WorldWideScience

Sample records for rate controlled synthesis

  1. Protein synthesis rates in atrophied gastrocnemius muscles after limb immobilization

    Science.gov (United States)

    Tucker, K. R.; Seider, M. J.; Booth, F. W.

    1981-01-01

    Noting that protein synthesis declines in the gastrocnemius 6 hr after immobilization, the study sought to detect an increase of protein synthesis when the limb was freed, and to examine the effects of exercise on the rate of increase. Rats were used as subjects, with their hind legs in plaster of Paris in plantar flexion to eliminate strain on the gastrocnemius. Periods of immobilization were varied and samples of blood from the muscle were taken to track protein synthesis rates for different groups in immobilization and exercise regimens (running and weightlifting). Synthesis rates declined 3.6% during time in the cast, then increased 6.3%/day after the casts were removed. Both running and weightlifting were found to increase the fractional rate of protein formation in the gastrocnemius muscle when compared with contralateral muscles that were not exercised and were used as controls, suggesting that the mechanism controlling protein synthesis in skeletal muscles is rapidly responsive to changes in muscular contractile activity.

  2. Rate in template-directed polymer synthesis.

    Science.gov (United States)

    Saito, Takuya

    2014-06-01

    We discuss the temporal efficiency of template-directed polymer synthesis, such as DNA replication and transcription, under a given template string. To weigh the synthesis speed and accuracy on the same scale, we propose a template-directed synthesis (TDS) rate, which contains an expression analogous to that for the Shannon entropy. Increasing the synthesis speed accelerates the TDS rate, but the TDS rate is lowered if the produced sequences are diversified. We apply the TDS rate to some production system models and investigate how the balance between the speed and the accuracy is affected by changes in the system conditions.

  3. Control of the Protein Turnover Rates in Lemna minor

    Science.gov (United States)

    Trewavas, A.

    1972-01-01

    The control of protein turnover in Lemna minor has been examined using a method described in the previous paper for determining the rate constants of synthesis and degradation of protein. If Lemna is placed on water, there is a reduction in the rate constants of synthesis of protein and an increase (3- to 6-fold) in the rate constant of degradation. The net effect is a loss of protein from the tissue. Omission of nitrate, phosphate, sulfate, magnesium, or calcium results in increases in the rate constant of degradation of protein. An unusual dual effect of benzyladenine on the turnover constants has been observed. Treatment of Lemna grown on sucrose-mineral salts with benzyladenine results in alterations only in the rate constant of synthesis. Treatment of Lemna grown on water with benzyladenine alters only the rate constant of degradation. Abscisic acid on the other hand alters both rate constants of synthesis and degradation of protein together. Inclusion of growth-inhibiting amino acids in the medium results in a reduction in the rate constants of synthesis and increases in the rate constant of degradation of protein. It is concluded that the rate of turnover of protein in Lemna is very dependent on the composition of the growth medium. Conditions which reduce growth rates also reduce the rates of synthesis of protein and increase those of degradation. PMID:16657895

  4. Control of heme synthesis during Friend cell differentiation: role of iron and transferrin

    International Nuclear Information System (INIS)

    Laskey, J.D.; Ponka, P.; Schulman, H.M.

    1986-01-01

    In many types of cells the synthesis of σ-aminolevulinic acid (ALA) limits the rate of heme formation. However, results from this laboratory with reticulocytes suggest that the rate of iron uptake from 125 I-transferrin (Tf), rather than ALA synthase activity, limits the rate of heme synthesis in erythroid cells. To determine whether changes occur in iron metabolism and the control of heme synthesis during erythroid cell development Friend erythroleukemia cells induced to erythroid differentiation by dimethylsulfoxide (DMSO) were studied. While added ALA stimulated heme synthesis in uninduced Friend cells (suggesting ALA synthase is limiting) it did not do so in induced cells. Therefore the possibility was investigated that, in induced cells, iron uptake from Tf limits and controls heme synthesis. Several aspects of iron metabolism were investigated using the synthetic iron chelator salicylaldehyde isonicotinoyl hydrazone (SIH). Both induced and uninduced Friend cells take up and utilize Fe for heme synthesis directly from Fe-SIH without the involvement of transferrin and transferrin receptors and to a much greater extent than from saturating levels or 59 Fe-Tf (20 μM). Furthermore, in induced Friend cells 100 μM Fe-SIH stimulated 2- 14 C-glycine incorporation into heme up to 3.6-fold as compared to the incorporation observed with saturating concentrations of Fe-Tf. These results indicate that some step(s) in the pathway of iron from extracellular Tf to protoporphyrin, rather than the activity of ALA synthase, limits and controls the overall rate of heme and possibly hemoglobin synthesis in differentiating Friend erythroleukemia cells

  5. Chromatin Controls DNA Replication Origin Selection, Lagging-Strand Synthesis, and Replication Fork Rates.

    Science.gov (United States)

    Kurat, Christoph F; Yeeles, Joseph T P; Patel, Harshil; Early, Anne; Diffley, John F X

    2017-01-05

    The integrity of eukaryotic genomes requires rapid and regulated chromatin replication. How this is accomplished is still poorly understood. Using purified yeast replication proteins and fully chromatinized templates, we have reconstituted this process in vitro. We show that chromatin enforces DNA replication origin specificity by preventing non-specific MCM helicase loading. Helicase activation occurs efficiently in the context of chromatin, but subsequent replisome progression requires the histone chaperone FACT (facilitates chromatin transcription). The FACT-associated Nhp6 protein, the nucleosome remodelers INO80 or ISW1A, and the lysine acetyltransferases Gcn5 and Esa1 each contribute separately to maximum DNA synthesis rates. Chromatin promotes the regular priming of lagging-strand DNA synthesis by facilitating DNA polymerase α function at replication forks. Finally, nucleosomes disrupted during replication are efficiently re-assembled into regular arrays on nascent DNA. Our work defines the minimum requirements for chromatin replication in vitro and shows how multiple chromatin factors might modulate replication fork rates in vivo. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Measurement of rates of cholesterol synthesis using tritiated water

    International Nuclear Information System (INIS)

    Dietschy, J.M.; Spady, D.K.

    1984-01-01

    Rates of sterol synthesis in various tissues commonly are assessed by assaying levels of 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase on isolated microsomes or by measuring the rates of incorporation of various 14 C-labeled substrates or [ 3 H]water into cholesterol by whole cell preparations in vitro or by the tissues of the whole animal in vivo. While measurement of activities of HMG-CoA reductase or rates of incorporation of 14 C-labeled substrates into cholesterol give useful relative rates of sterol production, neither method yields absolute rates of cholesterol synthesis. The use of [ 3 H]water circumvents the problem of variable and unknown dilution of the specific activity of the precursor pool encountered when 14 C-labeled substrates are used and does yield absolute rates of cholesterol synthesis provided that the 3 H/C incorporation ratio is known for a particular tissue. In 12 different experimental situations it has been found that from 21 to 27 micrograms atoms of 3 H are incorporated into cholesterol from [ 3 H]water in different tissues of several animal species, so that the 3 H/C incorporation ratio is similar under nearly all experimental conditions and varies from 0.78 to 1.00. When administered in vivo, [ 3 H]water rapidly equilibrates with intracellular water and is incorporated into sterols within the various organs at rates that are linear with respect to time. From such data it is possible to obtain absolute rates of cholesterol synthesis in the whole animal and in the various organs of the animal. Current data suggest, therefore, that use of [ 3 H]water yields the most accurate rates of cholesterol synthesis both in vitro and in vivo

  7. Glucagon infusion increases rate of purine synthesis de novo in rat liver

    International Nuclear Information System (INIS)

    Itakura, Mitsuo; Maeda, Noriaki; Tsuchiya, Masami; Yamashita, Kamejiro

    1987-01-01

    Based on the parallel increases of glucagon, the second peak of hepatic cAMP, and the rate of purine synthesis de novo in the prereplicative period in regenerating rate liver after a 70% hepatectomy, it was hypothesized that glucagon is responsible for the increased rate of purine synthesis de novo. To test this hypothesis, the effect of glucagon or dibutyryl cAMP infusion on the rate of purine synthesis de novo in rat liver was studied. Glucagon infusion but not insulin or glucose infusion increased the rate of purine synthesis de novo, which was assayed by [ 14 C]glycine or [ 14 C]formate incorporation, by 2.7- to 4.3-fold. Glucagon infusion increased cAMP concentrations by 4.9-fold and 5-phosphoribosyl-1-pyrophosphate concentrations by 1.5-fold in liver but did not change the specific activity of amidophosphoribosyltransferase or purine ribonucleotide concentrations. Dibutyryl cAMP infusion also increased the rate of purine synthesis de novo by 2.2- to 4.0-fold. Because glucagon infusion increased the rate of purine synthesis de novo in the presence of unchanged purine ribonucleotide concentrations, it is concluded that glucagon after infusion or in animals after a 70% hepatectomy is playing an anabolic role to increase the rate of purine synthesis de novo by increasing cAMP and 5-phosphoribosyl-1-pyrophosphate concentrations

  8. Highly uniform up-converting nanoparticles: Why you should control your synthesis even more

    International Nuclear Information System (INIS)

    Palo, Emilia; Tuomisto, Minnea; Hyppänen, Iko; Swart, Hendrik C.; Hölsä, Jorma; Soukka, Tero; Lastusaari, Mika

    2017-01-01

    Luminescent β-NaYF 4 :Yb 3+ ,Er 3+ (x Yb : 0.17, x Er : 0.03) nanomaterials were synthesized for use as labels for biomedical applications with high temperature co-precipitation synthesis in 1-octadecene and oleic acid. The effect of the synthesis conditions (e.g. argon flow, cooling and stirring rates) on the products’ up-conversion luminescence intensity, particle size and morphology were studied. The factors contributing to these properties were analysed. It was observed that an efficient inert gas flow is essential to the formation of the preferred highly-luminescent hexagonal structure. Furthermore, the flow rate, together with the stirring rate, crucially affect the Er:Yb molar ratio of the products. The optimization of this ratio is essential when strong up-conversion emission is required from small particles, whereas the morphology and uniformity of the nanoparticles can be controlled with the cooling rate. These results emphasize the importance of controlling the synthesis conditions, especially when nanoparticles need to have a specific morphology because of their use e.g. as luminescent labels in medical diagnostics.

  9. Highly uniform up-converting nanoparticles: Why you should control your synthesis even more

    Energy Technology Data Exchange (ETDEWEB)

    Palo, Emilia, E-mail: ekharj@utu.fi [University of Turku, Department of Chemistry, FI-20014 Turku (Finland); University of Turku Graduate School (UTUGS), Doctoral Programme in Physical and Chemical Sciences, Turku (Finland); Turku University Centre for Materials and Surfaces (MatSurf), Turku (Finland); Tuomisto, Minnea [University of Turku, Department of Chemistry, FI-20014 Turku (Finland); University of Turku Graduate School (UTUGS), Doctoral Programme in Physical and Chemical Sciences, Turku (Finland); Turku University Centre for Materials and Surfaces (MatSurf), Turku (Finland); Hyppänen, Iko [University of Turku, Department of Chemistry, FI-20014 Turku (Finland); Turku University Centre for Materials and Surfaces (MatSurf), Turku (Finland); Swart, Hendrik C.; Hölsä, Jorma [University of the Free State, Department of Physics, Bloemfontein ZA-9300 (South Africa); Soukka, Tero [University of Turku, Department of Biochemistry, FI-20014 Turku (Finland); Lastusaari, Mika [University of Turku, Department of Chemistry, FI-20014 Turku (Finland); Turku University Centre for Materials and Surfaces (MatSurf), Turku (Finland)

    2017-05-15

    Luminescent β-NaYF{sub 4}:Yb{sup 3+},Er{sup 3+} (x{sub Yb}: 0.17, x{sub Er}: 0.03) nanomaterials were synthesized for use as labels for biomedical applications with high temperature co-precipitation synthesis in 1-octadecene and oleic acid. The effect of the synthesis conditions (e.g. argon flow, cooling and stirring rates) on the products’ up-conversion luminescence intensity, particle size and morphology were studied. The factors contributing to these properties were analysed. It was observed that an efficient inert gas flow is essential to the formation of the preferred highly-luminescent hexagonal structure. Furthermore, the flow rate, together with the stirring rate, crucially affect the Er:Yb molar ratio of the products. The optimization of this ratio is essential when strong up-conversion emission is required from small particles, whereas the morphology and uniformity of the nanoparticles can be controlled with the cooling rate. These results emphasize the importance of controlling the synthesis conditions, especially when nanoparticles need to have a specific morphology because of their use e.g. as luminescent labels in medical diagnostics.

  10. Tendon protein synthesis rate in classic Ehlers-Danlos patients can be stimulated with insulin-like growth factor-I

    DEFF Research Database (Denmark)

    Nielsen, Rie Harboe; Holm, Lars; Jensen, Jacob Kildevang

    2014-01-01

    tissue protein turnover is unknown. We investigated whether cEDS affected the protein synthesis rate in skin and tendon, and whether this could be stimulated in tendon tissue with insulin-like growth factor-I (IGF-I). Five patients with cEDS and 10 healthy, matched controls (CTRL) were included. One...... patellar tendon of each participant was injected with 0.1 ml IGF-I (Increlex, Ipsen, 10 mg/ml) and the contralateral tendon with 0.1 ml isotonic saline as control. The injections were performed at both 24 and 6 h prior to tissue sampling. The fractional synthesis rate (FSR) of proteins in skin and tendon.......002 (cEDS) and 0.007 ± 0.002 (CTRL); tendon: 0.008 ± 0.001 (cEDS) and 0.009 ± 0.002 (CTRL) %/h, mean ± SE]. IGF-I injections significantly increased FSR values in cEDS patients but not in controls (delta values: cEDS 0.007 ± 0.002, CTRL 0.001 ± 0.001%/h). In conclusion, baseline protein synthesis rates...

  11. Effects of inhibitors of DNA synthesis and protein synthesis on the rate of DNA synthesis after exposure of mammalian cells to ultraviolet light

    International Nuclear Information System (INIS)

    Griffiths, T.D.; Dahle, D.B.; Meechan, P.J.; Carpenter, J.G.

    1981-01-01

    Chinese hamster V-79 cells were treated with metabolic inhibitors of DNA or protein synthesis for various intervals of time after exposure of 3.0 or 5.0 J m -2 . After removal of the metabolic block(s) the rate of DNA synthesis was followed by measuring the incorporation of [ 14 C]thymidine into acid-insoluble material. A 2.5 or 5.0h incubation with cycloheximide or hydroxyurea was effective in delaying the onset of the recovery in the rate of DNA synthesis that normally becomes evident several hours after exposure to ultraviolet light. By using concentrations of cycloheximide or hydroxyurea that inhibit DNA synthesis by a similar amount (70%), but protein synthesis by vastly different amounts (95% for cycloheximide; 0% for hydroxyurea), it was apparent that the delay in recovery caused by the treatment of the cells with cycloheximide could be accounted for entirely by its inhibitory effect on DNA synthesis. This suggests that the recovery in DNA synthetic rates following exposure of V-79 cells to ultraviolet light does not appear to require de novo protein synthesis, and therefore does not appear to require the involvement of an inducible DNA repair process. (Auth.)

  12. Gestural Control Of Wavefield synthesis

    DEFF Research Database (Denmark)

    Grani, Francesco; Di Carlo, Diego; Portillo, Jorge Madrid

    2016-01-01

    We present a report covering our preliminary research on the control of spatial sound sources in wavefield synthesis through gesture based interfaces. After a short general introduction on spatial sound and few basic concepts on wavefield synthesis, we presents a graphical application called sp......AAce which let users to con- trol real-time movements of sound sources by drawing tra- jectories on a screen. The first prototype of this application has been developed bound to WFSCollider, an open-source software based on Supercollider which let users control wavefield synthesis. The spAAce application has...... been im- plemented using Processing, a programming language for sketches and prototypes within the context of visual arts, and communicates with WFSCollider through the Open Sound Control protocol. This application aims to create a new way of interaction for live performance of spatial composition...

  13. Determination of human muscle protein fractional synthesis rate

    DEFF Research Database (Denmark)

    Bornø, Andreas; Hulston, Carl J; van Hall, Gerrit

    2014-01-01

    In the present study, different MS methods for the determination of human muscle protein fractional synthesis rate (FSR) using [ring-(13)C6 ]phenylalanine as a tracer were evaluated. Because the turnover rate of human skeletal muscle is slow, only minute quantities of the stable isotopically...

  14. Compositional Synthesis of Safety Controllers

    NARCIS (Netherlands)

    Kuijper, W.

    2012-01-01

    In my thesis I investigate compositional techniques for synthesis of safety controllers. A safety controller, in this context, is a state machine that gives the set of safe control outputs for every possible sequence of observations from the plant under control. Compositionality, in this context,

  15. Controlled synthesis of colloidal silver nanoparticles in capillary micro-flow reactor

    International Nuclear Information System (INIS)

    He Shengtai; Liu Yulan; Maeda, Hideaki

    2008-01-01

    In this study, using a polytetrafluoroethylene (PTFE) capillary tube as a micro-flow reactor, well-dispersed colloidal silver nanoparticles were controllably synthesized with different flow rates of precursory solution. Scanning transmission electron microscopy images and UV-visible absorbance spectra showed that silver nanoparticles with large size can be prepared with slow flow rate in the PTFE capillary reactor. The effects of tube diameters on the growth of colloidal silver nanoparticles were investigated. Experiment results demonstrated that using tube with small diameter was more propitious for the controllable synthesis of silver nanoparticles with different sizes.

  16. Analyzing the effects of mechanical and osmotic loading on glycosaminoglycan synthesis rate in cartilaginous tissues.

    Science.gov (United States)

    Gao, Xin; Zhu, Qiaoqiao; Gu, Weiyong

    2015-02-26

    The glycosaminoglycan (GAG) plays an important role in cartilaginous tissues to support and transmit mechanical loads. Many extracellular biophysical stimuli could affect GAG synthesis by cells. It has been hypothesized that the change of cell volume is a primary mechanism for cells to perceive the stimuli. Experimental studies have shown that the maximum synthesis rate of GAG is achieved at an optimal cell volume, larger or smaller than this level the GAG synthesis rate decreases. Based on the hypothesis and experimental findings in the literature, we proposed a mathematical model to quantitatively describe the cell volume dependent GAG synthesis rate in the cartilaginous tissues. Using this model, we investigated the effects of osmotic loading and mechanical loading on GAG synthesis rate. It is found our proposed mathematical model is able to well describe the change of GAG synthesis rate in isolated cells or in cartilage with variations of the osmotic loading or mechanical loading. This model is important for evaluating the GAG synthesis activity within cartilaginous tissues as well as understanding the role of mechanical loading in tissue growth or degeneration. It is also important for designing a bioreactor system with proper extracellular environment or mechanical loading for growing tissue at the maximum synthesis rate of the extracellular matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Flow chemistry to control the synthesis of nano and microparticles for biomedical applications.

    Science.gov (United States)

    Hassan, Natalia; Oyarzun-Ampuero, Felipe; Lara, Pablo; Guerrero, Simón; Cabuil, Valérie; Abou-Hassan, Ali; Kogan, Marcelo J

    2014-03-01

    In this article we review the flow chemistry methodologies for the controlled synthesis of different kind of nano and microparticles for biomedical applications. Injection mechanism has emerged as new alternative for the synthesis of nanoparticles due to this strategy allows achieving superior levels of control of self-assemblies, leading to higher-ordered structures and rapid chemical reactions. Self-assembly events are strongly dependent on factors such as the local concentration of reagents, the mixing rates, and the shear forces, which can be finely tuned, as an example, in a microfluidic device. Injection methods have also proved to be optimal to elaborate microsystems comprising polymer solutions. Concretely, extrusion based methods can provide controlled fluid transport, rapid chemical reactions, and cost-saving advantages over conventional reactors. We provide an update of synthesis of nano and microparticles such as core/shell, Janus, nanocrystals, liposomes, and biopolymeric microgels through flow chemistry, its potential bioapplications and future challenges in this field are discussed.

  18. Timing matters: the underappreciated role of temperature ramp rate for shape control and reproducibility of quantum dot synthesis

    KAUST Repository

    Baumgardner, William J.

    2012-01-01

    Understanding the coupled kinetic and thermodynamics factors governing colloidal nanocrystals nucleation and growth are critical factors in the predictable and reproducible synthesis of advanced nanomaterials. We show that the temporal temperature profile is decisive in tuning the particle shape from pseudo-spherical to monodisperse cubes. The shape of the nanocrystals was characterized by transmission electron microscopy and X-ray diffraction. We introduce a mechanism for the shape controlled synthesis in the context of temperature-dependent nucleation and growth and provide experimental evidence to support it. © 2013 The Royal Society of Chemistry.

  19. ANALYTICAL SYNTHESIS OF CHEMICAL REACTOR CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    Alexander Labutin

    2017-02-01

    Full Text Available The problem of the analytical synthesis of the synergetic control system of chemical reactor for the realization of a complex series-parallel exothermal reaction has been solved. The synthesis of control principles is performed using the analytical design method of aggregated regulators. Synthesized nonlinear control system solves the problem of stabilization of the concentration of target component at the exit of reactor and also enables one to automatically transfer to new production using the equipment.

  20. Robust control synthesis for uncertain dynamical systems

    Science.gov (United States)

    Byun, Kuk-Whan; Wie, Bong; Sunkel, John

    1989-01-01

    This paper presents robust control synthesis techniques for uncertain dynamical systems subject to structured parameter perturbation. Both QFT (quantitative feedback theory) and H-infinity control synthesis techniques are investigated. Although most H-infinity-related control techniques are not concerned with the structured parameter perturbation, a new way of incorporating the parameter uncertainty in the robust H-infinity control design is presented. A generic model of uncertain dynamical systems is used to illustrate the design methodologies investigated in this paper. It is shown that, for a certain noncolocated structural control problem, use of both techniques results in nonminimum phase compensation.

  1. Continuous Flow Controlled Synthesis of Gold Nanoparticles Using Pulsed Mixing Microfluidic System

    Directory of Open Access Journals (Sweden)

    Guojun Liu

    2015-01-01

    Full Text Available To prepare the gold nanoparticles (AuNPs with uniform sizes, fine morphology, and good monodispersity, a pulsed mixing microfluidic system based on PZT actuation was presented. The system includes PZT micropump and Y type micromixer. By adjusting voltage (entrance flow rate, pulsed frequency, phase, and other parameters, a variety of mixing modes can be achieved, so as to realize the controllable synthesis of nanoparticles in a certain range. By numerical simulation and analysis, the channel section size, entrance angle, and pulse frequency were optimized. Based on the optimized structure and working parameters, the test prototype has been manufactured in lab, and the related synthesis tests of AuNPs were carried out. The test results indicate that AuNPs with uniform morphology and good monodispersity can be synthesized using the system with the section size (0.4 mm × 0.4 mm, the entrance channel angle (60° under condition of the pulsed frequency (300 Hz, and the entrance flow rate (4 mL/min. The average diameter and its standard deviation of AuNPs synthesized were 21.6 nm, 4.83 nm, respectively. The research work above can be applied to the fields such as the controlled synthesis of noble metal nanoparticles, biomedicine, and microchemical system.

  2. Control of protein synthesis in the female pupa of Bombyx mori

    International Nuclear Information System (INIS)

    Yamao, Masami; Koga, Katsumi

    1975-01-01

    For the purpose of understanding the mechanisms of insect metamorphosis, protein synthesis by silkmoth pupae has been studied. Synthetic rate and contents of total RNA and protein changed markedly in the female pupae of Bombyx mori. Attempt was made to find what the limiting step for the synthesis of the bulk of proteins during the adult development of female pupae is. Several female pupae of hydridstrain were homogenized at each of stated periods in buffer. The ribosomal fraction prepared from the homogenates was incubated in the buffer containing 3 H-leucine or 3 H-phenylalanine. The incorporation of leucine depending on endogenous mRNA and that of phenylalanine directed by added poly U were the largest in 9--10 days and 7th day, respectively. From the results, the synthesis of protein during the late adult development of female silkworms is controlled at the level of mRNA. The increase of ribosomes, which were active to bind mRNA, preceded the appearance of available endogenous mRNA, and it may be attributed to neogenesis and ''run-off'' of previous ribosomes. It is conceivable that such neogenesis or run-off serves as less direct control for the protein synthesis during the metamorphosis of Bombix mori. (Kobatake, H.)

  3. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats.

    Science.gov (United States)

    Domenichiello, Anthony F; Chen, Chuck T; Trepanier, Marc-Olivier; Stavro, P Mark; Bazinet, Richard P

    2014-01-01

    Docosahexaenoic acid (DHA) is important for brain function, however, the exact amount required for the brain is not agreed upon. While it is believed that the synthesis rate of DHA from α-linolenic acid (ALA) is low, how this synthesis rate compares with the amount of DHA required to maintain brain DHA levels is unknown. The objective of this work was to assess whether DHA synthesis from ALA is sufficient for the brain. To test this, rats consumed a diet low in n-3 PUFAs, or a diet containing ALA or DHA for 15 weeks. Over the 15 weeks, whole body and brain DHA accretion was measured, while at the end of the study, whole body DHA synthesis rates, brain gene expression, and DHA uptake rates were measured. Despite large differences in body DHA accretion, there was no difference in brain DHA accretion between rats fed ALA and DHA. In rats fed ALA, DHA synthesis and accretion was 100-fold higher than brain DHA accretion of rats fed DHA. Also, ALA-fed rats synthesized approximately 3-fold more DHA than the DHA uptake rate into the brain. This work indicates that DHA synthesis from ALA may be sufficient to supply the brain.

  4. Serotonin synthesis rate and the tryptophan hydroxylase-2

    DEFF Research Database (Denmark)

    Furmark, Tomas; Marteinsdottir, Ina; Frick, Andreas

    2016-01-01

    It is disputed whether anxiety disorders, like social anxiety disorder, are characterized by serotonin over- or underactivity. Here, we evaluated whether our recent finding of elevated neural serotonin synthesis rate in patients with social anxiety disorder could be reproduced in a separate cohor...

  5. Biomineralization-inspired synthesis of chitosan/hydroxyapatite biocomposites based on a novel bilayer rate-controlling model.

    Science.gov (United States)

    Hu, Jing-Xiao; Ran, Jia-Bing; Chen, Si; Shen, Xin-Yu; Tong, Hua

    2015-12-01

    In order to prepare sophisticated biomaterials using a biomimetic approach, a deeper understanding of biomineralization is needed. Of particular importance is the control and regulation of the mineralization process. In this study, a novel bilayer rate-controlling model was designed to investigate the factors potentially influencing mineralization. In the absence of a rate-controlling layer, nano-scale hydroxyapatite (HA) crystallites exhibited a spherical morphology, whereas, in the presence of a rate-controlling layer, HA crystallites were homogeneously dispersed and spindle-like in structure. The mineralization rate had a significant effect on controlling the morphology of crystals. Furthermore, in vitro tests demonstrated that the reaction layer containing spindle-like HA crystallites possessed superior biological properties. These results suggest that a slow mineralization rate is required for controlling the morphology of inorganic crystallites, and consumption by the rate-controlling layer ensured that the ammonia concentration remained low. This study demonstrates that a biomimetic approach can be used to prepare novel biomaterials containing HA crystallites that have different morphologies and biological properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats[S

    Science.gov (United States)

    Domenichiello, Anthony F.; Chen, Chuck T.; Trepanier, Marc-Olivier; Stavro, P. Mark; Bazinet, Richard P.

    2014-01-01

    Docosahexaenoic acid (DHA) is important for brain function, however, the exact amount required for the brain is not agreed upon. While it is believed that the synthesis rate of DHA from α-linolenic acid (ALA) is low, how this synthesis rate compares with the amount of DHA required to maintain brain DHA levels is unknown. The objective of this work was to assess whether DHA synthesis from ALA is sufficient for the brain. To test this, rats consumed a diet low in n-3 PUFAs, or a diet containing ALA or DHA for 15 weeks. Over the 15 weeks, whole body and brain DHA accretion was measured, while at the end of the study, whole body DHA synthesis rates, brain gene expression, and DHA uptake rates were measured. Despite large differences in body DHA accretion, there was no difference in brain DHA accretion between rats fed ALA and DHA. In rats fed ALA, DHA synthesis and accretion was 100-fold higher than brain DHA accretion of rats fed DHA. Also, ALA-fed rats synthesized approximately 3-fold more DHA than the DHA uptake rate into the brain. This work indicates that DHA synthesis from ALA may be sufficient to supply the brain. PMID:24212299

  7. Waste utilization for the controlled synthesis of nanosized hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Nayar, Suprabha, E-mail: Suprabha.nayar@gmail.com [National Metallurgical Laboratory, Jamshedpur (India); Guha, Avijit [National Metallurgical Laboratory, Jamshedpur (India)

    2009-05-05

    This work uses biomolecules in waste and medicinally important materials for the synthesis of hydroxyapatite nanoparticles. Orange and potato peel, eggshell, papaya leaf and calendula flower extracts have varied biomolecules, which exert a significant, control on the in situ synthesis of nanosized hydroxyapatite particles. The biomimetic synthesis of inorganic particles using known matrices is already well established, however, there are only a few reports using compound extracts. The synthesized nanocomposite has been characterized using X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy studies. Role of varied biomolecules in controlled inorganic synthesis may have tremendous technological impact.

  8. Methods of Synthesis of Automatic Control Systems with Delay

    Directory of Open Access Journals (Sweden)

    Aliaksandr Lapeta

    2013-05-01

    Full Text Available The paper investigates the procedure for introduction of systems containing delay elements. Shortcomings and difficulties in the synthesis of regulators and precompensators of control systems with delays in output and control channel where determined. The author focused on two approaches for the formation of promatrix and synthesis of control systems, considering the factor of delay.

  9. Cholesterol metabolism: use of D2O for determination of synthesis rate in cell culture

    International Nuclear Information System (INIS)

    Esterman, A.L.; Cohen, B.I.; Javitt, N.B.

    1985-01-01

    Cholesterol synthesis in cell culture in the presence of D 2 O yields a spectrum of enriched molecules having a relative abundance that indicates random substitution of deuterium for hydrogen. Quantitation of the absolute rate of cholesterol synthesis is obtained by isotope ratio mass spectrometry. Mevinolin and 26-hydroxycholesterol both decrease cholesterol synthesis rate but have a discordant effect on HMG-CoA reductase activity

  10. Control of Ribosome Synthesis in Escherichia coli

    DEFF Research Database (Denmark)

    Molin, Søren; Meyenburg, K. von; Måløe, O.

    1977-01-01

    The rate of ribosome synthesis and accumulation in Escherichia coli during the transition after an energy source shift-down was analyzed. The shift was imposed on cultures of stringent and relaxed strains growing in glucose minimal medium by the addition of the glucose analogue {alpha...... and to estimate the transcription time for the rRNA operon under different conditions. In steady states of growth with growth rates ranging from 0.75 to 2.3 doublings/h, as well as during the transition after a shift-down, the transcription time of the rRNA operon was constant. The rate of synthesis of r......RNA correlated during this transition – in contrast to the rate of accumulation (M. T. Hansen et al., J. Bacteriol. 122: 585-591, 1975) – with the ppGpp pool in the same way as has been observed during partial amino acid starvation....

  11. Inability to fully suppress sterol synthesis rates with exogenous sterol in embryonic and extraembyronic fetal tissues

    OpenAIRE

    Yao, Lihang; Jenkins, Katie; Horn, Paul S.; Lichtenberg, M. Hayden; Woollett, Laura A.

    2007-01-01

    The requirement for cholesterol is greater in developing tissues (fetus, placenta, and yolk sac) as compared to adult tissues. Here, we compared cholesterol-induced suppression of sterol synthesis rates in the adult liver to the fetal liver, fetal body, placenta, and yolk sac of the Golden Syrian hamster. Sterol synthesis rates were suppressed maximally in non-pregnant adult livers when cholesterol concentrations were increased. In contrast, sterol synthesis rates were suppressed only margina...

  12. Synthesis and quality control of [18F] fluorothymidine

    International Nuclear Information System (INIS)

    Nascimento, Leonardo Tafas C.; Silva, Juliana B.; Silveira, Marina B.; Santos, Priscilla F.; Faria, Tiago

    2013-01-01

    The Positron Emission Tomography (PET) is a technique that allows early diagnosis of various diseases by detecting metabolic changes of cells, in addition to being a noninvasive technique. The most widely used radiopharmaceutical for PET imaging is [ 18 F] Fludesoxiglucose ( 18 FDG), which is a marker of glucose metabolism and has high sensitivity and specificity for diagnosis and staging of various cancers. However, some carcinomas do not have high glucose consumption, besides 18 FDG possess high urinary excretion rate interfering with the detection of tumors in pelvis and high uptake in brain and in inflammation, reducing the contrast tumor / background. The radiotracer 3'-fluoro-L-3'-deoxythymidine ( 18 FLT) is an analogue of thymidine used as an alternative to 18 FDG for detecting tumors with high proliferation rate. The aim of this work was to develop [ 18 F] Fluorothymidine synthesis and quality control at the Radiopharmaceuticals Research and Production Facility of CDTN/CNEN. The synthesis was adapted from that used to 18 FDG, based on the methodologies described in related papers. Radiochemical purity and impurities levels were determined by HPLC, RTLC and GC techniques. Total synthesis time was 35 minutes and the radiochemical yield in the end of bombardment (EOB) was 7%, with a radiochemical purity of about 93%. Radionuclidic identity and purity, pH, residual solvents, radiochemical and chemical purity were evaluated according to analytical methods described on the literature and on the United States Pharmacopeia (USP 32). Residual levels of Stavudine, Thymine and Thymidine were found and are under toxicological investigation in order to establish a maximum amount allowed in the final product. (author)

  13. Automatic Synthesis of Robust and Optimal Controllers

    DEFF Research Database (Denmark)

    Cassez, Franck; Jessen, Jan Jacob; Larsen, Kim Guldstrand

    2009-01-01

    In this paper, we show how to apply recent tools for the automatic synthesis of robust and near-optimal controllers for a real industrial case study. We show how to use three different classes of models and their supporting existing tools, Uppaal-TiGA for synthesis, phaver for verification......, and Simulink for simulation, in a complementary way. We believe that this case study shows that our tools have reached a level of maturity that allows us to tackle interesting and relevant industrial control problems....

  14. Relationship Between Hepatic Albumin and Sulphate Synthesis and its Use in Measurement of the Absolute Rate of Synthesis of Liver-Produced Plasma Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Awwad, H. K.; Sheraki, A. S. [Department of Radiology and Radiological Sciences, Cancer Institute, University of Cairo, Cairo (Egypt); Radioisotope Unit, Medical Research Institute, Alexandria (Egypt)

    1971-02-15

    A model is proposed whereby serum albumin synthesis is expressed in terms of production of inorganic sulphate in the liver and the entire organism, following the administration of {sup 35}S-L-cystine. The basis assumption involved is that the precursor amino acid pool for albumin synthesis in the liver is either identical with that of inorganic sulphate synthesis or that the two pools concerned are in rapid equilibrium with each other so that they can be treated as a single pool. The feasibility of the proposed model was tested by comparing the synthesis rate of rat serum albumin with the catabolic rate of the radioiodinated protein measured in the same animal. A good agreement between the two rates was noted in a group of adult rats, whereas an excess of anabolism was noted in young growing animals. In rats fed low-protein diet, the synthesis rate exceeded the catabolic rate; both being subnormal. The equilibrium between hepatic and plasma radiosulphate concentration was complete within four hours following the injection of {sup 35}S-cystine. The total radiosulphate production could then be evaluated after such an interval from the urinary excretion and serum concentration multiplied by the volume of the sulphate space. Lack of significant re-utilization was demonstrated following the injection of radiosulphate. This is a decided advantage of the proposed method. However, extensive re-utilization of selenate selenium in the synthesis of the seleno-analogues of sulphur-amino acids was shown. This could explain the poor yield of radioselenate following the injection of {sup 75}Se-selenocystine and precludes the use of the latter agent as a tracer for measurement of synthesis of plasma proteins. (author)

  15. Assessing the reliability of calculated catalytic ammonia synthesis rates

    DEFF Research Database (Denmark)

    Medford, Andrew James; Wellendorff, Jess; Vojvodic, Aleksandra

    2014-01-01

    We introduce a general method for estimating the uncertainty in calculated materials properties based on density functional theory calculations. We illustrate the approach for a calculation of the catalytic rate of ammonia synthesis over a range of transition-metal catalysts. The correlation...... between errors in density functional theory calculations is shown to play an important role in reducing the predicted error on calculated rates. Uncertainties depend strongly on reaction conditions and catalyst material, and the relative rates between different catalysts are considerably better described...

  16. Insulin accelerates global and mitochondrial protein synthesis rates in neonatal muscle during sepsis

    Science.gov (United States)

    In neonatal pigs, sepsis decreases protein synthesis in skeletal muscle by decreasing translation initiation. However, insulin stimulates muscle protein synthesis despite persistent repression of translation initiation signaling. To determine whether the insulin-induced increase in global rates of m...

  17. Measurement of glomerular filtration rate by impulse synthesis: Clinical validation and optimization

    International Nuclear Information System (INIS)

    Palagi, B.; Verga, P.; Broggi, A.; Picozzi, R.; Villa, F.; Guzzini, F.; Cozzi, C.; Tomasi, A.

    1988-01-01

    Impulse synthesis is a technique which relies upon the logic of continuous infusion but extracts the clearance value from single-injection data by shifting and adding them until an asymptotic value is attained. This study has been aimed at validating and optimizing clinically the measurement of glomerular filtration rate by impulse synthesis. A single intravenous injection of 51 Cr-EDTA has been made in 32 patients and plasma activity monitored over the next 6 h. Glomerular filtration rate computed by a single-exponential fit method (GFR-SEF) has been shown to be significantly (p [de

  18. Synthesis of SAPO-56 with controlled crystal size

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ting; Feng, Xuhui [Colorado School of Mines, Chemical and Biological Engineering Department (United States); Carreon, Maria L. [University of Tulsa, Rusell School of Chemical Engineering (United States); Carreon, Moises A., E-mail: mcarreon@mines.edu [Colorado School of Mines, Chemical and Biological Engineering Department (United States)

    2017-03-15

    Herein, we present the hydrothermal synthesis of SAPO-56 crystals with relatively controlled crystal/particle size. The effects of water content, aluminum source, gel composition, stirring, crystallization temperature and time, as well as the incorporation of crystal growth inhibitors during synthesis were systematically investigated. The synthesized SAPO-56 crystals displayed BET surface areas as high as ∼630 m{sup 2} g{sup −1} with relative narrow size distribution in the ∼5–60 μm range. Nitrogen BET surface areas in the 451 to 631 m{sup 2} g{sup −1} range were observed. Decreasing the crystallization temperature from 220 to 210 °C helped to decrease the average SAPO-56 crystal size. Diluted gel compositions promoted the formation of smaller crystals. Crystal growth inhibitors were found to be helpful in reducing crystal size and narrow the size distribution. Specifically, ∼5 μm SAPO-56 crystals displaying narrow size distribution were synthesized employing aluminum-tri-sec-butoxide as Al source, high water content, and high stirring rates.

  19. Synthesis of SAPO-56 with controlled crystal size

    International Nuclear Information System (INIS)

    Wu, Ting; Feng, Xuhui; Carreon, Maria L.; Carreon, Moises A.

    2017-01-01

    Herein, we present the hydrothermal synthesis of SAPO-56 crystals with relatively controlled crystal/particle size. The effects of water content, aluminum source, gel composition, stirring, crystallization temperature and time, as well as the incorporation of crystal growth inhibitors during synthesis were systematically investigated. The synthesized SAPO-56 crystals displayed BET surface areas as high as ∼630 m"2 g"−"1 with relative narrow size distribution in the ∼5–60 μm range. Nitrogen BET surface areas in the 451 to 631 m"2 g"−"1 range were observed. Decreasing the crystallization temperature from 220 to 210 °C helped to decrease the average SAPO-56 crystal size. Diluted gel compositions promoted the formation of smaller crystals. Crystal growth inhibitors were found to be helpful in reducing crystal size and narrow the size distribution. Specifically, ∼5 μm SAPO-56 crystals displaying narrow size distribution were synthesized employing aluminum-tri-sec-butoxide as Al source, high water content, and high stirring rates.

  20. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats[S

    OpenAIRE

    Domenichiello, Anthony F.; Chen, Chuck T.; Trepanier, Marc-Olivier; Stavro, P. Mark; Bazinet, Richard P.

    2014-01-01

    Docosahexaenoic acid (DHA) is important for brain function, however, the exact amount required for the brain is not agreed upon. While it is believed that the synthesis rate of DHA from α-linolenic acid (ALA) is low, how this synthesis rate compares with the amount of DHA required to maintain brain DHA levels is unknown. The objective of this work was to assess whether DHA synthesis from ALA is sufficient for the brain. To test this, rats consumed a diet low in n-3 PUFAs, or a diet containing...

  1. Quality control in aminoacyl-tRNA synthesis its role in translational fidelity

    DEFF Research Database (Denmark)

    Yadavalli, Srujana S; Ibba, Michael

    2012-01-01

    mechanisms to achieve high levels of accuracy in aminoacylation. Editing functions in aaRSs contribute to the overall low error rate in protein synthesis. Over 40 years of research on aaRSs using structural, biochemical, and kinetic approaches has expanded our knowledge of their cellular roles and quality...... control mechanisms. Here, we review aaRS editing with an emphasis on the mechanistic and kinetic details of the process....

  2. Synthesis and quality control of [{sup 18}F] fluorothymidine

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Leonardo Tafas C.; Silva, Juliana B.; Silveira, Marina B.; Santos, Priscilla F.; Faria, Tiago, E-mail: ltcn@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    The Positron Emission Tomography (PET) is a technique that allows early diagnosis of various diseases by detecting metabolic changes of cells, in addition to being a noninvasive technique. The most widely used radiopharmaceutical for PET imaging is [{sup 18}F] Fludesoxiglucose ({sup 18}FDG), which is a marker of glucose metabolism and has high sensitivity and specificity for diagnosis and staging of various cancers. However, some carcinomas do not have high glucose consumption, besides {sup 18}FDG possess high urinary excretion rate interfering with the detection of tumors in pelvis and high uptake in brain and in inflammation, reducing the contrast tumor / background. The radiotracer 3'-fluoro-L-3'-deoxythymidine ({sup 18}FLT) is an analogue of thymidine used as an alternative to {sup 18}FDG for detecting tumors with high proliferation rate. The aim of this work was to develop [{sup 18}F] Fluorothymidine synthesis and quality control at the Radiopharmaceuticals Research and Production Facility of CDTN/CNEN. The synthesis was adapted from that used to {sup 18}FDG, based on the methodologies described in related papers. Radiochemical purity and impurities levels were determined by HPLC, RTLC and GC techniques. Total synthesis time was 35 minutes and the radiochemical yield in the end of bombardment (EOB) was 7%, with a radiochemical purity of about 93%. Radionuclidic identity and purity, pH, residual solvents, radiochemical and chemical purity were evaluated according to analytical methods described on the literature and on the United States Pharmacopeia (USP 32). Residual levels of Stavudine, Thymine and Thymidine were found and are under toxicological investigation in order to establish a maximum amount allowed in the final product. (author)

  3. Synthesis of fixed-architecture, robust H2 and H∞ controllers

    Directory of Open Access Journals (Sweden)

    Emmanuel G. Collins

    2000-01-01

    Full Text Available This paper discusses and compares the synthesis of fixed-architecture controllers that guarantee either robust H2 or H∞ performance. The synthesis is accomplished by solving a Riccati equation feasibility problem resulting from mixed structured singular value theory with Popov multipliers. Whereas the algorithm for robust H2 performance had been previously implemented, a major contribution described in this paper is the implementation of the much more complex algorithm for robust H∞ performance. Both robust H2 and H∞, controllers are designed for a benchmark problem and a comparison is made between the resulting controllers and control algorithms. It is found that the numerical algorithm for robust H∞ performance is much more computationally intensive than that for robust H2 performance. Both controllers are found to have smaller bandwidth, lower control authority and to be less conservative than controllers obtained using complex structured singular value synthesis.

  4. Controlled synthesis of Zn0 nanoparticles by bioreduction

    International Nuclear Information System (INIS)

    Canizal, G.; Schabes-Retchkiman, P.S.; Pal, U.; Liu, Hong Bo; Ascencio, J.A.

    2006-01-01

    Synthesis of metallic Zn nanoparticles through bio-reduction methods is reported for the first time. The structure, shape and size of the nanoparticles are critically controlled through the pH used in the sample preparation. High resolution electron microscopy was used in order to determine the structure of individual nanoparticles. Formation of quantum dots and the efficiency of ion reduction in the synthesis process are studied through the optical absorption in colloids. The structure and stability of the Zn clusters (up to 4000 atoms) were determined through the calculation of minimum energy configurations using molecular and quantum mechanics approximations and image simulation. The structure of the obtained nanoparticles was preferentially hexagonal, although multiple twinned and fcc-like structures were identified. The size controlled synthesis of small nanoparticles in the quantum-dot range was demonstrated successfully

  5. Modelling of the enzymatic kinetically controlled synthesis of cephalexin

    NARCIS (Netherlands)

    Schroën, C.G.P.H.; Fretz, C.B.; Bruin, de V.H.; Berendsen, W.; Moody, H.M.; Roos, E.C.; Roon, van J.L.; Kroon, P.J.; Strubel, M.; Janssen, A.E.M.; Tramper, J.

    2002-01-01

    In this study the influence of diffusion limitation on enzymatic kinetically controlled cephalexin synthesis from phenylglycine amide and 7-aminodeacetoxycephalosporinic acid (7-ADCA) was investigated systematically. It was found that if diffusion limitation occurred, both the synthesis/hydrolysis

  6. Controllable synthesis of mesoporous carbon nanospheres and Fe-N/carbon nanospheres as efficient oxygen reduction electrocatalysts

    Science.gov (United States)

    Wei, Jing; Liang, Yan; Zhang, Xinyi; Simon, George P.; Zhao, Dongyuan; Zhang, Jin; Jiang, Sanping; Wang, Huanting

    2015-03-01

    The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the ``I+X-S+'' mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries.The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions

  7. Environment friendly approach for size controllable synthesis of biocompatible Silver nanoparticles using diastase.

    Science.gov (United States)

    Maddinedi, Sireesh Babu; Mandal, Badal Kumar; Anna, Kiran Kumar

    2017-01-01

    A green, facile method for the size selective synthesis of silver nanoparticles (AgNPs) using diastase as green reducing and stabilizing agent is reported. The thiol groups present in the diastase are mainly responsible for the rapid reaction rate of silver nanoparticles synthesis. The variation in the size and morphology of AgNPs were studied by changing the pH of diastase. The prepared silver nanoparticles were characterized by using UV-vis, XRD, FTIR, TEM and SAED. The FTIR analysis revealed the stabilization of diastase molecules on the surface of AgNPs. Additionally, in-vitro cytotoxicity experiments concluded that the cytotoxicity of the as-synthesized AgNPs towards mouse fibroblast (3T3) cell lines is dose and size dependent. Furthermore, the present method is an alternative to the traditional chemical methods of size controlled AgNPs synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Controllable synthesis of spongy carbon nanotube blocks with tunable macro- and microstructures

    International Nuclear Information System (INIS)

    Gui Xuchun; Lin Zhiqiang; Zeng Zhiping; Tang Zikang; Wang Kunlin; Wu Dehai

    2013-01-01

    Macroscopic carbon nanotubes (CNTs) with uniform structures are in great demand for use in composites and environmental materials. Here we demonstrate the controlled synthesis of spongy CNT blocks with isotropic properties and flexible, freestanding structures. The formation mechanism of the isotropic CNT sponges is discussed, based on its open-ended structure and initial formation in the vapor phase. The microstructure of the CNT sponges can be tuned by changing the flow rate of the carrier gas, resulting in CNT sponges with diameters ranging from 30.2 to 47.8 nm and wall thicknesses from 7 to 16 nm. The bulk density (5–25 mg cm −3 ), mechanical strength of the CNT sponges, and filling rate of ferromagnetic catalyst in the CNT sponges can also be modulated by controlling the supply rate of the carbon source, suggesting potential applications in mechanical energy absorption and environmental materials. (paper)

  9. Measuring Protein Synthesis Rate In Living Object Using Flooding Dose And Constant Infusion Methods

    OpenAIRE

    Ulyarti, Ulyarti

    2018-01-01

    Constant infusion is a method used for measuring protein synthesis rate in living object which uses low concentration of amino acid tracers. Flooding dose method is another technique used to measure the rate of protein synthesis which uses labelled amino acid together with large amount of unlabelled amino acid.  The latter method was firstly developed to solve the problem in determination of precursor pool arise from constant infusion method.  The objective of this writing is to com...

  10. Size controlled synthesis of biocompatible gold nanoparticles and their activity in the oxidation of NADH

    International Nuclear Information System (INIS)

    Chandran, Parvathy R; Sandhyarani, N; Naseer, M; Udupa, N

    2012-01-01

    Size and shape controlled synthesis remains a major bottleneck in the research on nanoparticles even after the development of different methods for their preparation. By tuning the size and shape of a nanoparticle, the intrinsic properties of the nanoparticle can be controlled leading tremendous potential applications in different fields of science and technology. We describe a facile route for the one pot synthesis of gold nanoparticles in water using monosodium glutamate as the reducing and stabilizing agent in the absence of seed particles. The particle diameter can be easily controlled by varying the pH of the reaction medium. Nanoparticles were characterized using scanning electron microscopy, UV–vis absorption spectroscopy, cyclic voltammetry, and dynamic light scattering. Zeta potential measurements were made to compare the stability of the different nanoparticles. The results suggest that lower pH favours a nucleation rate giving rise to smaller particles and higher pH favours a growth rate leading to the formation of larger particles. The synthesized nanoparticles are found to be stable and biocompatible. The nanoparticles synthesized at high pH exhibited a good electrocatalytic activity towards oxidation of nicotinamide adenine dinucleotide (NADH).

  11. Robust Temperature Control of a Thermoelectric Cooler via μ -Synthesis

    Science.gov (United States)

    Kürkçü, Burak; Kasnakoğlu, Coşku

    2018-02-01

    In this work robust temperature control of a thermoelectric cooler (TEC) via μ -synthesis is studied. An uncertain dynamical model for the TEC that is suitable for robust control methods is derived. The model captures variations in operating point due to current, load and temperature changes. A temperature controller is designed utilizing μ -synthesis, a powerful method guaranteeing robust stability and performance. For comparison two well-known control methods, namely proportional-integral-derivative (PID) and internal model control (IMC), are also realized to benchmark the proposed approach. It is observed that the stability and performance on the nominal model are satisfactory for all cases. On the other hand, under perturbations the responses of PID and IMC deteriorate and even become unstable. In contrast, the μ -synthesis controller succeeds in keeping system stability and achieving good performance under all perturbations within the operating range, while at the same time providing good disturbance rejection.

