcanti; Salvajoli, Joao Victor

    2001-01-01

    Purpose: This retrospective analysis aims to report results of patients with cervix cancer treated by external beam radiotherapy (EBR) and high-dose-rate (HDR) brachytherapy. Methods and Materials: From September 1992 to December 1996, 138 patients with FIGO Stages II and III and mean age of 56 years were treated. Median EBR to the whole pelvis was 45 Gy in 25 fractions. Parametrial boost was performed in 93% of patients, with a median dose of 14.4 Gy. Brachytherapy with HDR was performed during EBR or following its completion with a dose of 24 Gy in four weekly fractions of 6 Gy to point A. Median overall treatment time was of 60 days. Patient age, tumor stage, and overall treatment time were variables analyzed for survival and local control. Cumulative biologic effective dose (BED) at rectal and bladder reference points were correlated with late complications in these organs and dose of EBR at parametrium was correlated with small bowel complications. Results: Median follow-up time was 38 months. Overall survival, disease-free survival, and local control at 5 years was 53.7%, 52.7%, and 62%, respectively. By multivariate and univariate analysis, overall treatment time up to 50 days was the only statistically significant adverse variable for overall survival (p=0.003) and actuarial local control (p=0.008). The 5-year actuarial incidence of rectal, bladder, and small bowel late complications was 16%, 11%, and 14%, respectively. Patients treated with cumulative BED at rectum points above 110 Gy 3 and at bladder point above 125 Gy 3 had a higher but not statistically significant 5-year actuarial rate of complications at these organs (18% vs. 12%, p=0.49 and 17% vs. 9%, p=0.20, respectively). Patients who received parametrial doses larger than 59 Gy had a higher 5-year actuarial rate of complications in the small bowel; however, this was not statistically significant (19% vs. 10%, p=0.260). Conclusion: This series suggests that 45 Gy to the whole pelvis combined with

  20. Post-treatment visual acuity in patients treated with episcleral plaque therapy for choroidal melanoma: Dose and dose rate effects

    International Nuclear Information System (INIS)

    Jones, Robert; Gore, Elizabeth; Mieler, William; Gillin, Michael; Albano, Katherine; Erickson, Beth

    1996-01-01

    Purpose: To determine the relationship between the long-term visual function and the dose and dose rates delivered to critical ocular structures in patients with choroidal melanoma treated with 125 I episcleral plaque radiotherapy. Methods and Materials: From 1987 to 1993, 63 patients underwent 125 I episcleral plaque application for the treatment of choroidal melanoma. Mean tumor height was 4.6 mm (range 1.7-8.3 mm). Plaques utilized were of COMS design. Doses and dose rates at the tumor apex, macula, and optic disc were obtained. Visual acuity data prior to and after plaque application was available for 52 patients. 9 patients were excluded from analysis secondary to co-morbidities or disease progression. 43 records were scored to assess if a decrease in visual acuity of ≥ 2 lines on a standard Snellen eye chart had occurred. Statistical analysis was performed using chi-square tests of significance. Results: Of the 63 total patients, 59 (93.7%) were alive at a median follow-up of 36 months. Local progression occurred in (7(63)) (11.1%). Median dose and dose rate to the tumor apex were 90 Gy and 97.2 cGy/hr, respectively. Of the 43 patients with post-treatment visual acuity analysis, 28 (65.1%) experienced visual loss of ≥ 2 lines on a standard eye chart. Median time to altered visual acuity was 20 months. Median dose and dose rates to the macula in patients with a significant visual loss were 123.3 Gy and 122.5 cGy/hr, respectively, compared with 38 Gy and 51.9 cGy/hr in those without notable visual change. These differences reached statistical significance at a dose and dose rate to the macula of 82.0 Gy (p 125 I plaque brachytherapy for choroidal melanoma experienced favorable tumor control, but with a measurable incidence of decreased visual acuity. Both total dose and dose rates to the macula and optic disc correlated strongly with post-treatment visual outcome. This information may be valuable in decisions about the dose and dose rates used to treat

  1. Post-treatment visual acuity in patients treated with episcleral plaque therapy for choroidal melanoma: dose and dose rate effects

    International Nuclear Information System (INIS)

    Jones, Robert; Gore, Elizabeth; Mieler, William; Murray, Kevin; Gillin, Michael; Albano, Katherine; Erickson, Beth

    1996-01-01

    Purpose: To determine the relationship between the long-term visual function and the dose and dose rates delivered to critical ocular structures in patients with choroidal melanoma treated with 125 I episcleral plaque radiotherapy. Methods and Materials: From 1987 to 1994, 63 patients underwent 125 I episcleral plaque application for the treatment of choroidal melanoma. Mean tumor height was 4.6 mm (range 1.7-8.3 mm). Plaques utilized were of COMS design. Doses and dose rates at the tumor apex, macula, and optic disc were obtained. Visual acuity data prior to and after plaque application was available for 52 patients. Nine patients were excluded from analysis secondary to co-morbidities or disease progression. Forty-three records were scored to assess if a decrease in visual acuity of ≥ 2 lines on a standard Snellen eye chart had occurred. Statistical analysis was performed using chi-square tests of significance. Results: Of the 63 total patients, 59 (93.7%) were alive at a median follow-up of 36 months. Local progression occurred in 7/63 (11.1%). Median dose and dose rate to the tumor apex were 90 Gy and 97.2 cGy/hr, respectively. Of the 43 patients with post-treatment visual acuity analysis, 28 (65.1%) experienced visual loss of ≥ 2 lines on a standard eye chart. Median time to altered visual acuity was 20 months. Median dose and dose rates to the macula in patients with a significant visual loss were 123.3 Gy and 122.5 cGy/hr, respectively, compared with 38 Gy and 51.9 cGy/hr in those without notable visual change. These differences reached statistical significance at a dose and dose rate to the macula of 82.0 Gy (p 125 I plaque brachytherapy for choroidal melanoma experienced favorable tumor control, but with a measurable incidence of decreased visual acuity. Both total dose and dose rates to the macula and optic disc correlated strongly with post-treatment visual outcome. This information may be valuable in decisions about the dose and dose rates used to

  2. Characterizing low dose and dose rate effects in rodent and human neural stem cells exposed to proton and gamma irradiation

    Directory of Open Access Journals (Sweden)

    Bertrand P. Tseng

    2013-01-01

    Full Text Available Past work has shown that exposure to gamma rays and protons elicit a persistent oxidative stress in rodent and human neural stem cells (hNSCs. We have now adapted these studies to more realistic exposure scenarios in space, using lower doses and dose rates of these radiation modalities, to further elucidate the role of radiation-induced oxidative stress in these cells. Rodent neural stem and precursor cells grown as neurospheres and human neural stem cells grown as monolayers were subjected to acute and multi-dosing paradigms at differing dose rates and analyzed for changes in reactive oxygen species (ROS, reactive nitrogen species (RNS, nitric oxide and superoxide for 2 days after irradiation. While acute exposures led to significant changes in both cell types, hNSCs in particular, exhibited marked and significant elevations in radiation-induced oxidative stress. Elevated oxidative stress was more significant in hNSCs as opposed to their rodent counterparts, and hNSCs were significantly more sensitive to low dose exposures in terms of survival. Combinations of protons and γ-rays delivered as lower priming or higher challenge doses elicited radioadaptive changes that were associated with improved survival, but in general, only under conditions where the levels of reactive species were suppressed compared to cells irradiated acutely. Protective radioadaptive effects on survival were eliminated in the presence of the antioxidant N-acetylcysteine, suggesting further that radiation-induced oxidative stress could activate pro-survival signaling pathways that were sensitive to redox state. Data corroborates much of our past work and shows that low dose and dose rate exposures elicit significant changes in oxidative stress that have functional consequences on survival.

  3. Low dose rate and high dose rate intracavitary treatment for cervical cancer

    International Nuclear Information System (INIS)

    Hareyama, Masato; Oouchi, Atsushi; Shidou, Mitsuo

    1997-01-01

    From 1984 through 1993, 144 previous untreated patients with carcinoma of uterine cervix were treated with either low dose rate 137 Cs therapy (LDR) or high dose rate 60 Co therapy (HDR). The local failure rates for more than 2-years for the primary lesions were 11.8% (8 of 63 patients) for LDR and 18.0% (11 of 61 patients). Rectal complication rates were significantly lower for HDR versus LDR (14.3% VS. 32.8%. p<0.01). Also, bladder complication rates were significantly lower for HDR versus LDR (0% VS. 10.4%, p<0.005). Treatment results in term of local control were equivalent for HDR and LDR treatment. However, the incidence of complications was higher for the LDR group than for the HDR group. (author)

  4. Effect of prolonged irradiation by low dose-rate ionizing radiation on the hemopoiesis of mice

    Energy Technology Data Exchange (ETDEWEB)

    Yanai, Takanori; Shirata, Katsutoshi; Saitou, Mikio; Tanaka, Satoshi; Onodera, Junichi; Otsu, Hiroshi; Sato, Fumiaki [Institute for Environmental Sciences, Department of Radiobiology, Rokkasho, Aomori (Japan)

    1999-07-01

    To evaluate effects of prolonged irradiation by low dose-rate ionizing radiation on the hemopoiesis of mice, SPF C3H/HeN female mice were irradiated by {sup 137}Cs {gamma}-rays with doses of 1-8 Gy at the dose rate of 20 mGy (22 h-day){sup -1}. After irradiation, the number of hemopoietic cells contained in bone marrow was determined by the methods of CFU-S and CFU-GM assay, and the number of peripheral blood cells was counted. It was shown that the day 12-CFU-S, which is in the earlier stage of differentiation, decreased as the dose increased. Decreases of the numbers of day 7-CFU-S and CFU-GM were also observed. However, there were no remarkable changes in the number of peripheral blood cells. (author)

  5. On determining dose rate constants spectroscopically

    International Nuclear Information System (INIS)

    Rodriguez, M.; Rogers, D. W. O.

    2013-01-01

    Purpose: To investigate several aspects of the Chen and Nath spectroscopic method of determining the dose rate constants of 125 I and 103 Pd seeds [Z. Chen and R. Nath, Phys. Med. Biol. 55, 6089–6104 (2010)] including the accuracy of using a line or dual-point source approximation as done in their method, and the accuracy of ignoring the effects of the scattered photons in the spectra. Additionally, the authors investigate the accuracy of the literature's many different spectra for bare, i.e., unencapsulated 125 I and 103 Pd sources. Methods: Spectra generated by 14 125 I and 6 103 Pd seeds were calculated in vacuo at 10 cm from the source in a 2.7 × 2.7 × 0.05 cm 3 voxel using the EGSnrc BrachyDose Monte Carlo code. Calculated spectra used the initial photon spectra recommended by AAPM's TG-43U1 and NCRP (National Council of Radiation Protection and Measurements) Report 58 for the 125 I seeds, or TG-43U1 and NNDC(2000) (National Nuclear Data Center, 2000) for 103 Pd seeds. The emitted spectra were treated as coming from a line or dual-point source in a Monte Carlo simulation to calculate the dose rate constant. The TG-43U1 definition of the dose rate constant was used. These calculations were performed using the full spectrum including scattered photons or using only the main peaks in the spectrum as done experimentally. Statistical uncertainties on the air kerma/history and the dose rate/history were ⩽0.2%. The dose rate constants were also calculated using Monte Carlo simulations of the full seed model. Results: The ratio of the intensity of the 31 keV line relative to that of the main peak in 125 I spectra is, on average, 6.8% higher when calculated with the NCRP Report 58 initial spectrum vs that calculated with TG-43U1 initial spectrum. The 103 Pd spectra exhibit an average 6.2% decrease in the 22.9 keV line relative to the main peak when calculated with the TG-43U1 rather than the NNDC(2000) initial spectrum. The measured values from three different

  6. Dose rate determining factors of PWR primary water

    International Nuclear Information System (INIS)

    Terachi, Takumi; Kuge, Toshiharu; Nakano, Nobuo

    2014-01-01

    The relationship between dose rate trends and water chemistry has been studied to clarify the determining factors on the dose rates. Therefore dose rate trends and water chemistry of 11 PWR plants of KEPCO (Kansai Electric Power Co., Inc.) were summarized. It is indicated that the chemical composition of the oxide film, behaviour of corrosion products and Co-58/Co-60 ratio in the primary system have effected dose rate trends based on plant operation experiences for over 40 years. According to plant operation experiences, the amount of Co-58 has been decreasing with the increasing duration of SG (Steam Generator) usage. It is indicated that the stable oxide film formation on the inner surface of SG tubing, is a major beneficial factor for radiation sources reduction. On the other hand, the reduction of the amount of Co-60 for the long term has been not clearly observed especially in particular high dose plants. The primary water parameters imply that considering release and purification balance on Co-59 is important to prevent accumulation of source term in primary water. In addition, the effect of zinc injection, which relates to the chemical composition of oxide film, was also assessed. As the results, the amount of radioactive Co has been clearly decreased. The decreasing trend seems to correlate to the half-life of Co-60, because it is considered that the injected zinc prevents the uptake of radioactive Co into the oxide film on the inner surface of the components and piping. In this paper, the influence of water chemistry and the replacement experiences of materials on the dose rates were discussed. (author)

  7. Low dose irradiation reduces cancer mortality rates

    International Nuclear Information System (INIS)

    Luckey, T.D.

    2000-01-01

    Low doses of ionizing radiation stimulate development, growth, memory, sensual acuity, fecundity, and immunity (Luckey, T.D., ''Radiation Hormesis'', CRC Press, 1991). Increased immune competence reduces cancer mortality rates and provides increased average lifespan in animals. Decreased cancer mortality rates in atom bomb victims who received low dose irradiation makes it desirable to examine populations exposed to low dose irradiation. Studies with over 300,000 workers and 7 million person-years provide a valid comparison of radiation exposed and control unclear workers (Luckey, T.D., Nurture with Ionizing Radiation, Nutrition and Cancer, 34:1-11, 1999). Careful selection of controls eliminated any ''healthy worker effect''. The person-year corrected average indicated the cancer mortality rate of exposed workers was only 51% that of control workers. Lung cancer mortality rates showed a highly significant negative correlation with radon concentrations in 272,000 U.S. homes (Cohen, B.L., Health Physics 68:157-174, 1995). In contrast, radon concentrations showed no effect on lung cancer rates in miners from different countries (Lubin, J.H. Am. J. Epidemiology 140:323-332, 1994). This provides evidence that excessive lung cancer in miners is caused by particulates (the major factor) or toxic gases. The relative risk for cancer mortality was 3.7% in 10,000 Taiwanese exposed to low level of radiation from 60 Co in their steel supported homes (Luan, Y.C. et al., Am. Nuclear Soc. Trans. Boston, 1999). This remarkable finding needs further study. A major mechanism for reduced cancer mortality rates is increased immune competence; this includes both cell and humoral components. Low dose irradiation increases circulating lymphocytes. Macrophage and ''natural killer'' cells can destroy altered (cancer) cells before the mass becomes too large. Low dose irradiation also kills suppressor T-cells; this allows helper T-cells to activate killer cells and antibody producing cells

  8. Development of computerized dose planning system and applicator for high dose rate remote afterloading irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, T. J. [Keimyung Univ., Taegu (Korea); Kim, S. W. [Fatima Hospital, Taegu (Korea); Kim, O. B.; Lee, H. J.; Won, C. H. [Keimyung Univ., Taegu (Korea); Yoon, S. M. [Dong-a Univ., Pusan (Korea)

    2000-04-01

    To design and fabricate of the high dose rate source and applicators which are tandem, ovoids and colpostat for OB/Gyn brachytherapy includes the computerized dose planning system. Designed the high dose rate Ir-192 source with nuclide atomic power irradiation and investigated the dose characteristics of fabricated brachysource. We performed the effect of self-absorption and determining the gamma constant and output factor and determined the apparent activity of designed source. he automated computer planning system provided the 2D distribution and 3D includes analysis programs. Created the high dose rate source Ir-192, 10 Ci(370GBq). The effective attenuation factor from the self-absorption and source wall was examined to 0.55 of the activity of bare source and this factor is useful for determination of the apparent activity and gamma constant 4.69 Rcm{sup 2}/mCi-hr. Fabricated the colpostat was investigated the dose distributions of frontal, axial and sagittal plane in intra-cavitary radiation therapy for cervical cancer. The reduce dose at bladder and rectum area was found about 20 % of original dose. The computerized brachytherapy planning system provides the 2-dimensional isodose and 3-D include the dose-volume histogram(DVH) with graphic-user-interface mode. emoted afterloading device was built for experiment of created Ir-192 source with film dosimetry within {+-}1 mm discrepancy. 34 refs., 25 figs., 11 tabs. (Author)

  9. The effect of low dose rate irradiation on the swelling of 12% cold-worked 316 stainless steel

    International Nuclear Information System (INIS)

    Allen, T. R.

    1999-01-01

    In pressurized water reactors (PWRs), stainless steel components are irradiated at temperatures that may reach 400 C due to gamma heating. If large amounts of swelling (>10%) occur in these reactor internals, significant swelling related embrittlement may occur. Although fast reactor studies indicate that swelling should be insignificant at PWR temperatures, the low dose rate conditions experienced by PWR components may possibly lead to significant swelling. To address these issues, JNC and ANL have collaborated to analyze swelling in 316 stainless steel, irradiated in the EBR-II reactor at temperatures from 376-444 C, at dose rates between 4.9 x 10 -8 and 5.8 x 10 -7 dpa/s, and to doses of 56 dpa. For these irradiation conditions, the swelling decreases markedly at temperatures less than approximately 386 C, with the extrapolated swelling at 100 dpa being around 3%. For temperatures greater than 386 C, the swelling extrapolated to 100 dpa is around 9%. For a factor of two difference in dose rate, no statistically significant effect of dose rate on swelling was seen. For the range of dose rates analyzed, the swelling measurements do not support significant (>10%) swelling of 316 stainless steel in PWRs

  10. Prototype Operational Advances for Atmospheric Radiation Dose Rate Specification

    Science.gov (United States)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Garrett, H. B.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, D.; Mertens, C. J.; Xu, X.; Crowley, G.; Reynolds, A.; Azeem, I.; Wiltberger, M. J.; Wiley, S.; Bacon, S.; Teets, E.; Sim, A.; Dominik, L.

    2014-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. The coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has developed innovative, new space weather observations that will become part of the toolset that is transitioned into operational use. One prototype operational system for providing timely information about the effects of space weather is SET's Automated Radiation Measurements for Aerospace Safety (ARMAS) system. ARMAS will provide the "weather" of the radiation environment to improve aircraft crew and passenger safety. Through several dozen flights the ARMAS project has successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time via Iridium satellites, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. We are extending the dose measurement domain above commercial aviation altitudes into the stratosphere with a collaborative project organized by NASA's Armstrong Flight Research Center (AFRC) called Upper-atmospheric Space and Earth Weather eXperiment (USEWX). In USEWX we will be flying on the ER-2 high altitude aircraft a micro dosimeter for

  11. Dose rate considerations in brachytherapy: biological equivalence of LDR and HDR

    International Nuclear Information System (INIS)

    Orton, C.G.

    1994-01-01

    The linear-quadratic model for cell survival and bioeffect doses is discussed and equations for low dose rate (LDR), high dose rate (HDR) and intermediate situations are presented. The model, when used to define LDR and single fractions of HDR, shows, that these correspond to irradiations lasting longer than about 14 hours or shorter than about 0.7 hours, respectively. It is shown that, for HDR to be as safe and effective as LDR, the dose-rate effect of LDR has to be replaced by the fractionation-effect of HDR. This is necessary in order to take advantage of the differential repair characteristics between late-reacting normal tissue and tumor cells at low doses and low dose rates. Using the linear-quadratic model to simulate repair mathematically, it is shown that the number of fractions required is highly dependent upon what parameters are assumed for normal tissues and tumor, as well as whether or not there is any physical advantage gained by conversion from LDR to HDR. (author). 20 refs., 7 figs

  12. Bioassay in BALB/c mice exposed to low dose rate radiation

    Energy Technology Data Exchange (ETDEWEB)

    Km, Sung Dae; Gong, Eun Ji; Bae, Min Ji; Yang, Kwang Mo; Kim, Joong Sun [Dongnam Institute of Radiological and Medical Sciences, Suwon (Korea, Republic of)

    2012-09-15

    The present study was performed to investigate the toxicity of low-dose-rate irradiation in BALB/c mice. Twenty mice of each sex were randomly assigned to four groups of five mice each and were exposed to 0 (sham), 0.02, 0.2, or 2 Gy, equivalents to low-dose-rate irradiation to 3.49 mGy{center_dot}h{sup -1}. Urine, blood, and blood biochemistry were analyzed, and organ weight was measured. The low-dose-rate irradiation did not induce any toxicologically significant changes in mortality, clinical signs, body weight, food and water consumption, urinalysis, and serum biochemistry. However, the weights of reproductive organs including the testis, ovary, and uterus decreased in a dose-dependent manner. Irradiation at 2 Gy significantly decreased the testis, ovary, and uterus weights, but did not change the weights of other organs. There were no adverse effects on hematology in any irradiated group and only the number of neutrophils increased dose dependently. The low-dose-rate irradiation exposure did not cause adverse effects in mice at dose levels of 2 Gy or less, but the reproductive systems of male and female mice showed toxic effects.

  13. Time- and dose rate-related effects of internal 177Lu exposure on gene expression in mouse kidney tissue

    International Nuclear Information System (INIS)

    Schüler, Emil; Rudqvist, Nils; Parris, Toshima Z.; Langen, Britta; Spetz, Johan; Helou, Khalil; Forssell-Aronsson, Eva

    2014-01-01

    Introduction: The kidneys are the dose-limiting organs in some radionuclide therapy regimens. However, the biological impact of internal exposure from radionuclides is still not fully understood. The aim of this study was to examine the effects of dose rate and time after i.v. injection of 177 LuCl 3 on changes in transcriptional patterns in mouse kidney tissue. Methods: To investigate the effect of dose rate, female Balb/c nude mice were i.v. injected with 11, 5.6, 1.6, 0.8, 0.30, and 0 MBq of 177 LuCl 3 , and killed at 3, 6, 24, 48, 168, and 24 hours after injection, respectively. Furthermore, the effect of time after onset of exposure was analysed using mice injected with 0.26, 2.4, and 8.2 MBq of 177 LuCl 3 , and killed at 45, 90, and 140 days after injection. Global transcription patterns of irradiated kidney cortex and medulla were assessed and enriched biological processes were determined from the regulated gene sets using Gene Ontology terms. Results: The average dose rates investigated were 1.6, 0.84, 0.23, 0.11 and 0.028 mGy/min, with an absorbed dose of 0.3 Gy. At 45, 90 and 140 days, the absorbed doses were estimated to 0.3, 3, and 10 Gy. In general, the number of differentially regulated transcripts increased with time after injection, and decreased with absorbed dose for both kidney cortex and medulla. Differentially regulated transcripts were predominantly involved in metabolic and stress response-related processes dependent on dose rate, as well as transcripts associated with metabolic and cellular integrity at later time points. Conclusion: The observed transcriptional response in kidney tissue was diverse due to difference in absorbed dose, dose rate and time after exposure. Nevertheless, several transcripts were significantly regulated in all groups despite differences in exposure parameters, which may indicate potential biomarkers for exposure of kidney tissue

  14. Brachytherapy for early oral tongue cancer. Low dose rate to high dose rate

    International Nuclear Information System (INIS)

    Yamazaki, Hideya; Inoue, Takehiro; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Inoue, Toshihiko; Furukawa, Souhei; Kakimoto, Naoya

    2003-01-01

    To examine the compatibility of low dose rate (LDR) with high dose rate (HDR) brachytherapy, we reviewed 399 patients with early oral tongue cancer (T1-2N0M0) treated solely by brachytherapy at Osaka University Hospital between 1967 and 1999. For patients in the LDR group (n=341), the treatment sources consisted of Ir-192 pin for 227 patients (1973-1996; irradiated dose, 61-85 Gy; median, 70 Gy), Ra-226 needle for 113 patients (1967-1986; 55-93 Gy; median, 70 Gy). Ra-226 and Ir-192 were combined for one patient. Ir-192 HDR (microSelectron-HDR) was used for 58 patients in the HDR group (1991-present; 48-60 Gy; median, 60 Gy). LDR implantations were performed via oral and HDR via a submental/submandibular approach. The dose rates at the reference point for the LDR group were 0.30 to 0.8 Gy/h, and for the HDR group 1.0 to 3.4 Gy/min. The patients in the HDR group received a total dose of 48-60 Gy (8-10 fractions) during one week. Two fractions were administered per day (at least a 6-h interval). The 3- and 5-year local control rates for patients in the LDR group were 85% and 80%, respectively, and those in the HDR group were both 84%. HDR brachytherapy showed the same lymph-node control rate as did LDR brachytherapy (67% at 5 years). HDR brachytherapy achieved the same locoregional result as did LDR brachytherapy. A converting factor of 0.86 is applicable for HDR in the treatment of early oral tongue cancer. (author)

  15. Analysis of the spatial rates dose rates during dental panoramic radiography

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Jong Kyung [Dept. of Radiation Safety Management Commission, Daegu Health College, Daegu (Korea, Republic of); Park, Myeong Hwan [Dept. of Radiologic Technology, Daegu Health College, Daegu (Korea, Republic of); Kim, Yong Min [Dept. of Radiological Science, Catholic University of Daegu, Daegu (Korea, Republic of)

    2016-12-15

    A dental panoramic radiography which usually uses low level X-rays is subject to the Nuclear Safety Act when it is installed for the purpose of education. This paper measures radiation dose and spatial dose rate by usage and thereby aims to verify the effectiveness of radiation safety equipment and provide basic information for radiation safety of radiation workers and students. After glass dosimeter (GD-352M) is attached to direct exposure area, the teeth, and indirect exposure area, the eye lens and the thyroid, on the dental radiography head phantom, these exposure areas are measured. Then, after dividing the horizontal into a 45°, it is separated into seven directions which all includes 30, 60, 90, 120 cm distance. The paper shows that the spatial dose rate is the highest at 30 cm and declines as the distance increases. At 30 cm, the spatial dose rate around the starting area of rotation is 3,840 μSv/h, which is four times higher than the lowest level 778 μSv/h. Furthermore, the spatial dose rate was 408 μSv/h on average at the distance of 60 cm where radiation workers can be located. From a conservative point of view, It is possible to avoid needless exposure to radiation for the purpose of education. However, in case that an unintended exposure to radiation happens within a radiation controlled area, it is still necessary to educate radiation safety. But according to the current Medical Service Act, in medical institutions, even if they are not installed, the equipment such as interlock are obliged by the Nuclear Safety Law, considering that the spatial dose rate of the educational dental panoramic radiography room is low. It seems to be excessive regulation.

  16. The effect of dose, dose rate, route of administration, and species on tissue and blood levels of benzene metabolites

    International Nuclear Information System (INIS)

    Henderson, R.F.; Sabourin, P.J.; Bechtold, W.E.; Griffith, W.C.; Medinsky, M.A.; Birnbaum, L.S.; Lucier, G.W.

    1989-01-01

    Studies were completed in F344/N rats and B6C3F 1 mice to determine the effect of dose, dose rate, route of administration, and rodent species on formation of total and individual benzene metabolites. Oral doses of 50 mg/kg or higher saturated the capacity for benzene metabolism in both rats and mice, resulting in an increased proportion of the administered dose being exhaled as benzene. The saturating air concentration for benzene metabolism during 6-hr exposures was between 130 and 900 ppm. At the highest exposure concentration, rats exhaled approximately half of the internal dose retained at the end of the 6-hr exposure as benzene; mice exhaled only 15% as benzene. Mice were able to convert more of the inhaled benzene to metabolites than were rats. In addition, mice metabolized more of the benzene by pathways leading to the putative toxic metabolites, benzoquinone and muconaldehyde, than did rats. In both rats and mice, the effect of increasing dose, administered orally or by inhalation, was to increase the proportion of the total metabolites that were the products of detoxification pathways relative to the products of pathways leading to putative toxic metabolites. This indicates low-affinity, high-capacity pathways for detoxification and high-affinity, low-capacity pathways leading to putative toxic metabolites. If the results of rodent studied performed at high doses were used to assess the health risk at low-dose exposures to benzene, the toxicity of benzene would be underestimated

  17. Total dose and dose-rate effects on start-up current in anti-fuse FPGA

    International Nuclear Information System (INIS)

    Wang, J.; Wong, W.; McCollum, J.; Cronquist, B.; Katz, R.; Kleyner, I.; Kleyner, F.

    1999-01-01

    Radiation enhanced start-up current (RESC) in an anti-fuse FPGA, A1280A, is thoroughly investigated and a comprehensive transistor-level mechanism is proposed. Low dose-rate testing, appropriate for civilian space applications, and annealing at room temperature shows RESC to be negligible for the lot of parts tested with a fixed power supply slew rate. (authors)

  18. Effect of dose rate on the translocation yield in rat spermatogonia

    International Nuclear Information System (INIS)

    Vyglenov, A.; Rudnitski, T.; Kokhmanska-Tvardovska, A.

    1987-01-01

    The effectiveness of chronic gamma-irradiation with dose rate 1.10 -4 Gy/min on the yield of reciprocal translocations in rat spermatogonia was studied. Comparsion was made with acute gamma-irradiation at emissive power 1,23 Gy/min. Emissive power decrease by four orders reduced 12 times the extent of genetic injury - from 34,9 down to 3 translocations per cellx10 -5 /cGy. In this respect, the rat is close to the laboratory mouse

  19. Multiscale analysis of the radiooxidative degradation of EVA/EPDM composites. ATH filler and dose rate effect

    Science.gov (United States)

    Sidi, Ahmedou; Colombani, Juliette; Larché, Jean-François; Rivaton, Agnès

    2018-01-01

    This study is focused on the radiooxidative degradation of polymeric insulation of electric cables used in Nuclear Power Plants (NPPs). In order to investigate the degradation mechanisms of the insulation, model composites with ATH (Aluminium TriHydrate) filler and blends (without filler) based on a cross-linked mixture of EVA (Ethylene Vinyl Acetate) and EPDM (Ethylene Propylene Diene Monomer) were submitted to gamma-rays. In normal operating conditions of a NPP, the dose rate which electric cables are exposed to is around 0.1 Gy h-1. In this work, artificial accelerated ageing test process has been applied at a relatively low dose rate of 7 Gy h-1. Gamma-irradiations at higher dose rates typically used to accelerate the ageing, in the range 0.2-1 kGy h-1, were also carried out. The first part of the study is focused on irradiations performed at relatively low dose rate and is devoted to the highlighting of the radiooxidative degradation mechanisms of EVA/EPDM blend with and without ATH filler. Correlations between the evolutions of the chemical, morphological and mechanical/electrical properties of the materials occurring after the ageing process are presented. It is shown that the degradation process is governed by radical oxidation mechanism involving chain scissions leading to the formation of carboxylic acids as end-groups. One of the main effects of the ATH filler is the progressive loss of the mechanical properties of the composite upon radiooxidation whereas they are maintained in the case of the unfilled sample. Despite the oxidation of the polymer, no change in the electrical properties of the blend and of the composite could be observed. The second part of the study focuses on the dose rate effect. It is shown that one of the main consequences of an increase of the dose rate from 7 Gy h-1 to 0.2-1 kGy h-1 is a reduction of the chain scission process yield by a factor of about 20. Therefore, an important and consistent finding is that there are some

  20. Dose rate effect on micronuclei induction in human blood lymphocytes exposed to single pulse and multiple pulses of electrons.

    Science.gov (United States)

    Acharya, Santhosh; Bhat, N N; Joseph, Praveen; Sanjeev, Ganesh; Sreedevi, B; Narayana, Y

    2011-05-01

    The effects of single pulses and multiple pulses of 7 MV electrons on micronuclei (MN) induction in cytokinesis-blocked human peripheral blood lymphocytes (PBLs) were investigated over a wide range of dose rates per pulse (instantaneous dose rate). PBLs were exposed to graded doses of 2, 3, 4, 6, and 8 Gy of single electron pulses of varying pulse widths at different dose rates per pulse, ranging from 1 × 10(6) Gy s(-1) to 3.2 × 10(8) Gy s(-1). Different dose rates per pulse were achieved by changing the dose per electron pulse by adjusting the beam current and pulse width. MN yields per unit absorbed dose after irradiation with single electron pulses were compared with those of multiple pulses of electrons. A significant decrease in the MN yield with increasing dose rates per pulse was observed, when dose was delivered by a single electron pulse. However, no reduction in the MN yield was observed when dose was delivered by multiple pulses of electrons. The decrease in the yield at high dose rates per pulse suggests possible radical recombination, which leads to decreased biological damage. Cellular response to the presence of very large numbers of chromosomal breaks may also alter the damage.

  1. Influence of dose and dose rate on the physical properties of commercial papers commonly used in libraries and archives

    International Nuclear Information System (INIS)

    Area, María C.; Calvo, Ana M.; Felissia, Fernando E.; Docters, Andrea; Miranda, María V.

    2014-01-01

    The aim of this study was to evaluate the effects of dose and dose rate of gamma irradiation on the physical properties of commercial papers commonly used in libraries and archives to optimize the irradiation conditions. Three different brands of paper of different fiber compositions were treated, using a 3 2 factorial design with four replicates of the center point, with doses ranging from 2 to 11 kGy and dose rates between 1 and 11 kGy/h. Chemical, mechanical and optical properties were determined on the samples. With some differences between the different kinds of papers, tensile strength, elongation, TEA, and air resistance were in general, unaffected by the treatment. The minimum loss of tear resistance and brightness were obtained with doses in the range 4–6 kGy at any dose rate for all three kinds of paper. These conditions are ideal to remove insects and sufficient to eliminate fungus. - Highlights: • Gamma irradiation is a valid option to remove mold from books and documents. • We studied the effect of irradiation dose and dose rate on the physical properties of papers. • We found an optimum combination of dose and dose rate

  2. Effect of low 60Co dose rates on sister chromatid exchange incidence in the benthic worm. Neanthes arenaceodentata

    International Nuclear Information System (INIS)

    Harrison, F.L.; Rice, D.W. Jr.

    1981-01-01

    The usefulness of sister chromatid exchange (SCE) induction as a measure of low-level radiation effect was examined in a benthic marine worm, Neanthes arenaceodentata. Larvae were exposed to 60 Co radiation for 12 to 24 h at total doses ranging from 0.5 to 309 R and at dose rates from 0.04 to 13 R/h. Animals exposed at intermediate dose rates (0.5, 0.6, 1.25, 2.0, and 2.5 R/h) had SCE frequencies per chromosome about twice that of those receiving no radiation (controls), whereas those exposed at the higher dose rates (7.0 and 13 R/h) had SCE frequencies lower than the controls. Animals exposed at the lower dose rates (0.04 and 0.1 R/h) had lower SCE frequencies than those exposed at intermediate dose rates (and higher SCE frequencies than controls). The length of chromosome pair number one differed among metaphase spreads and was used as an index of chromosome condensation in a given metaphase. Because there is a possibility that chromosome morphology may affect the ability to resolve SCEs, morphology will be monitored in future studies. A preliminary experiment was performed to assess the effects of 2.2 and 11.5 R/h for 24 h on growth and development. Larvae observed at 6 and 17 d after irradiation did not have significantly different numbers of abnormal larvae or survival rates

  3. Biological effect of pulsed dose rate brachytherapy with stepping sources if short half-times of repair are present in tissues

    International Nuclear Information System (INIS)

    Fowler, Jack F.; Limbergen, Erik F.M. van

    1997-01-01

    Purpose: To explore the possible increase of radiation effect in tissues irradiated by pulsed brachytherapy (PDR) for local tissue dose rates between those 'averaged over the whole pulse' and the instantaneous high dose rates close to the dwell positions. Increased effect is more likely for tissues with short half-times of repair of the order of a few minutes, similar to pulse durations. Methods and Materials: Calculations were done assuming the linear quadratic formula for radiation damage, in which only the dose-squared term is subject to exponential repair. The situation with two components of T (1(2)) is addressed. A constant overall time of 140 h and a constant total dose of 70 Gy were assumed throughout, the continuous low dose rate of 0.5 Gy/h (CLDR) providing the unitary standard effects for each PDR condition. Effects of dose rates ranging from 4 Gy/h to 120 Gy/h (HDR at 2 Gy/min) were studied, covering the gap in an earlier publication. Four schedules were examined: doses per pulse of 0.5, 1, 1.5, and 2 Gy given at repetition frequencies of 1, 2, 3, and 4 h, respectively, each with a range of assumed half-times of repair of 4 min to 1.5 h. Results are presented for late-responding tissues, the differences from CLDR being two or three times greater than for early-responding tissues and most tumors. Results: Curves are presented relating the ratio of increased biological effect (proportional to log cell kill) calculated for PDR relative to CLDR. Ratios as high as 1.5 can be found for large doses per pulse (2 Gy) if the half-time of repair in tissues is as short as a few minutes. The major influences on effect are dose per pulse, half-time of repair in tissue, and--when T (1(2)) is short--the instantaneous dose rate. Maximum ratios of PDR/CLDR occur when the dose rate is such that pulse duration is approximately equal to T (1(2)) . As dose rate in the pulse is increased, a plateau of effect is reached, for most T (1(2)) s, above 10 to 20 Gy/h, which is

  4. Gamma Low-Dose-Rate Ionizing Radiation Stimulates Adaptive Functional and Molecular Response in Human Aortic Endothelial Cells in a Threshold-, Dose-, and Dose Rate-Dependent Manner.

    Science.gov (United States)

    Vieira Dias, Juliana; Gloaguen, Celine; Kereselidze, Dimitri; Manens, Line; Tack, Karine; Ebrahimian, Teni G

    2018-01-01

    A central question in radiation protection research is whether low-dose and low-dose-rate (LDR) exposures to ionizing radiation play a role in progression of cardiovascular disease. The response of endothelial cells to different LDR exposures may help estimate risk of cardiovascular disease by providing the biological mechanism involved. We investigated the effect of chronic LDR radiation on functional and molecular responses of human aorta endothelial cells (HAoECs). Human aorta endothelial cells were continuously irradiated at LDR (6 mGy/h) for 15 days and analyzed at time points when the cumulative dose reached 0.05, 0.5, 1.0, and 2.0 Gy. The same doses were administered acutely at high-dose rate (HDR; 1 Gy/min). The threshold for the loss of angiogenic capacity for both LDR and HDR radiations was between 0.5 and 1.0 Gy. At 2.0 Gy, angiogenic capacity returned to normal only for HAoEC exposed to LDR radiation, associated with increased expression of antioxidant and anti-inflammatory genes. Pre-LDR, but not pre-HDR, radiation, followed by a single acute 2.0 Gy challenge dose sustained the expression of antioxidant and anti-inflammatory genes and stimulated angiogenesis. Our results suggest that dose rate is important in cellular response and that a radioadaptive response is involved for a 2.0 Gy dose at LDR.

  5. Inverse dose-rate effect for the induction of 6-thioguanine-resistant mutants in Chinese hamster V79-S cells by 60Co gamma rays

    International Nuclear Information System (INIS)

    Crompton, N.E.; Barth, B.; Kiefer, J.

    1990-01-01

    Chinese hamster V79-S cells capable of growing in suspension culture were exposed to 60Co gamma rays at a high dose rate (84 Gy/h), low dose rates (200, 50, and 39 mGy/h), and a spectrum of very low dose rates (between 29 and 4.5 mGy/h). Following time for appropriate expression the cultures were assayed for the induction of 6-thioguanine-resistant mutants. For a given dose, a decrease in mutation induction occurred as the dose rate was reduced from high dose rates to low dose rates. However, further reduction in dose rate resulted in a reverse dose-rate effect, and an increase in the frequency of mutants was observed. The contribution of background mutation frequency to this reverse dose-rate effect was studied, both by examining fluctuations of mutation frequency in nonirradiated culture and by its impact upon the dose-rate-independent nature of the reversed effect, and it was found to be negligible. The physiological state of the suspension culture under periods of protracted exposure to very low dose rates was also investigated. The effect of doubling time, plating efficiency, cell cycle distribution, and sensitivity on survival and mutation were examined. In no case was a change apparent during the very low-dose-rate exposures. The results are discussed in terms of the possible expression of cryptic radiation damage after prolonged culture times and/or the involvement of an error-free repair system which requires a certain amount of radiation damage to become active

  6. Mimicking the effects of spaceflight on bone: Combined effects of disuse and chronic low-dose rate radiation exposure on bone mass in mice

    Science.gov (United States)

    Yu, Kanglun; Doherty, Alison H.; Genik, Paula C.; Gookin, Sara E.; Roteliuk, Danielle M.; Wojda, Samantha J.; Jiang, Zhi-Sheng; McGee-Lawrence, Meghan E.; Weil, Michael M.; Donahue, Seth W.

    2017-11-01

    During spaceflight, crewmembers are subjected to biomechanical and biological challenges including microgravity and radiation. In the skeleton, spaceflight leads to bone loss, increasing the risk of fracture. Studies utilizing hindlimb suspension (HLS) as a ground-based model of spaceflight often neglect the concomitant effects of radiation exposure, and even when radiation is accounted for, it is often delivered at a high-dose rate over a very short period of time, which does not faithfully mimic spaceflight conditions. This study was designed to investigate the skeletal effects of low-dose rate gamma irradiation (8.5 cGy gamma radiation per day for 20 days, amounting to a total dose of 1.7 Gy) when administered simultaneously to disuse from HLS. The goal was to determine whether continuous, low-dose rate radiation administered during disuse would exacerbate bone loss in a murine HLS model. Four groups of 16 week old female C57BL/6 mice were studied: weight bearing + no radiation (WB+NR), HLS + NR, WB + radiation exposure (WB+RAD), and HLS+RAD. Surprisingly, although HLS led to cortical and trabecular bone loss, concurrent radiation exposure did not exacerbate these effects. Our results raise the possibility that mechanical unloading has larger effects on the bone loss that occurs during spaceflight than low-dose rate radiation.

  7. Dose rate visualization of radioisotope thermoelectric generators

    International Nuclear Information System (INIS)

    Schwarz, R.A.; Kessler, S.F.; Tomaszewski, T.A.

    1995-09-01

    Advanced visualization techniques can be used to investigate gamma ray and neutron dose rates around complex dose rate intensive operations. A method has been developed where thousands of dose points are calculated using the MCNP(Monte Carlo N-Particle) computer code and then displayed to create color contour plots of the dose rate for complex geometries. Once these contour plots are created, they are sequenced together creating an animation to dynamically show how the dose rate changes with changes in the geometry or source over time

  8. Dose Rate of Environmental Gamma Radiation in Java Island

    International Nuclear Information System (INIS)

    Gatot Suhariyono; Buchori; Dadong Iskandar

    2007-01-01

    The dose rate Monitoring of environmental gamma radiation at some locations in Java Island in the year 2005 / 2006 has been carried out. The dose rate measurement of gamma radiation is carried out by using the peripheral of Portable Gamma of Ray Spectrometer with detector of NaI(Tl), Merck Exploranium, Model GR-130- MINISPEC, while to determine its geographic position is used by the GPS (Global Positioning System), made in German corporation of GPS III Plus type. The division of measurement region was conducted by dividing Java Island become 66 parts with same distance, except in Jepara area that will built PLTN (Nuclear Energy Power), distance between measurement points is more closed. The results of dose rate measurement are in 66 locations in Java Island the range of (19.24 ± 4.05) nSv/hour until (150.78 ± 12.26) nSv/hour with mean (51.93 ± 36.53) nSv/h. The lowest dose rate was in location of Garut, while highest dose rate was in Ujung Lemah Abang, Jepara location. The data can be used for base line data of dose rate of environmental gamma radiation in Indonesia, specially in Java Island. The mean level of gamma radiation in Java monitoring area (0.46 mSv / year) was still lower than worldwide average effective dose rate of terrestrial gamma rays 0.5 mSv / year (report of UNSCEAR, 2000). (author)

  9. The optimal fraction size in high-dose-rate brachytherapy: dependency on tissue repair kinetics and low-dose rate

    International Nuclear Information System (INIS)

    Sminia, Peter; Schneider, Christoph J.; Fowler, Jack F.

    2002-01-01

    Background and Purpose: Indications of the existence of long repair half-times on the order of 2-4 h for late-responding human normal tissues have been obtained from continuous hyperfractionated accelerated radiotherapy (CHART). Recently, these data were used to explain, on the basis of the biologically effective dose (BED), the potential superiority of fractionated high-dose rate (HDR) with large fraction sizes of 5-7 Gy over continuous low-dose rate (LDR) irradiation at 0.5 Gy/h in cervical carcinoma. We investigated the optimal fraction size in HDR brachytherapy and its dependency on treatment choices (overall treatment time, number of HDR fractions, and time interval between fractions) and treatment conditions (reference low-dose rate, tissue repair characteristics). Methods and Materials: Radiobiologic model calculations were performed using the linear-quadratic model for incomplete mono-exponential repair. An irradiation dose of 20 Gy was assumed to be applied either with HDR in 2-12 fractions or continuously with LDR for a range of dose rates. HDR and LDR treatment regimens were compared on the basis of the BED and BED ratio of normal tissue and tumor, assuming repair half-times between 1 h and 4 h. Results: With the assumption that the repair half-time of normal tissue was three times longer than that of the tumor, hypofractionation in HDR relative to LDR could result in relative normal tissue sparing if the optimum fraction size is selected. By dose reduction while keeping the tumor BED constant, absolute normal tissue sparing might therefore be achieved. This optimum HDR fraction size was found to be largely dependent on the LDR dose rate. On the basis of the BED NT/TUM ratio of HDR over LDR, 3 x 6.7 Gy would be the optimal HDR fractionation scheme for replacement of an LDR scheme of 20 Gy in 10-30 h (dose rate 2-0.67 Gy/h), while at a lower dose rate of 0.5 Gy/h, four fractions of 5 Gy would be preferential, still assuming large differences between tumor

  10. Dose rate visualization of radioisotope thermoelectric generators

    International Nuclear Information System (INIS)

    Schwarz, R.A.; Kessler, S.F.; Tomaszewski, T.A.

    1996-01-01

    Advanced visualization techniques can be used to investigate gamma ray and neutron dose rates around complex dose rate intensive operations. A method has been developed where thousands of dose points are calculated using the MCNP (Monte Carlo N-Particle) computer code (Briesmeister 1993) and then displayed to create color contour plots of the dose rate for complex geometries. Once these contour plots are created, they are sequenced together creating an animation to dynamically show how the dose rate changes with changes in the geometry or source over time. copyright 1996 American Institute of Physics

  11. Four-dimensional dose distributions of step-and-shoot IMRT delivered with real-time tumor tracking for patients with irregular breathing: Constant dose rate vs dose rate regulation

    International Nuclear Information System (INIS)

    Yang Xiaocheng; Han-Oh, Sarah; Gui Minzhi; Niu Ying; Yu, Cedric X.; Yi Byongyong

    2012-01-01

    Purpose: Dose-rate-regulated tracking (DRRT) is a tumor tracking strategy that programs the MLC to track the tumor under regular breathing and adapts to breathing irregularities during delivery using dose rate regulation. Constant-dose-rate tracking (CDRT) is a strategy that dynamically repositions the beam to account for intrafractional 3D target motion according to real-time information of target location obtained from an independent position monitoring system. The purpose of this study is to illustrate the differences in the effectiveness and delivery accuracy between these two tracking methods in the presence of breathing irregularities. Methods: Step-and-shoot IMRT plans optimized at a reference phase were extended to remaining phases to generate 10-phased 4D-IMRT plans using segment aperture morphing (SAM) algorithm, where both tumor displacement and deformation were considered. A SAM-based 4D plan has been demonstrated to provide better plan quality than plans not considering target deformation. However, delivering such a plan requires preprogramming of the MLC aperture sequence. Deliveries of the 4D plans using DRRT and CDRT tracking approaches were simulated assuming the breathing period is either shorter or longer than the planning day, for 4 IMRT cases: two lung and two pancreatic cases with maximum GTV centroid motion greater than 1 cm were selected. In DRRT, dose rate was regulated to speed up or slow down delivery as needed such that each planned segment is delivered at the planned breathing phase. In CDRT, MLC is separately controlled to follow the tumor motion, but dose rate was kept constant. In addition to breathing period change, effect of breathing amplitude variation on target and critical tissue dose distribution is also evaluated. Results: Delivery of preprogrammed 4D plans by the CDRT method resulted in an average of 5% increase in target dose and noticeable increase in organs at risk (OAR) dose when patient breathing is either 10% faster or

  12. A Cs-137 afterloading device. Preliminary results of cell kinetic effects of low dose-rate irradiation in an experimental tumour

    International Nuclear Information System (INIS)

    Rutgers, D.H.

    1988-01-01

    A Cs-137 afterloading technique is described which can be used in experimental tumours. Preliminary results, obtained with the human cervical carcinoma ME-180 xenografted to nude athymic mice, demonstrated that 20 Gy of low dose-rate irradiation induced an important redistribution of cells over cell cycle. The proportion of cells in G2-phase increased from 14.4% to 44.2% at 140 hours after irradiation. This method allows an accurate calculation of the dose-rate distribution in the tumour. Investigations of the cell kinetic effects of low dose-rate irradiation, at different dose-rates and different total doses, are therefore facilitated by the technique. (orig.) [de

  13. Rectal dose assessment in patients submitted to high-dose-rate brachytherapy for uterine cervix cancer

    International Nuclear Information System (INIS)

    Oliveira, Jetro Pereira de; Batista, Delano Valdivino Santos; Bardella, Lucia Helena; Carvalho, Arnaldo Rangel

    2009-01-01

    Objective: The present study was aimed at developing a thermoluminescent dosimetric system capable of assessing the doses delivered to the rectum of patients submitted to high-dose-rate brachytherapy for uterine cervix cancer. Materials and methods: LiF:Mg,Ti,Na powder was the thermoluminescent material utilized for evaluating the rectal dose. The powder was divided into small portions (34 mg) which were accommodated in a capillary tube. This tube was placed into a rectal probe that was introduced into the patient's rectum. Results: The doses delivered to the rectum of six patients submitted to high-dose-rate brachytherapy for uterine cervix cancer evaluated by means of thermoluminescent dosimeters presented a good agreement with the planned values based on two orthogonal (anteroposterior and lateral) radiographic images of the patients. Conclusion: The thermoluminescent dosimetric system developed in the present study is simple and easy to be utilized as compared to other rectal dosimetry methods. The system has shown to be effective in the evaluation of rectal doses in patients submitted to high-dose-rate brachytherapy for uterine cervix cancer. (author)

  14. The effects of dose rate in total body irradiation of dogs

    International Nuclear Information System (INIS)

    Kolb, H.J.; Bodenberger, U.; Holler, E.; Thierfelder, S.; Eckstein, R.

    1986-01-01

    In summary the studies in dogs show that the dose rate or exposure time has a great impact on survival of acute radiation syndromes. In contrast the inactivation of colony forming hemopoietic precursors is less influenced by the dose rate. The potential of hemopoietic recovery is determined by the survival of hemopoietic precursor cells. Therefore in patients with a suspected whole body exposure of more than 1.50 Gy, bacterial and fungal decontamination and reverse isolation in a sterile environment has to be started immediately. Human patients treated with about 10 Gy of TBI frequently developed nausea, elevated temperatures and swelling of the parotic glands at the first and second day. The extent of these changes varies from patient to patient. The temperature is rarely elevated above 38.5 0 C. The swelling of parotics and the nausea subside within 48 hours. The presence of such systemic symptoms may suggest the exposure to a lethal dose of radiation. The disappearance of immature red cells, i.e. reticulocytes, and bandforms of granulocytes within the first 5 days supports this suggestion. HLA typing of the victim and his family should be performed as soon as possible after the accident. An HLA-identical sibling would be a suitable bone marrow donor. Unlike therapeutic TBI accidental exposures bring about uncertainties in the calculation of dose, dose distribution and dose rate. Early after irradiation biological changes are extremely variable. Both biological and physical data have to be considered, when microbiological decontamination, reverse isolation and transplantation of bone marrow are to be decided upon. Obviously these intensive therapeutic efforts are limited to a small number of victims. (orig.)

  15. Effect of dose-rate of gamma irradiation (60Co) on the anti nutritional compounds phytic acid and antitrypsin on soybean (glycine max L.)

    International Nuclear Information System (INIS)

    Tanhindarto, R.P.; Hariyadi, P.; Purnomo, E.H.; Irawati, Z.