  12. Prolonged Adaptation to a Low or High Protein Diet Does Not Modulate Basal Muscle Protein Synthesis Rates - A Substudy.

    Science.gov (United States)

    Hursel, Rick; Martens, Eveline A P; Gonnissen, Hanne K J; Hamer, Henrike M; Senden, Joan M G; van Loon, Luc J C; Westerterp-Plantenga, Margriet S

    2015-01-01

    Based on controlled 36 h experiments a higher dietary protein intake causes a positive protein balance and a negative fat balance. A positive net protein balance may support fat free mass accrual. However, few data are available on the impact of more prolonged changes in habitual protein intake on whole-body protein metabolism and basal muscle protein synthesis rates. To assess changes in whole-body protein turnover and basal muscle protein synthesis rates following 12 weeks of adaptation to a low versus high dietary protein intake. A randomized parallel study was performed in 40 subjects who followed either a high protein (2.4 g protein/kg/d) or low protein (0.4 g protein/kg/d) energy-balanced diet (30/35/35% or 5/60/35% energy from protein/carbohydrate/fat) for a period of 12 weeks. A subgroup of 7 men and 8 women (body mass index: 22.8±2.3 kg/m2, age: 24.3±4.9 y) were selected to evaluate the impact of prolonged adaptation to either a high or low protein intake on whole body protein metabolism and basal muscle protein synthesis rates. After the diet, subjects received continuous infusions with L-[ring-2H5]phenylalanine and L-[ring-2H2]tyrosine in an overnight fasted state, with blood samples and muscle biopsies being collected to assess post-absorptive whole-body protein turnover and muscle protein synthesis rates in vivo in humans. After 12 weeks of intervention, whole-body protein balance in the fasted state was more negative in the high protein treatment when compared with the low protein treatment (-4.1±0.5 vs -2.7±0.6 μmol phenylalanine/kg/h;Pprotein breakdown (43.0±4.4 vs 37.8±3.8 μmol phenylalanine/kg/h;Psynthesis (38.9±4.2 vs 35.1±3.6 μmol phenylalanine/kg/h;Pprotein group. Basal muscle protein synthesis rates were maintained on a low vs high protein diet (0.042±0.01 vs 0.045±0.01%/h;P = 0.620). In the overnight fasted state, adaptation to a low-protein intake (0.4 g/kg/d) does not result in a more negative whole-body protein balance and

  13. Supervisory control synthesis for a waterway lock

    NARCIS (Netherlands)

    Reijnen, F.F.H.; Goorden, M.A.; van de Mortel - Fronczak, J.M.; Rooda, J.E.

    2017-01-01

    Formal methods help in coping with the growing functionality and complexity, time-to-market and costs in cyber-physical systems (CPSs). Supervisory control synthesis (SCS) is such a method. It can be used to synthesize a controller for a CPS from the uncontrolled system model (plant) and the

  14. Guided Synthesis of Control Programs Using UPPAAL

    DEFF Research Database (Denmark)

    Hune, T.; Larsen, Kim Guldstrand; Pettersson, P.

    2000-01-01

    the transitions with extra guards. Applying this technique have made synthesis of control programs feasible for a plant producing as many as 60 batches. In comparison, we could only handle plants producing two batches without using guides. The synthesized control programs have been executed in a physical plant...

  15. Controlled synthesis of quantum confined CsPbBr3 perovskite nanocrystals under ambient conditions

    Science.gov (United States)

    He, Huimei; Tang, Bing; Ma, Ying

    2018-02-01

    Room temperature recrystallization is a simple and convenient method for synthesis of all-inorganic perovskite nanomaterials with excellent luminescent properties. However, the fast crystallization usually brings the colloidal stability and uncontrollable synthesis issues in the formation of all-inorganic perovskite. In the present study, we present a new strategy to prepare the quantum confined CsPbBr3 nanocrystals with controlled morphology under ambient condition. With the assist of fatty acid-capped precursor, the crystallization and the following growth rate can be retarded. Thanks to the retarded reaction, the morphology can be varied from nanowires to nanoplates and the thickness can be controlled from 5-7 monolayers by simply adjusting the amount of octylammonium cations and oleic acid. The nanoplates exhibit a higher photoluminescence quantum yield than the nanowires possibly due to fewer defects in the nanoplates.

  16. Controlled Synthesis of Quantum Confined CsPbBr3 perovskite Nanocrystals under Ambient Condition.

    Science.gov (United States)

    He, Huimei; Tang, Bing; Ma, Ying

    2017-11-21

    Room temperature recrystallization is a simple and convenient method for synthesis of all-inorganic perovskite nanomaterials with excellent luminescent properties. However, the fast crystallization usually brings the colloidal stability and uncontrollable synthesis issues in the formation of all-inorganic perovskite. In the present study, we present a new strategy to prepare the quantum confined CsPbBr3 nanocrystals with controlled morphology under ambient condition. With the assist of fatty acid-capped precursor, the crystallization and the following growth rate can be retarded. Thanks to the retarded reaction, the morphology can be varied from nanowires to nanoplates and the thickness can be controlled from 5 to 7 monolayers by simply adjusting the amount of octylammonium cations and oleic acid. The nanoplates exhibit a higher photoluminescence quantum yield than the nanowires possibly due to fewer defects in the nanoplates. © 2017 IOP Publishing Ltd.

  17. Inhibition of skeletal muscle protein synthesis in septic intra-abdominal abscess

    International Nuclear Information System (INIS)

    Vary, T.C.; Siegel, J.H.; Tall, B.D.; Morris, J.G.; Smith, J.A.

    1988-01-01

    Chronic sepsis is always associated with profound wasting leading to increased release of amino acids from skeletal muscle. Net protein catabolism may be due to decreased rate of synthesis, increased rate of degradation, or both. To determine whether protein synthesis is altered in chronic sepsis, the rate of protein synthesis in vivo was estimated by measuring the incorporation of [ 3 H]-phenylalanine in skeletal muscle protein in a chronic (5-day) septic rat model induced by creation of a stable intra-abdominal abscess using an E. coli + B. fragilis-infected sterile fecal-agar pellet as foreign body nidus. Septic rats failed to gain weight at rates similar to control animals, therefore control animals were weight matched to the septic animals. The skeletal muscle protein content in septic animals was significantly reduced relative to control animals (0.18 +/- 0.01 vs. 0.21 +/- 0.01 mg protein/gm wet wt; p less than 0.02). The rate of incorporation of [ 3 H]-phenylalanine into skeletal muscle protein from control animals was 39 +/- 4 nmole/gm wet wt/hr or a fractional synthetic rate of 5.2 +/- 0.5%/day. In contrast to control animals, the fractional synthetic rate in septic animals (2.6 +/- 0.2%/day) was reduced by 50% compared to control animals (p less than 0.005). The decreased rate of protein synthesis in sepsis was not due to an energy deficit, as high-energy phosphates and ATP/ADP ratio were not altered. This decrease in protein synthesis occurred even though septic animals consumed as much food as control animals

  18. Automated Controller Synthesis for non-Deterministic Piecewise-Affine Hybrid Systems

    DEFF Research Database (Denmark)

    Grunnet, Jacob Deleuran

    formations. This thesis uses a hybrid systems model of a satellite formation with possible actuator faults as a motivating example for developing an automated control synthesis method for non-deterministic piecewise-affine hybrid systems (PAHS). The method does not only open an avenue for further research...... in fault tolerant satellite formation control, but can be used to synthesise controllers for a wide range of systems where external events can alter the system dynamics. The synthesis method relies on abstracting the hybrid system into a discrete game, finding a winning strategy for the game meeting...... game and linear optimisation solvers for controller refinement. To illustrate the efficacy of the method a reoccurring satellite formation example including actuator faults has been used. The end result is the application of PAHSCTRL on the example showing synthesis and simulation of a fault tolerant...

  19. Controlled Synthesis of Manganese Dioxide Nano structures via a Facile Hydrothermal

    International Nuclear Information System (INIS)

    Pang, R.S.C.; Chin, S.F.; Ye, Ch. Ling

    2012-01-01

    Manganese dioxide nano structures with controllable morphological structures and crystalline phases were synthesized via a facile hydrothermal route at low temperatures without using any templates or surfactants. Both the aging duration and aging temperatures were the main synthesis parameters used to influence and control the rate of morphological and structural evolution of MnO 2 nano structures. MnO 2 nano structures comprise of spherical nano particulate agglomerates and highly amorphous in nature were formed at lower temperature and/or short aging duration. In contrast, MnO 2 nano structures of sea-urchin-like and nano rods-like morphologies and nanocrystalline in nature were prepared at the combined higher aging temperatures and longer aging durations. These nano structures underwent notable phase transformation from d-MnO 2 to a-MnO 2 upon prolonged hydrothermal aging duration and exhibited accelerated rate of phase transformation at higher aging temperature.

  20. Prolonged Adaptation to a Low or High Protein Diet Does Not Modulate Basal Muscle Protein Synthesis Rates - A Substudy.

    Directory of Open Access Journals (Sweden)

    Rick Hursel

    Full Text Available Based on controlled 36 h experiments a higher dietary protein intake causes a positive protein balance and a negative fat balance. A positive net protein balance may support fat free mass accrual. However, few data are available on the impact of more prolonged changes in habitual protein intake on whole-body protein metabolism and basal muscle protein synthesis rates.To assess changes in whole-body protein turnover and basal muscle protein synthesis rates following 12 weeks of adaptation to a low versus high dietary protein intake.A randomized parallel study was performed in 40 subjects who followed either a high protein (2.4 g protein/kg/d or low protein (0.4 g protein/kg/d energy-balanced diet (30/35/35% or 5/60/35% energy from protein/carbohydrate/fat for a period of 12 weeks. A subgroup of 7 men and 8 women (body mass index: 22.8±2.3 kg/m2, age: 24.3±4.9 y were selected to evaluate the impact of prolonged adaptation to either a high or low protein intake on whole body protein metabolism and basal muscle protein synthesis rates. After the diet, subjects received continuous infusions with L-[ring-2H5]phenylalanine and L-[ring-2H2]tyrosine in an overnight fasted state, with blood samples and muscle biopsies being collected to assess post-absorptive whole-body protein turnover and muscle protein synthesis rates in vivo in humans.After 12 weeks of intervention, whole-body protein balance in the fasted state was more negative in the high protein treatment when compared with the low protein treatment (-4.1±0.5 vs -2.7±0.6 μmol phenylalanine/kg/h;P<0.001. Whole-body protein breakdown (43.0±4.4 vs 37.8±3.8 μmol phenylalanine/kg/h;P<0.03, synthesis (38.9±4.2 vs 35.1±3.6 μmol phenylalanine/kg/h;P<0.01 and phenylalanine hydroxylation rates (4.1±0.6 vs 2.7±0.6 μmol phenylalanine/kg/h;P<0.001 were significantly higher in the high vs low protein group. Basal muscle protein synthesis rates were maintained on a low vs high protein diet (0.042

  1. A synthesis of rates and controls on elemental mercury evasion in the Great Lakes Basin

    International Nuclear Information System (INIS)

    Denkenberger, Joseph S.; Driscoll, Charles T.; Branfireun, Brian A.; Eckley, Chris S.; Cohen, Mark; Selvendiran, Pranesh

    2012-01-01

    Rates of surface-air elemental mercury (Hg 0 ) fluxes in the literature were synthesized for the Great Lakes Basin (GLB). For the majority of surfaces, fluxes were net positive (evasion). Digital land-cover data were combined with representative evasion rates and used to estimate annual Hg 0 evasion for the GLB (7.7 Mg/yr). This value is less than our estimate of total Hg deposition to the area (15.9 Mg/yr), suggesting the GLB is a net sink for atmospheric Hg. The greatest contributors to annual evasion for the basin are agricultural (∼55%) and forest (∼25%) land cover types, and the open water of the Great Lakes (∼15%). Areal evasion rates were similar across most land cover types (range: 7.0–21.0 μg/m 2 -yr), with higher rates associated with urban (12.6 μg/m 2 -yr) and agricultural (21.0 μg/m 2 -yr) lands. Uncertainty in these estimates could be partially remedied through a unified methodological approach to estimating Hg 0 fluxes. - Highlights: ► Considerable variability exists across spatial/temporal scales in Hg 0 evasion rates. ► Methodological approaches vary for estimating and reporting gaseous Hg 0 fluxes. ► Hg 0 evasion from the Great Lakes Basin is estimated at 7.7 Mg/yr (10.2 μg/m 2 -yr). ► Hg flux estimates suggest region is a net sink for atmospheric Hg. ► 95% of Hg 0 evasion in the region is from agriculture, forest, and the Great Lakes. - A synthesis of Hg evasion was conducted and this information was used to develop an estimate of Hg evasion for the Great Lakes Basin.

  2. Synthesis of on-chip control circuits for mVLSI biochips

    DEFF Research Database (Denmark)

    Potluri, Seetal; Schneider, Alexander Rüdiger; Hørslev-Petersen, Martin

    2017-01-01

    them to laboratory environments. To address this issue, researchers have proposed methods to reduce the number of offchip pressure sources, through integration of on-chip pneumatic control logic circuits fabricated using three-layer monolithic membrane valve technology. Traditionally, mVLSI biochip......-chip control circuit design and (iii) the integration of on-chip control in the placement and routing design tasks. In this paper we present a design methodology for logic synthesis and physical synthesis of mVLSI biochips that use on-chip control. We show how the proposed methodology can be successfully...... applied to generate biochip layouts with integrated on-chip pneumatic control....

  3. Heme Exporter FLVCR1a Regulates Heme Synthesis and Degradation and Controls Activity of Cytochromes P450

    OpenAIRE

    Vinchi, Francesca; Ingoglia, Giada; Chiabrando, Deborah; Mercurio, Sonia; Turco, Emilia; Silengo, Lorenzo; Altruda, Fiorella; Tolosano, Emanuela

    2014-01-01

    Background & Aims The liver has one of the highest rates of heme synthesis of any organ. More than 50% of the heme synthesized in the liver is used for synthesis of P450 enzymes, which metabolize exogenous and endogenous compounds that include natural products, hormones, drugs, and carcinogens. Feline leukemia virus subgroup C cellular receptor 1a (FLVCR1a) is plasma membrane heme exporter that is ubiquitously expressed and controls intracellular heme content in hematopoietic lineages. We inv...

  4. Controller Synthesis using Qualitative Models and Constraints

    OpenAIRE

    Ramamoorthy, Subramanian; Kuipers, Benjamin J

    2004-01-01

    Many engineering systems require the synthesis of global behaviors in nonlinear dynamical systems. Multiple model approaches to control design make it possible to synthesize robust and optimal versions of such global behaviors. We propose a methodology called Qualitative Heterogeneous Control that enables this type of control design. This methodology is based on a separation of concerns between qualitative correctness and quantitative optimization. Qualitative sufficient conditions are derive...

  5. Effects of electromagnetic radiation (bright light, extremely low-frequency magnetic fields, infrared radiation) on the circadian rhythm of melatonin synthesis, rectal temperature, and heart rate.

    Science.gov (United States)

    Griefahn, Barbara; Künemund, Christa; Blaszkewicz, Meinolf; Lerchl, Alexander; Degen, Gisela H

    2002-10-01

    Electromagnetic spectra reduce melatonin production and delay the nadirs of rectal temperature and heart rate. Seven healthy men (16-22 yrs) completed 4 permuted sessions. The control session consisted of a 24-hours bedrest at infrared radiation (65 degrees C) was applied from 5 pm to 1 am. Salivary melatonin level was determined hourly, rectal temperature and heart rate were continuously recorded. Melatonin synthesis was completely suppressed by light but resumed thereafter. The nadirs of rectal temperature and heart rate were delayed. The magnetic field had no effect. Infrared radiation elevated rectal temperature and heart rate. Only bright light affected the circadian rhythms of melatonin synthesis, rectal temperature, and heart rate, however, differently thus causing a dissociation, which might enhance the adverse effects of shiftwork in the long run.

  6. Controlled synthesis of Zn{sup 0} nanoparticles by bioreduction

    Energy Technology Data Exchange (ETDEWEB)

    Canizal, G. [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, Apartado Postal 14-805, C.P. 07730, Mexico D.F. (Mexico); Schabes-Retchkiman, P.S. [Instituto de Fisica, Universidad Nal. Autonoma de Mexico, A.P. 20-364, C.P. 01000, Mexico D.F. (Mexico); Pal, U. [Instituto de Fisica, Universidad Autonoma de Puebla, Apdo. Postal J-48, Puebla, Pue. 72570 (Mexico); Liu, Hong Bo [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, Apartado Postal 14-805, C.P. 07730, Mexico D.F. (Mexico); Ascencio, J.A. [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, Apartado Postal 14-805, C.P. 07730, Mexico D.F. (Mexico)]. E-mail: ascencio@imp.mx

    2006-06-10

    Synthesis of metallic Zn nanoparticles through bio-reduction methods is reported for the first time. The structure, shape and size of the nanoparticles are critically controlled through the pH used in the sample preparation. High resolution electron microscopy was used in order to determine the structure of individual nanoparticles. Formation of quantum dots and the efficiency of ion reduction in the synthesis process are studied through the optical absorption in colloids. The structure and stability of the Zn clusters (up to 4000 atoms) were determined through the calculation of minimum energy configurations using molecular and quantum mechanics approximations and image simulation. The structure of the obtained nanoparticles was preferentially hexagonal, although multiple twinned and fcc-like structures were identified. The size controlled synthesis of small nanoparticles in the quantum-dot range was demonstrated successfully.

  7. Synthesis of fixed-architecture, robust H 2 and H ∞ controllers

    Directory of Open Access Journals (Sweden)

    Collins Jr. Emmanuel G.

    2000-01-01

    Full Text Available This paper discusses and compares the synthesis of fixed-architecture controllers that guarantee either robust H 2 or H ∞ performance. The synthesis is accomplished by solving a Riccati equation feasibility problem resulting from mixed structured singular value theory with Popov multipliers. Whereas the algorithm for robust H 2 performance had been previously implemented, a major contribution described in this paper is the implementation of the much more complex algorithm for robust H ∞ performance. Both robust H 2 and H ∞ , controllers are designed for a benchmark problem and a comparison is made between the resulting controllers and control algorithms. It is found that the numerical algorithm for robust H ∞ performance is much more computationally intensive than that for robust H 2 performance. Both controllers are found to have smaller bandwidth, lower control authority and to be less conservative than controllers obtained using complex structured singular value synthesis

  8. The rate of DNA synthesis in normal human and ataxia telangiectasia cells after exposure to X-irradiation

    International Nuclear Information System (INIS)

    Wit, J. de; Bootsma, D.; Jaspers, N.G.J.; Rijksverdedigingsorganisatie TNO, Rijswijk

    1981-01-01

    The rate of DNA synthesis was studied in normal cell strains and in strains from patients suffering from the inherited disorder ataxia telangiectasia (AT). After exposure to relatively low doses of oxic X-rays (0- 4 krad) DNA synthesis was depressed in AT cell strains to a significantly lesser extent than in normal cells. This response was observed in both an excision-deficient and an excision-proficient strain. In contrast, there was no difference in DNA-synthesis inhibition between AT and normal cells after UV exposure. After X-irradiation of cells from patients with xeroderma pigmentosum, both complementation group A and XP variants, the observed rate of DNA synthesis was equal to that in normal cells. An exception was the strain XP3BR which has been shown to be X-ray-sensitive. This strain exhibited diminished DNA synthesis inhibition after X-ray doses below 1 krad. These data suggest a relationship between hypersensitivity to X-rays and diminished depression of DNA synthesis. (orig.)

  9. A microfluidic tubing method and its application for controlled synthesis of polymeric nanoparticles.

    Science.gov (United States)

    Wang, Jidong; Chen, Wenwen; Sun, Jiashu; Liu, Chao; Yin, Qifang; Zhang, Lu; Xianyu, Yunlei; Shi, Xinghua; Hu, Guoqing; Jiang, Xingyu

    2014-05-21

    This report describes a straightforward but robust tubing method for connecting polydimethylsiloxane (PDMS) microfluidic devices to external equipment. The interconnection is irreversible and can sustain a pressure of up to 4.5 MPa that is characterized experimentally and theoretically. To demonstrate applications of this high-pressure tubing technique, we fabricate a semicircular microfluidic channel to implement a high-throughput, size-controlled synthesis of poly(lactic-co-glycolic acid) (PLGA) nanoparticles ranging from 55 to 135 nm in diameter. This microfluidic device allows for a total flow rate of 410 mL h(-1), resulting in enhanced convective mixing which can be utilized to precipitate small size nanoparticles with a good dispersion. We expect that this tubing technique would be widely used in microfluidic chips for nanoparticle synthesis, cell manipulation, and potentially nanofluidic applications.

  10. Size Controlled Synthesis of Starch Nanoparticles by a Microemulsion Method

    Directory of Open Access Journals (Sweden)

    Suk Fun Chin

    2014-01-01

    Full Text Available Controllable particles sizes of starch nanoparticles were synthesized via a precipitation in water-in-oil microemulsion approach. Microemulsion method offers the advantages of ultralow interfacial tension, large interfacial area, and being thermodynamically stable and affords monodispersed nanoparticles. The synthesis parameters such as stirring rates, ratios of oil/cosurfactant, oil phases, cosurfactants, and ratios of water/oil were found to affect the mean particle size of starch nanoparticles. Starch nanoparticles with mean particles sizes of 109 nm were synthesized by direct nanoprecipitation method, whereas by using precipitation in microemulsion approach, starch nanoparticles with smaller mean particles sizes of 83 nm were obtained.

  11. Neurotransmitter synthesis from CNS glutamine for central control of breathing

    International Nuclear Information System (INIS)

    Hoop, B.; Systrom, D.; Chiang, C.H.; Shih, V.E.; Kazemi, H.

    1986-01-01

    The maximum rate at which CNS glutamine (GLN) derived from glutamate (GLU) can be sequestered for synthesis of neurotransmitter GLU and/or γ-aminobutyric acid (GABA) has been determined in pentobarbital-anesthetized dogs. A total of 57 animals were studied under normal, hypoxic (Pa/sub O2/ greater than or equal to 20 mmHg), or hypercapnic (Pa/sub CO2/ less than or equal to 71 mm Hg) conditions. Thirteen of these were bilaterally vagotomized and carotid body denervated and studied only under normoxic or hypoxic conditions. In 5 animals cerebrospinal fluid GLN transfer rate constant k was measured using 13 N-ammonia tracer. Measured cerebral cortical (CC) and medullary (MED) GLN concentrations c are found to vary with GLU metabolic rate r according to c-C/sub m/r/(r+R), where r, the product of k and corresponding tissue GLU concentration, is assumed equal to the maximum GLN metabolic rate via pathways other than for neurotransmitter synthesis. The constants C/sub m/ and R are the predicted maximum GLN concentration and its maximum rate of sequestration for neurotransmitter synthesis, respectively. For both CNS tissue types in all animals, C/sub m/ = 20.9 +- 7.4 (SD) mmoles/kg wet wt(mM) and R = 6.2 +- 2.3 mM/min. These values are consistent with results obtained in anesthetized rats

  12. Contraction intensity and feeding affect collagen and myofibrillar protein synthesis rates differently in human skeletal muscle

    DEFF Research Database (Denmark)

    Holm, Lars; Hall, Gerrit van; Rose, Adam John

    2010-01-01

    Exercise stimulates muscle protein fractional synthesis rate (FSR) but the importance of contractile intensity and whether it interplays with feeding is not understood. This was investigated following two distinct resistance exercise (RE) contraction intensities using an intra-subject design...... to feeding. Further, although functionally linked, the contractile and the supportive matrix structures upregulate their protein synthesis rate quite differently in response to feeding and contractile-activity and -intensity....

  13. Controlled synthesis of titania using water-soluble titanium complexes: A review

    Science.gov (United States)

    Truong, Quang Duc; Dien, Luong Xuan; Vo, Dai-Viet N.; Le, Thanh Son

    2017-07-01

    The development of human society has led to the increase in energy and resources consumption as well as the arising problems of environmental damage and the toxicity to the human health. The development of novel synthesis method which tolerates utilization of toxic solvents and chemicals would fulfill the demand of the society for safer, softer, and environmental friendly technologies. For the past decades, a remarkable progress has been attained in the development of new water-soluble titanium complexes (WSTC) and their use for the synthesis of nanocrystalline titanium dioxide materials by aqueous solution-based approaches. The progress of synthesis of nanocrystalline titanium dioxide using such WSTCs is reviewed in this work. The key structural features responsible for the successfully controlled synthesis of TiO2 are discussed to provide guidelines for the morphology-controlled synthesis. Finally, this review ends with a summary and some perspectives on the challenges as well as new directions in this fascinating research.

  14. MECHANISMS IN ENDOCRINOLOGY: Exogenous insulin does not increase muscle protein synthesis rate when administered systemically: a systematic review.

    Science.gov (United States)

    Trommelen, Jorn; Groen, Bart B L; Hamer, Henrike M; de Groot, Lisette C P G M; van Loon, Luc J C

    2015-07-01

    Though it is well appreciated that insulin plays an important role in the regulation of muscle protein metabolism, there is much discrepancy in the literature on the capacity of exogenous insulin administration to increase muscle protein synthesis rates in vivo in humans. To assess whether exogenous insulin administration increases muscle protein synthesis rates in young and older adults. A systematic review of clinical trials was performed and the presence or absence of an increase in muscle protein synthesis rate was reported for each individual study arm. In a stepwise manner, multiple models were constructed that excluded study arms based on the following conditions: model 1, concurrent hyperaminoacidemia; model 2, insulin-induced hypoaminoacidemia; model 3, supraphysiological insulin concentrations; and model 4, older, more insulin resistant, subjects. From the presented data in the current systematic review, we conclude that: i) exogenous insulin and amino acid administration effectively increase muscle protein synthesis, but this effect is attributed to the hyperaminoacidemia; ii) exogenous insulin administered systemically induces hypoaminoacidemia which obviates any insulin-stimulatory effect on muscle protein synthesis; iii) exogenous insulin resulting in supraphysiological insulin levels exceeding 50, 000  pmol/l may effectively augment muscle protein synthesis; iv) exogenous insulin may have a diminished effect on muscle protein synthesis in older adults due to age-related anabolic resistance; and v) exogenous insulin administered systemically does not increase muscle protein synthesis in healthy, young adults. © 2015 European Society of Endocrinology.

  15. Microfluidic Reactors for the Controlled Synthesis of Nanoparticles

    Science.gov (United States)

    Erdem, Emine Yegan

    Nanoparticles have attracted a lot of attention in the past few decades due to their unique, size-dependent properties. In order to use these nanoparticles in devices or sensors effectively, it is important to maintain uniform properties throughout the system; therefore nanoparticles need to have uniform sizes -- or monodisperse. In order to achieve monodispersity, an extreme control over the reaction conditions is required during their synthesis. These reaction conditions such as temperature, concentration of reagents, residence times, etc. affect the structure of nanoparticles dramatically; therefore when the conditions vary locally in the reaction vessel, different sized nanoparticles form, causing polydispersity. In widely-used batch wise synthesis techniques, large sized reaction vessels are used to mix and heat reagents. In these types of systems, it is very hard to avoid thermal gradients and to achieve rapid mixing times as well as to control residence times. Also it is not possible to make rapid changes in the reaction parameters during the synthesis. The other drawback of conventional methods is that it is not possible to separate the nucleation of nanoparticles from their growth; this leads to combined nucleation and growth and subsequently results in polydisperse size distributions. Microfluidics is an alternative method by which the limitations of conventional techniques can be addressed. Due to the small size, it is possible to control temperature and concentration of reagents precisely as well as to make rapid changes in mixing ratios of reagents or temperature of the reaction zones. There have been several microfluidic reactors -- (microreactors) in literature that were designed to improve the size distribution of nanoparticles. In this work, two novel microfluidic systems were developed for achieving controlled synthesis of nanoparticles. The first microreactor was made out of a chemically robust polymer, polyurethane, and it was used for low

  16. The role of supervisory controller synthesis in automatic control software development

    NARCIS (Netherlands)

    Baeten, J.C.M.; Markovski, J.

    2015-01-01

    We give an overview of a model-driven systems engineering approach for high-tech systems that relies on supervisory controller synthesis. The proposed framework has a process-theoretic foundation and supports extensions with quantitative features. We briefly discuss several industrial case studies

  17. Two-dimensional tantalum disulfide: controlling structure and properties via synthesis

    Science.gov (United States)

    Zhao, Rui; Grisafe, Benjamin; Krishna Ghosh, Ram; Holoviak, Stephen; Wang, Baoming; Wang, Ke; Briggs, Natalie; Haque, Aman; Datta, Suman; Robinson, Joshua

    2018-04-01

    Tantalum disulfide (TaS2) is a transition metal dichalcogenide (TMD) that exhibits phase transition induced electronic property modulation at low temperature. However, the appropriate phase must be grown to enable the semiconductor/metal transition that is of interest for next generation electronic applications. In this work, we demonstrate direct and controllable synthesis of ultra-thin 1T-TaS2 and 2H-TaS2 on a variety of substrates (sapphire, SiO2/Si, and graphene) via powder vapor deposition. The synthesis process leads to single crystal domains ranging from 20 to 200 nm thick and 1-10 µm on a side. The TaS2 phase (1T or 2H) is controlled by synthesis temperature, which subsequently is shown to control the electronic properties. Furthermore, this work constitutes the first demonstration of a metal-insulator phase transition in directly synthesized 1T-TaS2 films and domains by electronic means.

  18. Rate Control Efficacy in Permanent Atrial Fibrillation : Successful and Failed Strict Rate Control Against a Background of Lenient Rate Control

    NARCIS (Netherlands)

    Groenveld, Hessel F.; Tijssen, Jan G. P.; Crijns, Harry J. G. M.; Van den Berg, Maarten P.; Hillege, Hans L.; Alings, Marco; Van Veldhuisen, Dirk J.; Van Gelder, Isabelle C.

    2013-01-01

    Objectives This study sought to investigate differences in outcome between patients treated with successful strict, failed strict, and lenient rate control. Background The RACE II (Rate Control Efficacy in Permanent Atrial Fibrillation) study showed no difference in outcome between lenient and

  19. The effect of laser repetition rate on the LASiS synthesis of biocompatible silver nanoparticles in aqueous starch solution

    Directory of Open Access Journals (Sweden)

    Zamiri R

    2013-01-01

    Full Text Available Reza Zamiri,1 Azmi Zakaria,1,* Hossein Abbastabar Ahangar,2 Majid Darroudi,3 Golnoosh Zamiri,1 Zahid Rizwan,1 Gregor PC Drummen4,* 1Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 2Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia; 3Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 4Bionanoscience and Bio-Imaging Program, Cellular Stress and Ageing Program, Bio&Nano-Solutions, Düsseldorf, Germany*These authors contributed to this work equallyAbstract: Laser ablation-based nanoparticle synthesis in solution is rapidly becoming popular, particularly for potential biomedical and life science applications. This method promises one pot synthesis and concomitant bio-functionalization, is devoid of toxic chemicals, does not require complicated apparatus, can be combined with natural stabilizers, is directly biocompatible, and has high particle size uniformity. Size control and reduction is generally determined by the laser settings; that the size and size distribution scales with laser fluence is well described. Conversely, the effect of the laser repetition rate on the final nanoparticle product in laser ablation is less well-documented, especially in the presence of stabilizers. Here, the influence of the laser repetition rate during laser ablation synthesis of silver nanoparticles in the presence of starch as a stabilizer was investigated. The increment of the repetition rate does not negatively influence the ablation efficiency, but rather shows increased productivity, causes a red-shift in the plasmon resonance peak of the silver–starch nanoparticles, an increase in mean particle size and size distribution, and a distinct lack of agglomerate formation. Optimal results were achieved at 10 Hz repetition rate, with a mean particle size of ~10 nm and a

  20. Controller synthesis for negative imaginary systems: a data driven approach

    KAUST Repository

    Mabrok, Mohamed; Petersen, Ian R.

    2016-01-01

    -driven controller synthesis methodology for NI systems is presented. In this approach, measured frequency response data of the plant is used to construct the controller frequency response at every frequency by minimising a cost function. Then, this controller

  1. Synthesis of beta-sialon from coal gangue

    Energy Technology Data Exchange (ETDEWEB)

    Luo, X.Y.; Sun, J.L.; Deng, C.J.; Hong, Y.R. [Beijing University Science & Technology, Beijing (China)

    2003-01-01

    It is worth studying the synthesis of beta-Sialon from coal gangue, because coal gangue is a waste of coal production and is a high quality kaolin contained carbon which is a perfect raw material of contained reducer itself for synthesis of beta-sialon. The study showed that a high conversion rate of 95% from coal gangue to beta-Sialon could be obtained by using process of carbothermal reduction nitridation when strictly controlling the thermodynamic conditions of synthesis. For controlling the synthesis conditions, the details of the effects of p(CO), P-O{sub 2} and T on the conversion rate of beta-sialon are discussed and the phase diagrams of oxygen pressure vs composition for Si{sub 3}N{sub 4}-A{sub l}N-Al{sub 2}O{sub 3}-SiO{sub 2} system at 1350, 1500, and 1600{sup o}C are constructed.

  2. Controlled Synthesis of Monolayer Graphene Toward Transparent Flexible Conductive Film Application

    Directory of Open Access Journals (Sweden)

    Yu Han-Young

    2010-01-01

    Full Text Available Abstract We demonstrate the synthesis of monolayer graphene using thermal chemical vapor deposition and successive transfer onto arbitrary substrates toward transparent flexible conductive film application. We used electron-beam-deposited Ni thin film as a synthetic catalyst and introduced a gas mixture consisting of methane and hydrogen. To optimize the synthesis condition, we investigated the effects of synthetic temperature and cooling rate in the ranges of 850–1,000°C and 2–8°C/min, respectively. It was found that a cooling rate of 4°C/min after 1,000°C synthesis is the most effective condition for monolayer graphene production. We also successfully transferred as-synthesized graphene films to arbitrary substrates such as silicon-dioxide-coated wafers, glass, and polyethylene terephthalate sheets to develop transparent, flexible, and conductive film application.

  3. Chirality-Controlled Synthesis and Applications of Single-Wall Carbon Nanotubes.

    Science.gov (United States)

    Liu, Bilu; Wu, Fanqi; Gui, Hui; Zheng, Ming; Zhou, Chongwu

    2017-01-24

    Preparation of chirality-defined single-wall carbon nanotubes (SWCNTs) is the top challenge in the nanotube field. In recent years, great progress has been made toward preparing single-chirality SWCNTs through both direct controlled synthesis and postsynthesis separation approaches. Accordingly, the uses of single-chirality-dominated SWCNTs for various applications have emerged as a new front in nanotube research. In this Review, we review recent progress made in the chirality-controlled synthesis of SWCNTs, including metal-catalyst-free SWCNT cloning by vapor-phase epitaxy elongation of purified single-chirality nanotube seeds, chirality-specific growth of SWCNTs on bimetallic solid alloy catalysts, chirality-controlled synthesis of SWCNTs using bottom-up synthetic strategy from carbonaceous molecular end-cap precursors, etc. Recent major progresses in postsynthesis separation of single-chirality SWCNT species, as well as methods for chirality characterization of SWCNTs, are also highlighted. Moreover, we discuss some examples where single-chirality SWCNTs have shown clear advantages over SWCNTs with broad chirality distributions. We hope this review could inspire more research on the chirality-controlled preparation of SWCNTs and equally important inspire the use of single-chirality SWCNT samples for more fundamental studies and practical applications.

  4. Size-controlled synthesis of nickel nanoparticles

    International Nuclear Information System (INIS)

    Hou, Y.; Kondoh, H.; Ohta, T.; Gao, S.

    2005-01-01

    A facile reduction approach with nickel acetylacetonate, Ni(acac) 2 , and sodium borohydride or superhydride leads to monodisperse nickel nanoparticles in the presence of hexadecylamine (HDA) and trioctylphosphine oxide (TOPO). The combination of HDA and TOPO used in the conventional synthesis of semiconductor nanocrystals also provides better control over particle growth in the metal nanoparticle synthesis. The size of Ni nanoparticles can be readily tuned from 3 to 11 nm, depending on the ratio of HDA to TOPO in the reaction system. As-synthesized Ni nanoparticles have a cubic structure as characterized by power X-ray diffraction (XRD), selected-area electron diffraction (SAED). Transmission electron microscopy (TEM) images show that Ni nanoparticles have narrow size distribution. SQUID magnetometry was also used in the characterization of Ni nanoparticles. The synthetic procedure can be extended to the preparation of high quality metal or alloy nanoparticles

  5. The importance of control considerations for heat exchanger network synthesis: a case study

    Directory of Open Access Journals (Sweden)

    S.G. Oliveira

    2001-06-01

    Full Text Available Cost optimization in the synthesis decision tree often leads to a reduced degree of freedom which degrades the process’s ability to reject disturbances as a consequence of low controllability. In fact, Heat Exchanger Networks (HENs obtained by traditional synthesis procedures that ignore controllability aspects must be evaluated in this context a posteriori. The aim of this work was to develop a procedure that includes RGA and SVD measures of controllability, which are solely based on steady state information, thereby freeing the synthesis procedure of the cumbersome dynamic analysis. When a structure is defined during a traditional HEN synthesis procedure, a degree of freedom analysis is approached as a simulation problem. Next, an optimization is performed, since new variables are usually added to increase the degree of freedom of the HEN in order to render it controllable. A key point in the proposed procedure is the inference of controllability based on the proposed controllability measures, which also provide a control scheme by pairing controlled and manipulated variables during the process design. A HEN reported in the literature is used to illustrate the proposed procedure. The steady state simulator Aspen Plus and the dynamic simulator Aspen Dynamics (Aspentech, Inc. were employed.

  6. Sonochemical synthesis of silica particles and their size control

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwa-Min [Advanced Materials and Chemical Engineering, Catholic University of Daegu, Gyeongbuk 38430 (Korea, Republic of); Lee, Chang-Hyun [Electronic and Electrical Engineering, Catholic University of Daegu, Gyeongbuk 38430 (Korea, Republic of); Kim, Bonghwan, E-mail: bhkim@cu.ac.kr [Electronic and Electrical Engineering, Catholic University of Daegu, Gyeongbuk 38430 (Korea, Republic of)

    2016-09-01

    Graphical abstract: - Highlights: • Silica particles were easily prepared by an ultrasound-assisted sol–gel method. • The particle size was controlled by the ammonium hydroxide/water molar ratio. • The size-controlled diameter of silica particles ranged from 40 to 400 nm. • The particles were formed in a relatively short reaction time. - Abstract: Using an ultrasound-assisted sol–gel method, we successfully synthesized very uniformly shaped, monodisperse, and size-controlled spherical silica particles from a mixture of ethanol, water, and tetraethyl orthosilicate in the presence of ammonia as catalyst, at room temperature. The diameters of the silica particles were distributed in the range from 40 to 400 nm; their morphology was well characterized by scanning electron microscopy. The silica particle size could be adjusted by choosing suitable concentrations of ammonium hydroxide and water, which in turn determined the nucleation and growth rates of the particles during the reaction. This sonochemical-based silica synthesis offers an alternative way to produce spherical silica particles in a relatively short reaction time. Thus, we suggest that this simple, low-cost, and efficient method of preparing uniform silica particles of various sizes will have practical and wide-ranging industrial applicability.

  7. Data Driven Synthesis of Three Term Digital Controllers

    Science.gov (United States)

    Keel, Lee H.; Mitra, Sandipan; Bhattacharyya, Shankar P.

    This paper presents a method for digital PID and first order controller synthesis based on frequency domain data alone. The techniques given here first determine all stabilizing controllers from measurement data. In both PID and first order controller cases, the only information required are frequency domain data (Nyquist-Bode data) and the number of open-loop RHP poles. Specifically no identification of the plant model is required. Examples are given for illustration.

  8. Process Design for Size-Controlled Flame Spray Synthesis of Li4Ti5O12 and Electrochemical Performance

    Directory of Open Access Journals (Sweden)

    Waser Oliver

    2017-03-01

    Full Text Available Inexpensive synthesis of electroceramic materials is required for efficient energy storage. Here the design of a scalable process, flame spray pyrolysis (FSP, for synthesis of size-controlled nanomaterials is investigated focusing on understanding the role of air entrainment (AE during their aerosol synthesis with emphasis on battery materials. The AE into the enclosed FSP reactor is analysed quantitatively by computational fluid dynamics (CFD and calculated temperatures are verified by Fourier transform infrared spectroscopy (FTIR. Various Li4Ti5O12 (LTO particle compositions are made and characterized by N2 adsorption, electron microscopy and X-ray diffraction while the electrochemical performance of LTO is tested at various charging rates. Increasing AE decreases recirculation in the enclosing tube leading to lower reactor temperatures and particle concentrations by air dilution as well as shorter and narrower residence time distributions. As a result, particle growth by coagulation - coalescence decreases leading to smaller primary particles that are mostly pure LTO exhibiting high C-rate performance with more than 120 mAh/g galvanostatic specific charge at 40C, outperforming commercial LTO. The effect of AE on FSP-made particle characteristics is demonstrated also in combustion synthesis of LiFePO4 and ZrO2.

  9. Enzymatic Synthesis of Ampicillin: Nonlinear Modeling, Kinetics Estimation, and Adaptive Control

    Directory of Open Access Journals (Sweden)

    Monica Roman

    2012-01-01

    Full Text Available Nowadays, the use of advanced control strategies in biotechnology is quite low. A main reason is the lack of quality of the data, and the fact that more sophisticated control strategies must be based on a model of the dynamics of bioprocesses. The nonlinearity of the bioprocesses and the absence of cheap and reliable instrumentation require an enhanced modeling effort and identification strategies for the kinetics. The present work approaches modeling and control strategies for the enzymatic synthesis of ampicillin that is carried out inside a fed-batch bioreactor. First, a nonlinear dynamical model of this bioprocess is obtained by using a novel modeling procedure for biotechnology: the bond graph methodology. Second, a high gain observer is designed for the estimation of the imprecisely known kinetics of the synthesis process. Third, by combining an exact linearizing control law with the on-line estimation kinetics algorithm, a nonlinear adaptive control law is designed. The case study discussed shows that a nonlinear feedback control strategy applied to the ampicillin synthesis bioprocess can cope with disturbances, noisy measurements, and parametric uncertainties. Numerical simulations performed with MATLAB environment are included in order to test the behavior and the performances of the proposed estimation and control strategies.

  10. Cholesterol biosynthesis by the cornea. Comparison of rates of sterol synthesis with accumulation during early development

    International Nuclear Information System (INIS)

    Cenedella, R.J.; Fleschner, C.R.

    1989-01-01

    The origin of the cholesterol needed by the cornea for growth and cell turnover was addressed by comparing absolute rates of sterol synthesis with rates of sterol accumulation during early development of the rabbit. Linearity of incorporation of 3 H 2 O and [ 14 C]mevalonate into digitonin-precipitable sterols with time of incubation in vitro and a lack of accumulation of 14 C in intermediates of sterol biosynthesis indicated that tritiated water can validly be used to measure rates of sterol synthesis by the cornea. The rate of sterol synthesis per unit weight of rabbit cornea was constant between 14 and 60 days of age at an average 1.03 nmol of 3 H of 3 H 2 O incorporated/mg dry cornea per 8 h. Essentially all of the synthesized cholesterol and most of the cholesterol mass was present in corneal epithelium. The cumulative sterol synthesized over the 46-day period studied exceeded the observed rate of cholesterol accumulation by sixfold. Cholesterol synthesized in excess of the growth requirement was likely used to support turnover of the epithelium which was estimated at 9 days. Removal of cholesterol from the cornea by excretion into tear fluid and clearance by high density lipoproteins are also considered

  11. Controlled synthesis of thorium and uranium oxide nano-crystals

    International Nuclear Information System (INIS)

    Hudry, Damien; Apostolidis, Christos; Walter, Olaf; Gouder, Thomas; Courtois, Eglantine; Kubel, Christian; Meyer, Daniel

    2013-01-01

    Very little is known about the size and shape effects on the properties of actinide compounds. As a consequence, the controlled synthesis of well-defined actinide-based nano-crystals constitutes a fundamental step before studying their corresponding properties. In this paper, we report on the non-aqueous surfactant-assisted synthesis of thorium and uranium oxide nano-crystals. The final characteristics of thorium and uranium oxide nano-crystals can be easily tuned by controlling a few experimental parameters such as the nature of the actinide precursor and the composition of the organic system (e.g., the chemical nature of the surfactants and their relative concentrations). Additionally, the influence of these parameters on the outcome of the synthesis is highly dependent on the nature of the actinide element (thorium versus uranium). By using optimised experimental conditions, monodisperse isotropic uranium oxide nano-crystals with different sizes (4.5 and 10.7 nm) as well as branched nano-crystals (overall size ca. 5 nm), nano-dots (ca. 4 nm) and nano-rods (with ultra-small diameters of 1 nm) of thorium oxide were synthesised. (authors)

  12. In vivo determination of arterial collagen synthesis in atherosclerotic rabbits

    International Nuclear Information System (INIS)

    Opsahl, W.P.; DeLuca, D.J.; Ehrhart, L.A.

    1986-01-01

    Collagen and non-collagen protein synthesis rates were determined in vivo in tissues from rabbits fed a control or atherogenic diet supplemented with 2% peanut oil and 0.25% cholesterol for 4 months. Rabbits received a bolus intravenous injection of L-[ 3 H]-proline (1.0 mCi/kg) and unlabeled L-proline (7 mmoles/kg) in 0.9% NaCl. Plasma proline specific activity decreased only 20% over 5 hr and was similar to the specific activity of free proline in tissues. Thoracic aortas from atherosclerotic rabbits exhibited raised plaques covering at least 75% of the surface. Thoracic intima plus a portion of the media (TIM) was separated from the remaining media plus adventitia (TMA). Dry delipidated weight, total collagen content, and collagen as a percent of dry weight were increased significantly in the TIM of atherosclerotic rabbits. Collagen synthesis rates and collagen synthesis as a percent of total protein synthesis were likewise increased both in the TIM and in the abdominal aortas. No differences from controls either in collagen content or collagen synthesis rates were observed in the TMA, lung or skin. These results demonstrate for the first time in vivo that formation of atherosclerotic plaques is associated with increased rates of collagen synthesis. Furthermore, as previously observed with incubations in vitro, collagen synthesis was elevated to a greater extent than noncollagen protein synthesis in atherosclerotic aortas from rabbits fed cholesterol plus peanut oil

  13. Size-controlled synthesis of biodegradable nanocarriers for targeted ...

    Indian Academy of Sciences (India)

    Research for synthesis of size-controlled carriers is currently challenging one. In this research paper, a ... There are many methods available for the prepara- tion of drug-loaded ... 2.3 Characterization of nanoparticles. 2.3a FT-IR spectral ...

  14. Synthesis of [18F]-5-fluorouridine (F-18-5-FUR) as a probe for measuring RNA synthesis and tumor growth rates in vivo

    International Nuclear Information System (INIS)

    Shiue, C.Y.; Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.

    1979-01-01

    A method for the rapid synthesis of high specific activity of [ 18 F]-5-fluorouridine is described. The 20 Ne(d,α) 18 F nuclear reaction is used to produce high specific activity, anhydrous [ 18 F]-F 2 at the Brookhaven National Laboratory 60'' cyclotron. Fluorination of 2',3',5'-tri-0-acetyluridine with [ 18 F]-F 2 in glacial acetic acid at room temperature followed by hydrolysis with sodium methoxide in methanol gives [ 18 F]-5-fluorouridine with a radiochemical yield of 5 to 7% in a synthesis time of 90 minutes from EOB. The compound is required for the study of RNA synthesis and tumor growth rates in vivo

  15. Ethylene and protein synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, D J

    1973-01-01

    Ethylene reduces the rate of expansion growth of cells and it is suggestive that the rate of expansion is controlled at least in part by the synthesis of hydroxyproline rich glycopeptides that are secreted with other polysaccharide material through the plasmalemma into the cell wall, thereby enhancing the thickness of the cell wall and also rendering it poorly extensible. In combination, auxin would appear to counteract the effect of ethylene in this respect, for although auxin enhances the synthesis of protein and the content in the cell walls, as well as causing some increase in wall thickness, it reduces the amount of hydroxyproline reaching the wall. Such effects may be instrumental in enhancing wall plasticity, the rate of expansion and the final cell size. These results indicate that ethylene and auxin together afford a dual regulatory system exerted through a control of a specific part of the protein synthetic pathway, the products of which regulate the rate of expansion, and the potential for expansion, of the plant cell wall. 38 references, 3 figures, 8 tables.

  16. Decreased rate of protein synthesis, caspase-3 activity, and ubiquitin-proteasome proteolysis in soleus muscles from growing rats fed a low-protein, high-carbohydrate diet.

    Science.gov (United States)

    Batistela, Emanuele; Pereira, Mayara Peron; Siqueira, Juliany Torres; Paula-Gomes, Silvia; Zanon, Neusa Maria; Oliveira, Eduardo Brandt; Navegantes, Luiz Carlos Carvalho; Kettelhut, Isis C; Andrade, Claudia Marlise Balbinotti; Kawashita, Nair Honda; Baviera, Amanda Martins

    2014-06-01

    The aim of this study was to investigate the changes in the rates of both protein synthesis and breakdown, and the activation of intracellular effectors that control these processes in soleus muscles from growing rats fed a low-protein, high-carbohydrate (LPHC) diet for 15 days. The mass and the protein content, as well as the rate of protein synthesis, were decreased in the soleus from LPHC-fed rats. The availability of amino acids was diminished, since the levels of various essential amino acids were decreased in the plasma of LPHC-fed rats. Overall rate of proteolysis was also decreased, explained by reductions in the mRNA levels of atrogin-1 and MuRF-1, ubiquitin conjugates, proteasome activity, and in the activity of caspase-3. Soleus muscles from LPHC-fed rats showed increased insulin sensitivity, with increased levels of insulin receptor and phosphorylation levels of AKT, which probably explains the inhibition of both the caspase-3 activity and the ubiquitin-proteasome system. The fall of muscle proteolysis seems to represent an adaptive response that contributes to spare proteins in a condition of diminished availability of dietary amino acids. Furthermore, the decreased rate of protein synthesis may be the driving factor to the lower muscle mass gain in growing rats fed the LPHC diet.

  17. Synthesis of a Controller for Swarming Robots Performing Underwater Mine Countermeasures

    National Research Council Canada - National Science Library

    Tan, Yong

    2004-01-01

    This Trident Scholar project involved the synthesis of a swarm controller that is suitable for controlling movements of a group of autonomous robots performing underwater mine countermeasures (UMCM...

  18. A packet-based dual-rate PID control strategy for a slow-rate sensing Networked Control System.

    Science.gov (United States)

    Cuenca, A; Alcaina, J; Salt, J; Casanova, V; Pizá, R

    2018-05-01

    This paper introduces a packet-based dual-rate control strategy to face time-varying network-induced delays, packet dropouts and packet disorder in a Networked Control System. Slow-rate sensing enables to achieve energy saving and to avoid packet disorder. Fast-rate actuation makes reaching the desired control performance possible. The dual-rate PID controller is split into two parts: a slow-rate PI controller located at the remote side (with no permanent communication to the plant) and a fast-rate PD controller located at the local side. The remote side also includes a prediction stage in order to generate the packet of future, estimated slow-rate control actions. These actions are sent to the local side and converted to fast-rate ones to be used when a packet does not arrive at this side due to the network-induced delay or due to occurring dropouts. The proposed control solution is able to approximately reach the nominal (no-delay, no-dropout) performance despite the existence of time-varying delays and packet dropouts. Control system stability is ensured in terms of probabilistic Linear Matrix Inequalities (LMIs). Via real-time control for a Cartesian robot, results clearly reveal the superiority of the control solution compared to a previous proposal by authors. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Facile synthesis of concentrated gold nanoparticles with low size-distribution in water: temperature and pH controls

    Directory of Open Access Journals (Sweden)

    Li Chunfang

    2011-01-01

    Full Text Available Abstract The citrate reduction method for the synthesis of gold nanoparticles (GNPs has known advantages but usually provides the products with low nanoparticle concentration and limits its application. Herein, we report a facile method to synthesize GNPs from concentrated chloroauric acid (2.5 mM via adding sodium hydroxide and controlling the temperature. It was found that adding a proper amount of sodium hydroxide can produce uniform concentrated GNPs with low size distribution; otherwise, the largely distributed nanoparticles or instable colloids were obtained. The low reaction temperature is helpful to control the nanoparticle formation rate, and uniform GNPs can be obtained in presence of optimized NaOH concentrations. The pH values of the obtained uniform GNPs were found to be very near to neutral, and the pH influence on the particle size distribution may reveal the different formation mechanism of GNPs at high or low pH condition. Moreover, this modified synthesis method can save more than 90% energy in the heating step. Such environmental-friendly synthesis method for gold nanoparticles may have a great potential in large-scale manufacturing for commercial and industrial demand.

  20. Facile synthesis of concentrated gold nanoparticles with low size-distribution in water: temperature and pH controls

    Science.gov (United States)

    Li, Chunfang; Li, Dongxiang; Wan, Gangqiang; Xu, Jie; Hou, Wanguo

    2011-07-01

    The citrate reduction method for the synthesis of gold nanoparticles (GNPs) has known advantages but usually provides the products with low nanoparticle concentration and limits its application. Herein, we report a facile method to synthesize GNPs from concentrated chloroauric acid (2.5 mM) via adding sodium hydroxide and controlling the temperature. It was found that adding a proper amount of sodium hydroxide can produce uniform concentrated GNPs with low size distribution; otherwise, the largely distributed nanoparticles or instable colloids were obtained. The low reaction temperature is helpful to control the nanoparticle formation rate, and uniform GNPs can be obtained in presence of optimized NaOH concentrations. The pH values of the obtained uniform GNPs were found to be very near to neutral, and the pH influence on the particle size distribution may reveal the different formation mechanism of GNPs at high or low pH condition. Moreover, this modified synthesis method can save more than 90% energy in the heating step. Such environmental-friendly synthesis method for gold nanoparticles may have a great potential in large-scale manufacturing for commercial and industrial demand.

  1. Automatic Strain-Rate Controller,

    Science.gov (United States)

    1976-12-01

    D—AO37 9~e2 ROME AIR DEVELOPMENT CENTER GRIFFISS AFB N 1’ FIG 13/ 6AUTOMATIC STRAIN—RATE CONTROLLER, (U) DEC 76 R L HUNTSINGER. J A ADAMSK I...goes to zero. CONTROLLER, Leeds and Northrup Series 80 CAT with proportional band , rate , reset, and approach controls . Input from deviation output...8) through ( 16) . (8) Move the set-point slowl y up to 3 or 4. (9) If the recorder po inter hunts , adjust the func t ion controls on tine Ser

  2. Shape control synthesis of low-dimensional calcium sulfate

    Indian Academy of Sciences (India)

    Shape control synthesis of low-dimensional calcium sulfate .... C in mixed solvents of 50 mL ethanol and 30 mL water for different reaction times was characterized by .... Duan X, Huang Y, Cui Y, Wang J and Lieber C M 2001 Nature 409 66.

  3. Synthesis of pneumatic controll systems

    Directory of Open Access Journals (Sweden)

    D. Nowak

    2011-04-01

    Full Text Available Currently, the basic tool for automating the production processes are the PLCs. However, in many areas application of the pneumaticcontrol systems may be more reasonable. The main factor determining choice of the control technology are costs. In the case of pneumaticsystems, the costs shall be determined by the number of elements used. Therefore, during the design works it is important to choose anappropriate method for the pneumatic control systems synthesis. The article presents the MTS method, which may be used for a discretetechnological processes modeling and PLC programming, as well as for a pneumatic control systems designing. An important element ofthe MTS method is the network of actions, which graphically presents an algorithm of the implemented process. Based on the actionnetwork and operating machine’s functional diagram, the diagram of different states is determinated, which graphically shows changes ofthe control system’s input and output signals. Analysis of the diagram of different states, makes it easy to determine a schematic equation, which shall be the basis for the control system implementation. Advantage of the MTS method is the lack of restrictions on the number of the control system’s input and output signals. The resulting solution is characterized by a minimum number of elements needed to implement the control system.

  4. Ingestion of Wheat Protein Increases In Vivo Muscle Protein Synthesis Rates in Healthy Older Men in a Randomized Trial.

    Science.gov (United States)

    Gorissen, Stefan Hm; Horstman, Astrid Mh; Franssen, Rinske; Crombag, Julie Jr; Langer, Henning; Bierau, Jörgen; Respondek, Frederique; van Loon, Luc Jc

    2016-09-01

    Muscle mass maintenance is largely regulated by basal muscle protein synthesis and the capacity to stimulate muscle protein synthesis after food intake. The postprandial muscle protein synthetic response is modulated by the amount, source, and type of protein consumed. It has been suggested that plant-based proteins are less potent in stimulating postprandial muscle protein synthesis than animal-derived proteins. However, few data support this contention. We aimed to assess postprandial plasma amino acid concentrations and muscle protein synthesis rates after the ingestion of a substantial 35-g bolus of wheat protein hydrolysate compared with casein and whey protein. Sixty healthy older men [mean ± SEM age: 71 ± 1 y; body mass index (in kg/m(2)): 25.3 ± 0.3] received a primed continuous infusion of l-[ring-(13)C6]-phenylalanine and ingested 35 g wheat protein (n = 12), 35 g wheat protein hydrolysate (WPH-35; n = 12), 35 g micellar casein (MCas-35; n = 12), 35 g whey protein (Whey-35; n = 12), or 60 g wheat protein hydrolysate (WPH-60; n = 12). Plasma and muscle samples were collected at regular intervals. The postprandial increase in plasma essential amino acid concentrations was greater after ingesting Whey-35 (2.23 ± 0.07 mM) than after MCas-35 (1.53 ± 0.08 mM) and WPH-35 (1.50 ± 0.04 mM) (P protein synthesis rates increased after ingesting MCas-35 (P protein synthesis rates above basal rates (0.049% ± 0.007%/h; P = 0.02). The myofibrillar protein synthetic response to the ingestion of 35 g casein is greater than after an equal amount of wheat protein. Ingesting a larger amount of wheat protein (i.e., 60 g) substantially increases myofibrillar protein synthesis rates in healthy older men. This trial was registered at clinicaltrials.gov as NCT01952639. © 2016 American Society for Nutrition.

  5. Controlling microbial PHB synthesis via CRISPRi.

    Science.gov (United States)

    Li, Dan; Lv, Li; Chen, Jin-Chun; Chen, Guo-Qiang

    2017-07-01

    Microbial polyhydroxyalkanoates (PHA) are a family of biopolyesters with properties similar to petroleum plastics such as polyethylene (PE) or polypropylene (PP). Polyhydroxybutyrate (PHB) is the most common PHA known so far. Clustered regularly interspaced short palindromic repeats interference (CRISPRi), a technology recently developed to control gene expression levels in eukaryotic and prokaryotic genomes, was employed to regulate PHB synthase activity influencing PHB synthesis. Recombinant Escherichia coli harboring an operon of three PHB synthesis genes phaCAB cloned from Ralstonia eutropha, was transformed with various single guided RNA (sgRNA with its guide sequence of 20-23 bases) able to bind to various locations of the PHB synthase PhaC, respectively. Depending on the binding location and the number of sgRNA on phaC, CRISPRi was able to control the phaC transcription and thus PhaC activity. It was found that PHB content, molecular weight, and polydispersity were approximately in direct and reverse proportion to the PhaC activity, respectively. The higher the PhaC activity, the more the intracellular PHB accumulation, yet the less the PHB molecular weights and the wider the polydispersity. This study allowed the PHB contents to be controlled in the ranges of 1.47-75.21% cell dry weights, molecular weights from 2 to 6 millions Dalton and polydispersity of 1.2 to 1.43 in 48 h shake flask studies. This result will be very important for future development of ultrahigh molecular weight PHA useful to meet high strength application requirements.

  6. Controlled synthesis of single-crystalline graphene

    Directory of Open Access Journals (Sweden)

    Wang Xueshen

    2014-02-01

    Full Text Available This paper reports the controlled synthesis of single-crystalline graphene on the back side of copper foil using CH4 as the precursor. The influence of growth time and the pressure ratio of CH4/H2 on the structure of graphene are examined. An optimized polymer-assisted method is used to transfer the synthesized graphene onto a SiO2/Si substrate. Scanning electron microscopy and Raman spectroscopy are used to characterize the graphene.

  7. Synthesis of optimal digital controller of flocculant dosing

    Directory of Open Access Journals (Sweden)

    A.V. Pismenskiy

    2013-06-01

    Full Text Available Purpose. The task of automatic process control of the slime water thickening and flotation tailings clarification is the stabilization of thicken product density within the given range and keeping up the solids content in the overflow not above the permissible level with minimum use of the flocculants. In existing systems for automatic control the flocculant dosing is carried out according to the solids content in the device input (the principle of open-loop control. This leads to the excess consumption of the flocculants and increase the dispersion density of the overflow. To perform the synthesis of the optimal digital controller in order to minimize the deviations from the master control and ensure the specified quality of the transition process. Over controlling value should not exceed 5 %. To perform the system operation modeling in order to determine the quality of transient processes. Methodology. Synthesis of the optimal digital controller is based on the method of dynamic programming. Findings. A mathematical model of the object control is represented in the normal form of Cauchy and further in the form of differential equations. The optimum period of quantization as the function from specified error of control and the output coordinate change is calculated. The differential equation of Bellman is obtained and the condition for minimization of the quality functional. Bellman function is represented as a quadratic form from the variables of the system condition. In order to limit possible control, the weight coefficients of the functional are calculated based on maximum permitted values of the system condition variables and the control actions during the transient process. Practical value. Using the modeling of ACS of the flocculant dosing it was established that the over controlling amount is 3.5%, the transient process life 5.6 sec, the transient process is aperiodical, non-static control, which meets the requirements imposed on the

  8. Habituation to low or high protein intake does not modulate basal or postprandial muscle protein synthesis rates: a randomized trial.

    Science.gov (United States)

    Gorissen, Stefan Hm; Horstman, Astrid Mh; Franssen, Rinske; Kouw, Imre Wk; Wall, Benjamin T; Burd, Nicholas A; de Groot, Lisette Cpgm; van Loon, Luc Jc

    2017-02-01

    Muscle mass maintenance is largely regulated by basal muscle protein synthesis rates and the ability to increase muscle protein synthesis after protein ingestion. To our knowledge, no previous studies have evaluated the impact of habituation to either low protein intake (LOW PRO) or high protein intake (HIGH PRO) on the postprandial muscle protein synthetic response. We assessed the impact of LOW PRO compared with HIGH PRO on basal and postprandial muscle protein synthesis rates after the ingestion of 25 g whey protein. Twenty-four healthy, older men [age: 62 ± 1 y; body mass index (in kg/m 2 ): 25.9 ± 0.4 (mean ± SEM)] participated in a parallel-group randomized trial in which they adapted to either a LOW PRO diet (0.7 g · kg -1 · d -1 ; n = 12) or a HIGH PRO diet (1.5 g · kg -1 · d -1 ; n = 12) for 14 d. On day 15, participants received primed continuous l-[ring- 2 H 5 ]-phenylalanine and l-[1- 13 C]-leucine infusions and ingested 25 g intrinsically l-[1- 13 C]-phenylalanine- and l-[1- 13 C]-leucine-labeled whey protein. Muscle biopsies and blood samples were collected to assess muscle protein synthesis rates as well as dietary protein digestion and absorption kinetics. Plasma leucine concentrations and exogenous phenylalanine appearance rates increased after protein ingestion (P 0.05). Plasma exogenous phenylalanine availability over the 5-h postprandial period was greater after LOW PRO than after HIGH PRO (61% ± 1% compared with 56% ± 2%, respectively; P protein synthesis rates increased from 0.031% ± 0.004% compared with 0.039% ± 0.007%/h in the fasted state to 0.062% ± 0.005% compared with 0.057% ± 0.005%/h in the postprandial state after LOW PRO compared with HIGH PRO, respectively (P protein-derived amino acids in the circulation and does not lower basal muscle protein synthesis rates or increase postprandial muscle protein synthesis rates after ingestion of 25 g protein in older men. This trial was registered at clinicaltrials.gov as NCT

  9. Estimation of the protein synthesis rates of the whole body of growing broilers

    International Nuclear Information System (INIS)

    Koehler, R.; Pahle, T.; Gruhn, K.; Zander, R.; Jeroch, H.; Gebhardt, G.

    1988-01-01

    The purpose of the investigations was to prove a method, developed for monogastric mammalians, based on a 3-compartment model and assuming a proportional growth of the pools of total N, whether it is applicable to growing poultry. The tracer, 15 N-L-lysine, was given quasi-continuously for four days. In this time and in the following period of five days without tracer intake, the 15 N excretion in the urine was measured. The average of the live weight of the broiler cockerels was 1724 g. The animals were colostomized for sampling the urine separately. Using the fluxes of lysine, the calculation of the whole-body protein synthesis rate was 64.1 g/d. The protein degradation rate was 54.4 g/d. The adequate values of the fractional rates of protein synthesis and degradation for the whole body (without feathers) were 23.3% and 19.8%, resp. Thus it is clearly shown, that the method applied gives real data of the parameters of the N metabolism for growing broilers, being in the range of values for muscle proteins and proteins of the whole body of growing poultry, published by other authors. (author)

  10. Protein synthesis in the growing rat lung

    International Nuclear Information System (INIS)

    Kelley, J.; Chrin, L.

    1986-01-01

    Developmental control of protein synthesis in the postnatal growth of the lung has not been systematically studied. In male Fischer 344 rats, lung growth continues linearly as a function of body weight (from 75 to 450 g body weight). To study total protein synthesis in lungs of growing rats, we used the technique of constant intravenous infusion of tritiated leucine, an essential amino acid. Lungs of sacrificed animals were used to determine the leucine incorporation rate into newly synthesized protein. The specific radioactivity of the leucine associated with tRNA extracted from the same lungs served as an absolute index of the precursor leucine pool used for lung protein synthesis. On the basis of these measurements, we were able to calculate the fractional synthesis rate (the proportion of total protein destroyed and replaced each day) of pulmonary proteins for each rat. Under the conditions of isotope infusion, leucyl-tRNA very rapidly equilibrates with free leucine of the plasma and of the extracellular space of the lung. Infusions lasting 30 minutes or less yielded linear rates of protein synthesis without evidence of contamination of lung proteins by newly labeled intravascular albumin. The fractional synthesis rate is considerably higher in juvenile animals (55% per day) than in adult rats (20% per day). After approximately 12 weeks of age, the fractional synthesis rate remains extremely constant in spite of continued slow growth of the lung. It is apparent from these data that in both young and adult rats the bulk of total protein synthesis is devoted to rapidly turning over proteins and that less than 4 percent of newly made protein is committed to tissue growth

  11. Inhibition and recovery of the rate of DNA synthesis in V79 Chinese hamster cells following ultraviolet light irradiation

    International Nuclear Information System (INIS)

    Ventura, A.M.; Meneghini, R.

    1984-01-01

    Chinese hamster fibroblasts (V79 cell line) exhibit the phenomenon of recovery of DNA synthesis from the initial inhibition observed after ultraviolet light irradiation, in the absence of significant excision of pyrimidine dimers. In an attempt to determine whether the initial inhibition and subsequent recovery can be accounted for by parallel variations in the rate of movement of the replication fork, the cells were pulse-labeled with radioactive bromodeoxyuridine at different times following irradiation and their DNA centrifuged in neutral CsCl density gradients. When DNA synthesis inhibition was at a maximum, an accumulation of DNA, of density intermediate between hybrid and nonsubstituted DNA, was noticed in the density-distribution profiles. The density distribution of DNA along the gradient can provide an estimate of the rate of movement of the replication fork, and the results indicate that most of the variation in the overall rate of DNA synthesis can be accounted for by a parallel variation in the rate of fork movement. (Auth.)

  12. SYNTHESIS OF THE TECHNICAL CONTROL SYSTEMS WITH VARIABLE STRUCTURE

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available Change. Also the object as a result of an adverse effect is considered. The formal problem definition of synthesis of hardy management system is considered. Model choice criteria ensemble is set. The rule of choice algorithm implementation on the basis of different reference functions is provided. The conclusion is drawn that in case of preliminary processing of the available prior data it is possible to select reference functions correctly which reflect physical processes more precisely. The mathematical description of a dynamic object on the basis of a differential equation, or its decision is provided. Defini- tion of function of a trend is given. Criteria for selection of model of damage are given. The recommendation of modifica- tion of Demark trends algorithm by means of the sliding Yazvinsky's window and a method of self-organization for in- crease of accuracy of creation of a predictive model of damage is made. It is offered to realize a model choice by means of more complex logical analysis of an observed vector in the appropriate situation. Logic-functional control task definition is given and approach to its decision is formulated. The conclusion about what the task of synthesis management system con- sists of is given. This article describes the method of synthesis of control system with variable structure provides increasing survivability control system in a significant change of the external environment, as well as the object itself from the adverse impacts.

  13. Size Controlled Synthesis of Transition Metal Nanoparticles for Catalytic Applications

    KAUST Repository

    Esparza, Angel

    2011-07-07

    Catalysis offers cleaner and more efficient chemical reactions for environmental scientists. More than 90% of industrial processes are performed with a catalyst involved, however research it is still required to improve the catalyst materials. The purpose of this work is to contribute with the development of catalysts synthesis with two different approaches. First, the precise size control of non-noble metals nanoparticles. Second, a new one-pot synthesis method based on a microemulsion system was developed to synthesize size-controlled metal nanoparticles in oxide supports. The one-pot method represents a simple approach to synthesize both support and immobilized nanometer-sized non-noble metal nanoparticles in the same reaction system. Narrow size distribution nickel, cobalt, iron and cobalt-nickel nanoparticles were obtained. High metal dispersions are attainable regardless the metal or support used in the synthesis. Thus, the methodology is adaptable and robust. The sizecontrolled supported metal nanoparticles offer the opportunity to study size effects and metal-support interactions on different catalytic reactions with different sets of metals and supports.

  14. Research in Korea on Gas Phase Synthesis and Control of Nanoparticles

    International Nuclear Information System (INIS)

    Choi, Mansoo

    2001-01-01

    Research activity into the gas phase synthesis of nanoparticles has witnessed rapid growth on a worldwide basis, which is also reflected by Korean research efforts. Nanoparticle research is inherently a multi-disciplinary activity involving both science and engineering. In this paper, the recent studies undertaken in Korea on the gas phase synthesis and control of nanoparticles are reviewed. Studies on the synthesis of various kinds of nanoparticles are first discussed with a focus on the different types of reactors used. Recent experimental and theoretical studies and newly developed methods of measuring and modeling nanoparticle growth are also reviewed

  15. Nanosilicon properties, synthesis, applications, methods of analysis and control

    CERN Document Server

    Ischenko, Anatoly A; Aslalnov, Leonid A

    2015-01-01

    Nanosilicon: Properties, Synthesis, Applications, Methods of Analysis and Control examines the latest developments on the physics and chemistry of nanosilicon. The book focuses on methods for producing nanosilicon, its electronic and optical properties, research methods to characterize its spectral and structural properties, and its possible applications. The first part of the book covers the basic properties of semiconductors, including causes of the size dependence of the properties, structural and electronic properties, and physical characteristics of the various forms of silicon. It presents theoretical and experimental research results as well as examples of porous silicon and quantum dots. The second part discusses the synthesis of nanosilicon, modification of the surface of nanoparticles, and properties of the resulting particles. The authors give special attention to the photoluminescence of silicon nanoparticles. The third part describes methods used for studying and controlling the structure and pro...

  16. A novel pulse-chase SILAC strategy measures changes in protein decay and synthesis rates induced by perturbation of proteostasis with an Hsp90 inhibitor.

    Directory of Open Access Journals (Sweden)

    Ivo Fierro-Monti

    Full Text Available Standard proteomics methods allow the relative quantitation of levels of thousands of proteins in two or more samples. While such methods are invaluable for defining the variations in protein concentrations which follow the perturbation of a biological system, they do not offer information on the mechanisms underlying such changes. Expanding on previous work [1], we developed a pulse-chase (pc variant of SILAC (stable isotope labeling by amino acids in cell culture. pcSILAC can quantitate in one experiment and for two conditions the relative levels of proteins newly synthesized in a given time as well as the relative levels of remaining preexisting proteins. We validated the method studying the drug-mediated inhibition of the Hsp90 molecular chaperone, which is known to lead to increased synthesis of stress response proteins as well as the increased decay of Hsp90 "clients". We showed that pcSILAC can give information on changes in global cellular proteostasis induced by treatment with the inhibitor, which are normally not captured by standard relative quantitation techniques. Furthermore, we have developed a mathematical model and computational framework that uses pcSILAC data to determine degradation constants kd and synthesis rates Vs for proteins in both control and drug-treated cells. The results show that Hsp90 inhibition induced a generalized slowdown of protein synthesis and an increase in protein decay. Treatment with the inhibitor also resulted in widespread protein-specific changes in relative synthesis rates, together with variations in protein decay rates. The latter were more restricted to individual proteins or protein families than the variations in synthesis. Our results establish pcSILAC as a viable workflow for the mechanistic dissection of changes in the proteome which follow perturbations. Data are available via ProteomeXchange with identifier PXD000538.

  17. A Novel Pulse-Chase SILAC Strategy Measures Changes in Protein Decay and Synthesis Rates Induced by Perturbation of Proteostasis with an Hsp90 Inhibitor

    Science.gov (United States)

    Fierro-Monti, Ivo; Racle, Julien; Hernandez, Celine; Waridel, Patrice; Hatzimanikatis, Vassily; Quadroni, Manfredo

    2013-01-01

    Standard proteomics methods allow the relative quantitation of levels of thousands of proteins in two or more samples. While such methods are invaluable for defining the variations in protein concentrations which follow the perturbation of a biological system, they do not offer information on the mechanisms underlying such changes. Expanding on previous work [1], we developed a pulse-chase (pc) variant of SILAC (stable isotope labeling by amino acids in cell culture). pcSILAC can quantitate in one experiment and for two conditions the relative levels of proteins newly synthesized in a given time as well as the relative levels of remaining preexisting proteins. We validated the method studying the drug-mediated inhibition of the Hsp90 molecular chaperone, which is known to lead to increased synthesis of stress response proteins as well as the increased decay of Hsp90 “clients”. We showed that pcSILAC can give information on changes in global cellular proteostasis induced by treatment with the inhibitor, which are normally not captured by standard relative quantitation techniques. Furthermore, we have developed a mathematical model and computational framework that uses pcSILAC data to determine degradation constants kd and synthesis rates Vs for proteins in both control and drug-treated cells. The results show that Hsp90 inhibition induced a generalized slowdown of protein synthesis and an increase in protein decay. Treatment with the inhibitor also resulted in widespread protein-specific changes in relative synthesis rates, together with variations in protein decay rates. The latter were more restricted to individual proteins or protein families than the variations in synthesis. Our results establish pcSILAC as a viable workflow for the mechanistic dissection of changes in the proteome which follow perturbations. Data are available via ProteomeXchange with identifier PXD000538. PMID:24312217

  18. Controller synthesis for L2 behaviors using rational kernel representations

    NARCIS (Netherlands)

    Mutsaers, M.E.C.; Weiland, S.

    2008-01-01

    This paper considers the controller synthesis problem for the class of linear time-invariant L2 behaviors. We introduce classes of LTI L2 systems whose behavior can be represented as the kernel of a rational operator. Given a plant and a controlled system in this class, an algorithm is developed

  19. Adipocyte lipid synthesis coupled to neuronal control of thermogenic programming

    Directory of Open Access Journals (Sweden)

    Adilson Guilherme

    2017-08-01

    Conclusions: These results demonstrate that downregulation of fatty acid synthesis via FASN depletion in white adipocytes of mature mice can stimulate neuronal signaling to control thermogenic programming in iWAT.

  20. Controller Synthesis for Periodically Forced Chaotic Systems

    Science.gov (United States)

    Basso, Michele; Genesio, Roberto; Giovanardi, Lorenzo

    Delayed feedback controllers are an appealing tool for stabilization of periodic orbits in chaotic systems. Despite their conceptual simplicity, specific and reliable design procedures are difficult to obtain, partly also because of their inherent infinite-dimensional structure. This chapter considers the use of finite dimensional linear time invariant controllers for stabilization of periodic solutions in a general class of sinusoidally forced nonlinear systems. For such controllers — which can be interpreted as rational approximations of the delayed ones — we provide a computationally attractive synthesis technique based on Linear Matrix Inequalities (LMIs), by mixing results concerning absolute stability of nonlinear systems and robustness of uncertain linear systems. The resulting controllers prove to be effective for chaos suppression in electronic circuits and systems, as shown by two different application examples.

  1. Rate control for electron gun evaporation

    International Nuclear Information System (INIS)

    Schellingerhout, A.J.G.; Janocko, M.A.; Klapwijk, T.M.; Mooij, J.E.

    1989-01-01

    Principles for obtaining high-quality rate control for electron gun evaporation are discussed. The design criteria for rate controllers are derived from this analysis. Results are presented which have been obtained with e-guns whose evaporation rate is controlled by a Wehnelt electrode or by sweeping of the electron beam. Further improvements of rate stability can be obtained by improved design of e-guns and power supplies

  2. Periodic H-2 Synthesis for Spacecraft Attitude Control with Magnetometers

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Stoustrup, Jakob

    2004-01-01

    between the Earth´s magnetic field and an artificial magnetic field generated by the coils produces a control torque. The magnetic attitude control is intrinsically periodic due to cyclic variation of the geomagnetic field in orbit. The control performance is specified by the generalized H2 operator norm....... A linear matrix inequality-based algorithm is proposed for attitude control synthesis. Simulation results are provided, showing the prospect of the concept for onboard implementation....

  3. Direct vs. indirect pathway of hepatic glycogen synthesis as a function of glucose infusion rate

    International Nuclear Information System (INIS)

    Bagby, G.J.; Lang, C.H.; Johnson, J.L.; Blakesly, H.L.; Spitzer, J.J.

    1986-01-01

    This study was initiated to determine the influence of the rate of exogenous glucose administration on liver glycogen synthesis by the direct (glucose uptake and incorporation into glycogen) vs the indirect pathway (glucose degradation to 3-carbon intermediates, e.g., lactate, prior to incorporation into glycogen). Catheterized rats were fasted 2 days prior to receiving a 3 hr infusion of glucose at rates of 0 to 230 μmol/min/kg containing tracer [6- 3 H]- and [U- 14 C]-glucose. Plasma glucose (r = 0.80), insulin (r = 0.90) and lactate (r = 0.84) were correlated with glucose infusion rate. The rate of liver glycogen deposition (0.46 +/- 0.03 μmol/min/g) did not differ between a glucose infusion rate of 20 and 230 μmol/min/kg. At the lowest and highest glucose infusion rates hepatic glycogenesis accounted for 87 +/- 6 and 9 +/- 1% of the total glucose load, respectively. The percent contribution of the direct pathways to glycogen deposition ([ 3 H] specific activity in hepatic glycogen/[ 3 H] specific activity in plasma glucose) increased from 16 +/- 3 to 83 +/- 5% from lowest to highest glucose infusion rates (prevailing plasma glucose concentrations: 9 +/- 1 and 21 +/- 2 mM, respectively). The results indicate that the relative contribution of the direct and indirect pathways of glucogen synthesis are dependent upon the glucose load or plasma glucose concentration

  4. Impaired glutathione synthesis in schizophrenia

    DEFF Research Database (Denmark)

    Gysin, René; Kraftsik, Rudolf; Sandell, Julie

    2007-01-01

    Schizophrenia is a complex multifactorial brain disorder with a genetic component. Convergent evidence has implicated oxidative stress and glutathione (GSH) deficits in the pathogenesis of this disease. The aim of the present study was to test whether schizophrenia is associated with a deficit...... of GSH synthesis. Cultured skin fibroblasts from schizophrenia patients and control subjects were challenged with oxidative stress, and parameters of the rate-limiting enzyme for the GSH synthesis, the glutamate cysteine ligase (GCL), were measured. Stressed cells of patients had a 26% (P = 0.......002) decreased GCL activity as compared with controls. This reduction correlated with a 29% (P schizophrenia in two...

  5. A multifunction editor for programming control sequences for a robot based radiopharmaceutical synthesis system

    International Nuclear Information System (INIS)

    Appelquist, G.; Bohm, C.

    1990-01-01

    A Multifunction Editor is a development tool for building control sequences for a robotized production system for positron emitting radiopharmaceuticals. This system consists of SCARA robot and a PC-AT personal computer as a controller together with general and synthesis specific chemistry equipment. The general equipment, which is common for many synthesis, is fixed to the wall of the hotcell, while the specific equipment, dedicated to the given synthesis, is located on a removable tray. The program recognizes commands to move the robot, to control valves and to control the computer screen. From within the editor it is possible to run the control sequence forward or backward to test it and to use the single step feature to debug. The editor commands include insert, replace and delete of commands in the sequence. When programming or editing robot movements the robot may be controlled by the mouse, from the keyboard or from a remote control box. The robot control sequence consists of a succession of stored robot positions. The screen control is used to display dynamic flowchart diagrams. This is achieved by displaying a modified picture on the screen whenever the system state has been changed significantly

  6. Simultaneous Hypoxia and Low Extracellular pH Suppress Overall Metabolic Rate and Protein Synthesis In Vitro.

    Science.gov (United States)

    Sørensen, Brita Singers; Busk, Morten; Overgaard, Jens; Horsman, Michael R; Alsner, Jan

    2015-01-01

    The tumor microenvironment is characterized by regions of hypoxia and acidosis which are linked to poor prognosis. This occurs due to an aberrant vasculature as well as high rates of glycolysis and lactate production in tumor cells even in the presence of oxygen (the Warburg effect), which weakens the spatial linkage between hypoxia and acidosis. Five different human squamous cell carcinoma cell lines (SiHa, FaDuDD, UTSCC5, UTSCC14 and UTSCC15) were treated with hypoxia, acidosis (pH 6.3), or a combination, and gene expression analyzed using microarray. SiHa and FaDuDD were chosen for further characterization of cell energetics and protein synthesis. Total cellular ATP turnover and relative glycolytic dependency was determined by simultaneous measurements of oxygen consumption and lactate synthesis rates and total protein synthesis was determined by autoradiographic quantification of the incorporation of 35S-labelled methionine and cysteine into protein. Microarray analysis allowed differentiation between genes induced at low oxygen only at normal extracellular pH (pHe), genes induced at low oxygen at both normal and low pHe, and genes induced at low pHe independent of oxygen concentration. Several genes were found to be upregulated by acidosis independent of oxygenation. Acidosis resulted in a more wide-scale change in gene expression profiles than hypoxia including upregulation of genes involved in the translation process, for example Eukaryotic translation initiation factor 4A, isoform 2 (EIF4A2), and Ribosomal protein L37 (RPL37). Acidosis suppressed overall ATP turnover and protein synthesis by 50%. Protein synthesis, but not total ATP production, was also suppressed under hypoxic conditions. A dramatic decrease in ATP turnover (SiHa) and protein synthesis (both cell lines) was observed when hypoxia and low pHe were combined. We demonstrate here that the influence of hypoxia and acidosis causes different responses, both in gene expression and in de novo

  7. [Awareness rate, treatment rate and control rate of dyslipidemia in Chinese adults, 2010].

    Science.gov (United States)

    Li, Jian-hong; Wang, Li-min; Mi, Sheng-quan; Zhang, Mei; Li, Yi-chong; Jiang, Yong; Xu, Yu; Dai, Meng; Wang, Lin-hong

    2012-08-01

    To explore the awareness, treatment and control rates of dyslipidemia among Chinese adults aged over 18 in 2010, and to analyze the prevalent features. 97 409 subjects aged over 18 were recruited from 162 monitoring sites around 31 provinces in China mainland in 2010, applying multi-stage stratified cluster random sampling method. Information about subjects' history of dyslipidemia, treatment and control were collected by face-to-face interview; and each subject's fasting venous blood was drawn in the morning before having food, to test total cholesterol (TC), triglyceride (TG), high density lipoprotein-cholesterol (HDL-C) and low density lipoprotein-cholesterol (LDL-C). In total, 51 818 cases of dyslipidemia ever or now, including 2235 subjects who once suffered from dyslipidemia but had their blood lipid controlled to normal, were screened out. And the awareness, treatment and control rates were calculated by complex weighting. The awareness rate of dyslipidemia among Chinese adults was 10.93%, while the stratified rates were 6.00%, 16.75% and 18.74% in the groups of subjects aged 18 - 44, 45 - 59 and over 60 years old, respectively (χ² = 1293.02, P China, respectively (χ² = 117.04, P China, respectively (χ² = 50.71, P control rate of dyslipidemia was 3.53% among total subjects, while whose stratified rates were 1.64%, 5.49% and 6.94% in the groups of subjects aged 18 - 44, 45 - 59 and over 60 years old, respectively (χ² = 554.12, P China, respectively (χ² = 91.45, P control rates of dyslipidemia have been comparatively low among Chinese adults, especially among the population who were young, or who were from rural area or western China.

  8. High-deposition-rate ceramics synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, M.D.; Osterheld, T.H.; Outka, D.A. [Sandia National Laboratories, Livermore, CA (United States)] [and others

    1995-05-01

    Parallel experimental and computational investigations are conducted in this project to develop validated numerical models of ceramic synthesis processes. Experiments are conducted in the High-Temperature Materials Synthesis Laboratory in Sandia`s Combustion Research Facility. A high-temperature flow reactor that can accommodate small preforms (1-3 cm diameter) generates conditions under which deposition can be observed, with flexibility to vary both deposition temperature (up to 1500 K) and pressure (as low as 10 torr). Both mass spectrometric and laser diagnostic probes are available to provide measurements of gas-phase compositions. Experiments using surface analytical techniques are also applied to characterize important processes occuring on the deposit surface. Computational tools developed through extensive research in the combustion field are employed to simulate the chemically reacting flows present in typical industrial reactors. These include the CHEMKIN and Surface-CHEMKIN suites of codes, which permit facile development of complex reaction mechanisms and vastly simplify the implementation of multi-component transport and thermodynamics. Quantum chemistry codes are also used to estimate thermodynamic and kinetic data for species and reactions for which this information is unavailable.

  9. Polyhydroxyalkanoate synthesis by mixed microbial consortia cultured on fermented dairy manure: Effect of aeration on process rates/yields and the associated microbial ecology.

    Science.gov (United States)

    Coats, Erik R; Watson, Benjamin S; Brinkman, Cynthia K

    2016-12-01

    Polyhydroxyalkanoates (PHAs) are biodegradable polymers that can substitute for petroleum-based plastics in a variety of applications. One avenue to commercial PHA production involves coupling waste-based synthesis with the use of mixed microbial consortia (MMC). In this regard, production requires maximizing the enrichment of a MMC capable of feast-famine PHA synthesis, with the metabolic response induced through imposition of aerobic-dynamic feeding (ADF) conditions. However, the concept of PHA production in complex matrices remains unrefined; process operational improvements are needed, along with an enhanced understanding of the MMC. Research presented herein investigated the effect of aeration on feast-famine PHA synthesis, with four independent aeration state systems studied; MMC were fed volatile fatty acid (VFA)-rich fermented dairy manure. Regardless of the aeration state, all MMC exhibited a feast-famine response based on observed carbon cycling. Moreover, there was no statistical difference in PHA synthesis rates, with q PHA ranging from 0.10 to 0.19 CmmolPHA gVSS -1 min -1 ; VFA uptake rates exhibited similar statistical indifferences. PHA production assessments on the enriched MMC resulted in maximum intracellular concentrations ranging from 22.5 to 90.7% (mgPHA mgVSS -1 ); at maximum concentration, the mean hydroxyvalerate mol content was 73 ± 0.6%. While a typical feast-famine dissolved oxygen (DO) pattern was observed at maximum aeration, less resolution was observed at decreasing aeration rates, suggesting that DO may not be an optimal process monitoring parameter. At lower aeration states, nitrogen cycling patterns, supported by molecular investigations targeting AOBs and NOBs, indicate that NO 2 and NO 3 sustained feast-famine PHA synthesis. Next-generation sequencing analysis of the respective MMC revealed numerous and diverse genera exhibiting the potential to achieve PHA synthesis, suggesting functional redundancy embedded in the diverse

  10. Size-controlled synthesis of transition metal nanoparticles through chemical and photo-chemical routes

    Science.gov (United States)

    Tangeysh, Behzad

    small nanoparticles, and its application can be extended to the formation of other transition metals and alloy nanoparticles. This research also focuses on developing new photo-chemical routes for controlling the size and shape of the nanoparticles through high-intensity ultra-fast laser irradiation of metal salt solution. One of the core objectives of this work is to explore the special capabilities of shaped laser pulses in formation of metal nanoparticles through irradiation of the solutions by using simultaneous spatial and temporal focusing (SSTF). Femtosecond laser irradiation has not yet been widely applied for nanoparticle synthesis, and offers new regimes of energy deposition for synthesis of nanomaterials. Photo-reduction of aqueous [AuCl4]- solution to the gold nanoparticles (AuNPs) has been applied as a model process for optimizing the experimental procedures, and evaluating the potential of shaped laser pulses in the synthesis of AuNPs. Systematic manipulation of the laser parameters and experimental conditions provided effective strategies to control the size of Au nanoparticles in strong laser fields. Varying the concentration of polyethylene glycol (PEG45) as a surfactant effectively tuned the size of AuNPs from 3.9 +/-0.7nm to 11.0 +/-2.4nm, and significantly increased the rate of Au(III) reduction during irradiation. Comparative studies revealed the capability of shaped laser pulses in the generation of smaller and more uniform AuNPs (5.8 +/-1.1nm) relative to the other conventional laser irradiation methods (7.2 +/-2.9nm). Furthermore, a new laser-assisted approach has been developed for selective formation of triangular Au nanoplates in the absence of any surfactant molecule. This method relies on rapid energy deposition by using shaped, ultra-intense laser pulses to generate Au seeds in aqueous [AuCl4]- solution, and the slow post-irradiation reduction of un-reacted [AuCl4]- species by using H2O2 as a mild reducing agent. Variation of the laser

  11. Dissociation of histone and DNA synthesis in x-irradiated HeLa cells

    International Nuclear Information System (INIS)

    Bases, R.; Mendez, F.

    1971-01-01

    Although histone synthesis and DNA synthesis are normally very well coordinated in HeLa cells, their histone synthesis proved relatively resistant to inhibition by ionizing radiation. During the first 24 h after 1,000 R the rate of cellular DNA synthesis progressively fell to small fractions of control values while histone synthesis with much less relative reduction. Acrylamide gel electropherograms of the acid soluble nuclear histones synthesized by irradiated HeLa cells were qualitatively normal

  12. Size-controlled one-pot synthesis of fluorescent cadmium sulfide semiconductor nanoparticles in an apoferritin cavity

    International Nuclear Information System (INIS)

    Iwahori, K; Yamashita, I

    2008-01-01

    A simple size-controlled synthesis of cadmium sulfide (CdS) nanoparticle (NP) cores in the cavity of apoferritin from horse spleen (HsAFr) was performed by a slow chemical reaction synthesis and a two-step synthesis protocol. We found that the CdS NP core synthesis was slow and that premature CdS NP cores were formed in the apoferritin cavity when the concentration of ammonia water was low. It was proven that the control of the ammonia water concentration can govern the CdS NP core synthesis and successfully produce size-controlled CdS NP cores with diameters from 4.7 to 7.1 nm with narrow size dispersion. X-ray powder diffraction (XRD), energy dispersive spectroscopy (EDS) analysis and high-resolution transmission electron microscopy (HR-TEM) observation characterized the CdS NP cores obtained as cubic polycrystalline NPs, which showed photoluminescence with red shifts depending on their diameters. From the research of CdS NP core synthesis in the recombinant apoferritins, the zeta potential of apoferritin is important for the biomineralization of CdS NP cores in the apoferritin cavity. These synthesized CdS NPs with different photoluminescence properties will be applicable in a wide variety of nano-applications.

  13. Skeletal Muscle Myofibrillar and Sarcoplasmic Protein Synthesis Rates Are Affected Differently by Altitude-Induced Hypoxia in Native Lowlanders

    DEFF Research Database (Denmark)

    Holm, Lars; Lyhne Haslund, Mads; Robach, Paul

    2010-01-01

    As a consequence to hypobaric hypoxic exposure skeletal muscle atrophy is often reported. The underlying mechanism has been suggested to involve a decrease in protein synthesis in order to conserve O(2). With the aim to challenge this hypothesis, we applied a primed, constant infusion of 1-(13)C...... and expired breath samples were collected hourly during the 4 hour trial and vastus lateralis muscle biopsies obtained at 1 and 4 hours after tracer priming in the overnight fasted state. Myofibrillar protein synthesis rate was doubled; 0.041±0.018 at sea-level to 0.080±0.018%⋅hr(-1) (p0.05). Trends...... to increments in whole body protein kinetics were seen: Degradation rate elevated from 2.51±0.21 at sea level to 2.73±0.13 µmol⋅kg(-1)⋅min(-1) (p = 0.05) at high altitude and synthesis rate similar; 2.24±0.20 at sea level and 2.43±0.13 µmol⋅kg(-1)⋅min(-1) (p>0.05) at altitude. We conclude that whole body amino...

  14. Whole-Body Docosahexaenoic Acid Synthesis-Secretion Rates in Rats Are Constant across a Large Range of Dietary α-Linolenic Acid Intakes.

    Science.gov (United States)

    Domenichiello, Anthony F; Kitson, Alex P; Metherel, Adam H; Chen, Chuck T; Hopperton, Kathryn E; Stavro, P Mark; Bazinet, Richard P

    2017-01-01

    Docosahexaenoic acid (DHA) is an ω-3 (n-3) polyunsaturated fatty acid (PUFA) thought to be important for brain function. Although the main dietary source of DHA is fish, DHA can also be synthesized from α-linolenic acid (ALA), which is derived from plants. Enzymes involved in DHA synthesis are also active toward ω-6 (n-6) PUFAs to synthesize docosapentaenoic acid n-6 (DPAn-6). It is unclear whether DHA synthesis from ALA is sufficient to maintain brain DHA. The objective of this study was to determine how different amounts of dietary ALA would affect whole-body DHA and DPAn-6 synthesis rates. Male Long-Evans rats were fed an ALA-deficient diet (ALA-D), an ALA-adequate (ALA-A) diet, or a high-ALA (ALA-H) diet for 8 wk from weaning. Dietary ALA concentrations were 0.07%, 3%, and 10% of the fatty acids, and ALA was the only dietary PUFA that differed between the diets. After 8 wk, steady-state stable isotope infusion of labeled ALA and linoleic acid (LA) was performed to determine the in vivo synthesis-secretion rates of DHA and DPAn-6. Rats fed the ALA-A diet had an ∼2-fold greater capacity to synthesize DHA than did rats fed the ALA-H and ALA-D diets, and a DHA synthesis rate that was similar to that of rats fed the ALA-H diet. However, rats fed the ALA-D diet had a 750% lower DHA synthesis rate than rats fed the ALA-A and ALA-H diets. Despite enrichment into arachidonic acid, we did not detect any labeled LA appearing as DPAn-6. Increasing dietary ALA from 3% to 10% of fatty acids did not increase DHA synthesis rates, because of a decreased capacity to synthesize DHA in rats fed the ALA-H diet. Tissue concentrations of DPAn-6 may be explained at least in part by longer plasma half-lives. © 2017 American Society for Nutrition.

  15. Predictors of muscle protein synthesis after severe pediatric burns.

    Science.gov (United States)

    Diaz, Eva C; Herndon, David N; Lee, Jinhyung; Porter, Craig; Cotter, Matthew; Suman, Oscar E; Sidossis, Labros S; Børsheim, Elisabet

    2015-04-01

    Following a major burn, skeletal muscle protein synthesis rate increases but is often insufficient to compensate for massively elevated muscle protein breakdown rates. Given the long-term nature of the pathophysiologic response to burn injury, we hypothesized that muscle protein synthesis rate would be chronically elevated in severely burned children. The objectives of this study were to characterize muscle protein synthesis rate of burned children over a period of 24 months after injury and to identify predictors that influence this response. A total of 87 children with 40% or greater total body surface area (TBSA) burned were included. Patients participated in stable isotope infusion studies at 1, 2, and approximately 4 weeks after burn and at 6, 12, and 24 months after injury to determine skeletal muscle protein fractional synthesis rate. Generalized estimating equations with log link normal distribution were applied to account for clustering of patients and control for patient characteristics. Patients (8 ± 6 years) had large (62, 51-72% TBSA) and deep (47% ± 21% TBSA third degree) burns. Muscle protein fractional synthesis rate was elevated throughout the first 12 months after burn compared with established values from healthy young adults. Muscle protein fractional synthesis rate was lower in boys, in children older than 3 years, and when burns were greater than 80% TBSA. Muscle protein synthesis is elevated for at least 1 year after injury, suggesting that greater muscle protein turnover is a component of the long-term pathophysiologic response to burn trauma. Muscle protein synthesis is highly affected by sex, age, and burn size in severely burned children. These findings may explain the divergence in net protein balance and lean body mass in different populations of burn patients. Prognostic study, level III.

  16. Suppression of glycosaminoglycan synthesis by articular cartilage, but not of hyaluronic acid synthesis by synovium, after exposure to radiation

    International Nuclear Information System (INIS)

    Hugenberg, S.T.; Myers, S.L.; Brandt, K.D.

    1989-01-01

    We recently found that injection of 2 mCi of yttrium 90 (90Y; approximately 23,000 rads) into normal canine knees stimulated glycosaminoglycan (GAG) synthesis by femoral condylar cartilage. The present investigation was conducted to determine whether radiation affects cartilage metabolism directly. Rates of GAG synthesis and degradation in normal canine articular cartilage were studied following irradiation. Cultured synovium from the same knees was treated similarly, to determine the effects of irradiation on hyaluronic acid synthesis. Twenty-four hours after exposure to 1,000 rads, 10,000 rads, or 50,000 rads, 35S-GAG synthesis by the cartilage was 93%, 69%, and 37%, respectively, of that in control, nonirradiated cartilage. The effect was not rapidly reversible: 120 hours after exposure to 50,000 rads, GAG synthesis remained at only 28% of the control level. Autoradiography showed marked suppression of 35S uptake by chondrocytes after irradiation. Cartilage GAG degradation was also increased following irradiation: 4 hours and 8 hours after exposure to 50,000 rads, the cartilage GAG concentration was only 66% and 54%, respectively, of that at time 0, while corresponding values for control, nonirradiated cartilage were 90% and 87%. In contrast to its effects on cartilage GAG metabolism, radiation at these levels had no effect on synovial hyaluronic acid synthesis

  17. Suppression of glycosaminoglycan synthesis by articular cartilage, but not of hyaluronic acid synthesis by synovium, after exposure to radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hugenberg, S.T.; Myers, S.L.; Brandt, K.D.

    1989-04-01

    We recently found that injection of 2 mCi of yttrium 90 (90Y; approximately 23,000 rads) into normal canine knees stimulated glycosaminoglycan (GAG) synthesis by femoral condylar cartilage. The present investigation was conducted to determine whether radiation affects cartilage metabolism directly. Rates of GAG synthesis and degradation in normal canine articular cartilage were studied following irradiation. Cultured synovium from the same knees was treated similarly, to determine the effects of irradiation on hyaluronic acid synthesis. Twenty-four hours after exposure to 1,000 rads, 10,000 rads, or 50,000 rads, 35S-GAG synthesis by the cartilage was 93%, 69%, and 37%, respectively, of that in control, nonirradiated cartilage. The effect was not rapidly reversible: 120 hours after exposure to 50,000 rads, GAG synthesis remained at only 28% of the control level. Autoradiography showed marked suppression of 35S uptake by chondrocytes after irradiation. Cartilage GAG degradation was also increased following irradiation: 4 hours and 8 hours after exposure to 50,000 rads, the cartilage GAG concentration was only 66% and 54%, respectively, of that at time 0, while corresponding values for control, nonirradiated cartilage were 90% and 87%. In contrast to its effects on cartilage GAG metabolism, radiation at these levels had no effect on synovial hyaluronic acid synthesis.

  18. Enantioselective synthesis of both (-)-(R)-and (+)-(S)-angustureine controlled by enzymatic resolution

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Gaspar, E-mail: gaspardm@qui.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Inst. de Ciencias Exatas. Dept. de Qumica; Diaz, Marisa A.N. [Universidade Federal de Vicosa, MG (Brazil). Dept. de Bioquimica e Biologia Molecular; Reis, Marco A. [Centro Federal de Educacao Tecnologica (CEFET), Belo Horizonte, MG (Brazil). Dept. de Quimica

    2013-09-15

    The present study describes a new synthesis of (-)-(R)- and (+)-(S)-angustureine enantiomers, as well as of racemate ({+-})-angustureine, from a racemic {beta}-amino ester controlled by kinetic enzymatic resolution. This strategy allowed to incorporate the basic skeleton, as well as to control the single stereocenter at carbon 2 in both enantiomers. The sequence of five steps starting from the chiral {beta}-amino ester and sodium carboxylate for the synthesis of both alkaloids achieved overall yields of 80 and 44%, respectively, and produced excellent enantiomeric excesses (95 and 96%, respectively) with no protection of functional groups in any of the steps. (author)

  19. Enantioselective synthesis of both (-)-(R)-and (+)-(S)-angustureine controlled by enzymatic resolution

    International Nuclear Information System (INIS)

    Diaz, Gaspar; Diaz, Marisa A.N.; Reis, Marco A.