    2013-01-01

    An investigation on the effect of gamma irradiation at different dose-rate on the anti-nutritional compounds (phytic acid and antitrypsin) and the color of soybean has been conducted. The purpose of the study was to analyze the influence of the dose-rate on the rate of change of anti-nutritional compounds and color. Samples were irradiated with dose-rates of 1.30; 3.17; 5.71 and 8.82 kGy/hour with irradiation time varied from 0.5 to 55 hours. Phytic acid content and antitrypsin activity, as well as their L α b color values were analyzed. Results showed that a simple first order kinetics model can be used to describe changes in the concentration of the anti-nutritional compounds and color soybeans during the radiation processing. Data indicate that irradiation process at higher dose-rate (shorter time) is more effective in destroying anti-nutritional compounds as compared to that of irradiation process at lower dose-rate (longer time). Furthermore, irradiation process at higher dose-rate (shorter time) also have less detrimental effect on color of the soybean and the resulted soybean flour as compared to that of irradiation process at lower dose-rate (longer time). These findings suggest that irradiation process at a same dose may potentially be optimized by selecting the most appropriate combination of dose-rate and time of irradiation. (author)

  16. Survey of environmental radiation dose rates in Tokushima prefecture

    International Nuclear Information System (INIS)

    Sakama, Minoru; Imura, Hiroyoshi; Akou, Natsuki; Takeuchi, Emi; Morihiro, Yukinori

    2004-01-01

    Survey of environmental radiation dose rates in Tokushima prefecture has been carried out using a portable NaI (Tl) scintillation survey meter and a CsI(Tl) pocket type one. To our knowledge, previous several surveys in Tokushima, for example by Abe et al. (1982) and Yoshino et al. (1991), have remained to report the environmental radiation dose rates merely about the major cities, that is Tokushima City and others along the Pacific. Up to now, there have been few efforts to survey the environmental radiation dose rates about mountain valleys in Tokushima. In this work, it is remarkable that we have for the first time made surveys of environmental radiation dose rates on the 6 routes across the Sanuki mountains and inside the pier of Onaruto Bridge, 'Naruto Uzu-no-michi', in the northern area of Tokushima. In the course of present surveys, the maximum value of the environmental radiation dose rates was 0.117±0.020 μGy/h at Higetouge in Sanuki City, and then it was found that the radiation dose rates across the Sanuki mountains tend to increase slightly with approaching Kagawa area from Tokushima one. Considering geological formation around the northern side of Sanuki mountains, there are mainly geological layers of granodiorite containing in the substantial amount of naturally occurring radionuclides, 40 K, U-series, and Th-series, than other geological rocks and it was found that the terrestrial gamma-rays have effect on the environmental radiation dose rates according to the geological formation. (author)

  17. Effects of long-term, low dose rate fission neutron irradiation on the peripheral hematological cells in rats

    International Nuclear Information System (INIS)

    Jiang Dingwen; Lei Chengxiang; Shen Xianrong; Ma Li; Yang Xufang; Peng Wulin; Dai Shourong

    2008-01-01

    Objective: To evaluate the effects of long-term, low dose rate fission neutron irradiation on the peripheral hematological cells in rats. Methods: 96 rats were randomly divided into the control group and the irradiation group with low dose rate fission neutron ( 252 Cf, 0.35 mGy/h) irradiation 20.5 h every day. 8 rats of each group were killed at 14 d, 28 d, 42d, 56d, 70d after irradiation and 35d after the irradiation, and their peripheral hematological cells were tested respectively. Results: Compared with the control group, peripheral blood WBC was reduced significantly at the dose of 0.3Gy and 0.4Gy (P < 0.05), and was reduced remarkably at dose of 0.5Gy (P<0.01) and 35d after stopping irradiation(P<0.01). At dose of 0.2Gy, Peripheral blood RBC was abnormally higher comparing with the control group (P<0.01), accompanying with higher HCT and HGB, which suggests condensed blood. At the other point, RBC tend to become lower, but only at dose 0.5Gy, and the difference is significant comparing with control group(P <0.05). At dose of 0.3Gy, 0.4Gy and 0.5Gy, HCT were significantly lower comparing with control group. Comparing with control group, MCV was higher at 35d after stopping irradiation, and PLT was significantly lower in dose of 0.2Gy. Conclusion: Long-term irradiation with low dose rate fission neutron could significantly reduce peripheral blood WBC, with less effects on RBC and PLT. The reduced WBC could not recover at 35d after stopping irradiation. (authors)

  18. Estimates of external dose-rate conversion factors and internal dose conversion factors for selected radionuclides released from fusion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Homma, Toshimitsu; Togawa, Orihiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-11-01

    This report provides a tabulation of both external dose-rate conversion factors and internal dose conversion factors using radioactive decay data in the updated Evaluated Nuclear Structure Data File (ENSDF) for selected 26 radionuclides and all their daughter radionuclides of potential importance in safety assessments of fusion facilities. The external dose-rate conversion factors for 21 target organs are tabulated for three exposure modes that are immersion in contaminated air, irradiation at a height of 1 m above a contaminated ground surface and immersion contaminated water. For internal exposure, committed dose equivalents, based on the methodology of ICRP Publication 30, in the same target organs per intake of unit activity are given for the inhalation and ingestion exposure pathways. The data presented here is intended to be generally used for safety assessments of fusion reactors. Comparisons of external effective dose-rate conversion factors and committed effective dose equivalents are made with the previous data from the independent data bases to provide quality assurance on our calculated results. There is generally good agreement among data from the independent data bases. The differences in the values of both effective dose-rate and dose conversion factors appeared are primarily due to differences in calculational methodology, the use of different radioactive decay data, and compilation errors. (author)

  19. Dosimetric Effects of Air Pockets Around High-Dose Rate Brachytherapy Vaginal Cylinders

    International Nuclear Information System (INIS)

    Richardson, Susan; Palaniswaamy, Geethpriya; Grigsby, Perry W.

    2010-01-01

    Purpose: Most physicians use a single-channel vaginal cylinder for postoperative endometrial cancer brachytherapy. Recent published data have identified air pockets between the vaginal cylinders and the vaginal mucosa. The purpose of this research was to evaluate the incidence, size, and dosimetric effects of these air pockets. Methods and Materials: 25 patients receiving postoperative vaginal cuff brachytherapy with a high-dose rate vaginal cylinders were enrolled in this prospective data collection study. Patients were treated with 6 fractions of 200 to 400 cGy per fraction prescribed at 5 mm depth. Computed tomography simulation for brachytherapy treatment planning was performed for each fraction. The quantity, volume, and dosimetric impact of the air pockets surrounding the cylinder were quantified. Results: In 25 patients, a total of 90 air pockets were present in 150 procedures (60%). Five patients had no air pockets present during any of their treatments. The average number of air pockets per patient was 3.6, with the average total air pocket volume being 0.34 cm 3 (range, 0.01-1.32 cm 3 ). The average dose reduction to the vaginal mucosa at the air pocket was 27% (range, 9-58%). Ten patients had no air pockets on their first fraction but air pockets occurred in subsequent fractions. Conclusion: Air pockets between high-dose rate vaginal cylinder applicators and the vaginal mucosa are present in the majority of fractions of therapy, and their presence varies from patient to patient and fraction to fraction. The existence of air pockets results in reduced radiation dose to the vaginal mucosa.

  20. Transcriptional Response in Mouse Thyroid Tissue after 211At Administration: Effects of Absorbed Dose, Initial Dose-Rate and Time after Administration.

    Directory of Open Access Journals (Sweden)

    Nils Rudqvist

    Full Text Available 211At-labeled radiopharmaceuticals are potentially useful for tumor therapy. However, a limitation has been the preferential accumulation of released 211At in the thyroid gland, which is a critical organ for such therapy. The aim of this study was to determine the effect of absorbed dose, dose-rate, and time after 211At exposure on genome-wide transcriptional expression in mouse thyroid gland.BALB/c mice were i.v. injected with 1.7, 7.5 or 100 kBq 211At. Animals injected with 1.7 kBq were killed after 1, 6, or 168 h with mean thyroid absorbed doses of 0.023, 0.32, and 1.8 Gy, respectively. Animals injected with 7.5 and 100 kBq were killed after 6 and 1 h, respectively; mean thyroid absorbed dose was 1.4 Gy. Total RNA was extracted from pooled thyroids and the Illumina RNA microarray platform was used to determine mRNA levels. Differentially expressed transcripts and enriched GO terms were determined with adjusted p-value 1.5, and p-value <0.05, respectively.In total, 1232 differentially expressed transcripts were detected after 211At administration, demonstrating a profound effect on gene regulation. The number of regulated transcripts increased with higher initial dose-rate/absorbed dose at 1 or 6 h. However, the number of regulated transcripts decreased with mean absorbed dose/time after 1.7 kBq 211At administration. Furthermore, similar regulation profiles were seen for groups administered 1.7 kBq. Interestingly, few previously proposed radiation responsive genes were detected in the present study. Regulation of immunological processes were prevalent at 1, 6, and 168 h after 1.7 kBq administration (0.023, 0.32, 1.8 Gy.

  1. LET and dose rate effect on radiation-induced copolymerization of maleimide with styrene in 2-propanol solution

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Seiko, E-mail: Nakagawa.Seiko@iri-tokyo.jp [Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10 Aoumi, Koto-ku, Tokyo 135-0064 (Japan); Taguchi, Mitsumasa; Kimura, Atsushi [Environmental Radiation Processing Group, Environment and Industrial Materials Research Division, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2011-11-15

    N{sub 2}-saturated 2-propanol solutions containing styrene and maleimide were irradiated by electron, proton, He and C-ion beams. The styrene-maleimide copolymer was produced by radical polymerization induced during irradiation. The effects of the radical distribution, which depends on the LET or dose rate, on the molecular weight and the polymer yield were discussed. - Highlights: > Maleimide with styrene in N{sub 2}-saturated 2-propanol was irradiated by electron and heavy ions. > LET and dose rate effects of radical polymerization induced by irradiation were studied. > Results have shown the relation between radical distribution and efficiency of polymerization.

  2. Effect of dose rate on residual γ-H2AX levels and frequency of micronuclei in X-irradiated mouse lymphocytes.

    Science.gov (United States)

    Turner, H C; Shuryak, I; Taveras, M; Bertucci, A; Perrier, J R; Chen, C; Elliston, C D; Johnson, G W; Smilenov, L B; Amundson, S A; Brenner, D J

    2015-03-01

    The biological risks associated with low-dose-rate (LDR) radiation exposures are not yet well defined. To assess the risk related to DNA damage, we compared the yields of two established biodosimetry end points, γ-H2AX and micronuclei (MNi), in peripheral mouse blood lymphocytes after prolonged in vivo exposure to LDR X rays (0.31 cGy/min) vs. acute high-dose-rate (HDR) exposure (1.03 Gy/min). C57BL/6 mice were total-body irradiated with 320 kVP X rays with doses of 0, 1.1, 2.2 and 4.45 Gy. Residual levels of total γ-H2AX fluorescence in lymphocytes isolated 24 h after the start of irradiation were assessed using indirect immunofluorescence methods. The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was used to determine apoptotic cell frequency in lymphocytes sampled at 24 h. Curve fitting analysis suggested that the dose response for γ-H2AX yields after acute exposures could be described by a linear dependence. In contrast, a linear-quadratic dose-response shape was more appropriate for LDR exposure (perhaps reflecting differences in repair time after different LDR doses). Dose-rate sparing effects (P effect across the dose range 24 h or 7 days post exposure. In conclusion, the γ-H2AX biomarker showed higher sensitivity to measure dose-rate effects after low-dose LDR X rays compared to MNi formation; however, confounding factors such as variable repair times post exposure, increased cell killing and cell cycle block likely contributed to the yields of MNi with accumulating doses of ionizing radiation.

  3. Low-dose effect on blood chromosomes

    International Nuclear Information System (INIS)

    Pohl-Rueling, J.

    1992-01-01

    Linear dose response relationships of biological effects at low doses are experimentally and theoretically disputed. Structural chromosome aberration rates at doses ranging from normal background exposures up to about 30 mGy/yr in vivo and up to 50 mGy in vitro were investigated by the author and other scientists. Results are comparable and dose effect curves reveal following shapes; within the normal burden and up to 2-10 mGy/yr in vivo rates they increase sharply to about 3-6 times the lowest values; subsequent doses either from natural, occupational or accidental exposures up to about 30 mGy/yr yield either constant aberration rates, assuming a plateau, or perhaps even a decrease. In vitro experiments show comparable results up to 50 mGy. Other biological effects seem to have similar dose dependencies. The non-linearity of low-dose effects can be explained by induction of repair enzymes at certain damage to the DNA. This hypothesis is sustained experimentally and theoretically by several papers in literature. (author). 14 refs., 5 figs

  4. Relationship of dose rate and total dose to responses of continuously irradiated beagles

    International Nuclear Information System (INIS)

    Fritz, T.E.; Norris, W.P.; Tolle, D.V.; Seed, T.M.; Poole, C.M.; Lombard, L.S.; Doyle, D.E.

    1978-01-01

    Young-adult beagles were exposed continuously (22 hours/day) to 60 Co γ rays in a specially constructed facility. The exposure rates were either 5, 10, 17, or 35 R/day, and the exposures were terminated at either 600, 1400, 2000, or 4000 R. A total of 354 dogs were irradiated; 221 are still alive as long-term survivors, some after more than 2000 days. The data on survival of these dogs, coupled with data from similar preliminary experiments, allow an estimate of the LD 50 for γ-ray exposures given at a number of exposure rates. They also allow comparison of the relative importance of dose rate and total dose, and the interaction of these two variables, in the early and late effects after protracted irradiation. The LD 50 for the beagle increases from 258 rad delivered at 15 R/minute to approximately 3000 rad at 10 R/day. Over this entire range, the LD 50 is dependent upon hematopoietic damage. At 5 R/day and less, no meaningful LD 50 can be determined; there is nearly normal continued hematopoietic function, survival is prolonged, and the dogs manifest varied individual responses in other organ systems. Although the experiment is not complete, interim data allow several important conclusions. Terminated exposures, while not as effective as radiation continued until death, can produce myelogenous leukemia at the same exposure rate, 10 R/day. More importantly, at the same total accumulated dose, lower exposure rates are more damaging than higher rates on the basis of the rate and degree of hematological recovery that occurs after termination of irradiation. Thus, the rate of hematologic depression, the nadir of the depression, and the rate of recovery are dependent upon exposure rate; the latter is inversely related and the former two are directly related to exposure rate

  5. Relationship of dose rate and total dose to responses of continuously irradiated beagles

    International Nuclear Information System (INIS)

    Fritz, T.E.; Norris, W.P.; Tolle, D.V.; Seed, T.M.; Poole, C.M.; Lombard, L.S.; Doyle, D.E.

    1978-01-01

    Young-adult beagles were exposed continuously (22 hours/day) to 60 Co gamma rays in a specially constructed facility. The exposure rates were 5, 19, 17 or 35 R/day, and the exposures were terminated at 600, 1400, 2000 or 4000 R. A total of 354 dogs were irradiated; 221 are still alive as long-term survivors, some after more than 2000 days. The data on survival of these dogs, coupled with data from similar preliminary experiments, allow an estimate of the LD 50 for gamma-ray exposures given at a number of exposure rates. They also allow comparison of the relativeimportance of dose rate and total dose, and the interaction of these two variables, in the early and late effects after protracted irradiation. The LD 50 for the beagle increases from 344 R (258 rads) delivered at 15 R/minute to approximately 4000 R (approximately 3000 rads) at 10 R/day. Over this entire range, the LD 50 is dependent upon haematopoietic damage. At 5 R/day and less, no definitive LD 50 can be determined; there is nearly normal continued haematopoietic function, survival is prolonged, and the dogs manifest varied individual responses in the organ systems. Although the experiment is not complete, interim data allow serveral important conclusions. Terminated exposures, while not as effective as irradiation continued until death, can produce myelogenous leukaemia at the same exposure rate, 10 R/day. More importantly, at the same total accumulated dose, lower exposure rates appear more damaging than higher rates on the basis of the rate and degree of haematological recovery that occurs after termination of irradiation. Thus, the rate of haematologic depression, the nadir of the depression and the rate of recovery are dependent upon exposure rate; the latter is inversely related and the first two are directly related to exposure rate. ( author)

  6. External dose-rate conversion factors for calculation of dose to the public

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    This report presents a tabulation of dose-rate conversion factors for external exposure to photons and electrons emitted by radionuclides in the environment. This report was prepared in conjunction with criteria for limiting dose equivalents to members of the public from operations of the US Department of Energy (DOE). The dose-rate conversion factors are provided for use by the DOE and its contractors in performing calculations of external dose equivalents to members of the public. The dose-rate conversion factors for external exposure to photons and electrons presented in this report are based on a methodology developed at Oak Ridge National Laboratory. However, some adjustments of the previously documented methodology have been made in obtaining the dose-rate conversion factors in this report. 42 refs., 1 fig., 4 tabs.

  7. Model predictions and analysis of enhanced biological effectiveness at low dose rates

    International Nuclear Information System (INIS)

    Watt, D.E.; Sykes, C.E.; Younis, A.-R.S.

    1988-01-01

    A severe challenge to all models purporting to describe the biological effects of ionizing radiation has arisen with the discovery of two phenomena: the anomalous trend with dose rate of the frequency of neoplastic transformation of mammalian cells and the apparent excessive damaging power of electron-capture radionuclides when incorporated into cell nuclei. A new model is proposed which predicts and enables interpretation of these phenomena. Radiation effectiveness is found to be expressible absolutely in terms of the geometrical cross-sectional area of the radiosensitive sites. The duration of the irradiation, the mean free path for ionization, the influence of particles in the slowing-down spectrum perrtaining in the medium and two collective time factors determining the mean repair rate and the mean lifetime of unidentified reactive chemical species [pt

  8. Physiological and immunological changes following exposure to low versus high-dose ionizing irradiation; comparative analysis with dose rate and cumulative dose

    International Nuclear Information System (INIS)

    Heesun, Kim; Heewon, Jang; Soungyeon, Song; Shinhye, Oh; Cukcheul, Shin; Meeseon, Jeong; Chasoon, Kim; Kwnaghee, Yang; Seonyoung, Nam; Jiyoung, Kim; Youngwoo, Jin; Changyoung, Cha

    2008-01-01

    Full text: While high-dose of ionizing radiation is generally harmful and causes damage to living organisms some reports suggest low-dose of radiation may not be as damaging as previously thought. Despite increasing evidence regarding the protective effect of low-dose radiation, no studies have directly compared the exact dose-response pattern by high- and low-dose of radiation exposed at high-and low-dose rate. This study aims to explore the cellular and molecular changes in mice exposed to low- and high-dose of radiation exposed at low- and high-dose rate. When C57BL/6 mice (Female, 6 weeks) were exposed at high-dose rate, 0.8 Gy/min, no significant change on the level of WBC, RBC, or platelets was observed up to total dose of 0.5 Gy. However, 2 Gy of radiation caused dramatic reduction in the level of white blood cells (WBC) and platelets. This reduction was accompanied by increased DNA damage in hematopoietic environments. The reduction of WBC was mainly due to the reduction in the number of CD4+ T cells and CD19+ B cells. CD8+ T cells and NK cells appeared to be relatively resistant to high-dose of radiation. This change was also accompanied by the reduction of T- and B- progenitor cells in the bone marrow. In contrast, no significant changes of the number of CD4+ T, CD8+ T, NK, and B cells were observed in the spleen of mice exposed at low-dose-rate (0.7 m Gy/h or 3.95 mGy/h) for up to 2 Gy, suggesting that low-dose radiation does not alter cellular distribution in the spleen. Nevertheless, mice exposed to low-dose radiation exhibited elevation of VEGF, MCP-1, IL-4, Leptin, IL-3, and Tpo in the peripheral blood and slight increases in MIP-2, RANTES, and IL-2 in the spleen. This suggests that chronic γ-radiation can stimulate immune function without causing damage to the immune components of the body. Taken together, these data indicate hormesis of low-dose radiation, which could be attributed to the stimulation of immune function. Dose rate rather than total

  9. Modification of radiation dose-rate sparing effects in a human carcinoma of the cervix cell line by inhibitors of DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Kelland, L.R.; Steel, G.G.

    1988-08-01

    The in vitro cell survival of a human cervix carcinoma cell line (HX156c) was assessed using /sup 60/Co ..gamma..-rays administered at 150 cGy/min or 3.2 cGy/min dose rate. Recovery during low dose-rate irradiation was observed; dose reduction factor at 10/sup -2/ cell kill for 150 versus 3.2 cGy/min was around 1.3. Possible underlying mechanisms of this recovery process have been investigated by addition of non-toxic concentrations of various agents thought to inhibit eukaryotic DNA repair. Differential effects among inhibitors were observed; aphidicolin had no effect on cell survival, novobiocin, hydroxyurea and 3-aminobenzamide reduced survival by a similar extent at both dose rates, ..beta..-ara A and caffeine reduced survival to a greater extent during low dose-rate irradiation. ..beta..-ara A and caffeine seemed to effect mainly by increasing the alpha component of the acute survival curve. Since survival curves obtained at dose rates of around 3 cGy/min help define a dominant component of the initial slope of the acute curve the authors claim to demonstrate that ..beta..-ara A and caffeine modify the initial slope, probably by inhibiting DNA repair processes involved in tumour cell sparing during protracted irradiation.

  10. Radiation Parameters of High Dose Rate Iridium -192 Sources

    Science.gov (United States)

    Podgorsak, Matthew B.

    A lack of physical data for high dose rate (HDR) Ir-192 sources has necessitated the use of basic radiation parameters measured with low dose rate (LDR) Ir-192 seeds and ribbons in HDR dosimetry calculations. A rigorous examination of the radiation parameters of several HDR Ir-192 sources has shown that this extension of physical data from LDR to HDR Ir-192 may be inaccurate. Uncertainty in any of the basic radiation parameters used in dosimetry calculations compromises the accuracy of the calculated dose distribution and the subsequent dose delivery. Dose errors of up to 0.3%, 6%, and 2% can result from the use of currently accepted values for the half-life, exposure rate constant, and dose buildup effect, respectively. Since an accuracy of 5% in the delivered dose is essential to prevent severe complications or tumor regrowth, the use of basic physical constants with uncertainties approaching 6% is unacceptable. A systematic evaluation of the pertinent radiation parameters contributes to a reduction in the overall uncertainty in HDR Ir-192 dose delivery. Moreover, the results of the studies described in this thesis contribute significantly to the establishment of standardized numerical values to be used in HDR Ir-192 dosimetry calculations.

  11. Survey of environmental radiation dose rates in Kyoto and Shiga prefectures, Japan

    International Nuclear Information System (INIS)

    Minamia, Kazuyuki; Shimo, Michikuni; Oka, Mitsuaki; Ejiri, Kazutaka; Sugino, Masato; Minato, Susumu; Hosoda, Masahiro; Yamada, Junya; Fukushi, Masahiro

    2008-01-01

    We have measured environmental radiation dose rates in several Prefectures, such as Ai chi Prefecture, Gifu Prefecture, and Mie Prefecture, in central Japan. Recently, we measured the environmental radiation dose rates in Kyoto and Shiga Prefectures that are also located in central Japan with a car-borne survey system. At the time of measurement, Kyoto Prefecture (area: 4,613 km 2 ) had a total of 36 districts, and Shiga Prefecture (area: 3,387 km 2 ) a total of 26. Terrestrial gamma ray dose rates and secondary cosmic ray dose rates were measured by a 2 inches ψ x 2 inches NaI(Tl) scintillation counter and a handy-type altimeter (GPS eTrex Legend by Gamin), respectively. The following factors were taken into consideration the shielding effect of the car body, the effect of the road pavement, radon progeny borne by precipitation, and increases in tunnels and near the walls. Terrestrial gamma ray dose rates in Kyoto and Shiga Prefectures were estimated to be 51.7 ± 6.0 n Gy/h (district average: 52.4 ± 4.7 n Gy/h), 52.2 ± 10.5 n Gy/h (district average: 51.9 ± 8.1 n Gy/h), respectively. Secondary cosmic ray dose rates in Kyoto and Shiga Prefectures were 30.0 ± 0.6 n Gy/h (district average: 29.9 ±0.3 n Gy/h), 30.1 ± 0.3 n Gy/h (district average: 30.0 ± 0.2 n Gy/h), respectively. The environmental radiation dose rates due to the sum dose rates of terrestrial gamma ray and secondary cosmic ray in Kyoto and Shiga Prefectures were 81.7 ± 6.2 n Gy/h (district average: 82.3 ± 4.8 n Gy/h), 82.3 ± 10.6 n Gy/h (district average: 82.0 ± 8.1 n Gy/h), respectively. We confirmed that the environmental radiation dose rates in Kyoto and Shiga Prefectures mainly depended on the change of the terrestrial gamma ray dose rates, since the secondary cosmic ray dose rates had little change. Therefore, radiation dose-rate maps of the terrestrial gamma rays as well as maps of the environmental radiation dose-rate were drawn. (author)

  12. ATM phosphorylation in HepG2 cells following continuous low dose-rate irradiation

    International Nuclear Information System (INIS)

    Mei Quelin; Du Duanming; Chen Zaizhong; Liu Pengcheng; Yang Jianyong; Li Yanhao

    2008-01-01

    Objective: To investigate the change of ATM phosphorylation in HepG2 cells following a continuous low dose-rate irradiation. Methods: Cells were persistently exposed to low dose-rate (8.28 cGy/h) irradiation. Indirect immunofluorescence and Western blot were used to detect the expression of ATM phosphorylated proteins. Colony forming assay was used to observe the effect of a low dose-rate irradiation on HepG2 cell survival. Results: After 30 min of low dose-rate irradiation, the phosphorylation of ATM occurred. After 6 h persistent irradiation, the expression of ATM phosphorylated protein reached the peak value, then gradually decreased. After ATM phosphorylation was inhibited with Wortmannin, the surviving fraction of HepG2 cells was lower than that of the irradiation alone group at each time point (P<0.05). Conclusions: Continuous low dose-rate irradiation attenuated ATM phosphorylation, suggesting that continuous low dose-rate irradiation has a potential effect for increasing the radiosensitivity of HepG2 cells. (authors)

  13. The direct biologic effects of radioactive 125I seeds on pancreatic cancer cells PANC-1, at continuous low-dose rates.

    Science.gov (United States)

    Wang, Jidong; Wang, Junjie; Liao, Anyan; Zhuang, Hongqing; Zhao, Yong

    2009-08-01

    The relative biologic effectiveness of model 6711 125I seeds (Ningbo Junan Pharmaceutical Technology Company,Ningbo, China) and their effects on growth, cell cycle, and apoptosis in human pancreatic cancer cell line PANC-1 were examined in the present study. PANC-1 cells were exposed to the absorbed doses of 1, 2, 4, 6, 8, and 10 Gyeither with 125I seeds (initial dose rate, 2.59 cGy=h) or with 60Co g-ray irradiation (dose rate, 221 cGy=min),respectively. Significantly greater numbers of apoptotic PANC-1 cells were detected following the continuouslow-dose-rate (CLDR) irradiation of 125I seeds, compared with cells irradiated with identical doses of 60Co g-ray. The D(0) for 60Co g-ray and 125I seed irradiation were 2.30 and 1.66, respectively. The survival fraction after 125Iseed irradiation was significantly lower than that of 60Co g-ray, with a relative biologic effectiveness of 1.39.PANC-1 cells were dose dependently arrested in the S-phase by 60Co g-rays and in the G2=M phase by 125I seeds,24 hour after irradiation. CLDR irradiation by 125I seeds was more effective in inducing cell apoptosis in PANC-1cells than acute high-dose-rate 60Co g irradiation. Interestingly, CLDR irradiation by 125I seeds can cause PANC-1cell-cycle arrest at the G2=M phase and induce apoptosis, which may be an important mechanism underlying 125Iseed-induced PANC-1 cell inhibition.

  14. Dose-rate effects between 0.3 and 30 Gy/h in a normal and a malignant human cell line

    International Nuclear Information System (INIS)

    Amdur, R.J.; Bedford, J.S.

    1994-01-01

    This study used continuous open-quotes intermediateclose quotes dose rate irradiation (0.3-30 Gy/h) to compare the capacity for and repair of sublethal radiation damage in different cell lines growing in tissue culture. Two human cell lines were studied; one was derived from normal human fibroblasts (AG1522) and the other from a squamous cell carcinoma of the uterine cervix (HTB-35). Dose-response curves for clonogenic survival were determined following irradiation of plateau-phase cultures at five different dose rates: 22.6, 6.12, 3.65, 1.04, and 0.38 Gy/h. Subculture following irradiation was delayed for 8-24 h to allow for the full repair of open-quotes potentially lethal damage.close quotes A significant dose-rate effect was seen in both cell lines. For irradiation at the highest dose rate, survival at 2 Gy (SF2) and the α/β ratio were similar for the two cell lines (approximately 0.7 and 8.0 Gy, respectively) but the half-time of repair of sublethal damage was estimated to be approximately five times longer in the normal human fibroblast line (154 min) than in the carcinoma (31 min) cell line. These results indicate that measuring the dose-rate effect between 0.3 and 30 Gy/h is a useful way to identify and quantify differences in sublethal damage repair between cell lines. To the extent that in vitro and in vivo repair parameters are similar, and that representative tumor biopsy specimens can be examined in this way, this approach may provide a prospective way of determining the dose rate (brachytherapy) or fractionation schedule that will optimize the therapeutic ratio. 32 refs., 1 fig

  15. The impact of the oxygen scavenger on the dose-rate dependence and dose sensitivity of MAGIC type polymer gels

    Science.gov (United States)

    Khan, Muzafar; Heilemann, Gerd; Kuess, Peter; Georg, Dietmar; Berg, Andreas

    2018-03-01

    Recent developments in radiation therapy aimed at more precise dose delivery along with higher dose gradients (dose painting) and more efficient dose delivery with higher dose rates e.g. flattening filter free (FFF) irradiation. Magnetic-resonance-imaging based polymer gel dosimetry offers 3D information for precise dose delivery techniques. Many of the proposed polymer gels have been reported to exhibit a dose response, measured as relaxation rate ΔR2(D), which is dose rate dependent. A lack of or a reduced dose-rate sensitivity is very important for dosimetric accuracy, especially with regard to the increasing clinical use of FFF irradiation protocols with LINACs at high dose rates. Some commonly used polymer gels are based on Methacrylic-Acid-Gel-Initiated-by-Copper (MAGIC). Here, we report on the dose sensitivity (ΔR2/ΔD) of MAGIC-type gels with different oxygen scavenger concentration for their specific dependence on the applied dose rate in order to improve the dosimetric performance, especially for high dose rates. A preclinical x-ray machine (‘Yxlon’, E  =  200 kV) was used for irradiation to cover a range of dose rates from low \\dot{D} min  =  0.6 Gy min-1 to high \\dot{D} max  =  18 Gy min-1. The dose response was evaluated using R2-imaging of the gel on a human high-field (7T) MR-scanner. The results indicate that all of the investigated dose rates had an impact on the dose response in polymer gel dosimeters, being strongest in the high dose region and less effective for low dose levels. The absolute dose rate dependence \\frac{(Δ R2/Δ D)}{Δ \\dot{D}} of the dose response in MAGIC-type gel is significantly reduced using higher concentrations of oxygen scavenger at the expense of reduced dose sensitivity. For quantitative dose evaluations the relative dose rate dependence of a polymer gel, normalized to its sensitivity is important. Based on this normalized sensitivity the dose rate sensitivity was reduced distinctly

  16. Cytogenetic effects of low-dose radiation

    International Nuclear Information System (INIS)

    Metalli, P.

    1983-01-01

    The effects of ionizing radiation on chromosomes have been known for several decades and dose-effect relationships are also fairly well established in the mid- and high-dose and dose-rate range for chromosomes of mammalian cells. In the range of low doses and dose rates of different types of radiation few data are available for direct analysis of the dose-effect relationships, and extrapolation from high to low doses is still the unavoidable approach in many cases of interest for risk assessment. A review is presented of the data actually available and of the attempts that have been made to obtain possible generalizations. Attention is focused on some specific chromosomal anomalies experimentally induced by radiation (such as reciprocal translocations and aneuploidies in germinal cells) and on their relevance for the human situation. (author)

  17. Air dose rate in Aichi Prefecture

    International Nuclear Information System (INIS)

    Ohnuma, Shoko; Chaya, Kunio; Tomita, Banichi; Aoyama, Kan; Yamada, Naoki; Yamada, Masuo; Hamamura, Norikatsu

    1985-01-01

    We have carried out the observations of air dose rate during 1964--1983 at the fixed points of Aichi Prefecture and investigated the distribution of air dose rate in this prefecture during 1979--1983. The results of these researches are as follows. 1) The apparent half time of radiation dose from the earth and the atmosphere during the last 20 years was about 9.7 years and it was longer than the apparent half time of fallout total β radioactivity in every rainfall that was about 3.2 years. 2) The influence of nuclear explosion test in China on the measurements of air does rate did not existed directly during the latter half of 20 years, not so as during the former and it was keeping decreasing. It was expected that the air dose rate would begin to indicate the natural radiation dose from the earth and the atmosphere in the near future. 3) The distribution of air dose rate in this prefecture depended strongly on the geology. The maximum value was 5.6 μR/hr (except cosmic rays) in Fujioka Cho, the minimum value was 1.9 μR/hr (except cosmic rays) in Tahara Cho and the average in the whole prefecture was 3.5+-0.7 μR/hr (except cosmic rays). 4) It was estimated that the radiation dose which the inhabitants received from the earth and the atmosphere was 17--52 m rem a year and the average was 31 m rem a year. (author)

  18. Air dose rate in Aichi Prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuma, Shoko; Chaya, Kunio; Tomita, Banichi; Aoyama, Kan; Yamada, Naoki; Yamada, Masuo; Hamamura, Norikatsu

    1985-03-01

    We have carried out the observations of air dose rate during 1964-1983 at the fixed points of Aichi Prefecture and investigated the distribution of air dose rate in this prefecture during 1979-1983. The results of these researches are as follows. 1) The apparent half time of radiation dose from the earth and the atmosphere during the last 20 years was about 9.7 years and it was longer than the apparent half time of fallout total ..beta.. radioactivity in every rainfall that was about 3.2 years. 2) The influence of nuclear explosion test in China on the measurements of air does rate did not existed directly during the latter half of 20 years, not so as during the former and it was keeping decreasing. It was expected that the air dose rate would begin to indicate the natural radiation dose from the earth and the atmosphere in the near future. 3) The distribution of air dose rate in this prefecture depended strongly on the geology. The maximum value was 5.6 ..mu..R/hr (except cosmic rays) in Fujioka Cho, the minimum value was 1.9 ..mu..R/hr (except cosmic rays) in Tahara Cho and the average in the whole prefecture was 3.5 +- 0.7 ..mu..R/hr (except cosmic rays). 4) It was estimated that the radiation dose which the inhabitants received from the earth and the atmosphere was 17-52 m rem a year and the average was 31 m rem a year.

  19. High dose rate brachytherapy for oral cancer.

    Science.gov (United States)

    Yamazaki, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Furukawa, Souhei; Koizumi, Masahiko; Ogawa, Kazuhiko

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer.

  20. Critical commentary on dose-rate evaluations

    International Nuclear Information System (INIS)

    Dowdy, E.J.; Malenfant, R.E.; Plassmann, E.A.

    1984-01-01

    Survivors of Hiroshima and Nagasaki present a unique problem in dosimetry: the effects of radiation exposure may be inferred although the exposure itself is unknown. Experience with a replica of Little Boy demonstrates the difficulties of measuring dose rates, the problems of comparing measurements with calculations, and the inadequacy of the conventional standards that are used to calibrate dosimeters

  1. Dose rate and dose fractionation studies in total body irradiation of dogs

    International Nuclear Information System (INIS)

    Kolb, H.J.; Netzel, B.; Schaffer, E.; Kolb, H.

    1979-01-01

    Total body irradiation (TBI) with 800-900 rads and allogeneic bone marrow transplantation according to the regimen designated by the Seattle group has induced remissions in patients with otherwise refractory acute leukemias. Relapse of leukemia after bone marrow transplantation remains the major problem, when the Seattle set up of two opposing 60 Co-sources and a low dose rate is used in TBI. Studies in dogs with TBI at various dose rates confirmed observations in mice that gastrointestinal toxicity is unlike toxicity against hemopoietic stem cells and possibly also leukemic stem cells depending on the dose rate. However, following very high single doses (2400 R) and marrow infusion acute gastrointestinal toxicity was not prevented by the lowest dose rate studied (0.5 R/min). Fractionated TBI with fractions of 600 R in addition to 1200 R (1000 rads) permitted the application of total doses up to 300 R followed by marrow infusion without irreversible toxicity. 26 dogs given 2400-3000 R have been observed for presently up to 2 years with regard to delayed radiation toxicity. This toxicity was mild in dogs given single doses at a low dose rate or fractionated TBI. Fractionated TBI is presently evaluated with allogeneic transplants in the dog before being applied to leukemic patients

  2. Dose rate reduction method for NMCA applied BWR plants

    International Nuclear Information System (INIS)

    Nagase, Makoto; Aizawa, Motohiro; Ito, Tsuyoshi; Hosokawa, Hideyuki; Varela, Juan; Caine, Thomas

    2012-09-01

    BRAC (BWR Radiation Assessment and Control) dose rate is used as an indicator of the incorporation of activated corrosion by products into BWR recirculation piping, which is known to be a significant contributor to dose rate received by workers during refueling outages. In order to reduce radiation exposure of the workers during the outage, it is desirable to keep BRAC dose rates as low as possible. After HWC was adopted to reduce IGSCC, a BRAC dose rate increase was observed in many plants. As a countermeasure to these rapid dose rate increases under HWC conditions, Zn injection was widely adopted in United States and Europe resulting in a reduction of BRAC dose rates. However, BRAC dose rates in several plants remain high, prompting the industry to continue to investigate methods to achieve further reductions. In recent years a large portion of the BWR fleet has adopted NMCA (NobleChem TM ) to enhance the hydrogen injection effect to suppress SCC. After NMCA, especially OLNC (On-Line NobleChem TM ), BRAC dose rates were observed to decrease. In some OLNC applied BWR plants this reduction was observed year after year to reach a new reduced equilibrium level. This dose rate reduction trends suggest the potential dose reduction might be obtained by the combination of Pt and Zn injection. So, laboratory experiments and in-plant tests were carried out to evaluate the effect of Pt and Zn on Co-60 deposition behaviour. Firstly, laboratory experiments were conducted to study the effect of noble metal deposition on Co deposition on stainless steel surfaces. Polished type 316 stainless steel coupons were prepared and some of them were OLNC treated in the test loop before the Co deposition test. Water chemistry conditions to simulate HWC were as follows: Dissolved oxygen, hydrogen and hydrogen peroxide were below 5 ppb, 100 ppb and 0 ppb (no addition), respectively. Zn was injected to target a concentration of 5 ppb. The test was conducted up to 1500 hours at 553 K. Test

  3. Fiber optical dose rate measurement based on the luminescence of beryllium oxide

    Directory of Open Access Journals (Sweden)

    Teichmann Tobias

    2018-01-01

    Full Text Available This work presents a fiber optical dose rate measurement system based on the radioluminescence and optically stimulated luminescence of beryllium oxide. The system consists of a small, radiation sensitive probe which is coupled to a light detection unit with a long and flexible light guide. Exposing the beryllium oxide probe to ionizing radiation results in the emission of light with an intensity which is proportional to the dose rate. Additionally, optically stimulated luminescence can be used to obtain dose and dose rate information during irradiation or retrospectively. The system is capable of real time dose rate measurements in fields of high dose rates and dose rate gradients and in complex, narrow geometries. This enables the application for radiation protection measurements as well as for quality control in radiotherapy. One inherent drawback of fiber optical dosimetry systems is the generation of Cherenkov radiation and luminescence in the light guide itself when it is exposed to ionizing radiation. This so called “stem” effect leads to an additional signal which introduces a deviation in the dose rate measurement and reduces the spatial resolution of the system, hence it has to be removed. The current system uses temporal discrimination of the effect for radioluminescence measurements in pulsed radiation fields and modulated optically stimulated luminescence for continuous irradiation conditions. This work gives an overview of the major results and discusses new-found obstacles of the applied methods of stem discrimination.

  4. Combined methodology for estimating dose rates and health effects from exposure to radioactive pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, D.E. Jr.; Leggett, R.W.; Yalcintas, M.G.

    1980-12-01

    The work described in the report is basically a synthesis of two previously existing computer codes: INREM II, developed at the Oak Ridge National Laboratory (ORNL); and CAIRD, developed by the Environmental Protection Agency (EPA). The INREM II code uses contemporary dosimetric methods to estimate doses to specified reference organs due to inhalation or ingestion of a radionuclide. The CAIRD code employs actuarial life tables to account for competing risks in estimating numbers of health effects resulting from exposure of a cohort to some incremental risk. The combined computer code, referred to as RADRISK, estimates numbers of health effects in a hypothetical cohort of 100,000 persons due to continuous lifetime inhalation or ingestion of a radionuclide. Also briefly discussed in this report is a method of estimating numbers of health effects in a hypothetical cohort due to continuous lifetime exposure to external radiation. This method employs the CAIRD methodology together with dose conversion factors generated by the computer code DOSFACTER, developed at ORNL; these dose conversion factors are used to estimate dose rates to persons due to radionuclides in the air or on the ground surface. The combination of the life table and dosimetric guidelines for the release of radioactive pollutants to the atmosphere, as required by the Clean Air Act Amendments of 1977.

  5. Conditioned instrumental behaviour in the rat: Effects of prenatal irradiation with various low dose-rate doses. Instrumentelle Verhaltensuntersuchungen an der Ratte: Ueber die Wirkung verschiedener Dosen einer praenatalen Bestrahlung niedriger Dosisleistung

    Energy Technology Data Exchange (ETDEWEB)

    Klug, H.

    1986-01-01

    4 groups of rats of the Wistar-strain were subjected to ..gamma..-irradiation on the 16th day of gestation. 5 rats received 0,6 Gy low dose rate irradiation, 5 animals received 0,9 Gy low dose and 6 high dose irradiation, 3 females were shamirradiated. The male offspring of these 3 irradiation groups and 1 control group were tested for locomotor coordination on parallel bars and in a water maze. The female offspring were used in an operant conditioning test. The locomotor test showed slight impairment of locomotor coordination in those animals irradiated with 0,9 Gy high dose rate. Swimming ability was significantly impaired by irradiation with 0,9 Gy high dose rate. Performance in the operant conditioning task was improved by irradiation with 0,9 Gy both low and high dose rate. The 0,9 Gy high dose rate group learned faster than all the other groups. For the dose of 0,9 Gy a significant dose rate effect could be observed. For the dose of 0,6 Gy a similar tendency was observed, differences between 0,6 Gy high and low dose rate and controls not being significant.

  6. Tumour alpha/beta ratios and dose-rate selection in brachytherapy

    International Nuclear Information System (INIS)

    Duchesne, G.M.

    2003-01-01

    Traditionally brachytherapy employed low dose rate (LDR) techniques. Recent adoption of high dose rate (HDR) applications, addressing radiation protection concerns, has sparked debate over possible reductions in therapeutic ratio. The radiobiological characteristics of two contrasting examples, prostate cancer and cervical cancer, are examined. Both in-vitro and clinical observations of prostate cancer suggest a low α/β ratio. Labelling indices are below 2.5%, translating into long potential doubling times (Tpot ) of 16 to 61 days or more. Clinical PSA doubling times are in the order of years. Analysis of clinical endpoints in prostate cancer treated with either LDR or HDR techniques indicates that its α/β ratio may lie between 1 - 4 Gy, similar to slowly proliferating late reacting tissues. As such, therapeutic gain may arise from the use of hypofractionated HDR treatments, exploiting the sensitivity to large fraction sizes, effectively escalating dose. The slow proliferative rate also gives credence to the use of LDR, although several tumour doublings may occur during the effective treatment time, and analysis of the clinical data using a low α/β ratio suggests that LDR doses are only equivalent to 70 Gy with conventional fractionation. Cervical carcinoma is a rapidly proliferating tumour with Tpot values of 3-6 days. LDR implants were delivered over relatively short treatment times, negating repopulation effects, and the 'hyperfractionation' effect of LDR was suited to the high α/β ratio. HDR, although also preventing significant repopulation, has the potential to decrease the therapeutic ratio if low α/β , late-reacting tissues are not protected. Clinical data however show improved outcomes and reduced morbidity with HDR through reduced doses to normal tissues. Choosing the optimal dose rate in brachytherapy depends on tumour behaviour and achievable accuracy. HDR offers some advantages even for high α/β ratio tumours, and may be the technique of

  7. High-Dose-Rate Monotherapy: Safe and Effective Brachytherapy for Patients With Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Demanes, D. Jeffrey; Martinez, Alvaro A.; Ghilezan, Michel; Hill, Dennis R.; Schour, Lionel; Brandt, David; Gustafson, Gary

    2011-01-01

    Purpose: High-dose-rate (HDR) brachytherapy used as the only treatment (monotherapy) for early prostate cancer is consistent with current concepts in prostate radiobiology, and the dose is reliably delivered in a prospectively defined anatomic distribution that meets all the requirements for safe and effective therapy. We report the disease control and toxicity of HDR monotherapy from California Endocurietherapy (CET) and William Beaumont Hospital (WBH) in low- and intermediate-risk prostate cancer patients. Methods and Materials: There were 298 patients with localized prostate cancer treated with HDR monotherapy between 1996 and 2005. Two biologically equivalent hypofractionation protocols were used. At CET the dose was 42 Gy in six fractions (two implantations 1 week apart) delivered to a computed tomography–defined planning treatment volume. At WBH the dose was 38 Gy in four fractions (one implantation) based on intraoperative transrectal ultrasound real-time treatment planning. The bladder, urethral, and rectal dose constraints were similar. Toxicity was scored with the National Cancer Institute Common Toxicity Criteria for Adverse Events version 3. Results: The median follow-up time was 5.2 years. The median age of the patients was 63 years, and the median value of the pretreatment prostate-specific antigen was 6.0 ng/mL. The 8-year results were 99% local control, 97% biochemical control (nadir +2), 99% distant metastasis–free survival, 99% cause-specific survival, and 95% overall survival. Toxicity was scored per event, meaning that an individual patient with more than one symptom was represented repeatedly in the morbidity data table. Genitourinary toxicity consisted of 10% transient Grade 2 urinary frequency or urgency and 3% Grade 3 episode of urinary retention. Gastrointestinal toxicity was <1%. Conclusions: High disease control rates and low morbidity demonstrate that HDR monotherapy is safe and effective for patients with localized prostate cancer.

  8. Absorbed dose rate meter for β-ray

    International Nuclear Information System (INIS)

    Bingo, K.

    1977-01-01

    The absorbed dose of β-ray depends on the energy of β-rays and the epidermal thickness of tissue in interest. In order to measure the absorbed dose rate at the interested tissue directly, the ratio of counting rate to absorbed dose should be constant independent of β-ray energy. In this purpose, a thin plastic scintillator was used as a detector with a single channel analyzer. The pulse height distribution, obtained using the scintillator whose thickness is less than the range of β-rays, shows a peak at a particular pulse height depending on the thickness of scintillator used. This means an increase of the number of pulses at lower pulse height. The lower level of discrimination and window width of the single channel analyzer are chosen according to the epidermal thickness of the tissue. In the experiment, scintillators of 0.5, 1, 2, 3, 5 and 10 mm thick were tested. It was found that desirable pulse height distribution, to obtain a constant dose sensitivity, could be obtained using the 2 mm thick scintillator. The sensitivity of the absorbed dose rate meter is constant within +-15% for β-ray with maximum energy from 0.4 to 3.5 MeV, when the absorbed dose rate for skin (epidermal thickness 7mg/cm 2 ) is measured. In order to measure the dose rate for a hand (epithermal thickness 40mg/cm 2 ) the lower level of discrimination is changed to be higher and at the same time the window width is also changed. Combining these techniques, one can get an absorbed dose rate meter for the tissue dose of various thickness, which has the constant dose sensitivity within +-15% for β-rays with maximum energy from 0.4 to 3.5 MeV

  9. High dose rate brachytherapy for oral cancer

    International Nuclear Information System (INIS)

    Yamazaki, Hideya; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Koizumi, Masahiko; Ogawa, Kazuhiko; Furukawa, Souhei

    2013-01-01

    Brachytherapy results in better dose distribution compared with other treatments because of steep dose reduction in the surrounding normal tissues. Excellent local control rates and acceptable side effects have been demonstrated with brachytherapy as a sole treatment modality, a postoperative method, and a method of reirradiation. Low-dose-rate (LDR) brachytherapy has been employed worldwide for its superior outcome. With the advent of technology, high-dose-rate (HDR) brachytherapy has enabled health care providers to avoid radiation exposure. This therapy has been used for treating many types of cancer such as gynecological cancer, breast cancer, and prostate cancer. However, LDR and pulsed-dose-rate interstitial brachytherapies have been mainstays for head and neck cancer. HDR brachytherapy has not become widely used in the radiotherapy community for treating head and neck cancer because of lack of experience and biological concerns. On the other hand, because HDR brachytherapy is less time-consuming, treatment can occasionally be administered on an outpatient basis. For the convenience and safety of patients and medical staff, HDR brachytherapy should be explored. To enhance the role of this therapy in treatment of head and neck lesions, we have reviewed its outcomes with oral cancer, including Phase I/II to Phase III studies, evaluating this technique in terms of safety and efficacy. In particular, our studies have shown that superficial tumors can be treated using a non-invasive mold technique on an outpatient basis without adverse reactions. The next generation of image-guided brachytherapy using HDR has been discussed. In conclusion, although concrete evidence is yet to be produced with a sophisticated study in a reproducible manner, HDR brachytherapy remains an important option for treatment of oral cancer. (author)

  10. Radiation response of industrial materials: Dose-rate and morphology implications

    International Nuclear Information System (INIS)

    Berejka, Anthony J.

    2007-01-01

    Industrial uses of ionizing radiation mostly rely upon high current, high dose-rate (100 kGy/s) electron beam (EB) accelerators. To a lesser extent, industry uses low dose-rate (2.8 x 10 -3 kGy/s) radioactive Cobalt-60 as a gamma source, generally for some rather specific purposes, as medical device sterilization and the treatment of food and foodstuffs. There are nearly nine times as many (∼1400) high current EB units in commercial operation than gamma sources (∼160). However, gamma sources can be easily scaled-down so that much research on materials effects is conducted using gamma radiation. Likewise, laboratories are more likely to have very low beam current and consequently low dose-rate accelerators such as Van de Graaff generators and linear accelerators. With the advent of very high current EB accelerators, X-ray processing has become an industrially viable option. With X-rays from high power sources, dose-rates can be modulated based upon accelerator power and the attenuation of the X-ray by the distance of the material from the X-ray target. Dose and dose-rate dependence has been found to be of consequence in several commercial applications which can employ the use of ionizing radiation. The combination of dose and dose-rate dependence of the polymerization and crosslinking of wood impregnants and of fiber composite matrix materials can yield more economically viable results which have promising commercial potential. Monomer and oligomer structure also play an important role in attaining these desirable results. The influence of morphology is shown on the radiation response of olefin polymers, such as ethylene, propylene and isobutylene polymers and their copolymers. Both controlled morphology and controlled dose-rate have commercial consequences. These are also impacted both by the adroit selection of materials and through the possible use of X-ray processing

  11. Rat skin carcinogenesis as a basis for estimating risks at low doses and dose rates of various types of radiation

    International Nuclear Information System (INIS)

    Burns, F.J.; Vanderlaan, M.; Strickland, P.; Albert, R.E.

    1976-01-01

    The recovery rate, age dependence and latent period for tumor induction in rat skin were measured for single and split doses of radiation, and the data were analyzed in terms of a general model in an attempt to estimate the expected tumor response for various types of radiation given at low dose rates for long periods of time. The dorsal skin of male rats was exposed to electrons, x rays, or protons in either single or split doses for several doses and the tumor responses were compared during 80 weeks of observation. A two stage model incorporating a reversible or recoverable mode was developed and various parameters in the model, including recovery rate, dose-response coefficients, and indices of age sensitivity, were evaluated experimentally. The measured parameters were then utilized to calculate expected tumor responses for exposure periods extending for duration of life. The calculations indicated that low dose rates could be markedly ( 1 / 100 to 1 / 1000 ) less effective in producing tumors than the same dose given in a short or acute exposure, although the magnitude of the reduction in effectiveness declines as the dose declines

  12. Effects of low dose rate γ-rays on cell proliferation and survival in exponentially growing and plateau phase cultures of normal rat kidney cells

    International Nuclear Information System (INIS)

    Tsuboi, A.

    1982-01-01

    The effects of 60 Co γ-rays on cell clonogenicity and cell proliferation were examined in NRK cells in exponential and plateau growth phases during and after irradiation at various dose rates. The typical dese rate effect for the survival responses was observed between acute irradiation and continuous irradiation at dose rates of 9.6-44 rads/h. Similar dose rate effect for the perturbation of the proliferation was observed in exponentially growing cells during irradiation. Some differences were found in survival when the cells were exposed to γ-rays at 9.6 rads/h or at 13.7 rads/h. The survival curves of exponential phase cells irradiated at these dose rates showed a shape different from that observed in plateau phase cells. Namely, a steady state of survival appeared around an accumulated dose of 1000 rads (dose-rate of 9.6 rads/h) and an accumulated dose of 1500 rads (dose-rate of 13.7 rads/h) in the exponential phase cells, while such a steady state of survival was not detected in plateau phase cells after similar conditions of irradiation. Moreover, the extrapolation number of the survival curve was much larger at the lower dose rate in exponential phase cells, in contrast to a value of the unity oberved in plateau phase cells, The radiosensitivity of plateau phase cells was somewhat lower compared to exponential phase cells over the range of accumulated doses at the dose rates used. These differences in cellular responses to the radiation between the two phases could be explained by changes in cell proliferation, the redistribution of the cell cycle compartments and the repair capacity of cellular damage during irradiation. (author)

  13. Influence of radiation dose and dose-rate on modification of barley seed radiosensitivity by post-treatment with caffeine

    International Nuclear Information System (INIS)

    Sharma, G.J.