    2013-01-01

    The present study describes a new synthesis of (-)-(R)- and (+)-(S)-angustureine enantiomers, as well as of racemate (±)-angustureine, from a racemic β-amino ester controlled by kinetic enzymatic resolution. This strategy allowed to incorporate the basic skeleton, as well as to control the single stereocenter at carbon 2 in both enantiomers. The sequence of five steps starting from the chiral β-amino ester and sodium carboxylate for the synthesis of both alkaloids achieved overall yields of 80 and 44%, respectively, and produced excellent enantiomeric excesses (95 and 96%, respectively) with no protection of functional groups in any of the steps. (author)

  20. Synthesis of Phenolics and Flavonoids in Ginger (Zingiber officinale Roscoe and Their Effects on Photosynthesis Rate

    Directory of Open Access Journals (Sweden)

    Asmah Rahmat

    2010-11-01

    Full Text Available The relationship between phenolics and flavonoids synthesis/accumulation and photosynthesis rate was investigated for two Malaysian ginger (Zingiber officinale varieties grown under four levels of glasshouse light intensity, namely 310, 460, 630 and 790 μmol m−2s−1. High performance liquid chromatography (HPLC was employed to identify and quantify the polyphenolic components. The results of HPLC analysis indicated that synthesis and partitioning of quercetin, rutin, catechin, epicatechin and naringenin were high in plants grown under 310 µmol m−2s−1. The average value of flavonoids synthesis in leaves for both varieties increased (Halia Bentong 26.1%; Halia Bara 19.5% when light intensity decreased. Photosynthetic rate and plant biomass increased in both varieties with increasing light intensity. More specifically, a high photosynthesis rate (12.25 µmol CO2 m−2s−1 in Halia Bara and plant biomass (79.47 g in Halia Bentong were observed at 790 µmol m−2s−1. Furthermore, plants with the lowest rate of photosynthesis had highest flavonoids content. Previous studies have shown that quercetin inhibits and salicylic acid induces the electron transport rate in photosynthesis photosystems. In the current study, quercetin was an abundant flavonoid in both ginger varieties. Moreover, higher concentration of quercetin (1.12 mg/g dry weight was found in Halia Bara leaves grown under 310 µmol m−2s−1 with a low photosynthesis rate. Furthermore, a high content of salicylic acid (0.673 mg/g dry weight was detected in Halia Bara leaves exposed under 790 µmol m−2s−1 with a high photosynthesis rate. No salicylic acid was detected in gingers grown under 310 µmol m−2s−1. Ginger is a semi-shade loving plant that does not require high light intensity for photosynthesis. Different photosynthesis rates at different light intensities may be related to the absence or presence of some flavonoid and phenolic compounds.

  1. Synthesis of Phenolics and Flavonoids in Ginger (Zingiber officinale Roscoe) and Their Effects on Photosynthesis Rate

    Science.gov (United States)

    Ghasemzadeh, Ali; Jaafar, Hawa Z. E.; Rahmat, Asmah

    2010-01-01

    The relationship between phenolics and flavonoids synthesis/accumulation and photosynthesis rate was investigated for two Malaysian ginger (Zingiber officinale) varieties grown under four levels of glasshouse light intensity, namely 310, 460, 630 and 790 μmol m−2s−1. High performance liquid chromatography (HPLC) was employed to identify and quantify the polyphenolic components. The results of HPLC analysis indicated that synthesis and partitioning of quercetin, rutin, catechin, epicatechin and naringenin were high in plants grown under 310 μmol m−2s−1. The average value of flavonoids synthesis in leaves for both varieties increased (Halia Bentong 26.1%; Halia Bara 19.5%) when light intensity decreased. Photosynthetic rate and plant biomass increased in both varieties with increasing light intensity. More specifically, a high photosynthesis rate (12.25 μmol CO2 m−2s−1 in Halia Bara) and plant biomass (79.47 g in Halia Bentong) were observed at 790 μmol m−2s−1. Furthermore, plants with the lowest rate of photosynthesis had highest flavonoids content. Previous studies have shown that quercetin inhibits and salicylic acid induces the electron transport rate in photosynthesis photosystems. In the current study, quercetin was an abundant flavonoid in both ginger varieties. Moreover, higher concentration of quercetin (1.12 mg/g dry weight) was found in Halia Bara leaves grown under 310 μmol m−2s−1 with a low photosynthesis rate. Furthermore, a high content of salicylic acid (0.673 mg/g dry weight) was detected in Halia Bara leaves exposed under 790 μmol m−2s−1 with a high photosynthesis rate. No salicylic acid was detected in gingers grown under 310 μmol m−2s−1. Ginger is a semi-shade loving plant that does not require high light intensity for photosynthesis. Different photosynthesis rates at different light intensities may be related to the absence or presence of some flavonoid and phenolic compounds. PMID:21151455

  2. The Total Synthesis Problem of linear multivariable control. II - Unity feedback and the design morphism

    Science.gov (United States)

    Sain, M. K.; Antsaklis, P. J.; Gejji, R. R.; Wyman, B. F.; Peczkowski, J. L.

    1981-01-01

    Zames (1981) has observed that there is, in general, no 'separation principle' to guarantee optimality of a division between control law design and filtering of plant uncertainty. Peczkowski and Sain (1978) have solved a model matching problem using transfer functions. Taking into consideration this investigation, Peczkowski et al. (1979) proposed the Total Synthesis Problem (TSP), wherein both the command/output-response and command/control-response are to be synthesized, subject to the plant constraint. The TSP concept can be subdivided into a Nominal Design Problem (NDP), which is not dependent upon specific controller structures, and a Feedback Synthesis Problem (FSP), which is. Gejji (1980) found that NDP was characterized in terms of the plant structural matrices and a single, 'good' transfer function matrix. Sain et al. (1981) have extended this NDP work. The present investigation is concerned with a study of FSP for the unity feedback case. NDP, together with feedback synthesis, is understood as a Total Synthesis Problem.

  3. Synthesis of nano-sized amorphous boron powders through active dilution self-propagating high-temperature synthesis method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jilin [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Gu, Yunle [School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430073 (China); Li, Zili [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Wang, Weimin, E-mail: wangwm@hotmail.com [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Fu, Zhengyi [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2013-06-01

    Graphical abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed. Highlights: ► Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis method. ► The morphology, particle size and purity of the samples could be effectively controlled via changing the endothermic rate. ► The diluter KBH{sub 4} played an important role in active dilution synthesis of amorphous nano-sized boron powders. ► The active dilution method could be further popularized and become a common approach to prepare various inorganic materials. - Abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method at temperatures ranging from 700 °C to 850 °C in a SHS furnace using Mg, B{sub 2}O{sub 3} and KBH{sub 4} as raw materials. Samples were characterized by X-ray powder diffraction (XRD), Laser particle size analyzer, Fourier transform infrared spectra (FTIR), X-ray energy dispersive spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission TEM (HRTEM). The boron powders demonstrated an average particle size of 50 nm with a purity of 95.64 wt.%. The diluter KBH{sub 4} played an important role in the active dilution synthesis of amorphous nano-sized boron powders. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed.

  4. Synthesis of nano-sized amorphous boron powders through active dilution self-propagating high-temperature synthesis method

    International Nuclear Information System (INIS)

    Wang, Jilin; Gu, Yunle; Li, Zili; Wang, Weimin; Fu, Zhengyi

    2013-01-01

    Graphical abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed. Highlights: ► Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis method. ► The morphology, particle size and purity of the samples could be effectively controlled via changing the endothermic rate. ► The diluter KBH 4 played an important role in active dilution synthesis of amorphous nano-sized boron powders. ► The active dilution method could be further popularized and become a common approach to prepare various inorganic materials. - Abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method at temperatures ranging from 700 °C to 850 °C in a SHS furnace using Mg, B 2 O 3 and KBH 4 as raw materials. Samples were characterized by X-ray powder diffraction (XRD), Laser particle size analyzer, Fourier transform infrared spectra (FTIR), X-ray energy dispersive spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission TEM (HRTEM). The boron powders demonstrated an average particle size of 50 nm with a purity of 95.64 wt.%. The diluter KBH 4 played an important role in the active dilution synthesis of amorphous nano-sized boron powders. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed

  5. Just-in-time control of Spo0A synthesis in Bacillus subtilis by multiple regulatory mechanisms.

    Science.gov (United States)

    Chastanet, Arnaud; Losick, Richard

    2011-11-01

    The response regulator Spo0A governs multiple developmental processes in Bacillus subtilis, including most conspicuously sporulation. Spo0A is activated by phosphorylation via a multicomponent phosphorelay. Previous work has shown that the Spo0A protein is not rate limiting for sporulation. Rather, Spo0A is present at high levels in growing cells, rapidly rising to yet higher levels under sporulation-inducing conditions, suggesting that synthesis of the response regulator is subject to a just-in-time control mechanism. Transcription of spo0A is governed by a promoter switching mechanism, involving a vegetative, σ(A)-recognized promoter, P(v), and a sporulation σ(H)-recognized promoter, P(s), that is under phosphorylated Spo0A (Spo0A∼P) control. The spo0A regulatory region also contains four (including one identified in the present work) conserved elements that conform to the consensus binding site for Spo0A∼P binding sites. These are herein designated O(1), O(2), O(3), and O(4) in reverse order of their proximity to the coding sequence. Here we report that O(1) is responsible for repressing P(v) during the transition to stationary phase, that O(2) is responsible for repressing P(s) during growth, that O(3) is responsible for activating P(s) at the start of sporulation, and that O(4) is dispensable for promoter switching. We also report that Spo0A synthesis is subject to a posttranscriptional control mechanism such that translation of mRNAs originating from P(v) is impeded due to RNA secondary structure whereas mRNAs originating from P(s) are fully competent for protein synthesis. We propose that the opposing actions of O(2) and O(3) and the enhanced translatability of mRNAs originating from P(s) create a highly sensitive, self-reinforcing switch that is responsible for producing a burst of Spo0A synthesis at the start of sporulation.

  6. Simultaneous Hypoxia and Low Extracellular pH Suppress Overall Metabolic Rate and Protein Synthesis In Vitro.

    Directory of Open Access Journals (Sweden)

    Brita Singers Sørensen

    Full Text Available The tumor microenvironment is characterized by regions of hypoxia and acidosis which are linked to poor prognosis. This occurs due to an aberrant vasculature as well as high rates of glycolysis and lactate production in tumor cells even in the presence of oxygen (the Warburg effect, which weakens the spatial linkage between hypoxia and acidosis.Five different human squamous cell carcinoma cell lines (SiHa, FaDuDD, UTSCC5, UTSCC14 and UTSCC15 were treated with hypoxia, acidosis (pH 6.3, or a combination, and gene expression analyzed using microarray. SiHa and FaDuDD were chosen for further characterization of cell energetics and protein synthesis. Total cellular ATP turnover and relative glycolytic dependency was determined by simultaneous measurements of oxygen consumption and lactate synthesis rates and total protein synthesis was determined by autoradiographic quantification of the incorporation of 35S-labelled methionine and cysteine into protein.Microarray analysis allowed differentiation between genes induced at low oxygen only at normal extracellular pH (pHe, genes induced at low oxygen at both normal and low pHe, and genes induced at low pHe independent of oxygen concentration. Several genes were found to be upregulated by acidosis independent of oxygenation. Acidosis resulted in a more wide-scale change in gene expression profiles than hypoxia including upregulation of genes involved in the translation process, for example Eukaryotic translation initiation factor 4A, isoform 2 (EIF4A2, and Ribosomal protein L37 (RPL37. Acidosis suppressed overall ATP turnover and protein synthesis by 50%. Protein synthesis, but not total ATP production, was also suppressed under hypoxic conditions. A dramatic decrease in ATP turnover (SiHa and protein synthesis (both cell lines was observed when hypoxia and low pHe were combined.We demonstrate here that the influence of hypoxia and acidosis causes different responses, both in gene expression and in de

  7. Exogenous insulin does not increase muscle protein synthesis rate when administered systemically: a systematic review

    NARCIS (Netherlands)

    Trommelen, J.; Groen, B.; Hamer, H.M.; Groot, de C.P.G.M.; Loon, van L.J.C.

    2015-01-01

    Background Though it is well appreciated that insulin plays an important role in the regulation of muscle protein metabolism, there is much discrepancy in the literature on the capacity of exogenous insulin administration to increase muscle protein synthesis rates in vivo in humans. Objective To

  8. Correlation of changes in rate of sterol synthesis with changes in HMG CoA reductase activity in cultured lens epithelial cells

    International Nuclear Information System (INIS)

    Cenedella, R.J.; Hitchener, W.R.

    1986-01-01

    In the present study, the authors correlated changes in HMG CoA reductase activity with changes in relative rates of sterol synthesis measured from either 3 H 2 O or 1- 14 C-acetate for bovine lens epithelial cells cultured in the presence or absence of lipoproteins. Enzyme activity and rates of incorporation of 3 H 2 O or 1- 14 C-acetate into digitonin precipitable sterols were measured in cells on the 4th day of subculture in DMEM containing 9% whole calf serum (WM) or 9% lipoprotein deficient serum (LDM). In three experiments, HMG CoA reductase activity (U/10 6 cells) averaged 2.2 +/- 0.1 times greater for cells grown in LDM than WM. Sterol synthesis averaged 3.0 +/- 0.4 times greater when measured with 3 H 2 O and 4.0 +/- 1.1 times greater when measured with 14 C-acetate. Thus, 3 H 2 O and 14 C-acetate appear to be comparable substrates for estimating changes in relative rates of sterol synthesis by cultured cells. The larger increases in rates of sterol synthesis than in reductase activity in response to decreased cholesterol could reflect stimulation at additional metabolic steps in the cholesterol pathway beyond mevalonic acid

  9. Relationship between the rate of hepatic sterol synthesis and the incorporation of [3H]water

    International Nuclear Information System (INIS)

    Pullinger, C.R.; Gibbons, G.F.

    1983-01-01

    The true rate of sterol synthesis in liver cells was determined by measurement of the weight of desmosterol produced over a given time period during incubations in the presence of triparanol. The simultaneous presence of tritiated water ( 3 H 2 O) during the incubations permitted a direct observation of the weight of tritium incorporated into a given mass of newly synthesized sterol. The incorporation of tritium per atom of sterol carbon (H/C ratio) was lower than some previously reported values and suggests that a sizeable proportion of the reducing equivalents (NADPH) required for sterol synthesis arises via the pentose phosphate pathway. The H/C ratio changed significantly with length of the incubation period. The value of the ratio was also dependent upon whether the acetyl-CoA units utilized for sterol synthesis were derived predominantly from a carbohydrate or a fatty acid source

  10. Immobilization of Yarrowia lipolytica lipase Ylip2 for the biocatalytic synthesis of phytosterol ester in a water activity controlled reactor.

    Science.gov (United States)

    Cui, Caixia; Guan, Nan; Xing, Chen; Chen, Biqiang; Tan, Tianwei

    2016-10-01

    In this work, phytosterol ester was synthesized using Yarrowia lipolytica lipase Ylip2 that had been immobilized on inorganic support in a solvent-free system and reacted in a computer-aided water activity controlled bioreactor. The immobilization of Ylip2 on celite led to a remarkable increase in the phytosterol conversion compared to that of free lipase. An investigation of the reaction conditions were oleic acid as the fatty acid variety, 10,000U/g substrate, and a temperature of 50°C for phytosterol ester synthesis. Controlling of the water activity at a set point was accomplished by the introduction of dry air through the reaction medium at a digital feedback controlled flow rate. For the esterification of phytosterol ester, a low (15%) water activity resulted in a considerable improvement in phytosterol conversion (91.1%) as well as a decreased reaction time (78h). Furthermore, Ylip2 lipase immobilized on celite retained 90% esterification activity for the synthesis of phytosterol oleate after reused 8 cycles, while free lipase was only viable for 5 batches with 90% esterification activity remained. Finally, the phytosterol oleate space time yield increased from 1.65g/L/h with free lipase to 2.53g/L/h with immobilized lipase. These results illustrate that the immobilized Yarrowia lipolytica lipase Ylip2 in a water activity controlled reactor has great potential for the application in phytosterol esters synthesis. Copyright © 2016. Published by Elsevier B.V.

  11. Kefir consumption does not alter plasma lipid levels or cholesterol fractional synthesis rates relative to milk in hyperlipidemic men: a randomized controlled trial [ISRCTN10820810

    Directory of Open Access Journals (Sweden)

    Mafu Akier

    2002-01-01

    Full Text Available Abstract Background Fermented milk products have been shown to affect serum cholesterol concentrations in humans. Kefir, a fermented milk product, has been traditionally consumed for its potential health benefits but has to date not been studied for its hypocholesterolemic properties. Methods Thirteen healthy mildly hypercholesterolemic male subjects consumed a dairy supplement in randomized crossover trial for 2 periods of 4 wk each. Subjects were blinded to the dairy supplement consumed. Blood samples were collected at baseline and after 4 wk of supplementation for measurement of plasma total, low-density lipoprotein, and high-density lipoprotein cholesterol and triglyceride concentrations, as well as fatty acid profile and cholesterol synthesis rate. Fecal samples were collected at baseline and after 2 and 4 wk of supplementation for determination of fecal short chain fatty acid level and bacterial content. Results Kefir had no effect on total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglyceride concentrations nor on cholesterol fractional synthesis rates after 4 wk of supplementation. No significant change on plasma fatty acid levels was observed with diet. However, both kefir and milk increased (p Conclusions Since kefir consumption did not result in lowered plasma lipid concentrations, the results of this study do not support consumption of kefir as a cholesterol-lowering agent.

  12. Controller synthesis for negative imaginary systems: a data driven approach

    KAUST Repository

    Mabrok, Mohamed

    2016-02-17

    The negative imaginary (NI) property occurs in many important applications. For instance, flexible structure systems with collocated force actuators and position sensors can be modelled as negative imaginary systems. In this study, a data-driven controller synthesis methodology for NI systems is presented. In this approach, measured frequency response data of the plant is used to construct the controller frequency response at every frequency by minimising a cost function. Then, this controller response is used to identify the controller transfer function using system identification methods. © The Institution of Engineering and Technology 2016.

  13. Phosphatase control of 4E-BP1 phosphorylation state is central for glycolytic regulation of retinal protein synthesis.

    Science.gov (United States)

    Gardner, Thomas W; Abcouwer, Steven F; Losiewicz, Mandy K; Fort, Patrice E

    2015-09-15

    Control of protein synthesis in insulin-responsive tissues has been well characterized, but relatively little is known about how this process is regulated in nervous tissues. The retina exhibits a relatively high protein synthesis rate, coinciding with high basal Akt and metabolic activities, with the majority of retinal ATP being derived from aerobic glycolysis. We examined the dependency of retinal protein synthesis on the Akt-mTOR signaling and glycolysis using ex vivo rat retinas. Akt inhibitors significantly reduced retinal protein synthesis but did not affect glycolytic lactate production. Surprisingly, the glycolytic inhibitor 2-deoxyglucose (2-DG) markedly inhibited Akt1 and Akt3 activities, as well as protein synthesis. The effects of 2-DG, and 2-fluorodeoxyglucose (2-FDG) on retinal protein synthesis correlated with inhibition of lactate production and diminished ATP content, with all these effects reversed by provision of d-mannose. 2-DG treatment was not associated with increased AMPK, eEF2, or eIF2α phosphorylation; instead, it caused rapid dephosphorylation of 4E-BP1. 2-DG reduced total mTOR activity by 25%, but surprisingly, it did not reduce mTORC1 activity, as indicated by unaltered raptor-associated mTOR autophosphorylation and ribosomal protein S6 phosphorylation. Dephosphorylation of 4E-BP1 was largely prevented by inhibition of PP1/PP2A phosphatases with okadaic acid and calyculin A, and inhibition of PPM1 phosphatases with cadmium. Thus, inhibition of retinal glycolysis diminished Akt and protein synthesis coinciding with accelerated dephosphorylation of 4E-BP1 independently of mTORC1. These results demonstrate a novel mechanism regulating protein synthesis in the retina involving an mTORC1-independent and phosphatase-dependent regulation of 4E-BP1. Copyright © 2015 the American Physiological Society.

  14. Long-term rates of mitochondrial protein synthesis are increased in mouse skeletal muscle with high-fat feeding regardless of insulin-sensitizing treatment.

    Science.gov (United States)

    Newsom, Sean A; Miller, Benjamin F; Hamilton, Karyn L; Ehrlicher, Sarah E; Stierwalt, Harrison D; Robinson, Matthew M

    2017-11-01

    Skeletal muscle mitochondrial protein synthesis is regulated in part by insulin. The development of insulin resistance with diet-induced obesity may therefore contribute to impairments to protein synthesis and decreased mitochondrial respiration. Yet the impact of diet-induced obesity and insulin resistance on mitochondrial energetics is controversial, with reports varying from decreases to increases in mitochondrial respiration. We investigated the impact of changes in insulin sensitivity on long-term rates of mitochondrial protein synthesis as a mechanism for changes to mitochondrial respiration in skeletal muscle. Insulin resistance was induced in C57BL/6J mice using 4 wk of a high-fat compared with a low-fat diet. For 8 additional weeks, diets were enriched with pioglitazone to restore insulin sensitivity compared with nonenriched control low-fat or high-fat diets. Skeletal muscle mitochondrial protein synthesis was measured using deuterium oxide labeling during weeks 10-12 High-resolution respirometry was performed using palmitoyl-l-carnitine, glutamate+malate, and glutamate+malate+succinate as substrates for mitochondria isolated from quadriceps. Mitochondrial protein synthesis and palmitoyl- l-carnitine oxidation were increased in mice consuming a high-fat diet, regardless of differences in insulin sensitivity with pioglitazone treatment. There was no effect of diet or pioglitazone treatment on ADP-stimulated respiration or H 2 O 2 emission using glutamate+malate or glutamate+malate+succinate. The results demonstrate no impairments to mitochondrial protein synthesis or respiration following induction of insulin resistance. Instead, mitochondrial protein synthesis was increased with a high-fat diet and may contribute to remodeling of the mitochondria to increase lipid oxidation capacity. Mitochondrial adaptations with a high-fat diet appear driven by nutrient availability, not intrinsic defects that contribute to insulin resistance. Copyright © 2017 the

  15. Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer

    Science.gov (United States)

    Song, Jeong-Gyu; Ryu, Gyeong Hee; Lee, Su Jeong; Sim, Sangwan; Lee, Chang Wan; Choi, Taejin; Jung, Hanearl; Kim, Youngjun; Lee, Zonghoon; Myoung, Jae-Min; Dussarrat, Christian; Lansalot-Matras, Clement; Park, Jusang; Choi, Hyunyong; Kim, Hyungjun

    2015-01-01

    The effective synthesis of two-dimensional transition metal dichalcogenides alloy is essential for successful application in electronic and optical devices based on a tunable band gap. Here we show a synthesis process for Mo1−xWxS2 alloy using sulfurization of super-cycle atomic layer deposition Mo1−xWxOy. Various spectroscopic and microscopic results indicate that the synthesized Mo1−xWxS2 alloys have complete mixing of Mo and W atoms and tunable band gap by systematically controlled composition and layer number. Based on this, we synthesize a vertically composition-controlled (VCC) Mo1−xWxS2 multilayer using five continuous super-cycles with different cycle ratios for each super-cycle. Angle-resolved X-ray photoemission spectroscopy, Raman and ultraviolet–visible spectrophotometer results reveal that a VCC Mo1−xWxS2 multilayer has different vertical composition and broadband light absorption with strong interlayer coupling within a VCC Mo1−xWxS2 multilayer. Further, we demonstrate that a VCC Mo1−xWxS2 multilayer photodetector generates three to four times greater photocurrent than MoS2- and WS2-based devices, owing to the broadband light absorption. PMID:26204328

  16. Nonlinear Control Synthesis for Electrical Power Systems Using Controllable Series Capacitors

    CERN Document Server

    Manjarekar, N S

    2012-01-01

    In this work we derive asymptotically stabilizing control laws for electrical power systems using two nonlinear control synthesis techniques. For this transient stabilization problem the actuator considered is a power electronic device, a controllable series capacitor (CSC). The power system is described using two different nonlinear models - the second order swing equation and the third order flux-decay model. To start with, the CSC is modeled by the injection model which is based on the assumption that the CSC dynamics is very fast as compared to the dynamics of the power system and hence can be approximated by an algebraic equation. Here, by neglecting the CSC dynamics, the input vector $g(x)$ in the open loop system takes a complex form - the injection model. Using this model, interconnection and damping assignment passivity-based control (IDA-PBC) methodology is demonstrated on two power systems: a single machine infinite bus (SMIB) system and a two machine system. Further, IDA-PBC is used to derive stab...

  17. Synthesis of relay control systems for nuclear reactors

    International Nuclear Information System (INIS)

    Postnikov, N.S.

    1996-01-01

    The problem on stabilizing an oscillatory-unstable reactor by a single-link relay system, the characteristics whereof have a dead zone and hysteresis loop, is considered. The methodology of synthesis of feedback law, providing for stochastic steady-state mode of reactor operation with the minimum frequency of control impact introduction is proposed. This methodology is applicable to general-type relay systems with arbitrary oscillatory-unstable objects. 6 refs., 5 figs

  18. Nuclear DNA synthesis rate and labelling index: effects of carcinogenic and non-carcinogenic chemicals on its behaviour in the organism of growing CBA mice

    International Nuclear Information System (INIS)

    Amlacher, E.; Rudolph, C.

    1978-01-01

    Well known bioassays have been compared with the author's thymidine incorporation-screening system and other assays based on biochemical quantification of DNA synthesis as a possibility of identification of carcinogens. The partial inhibition of the whole DNA synthesis in a proliferating cell population after treatment with toxic and carcinogenic chemicals is an early common response especially in hepatectomized animal, livers caused by the effects of those substances. However, by quantitative evaluation of the nuclear DNA synthesis rate as a basic parameter, using autoradiographs of kidney and liver of juvenile growing CBA mice, it is possible to differentiate carcinogenic from non-carcinogenic chemicals by means of silver grain counting after 3 H-TdR incorporation. On the contrary, the whole DNA synthesis, expressed by the 3 H-labelling index (in per cent) of kidney and liver, did not permit such a differentiation in the experimental arrangement used. It could be demonstrated that carcinogenic compounds of different chemical classes partially inhibit the nuclear DNA synthesis rate significantly over a period of more than 24 hours. The tested non-carcinogenic compounds did not show this suppressive effect on the nuclear DNA synthesis rate. (author)

  19. Action of ionizing radiation on catalase synthesis in the rat liver

    International Nuclear Information System (INIS)

    Komov, V.P.; Strelkova, M.A.

    1975-01-01

    3-amino-1,2,4-triazole was used to study the effect of total-body X-ray irradiation on the rates of catalase synthesis and breakdown in rat liver. It was found that in the interval between hour 22 and hour 144 of radiation sickness, the average rate of catalase synthesis in the liver was 2.6 times lower in rats that received a dose of 800 rads than in control rats

  20. Protein synthesis controls phosphate homeostasis.

    Science.gov (United States)

    Pontes, Mauricio H; Groisman, Eduardo A

    2018-01-01

    Phosphorus is an essential element assimilated largely as orthophosphate (Pi). Cells respond to Pi starvation by importing Pi from their surroundings. We now report that impaired protein synthesis alone triggers a Pi starvation response even when Pi is plentiful in the extracellular milieu. In the bacterium Salmonella enterica serovar Typhimurium , this response entails phosphorylation of the regulatory protein PhoB and transcription of PhoB-dependent Pi transporter genes and is eliminated upon stimulation of adenosine triphosphate (ATP) hydrolysis. When protein synthesis is impaired due to low cytoplasmic magnesium (Mg 2+ ), Salmonella triggers the Pi starvation response because ribosomes are destabilized, which reduces ATP consumption and thus free cytoplasmic Pi. This response is transient because low cytoplasmic Mg 2+ promotes an uptake in Mg 2+ and a decrease in ATP levels, which stabilizes ribosomes, resulting in ATP consumption and Pi increase, thus ending the response. Notably, pharmacological inhibition of protein synthesis also elicited a Pi starvation response in the bacterium Escherichia coli and the yeast Saccharomyces cerevisiae Our findings identify a regulatory connection between protein synthesis and Pi homeostasis that is widespread in nature. © 2018 Pontes and Groisman; Published by Cold Spring Harbor Laboratory Press.

  1. Wave field synthesis, adaptive wave field synthesis and ambisonics using decentralized transformed control: Potential applications to sound field reproduction and active noise control

    Science.gov (United States)

    Gauthier, Philippe-Aubert; Berry, Alain; Woszczyk, Wieslaw

    2005-09-01

    Sound field reproduction finds applications in listening to prerecorded music or in synthesizing virtual acoustics. The objective is to recreate a sound field in a listening environment. Wave field synthesis (WFS) is a known open-loop technology which assumes that the reproduction environment is anechoic. Classical WFS, therefore, does not perform well in a real reproduction space such as room. Previous work has suggested that it is physically possible to reproduce a progressive wave field in-room situation using active control approaches. In this paper, a formulation of adaptive wave field synthesis (AWFS) introduces practical possibilities for an adaptive sound field reproduction combining WFS and active control (with WFS departure penalization) with a limited number of error sensors. AWFS includes WFS and closed-loop ``Ambisonics'' as limiting cases. This leads to the modification of the multichannel filtered-reference least-mean-square (FXLMS) and the filtered-error LMS (FELMS) adaptive algorithms for AWFS. Decentralization of AWFS for sound field reproduction is introduced on the basis of sources' and sensors' radiation modes. Such decoupling may lead to decentralized control of source strength distributions and may reduce computational burden of the FXLMS and the FELMS algorithms used for AWFS. [Work funded by NSERC, NATEQ, Université de Sherbrooke and VRQ.] Ultrasound/Bioresponse to

  2. Pharmacologic Rhythm Control versus Rate Control in Heart Failure and Atrial Fibrillation

    Directory of Open Access Journals (Sweden)

    Gladys Gladys

    2017-01-01

    Full Text Available Heart failure (HF with atrial fibrillation (AF is correlated with worse prognosis requiring special approach.Rate control has been the first line of treatment in cases of HF and HF. On the other hand, rhythm controlhas been proven to be effective in returning sinus rhythm resulting in better prognosis for patients with HFbut not HF. Its role in cocurring cases of HF and AF is not fully understood. Thus, this study aims to analysewhether pharmacologic rhythm control can be applied to cases of HF and AF to reduce mortality. A searchwas conducted via PubMed, Medline, ProQuest, and Cochrane Database on January 2016. One study wasselected after filtering process by inclusion and exclusion criteria and critical appraisal was performed. It wasfound that there was rhythm control and rate control do no have favouring effect towards mortality shown byRR 1.03 (95% CI 0.90-1.17, p=0.69. Rate control has protective effect towards hospitalizations by RR of 0.92(95% CI 0.86 – 0.98, p=0.008, NNT=19. To conclude, rhythm control is not superior to rate control in reducingmortality and rate control should be still be considered as first line treatment of HF and AF. Keywords: heart failure, pharmacologic rhythm control, rate control, atrial fibrillation   Farmakologis Rhythm Control Dibandingkan dengan Rate Control padaKasus Gagal Jantung dan Atrial Fibrilasi Abstrak Gagal jantung dengan atrial fibrilasi berhubungan dengan prognosis yang lebih buruk dan membutuhkanpenanganan khusus. Saat ini strategi rate control merupakan terapi lini pertama pada kasus gagal jantungdan atrial fibrilasi. Rhythm control memberikan prognosis yang lebih baik pada pasien gagal jantung denganmengembalikan sinus ritme. Kegunaan rhythm control pada kasus gagal jantung dan atrial fibrilasi sampaisaat ini belum sepenuhnya dimengerti. Tujuan studi ini adalah menelaah apakah terapi farmakologis rhythmcontrol dapat menurunkan mortalitas gagal jantung dan atrial fibrilasi. Pencarian data

  3. The dynamic equilibrium between ATP synthesis and ATP consumption is lower in isolated mitochondria from myotubes established from type 2 diabetic subjects compared to lean control

    DEFF Research Database (Denmark)

    Minet, Ariane D; Gaster, Michael

    2011-01-01

    compared to lean control. The ATP synthesis rate without ATP consumption was not different between groups and there were no significant gender differences. The mitochondrial dysfunction in type 2 diabetes in vivo is partly based on a primarily impaired ATP synthesis....... or not in the mitochondria of diabetic skeletal muscle from subjects with type 2 diabetes. ATP synthesis was measured on mitochondria isolated from cultured myotubes established from lean (11/9), obese (9/11) and subjects with type 2 diabetes (9/11) (female/male, n=20 in each group), precultured under normophysiological...... selects the mitochondria based on an antibody recognizing the mitochondrial outer membrane and not by size through gradient centrifugation. The dynamic equilibrium between ATP synthesis and ATP consumption is 35% lower in isolated mitochondria from myotubes established from type 2 diabetic subjects...

  4. Determining synthesis rates of individual proteins in zebrafish (Danio rerio) with low levels of a stable isotope labelled amino acid.

    Science.gov (United States)

    Geary, Bethany; Magee, Kieran; Cash, Phillip; Young, Iain S; Whitfield, Phillip D; Doherty, Mary K

    2016-05-01

    The zebrafish is a powerful model organism for the analysis of human cardiovascular development and disease. Understanding these processes at the protein level not only requires changes in protein concentration to be determined but also the rate at which these changes occur on a protein-by-protein basis. The ability to measure protein synthesis and degradation rates on a proteome-wide scale, using stable isotope labelling in conjunction with mass spectrometry is now a well-established experimental approach. With the advent of more selective and sensitive mass spectrometers, it is possible to accurately measure lower levels of stable isotope incorporation, even when sample is limited. In order to challenge the sensitivity of this approach, we successfully determined the synthesis rates of over 600 proteins from the cardiac muscle of the zebrafish using a diet where either 30% or 50% of the L-leucine was replaced with a stable isotope labelled analogue ([(2) H7 ]L-leucine]. It was possible to extract sufficient protein from individual zebrafish hearts to determine the incorporation rate of the label into hundreds of proteins simultaneously, with the two labelling regimens showing a good correlation of synthesis rates. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Application of flexible multibody modelling for control synthesis in mechatronics

    NARCIS (Netherlands)

    Aarts, Ronald G.K.M.; van Dijk, Johannes; Brouwer, Dannis Michel; Jonker, Jan B.; Samin, J.C.; Fisette, P.

    2011-01-01

    The models used in the conceptual phase of the mechatronic design should not be too complicated, yet they should capture the dominant system behaviour. This includes the computation of natural frequencies and mode shapes in a relevant frequency range. For the control system synthesis the low

  6. Colloidal templating : a route towards controlled synthesis of functional polymeric nanoparticles

    NARCIS (Netherlands)

    Ali, S.I.

    2010-01-01

    Template-directed synthesis of polymeric nanoparticles offers better control over particle morphology, shape, structure, composition and properties compare to the conventional emulsion polymerization routes. For the production of anisotropic polymer-clay composite latex particles and polymeric

  7. Protein synthesis and degradation during starvation-induced cardiac atrophy in rabbits

    International Nuclear Information System (INIS)

    Samarel, A.M.; Parmacek, M.S.; Magid, N.M.; Decker, R.S.; Lesch, M.

    1987-01-01

    To determine the relative importance of protein degradation in the development of starvation-induced cardiac atrophy, in vivo fractional synthetic rates of total cardiac protein, myosin heavy chain, actin, light chain 1, and light chain 2 were measured in fed and fasted rabbits by continuous infusion of [ 3 H] leucine. In addition, the rate of left ventricular protein accumulation and loss were assessed in weight-matched control and fasted rabbits. Rates of total cardiac protein degradation were then estimated as the difference between rates of synthesis and growth. Fasting produced left ventricular atrophy by decreasing the rate of left ventricular protein synthesis (34.8 +/- 1.4, 27.3 +/- 3.0, and 19.3 +/- 1.2 mg/day of left ventricular protein synthesized for 0-, 3-, and 7-day fasted rabbits, respectively). Inhibition of contractile protein synthesis was evident by significant reductions in the fractional synthetic rates of all myofibrillar protein subunits. Although fractional rates of protein degradation increased significantly within 7 days of fasting, actual amounts of left ventricular protein degraded per day were unaffected. Thus, prolonged fasting profoundly inhibits the synthesis of new cardiac protein, including the major protein constituents of the myofibril. Both this inhibition in new protein synthesis as well as a smaller but significant reduction in the average half-lives of cardiac proteins are responsible for atrophy of the heart in response to fasting

  8. A General Strategy for Nanohybrids Synthesis via Coupled Competitive Reactions Controlled in a Hybrid Process

    OpenAIRE

    Wang, Rongming; Yang, Wantai; Song, Yuanjun; Shen, Xiaomiao; Wang, Junmei; Zhong, Xiaodi; Li, Shuai; Song, Yujun

    2015-01-01

    A new methodology based on core alloying and shell gradient-doping are developed for the synthesis of nanohybrids, realized by coupled competitive reactions, or sequenced reducing-nucleation and co-precipitation reaction of mixed metal salts in a microfluidic and batch-cooling process. The latent time of nucleation and the growth of nanohybrids can be well controlled due to the formation of controllable intermediates in the coupled competitive reactions. Thus, spatiotemporal-resolved synthesi...

  9. Rate Control for MPEG-4 Bit Stream

    Institute of Scientific and Technical Information of China (English)

    王振洲; 李桂苓

    2003-01-01

    For a very long time video processing dealt exclusively with fixed-rate sequences of rectangular shaped images. However, interest has been recently moving toward a more flexible concept in which the subject of the processing and encoding operations is a set of visual elements organized in both time and space in a flexible and arbitrarily complex way. The moving picture experts group (MPEG-4) standard supports this concept and its verification model (VM) encoder has adopted scalable rate control (SRC) as the rate control scheme, which is based on the spatial domain and compatible with constant bit rate (CBR) and variable bit rate (VBR). In this paper,a new rate control algorithm based on the DCT domain instead of the pixel domain is presented. More-over, macroblock level rate control scheme to compute the quantization step for each macroblock has been adopted. The experimental results show that the new algorithm can achieve a much better result than the original one in both peak signal-to-noise ratio (PSNR) and the coding bits, and that the new algorithm is more flexible than test model 5 (TM5) rate control algorithm.

  10. Rate-cost tradeoffs in control

    KAUST Repository

    Kostina, Victoria

    2017-02-13

    Consider a distributed control problem with a communication channel connecting the observer of a linear stochastic system to the controller. The goal of the controller is minimize a quadratic cost function. The most basic special case of that cost function is the mean-square deviation of the system state from the desired state. We study the fundamental tradeoff between the communication rate r bits/sec and the limsup of the expected cost b, and show a lower bound on the rate necessary to attain b. The bound applies as long as the system noise has a probability density function. If target cost b is not too large, that bound can be closely approached by a simple lattice quantization scheme that only quantizes the innovation, that is, the difference between the controller\\'s belief about the current state and the true state.

  11. Control of melanin synthesis during oogenesis in Xenopus laevis

    Energy Technology Data Exchange (ETDEWEB)

    Kidson, S H

    1985-01-01

    The present study investigates the mechanisms that control the synthesis of pigment during Xenopus laevis oogenesis. In this study, in vitro and in vivo assays indicate that the activity of the enzyme tyrosinase, the only enzyme necessary for the synthesis of pigment also reaches a peak during mid-oogenesis. The isotopes carbon 14, tritium, phosphorus 32 and sulfur 35 are used in this experiments. Furthermore, in vitro tyrosinase assays of polysomes isolated from different stage oocytes show that the rise in tyrosinase activity during mid-oogenesis is accompanied by a rise in polysomes synthesizing tyrosinase. This suggests that the synthesis of tyrosinase is restricted to mid-oogenesis. It was also established that oocyte tyrosinase is synthesized as a 32 kd polypeptide and is processed intra-melanosomally into a 120-130 kd tetramer. It is this form that is catalytically active in vivo. Oocyte tyrosinase does not require post-translational protease activation. To investigate the hypothesis that the synthesis of tyrosinase is restricted to mid-oogenesis, the accumulation of messenger RNA coding for tyrosinase was measured at different stages of oogenesis using a tyrosinase cDNA probe. The preparation of the tyrosinase cDNA probe required the purification of tyrosinase mRNA. This was achieved by a technique based on affinity chromatography of polysomes. This enriched 'tyrosinase mRNA' translated in vitro into two major proteins of 32 kd and 20 kd. The mRNA microinjected into Xenopus oocytes is translated into active tyrosinase. Hybridization of the tyrosinase cDNA probe to dot blots of oocyte mRNA suggested that tyrosinase mRNA accumulation reaches a peak just before maximal tyrosinase synthesis. The absence of tyrosinase mRNA late in oogenesis suggests that this message is not synthesized at this stage. These results are interpreted in terms of the functional significance of lampbrush chromosomes.

  12. Inhibition of acetaminophen oxidation by cimetidine and the effects on glutathione and activated sulphate synthesis rates

    DEFF Research Database (Denmark)

    Dalhoff, K; Poulsen, H E

    1993-01-01

    inhibition of cytochrome P-450 drug oxidation by cimetidine in isolated rat hepatocytes. The synthesis rates of glutathione and PAPS were determined simultaneously by an established method based on trapping of radioactivity (35S) in the prelabelled glutathione and PAPS pools. Preincubation of the hepatocytes...

  13. Control synthesis of switched systems

    CERN Document Server

    Zhao, Xudong; Niu, Ben; Wu, Tingting

    2017-01-01

    This book offers its readers a detailed overview of the synthesis of switched systems, with a focus on switching stabilization and intelligent control. The problems investigated are not only previously unsolved theoretically but also of practical importance in many applications: voltage conversion, naval piloting and navigation and robotics, for example. The book considers general switched-system models and provides more efficient design methods to bring together theory and application more closely than was possible using classical methods. It also discusses several different classes of switched systems. For general switched linear systems and switched nonlinear systems comprising unstable subsystems, it introduces novel ideas such as invariant subspace theory and the time-scheduled Lyapunov function method of designing switching signals to stabilize the underlying systems. For some typical switched nonlinear systems affected by various complex dynamics, the book proposes novel design approaches based on inte...

  14. Multi-Temperature Zone, Droplet-based Microreactor for Increased Temperature Control in Nanoparticle Synthesis

    KAUST Repository

    Erdem, E. Yegân

    2013-12-12

    Microreactors are an emerging technology for the controlled synthesis of nanoparticles. The Multi-Temperature zone Microreactor (MTM) described in this work utilizes thermally isolated heated and cooled regions for the purpose of separating nucleation and growth processes as well as to provide a platform for a systematic study on the effect of reaction conditions on nanoparticle synthesis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthesis and self-assembly of well-defined block copolypeptides via controlled NCA polymerization

    OpenAIRE

    Deming, TJ

    2013-01-01

    This article summarizes advances in the synthesis of well-defined polypeptides and block copolypeptides. Traditional methods used to polymerize α-amino acid-N-carboxyanhydrides (NCAs) are described, and limitations in the utility of these systems for the preparation of polypeptides are discussed. Improved initiators and methods that allow polypeptide synthesis with good control over chain length, chain length distribution, and chain-end functionality are also discussed. Using these methods, b...

  16. Methane hydrate synthesis from ice: Influence of pressurization and ethanol on optimizing formation rates and hydrate yield

    Science.gov (United States)

    Chen, Po-Chun.; Huang, Wuu-Liang; Stern, Laura A.

    2010-01-01

    Polycrystalline methane gas hydrate (MGH) was synthesized using an ice-seeding method to investigate the influence of pressurization and ethanol on the hydrate formation rate and gas yield of the resulting samples. When the reactor is pressurized with CH4 gas without external heating, methane hydrate can be formed from ice grains with yields up to 25% under otherwise static conditions. The rapid temperature rise caused by pressurization partially melts the granular ice, which reacts with methane to form hydrate rinds around the ice grains. The heat generated by the exothermic reaction of methane hydrate formation buffers the sample temperature near the melting point of ice for enough time to allow for continuous hydrate growth at high rates. Surprisingly, faster rates and higher yields of methane hydrate were found in runs with lower initial temperatures, slower rates of pressurization, higher porosity of the granular ice samples, or mixtures with sediments. The addition of ethanol also dramatically enhanced the formation of polycrystalline MGH. This study demonstrates that polycrystalline MGH with varied physical properties suitable for different laboratory tests can be manufactured by controlling synthesis procedures or parameters. Subsequent dissociation experiments using a gas collection apparatus and flowmeter confirmed high methane saturation (CH 4·2O, with n = 5.82 ± 0.03) in the MGH. Dissociation rates of the various samples synthesized at diverse conditions may be fitted to different rate laws, including zero and first order.

  17. Controlled synthesis and characterization of hollow flower-like silver nanostructures

    Directory of Open Access Journals (Sweden)

    Eid KAM

    2012-03-01

    Full Text Available Kamel AM Eid, Hassan ME AzzazyNovel Diagnostics and Therapeutics Group, Yousef Jameel Science and Technology Research Center, School of Sciences and Engineering, The American University in Cairo, New Cairo, EgyptBackground: The synthesis of anisotropic silver nanoparticles is a time-consuming process and involves the use of expensive toxic chemicals and specialized laboratory equipment. The presence of toxic chemicals in the prepared anisotropic silver nanostructures hindered their medical application. The authors have developed a fast and inexpensive method for the synthesis of three-dimensional hollow flower-like silver nanostructures without the use of toxic chemicals.Methods: In this method, silver nitrate was reduced using dextrose in presence of trisodium citrate as a capping agent. Sodium hydroxide was added to enhance reduction efficacy of dextrose and reduce time of synthesis. The effects of all four agents on the shape and size of silver nanostructures were investigated.Results: Robust hollow flower-like silver nanostructures were successfully synthesized and ranged in size from 0.2 µm to 5.0 µm with surface area between 25–240 m2/g. Changing the concentration of silver nitrate, dextrose, sodium hydroxide, and trisodium citrate affected the size and shape of the synthesized structures, while changing temperature had no effect.Conclusion: The proposed method is simple, safe, and allows controlled synthesis of anisotropic silver nanostructures, which may represent promising tools as effective antimicrobial agents and for in vitro diagnostics. The synthesized hollow nanostructures may be used for enhanced drug encapsulation and sustained release.Keywords: silver nanoparticles, 3D hollow, flower-like, green synthesis

  18. Synthesis of porous gold nanoshells by controlled transmetallation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Pattabi, Manjunatha, E-mail: manjupattabi@yahoo.com; M, Krishnaprabha [Department of Materials Science, Mangalore University, Mangalagangothri-574199 (India)

    2015-06-24

    Aqueous synthesis of porous gold nanoshells in one step is carried out through controlled transmetallation (TM) reaction using a naturally available egg shell membrane (ESM) as a barrier between the sacrificial silver particles (AgNPs) and the gold precursor solution (HAuCl{sub 4}). The formation of porous gold nanoshells via TM reaction is inferred from UV-Vis spectroscopy and the scanning electron microscopic (SEM) studies.

  19. Brain tumors : L-[1-C-11]tyrosine PET for visualization and quantification of protein synthesis rate

    NARCIS (Netherlands)

    Pruim, J; Willemsen, A T; Molenaar, W M; Waarde, A van; Paans, A M; Heesters, M A; Go, K G; Visser, Gerben; Franssen, E J; Vaalburg, W

    1995-01-01

    PURPOSE: Positron emission tomography (PET) with the amino acid tracer L-[1-C-11]-tyrosine was evaluated in 27 patients with primary and recurrent brain tumors. MATERIALS AND METHODS: Patients underwent either static (n = 14) or dynamic PET (n = 13), with quantification of protein synthesis rate

  20. Rates of insulin secretion in INS-1 cells are enhanced by coupling to anaplerosis and Kreb’s cycle flux independent of ATP synthesis

    International Nuclear Information System (INIS)

    Cline, Gary W.; Pongratz, Rebecca L.; Zhao, Xiaojian; Papas, Klearchos K.

    2011-01-01

    Highlights: ► We studied media effects on mechanisms of insulin secretion of INS-1 cells. ► Insulin secretion was higher in DMEM than KRB despite identical ATP synthesis rates. ► Insulin secretion rates correlated with rates of anaplerosis and TCA cycle. ► Mitochondria metabolism and substrate cycles augment secretion signal of ATP. -- Abstract: Mechanistic models of glucose stimulated insulin secretion (GSIS) established in minimal media in vitro, may not accurately describe the complexity of coupling metabolism with insulin secretion that occurs in vivo. As a first approximation, we have evaluated metabolic pathways in a typical growth media, DMEM as a surrogate in vivo medium, for comparison to metabolic fluxes observed under the typical experimental conditions using the simple salt-buffer of KRB. Changes in metabolism in response to glucose and amino acids and coupling to insulin secretion were measured in INS-1 832/13 cells. Media effects on mitochondrial function and the coupling efficiency of oxidative phosphorylation were determined by fluorometrically measured oxygen consumption rates (OCRs) combined with 31 P NMR measured rates of ATP synthesis. Substrate preferences and pathways into the TCA cycle, and the synthesis of mitochondrial 2nd messengers by anaplerosis were determined by 13 C NMR isotopomer analysis of the fate of [U- 13 C] glucose metabolism. Despite similar incremental increases in insulin secretion, the changes of OCR in response to increasing glucose from 2.5 to 15 mM were blunted in DMEM relative to KRB. Basal and stimulated rates of insulin secretion rates were consistently higher in DMEM, while ATP synthesis rates were identical in both DMEM and KRB, suggesting greater mitochondrial uncoupling in DMEM. The relative rates of anaplerosis, and hence synthesis and export of 2nd messengers from the mitochondria were found to be similar in DMEM to those in KRB. And, the correlation of total PC flux with insulin secretion rates in DMEM

  1. Protein synthesis levels are increased in a subset of individuals with Fragile X syndrome

    DEFF Research Database (Denmark)

    Jacquemont, Sébastien; Pacini, Laura; Jønch, Aia E

    2018-01-01

    architecture and plasticity. Preclinical studies revealed that pharmacological interventions restore those deficits, which are thought to mediate the FXS cognitive and behavioral symptoms. Here we characterized the de novo rate of protein synthesis in patients with FXS and their relationship with clinical...... severity. We measured the rate of protein synthesis in fibroblasts derived from 32 individuals with FXS and from 17 controls as well as in fibroblasts and primary neurons of 27 Fmr1 KO mice and 20 controls. Here we show that levels of protein synthesis are increased in fibroblasts of individuals with FXS...... and Fmr1 KO mice. However, this cellular phenotype displays a broad distribution and a proportion of fragile X individuals and Fmr1 KO mice do not show increased levels of protein synthesis, having measures in the normal range. Because the same Fmr1 KO animal measures in fibroblasts predict those...