    1987-01-01

    Influence of radiation doses (100, 150 and 200 Gy) and dose-rates (1.27-0.023 Gy/Sec) on the modification of oxic and anoxic radiation damage by caffeine at different concentrations has been investigated using metabolizing barley seeds as test system. As the radiation dose increases from 100 to 200 Gy, the magnitude of oxic and anoxic damages increase at all the dose-rates. Caffeine is able to afford partial radioprotection against the oxic damage, at the same time potentiating the anoxic damage. However, caffeine effect against the oxic and anoxic components of damage depend largely upon the dose of radiation applied and also on the dose-rate used. The possible mechanism of action of caffeine in bringing about the differential modification of oxic and anoxic damages has been discussed. 19 refs., 2 tables. (author)

  14. Spatial variation of natural terrestrial gamma-ray dose rates in Brunei

    International Nuclear Information System (INIS)

    Hu, S.J.; Lai, K.K.; Manato, S.; Kodaira, K.

    1998-01-01

    A carbon survey of natural terrestrial gamma-rat dose rates along the main roads of the western part of Brunei Darussalam was carried out using two portable type 1.5 φ x 4 NaI(TI) and 1 φ x 2 NaI(TI) scintillation counters. A series of semicontinuous count rates measurements were performed inside a moving vehicle. This yielded equal-distance data which were analysed statistically to obtain the spatial variation of the natural terrestrial gamma-ray dose rates. The equal-distance data of dose rates were obtained by correcting for shielding effect of the car. The thickness of the pavement and the contribution from the pavement material were estimated from a correlation curve between the dose rates measured on pavements and on the nearby soils. A spectral analysis of the equal-distance data enabled us to clarify the structure of the spatial variation in dose rates. The data could be reasonably smoothened by removing the random noise components in a higher wave number region. (author). 6 refs., 7 figs., 1 tab

  15. Spatial variation of natural terrestrial γ-ray dose rates in Brunei

    International Nuclear Information System (INIS)

    Hu, S.J.; Lai, K.K.

    1998-01-01

    A carborne survey of natural terrestrial y-ray dose rates along the main roads of the western part of Brunei Darussalam was carried out using two portable type 1.5'φx4' NaI(T1) and 1'φx2' NaI(T1) scintillation counters. A series of semicontinuous count rates measurements were performed inside a moving vehicle. This yielded equal-distance data which were analysed statistically to obtain the spatial variation of the natural terrestrial γ-ray dose rates. The equal-distance data of dose rates were obtained by correcting for shielding effect of the car. The thickness of the pavement and the contribution from the pavement material were estimated from a correlation curve between the dose rates measured on pavements and on the nearby soils. A spectral analysis of the equal-distance data enabled us to clarify the structure of the spatial variation in dose rates. The data could be reasonably smoothened by removing the random noise components in a higher wave number region

  16. Effect of continuous exposure to very low dose rates of gamma rays on life span and neoplasia in mice

    International Nuclear Information System (INIS)

    Tanaka, I.B. III; Tanaka, Satoshi; Ichinohe, Kazuaki; Matsumoto, Tsuneya; Otsu, Hiroshi; Oghiso, Yoichi; Sato, Fumiaki; Matsushita, Satoru

    2008-01-01

    Late effects of continuous exposure to ionizing radiation are potential hazards to workers in radiation facilities as well as to the general public. In the recent years, low-dose-rate and low-dose effects have become a serious concern. Using a total of 4,000 mice, we studied the late biological effects of chronic exposure to low-dose-rate radiation on life span and neoplasia. Two thousand male and 2000 female 8-week-old specific pathogen free (SPF) B6C3F1 mice were randomly divided into 4 groups, one non-irradiated (control) and three irradiated. The irradiated groups were exposed to 137 Cs gamma rays at dose-rates of 21, 1.1 and 0.05 mGy day -1 for approximately 400 days with total doses equivalent to 8000, 400 and 20 mGy, respectively. All mice were kept under SPF conditions until natural death and pathological examination was performed to determine the cause of death. Statistical analyses showed that the life spans of mice of both sexes irradiated with 21 mGy day -1 (P -1 (P 86.7% of all deaths. Compared to the non-irradiated controls, incidences of lethal neoplasms were significantly increased for myeloid leukaemia and hemangiosarcoma in males, soft tissue neoplasms and malignant granulosa cell tumors in females exposed to 21 mGy day -1 . The number of multiple primary neoplasms per mouse was significantly increased in mice irradiated at 21 mGy day -1 . Our results suggest that life shortening in mice continuously exposed to low dose-rate gamma rays is due to early death from a variety of neoplasms and not from increased incidence of specific lethal neoplasms. (author)

  17. A comparison study on of tumor cell-killing effects between low-dose-rate β-irradiation of 32P and γ-irradiation of 60Co

    International Nuclear Information System (INIS)

    Feng Huiru; Tian Jiahe; Ding Weimin; Zhang Jinming; Chen Yingmao

    2004-01-01

    The paper is to elucidate radiobiological characteristics and radiobiological mechanism in killing tumor cells with low dose rate β-rays and high dose rate γ-rays. HeLa cells were exposed to low-rate β-irradiation of 32 P or high-dose-rate γ-irradiation of 60 Co. Cell response-patterns were compared between two the types of radiations in terms of their inhibition of cell proliferation and cell cycle blockage, evaluated by trypanblue excluded method and flow cytometry, respectively. Results show that there is a different way in growth inhibition effect on HeLa cells between low-dose-rate irradiation of 32 P and high-dose-rate irradiation of 60 Co γ. In exposure to 32 P, the inhibition of cell proliferation in HeLa cell was a prolong course, whereas and the effect was in a more serious and quick way in 60 Co irradiation. Cell cycle arrest in G 2 phase induced by 32 P was lower and more prolong than that induced by 60 Co. The inhibition effect on tumor cells between the two types of radiations is different. Impaired DNA repair system by continuous low-dose-rate radiation might contribute to the final radiation effect of 32 P

  18. Quality control of 192Ir high dose rate after loading brachytherapy dose veracity

    International Nuclear Information System (INIS)

    Feng Zhongsu; Xu Xiao; Liu Fen

    2008-01-01

    Recently, 192 Ir high dose rate (HDR) afterloading are widely used in brachytherapy. The advantage of using HDR systems over low dose rate systems are shorter treatment time and higher fraction dose. To guarantee the veracity of the delivery dose, several quality control methods are deseribed in this work. With these we can improve the position precision, time precision and dose precision of the brachytherapy. (authors)

  19. Agreement of quadratic and CRE models in predicting the late effects of continuous low dose-rate radiotherapy; and reply

    International Nuclear Information System (INIS)

    O'Donoghue, J.A.

    1986-01-01

    These letters discuss the problems associated with the fact that the normal tissue isoeffect formulae based on the Ellis equation (1969) do not correctly account for the late-occurring effects of fractionated radiotherapy, and with the extension of the linear quadratic model to include continuous low dose-rate radiotherapy with constant or decaying sources by R.G. Dale (1985). J.A. O'Donoghue points out that the 'late effects' and CRE curves correspond closely, whilst the 'acute effects; and CRE curves are in obvious disagreement. For continuous low-dose-rate radiotherapy, the CRE and late effects quadratic model are in agreement. Useful bibliography. (U.K.)

  20. Effect of dose-rate on the frequency of X-linked lethal mutation in the nematode Panagrellus redivivus

    International Nuclear Information System (INIS)

    Ager, D.

    1984-01-01

    A total X-ray dose of 50 Gy was applied to the nematode Panagrellus redivivus using dose-rates ranging from 0.23 Gy/min to 10.49 Gy/min, and the frequency of lethal X-chromosomes was determined. This frequency ranged from approximately 1.6% at the lower dose-rate to 4.3% at the highest dose-rate, indicating a dose-rate dependency of mutation frequency in the spermatogonia and oogonia of this organism. (orig.)

  1. Effect of radiation dose rate and cyclophosphamide on pulmonary toxicity after total body irradiation in a mouse model

    International Nuclear Information System (INIS)

    Safwat, Akmal; Nielsen, Ole S.; El-Badawy, Samy; Overgaard, Jens

    1996-01-01

    Purpose: Interstitial pneumonitis (IP) is still a major complication after total body irradiation (TBI) and bone marrow transplantation (BMT). It is difficult to determine the exact role of radiation in this multifactorial complication, especially because most of the experimental work on lung damage was done using localized lung irradiation and not TBI. We have thus tested the effect of radiation dose rate and combining cyclophosphamide (CTX) with single fraction TBI on lung damage in a mouse model for BMT. Methods and Materials: TBI was given as a single fraction at a high dose rate (HDR, 0.71 Gy/min) or a low dose rate (LDR, 0.08 Gy/min). CTX (250 mg/kg) was given 24 h before TBI. Bone marrow transplantation (BMT) was performed 4-6 h after the last treatment. Lung damage was assessed using ventilation rate (VR) and lethality between 28 and 180 days (LD (50(28))-180 ). Results: The LD 50 for lung damage, ± standard error (SE), increased from 12.0 (± 0.2) Gy using single fraction HDR to 15.8 (± 0.6) Gy using LDR. Adding CTX shifted the dose-response curves towards lower doses. The LD 50 values for the combined treatment were 5.3 (± 0.2) and 3.5 (± 0.2) Gy for HDR and LDR, respectively. This indicates that the combined effect of CTX and LDR was more toxic than that of combined CTX and HDR. Lung damage evaluated by VR demonstrated two waves of VR increase. The first wave of VR increase occurred after 6 weeks using TBI only and after 3 weeks in the combined CTX-TBI treatment, irrespective of total dose or dose rate. The second wave of VR elevation resembled the IP that follows localized thoracic irradiation in its time of occurrence. Conclusions: Lung damage following TBI could be spared using LDR. However, CTX markedly enhances TBI-induced lung damage. The combination of CTX and LDR is more toxic to the lungs than combining CTX and HDR

  2. Advanced Computational Approaches for Characterizing Stochastic Cellular Responses to Low Dose, Low Dose Rate Exposures

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Bobby, R., Ph.D.

    2003-06-27

    applications of NEOTRANS2, indicate that nonlinear threshold-type, dose-response relationships for excess stochastic effects (problematic nonlethal mutations, neoplastic transformation) should be expected after exposure to low linear energy transfer (LET) gamma rays or gamma rays in combination with high-LET alpha radiation. Similar thresholds are expected for low-dose-rate low-LET beta irradiation. We attribute the thresholds to low-dose, low-LET radiation induced protection against spontaneous mutations and neoplastic transformations. The protection is presumed mainly to involve selective elimination of problematic cells via apoptosis. Low-dose, low-LET radiation is presumed to trigger wide-area cell signaling, which in turn leads to problematic bystander cells (e.g., mutants, neoplastically transformed cells) selectively undergoing apoptosis. Thus, this protective bystander effect leads to selective elimination of problematic cells (a tissue cleansing process in vivo). However, this protective bystander effects is a different process from low-dose stimulation of the immune system. Low-dose, low-LET radiation stimulation of the immune system may explain why thresholds for inducing excess cancer appear much larger (possibly more than 100-fold larger) than thresholds for inducing excess mutations and neoplastic transformations, when the dose rate is low. For ionizing radiation, the current risk assessment paradigm is such that the relative risk (RR) is always ¡Ý 1, no matter how small the dose. Our research results indicate that for low-dose or low-dose-rate, low-LET irradiation, RR < 1 may be more the rule than the exception. Directly tied to the current RR paradigm are the billion-dollar cleanup costs for radionuclide-contaminated DOE sites. Our research results suggest that continued use of the current RR paradigm for which RR ¡Ý 1 could cause more harm than benefit to society (e.g., by spreading unwarranted fear about phantom excess risks associated with low-dose low

  3. Responses of rat R-1 cells to low dose rate gamma radiation and multiple daily dose fractions

    International Nuclear Information System (INIS)

    Kal, H.B.; Bijman, J.Th.

    1981-01-01

    Multifraction irradiation may offer the same therapeutic gain as continuous irradiation. Therefore, a comparison of the efficacy of low dose rate irradiation and multifraction irradiation was the main objective of the experiments to be described. Both regimens were tested on rat rhabdomyosarcoma (R-1) cells in vitro and in vivo. Exponentially growing R-1 cells were treated in vitro by a multifraction irradiation procedure with dose fractions of 2 Gy gamma radiation and time intervals of 1 to 3 h. The dose rate was 1.3 Gy.min -1 . The results indicate that multifractionation of the total dose is more effective with respect to cell inactivation than continuous irradiation. (Auth.)

  4. Correlation of radiation dose and heart rate in dual-source computed tomography coronary angiography.

    Science.gov (United States)

    Laspas, Fotios; Tsantioti, Dimitra; Roussakis, Arkadios; Kritikos, Nikolaos; Efthimiadou, Roxani; Kehagias, Dimitrios; Andreou, John

    2011-04-01

    Computed tomography coronary angiography (CTCA) has been widely used since the introduction of 64-slice scanners and dual-source CT technology, but the relatively high radiation dose remains a major concern. To evaluate the relationship between radiation exposure and heart rate (HR), in dual-source CTCA. Data from 218 CTCA examinations, performed with a dual-source 64-slices scanner, were statistically evaluated. Effective radiation dose, expressed in mSv, was calculated as the product of the dose-length product (DLP) times a conversion coefficient for the chest (mSv = DLPx0.017). Heart rate range and mean heart rate, expressed in beats per minute (bpm) of each individual during CTCA, were also provided by the system. Statistical analysis of effective dose and heart rate data was performed by using Pearson correlation coefficient and two-sample t-test. Mean HR and effective dose were found to have a borderline positive relationship. Individuals with a mean HR >65 bpm observed to receive a statistically significant higher effective dose as compared to those with a mean HR ≤65 bpm. Moreover, a strong correlation between effective dose and variability of HR of more than 20 bpm was observed. Dual-source CT scanners are considered to have the capability to provide diagnostic examinations even with high HR and arrhythmias. However, it is desirable to keep the mean heart rate below 65 bpm and heart rate fluctuation less than 20 bpm in order to reduce the radiation exposure.

  5. Radiation dose rate meter

    International Nuclear Information System (INIS)

    Kronenberg, S.; Siebentritt, C.R.

    1981-01-01

    A combined dose rate meter and charger unit therefor which does not require the use of batteries but on the other hand produces a charging potential by means of a piezoelectric cylinder which is struck by a manually triggered hammer mechanism. A tubular type electrometer is mounted in a portable housing which additionally includes a geiger-muller (Gm) counter tube and electronic circuitry coupled to the electrometer for providing multi-mode operation. In one mode of operation, an rc circuit of predetermined time constant is connected to a storage capacitor which serves as a timed power source for the gm tube, providing a measurement in terms of dose rate which is indicated by the electrometer. In another mode, the electrometer indicates individual counts

  6. A study on gamma dose rate in Seoul (I)

    International Nuclear Information System (INIS)

    Kim, You Hyun; Kim, Chang Kyun; Choi, Jong Hak; Kim, Jeong Min

    2001-01-01

    This study was conducted to find out gamma dose rate in Seoul, from January to December in 2000, and the following results were achieved : The annual gamma dose rate in Seoul was 17.24 μR/hr as average. The annual gamma dose rate in subway of Seoul was 14.96 μR/hr as average. The highest annual gamma dose rate was Dong-daemon ku. Annual gamma dose rate in Seoul was higher autumn than winter

  7. High-dose-rate brachytherapy alone post-hysterectomy for endometrial cancer

    International Nuclear Information System (INIS)

    MacLeod, Craig; Fowler, Allan; Duval, Peter; D'Costa, Ieta; Dalrymple, Chris; Firth, Ian; Elliott, Peter; Atkinson, Ken; Carter, Jonathan

    1998-01-01

    Purpose: To evaluate the outcome of post-hysterectomy adjuvant vaginal high-dose-rate (HDR) brachytherapy. Methods and Materials: A retrospective analysis was performed on a series of 143 patients with endometrial cancer treated with HDR brachytherapy alone post-hysterectomy from 1985 to June 1993. Of these patients, 141 received 34 Gy in four fractions prescribed to the vaginal mucosa in a 2-week period. The median follow-up was 6.9 years. Patients were analyzed for treatment parameters, survival, local recurrence, distant relapse, and toxicity. Results: Five-year relapse free survival and overall survival was 100% and 88% for Stage 1A, 98% and 94% for Stage IB, 100% and 86% for Stage IC, and 92% and 92% for Stage IIA. The overall vaginal recurrence rate was 1.4%. The overall late-toxicity rate was low, and no RTOG grade 3, 4, or 5 complications were recorded. Conclusion: These results are similar to reported international series that have used either low-dose-rate or HDR brachytherapy. The biological effective dose was low for both acute and late responding tissues compared with some of the HDR brachytherapy series, and supports using this lower dose and possibly decreasing late side-effects with no apparent increased risk of vaginal recurrence

  8. Relative effect of radiation dose rate on hemopoietic and nonhemopoietic lethality of total-body irradiation

    International Nuclear Information System (INIS)

    Peters, L.J.; McNeill, J.; Karolis, C.; Thames, H.D. Jr.; Travis, E.L.

    1986-01-01

    Experiments were undertaken to determine the influence of dose rate on the toxicity of total-body irrdiation (TBI) with and without syngeneic bone-marrow rescue in mice. The results showed a much greater dose-rate dependence for death from nonhemopoietic toxicity than from bone-marrow ablation, with the ratio of LD 50 's increasing from 1.73 at 25 cGy/min to 2.80 at 1 cGy/min. At the higher dose rates, dose-limiting nonhemopoietic toxicity resulted from late organ injury, affecting the lungs, kidneys, and liver. At 1 cGy/min the major dose-limiting nonhemopoietic toxicity was acute gastrointestinal injury. The implications of these results in the context of TBI in preparation for bone-marrow transplantation are discussed. 15 refs., 4 figs

  9. Recommended de minimis radiation dose rates for Canada

    International Nuclear Information System (INIS)

    1990-07-01

    A de minimis dose or dose rate as used in this report represents a level of risk which is generally accepted as being of no significance to an individual, or in the case of a population, of no significance to society. The doses corresponding to these levels of risk are based on current scientific knowledge. Dose rates recommended in this report are as follows: a de minimis individual dose rate of 10 μSv a -1 , based on a risk level that would generally be regarded as negligible in comparison with other risks; and a de minimis collective dose rate of 1 person-Sv a -1 , based on an imperceptible increase above the normal incidences of cancer and genetic defects in the exposed population. The concept of de minimis is to be distinguished from 'exempt from regulation' (below regulatory concern). The latter involves broader social and economic factors which encompass but are not limited to the purely risk-based factors addressed by the de minimis dose. De minimis is one of the factors that determine the exemption of sources or practices that may result in doses below or above the de minimis level. Although these de minimis dose rates should be considered in developing criteria and guidelines for deriving quantities and concentrations of radioactive substances that may be exempted from regulation, this document is only concerned with establishing de minimis dose rates, not with exempting sources and practices

  10. The calculation of dose rates from rectangular sources

    International Nuclear Information System (INIS)

    Hartley, B.M.

    1998-01-01

    A common problem in radiation protection is the calculation of dose rates from extended sources and irregular shapes. Dose rates are proportional to the solid angle subtended by the source at the point of measurement. Simple methods of calculating solid angles would assist in estimating dose rates from large area sources and therefore improve predictive dose estimates when planning work near such sources. The estimation of dose rates is of particular interest to producers of radioactive ores but other users of bulk radioactive materials may have similar interest. The use of spherical trigonometry can assist in determination of solid angles and a simple equation is derived here for the determination of the dose at any distance from a rectangular surface. The solid angle subtended by complex shapes can be determined by modelling the area as a patchwork of rectangular areas and summing the solid angles from each rectangle. The dose rates from bags of thorium bearing ores is of particular interest in Western Australia and measured dose rates from bags and containers of monazite are compared with theoretical estimates based on calculations of solid angle. The agreement is fair but more detailed measurements would be needed to confirm the agreement with theory. (author)

  11. Mutation frequencies in male mice and the estimation of genetic hazards of radiation in men: (specific-locus mutations/dose-rate effect/doubling dose/risk estimation)

    International Nuclear Information System (INIS)

    Russell, W.L.; Kelly, E.M.

    1982-01-01

    Estimation of the genetic hazards of ionizing radiation in men is based largely on the frequency of transmitted specific-locus mutations induced in mouse spermatogonial stem cells at low radiation dose rates. The publication of new data on this subject has permitted a fresh review of all the information available. The data continue to show no discrepancy from the interpretation that, although mutation frequency decreases markedly as dose rate is decreased from 90 to 0.8 R/min (1 R = 2.6 X 10 -4 coulombs/kg) there seems to be no further change below 0.8 R/min over the range from that dose rate to 0.0007 R/min. Simple mathematical models are used to compute: (a) a maximum likelihood estimate of the induced mutation frequency at the low dose rates, and (b) a maximum likelihood estimate of the ratio of this to the mutation frequency at high dose rates in the range of 72 to 90 R/min. In the application of these results to the estimation of genetic hazards of radiation in man, the former value can be used to calculate a doubling dose - i.e., the dose of radiation that induces a mutation frequency equal to the spontaneous frequency. The doubling dose based on the low-dose-rate data compiled here is 110 R. The ratio of the mutation frequency at low dose rate to that at high dose rate is useful when it becomes necessary to extrapolate from experimental determinations, or from human data, at high dose rates to the expected risk at low dose rates. The ratio derived from the present analysis is 0.33

  12. Dose rate reduction using epoxy mixed lead shielding: experimental and theoretical determination of its shielding effectiveness

    International Nuclear Information System (INIS)

    Yadav, R.K.B.; Prasad, S.K.; Babu, K.S.; Hardiya, M.R.; Ullas, O.P.

    2010-01-01

    Full text: High background radiation field exists in Water Treatment Area (WTA) of Rod Cutting Building (RCB) in Cirus due to beta, gamma contamination on its floor. The high contamination on sides of wall and on floor is primarily due to deposition of activity generated during the regeneration of old mixed bed cartridges earlier (before year 1985) and presently due to deposition of contaminants by sump overflowing, wastes generated during maintenance/servicing of circulating pumps. RCB-WTA contribution to collective dose in present situation is up to 30% of the total collective dose of Cirus. Various options such as chipping of top layer of concrete floor of a sample area, in-situ placing of slab of cement and lead shot mixture were considered. In this case the man-rem consumption was high as radiation dose rate on concrete chip was 0.4 mGy/h and air activity generated was high, that too long lived with 137 Cs-as main constituent. The dose reduction factor was 1.7. In the second option the reduction in dose rate was insignificant and in-situ pouring of concrete consumed high collective dose. Hence above two options were not acceptable. Therefore the idea of tiling the contaminated floor with prefabricated epoxy mixed lead shots was accepted from ALARA point of view. It was concluded that pre-fabricated slabs of epoxy mixed lead slab of 25 mm thickness can be laid in RCB area to achieve a dose rate reduction factor of approximately five at a height of 30 cm above floor. This will result in a reduction of Person-mSv consumption in RCB by a factor of 5-10. These slabs of different thickness were fabricated outside RCB and were tested for shielding effectiveness experimentally by using radiation source and theoretically using MCNP code. Dose reduction factor of five for a point source, obtained experimentally for epoxy mixed lead shots was very near to value obtained by theoretical simulation. An extended calculation for an area source using this MCNP model gives a

  13. Dose-rate effect of adaptive response of apoptosis and cell cycle progression induced by low-dose ionizing radiation in EL-4 lymphoma cells in vitro

    International Nuclear Information System (INIS)

    Liu Shuchun; Lu Zhe; Li Yanbo; Kang Shunai; Gong Shouliang; Zhao Wenju

    2008-01-01

    Objective: To observe the dose-rate effect of adaptive response of apoptosis and cell cycle progression induced by low-dose ionizing radiation in EL-4 lymphoma cells in vitro in order to reveal the possible mechanism of biological effect and adaptive response induced by low dose radiation. Methods: The experiment was divided into D2 (challenging dose), D1 (inductive dose) + D2 and sham-irradiation groups. EL-4 lymphoma cells were irradiated with D1 (75 mGy, 6.25-200.00 mGy·mm -1 ) and D2(1.5 Gy, 287 mGy·min -1 ), the time interval between D1 and D2 was 6 h. The percentage of apoptosis and each cell cycle phase were measured with flow cytometry. Results: When the dose rates of D1 were 6.25-50.00 mGy·min -1 , the percentages of apoptosis in the D1 + D2 group were significantly lower than those in the D2 group (P 0 /G 1 phase cells decreased significantly (P -1 , D2 is 1.5 Gy (287 mGy·min -1 ), and the time interval between D1 and D2 is 6 h, the adaptive response of apoptosis and cell cycle progression in EL-4 lymphoma cells in vitro could be induced. (authors)

  14. Total dose and dose rate radiation characterization of EPI-CMOS radiation hardened memory and microprocessor devices

    International Nuclear Information System (INIS)

    Gingerich, B.L.; Hermsen, J.M.; Lee, J.C.; Schroeder, J.E.

    1984-01-01

    The process, circuit discription, and total dose radiation characteristics are presented for two second generation hardened 4K EPI-CMOS RAMs and a first generation 80C85 microprocessor. Total dose radiation performance is presented to 10M rad-Si and effects of biasing and operating conditions are discussed. The dose rate sensitivity of the 4K RAMs is also presented along with single event upset (SEU) test data

  15. MONTEC, an interactive fortran program to simulate radiation dose and dose-rate responses of populations

    International Nuclear Information System (INIS)

    Perry, K.A.; Szekely, J.G.

    1983-09-01

    The computer program MONTEC was written to simulate the distribution of responses in a population whose members are exposed to multiple radiation doses at variable dose rates. These doses and dose rates are randomly selected from lognormal distributions. The individual radiation responses are calculated from three equations, which include dose and dose-rate terms. Other response-dose/rate relationships or distributions can be incorporated by the user as the need arises. The purpose of this documentation is to provide a complete operating manual for the program. This version is written in FORTRAN-10 for the DEC system PDP-10

  16. Inverse gamma ray dose rate effect in californium-252 RBE experiment with human T-1 cells irradiated in vitro

    International Nuclear Information System (INIS)

    Todd, P.; Feola, J.M.

    1986-01-01

    Metabolically deoxygenated suspensions of human T-1 cells were used to determine the RBE in hypoxia of low dose rate (LDR) Cf-252 radiation compared to LDR gamma radiation. Based upon the initial portion of the survival curves the RBE was 5.0 ± 1.0 for all components of the Cf-252 radiation and 7.1 ± 1.7 for the neutrons alone. An inverse dose rate effect was observed for LDR gamma radiation in which greater cell sensitivity was observed at lower dose rates and longer irradiation periods. It was demonstrated that there was little or no sublethal damage repair or cell progression during LDR at 21 deg C, and the observed decrease in cell survival probability with increasing irradiation time at a given dose was attributable to reoxygenation of the cell suspensions during the course of LDR exposures. (Auth.)

  17. Effects of prescription depth, cylinder size, treatment length, tip space, and curved end on doses in high-dose-rate vaginal brachytherapy

    International Nuclear Information System (INIS)

    Li Shidong; Aref, Ibrahim; Walker, Eleanor; Movsas, Benjamin

    2007-01-01

    Purpose: To determine the effects of the prescription depth, cylinder size, treatment length, tip space, and curved end on high-dose-rate vaginal brachytherapy (HDR-VBT) of endometrial cancer. Methods and Materials: Treatment plans were prescribed and optimized based on points at the cylinder surface or at 0.5-cm depth. Cylinder sizes ranging from 2 to 4 cm in diameter, and treatment lengths ranging from 3 to 8 cm were used. Dose points in various depths were precisely defined along the cylinder dome. The given dose and dose uniformity to a depth of interest were measured by the mean dose (MD) and standard deviation (SD), respectively, among the dose points belonging to the depth. Dose fall-off beyond the 0.5 cm treatment depth was determined by the ratio of MD at 0.75-cm depth to MD at 0.5-cm depth. Results: Dose distribution varies significantly with different prescriptions. The surface prescription provides more uniform doses at all depths in the target volume, whereas the 0.5-cm depth prescription creates larger dose variations at the cylinder surface. Dosimetric uncertainty increases significantly (>30%) with shorter tip space. Extreme hot (>150%) and cold spots (<60%) occur if no optimization points were placed at the curved end. Conclusions: Instead of prescribing to a depth of 0.5 cm, increasing the dose per fraction and prescribing to the surface with the exact surface points around the cylinder dome appears to be the optimal approach

  18. Impact of catheter reconstruction error on dose distribution in high dose rate intracavitary brachytherapy and evaluation of OAR doses

    International Nuclear Information System (INIS)

    Thaper, Deepak; Shukla, Arvind; Rathore, Narendra; Oinam, Arun S.

    2016-01-01

    In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this study is to evaluate the impact of catheter reconstruction error on dose distribution in CT based intracavitary brachytherapy planning and evaluation of its effect on organ at risk (OAR) like bladder, rectum and sigmoid and target volume High risk clinical target volume (HR-CTV)

  19. Dose rate laser simulation tests adequacy: Shadowing and high intensity effects analysis

    International Nuclear Information System (INIS)

    Nikiforov, A.Y.; Skorobogatov, P.K.

    1996-01-01

    The adequacy of laser based simulation of the flash X-ray effects in microcircuits may be corrupted mainly due to laser radiation shadowing by the metallization and the non-linear absorption in a high intensity range. The numerical joint solution of the optical equations and the fundamental system of equations in a two-dimensional approximation were performed to adjust the application range of laser simulation. As a result the equivalent dose rate to laser intensity correspondence was established taking into account the shadowing as well as the high intensity effects. The simulation adequacy was verified in the range up to 4·10 11 rad(Si)/s with the comparative laser test of a specially designed test structure

  20. Effects of low dose rate fission neutron irradiation on the lymphocyte subpopulations of peripheral blood in rats

    International Nuclear Information System (INIS)

    Jiang Dingwen; Lei Chengxiang; Shen Xianrong; Ma Li; Yang Yifang; Peng Wulin; Dai Shourong

    2008-01-01

    Objective: To evaluate the effects of long-term, low dose rate fission neutron irradiation on lymphocyte subpopulations in peripheral blood of rats. Methods: Ninety-six rats were randomly divided into control group and irradiated group exposed to low dose rate fission neutron ( 252 Cf,0.35 mGy/h) for 20.5 h every day. At days 14,28,42,56 and 70 d after irradiation and 35 d after stopping irradiation, After 8 rats of each group were killed, WBC and lymphocyte subpopulations of CD4 + CD3 + , CD8 + CD3 + and CD45RA + /CD161α + in peripheral blood were estimated respectively. Results: Compared with the control group, WBC was reduced significantly at dose of 0.3, 0.4 and 0.5 Gy (P + CD3 - was evidently higher compared with control group at doses of 0.1,0.3, 0.4 and 0.5 Gy and 35 d after stopping irradiation (P + CD3 - was obviously higher compared with control group at dose of 0.2 and 0.3 Gy (P + CD3 + at dose of 0.1 Gy (P + CD3 + at doses of 0.1 and 0.2 Gy (P + CD45RA - ) was increased significantly at doses of 0.2-0.3 Gy, and peripheral blood B cells(CD161α - CD45RA + ) was reduced remarkably at doses of 0.1-0.5 Gy and 35 d after stopping irradiation compared with the control group. Conclusions: Long-term irradiation with low dose rate fission neutron could make TCR (T-cell-receptor) mutant, therefore, WBC, B cells in peripheral blood significantly reduced and NK cells increased. These changes may could not recover at 35 d after Stopping irradiation. (authors)

  1. Problems in continuous dose rate measurement

    International Nuclear Information System (INIS)

    Yoshioka, Mitsuo

    1983-01-01

    The system of continuous dose rate measurement in Fukui Prefecture is described. A telemeter system was constructed in October, 1976, and it has been operated since 1977. Observation has been made at 11 observation stations in the Prefecture. In addition to the continuous measurement of dose rate by using NaI(T1)-DBM systems, the ionization chambers for high dose rate were installed, and also meteorological data have been collected. The detectors are covered with 1 mm thick aluminum designed so that the absorption of external radiation is kept as small as possible. To keep the environmental temperature of the detectors constant, constant temperature wind blow is made. With these consideration, the measurement of Xe-133 is possible, and the standard deviation of yearly dose is around 0.4 mR/Y. By measuring DBM transmission rate, the contribution of Xe-133, which comes from the exhaust pumps in power plants, can be detected. The problems of this system are as follows. First of all, the characteristics of the system must meet the purpose of dose monitoring. The system must detect the dose less than the target value to be achieved. The second is the selection of measuring systems to be set. The system is still not unified, and it is difficult to exchange data between different stations. Finally, the method of data analysis is not yet unified. Manuals or guide-books for this purpose are necessary for the mutual comparison of the data from the stations in different districts. (Kato, T.)

  2. Using RADFET for the real-time measurement of gamma radiation dose rate

    Science.gov (United States)

    Andjelković, Marko S.; Ristić, Goran S.; Jakšić, Aleksandar B.

    2015-02-01

    RADFETs (RADiation sensitive Field Effect Transistors) are integrating ionizing radiation dosimeters operating on the principle of conversion of radiation-induced threshold voltage shift into absorbed dose. However, one of the major drawbacks of RADFETs is the inability to provide the information on the dose rate in real-time using the conventional absorbed dose measurement technique. The real-time monitoring of dose rate and absorbed dose can be achieved with the current mode dosimeters such as PN and PIN diodes/photodiodes, but these dosimeters have some limitations as absorbed dose meters and hence they are often not a suitable replacement for RADFETs. In that sense, this paper investigates the possibility of using the RADFET as a real-time dose rate meter so that it could be applied for simultaneous online measurement of the dose rate and absorbed dose. A RADFET sample, manufactured by Tyndall National Institute, Cork, Ireland, was tested as a dose rate meter under gamma irradiation from a Co-60 source. The RADFET was configured as a PN junction, such that the drain, gate and source terminals were grounded, while the radiation-induced current was measured at the bulk terminal, whereby the bulk was successively biased with 0 , 10 , 20  and 30 V. In zero-bias mode the radiation-induced current was unstable, but in the biased mode the current response was stable for the investigated dose rates from 0.65  to 32.1 Gy h-1 and up to the total absorbed dose of 25 Gy. The current increased with the dose rate in accordance with the power law, whereas the sensitivity of the current read-out was linear with respect to the applied bias voltage. Comparison with previously analyzed PIN photodiodes has shown that the investigated RADFET is competitive with PIN photodiodes as a gamma radiation dose rate meter and therefore has the potential to be employed for the real-time monitoring of the dose rate and absorbed dose.

  3. Using RADFET for the real-time measurement of gamma radiation dose rate

    International Nuclear Information System (INIS)

    Andjelković, Marko S; Ristić, Goran S; Jakšić, Aleksandar B

    2015-01-01

    RADFETs (RADiation sensitive Field Effect Transistors) are integrating ionizing radiation dosimeters operating on the principle of conversion of radiation-induced threshold voltage shift into absorbed dose. However, one of the major drawbacks of RADFETs is the inability to provide the information on the dose rate in real-time using the conventional absorbed dose measurement technique. The real-time monitoring of dose rate and absorbed dose can be achieved with the current mode dosimeters such as PN and PIN diodes/photodiodes, but these dosimeters have some limitations as absorbed dose meters and hence they are often not a suitable replacement for RADFETs. In that sense, this paper investigates the possibility of using the RADFET as a real-time dose rate meter so that it could be applied for simultaneous online measurement of the dose rate and absorbed dose. A RADFET sample, manufactured by Tyndall National Institute, Cork, Ireland, was tested as a dose rate meter under gamma irradiation from a Co-60 source. The RADFET was configured as a PN junction, such that the drain, gate and source terminals were grounded, while the radiation-induced current was measured at the bulk terminal, whereby the bulk was successively biased with 0 , 10 , 20  and 30 V. In zero-bias mode the radiation-induced current was unstable, but in the biased mode the current response was stable for the investigated dose rates from 0.65  to 32.1 Gy h −1 and up to the total absorbed dose of 25 Gy. The current increased with the dose rate in accordance with the power law, whereas the sensitivity of the current read-out was linear with respect to the applied bias voltage. Comparison with previously analyzed PIN photodiodes has shown that the investigated RADFET is competitive with PIN photodiodes as a gamma radiation dose rate meter and therefore has the potential to be employed for the real-time monitoring of the dose rate and absorbed dose. (paper)

  4. Low rate doses effects of gamma radiation on glycoproteins of transmembrane junctions in fibroblasts

    International Nuclear Information System (INIS)

    Bringas, J.E.; Caceres, J.L.

    1996-01-01

    Glycoproteins of trans-membrane junctions are molecules that help to bind cells with the extracellular matrix. Integrins are the most important trans-membrane molecules among others. The damage of gamma radiation on those proteins could be an important early event that causes membrane abnormalities which may lead to cell malfunction and cancer induced by radiation due to cell dissociation. Randomized blocks with 3 repetitions of mouse embryo fibroblast cultures, were irradiated with Cobalt-60 gamma rays, during 20 days. Biological damage to glycoproteins and integrins was evaluated by cellular growth and fibroblast proliferative capacity. Integrins damage was studied by isolation by column immunoaffinity chromatography migrated on SDS-Page under reducing and non reducing conditions, and inhibition of integrins extracellular matrix adhesion by monoclonal antibodies effect. The dose/rate (0.05 Gy/day-0.2 Gy/day) of gamma given to cells did not show damage evidence on glycoproteins and integrins. If damage happened, it was repaired by cells very soon, was delayed by continuous cellular division or by glycoproteins characteristic of being multiple extracellular ligatures. Bio effects became more evident with an irradiation time greater than 20 days or a high dose/rate. (authors). 6 refs

  5. Radiation shielding and dose rate distribution for the building of the high dose rate accelerator

    International Nuclear Information System (INIS)

    Matsuda, Koji; Takagaki, Torao; Nakase, Yoshiaki; Nakai, Yohta.

    1984-03-01

    A high dose rate electron accelerator was established at Osaka Laboratory for Radiation Chemistry, Takasaki Establishment, JAERI in the fiscal year of 1975. This report shows the fundamental concept for the radiation shielding of the accelerator building and the results of their calculations which were evaluated through the model experiments. After the construction of the building, the leak radiation was measured in order to evaluate the calculating method of radiation shielding. Dose rate distribution of X-rays was also measured in the whole area of the irradiation room as a data base. (author)

  6. Consequences of the exposure at low dose rates-contribution of animal experimentation

    International Nuclear Information System (INIS)

    Masse, R.

    1990-01-01

    The exposure of laboratory animals to the various types of radiations will induce cancers in relation with the tissue absorbed doses. The shape of the dose-effet relationship is most variable. It is important to distinguish which tumours are comparable to human tumours. Those showing more analogies answer but seldom to the classical lineo-quadratic relationship; however, a strong attenuation of induction is demonstrated at low dose rates. Quasi-threshold relationships are seen after the exposure of some tissues to high-LET radiations. These observations question the validity of generalizing the radiobiologists' dual action theory, setting the origin of the dose-effect relationship in the induction of events within the DNA molecule. There is an alternative in the cellular collaboration events; it assumes that the effectiveness per dose unit decreases constantly as an inverse function of the dose rate [fr

  7. Correlation of radiation dose and heart rate in dual-source computed tomography coronary angiography

    International Nuclear Information System (INIS)

    Laspas, Fotios; Roussakis, Arkadios; Kritikos, Nikolaos; Efthimiadou, Roxani; Kehagias, Dimitrios; Andreou, John; Tsantioti, Dimitra

    2011-01-01

    Background: Computed tomography coronary angiography (CTCA) has been widely used since the introduction of 64-slice scanners and dual-source CT technology, but the relatively high radiation dose remains a major concern. Purpose: To evaluate the relationship between radiation exposure and heart rate (HR), in dual-source CTCA. Material and Methods: Data from 218 CTCA examinations, performed with a dual-source 64-slices scanner, were statistically evaluated. Effective radiation dose, expressed in mSv, was calculated as the product of the dose-length product (DLP) times a conversion coefficient for the chest (mSv = DLPx0.017). Heart rate range and mean heart rate, expressed in beats per minute (bpm) of each individual during CTCA, were also provided by the system. Statistical analysis of effective dose and heart rate data was performed by using Pearson correlation coefficient and two-sample t-test. Results: Mean HR and effective dose were found to have a borderline positive relationship. Individuals with a mean HR >65 bpm observed to receive a statistically significant higher effective dose as compared to those with a mean HR =65 bpm. Moreover, a strong correlation between effective dose and variability of HR of more than 20 bpm was observed. Conclusion: Dual-source CT scanners are considered to have the capability to provide diagnostic examinations even with high HR and arrhythmias. However, it is desirable to keep the mean heart rate below 65 bpm and heart rate fluctuation less than 20 bpm in order to reduce the radiation exposure

  8. Chromosomal Aberrations in Normal and AT Cells Exposed to High Dose of Low Dose Rate Irradiation

    Science.gov (United States)

    Kawata, T.; Shigematsu, N.; Kawaguchi, O.; Liu, C.; Furusawa, Y.; Hirayama, R.; George, K.; Cucinotta, F.

    2011-01-01

    Ataxia telangiectasia (A-T) is a human autosomally recessive syndrome characterized by cerebellar ataxia, telangiectases, immune dysfunction, and genomic instability, and high rate of cancer incidence. A-T cell lines are abnormally sensitive to agents that induce DNA double strand breaks, including ionizing radiation. The diverse clinical features in individuals affected by A-T and the complex cellular phenotypes are all linked to the functional inactivation of a single gene (AT mutated). It is well known that cells deficient in ATM show increased yields of both simple and complex chromosomal aberrations after high-dose-rate irradiation, but, less is known on how cells respond to low-dose-rate irradiation. It has been shown that AT cells contain a large number of unrejoined breaks after both low-dose-rate irradiation and high-dose-rate irradiation, however sensitivity for chromosomal aberrations at low-dose-rate are less often studied. To study how AT cells respond to low-dose-rate irradiation, we exposed confluent normal and AT fibroblast cells to up to 3 Gy of gamma-irradiation at a dose rate of 0.5 Gy/day and analyzed chromosomal aberrations in G0 using fusion PCC (Premature Chromosomal Condensation) technique. Giemsa staining showed that 1 Gy induces around 0.36 unrejoined fragments per cell in normal cells and around 1.35 fragments in AT cells, whereas 3Gy induces around 0.65 fragments in normal cells and around 3.3 fragments in AT cells. This result indicates that AT cells can rejoin breaks less effectively in G0 phase of the cell cycle? compared to normal cells. We also analyzed chromosomal exchanges in normal and AT cells after exposure to 3 Gy of low-dose-rate rays using a combination of G0 PCC and FISH techniques. Misrejoining was detected in the AT cells only? When cells irradiated with 3 Gy were subcultured and G2 chromosomal aberrations were analyzed using calyculin-A induced PCC technique, the yield of unrejoined breaks decreased in both normal and AT

  9. Effect of ketamine dose on self-rated dissociation in patients with treatment refractory anxiety disorders.

    Science.gov (United States)

    Castle, Cameron; Gray, Andrew; Neehoff, Shona; Glue, Paul

    2017-10-01

    Patients receiving ketamine for refractory depression and anxiety report dissociative symptoms in the first 60 min post-dose. The most commonly used instrument to assess this is the Clinician-Administered Dissociative States Scale (CADSS), developed based on the assessment of patients with dissociative symptoms. Its psychometric properties for ketamine-induced dissociation have not been reported. We evaluated these from a study using 0.25-1 mg/kg ketamine and midazolam (as an active control) in 18 patients with treatment-resistant anxiety. Dissociation ratings were increased by ketamine in a dose-dependent manner. In contrast, midazolam showed no effect on ratings of dissociation. For individual CADSS items, the magnitude of change and the ketamine dose at which changes were observed were not homogenous. The Cronbach alpha for the total scale was high (0.937), with acceptable item-rest correlations for almost all individual items. Purposefully removing items to maximise alpha did not lead to meaningful improvements. Acceptable internal consistency was still observed after removing items which lacked evidence of responsiveness at lower doses. The high Cronbach alpha values identified in this study suggests that the CADSS is an internally consistent instrument for evaluating ketamine-induced dissociation in clinical trials in anxiety, although it does not capture symptoms such as thought disorder.

  10. Low dose rate Ir-192 interstitial brachytherapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Oki, Yosuke; Dokiya, Takushi; Yorozu, Atsunori; Suzuki, Takayuki; Saito, Shiro; Monma, Tetsuo; Ohki, Takahiro [National Tokyo Medical Center (Japan); Murai, Masaru; Kubo, Atsushi

    2000-04-01

    From December 1997 through January 1999, fifteen prostatic cancer patients were treated with low dose rate Ir-192 interstitial brachytherapy using TRUS and perineal template guidance without external radiotherapy. Up to now, as no apparent side effects were found, the safety of this treatment is suggested. In the future, in order to treat prostatic cancer patients with interstitial brachytherapy using I-125 or Pd-103, more investigation for this low dose rate Ir-192 interstitial brachytherapy is needed. (author)

  11. Mutation induction in cultured human cells after low-dose and low-dose-rate γ-ray irradiation. Detection by LOH analysis

    International Nuclear Information System (INIS)

    Umebayashi, Yukihiro; Iwaki, Masaya; Yatagai, Fumio; Honma, Masamitsu; Suzuki, Masao; Suzuki, Hiromi; Shimazu, Toru; Ishioka, Noriaki

    2007-01-01

    To study the genetic effects of low-doses and low-dose-rate ionizing radiation (IR), human lymphoblastoid TK6 cells were exposed to 30 mGy of γ-rays at a dose-rate of 1.2 mGy/hr. The frequency of early mutations (EMs) in the thymidine kinase (TK) gene locus was determined to be 1.7 x 10 -6 , or 1.9-fold higher than the level seen in unirradiated controls. These mutations were analyzed with a loss of heterozygosity (LOH) detection system, a methodology which has been shown to be sensitive to the effects of radiation. Among the 15 EMs observed after IR exposure, 8 were small interstitial-deletion events restricted to the TK gene locus. However, this specific type of event was not found in unirradiated controls. Although these results were observed under the limited conditions, they strongly suggest that the LOH detection system can be used for estimating the genetic effects of a low-dose IR exposure delivered at a low-dose-rate. (author)

  12. Response of mouse lung to irradiation at different dose-rates

    International Nuclear Information System (INIS)

    Hill, R.P.

    1983-01-01

    Groups of LAF1 mice were given thoracic irradiation using 60 Co γ-rays at dose-rates of 0.05 Gy/min (LDR) or 1.1 Gy/min (HDR) and the death of the animals was monitored as a function of time. It was found that the time pattern of animal deaths was similar for the two different dose-rates. Dose response curves for animals dying at various times up to 500 days after irradiation were calculated and the LD 50 values determined. The curves for the LD 50 values, plotted as a function of the time at analysis for treatment at HDR or LDR, were essentially parallel to each other but separated by a factor (LDR/HDR) of about 1.8. This indicates that the sparing effect of LDR treatment is the same for deaths occurring during the early pneumonitis phase or during the late fibrotic phase of lung damage. The available information on the response of patients to whole thoracic irradiation, given for either palliation or piror to bone marrow transplantation, suggests that for similar dose-rates to those studied here the ratio (LDR/HDR) is only 1.2 to 1.3. This difference between the animal and human data may reflect the modifying effect of the large doses of cytotoxic drugs used in combination with the irradiation of bone marrow transplant patients

  13. Effect of usual lead apron in decreasing dose rate in nuclear medicine department

    Energy Technology Data Exchange (ETDEWEB)

    Momennezhad, M.; Ghazikhanloo, K.; Zakavi, S.R. [Mashhad Univ. of Medical Sciences (Iran, Islamic Republic of)

    2006-07-01

    Full text of publication follows: Introduction: In a busy nuclear medicine department personnel exposure to radiation is inevitable during patient positioning and radiotracer preparation. There is controversy regarding usage of usual lead aprons with respect to penetrating gamma rays used in nuclear medicine departments as well as production of characteristic lead x-ray from aprons.This study tries to evaluate the effect of 0.5 mm lead apron on dose reduction. Methods and materials: We used three point sources usual radioisotopes used in nuclear medicine departments (99 mTc, 201 Tl and 131 I) and a single head L.F.O.V. gamma camera (S.M.V., D.S.X.) was used for counting purposes. The count rate for each source was about 20 K count/sec in air and in a brain water phantom. All point sources were placed at a distance of 3 meters, parallel to the center of the detector. The collimator was removed and imaging was performed for 1 min with and without lead apron on the detector. Lead apron covered all field of view of the detector. Each imaging was repeated 3 times and mean count was obtained for each radioisotope. The measurements were accomplished from full spectrum and specific region of spectrum such as characteristic lead x rays region (88 keV 20%) with and without apron. Result and Discussion: The measurement and comparison of count rates (count/min) for each source in different conditions (with and without apron source in air and in water phantom) showed that count rates were reduced in air about 77.3%, 84.2% and 40.8% for 99 mTc, 201 Tl and 131 I respectively. The reduction in count rates when sources placed in brain water phantom were 83.5%, 87% and 53.7% for the same isotope respectively. As the main source of radiation for personnel is from scattered photon and with respect to about 83% of count rate reduction using lead aprons for 99 mTc, it is expected that wearing lead apron significantly decrease dose rate. Conclusion: Our study showed that lead aprons

  14. Effect of usual lead apron in decreasing dose rate in nuclear medicine department

    International Nuclear Information System (INIS)

    Momennezhad, M.; Ghazikhanloo, K.; Zakavi, S.R.

    2006-01-01

    Full text of publication follows: Introduction: In a busy nuclear medicine department personnel exposure to radiation is inevitable during patient positioning and radiotracer preparation. There is controversy regarding usage of usual lead aprons with respect to penetrating gamma rays used in nuclear medicine departments as well as production of characteristic lead x-ray from aprons.This study tries to evaluate the effect of 0.5 mm lead apron on dose reduction. Methods and materials: We used three point sources usual radioisotopes used in nuclear medicine departments (99 mTc, 201 Tl and 131 I) and a single head L.F.O.V. gamma camera (S.M.V., D.S.X.) was used for counting purposes. The count rate for each source was about 20 K count/sec in air and in a brain water phantom. All point sources were placed at a distance of 3 meters, parallel to the center of the detector. The collimator was removed and imaging was performed for 1 min with and without lead apron on the detector. Lead apron covered all field of view of the detector. Each imaging was repeated 3 times and mean count was obtained for each radioisotope. The measurements were accomplished from full spectrum and specific region of spectrum such as characteristic lead x rays region (88 keV 20%) with and without apron. Result and Discussion: The measurement and comparison of count rates (count/min) for each source in different conditions (with and without apron source in air and in water phantom) showed that count rates were reduced in air about 77.3%, 84.2% and 40.8% for 99 mTc, 201 Tl and 131 I respectively. The reduction in count rates when sources placed in brain water phantom were 83.5%, 87% and 53.7% for the same isotope respectively. As the main source of radiation for personnel is from scattered photon and with respect to about 83% of count rate reduction using lead aprons for 99 mTc, it is expected that wearing lead apron significantly decrease dose rate. Conclusion: Our study showed that lead aprons

  15. Treatment Outcome of Medium-Dose-Rate Intracavitary Brachytherapy for Carcinoma of the Uterine Cervix: Comparison With Low-Dose-Rate Intracavitary Brachytherapy

    International Nuclear Information System (INIS)

    Kaneyasu, Yuko; Kita, Midori; Okawa, Tomohiko; Maebayashi, Katsuya; Kohno, Mari; Sonoda, Tatsuo; Hirabayashi, Hisae; Nagata, Yasushi; Mitsuhashi, Norio

    2012-01-01

    Purpose: To evaluate and compare the efficacy of medium-dose-rate (MDR) and low-dose-rate (LDR) intracavitary brachytherapy (ICBT) for uterine cervical cancer. Methods and Materials: We evaluated 419 patients with squamous cell carcinoma of the cervix who were treated by radical radiotherapy with curative intent at Tokyo Women’s Medical University from 1969 to 1999. LDR was used from 1969 to 1986, and MDR has been used since July 1987. When compared with LDR, fraction dose was decreased and fraction size was increased (1 or 2 fractions) for MDR to make the total dose of MDR equal to that of LDR. In general, the patients received a total dose of 60 to 70 Gy at Point A with external beam radiotherapy combined with brachytherapy according to the International Federation of Gynecology and Obstetrics stage. In the LDR group, 32 patients had Stage I disease, 81 had Stage II, 182 had Stage III, and 29 had Stage IVA; in the MDR group, 9 patients had Stage I disease, 19 had Stage II, 55 had Stage III, and 12 had Stage IVA. Results: The 5-year overall survival rates for Stages I, II, III, and IVA in the LDR group were 78%, 72%, 55%, and 34%, respectively. In the MDR group, the 5-year overall survival rates were 100%, 68%, 52%, and 42%, respectively. No significant statistical differences were seen between the two groups. The actuarial rates of late complications Grade 2 or greater at 5 years for the rectum, bladder, and small intestine in the LDR group were 11.1%, 5.8%, and 2.0%, respectively. The rates for the MDR group were 11.7%, 4.2%, and 2.6%, respectively, all of which were without statistical differences. Conclusion: These data suggest that MDR ICBT is effective, useful, and equally as good as LDR ICBT in daytime (about 5 hours) treatments of patients with cervical cancer.

  16. Treatment Outcome of Medium-Dose-Rate Intracavitary Brachytherapy for Carcinoma of the Uterine Cervix: Comparison With Low-Dose-Rate Intracavitary Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kaneyasu, Yuko, E-mail: kaneyasu@hiroshima-u.ac.jp [Department of Radiation Oncology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima (Japan); Department of Radiation Oncology, Tokyo Women' s Medical University, Tokyo (Japan); Kita, Midori [Department of Radiation Oncology, Tokyo Women' s Medical University, Tokyo (Japan); Department of Clinical Radiology, Tokyo Metropolitan Tama Medical Center, Tokyo (Japan); Okawa, Tomohiko [Evaluation and Promotion Center, Utsunomiya Memorial Hospital, Tochigi (Japan); Maebayashi, Katsuya [Department of Radiation Oncology, Tokyo Women' s Medical University, Tokyo (Japan); Kohno, Mari [Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women' s Medical University Hospital, Tokyo (Japan); Sonoda, Tatsuo; Hirabayashi, Hisae [Department of Radiology, Tokyo Women' s Medical University Hospital, Tokyo (Japan); Nagata, Yasushi [Department of Radiation Oncology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima (Japan); Mitsuhashi, Norio [Department of Radiation Oncology, Tokyo Women' s Medical University, Tokyo (Japan)

    2012-09-01

    Purpose: To evaluate and compare the efficacy of medium-dose-rate (MDR) and low-dose-rate (LDR) intracavitary brachytherapy (ICBT) for uterine cervical cancer. Methods and Materials: We evaluated 419 patients with squamous cell carcinoma of the cervix who were treated by radical radiotherapy with curative intent at Tokyo Women's Medical University from 1969 to 1999. LDR was used from 1969 to 1986, and MDR has been used since July 1987. When compared with LDR, fraction dose was decreased and fraction size was increased (1 or 2 fractions) for MDR to make the total dose of MDR equal to that of LDR. In general, the patients received a total dose of 60 to 70 Gy at Point A with external beam radiotherapy combined with brachytherapy according to the International Federation of Gynecology and Obstetrics stage. In the LDR group, 32 patients had Stage I disease, 81 had Stage II, 182 had Stage III, and 29 had Stage IVA; in the MDR group, 9 patients had Stage I disease, 19 had Stage II, 55 had Stage III, and 12 had Stage IVA. Results: The 5-year overall survival rates for Stages I, II, III, and IVA in the LDR group were 78%, 72%, 55%, and 34%, respectively. In the MDR group, the 5-year overall survival rates were 100%, 68%, 52%, and 42%, respectively. No significant statistical differences were seen between the two groups. The actuarial rates of late complications Grade 2 or greater at 5 years for the rectum, bladder, and small intestine in the LDR group were 11.1%, 5.8%, and 2.0%, respectively. The rates for the MDR group were 11.7%, 4.2%, and 2.6%, respectively, all of which were without statistical differences. Conclusion: These data suggest that MDR ICBT is effective, useful, and equally as good as LDR ICBT in daytime (about 5 hours) treatments of patients with cervical cancer.

  17. Implications of effects ''adaptive response'', ''low-dose hypersensitivity'' und ''bystander effect'' for cancer risk at low doses and low dose rates

    International Nuclear Information System (INIS)

    Jacob, P

    2006-01-01

    A model for carcinogenesis (the TSCE model) was applied in order to examine the effects of ''Low-dose hypersensitivity (LDH)'' and the ''Bystander effect (BE)'' on the derivation of radiation related cancer mortality risks. LDH has been discovered to occur in the inactivation of cells after acute exposure to low LET radiation. A corresponding version of the TSCE model was applied to the mortality data on the Abomb survivors from Hiroshima and Nagasaki. The BE has been mainly observed in cells after exposure to high LET radiation. A Version of the TSCE model which included the BE was applied to the data on lung cancer mortality from the workers at the Mayak nuclear facilities who were exposed to Plutonium. In general an equally good description of the A-bomb survivor mortality data (for all solid, stomach and lung tumours) was found for the TSCE model and the (conventional) empirical models but fewer parameters were necessary for the TSCE model. The TSCE model which included the effects of radiation induced cell killing resulted in non-linear dose response curves with excess relative risks after exposure at young ages that were generally lower than in the models without cell killing. The main results from TSCE models which included cell killing described by either conventional survival curves or LDH were very similar. A sub multiplicative effect from the interaction of smoking and exposure to plutonium was found to result from the analysis of the Mayak lung cancer mortality data. All models examined resulted in the predominant number of Mayak lung cancer deaths being ascribed to smoking. The interaction between smoking and plutonium exposures was found to be the second largest effect. The TSCE model resulted in lower estimates for the lung cancer excess relative risk per unit plutonium dose than the empirical risk model, but this difference was not found to be statistically significant. The excess relative risk dose responses were linear in the empirical model and

  18. DuraSeal® as a spacer to reduce rectal doses in low-dose rate brachytherapy for prostate cancer

    International Nuclear Information System (INIS)

    Heikkilä, Vesa-Pekka; Kärnä, Aarno; Vaarala, Markku H.

    2014-01-01

    The purpose of this study was to evaluate the utility of off-label use of DuraSeal® polyethylene glycol (PEG) gel in low-dose rate (LDR) prostate brachytherapy seed implantation to reduce rectal doses. Diluted DuraSeal® was easy to use and, in spite of a clearance effect, useful in decreasing D 2cc rectal doses

  19. High dose rate versus low dose rate interstitial radiotherapy for carcinoma of the floor of mouth

    International Nuclear Information System (INIS)

    Inoue, Takehiro; Inoue, Toshihiko; Yamazaki, Hideya; Koizumi, Masahiko; Kagawa, Kazufumi; Yoshida, Ken; Shiomi, Hiroya; Imai, Atsushi; Shimizutani, Kimishige; Tanaka, Eichii; Nose, Takayuki; Teshima, Teruki; Furukawa, Souhei; Fuchihata, Hajime

    1998-01-01

    Purpose: Patients with cancer of the floor of mouth are treated with radiation because of functional and cosmetic reasons. We evaluate the treatment results of high dose rate (HDR) and low dose rate (LDR) interstitial radiation for cancer of the floor of mouth. Methods and Materials: From January 1980 through March 1996, 41 patients with cancer of the floor of mouth were treated with LDR interstitial radiation using 198 Au grains, and from April 1992 through March 1996 16 patients with HDR interstitial radiation. There were 26 T1 tumors, 30 T2 tumors, and 1 T3 tumor. For 21 patients treated with interstitial radiation alone, a total radiation dose of interstitial therapy was 60 Gy/10 fractions/6-7 days in HDR and 85 Gy within 1 week in LDR. For 36 patients treated with a combination therapy, a total dose of 30 to 40 Gy of external radiation and a total dose of 48 Gy/8 fractions/5-6 days in HDR or 65 Gy within 1 week in LDR were delivered. Results: Two- and 5-year local control rates of patients treated with HDR interstitial radiation were 94% and 94%, and those with LDR were 75% and 69%, respectively. Local control rate of patients treated with HDR brachytherapy was slightly higher than that with 198 Au grains (p = 0.113). For late complication, bone exposure or ulcer occurred in 6 of 16 (38%) patients treated with HDR and 13 of 41 (32%) patients treated with LDR. Conclusion: HDR fractionated interstitial brachytherapy can be an alternative to LDR brachytherapy for cancer of the floor of mouth and eliminate radiation exposure for the medical staff

  20. Evaluation of 1cm dose equivalent rate using a NaI(Tl) scintilation spectrometer

    International Nuclear Information System (INIS)

    Matsuda, Hideharu

    1990-01-01

    A method for evaluating 1 cm dose equivalent rates from a pulse height distribution obtained by a 76.2mmφ spherical NaI(Tl) scintillation spectrometer was described. Weak leakage radiation from nuclear facilities were also measured and dose equivalent conversion factor and effective energy of leakage radiation were evaluated from 1 cm dose equivalent rate and exposure rate. (author)

  1. Gynecological brachytherapy - from low-dose-rate to high-tech. Gynaekologische Brachytherapie - von Low-dose-rate zu High-tech

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, T. (Abt. Strahlenthgerapie, Klinik und Poliklinik fuer Radiologie, Medizinische Akademie ' Carl Gustav Carus' , Dresden (Germany)); Christen, N. (Abt. Strahlenthgerapie, Klinik und Poliklinik fuer Radiologie, Medizinische Akademie ' Carl Gustav Carus' , Dresden (Germany)); Alheit, H.D. (Abt. Strahlenthgerapie, Klinik und Poliklinik fuer Radiologie, Medizinische Akademie ' Carl Gustav Carus' , Dresden (Germany))

    1993-03-01

    The transition from low-dose-rate (LDR) brachytherapy to high-dose-rate (HDR) afterloading treatment is in progress in most centres of radiation therapy. First reports of studies comparing HDR and LDR treatment in cervix cancer demonstrate nearly equal local control. In our own investigations on 319 patients with primary irradiated carcinoma of the cervix (125 HDR/194 LDR) we found the following control rates: Stage FIGO I 95.4%/82.9% (HDR versus LDR), stage FIGO II 71.4%/73.7%, stage FIGO III 57.9%/38.5%. The results are not significant. The side effects - scored after EORT/RTOG criteria - showed no significant differences between both therapies for serious radiogenic late effects on intestine, bladder and vagina. The study and findings from the literature confirm the advantage of the HDR-procedure for patient and radiooncologist and for radiation protection showing at least the same results as in the LDR-area. As for radiobiolgical point of view it is important to consider that the use of fractionation in the HDR-treatment is essential for the sparing of normal tissues and therefore a greater number of small fractionation doses in the brachytherapy should be desirable too. On the other hand the rules, which are true for fractionated percutaneous irradiation therapy (overall treatment time as short as possible to avoid reppopulation of tumor cells) should be taken into consideration in combined brachy-teletherapy regime in gynecologic tumors. The first step in this direction may be accelerated regime with a daily application of both treatment procedures. The central blocking of the brachytherapy region from the whole percutaneous treatment target volume should be critically reflected, especially in the case of advanced tumors. (orig.)

  2. Dose-rate evidence for two kinds of radiation damage in stationary-phase mammalian cells

    International Nuclear Information System (INIS)

    Metting, N.F.; Braby, L.A.; Roesch, W.C.; Nelson, J.M.

    1985-01-01

    Survival based on colony formation was measured for starved plateau-phase Chinese hamster ovary (CHO) cells exposed to 250 kVp X rays at dose rates of 0.0031, 0.025, 0.18, 0.31, and 1.00 Gy/min. A large dose-rate effect was demonstrated. Delayed plating experiments and dose response experiments following a conditioning dose, both using a dose rate of 1.00 Gy/min and plating delays of up to 48 hr, were also used to investigate the alternative repair hypotheses. There is clearly a greater change in survival in dose-rate experiments than in the other experiments. Thus the authors believe that a process which depends on the square of the concentration of initial damage, and which alters the effect of initial damage on cell survival is being observed. They have applied the damage accumulation model to separate the single-event damage from this concentration-dependent form and estimate the repair rate for the latter type to be 70 min for their CHO cells

  3. Concrete spent fuel storage casks dose rates

    International Nuclear Information System (INIS)

    Bace, M.; Jecmenica, R.; Trontl, K.

    1998-01-01

    Our intention was to model a series of concrete storage casks based on TranStor system storage cask VSC-24, and calculate the dose rates at the surface of the casks as a function of extended burnup and a prolonged cooling time. All of the modeled casks have been filled with the original multi-assembly sealed basket. The thickness of the concrete shield has been varied. A series of dose rate calculations for different burnup and cooling time values have been performed. The results of the calculations show rather conservative original design of the VSC-24 system, considering only the dose rate values, and appropriate design considering heat rejection.(author)

  4. Radiation dose rates from UF{sub 6} cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Friend, P.J. [Urenco, Capenhurst (United Kingdom)

    1991-12-31

    This paper describes the results of many studies, both theoretical and experimental, which have been carried out by Urenco over the last 15 years into radiation dose rates from uranium hexafluoride (UF{sub 6}) cylinders. The contents of the cylinder, its history, and the geometry all affect the radiation dose rate. These factors are all examined in detail. Actual and predicted dose rates are compared with levels permitted by IAEA transport regulations.

  5. Radiation-induced attenuation in polarization maintaining fibers: low dose rate response, stress, and materials effects

    International Nuclear Information System (INIS)

    Gingerich, M.E.; Friebele, E.J.; Hickey, S.J.; Brambani, L.A.; Onstott, J.R.

    1989-01-01

    The loss induced in polarization-maintaining (PM) fibers by low dose rate <0.01 Gy/h, where 1 Gy = 100 rads(Si) radiation exposure has been found to vary from <0.4 to ∼6 dB/km-10 Gy, depending on the wavelength of measurement and the fiber. Correlations have been established between low dose rate response and the ''permanent'' induced loss determined by fitting the recovery of the induced loss following high dose rate exposure to nth-order kinetics. Using this technique, both 0.85- and 1.3-μm PM fibers have been found which show virtually no permanent incremental loss and would therefore appear to be resistant to low dose rate radiation environments. The asymmetric stress inherent in PM fibers has been shown to reduce the permanent induced loss, while the recovery of the radiation-induced attenuation was found to be enhanced in fibers with Ge-F-doped silica clads

  6. Influence of dose, dose rate, and radiation quality on radiation carcinogenesis and life shortening in RFM and BALB/C mice

    International Nuclear Information System (INIS)

    Ullrich, R.L.; Storer, J.B.

    1978-01-01

    The effects produced by 137 Cs gamma rays delivered at a high (45 rads/min) or intermediate (8.2 rads/day) dose rate and the effect of fission neutrons at a high (25 rads/min) and low (1 rad/day) rate in a population of nearly 30,000 RFM and 11,000 BALB/c mice have been studied. Gamma ray doses ranged from 10 to 400 rads with the RFM's and from 50-400 rads with the BALB/c's, while neutron doses ranged from 5 to 200 rads with both strains. The present paper will present an overview of these data and the general findings while subsequent publications will present detailed analyses of each aspect. A variety of neoplasms were sensitive to induction after radiation exposure, including tumors of both reticular tissue origin (leukemia, lymphoma, etc.) and solid tumors. For the RFM, thymic lymphomas were the dominant reticular tissue neoplasm while the majority of solid tumors were either lung adenomas or fit into the broad category of endocrine related tumors, including ovarian, pituitary, harderian, and uterine tumors. The BALB/c was much less sensitive to induction of reticular tissue neoplasms. The tumors that were most sensitive to induction included malignant lung carcinomas, mammary adenocarcinomas and ovarian tumors. In general for both life shortening and tumor induction after gamma ray exposures, when the low to intermediate dose range was sufficiently defined, linearity could be rejected and a dose squared or linear-dose squared relationship adequately fit the data. For neutron exposures, on the other hand, linear relationships were the general finding. The RBE for neutrons varied with tumor type and total dose level. For gamma ray irradiation, the intermediate dose rate resulted in a decreased effectiveness in all cases, while for neutron exposures the dose rate relationships were more complex

  7. Determination of dose rate from natural radionuclide in porcelain dental materials

    International Nuclear Information System (INIS)

    Nouri, A.D.; El-Zourgany, A.; Elmashat, Alia; El-Masri, Karima

    2010-01-01

    There are three main aims that make this study particularly important and interesting to radiometric studies. Firstly, it will provides information on the concentration composition of natural and the associated man-made radioactivity of imported dental porcelain materials to be used by most dental laboratories in Great Jamahiriya. Since these materials do not pass radiation inspection tests before their entry or use and there is a large variety of supply source of these dental materials to be used for all dental works on Libyan patients, anomalies can be identified easily. Secondly, the analysis of selective elemental abundance (U, Th, and K ) and dose rate calculations may be used to calculate effective dose rates to dental laboratory technicians and also to the patient who will be using these specific materials. This research project will provide the first results of such measurements and the corresponding average annual effective dose rates equivalent to the patients using these materials and also to the dental technician and doctors work in the various dental laboratories that make use of these materials in their daily work. A total number of 30 dental powder samples were collected from a number of dental laboratories around Tripoli area will be analyzed. In this research project, the results from this preliminary survey regarding Th, U and K elemental concentrations in a wide variety of dental materials by means of high-resolution X-ray spectrometry will be presented. Further results from these investigations concerning activity concentrations and the associated dose rates, effective dose and the committed dose due to the use of these materials are going to be calculated and compared with other published data elsewhere and recommendation of their use will be derived accordingly. (author)

  8. Influence of dose and dose rate on the physical properties of commercial papers commonly used in libraries and archives

    Science.gov (United States)

    Area, María C.; Calvo, Ana M.; Felissia, Fernando E.; Docters, Andrea; Miranda, María V.

    2014-03-01

    The aim of this study was to evaluate the effects of dose and dose rate of gamma irradiation on the physical properties of commercial papers commonly used in libraries and archives to optimize the irradiation conditions. Three different brands of paper of different fiber compositions were treated, using a 32 factorial design with four replicates of the center point, with doses ranging from 2 to 11 kGy and dose rates between 1 and 11 kGy/h. Chemical, mechanical and optical properties were determined on the samples. With some differences between the different kinds of papers, tensile strength, elongation, TEA, and air resistance were in general, unaffected by the treatment. The minimum loss of tear resistance and brightness were obtained with doses in the range 4-6 kGy at any dose rate for all three kinds of paper. These conditions are ideal to remove insects and sufficient to eliminate fungus.

  9. Effect of dose rate on inactivation of microorganisms in spices by electron-beams and gamma-rays irradiation

    International Nuclear Information System (INIS)

    Ito, Hitoshi; Islam, Md.S.

    1994-01-01

    Total aerobic bacteria in spices used in this study were determined to be 1 x 10 6 to 6 x 10 7 per gram. A study on the inactivation of microorganisms in spices showed that doses of 6-9 kGy of EB (electron-beams) or γ-irradiation were required to reduce the total aerobic bacteria to below 10 3 per gram. However, a little increase of resistance was observed on the inactivation of total aerobic bacteria in many spices in case of EB irradiation. These differences of radiation sensitivities between EB and γ-rays was explained by dose rate effect on oxidation damage to microorganisms from the results of radiation sensitivities of Bacillus pumilus and B. megaterium spores at dry conditions. On the other hand, these high dose rate of EB irradiation suppressed the increase of peroxide values in spices at high dose irradiation up to 80 kGy. However, components of essential oils in spices were not changed even irradiated up to 50 kGy with EB and γ-rays. (author)

  10. Outdoor γ-ray dose rate in Ajigasawa Town and environmental factors affecting it in IES

    International Nuclear Information System (INIS)

    Iyogi, Takashi; Hisamatsu, Shunichi; Sakurai, Naoyuki; Koyama, Kenji

    1999-01-01

    We surveyed the outdoor γ-ray dose rate throughout Aomori Prefecture from 1991 to 1995, and found an annual mean dose rate of 46 nGy h -1 . Relatively high dose rates were also observed in several areas (municipalities) of the survey locations. In this study, we examined the detailed distribution of the γ-ray dose rate in one such high dose rate area, Ajigasawa Town. Glass dosimeters were used for the monitoring of cumulative γ-ray dose rate at 10 locations in the town. The dose rate from each radioactive nuclide in the ground at the monitoring locations was measured by using an in situ γ-ray spectrometer with a Ge detector. The results obtained with the glass dosimeters showed that the γ-ray dose rates in Ajigasawa Town varied from 48 to 57 nGy h -1 . Although the dose rates were generally higher than the mean dose in Aomori Prefecture (1992-1995), the rates were lower than other high dose rate areas which had already been measured. The in situ γ-ray spectrometry revealed that these relatively high dose rates were mainly caused by 40 K and Th series radionuclides in the town. The effect of meteorological conditions on the γ-ray dose rate was studied at a monitoring station in IES. The dose rate was continuously recorded by a DBM NaI(Tl) scintillation detector system. The mean dose rate obtained when precipitation was sensed was 27 nGy h -1 and higher than when no precipitation was sensed (23 nGy h -1 ). (author)

  11. Effects of low-dose candesartan on the rate of re-endothelialisation following vascular wound healing

    Directory of Open Access Journals (Sweden)

    Prakash Koshy

    2001-03-01

    Full Text Available The wound healing response of the vascular wall to injury involves re-endothelialisation of the denuded luminal surface and thickening of the intimal area (intimal hyperplasia, as expressed by the intimal-to-medial area ratio (I/M. Candesartan, at doses of 1 mg/kg/day or higher, has been reported to attenuate the intimal hyperplastic response. We tested the hypothesis that candesartan, at doses lower than those associated with attenuation of intimal hyperplasia, may affect re-endothelialisation. New Zealand White rabbits were subjected to balloon catheter injury to the thoracic aorta. Candesartan, at doses of 50, 100, and 500 µg/kg/day, was delivered via an Alzet pump placed in the abdomen one week prior to aortic injury. There was no attenuation of the hyperplastic response of the aortic wall. However, at 50 µg/kg/day the rate of reendothelialisation was significantly increased. These data suggest that candesartan may exhibit pleiotropic effects on vascular wound healing, in addition to the well-known effect of attenuating the development of intimal hyperplasia.

  12. Monitoring and Analysis of Environmental Gamma Dose Rate around Serpong Nuclear Complex

    Directory of Open Access Journals (Sweden)

    I.P. Susila

    2017-08-01

    Full Text Available An environmental radiation monitoring system that continuously measures gamma dose rate around nuclear facilities is an important tool to present dose rate information to the public or authorities for radiological protection during both normal operation and radiological accidents. We have developed such a system that consists of six GM-based device for monitoring the environmental dose rate around Serpong Nuclear Complex. It has operated since 2010. In this study, a description of the system and analysis of measured data are presented. Analysis of the data for the last five years shows that the average dose rate levels were between 84-99 nSv/h which are still lower than terrestrial gamma radiation levels at several other locations in Indonesia. Time series analysis of the monitoring data demonstrates a good agreement between an increase in environmental gamma dose rate and the presence of iodine and argon in the air by in situ measurement. This result indicates that system is also effective for an early warning system in the case of radiological emergency.

  13. Dose Rate Determination from Airborne Gamma-ray Spectra

    DEFF Research Database (Denmark)

    Bargholz, Kim

    1996-01-01

    The standard method for determination of ground level dose rates from airborne gamma-ray is the integral count rate which for a constant flying altitude is assumed proportional to the dose rate. The method gives reasonably results for natural radioactivity which almost always has the same energy...

  14. Calculation of radiation dose rates from a spent nuclear fuel shipping cask

    International Nuclear Information System (INIS)

    Chen, S.Y.; Yuan, Y.C.

    1988-01-01

    Radiation doses from a spent nuclear fuel cask are usually from various phases of operations during handling, shipping, and storage of the casks. Assessment of such doses requires knowledge of external radiation dose rates at various locations surrounding a cask. Under current practices, dose rates from gamma photons are usually estimated by means of point- or line-source approaches incorporating the conventional buildup factors. Although such simplified approaches may at times be easy to use, their accuracy has not been verified. For example, those simplified methods have not taken into account influencing factors such as the geometry of the cask and the presence of the ground surface, and the effects of these factors on the calculated dose rates are largely unknown. Moreover, similar empirical equations for buildup factors currently do not exist for neutrons. The objective of this study is to use a more accurate approach in calculating radiation dose rates for both neutrons and gamma photons from a spent fuel cask. The calculation utilizes the more sophisticated transport method and takes into account the geometry of the cask and the presence of the ground surface. The results of a detailed study of dose rates in the near field (within 20 meters) are presented and, for easy application, the cask centerline dose rates are fitted into empirical equations at cask centerline distances up to 2000 meters from the surface of the cask

  15. Effect of low gamma-ray doses and seeding rates on growth, yield and its components as well as seed quality of lentils (lens Culinaries, med.)

    International Nuclear Information System (INIS)

    Dprgham, E.A.

    1999-01-01

    To study the effect of low doses gamma-rays and seeding rates on growth, yield and its components as well as seed quality, two experiments were conducted during 1993/1994 and 1994/1995 seasons. Each experiment included treatments which were the combinations of three levels of seeding rates (45,60 and 75kg/fed.) and four doses of gamma-rays (15, 25,35 and 45(Gy). The effect of interaction between seeding rates and gamma doses on growth characters was not significant whereas there was a tendency for improvement of growth characters by increasing gamma doses up to 45 Gy. Different gamma doses caused marked increase for lintil's yield components except the number of seeds/plant while high seeding rates (60 and 75 Kg/fed) reduced significantly the number of pods/plant and number of seeds/plant. For yield, various gamma doses showed significant increase for seed straw yield as compared to the control. However, seeding rates of 60 and 75 kg/fed increased significantly seed and straw yield as compared with the seeding rate of 45 kg/fed (control)

  16. Medium-dose-rate intracavitary brachytherapy for cervical cancer

    International Nuclear Information System (INIS)

    Tanaka, Eiichi; Isohashi, Fumiaki; Oh, Ryoong-Jin

    2003-01-01

    due to pelvic necrosis without local recurrence 6 years after radiotherapy (Grade 5). Another patient developed perforation of sigmoid colon 9 years after radiotherapy (Grade 4). Minor late complications (Grade 1-2) occurred in 7 patients (9%). MDR-ICRT for cervical cancer can be used as effectively as low-dose-late (LDR) and high-dose-rate (HDR) ICRT. (author)

  17. Assessment of absorbed dose rate from terrestrial gamma radiation in Red Sea State

    International Nuclear Information System (INIS)

    Abdalrahman, H. E. K.

    2012-09-01

    This study is primarily conducted to contribute in the overall strategic objective of producing Sudan radiation map which will include natural radiation levels and the resultant absorbed dose rate in air. The part covered by this study is the Red Sea State. Soil samples were collected from locations lie between latitudes 17.03 ° and the 20.18 ° N and longitudes 36.06 ° E during September 2007. Activity concentrations of the primordial radionuclides, 226 Ra, 232 Th, and 40 K in the samples were measured using gamma-ray spectrometry equipped with Nal (Tl) detector. Absorbed dose rates in air a height of 1 from the ground level and the corresponding annual effective doses were calculated from the measured activities using Dose Rate Conversion Factors (DRCFs). On the average, the activity concentrations were 19.22±13.13 Bq kg -1 ( 232 Th), 17.91±15.44 Bq kg -1 ( 226 Ra) and (507.13±161.67) Bq kg -1 for 40 K. The obtained results were found to be within the global values reported in the UNSCEAR publication for normal background areas with the exception of the samples taken from Arbaat area. The absorbed dose rate in air as calculated using UNSCEAR conversion factor averaged 40.93 n Gy h -1 which corresponds to annual effective dose of 50.23 μSvy -1 . The major contribution to the total absorbed dose rate comes from 40 K, which amounts to 53.36%. Using Geographical Information System (GIS), predication maps for activity concentrations levels of the measured radionuclides in the Red Sea state was prepared to show their respective spatial distributions. Similarly, GIS predictive map was produced for annual effective dose.(Author)

  18. Critical target and dose and dose-rate responses for the induction of chromosomal instability by ionizing radiation

    Science.gov (United States)

    Limoli, C. L.; Corcoran, J. J.; Milligan, J. R.; Ward, J. F.; Morgan, W. F.

    1999-01-01

    To investigate the critical target, dose response and dose-rate response for the induction of chromosomal instability by ionizing radiation, bromodeoxyuridine (BrdU)-substituted and unsubstituted GM10115 cells were exposed to a range of doses (0.1-10 Gy) and different dose rates (0.092-17.45 Gy min(-1)). The status of chromosomal stability was determined by fluorescence in situ hybridization approximately 20 generations after irradiation in clonal populations derived from single progenitor cells surviving acute exposure. Overall, nearly 700 individual clones representing over 140,000 metaphases were analyzed. In cells unsubstituted with BrdU, a dose response was found, where the probability of observing delayed chromosomal instability in any given clone was 3% per gray of X rays. For cells substituted with 25-66% BrdU, however, a dose response was observed only at low doses (1.0 Gy), the incidence of chromosomal instability leveled off. There was an increase in the frequency and complexity of chromosomal instability per unit dose compared to cells unsubstituted with BrdU. The frequency of chromosomal instability appeared to saturate around approximately 30%, an effect which occurred at much lower doses in the presence of BrdU. Changing the gamma-ray dose rate by a factor of 190 (0.092 to 17.45 Gy min(-1)) produced no significant differences in the frequency of chromosomal instability. The enhancement of chromosomal instability promoted by the presence of the BrdU argues that DNA comprises at least one of the critical targets important for the induction of this end point of genomic instability.

  19. Post-operative high dose rate brachytherapy in patients with low to intermediate risk endometrial cancer

    International Nuclear Information System (INIS)

    Pearcey, R.G.; Petereit, D.G.

    2000-01-01

    This paper investigates the outcome using different dose/fractionation schedules in high dose rate (HDR) post-operative vaginal vault radiotherapy in patients with low to intermediate risk endometrial cancer. The world literature was reviewed and thirteen series were analyzed representing 1800 cases. A total of 12 vaginal vault recurrences were identified representing an overall vaginal control rate of 99.3%. A wide range of dose fractionation schedules and techniques have been reported. In order to analyze a dose response relationship for tumor control and complications, the biologically effective doses to the tumor and late responding tissues were calculated using the linear quadratic model. A threshold was identified for complications, but not vaginal control. While dose fractionation schedules that delivered a biologically effective dose to the late responding tissues in excess of 100 Gy 3 (LQED = 60 Gy) predicted for late complications, dose fractionation schedules that delivered a modest dose to the vaginal surface (50 Gy 10 or LQED = 30 Gy) appeared tumoricidal with vaginal control rates of at least 98%. By using convenient, modest dose fractionation schedules, HDR vaginal vault - brachytherapy yields very high local control and extremely low morbidity rates. (author)

  20. Optimization in the nuclear fuel cycle I: Temporal variation of dose rate

    International Nuclear Information System (INIS)

    Pereira, W.S.; Silva, A.X.; Lopes, J.M.; Carmo, A.S.; Fernandes, T.S.; Mello, C.R.; Kelecom, A.

    2017-01-01

    Radioprotection aims to protect man and the environment from the harmful effects of radiation. Radioprotection is based on three fundamental principles: justification, dose limitation and optimization. Optimization is a complementary principle to dose limitation and should be applied in all phases of development, and even in unregulated situations. The aim of this work is to use the exposure rate as a tool to optimize radioprotection. The exposure rate at a nuclear facility was monitored at 15 points for one year and statistical tools for data analysis were proposed as auxiliary tools for the process of optimizing the dose rates measured at the facility. A total of 9,125 exposure-rate measures were performed during 2014. The monthly averages were organized by sampling point and by month of the year. No statistical difference was observed in the monthly variation of the dose rate. Therefore, this variable can not be used in the optimization process in this nuclear installation

  1. Bystander effects of exposure to low-dose-rate 125I seeds on human lung cancers cells in vitro

    International Nuclear Information System (INIS)

    Jia Rongfei; Chen Honghong; Yu Lei; Zhao Meijia; Shao Chunlin; Cheng Wenying

    2007-01-01

    The bystander effects induced by continuous low-dose-rate (LDR) 125 I seeds radiation on damage of human lung cancer cells were investigated. Human adenocarcinoma cell line A549 and human small cell lung cancer cell line NCI-H446, which have different sensitivities to high-dose rate (HDR) external irradiation, were exposed directly to 125 I seeds in vitro and co-cultured with unirradiated cells for 24 h. Using cytokinesis-blocking micronucleus method and γ H2AX fluorescence immunoassay, bystander effects induced by 2Gy and 4Gy 125 I seed irradiation on micronucleus formation and DNA double-strand breaks (DSBs) of human lung cancer cells were detected and evaluated. The results showed that irradiation with 125 I seeds can induce medium-mediated bystander effects in A549 cells and NCI-H446 cells, exhibiting that both micronuclei formation and γ H2AX focus formation in bystander cells were increased significantly compared with non-irradiated cells. The extent of DNA damage induced by bystander effects was correlated with accumulated radiation dose and radiosensitive of tumor cells. NCI-H446 cells that were sensitive to HDR γ irradiation were more sensitive to continuous LDR irradiation and bystander effects than A549. However, a comparison between the bystander effects and direct effects elicits the intensity of bystander responses of A549 cells was higher than that of NCI-H446 cells. A dose-related reduction in bystander responses was observed both in A549 cells and NCI-H446 cells, suggesting that the signaling factors involved in the bystander signaling pathways may decrease with the increase of cell damages. (authors)

  2. Effects of prolonged irradiation by low dose-rate ionizing radiation on the production of growth factors in murine bone marrow cells

    Energy Technology Data Exchange (ETDEWEB)

    Saitou, Mikio; Sirata, Katsutoshi; Yanai, Takanori; Tanaka, Satoshi; Onodera, Junichi; Otsu, Hiroshi; Sato, Fumiaki [Institute for Environmental Sciences, Department of Radiobiology, Rokkasho, Aomori (Japan)

    1999-07-01

    To evaluate effects of prolonged irradiation by low dose-rate ionizing radiation on the production of growth factors of cells, the dose dependency of the expression of cytokines, interleukin-6 (IL-6) and granulocyte-macrophage colony stimulating factor (GM-CSF), of mice is being measured at accumulated doses between 1 and 8 Gy, with the dose interval of 1 Gy. In the present work, specific-pathogen-free (SPF) C3H-HeN female mice were irradiated by {sup 137}Cs {gamma}-rays with the doses of 5-8 Gy at the dose rate of 20 mGy (22 h-day){sup -1}, and the expression of IL-6 and GM-CSF in bone marrow and spleen cells from the mice were measured semiquantitatively by the reverse transcriptase-polymerase chain reaction (RT-PCR) method. (author)

  3. Dose response relationship for unstable-type chromosome aberration rate of spleen cells from mice continuously exposed to low-dose-rate gamma-rays

    International Nuclear Information System (INIS)

    Tanaka, Kimio; Khoda, Atsushi; Ichinohe, Kazuaki; Oghiso, Yoichi

    2007-01-01

    It has been reported that people who are chronically exposed to radiation such as nuclear facility workers and medical radiologists have slightly higher incidences of chromosome aberrations than non-exposed people. However, chronological changes of chromosome aberration rates related to accumulated doses and dose-rates for low dose-rate radiation exposures have not been well studied. Precise analyses of human populations are quite limited because confounding factors influence the results. For this reason, animal experiments are important for analyses. Mice were continuously exposed to gamma-rays at 400 mGy/22 hr/day for 10 days, 20 mGy/22 hr/day for about 400 days, and 1 mGy/22 hr/day for about 615 days under SPF conditions. Chronological changes of unstable-type chromosome aberration rates of spleen cells were observed along with accumulated doses at the middle dose rate and the two low-dose rates by conventional Giemsa-staining method. Aberrations such as dicentric chromosome, ring chromosome and fragment increased in a two-phase manner within 0-1.2 Gy and 2-8 Gy at 20 mGy/22 hr/day. They slightly increased up to 0.5 Gy at 1 mGy/22 hr/day. Aberration rates for 1, 2, 8 Gy at the 20 mGy/22 hr/day and for 0.5 Gy at 1 mGy/22 hr/day were 5.1, 9.6, 13.9 and 2.2 times higher than those of age-matched, non-irradiated control mice, respectively. Chromosome aberration rates at 400 mGy/22 hr/day were 2.7 times higher than that of 20 mGy/22 hr/day for the same total dose of 1.2 Gy. The results that unstable-type chromosome aberrations increased with accumulated dose of the low-dose rate radiation will be important to establish biological dosimetry for people who are chronically exposed to radiation. (author)

  4. Methodology for estimating radiation dose rates to freshwater biota exposed to radionuclides in the environment

    International Nuclear Information System (INIS)

    Blaylock, B.G.; Frank, M.L.; O'Neal, B.R.

    1993-08-01

    The purpose of this report is to present a methodology for evaluating the potential for aquatic biota to incur effects from exposure to chronic low-level radiation in the environment. Aquatic organisms inhabiting an environment contaminated with radioactivity receive external radiation from radionuclides in water, sediment, and from other biota such as vegetation. Aquatic organisms receive internal radiation from radionuclides ingested via food and water and, in some cases, from radionuclides absorbed through the skin and respiratory organs. Dose rate equations, which have been developed previously, are presented for estimating the radiation dose rate to representative aquatic organisms from alpha, beta, and gamma irradiation from external and internal sources. Tables containing parameter values for calculating radiation doses from selected alpha, beta, and gamma emitters are presented in the appendix to facilitate dose rate calculations. The risk of detrimental effects to aquatic biota from radiation exposure is evaluated by comparing the calculated radiation dose rate to biota to the U.S. Department of Energy's (DOE's) recommended dose rate limit of 0.4 mGy h -1 (1 rad d -1 ). A dose rate no greater than 0.4 mGy h -1 to the most sensitive organisms should ensure the protection of populations of aquatic organisms. DOE's recommended dose rate is based on a number of published reviews on the effects of radiation on aquatic organisms that are summarized in the National Council on Radiation Protection and Measurements Report No. 109 (NCRP 1991). DOE recommends that if the results of radiological models or dosimetric measurements indicate that a radiation dose rate of 0. 1 mGy h -1 will be exceeded, then a more detailed evaluation of the potential ecological consequences of radiation exposure to endemic populations should be conducted

  5. Effects on the glucose metabolism in type II diabetes model mice treated with dose-rates irradiation

    International Nuclear Information System (INIS)

    Nomura, Takaharu; Sakai, Kazuo

    2004-01-01

    The effects of low-dose rate gamma-irradiation on the type II diabetes mellitus were investigated in C57BL/KsJ-ab/db (db mouse). This mouse develops the type II diabetes within 8 weeks of the birth due to a dysfunction of the insulin receptors. As a result the db mouse shows obese and exhibits hyperinsulinism. Ten-week old female mice (12 mice in each group) were irradiated with gamma-rays at 0.35 mGy/hr, 0.65 mGy/hr or 1.2 mGy/hr in the low-dose rate irradiation facility in the Low Dose Radiation Research Center. The level of plasma glucose and insulin was measured. After 2 weeks irradiation, the glucose level slightly increased, however the difference between the irradiated mice and non-irradiated groups was not significant. The plasma insulin concentration decreased in the non-irradiated group to half of the initial level. In the irradiated group, it also decreased but in the group of 0.65 mGy/hr and 0.35 mGy/hr, it was significantly differed from that in the non-irradiated group. In the glucose tolerance test, plasma glucose level increased shortly after 0.1 mg/head glucose injection by mouth and reached to a peak at 90-120 min after the injection. The glucose level of the non-irradiated mice was slightly higher than that of irradiated mice. The plasma insulin level of non-irradiated group was enhanced after the injection and maintained the level during the test. However the levels of irradiated mice were decreased at 30-60 min after the injection. Both the level of non-irradiated an irradiated was almost same but the non-irradiated one was a little high. In all of mice, the plasma insulin level was highly elevated right after the 0.05 units/head insulin injection by i.p. and the levels were also gradually decreased. The level of the non-irradiated group was slowly decreased and was higher than the irradiated mice. The plasma glucose levels of all mice did not change after the test; however, the levels of irradiated mice were slightly lower than that of non

  6. Inhibition of gamma-ray dose-rate effects by D2O and inhibitors of poly(ADP-ribose) synthetase in cultured mammalian L5178Y cells

    International Nuclear Information System (INIS)

    Ueno, A.M.; Tanaka, O.; Matsudaira, H.

    1984-01-01

    Effects of deuterium oxide (D 2 O) and 3-aminobenzamide, an inhibitor of poly(ADP-ribose) synthetase, on cell proliferation and survival were studied in cultured mammalian L5178Y cells under growing conditions and after acute and low-dose-rate irradiation at about 0.1 to 0.4 Gy/hr of γ rays. Growth of irradiated and unirradiated cells was inhibited by 45% D 2 O but not by 3-aminobenzamide at 10mM, except for treatments longer than 30 hr. The presence of these agents either alone or in combination during irradiation at low dose rates suppressed almost totally the decrease in cell killing due to the decrease in dose rate. Among other inhibitors tested, theobromine and theophylline were found to be effective in eliminating the dose-rate effects of γ rays. Possible mechanisms underlying the inhibition are discussed

  7. Baseline studies of terrestrial outdoor gamma dose rate levels in Nigeria

    International Nuclear Information System (INIS)

    Farai, I.P.; Jibiri, N.N.

    2000-01-01

    The outdoor γ radiation exposure dose rates due to the radioactivity concentration of 40 K, 238 U and 232 Th in the soil across different environments in Nigeria have been carried out using the low-cost method of in situ γ ray spectrometry. Measurements were made in 18 cities, spread across the three major zones of the country. The radioactivity concentrations of these radionuclides in the soil were used to determine their γ radiation absorbed dose rates in the air. The range of average total dose rate due to the three radionuclides in the Eastern zone is between 0.025 and 0.081 μGy.h -1 with an average of 0.040 ± 0.006 μGy.h -1 , 0.041 and 0.214 μGy.h -1 with a mean of 0.089 ± 0.014 μGy.h -1 for the Western zone and between 0.066 and 0.222 μGy.h -1 with a mean of 0.102 ± 0.032 μGy.h -1 for the Northern zone. The average annual outdoor effective dose equivalents of 51 ± 8 μSv.y -1 , 114 ± 18 μSv.y -1 and 130 ± 41 μSv.y -1 have been estimated for the Eastern, Western and Northern zones, respectively. The average annual effective dose equivalent for the country has been estimated to be 98 ± 15 μSv.y -1 and the collective effective dose equivalent as 9.7 x 103 man.Sv.y -1 . Measurements have been taken as representing the baseline values of natural radioactivity as no artificial radionuclide was detected at any of the sites surveyed. (author)

  8. Retrospective Dosimetric Comparison of Low-Dose-Rate and Pulsed-Dose-Rate Intracavitary Brachytherapy Using a Tandem and Mini-Ovoids

    International Nuclear Information System (INIS)

    Mourtada, Firas; Gifford, Kent A.; Berner, Paula A.; Horton, John L.; Price, Michael J.; Lawyer, Ann A.; Eifel, Patricia J.

    2007-01-01

    The purpose of this study was to compare the dose distribution of Iridium-192 ( 192 Ir) pulsed-dose-rate (PDR) brachytherapy to that of Cesium-137 ( 137 Cs) low-dose-rate (LDR) brachytherapy around mini-ovoids and an intrauterine tandem. Ten patient treatment plans were selected from our clinical database, all of which used mini-ovoids and an intrauterine tandem. A commercial treatment planning system using AAPM TG43 formalism was used to calculate the dose in water for both the 137 Cs and 192 Ir sources. For equivalent system loadings, we compared the dose distributions in relevant clinical planes, points A and B, and to the ICRU bladder and rectal reference points. The mean PDR doses to points A and B were 3% ± 1% and 6% ± 1% higher than the LDR doses, respectively. For the rectum point, the PDR dose was 4% ± 3% lower than the LDR dose, mainly because of the 192 Ir PDR source anisotropy. For the bladder point, the PDR dose was 1% ± 4% higher than the LDR dose. We conclude that the PDR and LDR dose distributions are equivalent for intracavitary brachytherapy with a tandem and mini-ovoids. These findings will aid in the transfer from the current practice of LDR intracavitary brachytherapy to PDR for the treatment of gynecologic cancers

  9. Dose-rate effects of protons on in vivo activation of nuclear factor-kappa B and cytokines in mouse bone marrow cells

    Energy Technology Data Exchange (ETDEWEB)

    Rithidech, K.N.; Rusek, A.; Reungpatthanaphong, P.; Honikel, L.; Simon, S.R.

    2010-05-28

    The objective of this study was to determine the kinetics of nuclear factor-kappa B (NF-{kappa}B) activation and cytokine expression in bone marrow (BM) cells of exposed mice as a function of the dose rate of protons. The cytokines included in this study are pro-inflammatory [i.e., tumor necrosis factor-alpha (TNF-{alpha}), interleukin-1beta (IL-1{beta}), and IL-6] and anti-inflammatory cytokines (i.e., IL-4 and IL-10). We gave male BALB/cJ mice a whole-body exposure to 0 (sham-controls) or 1.0 Gy of 100 MeV protons, delivered at 5 or 10 mGy min{sup -1}, the dose and dose rates found during solar particle events in space. As a reference radiation, groups of mice were exposed to 0 (sham-controls) or 1 Gy of {sup 137}Cs {gamma} rays (10 mGy min{sup -1}). After irradiation, BM cells were collected at 1.5, 3, 24 h, and 1 month for analyses (five mice per treatment group per harvest time). The results indicated that the in vivo time course of effects induced by a single dose of 1 Gy of 100 MeV protons or {sup 137}Cs {gamma} rays, delivered at 10 mGy min{sup -1}, was similar. Although statistically significant levels of NF-{kappa}B activation and pro-inflammatory cytokines in BM cells of exposed mice when compared to those in the corresponding sham controls (Student's t-test, p < 0.05 or < 0.01) were induced by either dose rate, these levels varied over time for each protein. Further, only a dose rate of 5 mGy min{sup -1} induced significant levels of anti-inflammatory cytokines. The results indicate dose-rate effects of protons.

  10. High and low dose-rate brachytherapy for cervical carcinoma

    International Nuclear Information System (INIS)

    Orton, C.G.

    1998-01-01

    For the brachytherapy component of the r[iation treatment of cervical carcinoma, high dose rate (HDR) is slowly replacing conventional low dose rate (LDR) due primarily to r[iation safety and other physical benefits attributed to the HDR modality. Many r[iation oncologists are reluctant to make this change because of perceived r[iobiological dis[vantages of HDR. However, in clinical practice HDR appears to be as effective as LDR but with a lower risk of late complications, as demonstrated by one randomized clinical trial and two comprehensive literature and practice surveys. The reason for this appears to be that the r[iobiological dis[vantages of HDR are outweighed by the physical [vantages. (orig.)

  11. Beta induced Bremsstrahlung dose rate in concrete shielding

    International Nuclear Information System (INIS)

    Manjunatha, H.C.

    2013-01-01

    Dosimetric study of beta-induced Bremsstrahlung in concrete is importance in the field of radiation protection. The efficiency, intensity and dose rate of beta induced Bremsstrahlung by 113 pure beta nuclides in concrete shielding is computed. The Bremsstrahlung dosimetric parameters such as the efficiency (yield), Intensity and dose rate of Bremsstrahlung are low for 199 Au and high for 104 Tc in concrete. The efficiency, Intensity and dose rate of Bremsstrahlung increases with maximum energy of beta nuclide (Emax) and modified atomic number (Zmod) of the target. The estimated Bremsstrahlung efficiency, Intensity and dose rate are useful in the calculations photon track-length distributions. These parameters are useful to determine the quality and quantity of the radiation (known as the source term). Precise estimation of this source term is very important in planning of radiation shielding. (author)

  12. Biological effects of α-radiation exposure by 241Am in Arabidopsis thaliana seedlings are determined both by dose rate and 241Am distribution

    International Nuclear Information System (INIS)

    Biermans, Geert; Horemans, Nele; Vanhoudt, Nathalie; Vandenhove, Hildegarde; Saenen, Eline; Van Hees, May; Wannijn, Jean; Vangronsveld, Jaco; Cuypers, Ann

    2015-01-01

    Human activity has led to an increasing amount of radionuclides in the environment and subsequently to an increased risk of exposure of the biosphere to ionising radiation. Due to their high linear energy transfer, α-emitters form a threat to biota when absorbed or integrated in living tissue. Among these, 241 Am is of major concern due to high affinity for organic matter and high specific activity. This study examines the dose-dependent biological effects of α-radiation delivered by 241 Am at the morphological, physiological and molecular level in 14-day old seedlings of Arabidopsis thaliana after hydroponic exposure for 4 or 7 days. Our results show that 241 Am has high transfer to the roots but low translocation to the shoots. In the roots, we observed a transcriptional response of reactive oxygen species scavenging and DNA repair pathways. At the physiological and morphological level this resulted in a response which evolved from redox balance control and stable biomass at low dose rates to growth reduction, reduced transfer and redox balance decline at higher dose rates. This situation was also reflected in the shoots where, despite the absence of a transcriptional response, the control of photosynthesis performance and redox balance declined with increasing dose rate. The data further suggest that the effects in both organs were initiated in the roots, where the highest dose rates occurred, ultimately affecting photosynthesis performance and carbon assimilation. Though further detailed study of nutrient balance and 241 Am localisation is necessary, it is clear that radionuclide uptake and distribution is a major parameter in the global exposure effects on plant performance and health. - Highlights: • Arabidopsis thaliana was exposed hydroponically to a range of 241 Am concentrations. • Effects at molecular, morphological and physiological level were observed. • Effects were dependent on both dose rate and 241 Am distribution.

  13. The status of low dose rate and future of high dose rate Cf-252 brachytherapy

    International Nuclear Information System (INIS)

    Rivard, M.J.; Wierzbicki, J.G.; Van den Heuvel, F.; Chuba, P.J.; Fontanesi, J.

    1997-12-01

    This work describes the current status of the US low dose rate (LDR) Cf-252 brachytherapy program. The efforts undertaken towards development of a high dose rate (HDR) remotely after loaded Cf-252 source, which can accommodate 1 mg or greater Cf-252, are also described. This HDR effort is a collaboration between Oak Ridge National Laboratory (ORNL), commercial remote after loader manufactures, the Gershenson Radiation Oncology Center (ROC), and Wayne State University. To achieve this goal, several advances in isotope chemistry and source preparation at ORNL must be achieved to yield a specific material source loading of greater than or equal 1 mg Cf-252 per mm3. Development work with both radioactive and non-radioactive stand-ins for Cf-252 have indicated the feasibility of fabricating such sources. As a result, the decreased catheter diameter and computer controlled source placement will permit additional sites (e.g. brain, breast, prostate, lung, parotid, etc.) to be treated effectively with Cf-252 sources. Additional work at the Radiochemical Engineering and Development Center (REDC) remains in source fabrication, after loader modification, and safe design. The current LDR Cf-252 Treatment Suite at the ROC is shielded and licensed to hold up to 1 mg of Cf-252. This was designed to maintain cumulative personnel exposure, both external to the room and in direct isotope handling, at less than 20 microSv/hr. However, cumulative exposure may be greatly decreased if a Cf-252 HDR unit is employed which would eliminate direct isotope handling and decrease treatment times from tilde 3 hours to an expected range of 3 to 15 minutes. Such a Cf-252 HDR source will also demonstrate improved dose distributions over current LDR treatments due to the ability to step the point-like source throughout the target volume and weight the dwell time accordingly

  14. Dose rate analysis for Tank 101 AZ (Project W151)

    International Nuclear Information System (INIS)

    Schwarz, R.A.; Hillesland, K.E.; Carter, L.L.

    1994-11-01

    This document describes the expected dose rates for modification to tank 101 AZ including modifications to the steam coil, mixer pump, and temperature probes. The thrust of the effort is to determine dose rates from: modification of a steam coil and caisson; the installation of mixer pumps; the installation of temperature probes; and estimates of dose rates that will be encountered while making these changes. Because the dose rates for all of these configurations depend upon the photon source within the supernate and sludge, comparisons were also made between measured dose rates within a drywell and the corresponding calculated dose rates. The calculational tool used is a Monte Carlo (MCNP 2 ) code since complicated three dimensional geometries are involved. A summary of the most important results of the entire study is given in Section 2. The basic calculational geometry model of the tank is discussed in Section 3, along with a tabulation of the photon sources that were used within the supernate and the sludge, and a discussion of uncertainties. The calculated dose rates around the steam coil and caisson before and after modification are discussed in Section 4. The configuration for the installation of the mixer pumps and the resulting dose rates are given in Section 5. The predicted changes in dose rates due to a possible dilution of the supernate source are given in Section 6. The calculational configuration used to model the installation of temperature probes and the resulting predicted dose rates are discussed in Section 7. Finally, comparisons of measured to calculated dose rates within a drywell are summarized in Section 8. Extended discussions of calculational models and Monte Carlo optimization techniques used are included in Appendix A

  15. Low-dose-rate high-let radiation cytogenetic effects on mice in vivo as model of space radiation action on mammalian

    Science.gov (United States)

    Sorokina, Svetlana; Zaichkina, Svetlana; Rozanova, Olga; Aptikaeva, Gella; Romanchenko, Sergei; Smirnova, Helene; Dyukina, Alsu; Peleshko, Vladimir

    At present time little is known concerning the biological effects of low-dose-rate high-LET radiation exposure in space. The currently available experimental data on the biological effect of low doses of chronic radiation with high-LET values, which occur under the conditions of aircraft and space flights, have been primarily obtained in the examinations of pilots and astronauts after flights. Another way of obtaining this kind of evidence is the simulation of irradiation conditions during aircraft and space flights on high-energy accelerators and the conduction of large-scale experiments on animals under these conditions on Earth. In the present work, we investigated the cytogenetic effects of low-dose-rate high-LET radiation in the dose ranges of 0.2-30 cGy (1 cGy/day) and 0.5-16 cGy (0.43 cGy/day) in the radiation field behind the concrete shield of the Serpukhov accelerator of 70 GeV protons that simulates the spectral and component composition of radiation fields formed in the conditions of high-altitude flights on SHK mice in vivo. The dose dependence, adaptive response (AR) and the growth of solid tumor were examined. For induction of AR, two groups of mice were exposed to adapting doses of 0.2-30 cGy and the doses of 0.5-16 cGy of high-LET radiation. For comparison, third group of mice from unirradiated males was chronically irradiated with X-rays at adapting doses of 10 cGy (1 cGy/day). After a day, the mice of all groups were exposed to a challenging dose of 1.5 Gy of X-rays (1 Gy/min). After 28 h, the animals of all groups were killed by the method of cervical dislocation. Bone marrow specimens for calculating micronuclei (MN) in polychromatic erythrocytes (PCE) were prepared by a conventional method with minor modifications. The influence of adapting dose of 16 cGy on the growth of solid tumor of Ehrlich ascite carcinoma was estimated by measuring the size of the tumor at different times after the inoculation of ascitic cells s.c. into the femur. It was

  16. Effects of low doses; Effet des faibles doses

    Energy Technology Data Exchange (ETDEWEB)

    Le Guen, B. [Electricite de France (EDF-LAM-SCAST), 93 - Saint-Denis (France)

    2001-07-01

    Actually, even though it is comfortable for the risk management, the hypothesis of the dose-effect relationship linearity is not confirmed for any model. In particular, in the area of low dose rate delivered by low let emitters. this hypothesis is debated at the light of recent observations, notably these ones relative to the mechanisms leading to genetic instability and induction eventuality of DNA repair. The problem of strong let emitters is still to solve. (N.C.)