  2. Synthesis of branched polymers under continuous-flow microprocess: an improvement of the control of macromolecular architectures.

    Science.gov (United States)

    Bally, Florence; Serra, Christophe A; Brochon, Cyril; Hadziioannou, Georges

    2011-11-15

    Polymerization reactions can benefit from continuous-flow microprocess in terms of kinetics control, reactants mixing or simply efficiency when high-throughput screening experiments are carried out. In this work, we perform for the first time the synthesis of branched macromolecular architecture through a controlled/'living' polymerization technique, in tubular microreactor. Just by tuning process parameters, such as flow rates of the reactants, we manage to generate a library of polymers with various macromolecular characteristics. Compared to conventional batch process, polymerization kinetics shows a faster initiation step and more interestingly an improved branching efficiency. Due to reduced diffusion pathway, a characteristic of microsystems, it is thus possible to reach branched polymers exhibiting a denser architecture, and potentially a higher functionality for later applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Rate control is more cost-effective than rhythm control for patients with persistent atrial fibrillation - results from the RAte Control versus Electrical cardioversion (RACE) study

    NARCIS (Netherlands)

    Hagens, VE; Vermeulen, KM; TenVergert, EM; Van Veldhuisen, JGP; Bosker, HA; Kamp, O; Kingma, JH; Tijssen, JGP; Crijns, HJGM; Van Gelder, IC

    Aims To evaluate costs between a rate and rhythm control strategy in persistent atrial. fibrillation. Methods and results In a prospective substudy of RACE (Rate control versus electrical cardioversion for persistent atrial. fibrillation) in 428 of the total 522 patients (206 rate control and 222

  4. 28. Zvenigorod conference on the plasma physics and controlled thermonuclear synthesis. Theses of reports

    International Nuclear Information System (INIS)

    2001-01-01

    Theses of reports, presented at the 28th Conference on the plasma physics and controlled thermonuclear synthesis (Zvenigorod, 19-23 February 2001) are published. 246 reports were heard at the following sections: magnetic confinement, theory and experiments; inertial thermonuclear synthesis; plasma processes and physics of gas-discharge plasma; physical bases of plasma technologies. 17 reports had the summarizing character [ru

  5. Preferential synthesis of (6,4) single-walled carbon nanotubes by controlling oxidation degree of Co catalyst.

    Science.gov (United States)

    Xu, Bin; Kaneko, Toshiro; Shibuta, Yasushi; Kato, Toshiaki

    2017-09-11

    Chirality-selective synthesis of single-walled carbon nanotubes (SWNTs) has been a research goal for the last two decades and is still challenging due to the difficulty in controlling the atomic structure in the one-dimensional material. Here, we develop an optimized approach for controlling the chirality of species by tuning the oxidation degree of Co catalyst. Predominant synthesis of (6,4) SWNTs is realized for the first time. The detailed mechanism is investigated through a systematic experimental study combined with first-principles calculations, revealing that the independent control of tube diameter and chiral angle achieved by changing the binding energy between SWNTs (cap and tube edge) and catalyst causes a drastic transition of chirality of SWNTs from (6,5) to (6,4). Since our approach of independently controlling the diameter and chiral angle can be applied to other chirality species, our results can be useful in achieving the on-demand synthesis of specific-chirality SWNTs.

  6. The rapid size- and shape-controlled continuous hydrothermal synthesis of metal sulphide nanomaterials

    Science.gov (United States)

    Dunne, Peter W.; Starkey, Chris L.; Gimeno-Fabra, Miquel; Lester, Edward H.

    2014-01-01

    Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth dominated route which permits the formation of nanostructured sulphide materials, and a nucleation driven process which produces nanoparticles with temperature dependent size control. This offers a new and industrially viable route to a wide range of metal sulphide nanoparticles with facile size and shape control.Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth dominated route which permits the formation of nanostructured sulphide materials, and a nucleation driven process which produces nanoparticles with temperature dependent size control. This offers a new and industrially viable route to a wide range of metal sulphide nanoparticles with facile size and shape control. Electronic supplementary information (ESI) available: Experimental details, refinement procedure, fluorescence spectra of ZnS samples. See DOI: 10.1039/c3nr05749f

  7. Dependence of the rate of DNA synthesis in x-irradiated HeLa S3 cells on dose and time after exposure

    International Nuclear Information System (INIS)

    Tolmach, L.J.; Jones, R.W.

    1977-01-01

    After irradiation of randomly dividing cultures of HeLa S3 cells with 220-kV x rays, the rate of DNA synthesis, measured by pulsed incorporation of labeled thymidine, falls nearly exponentially with time (t/sub 1/2/ approximately 1.3 hr), in a dose-independent fashion. The fall is less rapid than that observed after addition of inhibitors of protein synthesis. With doses up to 8 krad, the rate reaches a minimum and begins to increase after 1-3 hr, the minima occurring at lower values and at slightly later times with increasing dose. The increase appears to be roughly linear for about 6 hr, with the slope an inverse function of dose in the range 1-8 krad. About 7-9 hr after the completion of irradiation, the rate again falls, although no more than 10 percent of the cells die sooner than 14 hr after irradiation with 8 krad (and later with smaller doses). Fluorodeoxyuridine-mediated delay in expression of the depression, described previously for doses up to 1 krad, occurs also at higher doses. During the period when the rate per culture rises, the rate in the individual cells, measured autoradiographically, appears to increase also, i.e., the rise presumably does not merely reflect populational shifts. The initial descending portion of the rate curve can be at least partially separated from the ascending portion by administering the total dose in suitably spaced fractions. If interpreted in terms of the model that attributes the initial depression in rate of synthesis to a temporary absence of replicon initiation, the results indicate that initiation is halted by an x-ray dose smaller than 1 krad; that it begins again after a dose-dependent delay amounting to about 0.7 hr after 1 krad and 1.5 hr after 7 krad; and that once begun, the rate of synthesis increases in a dose-dependent fashion. The second depression might derive from synchronization and/or from the imminence of cell death

  8. Viscous polysaccharide and starch synthesis in Rhodella reticulata (Porphyridiales, Rhodophyta)

    International Nuclear Information System (INIS)

    Kroen, W.K.; Ramus, J.

    1990-01-01

    Rhodella reticulata Deason, Butler and Rhyne produces copious amounts of a viscous polysaccharide (VP) during growth in batch cultures. The VPs accumulated on the cell surface and in the culture medium once cells ceased growth; starch concurrently accumulated within the cells. Light-saturated 14 C-uptake declined steadily as the cells aged. Net synthesis rates for starch and mucilage were two- and four-fold lower, respectively, in non-growing cells than in growing cells, while the relative partitioning of newly-fixed carbon into these materials was not different. These data suggest that total photosynthetic loading, rather than partitioning into one specific pool, controls cellular synthesis rates. No preferential synthesis of VPs occurred during the stationary phase. The findings have important implications for the commercial production of VPs

  9. The Effects of Gun Ownership Rates and Gun Control Laws on Suicide Rates

    OpenAIRE

    Mark Gius

    2011-01-01

    The purpose of the present study is to determine the effects of gun control laws and gun ownership rates on state-level suicide rates. Using the most recent data on suicide rates, gun control measures, and gun ownership rates, the results of the present study suggest that states that require handgun permits have lower gun-related suicide rates, and states that have higher gun ownership rates have higher gun-related suicide rates. Regarding non-gun suicides, results suggest that stricter gun c...

  10. Optimal Distributed Controller Synthesis for Chain Structures: Applications to Vehicle Formations

    OpenAIRE

    Khorsand, Omid; Alam, Assad; Gattami, Ather

    2012-01-01

    We consider optimal distributed controller synthesis for an interconnected system subject to communication constraints, in linear quadratic settings. Motivated by the problem of finite heavy duty vehicle platooning, we study systems composed of interconnected subsystems over a chain graph. By decomposing the system into orthogonal modes, the cost function can be separated into individual components. Thereby, derivation of the optimal controllers in state-space follows immediately. The optimal...

  11. Refined Synthesis and Characterization of Controlled Diameter, Narrow Size Distribution Microparticles for Aerospace Research Applications

    Science.gov (United States)

    Tiemsin, Pacita I.; Wohl, Christopher J.

    2012-01-01

    Flow visualization using polystyrene microspheres (PSL)s has enabled researchers to learn a tremendous amount of information via particle based diagnostic techniques. To better accommodate wind tunnel researchers needs, PSL synthesis via dispersion polymerization has been carried out at NASA Langley Research Center since the late 1980s. When utilizing seed material for flow visualization, size and size distribution are of paramount importance. Therefore, the work described here focused on further refinement of PSL synthesis and characterization. Through controlled variation of synthetic conditions (chemical concentrations, solution stirring speed, temperature, etc.) a robust, controllable procedure was developed. The relationship between particle size and salt concentration, MgSO4, was identified enabling the determination of PSL diameters a priori. Suggestions of future topics related to PSL synthesis, stability, and size variation are also described.

  12. Kefir consumption does not alter plasma lipid levels or cholesterol fractional synthesis rates relative to milk in hyperlipidemic men: a randomized controlled trial [ISRCTN10820810

    Science.gov (United States)

    St-Onge, Marie-Pierre; Farnworth, Edward R; Savard, Tony; Chabot, Denise; Mafu, Akier; Jones, Peter JH

    2002-01-01

    Background Fermented milk products have been shown to affect serum cholesterol concentrations in humans. Kefir, a fermented milk product, has been traditionally consumed for its potential health benefits but has to date not been studied for its hypocholesterolemic properties. Methods Thirteen healthy mildly hypercholesterolemic male subjects consumed a dairy supplement in randomized crossover trial for 2 periods of 4 wk each. Subjects were blinded to the dairy supplement consumed. Blood samples were collected at baseline and after 4 wk of supplementation for measurement of plasma total, low-density lipoprotein, and high-density lipoprotein cholesterol and triglyceride concentrations, as well as fatty acid profile and cholesterol synthesis rate. Fecal samples were collected at baseline and after 2 and 4 wk of supplementation for determination of fecal short chain fatty acid level and bacterial content. Results Kefir had no effect on total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglyceride concentrations nor on cholesterol fractional synthesis rates after 4 wk of supplementation. No significant change on plasma fatty acid levels was observed with diet. However, both kefir and milk increased (p < 0.05) fecal isobutyric, isovaleric and propionic acids as well as the total amount of fecal short chain fatty acids. Kefir supplementation resulted in increased fecal bacterial content in the majority of the subjects. Conclusions Since kefir consumption did not result in lowered plasma lipid concentrations, the results of this study do not support consumption of kefir as a cholesterol-lowering agent. PMID:11825344

  13. Timing matters: the underappreciated role of temperature ramp rate for shape control and reproducibility of quantum dot synthesis

    KAUST Repository

    Baumgardner, William J.; Quan, Zewei; Fang, Jiye; Hanrath, Tobias

    2012-01-01

    Understanding the coupled kinetic and thermodynamics factors governing colloidal nanocrystals nucleation and growth are critical factors in the predictable and reproducible synthesis of advanced nanomaterials. We show that the temporal temperature

  14. Controlled synthesis of the tricontinuous mesoporous material IBN-9 and its carbon and platinum derivatives

    KAUST Repository

    Zhao, Yunfeng

    2011-08-23

    Controlled synthesis of mesoporous materials with ultracomplicated pore configurations is of great importance for both fundamental research of nanostructures and the development of novel applications. IBN-9, which is the only tricontinuous mesoporous silica with three sets of interpenetrating three-dimensional channel systems, appears to be an excellent model mesophase for such study. The extensive study of synthesis space diagrams proves mesophase transition among the cylindrical MCM-41, tricontinuous IBN-9 and bicontinuous MCM-48, and also allows a more precise control of phase-pure synthesis. On the other hand, rational design of structure-directing agents offers a possibility to extend the synthesis conditions of IBN-9, as well as tailor its pore size. Moreover, an unprecedented helical structure consisting of twisted 3-fold interwoven mesoporous channels is reported here for the first time. The unique tricontinuous mesostructure of IBN-9 has been well-replicated by other functional materials (e.g., carbon and platinum) via a "hard- templating" synthesis route. The obtained carbon material possesses large surface area (∼1900 m2/g), high pore volume (1.56 cm 3/g), and remarkable gas adsorption capability at both cryogenic temperatures and room temperature. The platinum material has an ordered mesostructure composed of highly oriented nanocrystals. © 2011 American Chemical Society.

  15. Semi-conservative synthesis of DNA in UV-sensitive mutant cells of Chinese hamster after UV-irradiation

    International Nuclear Information System (INIS)

    Vikhanskaya, F.L.; Khrebtukova, I.A.; Manuilova, E.S.

    1985-01-01

    A study was made of the rate of semi-conservative DNA synthesis in asynchronous UV-resistant (clone V79) and UV-sensitive clones (VII and XII) of Chinese hamster cells after UV-irradiation. In all 3 clones studied, UV-irradiation (5-30 J/m 2 ) induced a decrease in the rate of DNA synthesis during the subsequent 1-2 h. In the resistant clone (V79) recovery of DNA synthesis rate started after the first 2 h post-irradiation (5 J/m 2 ) and by the 3rd hour reached its maximum value, which constituted 70% of that observed in control, non-irradiated cells. The UV-sensitive mutant clones VII and XII showed no recovery in the rate of DNA synthesis during 6-7 h post-irradiation. The results obtained show that the survival of cells is correlated with the ability of DNA synthesis to recover after UV-irradiation in 3 clones studied. The observed recovery of UV-inhibited DNA synthesis in mutant clones may be due to certain defects in DNA repair. (orig.)

  16. Rates of insulin secretion in INS-1 cells are enhanced by coupling to anaplerosis and Kreb's cycle flux independent of ATP synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Cline, Gary W., E-mail: gary.cline@yale.edu [The Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520 (United States); Department of Surgery, University of Minnesota-Twin Cities, Minneapolis, MN 55455 (United States); Pongratz, Rebecca L.; Zhao, Xiaojian [The Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520 (United States); Papas, Klearchos K. [Department of Surgery, University of Minnesota-Twin Cities, Minneapolis, MN 55455 (United States)

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer We studied media effects on mechanisms of insulin secretion of INS-1 cells. Black-Right-Pointing-Pointer Insulin secretion was higher in DMEM than KRB despite identical ATP synthesis rates. Black-Right-Pointing-Pointer Insulin secretion rates correlated with rates of anaplerosis and TCA cycle. Black-Right-Pointing-Pointer Mitochondria metabolism and substrate cycles augment secretion signal of ATP. -- Abstract: Mechanistic models of glucose stimulated insulin secretion (GSIS) established in minimal media in vitro, may not accurately describe the complexity of coupling metabolism with insulin secretion that occurs in vivo. As a first approximation, we have evaluated metabolic pathways in a typical growth media, DMEM as a surrogate in vivo medium, for comparison to metabolic fluxes observed under the typical experimental conditions using the simple salt-buffer of KRB. Changes in metabolism in response to glucose and amino acids and coupling to insulin secretion were measured in INS-1 832/13 cells. Media effects on mitochondrial function and the coupling efficiency of oxidative phosphorylation were determined by fluorometrically measured oxygen consumption rates (OCRs) combined with {sup 31}P NMR measured rates of ATP synthesis. Substrate preferences and pathways into the TCA cycle, and the synthesis of mitochondrial 2nd messengers by anaplerosis were determined by {sup 13}C NMR isotopomer analysis of the fate of [U-{sup 13}C] glucose metabolism. Despite similar incremental increases in insulin secretion, the changes of OCR in response to increasing glucose from 2.5 to 15 mM were blunted in DMEM relative to KRB. Basal and stimulated rates of insulin secretion rates were consistently higher in DMEM, while ATP synthesis rates were identical in both DMEM and KRB, suggesting greater mitochondrial uncoupling in DMEM. The relative rates of anaplerosis, and hence synthesis and export of 2nd messengers from the mitochondria were found

  17. Inhibition of chloroplast protein synthesis following light chilling of tomato

    International Nuclear Information System (INIS)

    Kent, J.; Ort, D.

    1989-01-01

    In the present study we looked at the effects of a high light chill on the pulsed incorporation of 35 S methionine into total, stromal, and thylakoid proteins of lightly abraded leaflets of 18-21 day old tomato (Lycopersicon esculentum Mill ca. Floramerica) seedlings. Based on gel fluorographic patterns of marker proteins that are indicative of the net rates of chloroplast and cytoplasmic protein synthesis, there appears to be a nearly complete cessation of chloroplastic protein synthesis. No labeling is observed for either the stromal large subunit of Rubisco or the thylakoid-bound alpha and beta subunits of the coupling factor. One notable exception, however, appears to be the 32 kd, D1 protein. Its net synthetic rate remains high despite the inhibition of other chloroplastically synthesized proteins. The small subunit of Rubicso, LHCP-II, as well as several other proteins of known cytoplasmic origin, were still synthesized, albeit, at lower than control rates. Light chilling of chill-insensitive spinach produced a similar, but less dramatic differential behavior between chloroplastic and cytoplasmic protein synthesis. It appears, in chilling-sensitive plants, that chloroplast protein synthesis exhibits a greater sensitivity to low temperature inhibition than does cytoplasmic protein synthesis and that recovery of chloroplast protein synthesis may play an important role in recovery of photosynthetic activity following chilling

  18. Speed control variable rate irrigation

    Science.gov (United States)

    Speed control variable rate irrigation (VRI) is used to address within field variability by controlling a moving sprinkler’s travel speed to vary the application depth. Changes in speed are commonly practiced over areas that slope, pond or where soil texture is predominantly different. Dynamic presc...

  19. Direct modulation of T-box riboswitch-controlled transcription by protein synthesis inhibitors.

    Science.gov (United States)

    Stamatopoulou, Vassiliki; Apostolidi, Maria; Li, Shuang; Lamprinou, Katerina; Papakyriakou, Athanasios; Zhang, Jinwei; Stathopoulos, Constantinos

    2017-09-29

    Recently, it was discovered that exposure to mainstream antibiotics activate numerous bacterial riboregulators that control antibiotic resistance genes including metabolite-binding riboswitches and other transcription attenuators. However, the effects of commonly used antibiotics, many of which exhibit RNA-binding properties, on the widespread T-box riboswitches, remain unknown. In Staphylococcus aureus, a species-specific glyS T-box controls the supply of glycine for both ribosomal translation and cell wall synthesis, making it a promising target for next-generation antimicrobials. Here, we report that specific protein synthesis inhibitors could either significantly increase T-box-mediated transcription antitermination, while other compounds could suppress it, both in vitro and in vivo. In-line probing of the full-length T-box combined with molecular modelling and docking analyses suggest that the antibiotics that promote transcription antitermination stabilize the T-box:tRNA complex through binding specific positions on stem I and the Staphylococcal-specific stem Sa. By contrast, the antibiotics that attenuate T-box transcription bind to other positions on stem I and do not interact with stem Sa. Taken together, our results reveal that the transcription of essential genes controlled by T-box riboswitches can be directly modulated by commonly used protein synthesis inhibitors. These findings accentuate the regulatory complexities of bacterial response to antimicrobials that involve multiple riboregulators. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Optimizing the measurement of mitochondrial protein synthesis in human skeletal muscle.

    Science.gov (United States)

    Burd, Nicholas A; Tardif, Nicolas; Rooyackers, Olav; van Loon, Luc J C

    2015-01-01

    The measurement of mitochondrial protein synthesis after food ingestion, contractile activity, and/or disease is often used to provide insight into skeletal muscle adaptations that occur in the longer term. Studies have shown that protein ingestion stimulates mitochondrial protein synthesis in human skeletal muscle. Minor differences in the stimulation of mitochondrial protein synthesis occur after a single bout of resistance or endurance exercise. There appear to be no measurable differences in mitochondrial protein synthesis between critically ill patients and aged-matched controls. However, the mitochondrial protein synthetic response is reduced at a more advanced age. In this paper, we discuss the challenges involved in the measurement of human skeletal muscle mitochondrial protein synthesis rates based on stable isotope amino acid tracer methods. Practical guidelines are discussed to improve the reliability of the measurement of mitochondrial protein synthesis rates. The value of the measurement of mitochondrial protein synthesis after a single meal or exercise bout on the prediction of the longer term skeletal muscle mass and performance outcomes in both the healthy and disease populations requires more work, but we emphasize that the measurements need to be reliable to be of any value to the field.

  1. Short time synthesis of high quality carbon nanotubes with high rates by CVD of methane on continuously emerged iron nanoparticles

    International Nuclear Information System (INIS)

    Bahrami, Behnam; Khodadadi, Abasali; Mortazavi, Yadollah; Esmaieli, Mohamad

    2011-01-01

    We report the variation of yield and quality of carbon nanotubes (CNTs) grown by chemical vapor deposition (CVD) of methane on iron oxide-MgO at 900-1000 deg. C for 1-60 min. The catalyst was prepared by impregnation of MgO powder with iron nitrate, dried, and calcined at 300 deg. C. As calcined and unreduced catalyst in quartz reactor was brought to the synthesis temperature in helium flow in a few minutes, and then the flow was switched to methane. The iron oxide was reduced to iron nanoparticles in methane, while the CNTs were growing. TEM micrographs, in accordance with Raman RBM peaks, indicate the formation of mostly single wall carbon nanotubes of about 1.0 nm size. High quality CNTs with I G /I D Raman peak ratio of 14.5 are formed in the first minute of CNTs synthesis with the highest rate. Both the rate and quality of CNTs degrades with increasing CNTs synthesis time. Also CNTs quality sharply declines with temperature in the range of 900-1000 deg. C, while the CNTs yield passes through a maximum at 950 deg. C. About the same CNTs lengths are formed for the whole range of the synthesis times. A model of continuous emergence of iron nanoparticle seeds for CNTs synthesis may explain the data. The data can also provide information for continuous production of CNTs in a fluidized bed reactor.

  2. Short time synthesis of high quality carbon nanotubes with high rates by CVD of methane on continuously emerged iron nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Behnam, E-mail: bahrami@email.sc.edu [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Nanoelectronics Centre of Excellence, University of Tehran, Tehran (Iran, Islamic Republic of); Khodadadi, Abasali [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Mortazavi, Yadollah, E-mail: mortazav@ut.ac.ir [Nanoelectronics Centre of Excellence, University of Tehran, Tehran (Iran, Islamic Republic of); Esmaieli, Mohamad [Nanoelectronics Centre of Excellence, University of Tehran, Tehran (Iran, Islamic Republic of)

    2011-09-15

    We report the variation of yield and quality of carbon nanotubes (CNTs) grown by chemical vapor deposition (CVD) of methane on iron oxide-MgO at 900-1000 deg. C for 1-60 min. The catalyst was prepared by impregnation of MgO powder with iron nitrate, dried, and calcined at 300 deg. C. As calcined and unreduced catalyst in quartz reactor was brought to the synthesis temperature in helium flow in a few minutes, and then the flow was switched to methane. The iron oxide was reduced to iron nanoparticles in methane, while the CNTs were growing. TEM micrographs, in accordance with Raman RBM peaks, indicate the formation of mostly single wall carbon nanotubes of about 1.0 nm size. High quality CNTs with I{sub G}/I{sub D} Raman peak ratio of 14.5 are formed in the first minute of CNTs synthesis with the highest rate. Both the rate and quality of CNTs degrades with increasing CNTs synthesis time. Also CNTs quality sharply declines with temperature in the range of 900-1000 deg. C, while the CNTs yield passes through a maximum at 950 deg. C. About the same CNTs lengths are formed for the whole range of the synthesis times. A model of continuous emergence of iron nanoparticle seeds for CNTs synthesis may explain the data. The data can also provide information for continuous production of CNTs in a fluidized bed reactor.

  3. Parametric Synthesis of Automatic Control System of Industrial Robot Manipulator in Compliance with Requirements of Robust Quality

    Directory of Open Access Journals (Sweden)

    A. A. Nesenchuk

    2004-01-01

    Full Text Available The paper considers an application of a root-locus method for synthesis of dynamic systems with uncertainty that meet the requirements of pre-set quality. This method is used for parametric synthesis of automatic control system of industrial robot manipulator that is used for transportation of engineering products. The synthesis takes place under conditions of substantial changes in inertia moment of robot load. As a result of investigations it is possible to determine range of values of variable parameter that ensures the required quality of control system operation. A system of computer programs has been developed in order to solve the problem.

  4. Heme exporter FLVCR1a regulates heme synthesis and degradation and controls activity of cytochromes P450.

    Science.gov (United States)

    Vinchi, Francesca; Ingoglia, Giada; Chiabrando, Deborah; Mercurio, Sonia; Turco, Emilia; Silengo, Lorenzo; Altruda, Fiorella; Tolosano, Emanuela

    2014-05-01

    The liver has one of the highest rates of heme synthesis of any organ. More than 50% of the heme synthesized in the liver is used for synthesis of P450 enzymes, which metabolize exogenous and endogenous compounds that include natural products, hormones, drugs, and carcinogens. Feline leukemia virus subgroup C cellular receptor 1a (FLVCR1a) is plasma membrane heme exporter that is ubiquitously expressed and controls intracellular heme content in hematopoietic lineages. We investigated the role of Flvcr1a in liver function in mice. We created mice with conditional disruption of Mfsd7b, which encodes Flvcr1a, in hepatocytes (Flvcr1a(fl/fl);alb-cre mice). Mice were analyzed under basal conditions, after phenylhydrazine-induced hemolysis, and after induction of cytochromes P450 synthesis. Livers were collected and analyzed by histologic, quantitative real-time polymerase chain reaction, and immunoblot analyses. Hepatic P450 enzymatic activities were measured. Flvcr1a(fl/fl);alb-cre mice accumulated heme and iron in liver despite up-regulation of heme oxygenase 1, ferroportin, and ferritins. Hepatic heme export activity of Flvcr1a was closely associated with heme biosynthesis, which is required to sustain cytochrome induction. Upon cytochromes P450 stimulation, Flvcr1a(fl/fl);alb-cre mice had reduced cytochrome activity, associated with accumulation of heme in hepatocytes. The expansion of the cytosolic heme pool in these mice was likely responsible for the early inhibition of heme synthesis and increased degradation of heme, which reduced expression and activity of cytochromes P450. In livers of mice, Flvcr1a maintains a free heme pool that regulates heme synthesis and degradation as well as cytochromes P450 expression and activity. These findings have important implications for drug metabolism. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  5. Viscous polysaccharide and starch synthesis in Rhodella reticulata (Porphyridiales, Rhodophyta)

    Energy Technology Data Exchange (ETDEWEB)

    Kroen, W.K.; Ramus, J. (Duke Univ., Beaufort, NC (USA))

    1990-06-01

    Rhodella reticulata Deason, Butler and Rhyne produces copious amounts of a viscous polysaccharide (VP) during growth in batch cultures. The VPs accumulated on the cell surface and in the culture medium once cells ceased growth; starch concurrently accumulated within the cells. Light-saturated {sup 14}C-uptake declined steadily as the cells aged. Net synthesis rates for starch and mucilage were two- and four-fold lower, respectively, in non-growing cells than in growing cells, while the relative partitioning of newly-fixed carbon into these materials was not different. These data suggest that total photosynthetic loading, rather than partitioning into one specific pool, controls cellular synthesis rates. No preferential synthesis of VPs occurred during the stationary phase. The findings have important implications for the commercial production of VPs.

  6. Synthesis of hydrogels of alginate for system controlled release of progesterone

    International Nuclear Information System (INIS)

    Abreu, Marlon de F.; Rodriguez, Ruben J.S.; Silva, Ester C.C. da; Barreto, Gabriela N.S.

    2015-01-01

    The chemical modifications of natural polymers like alginate, has allowed the development of new formulations for controlled release systems. In this work we report the synthesis of a derivative of the amidic alginate with alkyl chain. The polymer was characterized by spectroscopic techniques: Nuclear Magnetic Resonance and Fourier Transform Infrared. (author)

  7. Rates of insulin secretion in INS-1 cells are enhanced by coupling to anaplerosis and Kreb's cycle flux independent of ATP synthesis.

    Science.gov (United States)

    Cline, Gary W; Pongratz, Rebecca L; Zhao, Xiaojian; Papas, Klearchos K

    2011-11-11

    Mechanistic models of glucose stimulated insulin secretion (GSIS) established in minimal media in vitro, may not accurately describe the complexity of coupling metabolism with insulin secretion that occurs in vivo. As a first approximation, we have evaluated metabolic pathways in a typical growth media, DMEM as a surrogate in vivo medium, for comparison to metabolic fluxes observed under the typical experimental conditions using the simple salt-buffer of KRB. Changes in metabolism in response to glucose and amino acids and coupling to insulin secretion were measured in INS-1 832/13 cells. Media effects on mitochondrial function and the coupling efficiency of oxidative phosphorylation were determined by fluorometrically measured oxygen consumption rates (OCRs) combined with (31)P NMR measured rates of ATP synthesis. Substrate preferences and pathways into the TCA cycle, and the synthesis of mitochondrial 2nd messengers by anaplerosis were determined by (13)C NMR isotopomer analysis of the fate of [U-(13)C] glucose metabolism. Despite similar incremental increases in insulin secretion, the changes of OCR in response to increasing glucose from 2.5 to 15mM were blunted in DMEM relative to KRB. Basal and stimulated rates of insulin secretion rates were consistently higher in DMEM, while ATP synthesis rates were identical in both DMEM and KRB, suggesting greater mitochondrial uncoupling in DMEM. The relative rates of anaplerosis, and hence synthesis and export of 2nd messengers from the mitochondria were found to be similar in DMEM to those in KRB. And, the correlation of total PC flux with insulin secretion rates in DMEM was found to be congruous with the correlation in KRB. Together, these results suggest that signaling mechanisms associated with both TCA cycle flux and with anaplerotic flux, but not ATP production, may be responsible for the enhanced rates of insulin secretion in more complex, and physiologically-relevant media. Copyright © 2011 Elsevier Inc. All

  8. Anatase TiO2 single crystals with dominant {0 0 1} facets: Synthesis, shape-control mechanism and photocatalytic activity

    Science.gov (United States)

    Tong, Huifen; Zhou, Yingying; Chang, Gang; Li, Pai; Zhu, Ruizhi; He, Yunbin

    2018-06-01

    Anatase TiO2 micro-crystals with 51% surface exposing highly active {0 0 1} facets are prepared by hydrothermal synthesis using TiF4 as Ti resource and HF as morphology control agent. In addition, anatase TiO2 single crystals exposing large {0 0 1} crystal facets are facilely synthesized with "green" NaF plus HCl replacing HF for the morphology control. A series of comparative experiments are carried out for separately studying the effects of F- and H+ concentrations on the growth of TiO2 crystals, which have not been understood very much in depth so far. The results indicate that both F- and H+ synergistically affect the synthesis of truncated anatase octahedrons, where F- is preferentially adsorbed on the {0 0 1} facets resulting in lateral growth of these facets and H+ adjusts the growth rate of anatase TiO2 along different orientations by tuning the hydrolysis rate. Based on this information, anatase TiO2 single crystals with small size (1.3 μm) and large exposure of {0 0 1} facets (45%) are successfully prepared under optimal conditions ([H+]/[F-] = 20:1). Photocatalytic activities of the as-prepared products toward methylene blue photo-degradation are further tested. It is revealed that both crystal size and percentage of {0 0 1} facets are decisive for the photocatalytic performance, and the crystals with a small size (1.3 μm) and large exposure of {0 0 1} facets (45%) are catalytically most active. This work has clarified the main factors that control the growth process and morphology of anatase TiO2 single crystals for achieving superior photocatalytic properties.

  9. Synthesis of Pd-Au bimetallic nanocrystals via controlled overgrowth.

    Science.gov (United States)

    Lim, Byungkwon; Kobayashi, Hirokazu; Yu, Taekyung; Wang, Jinguo; Kim, Moon J; Li, Zhi-Yuan; Rycenga, Matthew; Xia, Younan

    2010-03-03

    This paper describes the synthesis of Pd-Au bimetallic nanocrystals with controlled morphologies via a one-step seeded-growth method. Two different reducing agents, namely, L-ascorbic acid and citric acid, were utilized for the reduction of HAuCl(4) in an aqueous solution to control the overgrowth of Au on cubic Pd seeds. When L-ascorbic acid was used as the reducing agent, conformal overgrowth of Au on the Pd nanocubes led to the formation of Pd-Au nanocrystals with a core-shell structure. On the contrary, localized overgrowth of Au was observed when citric acid was used as the reducing agent, producing Pd-Au bimetallic dimers. Through this morphological control, we were able to tune the localized surface plasmon resonance peaks of Pd-Au bimetallic nanostructures in the visible region.

  10. Advanced Control Synthesis for Reverse Osmosis Water Desalination Processes.

    Science.gov (United States)

    Phuc, Bui Duc Hong; You, Sam-Sang; Choi, Hyeung-Six; Jeong, Seok-Kwon

    2017-11-01

      In this study, robust control synthesis has been applied to a reverse osmosis desalination plant whose product water flow and salinity are chosen as two controlled variables. The reverse osmosis process has been selected to study since it typically uses less energy than thermal distillation. The aim of the robust design is to overcome the limitation of classical controllers in dealing with large parametric uncertainties, external disturbances, sensor noises, and unmodeled process dynamics. The analyzed desalination process is modeled as a multi-input multi-output (MIMO) system with varying parameters. The control system is decoupled using a feed forward decoupling method to reduce the interactions between control channels. Both nominal and perturbed reverse osmosis systems have been analyzed using structured singular values for their stabilities and performances. Simulation results show that the system responses meet all the control requirements against various uncertainties. Finally the reduced order controller provides excellent robust performance, with achieving decoupling, disturbance attenuation, and noise rejection. It can help to reduce the membrane cleanings, increase the robustness against uncertainties, and lower the energy consumption for process monitoring.

  11. Proteome-wide muscle protein fractional synthesis rates predict muscle mass gain in response to a selective androgen receptor modulator in rats.

    Science.gov (United States)

    Shankaran, Mahalakshmi; Shearer, Todd W; Stimpson, Stephen A; Turner, Scott M; King, Chelsea; Wong, Po-Yin Anne; Shen, Ying; Turnbull, Philip S; Kramer, Fritz; Clifton, Lisa; Russell, Alan; Hellerstein, Marc K; Evans, William J

    2016-03-15

    Biomarkers of muscle protein synthesis rate could provide early data demonstrating anabolic efficacy for treating muscle-wasting conditions. Androgenic therapies have been shown to increase muscle mass primarily by increasing the rate of muscle protein synthesis. We hypothesized that the synthesis rate of large numbers of individual muscle proteins could serve as early response biomarkers and potentially treatment-specific signaling for predicting the effect of anabolic treatments on muscle mass. Utilizing selective androgen receptor modulator (SARM) treatment in the ovariectomized (OVX) rat, we applied an unbiased, dynamic proteomics approach to measure the fractional synthesis rates (FSR) of 167-201 individual skeletal muscle proteins in triceps, EDL, and soleus. OVX rats treated with a SARM molecule (GSK212A at 0.1, 0.3, or 1 mg/kg) for 10 or 28 days showed significant, dose-related increases in body weight, lean body mass, and individual triceps but not EDL or soleus weights. Thirty-four out of the 94 proteins measured from the triceps of all rats exhibited a significant, dose-related increase in FSR after 10 days of SARM treatment. For several cytoplasmic proteins, including carbonic anhydrase 3, creatine kinase M-type (CK-M), pyruvate kinase, and aldolase-A, a change in 10-day FSR was strongly correlated (r(2) = 0.90-0.99) to the 28-day change in lean body mass and triceps weight gains, suggesting a noninvasive measurement of SARM effects. In summary, FSR of multiple muscle proteins measured by dynamics of moderate- to high-abundance proteins provides early biomarkers of the anabolic response of skeletal muscle to SARM. Copyright © 2016 the American Physiological Society.

  12. Renal protein synthesis in diabetes mellitus: effects of insulin and insulin-like growth factor I

    International Nuclear Information System (INIS)

    Barac-Nieto, M.; Lui, S.M.; Spitzer, A.

    1991-01-01

    Is increased synthesis of proteins responsible for the hypertrophy of kidney cells in diabetes mellitus? Does the lack of insulin, and/or the effect of insulin-like growth factor I (IGFI) on renal tubule protein synthesis play a role in diabetic renal hypertrophy? To answer these questions, we determined the rates of 3H-valine incorporation into tubule proteins and the valine-tRNA specific activity, in the presence or absence of insulin and/or IGFI, in proximal tubule suspension isolated from kidneys of streptozotocin diabetic and control rats. The rate of protein synthesis increased, while the stimulatory effects of insulin and IGFI on tubule protein synthesis were reduced, early (96 hours) after induction of experimental diabetes. Thus, hypertrophy of the kidneys in experimental diabetes mellitus is associated with increases in protein synthesis, rather than with decreases in protein degradation. Factor(s) other than the lack of insulin, or the effects of IGFI, must be responsible for the high rate of protein synthesis present in the hypertrophying tubules of diabetic rats

  13. Multi-Temperature Zone, Droplet-based Microreactor for Increased Temperature Control in Nanoparticle Synthesis

    KAUST Repository

    Erdem, E. Yegâ n; Cheng, Jim C.; Doyle, Fiona M.; Pisano, Albert P.

    2013-01-01

    Microreactors are an emerging technology for the controlled synthesis of nanoparticles. The Multi-Temperature zone Microreactor (MTM) described in this work utilizes thermally isolated heated and cooled regions for the purpose of separating

  14. Hypersonic vehicle control law development using H(infinity) and micron-synthesis

    Science.gov (United States)

    Gregory, Irene M.; Mcminn, John D.; Shaughnessy, John D.; Chowdhry, Rajiv S.

    1993-01-01

    Hypersonic vehicle control law development using H(infinity) and mu-synthesis is discussed. Airbreathing SSTO vehicles has a mutli-faceted mission that includes orbital operations, as well as re-entry and descent culminating in horizontal landing. However, the most challenging part of the operations is the ascent to orbit. The airbreathing propulsion requires lengthy atmospheric flight that may last as long as 30 minutes and take the vehicle half way around the globe. The vehicles's ascent is characterized by tight payload to orbit margins which translate into minimum fuel orbit as the performance criteria. Issues discussed include: SSTO airbreathing vehicle issues; control system performance requirements; robust control law framework; H(infinity) controller frequency analysis; and mu controller frequency analysis.

  15. Inhibition of Glutathione Synthesis Induced by Exhaustive Running Exercise via the Decreased Influx Rate of L-Cysteine in Rat Erythrocytes.

    Science.gov (United States)

    Xiong, Yanlian; Xiong, Yanlei; Zhou, Shuai; Yu, Zhenhai; Zhao, Dongmei; Wang, Zhiqiang; Li, Yuling; Yan, Jingtong; Cai, Yu; Zhang, Wenqian

    2016-01-01

    The main purpose of this study was to investigate the effect of exhaustive exercise on L-cysteine uptake and its effect on erythrocyte glutathione (GSH) synthesis and metabolism. Rats were divided into three groups: sedentary control (C), exhaustive running exercise (ERE) and moderate running exercise (MRE) (n=12 rats/group). We determined the L-cysteine efflux and influx in vitro in rat erythrocytes and its relationship with GSH synthesis. Total anti-oxidant potential of plasma was measured in terms of the ferric reducing ability of plasma (FRAP) values for each exercise group. In addition, the glucose metabolism enzyme activity of erythrocytes was also measured under in vitro incubation conditions. Biochemical studies confirmed that exhaustive running exercise significantly increased oxidative damage parameters in thiobarbituric acid reactive substances (TBARS) and methemoglobin levels. Pearson correlation analysis suggested that L-cysteine influx was positively correlated with erythrocyte GSH synthesis and FRAP values in both the control and exercise groups. In vitro oxidation incubation significantly decreased the level of glucose metabolism enzyme activity in the control group. We presented evidence of the exhaustive exercise-induced inhibition of GSH synthesis due to a dysfunction in L-cysteine transport. In addition, oxidative stress-induced changes in glucose metabolism were the driving force underlying decreased L-cysteine uptake in the exhaustive exercise group. © 2016 The Author(s) Published by S. Karger AG, Basel.

  16. Controlled gas-liquid interfacial plasmas for synthesis of nano-bio-carbon conjugate materials

    Science.gov (United States)

    Kaneko, Toshiro; Hatakeyama, Rikizo

    2018-01-01

    Plasmas generated in contact with a liquid have been recognized to be a novel reactive field in nano-bio-carbon conjugate creation because several new chemical reactions have been yielded at the gas-liquid interface, which were induced by the physical dynamics of non-equilibrium plasmas. One is the ion irradiation to a liquid, which caused the spatially selective dissociation of the liquid and the generation of additive reducing and oxidizing agents, resulting in the spatially controlled synthesis of nanostructures. The other is the electron irradiation to a liquid, which directly enhanced the reduction action at the plasma-liquid interface, resulting in temporally controlled nanomaterial synthesis. Using this novel reaction field, gold nanoparticles with controlled interparticle distance were synthesized using carbon nanotubes as a template. Furthermore, nanoparticle-biomolecule conjugates and nanocarbon-biomolecule conjugates were successfully synthesized by an aqueous-solution contact plasma and an electrolyte plasma, respectively, which were rapid and low-damage processes suitable for nano-bio-carbon conjugate materials.

  17. Leucine-Enriched Essential Amino Acids Augment Mixed Protein Synthesis, But Not Collagen Protein Synthesis, in Rat Skeletal Muscle after Downhill Running

    Science.gov (United States)

    Kato, Hiroyuki; Suzuki, Hiromi; Inoue, Yoshiko; Suzuki, Katsuya; Kobayashi, Hisamine

    2016-01-01

    Mixed and collagen protein synthesis is elevated for as many as 3 days following exercise. Immediately after exercise, enhanced amino acid availability increases synthesis of mixed muscle protein, but not muscle collagen protein. However, the potential for synergic effects of amino acid ingestion with exercise on both mixed and collagen protein synthesis remains unclear. We investigated muscle collagen protein synthesis in rats following post-exercise ingestion of leucine-enriched essential amino acids. We determined fractional protein synthesis rates (FSR) at different time points following exercise. Mixed protein and collagen protein FSRs in skeletal muscle were determined by measuring protein-bound enrichments of hydroxyproline and proline, and by measuring the intracellular enrichment of proline, using injections of flooding d3-proline doses. A leucine-enriched mixture of essential amino acids (or distilled water as a control) was administrated 30 min or 1 day post-exercise. The collagen protein synthesis in the vastus lateralis was elevated for 2 days after exercise. Although amino acid administration did not increase muscle collagen protein synthesis, it did lead to augmented mixed muscle protein synthesis 1 day following exercise. Thus, contrary to the regulation of mixed muscle protein synthesis, muscle collagen protein synthesis is not affected by amino acid availability after damage-inducing exercise. PMID:27367725

  18. Leucine-Enriched Essential Amino Acids Augment Mixed Protein Synthesis, But Not Collagen Protein Synthesis, in Rat Skeletal Muscle after Downhill Running

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kato

    2016-06-01

    Full Text Available Mixed and collagen protein synthesis is elevated for as many as 3 days following exercise. Immediately after exercise, enhanced amino acid availability increases synthesis of mixed muscle protein, but not muscle collagen protein. However, the potential for synergic effects of amino acid ingestion with exercise on both mixed and collagen protein synthesis remains unclear. We investigated muscle collagen protein synthesis in rats following post-exercise ingestion of leucine-enriched essential amino acids. We determined fractional protein synthesis rates (FSR at different time points following exercise. Mixed protein and collagen protein FSRs in skeletal muscle were determined by measuring protein-bound enrichments of hydroxyproline and proline, and by measuring the intracellular enrichment of proline, using injections of flooding d3-proline doses. A leucine-enriched mixture of essential amino acids (or distilled water as a control was administrated 30 min or 1 day post-exercise. The collagen protein synthesis in the vastus lateralis was elevated for 2 days after exercise. Although amino acid administration did not increase muscle collagen protein synthesis, it did lead to augmented mixed muscle protein synthesis 1 day following exercise. Thus, contrary to the regulation of mixed muscle protein synthesis, muscle collagen protein synthesis is not affected by amino acid availability after damage-inducing exercise.

  19. Parametric synthesis of a robust controller on a base of mathematical programming method

    Science.gov (United States)

    Khozhaev, I. V.; Gayvoronskiy, S. A.; Ezangina, T. A.

    2018-05-01

    Considered paper is dedicated to deriving sufficient conditions, linking root indices of robust control quality with coefficients of interval characteristic polynomial, on the base of mathematical programming method. On the base of these conditions, a method of PI- and PID-controllers, providing aperiodic transient process with acceptable stability degree and, subsequently, acceptable setting time, synthesis was developed. The method was applied to a problem of synthesizing a controller for a depth control system of an unmanned underwater vehicle.

  20. Controlled synthesis and facets-dependent photocatalysis of TiO2 nanocrystals

    Science.gov (United States)

    Roy, Nitish; Park, Yohan; Sohn, Youngku; Pradhan, Debabrata

    2015-04-01

    Titanium dioxide (TiO2) is a wide band gap semiconductor that has been extensively used in several environmental applications including degradation of organic hazardous chemicals, water splitting to generate hydrogen, dye sensitized solar cells, self cleaning agents, and pigments. Herein we demonstrate the synthesis of TiO2 nanocrystals (NCs) with the shapes of ellipsoids, rods, cuboids, and sheets with different exposed facets using a noncorrosive and nontoxic chemical (i.e. diethanolamine) as the shape controlling agent, unlike hydrofluoric acid commonly used. The TiO2 NCs of diverse shapes with different exposed facets were tested for photocatalytic hydroxyl radical (OH•) formation, which determines their photocatalytic behavior and the results were compared with the standard P-25 Degussa. The formation rate of OH• per specific surface area was found to be >6 fold higher for rod-shaped TiO2 NCs than that of commercial Degussa P25 catalyst. The highest photocatalytic activity of rod-shaped TiO2 NCs is ascribed to the unique chemical environment of {010} exposed facets which facilitates the electron/hole separation in presence of {101} facets.

  1. FORMATION OF THE SYNTHESIS ALGORITHMS OF THE COORDINATING CONTROL SYSTEMS BY MEANS OF THE AUTOMATIC GENERATION OF PETRI NETS

    Directory of Open Access Journals (Sweden)

    A. A. Gurskiy

    2016-09-01

    Full Text Available The coordinating control system by drives of the robot-manipulator is presented in this article. The purpose of the scientific work is the development and research of the new algorithms for parametric synthesis of the coordinating control systems. To achieve this aim it is necessary to develop the system generating the required parametric synthesis algorithms and performing the necessary procedures according to the generated algorithm. This scientific work deals with the synthesis of Petri net in the specific case with the automatic generation of Petri nets.

  2. The CANopen Controller IP Core: Implementation, Synthesis and Test Results

    Science.gov (United States)

    Caramia, Maurizio; Bolognino, Luca; Montagna, Mario; Tosi, Pietro; Errico, Walter; Bigongiari, Franco; Furano, Gianluca

    2011-08-01

    This paper will describe the implementation and test results of the CANopen Controller IP Core (CCIPC) implemented by Thales Alenia Space and SITAEL Aerospace with the support of ESA in the frame of the EXOMARS Project. The CCIPC is a configurable VHDL implementation of the CANOPEN protocol [1]; it is foreseen to be used as CAN bus slave controller within the EXOMARS Entry Descending and Landing Demonstrato Module (EDM) and Rover Module. The CCIPC features, configuration capability, synthesis and test results will be described and the evidence of the state of maturity of this innovative IP core will be demonstrated.

  3. Synthesis of total protein (TP) and myosin heavy chain (HC) isozymes in pressure overloaded rabbit hearts

    International Nuclear Information System (INIS)

    Nagai, R.; Martin, B.J.; Pritzl, N.; Zak, R.; Low, R.B.; Stirewalt, W.S.; Alpert, N.R.; Litten, R.Z.

    1986-01-01

    Pulmonary artery banding (PO) leads to a rapid increase in right ventricular (RV) weight as well as a shift toward β myosin isozyme. They determined: (1) the contributions of changes in the capacity (RNA content) and efficiency of total protein synthesis to the increase in RV weight; and (2) the relative contributions of translational and pretranslational mechanisms to the shift in myosin HC isotypes. The rates of synthesis in vivo of TP, α- and β-HC were measured by a constant infusion technique using 3 H-leucine. TP synthesis was 7 +/- 2(SD) mg/day in control (RV:367 +/- 70 mg) and was increased by 2.6 fold at day 2 and 2.9 fold at day 4 following PO (p < 0.01). RV RNA content was increased by 83% at day 2 and 103% at day 4 PO (p < 0.05). The efficiency of synthesis (rate/RNA) was also significantly higher at these time points (1.4- and 1.3-fold). β-HC synthesis was 0.6 +/- 0.2 mg/day in control and increased by 2.6 fold at day 2 and 3.5 fold at day 4 following PO. In contrast, the rate of synthesis of α-HC was unchanged. The relative rates of β-HC to total HC synthesis was correlated linearly with the relative levels of β-myosin mRNA as measured by S1 nuclease mapping. They conclude that increases in the proportion of β-HC myosin following PO is due to increases in the relative amount of β-myosin mRNA and therefore involves modulation of a pretranslational mechanism

  4. Recent Advances in Substrate-Controlled Asymmetric Cyclization for Natural Product Synthesis

    Directory of Open Access Journals (Sweden)

    Jeyun Jo

    2017-06-01

    Full Text Available Asymmetric synthesis of naturally occurring diverse ring systems is an ongoing and challenging research topic. A large variety of remarkable reactions utilizing chiral substrates, auxiliaries, reagents, and catalysts have been intensively investigated. This review specifically describes recent advances in successful asymmetric cyclization reactions to generate cyclic architectures of various natural products in a substrate-controlled manner.

  5. Heme Exporter FLVCR1a Regulates Heme Synthesis and Degradation and Controls Activity of Cytochromes P450

    Science.gov (United States)

    Vinchi, Francesca; Ingoglia, Giada; Chiabrando, Deborah; Mercurio, Sonia; Turco, Emilia; Silengo, Lorenzo; Altruda, Fiorella; Tolosano, Emanuela

    2014-01-01

    Background & Aims The liver has one of the highest rates of heme synthesis of any organ. More than 50% of the heme synthesized in the liver is used for synthesis of P450 enzymes, which metabolize exogenous and endogenous compounds that include natural products, hormones, drugs, and carcinogens. Feline leukemia virus subgroup C cellular receptor 1a (FLVCR1a) is plasma membrane heme exporter that is ubiquitously expressed and controls intracellular heme content in hematopoietic lineages. We investigated the role of Flvcr1a in liver function in mice. Methods We created mice with conditional disruption of Mfsd7b, which encodes Flvcr1a, in hepatocytes (Flvcr1afl/fl;alb-cre mice). Mice were analyzed under basal conditions, after phenylhydrazine-induced hemolysis, and after induction of cytochromes P450 synthesis. Livers were collected and analyzed by histologic, quantitative real-time polymerase chain reaction, and immunoblot analyses. Hepatic P450 enzymatic activities were measured. Results Flvcr1afl/fl;alb-cre mice accumulated heme and iron in liver despite up-regulation of heme oxygenase 1, ferroportin, and ferritins. Hepatic heme export activity of Flvcr1a was closely associated with heme biosynthesis, which is required to sustain cytochrome induction. Upon cytochromes P450 stimulation, Flvcr1afl/fl;alb-cre mice had reduced cytochrome activity, associated with accumulation of heme in hepatocytes. The expansion of the cytosolic heme pool in these mice was likely responsible for the early inhibition of heme synthesis and increased degradation of heme, which reduced expression and activity of cytochromes P450. Conclusions In livers of mice, Flvcr1a maintains a free heme pool that regulates heme synthesis and degradation as well as cytochromes P450 expression and activity. These findings have important implications for drug metabolism. PMID:24486949

  6. Optimal synthesis of a four-bar linkage by method of controlled deviation

    Directory of Open Access Journals (Sweden)

    Bulatović Radovan R.