  17. Health effects of low doses at low dose rates: dose-response relationship modeling in a cohort of workers of the nuclear industry; Effets sanitaires des faibles doses a faibles debits de dose: modelisation de la relation dose-reponse dans une cohorte de travailleurs du nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Metz-Flamant, Camille

    2011-09-19

    The aim of this thesis is to contribute to a better understanding of the health effects of chronic external low doses of ionising radiation. This work is based on the French cohort of CEA-AREVA NC nuclear workers. The mains stages of this thesis were (1) conducting a review of epidemiological studies on nuclear workers, (2) completing the database and performing a descriptive analysis of the cohort, (3) quantifying risk by different statistical methods and (4) modelling the exposure-time-risk relationship. The cohort includes monitored workers employed more than one year between 1950 and 1994 at CEA or AREVA NC companies. Individual annual external exposure, history of work, vital status and causes of death were reconstructed for each worker. Standardized mortality ratios using French national mortality rates as external reference were computed. Exposure-risk analysis was conducted in the cohort using the linear excess relative risk model, based on both Poisson regression and Cox model. Time dependent modifying factors were investigated by adding an interaction term in the model or by using exposure time windows. The cohort includes 36, 769 workers, followed-up until age 60 in average. During the 1968- 2004 period, 5, 443 deaths, 2, 213 cancers, 62 leukemia and 1, 314 cardiovascular diseases were recorded. Among the 57% exposed workers, the mean cumulative dose was 21.5 milli-sieverts (mSv). A strong Healthy Worker Effect is observed in the cohort. Significant elevated risks of pleura cancer and melanoma deaths were observed in the cohort but not associated with dose. No significant association was observed with solid cancers, lung cancer and cardiovascular diseases. A significant dose-response relationship was observed for leukemia excluding chronic lymphatic leukemia, mainly for doses received less than 15 years before and for yearly dose rates higher than 10 mSv. This PhD work contributes to the evaluation of risks associated to chronic external radiation

  18. Optimized dose distribution of a high dose rate vaginal cylinder

    International Nuclear Information System (INIS)

    Li Zuofeng; Liu, Chihray; Palta, Jatinder R.

    1998-01-01

    Purpose: To present a comparison of optimized dose distributions for a set of high-dose-rate (HDR) vaginal cylinders calculated by a commercial treatment-planning system with benchmark calculations using Monte-Carlo-calculated dosimetry data. Methods and Materials: Optimized dose distributions using both an isotropic and an anisotropic dose calculation model were obtained for a set of HDR vaginal cylinders. Mathematical optimization techniques available in the computer treatment-planning system were used to calculate dwell times and positions. These dose distributions were compared with benchmark calculations with TG43 formalism and using Monte-Carlo-calculated data. The same dwell times and positions were used for a quantitative comparison of dose calculated with three dose models. Results: The isotropic dose calculation model can result in discrepancies as high as 50%. The anisotropic dose calculation model compared better with benchmark calculations. The differences were more significant at the apex of the vaginal cylinder, which is typically used as the prescription point. Conclusion: Dose calculation models available in a computer treatment-planning system must be evaluated carefully to ensure their correct application. It should also be noted that when optimized dose distribution at a distance from the cylinder surface is calculated using an accurate dose calculation model, the vaginal mucosa dose becomes significantly higher, and therefore should be carefully monitored

  19. Airborne and total gamma absorbed dose rates at Patiala - India

    International Nuclear Information System (INIS)

    Tesfaye, Tilahun; Sahota, H.S.; Singh, K.

    1999-01-01

    The external gamma absorbed dose rate due to gamma rays originating from gamma emitting aerosols in air, is compared with the total external gamma absorbed dose rate at the Physics Department of Punjabi University, Patiala. It has been found out that the contribution, to the total external gamma absorbed dose rate, of radionuclides on particulate matter suspended in air is about 20% of the overall gamma absorbed dose rate. (author)

  20. Conversion Factors for Predicting Unshielded Dose Rates in Shielded Waste

    International Nuclear Information System (INIS)

    Clapham, M.; Seamans Jr, J.V.; Arbon, R.E.

    2009-01-01

    This document describes the methodology developed and used by the Advanced Mixed Waste Treatment Project for determining the activity content and the unshielded surface dose rate for lead lined containers contaminated with transuranic waste. Several methods were investigated: - Direct measurement of the dose rate after removing the shielding. - Use of a MicroShield R derived dose conversion factor, (mRem/hr unshielded )/(mRem/hr shielded ), applied to the measured surface dose rate to estimate the unshielded surface dose rate. - Use of a MicroShield R derived activity conversion factor, mRem/hr unshielded /Ci, applied to the measured activity to estimate the unshielded dose rate. - Use of an empirically derived activity conversion factor, mRem/hr unshielded /Ci, applied to the measured activity to estimate the unshielded dose rate. The last approach proved to be the most efficacious by using a combination of nondestructive assay and empirically defined dose rate conversion factors. Empirically derived conversion factors were found to be highly dependent upon the matrix of the waste. Use of conversion factors relied on activity values corrected to address the presence of a lead liner. (authors)

  1. Physics and quality assurance for brachytherapy - Part II: Low dose rate and pulsed dose rate

    International Nuclear Information System (INIS)

    Williamson, Jeffrey F.

    1997-01-01

    Purpose: A number of recent developments have revitalized brachytherapy including remote afterloading, implant optimization, increasing use of 3D imaging, and advances in dose specification and basic dosimetry. However, the core physical principles underlying the classical methods of dose calculation and arrangement of multiple sources remain unchanged. The purpose of this course is to review these principles and their applications to low dose-rate interstitial and intracavitary brachytherapy. Emphasis will be placed upon the classical implant systems along with classical and modern methods of dose specification. The level of presentation is designed for radiation oncology residents and beginning clinical physicists. A. Basic Principles (1) Radium-substitute vs. low-energy sealed sources (2) Dose calculation principles (3) The mysteries of source strength specification revealed: mgRaEq, mCi and air-kerma strength B. Interstitial Brachytherapy (1) Target volume, implanted volume, dose specification in implants and implant optimization criteria (2) Classical implant systems: Manchester Quimby and Paris a) Application of the Manchester system to modern brachytherapy b) Comparison of classical systems (3) Permanent interstitial implants a) Photon energy and half life b) Dose specification and pre-operative planning (4) The alphabet soup of dose specification: MCD (mean central dose), minimum dose, MPD (matched peripheral dose), MPD' (minimum peripheral dose) and DVH (dose-volume histogram) quality indices C. Intracavitary Brachytherapy for Carcinoma of the Cervix (1) Basic principles a) Manchester System: historical foundation of U.S. practice patterns b) Principles of applicator design (2) Dose specification and treatment prescription a) mg-hrs, reference points, ICRU Report 38 reference volume -- Point A dose vs mg-hrs and IRAK (Integrated Reference Air Kerma) -- Tissue volume treated vs mg-hrs and IRAK b) Practical methods of treatment specification and prescription

  2. Physics and quality assurance for brachytherapy - Part II: Low dose rate and pulsed dose rate

    International Nuclear Information System (INIS)

    Williamson, Jeffrey F.

    1996-01-01

    Purpose: A number of recent developments have revitalized brachytherapy including remote afterloading, implant optimization, increasing use of 3D imaging, and advances in dose specification and basic dosimetry. However, the core physical principles underlying the classical methods of dose calculation and arrangement of multiple sources remain unchanged. The purpose of this course is to review these principles and their applications to low dose-rate interstitial and intracavitary brachytherapy. Emphasis will be placed upon the classical implant systems along with classical and modern methods of dose specification. The level of presentation is designed for radiation oncology residents and beginning clinical physicists. A. Basic Principles (1) Radium-substitute vs. low-energy sealed sources (2) Dose calculation principles (3) The mysteries of source strength specification revealed: mgRaEq, mCi and air-kerma strength B. Interstitial Brachytherapy (1) Target volume, implanted volume, dose specification in implants and implant optimization criteria (2) Classical implant systems: Manchester Quimby and Paris a) Application of the Manchester system to modern brachytherapy b) Comparison of classical systems (3) Permanent interstitial implants a) Photon energy and half life b) Dose specification and pre-operative planning (4) The alphabet soup of dose specification: MCD (mean central dose), minimum dose, MPD (matched peripheral dose), MPD' (minimum peripheral dose) and DVH (dose-volume histogram) quality indices C. Intracavitary Brachytherapy for Carcinoma of the Cervix (1) Basic principles a) Manchester System: historical foundation of U.S. practice patterns b) Principles of applicator design (2) Dose specification and treatment prescription a) mg-hrs, reference points, ICRU Report 38 reference volume --Point A dose vs mg-hrs and IRAK (Integrated Reference Air Kerma) --Tissue volume treated vs mg-hrs and IRAK b) Practical methods of treatment specification and prescription

  3. An energy-independent dose rate meter for beta and gamma radiation

    International Nuclear Information System (INIS)

    Heinzelmann, M.; Keller, M.

    1986-01-01

    An easy to handle dose rate meter has been developed at the Juelich Nuclear Research Centre with a small probe for the energy-independent determination of the dose rate in mixed radiation fields. The dose rate meter contains a small ionisation chamber with a volume of 15.5 cm 3 . The window of the ionisation chamber consists of an aluminised plastic foil of 7 mg.cm -2 . The dose rate meter is suitable for determining the dose rate in skin. With a supplementary depth dose cap, the dose rate can be determined in tissue at a depth of 1 cm. The dose rate meter is energy-independent within +-20% for 147 Pm, 204 Tl and 90 Sr/ 90 Y beta radiation and for gamma radiation in the energy range above 35 keV. (author)

  4. An algorithm to evaluate solar irradiance and effective dose rates using spectral UV irradiance at four selected wavelengths

    International Nuclear Information System (INIS)

    Anav, A.; Rafanelli, C.; Di Menno, I.; Di Menno, M.

    2004-01-01

    The paper shows a semi-analytical method for environmental and dosimetric applications to evaluate, in clear sky conditions, the solar irradiance and the effective dose rates for some action spectra using only four spectral irradiance values at selected wavelengths in the UV-B and UV-A regions (305, 320, 340 and 380 nm). The method, named WL4UV, is based on the reconstruction of an approximated spectral irradiance that can be integrated, to obtain the solar irradiance, or convoluted with an action spectrum to obtain an effective dose rate. The parameters required in the algorithm are deduced from archived solar spectral irradiance data. This database contains measurements carried out by some Brewer spectrophotometers located in various geographical positions, at similar altitudes, with very different environmental characteristics: Rome (Italy), Ny Aalesund (Svalbard Islands (Norway)) and Ushuaia (Tierra del Fuego (Argentina)). To evaluate the precision of the method, a double test was performed with data not used in developing the model. Archived Brewer measurement data, in clear sky conditions, from Rome and from the National Science Foundation UV data set in San Diego (CA, USA) and Ushuaia, where SUV 100 spectro-radiometers operate, were drawn randomly. The comparison of measured and computed irradiance has a relative deviation of about ±2%. The effective dose rates for action spectra of Erythema, DNA and non-Melanoma skin cancer have a relative deviation of less than ∼20% for solar zenith angles <50 deg.. (authors)

  5. Assessment of a new p-Mosfet usable as a dose rate insensitive gamma dose sensor

    International Nuclear Information System (INIS)

    Vettese, F.; Donichak, C.; Bourgeault, P.

    1995-01-01

    Dosimetric response of unbiased MOS devices has been assessed at dose rates greater than 2000 cGy/h. Application have been made to a personal dosemeter / dose rate meter to measure the absorbed tissue dose received in the case of acute external irradiation. (D.L.)

  6. In situ measurements of dose rates from terrestrial gamma rays

    International Nuclear Information System (INIS)

    Horng, M.C.; Jiang, S.H.

    2002-01-01

    A portable, high purity germanium (HPGe) detector was employed for the performance of in situ measurements of radionuclide activity concentrations in the ground in Taiwan, at altitudes ranging from sea level to 3900 m. The absolute peak efficiency of the HPGe detector for a gamma-ray source uniformly distributed in the semi-infinite ground was determined using a semi-empirical method. The gamma-ray dose rates from terrestrial radionuclides were calculated from the measured activity levels using recently published dose rate conversion factors. The absorbed dose rate in air due to cosmic rays was derived by subtracting the terrestrial gamma-ray dose rate from the overall absorbed dose rate in air measured using a high-pressure ionization chamber. The cosmic-ray dose rate calculated as a function of altitude, was found to be in good agreement with the data reported by UNSCEAR. (orig.)

  7. Dose Rate Effect on Grafting by Gamma Radiation of DMAEMA onto Flexible PVC

    International Nuclear Information System (INIS)

    Panzarini, L.C.G.A.; Araujo, F.D.C.; Martinello, V.C.; Somesari, E.; Manzoli, J.E.; Silveira, C.; Paes, H.A.; Moura, E.

    2009-01-01

    Intravenous tubing, blood bags and catheters stays in contact with blood and body fluids. They are normally made by flexible PVC. The contact of PVC with this fluid is not possible for long periods and there is the necessity of addition of non-thrombogenic substances into blood. This work shows the radiation grafting process to produce copolymer PVC-g-DMAEMA, a new material that allows a future grafting of Heparin on it, and will have the perspective of avoiding undesirable substances additions to blood or body fluid contact. In this preliminary work, only radiation dose rate effect on grafting was studied

  8. Endorectal high dose rate brachytherapy quality assurance

    International Nuclear Information System (INIS)

    Devic, S.; Vuong, T.; Evans, M.; Podgorsak, E.

    2008-01-01

    We describe our quality assurance method for preoperative high dose rate (HDR) brachytherapy of endorectal tumours. Reproduction of the treatment planning dose distribution on a daily basis is crucial for treatment success. Due to the cylindrical symmetry, two types of adjustments are necessary: applicator rotation and dose distribution shift along the applicator axis. (author)

  9. Effects of prolonged irradiation by low dose-rate ionizing radiation on the production of growth factors in murine bone marrow cells

    Energy Technology Data Exchange (ETDEWEB)

    Saitou, Mikio; Yamada, Yutaka; Shirata, Katsutoshi; Yanai, Takanori; Izumi, Jun; Tanaka, Satoshi; Onodera, Jun' ichi; Otsu, Hiroshi; Sato, Fumiaki [Institute for Environmental Sciences, Rokkasho, Aomori (Japan)

    2000-07-01

    To evaluate effects of prolonged irradiation by low dose-rate ionizing radiation on the production of growth factors of cells, the expression of cytokines, interleukin-6 (IL-6) and granulocyte-macrophage colony stimulating factor (GM-CSF), of mice is being measured at accumulated doses between 1 and 8 Gy, with the dose interval of 1 Gy. In the present work, ten specific-pathogen-free (SPF) C3H/HeN female mice per experimental group were irradiated with {sup 137}Cs {gamma}-rays with the doses of 1-4 Gy at the dose rate of 20 mGy/(22 h-day), and the expression of IL-6 and GM-CSF in bone marrow and spleen cells from the mice was measured semiquantitatively by the reverse transcriptase-polymerase chain reaction (RT-PCR) method. (author)

  10. Effects of prolonged irradiation by low dose-rate ionizing radiation on the production of growth factors in murine bone marrow cells

    International Nuclear Information System (INIS)

    Saitou, Mikio; Yamada, Yutaka; Shirata, Katsutoshi; Yanai, Takanori; Izumi, Jun; Tanaka, Satoshi; Onodera, Jun'ichi; Otsu, Hiroshi; Sato, Fumiaki

    2000-01-01

    To evaluate effects of prolonged irradiation by low dose-rate ionizing radiation on the production of growth factors of cells, the expression of cytokines, interleukin-6 (IL-6) and granulocyte-macrophage colony stimulating factor (GM-CSF), of mice is being measured at accumulated doses between 1 and 8 Gy, with the dose interval of 1 Gy. In the present work, ten specific-pathogen-free (SPF) C3H/HeN female mice per experimental group were irradiated with 137 Cs γ-rays with the doses of 1-4 Gy at the dose rate of 20 mGy/(22 h-day), and the expression of IL-6 and GM-CSF in bone marrow and spleen cells from the mice was measured semiquantitatively by the reverse transcriptase-polymerase chain reaction (RT-PCR) method. (author)

  11. Radiation dose rates from commercial PWR and BWR spent fuel elements

    International Nuclear Information System (INIS)

    Willingham, C.E.

    1981-10-01

    Data on measurements of gamma dose rates from commercial reactor spent fuel were collected, and documented calculated gamma dose rates were reviewed. As part of this study, the gamma dose rate from spent fuel was estimated, using computational techniques similar to previous investigations into this problem. Comparison of the measured and calculated dose rates provided a recommended dose rate in air versus distance curve for PWR spent fuel

  12. Dose rate of restroon in facilities using radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Gwi [Dept. of uclear Medicine, Inha University hospital, Incheon (Korea, Republic of); An, Seong Min [Dept. of Radiology, Gachon University, Incheon (Korea, Republic of)

    2016-06-15

    This study is therefore aimed at measuring the surface dose rate and the spatial dose rate in and outside the radionuclide facility in order to ensure safety of the patients, radiation workers and family care-givers in their use of such equipment and to provide a basic framework for further research on radiation protection. The study was conducted at 4 restrooms in and outside the radionuclide facility of a general hospital in Incheon between May 1 and July 31, 2014. During the study period, the spatial contamination dose rate and the surface contamination dose rate before and after radiation use were measured at the 4 places−thyroid therapy room, PET center, gamma camera room, and outpatient department. According to the restroom use survey by hospitals, restrooms in the radionuclide facility were used not only by patients but also by family care-givers and some of radiation workers. The highest cumulative spatial radiation dose rate was 8.86 mSv/hr at camera room restroom, followed by 7.31 mSv/hr at radioactive iodine therapy room restroom, 2.29 mSv/hr at PET center restroom, and 0.26 mSv/hr at outpatient department restroom, respectively. The surface radiation dose rate measured before and after radiation use was the highest at toilets, which are in direct contact with patient's excretion, followed by the center and the entrance of restrooms. Unsealed radioactive sources used in nuclear medicine are relatively safe due to short half lives and low energy. A patient who received those radioactive sources, however, may become a mobile radioactive source and contaminate areas the patient contacts−camera room, sedation room, and restroom−through secretion and excretion. Therefore, patients administered radionuclides should be advised to drink sufficient amounts of water to efficiently minimize radiation exposure to others by reducing the biological half-life, and members of the public−family care-givers, pregnant women, and children−be as far away from

  13. Decontamination evaluation based on radioactivity measurement instead of air dose rate

    International Nuclear Information System (INIS)

    Shozugawa, Katsumi

    2013-01-01

    Air dose rate at 1 m above the ground comes from gamma radiations emitted from vast area ranging over several ten meters of the contaminated field from the counter. After showing the actual example of the difference between air dose rate data and Cs 137 distribution map made by using a shielded NaI-scintillation counter within and around a contaminated sinkhole (a ditch or trench) near Fukushima Daiichi Nuclear Power Plants, the author proposes to make a decontamination program according to the radioactivity distribution measurement instead of air dose rate measurement. Furthermore, he explains some problems arising from a point and plane radiation source, and also difficulties accompanied by movement of Cs 137 atoms in the soils according to the absorption characteristics of the existing minerals but these are also important to consider for performing an effective decontamination. (S. Ohno)

  14. Mapping the outdoor gamma dose rate in Indonesia

    International Nuclear Information System (INIS)

    Iskandar, Dadong; Syarbaini, Sutarman; Bunawas, Kusdiana

    2008-01-01

    Full text: Indonesia is the largest archipelago in the world, comprising five main islands - Java, Sumatra, Sulawesi, Kalimantan and Papua - as well as 30 archipelagoes totaling 17,508 islands with about 6000 of those inhabited. Mapping the outdoor gamma dose rate in Indonesia is a research project conducted by National Nuclear Energy Agency since 2005 aiming to produce a baseline data map as an overview for planning purposes. In these three years 4 main islands has been measured. The grid system has been used in the research. In Sumatra Island the grid is 50 x 50 km 2 , while in Java 40 x 40 km 2 , in Kalimantan 60 x 60 km 2 , and in Sulawesi 40 x 40 km 2 . The gamma dose rates have been measured by Mini Gamma Ray Spectrometer Model GR-130 made by Exploranium-Canada. Figure 1 shows the map of outdoor gamma dose rate in Indonesia. Range of dose rate are in Sumatra from 22,96 ± 0,46 n Sv/h to 186,08 ± 3,72 n Sv/h, in Java 11,32 ± 0,72 n Sv/h to 127,54 ± 6,14 n Sv/h, in Kalimantan 10.72 ± 8.32 n Sv/h to 349,48 ± 57,21 n Sv/h, and in Sulawesi 17.7 ± 11,5 n Sv/h to 467 ± 102 n Sv/h. The arithmetic and geometric mean of dose rate in Indonesia are 68 n Sv/h and 53 n Sv/h, respectively. In general, outdoor gamma dose rate in Indonesia is in a normal range. There are some regions have anomaly of gamma dose rate, for examples at North Sumatra 186.08 ± 3,72 n Sv/h (N 2.12727, E 99.80909), at West Kalimantan 349,48 ± 57,21 n Sv/h (S 1.39507, E 110.57584), at West Sulawesi 487 ± 103 n Sv/h (S 2.95781, E 118.86995), etc. These data is very useful as a radiation baseline in Indonesia. (author)

  15. Standardization of high-dose measurement of electron and gamma ray absorbed doses and dose rates

    International Nuclear Information System (INIS)

    McLaughlin, W.L.

    1985-01-01

    Intense electron beams and gamma radiation fields are used for sterilizing medical devices, treating municipal wastes, processing industrial goods, controlling parasites and pathogens, and extending the shelf-life of foods. Quality control of such radiation processes depends largely on maintaining measurement quality assurance through sound dosimetry procedures in the research leading to each process, in the commissioning of that process, and in the routine dose monitoring practices. This affords documentation as to whether satisfactory dose uniformity is maintained throughout the product and throughout the process. Therefore, dosimetry at high doses and dose rates must in many radiation processes be standardized carefully, so that 'dosimetry release' of a product is verified. This standardization is initiated through preliminary dosimetry intercomparison studies such as those sponsored recently by the IAEA. This is followed by establishing periodic exercises in traceability to national or international standards of absorbed dose and dose rate. Traceability is achieved by careful selection of dosimetry methods and proven reference dosimeters capable of giving sufficiently accurate and precise 'transfer' dose assessments: (1) they must be calibrated or have well-established radiation-yield indices; (2) their radiation response characteristics must be reproducible and cover the dose range of interest; (3) they must withstand the rigours of back-and-forth mailing between a central standardizing laboratory and radiation processing facilities, without excessive errors arising due to instabilities, dosimeter batch non-uniformities, and environmental and handling stresses. (author)

  16. Estimation of the transit dose component in high dose rate brachytherapy

    International Nuclear Information System (INIS)

    Garcia Romero, A.; Millan Cebrian, E.; Lozano Flores, F.J.; Lope Lope, R.; Canellas Anoz, M.

    2001-01-01

    Current high dose rate brachytherapy (HDR) treatment planning systems usually calculate dose only from source stopping positions (stationary component), but fails to account for the administered dose when the source is moving (dynamic component or transit dose). Numerical values of this transit dose depends upon the source velocity, implant geometry, source activity and prescribed dose. In some HDR treatments using particular geometry the transit dose cannot be ignored because it increases the dose at the prescriptions points and also could increase potential late tissue complications as predicted by the linear quadratic model. International protocols recommend to verify this parameter. The aim of this paper has been to establish a procedure for the transit dose calculation for the Gammamed 12i equipment at the RT Department in the Clinical University Hospital (Zaragoza-Spain). A numeric algorithm was implemented based on a dynamic point approximation for the moving HDR source and the calculated results for the entrance-exit transit dose was compared with TLD measurements made in some discrete points. (author) [es

  17. Effect of different radiation dose rates on refrigerated mechanically deboned chicken meat

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Poliana de Paula; Gomes, Heliana de Azevedo; Fukuma, Henrique Takuji [Comissao Nacional de Energia Nuclear (CNEN), Pocos de Caldas, MG (Brazil). Coordenacao de Laboratorios de Pocos de Caldas (COLAB)]. E-mail: polibrito@yahoo.com.br; hgomes@cnen.gov.br; htfukuma@cnen.gov.br

    2005-07-01

    Samples of mechanically deboned chicken meat (MDCM) were irradiated while frozen with doses of 0.0 kGy, 3.0 kGy - 4.04 kGy.h{sup -1} and 3.0 kGy - 0.32 kGy.h{sup -1}. Individual lots of irradiated and non irradiated samples were evaluated for Substances Reactive to Thiobarbituric Acid (TBARS) and total count of psychotropic bacteria, while in refrigerated storage (2 {+-}1 deg C), for 11 days. The values for percentage of recovery for 1,1,3,3-tetraetoxipropane (TEP) and for conversion of the K value for samples irradiated with 3.0 kGy - 4.35 kGy.h{sup -1} and 3.0 kGy - 0.3 kGy.h{sup -1} and samples non irradiated were, respectively: 80.3 %, 70.3 % and 80.4 % and 9.1, 11.2 and 9.1. The results showed that there was not a difference for the TBARS values when irradiated and non irradiated samples were compared up to the forth day of refrigerated storage. Between the seventh and eleventh day of storage the TBARS values increased gradually when values obtained for non irradiated and those samples irradiated with doses of 3.0 kGy - 0.3 kGy.h{sup -1} and 3.0 kGy - 4.35 kGy.h{sup -1} were compared. The average values for psychotropic bacteria obtained for samples non irradiated and those irradiated with doses of 3.0 kGy - 0.32 kGy.h{sup -1} and 3.0 kGy - 4.04 kGy.h{sup -1}, during the second and eleventh day of frozen storage were respectively 6.68 log (UFC.g{sup -1}), 2.87 log (UFC.g{sup -1}) and 2.66 log (UFC.g{sup -1}). When both variables were evaluated, it was verified that samples irradiated with a dose rate of 0.32 kGy.{sup -1} presented the smallest values of TBARS than those samples irradiated with a dose rate of 4.04 kGy.h{sup -1}, from the seventh day of refrigerated storage and bacterial count within the legal limits allowed by the regulation, being considered the best dosage rate for processing MDCM, in the conditions of the present study. (author)

  18. Electron dose rate and photon contamination in electron arc therapy

    International Nuclear Information System (INIS)

    Pla, M.; Podgorsak, E.B.; Pla, C.

    1989-01-01

    The electron dose rate at the depth of dose maximum dmax and the photon contamination are discussed as a function of several parameters of the rotational electron beam. A pseudoarc technique with an angular increment of 10 degrees and a constant number of monitor units per each stationary electron field was used in our experiments. The electron dose rate is defined as the electron dose at a given point in phantom divided by the number of monitor units given for any one stationary electron beam. For a given depth of isocenter di the electron dose rates at dmax are linearly dependent on the nominal field width w, while for a given w the dose rates are inversely proportional to di. The dose rates for rotational electron beams with different di are related through the inverse square law provided that the two beams have (di,w) combinations which give the same characteristic angle beta. The photon dose at the isocenter depends on the arc angle alpha, field width w, and isocenter depth di. For constant w and di the photon dose at isocenter is proportional to alpha, for constant alpha and w it is proportional to di, and for constant alpha and di it is inversely proportional to w. The w and di dependence implies that for the same alpha the photon dose at the isocenter is inversely proportional to the electron dose rate at dmax

  19. Risk of radiation-induced cancer at low doses and low dose rates for radiation protection purposes

    International Nuclear Information System (INIS)

    1995-01-01

    The aim of this report is to provide an updated, comprehensive review of the data available for assessing the risk of radiation-induced cancer for radiation protection purposes. Particular emphasis is placed on assessing risks at low doses and low dose rates. The review brings together the results of epidemiological investigations and fundamental studies on the molecular and cellular mechanisms involved in radiation damage. Additionally, this information is supplemented by studies with experimental animals which provide further guidance on the form of the dose-response relationship for cancer induction, as well as on the effect of dose rate on the tumour yield. The emphasis of the report is on cancer induction resulting from exposure to radiations with a low linear energy transfer (LET). The work was performed under contract for the Institut de Protection et de Surete Nucleaire, Fontenay-aux-Roses, Paris, France, whose agreement to publish is gratefully ackowledged. It extends the advice on radiation risks given in Documents of the NRPB, 4 No. 4 (1993). (Author)

  20. Terrestrial gamma radiation dose rates and radiological mapping of Terengganu state, Malaysia

    International Nuclear Information System (INIS)

    Garba, N.N.

    2015-01-01

    Measurement of terrestrial gamma radiation dose (TGRD) rates in Terengganu state, Malaysia was carried out from 145 different locations using NaI[Tl] micro roentgen survey meter. The measured TGRD rates ranged from 35 to 340 nGy h -1 with mean value of 150 nGy h -1 . The annual effective dose to population was found to be 0.92 mSv y -1 . The data obtained were used in constructing the gamma isodose map using ArcGis 9.3 which shows the distribution of TGRD rates across the state. (author)

  1. Determination of indoor radon concentration levels and the associated annual effective dose rate in some Ghanaian dwellings

    International Nuclear Information System (INIS)

    Nsiah-Akoto, I.

    2010-01-01

    Radon and its decay products in indoor air are the main source of natural internal irradiation of man. In this present work, the indoor radon concentration, the annual exposure, the annual effective dose and the annual dose equivalent to the lung received by the population were estimated in the dwellings at Dome in the Ga-East District of the Greater Accra Region, Ghana using time-integrated passive radon detectors; LR-115 Type II solid state nuclear track detector (SSNTD) technique. The primary objective of this project was to assess the annual effective dose rate due to the indoor radon concentration levels and the associated level of risk. Measurements were carried out from December 2009 to March 2010. After the 3 months exposure, the detectors were subjected to chemical etching in a 2.5M analytical grade sodium hydroxide solution at (60 ±1) o C, for 90mins in a constant temperature water bath to enlarge the latent tracks produced by alpha particles from the decay of radon. The etched tracks were magnified using the microfiche reader and counted with a tally counter. The mean indoor radon concentration was found to be (466.9±1.2) Bqm -3 and the mean annual exposure was (2.03±0.08) WLM. Assuming an indoor occupancy factor of 0.4 and 0.4 for equilibrium factor for radon indoors, we found out that the mean Rn-222 effective dose rate and the annual equivalent dose rate to the lung in the present study dwellings was (14.13±0.22)mSvy -1 and (3.74 E-07 ±3.50 E-06)Svy -1 respectively. The mean values of radon concentrations at Dome, Kwabenya, Biakpa, and South-Eastern part of Ghana, Prestea and Kassena-Nakana District in the previous research ranged from (9.4±0.5) to (518.7±4.0) Bqm -3 . The mean annual exposure, annual effective dose rate and the annual equivalent for the previous work ranged from (0.04±0.03)WLM to (0.58±0.05)WLM, (0.28±0.08) to (15.54±0.69mSvy -1 ), (8.23E-12±4.33E-07) to (4.15E-07± 1.13E-04) respectively. Odds ratios (ORs) for lung

  2. Braquiterapia de alta taxa de dose no Brasil High-dose rate brachytherapy in Brazil

    Directory of Open Access Journals (Sweden)

    Sérgio Carlos Barros Esteves

    2004-10-01

    Full Text Available A braquiterapia de alta taxa de dose foi introduzida em nosso meio em janeiro de 1991. Desde então, houve uma mudança significativa na abordagem das neoplasias malignas em relação às vantagens do novo método, e também resolução da demanda reprimida de braquiterapia para as neoplasias ginecológicas. Nos primeiros dez anos de atividade, o Brasil tratou, em 31 serviços, 26.436 pacientes com braquiterapia, sendo mais de 50% das pacientes portadoras de neoplasias do colo uterino. Este estudo mostra o número e o perfil de pacientes tratados com esse método e a sua distribuição no território nacional, deixando explícito o benefício da braquiterapia de alta taxa de dose para o Brasil.High-dose rate brachytherapy was first introduced in Brazil in January 1991. Significant changes in the management of malignant neoplasms were observed since utilization of high-dose rate brachytherapy. The high number of gynecological patients awaiting for brachytherapy also decreased during this period. In the first ten years 26,436 patients were treated with high-dose rate brachytherapy. More than 50% of these patients presented neoplasms of the uterine cervix. In this study we present the number and profile of the patients treated with high-dose rate brachytherapy as well as the distribution of these patients in the Brazilian territory, proving the benefit of the use of high-dose rate brachytherapy in Brazil.

  3. Life span and tumorigenesis in mice exposed to continuous low dose-rate gamma-rays

    International Nuclear Information System (INIS)

    Tanaka, Satoshi; Braga-Tanaka III, Ignacia; Takabatake, Takashi; Ichinohe, Kazuaki; Tanaka, Kimio; Matsumoto, Tsuneya; Sato, Fumiaki

    2004-01-01

    Two experiments were conducted to evaluate late biological effects of chronic low dose-rate radiation. 1: Late effects of chronic low dose-rate gamma-ray irradiation on SPF mice, using life span and pathological changes as parameters. Continuous irradiation for approximately 400 days was performed using 137 Cs gamma-rays at dose-rates of 20 mGy/day, 1 mGy/day and 0.05 mGy/day with accumulated doses equivalent to 8000 mGy, 400 mGy and 20 mGy, respectively. All mice were kept until their natural death. Statistical analyses show that the life spans of the both sexes irradiated at 20 mGy/day (p<0.0001) and of females irradiated at 1 mGy/day (p<0.05) were significantly shorter than those of the control group. There was no evidence of lengthened life span in mice continuously exposed to very low dose-rates of gama-rays. Pathodological examinations showed that the most frequently observed lethal neoplasms in males were malignant lymphomas, liver, lung, and soft tissue neoplasms, whereas, in females, malignant lymphomas and soft tissue neoplasms were common. No significant difference in the causes of death and mortality rates between groups. Hematopoietic neoplasms (malignant lymphoma and myeloid leukemia), liver, lung and soft tissue neoplasms, showed a tendency to appear at a younger age in both sexes irradiated at 20 mGy/day. Experiment 2: effects on the progeny of chronic low dose-rate gamma-ray irradiated SPF mice: preliminary study. No significant difference was observed between non-irradiated group and irradiated group with regards to litter size, sex ratio and causes of death in F1 and F2 mice. (author)

  4. Terrestrial Gamma Radiation Dose Rate of West Sarawak

    Science.gov (United States)

    Izham, A.; Ramli, A. T.; Saridan Wan Hassan, W. M.; Idris, H. N.; Basri, N. A.

    2017-10-01

    A study of terrestrial gamma radiation (TGR) dose rate was conducted in west of Sarawak, covering Kuching, Samarahan, Serian, Sri Aman, and Betong divisions to construct a baseline TGR dose rate level data of the areas. The total area covered was 20,259.2 km2, where in-situ measurements of TGR dose rate were taken using NaI(Tl) scintillation detector Ludlum 19 micro R meter NaI(Tl) approximately 1 meter above ground level. Twenty-nine soil samples were taken across the 5 divisions covering 26 pairings of 9 geological formations and 7 soil types. A hyperpure Germanium detector was then used to find the samples' 238U, 232Th, and 40K radionuclides concentrations producing a correction factor Cf = 0.544. A total of239 measured data were corrected with Cf resulting in a mean Dm of 47 ± 1 nGy h-1, with a range between 5 nGy h-1 - 103 nGy h-1. A multiple regression analysis was conducted between geological means and soil types means against the corrected TGR dose rate Dm, generating Dg,s= 0.847Dg+ 0.637Ds- 22.313 prediction model with a normalized Beta equation of Dg,s= 0.605Dg+ 0.395Ds. The model has an 84.6% acceptance of Whitney- Mann test null hypothesis when tested against the corrected TGR dose rates.

  5. Effects of low doses

    International Nuclear Information System (INIS)

    Le Guen, B.

    2001-01-01

    Actually, even though it is comfortable for the risk management, the hypothesis of the dose-effect relationship linearity is not confirmed for any model. In particular, in the area of low dose rate delivered by low let emitters. this hypothesis is debated at the light of recent observations, notably these ones relative to the mechanisms leading to genetic instability and induction eventuality of DNA repair. The problem of strong let emitters is still to solve. (N.C.)

  6. Inhibition of gamma-ray dose-rate effects by D/sup 2/O and inhibitors of poly(ADP-ribose) synthetase in cultured mammalian L5178Y cells

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, A.M.; Tanaka, O.; Matsudaira, H.

    1984-06-01

    Effects of deuterium oxide (D/sub 2/O) and 3-aminobenzamide, an inhibitor of poly(ADP-ribose) synthetase, on cell proliferation and survival were studied in cultured mammalian L5178Y cells under growing conditions and after acute and low-dose-rate irradiation at about 0.1 to 0.4 Gy/hr of ..gamma.. rays. Growth of irradiated and unirradiated cells was inhibited by 45% D/sub 2/O but not by 3-aminobenzamide at 10mM, except for treatments longer than 30 hr. The presence of these agents either alone or in combination during irradiation at low dose rates suppressed almost totally the decrease in cell killing due to the decrease in dose rate. Among other inhibitors tested, theobromine and theophylline were found to be effective in eliminating the dose-rate effects of ..gamma.. rays. Possible mechanisms underlying the inhibition are discussed.

  7. Radiation dose rates from adult patients undergoing nuclear medicine investigations

    International Nuclear Information System (INIS)

    Mountford, P.J.; O'Doherty, M.J.; Forge, N.I.; Jeffries, A.; Coakley, A.J.

    1991-01-01

    Adult patients undergoing nuclear medicine investigations may subsequently come into close contact with members of the public and hospital staff. In order to expand the available dosimetry and derive appropriate recommendations, dose rates were measured at 0.1, 0.5 and 1.0 m from 80 adult patients just before they left the nuclear medicine department after undergoing one of eight 99 Tc m studies, an 123 I thyroid, an 111 In leucocyte or a 201 Tl cardiac scan. The maximum departure dose rates at these distances of 150, 30 and 7.3 μSv h -1 were greater than those found in similar published studies of adult and paediatric patients. To limit the dose to an infant to less than 1 mSv, an 111 In leucocyte scan is the only investigation for which it may be necessary to restrict close contact between the infant and a radioactive parent, depending on the dose rate near the surface of the patient, the parent's habits and how fretful is the infant. It is unlikely that a ward nurse will receive a dose of 60 μSv in a working day if caring for just one radioactive adult patient, unless the patient is classified as totally helpless and had undergone a 99 Tc m marrow, bone or brain scan. The data and revised calculations of effective exposure times based on a total close contact time of 9 h in every 24 h period should allow worst case estimates of radiation dose to be made and recommendations to be formulated for other circumstances, including any future legislative changes in dose limits or derived levels. (author)

  8. Beta particle dose rates to micro-organisms in soil

    International Nuclear Information System (INIS)

    Kabir, M.; Spiers, F.W.; Iinuma, Takeshi.

    1977-01-01

    Studies were made to estimate the beta-particle dose rates to micro-organisms of various sizes in soil. The small insects and organisms living in soil are constantly exposed to beta-radiation arising from naturally occuring radionuclides in soil as in this case no overlying tissue shields them. The technique of measuring beta-particle dose rate consisted of using of a thin plastic scintillator to measure the pulse height distribution as the beta particle traverses the scintillator. The integrated response was determined by the number and size of the photomultiplier pulses. From the data of soil analyses it was estimated that typically about 29% of the beta particles emitted per gm. of soil were contributed by the U/Ra series, 21% by the Th series and about 50% by potassium. By combining the individual spectra of these three radionuclides in the proportion found in a typical soil, a resultant spectrum was computed representing the energy distribution of the beta particles. The dose rate received by micro-organisms of different shape and size in soil was derived from the equilibrium dose rates combined with a 'Geometrical Factor' of the organisms. For small organisms, the dose rates did not vary between the spherical and cylindrical types, but in the case of larger organisms, the dose rates were found to be greater for the spherical types of the same diameter. (auth.)

  9. Fractionation in medium dose rate brachytherapy of cancer of the cervix

    International Nuclear Information System (INIS)

    Leborgne, Felix; Fowler, Jack F.; Leborgne, Jose H.; Zubizarreta, Eduardo; Chappell, Rick

    1996-01-01

    Purpose: To establish an optimum fractionation for medium dose rate (MDR) brachytherapy from retrospective data of patients treated with different MDR schedules in comparison with a low dose rate (LDR) schedule. Methods and Materials: The study population consists of consecutive Stage IB-IIA-IIB patients who received radiotherapy alone with full dose brachytherapy plus external beam pelvic and parametrial irradiation from 1986-1993. Patients also receiving surgery or chemotherapy were excluded. The LDR group (n = 102, median follow-up: 80 months) received a median dose to Point A of two 32.5 Gy fractions at 0.44 Gy/h plus 18 Gy of external whole pelvic irradiation. The MDR1 group (n = 30, median follow-up: 45 months) received a mean dose of two 32 Gy fractions at 1.68 Gy/h. An individual dose reduction of 12.5% was planned for this group according to the Manchester experience, but only a 4.8% dose reduction was achieved. The MDR2 group (n = 10, median follow-up: 36 months) received a dose of two 24 Gy fractions at 1.65 Gy/h. The MDR3 group (n = 10, median follow-up 33 months) received a mean dose of three 15.3 Gy fractions at 1.64 Gy/h. And finally, the MDR4 group (n = 38, median follow-up: 24 months) received six 7.7 Gy fractions from two pulses 6 h apart in each of three insertions at 1.61 Gy/h. The median external pelvic dose to MDR schedules was between 12 and 20 Gy. The linear quadratic (LQ) formula was used to calculate the biologically effective dose (BED) to tumor (Gy 10 ) and rectum (Gy 3 ), assuming T(1(2)) for repair = 1.5 h. Results: The crude central recurrence rate was 6% for LDR (mean BED = 95.4 Gy 10 ) and 10% for MDR4 (mean BED = 77.0 Gy 10 ) (p = NS). The remaining MDR groups had no recurrences. Grade 2 and 3 rectal or bladder complications were 0% for LDR (rectal BED = 109 Gy 3 ), 83% for MDR1 (BED = 206 Gy 3 ), and 30% for MDR3 (BED = 127 Gy 3 ). The MDR2 and MDR4 groups presented no complications (BED, 123 Gy 3 , and 105 Gy 3 , respectively

  10. Comparison of traditional low-dose-rate to optimized and nonoptimized high-dose-rate tandem and ovoid dosimetry

    International Nuclear Information System (INIS)

    Decker, William E.; Erickson, Beth; Albano, Katherine; Gillin, Michael

    2001-01-01

    Purpose: Few dose specification guidelines exist when attempting to perform high-dose-rate (HDR) dosimetry. The purpose of this study was to model low-dose-rate (LDR) dosimetry, using parameters common in HDR dosimetry, to achieve the 'pear-shape' dose distribution achieved with LDR tandem and ovoid applications. Methods and Materials: Radiographs of Fletcher-Suit LDR applicators and Nucletron 'Fletcher-like' HDR applicators were taken with the applicators in an idealized geometry. Traditional Fletcher loadings of 3M Cs-137 sources and the Theratronics Planning System were used for LDR dosimetry. HDR dosimetry was performed using the Nucletron Microselectron HDR UPS V11.22 with an Ir-192 source. Dose optimization points were initially located along a line 2 cm lateral to the tandem, beginning at the tandem tip at 0.5-cm intervals, ending at the sail, and optimized to 100% of the point A dose. A single dose optimization point was also placed laterally from the center of each ovoid equal to the radius of the ovoid (ovoid surface dose). For purposes of comparison, dose was also calculated for points A and B, and a point located 1 cm superior to the tandem tip in the plane of the tandem, (point F). Four- and 6-cm tandem lengths and 2.0-, 2.5-, and 3.0-cm ovoid diameters were used for this study. Based on initial findings, dose optimization schemes were developed to best approximate LDR dosimetry. Finally, radiographs were obtained of HDR applications in two patients. These radiographs were used to compare the optimization schemes with 'nonoptimized' treatment plans. Results: Calculated doses for points A and B were similar for LDR, optimized HDR, and nonoptimized HDR. The optimization scheme that used tapered dose points at the tandem tip and optimized a single ovoid surface point on each ovoid to 170% of point A resulted in a good approximation of LDR dosimetry. Nonoptimized HDR resulted in higher doses at point F, the bladder, and at points lateral to the tandem tip

  11. Contributions to indoor gamma dose rate from building materials

    International Nuclear Information System (INIS)

    Liu Xionghua; Li Guangming; Yang Xiangdong

    1990-01-01

    In the coures of construction of a building structured with bricks and concrets, the indoor gamma air absorbed dose rates were seperately measured from the floors, brick walls and prefabricated plates of concrets, etc.. It suggested that the indoor gamma dose rates from building materials are mainly attributed to the brick walls and the floors. A little contribution comes from other brilding materials. The dose rates can be calculated through a 4π-infinite thick model with a correction factor of 0.52

  12. Effect of different ionizing radiation doses and dose rates, using Cobalt-60 and electrons beam sources, on the staphylococcal enterotoxin inoculated in mechanically deboned chicken meat

    International Nuclear Information System (INIS)

    Pomarico Neto, Walter; Brito, Poliana de Paula; Azevedo, Heliana de; Roque, Claudio Vitor; Fukuma, Henrique Takuji; Kodama, Yasko; Miya, Norma Terugo Nago; Pereira, Jose Luiz

    2011-01-01

    The purpose of food irradiation is the destruction of present pathogenic microorganisms and the increase of shelf life of foods. To achieve this process, the source of cobalt-60 and the electron accelerator can be used. The mechanically deboned chicken meat (MDCM) is used for the production of traditional meat products, and it may come to present pathogenic microorganisms such as staphylococcus aureus, a bacterium that produces enterotoxin, which causes food poisoning. The objective of this study is to analyze the effect of ionizing irradiation with different doses and dose rates, deriving from different radiation sources, on staphylococcal enterotoxin type B (SEB) in the MDCM. 50 g samples of MDCM were prepared in a batch of 6 kg of MDCM. The samples were contaminated, with the exception of the control, with SEB in amounts of about 100 ng. Then they were conditioned in a transparent bag made of low density polyethylene, frozen at -18±1 deg C overnight and irradiated in these conditions with doses of 0.0 kGy (control), 1.5 kGy and 3.0 kGy, and with three different dose rates, both in the Cobalt-60 and the electron accelerator. The experiments were conducted in quintuplicate. The SEB extraction from the MDCM was performed according to the protocol recommended by the manufacturer of the kit VIDAS Staph Enterotoxin II (bioMerrieux). The principle of mass balance was used to determine the actual amount of SEB removed by irradiation. The treatment that presented the best results was the one with a dose of 1.5 kGy, high dose rate of the electron accelerator. (author)

  13. Effect of different ionizing radiation doses and dose rates, using Cobalt-60 and electrons beam sources, on the staphylococcal enterotoxin inoculated in mechanically deboned chicken meat

    Energy Technology Data Exchange (ETDEWEB)

    Pomarico Neto, Walter; Brito, Poliana de Paula; Azevedo, Heliana de; Roque, Claudio Vitor; Fukuma, Henrique Takuji, E-mail: pbrito@cnen.gov.br, E-mail: hazevedo@cnen.gov.br, E-mail: cvroque@cnen.gov.br, E-mail: htfukuma@cnen.gov.br [Brazilian Nuclear Energy Commission (LAPOC/CNEN), Pocos de Caldas, MG (Brazil); Kodama, Yasko, E-mail: ykodama@ipen.br [Nuclear and Energy Research Institute (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Miya, Norma Terugo Nago; Pereira, Jose Luiz, E-mail: miya@fea.unicamp.br, E-mail: pereira@fea.unicamp.br [Campinas State University (UNICAMP), SP (Brazil). Dept. of Food Sciences

    2011-07-01

    The purpose of food irradiation is the destruction of present pathogenic microorganisms and the increase of shelf life of foods. To achieve this process, the source of cobalt-60 and the electron accelerator can be used. The mechanically deboned chicken meat (MDCM) is used for the production of traditional meat products, and it may come to present pathogenic microorganisms such as staphylococcus aureus, a bacterium that produces enterotoxin, which causes food poisoning. The objective of this study is to analyze the effect of ionizing irradiation with different doses and dose rates, deriving from different radiation sources, on staphylococcal enterotoxin type B (SEB) in the MDCM. 50 g samples of MDCM were prepared in a batch of 6 kg of MDCM. The samples were contaminated, with the exception of the control, with SEB in amounts of about 100 ng. Then they were conditioned in a transparent bag made of low density polyethylene, frozen at -18{+-}1 deg C overnight and irradiated in these conditions with doses of 0.0 kGy (control), 1.5 kGy and 3.0 kGy, and with three different dose rates, both in the Cobalt-60 and the electron accelerator. The experiments were conducted in quintuplicate. The SEB extraction from the MDCM was performed according to the protocol recommended by the manufacturer of the kit VIDAS Staph Enterotoxin II (bioMerrieux). The principle of mass balance was used to determine the actual amount of SEB removed by irradiation. The treatment that presented the best results was the one with a dose of 1.5 kGy, high dose rate of the electron accelerator. (author)

  14. The study of hemopoietic cells. Effect of prolonged irradiation by low dose rate radiation on the hemopoiesis in the spleen of mice

    Energy Technology Data Exchange (ETDEWEB)

    Shirata, Katsutoshi; Yanai, Takanori; Yamada, Yutaka; Saitou, Mikio; Izumi, Jun; Tanaka, Satoshi; Otsu, Hiroshi; Sato, Fumiaki [Inst. for Environmental Sciences, Dept. of Radiobiology, Rokkasho, Aomori (Japan)

    2001-07-01

    For evaluation of effects of prolonged irradiation by low dose-rate ionizing radiation on the hemopoiesis of mice, SPF C3H/HeN female mice were irradiated with {sup 137}Cs {gamma}-rays with doses of 5-8 Gy at the dose rate of 20 mGy/22h-day. After irradiation, the number of hemopoietic cells contained in spleen was determined by the methods of CFU-S and CFU-GM assays, and the number of peripheral blood cells was counted. It was shown that the number of hemopoietic cells (CFU-S colonies and CFU-GM colonies) decreased as dose increased. No remarkable changes in the number of peripheral blood cells, however, were observed. (author)

  15. Dose and dose rate extrapolation factors for malignant and non-malignant health endpoints after exposure to gamma and neutron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Van; Little, Mark P. [National Cancer Institute, Radiation Epidemiology Branch, Rockville, MD (United States)

    2017-11-15

    Murine experiments were conducted at the JANUS reactor in Argonne National Laboratory from 1970 to 1992 to study the effect of acute and protracted radiation dose from gamma rays and fission neutron whole body exposure. The present study reports the reanalysis of the JANUS data on 36,718 mice, of which 16,973 mice were irradiated with neutrons, 13,638 were irradiated with gamma rays, and 6107 were controls. Mice were mostly Mus musculus, but one experiment used Peromyscus leucopus. For both types of radiation exposure, a Cox proportional hazards model was used, using age as timescale, and stratifying on sex and experiment. The optimal model was one with linear and quadratic terms in cumulative lagged dose, with adjustments to both linear and quadratic dose terms for low-dose rate irradiation (<5 mGy/h) and with adjustments to the dose for age at exposure and sex. After gamma ray exposure there is significant non-linearity (generally with upward curvature) for all tumours, lymphoreticular, respiratory, connective tissue and gastrointestinal tumours, also for all non-tumour, other non-tumour, non-malignant pulmonary and non-malignant renal diseases (p < 0.001). Associated with this the low-dose extrapolation factor, measuring the overestimation in low-dose risk resulting from linear extrapolation is significantly elevated for lymphoreticular tumours 1.16 (95% CI 1.06, 1.31), elevated also for a number of non-malignant endpoints, specifically all non-tumour diseases, 1.63 (95% CI 1.43, 2.00), non-malignant pulmonary disease, 1.70 (95% CI 1.17, 2.76) and other non-tumour diseases, 1.47 (95% CI 1.29, 1.82). However, for a rather larger group of malignant endpoints the low-dose extrapolation factor is significantly less than 1 (implying downward curvature), with central estimates generally ranging from 0.2 to 0.8, in particular for tumours of the respiratory system, vasculature, ovary, kidney/urinary bladder and testis. For neutron exposure most endpoints, malignant and

  16. Application of accelerated evaluation method of alteration temperature and constant dose rate irradiation on bipolar linear regulator LM317

    International Nuclear Information System (INIS)

    Deng Wei; Wu Xue; Wang Xin; Zhang Jinxin; Zhang Xiaofu; Zheng Qiwen; Ma Wuying; Lu Wu; Guo Qi; He Chengfa

    2014-01-01

    With different irradiation methods including high dose rate irradiation, low dose rate irradiation, alteration temperature and constant dose rate irradiation, and US military standard constant high temperature and constant dose rate irradiation, the ionizing radiation responses of bipolar linear regulator LM317 from three different companies were investigated under the operating and zero biases. The results show that compared with constant high temperature and constant dose rate irradiation method, the alteration temperature and constant dose rate irradiation method can not only very rapidly and accurately evaluate the dose rate effect of three bipolar linear regulators, but also well simulate the damage of low dose rate irradiation. Experiment results make the alteration temperature and constant dose rate irradiation method successfully apply to bipolar linear regulator. (authors)

  17. Dose rate calculations for a reconnaissance vehicle

    International Nuclear Information System (INIS)

    Grindrod, L.; Mackey, J.; Salmon, M.; Smith, C.; Wall, S.