    2004-01-01

    Full Text Available This paper considers optimal synthesis of a four-bar linkage by method of controlled deviations. The advantage of this approximate method is that it allows control of motion of the coupler in the four-bar linkage so that the path of the coupler is in the prescribed environment around the given path on the segment observed. The Hooke-Jeeves’s optimization algorithm has been used in the optimization process. Calculation expressions are not used as the method of direct searching, i.e. individual comparison of the calculated value of the objective function is made in each iteration and the moving is done in the direction of decreasing the value of the objective function. This algorithm does not depend on the initial selection of the projected variables. All this is illustrated on an example of synthesis of a four-bar linkage whose coupler point traces a straight line, i.e. passes through sixteen prescribed points lying on one straight line. .

  7. Comparison of the Rate and Extent of Deoxyribonucleic Acid Repair and Semi-Conservative Synthesis in Bacteria Exposed to Ultra-Violet Light

    Energy Technology Data Exchange (ETDEWEB)

    Billen, D. [Radiation Biology Laboratory and Departments of Microbiology and Radiology, College of Medicine, University of Florida, Gainesville, FL (United States)

    1968-08-15

    Many bacterial strains possess the ability to repair genetic damage resulting from ultra-violet light (u.v. ) exposure. Of major importance is the occurrence of a 'repair' type of deoxyribonucleic acid (DNA) replication during 'dark repair', which presumably results in the replacement of the damaged portion of the genome. With deuterium, {sup 15}N and {sup 13}C as a density label, and buoyant density centrifugation in CsCl as a means of separating pre and post-irradiation synthesized DNA strands, the rate and extent of DNA repair synthesis in exponential - phase Escherichia coli strain B/r were determined. After u.v. exposure, {sup 3}H-thymine incorporation into the 'heavy' parental DNA strands was used to measure repair synthesis, while {sup 3}H-thymine incorporation into 'light' and newly synthesized DNA strands measured semi-conservative replication. The rate of bases incorporated by repair synthesis in the initial 15 minures of post-irradiation incubation at 37 Degree-Sign C appears to be saturated at a dose of approximately 100 ergs/mm{sup 2}. At higher doses (up to 600 ergs/mm{sup 2}) the increase observed was not proportional to dose. During this initial 15 minutes, less than 1% of the chromosomal DNA was replaced. The amount of DNA synthesized by semi-conservative replication during the initial 15 minutes was reduced with increasing u.v. dose. After exposure to 600 ergs/mm{sup 2}, repair and semiconservative DNA synthesis were nearly equivalent in the irradiated cells after 15 minutes of incubation. Repair synthesis was observed to be terminated by 45 minutes in bacteria exposed to 160 or 500 ergs/mm{sup 2} (64% and 10% survivors, respectively). The amount of genome replaced by repair synthesis at several doses was determined. Starvation for a required amino acid (resulting in an inhibition of protein and ribonucleic acid synthesis) did not prevent the repair synthesis nor grossly alter its extent. The restoration of the semi-conservative mo d e of DNA

  8. Electrochemically shape-controlled synthesis in deep eutectic solvents of Pt nanoflowers with enhanced activity for ethanol oxidation

    International Nuclear Information System (INIS)

    Wei Lu; Fan Youjun; Wang Honghui; Tian Na; Zhou Zhiyou; Sun Shigang

    2012-01-01

    Highlights: ► The electrochemically shape-controlled synthesis in deep eutectic solvents (DESs) has been applied to produce the uniform Pt nanoflowers with sharp single crystal petals and high density of atomic steps. ► The as-prepared Pt nanoflowers exhibit higher electrocatalytic activity and stability than commercial Pt black catalyst toward ethanol electrooxidation. ► The growth of Pt nanoflowers in DESs by the simple electrochemical route is straightforward and controllable in terms of nanoflowers’ shape and size. - Abstract: The electrochemically shape-controlled synthesis in deep eutectic solvents (DESs) has been applied to produce the electrocatalyst of Pt nanoflowers. The uniform Pt nanoflowers with sharp single crystal petals and high density of atomic steps were characterized by SEM, TEM, XRD, XPS and electrochemical tests. The results illustrated that the as-prepared Pt nanoflowers exhibit higher electrocatalytic activity and stability than commercial Pt black catalyst toward ethanol electrooxidation. The growth of Pt nanoflowers in DESs by the simple electrochemical route is straightforward and controllable in terms of nanoflowers’ shape and size, which can be applied in shape-controlled synthesis of other noble metal nanoparticles with high catalytic activity.

  9. Surfactant-assisted mild solvothermal synthesis of nanostructured LiFePO4/C cathodes evidencing ultrafast rate capability

    International Nuclear Information System (INIS)

    Di Lupo, F.; Meligrana, G.; Gerbaldi, C.; Bodoardo, S.; Penazzi, N.

    2015-01-01

    Highlights: • Nanostructured LiFePO 4 /C by surfactant assisted solvothermal synthesis. • Novel and simple preparation method, with no critical parameters. • Noticeable stability, good capacity values and capacity retention after prolonged cycling. • Improved rate capability at a very high C-rate (100C). • High performance for the next generation of advanced high power Li-ion batteries. - Abstract: A surfactant-assisted solvothermal synthesis is hereby applied to produce carbon-coated LiFePO 4 /C nanostructured Li-ion battery cathodes. The use of different mixed alcohol/water solutions for the dissolution of a cationic surfactant is absolutely peculiar in this field and herewith exploited to tailor-make the properties of the active material particles (e.g., morphology and electrochemical behaviour). Thorough investigation is carried out by means of X-ray powder diffraction, scanning and transmission electron microscopy, cyclic voltammetry and constant current charge-discharge cycling. The best performing sample, obtained in a 20:80 w/w ethanol:water solution, demonstrates good specific capacity values, high Coulombic efficiency and rate capability, with stable behaviour upon long-term cycling even at ultrafast 100C discharge regime. This is definitely remarkable for a nanosized powder specifically conceived for high power applications obtained by means of low cost raw materials, simple and reliable procedures

  10. Leucine stimulation of skeletal muscle protein synthesis

    International Nuclear Information System (INIS)

    Layman, D.K.; Grogan, C.K.

    1986-01-01

    Previous work in this laboratory has demonstrated a stimulatory effect of leucine on skeletal muscle protein synthesis measured in vitro during catabolic conditions. Studies in other laboratories have consistently found this effect in diaphragm muscle, however, studies examining effects on nitrogen balance or with in vivo protein synthesis in skeletal muscle are equivocal. This experiment was designed to determine the potential of leucine to stimulate skeletal muscle protein synthesis in vivo. Male Sprague-Dawley rats weighing 200 g were fasted for 12 hrs, anesthetized, a jugular cannula inserted, and protein synthesis measured using a primed continuous infusion of 14 C-tyrosine. A plateau in specific activity was reached after 30 to 60 min and maintained for 3 hrs. The leucine dose consisted of a 240 umole priming dose followed by a continuous infusion of 160 umoles/hr. Leucine infusion stimulated protein synthesis in the soleus muscle (28%) and in the red (28%) and white portions (12%) of the gastrocnemius muscle compared with controls infused with only tyrosine. The increased rates of protein synthesis were due to increased incorporation of tyrosine into protein and to decreased specific activity of the free tyrosine pool. These data indicate that infusion of leucine has the potential to stimulate in vivo protein synthesis in skeletal muscles

  11. Acute effects of ethanol in the control of protein synthesis in isolated rat liver cells

    International Nuclear Information System (INIS)

    Girbes, T.; Susin, A.; Ayuso, M.S.; Parrilla, R.

    1983-01-01

    The acute effect of ethanol on hepatic protein synthesis is a rather controversial issue. In view of the conflicting reports on this subject, the effect of ethanol on protein labeling from L-[ 3 H]valine in isolated liver cells was studied under a variety of experimental conditions. When tracer doses of the isotope were utilized, ethanol consistently decreased the rate of protein labeling, regardless of the metabolic conditions of the cells. This inhibition was not prevented by doses of 4-methylpyrazole large enough to abolish all the characteristic metabolic effects of ethanol, and it was not related to perturbations on the rates of L-valine transport and/or proteolysis. When ethanol was tested in the presence of saturating doses of L-[ 3 H]valine no effect on protein labeling was observed. These observations suggest that the ethanol effect in decreasing protein labeling from tracer doses of the radioactive precursor does not reflect variations in the rate of protein synthesis but reflects changes in the specific activity of the precursor. These changes probably are secondary to variations in the dimensions of the amino acid pool utilized for protein synthesis. Even though it showed a lack of effect when tested alone, in the presence of saturating doses of the radioactive precursor ethanol inhibited the stimulatory effects on protein synthesis mediated by glucose and several gluconeogenic substrates. This effect of ethanol was not prevented by inhibitors of alcohol dehydrogenase, indicating that a shift of the NAD system to a more reduced state is not the mediator of its action. It is suggested that ethanol probably acted by changing the steady-state levels of some common effector(s) generated from the metabolism of all these fuels or else by preventing the inactivation of a translational repressor

  12. Induction of ceruloplasmin synthesis by interleukin-1 in copper deficient and copper sufficient rats

    International Nuclear Information System (INIS)

    Barber, E.F.; Cousins, R.J.

    1986-01-01

    Ceruloplasmin (Cp) is a copper-containing plasma protein important in the body's acute phase defense system. In copper sufficient rats given two injections of interleukin-1 (IL-1) at 0 and 8 h, ceruloplasmin activity began to significantly increase within 6 h, but did not peak until at least 24 h. The 24 h stimulated activity was 84 +/- 2 umole p-phenylene diamine (pPD) oxidized x min -1 x L -1 compared to a control of 43 +/- 5. These rats were injected with 100uCi 3 H-leucine (ip) 2 h before sacrifice to label newly synthesized proteins. When the 3 H immunoprecipitated by rabbit anti-rat Cp serum is expressed as a percent of the 3 H precipitated by trichloroacetic acid (TCA), the basal Cp synthesis rate was 3% of the total serum protein synthesis. The rate of Cp synthesis peaked 12 h after IL-1 injection at 7% of total serum protein synthesis and by 24 h was back to the basal rate. In copper deficient rats, IL-1 given with copper induced pPD oxidase activity, while IL-1 given alone did not stimulate activity. The basal Cp synthesis rate in these rats was 3%, the same as in the copper sufficient rats. In copper deficient rats, the Cp synthesis rate was induced by IL-1 with or without an injection of copper. Therefore, if dietary copper is in short supply, then although Cp synthesis is induced by this mediator of host defense mechanisms, Cp cannot carry out its functions

  13. Design, Specification, and Synthesis of Aircraft Electric Power Systems Control Logic

    Science.gov (United States)

    Xu, Huan

    Cyber-physical systems integrate computation, networking, and physical processes. Substantial research challenges exist in the design and verification of such large-scale, distributed sensing, actuation, and control systems. Rapidly improving technology and recent advances in control theory, networked systems, and computer science give us the opportunity to drastically improve our approach to integrated flow of information and cooperative behavior. Current systems rely on text-based specifications and manual design. Using new technology advances, we can create easier, more efficient, and cheaper ways of developing these control systems. This thesis will focus on design considerations for system topologies, ways to formally and automatically specify requirements, and methods to synthesize reactive control protocols, all within the context of an aircraft electric power system as a representative application area. This thesis consists of three complementary parts: synthesis, specification, and design. The first section focuses on the synthesis of central and distributed reactive controllers for an aircraft elec- tric power system. This approach incorporates methodologies from computer science and control. The resulting controllers are correct by construction with respect to system requirements, which are formulated using the specification language of linear temporal logic (LTL). The second section addresses how to formally specify requirements and introduces a domain-specific language for electric power systems. A software tool automatically converts high-level requirements into LTL and synthesizes a controller. The final sections focus on design space exploration. A design methodology is proposed that uses mixed-integer linear programming to obtain candidate topologies, which are then used to synthesize controllers. The discrete-time control logic is then verified in real-time by two methods: hardware and simulation. Finally, the problem of partial observability and

  14. Controllable synthesis of rice-shape Alq3 nanoparticles with single crystal structure

    Science.gov (United States)

    Xie, Wanfeng; Fan, Jihui; Song, Hui; Jiang, Feng; Yuan, Huimin; Wei, Zhixian; Ji, Ziwu; Pang, Zhiyong; Han, Shenghao

    2016-10-01

    We report the controllable growth of rice-shape nanoparticles of Alq3 by an extremely facile self-assembly approach. Possible mechanisms have been proposed to interpret the formation and controlled process of the single crystal nanoparticles. The field-emission performances (turn-on field 7 V μm-1, maximum current density 2.9 mA cm-2) indicate the potential application on miniaturized nano-optoelectronics devices of Alq3-based. This facile method can potentially be used for the controlled synthesis of other functional complexes and organic nanostructures.

  15. Nonlinear control synthesis for electrical power systems using controllable series capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Manjarekar, N.S.; Banavar, Ravi N. [Indian Institute of Technology Bombay, Mumbai (India). Systems and Control Engineering

    2012-07-01

    In this work we derive asymptotically stabilizing control laws for electrical power systems using two nonlinear control synthesis techniques. For this transient stabilization problem the actuator considered is a power electronic device, a controllable series capacitor (CSC). The power system is described using two different nonlinear models - the second order swing equation and the third order flux-decay model. To start with, the CSC is modeled by the injection model which is based on the assumption that the CSC dynamics is very fast as compared to the dynamics of the power system and hence can be approximated by an algebraic equation. Here, by neglecting the CSC dynamics, the input vector g(x) in the open loop system takes a complex form - the injection model. Using this model, interconnection and damping assignment passivity-based control (IDA-PBC) methodology is demonstrated on two power systems: a single machine infinite bus (SMIB) system and a two machine system. Further, IDA-PBC is used to derive stabilizing controllers for power systems, where the CSC dynamics are included as a first order system. Next, we consider a different control methodology, immersion and invariance (I and I), to synthesize an asymptotically stabilizing control law for the SMIB system with a CSC. The CSC is described by a first order system. As a generalization of I and I, we incorporate the power balance algebraic constraints in the load bus to the SMIB swing equation, and extend the design philosophy to a class of differential algebraic systems. The proposed result is then demonstrated on another example: a two-machine system with two load buses and a CSC. The controller performances are validated through simulations for all cases.

  16. Rate and selectivity modification in Fischer-Tropsch synthesis over charcoal supported molybdenum by forced concentration cycling

    International Nuclear Information System (INIS)

    Dun, J.W.; Gulari, E.

    1985-01-01

    Forced concentration cycling of the feed between pure CO and pure H/sub 2/ was used to successfully change both the selectivities and reactivities of promoted and unpromoted charcoal supported molybdenum catalysts in Fischer-Tropsch synthesis. It was found that with the unpromoted catalyst the rate enhancement increases with temperature and selectivity shifts towards methane. At the lower temperatures concentration cycling increases selectivity to ethane and higher hydrocarbons to levels only achievable with promised catalysts. Periodic operation with the potassium promoted catalyst results in small rate enhancements but the olefin to paraffin ratio is dramatically changed without changing the carbon number distribution

  17. Effects of dietary amino acids, carbohydrates, and choline on neurotransmitter synthesis

    Science.gov (United States)

    Wurtman, Richard J.

    1988-01-01

    The ability of a meal to increase or decrease brain neurotransmitter synthesis has been studied. It is concluded that brain serotonin synthesis is directly controlled by the proportions of carbohydrate to protein in meals and snacks that increase or decrease brain tryptophan levels, thereby changing the substrate saturation of tryptophan hydroxylase and the rate of serotonin synthesis. The ability of serotoninergic neurons to have their output coupled to dietary macronutrients enables them to function as sensors of peripheral metabolism, and to subserve an important role in the control of appetite. The robust and selective responses of catecholaminergic and cholinergic neurons to supplemental tyrosine and choline suggest that these compounds may become useful as a new type of drug for treating deseases or conditions in which adequate quantities of the transmitter would otherwise be unavailable.

  18. GH receptor blocker administration and muscle-tendon collagen synthesis in humans

    DEFF Research Database (Denmark)

    Nielsen, Rie Harboe; Doessing, Simon; Goto, Kazushige

    2011-01-01

    Collagen is the predominant structural protein in tendons and ligaments, and can be controlled by hormonal changes. In animals, injections of insulin-like growth factor I (IGF-I) has been shown to increase collagen synthesis in tendons and ligaments and to improve structural tissue healing......, but the effect of local IGF-I administration on tendon collagen synthesis in human has not been studied. The purpose of this study was to study whether local injections of IGF-I would have a stimulating effect on tendon collagen synthesis. Twelve healthy nonsmoking men [age 62 ± 1 years (mean ± SEM), BMI 27 ± 1......] participated. Two injections of either human recombinant IGF-I (0.1 mL Increlex©) or saline (control) into each patellar tendon were performed 24-h apart, respectively. Tendon collagen fractional synthesis rate (FSR) was measured by stable isotope technique in the hours after the second injection...

  19. Dietary iron controls circadian hepatic glucose metabolism through heme synthesis.

    Science.gov (United States)

    Simcox, Judith A; Mitchell, Thomas Creighton; Gao, Yan; Just, Steven F; Cooksey, Robert; Cox, James; Ajioka, Richard; Jones, Deborah; Lee, Soh-Hyun; King, Daniel; Huang, Jingyu; McClain, Donald A

    2015-04-01

    The circadian rhythm of the liver maintains glucose homeostasis, and disruption of this rhythm is associated with type 2 diabetes. Feeding is one factor that sets the circadian clock in peripheral tissues, but relatively little is known about the role of specific dietary components in that regard. We assessed the effects of dietary iron on circadian gluconeogenesis. Dietary iron affects circadian glucose metabolism through heme-mediated regulation of the interaction of nuclear receptor subfamily 1 group d member 1 (Rev-Erbα) with its cosuppressor nuclear receptor corepressor 1 (NCOR). Loss of regulated heme synthesis was achieved by aminolevulinic acid (ALA) treatment of mice or cultured cells to bypass the rate-limiting enzyme in hepatic heme synthesis, ALA synthase 1 (ALAS1). ALA treatment abolishes differences in hepatic glucose production and in the expression of gluconeogenic enzymes seen with variation of dietary iron. The differences among diets are also lost with inhibition of heme synthesis with isonicotinylhydrazine. Dietary iron modulates levels of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a transcriptional activator of ALAS1, to affect hepatic heme. Treatment of mice with the antioxidant N-acetylcysteine diminishes PGC-1α variation observed among the iron diets, suggesting that iron is acting through reactive oxygen species signaling. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  20. Boron Stress Activates the General Amino Acid Control Mechanism and Inhibits Protein Synthesis

    Science.gov (United States)

    Uluisik, Irem; Kaya, Alaattin; Fomenko, Dmitri E.; Karakaya, Huseyin C.; Carlson, Bradley A.; Gladyshev, Vadim N.; Koc, Ahmet

    2011-01-01

    Boron is an essential micronutrient for plants, and it is beneficial for animals. However, at high concentrations boron is toxic to cells although the mechanism of this toxicity is not known. Atr1 has recently been identified as a boron efflux pump whose expression is upregulated in response to boron treatment. Here, we found that the expression of ATR1 is associated with expression of genes involved in amino acid biosynthesis. These mechanisms are strictly controlled by the transcription factor Gcn4 in response to boron treatment. Further analyses have shown that boron impaired protein synthesis by promoting phosphorylation of eIF2α in a Gcn2 kinase dependent manner. The uncharged tRNA binding domain (HisRS) of Gcn2 is necessary for the phosphorylation of eIF2α in the presence of boron. We postulate that boron exerts its toxic effect through activation of the general amino acid control system and inhibition of protein synthesis. Since the general amino acid control pathway is conserved among eukaryotes, this mechanism of boron toxicity may be of general importance. PMID:22114689

  1. Boron stress activates the general amino acid control mechanism and inhibits protein synthesis.

    Directory of Open Access Journals (Sweden)

    Irem Uluisik

    Full Text Available Boron is an essential micronutrient for plants, and it is beneficial for animals. However, at high concentrations boron is toxic to cells although the mechanism of this toxicity is not known. Atr1 has recently been identified as a boron efflux pump whose expression is upregulated in response to boron treatment. Here, we found that the expression of ATR1 is associated with expression of genes involved in amino acid biosynthesis. These mechanisms are strictly controlled by the transcription factor Gcn4 in response to boron treatment. Further analyses have shown that boron impaired protein synthesis by promoting phosphorylation of eIF2α in a Gcn2 kinase dependent manner. The uncharged tRNA binding domain (HisRS of Gcn2 is necessary for the phosphorylation of eIF2α in the presence of boron. We postulate that boron exerts its toxic effect through activation of the general amino acid control system and inhibition of protein synthesis. Since the general amino acid control pathway is conserved among eukaryotes, this mechanism of boron toxicity may be of general importance.

  2. Low-protein, high-carbohydrate diet increases glucose uptake and fatty acid synthesis in brown adipose tissue of rats.

    Science.gov (United States)

    Aparecida de França, Suélem; Pavani Dos Santos, Maísa; Nunes Queiroz da Costa, Roger Vinícius; Froelich, Mendalli; Buzelle, Samyra Lopes; Chaves, Valéria Ernestânia; Giordani, Morenna Alana; Pereira, Mayara Peron; Colodel, Edson Moleta; Marlise Balbinotti Andrade, Cláudia; Kawashita, Nair Honda

    2014-04-01

    The aim of this study was to evaluate glucose uptake and the contribution of glucose to fatty acid (FA) synthesis and the glycerol-3-phosphate (G3P) of triacylglycerol synthesis by interscapular brown adipose tissue (IBAT) of low-protein, high-carbohydrate (LPHC) diet-fed rats. LPHC (6% protein; 74% carbohydrate) or control (17% protein; 63% carbohydrate) diets were administered to rats (∼ 100 g) for 15 d. Total FA and G3P synthesis and the synthesis of FA and G3P from glucose were evaluated in vivo by (3)H2O and (14)C-glucose. Sympathetic neural contribution for FA synthesis was evaluated by comparing the synthesis in denervated (7 d before) IBAT with that of the contralateral innervated side. The insulin signaling and β3 adrenergic receptor (β3-AR) contents, as well as others, were determined by Western blot (Student's t test or analysis of variance; P ≤ 0.05). Total FA synthesis in IBAT was 133% higher in the LPHC group and was reduced 85% and 70% by denervation for the LPHC and control groups, respectively. Glucose uptake was 3.5-fold higher in the IBAT of LPHC rats than in that of the control rats, and the contribution of glucose to the total FA synthesis increased by 12% in control rats compared with 18% in LPHC rats. The LPHC diet increased the G3P generation from glucose by 270% and the insulin receptor content and the p-AKT insulin stimulation in IBAT by 120% and reduced the β3-AR content by 50%. The LPHC diet stimulated glucose uptake, both the total rates and the rates derived from glucose-dependent FA and G3P synthesis, by increasing the insulin sensitivity and the sympathetic flux, despite a reduction in the β3-AR content. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. On the mechanism of regulation of the catalase synthesis rate in the rat liver in the course of acute radiation disease

    International Nuclear Information System (INIS)

    Komov, V.P.; Rakhmanina, T.F.

    1976-01-01

    A method has been proposed to determine the activity of factors that regulate the rate of catalase synthesis in the rat liver at the stage of translation. The analysis of certain normal and pathologic parameters of these factors suggests a possibility of interpreting more definitely the effect of radiation on the catalase synthesis. Marked changes have been found both in the structure and the activity of the given factors in the course of the development of radiation damage

  4. Kinetically controlled synthesis of AuPt bi-metallic aerogels and their enhanced electrocatalytic performances

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Qiurong [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA; Zhu, Chengzhou [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA; Du, Dan [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA; Key Laboratory of Pesticides and Chemical Biology; Bi, Cuixia [Institute of Crystal Materials; Shandong University; Jinan 250100; P. R. China; Xia, Haibing [Institute of Crystal Materials; Shandong University; Jinan 250100; P. R. China; Feng, Shuo [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA; Engelhard, Mark H. [Environmental Molecular Sciences Laboratory; Pacific Northwest National Laboratory; Richland; USA; Lin, Yuehe [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA

    2017-01-01

    Kinetically controlled synthesis of AuPtxbi-metallic hydrogels/aerogels was efficiently achieved for the first timeviatuning the reaction temperature or adding a surfactant.

  5. Structural synthesis of electrical engineering complex’ control system of a plant for plastic shaping of the ceramic mixture

    Directory of Open Access Journals (Sweden)

    Galitskov Stanislav

    2017-01-01

    Full Text Available Production of ceramic bricks with the required strength imposes significant restrictions on the process control of plastic shaping of the ceramic mixture in the auger extruder. It is due to several factors. Firstly, the certain nonstationarity of rheological properties of the source raw materials necessitates the automatic task-oriented changes in combinations of such values as shear rate, ceramic mixture moisture and vacuum pressure in the vacuum chamber of the extruder. To solve this problem it is necessary to maintain a coordinated control of the relevant automatic control systems of the electrical engineering complex. The second problem is the lack of technical tools to measure the values of shear rate in the pressure head of the extruder. And finally, the third factor is a necessity for monitoring and modeling of operating steps in brick production – from shaping to finished product output, that is a necessity to assess the impact of drying and firing processes on the possibility to make bricks of specified strength. The paper considers structural synthesis of the electrical engineering complex’ control system for plastic shaping of the ceramic mixture, including the problem of coordinated control: of the vacuum pump’ electrical drive, of the solenoid valve for water dosing, of the belt feeder’ electrical drives, of the mixer and the auger, as well as the use of digital observers of technological controlled coordinates and models in further phases of brick production.

  6. Robust Hinfinity position control synthesis of an electro-hydraulic servo system.

    Science.gov (United States)

    Milić, Vladimir; Situm, Zeljko; Essert, Mario

    2010-10-01

    This paper focuses on the use of the techniques based on linear matrix inequalities for robust H(infinity) position control synthesis of an electro-hydraulic servo system. A nonlinear dynamic model of the hydraulic cylindrical actuator with a proportional valve has been developed. For the purpose of the feedback control an uncertain linearized mathematical model of the system has been derived. The structured (parametric) perturbations in the electro-hydraulic coefficients are taken into account. H(infinity) controller extended with an integral action is proposed. To estimate internal states of the electro-hydraulic servo system an observer is designed. Developed control algorithms have been tested experimentally in the laboratory model of an electro-hydraulic servo system. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Control of DNA synthesis in inhibited and activated Agrostemma githago seeds

    Energy Technology Data Exchange (ETDEWEB)

    Hecker, M [Sektion Biologie, FG Algemeine Botanik und Pflanzenphysiologie, Universitaet Greifswald (German Democratic Republic)

    1975-01-01

    The relationships between DNA synthesis and germination capacity of Agrostemma seeds had been studied. Protein synthesis and RNA synthesis were activated at the very beginning of imbibition, whereas DNA synthesis started in the second part of the imbibition phase. Agrostemma seeds inhibited by higher temperature (30 degC), or aged seeds with a low germination capacity were characterized by a significantly reduced protein synthesis. DNA synthesis was also reduced. The inhibition of the protein synthesis of Agrostemma embryos fed with cycloheximide or actinomycin D caused a depression of DNA synthesis. The results indicated that the initiation of DNA synthesis of imbibing Agrostemma seeds depended on the synthesis of special proteins. Abscisic acid inhibited the growth as well as DNA synthesis of isolated Agrostemma embryos. Nitomycin inhibited germination and DNA synthesis to the same extent. Dormant seeds with an undiminished intensity of protein synthesis also showed a reduced incorporation of /sup 3/H-thymidine by DNA. It is suggested that DNA synthesis of imbibed seeds, which is a necessary prerequisite for the radicle protrusion, was involved in the mechanism of ripening of the Agrostemma seeds.

  8. Control of DNA synthesis in inhibited and activated Agrostemma githago seeds

    International Nuclear Information System (INIS)

    Hecker, M.

    1975-01-01

    The relationships between DNA synthesis and germination capacity of Agrostemma seeds had been studied. Protein synthesis and RNA synthesis were activated at the very beginning of imbibition, whereas DNA synthesis started in the second part of the imbibition phase. Agrostemma seeds inhibited by higher temperature (30 degC), or aged seeds with a low germination capacity were characterized by a significantly reduced protein synthesis. DNA synthesis was also reduced. The inhibition of the protein synthesis of Agrostemma embryos fed with cycloheximide or actinomycin D caused a depression of DNA synthesis. The results indicated that the initiation of DNA synthesis of imbibing Agrostemma seeds depended on the synthesis of special proteins. Abscisic acid inhibited the growth as well as DNA synthesis of isolated Agrostemma embryos. Nitomycin inhibited germination and DNA synthesis to the same extent. Dormant seeds with an undiminished intensity of protein synthesis also showed a reduced incorporation of 3 H-thymidine by DNA. It is suggested that DNA synthesis of imbibed seeds, which is a necessary prerequisite for the radicle protrusion, was involved in the mechanism of ripening of the Agrostemma seeds. (author)

  9. Gas-phase laser synthesis of aggregation-free, size-controlled hydroxyapatite nanoparticles

    International Nuclear Information System (INIS)

    Bapat, Parimal V.; Kraft, Rebecca; Camata, Renato P.

    2012-01-01

    Nanophase hydroxyapatite (HA) is finding applications in many areas of biomedical research, including bone tissue engineering, drug delivery, and intracellular imaging. Details in chemical composition, crystal phase makeup, size, and shape of HA nanoparticles play important roles in achieving the favorable biological responses required in these applications. Most of the nanophase HA synthesis techniques involve solution-based methods that exhibit substantial aggregation of particles upon precipitation. Typically these methods also have limited control over the particle size and crystal phase composition. In this study, we describe the gas-phase synthesis of aggregation-free, size-controlled HA nanoparticles with mean size in the 20–70 nm range using laser ablation followed by aerosol electrical mobility classification. Nanoparticle deposits with adjustable number concentration were obtained on solid substrates. Particles were characterized by transmission electron microscopy, atomic force microscopy, and X-ray diffraction. Samples are well represented by log-normal size distributions with geometric standard deviation σ g ≈ 1.2. The most suitable conditions for HA nanoparticle formation at a laser fluence of 5 J/cm 2 were found to be a temperature of 800 °C and a partial pressure of water of 160 mbar.

  10. Acute treatment with fluvoxamine elevates rat brain serotonin synthesis in some terminal regions: An autoradiographic study

    International Nuclear Information System (INIS)

    Muck-Seler, Dorotea; Pivac, Nela; Diksic, Mirko

    2012-01-01

    Introduction: A considerable body of evidence indicates the involvement of the neurotransmitter serotonin (5-HT) in the pathogenesis and treatment of depression. Methods: The acute effect of fluvoxamine, on 5-HT synthesis rates was investigated in rat brain regions, using α- 14 C-methyl-L-tryptophan as a tracer. Fluvoxamine (25 mg/kg) and saline (control) were injected intraperitoneally, one hour before the injection of the tracer (30 μCi). Results: There was no significant effect of fluvoxamine on plasma free tryptophan. After Benjamini–Hochberg False Discovery Rate correction, a significant decrease in the 5-HT synthesis rate in the fluvoxamine treated rats, was found in the raphe magnus (− 32%), but not in the median (− 14%) and dorsal (− 3%) raphe nuclei. In the regions with serotonergic axon terminals, significant increases in synthesis rates were observed in the dorsal (+ 41%) and ventral (+ 43%) hippocampus, visual (+ 38%), auditory (+ 65%) and parietal (+ 37%) cortex, and the substantia nigra pars compacta (+ 56%). There were no significant changes in the 5-HT synthesis rates in the median (+ 11%) and lateral (+ 24%) part of the caudate-putamen, nucleus accumbens (+ 5%), VTA (+ 16%) or frontal cortex (+ 6%). Conclusions: The data show that the acute administration of fluvoxamine affects 5-HT synthesis rates in a regionally specific pattern, with a general elevation of the synthesis in the terminal regions and a reduction in some cell body structures. The reasons for the regional specific effect of fluvoxamine on 5-HT synthesis are unclear, but may be mediated by the presynaptic serotonergic autoreceptors.

  11. An Integrated, Multi-Stage, Multi-Scale Framework for Achieving Sustainable Process Synthesis-Intensification-Control

    DEFF Research Database (Denmark)

    Babi, Deenesh Kavi; Kumar Tula, Anjan; Mansouri, Seyed Soheil

    The chemical and biochemical industry needs major reductions in energy consumption, waste generation, etc., in order to remain competitive through the design and operation of more sustainable chemical and biochemical processes. These required reductions can be addressed through process synthesis......-intensification-control, that is, the efficient use of raw materials (feedstock), the use of sustainable technologies and the design (and control) of processes that directly impact and improves sustainability/LCA factors. The unit operations concept, which has been sufficient until now, is one of the most used for performing...... process synthesis (and intensification) because it allows the association of tasks (functions) with the processing route to be followed. At the unit operations scale (Jaksland et al., 1995) and task scale (Siirola, 1996) alternatives are limited to existing (well-known) unit operations and therefore, may...

  12. Chronic ethanol feeding modulates the synthesis of digestive enzymes

    International Nuclear Information System (INIS)

    Ponnappa, B.C.; Hoek, J.B.; Rubin, E.

    1987-01-01

    The effects of chronic ethanol feeding on pancreatic protein synthesis were investigated. Protein synthesis was assessed by studying the rate of incorporation of 3 H-leucine into TCA-precipitable proteins in isolated pancreatic acini from rats. Chronic ethanol ingestion increased the rate of pancreatic protein synthesis by 2-4 fold. The onset of the increase in protein synthesis was detectable two days after ethanol feeding, reached a maximum after 7 days and remained unchanged after 4 months on the ethanol-containing diet. The rate of synthesis of individual digestive enzymes was studied by SDS-PAGE on extracts obtained from purified zymogen granules. Ethanol feeding induced an increase in the rate of synthesis of most of the digestive enzymes; chymotrypsinogen, trypsinogen and an unidentified protein were increased to a greater extent than other digestive enzymes. By contrast, the synthesis of amylase was selectively decreased after ethanol feeding. These results suggest that chronic ethanol ingestion has specific effects on the rate of synthesis of individual digestive enzymes in the exocrine pancreas

  13. Control of protein synthesis in cell-free extracts of sea urchin embryos

    International Nuclear Information System (INIS)

    Hansen, L.J.; Huang, W.I.; Jagus, R.

    1986-01-01

    Although the increase in protein synthesis that occurs after fertilization of sea urchin eggs results from increased utilization of stored maternal mRNA, the underlying mechanism is unknown. The authors have prepared cell-free extracts from S.purpuratus and A.puctulata unfertilized eggs and 2-cell embryos that retain the protein synthetic differences observed in vivo. The method is based on that of Dr. Alina Lopo. 35 S methionine incorporation is linear during a 30 min incubation and is 10-20 fold higher in extracts from 2-cell embryos than unfertilized eggs. Addition of purified mRNA does not stimulate these systems, suggesting a regulatory mechanism other than mRNA masking. Addition of rabbit reticulocyte ribosomal salt wash stimulated protein synthesis in extracts from eggs but not embryos, suggesting deficiencies in translational components in unfertilized eggs. Mixing of egg and embryo lysates indicated the presence of a weak protein synthesis inhibitor in eggs. Translational control in developing sea urchin embryos thus appears to be complex, involving both stimulatory and inhibitory factors

  14. Shape-controlled synthesis of Au@Pd core-shell nanoparticles and their corresponding electrochemical properties

    KAUST Repository

    Song, Hyon Min; Anjum, Dalaver H.; Khashab, Niveen M.

    2012-01-01

    The shape-controlled synthesis of Au@Pd core-shell nanoparticles (NPs) was successfully achieved through the emulsion phase generated during the phase transfer from organic to aqueous medium. Contrary to conventional epitaxial growth for obtaining

  15. Phase and Frequency Control of Laser Arrays for Pulse Synthesis

    Science.gov (United States)

    2015-01-02

    SUBTITLE Phase and Frequency Control of Laser Arrays for Pulse Synthesis 875 North Randolph Street Arlington VA 22203-1768 5a. CONTRACT NUMBER...Hachtel, M. Gillette, J. Barkeloo, E. Clements, S. Bali , B. Unks, N. Proite, D. Yavuz, P. Martin, J. Thorn, and D. Steck, Am. J. Phys., 82, 805 (2014...Opt. 37, 4871-4875 (1998). 17. J. Kangara, A. Hachtel, M. Gillette, J. Barkeloo, E. Clements, S. Bali , B. Unks, N. Proite, D. Yavuz, P. Martin, J

  16. Automatic dose-rate controlling equipment

    International Nuclear Information System (INIS)

    Szasz, T.; Nagy Czirok, Cs.; Batki, L.; Antal, S.

    1977-01-01

    The patent of a dose-rate controlling equipment that can be attached to X-ray image-amplifiers is presented. In the new equipment the current of the photocatode of the image-amplifier is led into the regulating unit, which controls the X-ray generator automatically. The advantages of the equipment are the following: it can be simply attached to any type of X-ray image-amplifier, it accomplishes fast and sensitive regulation, it makes possible the control of both the mA and the kV values, it is attached to the most reliable point of the image-transmission chain. (L.E.)

  17. Apolipoprotein B synthesis in rat small intestine: regulation by dietary triglyceride and biliary lipid

    International Nuclear Information System (INIS)

    Davidson, N.O.; Kollmer, M.E.; Glickman, R.M.

    1986-01-01

    Apolipoprotein B (apoB) synthesis rates have been determined, in vivo, in rat enterocytes. Following intralumenal administration of a pulse of [ 3 H]leucine, newly synthesized apoB was quantitated by specific immunoprecipitation and compared to [ 3 H]leucine incorporation into total, trichloroacetic acid-insoluble protein. ApoB synthesis rates were determined after acute administration of either 0.1 or 1 g of triglyceride to fasting animals. No differences were found at any time from 90 min to 6 hr after challenge and values were not different from the basal values established in fasted controls. Animals rechallenged with triglyceride after 8 days' intake of fat-free chow also failed to demonstrate a change in intestinal apoB synthesis rate. By contrast, enterocyte content of apoB appeared to fall, temporarily, with the onset of active triglyceride flux. Groups of animals were then subjected to external bile diversion for 48 hr, a maneuver designed to remove all lumenal sources of lipid. Jejunal apoB synthesis rates fell by 43% (from 0.76% +/- 0.14 to 0.43% +/- 0.12, P less than 0.001), a change that was completely prevented by continuous replacement with 10 mM Na taurocholate. The suppression of jejunal apoB synthesis, induced by prolonged bile diversion, was reversed after 14 hr, but not 8 hr, of intralumenal perfusion with 10 mM Na taurocholate. The addition of micellar fatty acid-monoolein to the perfusate for 4 hr produced no further change in apoB synthesis. Ileal apoB synthesis rates fell by 70% (from 0.61% +/- 0.15 to 0.18% +/- 0.10, P less than 0.001) following 48 hr external bile diversion, a change that was only partially prevented by continuous bile salt replacement. These results suggest that jejunal apoB synthesis demonstrates bile salt dependence but not regulation by acute triglyceride flux

  18. Determination of the Optimal Exchange Rate Via Control of the Domestic Interest Rate in Nigeria

    Directory of Open Access Journals (Sweden)

    Virtue U. Ekhosuehi

    2014-01-01

    Full Text Available An economic scenario has been considered where the government seeks to achieve a favourable balance-of-payments over a fixed planning horizon through exchange rate policy and control of the domestic interest rate. The dynamics of such an economy was considered in terms of a bounded optimal control problem where the exchange rate is the state variable and the domestic interest rate is the control variable. The idea of balance-of-payments was used as a theoretical underpinning to specify the objective function. By assuming that, changes in exchange rates were induced by two effects: the impact of the domestic interest rate on the exchange rate and the exchange rate system adopted by the government. Instances for both fixed and flexible optimal exchange rate regimes have been determined. The use of the approach has been illustrated employing data obtained from the Central Bank of Nigeria (CBN statistical bulletin. (original abstract

  19. Tracking Control of Hysteretic Piezoelectric Actuator using Adaptive Rate-Dependent Controller.

    Science.gov (United States)

    Tan, U-Xuan; Latt, Win Tun; Widjaja, Ferdinan; Shee, Cheng Yap; Riviere, Cameron N; Ang, Wei Tech

    2009-03-16

    With the increasing popularity of actuators involving smart materials like piezoelectric, control of such materials becomes important. The existence of the inherent hysteretic behavior hinders the tracking accuracy of the actuators. To make matters worse, the hysteretic behavior changes with rate. One of the suggested ways is to have a feedforward controller to linearize the relationship between the input and output. Thus, the hysteretic behavior of the actuator must first be modeled by sensing the relationship between the input voltage and output displacement. Unfortunately, the hysteretic behavior is dependent on individual actuator and also environmental conditions like temperature. It is troublesome and costly to model the hysteresis regularly. In addition, the hysteretic behavior of the actuators also changes with age. Most literature model the actuator using a cascade of rate-independent hysteresis operators and a dynamical system. However, the inertial dynamics of the structure is not the only contributing factor. A complete model will be complex. Thus, based on the studies done on the phenomenological hysteretic behavior with rate, this paper proposes an adaptive rate-dependent feedforward controller with Prandtl-Ishlinskii (PI) hysteresis operators for piezoelectric actuators. This adaptive controller is achieved by adapting the coefficients to manipulate the weights of the play operators. Actual experiments are conducted to demonstrate the effectiveness of the adaptive controller. The main contribution of this paper is its ability to perform tracking control of non-periodic motion and is illustrated with the tracking control ability of a couple of different non-periodic waveforms which were created by passing random numbers through a low pass filter with a cutoff frequency of 20Hz.

  20. Controllable synthesis of porous LiFePO4 for tunable electrochemical Li-insertion performance

    International Nuclear Information System (INIS)

    Tian, Xiaohui; Zhou, Yingke; Wu, Guan; Wang, Pengcheng; Chen, Jian

    2017-01-01

    Highlights: • A templated freeze-drying method is developed to prepare the porous LiFePO 4 . • The pore size and porosity can be controlled by adjusting the conditions. • The effects of the porous properties on the Li-insertion performances are studied. • The optimized composite presents excellent specific capacity and rate capability. - Abstract: A templated freeze-drying method is developed to prepare the porous LiFePO 4 materials with the controlled pore size and porosity, by conveniently adjusting the size and content of the template in the precursor solution. The morphology and structure of the porous LiFePO 4 materials are characterized and the relavant electrochemical lithium-insertion performances are systematically studied. It’s found that the porous characteristics play a critical role in the lithium-ion intercalation processes and significantly affect the power capability of LiFePO 4 . The optimized porous LiFePO 4 material presents remarkable specific capacity (167 mAh g −1 at 0.1 C), rate capability (151 mAh g −1 at 1 C and 110 mAh g −1 at 10 C) and cycling stability (99.3% retention after 300 cycles at 1 C). These findings demonstrate that the electrochemical performance of the electrode material can be purposely tuned and remarkably improved by the rational design and introduction of the suitable pores, which open up new strategies for the synthesis of advanced porous materials for the lithium-ion power battery applications.

  1. Game-based Abstraction and Controller Synthesis for Probabilistic Hybrid Systems

    DEFF Research Database (Denmark)

    Hahn, Ernst Moritz; Norman, Gethin; Parker, David

    2011-01-01

    We consider a class of hybrid systems that involve random phenomena, in addition to discrete and continuous behaviour. Examples of such systems include wireless sensing and control applications. We propose and compare two abstraction techniques for this class of models, which yield lower and upper...... bounds on the optimal probability of reaching a particular class of states. We also demonstrate the applicability of these abstraction techniques to the computation of long-run average reward properties and the synthesis of controllers. The first of the two abstractions yields more precise information......, while the second is easier to construct. For the latter, we demonstrate how existing solvers for hybrid systems can be leveraged to perform the computation....

  2. Two transcription products of the vesicular stomatitis virus genome may control L-cell protein synthesis

    International Nuclear Information System (INIS)

    Dunigan, D.D.; Lucas-Lenard, J.M.

    1983-01-01

    When mouse L-cells are infected with vesicular stomatitis virus, there is a decrease in the rate of protein synthesis ranging from 20 to 85% of that in mock-infected cells. Vesicular stomatitis virus, irradiated with increasing doses of UV light, eventually loses this capacity to inhibit protein synthesis. The UV inactivation curve was biphasic, suggesting that transcription of two regions of the viral genome is necessary for the virus to become inactivated in this capacity. The first transcription produced corresponded to about 373 nucleotides, and the second corresponded to about 42 nucleotides. Inhibition of transcription of the larger product by irradiating the virus with low doses of UV light left a residual inhibition of protein synthesis consisting of approximately 60 to 65% of the total inhibition. This residual inhibition could be obviated by irradiating the virus with a UV dose of greater than 20,000 ergs/mm 2 and was thus considered to represent the effect of the smaller transcription product. In the R1 mutant of another author, the inhibition of transcription of the larger product sufficed to restore protein synthesis to the mock-infected level, suggesting that the smaller transcription product is nonfunctional with respect to protein synthesis inhibition. Extracts from cells infected with virus irradiated with low doses of UV light showed a protein synthesis capacity quite similar to that of their in vivo counterparts, indicating that these extracts closely reflect the in vivo effects of virus infection

  3. Control of ribosome formation in rat heart

    International Nuclear Information System (INIS)

    Russo, L.A.

    1987-01-01

    Diabetes of 9 days duration produced a 17% diminution in the rate of total protein synthesis in rat hearts perfused as Langendorff preparations supplied with glucose, plasma levels of amino acids, and 400 μU/ml insulin. This reduction was attributable to a decrease in efficiency of protein synthesis and total RNA content. Total messenger RNA content decreased in diabetic hearts in proportion to the reduction in total RNA. Diabetes also resulted in diminished ribosome content as reflected by the induction in total RNA. Ribosome production was investigated by monitoring incorporation of [ 3 H]phenylalanine into the proteins of cytoplasmic ribosomes. Rates of ribosome formation in diabetic hearts were as fast as control rates in the presence of insulin, and were faster than control rates in the absence of the hormone. These results indicated that ribosome content fell in diabetic hearts despite unchanged or faster rates of ribosome formation

  4. Theses of the reports of the XXXI Zvenigorod conference on the plasma physics and controlled thermonuclear synthesis

    International Nuclear Information System (INIS)

    Kovrizhnykh, L.M.; Ivanov, V.A.; Nagaeva, M.L.; Aleksandrov, A.F.; Vorob'ev, V.S.; Ivanenkov, G.V.; Meshcheryakov, A.I.

    2004-01-01

    Theses of the reports of the 31th Zvenigorod Conference on the physics and controlled thermonuclear synthesis, presented by Russian and foreign scientists, are published. The total number of reports is 258, namely, summarizing ones 16, magnetic confinement of high temperature plasma - 98, inertial thermonuclear synthesis - 44, physical processes in low temperature plasma - 58, physical bases of plasma and beam technologies - 42 [ru

  5. Skeletal muscle morphology, protein synthesis and gene expression in Ehlers Danlos Syndrome

    DEFF Research Database (Denmark)

    Nygaard, Rie H; Jensen, Jacob K; Voermans, Nicol C

    2017-01-01

    skeletal muscle biopsies in patients with classic EDS (cEDS, n=5 (Denmark)+ 8 (The Netherlands)) and vascular EDS (vEDS, n=3) and analyzed muscle fiber morphology and content (Western blotting and muscle fiber type/area distributions) and muscle mRNA expression and protein synthesis rate (RT-PCR and stable...... isotope technique). RESULTS: The cEDS patients did not differ from healthy controls (n = 7-11) with regard to muscle fiber type/area, myosin/α-actin ratio, muscle protein synthesis rate or mRNA expression. In contrast, the vEDS patients demonstrated higher expression of matrix proteins compared to c......EDS patients (fibronectin and MMP-2). DISCUSSION: The cEDS patients had surprisingly normal muscle morphology and protein synthesis, whereas vEDS patients demonstrated higher mRNA expression for extracellular matrix remodeling in skeletal musculature compared to cEDS patients....

  6. Organic titanates: a model for activating rapid room-temperature synthesis of shape-controlled CsPbBr3 nanocrystals and their derivatives.

    Science.gov (United States)

    Fang, Shaofan; Li, Guangshe; Li, Huixia; Lu, Yantong; Li, Liping

    2018-04-12

    The application of lead halide perovskite nanocrystals is challenged by the lack of strategies in rapid room-temperature synthesis with controlled morphologies. Here, we report on an initial study of adopting organic titanates as a model activator that promotes rapid room-temperature synthesis of shape-controlled, highly luminescent CsPbBr3 nanocrystals and their derivatives.

  7. Intelligent control of liquid transfer for the automated synthesis of positron emitting radiopharmaceuticals

    International Nuclear Information System (INIS)

    Iwata, Ren; Ido, Tatsuo; Yamazaki, Shigeki

    1990-01-01

    A method for the intelligent control of liquid transfer, developed for automated synthesis of 2-deoxy-2-[ 18 F]fluoro-D-glucose from [ 18 F]fluoride, is described. A thermal mass flow controller coupled to a personal computer is used to monitor conditions for transferring or passing liquid through a tube or a column. Using this sensor a computer can detect completion of liquid transfer, dispense a stock solution and check the setup conditions of the system. The present feedback control can be readily adapted to other automated syntheses of positron emitting radiopharmaceuticals. (author)

  8. Influence of metronidazole on the survival rate of whole-body irradiated mice and on the DNA repair synthesis of lymphocytes

    International Nuclear Information System (INIS)

    Magdon, E.; Schroeder, E.

    1978-01-01

    With reference to literature reports the effect of Metronidazole [1-(hydroxyethyl)-5-nitro-2-methyl-imidazole] on the survival rate of C 3 H inbred mice following whole-body doses ranging from 5 to 15 Gy was determined under oxic and hypoxic conditions. Ehrlich ascites tumor cells were used to study the influence of Metronidazole on radiation-induced alterations of the DNA sedimentation behavior in the alkaline sucrose gradient under oxic conditions in vitro. The effect of Metronidazole on the semiconservative DNA synthesis was investigated under oxic and hypoxic conditions in Ehrlich ascites carcinoma cells and L5178Y lymphoma cells. Furthermore, it was examined whether the radiation-induced inhibition of semiconservative DNA synthesis in L5178Y lymphoma cells and the radiation-induced repair synthesis in lymphocytes is influenced by Metronidazole. From the values of the LDsub(50/30) after whole-body irradiation a sensitilization factor of 1.3 was derived for Metronidazole under hypoxic conditions. Under atmospheric conditions an increase of the radiation effect by a factor of 1.1 was obtained. The protective factor of hypoxia was 1.6 and thus greater than the radiosensibilization caused by Metronidazole. The DNA synthesis was slightly inhibited by Metronidazole under both hypoxic and euoxic conditions. The studies revealed no significant influence of Metronidazole on radiation-induced changes of the DNA sedimentation behavior and of the DNA repair synthesis as well as on the radiation induced inhibition of semiconservative DNA synthesis. (author)

  9. Synthesis of Ag nanocubes 18-32 nm in edge length: the effects of polyol on reduction kinetics, size control, and reproducibility.

    Science.gov (United States)

    Wang, Yi; Zheng, Yiqun; Huang, Cheng Zhi; Xia, Younan

    2013-02-06

    This article describes a robust method for the facile synthesis of small Ag nanocubes with edge lengths controlled in the range of 18-32 nm. The success of this new method relies on the substitution of ethylene glycol (EG)--the solvent most commonly used in a polyol synthesis--with diethylene glycol (DEG). Owing to the increase in hydrocarbon chain length, DEG possesses a higher viscosity and a lower reducing power relative to EG. As a result, we were able to achieve a nucleation burst in the early stage to generate a large number of seeds and a relatively slow growth rate thereafter; both factors were critical to the formation of Ag nanocubes with small sizes and in high purity (>95%). The edge length of the Ag nanocubes could be easily tailored in the range of 18-32 nm by quenching the reaction at different time points. For the first time, we were able to produce uniform sub-20 nm Ag nanocubes in a hydrophilic medium and on a scale of ∼20 mg per batch. It is also worth pointing out that the present protocol was remarkably robust, showing good reproducibility between different batches and even for DEGs obtained from different vendors. Our results suggest that the high sensitivity of synthesis outcomes to the trace amounts of impurities in a polyol, a major issue for reproducibility and scale up synthesis, did not exist in the present system.

  10. Size-controlled synthesis of gold bipyramids using an aqueous mixture of CTAC and salicylate anions as the soft template.

    Science.gov (United States)

    Yoo, Hyojong; Jang, Min Hoon

    2013-08-07

    One-dimensional (1D) gold (Au) bipyramids are successfully synthesized through a facile seed-mediated method using cetyltrimethylammonium chloride (CTAC), Au seed nanoparticles, Ag(+) ions, and ascorbic acid. The length and optical properties of the synthesized Au bipyramids are controlled with precision by varying the amount of salicylate anions (Sal(-)) added during the synthesis. The micelles formed from CTA(+)-Sal(-) mixtures in aqueous solutions act as effective templates for the size-controlled synthesis of 1D nanocrystals.

  11. Study of the Reaction Rate of Gold Nanotube Synthesis from Sacrificial Silver Nanorods through the Galvanic Replacement Method

    Directory of Open Access Journals (Sweden)

    Sunil Kwon

    2010-01-01

    Full Text Available An investigation was carried out about the gold nanotube synthesis via a galvanic replacement reaction. The progress of the gold nanotube synthesis was investigated using electron microscopy and UV-Vis spectroscopy. In addition, the reaction rates of gold nanotube formation in the early stage of the reaction were studied. The chlorine ion concentration linearly increased with the gold precursor concentration but deviated from the stoichiometric amounts. This deviation was probably due to AgCl precipitates formed by the reaction of chlorine ions with dissolved silver ions. The replacement reaction was promoted with increased temperature and was nonlinearly proportional to the gold ion concentration. The outcomes of this research will enhance the current understanding of the galvanic replacement reaction.

  12. Prodigious Effects of Concentration Intensification on Nanoparticle Synthesis: A High-Quality, Scalable Approach

    KAUST Repository

    Williamson, Curtis B.

    2015-12-23

    © 2015 American Chemical Society. Realizing the promise of nanoparticle-based technologies demands more efficient, robust synthesis methods (i.e., process intensification) that consistently produce large quantities of high-quality nanoparticles (NPs). We explored NP synthesis via the heat-up method in a regime of previously unexplored high concentrations near the solubility limit of the precursors. We discovered that in this highly concentrated and viscous regime the NP synthesis parameters are less sensitive to experimental variability and thereby provide a robust, scalable, and size-focusing NP synthesis. Specifically, we synthesize high-quality metal sulfide NPs (<7% relative standard deviation for Cu2-xS and CdS), and demonstrate a 10-1000-fold increase in Cu2-xS NP production (>200 g) relative to the current field of large-scale (0.1-5 g yields) and laboratory-scale (<0.1 g) efforts. Compared to conventional synthesis methods (hot injection with dilute precursor concentration) characterized by rapid growth and low yield, our highly concentrated NP system supplies remarkably controlled growth rates and a 10-fold increase in NP volumetric production capacity (86 g/L). The controlled growth, high yield, and robust nature of highly concentrated solutions can facilitate large-scale nanomanufacturing of NPs by relaxing the synthesis requirements to achieve monodisperse products. Mechanistically, our investigation of the thermal and rheological properties and growth rates reveals that this high concentration regime has reduced mass diffusion (a 5-fold increase in solution viscosity), is stable to thermal perturbations (64% increase in heat capacity), and is resistant to Ostwald ripening.

  13. Coronavirus minus-strand RNA synthesis and effect of cycloheximide on coronavirus RNA synthesis

    International Nuclear Information System (INIS)

    Sawicki, S.G.; Sawicki, D.L.

    1986-01-01

    The temporal sequence of coronavirus plus-strand and minus-strand RNA synthesis was determined in 17CL1 cells infected with the A59 strain of mouse hepatitis virus (MHV). MHV-induced fusion was prevented by keeping the pH of the medium below pH 6.8. This had no effect on the MHV replication cycle, but gave 5- to 10-fold-greater titers of infectious virus and delayed the detachment of cells from the monolayer which permitted viral RNA synthesis to be studied conveniently until at least 10 h postinfection. Seven species of poly(A)-containing viral RNAs were synthesized at early and late times infection, in nonequal but constant ratios. MHV minus-strand RNA synthesis was first detected at about 3 h after infection and was found exclusively in the viral replicative intermediates and was not detected in 60S single-stranded form in infected cells. Early in the replication cycle, from 45 to 65% of the [ 3 H]uridine pulse-labeled RF core of purified MHV replicative intermediates was in minus-strand RNA. The rate of minus-strand synthesis peaked at 5 to 6 h postinfection and then declined to about 20% of the maximum rate. The addition of cycloheximide before 3 h postinfection prevented viral RNA synthesis, whereas the addition of cycloheximide after viral RNA synthesis had begun resulted in the inhibition of viral RNA synthesis. The synthesis of both genome and subgenomic mRNAs and of viral minus strands required continued protein synthesis, and minis-strand RNA synthesis was three- to fourfold more sensitive to inhibition of cycloheximide than was plus-strand synthesis

  14. Insights in the Diffusion Controlled Interfacial Flow Synthesis of Au Nanostructures in a Microfluidic System.

    Science.gov (United States)

    Kulkarni, Amol A; Sebastian Cabeza, Victor

    2017-12-19

    Continuous segmented flow interfacial synthesis of Au nanostructures is demonstrated in a microchannel reactor. This study brings new insights into the growth of nanostructures at continuous interfaces. The size as well as the shape of the nanostructures showed significant dependence on the reactant concentrations, reaction time, temperature, and surface tension, which actually controlled the interfacial mass transfer. The microchannel reactor assisted in achieving a high interfacial area, as well as uniformity in mass transfer effects. Hexagonal nanostructures were seen to be formed in synthesis times as short as 10 min. The wettability of the channel showed significant effect on the particle size as well as the actual shape. The hydrophobic channel yielded hexagonal structures of relatively smaller size than the hydrophilic microchannel, which yielded sharp hexagonal bipyramidal particles (diagonal distance of 30 nm). The evolution of particle size and shape for the case of hydrophilic microchannel is also shown as a function of the residence time. The interfacial synthesis approach based on a stable segmented flow promoted an excellent control on the reaction extent, reduction in axial dispersion as well as the particle size distribution.

  15. Control Synthesis of Discrete-Time T-S Fuzzy Systems via a Multi-Instant Homogenous Polynomial Approach.

    Science.gov (United States)

    Xie, Xiangpeng; Yue, Dong; Zhang, Huaguang; Xue, Yusheng

    2016-03-01

    This paper deals with the problem of control synthesis of discrete-time Takagi-Sugeno fuzzy systems by employing a novel multiinstant homogenous polynomial approach. A new multiinstant fuzzy control scheme and a new class of fuzzy Lyapunov functions, which are homogenous polynomially parameter-dependent on both the current-time normalized fuzzy weighting functions and the past-time normalized fuzzy weighting functions, are proposed for implementing the object of relaxed control synthesis. Then, relaxed stabilization conditions are derived with less conservatism than existing ones. Furthermore, the relaxation quality of obtained stabilization conditions is further ameliorated by developing an efficient slack variable approach, which presents a multipolynomial dependence on the normalized fuzzy weighting functions at the current and past instants of time. Two simulation examples are given to demonstrate the effectiveness and benefits of the results developed in this paper.

  16. Both basal and post-prandial muscle protein synthesis rates, following the ingestion of a leucine-enriched whey protein supplement, are not impaired in sarcopenic older males.

    Science.gov (United States)

    Kramer, Irene Fleur; Verdijk, Lex B; Hamer, Henrike M; Verlaan, Sjors; Luiking, Yvette C; Kouw, Imre W K; Senden, Joan M; van Kranenburg, Janneau; Gijsen, Annemarie P; Bierau, Jörgen; Poeze, Martijn; van Loon, Luc J C

    2017-10-01

    Studying the muscle protein synthetic response to food intake in elderly is important, as it aids the development of interventions to combat sarcopenia. Although sarcopenic elderly are the target group for many of these nutritional interventions, no studies have assessed basal or post-prandial muscle protein synthesis rates in this population. To assess the basal and post-prandial muscle protein synthesis rates between healthy and sarcopenic older men. A total of 15 healthy (69 ± 1 y) and 15 sarcopenic (81 ± 1 y) older men ingested a leucine-enriched whey protein nutritional supplement containing 21 g of protein, 9 g of carbohydrate, and 3 g of fat. Stable isotope methodology combined with frequent collection of blood and muscle samples was applied to assess basal and post-prandial muscle protein fractional synthetic rates. Handgrip strength, muscle mass, and gait speed were assessed to identify sarcopenia, according to international criteria. Basal mixed muscle protein fractional synthetic rates (FSR) averaged 0.040 ± 0.005 and 0.032 ± 0.003%/h (mean ± SEM) in the sarcopenic and healthy group, respectively (P = 0.14). Following protein ingestion, FSR increased significantly to 0.055 ± 0.004 and 0.053 ± 0.004%/h in the post-prandial period in the sarcopenic (P = 0.003) and healthy groups (P protein synthesis rates during the early (0.058 ± 0.007 vs 0.060 ± 0.008%/h, sarcopenic vs healthy, respectively) and late (0.052 ± 0.004 vs 0.048 ± 0.003%/h) stages of the post-prandial period (P = 0.93 and P = 0.34, respectively). Basal muscle protein synthesis rates are not lower in sarcopenic older men compared to healthy older men. The ingestion of 21 g of a leucine-enriched whey protein effectively increases muscle protein synthesis rates in both sarcopenic and healthy older men. Public trial registry number: NTR3047. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights

  17. Spatially controlled synthesis of silver nanoparticles and nanowires by photosensitized reduction

    Energy Technology Data Exchange (ETDEWEB)

    Jradi, S; Zeng, X H; Plain, J; Royer, P; Bachelot, R; Akil, S [Laboratoire de Nanotechnologie et d' Instrumentation Optique, ICD CNRS FRE 2848, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060, 10010 Troyes (France); Balan, L; Lougnot, D J; Soppera, O; Vidal, L, E-mail: lavinia.balan@uha.fr [Institut de Science des Materiaux de Mulhouse CNRS LRC 7228, 15 rue Jean Starcky, 68057 Mulhouse (France)

    2010-03-05

    The present paper reports on the spatially controlled synthesis of silver nanoparticles (NPs) and silver nanowires by photosensitized reduction. In a first approach, direct photogeneration of silver NPs at the end of an optical fiber was carried out. Control of both size and density of silver NPs was possible by changing the photonic conditions. In a further development, a photochemically assisted procedure allowing silver to be deposited at the surface of a polymer microtip was implemented. Finally, polymer tips terminated by silver nanowires were fabricated by simultaneous photopolymerization and silver photoreduction. The silver NPs were characterized by UV-visible spectroscopy and scanning electron microscopy.

  18. Cell-specific monitoring of protein synthesis in vivo.

    Directory of Open Access Journals (Sweden)

    Nikos Kourtis

    Full Text Available Analysis of general and specific protein synthesis provides important information, relevant to cellular physiology and function. However, existing methodologies, involving metabolic labelling by incorporation of radioactive amino acids into nascent polypeptides, cannot be applied to monitor protein synthesis in specific cells or tissues, in live specimens. We have developed a novel approach for monitoring protein synthesis in specific cells or tissues, in vivo. Fluorescent reporter proteins such as GFP are expressed in specific cells and tissues of interest or throughout animals using appropriate promoters. Protein synthesis rates are assessed by following fluorescence recovery after partial photobleaching of the fluorophore at targeted sites. We evaluate the method by examining protein synthesis rates in diverse cell types of live, wild type or mRNA translation-defective Caenorhabditis elegans animals. Because it is non-invasive, our approach allows monitoring of protein synthesis in single cells or tissues with intrinsically different protein synthesis rates. Furthermore, it can be readily implemented in other organisms or cell culture systems.

  19. Sound Synthesis of the Harpsichord Using a Computationally Efficient Physical Model

    OpenAIRE

    Vesa Välimäki; Henri Penttinen; Mikael Laurson; Jonte Knif; Cumhur Erkut

    2004-01-01

    A sound synthesis algorithm for the harpsichord has been developed by applying the principles of digital waveguide modeling. A modification to the loss filter of the string model is introduced that allows more flexible control of decay rates of partials than is possible with a one-pole digital filter, which is a usual choice for the loss filter. A version of the commuted waveguide synthesis approach is used, where each tone is generated with a parallel combination of the string model and a s...

  20. Shape-Controlled Synthesis of High-Quality Cu7 S4 Nanocrystals for Efficient Light-Induced Water Evaporation.

    Science.gov (United States)

    Zhang, Changbo; Yan, Cong; Xue, Zhenjie; Yu, Wei; Xie, Yinde; Wang, Tie

    2016-10-01

    Copper sulfides (Cu 2-x S), are a novel kind of photothermal material exhibiting significant photothermal conversion efficiency, making them very attractive in various energy conversion related devices. Preparing high quality uniform Cu 2-x S nanocrystals (NCs) is a top priority for further energy-and sustainability relevant nanodevices. Here, a shape-controlled high quality Cu 7 S 4 NCs synthesis strategy is reported using sulfur in 1-octadecene as precursor by varying the heating temperature, as well as its forming mechanism. The performance of the Cu 7 S 4 NCs is further explored for light-driven water evaporation without the need of heating the bulk liquid to the boiling point, and the results suggest that as-synthesized highly monodisperse NCs perform higher evaporation rate than polydisperse NCs under the identical morphology. Furthermore, disk-like NCs exhibit higher water evaporation rate than spherical NCs. The water evaporation rate can be further enhanced by assembling the organic phase Cu 7 S 4 NCs into a dense film on the aqueous solution surface. The maximum photothermal conversion efficiency is as high as 77.1%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Controllable synthesis and enhanced photocatalytic properties of Cu2O/Cu31S16 composites

    International Nuclear Information System (INIS)

    Liu, Xueqin; Li, Zhen; Zhang, Qiang; Li, Fei

    2012-01-01

    Highlights: ► Facile sonochemical route. ► The content of Cu 31 S 16 in the Cu 2 O/Cu 31 S 16 can be easily controlled. ► Structure and optical properties of Cu 2 O/Cu 31 S 16 were discussed. ► Enhanced photocatalytic property of Cu 2 O/Cu 31 S 16 . ► Cu 2 O/Cu 31 S 16 core/shell structures were more stable than single Cu 2 O particles. -- Abstract: The controlled synthesis of Cu 2 O/Cu 31 S 16 microcomposites with hierarchical structures had been prepared via a convenient sonochemical route. Ultrasonic irradiation of a mixture of Cu 2 O and (NH 2 ) 2 CS in an aqueous medium yielded Cu 2 O/Cu 31 S 16 composites. The content of Cu 31 S 16 in the Cu 2 O/Cu 31 S 16 can be easily controlled by adjusting the synthesis time. The Cu 31 S 16 layer not only protected and stabilized Cu 2 O particles, but also prohibited the recombination of photogenerated electrons–holes pair between Cu 31 S 16 and Cu 2 O. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) spectra, ultraviolet–visible (UV–Vis) spectroscopy and photoluminescence (PL) spectroscopy were used to characterize the products. Photocatalytic performance of the Cu 2 O/Cu 31 S 16 hierarchical structures was evaluated by measuring the decomposition rate of methyl orange solution under natural light. To the best of our knowledge, this is the first report on the preparation and photocatalytic activity of Cu 2 O/Cu 31 S 16 microcomposite. Additionally, the Cu 2 O/Cu 31 S 16 core/shell structures were more stable than single Cu 2 O particles during photocatalytic process since the photocatalytic activity of the second reused architecture sample was much higher than that of pure Cu 2 O. The Cu 2 O/Cu 31 S 16 microcomposites may be a good promising candidate for wastewater treatment.

  2. Tailored fatty acid synthesis via dynamic control of fatty acid elongation

    Energy Technology Data Exchange (ETDEWEB)

    Torella, JP; Ford, TJ; Kim, SN; Chen, AM; Way, JC; Silver, PA

    2013-07-09

    Medium-chain fatty acids (MCFAs, 4-12 carbons) are valuable as precursors to industrial chemicals and biofuels, but are not canonical products of microbial fatty acid synthesis. We engineered microbial production of the full range of even-and odd-chain-length MCFAs and found that MCFA production is limited by rapid, irreversible elongation of their acyl-ACP precursors. To address this limitation, we programmed an essential ketoacyl synthase to degrade in response to a chemical inducer, thereby slowing acyl-ACP elongation and redirecting flux from phospholipid synthesis to MCFA production. Our results show that induced protein degradation can be used to dynamically alter metabolic flux, and thereby increase the yield of a desired compound. The strategy reported herein should be widely useful in a range of metabolic engineering applications in which essential enzymes divert flux away from a desired product, as well as in the production of polyketides, bioplastics, and other recursively synthesized hydrocarbons for which chain-length control is desired.

  3. Tailored fatty acid synthesis via dynamic control of fatty acid elongation

    Science.gov (United States)

    Torella, Joseph P.; Ford, Tyler J.; Kim, Scott N.; Chen, Amanda M.; Way, Jeffrey C.; Silver, Pamela A.

    2013-01-01

    Medium-chain fatty acids (MCFAs, 4–12 carbons) are valuable as precursors to industrial chemicals and biofuels, but are not canonical products of microbial fatty acid synthesis. We engineered microbial production of the full range of even- and odd-chain–length MCFAs and found that MCFA production is limited by rapid, irreversible elongation of their acyl-ACP precursors. To address this limitation, we programmed an essential ketoacyl synthase to degrade in response to a chemical inducer, thereby slowing acyl-ACP elongation and redirecting flux from phospholipid synthesis to MCFA production. Our results show that induced protein degradation can be used to dynamically alter metabolic flux, and thereby increase the yield of a desired compound. The strategy reported herein should be widely useful in a range of metabolic engineering applications in which essential enzymes divert flux away from a desired product, as well as in the production of polyketides, bioplastics, and other recursively synthesized hydrocarbons for which chain-length control is desired. PMID:23798438

  4. Synthesis of SnO2 nanoparticles through the controlled precipitation route

    International Nuclear Information System (INIS)

    Ibarguen, C. Ararat; Mosquera, A.; Parra, R.; Castro, M.S.; Rodriguez-Paez, J.E.

    2007-01-01

    The controlled precipitation method allowed to the synthesis of SnO 2 with advantageous specific properties, such as size and shape employing an aqueous SnCl 2 .2H 2 O solution as precursor. Through XRD analyses, the optimum pH value of the solution that yielded the desired product was found to be 6.25. After a thermal treatment at 600 deg. C, the final powder presented an average particle size below 50 nm with a surface area of 19 m 2 g -1 and a large reactivity. The evolution of the most important functional groups during the steps involved in this synthesis route is explained in view of the results obtained with FTIR and XRD. A thorough discussion on the different intermediates involved in the whole process is presented on the basis of hydrolysis and condensation reactions. The conclusions are supported with a complete characterization through differential and gravimetric thermal analysis (DTA/TGA), electron microscopies (SEM/TEM) and surface area determinations (BET)

  5. Synthesis of state observer and nonlinear output feedback controller design of AC machines

    International Nuclear Information System (INIS)

    Al-Tahir, Ali Abdul Razzaq

    2016-01-01

    The research work developed in this thesis has been mainly devoted to the observation and sensor-less control problems of electrical systems. Three major contributions have been carried out using the high - gain concept and output feedback adaptive nonlinear control for online UPS. In this thesis, we dealt with synthesis of sampled high - gain observers for nonlinear systems application to PMSMs and DFIGs. We particularly focus on two constraints: sampling effect and tracking unmeasured mechanical and magnetic state variables. The first contribution consists in a high gain observer design that performs a relatively accurate estimation of both mechanical and magnetic state variable using the available measurements on stator currents and voltages of PMSM. We propose a global exponential observer having state predictor for a class of nonlinear globally Lipschitz system. In second contribution, we proposed a novel non - standard HGO design for non-injective feedback relation application to variable speed DFIG based WPGS. Meanwhile, a reduced system model is analyzed, provided by observability test to check is it possible synthesis state observer for sensor-less control. In last contribution, an adaptive observer for states and parameters estimation are designed for a class of state - affine systems application to output feedback adaptive nonlinear control of three-phase AC/DC boost power converter for online UPS systems. Basically, the problem focused on cascade nonlinear adaptive controller that is developed making use Lyapunov theory. The parameters uncertainties are processed by the practical control laws under back-stepping design techniques with capacity of adaptation. (author)

  6. Amino acids augment muscle protein synthesis in neonatal pigs during acute endotoxemia by stimulating mTOR-dependent translation initiation.

    Science.gov (United States)

    Orellana, Renán A; Jeyapalan, Asumthia; Escobar, Jeffery; Frank, Jason W; Nguyen, Hanh V; Suryawan, Agus; Davis, Teresa A

    2007-11-01

    In skeletal muscle of adults, sepsis reduces protein synthesis by depressing translation initiation and induces resistance to branched-chain amino acid stimulation. Normal neonates maintain a high basal muscle protein synthesis rate that is sensitive to amino acid stimulation. In the present study, we determined the effect of amino acids on protein synthesis in skeletal muscle and other tissues in septic neonates. Overnight-fasted neonatal pigs were infused with endotoxin (LPS, 0 and 10 microg.kg(-1).h(-1)), whereas glucose and insulin were maintained at fasting levels; amino acids were clamped at fasting or fed levels. In the presence of fasting insulin and amino acids, LPS reduced protein synthesis in longissimus dorsi (LD) and gastrocnemius muscles and increased protein synthesis in the diaphragm, but had no effect in masseter and heart muscles. Increasing amino acids to fed levels accelerated muscle protein synthesis in LD, gastrocnemius, masseter, and diaphragm. LPS stimulated protein synthesis in liver, lung, spleen, pancreas, and kidney in fasted animals. Raising amino acids to fed levels increased protein synthesis in liver of controls, but not LPS-treated animals. The increase in muscle protein synthesis in response to amino acids was associated with increased mTOR, 4E-BP1, and S6K1 phosphorylation and eIF4G-eIF4E association in control and LPS-infused animals. These findings suggest that amino acids stimulate skeletal muscle protein synthesis during acute endotoxemia via mTOR-dependent ribosomal assembly despite reduced basal protein synthesis rates in neonatal pigs. However, provision of amino acids does not further enhance the LPS-induced increase in liver protein synthesis.

  7. TEM and EELS studies of microwave-irradiation synthesis of bimetallic platinum nanocatalysts

    International Nuclear Information System (INIS)

    Mathe, N R; Scriba, M R; Coville, N J; Olivier, J E

    2014-01-01

    Microwave-irradiation (MW) synthesis of nanostructured materials provides for the synthesis of metal nanoparticles, using fast and uniform heating rates. This procedure affords better control of the shape and size of the nanoparticles when compared to conventional methods. In this work, microwave-irradiation was used to produce platinum-cobalt (Pt-Co) and platinum-nickel (Pt-Ni) nanoparticles for use as electrocatalysts in the methanol oxidation reaction. High resolution TEM imaging and EELS studies revealed that these bimetallic nanoparticles form islands or hetero-structures

  8. The Regulatory Networks That Control Clostridium difficile Toxin Synthesis

    Science.gov (United States)

    Martin-Verstraete, Isabelle; Peltier, Johann; Dupuy, Bruno

    2016-01-01

    The pathogenic clostridia cause many human and animal diseases, which typically arise as a consequence of the production of potent exotoxins. Among the enterotoxic clostridia, Clostridium difficile is the main causative agent of nosocomial intestinal infections in adults with a compromised gut microbiota caused by antibiotic treatment. The symptoms of C. difficile infection are essentially caused by the production of two exotoxins: TcdA and TcdB. Moreover, for severe forms of disease, the spectrum of diseases caused by C. difficile has also been correlated to the levels of toxins that are produced during host infection. This observation strengthened the idea that the regulation of toxin synthesis is an important part of C. difficile pathogenesis. This review summarizes our current knowledge about the regulators and sigma factors that have been reported to control toxin gene expression in response to several environmental signals and stresses, including the availability of certain carbon sources and amino acids, or to signaling molecules, such as the autoinducing peptides of quorum sensing systems. The overlapping regulation of key metabolic pathways and toxin synthesis strongly suggests that toxin production is a complex response that is triggered by bacteria in response to particular states of nutrient availability during infection. PMID:27187475

  9. Evolutionary Sound Synthesis Controlled by Gestural Data

    Directory of Open Access Journals (Sweden)

    Jose Fornari

    2011-05-01

    Full Text Available This article focuses on the interdisciplinary research involving Computer Music and Generative Visual Art. We describe the implementation of two interactive artistic systems based on principles of Gestural Data (WILSON, 2002 retrieval and self-organization (MORONI, 2003, to control an Evolutionary Sound Synthesis method (ESSynth. The first implementation uses, as gestural data, image mapping of handmade drawings. The second one uses gestural data from dynamic body movements of dance. The resulting computer output is generated by an interactive system implemented in Pure Data (PD. This system uses principles of Evolutionary Computation (EC, which yields the generation of a synthetic adaptive population of sound objects. Considering that music could be seen as “organized sound” the contribution of our study is to develop a system that aims to generate "self-organized sound" – a method that uses evolutionary computation to bridge between gesture, sound and music.

  10. Effect of inhibition of protein synthesis on the development of thermotolerance

    International Nuclear Information System (INIS)

    Chang, P.Y.; Blakely, E.A.; Gonzalez-Flores, I.

    1986-01-01

    The authors have chosen to use a temperature-sensitive mutant line, CHO-TSH1, which shuts down protein synthesis at nonpermissive temperatures of 40 0 C and above by the inactivation of its cytoplasmic nonmitochondrial leucyl-transfer RNA (t-RNA) synthetase enzyme. The parent cell line, CHO-SC1, was used as the control for these experiments. Exponentially growing, asynchronous CHO-TSH1 and CHO-SC1 cell populations were treated for times up to 8 hours at 41.5 0 C, 42 0 C, and 42.5 0 C. The wild-type cells showed the development of tolerance to heat killing at 41.5 0 C, 42 0 C, and possibly at 42.5 0 C, although the survival level at which tolerance developed at 42.5 0 C was too low to be statistically significant. The CHO-TSH1 mutant cell showed no tolerance at any of those temperatures. The rate of total protein synthesis was measured in both cell lines in pulse-labeling experiments with 3 H-leucine under the conditions of the experiment. Results indicated that the rate of synthesis dropped precipitously within the initial hour of exposure to 42 0 C and remained low during the 3 hours of 42 0 C treatment. When each cell line was returned to 35 0 C after the 3-hour treatment at 42 0 C, protein synthesis immediately resumed and eventually returned to control levels after 7 hours at 35 0 C

  11. Visual Perception Based Rate Control Algorithm for HEVC

    Science.gov (United States)

    Feng, Zeqi; Liu, PengYu; Jia, Kebin

    2018-01-01

    For HEVC, rate control is an indispensably important video coding technology to alleviate the contradiction between video quality and the limited encoding resources during video communication. However, the rate control benchmark algorithm of HEVC ignores subjective visual perception. For key focus regions, bit allocation of LCU is not ideal and subjective quality is unsatisfied. In this paper, a visual perception based rate control algorithm for HEVC is proposed. First bit allocation weight of LCU level is optimized based on the visual perception of luminance and motion to ameliorate video subjective quality. Then λ and QP are adjusted in combination with the bit allocation weight to improve rate distortion performance. Experimental results show that the proposed algorithm reduces average 0.5% BD-BR and maximum 1.09% BD-BR at no cost in bitrate accuracy compared with HEVC (HM15.0). The proposed algorithm devotes to improving video subjective quality under various video applications.

  12. Exercise, Insulin Absorption Rates, and Artificial Pancreas Control

    Science.gov (United States)

    Frank, Spencer; Hinshaw, Ling; Basu, Rita; Basu, Ananda; Szeri, Andrew J.

    2016-11-01

    Type 1 Diabetes is characterized by an inability of a person to endogenously produce the hormone insulin. Because of this, insulin must be injected - usually subcutaneously. The size of the injected dose and the rate at which the dose reaches the circulatory system have a profound effect on the ability to control glucose excursions, and therefore control of diabetes. However, insulin absorption rates via subcutaneous injection are variable and depend on a number of factors including tissue perfusion, physical activity (vasodilation, increased capillary throughput), and other tissue geometric and physical properties. Exercise may also have a sizeable effect on the rate of insulin absorption, which can potentially lead to dangerous glucose levels. Insulin-dosing algorithms, as implemented in an artificial pancreas controller, should account accurately for absorption rate variability and exercise effects on insulin absorption. The aforementioned factors affecting insulin absorption will be discussed within the context of both fluid mechanics and data driven modeling approaches.

  13. Hypersonic vehicle model and control law development using H(infinity) and micron synthesis

    Science.gov (United States)

    Gregory, Irene M.; Chowdhry, Rajiv S.; Mcminn, John D.; Shaughnessy, John D.

    1994-01-01

    The control system design for a Single Stage To Orbit (SSTO) air breathing vehicle will be central to a successful mission because a precise ascent trajectory will preserve narrow payload margins. The air breathing propulsion system requires the vehicle to fly roughly halfway around the Earth through atmospheric turbulence. The turbulence, the high sensitivity of the propulsion system to inlet flow conditions, the relatively large uncertainty of the parameters characterizing the vehicle, and continuous acceleration make the problem especially challenging. Adequate stability margins must be provided without sacrificing payload mass since payload margins are critical. Therefore, a multivariable control theory capable of explicitly including both uncertainty and performance is needed. The H(infinity) controller in general provides good robustness but can result in conservative solutions for practical problems involving structured uncertainty. Structured singular value mu framework for analysis and synthesis is potentially much less conservative and hence more appropriate for problems with tight margins. An SSTO control system requires: highly accurate tracking of velocity and altitude commands while limiting angle-of-attack oscillations, minimized control power usage, and a stabilized vehicle when atmospheric turbulence and system uncertainty are present. The controller designs using H(infinity) and mu-synthesis procedures were compared. An integrated flight/propulsion dynamic mathematical model of a conical accelerator vehicle was linearized as the vehicle accelerated through Mach 8. Vehicle acceleration through the selected flight condition gives rise to parametric variation that was modeled as a structured uncertainty. The mu-analysis approach was used in the frequency domain to conduct controller analysis and was confirmed by time history plots. Results demonstrate the inherent advantages of the mu framework for this class of problems.

  14. INFLUENCE OF THE ISOBUTENE METHANOL RATIO AND OF THE METHYL TERT-BUTYL ETHER CONTENT ON THE REACTION-RATE OF THE SYNTHESIS OF METHYL TERT-BUTYL ETHER

    NARCIS (Netherlands)

    PANNEMAN, HJ; BEENACKERS, AACM

    1995-01-01

    The forward reaction rate constant of the MtBE synthesis was determined for different reaction mixture compositions. The forward rate constant decreases continuously with increasing isobutene/methanol ratio, while an increase in reaction rate constant is observed with an increasing amount of MtBE in

  15. Synthesis of Ag Nanocubes 18–32 nm in Edge Length: The Effects of Polyol on Reduction Kinetics, Size Control, and Reproducibility

    Science.gov (United States)

    Wang, Yi; Zheng, Yiqun; Huang, Cheng Zhi; Xia, Younan

    2013-01-01

    This article describes a robust method for the facile synthesis of small Ag nanocubes with edge lengths controlled in the range of 18–32 nm. The success of this new method relies on the substitution of ethylene glycol (EG) -- the solvent most commonly used in a polyol synthesis -- with diethylene glycol (DEG). Owing to the increase in hydrocarbon chain length, DEG possesses a higher viscosity and a lower reducing power relative to EG. As a result, we were able to achieve a nucleation burst in the early stage to generate a large number of seeds and a relatively slow growth rate thereafter; both factors were critical to the formation of Ag nanocubes with small sizes and in high purity (>95%). The edge length of the Ag nanocubes could be easily tailored in the range of 18–32 nm by quenching the reaction at different time points. For the first time, we were able to produce uniform sub-20 nm Ag nanocubes in a hydrophilic medium and on a scale of ~20 mg per batch. It is also worth pointing out that the present protocol was remarkably robust, showing good reproducibility between different batches and even for DEGs obtained from different vendors. Our results suggest that the high sensitivity of synthesis outcomes to the trace amounts of impurities in a polyol, a major issue for reproducibility and scale up synthesis, did not exist in the present system. PMID:23317148

  16. Processing of hydroxyapatite obtained by combustion synthesis

    International Nuclear Information System (INIS)

    Canillas, M.; Rivero, R.; García-Carrodeguas, R.; Barba, F.; Rodríguez, M.A.

    2017-01-01

    One of the reasons of implants failure are the stress forces appearing in the material–tissue interface due to the differences between their mechanical properties. For this reason, similar mechanical properties to the surrounding tissue are desirable. The synthesis of hydroxyapatite by solution combustion method and its processing have been studied in order to obtain fully dense ceramic bodies with improved mechanical strength. Combustion synthesis provides nanostructured powders characterized by a high surface area to facilitate the following sintering. Moreover, synthesis was conducted in aqueous and oxidizing media. Oxidizing media improve homogenization and increase the energy released during combustion. It gives rise to particles whose morphology and size suggest lower surface energies compared with aqueous media. The obtained powders were sintered by using a controlled sintering rate schedule. Lower surfaces energies minimize the shrinkage during sintering and relative densities measurements and diametral compression test confirm improved densification and consequently mechanical properties. [es

  17. Processing of hydroxyapatite obtained by combustion synthesis

    Directory of Open Access Journals (Sweden)

    M. Canillas

    2017-09-01

    Full Text Available One of the reasons of implants failure are the stress forces appearing in the material–tissue interface due to the differences between their mechanical properties. For this reason, similar mechanical properties to the surrounding tissue are desirable. The synthesis of hydroxyapatite by solution combustion method and its processing have been studied in order to obtain fully dense ceramic bodies with improved mechanical strength. Combustion synthesis provides nanostructured powders characterized by a high surface area to facilitate the following sintering. Moreover, synthesis was conducted in aqueous and oxidizing media. Oxidizing media improve homogenization and increase the energy released during combustion. It gives rise to particles whose morphology and size suggest lower surface energies compared with aqueous media. The obtained powders were sintered by using a controlled sintering rate schedule. Lower surfaces energies minimize the shrinkage during sintering and relative densities measurements and diametral compression test confirm improved densification and consequently mechanical properties.

  18. Shape-controlled synthesis of nanocarbons through direct conversion of carbon dioxide

    Science.gov (United States)

    Zhang, Haitao; Zhang, Xiong; Sun, Xianzhong; Ma, Yanwei

    2013-12-01

    Morphology control of carbon-based nanomaterials (nanocarbons) is critical to practical applications because their physical and chemical properties are highly shape-dependent. The discovery of novel shaped nanocarbons stimulates new development in carbon science and technology. Based on direct reaction of CO2 with Mg metal, we achieved controlled synthesis of several different types of nanocarbons including mesoporous graphene, carbon nanotubes, and hollow carbon nanoboxes. The last one, to our knowledge, has not been previously reported to this date. The method described here allows effective control of the shape and dimensions of nanocarbons through manipulation of reaction temperature. The formation mechanism of nanocarbons is proposed. As a proof of concept, the synthesized nanocarbons are used for electrodes in symmetrical supercapacitors, which exhibit high capacitance and good cycling stability. The reported protocols are instructive to production of nanocarbons with controlled shape and dimensions which are much desirable for many practical applications.

  19. Monotonicity of fitness landscapes and mutation rate control.

    Science.gov (United States)

    Belavkin, Roman V; Channon, Alastair; Aston, Elizabeth; Aston, John; Krašovec, Rok; Knight, Christopher G

    2016-12-01

    A common view in evolutionary biology is that mutation rates are minimised. However, studies in combinatorial optimisation and search have shown a clear advantage of using variable mutation rates as a control parameter to optimise the performance of evolutionary algorithms. Much biological theory in this area is based on Ronald Fisher's work, who used Euclidean geometry to study the relation between mutation size and expected fitness of the offspring in infinite phenotypic spaces. Here we reconsider this theory based on the alternative geometry of discrete and finite spaces of DNA sequences. First, we consider the geometric case of fitness being isomorphic to distance from an optimum, and show how problems of optimal mutation rate control can be solved exactly or approximately depending on additional constraints of the problem. Then we consider the general case of fitness communicating only partial information about the distance. We define weak monotonicity of fitness landscapes and prove that this property holds in all landscapes that are continuous and open at the optimum. This theoretical result motivates our hypothesis that optimal mutation rate functions in such landscapes will increase when fitness decreases in some neighbourhood of an optimum, resembling the control functions derived in the geometric case. We test this hypothesis experimentally by analysing approximately optimal mutation rate control functions in 115 complete landscapes of binding scores between DNA sequences and transcription factors. Our findings support the hypothesis and find that the increase of mutation rate is more rapid in landscapes that are less monotonic (more rugged). We discuss the relevance of these findings to living organisms.

  20. The role of potassium and other ions in the control of aldosterone synthesis

    International Nuclear Information System (INIS)

    Kenyon, C.J.; Shepherd, R.M.; Fraser, R.; Pediani, J.D.; Elder, H.Y.

    1991-01-01

    Fast and slow K+ efflux components, independently regulated by angiotensin II (AII), have been identified in bovine adrenocortical cells. The authors have further investigated the role of potassium in the control of aldosterone synthesis in two ways. Firstly, isotopic tracers, in conjunction with channel modulators, have been used to study the interrelationship of K+ and Ca2+ in the control of AII-stimulated aldosterone synthesis. Secondly, electron probe X-ray microanalysis (EPXMA) was used to quantify potassium, sodium, chlorine and phosphorous in control and AII-stimulated cells. The effects of verapamil on 43K efflux were measured at two stages during AII stimulation. During the first ten minutes of treatment, when efflux via the fast component predominates, AII and verapamil both slowed efflux and their effects were additive. If verapamil was added later, at the time when efflux by the fast component appeared exhausted and the stimulatory effect of AII on the slow efflux component was apparent, it again slowed efflux. These data suggest that verapamil prevents calcium-gated K+ channels from opening by blocking Ca2+ channels. However, verapamil had no effect on AII-stimulated calcium efflux. In addition to blocking Ca2+ channels, verapamil may directly inhibit potassium efflux. EPXMA showed a bimodal distribution of potassium concentrations in control cells. However, in cells stimulated with AII for five minutes, the mean potassium content was less than in controls and was not bimodally distributed. Sodium content was increased by AII-treatment, chlorine was lowered and phosphorus remained unchanged. The data confirm previous observations that AII inhibits Na+/K+ ATPase activity

  1. Synthesis of Renewable meta-Xylylenediamine from Biomass-Derived Furfural.

    Science.gov (United States)

    Scodeller, Ivan; Mansouri, Samir; Morvan, Didier; Muller, Eric; de Oliveira Vigier, Karine; Wischert, Raphael; Jérôme, François

    2018-04-30

    We report the synthesis of biomass-derived functionalized aromatic chemicals from furfural, a building block nowadays available in large scale from low-cost biomass. The scientific strategy relies on a Diels-Alder/aromatization sequence. By controlling the rate of each step, it was possible to produce exclusively the meta aromatic isomer. In particular, through this route, we describe the synthesis of renewably sourced meta-xylylenediamine (MXD). Transposition of this work to other furfural-derived chemicals is also discussed and reveals that functionalized biomass-derived aromatics (benzaldehyde, benzylamine, etc.) can be potentially produced, according to this route. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Controlled synthesis of the antiperovskite oxide superconductor Sr3‑x SnO

    Science.gov (United States)

    Hausmann, J. N.; Oudah, M.; Ikeda, A.; Yonezawa, S.; Maeno, Y.

    2018-05-01

    A large variety of perovskite oxide superconductors are known, including some of the most prominent high-temperature and unconventional superconductors. However, superconductivity among the oxidation state inverted material class, the antiperovskite oxides, was recently reported for the first time. In this superconductor, Sr3‑x SnO, the unconventional ionic state Sn4‑ is realized and possible unconventional superconductivity due to a band inversion has been discussed. Here, we discuss an improved facile synthesis method, making it possible to control the strontium deficiency in Sr3‑x SnO. Additionally, a synthesis method above the melting point of Sr3SnO is presented. We show temperature dependence of magnetization and electrical resistivity for superconducting strontium deficient Sr3‑x SnO (T c ∼ 5 K) and for Sr3SnO without a superconducting transition in alternating current susceptibility down to 0.15 K. Further, we reveal a significant effect of strontium raw material purity on the superconductivity and achieve substantially increased M/M Meissner (∼1) compared to the highest value reported so far. More detailed characterizations utilizing powder x-ray diffraction and energy-dispersive x-ray spectroscopy show that a minor cubic phase, previously suggested to be another Sr3‑x SnO phase with a slightly larger lattice parameter, is SrO. The improved characterization and controlled synthesis reported herein enable detailed investigations on the superconducting nature and its dependency on the strontium deficiency in Sr3‑x SnO.

  3. Controlled synthesis of novel octapod platinum nanocrystals under microwave irradiation

    International Nuclear Information System (INIS)

    Dai, Lei; Chi, Quan; Zhao, Yanxi; Liu, Hanfan; Zhou, Zhongqiang; Li, Jinlin; Huang, Tao

    2014-01-01

    Graphical abstract: Under microwave irradiation, novel octapod Pt nanocrystals were synthesized by reducing H 2 PtCl 6 in TEG with PVP as a stabilizer. The as-prepared Pt nanocrystals displayed a unique octapod nanostructure with five little mastoids in each concave center. The use of KI was crucial to the formation of novel Pt octapods. Novel Octapod Platinum Nanocrystals. - Highlights: • A novel octapod Pt nanocrystals different from the common octapod were obtained. • The use of KI was crucial to the formation of the novel Pt octapods. • Microwave was readily employed in controlled synthesis of the novel Pt octapods. - Abstract: Microwave was employed in the shape-controlled synthesis of Pt nanoparticles. Novel octapod Pt nanocrystals enclosed with (1 1 1) facets were readily synthesized with H 2 PtCl 6 as a precursor, tetraethylene glycol (TEG) as both a solvent and a reducing agent, polyvinylpyrrolidone (PVP) as a stabilizer in the presence of an appropriate amount of KI under microwave irradiation for 140 s. The as-prepared Pt nanocrystals displayed a unique octapod nanostructure with five little mastoids in each concave center and exhibited higher electrocatalytic activity than commercial Pt black in the electro-oxidations of methanol and formic acid. The results demonstrated that the use of KI was crucial to the formation of Pt octapods. KI determined the formation of the novel octapod Pt nanocrystals by tuning up the reduction kinetics and adsorbing on the surfaces of growing Pt nanoparticles. The optimum molar ratio of H 2 PtCl 6 /KI/PVP was 1/30/45

  4. Shape-controlled synthesis of nanocarbons through direct conversion of carbon dioxide

    Science.gov (United States)

    Zhang, Haitao; Zhang, Xiong; Sun, Xianzhong; Ma, Yanwei

    2013-01-01

    Morphology control of carbon-based nanomaterials (nanocarbons) is critical to practical applications because their physical and chemical properties are highly shape-dependent. The discovery of novel shaped nanocarbons stimulates new development in carbon science and technology. Based on direct reaction of CO2 with Mg metal, we achieved controlled synthesis of several different types of nanocarbons including mesoporous graphene, carbon nanotubes, and hollow carbon nanoboxes. The last one, to our knowledge, has not been previously reported to this date. The method described here allows effective control of the shape and dimensions of nanocarbons through manipulation of reaction temperature. The formation mechanism of nanocarbons is proposed. As a proof of concept, the synthesized nanocarbons are used for electrodes in symmetrical supercapacitors, which exhibit high capacitance and good cycling stability. The reported protocols are instructive to production of nanocarbons with controlled shape and dimensions which are much desirable for many practical applications. PMID:24346481

  5. Statistical Optimization of Synthesis of Manganese Carbonates Nanoparticles by Precipitation Methods

    International Nuclear Information System (INIS)

    Javidan, A.; Rahimi-Nasrabadi, M.; Davoudi, A.A.

    2011-01-01

    In this study, an orthogonal array design (OAD), OA9, was employed as a statistical experimental method for the controllable, simple and fast synthesis of manganese carbonate nanoparticle. Ultrafine manganese carbonate nanoparticles were synthesized by a precipitation method involving the addition of manganese ion solution to the carbonate reagent. The effects of reaction conditions, for example, manganese and carbonate concentrations, flow rate of reagent addition and temperature, on the diameter of the synthesized manganese carbonate nanoparticle were investigated. The effects of these factors on the width of the manganese carbonate nanoparticle were quantitatively evaluated by the analysis of variance (ANOVA). The results showed that manganese carbonate nanoparticle can be synthesized by controlling the manganese concentration, flow rate and temperature. Finally, the optimum conditions for the synthesis of manganese carbonate nanoparticle by this simple and fast method were proposed. The results of ANOVA showed that 0.001 mol/ L manganese ion and carbonate reagents concentrations, 2.5 mL/ min flow rate for the addition of the manganese reagent to the carbonate solution and 0 degree Celsius temperature are the optimum conditions for producing manganese carbonate nanoparticle with 75 ± 25 nm width. (author)

  6. Controlled synthesis of high-quality crystals of monolayer MoS2 for nanoelectronic device application

    DEFF Research Database (Denmark)

    Yang, Xiaonian; Li, Qiang; Hu, Guofeng

    2016-01-01

    . Monolayer MoS2 so far can be obtained by mechanical exfoliation or chemical vapor deposition (CVD). However, controllable synthesis of large area monolayer MoS2 with high quality needs to be improved and their growth mechanism requires more studies. Here we report a systematical study on controlled...... synthesis of high-quality monolayer MoS2 single crystals using low pressure CVD. Large-size monolayer MoS2 triangles with an edge length up to 405 mu m were successfully synthesized. The Raman and photoluminescence spectroscopy studies indicate high homogenous optical characteristic of the synthesized...... monolayer MoS2 triangles. The transmission electron microscopy results demonstrate that monolayer MoS2 triangles are single crystals. The back-gated field effect transistors (FETs) fabricated using the as-grown monolayer MoS2 show typical n-type semiconductor behaviors with carrier mobility up to 21.8 cm(2...

  7. Improved Bit Rate Control for Real-Time MPEG Watermarking

    Directory of Open Access Journals (Sweden)

    Pranata Sugiri

    2004-01-01

    Full Text Available The alteration of compressed video bitstream due to embedding of digital watermark tends to produce unpredictable video bit rate variations which may in turn lead to video playback buffer overflow/underflow or transmission bandwidth violation problems. This paper presents a novel bit rate control technique for real-time MPEG watermarking applications. In our experiments, spread spectrum watermarks are embedded in the quantized DCT domain without requantization and motion reestimation to achieve fast watermarking. The proposed bit rate control scheme evaluates the combined bit lengths of a set of multiple watermarked VLC codewords, and successively replaces watermarked VLC codewords having the largest increase in bit length with their corresponding unmarked VLC codewords until a target bit length is achieved. The proposed method offers flexibility and scalability, which are neglected by similar works reported in the literature. Experimental results show that the proposed bit rate control scheme is effective in meeting the bit rate targets and capable of improving the watermark detection robustness for different video contents compressed at different bit rates.

  8. Controlling Object Heat Release Rate using Geometrical Features

    OpenAIRE

    Kraft, Stefan Marc

    2017-01-01

    An experimental study was conducted to determine the effect of complex geometries on the burning rate of materials made using additive manufacturing. Controlling heat release rate has applicability in limiting fire hazards as well as for designing fuels for optimal burning rate. The burning rate of a structure is a function of the material properties as well as the airflow through it, which is dictated by the geometry. This burning rate is generally proportional to the porosity for obj...