    2005-01-01

    A Chemical Nuclear Reconnaissance System (CNRS) has been developed by the British Ministry of Defence to make chemical and radiation measurements on contaminated terrain using appropriate sensors and recording equipment installed in a land rover. A research programme is under way to develop and validate a predictive capability to calculate the build-up of contamination on the vehicle, radiation detector performance and dose rates to the occupants of the vehicle. This paper describes the geometric model of the vehicle and the methodology used for calculations of detector response. Calculated dose rates obtained using the MCBEND Monte Carlo radiation transport computer code in adjoint mode are presented. These address the transient response of the detectors as the vehicle passes through a contaminated area. Calculated dose rates were found to agree with the measured data to be within the experimental uncertainties, thus giving confidence in the shielding model of the vehicle and its application to other scenarios. (authors)

  18. Study on the evaluation method of radiation dose rate around spent fuel shipping casks

    International Nuclear Information System (INIS)

    Yamakoshi, Hisao

    1986-01-01

    This study aims at developing a simple calculation method which can evaluate radiation dose rate around casks with high accuracy in a short time. The method is based on a concept of the radiation shielding characteristics of cask walls. The concept was introduced to replace for ordinary radiation shielding calculation which requires a long calculation time and a large memory capacity of a computer in the matrix calculation. For the purpose of verifying the accuracy and reliability of the new method, it was applied to the analysis of the dose rate distribution around actual casks, which had been measured. The results of the analysis revealed that the newly proposed method was excellent for the forecast of radiation dose rate distribution around casks in view of the accuracy and calculation time. The short calculation time and high accuracy by the proposed method were attained by dividing the whole procedure of ordinary fine radiation shielding calculation into the calculation of radiation dose rate on a cask surface by the matrix expression of the characteristic function and the calculation of dose rate distribution using the simple analytical expression of dose rate distribution around casks. The effect of the heterogeneous array of spent fuel in different burnup state on dose rate distribution around casks was evaluated by this method. (Kako, I.)

  19. Nuclear Enterprises portable dose rate meter type PDR 2

    International Nuclear Information System (INIS)

    Burgess, P.H.; Iles, W.J.

    1978-06-01

    This instrument is a portable battery powered dose rate meter covering the dose rate range from 0.05 to 500 mrad h -1 . It is designed to measure X- and γ-radiation dose rates over the energy range from 35 keV to 3 MeV. The radiation detector is an MX 164/S GM tube provided with a compensation sheath. The report describes the instrument under the headings: facilities and controls; radiation characteristics; electrical characteristics; environmental characteristics; mechanical characteristics; the manual; summary of performance. (U.K.)

  20. Absorbed dose to mice in prolonged irradiation by low-dose rate ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shiragai, Akihiro [National Inst. of Radiological Sciences, Chiba (Japan); Saitou, Mikio; Kudo, Iwao [and others

    2000-07-01

    In this paper, the dose absorbed by mice was evaluated as a preliminary study of the late effects of prolonged continuous irradiation of mice with low-dose rate ionizing radiation. Eight-week-old male and female SPF C3H/HeN mice in three irradiation rooms were exposed to irradiation at 8000, 400, and 20 mGy, respectively, using a {sup 137}Cs {gamma}-source. Nine racks were arranged in a circle approximately 2.5 m from the source in each room, and 10 cages were arranged on the 4 shelves of each rack. Dose distributions, such as in air at the source level, in the three rooms were estimated by using ionization chambers, and the absorbed dose distributions in the room and relative dose distributions in the cages in relation to the distance of the cage center were examined. The mean abdomen doses of the mice measured by TLD were compared with the absorbed doses in the cages. The absorbed dose distributions showed not only inverse-inverse-square-law behavior with distance from the source, but geometric symmetry in every room. The inherent scattering and absorption in each room are responsible for such behavior and asymmetry. Comparison of relative dose distributions revealed cage positions that are not suitable for experiments with high precision doses, but all positions can be used for prolonged continuous irradiation experiments if the position of the cages is rotated regularly. The mean abdomen doses of the mice were similar in each cage. The mean abdomen doses of the mice and the absorbed doses in a cage were almost the same in all cages. Except for errors concerning the positions of the racks and cages, the uncertainties in the exposure doses were estimated to be about {+-}12% for 8000 mGy group, 17% for 400 mGy group, and 35% for 20 mGy group. (K.H.)

  1. Low-dose-rate total lymphoid irradiation: a new method of rapid immunosuppression

    International Nuclear Information System (INIS)

    Blum, J.E.; de Silva, S.M.; Rachman, D.B.; Order, S.E.

    1988-01-01

    Total Lymphoid Irradiation (TLI) has been successful in inducing immunosuppression in experimental and clinical applications. However, both the experimental and clinical utility of TLI are hampered by the prolonged treatment courses required (23 days in rats and 30-60 days in humans). Low-dose-rate TLI has the potential of reducing overall treatment time while achieving comparable immunosuppression. This study examines the immunosuppressive activity and treatment toxicity of conventional-dose-rate (23 days) vs low-dose-rate (2-7 days) TLI. Seven groups of Lewis rats were given TLI with 60Co. One group was treated at conventional-dose-rates (80-110 cGy/min) and received 3400 cGy in 17 fractions over 23 days. Six groups were treated at low-dose-rate (7 cGy/min) and received total doses of 800, 1200, 1800, 2400, 3000, and 3400 cGy over 2-7 days. Rats treated at conventional-dose-rates over 23 days and at low-dose-rate over 2-7 days tolerated radiation with minimal toxicity. The level of immunosuppression was tested using allogeneic (Brown-Norway) skin graft survival. Control animals retained allogeneic skin grafts for a mean of 14 days (range 8-21 days). Conventional-dose-rate treated animals (3400 cGy in 23 days) kept their grafts 60 days (range 50-66 days) (p less than .001). Low-dose-rate treated rats (800 to 3400 cGy total dose over 2-7 days) also had prolongation of allogeneic graft survival times following TLI with a dose-response curve established. The graft survival time for the 3400 cGy low-dose-rate group (66 days, range 52-78 days) was not significantly different from the 3400 cGy conventional-dose-rate group (p less than 0.10). When the total dose given was equivalent, low-dose-rate TLI demonstrated an advantage of reduced overall treatment time compared to conventional-dose-rate TLI (7 days vs. 23 days) with no increase in toxicity

  2. Impact of Drug Therapy, Radiation Dose, and Dose Rate on Renal Toxicity Following Bone Marrow Transplantation

    International Nuclear Information System (INIS)

    Cheng, Jonathan C.; Schultheiss, Timothy E.; Wong, Jeffrey Y.C.

    2008-01-01

    Purpose: To demonstrate a radiation dose response and to determine the dosimetric and chemotherapeutic factors that influence the incidence of late renal toxicity following total body irradiation (TBI). Methods and Materials: A comprehensive retrospective review was performed of articles reporting late renal toxicity, along with renal dose, fractionation, dose rate, chemotherapy regimens, and potential nephrotoxic agents. In the final analysis, 12 articles (n = 1,108 patients), consisting of 24 distinct TBI/chemotherapy conditioning regimens were included. Regimens were divided into three subgroups: adults (age ≥18 years), children (age <18 years), and mixed population (both adults and children). Multivariate logistic regression was performed to identify dosimetric and chemotherapeutic factors significantly associated with late renal complications. Results: Individual analysis was performed on each population subgroup. For the purely adult population, the only significant variable was total dose. For the mixed population, the significant variables included total dose, dose rate, and the use of fludarabine. For the pediatric population, only the use of cyclosporin or teniposide was significant; no dose response was noted. A logistic model was generated with the exclusion of the pediatric population because of its lack of dose response. This model yielded the following significant variables: total dose, dose rate, and number of fractions. Conclusion: A dose response for renal damage after TBI was identified. Fractionation and low dose rates are factors to consider when delivering TBI to patients undergoing bone marrow transplantation. Drug therapy also has a major impact on kidney function and can modify the dose-response function

  3. Comparison of high-dose-rate and low-dose-rate brachytherapy in the treatment of endometrial carcinoma

    International Nuclear Information System (INIS)

    Fayed, Alaa; Mutch, David G.; Rader, Janet S.; Gibb, Randall K.; Powell, Matthew A.; Wright, Jason D.; El Naqa, Issam; Zoberi, Imran; Grigsby, Perry W.

    2007-01-01

    Purpose: To compare the outcomes for endometrial carcinoma patients treated with either high-dose-rate (HDR) or low-dose-rate (LDR) brachytherapy. Methods and Materials: This study included 1,179 patients divided into LDR (1,004) and HDR groups (175). Patients with International Federation of Gynecology and Obstetrics (FIGO) surgical Stages I-III were included. All patients were treated with postoperative irradiation. In the LDR group, the postoperative dose applied to the vaginal cuff was 60-70 Gy surface doses to the vaginal mucosa. The HDR brachytherapy prescription was 6 fractions of 2 Gy each to a depth of 0.5 cm from the surface of the vaginal mucosa. Overall survival, disease-free survival, local control, and complications were endpoints. Results: For all stages combined, the overall survival, disease-free survival, and local control at 5 years in the LDR group were 70%, 69%, and 81%, respectively. For all stages combined, the overall survival, disease-free survival, and local control at 5 years in the HDR group were 68%, 62%, and 78%, respectively. There were no significant differences in early or late Grade III and IV complications in the HDR or LDR groups. Conclusion: Survival outcomes, pelvic tumor control, and Grade III and IV complications were not significantly different in the LDR brachytherapy group compared with the HDR group

  4. Precedents For Authorization Of Contents Using Dose Rate Measurements

    International Nuclear Information System (INIS)

    Abramczyk, G.; Bellamy, S.; Nathan, S.; Loftin, B.

    2012-01-01

    For the transportation of Radioactive Material (RAM) packages, the requirements for the maximum allowed dose rate at the package surface and in its vicinity are given in Title 10 of the Code of Federal Regulations, Section 71.47. The regulations are based on the acceptable dose rates to which the public, workers, and the environment may be exposed. As such, the regulations specify dose rates, rather than quantity of radioactive isotopes and require monitoring to confirm the requirements are met. 10CFR71.47 requires that each package of radioactive materials offered for transportation must be designed and prepared for shipment so that under conditions normally incident to transportation the radiation level does not exceed 2 mSv/h (200 mrem/h) at any point on the external Surface of the package, and the transport index does not exceed 10. Before shipment, the dose rate of the package is determined by measurement, ensuring that it conforms to the regulatory limits, regardless of any analyses. This is the requirement for all certified packagings. This paper discusses the requirements for establishing the dose rates when shipping RAM packages and the precedents for meeting these requirements by measurement.

  5. Transition of some type of integrated circuits into latch-up mode under effect of ionizing radiation of large dose rate

    International Nuclear Information System (INIS)

    Berdichevskij, B.E.; Madzharova, T.B.

    1986-01-01

    Some types of integrated circuits (IC) are almost short-circuit, i.e. they transit to the latch-up regime under the effect of ionizing radiation pulses of large dose rate. The results of investigation into IC under their transition into the latch-up regime at supply voltage of 10 V are presented. It is shown that IC stably transit to the latch-up regime if the dinistor current becomes at least equal to the photocurrent. At bias reduction from 15 to 6 V the dose rate at which the latch-up arises grows from 2.5x10 9 to 3.5x10 9 rad (Si)/s. Burn-out of supply busbar is the usual type of IC failure at latch-up arising. Measures for IC protection from latch-up are shown. In some IC the latch-up is formed beginning from a certain critical value of dose rate, the so-called ''windows'' of latch-up

  6. Relationships betwen mitotic delay and the dose rate of X radiation

    International Nuclear Information System (INIS)

    Yi, P.N.; Rha, C.K.; Evans, H.H.; Beer, J.Z.

    1994-01-01

    Upon exposure of cells to radiation delivered at a continuous low dose rate, cell proliferation may be sustained with the cells exhibiting a constant doubling time that is independent of the total dose. The doubling time or mitotic delay under these conditions has been shown to depend on the dose rate in HeLa, V79 and P388F cells. Reanalysis of the data for these particular cell lines shows that there is a threshold dose rate for mitotic delay, and that above the threshold there is a linear relationship between the length of mitotic delay and the logarithm of the dose rate which is referred to as the dose-rate response. We have observed the same relationships for L5178Y (LY)-R and LY-S cells exposed to low-dose-rate radiation. The threshold dose rates for LY-R, LY-S and P388F cells are similar (0.01-0.02 Gy/h) and are much lower than for V79 and HeLa cells. The slope of the dose-rate response curve is the greatest for HeLa cells, followed in order by LY-S, V79 and P388F cells, and finally by LY-R cells. The slopes for HeLa and LY-R cells differ by a factor of 35. 20 refs., 3 figs., 1 tab

  7. Environmental radioactivity in the UK: the airborne geophysical view of dose rate estimates

    International Nuclear Information System (INIS)

    Beamish, David

    2014-01-01

    technologically enhanced, localised contributions to dose rate values are also apparent in the data sets. Two detailed examples are provided that reveal the detectability of site-scale environmental impacts due to former industrial activities and the high dose values (>500 nGy h −1 ) that are associated with former, small-scale Uranium mining operations. - Highlights: • UK airborne estimates of dose rates have been obtained across 40,000 km 2 . • Spatial mapping densities range from 10 to 50 m. • Wide scale (geological) and localized (technological) effects are quantified. • Theory and data indicate soil attenuation effects are pervasive. • Comparison of ground geochemical and airborne dose estimates

  8. Biological effective dose studies in carcinoma of uterine cervix

    International Nuclear Information System (INIS)

    Yadav, Poonam; Ramasubramanian, V.

    2008-01-01

    Cancer of cervix is the second most common cancer worldwide among women. Several treatments related protocols of radiotherapy have been followed over few decades in its treatment for evaluating the response. These physical doses varying on the basics of fractionation size, dose rate and total dose needed to be indicated as biological effective dose (BED) to rationalize these treatments. The curative potential of radiation therapy in the management of carcinoma of the cervix is greatly enhanced by the use of intracavitary brachytherapy. Successful brachytherapy requires the high radiation dose to be delivered to the tumor where as minimum radiation dose reach to surrounding normal tissue. Present study is aimed to evaluate biologically effective dose in patients receiving high dose-rate brachytherapy plus external beam radiotherapy based on tumor cell proliferation values in cancer of the cervix patients. The study includes 30 patients' data as a retrospective analysis. In addition determine extent of a dose-response relationship existing between the biological effective dose at Point A and the bladder and rectum and the clinical outcomes

  9. Anomalous dose rate effects in gamma irradiated SiGe heterojunction bipolar transistors

    International Nuclear Information System (INIS)

    Banerjee, G.; Niu, G.; Cressler, J.D.; Clark, S.D.; Palmer, M.J.; Ahlgren, D.C.

    1999-01-01

    Low dose rate (LDR) cobalt-60 (0.1 rad(Si)/s) gamma irradiated Silicon Germanium (SiGe) Heterojunction Bipolar Transistors (HBTs) were studied. Comparisons were made with devices irradiated with 300 rad(Si)/s gamma radiation to verify if LDR radiation is a serious radiation hardness assurance (RHA) issue. Almost no LDR degradation was observed in this technology up to 50 krad(Si). The assumption of the presence of two competing mechanisms is justified by experimental results. At low total dose (le20 krad), an anomalous base current decrease was observed which is attributed to self-annealing of deep-level traps to shallower levels. An increase in base current at larger total doses is attributed to radiation induced generation-recombination (G/R) center generation. Experiments on gate-assisted lateral PNP transistors and 2D numerical simulations using MEDICI were used to confirm these assertions

  10. Effect of Monomer Dosing Rate in the Preparation of Mesoporous Polystyrene Nanoparticles by Semicontinuous Heterophase Polymerization

    Directory of Open Access Journals (Sweden)

    Dalia Y. Sosa

    2014-12-01

    Full Text Available The semicontinuous heterophase polymerization of styrene in the presence of cross-linking and porogen agents was carried out. Latexes with close to 20% solid content, which contained mesoporous nanoparticles with 28 nm in average diameters, up to 0.5 cm3/g in porosity and 6–8 nm in pore diameters were obtained. By varying the monomer dosing rate over the micellar solution, an unexpected direct dependence of instantaneous conversion on the monomer dosing rate was found. This was ascribed to the higher average number of radicals per particle attained in the polymerization at the higher dosing rate, which in turn would arise from the higher gel percentage in the polymer. It is believed that the cross-linked chains prevent encounters between radicals, delaying the bimolecular termination reactions and allowing the existence of more than one radical inside the particles, which in turn increases the propagation rate.

  11. In phantom calibration of a high dose rate remote afterloading device

    International Nuclear Information System (INIS)

    Alfonso, R.; Tolede, P.; Pich, V.

    1995-01-01

    The high dose-rate (HDR) brachytherapy in Cuba is based on soviet made devices type AGAT-V. In order to calibration one of these for clinical use a method based of the different measurement of absorbed dose at the reference point B in a paraffin phantom was developed. The results of the calibration are shown. From these results an analysis was made of the effective doses to prescription point a considering the Lineal-Quadratic model. The clinical results by using the AGAT-V device are displayed in a comparative way

  12. Suppression of carcinogenesis in mice by adaptive responses to low dose rate irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Kazuo; Iwasaki, Toshiyasu; Hoshi, Yuko; Nomura, Takaharu; Ina, Yasuhiro; Tanooka, Hiroshi [Central Research Institute of Electric Power Industry, Low Dose Radiation Research Center, Komae, Tokyo (Japan)

    2003-07-01

    Effects of prolonged low-dose-rate irradiation on the process of carcinogenesis were examined in mice treated with chemical carcinogen or irradiated with high doses of X-rays. Female ICR mice, 5 week-old, 35 in each group, were exposed to gamma-rays from a {sup 137}Cs source in the long-term low dose rate irradiation facility at CRIEPI. The dose rate was 2.6 mGy/hr (A), 0.96 mGy/hr (B), or 0.30 mGy/hr (C). Thirty-five days later, the mice were injected into the groin with 0.5 mg of methylcholanthrene (MC) dissolved in olive oil and irradiation was continued. Cumulative tumor incidences after 216 days following MC injection were 89% in group A, 76% in group B, and 94% in group C. That in non-irradiated control group was 94%. The difference in the tumor incidence between the control and position B was statistically significant, indicating the suppressive effect of the low dose rate irradiation on the process of MC-induced carcinogenesis with an optimum dose rate around 1 mGy/hr. In B6C3F1 mice, although the suppression of tumor incidence was not observed, there was a significant delay in tumor appearance in the irradiated mice between 100-150 days after MC injection. A group of 20 female C57BL/6N mice, 5 weeks old, were exposed to gamma-rays at 0.95 mGy/hr for 5 weeks. Then, they were exposed weekly to 1.8 Gy whole body X-irradiation (300 kVp) for consecutive 4 weeks to induce thymic lymphoma. Another group received only the fractionated irradiation. The first mouse died from thymic lymphoma appeared 89 days after the last irradiation in the group received only the fractionated irradiation, while 110 days in the group combined with the low dose rate irradiation. (author)

  13. Comparison of the two different standard flux-to-dose rate conversion factors

    International Nuclear Information System (INIS)

    Metghalchi, M.; Ashrafi, R.

    1983-01-01

    A very useful and simple way of obtaining the dose rate associated with neutron or photon fluxes is to multiply these fluxes by the appropriate flux-to-dose rate conversion factors. Two basic standard flux-to-dose rate conversion factors. are being used in all over the world, those recommended by the International Commission on Radiation Protection (ICRP) and the American National Standars (ANS). The purpose of this paper is to compare these two standard with each other. The comparison proved that the dose rate associated with a specific neutron flux, obtained by the ANS flux-to-dose rate conversion factors is usually higher than those calculated by the ICRP's conversion factors. Whereas in the case of the photon, in all energies, the difference between the dose rates obtained by these two standard flux-to-dose rate conversion factors are noticeable, and the ANS results are higher than the ICRP ones. So, it should be noted that for a specific neutron or photon flux the dose rate obtained by the ANS flux-to-dose rate conversion factors are more conservative than those obtained by the ICRP's. Therefore, in order to establish a more reasonable new standard flux-to-dose rate conversion factors, more work should be done. (author)

  14. Effect of reprocessing and recycling on the geologic repository dose rate : status

    International Nuclear Information System (INIS)

    Morris, E. E.; Nutt, W. M.; Wigeland, R. A.; Nuclear Engineering Division

    2007-01-01

    Two simplified repository performance assessment models are used to assess the impact of modeling changes in on conclusions regarding the impact of various reprocessing and recycling strategies. Waste streams from a pressurized water reactor (PWR) and a preliminary design for an advanced burner test reactor (ABTR) are used for this study of the effects on the estimated dose rate resulting from the release of radionuclides from a geologic repository. Calculations for the PWR make use of radionuclide discharge vectors for an assumed burnup of 51 GWd/MTIHM[1]. The repository is assumed to be filled with 70,000 MT of the spent fuel or with a glass waste form containing the radionuclides from 70,000 MT of spent PWR fuel. For the ABTR, the radionuclide inventory discharged at the end of an equilibrium cycle[2] is processed into a glass waste form for repository disposal, assuming actinide recovery efficiencies ranging from 90% to 99.99%. The recovered actinides are returned to the reactor. To compare with the PWR results, the repository is assumed to be filled with ABTR waste from fuel that has generated the same amount of thermal energy as 70,000 MT of the PWR fuel. The two repository performance assessment models, the first a simplified model[3] (SSR) based on the site recommendation model used by the Yucca Mountain Project (YMP)[4], and the second an updated simplified model (US) based on more recent modeling developments by the YMP are implemented in the computer simulation code GoldSim[5]. The updated model is based on a simplified model used to conduct a sensitivity analysis to evaluate factors that potentially influence performance of a repository at Yucca Mountain over the period of peak dose[6]. Factors that have either a minor or no effect on the peak dose either were not included in that simplified model or were included in a bounding representation. In the US model, enhancements were made to include some factors that have an effect on the dose occurring

  15. Use of thermoluminescence dosimetry for evaluation of internal beta dose-rate in archaeological dating

    Energy Technology Data Exchange (ETDEWEB)

    Bailiff, I K; Aitken, M J [Oxford Univ. (UK). Research Lab. for Archaeology

    1980-07-01

    An experimental technique is described for the absolute determination of beta dose-rate in pottery. The calibrated system utilizes thermoluminescent dosimeters (natural calcium fluoride) which are located external to the pottery sample. These measurements give an evaluation of the dose-rate at the centre of the pottery that is effectively independent of the relative importance of the thorium, uranium and potassium content (typically 12 ppm Th, 3 ppm U and 1% K/sub 2/O in pottery). This has been checked using analysed uranium, thorium and potassium materials. A dose-rate evaluation may be made after 10-14 d with an accuracy of +-5%, where the dose-rate to the dosimeter is of the order of 0.3 mrad d/sup -1/. Although the background dose-rate due to cosmic radiation and that arising from radioactive impurities in the calcium fluoride is significant (one third), measurements have shown that it may be accurately established. The technique described is to be preferred to other systems used in pottery dating because of its independence of relative radioisotope concentration.

  16. Development of a high sensitivity pinhole type gamma camera using semiconductors for low dose rate fields

    Science.gov (United States)

    Ueno, Yuichiro; Takahashi, Isao; Ishitsu, Takafumi; Tadokoro, Takahiro; Okada, Koichi; Nagumo, Yasushi; Fujishima, Yasutake; Yoshida, Akira; Umegaki, Kikuo

    2018-06-01

    We developed a pinhole type gamma camera, using a compact detector module of a pixelated CdTe semiconductor, which has suitable sensitivity and quantitative accuracy for low dose rate fields. In order to improve the sensitivity of the pinhole type semiconductor gamma camera, we adopted three methods: a signal processing method to set the discriminating level lower, a high sensitivity pinhole collimator and a smoothing image filter that improves the efficiency of the source identification. We tested basic performances of the developed gamma camera and carefully examined effects of the three methods. From the sensitivity test, we found that the effective sensitivity was about 21 times higher than that of the gamma camera for high dose rate fields which we had previously developed. We confirmed that the gamma camera had sufficient sensitivity and high quantitative accuracy; for example, a weak hot spot (0.9 μSv/h) around a tree root could be detected within 45 min in a low dose rate field test, and errors of measured dose rates with point sources were less than 7% in a dose rate accuracy test.

  17. Gamma Low-Dose-Rate Ionizing Radiation Stimulates Adaptive Functional and Molecular Response in Human Aortic Endothelial Cells in a Threshold-, Dose-, and Dose Rate–Dependent Manner

    Science.gov (United States)

    Vieira Dias, Juliana; Gloaguen, Celine; Kereselidze, Dimitri; Manens, Line; Tack, Karine; Ebrahimian, Teni G

    2018-01-01

    A central question in radiation protection research is whether low-dose and low-dose-rate (LDR) exposures to ionizing radiation play a role in progression of cardiovascular disease. The response of endothelial cells to different LDR exposures may help estimate risk of cardiovascular disease by providing the biological mechanism involved. We investigated the effect of chronic LDR radiation on functional and molecular responses of human aorta endothelial cells (HAoECs). Human aorta endothelial cells were continuously irradiated at LDR (6 mGy/h) for 15 days and analyzed at time points when the cumulative dose reached 0.05, 0.5, 1.0, and 2.0 Gy. The same doses were administered acutely at high-dose rate (HDR; 1 Gy/min). The threshold for the loss of angiogenic capacity for both LDR and HDR radiations was between 0.5 and 1.0 Gy. At 2.0 Gy, angiogenic capacity returned to normal only for HAoEC exposed to LDR radiation, associated with increased expression of antioxidant and anti-inflammatory genes. Pre-LDR, but not pre-HDR, radiation, followed by a single acute 2.0 Gy challenge dose sustained the expression of antioxidant and anti-inflammatory genes and stimulated angiogenesis. Our results suggest that dose rate is important in cellular response and that a radioadaptive response is involved for a 2.0 Gy dose at LDR. PMID:29531508

  18. Calculations radiobiological using the quadratic lineal model in the use of the medium dose rate absorbed in brachytherapy. Pt. 3

    International Nuclear Information System (INIS)

    2002-01-01

    Calculations with the quadratic lineal model for medium rate using the equation dose-effect. Several calculations for system of low dose rate brachytherapy plus teletherapy, calculations for brachytherapy with medium dose rate together with teletherapy, dose for fraction and the one numbers of fractions in medium rate

  19. Facility for gamma irradiations of cultured cells at low dose rates: design, physical characteristics and functioning

    International Nuclear Information System (INIS)

    Esposito, Giuseppe; Anello, Pasquale; Pecchia, Ilaria; Tabocchini, Maria Antonella; Campa, Alessandro

    2016-01-01

    We describe a low dose/dose rate gamma irradiation facility (called LIBIS) for in vitro biological systems, for the exposure, inside a CO_2 cell culture incubator, of cells at a dose rate ranging from few μGy/h to some tens of mGy/h. Three different "1"3"7Cs sources are used, depending on the desired dose rate. The sample is irradiated with a gamma ray beam with a dose rate uniformity of at least 92% and a percentage of primary 662 keV photons greater than 80%. LIBIS complies with high safety standards. - Highlights: • A gamma irradiation facility for chronic exposures of cells was set up at the Istituto Superiore di Sanità. • The dose rate uniformity and the percentage of primary 662 keV photons on the sample are greater than 92% and 80%, respectively. • The GEANT4 code was used to design the facility. • Good agreement between simulation and experimental dose rate measurements has been obtained. • The facility will allow to safely investigate different issues about low dose rate effects on cultured cells.

  20. Changes of chromosome aberration rate and micronucleus frequency along with accumulated dose in continuously irradiated mice with a low dose rate of γ-rays

    International Nuclear Information System (INIS)

    Tanaka, Kimio; Izumi, Jun; Yanai, Takanori; Ichinohe, Kazuaki; Matsumoto, Tsuneya

    2003-01-01

    Chromosome aberrations in chronically exposed workers in nuclear facilities and medical radiologists have been reported. However chronological change of chromosome aberration rates along with accumulated dose has not been well studied. Chromosome aberrations and micronuclei in spleen lymphocytes were observed serially in mice continuously irradiated with a low dose rate of 20 mGy/day up to 400 days. Chromosome aberration rates were rapidly increased to 11.1% at 1 Gy, while micronucleus incidence increased at 5 Gy. After these doses their increase rates were saturated. Micronucleus incidence in bone marrow erythroblasts was higher than in spleen cells. These chronological changes of cytogenetic aberrations seem to be induced through a balance between developments of chromosome aberrations and micronuclei, and life span of spleen lymphocytes. These results will be helpful for risk assessment in low dose rate radiation exposure. (author)

  1. Problems of dose rate in radiation protection regulation

    International Nuclear Information System (INIS)

    Osmachkin, V.S.

    2001-01-01

    Some modern problems of Radiation Safety Standards are discussed. It is known that Standards are based on the Linear-Non-Threshold Concept (LNTC) of radiation risk, which is now called by many experts as conservative. It is thought it is necessary to include in the Standards such factor as dose rate or duration of irradiation. Some model of effects of radiation exposure with taking into account the reparation of cell damage is presented. The practical method for assessment of effects of duration of irradiation on detriments is proposed.(author)

  2. Treatment Planning for Pulsed Reduced Dose-Rate Radiotherapy in Helical Tomotherapy

    International Nuclear Information System (INIS)

    Rong Yi; Paliwal, Bhudatt; Howard, Steven P.; Welsh, James

    2011-01-01

    Purpose: Pulsed reduced dose-rate radiotherapy (PRDR) is a valuable method of reirradiation because of its potential to reduce late normal tissue toxicity while still yielding significant tumoricidal effect. A typical method using a conventional linear accelerator (linac) is to deliver a series of 20-cGy pulses separated by 3-min intervals to give an effective dose-rate of just under 7 cGy/min. Such a strategy is fraught with difficulties when attempted on a helical tomotherapy unit. We investigated various means to overcome this limitation. Methods and Materials: Phantom and patient cases were studied. Plans were generated with varying combinations of field width (FW), pitch, and modulation factor (MF) to administer 200 cGy per fraction to the planning target in eight subfractions, thereby mimicking the technique used on conventional linacs. Plans were compared using dose-volume histograms, homogeneity indices, conformation numbers, and treatment time. Plan delivery quality assurance was performed to assess deliverability. Results: It was observed that for helical tomotherapy, intrinsic limitations in leaf open time in the multileaf collimator deteriorate plan quality and deliverability substantially when attempting to deliver very low doses such as 20-40 cGy. The various permutations evaluated revealed that the combination of small FW (1.0 cm), small MF (1.3-1.5), and large pitch (∼0.86), along with the half-gantry-angle-blocked scheme, can generate clinically acceptable plans with acceptable delivery accuracy (±3%). Conclusion: Pulsed reduced dose-rate radiotherapy can be accurately delivered using helical tomotherapy for tumor reirradiation when the appropriate combination of FW, MF, and pitch is used.

  3. Estimating average glandular dose by measuring glandular rate in mammograms

    International Nuclear Information System (INIS)

    Goto, Sachiko; Azuma, Yoshiharu; Sumimoto, Tetsuhiro; Eiho, Shigeru

    2003-01-01

    The glandular rate of the breast was objectively measured in order to calculate individual patient exposure dose (average glandular dose) in mammography. By employing image processing techniques and breast-equivalent phantoms with various glandular rate values, a conversion curve for pixel value to glandular rate can be determined by a neural network. Accordingly, the pixel values in clinical mammograms can be converted to the glandular rate value for each pixel. The individual average glandular dose can therefore be calculated using the individual glandular rates on the basis of the dosimetry method employed for quality control in mammography. In the present study, a data set of 100 craniocaudal mammograms from 50 patients was used to evaluate our method. The average glandular rate and average glandular dose of the data set were 41.2% and 1.79 mGy, respectively. The error in calculating the individual glandular rate can be estimated to be less than ±3%. When the calculation error of the glandular rate is taken into consideration, the error in the individual average glandular dose can be estimated to be 13% or less. We feel that our method for determining the glandular rate from mammograms is useful for minimizing subjectivity in the evaluation of patient breast composition. (author)

  4. Gamma-ray dose-rates to human tissues from natural external sources in Great Britain

    International Nuclear Information System (INIS)

    Spiers, F.W.

    1960-01-01

    The information on environmental gamma radiation given in the last report (Spiers, 1956) was limited by the small amount of experimental data then available. Considerably more information has been accumulated since then and a summary has been published in the Report of the United Nations Scientific Committee on te Effects of Atomic Radiation 1958). The data reported from Austria, France, Sweden and the U.S.A. show that in general dose-rates out-of-doors range from about 0 mrads per year over sedimentary rocks to about 200 mrads per year in granite districts. In houses a similar range of doserates is indicated, the rates in individual houses depending upon the nature of the building materials. In some parts of the world, however, very much higher dose-rates have been observed. On the extensive area of monazite sand in the Kerala State of India dose-rates of up to 4000 mrads per year have been recorded and the mean dose-rate for 10 villages with a total population of 52,000 has been estimated to be 1270 mrads per year. Mean dose-rates of 500 and 1600 mrads per year have also been reported from two localities in Brazil

  5. Gamma-ray dose-rates to human tissues from natural external sources in Great Britain

    Energy Technology Data Exchange (ETDEWEB)

    Spiers, F W

    1960-12-01

    The information on environmental gamma radiation given in the last report (Spiers, 1956) was limited by the small amount of experimental data then available. Considerably more information has been accumulated since then and a summary has been published in the Report of the United Nations Scientific Committee on te Effects of Atomic Radiation 1958). The data reported from Austria, France, Sweden and the U.S.A. show that in general dose-rates out-of-doors range from about 0 mrads per year over sedimentary rocks to about 200 mrads per year in granite districts. In houses a similar range of doserates is indicated, the rates in individual houses depending upon the nature of the building materials. In some parts of the world, however, very much higher dose-rates have been observed. On the extensive area of monazite sand in the Kerala State of India dose-rates of up to 4000 mrads per year have been recorded and the mean dose-rate for 10 villages with a total population of 52,000 has been estimated to be 1270 mrads per year. Mean dose-rates of 500 and 1600 mrads per year have also been reported from two localities in Brazil.

  6. Dose volume assessment of high dose rate 192IR endobronchial implants

    International Nuclear Information System (INIS)

    Cheng, B. Saw; Korb, Leroy J.; Pawlicki, Todd; Wu, Andrew

    1996-01-01

    Purpose: To study the dose distributions of high dose rate (HDR) endobronchial implants using the dose nonuniformity ratio (DNR) and three volumetric irradiation indices. Methods and Materials: Multiple implants were configured by allowing a single HDR 192 Ir source to step through a length of 6 cm along an endobronchial catheter. Dwell times were computed to deliver a dose of 5 Gy to points 1 cm away from the catheter axis. Five sets of source configurations, each with different dwell position spacings from 0.5 to 3.0 cm, were evaluated. Three-dimensional (3D) dose distributions were then generated for each source configuration. Differential and cumulative dose-volume curves were generated to quantify the degree of target volume coverage, dose nonuniformity within the target volume, and irradiation of tissues outside the target volume. Evaluation of the implants were made using the DNR and three volumetric irradiation indices. Results: The observed isodose distributions were not able to satisfy all the dose constraints. The ability to optimally satisfy the dose constraints depended on the choice of dwell position spacing and the specification of the dose constraint points. The DNR and irradiation indices suggest that small dwell position spacing does not result in a more homogeneous dose distribution for the implant. This study supports the existence of a relationship between the dwell position spacing and the distance from the catheter axis to the reference dose or dose constraint points. Better dose homogeneity for an implant can be obtained if the spacing of the dwell positions are about twice the distance from the catheter axis to the reference dose or dose constraint points

  7. High dose rate versus medium dose rate intraluminal brachytherapy in inoperable esophageal carcinoma

    International Nuclear Information System (INIS)

    Langendijk, J.; Jager, J.; Jong, J. de; Rijken, J.; Pannebakker, M.

    1996-01-01

    Introduction: The purpose of this study was to compare the results of medium dose rate (MDR) intraluminal brachytherapy (ILBT) and high dose rate (HDR) ILBT in patients with inoperable esophageal carcinoma, with regard to dysphagia, complication rate and survival. Material and methods: Included were 114 patients with inoperable esophageal cancer who were treated with a single session of ILBT. In all cases a single dose of 15 Gy was administered, calculated at a 1 cm radius. Forty-eight patients were treated with MDR ( 137 Cs)ILBT. In June 1990 MDR was replaced by HDR and from then 66 patients were treated with HDR ( 192 Ir). Dysphagia was prospectively scored using a 5-point scale at 6 weeks, 3, 6, 9 and 12 months. Results: No significant differences were noted between the two groups with regard to pretreatment variables. In patients treated with MDR-ILBT improvement of swallowing ability was noted in 30 out of 42 evaluable patients (71%), no change in 9 (21%) and progression of dysphagia in 3 patients (8%), as compared to 34 out of 59 evaluable patients (58%), 16 (27%) and 6 (15%) resp. in de HDR-ILBT group. In the latter category, progression of dysphagia was caused by fistulae in 2 patients. The differences were not significant (ns). Additional treatment in case of recurrent or persistent dysphagia was needed in 50% of the cases in the MDR-ILBT group as compared to 41% in the HDR-ILBT group (ns). The median survival of the MDR-ILBT group was 3.9 months as compared to 4.3 months in the HDR-ILBT group (ns). In 2 patients (4%) treated with MDR-ILBT bronchio-oesphageal fistulae developed at 6 weeks and 2 months. In the HDR-ILBT group fistulae were noted in 7 cases (11%) at 2 weeks, 4 weeks, 2, 3, 3, 4 and 9 months (ns). In all of these cases persistent of recurrent tumour was present. Conclusions: No significant differences were noted with regard to palliation of dysphagia, survival and complication rate between MDR-ILBT and HDR-ILBT in the management of esophageal

  8. VMATc: VMAT with constant gantry speed and dose rate

    International Nuclear Information System (INIS)

    Peng, Fei; Romeijn, H Edwin; Epelman, Marina A; Jiang, Steve B

    2015-01-01

    This article considers the treatment plan optimization problem for Volumetric Modulated Arc Therapy (VMAT) with constant gantry speed and dose rate (VMATc). In particular, we consider the simultaneous optimization of multi-leaf collimator leaf positions and a constant gantry speed and dose rate. We propose a heuristic framework for (approximately) solving this optimization problem that is based on hierarchical decomposition. Specifically, an iterative algorithm is used to heuristically optimize dose rate and gantry speed selection, where at every iteration a leaf position optimization subproblem is solved, also heuristically, to find a high-quality plan corresponding to a given dose rate and gantry speed. We apply our framework to clinical patient cases, and compare the resulting VMATc plans to idealized IMRT, as well as full VMAT plans. Our results suggest that VMATc is capable of producing treatment plans of comparable quality to VMAT, albeit at the expense of long computation time and generally higher total monitor units. (paper)

  9. Total dose effects on ATLAS-SCT front-end electronics

    CERN Document Server

    Ullán, M; Dubbs, T; Grillo, A A; Spencer, E; Seiden, A; Spieler, H; Gilchriese, M G D; Lozano, M

    2002-01-01

    Low dose rate effects (LDRE) in bipolar technologies complicate the hardness assurance testing for high energy physics applications. The damage produced in the ICs in the real experiment can be underestimated if fast irradiations are carried out, while experiments done at the real dose rate are usually unpractical due to the still high total doses involved. In this work the sensitivity to LDRE of two bipolar technologies proposed for the ATLAS-SCT experiment at CERN is evaluated, finding one of them free of those effects. (12 refs).

  10. Dose titration of BAF312 attenuates the initial heart rate reducing effect in healthy subjects.

    Science.gov (United States)

    Legangneux, Eric; Gardin, Anne; Johns, Donald

    2013-03-01

    Previous studies have shown transient decreases in heart rate (HR) following administration of sphingosine 1-phosphate (S1P) receptor modulators including BAF312. This study was conducted to determine whether dose titration of BAF312 reduces or eliminates these effects. Fifty-six healthy subjects were randomized 1:1:1:1 to receive BAF312 in one of two dose titration (DT) regimens (DT1 and DT2: 0.25-10 mg over 9-10 days), no titration (10 mg starting dose) or placebo. Pharmacodynamic and pharmacokinetic parameters were assessed. Neither DT1 nor DT2 resulted in clinically significant bradycardia or atrioventricular conduction effects. Both titration regimens showed a favourable difference on each of days 1-12 vs. the non-titration regimen on day 1 for HR effects (P titration was 1.18 (95% confidence interval [CI] 1.13, 1.23) and 1.14 (95% CI 1.09, 1.18) for DT2 (both P titration HRs showed considerable separation from placebo throughout the study. There was no statistically significant reduction in HR vs. placebo on day 1 in either titration regimen. On days 3-7 subjects in DT1 and DT2 experienced minor reductions in HR vs. placebo (approximately 5 beats min⁻¹; P ≤ 0.0001). From days 9-12, HRs in both titration regimens were comparable with placebo. Both titration regimens effectively attenuated the initial bradyarrhythmia observed on day 1 of treatment with BAF312 10 mg. © 2012 Novartis Institutes for BioMedical Research (NIBIR). British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  11. Dose-rate effects of protons on in vivo activation of nuclear factor-kappa B and cytokines in mouse bone marrow cells

    International Nuclear Information System (INIS)

    Rithidech, K.N.; Rusek, A.; Reungpatthanaphong, P.; Honikel, L.; Simon, S.R.

    2010-01-01

    The objective of this study was to determine the kinetics of nuclear factor-kappa B (NF-κB) activation and cytokine expression in bone marrow (BM) cells of exposed mice as a function of the dose rate of protons. The cytokines included in this study are pro-inflammatory (i.e., tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and IL-6) and anti-inflammatory cytokines (i.e., IL-4 and IL-10). We gave male BALB/cJ mice a whole-body exposure to 0 (sham-controls) or 1.0 Gy of 100 MeV protons, delivered at 5 or 10 mGy min -1 , the dose and dose rates found during solar particle events in space. As a reference radiation, groups of mice were exposed to 0 (sham-controls) or 1 Gy of 137 Cs γ rays (10 mGy min -1 ). After irradiation, BM cells were collected at 1.5, 3, 24 h, and 1 month for analyses (five mice per treatment group per harvest time). The results indicated that the in vivo time course of effects induced by a single dose of 1 Gy of 100 MeV protons or 137 Cs γ rays, delivered at 10 mGy min -1 , was similar. Although statistically significant levels of NF-κB activation and pro-inflammatory cytokines in BM cells of exposed mice when compared to those in the corresponding sham controls (Student's t-test, p -1 induced significant levels of anti-inflammatory cytokines. The results indicate dose-rate effects of protons.

  12. Response of human fibroblasts to low dose rate gamma irradiation

    International Nuclear Information System (INIS)

    Dritschilo, A.; Brennan, T.; Weichselbaum, R.R.; Mossman, K.L.

    1984-01-01

    Cells from 11 human strains, including fibroblasts from patients with the genetic diseases of ataxia telangiectasia (AT), xeroderma pigmentosum (XP), and Fanconi's anemia (FA), were exposed to γ radiation at high (1.6-2.2 Gy/min) and at low (0.03-0.07 Gy/min) dose rates. Survival curves reveal an increase inthe terminal slope (D 0 ) when cells are irradiated at low dose rates compared to high dose rates. This was true for all cell lines tested, although the AT, FA, and XP cells are reported or postulated to have radiation repair deficiencies. From the response of these cells, it is apparent that radiation sensitivities differ; however, at low dose rate, all tested human cells are able to repair injury

  13. Design of movable fixed area γ dose rate monitor

    International Nuclear Information System (INIS)

    Li Dongyu; Cheng Wen; Li Jikai; Huang Hong; Shen Qiming; Zhang Qiang; Liu Zhengshan

    2005-10-01

    Movable fixed area γ dose rate monitor has not only the characteristics of fixed area γ dose rate monitor, but that of portable meter as well. Its main function is to monitor the areas where dose rate would change without orderliness to prevent unplanned radiation exposure accidents from happening. The design way of the monitor, the main indicators description, the working principle and the comprising of software and hardware are briefly introduced. The monitor has the characteristics of simple installation, easy maintenance, little power consumption, wide range, notability of visual and audible alarm and so on. Its design and technique have novelty and advancement. (authors)

  14. Dose rate from the square volume radiation source

    International Nuclear Information System (INIS)

    Karpov, V.I.

    1978-01-01

    The expression for determining the dose rate from a three-dimensional square flat-parallel source of any dimensions is obtained. A simplified method for integrating the resultant expression is proposed. A comparison of the calculation results with the results by the Monte Carlo method has shown them to coincide within 6-8%. Since buildings and structures consist of rectangular elements, the method is recommended for practical calculations of dose rates in residential buildings

  15. Risks to health from radiation at low dose rates

    International Nuclear Information System (INIS)

    Gentner, N.E.; Osborne, R.V.

    1997-01-01

    Our focus is on whether, using a balance-of-evidence approach, it is possible to say that at a low enough dose, or at a sufficiently low dose rate, radiation risk reduces to zero in a population. We conclude that insufficient evidence exists at present to support such a conclusion. In part this reflects statistical limitations at low doses, and in part (although mechanisms unquestionably exist to protect us against much of the damage induced by ionizing radiation) the biological heterogeneity of human populations, which means these mechanisms do not act in all members of the population at all times. If it is going to be possible to demonstrate that low doses are less dangerous than we presently assume, the evidence, paradoxically, will likely come from studies of higher dose and dose rate scenarios than are encountered occupationally. (author)

  16. Field measurement and interpretation of beta doses and dose rates

    International Nuclear Information System (INIS)

    Selby, J.M.; Swinth, K.L.; Hooker, C.D.; Kenoyer, J.L.

    1983-01-01

    A wide variety of portable survey instruments employing GM, ionization chamber and scintillation detectors exist for the measurement of gamma exposure rates. Often these same survey instruments are used for monitoring beta fields. This is done by making measurements with and without a removable shield which is intended to shield out the non-penetrating component (beta) of the radiation field. The difference does not correspond to an absorbed dose rate for the beta field due to a variety of factors. Among these factors are the dependence on beta energy, source-detector geometries, mixed fields and variable ambient conditions. Attempting to use such measurements directly can lead to errors as high as a factor of 100. In many instances correction factors have been derived, that if properly applied, can reduce these errors substantially. However, this requires some knowledge of the beta spectra, calibration techniques and source geometry. This paper discusses some aspects of the proper use of instruments for beta measurements including the application of appropriate correction factors. Ionization type instruments are commonly used to measure beta dose rates. Through design and calibration these instruments will give an accurate reading only for uniform irradiation of the detection volume. Often in the field it is not feasible to meet these conditions. Large area uniform distributions of activity are not generally encountered and it is not possible to use large source-to-detector distances due to beta particle absorption in air. An example of correction factors required for various point sources is presented when a cutie pie ionization chamber is employed. The instrument reading is multiplied by the appropriate correction factor to obtain the dose rate at the window. When a different detector is used or for other geometries, a different set of correction factors must be used

  17. Effect of a television digital noise reduction device on fluoroscopic image quality and dose rate

    International Nuclear Information System (INIS)

    Jaffe, C.C.; Orphanoudakis, S.C.; Ablow, R.C.

    1982-01-01

    In conventional fluoroscopy, the current, and therefore the dose rate, is usually determined by the level at which the radiologist visualizes a just tolerable amount of photon ''mottle'' on the video monitor. In this study, digital processing of the analogue video image reduced noise and generated a television image at half the usual exposure rate. The technique uses frame delay to compare an incoming frame with the preceding output frame. A first-order recursive filter implemented under a motion-detection scheme operates on the image of a point-by-point basis. This effective motion detection algorithm permits noise suppression without creating noticeable lag in moving structures. Eight radiologists evaluated images of vesicoureteral reflux in the pig for noise, contrast, resolution, and general image quality on a five-point preferential scale. They rated the digitally processed fluoroscopy images equivalent in diagnostic value to unprocessed images

  18. Bio-physical effects of scanned proton beams: measurements and models for discrete high dose rates scanning systems

    International Nuclear Information System (INIS)

    De-Marzi, Ludovic

    2016-01-01

    The main objective of this thesis is to develop and optimize algorithms for intensity modulated proton therapy, taking into account the physical and biological pencil beam properties. A model based on the summation and fluence weighted division of the pencil beams has been used. A new parameterization of the lateral dose distribution has been developed using a combination of three Gaussian functions. The algorithms have been implemented into a treatment planning system, then experimentally validated and compared with Monte Carlo simulations. Some approximations have been made and validated in order to achieve reasonable calculation times for clinical purposes. In a second phase, a collaboration with Institut Curie radiobiological teams has been started in order to implement radiobiological parameters and results into the optimization loop of the treatment planning process. Indeed, scanned pencil beams are pulsed and delivered at high dose rates (from 10 to 100 Gy/s), and the relative biological efficiency of protons is still relatively unknown given the wide diversity of use of these beams: the different models available and their dependence with linear energy transfers have been studied. A good agreement between dose calculations and measurements (deviations lower than 3 % and 2 mm) has been obtained. An experimental protocol has been set in order to qualify pulsed high dose rate effects and preliminary results obtained on one cell line suggested variations of the biological efficiency up to 10 %, though with large uncertainties. (author) [fr

  19. Dose rate influence in the response of the amber 3042 perspex Dosimeter, batch l

    International Nuclear Information System (INIS)

    Prieto Miranda, E. F.; Barrera Gonzalez, G.

    2001-01-01

    The answer of the dosimetry systems is affected by several factors , as the temperature, humidity, light, concentration of oxygen, dose rate, energy spectrum and one can also add the technological conditions of the irradiation process. It should be known as these factors influence in each one of the different dosimetry systems and this way to minimize their effect in the value of the absorbed dose and to obtain exact values . The objective of this paper is to know the influence of the dose rate in the value of the absorbed dose in the Amber 3042 Perspex dosimeters, Batch L, for different measurement wavelengths, as well as, the relation between the post-irradiation time and the induced specific absorbance value in function of the absorbed dose

  20. Cost minimization analysis of high-dose-rate versus low-dose-rate brachytherapy in endometrial cancer

    International Nuclear Information System (INIS)

    Pinilla, James

    1998-01-01

    Purpose: Endometrial cancer is a common, usually curable malignancy whose treatment frequently involves low-dose-rate (LDR) or high-dose-rate (HDR) brachytherapy. These treatments involve substantial resource commitments and this is increasingly important. This paper presents a cost minimization analysis of HDR versus LDR brachytherapy in the treatment of endometrial cancer. Methods and Materials: The perspective of the analysis is that of the payor, in this case the Ministry of Health. One course of LDR treatment is compared to two courses of HDR treatment. The two alternatives are considered to be comparable with respect to local control, survival, and toxicities. Labor, overhead, and capital costs are accounted for and carefully measured. A 5% inflation rate is used where applicable. A univariate sensitivity analysis is performed. Results: The HDR regime is 22% less expensive compared to the LDR regime. This is $991.66 per patient or, based on the current workload of this department (30 patients per year) over the useful lifetime of the after loader, $297,498 over 10 years in 1997 dollars. Conclusion: HDR brachytherapy minimizes costs in the treatment of endometrial cancer relative to LDR brachytherapy. These results may be used by other centers to make rational decisions regarding brachytherapy equipment replacement or acquisition

  1. Interaction of 2-Gy Equivalent Dose and Margin Status in Perioperative High-Dose-Rate Brachytherapy

    International Nuclear Information System (INIS)

    Martinez-Monge, Rafael; Cambeiro, Mauricio; Moreno, Marta; Gaztanaga, Miren; San Julian, Mikel; Alcalde, Juan; Jurado, Matias

    2011-01-01

    Purpose: To determine patient, tumor, and treatment factors predictive of local control (LC) in a series of patients treated with either perioperative high-dose-rate brachytherapy (PHDRB) alone (Group 1) or with PHDRB combined with external-beam radiotherapy (EBRT) (Group 2). Patient and Methods: Patients (n = 312) enrolled in several PHDRB prospective Phase I-II studies conducted at the Clinica Universidad de Navarra were analyzed. Treatment with PHDRB alone, mainly because of prior irradiation, was used in 126 patients to total doses of 32 Gy/8 b.i.d. or 40 Gy/10 b.i.d. treatments after R0 or R1 resections. Treatment with PHDRB plus EBRT was used in 186 patients to total doses of 16 Gy/4 b.i.d. or 24 Gy/6 b.i.d. treatments after R0 or R1 resections along with 45 Gy of EBRT with or without concomitant chemotherapy. Results: No dose-margin interaction was observed in Group 1 patients. In Group 2 patients there was a significant interaction between margin status and 2-Gy equivalent (Eq2Gy) dose (p = 0.002): (1) patients with negative margins had 9-year LC of 95.7% at Eq2Gy = 62.9Gy; (2) patients with close margins of >1 mm had 9-year LC of 92.4% at Eq2Gy = 72.2Gy, and (3) patients with positive/close <1-mm margins had 9-year LC of 68.0% at Eq2Gy = 72.2Gy. Conclusions: Two-gray equivalent doses ≥70 Gy may compensate the effect of close margins ≥1 mm but do not counterbalance the detrimental effect of unfavorable (positive/close <1 mm) resection margins. No dose-margin interaction is observed in patients treated at lower Eq2Gy doses ≤50 Gy with PHDRB alone.

  2. Nuclear Radiation Degradation Study on HD Camera Based on CMOS Image Sensor at Different Dose Rates.

    Science.gov (United States)

    Wang, Congzheng; Hu, Song; Gao, Chunming; Feng, Chang

    2018-02-08

    In this work, we irradiated a high-definition (HD) industrial camera based on a commercial-off-the-shelf (COTS) CMOS image sensor (CIS) with Cobalt-60 gamma-rays. All components of the camera under test were fabricated without radiation hardening, except for the lens. The irradiation experiments of the HD camera under biased conditions were carried out at 1.0, 10.0, 20.0, 50.0 and 100.0 Gy/h. During the experiment, we found that the tested camera showed a remarkable degradation after irradiation and differed in the dose rates. With the increase of dose rate, the same target images become brighter. Under the same dose rate, the radiation effect in bright area is lower than that in dark area. Under different dose rates, the higher the dose rate is, the worse the radiation effect will be in both bright and dark areas. And the standard deviations of bright and dark areas become greater. Furthermore, through the progressive degradation analysis of the captured image, experimental results demonstrate that the attenuation of signal to noise ratio (SNR) versus radiation time is not obvious at the same dose rate, and the degradation is more and more serious with increasing dose rate. Additionally, the decrease rate of SNR at 20.0, 50.0 and 100.0 Gy/h is far greater than that at 1.0 and 10.0 Gy/h. Even so, we confirm that the HD industrial camera is still working at 10.0 Gy/h during the 8 h of measurements, with a moderate decrease of the SNR (5 dB). The work is valuable and can provide suggestion for camera users in the radiation field.

  3. Environmental dose rate assessment of ITER using the Monte Carlo method

    Directory of Open Access Journals (Sweden)

    Karimian Alireza

    2014-01-01

    Full Text Available Exposure to radiation is one of the main sources of risk to staff employed in reactor facilities. The staff of a tokamak is exposed to a wide range of neutrons and photons around the tokamak hall. The International Thermonuclear Experimental Reactor (ITER is a nuclear fusion engineering project and the most advanced experimental tokamak in the world. From the radiobiological point of view, ITER dose rates assessment is particularly important. The aim of this study is the assessment of the amount of radiation in ITER during its normal operation in a radial direction from the plasma chamber to the tokamak hall. To achieve this goal, the ITER system and its components were simulated by the Monte Carlo method using the MCNPX 2.6.0 code. Furthermore, the equivalent dose rates of some radiosensitive organs of the human body were calculated by using the medical internal radiation dose phantom. Our study is based on the deuterium-tritium plasma burning by 14.1 MeV neutron production and also photon radiation due to neutron activation. As our results show, the total equivalent dose rate on the outside of the bioshield wall of the tokamak hall is about 1 mSv per year, which is less than the annual occupational dose rate limit during the normal operation of ITER. Also, equivalent dose rates of radiosensitive organs have shown that the maximum dose rate belongs to the kidney. The data may help calculate how long the staff can stay in such an environment, before the equivalent dose rates reach the whole-body dose limits.

  4. A photocurrent compensation method of bipolar transistors under high dose rate radiation and its experimental research

    International Nuclear Information System (INIS)

    Yin Xuesong; Liu Zhongli; Li Chunji; Yu Fang

    2005-01-01

    Experiment using discrete bipolar transistors has been performed to verify the effect of the photocurrent compensation method. The theory of the dose rate effects of bipolar transistors and the photocurrent compensation method are introduced. The comparison between the response of hardened and unhardened circuits under high dose rate radiation is discussed. The experimental results show instructiveness to the hardness of bipolar integrated circuits under transient radiation. (authors)

  5. Effect of edema, relative biological effectiveness, and dose heterogeneity on prostate brachytherapy

    International Nuclear Information System (INIS)

    Wang, Jian Z.; Mayr, Nina A.; Nag, Subir; Montebello, Joseph; Gupta, Nilendu; Samsami, Nina; Kanellitsas, Christos

    2006-01-01

    Many factors influence response in low-dose-rate (LDR) brachytherapy of prostate cancer. Among them, edema, relative biological effectiveness (RBE), and dose heterogeneity have not been fully modeled previously. In this work, the generalized linear-quadratic (LQ) model, extended to account for the effects of edema, RBE, and dose heterogeneity, was used to assess these factors and their combination effect. Published clinical data have shown that prostate edema after seed implant has a magnitude (ratio of post- to preimplant volume) of 1.3-2.0 and resolves exponentially with a half-life of 4-25 days over the duration of the implant dose delivery. Based on these parameters and a representative dose-volume histogram (DVH), we investigated the influence of edema on the implant dose distribution. The LQ parameters (α=0.15 Gy -1 and α/β=3.1 Gy) determined in earlier studies were used to calculate the equivalent uniform dose in 2 Gy fractions (EUD 2 ) with respect to three effects: edema, RBE, and dose heterogeneity for 125 I and 103 Pd implants. The EUD 2 analysis shows a negative effect of edema and dose heterogeneity on tumor cell killing because the prostate edema degrades the dose coverage to tumor target. For the representative DVH, the V 100 (volume covered by 100% of prescription dose) decreases from 93% to 91% and 86%, and the D 90 (dose covering 90% of target volume) decrease from 107% to 102% and 94% of prescription dose for 125 I and 103 Pd implants, respectively. Conversely, the RBE effect of LDR brachytherapy [versus external-beam radiotherapy (EBRT) and high-dose-rate (HDR) brachytherapy] enhances dose effect on tumor cell kill. In order to balance the negative effects of edema and dose heterogeneity, the RBE of prostate brachytherapy was determined to be approximately 1.2-1.4 for 125 I and 1.3-1.6 for 103 Pd implants. These RBE values are consistent with the RBE data published in the literature. These results may explain why in earlier modeling studies

  6. MCNPX calculations of dose rate distribution inside samples treated in the research gamma irradiating facility at CTEx

    Energy Technology Data Exchange (ETDEWEB)

    Rusin, Tiago; Rebello, Wilson F.; Vellozo, Sergio O.; Gomes, Renato G., E-mail: tiagorusin@ime.eb.b, E-mail: rebello@ime.eb.b, E-mail: vellozo@cbpf.b, E-mail: renatoguedes@ime.eb.b [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Nuclear; Vital, Helio C., E-mail: vital@ctex.eb.b [Centro Tecnologico do Exercito (CTEx), Rio de Janeiro, RJ (Brazil); Silva, Ademir X., E-mail: ademir@con.ufrj.b [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Engenharia Nuclear

    2011-07-01

    A cavity-type cesium-137 research irradiating facility at CTEx has been modeled by using the Monte Carlo code MCNPX. The irradiator has been daily used in experiments to optimize the use of ionizing radiation for conservation of many kinds of food and to improve materials properties. In order to correlate the effects of the treatment, average doses have been calculated for each irradiated sample, accounting for the measured dose rate distribution in the irradiating chambers. However that approach is only approximate, being subject to significant systematic errors due to the heterogeneous internal structure of most samples that can lead to large anisotropy in attenuation and Compton scattering properties across the media. Thus this work is aimed at further investigating such uncertainties by calculating the dose rate distribution inside the items treated such that a more accurate and representative estimate of the total absorbed dose can be determined for later use in the effects-versus-dose correlation curves. Samples of different simplified geometries and densities (spheres, cylinders, and parallelepipeds), have been modeled to evaluate internal dose rate distributions within the volume of the samples and the overall effect on the average dose. (author)

  7. MCNPX calculations of dose rate distribution inside samples treated in the research gamma irradiating facility at CTEx

    International Nuclear Information System (INIS)

    Rusin, Tiago; Rebello, Wilson F.; Vellozo, Sergio O.; Gomes, Renato G.; Silva, Ademir X.

    2011-01-01

    A cavity-type cesium-137 research irradiating facility at CTEx has been modeled by using the Monte Carlo code MCNPX. The irradiator has been daily used in experiments to optimize the use of ionizing radiation for conservation of many kinds of food and to improve materials properties. In order to correlate the effects of the treatment, average doses have been calculated for each irradiated sample, accounting for the measured dose rate distribution in the irradiating chambers. However that approach is only approximate, being subject to significant systematic errors due to the heterogeneous internal structure of most samples that can lead to large anisotropy in attenuation and Compton scattering properties across the media. Thus this work is aimed at further investigating such uncertainties by calculating the dose rate distribution inside the items treated such that a more accurate and representative estimate of the total absorbed dose can be determined for later use in the effects-versus-dose correlation curves. Samples of different simplified geometries and densities (spheres, cylinders, and parallelepipeds), have been modeled to evaluate internal dose rate distributions within the volume of the samples and the overall effect on the average dose. (author)

  8. Evaluation of the influence of weather conditions on external dose rate

    International Nuclear Information System (INIS)

    Knight, A.

    1993-01-01

    Six time periods in 1989/90, when there were high gamma ray dose rate readings at three or more RIMNET Phase 1 sites, were selected for detailed study. The high dose rates were compared with meteorological data (rainfall, temperatures, windspeeds and atmospheric pressure) at the sites for the time periods studied. The results using daily and hourly data clearly show a correlation between gamma ray dose rate and rainfall but not with the other meteorological parameters studied. The increase in dose rate with increased rainfall is believed to be due to radon decay products being washed down with heavy rain. (author)

  9. Primordial radionuclides in soil and their contributions to absorbed dose rate in air

    International Nuclear Information System (INIS)

    Moriones, C.R.; Duran, E.B.; Cruz, F.M. de la

    1989-01-01

    The predominant primordial radionuclides in soil which give rise to terrestrial radiation (external irradiation) were analyzed by gamma spectrometry. 40 K has the highest average activity mass concentration, i.e. 212 Bq kg -1 . 238 U and 232 Th concentrations are much lower and are only 14 and 16 Bq kg -1 respectively. Based on conversion factors given in the UNSCEAR Report (1988), the absorbed dose rates in air at one meter above the ground surface per unit activity mass concentration of primordial radionuclides were calculated. The average per caput absorbed dose rate in air received by Filipinos due to terrestrial radiation is 23 nGy h -1 . The relative contribution of 232 Th series to the total absorbed dose rate is highest, followed closely by 40 K. The contribution of 238 U series is only about one-half that of the 232 Th series. Based on the results obtained, the terrestrial component of the average per caput exposure dose rate due to natural radiation sources is 2.64 μR h -1 or roughly 3 μR h -1 . This leads to an annual average effective dose equivalent to 202 μSv. (Author). 5 annexes; 4 figs.; 3 tabs.; 6 refs

  10. A review of data on the effects of low and low dose-rate radiation with special reference to the dose limit problem

    International Nuclear Information System (INIS)

    Matsudaira, Hiromichi

    1977-01-01

    This is a review of data pertaining to detection and quantification of the effects after exposure to low LET radiations delivered at low and low dose-rate, i.e., at a level of maximum permissible dose for the radiation workers, on experimental materials ranging from plant to rodents and on some human populations. Irradiation at a dose of a few rad is reported to induce mutation or malignant transformation in some selected model systems, with a linear dose-effect relationship. Moreover, the incidence of the chromosome aberrations in spermatocytes is reported to be elevated in the scorpiones (Tityus bahiensis) collected in a region of high natural background radiations (several rem/year). An increase in the incidence of childhood malignancies is reported among children exposed in utero to diagnostic X-rays. Appreciable increase in the incidence of genetic diseases due possibly to chromosome aberrations is also reported among population living in a region of high natural background radiations. Points are raised and discussed as to the interpretation and particularly application of these data to the estimation of somatic and genetic risks of human population from man-made radiations. Recent attempts of risk-benefit analysis with populations subjected to mass X-ray examination of the chest and stomac are referred to. Since we are unaware of the actual injuries due to the exposure even at the level of radiation workers (5 rem/year), it is out of the capacity of a biologist to afford the basis for the decision of limiting the exposure of general population due to the light water reactor operation to 5 mrem/year. (auth.)

  11. Effect of Ion Flux (Dose Rate) in Source-Drain Extension Ion Implantation for 10-nm Node FinFET and Beyond on 300/450mm Platforms

    Science.gov (United States)

    Shen, Ming-Yi

    The improvement of wafer equipment productivity has been a continuous effort of the semiconductor industry. Higher productivity implies lower product price, which economically drives more demand from the market. This is desired by the semiconductor manufacturing industry. By raising the ion beam current of the ion implanter for 300/450mm platforms, it is possible to increase the throughput of the ion implanter. The resulting dose rate can be comparable to the performance of conventional ion implanters or higher, depending on beam current and beam size. Thus, effects caused by higher dose rate must be investigated further. One of the major applications of ion implantation (I/I) is source-drain extension (SDE) I/I for the silicon FinFET device. This study investigated the dose rate effects on the material properties and device performance of the 10-nm node silicon FinFET. In order to gain better understanding of the dose rate effects, the dose rate study is based on Synopsys Technology CAD (TCAD) process and device simulations that are calibrated and validated using available structural silicon fin samples. We have successfully shown that the kinetic monte carlo (KMC) I/I simulation can precisely model both the silicon amorphization and the arsenic distribution in the fin by comparing the KMC simulation results with TEM images. The results of the KMC I/I simulation show that at high dose rate more activated arsenic dopants were in the source-drain extension (SDE) region. This finding matches with the increased silicon amorphization caused by the high dose-rate I/I, given that the arsenic atoms could be more easily activated by the solid phase epitaxial regrowth process. This increased silicon amorphization led to not only higher arsenic activation near the spacer edge, but also less arsenic atoms straggling into the channel. Hence, it is possible to improve the throughput of the ion implanter when the dopants are implanted at high dose rate if the same doping level

  12. Dependence of radiation effects in organic materials on absorbed dose rate; Zavisimost` radiatsionnykh ehffektov v organicheskikh materialakh ot moshchn osti pogloshchennoj dozy

    Energy Technology Data Exchange (ETDEWEB)

    B` riksman, B A; Kras` ko, L B; Milinchuk, V K; Sichkar` , V P

    1994-12-31

    Analysis of experimental data on the dose rate effect on the operational properties of organic polymers is conducted. Methods of radiation effects forecasting under utilization of these materials are compared according to the results of the accelerated testing.

  13. UV-radiation and skin cancer dose effect curves

    International Nuclear Information System (INIS)

    Henriksen, T.; Dahlback, A.; Larsen, S.H.

    1988-08-01

    Norwegian skin cancer data were used in an attempt to arrive at the dose effect relationship for UV-carcinogenesis. The Norwegian population is relatively homogenous with regard to skin type and live in a country where the annual effective UV-dose varies by approximately 40 percent. Four different regions of the country, each with a broadness of 1 o in latitude (approximately 111 km), were selected . The annual effective UV-doses for these regions were calculated assuming normal ozone conditions throughout the year. The incidence of malignant melanoma and non-melanoma skin cancer (mainly basal cell carcinoma) in these regions were considered and compared to the annual UV-doses. For both these types of cancer a quadratic dose effect curve seems to be valid. Depletions of the ozone layer results in larger UV-doses which in turn may yield more skin cancer. The dose effect curves suggest that the incidence rate will increase by an ''amplification factor'' of approximately 2

  14. Gamma-Dose rate above uranium mineralization areas in western sudan

    International Nuclear Information System (INIS)

    Sam, A.K; Sirelkhatim, D.A; Hassona, R.K.

    2003-01-01

    Absorbed dose rate received from natural external irradiation in uranium mineralisation areas at Uro, Kurun and Jebel Mun was evaluated from the measured activity concentrations of 238 U, 232 Th and 40 K in rock samples.The analyses were performed using alpha-spectrometry and high-resolution gamma-ray spectrometry. A great spatial variability was observed in activity concentration of the primordial radionuclides indicating complexity in geological features. Converses to Jebel Mun, Uro and Kurun deposits exhibit very high U:Th mass ratio. The resulting absorbed dose rate in air as estimated using DRCF's fall within the range of 70-522 (Mun), 569-349 (Uro) and 84-320 n Gy/h (Kurun). At maximum, they correspond to annual effective dose of 0.64, 7.78 and 0.39 mSv, respectively. Uranium is the principal producer of the surface radioactivity at Uro and Kurun as it contributes 99.6% and 95% of the total absorbed dose whereas, in Jebel Mun the cause of radioactive anomaly is due to 40 K and 232 Th. In Uro and Kurun deposits, daughter/parent activity ratios along uranium series, Viz. 234 U: 238 U, 230 Th:U, 210 Po:U, are not differ from the equilibrium value of unity.(Author)

  15. Effective dose to radon considering people's activities

    International Nuclear Information System (INIS)

    Shimo, M.; Seki, K.; Kikuchi, I.

    1992-01-01

    The tidal volume was estimated for evaluating the effective dose due to radon concentration in the atmosphere. In this study regional population was separated to vocation and non-vocation. The occupancy time and the breathing rate for both vocation and non-vocation groups were estimated, and the annual tidal volume for both groups were calculated. Human actions were separated to 18 activities in the process for estimating the breathing rate. It was clear that the breathing rate depended on human activity and that the human activity changed with its age, so the breathing rate varied with age. Finally the effective doses due to radon and radon progeny indoors and outdoors were evaluated. The maximum annual effective dose was estimated to be 1.2 mSv, minimum 0.2 mSv, and mean 0.51 mSv for vocation. For non-vocation, the male maximum value 0.43 mSv was obtained at the 16 age and the minimum 0.12 mSv at the 70 age, whereas female maximum 0.26 mSv was obtained at the 12 age and the minimum 0.11 mSv at the 70 age. In addition in this study objective areas are Aichi, Gifu, and Mie prefectures for vocation and only Aichi prefecture for non-vocation. (author)

  16. Serial measurement of radiation leakage dose rates in safekeeping at the Gammaknife room

    International Nuclear Information System (INIS)

    Baba, Sadaaki; Nozaki, Kenichi; Toyoda, Tatsuya; Wakamatsu, Osamu; Machida, Toru

    2006-01-01

    We report the serial measurement of leakage dose rates in safekeeping at the Gammaknife room during the past 4 years and 9 months by scintillation survey meter. The leakage dose rates at the radiation boundaries were the same as the natural background levels. Leakage dose rates at each shield calculation point from two 90 Sr calibration sources contained in the storehouse were negligible compared with those from 60 Co sources of the Gammaknife. 60 Co sources of the Gammaknife are arranged in 201 pieces at 10 degree interval on the circumference and in five lines within an arc of 35 degrees. Its shield container is made of iron at least 43 cm thick. We got leakage dose rates less than 40% of the calculated values. We think it is caused by the difference of each actual distance and shield thickness because 60 Co sources are usually considered as a point source in the shield calculation. There are shutters opening up and down when patients go in and out to the direction of the couch. The leakage values to this direction were about twice as much as the calculated value. So, we knew the thickness of those shutters was thinner than 43 cm. The half life time of 60 Co source calculated from the serial measurements of leakage dose rates was 4.93 years on average. It is 94% of the physical half life value of 5.27 years. We judged it was acceptable considering the difficulty of measuring low dose rate level with the radiation survey meter. Very strong correlation was observed between the decrease of 60 Co dose rate acquired from one minute measurement at the center of 18 cm diameter polysterene phantom gotten from December 2000 to August 2005 and that of computation based on the physical half life time. Likewise there was strong and more correlation with leakage dose rate in the Gammaknife room. From this, we deduce the leakage dose rate decreases according to the theory of the disintegration of radioactivity with passage of time. Revised radiation related laws took effect

  17. Determining dose rate with a semiconductor detector - Monte Carlo calculations of the detector response

    Energy Technology Data Exchange (ETDEWEB)

    Nordenfors, C

    1999-02-01

    To determine dose rate in a gamma radiation field, based on measurements with a semiconductor detector, it is necessary to know how the detector effects the field. This work aims to describe this effect with Monte Carlo simulations and calculations, that is to identify the detector response function. This is done for a germanium gamma detector. The detector is normally used in the in-situ measurements that is carried out regularly at the department. After the response function is determined it is used to reconstruct a spectrum from an in-situ measurement, a so called unfolding. This is done to be able to calculate fluence rate and dose rate directly from a measured (and unfolded) spectrum. The Monte Carlo code used in this work is EGS4 developed mainly at Stanford Linear Accelerator Center. It is a widely used code package to simulate particle transport. The results of this work indicates that the method could be used as-is since the accuracy of this method compares to other methods already in use to measure dose rate. Bearing in mind that this method provides the nuclide specific dose it is useful, in radiation protection, since knowing what the relations between different nuclides are and how they change is very important when estimating the risks

  18. Dose rate to the inner ear during Moessbauer experiments

    International Nuclear Information System (INIS)

    Kliauga, P.; Khanna, S.M.

    1983-01-01

    The most widely used technique for studying vibrations of the inner ear utilises the Moessbauer effect; this requires placement of a radioactive source on the basilar membrane. This source, although small in size and less than 37 MBq(1 mCi) in strength, is placed in close proximity to sensitive receptor cells. Using a series solution for the radiation field of a rectangular source the absorbed dose rate delivered to receptor cells at various depths and at points off-axis from the centre of the source is calculated. It is concluded that the dose delivered during the course of a Moessbauer experiment may well be sufficient to damage receptor cells and cause a loss of response. (author)

  19. Instrument evaluation no. 9. Mini-instruments dose rate meter type 5 - 1OR

    International Nuclear Information System (INIS)

    Iles, W.J.; Burgess, P.H.; Callowhill, K.

    1977-04-01

    This instrument is a portable, battery powered dose rate meter covering the dose rate range from 0 to 200 mrad h -1 . The instrument is designed to measure X- and γ-radiation dose rates over the energy range from 45 keV to 3 MeV. The radiation detector of the instrument is a GM tube with a specially designed energy compensation sheath. This detector is incorporated in a probe connected to the rate meter by an extensible cable which may be either hand-held or clipped on to the top of the instrument case. All the measurements in this report have been taken with the long axis of the probe normal to the direction of the incident radiation, the orientation recommended by the manufacturer. The information is given under the following headings: facilities and controls; radiation characteristics; electrical characteristics; effect of ambient temperature; mechanical characteristics; summary of performance; conclusions. (U.K.)

  20. Assessment of volumetric-modulated arc therapy for constant and variable dose rates

    Directory of Open Access Journals (Sweden)

    Mariluz De Ornelas-Couto

    2017-01-01

    Full Text Available Purpose: The aim of this study is to compare the effects of dose rate on volumetric-modulated arc therapy plans to determine optimal dose rates for prostate and head and neck (HN cases. Materials and Methods: Ten prostate and ten HN cases were retrospectively studied. For each case, seven plans were generated: one variable dose rate (VDR and six constant dose rate (CDR (100–600 monitor units [MUs]/min plans. Prescription doses were: 80 Gy to planning target volume (PTV for the prostate cases, and 70, 60, and 54 Gy to PTV1, PTV2, and PTV3, respectively, for HN cases. Plans were normalized to 95% of the PTV and PTV1, respectively, with the prescription dose. Plans were assessed using Dose-Volume-Histogram metrics, homogeneity index, conformity index, MUs, and delivery time. Results: For the prostate cases, significant differences were found for rectum D35 between VDR and all CDR plans, except CDR500. Furthermore, VDR was significantly different than CDR100 and 200 for bladder D50. Delivery time for all CDR plans and MUs for CDR400–600 were significantly higher when compared to VDR. HN cases showed significant differences between VDR and CDR100, 500 and 600 for D2 to the cord and brainstem. Significant differences were found for delivery time and MUs for all CDR plans, except CDR100 for number of MUs. Conclusion: The most significant differences were observed in delivery time and number of MUs. All-in-all, the best CDR for prostate cases was found to be 300 MUs/min and 200 or 300 MUs/min for HN cases. However, VDR plans are still the choice in terms of MU efficiency and plan quality.

  1. Laser-based irradiation apparatus and method to measure the functional dose-rate response of semiconductor devices

    Science.gov (United States)

    Horn, Kevin M [Albuquerque, NM

    2008-05-20

    A broad-beam laser irradiation apparatus can measure the parametric or functional response of a semiconductor device to exposure to dose-rate equivalent infrared laser light. Comparisons of dose-rate response from before, during, and after accelerated aging of a device, or from periodic sampling of devices from fielded operational systems can determine if aging has affected the device's overall functionality. The dependence of these changes on equivalent dose-rate pulse intensity and/or duration can be measured with the apparatus. The synchronized introduction of external electrical transients into the device under test can be used to simulate the electrical effects of the surrounding circuitry's response to a radiation exposure while exposing the device to dose-rate equivalent infrared laser light.

  2. Measurement and monitoring of entrance exposure dose rate in X-ray image intensifier television with dose rate control

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J [Bezirkskrankenhaus Brandenburg (German Democratic Republic)

    1981-03-01

    For X-ray image intensifier television operation very low entrance dose rates (about 5.2 nA/kg) are stated and demanded, respectively. These required values are often manifold exceeded in practice so that a check seems to be necessary. It is shown and proved how these measurements can be performed with simple, generally available means of measurement in the radiological practice. For ZnCdS-image intensifiers should be considered that about 13 nA/kg for the large entrance size are not to be exceeded; for the CsI type lower values (factor 1.5) are practicable because of the twofold quantum absorption efficiency. Furthermore, some tests for a semiquantitative function check of the automatic dose rate control are proposed.

  3. The measurement of the indoor absorbed dose rate in air in Beijing

    International Nuclear Information System (INIS)

    Guo Mingqiang; Pan Ziqiang; Yi Nanchang; Wei Zemin; Zhang Chao; Wang Huamin; Zhu Wencai

    1985-01-01

    This paper describes the indoor absorbed dose rate in air in Beijing. The average indoor absorbed dose rate in air is 8.29 μrad/h. The ratio of indoor to outdoor absorbed dose rate for 849 buildings is 1.51

  4. Nuclear Radiation Degradation Study on HD Camera Based on CMOS Image Sensor at Different Dose Rates

    Directory of Open Access Journals (Sweden)

    Congzheng Wang

    2018-02-01

    Full Text Available In this work, we irradiated a high-definition (HD industrial camera based on a commercial-off-the-shelf (COTS CMOS image sensor (CIS with Cobalt-60 gamma-rays. All components of the camera under test were fabricated without radiation hardening, except for the lens. The irradiation experiments of the HD camera under biased conditions were carried out at 1.0, 10.0, 20.0, 50.0 and 100.0 Gy/h. During the experiment, we found that the tested camera showed a remarkable degradation after irradiation and differed in the dose rates. With the increase of dose rate, the same target images become brighter. Under the same dose rate, the radiation effect in bright area is lower than that in dark area. Under different dose rates, the higher the dose rate is, the worse the radiation effect will be in both bright and dark areas. And the standard deviations of bright and dark areas become greater. Furthermore, through the progressive degradation analysis of the captured image, experimental results demonstrate that the attenuation of signal to noise ratio (SNR versus radiation time is not obvious at the same dose rate, and the degradation is more and more serious with increasing dose rate. Additionally, the decrease rate of SNR at 20.0, 50.0 and 100.0 Gy/h is far greater than that at 1.0 and 10.0 Gy/h. Even so, we confirm that the HD industrial camera is still working at 10.0 Gy/h during the 8 h of measurements, with a moderate decrease of the SNR (5 dB. The work is valuable and can provide suggestion for camera users in the radiation field.

  5. Neutron production and dose rate in the IFMIF/EVEDA LIPAc injector beam commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Keitaro, E-mail: kondo.keitaro@jaea.go.jp [Rokkasho Fusion Institute, Japan Atomic Energy Agency, Rokkasho-mura, Kamikita-gun, Aomori (Japan); Narita, Takahiro; Usami, Hiroki; Takahashi, Hiroki; Ochiai, Kentaro; Shinto, Katsuhiro; Kasugai, Atsushi [Rokkasho Fusion Institute, Japan Atomic Energy Agency, Rokkasho-mura, Kamikita-gun, Aomori (Japan); Okumura, Yoshikazu [IFMIF/EVEDA Project Team, Rokkasho-mura, Kamikita-gun, Aomori (Japan)

    2016-11-01

    Highlights: • A dedicated neutron production yield monitoring system for LIPAc has been developed. • The biological dose rate during operation of the LIPAc injector was analyzed. • The neutron streaming effect due to penetrations in the shielding wall was investigated. - Abstract: The construction of the Linear IFMIF Prototype Accelerator (LIPAc) is in progress in Rokkasho, Japan, and the deuteron beam commissioning of the injector began in July 2015. Due to the huge beam current of 125 mA, a large amount of d-D neutrons are produced in the commissioning. The neutron streaming effect through pipe penetrations and underground pits may dominate the radiation dose at the outside of the accelerator vault during the injector operation. In the present study the effective dose rate expected during the injector commissioning was analyzed by a Monte Carlo calculation and compared with the measured value. For the comparison it is necessary to know the total neutron production yield in the accelerator vault, thus a dedicated neutron production yield monitoring system was developed. The yield obtained was smaller than that previously reported in a literature by a factor of a few and seems to depend on some beam conditions. From the comparison it was proved that the calculation always provides a conservative estimate and the dose rates in places where occupational works can always access and the controlled area boundary are expected to be far less than the legal criteria throughout the injector commissioning.

  6. Is the standard dose rate for de-contamination, 0.23 mc-Sv/hr, truly 1 mSv/year?

    International Nuclear Information System (INIS)

    Furuta, Sadaaki

    2014-01-01

    Examined is the validity of the standard dose rates in the title, which have been additionally defined by Ministry of the Environment (ME) to the measures of Fukushima Nuclear Power Plant Accident. The standard 0.23 mc-Sv/hr is the sum of natural ambient dose rate 0.04 mc-Sv/hr in average of Japan as measured with NaI scintillation surveymeter, plus additional accidental exposure dose 1 mSv/y, which is defined equivalent to 0.19 mc-Sv/hr. Here, the equation of addition 0.04+0.19 mc-Sv/hr is not exactly correct because the unit of each dose value has different means as follows. The natural dose is derived from the value 5.8 mc-R/hr (0.038 mc-Sv/hr, effective dose) of the average national natural dose data (2011) of Ministry of Education, Culture, Sports, Science and Technology. However, if the measurement is done with the surveymeter which practically gives 1 cm dose equivalent, the rate is calculated to be 0.06 mc-Sv/hr. When the Fukushima prefectural natural dose rate 6.4 mc-R/hr is employed, the calculation gives 0.07 mc-Sv/hr. ME defines the additional doses to be 0.19 mc-Sv/hr and 1 mSv/y, which are derived from the calculation: (0.19 mc-Sv/hr x 8 hr outdoor + 0.19 mc-Sv/hr x 0.4 indoor, shielded) x 365 d/y= 1 mSv/y. The dose is assumed to be measurable with the surveymeter (1 cm dose equivalent) and thereby calculation, if the source is mainly "1"3"4Cs and "1"3"7Cs, gives the effective dose of 0.32 mc-Sv/hr to be managed by the meter. As this, the effective dose unit and 1 cm equivalent dose unit are used for calculation of the administrative standard dose rate of 1 mSv/y, which should be recognized by both radiological experts and administration for the explanation to general public. (T.T.)

  7. Car-borne survey of natural background gamma dose rate in Canakkale region (Turkey)

    International Nuclear Information System (INIS)

    Turhan, S.; Arikan, I. H.; Oquz, F.; Aezdemir, T.; Yuecel, B.; Varinlioqlu, A.; Koese, A.

    2012-01-01

    Natural background gamma radiation was measured along roads in the environs of Canakkale region by using a car-borne spectrometer system with a plastic gamma radiation detector. In addition, activity concentrations of 238 U, 226 Ra, 232 Th and 40 K in soil samples from the Canakkale region were determined by using a gamma spectrometer with an HPGe detector. A total of 92 856 data of the background gamma dose rate were collected for the Canakkale region. The background gamma dose rate of the Canakkale region was mapped using ArcGIS software, applying the geostatistical inverse distance-weighted method. The average and population-weighted average of the gamma dose are 55.4 and 40.6 nGy h -1 , respectively. The corresponding average annual effective dose to the public ranged from 26.6 to 96.8 μSv. (authors)

  8. High dose-per-pulse electron beam dosimetry: Usability and dose-rate independence of EBT3 Gafchromic films.

    Science.gov (United States)

    Jaccard, Maud; Petersson, Kristoffer; Buchillier, Thierry; Germond, Jean-François; Durán, Maria Teresa; Vozenin, Marie-Catherine; Bourhis, Jean; Bochud, François O; Bailat, Claude

    2017-02-01

    The aim of this study was to assess the suitability of Gafchromic EBT3 films for reference dose measurements in the beam of a prototype high dose-per-pulse linear accelerator (linac), capable of delivering electron beams with a mean dose-rate (Ḋ m ) ranging from 0.07 to 3000 Gy/s and a dose-rate in pulse (Ḋ p ) of up to 8 × 10 6 Gy/s. To do this, we evaluated the overall uncertainties in EBT3 film dosimetry as well as the energy and dose-rate dependence of their response. Our dosimetric system was composed of EBT3 Gafchromic films in combination with a flatbed scanner and was calibrated against an ionization chamber traceable to primary standard. All sources of uncertainties in EBT3 dosimetry were carefully analyzed using irradiations at a clinical radiotherapy linac. Energy dependence was investigated with the same machine by acquiring and comparing calibration curves for three different beam energies (4, 8 and 12 MeV), for doses between 0.25 and 30 Gy. Ḋ m dependence was studied at the clinical linac by changing the pulse repetition frequency (f) of the beam in order to vary Ḋ m between 0.55 and 4.40 Gy/min, while Ḋ p dependence was probed at the prototype machine for Ḋ p ranging from 7 × 10 3 to 8 × 10 6 Gy/s. Ḋ p dependence was first determined by studying the correlation between the dose measured by films and the charge of electrons measured at the exit of the machine by an induction torus. Furthermore, we compared doses from the films to independently calibrated thermo-luminescent dosimeters (TLD) that have been reported as being dose-rate independent up to such high dose-rates. We report that uncertainty below 4% (k = 2) can be achieved in the dose range between 3 and 17 Gy. Results also demonstrated that EBT3 films did not display any detectable energy dependence for electron beam energies between 4 and 12 MeV. No Ḋ m dependence was found either. In addition, we obtained excellent consistency between films and TLDs over the entire Ḋ p

  9. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    International Nuclear Information System (INIS)

    Levy, R.P.

    1991-01-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examining the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute γ-radiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. It was concluded that oligodendrocytes in irradiated cultures had significantly lower functional capacity than did unirradiated controls. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. At DIC 14, the group irradiated in a single fraction had significantly lower oligodendrocyte counts than any group given split doses; all irradiated cultures had marked depression of MBP synthesis, but to significant differences referable to time interval between doses. At DIC 21, cultures irradiated at intervals of 0 h to 2 h had similar oligodendrocyte counts to one another, but these counts were significantly lower than in cultures irradiated at intervals of 4 h to 6 h; MBP levels remained depressed at DIC 21 for all irradiated cultures. The oligodendrocyte response to dose rate (0.03 to 1.97 Gy/min) was evaluated at DIC 14 and DIC 21. Exposure at 0.03 Gy/min suppressed oligodendrocyte counts at DIC 21 less than did higher dose rates in 5-Gy irradiated cultures

  10. Shielding optimisation of the ITER ICH&CD antenna for shutdown dose rate

    International Nuclear Information System (INIS)

    Turner, Andrew; Leichtle, Dieter; Lamalle, Philippe; Levesy, Bruno; Meunier, Lionel; Polunovskiy, Eduard; Sartori, Roberta; Shannon, Mark

    2015-01-01

    Highlights: • Neutronics analysis on the ITER ICH&CD system conducted to reduce shutdown dose rate. • Several designs for shielding the port plug gaps were modelled. • Shielding significantly reduced interspace dose rate but still exceed project requirements. • Design optimisation of the ICH port is continuing. • Significant contributions from other ports require an integrated modelling approach. - Abstract: The Ion Cyclotron Heating and Current Drive (ICH&CD) system will reside in ITER equatorial port plugs 13 and 15. Shutdown dose rates (SDDR) within the port interspace are required to be less than 100 μSv/h at 10 6 s cooling. A significant contribution to the SDDR results from neutrons streaming down gaps around the port frame, and the mitigation of this streaming is the main subject of these analyses. An updated MCNP model of the antenna was created and integrated into an ITER reference model. Shielding plates were defined in the port gaps, and scoping studies conducted to assess their effectiveness in several configurations, based on which a front dog-leg arrangement was selected for high resolution 3-D activation analysis using MCR2S. It was concluded that the selected configuration reduced the SDDR from ∼500 μSv/h to 220 μSv/h but were still in excess of dose rate requirements. Approximately 30% of this was due to cross-talk from neighbouring ports. In addition, increased dose rates were observed in the port interspace along the lines of sight of the removable vacuum transmission lines. Design optimisation is continuing, however an integrated approach is needed with regard to ITER port plug design and the shielding of surrounding systems.

  11. Shielding optimisation of the ITER ICH&CD antenna for shutdown dose rate

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Andrew, E-mail: andrew.turner@ccfe.ac.uk [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Leichtle, Dieter [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Lamalle, Philippe; Levesy, Bruno [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St., Paul-lez-Durance (France); Meunier, Lionel [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Polunovskiy, Eduard [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St., Paul-lez-Durance (France); Sartori, Roberta [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Shannon, Mark [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2015-10-15

    Highlights: • Neutronics analysis on the ITER ICH&CD system conducted to reduce shutdown dose rate. • Several designs for shielding the port plug gaps were modelled. • Shielding significantly reduced interspace dose rate but still exceed project requirements. • Design optimisation of the ICH port is continuing. • Significant contributions from other ports require an integrated modelling approach. - Abstract: The Ion Cyclotron Heating and Current Drive (ICH&CD) system will reside in ITER equatorial port plugs 13 and 15. Shutdown dose rates (SDDR) within the port interspace are required to be less than 100 μSv/h at 10{sup 6} s cooling. A significant contribution to the SDDR results from neutrons streaming down gaps around the port frame, and the mitigation of this streaming is the main subject of these analyses. An updated MCNP model of the antenna was created and integrated into an ITER reference model. Shielding plates were defined in the port gaps, and scoping studies conducted to assess their effectiveness in several configurations, based on which a front dog-leg arrangement was selected for high resolution 3-D activation analysis using MCR2S. It was concluded that the selected configuration reduced the SDDR from ∼500 μSv/h to 220 μSv/h but were still in excess of dose rate requirements. Approximately 30% of this was due to cross-talk from neighbouring ports. In addition, increased dose rates were observed in the port interspace along the lines of sight of the removable vacuum transmission lines. Design optimisation is continuing, however an integrated approach is needed with regard to ITER port plug design and the shielding of surrounding systems.

  12. Effect of small-dose levosimendan on mortality rates and organ functions in Chinese elderly patients with sepsis

    Directory of Open Access Journals (Sweden)

    Wang X

    2017-05-01

    Full Text Available Xin Wang,1,* Shikui Li2,* 1Intensive Care Unit, 2Cardiothoracic Surgery, Daqing Oilfield General Hospital, Daqing, Heilongjiang, People’s Republic of China *These authors contributed equally to this work Aim: As a primary cause of death not only in Western countries but also in the People’s Republic of China, sepsis is diagnosed as abnormal organ functions as a result of a disordered response to a severe infection. This study was designed to assess the effect of small-dose levosimendan without a loading dose on mortality rates and organ functions in Chinese elderly patients with sepsis.Methods: Following a prospective, randomized, and double-blinded design, 240 Chinese elderly patients with sepsis shock were admitted to the intensive care unit (ICU. All patients were randomly and evenly assigned into a levosimendan group (number of patients =120 and a control group (number of patients =120. The control group underwent standard care, and the levosimendan group was administered levosimendan in addition to standard care.Results: All participants, comprising 134 males (55.8% and 106 females (44.2%, were 70 (67–73 years old. Baseline characteristics, preexisting illnesses, initial infections, organ failures, and additional agents and therapies showed no significant difference between the two groups (P>0.05 for all. There were no significant differences in mortality rates at 28 days, at ICU discharge, and at hospital discharge between the two groups (P>0.05 for all. The number of days of ICU and hospital stay in the levosimendan group was significantly less than for those in the control group (P<0.05 for all. Mean daily total sequential organ failure assessment score and all organ scores except the cardiovascular scores showed no significant difference between the two groups (P>0.05 for all. Cardiovascular scores in the levosimendan group were significantly higher than those in the control group (P<0.05 for all.Conclusion: Small-dose

  13. Terrestrial gamma ray dose rates on Ryoke granitic rocks in Ikoma Mountains

    International Nuclear Information System (INIS)

    Ikeda, Tadashi; Ueshima, Masaaki; Shibayama, Motohiko; Hiraoka, Yoshitsugu; Muslim, Dicky

    2012-01-01

    We measured the γ dose rate of 16 rock bodies in the field, which belonged to Ryoke granitic rocks distributed over Ikoma Mountains. The measurement points were 190 spots, and the mean dose rate was 82.0 ± 21.0 nGy/h. Results of analysis were summarized as follows. (1) The distribution of the dose rate in the Fukihata quartz diorite showed that the rocks crystallization differentiation had progressed from the south to the north. (2) The dose rate of granite tended to arise with the increase of SiO 2 quantity, but in the Iwahashiyama granite, the Takayasuyama granite, the Omichi granite and the Katakami granite, it was revealed that the dose rate was low in spite of high SiO 2 quantity. (3) It became clear that the dose rate of Ryoke granitic rocks from the first stage to the fourth stage was high to be considered as a new rock body. (4) Because the relationship between the dose rate of rocks and the main chemical elements did not show a common characteristic, it may be that those rocks were formed from different Magma. (author)

  14. The threshold vs LNT showdown: Dose rate findings exposed flaws in the LNT model part 1. The Russell-Muller debate

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, Edward J., E-mail: edwardc@schoolph.umass.edu

    2017-04-15

    This paper assesses the discovery of the dose-rate effect in radiation genetics and how it challenged fundamental tenets of the linear non-threshold (LNT) dose response model, including the assumptions that all mutational damage is cumulative and irreversible and that the dose-response is linear at low doses. Newly uncovered historical information also describes how a key 1964 report by the International Commission for Radiological Protection (ICRP) addressed the effects of dose rate in the assessment of genetic risk. This unique story involves assessments by two leading radiation geneticists, Hermann J. Muller and William L. Russell, who independently argued that the report's Genetic Summary Section on dose rate was incorrect while simultaneously offering vastly different views as to what the report's summary should have contained. This paper reveals occurrences of scientific disagreements, how conflicts were resolved, which view(s) prevailed and why. During this process the Nobel Laureate, Muller, provided incorrect information to the ICRP in what appears to have been an attempt to manipulate the decision-making process and to prevent the dose-rate concept from being adopted into risk assessment practices. - Highlights: • The discovery of radiation dose rate challenged the scientific basis of LNT. • Radiation dose rate occurred in males and females. • The dose rate concept supported a threshold dose-response for radiation.

  15. The threshold vs LNT showdown: Dose rate findings exposed flaws in the LNT model part 1. The Russell-Muller debate

    International Nuclear Information System (INIS)

    Calabrese, Edward J.

    2017-01-01

    This paper assesses the discovery of the dose-rate effect in radiation genetics and how it challenged fundamental tenets of the linear non-threshold (LNT) dose response model, including the assumptions that all mutational damage is cumulative and irreversible and that the dose-response is linear at low doses. Newly uncovered historical information also describes how a key 1964 report by the International Commission for Radiological Protection (ICRP) addressed the effects of dose rate in the assessment of genetic risk. This unique story involves assessments by two leading radiation geneticists, Hermann J. Muller and William L. Russell, who independently argued that the report's Genetic Summary Section on dose rate was incorrect while simultaneously offering vastly different views as to what the report's summary should have contained. This paper reveals occurrences of scientific disagreements, how conflicts were resolved, which view(s) prevailed and why. During this process the Nobel Laureate, Muller, provided incorrect information to the ICRP in what appears to have been an attempt to manipulate the decision-making process and to prevent the dose-rate concept from being adopted into risk assessment practices. - Highlights: • The discovery of radiation dose rate challenged the scientific basis of LNT. • Radiation dose rate occurred in males and females. • The dose rate concept supported a threshold dose-response for radiation.

  16. Organ or tissue doses, effective dose and collective effective dose from X-ray diagnosis, in Japan

    International Nuclear Information System (INIS)

    Murayama, Takashi; Nishizawa, Kanae; Noda, Yutaka; Kumamoto, Yoshikazu; Iwai, Kazuo.

    1996-01-01

    Effective doses and collective effective doses from X-ray diagnostic examinations were calculated on the basis of the frequency of examinations estimated by a nationwide survey and the organ or tissue doses experimentally determined. The average organ or tissue doses were determined with thermoluminescence dosimeters put at various sites of organs or tissues in an adult and a child phantom. Effective doses (effective dose equivalents) were calculated as the sum of the weighted equivalent doses in all the organs or tissues of the body. As the examples of results, the effective doses per radiographic examination were approximately 7 mGy for male, and 9 mGy for female angiocardiography, and about 3 mGy for barium meal. Annual collective effective dose from X-ray diagnostic examinations in 1986 were about 104 x 10 3 person Sv from radiography and 118 x 10 3 person Sv from fluoroscopy, with the total of 222 x 10 3 person Sv. (author)

  17. The software and hardware design of a 16 channel online dose rate monitoring system

    International Nuclear Information System (INIS)

    Tang Wenjuan; Yan Yonghong; Yang Shiming; Li Xiaonan; Min Jian

    2011-01-01

    The software and hardware design of a 16 channel online dose rate monitoring system is presented. After being amplified and A/D converted, the output signal of the sensors was sent to a microprocessor through an FPGA, where the low-frequency filter, calculation, temperature compensation and pedestal deduction were accomplished. Such steps corrected the variation of dark current dependent on temperature fluctuations in a effective way, and finally the instantaneous dose rate results with enough precise were obtained. (authors)

  18. Improved estimates of external gamma dose rates in the environs of Hinkley Point Power Station

    International Nuclear Information System (INIS)

    Macdonald, H.F.; Thompson, I.M.G.

    1988-07-01

    The dominant source of external gamma dose rates at centres of population within a few kilometres of Hinkley Point Power Station is the routine discharge of 41-Ar from the 'A' station magnox reactors. Earlier estimates of the 41-Ar radiation dose rates were based upon measured discharge rates, combined with calculations using standard plume dispersion and cloud-gamma integration models. This report presents improved dose estimates derived from environmental gamma dose rate measurements made at distances up to about 1 km from the site, thus minimising the degree of extrapolation introduced in estimating dose rates at locations up to a few kilometres from the site. In addition, results from associated chemical tracer measurements and wind tunnel simulations covering distances up to about 4 km from the station are outlined. These provide information on the spatial distribution of the 41-Ar plume during the initial stages of its dispersion, including effects due to plume buoyancy and momentum and behaviour under light wind conditions. In addition to supporting the methodology used for the 41-Ar dose calculations, this information is also of generic interest in the treatment of a range of operational and accidental releases from nuclear power station sites and will assist in the development and validation of existing environmental models. (author)

  19. Determination of surface dose rate for cloisonne using thermoluminescent dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Hengyuan, Zhao; Yulian, Zhang

    1985-07-01

    In this paper, the measuring method and results of surface dose rate of cloisonne using CaSO/sub 4/ Dy-Teflon foil dosimeter are described. The surface dose rate of all products are below 0.015 mrad/h. These products contain 42 sorts of jewelery and 20 sets of wares (such as vases, plates, ash-trays, etc.). Most of the data fall within the range of natural background. For comparison, some jewelery from Taiwan and 3 vases from Japan are measured. The highest surface dose rate of 0.78 mrad/h is due to the necklace jewelery from Taiwan.

  20. Shutdown dose rate contribution from diagnostics in ITER upper port 18

    Energy Technology Data Exchange (ETDEWEB)

    Cheon, M.S., E-mail: munseong@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Pak, S.; An, Y.H.; Seon, C.R.; Lee, H.G. [National Fusion Research Institute, Daejeon (Korea, Republic of); Bertalot, L.; Krasilnikov, V. [ITER Organization, St Paul-lez-Durance (France); Zvonkov, A. [Agency ITER-RF, Moscow (Russian Federation)

    2016-11-01

    Highlights: • The Shutdown Dose Rate in the interspace of ITER upper port 18 was evaluated. • VUV spectrometer is the dominant contributor to the average SDR. • The existence and size of the blanket cooling pipes impacts significantly on SDR. - Abstract: D-T operation of ITER plasma will produce high-energy fusion neutrons those can activate materials around the place where human-access is necessary. The interspace of the diagnostic port is one of the area where human-access is necessary for the maintenance of diagnostic systems installed at the port, so it is important to evaluate a dose rate of the interspace area in order to comply with ALARA principle. The shutdown dose rate (SDR) in the interspace of ITER upper port 18 was evaluated by the Direct 1-Step (D1S) method using MCNP5 code. This port contains three diagnostics: Vacuum Ultra-Violet (VUV) Spectrometer, Neutron Activation System (NAS), and Upper Vertical Neutron Camera (UVNC). The contribution of each diagnostic in the port was evaluated by running separate upper port MCNP models those contain individual diagnostic only, and the total dose rate contribution was evaluated with the model which was fully integrated with all the diagnostics. The effect of the opening around the upper port plug and of the other ports was also investigated. The purpose of this assessment is to provide the shielding design basis for the preliminary design of the diagnostic integration in the port. The method and result of the calculation will be presented in this paper.

  1. Rectal dose assessment in patients submitted to high-dose-rate brachytherapy for uterine cervix cancer; Avaliacao da dose no reto em pacientes submetidas a braquiterapia de alta taxa de dose para o tratamento do cancer do colo uterino

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Jetro Pereira de [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Faculdade de Medicina; Rosa, Luiz Antonio Ribeiro da [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)], e-mail: lrosa@ird.gov.br; Batista, Delano Valdivino Santos; Bardella, Lucia Helena [Instituto Nacional de Cancer (INCA), Rio de Janeiro, RJ (Brazil). Unit of Medical Physics; Carvalho, Arnaldo Rangel [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. of Thermoluminescent Dosimetry

    2009-03-15

    Objective: The present study was aimed at developing a thermoluminescent dosimetric system capable of assessing the doses delivered to the rectum of patients submitted to high-dose-rate brachytherapy for uterine cervix cancer. Materials and methods: LiF:Mg,Ti,Na powder was the thermoluminescent material utilized for evaluating the rectal dose. The powder was divided into small portions (34 mg) which were accommodated in a capillary tube. This tube was placed into a rectal probe that was introduced into the patient's rectum. Results: The doses delivered to the rectum of six patients submitted to high-dose-rate brachytherapy for uterine cervix cancer evaluated by means of thermoluminescent dosimeters presented a good agreement with the planned values based on two orthogonal (anteroposterior and lateral) radiographic images of the patients. Conclusion: The thermoluminescent dosimetric system developed in the present study is simple and easy to be utilized as compared to other rectal dosimetry methods. The system has shown to be effective in the evaluation of rectal doses in patients submitted to high-dose-rate brachytherapy for uterine cervix cancer. (author)

  2. Variable dose rate single-arc IMAT delivered with a constant dose rate and variable angular spacing

    International Nuclear Information System (INIS)

    Tang, Grace; Earl, Matthew A; Yu, Cedric X

    2009-01-01

    Single-arc intensity-modulated arc therapy (IMAT) has gained worldwide interest in both research and clinical implementation due to its superior plan quality and delivery efficiency. Single-arc IMAT techniques such as the Varian RapidArc(TM) deliver conformal dose distributions to the target in one single gantry rotation, resulting in a delivery time in the order of 2 min. The segments in these techniques are evenly distributed within an arc and are allowed to have different monitor unit (MU) weightings. Therefore, a variable dose-rate (VDR) is required for delivery. Because the VDR requirement complicates the control hardware and software of the linear accelerators (linacs) and prevents most existing linacs from delivering IMAT, we propose an alternative planning approach for IMAT using constant dose-rate (CDR) delivery with variable angular spacing. We prove the equivalence by converting VDR-optimized RapidArc plans to CDR plans, where the evenly spaced beams in the VDR plan are redistributed to uneven spacing such that the segments with larger MU weighting occupy a greater angular interval. To minimize perturbation in the optimized dose distribution, the angular deviation of the segments was restricted to ≤± 5 deg. This restriction requires the treatment arc to be broken into multiple sectors such that the local MU fluctuation within each sector is reduced, thereby lowering the angular deviation of the segments during redistribution. The converted CDR plans were delivered with a single gantry sweep as in the VDR plans but each sector was delivered with a different value of CDR. For four patient cases, including two head-and-neck, one brain and one prostate, all CDR plans developed with the variable spacing scheme produced similar dose distributions to the original VDR plans. For plans with complex angular MU distributions, the number of sectors increased up to four in the CDR plans in order to maintain the original plan quality. Since each sector was

  3. Dose rate and SDD dependence of commercially available diode detectors

    International Nuclear Information System (INIS)

    Saini, Amarjit S.; Zhu, Timothy C.

    2004-01-01

    The dose-rate dependence of commercially available diode detectors was measured under both high instantaneous dose-rate (pulsed) and low dose rate (continuous, Co-60) radiation. The dose-rate dependence was measured in an acrylic miniphantom at a 5-cm depth in a 10x10 cm 2 collimator setting, by varying source-to-detector distance (SDD) between at least 80 and 200 cm. The ratio of a normalized diode reading to a normalized ion chamber reading (both at SDD=100 cm) was used to determine diode sensitivity ratio for pulsed and continuous radiation at different SDD. The inverse of the diode sensitivity ratio is defined as the SDD correction factor (SDD CF). The diode sensitivity ratio increased with increasing instantaneous dose rate (or decreasing SDD). The ratio of diode sensitivity, normalized to 4000 cGy/s, varied between 0.988 (1490 cGy/s)-1.023 (38 900 cGy/s) for unirradiated n-type Isorad Gold, 0.981 (1460 cGy/s)-1.026 (39 060 cGy/s) for unirradiated QED Red (n type), 0.972 (1490 cGy/s)-1.068 (38 900 cGy/s) for preirradiated Isorad Red (n type), 0.985 (1490 cGy/s)-1.012 (38 990 cGy/s) for n-type Pt-doped Isorad-3 Gold, 0.995 (1450 cGy/s)-1.020 (21 870 cGy/s) for n-type Veridose Green, 0.978 (1450 cGy/s)-1.066 (21 870 cGy/s) for preirradiated Isorad-p Red, 0.994 (1540 cGy/s)-1.028 (17 870 cGy/s) for p-type preirradiated QED, 0.998 (1450 cGy/s)-1.003 (21 870 cGy/s) for the p-type preirradiated Scanditronix EDP20 3G , and 0.998 (1490 cGy/s)-1.015 (38 880 cGy/s) for Scanditronix EDP10 3G diodes. The p-type diodes do not always show less dose-rate dependence than the n-type diodes. Preirradiation does not always reduce diode dose-rate dependence. A comparison between the SDD dependence measured at the surface of a full scatter phantom and that in a miniphantom was made. Using a direct adjustment of radiation pulse height, we concluded that the SDD dependence of diode sensitivity can be explained by the instantaneous dose-rate dependence if sufficient buildup is

  4. Retrospective analysis of dose delivery in intra-operative high dose rate brachytherapy

    International Nuclear Information System (INIS)

    Oh, M.; Avadhani, J.S.; Malhotra, H.K.; Cunningham, B.; Tripp, P.; Jaggernauth, W.; Podgorsak, M.B.

    2007-01-01

    Background. This study was performed to quantify the inaccuracy in clinical dose delivery due to the incomplete scatter conditions inherent in intra-operative high dose rate (IOHDR) brachytherapy. Methods. Treatment plans of 10 patients previously treated in our facility, which had irregular shapes of treated areas, were used. Treatment geometries reflecting each clinical case were simulated using a phantom assembly with no added build-up on top of the applicator. The treatment planning geometry (full scatter surrounding the applicator) was subsequently simulated for each case by adding bolus on top of the applicator. Results. For geometries representing the clinical IOHDR incomplete scatter environment, measured doses at the 5 mm and 10 mm prescription depths were lower than the corresponding prescribed doses by about 7.7% and 11.1%, respectively. Also, for the two prescription methods, an analysis of the measured dose distributions and their corresponding treatment plans showed average decreases of 1.2 mm and 2.2 mm in depth of prescription dose, respectively. Conclusions. Dosimetric calculations with the assumption of an infinite scatter environment around the applicator and target volume have shown to result in dose delivery errors that significantly decrease the prescription depth for IOHDR treatment.(author)

  5. American National Standard: neutron and gamma-ray flux-to-dose rate factors

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This Standard presents data recommended for computing biological dose rates due to neutron and gamma-ray radiation fields. Neutron flux-to-dose-rate conversion factors for energies from 2.5 x 10 -8 to 20 MeV are given; the energy range for the gamma-ray conversion factors is 0.01 to 15 MeV. Specifically, this Standard is intended for use by shield designers to calculate wholebody dose rates to radiation workers and the general public. Establishing dose-rate limits is outside the scope of this Standard. Use of this Standard in cases where the dose equivalents are far in excess of occupational exposure guidelines is not recommended

  6. Dose rate and fractionation: Relative importance in radiation for bone marrow transplantation

    International Nuclear Information System (INIS)

    Tarbell, N.J.; Rosenblatt, M.; Mauch, P.; Hellman, S.

    1987-01-01

    The optimal dose rate and fractionation schedules for total body irradiation (TBI) in bone marrow transplantation (BMT) are presently unknown. This study compares several fractionation and dose rate schedules that are currently in clinical use. C/sub 3/H/HeJ were given TBI and the bone marrow survival fraction was calculated using the CFU's assay. Irradiation was given as low dose rate (LDR) at 5 cGy/min or high dose rate (HDR) at 80 cGy/min, in single fraction (SF) and fractionated (FX) regimens. These results indicate no increase in survival for the normal bone marrow stem cells with fractionation either at high or low dose-rates. In fact, fractionation seemed to decrease the bone marrow survival over single fraction radiation

  7. Impact of switched dose-rate irradiation on the response of the LM124 operational amplifier to pulsed X-rays

    International Nuclear Information System (INIS)

    Roche, N.J.H.; Dusseau, L.; Mekki, J.; Perez, S.; Gonzalez Velo, Y.; Boch, J.; Saigne, F.; Vaille, J.R.; Vaille, J.R.; Marec, R.; Calvel, P.; Bezerra, F.; Auriel, G.; Azais, B.; Buchner, S.P.

    2011-01-01

    The Synergistic effect between TID and ATREEs (Analog Transient Radiation Effects on Electronics) in an operational amplifier (opamp) (LM124) is investigated for three different bias configurations. An accelerated irradiation technique is used to study these synergistic effects. The impact of TID on ATREEs is found to be identical regardless of whether the irradiation is performed at low dose rate or whether the dose rate is switched from high to low using the Dose Rate Switching (DRS) technique. The correlation between the deviations of the opamp's electrical parameters and the changes of ATREE widths is clearly established. (authors)

  8. Dose rate estimation of the Tohoku hynobiid salamander, Hynobius lichenatus, in Fukushima.

    Science.gov (United States)

    Fuma, Shoichi; Ihara, Sadao; Kawaguchi, Isao; Ishikawa, Takahiro; Watanabe, Yoshito; Kubota, Yoshihisa; Sato, Youji; Takahashi, Hiroyuki; Aono, Tatsuo; Ishii, Nobuyoshi; Soeda, Haruhi; Matsui, Kumi; Une, Yumi; Minamiya, Yukio; Yoshida, Satoshi

    2015-05-01

    studies of the adult salamanders may be required in order to examine whether the most severe radioactive contamination has any effects on sensitive endpoints, since the estimated highest dose rate to the adults exceeded some of the guidance dose rates proposed by various organisations and programmes for the protection of amphibians, which range from 4 to 400 μGy h(-1). Conversely, at one site in Nakadori, a moderately contaminated region in Fukushima Prefecture, the dose rate to the adult salamanders in spring of 2012 was estimated to be 0.2 μGy h(-1). Estimated dose rates to the overwintering larvae in spring of 2012 were 1 and 0.2 μGy h(-1) at one site in Nakadori, and in Aizu, a less contaminated region in Fukushima Prefecture, respectively. These results suggest that there is a low risk that H. lichenatus will be affected by radioactive contamination in these districts, though further studies on dose rate estimation are required for definitive risk characterisation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Recovery and permanent radiation damage of plastic scintillators at different dose rates

    International Nuclear Information System (INIS)

    Bicken, B.; Holm, U.; Marckmann, T.; Wick, K.; Rhode, M.

    1990-01-01

    This paper reports on the radiation stability of plastic scintillators and wavelength shifters for the calorimeter of the ZEUS detector by irradiating them with protons, a 60 Co-source, and depleted uranium. Changes in light yield, absorption length and absorption coefficient have been measured for storage in inert and oxygen atmospheres during and after irradiation. Radiation doses up to 40 kGy with dose rates of 30 up to 2000 Gy/h have been applied. The polystyrene based scintillator SCSN-38 and the wavelength shifters Y-7 and K-27 in PMMA show an additional absorption but a recovery in air to a low permanent damage (at 10 kGy) which is proportional to the applied dose. Series investigations on samples of all production cycles of the ZEUS scintillators with high dose rates show only minor differences in radiation hardness. The recovery is described by a simple oxygen diffusion model for high and medium dose rates down to 30 Gy/h. During long term irradiations at low dose rates (<100 Gy/h) of 3 mm thick SCSN-38 in air the radiation damage recovers to a permanent damage which does not depend on the dose rate. On the other hand the radiation damage at very low dose rates (17 Gy/a) seems to be higher than expected for the accumulated dose

  10. Neutron dose rate analysis on HTGR-10 reactor using Monte Carlo code

    Science.gov (United States)

    Suwoto; Adrial, H.; Hamzah, A.; Zuhair; Bakhri, S.; Sunaryo, G. R.

    2018-02-01

    The HTGR-10 reactor is cylinder-shaped core fuelled with kernel TRISO coated fuel particles in the spherical pebble with helium cooling system. The outlet helium gas coolant temperature outputted from the reactor core is designed to 700 °C. One advantage HTGR type reactor is capable of co-generation, as an addition to generating electricity, the reactor was designed to produce heat at high temperature can be used for other processes. The spherical fuel pebble contains 8335 TRISO UO2 kernel coated particles with enrichment of 10% and 17% are dispersed in a graphite matrix. The main purpose of this study was to analysis the distribution of neutron dose rates generated from HTGR-10 reactors. The calculation and analysis result of neutron dose rate in the HTGR-10 reactor core was performed using Monte Carlo MCNP5v1.6 code. The problems of double heterogeneity in kernel fuel coated particles TRISO and spherical fuel pebble in the HTGR-10 core are modelled well with MCNP5v1.6 code. The neutron flux to dose conversion factors taken from the International Commission on Radiological Protection (ICRP-74) was used to determine the dose rate that passes through the active core, reflectors, core barrel, reactor pressure vessel (RPV) and a biological shield. The calculated results of neutron dose rate with MCNP5v1.6 code using a conversion factor of ICRP-74 (2009) for radiation workers in the radial direction on the outside of the RPV (radial position = 220 cm from the center of the patio HTGR-10) provides the respective value of 9.22E-4 μSv/h and 9.58E-4 μSv/h for enrichment 10% and 17%, respectively. The calculated values of neutron dose rates are compliant with BAPETEN Chairman’s Regulation Number 4 Year 2013 on Radiation Protection and Safety in Nuclear Energy Utilization which sets the limit value for the average effective dose for radiation workers 20 mSv/year or 10μSv/h. Thus the protection and safety for radiation workers to be safe from the radiation source has

  11. Pharmacogenetic analysis of opioid dependence treatment dose and dropout rate.

    Science.gov (United States)

    Crist, Richard C; Li, James; Doyle, Glenn A; Gilbert, Alex; Dechairo, Bryan M; Berrettini, Wade H

    2018-01-01

    Currently, no pharmacogenetic tests for selecting an opioid-dependence pharmacotherapy have been approved by the US Food and Drug Administration. Determine the effects of variants in 11 genes on dropout rate and dose in patients receiving methadone or buprenorphine/naloxone (ClinicalTrials.gov Identifier: NCT00315341). Variants in six pharmacokinetic genes (CYP1A2, CYP2B6, CYP2C19, CYP2C9, CYP2D6, CYP3A4) and five pharmacodynamic genes (HTR2A, OPRM1, ADRA2A, COMT, SLC6A4) were genotyped in samples from a 24-week, randomized, open-label trial of methadone and buprenorphine/naloxone for the treatment of opioid dependence (n = 764; 68.7% male). Genotypes were then used to determine the metabolism phenotype for each pharmacokinetic gene. Phenotypes or genotypes for each gene were analyzed for association with dropout rate and mean dose. Genotype for 5-HTTLPR in the SLC6A4 gene was nominally associated with dropout rate when the methadone and buprenorphine/naloxone groups were combined. When the most significant variants associated with dropout rate were analyzed using pairwise analyses, SLC6A4 (5-HTTLPR) and COMT (Val158Met; rs4860) had nominally significant associations with dropout rate in methadone patients. None of the genes analyzed in the study was associated with mean dose of methadone or buprenorphine/naloxone. This study suggests that functional polymorphisms related to synaptic dopamine or serotonin levels may predict dropout rates during methadone treatment. Patients with the S/S genotype at 5-HTTLPR in SLC6A4 or the Val/Val genotype at Val158Met in COMT may require additional treatment to improve their chances of completing addiction treatment. Replication in other methadone patient populations will be necessary to ensure the validity of these findings.

  12. Radiation dose rate measuring device

    International Nuclear Information System (INIS)

    Sorber, R.

    1987-01-01

    A portable device is described for in-field usage for measuring the dose rate of an ambient beta radiation field, comprising: a housing, substantially impervious to beta radiation, defining an ionization chamber and having an opening into the ionization chamber; beta radiation pervious electrically-conductive window means covering the opening and entrapping, within the ionization chamber, a quantity of gaseous molecules adapted to ionize upon impact with beta radiation particles; electrode means disposed within the ionization chamber and having a generally shallow concave surface terminating in a generally annular rim disposed at a substantially close spacing to the window means. It is configured to substantially conform to the window means to define a known beta radiation sensitive volume generally between the window means and the concave surface of the electrode means. The concave surface is effective to substantially fully expose the beta radiation sensitive volume to the radiation field over substantially the full ambient area faced by the window means

  13. Neutron dose rate for {sup 252} Cf AT source in medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Paredes, L.; Balcazar, M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Azorin, J. [UAM-I, 09340 Mexico D.F. (Mexico); Francois, J.L. [FI-UNAM, 04510 Mexico D.F. (Mexico)

    2006-07-01

    The AAPM TG-43 modified protocol was used for the calculation of the neutron dose rate of {sup 252}Cf sources for two tissue substitute materials, five normal tissues and six tumours. The {sup 252}Cf AT source model was simulated using the Monte Carlo MCNPX code in spherical geometry for the following factors: a) neutron air kerma strength conversion factor, b) dose rate constant, c) radial dose function, d) geometry factor, e) anisotropy function and f) neutron dose rate. The calculated dose rate in water at 1 cm and 90 degrees from the source long axis, using the Watt fission spectrum, was D{sub n}(r{sub 0}, {theta}{sub 0})= 1.9160 cGy/h-{mu}g. When this value is compared with Rivard et al. calculation using MCNP4B code, 1.8730 cGy/h-{mu}g, a difference of 2.30% is obtained. The results for the reference neutron dose rate in other media show how small variations in the elemental composition between the tissues and malignant tumours, produce variations in the neutron dose rate up to 12.25%. (Author)

  14. Application of the dose rate spectroscopy to the dose-to-curie conversion method using a NaI(Tl) detector

    International Nuclear Information System (INIS)

    JI, Young-Yong; Chung, Kun Ho; Kim, Chang-Jong; Kang, Mun Ja; Park, Sang Tae

    2015-01-01

    Dose rate spectroscopy is a very useful method to directly calculate the individual dose rate from the converted energy spectrum for the dose rate using the G-factor which is related to the used detector response function. A DTC conversion method for the estimation of the radioactivity based on the measured dose rate from the radioactive materials can then be modified into a simple equation using the dose rate spectroscopy. In order to make the method validation of the modified DTC conversion method, experimental verifications using a 3″φx3″ NaI(Tl) detector were conducted at the simple geometry of the point source located onto a detector and more complex geometries which mean the assay of the simulated radioactive material. In addition, the linearity about the results from the modified DTC conversion method was also estimated by increasing the distance between source positions and a detector to confirm the method validation in the energy, dose rate, and distance range of the gamma nuclides. - Highlights: • A modified DTC conversion method using the dose rate spectroscopy was established. • In-situ calibration factors were calculated from the MCNP simulation. • Radioactivities of the disk sources were accurately calculated using a modified DTC conversion method. • A modified DTC conversion method was applied to the assay of the radioactive material

  15. Radiation induced skeletal changes in beagle: dose rates, dose, and age effect analysis from 226Ra

    International Nuclear Information System (INIS)

    Momeni, M.H.; Williams, J.R.; Rosenblatt, L.S.

    1976-01-01

    Radiation-induced skeletal injury (E) and the rate of skeletal injury were studied as a function of time and dose in beagles administered 226 Ra Cl 2 in eight semimonthly iv injections starting at 2, 4, or 14 months of age. Skeletal changes were evaluated with a radiographic x-ray scoring system in 20 skeletal regions; each region was scored on a 0 to 6 scale. Bone changes in six regions of humeri were qualitatively analyzed for comparison with total skeletal changes. Skeletal changes were classified by endosteal or periosteal cortical sclerosis and thickening, fractures, osteolytic lesions, and trabecular coarsening

  16. Rapid Measurement of Neutron Dose Rate for Transport Index

    International Nuclear Information System (INIS)

    Morris, R.L.

    2000-01-01

    A newly available neutron dose equivalent remmeter with improved sensitivity and energy response has been put into service at Rocky Flats Environmental Technology Site (RFETS). This instrument is being used to expedite measurement of the Transport Index and as an ALARA tool to identify locations where slightly elevated neutron dose equivalent rates exist. The meter is capable of measuring dose rates as low as 0.2 μSv per hour (20 μrem per hour). Tests of the angular response and energy response of the instrument are reported. Calculations of the theoretical instrument response made using MCNPtrademark are reported for materials typical of those being shipped

  17. Vitamin D production depends on ultraviolet-B dose but not on dose rate: a randomized controlled trial

    DEFF Research Database (Denmark)

    Bogh, Morten K B; Schmedes, Anne V; Philipsen, Peter A

    2011-01-01

    Ultraviolet-B (UV-B) radiation increases serum vitamin D level expressed as 25-hydroxyvitamin D(3) (25(OH)D), but the dose-response relationship and the importance of dose rate is unclear. Of 172 fair-skinned persons screened for 25(OH)D, 55 with insufficient baseline 25(OH)D=50 nm (mean 31.2 nm...... exposed. Skin pigmentation and 25(OH)D were measured before and after the irradiations. The increase in 25(OH)D after UV-B exposure (adjusted for baseline 25(OH)D) was positively correlated with the UV-B dose (P=0.001; R(2) =0.176) but not to dose rate (1-20 min). 25(OH)D increased in response to four UV......-B treatments of 3 SED with 24.8 nm on average and 14.2 nm after four UV-B treatments of just 0.375 SED. In conclusion, the increase in 25(OH)D after UV-B exposure depends on the dose but not on the dose rate (1-20 min). Further, a significant increase in 25(OH)D was achieved with a very low UV-B dose....

  18. Real time dose rate measurements with fiber optic probes based on the RL and OSL of beryllium oxide

    International Nuclear Information System (INIS)

    Teichmann, T.; Sponner, J.; Jakobi, Ch.; Henniger, J.

    2016-01-01

    This work covers the examination of fiber optical probes based on the radioluminescence and real time optically stimulated luminescence of beryllium oxide. Experiments are carried out to determine the fundamental dosimetric and temporal properties of the system and evaluate its suitability for dose rate measurements in brachytherapy and other applications using non-pulsed radiation fields. For this purpose the responses of the radioluminescence and optically stimulated luminescence signal have been investigated in the dose rate range of 20 mGy/h to 3.6 Gy/h and for doses of 1 mGy up to 6 Gy. Furthermore, a new, efficient analysis procedure, the double phase reference summing, is introduced, leading to a real time optically stimulated luminescence signal. This method allows a complete compensation of the stem effect during the measurement. In contrast to previous works, the stimulation of the 1 mm cylindrical beryllium oxide detectors is performed with a symmetric function during irradiation. The investigated dose rates range from 0.3 to 3.6 Gy/h. The real time optically stimulated luminescence signal of beryllium oxide shows a dependency on both the dose rate and the applied dose. To overcome the problem of dose dependency, further experiments using higher stimulation intensities have to follow. - Highlights: • RL and OSL measurements with BeO extended to low dose (rate) range. • A new method to obtain the real time OSL: Dual Phase Reference Summing. • Real time OSL signal shows both dose and dose rate dependency. • Real time OSL enables a complete discrimination of the stem effect.

  19. Dose rate estimates from irradiated light-water-reactor fuel assemblies in air

    International Nuclear Information System (INIS)

    Lloyd, W.R.; Sheaffer, M.K.; Sutcliffe, W.G.

    1994-01-01

    It is generally considered that irradiated spent fuel is so radioactive (self-protecting) that it can only be moved and processed with specialized equipment and facilities. However, a small, possibly subnational, group acting in secret with no concern for the environment (other than the reduction of signatures) and willing to incur substantial but not lethal radiation doses, could obtain plutonium by stealing and processing irradiated spent fuel that has cooled for several years. In this paper, we estimate the dose rate at various distances and directions from typical pressurized-water reactor (PWR) and boiling-water reactor (BWR) spent-fuel assemblies as a function of cooling time. Our results show that the dose rate is reduced rapidly for the first ten years after exposure in the reactor, and that it is reduced by a factor of ∼10 (from the one year dose rate) after 15 years. Even for fuel that has cooled for 15 years, a lethal dose (LD50) of 450 rem would be received at 1 m from the center of the fuel assembly after several minutes. However, moving from 1 to 5 m reduces the dose rate by over a factor of 10, and moving from 1 to 10 m reduces the dose rate by about a factor of 50. The dose rates 1 m from the top or bottom of the assembly are considerably less (about 10 and 22%, respectively) than 1 m from the center of the assembly, which is the direction of the maximum dose rate

  20. HIGH-DOSE RATE BRACHYTHERAPY IN CARCINOMA CERVIX STAGE IIIB

    Directory of Open Access Journals (Sweden)

    Sathya Maruthavanan

    2016-07-01

    Full Text Available INTRODUCTION Radiotherapy is the standard treatment in locally advanced (IIB-IVA and early inoperable cases. The current standard of practice with curable intent is concurrent chemoradiation in which intracavitary brachytherapy is an integral component of radiotherapy. This study aims at assessing the efficacy of HDR ICBT (High-dose rate intracavitary brachytherapy in terms local response, normal tissue reactions, and feasibility. METHODS AND MATERIALS A total of 20 patients of stage IIIB cancer of the uterine cervix were enrolled in the study and were planned to receive concurrent chemotherapy weekly along with EBRT (external beam radiotherapy to a dose of 50 Gy/25 Fr. Suitability for ICBT was assessed at 40 Gy/20 Fr. 6/20 patients were suitable at 40 Gy and received HDR ICBT with a dose of 5.5 Gy to point A in 4 sessions (5.5 Gy/4 Fr. The remaining 14/20 patients completed 50 Gy and received HDR ICBT with a dose of 6 Gy to point A in 3 sessions (6 Gy/3 Fr. RESULTS A total of 66 intracavitary applications were done and only one application required dose modification due to high bladder dose, the pelvic control rate was 85% (17/20. 10% (2/20 had stable disease and 5% (1/20 had progressive disease at one year of follow up. When toxicity was considered only 15% developed grade I and grade II rectal complications. Patient compliance and acceptability was 100%. Patients were very comfortable with the short treatment time as compared with patients on LDR ICBT (low-dose rate intracavitary brachytherapy treatment interviewed during the same period. CONCLUSION This study proves that HDR brachytherapy is efficacious and feasible in carcinoma of cervix stage IIIB. It also proves that good dose distribution can be achieved with HDR intracavitary facility by the use of dose optimization. The short treatment time in HDR ICBT makes it possible to maintain this optimised dose distribution throughout the treatment providing a gain in the therapeutic ratio and

  1. Measurement bias dependence of enhanced bipolar gain degradation at low dose rates

    International Nuclear Information System (INIS)

    Witczak, S.C.; Lacoe, R.C.; Mayer, D.C.; Fleetwood, D.M.

    1998-03-01

    Oxide trapped charge, field effects from emitter metallization, and high level injection phenomena moderate enhanced gain degradation of lateral pnp transistors at low dose rates. Hardness assurance tests at elevated irradiation temperatures require larger design margins for low power measurement biases

  2. Concomitant chemoradiotherapy with high dose rate brachytherapy ...

    African Journals Online (AJOL)

    Concomitant chemoradiotherapy with high dose rate brachytherapy as a definitive treatment modality for locally advanced cervical cancer. T Refaat, A Elsaid, N Lotfy, K Kiel, W Small Jr, P Nickers, E Lartigau ...

  3. Radiobiological response to ultra-short pulsed megavoltage electron beams of ultra-high pulse dose rate.

    Science.gov (United States)

    Beyreuther, Elke; Karsch, Leonhard; Laschinsky, Lydia; Leßmann, Elisabeth; Naumburger, Doreen; Oppelt, Melanie; Richter, Christian; Schürer, Michael; Woithe, Julia; Pawelke, Jörg

    2015-08-01

    In line with the long-term aim of establishing the laser-based particle acceleration for future medical application, the radiobiological consequences of the typical ultra-short pulses and ultra-high pulse dose rate can be investigated with electron delivery. The radiation source ELBE (Electron Linac for beams with high Brilliance and low Emittance) was used to mimic the quasi-continuous electron beam of a clinical linear accelerator (LINAC) for comparison with electron pulses at the ultra-high pulse dose rate of 10(10) Gy min(-1) either at the low frequency of a laser accelerator or at 13 MHz avoiding effects of prolonged dose delivery. The impact of pulse structure was analyzed by clonogenic survival assay and by the number of residual DNA double-strand breaks remaining 24 h after irradiation of two human squamous cell carcinoma lines of differing radiosensitivity. The radiation response of both cell lines was found to be independent from electron pulse structure for the two endpoints under investigation. The results reveal, that ultra-high pulse dose rates of 10(10) Gy min(-1) and the low repetition rate of laser accelerated electrons have no statistically significant influence (within the 95% confidence intervals) on the radiobiological effectiveness of megavoltage electrons.

  4. Studies on the radicidation of natural food colorants. Effects of electron energy (accelerating voltages) and dose rate of ionizing radiation on functional properties of beet red colorant

    International Nuclear Information System (INIS)

    Higashimura, Yutaka; Tada, Mikiro; Furuta, Masakazu

    2003-01-01

    In order to the practical use of radicidation of beet red, natural food colorant with low heat stability and high possibility of microbe contamination, we studied on the energy dependency and dose rate effect for the influence on functional properties of the beet red colorant. For the elucidation of energy dependency, the γ-ray (1.33 MeV) and electron beams with different accelerating voltages (0.75, 1, 2.5, 5 and 10 MeV) were used. The dose rate effect was studied under the different dose rate by using γ-ray (0.723, 1.91 and 4.55 kGy/h) and electron beams with accelerating voltage of 10 MeV (1.0 x 10 3 , 2.6 x 10 3 , 7.0 x 10 3 , 7.0 x 10 3 , 2.0 x 10 4 and 5.0 x 10 4 kGy/h). The results obtained in this study showed that regardless of these energy and dose rate, the functional properties of the beet red colorant were little affected by irradiation less than 25 kGy of ionizing radiations. (author)

  5. Repair of sublethal damage in mammalian cells irradiated at ultrahigh dose rates

    International Nuclear Information System (INIS)

    Gerweck, L.E.; Epp, E.R.; Michaels, H.B.; Ling, C.C.; Peterson, E.C.

    1979-01-01

    The lethal response of asynchronous Chinese hamster ovary (CHO) cells exposed to single and split doses of radiation at conventional or ultrahigh dose rates has been examined to determine whether repair of sublethal damage occurs in cells irradiated at ultrahigh dose rates. The high-intensity irradiations were performed with electrons delivered in single 3-nsec pulses from a 600-kV field emission source under medium-removed, thin-layer conditions. Conventional dose-rate experiments were done under identical thin-layer conditions with 50-kVp x rays, or under full-medium conditions with 280-kVp x rays. Oxygenated cells were irradiated and maintained at 22 to 24 0 C between exposures. Survival did not increase as the time between two doses of pulsed electrons increased from 0 to 4 min, indicating no evidence of fast repair. However, increased survival was observed when 30 to 90 min was allowed to elapse between the split doses. The half-time for maximum repair was approx. = 30 min irrespective of the exposure conditions and radiation modality used. Observed repair ratios increased from approx. = 2 to 4 as the single-dose surviving fraction decreased from 10 -2 to 5 x 10 -4 . Over this survival range the repair ratios, measured at the same value of surviving fraction, were independent of dose rate. The observed repair ratios imply that the shoulder regions of the nonfractionated x-ray and pulsed-electron survival curves were not completely restored between the split doses. However, the fraction of the shoulder restored between split doses of radiation was dose-rate-independent. It is concluded that sublethal damage can be repaired in oxygenated CHO cells irradiated at dose rates of the order of 10 11 rad/sec

  6. Impact of doped boron concentration in emitter on high- and low-dose-rate damage in lateral PNP transistors

    International Nuclear Information System (INIS)

    Zheng Yuzhan; Lu Wu; Ren Diyuan; Wang Yiyuan; Wang Zhikuan; Yang Yonghui

    2010-01-01

    The characteristics of radiation damage under a high or low dose rate in lateral PNP transistors with a heavily or lightly doped emitter is investigated. Experimental results show that as the total dose increases, the base current of transistors would increase and the current gain decreases. Furthermore, more degradation has been found in lightly-doped PNP transistors, and an abnormal effect is observed in heavily doped transistors. The role of radiation defects, especially the double effects of oxide trapped charge, is discussed in heavily or lightly doped transistors. Finally, through comparison between the high- and low-dose-rate response of the collector current in heavily doped lateral PNP transistors, the abnormal effect can be attributed to the annealing of the oxide trapped charge. The response of the collector current, in heavily doped PNP transistors under high- and low-dose-rate irradiation is described in detail. (semiconductor integrated circuits)

  7. Overview of Radiosensitivity of Human Tumor Cells to Low-Dose-Rate Irradiation

    International Nuclear Information System (INIS)

    Williams, Jerry R.; Zhang Yonggang; Zhou Haoming; Gridley, Daila S.; Koch, Cameron J.; Slater, James M.; Little, John B.

    2008-01-01

    Purpose: We compared clonogenic survival in 27 human tumor cell lines that vary in genotype after low-dose-rate (LDR) or high-dose rate (HDR) irradiation. We measured susceptibility to LDR-induced redistribution in the cell cycle in eight of these cell lines. Methods and Materials: We measured clonogenic survival after up to 96 hours of LDR (0.25 Gy/h) irradiation. We compared these with clonogenic survival after HDR irradiation (50 Gy/h). Using flow cytometry, we measured LDR-induced redistribution as a function of time during LDR irradiation in eight of these cell lines. Results: Coefficients that describe clonogenic survival after both LDR and HDR irradiation segregate into four radiosensitivity groups that associate with cell genotype: mutant (mut)ATM, wild-type TP53, mutTP53, and an unidentified gene in radioresistant glioma cells. The LDR and HDR radiosensitivity correlates at lower doses (∼2 Gy HDR, ∼6 Gy LDR), but not at higher doses (HDR > 4 Gy; LDR > 6 Gy). The rate of LDR-induced loss of clonogenic survival changes at approximately 24 hours; wild-type TP53 cells become more resistant and mutTP53 cells become more sensitive. Redistribution induced by LDR irradiation also changes at approximately 24 hours. Conclusions: Radiosensitivity of human tumor cells to both LDR and HDR irradiation is genotype dependent. Analysis of coefficients that describe cellular radiosensitivity segregates 27 cell lines into four statistically distinct groups, each associating with specific genotypes. Changes in cellular radiosensitivity and redistribution in the cell cycle are strongly time dependent. Our data establish a genotype-dependent time-dependent model that predicts clonogenic survival, explains the inverse dose-rate effect, and suggests possible clinical applications

  8. Monte Carlo simulations of the secondary neutron ambient and effective dose equivalent rates from surface to suborbital altitudes and low Earth orbit.

    Science.gov (United States)

    El-Jaby, Samy; Richardson, Richard B

    2015-07-01

    Occupational exposures from ionizing radiation are currently regulated for airline travel (Earth orbit (∼300-400 km). Aircrew typically receive between 1 and 6 mSv of occupational dose annually, while aboard the International Space Station, the area radiation dose equivalent measured over just 168 days was 106 mSv at solar minimum conditions. It is anticipated that space tourism vehicles will reach suborbital altitudes of approximately 100 km and, therefore, the annual occupational dose to flight crew during repeated transits is expected to fall somewhere between those observed for aircrew and astronauts. Unfortunately, measurements of the radiation environment at the high altitudes reached by suborbital vehicles are sparse, and modelling efforts have been similarly limited. In this paper, preliminary MCNPX radiation transport code simulations are developed of the secondary neutron flux profile in air from surface altitudes up to low Earth orbit at solar minimum conditions and excluding the effects of spacecraft shielding. These secondary neutrons are produced by galactic cosmic radiation interacting with Earth's atmosphere and are among the sources of radiation that can pose a health risk. Associated estimates of the operational neutron ambient dose equivalent, used for radiation protection purposes, and the neutron effective dose equivalent that is typically used for estimates of stochastic health risks, are provided in air. Simulations show that the neutron radiation dose rates received at suborbital altitudes are comparable to those experienced by aircrew flying at 7 to 14 km. We also show that the total neutron dose rate tails off beyond the Pfotzer maximum on ascension from surface up to low Earth orbit. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  9. SU-F-T-301: Planar Dose Pass Rate Inflation Due to the MapCHECK Measurement Uncertainty Function

    International Nuclear Information System (INIS)

    Bailey, D; Spaans, J; Kumaraswamy, L; Podgorsak, M

    2016-01-01

    Purpose: To quantify the effect of the Measurement Uncertainty function on planar dosimetry pass rates, as analyzed with Sun Nuclear Corporation analytic software (“MapCHECK” or “SNC Patient”). This optional function is toggled on by default upon software installation, and automatically increases the user-defined dose percent difference (%Diff) tolerance for each planar dose comparison. Methods: Dose planes from 109 IMRT fields and 40 VMAT arcs were measured with the MapCHECK 2 diode array, and compared to calculated planes from a commercial treatment planning system. Pass rates were calculated within the SNC analytic software using varying calculation parameters, including Measurement Uncertainty on and off. By varying the %Diff criterion for each dose comparison performed with Measurement Uncertainty turned off, an effective %Diff criterion was defined for each field/arc corresponding to the pass rate achieved with MapCHECK Uncertainty turned on. Results: For 3%/3mm analysis, the Measurement Uncertainty function increases the user-defined %Diff by 0.8–1.1% average, depending on plan type and calculation technique, for an average pass rate increase of 1.0–3.5% (maximum +8.7%). For 2%, 2 mm analysis, the Measurement Uncertainty function increases the user-defined %Diff by 0.7–1.2% average, for an average pass rate increase of 3.5–8.1% (maximum +14.2%). The largest increases in pass rate are generally seen with poorly-matched planar dose comparisons; the MapCHECK Uncertainty effect is markedly smaller as pass rates approach 100%. Conclusion: The Measurement Uncertainty function may substantially inflate planar dose comparison pass rates for typical IMRT and VMAT planes. The types of uncertainties incorporated into the function (and their associated quantitative estimates) as described in the software user’s manual may not accurately estimate realistic measurement uncertainty for the user’s measurement conditions. Pass rates listed in published

  10. SU-F-T-301: Planar Dose Pass Rate Inflation Due to the MapCHECK Measurement Uncertainty Function

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, D [Northside Hospital Cancer Institute, Atlanta, GA (United States); Spaans, J; Kumaraswamy, L; Podgorsak, M [Roswell Park Cancer Institute, Buffalo, NY (United States)

    2016-06-15

    Purpose: To quantify the effect of the Measurement Uncertainty function on planar dosimetry pass rates, as analyzed with Sun Nuclear Corporation analytic software (“MapCHECK” or “SNC Patient”). This optional function is toggled on by default upon software installation, and automatically increases the user-defined dose percent difference (%Diff) tolerance for each planar dose comparison. Methods: Dose planes from 109 IMRT fields and 40 VMAT arcs were measured with the MapCHECK 2 diode array, and compared to calculated planes from a commercial treatment planning system. Pass rates were calculated within the SNC analytic software using varying calculation parameters, including Measurement Uncertainty on and off. By varying the %Diff criterion for each dose comparison performed with Measurement Uncertainty turned off, an effective %Diff criterion was defined for each field/arc corresponding to the pass rate achieved with MapCHECK Uncertainty turned on. Results: For 3%/3mm analysis, the Measurement Uncertainty function increases the user-defined %Diff by 0.8–1.1% average, depending on plan type and calculation technique, for an average pass rate increase of 1.0–3.5% (maximum +8.7%). For 2%, 2 mm analysis, the Measurement Uncertainty function increases the user-defined %Diff by 0.7–1.2% average, for an average pass rate increase of 3.5–8.1% (maximum +14.2%). The largest increases in pass rate are generally seen with poorly-matched planar dose comparisons; the MapCHECK Uncertainty effect is markedly smaller as pass rates approach 100%. Conclusion: The Measurement Uncertainty function may substantially inflate planar dose comparison pass rates for typical IMRT and VMAT planes. The types of uncertainties incorporated into the function (and their associated quantitative estimates) as described in the software user’s manual may not accurately estimate realistic measurement uncertainty for the user’s measurement conditions. Pass rates listed in published

  11. Field experience on Zn injection on PWR plants with a view to dose rate reduction

    International Nuclear Information System (INIS)

    Roumiguiere, F.

    2005-01-01

    Operating experience acquired at PWR plants shows that zinc injection in the primary coolant at low concentration (∼5 ppb) is a very effective tool to achieve a reduction of the dose rate build-up. The beneficial effect of zinc consists on improving the protective layer characteristics of the reactor coolant system surfaces, which results in a lower pickup of activated products (Co-60, Co-58), and consequently a reduction of the associated dose rates. Zinc injection was introduced at the Unit B of the Biblis Power Station in September 1996 and at the Obrigheim Nuclear Power Station in February 1998, as a measure for reduction of radiation fields. The effectiveness of the method and its compatibility with the overall plant was examined in a rather comprehensive surveillance program at these plants. The already published data show that zinc injection did not lead to any operating restrictions or other negative effects on plants systems and components. Zinc injection is still being implemented today at these plants. Zinc injection is considered today as a mature technique and is now being successfully applied at a number of PWRs in Germany, Brazil, USA and Japan, with the support of Framatome-ANP. Several PWRs in Europe and Asia are preparing for zinc chemistry in the near future. The method is inexpensive and easy to apply. Its implementation is highly advisable in terms of the cost/benefit criterion following the ALARA principle. This paper gives an overview of the experience gathered with the method. The main subject addressed by the paper is the evolution of dose rates at the primary system and work-related doses since introduction of the method. In German PWRs with Incoloy 800 steam generator tubing material (Ni-content ∼32%), the observed reductions correspond to a decrease in dose rates of around 10 to 15% per year following, as predicted, the half-life time of 60 Co. Overall reductions in high radiation areas are now in the range of 50% after 5 years of

  12. Influence of gamma dose rate on longevity of Laemophloeus ferrugineus (STEPH.)

    International Nuclear Information System (INIS)

    Wiendl, F.M.; Tornisielo, V.L.

    1975-12-01

    Insects of the species Laemophloeus ferrugineus (Steph.) were irradiated with different gamma dose rates from a radial type Co-60 source. The rates utilized were 59580, 15750, 2750, 632, 154 and 63 rad/hour, respectively at 10, 20, 50, 100, 200 and 300 cm from the source. The insects were irradiated with a dose of 15000 rad. Death rate was checked every 7 days; starting from these numbers, life expectancy was estimated for each week in relation to respective dose rate. The following results were obtained for insects life expectancy estimates upon beginning of the experiment: 85.63 days (control); 19.50 (10 cm); 19.40 (20 cm); 20.40 (50 cm); 22.23 (100 cm); 22.00 (200 cm) and 23.11 (300 cm). The number of days until the last individuals of each dose rate died was also registered: 248 days (control); 31 (10 cm); 31 (20 cm); 31 (50 cm); 185 (100 cm); 164 (200 cm) and 143 (300 cm)

  13. Relative implications of protective responses versus damage induction at low dose and low-dose-rate exposures, using the microdose approach

    Energy Technology Data Exchange (ETDEWEB)

    Feinendegen, L.E

    2003-07-01

    In reviewing tissue effects of low-dose radiation (1) absorbed dose to tissue is replaced by the sum of energy deposited with track events in cell-equivalent tissue micromasses, i.e. with microdose hits, in the number of exposed micromasses and (2) induced cell damage and adaptive protection are related to microdose hits in exposed micromasses for a given radiation quality. DNA damage increases with the number of microdose hits. They also can induce adaptive protection, mainly against endogenous DNA damage. This protection involves cellular defenses, DNA repair and damage removal. With increasing numbers of low linear energy transfer (LET) microdose hits in exposed micromasses, adaptive protection first tends to outweigh damage and then (above 200 mGy) fails and largely disappears. These experimental data predict that cancer risk coefficients derived by epidemiology at high-dose irradiation decline at low doses and dose rates when adaptive protection outdoes DNA damage. The dose-risk function should include both linear and non-linear terms at low doses. (author)

  14. Relative implications of protective responses versus damage induction at low dose and low-dose-rate exposures, using the microdose approach

    International Nuclear Information System (INIS)

    Feinendegen, L.E.

    2003-01-01

    In reviewing tissue effects of low-dose radiation (1) absorbed dose to tissue is replaced by the sum of energy deposited with track events in cell-equivalent tissue micromasses, i.e. with microdose hits, in the number of exposed micromasses and (2) induced cell damage and adaptive protection are related to microdose hits in exposed micromasses for a given radiation quality. DNA damage increases with the number of microdose hits. They also can induce adaptive protection, mainly against endogenous DNA damage. This protection involves cellular defenses, DNA repair and damage removal. With increasing numbers of low linear energy transfer (LET) microdose hits in exposed micromasses, adaptive protection first tends to outweigh damage and then (above 200 mGy) fails and largely disappears. These experimental data predict that cancer risk coefficients derived by epidemiology at high-dose irradiation decline at low doses and dose rates when adaptive protection outdoes DNA damage. The dose-risk function should include both linear and non-linear terms at low doses. (author)

  15. High doses of dextromethorphan, an NMDA antagonist, produce effects similar to classic hallucinogens

    Science.gov (United States)

    Carter, Lawrence P.; Johnson, Matthew W.; Mintzer, Miriam Z.; Klinedinst, Margaret A.; Griffiths, Roland R.

    2013-01-01

    Rationale Although reports of dextromethorphan (DXM) abuse have increased recently, few studies have examined the effects of high doses of DXM. Objective This study in humans evaluated the effects of supratherapeutic doses of DXM and triazolam. Methods Single, acute, oral doses of DXM (100, 200, 300, 400, 500, 600, 700, 800 mg/70 kg), triazolam (0.25, 0.5 mg/70kg), and placebo were administered to twelve healthy volunteers with histories of hallucinogen use, under double-blind conditions, using an ascending dose run-up design. Subjective, behavioral, and physiological effects were assessed repeatedly after drug administration for 6 hours. Results Triazolam produced dose-related increases in subject-rated sedation, observer-rated sedation, and behavioral impairment. DXM produced a profile of dose-related physiological and subjective effects differing from triazolam. DXM effects included increases in blood pressure, heart rate, and emesis, increases in observer-rated effects typical of classic hallucinogens (e.g. distance from reality, visual effects with eyes open and closed, joy, anxiety), and participant ratings of stimulation (e.g. jittery, nervous), somatic effects (e.g. tingling, headache), perceptual changes, end-of-session drug liking, and mystical-type experience. After 400 mg/70kg DXM, 11 of 12 participants indicated on a pharmacological class questionnaire that they thought they had received a classic hallucinogen (e.g. psilocybin). Drug effects resolved without significant adverse effects by the end of the session. In a 1-month follow up volunteers attributed increased spirituality and positive changes in attitudes, moods, and behavior to the session experiences. Conclusions High doses of DXM produced effects distinct from triazolam and had characteristics that were similar to the classic hallucinogen psilocybin. PMID:22526529

  16. Effect of fentanyl on the induction dose and minimum infusion rate of propofol preventing movement in dogs.

    Science.gov (United States)

    Davis, Carrie A; Seddighi, Reza; Cox, Sherry K; Sun, Xiaocun; Egger, Christine M; Doherty, Thomas J

    2017-07-01

    To determine the effect of fentanyl on the induction dose of propofol and minimum infusion rate required to prevent movement in response to noxious stimulation (MIR NM ) in dogs. Crossover experimental design. Six healthy, adult intact male Beagle dogs, mean±standard deviation 12.6±0.4 kg. Dogs were administered 0.9% saline (treatment P), fentanyl (5 μg kg -1 ) (treatment PLDF) or fentanyl (10 μg kg -1 ) (treatment PHDF) intravenously over 5 minutes. Five minutes later, anesthesia was induced with propofol (2 mg kg -1 , followed by 1 mg kg -1 every 15 seconds to achieve intubation) and maintained for 90 minutes by constant rate infusions (CRIs) of propofol alone or with fentanyl: P, propofol (0.5 mg kg -1  minute -1 ); PLDF, propofol (0.35 mg kg -1  minute -1 ) and fentanyl (0.1 μg kg -1  minute -1 ); PHDF, propofol (0.3 mg kg -1  minute -1 ) and fentanyl (0.2 μg kg -1  minute -1 ). Propofol CRI was increased or decreased based on the response to stimulation (50 V, 50 Hz, 10 mA), with 20 minutes between adjustments. Data were analyzed using a mixed-model anova and presented as mean±standard error. ropofol induction doses were 6.16±0.31, 3.67±0.21 and 3.33±0.42 mg kg -1 for P, PLDF and PHDF, respectively. Doses for PLDF and PHDF were significantly decreased from P (pFentanyl, at the doses studied, caused statistically significant and clinically important decreases in the propofol induction dose and MIR NM . Copyright © 2017 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia. Published by Elsevier Ltd. All rights reserved.

  17. Dose-rate mapping and search of radioactive sources in Estonia

    International Nuclear Information System (INIS)

    Ylaetalo, S.; Karvonen, J.; Ilander, T.; Honkamaa, T.; Toivonen, H.

    1996-12-01

    The Estonian Ministry of Environment and the Finnish Centre for Radiation and Nuclear Safety (STUK) agreed in 1995 on a radiation mapping project in Estonia. The country was searched to find potential man-made radioactive sources. Another goal of the project was to produce a background dose-rate map over the whole country. The measurements provided an excellent opportunity to test new in-field measuring systems that are useful in a nuclear disaster. The basic idea was to monitor road sides, cities, domestic waste storage places and former military or rocket bases from a moving vehicle by measuring gamma spectrum and dose rate. The measurements were carried out using vehicle installed systems consisting of a pressurised ionisation chamber (PIC) in 1995 and a combination of a scintillation spectrometer (NaI(TI)) and Geiger-Mueller-counter (GM) in 1996. All systems utilised GPS-satellite navigation signals to relate the measured dose rates and gamma-spectra to current geographical location. The data were recorded for further computer analysis. The dose rate varied usually between 0.03-0.17 μSv/h in the whole country, excluding a few nuclear material storage places (in Saku and in Sillamae). Enhanced dose rates of natural origin (0.17-0.5 μSv/h) were measured near granite statues, buildings and bridges. No radioactive sources were found on road sides or in towns or villages. (orig.) (14 refs.)

  18. Consequences of the exposure at low dose rates-contribution of animal experimentation. Consequences de l'exposition aux faibles debits de dose. Apport de l'experimentation animale

    Energy Technology Data Exchange (ETDEWEB)

    Masse, R. (CEA Centre d' Etudes de Fontenay-aux-Roses, 92 (FR). Direction des Sciences du Vivant)

    1990-01-01

    The exposure of laboratory animals to the various types of radiations will induce cancers in relation with the tissue absorbed doses. The shape of the dose-effet relationship is most variable. It is important to distinguish which tumours are comparable to human tumours. Those showing more analogies answer but seldom to the classical lineo-quadratic relationship; however, a strong attenuation of induction is demonstrated at low dose rates. Quasi-threshold relationships are seen after the exposure of some tissues to high-LET radiations. These observations question the validity of generalizing the radiobiologists' dual action theory, setting the origin of the dose-effect relationship in the induction of events within the DNA molecule. There is an alternative in the cellular collaboration events; it assumes that the effectiveness per dose unit decreases constantly as an inverse function of the dose rate.

  19. Transperineal high-dose-rate interstitial radiation therapy in the management of gynecologic malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Itami, Jun; Hara, Ryuseke; Kozuka, Takuyou; Yamashita, Hideomi; Nakajima, Kaori; Shibata, Kouji; Abe, Yoshihisa; Fuse, Masashi; Ito, Masashi [International Medical Center of Japan, Tokyo (Japan). Dept. of Radiation Therapy and Oncology

    2003-11-01

    Background: High-dose-rate interstitial radiation therapy is a newly introduced modality, and its role in the management of gynecologic malignancies remains to be studied. Clinical experience in high-dose-rate interstitial radiation therapy was retrospectively investigated. Patients and Methods: Eight patients with primary and nine with recurrent gynecologic malignancies underwent high-dose-rate interstitial radiation therapy with/without external-beam irradiation. Fractional dose of the high-dose-rate interstitial radiation therapy ranged between 4 and 6 Gy with total doses of 15-54 Gy. Interstitial irradiation was performed twice daily with an interval of > 6 h. Results: 2-year local control rate was 75% for primary treatment and 47% for treatment of recurrence (p = 0.46). Maximum tumor size had a statistically significant impact on local control (p < 0.002). Grade 2 and 4 late complications were seen in five patients, and the incidence was significantly higher in patients with a larger volume enclosed by the prescribed fractional dose of high-dose-rate interstitial radiation therapy. The incidence of grade 2 and 4 complications at 18 months was 78% and 0% with a volume > 100 cm{sup 3} and {<=} 100 cm{sup 3}, respectively (p < 0.04). Conclusion: Although high-dose-rate interstitial radiation therapy is a promising modality, it must be applied cautiously to patients with bulky tumors because of the high incidence of serious complications. (orig.)

  20. Effects of low-dose rate irradiation on two types of type II diabetes model mice

    International Nuclear Information System (INIS)

    Nomura, Takaji; Sakai, Kazuo

    2004-01-01

    The effects of low-dose rate gamma-irradiation were investigated in two mouse strains - C57BL/KsJ-db/db (db mouse) and AKITA (AKITA mouse)-for type II diabetes mellitus. Both strains develop the developed type II diabetes by about 8 weeks of age due to dysfunction of the insulin/insulin receptor. The db Mouse' shows obese and exhibits hyperinsulinism, and the onset of Type II diabetes like resembles that for Westerners. On the other hand, the AKITA mouse has exhibits disordered insulin secretion, and the diabetes such as resembles that of Asians. Ten-week old female mice, in groups of 8 or 12, were irradiated at 0.65 mGy/hr in the low-dose rate irradiation facility in the Low Dose Radiation Research Center. The level of urine glucose was measured with test slips. The urine glucose levels of all of the mice were highly elevated the beginning of the irradiation. In the irradiated group of db mice, three mice showed decrease in glucose level compare to the level of non-irradiated diabetes mice after 35, 52 or 80 weeks of irradiation. All had maintained a normal level thereafter. No such improvement in diabetes was ever observed in the 12 mice of in the non-irradiated control group. The AKITA mice, however, did not decrease the glucose level regardless of the irradiation. Both the db mice and AKITA mice had their lives prolonged their life by the irradiation. The survival rate of db mice at the age of 90 weeks was 75% in the irradiated group, but 50% in the non-irradiated group. The average life span was 104 weeks in the irradiated group and 87 weeks in the control group. Furthermore, a marked difference was furthermore observed in the appearance of the coat hair, skin, and tail; appearances were well preserved in the irradiated group. The average life span in the irradiated AKITA mice was also longer than that for the non-irradiated mice, 51 weeks and 41 weeks in the irradiated and non-irradiated group respectively. These results suggest that the low-dose irradiation