  9. High rate flame synthesis of highly crystalline iron oxide nanorods

    International Nuclear Information System (INIS)

    Merchan-Merchan, W; Taylor, A M; Saveliev, A V

    2008-01-01

    Single-step flame synthesis of iron oxide nanorods is performed using iron probes inserted into an opposed-flow methane oxy-flame. The high temperature reacting environment of the flame tends to convert elemental iron into a high density layer of iron oxide nanorods. The diameters of the iron oxide nanorods vary from 10 to 100 nm with a typical length of a few microns. The structural characterization performed shows that nanorods possess a highly ordered crystalline structure with parameters corresponding to cubic magnetite (Fe 3 O 4 ) with the [100] direction oriented along the nanorod axis. Structural variations of straight nanorods such as bends, and T-branched and Y-branched shapes are frequently observed within the nanomaterials formed, opening pathways for synthesis of multidimensional, interconnected networks

  10. Collagen synthesis in human musculoskeletal tissues and skin

    DEFF Research Database (Denmark)

    Babraj, J A; Cuthbertson, D J R; Smith, K

    2005-01-01

    We have developed a direct method for the measurement of human musculoskeletal collagen synthesis on the basis of the incorporation of stable isotope-labeled proline or leucine into protein and have used it to measure the rate of synthesis of collagen in tendon, ligament, muscle, and skin....... In postabsorptive, healthy young men (28 +/- 6 yr) synthetic rates for tendon, ligament, muscle, and skin collagen were 0.046 +/- 0.005, 0.040 +/- 0.006, 0.016 +/- 0.002, and 0.037 +/- 0.003%/h, respectively (means +/- SD). In postabsorptive, healthy elderly men (70 +/- 6 yr) the rate of skeletal muscle collagen...... synthesis is greater than in the young (0.023 +/- 0.002%/h, P collagen are similar to those of mixed skeletal muscle protein in the postabsorptive state, whereas the rate for muscle collagen synthesis is much lower in both young and elderly men...

  11. Studies on the distribution of radioactivity in the organism during constant intravenous infusion of tracer amino acids and on the calculation of the rate of tissue protein synthesis in rats

    International Nuclear Information System (INIS)

    Simon, O.; Bergner, H.; Wolf, E.

    1978-01-01

    Male wistar rats (100 p body weight) were infused into the tail vein with 14 C-leucine and 14 C-lysine simultaneously for 0.5; 1.0; 2.0; 3.0; 4.5; 6.0 and 7.0 hours. At the end of the infusion the specific radioactivity was determined of the free leucine and lysine in the blood plasma, liver, M. gastrocnemius, small intestine, and colon as well as of the protein-bound leucine and lysine. In all the tissues tested the specific radioactivity of the free amino acids attained a plateau during the 6-hour and 7-hour infusions. The rate constants for the increase were calculated for each organ tested. The two amino acids used are suitable for calculating the fractional rate of protein synthesis in tissues. The values of the fractional rate of protein synthesis calculated on the basis of the 6-hour and 7-hour infusions were: 54+-7.7%/day for the liver, 9.4+-1.2%/day for the muscles, 89+-12.2%/day for the small intestine, and 42+-5.9%/day for the colon. The simultaneous application of two tracer amino acids is recommendable for estimating the precursor pool of the protein synthesis and the more accurate calculation of the rate of protein synthesis. (author)

  12. Benefits from antidepressants: synthesis of 6-week patient-level outcomes from double-blind placebo-controlled randomized trials of fluoxetine and venlafaxine.

    Science.gov (United States)

    Gibbons, Robert D; Hur, Kwan; Brown, C Hendricks; Davis, John M; Mann, J John

    2012-06-01

    Some meta-analyses suggest that efficacy of antidepressants for major depression is overstated and limited to severe depression. To determine the short-term efficacy of antidepressants for treating major depressive disorder in youth, adult, and geriatric populations. Reanalysis of all intent-to-treat person-level longitudinal data during the first 6 weeks of treatment of major depressive disorder from 12 adult, 4 geriatric, and 4 youth randomized controlled trials of fluoxetine hydrochloride and 21 adult trials of venlafaxine hydrochloride. All sponsor-conducted randomized controlled trials of fluoxetine and venlafaxine. Children's Depression Rating Scale-Revised scores (youth population), Hamilton Depression Rating Scale scores (adult and geriatric populations), and estimated response and remission rates at 6 weeks were analyzed for 2635 adults, 960 geriatric patients, and 708 youths receiving fluoxetine and for 2421 adults receiving immediate-release venlafaxine and 2461 adults receiving extended-release venlafaxine. Patients in all age and drug groups had significantly greater improvement relative to control patients receiving placebo. The differential rate of improvement was largest for adults receiving fluoxetine (34.6% greater than those receiving placebo). Youths had the largest treated vs control difference in response rates (24.1%) and remission rates (30.1%), with adult differences generally in the 15.6% (remission) to 21.4% (response) range. Geriatric patients had the smallest drug-placebo differences, an 18.5% greater rate of improvement, 9.9% for response and 6.5% for remission. Immediate-release venlafaxine produced larger effects than extended-release venlafaxine. Baseline severity could not be shown to affect symptom reduction. To our knowledge, this is the first research synthesis in this area to use complete longitudinal person-level data from a large set of published and unpublished studies. The results do not support previous findings that

  13. Effects of anpirtoline on regional serotonin synthesis in the rat brain: an autoradiographic study

    International Nuclear Information System (INIS)

    Watanabe, Arata; Nakai, Akio; Tohyama, Yoshihiro; Nguyen, Khnah Q.; Diksic, Mirko

    2006-01-01

    Anpirtoline has been described as an agonist at 5-HT 1B receptors with a relatively high potency. It also acts as an agonist at 5-HT 1A receptors, but has a lower potency than at the 5-HT 1B sites. There is very little known about the mechanism by which anpirtoline influences regional 5-HT synthesis. The aim of the present study was to investigate the effects of acutely and chronically administered anpirtoline on 5-HT synthesis in the rat brain using the autoradiographic α-[ 14 C]methyl-L-tryptophan method. In the acute study, anpirtoline (2.0 mg/kg) was administered intraperitoneally 30 min before the tracer injection. The control rats were injected with the same volume of saline. In the chronic study, anpirtoline (2 mg/kg per day) was injected subcutaneously in saline once a day for 10 days. There were no significant differences between the plasma-free and total tryptophan concentrations between the anpirtoline treatment and the respective control groups. In the acute experiment, 5-HT synthesis rates in all of the brain areas investigated were significantly decreased by anpirtoline when compared to the saline-treated group. In the chronic anpirtoline experiment, 5-HT synthesis rates of almost all of the projection areas, as well as the raphe nuclei, were normalized or had a tendency to be normalized. These results suggest that it is likely that the terminal 5-HT 1B receptors are involved in the regulation of 5-HT synthesis in the projection areas and that 5-HT synthesis, in the raphe, is likely influenced by anpirtoline's 5-HT 1A and/or 5-HT 1B agonistic properties

  14. Validity of the tritiated thymidine method for estimating bacterial growth rates: measurement of isotope dilution during DNA synthesis

    International Nuclear Information System (INIS)

    Pollard, P.C.; Moriarty, D.J.W.

    1984-01-01

    The rate of tritiated thymidine incorporation into DNA was used to estimate bacterial growth rates in aquatic environments. To be accurate, the calculation of growth rates has to include a factor for the dilution of isotope before incorporation. The validity of an isotope dilution analysis to determine this factor was verified in experiments reported here with cultures of a marine bacterium growing in a chemostat. Growth rates calculated from data on chemostat dilution rates and cell density agreed well with rates calculated by tritiated thymidine incorporation into DNA and isotope dilution analysis. With sufficiently high concentrations of exogenous thymidine, de novo synthesis of deoxythymidine monophosphate was inhibited, thereby preventing the endogenous dilution of isoope. The thymidine technique was also shown to be useful for measuring growth rates of mixed suspensions of bacteria growing anaerobically. Thymidine was incorporated into the DNA of a range of marine pseudomonads that were investigated. Three species did not take up thymidine. The common marine cyanobacterium Synechococcus species did not incorporate thymidine into DNA

  15. Does runoff or temperature control chemical weathering rates?

    International Nuclear Information System (INIS)

    Eiriksdottir, Eydis Salome; Gislason, Sigurdur Reynir; Oelkers, Eric H.

    2011-01-01

    Highlights: → The rate chemical weathering is affected by both temperature and runoff. Separating out these two factors is challenging because runoff tends to increase with increasing temperature. → In this study, natural river water samples collected on basaltic catchments over a five year period are used together with experimentally derived dissolution rate model for basaltic glass to pull apart the effects of runoff and temperature. → This study shows that the rate of chemical denudation is controlled by both temperature and runoff, but is dominated by runoff. - Abstract: The rate of chemical denudation is controlled by both temperature and runoff. The relative role of these two factors in the rivers of NE Iceland is determined through the rigorous analysis of their water chemistry over a 5-a period. River catchments are taken to be analogous to laboratory flow reactors; like the fluid in flow reactors, the loss of each dissolved element in river water is the sum of that of the original rainwater plus that added from kinetically controlled dissolution and precipitation reactions. Consideration of the laboratory determined dissolution rate behaviour of basalts and measured water chemistry indicates that the maximum effect of changing temperature on chemical denudation in the NE Icelandic rivers was 5-25% of the total change, whereas that of runoff was 75-95%. The bulk of the increased denudation rates with runoff appear to stem from an increase in reactive surface area for chemical weathering of catchment solids.

  16. Effects of estrogen replacement and lower androgen status on skeletal muscle collagen and myofibrillar protein synthesis in postmenopausal women

    DEFF Research Database (Denmark)

    Hansen, Mette; Skovgaard, Dorthe; Reitelseder, Søren

    2012-01-01

    Our aim was to determine synthesis rate of myofibrillar and collagen proteins in 20 postmenopausal women, who were either nonusers (Controls) or users of estrogen replacement therapy (ERT) after hysterectomy/oophorectomy. Myofibrillar and muscle collagen protein fractional synthesis rate (FSR) were...... determined in a nonexercised leg and 24 hours after exercise in the contralateral leg. A significant interaction between treatment and mechanical loading was observed in myofibrillar protein FSR. At rest, myofibrillar protein FSR was found to be lower in ERT users than in Controls. Exercise enhanced...... myofibrillar protein FSR only in ERT users. Similarly, muscle collagen FSR tended to be lower in ERT users compared with Controls. In ERT participants, the androgen profile was reduced, whereas estradiol and sex hormone–binding globulin were higher. In conclusion, at rest, myofibrillar protein FSR was lower...

  17. Starvation increases insulin sensitivity and reduces juvenile hormone synthesis in mosquitoes.

    Directory of Open Access Journals (Sweden)

    Meritxell Perez-Hedo

    Full Text Available The interactions between the insulin signaling pathway (ISP and juvenile hormone (JH controlling reproductive trade-offs are well documented in insects. JH and insulin regulate reproductive output in mosquitoes; both hormones are involved in a complex regulatory network, in which they influence each other and in which the mosquito's nutritional status is a crucial determinant of the network's output. Previous studies reported that the insulin-TOR (target of rapamacyn signaling pathway is involved in the nutritional regulation of JH synthesis in female mosquitoes. The present studies further investigate the regulatory circuitry that controls both JH synthesis and reproductive output in response to nutrient availability.We used a combination of diet restriction, RNA interference (RNAi and insulin treatments to modify insulin signaling and study the cross-talk between insulin and JH in response to starvation. JH synthesis was analyzed using a newly developed assay utilizing fluorescent tags.Our results reveal that starvation decreased JH synthesis via a decrease in insulin signaling in the corpora allata (CA. Paradoxically, starvation-induced up regulation of insulin receptor transcripts and therefore "primed" the gland to respond rapidly to increases in insulin levels. During this response to starvation the synthetic potential of the CA remained unaffected, and the gland rapidly and efficiently responded to insulin stimulation by increasing JH synthesis to rates similar to those of CA from non-starved females.

  18. Facile directing agent-free synthesis and magnetism of nanocrystalline Fe–Ni alloy with tunable shape

    International Nuclear Information System (INIS)

    Mohamed, Marwa A.A.

    2014-01-01

    Highlights: • Simple directing agent-free wet chemical method for high-yield synthesis of nc Fe-Ni particles with tunable shape. • The alloy morphology is controlled by varying synthesis conditions; concentration of metal ions and pH of reaction. • Synthesis conditions control the final shape of alloy particles via controlling their growth rate and capping with OH − ions. • The alloy magnetic behavior is driven away from soft magnetic toward hard one, by particles anisotropy and size reduction. • The branched wires morphology can be considered a new morphology of distinctive magnetic behavior, for nc Fe-Ni alloy. - Abstract: This article reports the synthesis of nanocrystalline (nc) Fe 20 Ni 80 particles with tunable shape, using a heterogeneous directing agent-free aqueous wet chemical method of mild synthesis conditions. The particle morphology has been controlled by varying synthesis conditions. The results demonstrate that the morphology of alloy particles changes from quasi-isotropic to anisotropic architecture by decreasing concentration of metal ions or increasing pH of reaction solution. Deep interpretations of such phenomena are reported. Magnetic behavior of the alloy is driven away from soft magnetic and toward hard magnetic behavior, by anisotropy and size reduction of alloy particles. This broadens practical applications of nc Fe 20 Ni 80 alloy. Overall, the study provides an effective economical way for high-yield synthesis of nc Fe–Ni particles with tailored shape and subsequently magnetic properties for a specific technological application. Additionally, it adds a new morphology, highly branched wires, of distinctive magnetic behavior to the known morphologies of nc Fe–Ni particles

  19. Synthesis of acid-soluble spore proteins by Bacillus subtilis.

    OpenAIRE

    Leventhal, J M; Chambliss, G H

    1982-01-01

    The major acid-soluble spore proteins (ASSPs) of Bacillus subtilis were detected by immunoprecipitation of radioactively labeled in vitro- and in vivo-synthesized proteins. ASSP synthesis in vivo began 2 h after the initiation of sporulation (t2) and reached its maximum rate at t7. This corresponded to the time of synthesis of mRNA that stimulated the maximum rate of ASSP synthesis in vitro. Under the set of conditions used in these experiments, protease synthesis began near t0, alkaline phos...

  20. A Modified Thermal Treatment Method for the Up-Scalable Synthesis of Size-Controlled Nanocrystalline Titania

    Directory of Open Access Journals (Sweden)

    Aysar Sabah Keiteb

    2016-10-01

    Full Text Available Considering the increasing demand for titania nanoparticles with controlled quality for various applications, the present work reports the up-scalable synthesis of size-controlled titanium dioxide nanocrystals with a simple and convenient thermal treatment route. Titanium dioxide nanocrystals with tetragonal structure were synthesized directly from an aqueous solution containing titanium (IV isopropoxide as the main reactant, polyvinyl pyrrolidone (PVP as the capping agent, and deionized water as a solvent. With the elimination of the drying process in a thermal treatment method, an attempt was made to decrease the synthesis time. The mixture directly underwent calcination to form titanium dioxide (TiO2 nanocrystalline powder, which was confirmed by FT-IR, energy dispersive X-ray spectroscopy (EDX, and X-ray diffraction (XRD analysis. The control over the size and optical properties of nanocrystals was achieved via variation in calcination temperatures. The obtained average sizes from XRD spectra and transmission electron microscopy (TEM images showed exponential variation with increasing calcination temperature. The optical properties showed a decrease in the band gap energy with increasing calcination temperature due to the enlargement of the nanoparticle size. These results prove that direct calcination of reactant solution is a convenient thermal treatment route for the potential large-scale production of size-controlled Titania nanoparticles.

  1. Physically based sound synthesis and control of jumping sounds on an elastic trampoline

    DEFF Research Database (Denmark)

    Turchet, Luca; Pugliese, Roberto; Takala, Tapio

    2013-01-01

    This paper describes a system to interactively sonify the foot-floor contacts resulting from jumping on an elastic trampoline. The sonification was achieved by means of a synthesis engine based on physical models reproducing the sounds of jumping on several surface materials. The engine was contr......This paper describes a system to interactively sonify the foot-floor contacts resulting from jumping on an elastic trampoline. The sonification was achieved by means of a synthesis engine based on physical models reproducing the sounds of jumping on several surface materials. The engine...... was controlled in real-time by pro- cessing the signal captured by a contact microphone which was attached to the membrane of the trampoline in order to detect each jump. A user study was conducted to evaluate the quality of the in- teractive sonification. Results proved the success of the proposed algorithms...

  2. Controller synthesis for dynamic hierarchical real-time plants using timed automata

    DEFF Research Database (Denmark)

    Bin Waez, Md Tawhid; Wasowski, Andrzej; Dingel, Juergen

    2017-01-01

    We use timed I/O automata based timed games to synthesize task-level reconfiguration services for cost-effective fault tolerance in a case study. The case study shows that state-space explosion is a severe problem for timed games. By applying suitable abstractions, we dramatically improve...... the scalability. However, timed I/O automata do not facilitate algorithmic abstraction generation techniques. The case study motivates the development of timed process automata to improve modeling and analysis for controller synthesis of time-critical plants which can be hierarchical and dynamic. The model offers...

  3. Controlled synthesis of phase-pure zeolitic imidazolate framework Co-ZIF-9

    NARCIS (Netherlands)

    Öztürk, Z.; Hofmann, J.P.; Lutz, M.; Mazaj, M.; Zabukovec Logar, N.; Weckhuysen, B.M.

    2015-01-01

    The synthesis of phase-pure Co-ZIF-9, an important cobalt-based zeolitic imidazolate framework, could be achieved by modification of the reported synthesis procedure through pH adjustment of the starting synthesis mixture. The phase-pure Co-ZIF-9 material obtained has been characterized by a

  4. Shape-controlled synthesis of Au@Pd core-shell nanoparticles and their corresponding electrochemical properties

    KAUST Repository

    Song, Hyon Min

    2012-01-01

    The shape-controlled synthesis of Au@Pd core-shell nanoparticles (NPs) was successfully achieved through the emulsion phase generated during the phase transfer from organic to aqueous medium. Contrary to conventional epitaxial growth for obtaining core-shell structures, this method does not require high temperatures and does not have shape restrictions. © 2012 The Royal Society of Chemistry.

  5. Nucleic acids synthesis of nuclear polyhedrosis virus in cultured embryonic cells of silkworm

    International Nuclear Information System (INIS)

    Himeno, Michio; Kimura, Yukio; Hayashiya, Keizo.

    1976-01-01

    Embryos of the silkworm, Bombyx mori L., were dispersed by trypsin and the dissociated cells were cultured for infection with nuclear polyhedrosis virus (NPV) of the silkworm. The monolayer and suspension cultures were infected with NPV. RNA and DNA syntheses in the normal and NPV-infected cells were measured by incorporation of 32 P into RNA and DNA fractions. RNA and DNA syntheses in the cells after infection significantly increased over those in control cells (mock infection). The effects of actinomycin D, chloramphenicol and mitomycin C on RNA and DNA syntheses in infected cells were examined. The syntheses were inhibited by the antibiotics. It was suggested that the cellular DNA synthesis was inhibited by the viral infection, because the mitomycin C-resistant DNA synthesis was found in the normal cells but not in the infected cells treated with mitomycin C. The rate of DNA synthesis induced by NPV was immediately dropped to that of control cells by addition of chloramphenicol, while the RNA synthesis induced by NPV was not affected for 6 hr after the addition of chloramphenicol. If the antibiotic did not affected the size of precursor pools, this event suggested that the RNA polymerase concerned with viral RNA synthesis was more stable than the DNA polymerase participating in the viral DNA synthesis. The viral DNA as templates for RNA and DNA syntheses was decomposed by mitomycin C. (auth.)

  6. Biologically inspired rate control of chaos.

    Science.gov (United States)

    Olde Scheper, Tjeerd V

    2017-10-01

    The overall intention of chaotic control is to eliminate chaos and to force the system to become stable in the classical sense. In this paper, I demonstrate a more subtle method that does not eliminate all traces of chaotic behaviour; yet it consistently, and reliably, can provide control as intended. The Rate Control of Chaos (RCC) method is derived from metabolic control processes and has several remarkable properties. RCC can control complex systems continuously, and unsupervised, it can also maintain control across bifurcations, and in the presence of significant systemic noise. Specifically, I show that RCC can control a typical set of chaotic models, including the 3 and 4 dimensional chaotic Lorenz systems, in all modes. Furthermore, it is capable of controlling spatiotemporal chaos without supervision and maintains control of the system across bifurcations. This property of RCC allows a dynamic system to operate in parameter spaces that are difficult to control otherwise. This may be particularly interesting for the control of forced systems or dynamic systems that are chaotically perturbed. These control properties of RCC are applicable to a range of dynamic systems, thereby appearing to have far-reaching effects beyond just controlling chaos. RCC may also point to the existence of a biochemical control function of an enzyme, to stabilise the dynamics of the reaction cascade.

  7. Achievable Performance of Zero-Delay Variable-Rate Coding in Rate-Constrained Networked Control Systems with Channel Delay

    DEFF Research Database (Denmark)

    Barforooshan, Mohsen; Østergaard, Jan; Stavrou, Fotios

    2017-01-01

    This paper presents an upper bound on the minimum data rate required to achieve a prescribed closed-loop performance level in networked control systems (NCSs). The considered feedback loop includes a linear time-invariant (LTI) plant with single measurement output and single control input. Moreover......, in this NCS, a causal but otherwise unconstrained feedback system carries out zero-delay variable-rate coding, and control. Between the encoder and decoder, data is exchanged over a rate-limited noiseless digital channel with a known constant time delay. Here we propose a linear source-coding scheme...

  8. Spontaneous unscheduled DNA synthesis in human lymphocytes

    International Nuclear Information System (INIS)

    Forell, B.; Myers, L.S. Jr.; Norman, A.

    1979-01-01

    The rate of spontaneous unscheduled DNA synthesis in human lymphocytes was estimated from measurements of tritiated thymidine incorporation into double-stranded DNA (ds-DNA) during incubation of cells in vitro. The contribution of scheduled DNA synthesis to the observed incorporation was reduced by inhibiting replication with hydroxyurea and by separating freshly replicated single-stranded DNA (ss-DNA) from repaired ds-DNA by column chromatography. The residual contribution of scheduled DNA synthesis was estimated by observing effects on thymidine incorporation of: (a) increasing the rate of production of apurinic sites, and alternatively, (b) increasing the number of cells in S-phase. Corrections based on estimates of endogenous pool size were also made. The rate of spontaneous unscheduled DNA synthesis is estimated to be 490 +- 120 thymidine molecules incorporated per cell per hour. These results compare favorably with estimates made from rates of depurination and depyrimidination of DNA, measured in molecular systems if we assume thymidine is incorporated by a short patch mechanism which incorporates an average of four bases per lesion

  9. The effect of linoleic acid on the whole body synthesis rates of polyunsaturated fatty acids from α-linolenic acid and linoleic acid in free-living rats.

    Science.gov (United States)

    Domenichiello, Anthony F; Kitson, Alex P; Chen, Chuck T; Trépanier, Marc-Olivier; Stavro, P Mark; Bazinet, Richard P

    2016-04-01

    Docosahexaenoic acid (DHA) is thought to be important for brain function. The main dietary source of DHA is fish, however, DHA can also be synthesized from precursor omega-3 polyunsaturated fatty acids (n-3 PUFA), the most abundantly consumed being α-linolenic acid (ALA). The enzymes required to synthesize DHA from ALA are also used to synthesize longer chain omega-6 (n-6) PUFA from linoleic acid (LNA). The large increase in LNA consumption that has occurred over the last century has led to concern that LNA and other n-6 PUFA outcompete n-3 PUFA for enzymes involved in DHA synthesis, and therefore, decrease overall DHA synthesis. To assess this, rats were fed diets containing LNA at 53 (high LNA diet), 11 (medium LNA diet) or 1.5% (low LNA diet) of the fatty acids with ALA being constant across all diets (approximately 4% of the fatty acids). Rats were maintained on these diets from weaning for 8 weeks, at which point they were subjected to a steady-state infusion of labeled ALA and LNA to measure DHA and arachidonic acid (ARA) synthesis rates. DHA and ARA synthesis rates were generally highest in rats fed the medium and high LNA diets, while the plasma half-life of DHA was longer in rats fed the low LNA diet. Therefore, increasing dietary LNA, in rats, did not impair DHA synthesis; however, low dietary LNA led to a decrease in DHA synthesis with tissue concentrations of DHA possibly being maintained by a longer DHA half-life. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Controlled soft-template synthesis of ultrathin C@FeS nanosheets with high-Li-storage performance.

    Science.gov (United States)

    Xu, Chen; Zeng, Yi; Rui, Xianhong; Xiao, Ni; Zhu, Jixin; Zhang, Wenyu; Chen, Jing; Liu, Weiling; Tan, Huiteng; Hng, Huey Hoon; Yan, Qingyu

    2012-06-26

    We report a facile approach to prepare carbon-coated troilite FeS (C@FeS) nanosheets via surfactant-assisted solution-based synthesis. 1-Dodecanethiol is used as both the sulfur source and the surfactant, which may form different-shaped micelles to direct the growth of nanostructures. Under appropriate growth conditions, the iron and sulfur atoms react to form thin layers of FeS while the hydrocarbon tails of 1-dodecanethiol separate the thin FeS layers, which turn to carbon after annealing in Ar. Such an approach can be extended to grow C@FeS nanospheres and nanoplates by modifying the synthesis parameters. The C@FeS nanosheets display excellent Li storage properties with high specific capacities and stable charge/discharge cyclability, especially at fast charge/discharge rates.

  11. The Interpretation of Cholesterol Balance Derived Synthesis Data and Surrogate Noncholesterol Plasma Markers for Cholesterol Synthesis under Lipid Lowering Therapies

    Directory of Open Access Journals (Sweden)

    Frans Stellaard

    2017-01-01

    Full Text Available The cholesterol balance procedure allows the calculation of cholesterol synthesis based on the assumption that loss of endogenous cholesterol via fecal excretion and bile acid synthesis is compensated by de novo synthesis. Under ezetimibe therapy hepatic cholesterol is diminished which can be compensated by hepatic de novo synthesis and hepatic extraction of plasma cholesterol. The plasma lathosterol concentration corrected for total cholesterol concentration (R_Lath as a marker of de novo cholesterol synthesis is increased during ezetimibe treatment but unchanged under treatment with ezetimibe and simvastatin. Cholesterol balance derived synthesis data increase during both therapies. We hypothesize the following. (1 The cholesterol balance data must be applied to the hepatobiliary cholesterol pool. (2 The calculated cholesterol synthesis value is the sum of hepatic de novo synthesis and the net plasma—liver cholesterol exchange rate. (3 The reduced rate of biliary cholesterol absorption is the major trigger for the regulation of hepatic cholesterol metabolism under ezetimibe treatment. Supportive experimental and literature data are presented that describe changes of cholesterol fluxes under ezetimibe, statin, and combined treatments in omnivores and vegans, link plasma R_Lath to liver function, and define hepatic de novo synthesis as target for regulation of synthesis. An ezetimibe dependent direct hepatic drug effect cannot be excluded.

  12. Fischer-Tropsch synthesis in supercritical phase carbon dioxide: Recycle rates

    Science.gov (United States)

    Soti, Madhav

    With increasing oil prices and attention towards the reduction of anthropogenic CO2, the use of supercritical carbon dioxide for Fischer Tropsch Synthesis (FTS) is showing promise in fulfilling the demand of clean liquid fuels. The evidence of consumption of carbon dioxide means that it need not to be removed from the syngas feed to the Fischer Tropsch reactor after the gasification process. Over the last five years, research at SIUC have shown that FTS in supercritical CO2reduces the selectivities for methane, enhances conversion, reduces the net CO2produces in the coal to liquid fuels process and increase the life of the catalyst. The research has already evaluated the impact of various operating and feed conditions on the FTS for the once through process. We believe that the integration of unreacted feed recycle would enhance conversion, increase the yield and throughput of liquid fuels for the same reactor size. The proposed research aims at evaluating the impact of recycle of the unreacted feed gas along with associated product gases on the performance of supercritical CO2FTS. The previously identified conditions will be utilized and various recycle ratios will be evaluated in this research once the recycle pump and associated fittings have been integrated to the supercritical CO2FTS. In this research two different catalysts (Fe-Zn-K, Fe-Co-Zn-K) were analyzed under SC-FTS in different recycle rate at 350oC and 1200 psi. The use of recycle was found to improve conversion from 80% to close to 100% with both catalysts. The experiment recycle rate at 4.32 and 4.91 was clearly surpassing theoretical recycle curve. The steady state reaction rate constant was increased to 0.65 and 0.8 min-1 for recycle rate of 4.32 and 4.91 respectively. Carbon dioxide selectivity was decreased for both catalyst as it was converting to carbon monoxide. Carbon dioxide consumption was increased from 0.014 to 0.034 mole fraction. This concluded that CO2is being used in the system and

  13. Rate-control algorithms testing by using video source model

    DEFF Research Database (Denmark)

    Belyaev, Evgeny; Turlikov, Andrey; Ukhanova, Anna

    2008-01-01

    In this paper the method of rate control algorithms testing by the use of video source model is suggested. The proposed method allows to significantly improve algorithms testing over the big test set.......In this paper the method of rate control algorithms testing by the use of video source model is suggested. The proposed method allows to significantly improve algorithms testing over the big test set....

  14. Rate-Based Model Predictive Control of Turbofan Engine Clearance

    Science.gov (United States)

    DeCastro, Jonathan A.

    2006-01-01

    An innovative model predictive control strategy is developed for control of nonlinear aircraft propulsion systems and sub-systems. At the heart of the controller is a rate-based linear parameter-varying model that propagates the state derivatives across the prediction horizon, extending prediction fidelity to transient regimes where conventional models begin to lose validity. The new control law is applied to a demanding active clearance control application, where the objectives are to tightly regulate blade tip clearances and also anticipate and avoid detrimental blade-shroud rub occurrences by optimally maintaining a predefined minimum clearance. Simulation results verify that the rate-based controller is capable of satisfying the objectives during realistic flight scenarios where both a conventional Jacobian-based model predictive control law and an unconstrained linear-quadratic optimal controller are incapable of doing so. The controller is evaluated using a variety of different actuators, illustrating the efficacy and versatility of the control approach. It is concluded that the new strategy has promise for this and other nonlinear aerospace applications that place high importance on the attainment of control objectives during transient regimes.

  15. The order and volume fill rates in inventory control systems

    DEFF Research Database (Denmark)

    Thorstenson, Anders; Larsen, Christian

    2014-01-01

    This paper differentiates between an order (line) fill rate and a volume fill rate and specifies their performance for different inventory control systems. When the focus is on filling complete customer orders rather than total demanded quantity the order fill rate would be the preferred service...... level measure. The main result shows how the order and volume fill rates are related in magnitude. Earlier results derived for a single-item, single-stage, continuous review inventory system with backordering and constant lead times controlled by a base-stock policy are extended in different directions...... extensions consider more general inventory control review policies with backordering, as well as some relations between service measures. A particularly important result in the paper concerns an alternative service measure, the customer order fill rate, and shows how this measure always exceeds the other two...

  16. Parallel efficient rate control methods for JPEG 2000

    Science.gov (United States)

    Martínez-del-Amor, Miguel Á.; Bruns, Volker; Sparenberg, Heiko

    2017-09-01

    Since the introduction of JPEG 2000, several rate control methods have been proposed. Among them, post-compression rate-distortion optimization (PCRD-Opt) is the most widely used, and the one recommended by the standard. The approach followed by this method is to first compress the entire image split in code blocks, and subsequently, optimally truncate the set of generated bit streams according to the maximum target bit rate constraint. The literature proposes various strategies on how to estimate ahead of time where a block will get truncated in order to stop the execution prematurely and save time. However, none of them have been defined bearing in mind a parallel implementation. Today, multi-core and many-core architectures are becoming popular for JPEG 2000 codecs implementations. Therefore, in this paper, we analyze how some techniques for efficient rate control can be deployed in GPUs. In order to do that, the design of our GPU-based codec is extended, allowing stopping the process at a given point. This extension also harnesses a higher level of parallelism on the GPU, leading to up to 40% of speedup with 4K test material on a Titan X. In a second step, three selected rate control methods are adapted and implemented in our parallel encoder. A comparison is then carried out, and used to select the best candidate to be deployed in a GPU encoder, which gave an extra 40% of speedup in those situations where it was really employed.

  17. Effect of exercise and recovery on muscle protein synthesis in human subjects

    International Nuclear Information System (INIS)

    Carraro, F.; Stuart, C.A.; Hartl, W.H.; Rosenblatt, J.; Wolfe, R.R.

    1990-01-01

    Previous studies using indirect means to assess the response of protein metabolism to exercise have led to conflicting conclusions. Therefore, in this study we have measured the rate of muscle protein synthesis in normal volunteers at rest, at the end of 4 h of aerobic exercise (40% maximal O2 consumption), and after 4 h of recovery by determining directly the rate of incorporation of 1,2-[13C]leucine into muscle. The rate of muscle protein breakdown was assessed by 3-methylhistidine (3-MH) excretion, and total urinary nitrogen excretion was also measured. There was an insignificant increase in 3-MH excretion in exercise of 37% and a significant increase (P less than 0.05) of 85% during 4 h of recovery from exercise (0.079 +/- 0.008 vs. 0.147 +/- 0.0338 mumol.kg-1.min-1 for rest and recovery from exercise, respectively). Nonetheless, there was no effect of exercise on total nitrogen excretion. Muscle fractional synthetic rate was not different in the exercise vs. the control group at the end of exercise (0.0417 +/- 0.004 vs. 0.0477 +/- 0.010%/h for exercise vs. control), but there was a significant increase in fractional synthetic rate in the exercise group during the recovery period (0.0821 +/- 0.006 vs. 0.0654 +/- 0.012%/h for exercise vs. control, P less than 0.05). Thus we conclude that although aerobic exercise may stimulate muscle protein breakdown, this does not result in a significant depletion of muscle mass because muscle protein synthesis is stimulated in recovery

  18. The determination of capital controls: Which role do exchange rate regimes play?

    OpenAIRE

    von Hagen, Jürgen; Zhou, Jizhong

    2003-01-01

    This paper investigates the role of exchange rate regime choices in the determination of capital controls in transition economies. We first use a simultaneous equations model to allow direct interactions between decisions on capital controls and on exchange rate regimes. We find that exchange rate regime choices strongly influence the imposition or removal of capital controls, but the feed-back effect is weak. We further estimate a single equation model for capital controls with exchange rate...

  19. Kinematic equations for resolved-rate control of an industrial robot arm

    Science.gov (United States)

    Barker, L. K.

    1983-01-01

    An operator can use kinematic, resolved-rate equations to dynamically control a robot arm by watching its response to commanded inputs. Known resolved-rate equations for the control of a particular six-degree-of-freedom industrial robot arm and proceeds to simplify the equations for faster computations are derived. Methods for controlling the robot arm in regions which normally cause mathematical singularities in the resolved-rate equations are discussed.

  20. Synthesis, structure characterization and catalytic activity of nickel tungstate nanoparticles

    Science.gov (United States)

    Pourmortazavi, Seied Mahdi; Rahimi-Nasrabadi, Mehdi; Khalilian-Shalamzari, Morteza; Zahedi, Mir Mahdi; Hajimirsadeghi, Seiedeh Somayyeh; Omrani, Ismail

    2012-12-01

    Taguchi robust design was applied to optimize experimental parameters for controllable, simple and fast synthesis of nickel tungstate nanoparticles. NiWO4 nanoparticles were synthesized by precipitation reaction involving addition of nickel ion solution to the tungstate aqueous reagent and then formation of nickel tungstate nucleolus which are insoluble in aqueous media. Effects of various parameters such as nickel and tungstate concentrations, flow rate of reagent addition and reactor temperature on diameter of synthesized nickel tungstate nanoparticles were investigated experimentally by the aid of orthogonal array design. The results for analysis of variance (ANOVA) showed that particle size of nickel tungstate can be effectively tuned by controlling significant variables involving nickel and tungstate concentrations and flow rate; while, temperature of the reactor has a no considerable effect on the size of NiWO4 particles. The ANOVA results proposed the optimum conditions for synthesis of nickel tungstate nanoparticles via this technique. Also, under optimum condition nanoparticles of NiWO4 were prepared and their structure and chemical composition were characterized by means of EDAX, XRD, SEM, FT-IR spectroscopy, UV-vis spectroscopy, and photoluminescence. Finally, catalytic activity of the nanoparticles in a cycloaddition reaction was examined.

  1. High-rate synthesis of microcrystalline silicon films using high-density SiH4/H2 microwave plasma

    International Nuclear Information System (INIS)

    Jia, Haijun; Saha, Jhantu K.; Ohse, Naoyuki; Shirai, Hajime

    2007-01-01

    A high electron density (> 10 11 cm -3 ) and low electron temperature (1-2 eV) plasma is produced by using a microwave plasma source utilizing a spoke antenna, and is applied for the high-rate synthesis of high quality microcrystalline silicon (μc-Si) films. A very fast deposition rate of ∼ 65 A/s is achieved at a substrate temperature of 150 deg. C with a high Raman crystallinity and a low defect density of (1-2) x 10 16 cm -3 . Optical emission spectroscopy measurements reveal that emission intensity of SiH and intensity ratio of H α /SiH are good monitors for film deposition rate and film crystallinity, respectively. A high flux of film deposition precursor and atomic hydrogen under a moderate substrate temperature condition is effective for the fast deposition of highly crystallized μc-Si films without creating additional defects as well as for the improvement of film homogeneity

  2. The order and volume fill rates in inventory control systems

    DEFF Research Database (Denmark)

    Thorstenson, Anders; Larsen, Christian

    2011-01-01

    This paper differentiates between an order (line) fill rate and a volume fill rate and specifies their performance for different inventory control systems. When the focus is on filling complete customer orders rather than total quantities the order fill rate would be the preferred service level...... measure. The main result shows how the order and volume fill rates are related in magnitude. Earlier results derived for a single-item, single-stage, continuous review inventory system with backordering and constant lead times controlled by a base-stock policy are extended in different directions...

  3. Inter-relationships between light and respiration in the control of ascorbic acid synthesis and accumulation in Arabidopsis thaliana leaves.

    Science.gov (United States)

    Bartoli, Carlos G; Yu, Jianping; Gómez, Facundo; Fernández, Laura; McIntosh, Lee; Foyer, Christine H

    2006-01-01

    The effects of growth irradiance and respiration on ascorbic acid (AA) synthesis and accumulation were studied in the leaves of wild-type and transformed Arabidopsis thaliana with modified amounts of the mitochondrial alternative oxidase (AOX) protein. Plants were grown under low (LL; 50 micromol photons m(-2) s(-1)), intermediate (IL; 100 micromol photons m(-2) s(-1)), or high (HL; 250 micromol photons m(-2) s(-1)) light. Increasing growth irradiance progressively elevated leaf AA content and hence the values of dark-induced disappearance of leaf AA, which were 11, 55, and 89 nmol AA lost g(-1) fresh weight h(-1), from LL-, IL-, and HL-grown leaves, respectively. When HL leaves were supplied with L-galactone-1,4-lactone (L-GalL; the precursor of AA), they accumulated twice as much AA and had double the maximal L-galactone-1,4-lactone dehydrogenase (L-GalLDH) activities of LL leaves. Growth under HL enhanced dehydroascorbate reductase and monodehydroascorbate reductase activities. Leaf respiration rates were highest in the HL leaves, which also had higher amounts of cytochrome c and cytochrome c oxidase (CCO) activities, as well as enhanced capacity of the AOX and CCO electron transport pathways. Leaves of the AOX-overexpressing lines accumulated more AA than wild-type or antisense leaves, particularly at HL. Intact mitochondria from AOX-overexpressing lines had higher AA synthesis capacities than those from the wild-type or antisense lines even though they had similar L-GalLDH activities. AOX antisense lines had more cytochrome c protein than wild-type or AOX-overexpressing lines. It is concluded that regardless of limitations on L-GalL synthesis by regulation of early steps in the AA synthesis pathway, the regulation of L-GalLDH activity via the interaction of light and respiratory controls is a crucial determinant of the overall ability of leaves to produce and accumulate AA.

  4. Nonthermal plasma synthesis of size-controlled, monodisperse, freestanding germanium nanocrystals

    International Nuclear Information System (INIS)

    Gresback, Ryan; Holman, Zachary; Kortshagen, Uwe

    2007-01-01

    Germanium nanocrystals may be of interest for a variety of electronic and optoelectronic applications including photovoltaics, primarily due to the tunability of their band gap from the infrared into the visible range of the spectrum. This letter discusses the synthesis of monodisperse germanium nanocrystals via a nonthermal plasma approach which allows for precise control of the nanocrystal size. Germanium crystals are synthesized from germanium tetrachloride and hydrogen entrained in an argon background gas. The crystal size can be varied between 4 and 50 nm by changing the residence times of crystals in the plasma between ∼30 and 440 ms. Adjusting the plasma power enables one to synthesize fully amorphous or fully crystalline particles with otherwise similar properties

  5. Yeast PAH1-encoded phosphatidate phosphatase controls the expression of CHO1-encoded phosphatidylserine synthase for membrane phospholipid synthesis.

    Science.gov (United States)

    Han, Gil-Soo; Carman, George M

    2017-08-11

    The PAH1 -encoded phosphatidate phosphatase (PAP), which catalyzes the committed step for the synthesis of triacylglycerol in Saccharomyces cerevisiae , exerts a negative regulatory effect on the level of phosphatidate used for the de novo synthesis of membrane phospholipids. This raises the question whether PAP thereby affects the expression and activity of enzymes involved in phospholipid synthesis. Here, we examined the PAP-mediated regulation of CHO1 -encoded phosphatidylserine synthase (PSS), which catalyzes the committed step for the synthesis of major phospholipids via the CDP-diacylglycerol pathway. The lack of PAP in the pah1 Δ mutant highly elevated PSS activity, exhibiting a growth-dependent up-regulation from the exponential to the stationary phase of growth. Immunoblot analysis showed that the elevation of PSS activity results from an increase in the level of the enzyme encoded by CHO1 Truncation analysis and site-directed mutagenesis of the CHO1 promoter indicated that Cho1 expression in the pah1 Δ mutant is induced through the inositol-sensitive upstream activation sequence (UAS INO ), a cis -acting element for the phosphatidate-controlled Henry (Ino2-Ino4/Opi1) regulatory circuit. The abrogation of Cho1 induction and PSS activity by a CHO1 UAS INO mutation suppressed pah1 Δ effects on lipid synthesis, nuclear/endoplasmic reticulum membrane morphology, and lipid droplet formation, but not on growth at elevated temperature. Loss of the DGK1 -encoded diacylglycerol kinase, which converts diacylglycerol to phosphatidate, partially suppressed the pah1 Δ-mediated induction of Cho1 and PSS activity. Collectively, these data showed that PAP activity controls the expression of PSS for membrane phospholipid synthesis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Functional Dynamics within the Human Ribosome Regulate the Rate of Active Protein Synthesis.

    Science.gov (United States)

    Ferguson, Angelica; Wang, Leyi; Altman, Roger B; Terry, Daniel S; Juette, Manuel F; Burnett, Benjamin J; Alejo, Jose L; Dass, Randall A; Parks, Matthew M; Vincent, C Theresa; Blanchard, Scott C

    2015-11-05

    The regulation of protein synthesis contributes to gene expression in both normal physiology and disease, yet kinetic investigations of the human translation mechanism are currently lacking. Using single-molecule fluorescence imaging methods, we have quantified the nature and timing of structural processes in human ribosomes during single-turnover and processive translation reactions. These measurements reveal that functional complexes exhibit dynamic behaviors and thermodynamic stabilities distinct from those observed for bacterial systems. Structurally defined sub-states of pre- and post-translocation complexes were sensitive to specific inhibitors of the eukaryotic ribosome, demonstrating the utility of this platform to probe drug mechanism. The application of three-color single-molecule fluorescence resonance energy transfer (smFRET) methods further revealed a long-distance allosteric coupling between distal tRNA binding sites within ribosomes bearing three tRNAs, which contributed to the rate of processive translation. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Controllable synthesis and defect-dependent photoluminescence properties of In2O3 nanostructures prepared by PVD

    Science.gov (United States)

    Jin, Changqing; Wei, Yongxing; Peterson, George; Zhu, Kexin; Jian, Zengyun

    2017-05-01

    In2O3 nanostructures were successfully synthesized via physical vapor deposition (PVD). It was found that the morphology of nanostuctures could be controlled by manipulation of the synthesis temperature, growth time, use of a Au-catalyst, selection of substrate material, and vapor pressure. A higher synthesis temperature is more favorable for the formation of 1D nanostructures. An increased growth time increased the width and length of the 1D nanostructures. Through the use of a Au-catalyst coated Si (1 0 0) substrate, we were able to preferentially synthesize (1 0 0) In2O3 nanostructures, even at lower growth temperatures. This research shows that a Au-catalyst is necessary for the formation of one-dimensional (1D) In2O3 nanostructures. Three dimensional (3D) octahedral nanoparticles are resultant from a Au-free Si (1 0 0) substrate. Al2O3 (1 0 0) substrates were found to be energetically favorable for the synthesis of nanofilms, not 1D nanostructures, regardless of the presence of Au-catalyst. The photoluminescence curves indicate that the defect related luminescence is not a function of morphology, but rather the ratio of the partial vapor pressures of the constituent elements (In and O), which were controlled by the growth pressure.

  8. Thermodynamic-Controlled Gas Phase Process for the Synthesis of Nickel Nanoparticles of Adjustable Size and Morphology

    International Nuclear Information System (INIS)

    Kauffeldt, Elena; Kauffeldt, Thomas

    2006-01-01

    Gas phase processes are a successful route for the synthesis of nano materials. Nickel particles are used in applications ranging from catalysis to nano electronics and energy storage. The application field defines the required particle size, morphology, crystallinity and purity. Nickel tetracarbonyl is the most promising precursor for the synthesis of high purity nickel particles. Due to the toxicity of this precursor and to obtain an optimal process control we developed a two-step flow type process. Nickel carbonyl and nickel particles are synthesized in a sequence of reactions. The particles are formed in a hot wall reactor at temperatures below 400 deg. C in different gas compositions. Varying the process conditions enables the adjustment of the particle size in a range from 3 to 140 nm. The controllable crystalline habits are polycrystalline, single crystals or multiple twinned particles (MTP). Spectroscopic investigations show an excellent purity. We report about the process and first investigations of the properties of the synthesized nickel nanomaterial

  9. Control of molecular weight distribution in synthesis of poly(2-hydroxyethyl methacrylate) using ultrasonic irradiation.

    Science.gov (United States)

    Kubo, Masaki; Kondo, Takayuki; Matsui, Hideki; Shibasaki-Kitakawa, Naomi; Yonemoto, Toshikuni

    2018-01-01

    Poly(2-hydroxyethyl methacrylate) (PHEMA) was synthesized using ultrasonic irradiation without any chemical initiator. The effect of the ultrasonic power intensity on the time course of the conversion to polymer, the number average molecular weight, and the polydispersity were investigated in order to synthesize a polymer with a low molecular weight distribution (i.e., low polydispersity). The conversion to polymer increased with time. A higher ultrasonic power intensity resulted in a faster reaction rate. The number average molecular weight increased during the early stage of the reaction and then gradually decreased with time. A higher ultrasonic intensity resulted in a faster degradation rate of the polymer. The polydispersity decreased with time. This was because the degradation rate of a polymer with a higher molecular weight was faster than that of a polymer with a lower molecular weight. A polydispersity below 1.3 was obtained under ultrasonic irradiation. By changing the ultrasonic power intensity during the reaction, the number average molecular weight can be controlled while maintaining low polydispersity. When the ultrasonic irradiation was halted, the reactions stopped and the number average molecular weight and polydispersity did not change. On the basis of the experimental results, a kinetic model for synthesis of PHEMA under ultrasonic irradiation was constructed considering both polymerization and polymer degradation. The kinetic model was in good agreement with the experimental results for the time courses of the conversion to polymer, the number average molecular weight, and the polydispersity for various ultrasonic power intensities. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Cross-Layer Design of Source Rate Control and Congestion Control for Wireless Video Streaming

    Directory of Open Access Journals (Sweden)

    Peng Zhu

    2007-01-01

    Full Text Available Cross-layer design has been used in streaming video over the wireless channels to optimize the overall system performance. In this paper, we extend our previous work on joint design of source rate control and congestion control for video streaming over the wired channel, and propose a cross-layer design approach for wireless video streaming. First, we extend the QoS-aware congestion control mechanism (TFRCC proposed in our previous work to the wireless scenario, and provide a detailed discussion about how to enhance the overall performance in terms of rate smoothness and responsiveness of the transport protocol. Then, we extend our previous joint design work to the wireless scenario, and a thorough performance evaluation is conducted to investigate its performance. Simulation results show that by cross-layer design of source rate control at application layer and congestion control at transport layer, and by taking advantage of the MAC layer information, our approach can avoid the throughput degradation caused by wireless link error, and better support the QoS requirements of the application. Thus, the playback quality is significantly improved, while good performance of the transport protocol is still preserved.

  11. Power flow controller with a fractionally rated back-to-back converter

    Science.gov (United States)

    Divan, Deepakraj M.; Kandula, Rajendra Prasad; Prasai, Anish

    2016-03-08

    A power flow controller with a fractionally rated back-to-back (BTB) converter is provided. The power flow controller provide dynamic control of both active and reactive power of a power system. The power flow controller inserts a voltage with controllable magnitude and phase between two AC sources at the same frequency; thereby effecting control of active and reactive power flows between the two AC sources. A transformer may be augmented with a fractionally rated bi-directional Back to Back (BTB) converter. The fractionally rated BTB converter comprises a transformer side converter (TSC), a direct-current (DC) link, and a line side converter (LSC). By controlling the switches of the BTB converter, the effective phase angle between the two AC source voltages may be regulated, and the amplitude of the voltage inserted by the power flow controller may be adjusted with respect to the AC source voltages.

  12. An unusual correlation between ppGpp pool size and rate of ribosome synthesis during partial pyrimidine starvation of Escherichia coli

    DEFF Research Database (Denmark)

    Vogel, Ulla; Pedersen, Steen; Jensen, Kaj Frank

    1991-01-01

    Escherichia coli was exposed to partial pyrimidine starvation by feeding a pyrBI strain orotate as the only pyrimidine source. Subsequently, differential rates of synthesis of rRNA and of a few ribosome-associated proteins as well as the pool sizes of nucleoside triphosphates and ppGpp were measu...

  13. Concurrent protein synthesis is required for in vivo chitin synthesis in postmolt blue crabs

    International Nuclear Information System (INIS)

    Horst, M.N.

    1990-01-01

    Chitin synthesis in crustaceans involves the deposition of a protein-polysaccharide complex at the apical surface of epithelial cells which secrete the cuticle or exoskeleton. The present study involves an examination of in vivo incorporation of radiolabeled amino acids and amino sugars into the cuticle of postmolt blue crabs, Callinectes sapidus. Rates of incorporation of both 3H leucine and 3H threonine were linear with respect to time of incubation. Incorporation of 3H threonine into the endocuticle was inhibited greater than 90% in the presence of the protein synthesis inhibitor, puromycin. Linear incorporation of 14C glucosamine into the cuticle was also demonstrated; a significant improvement of radiolabeling was achieved by using 14C-N-acetylglucosamine as the labeled precursor. Incorporation of 3H-N-acetylglucosamine into the cuticle of postmolt blue crabs was inhibited 89% by puromycin, indicating that concurrent protein synthesis is required for the deposition of chitin in the blue crab. Autoradiographic analysis of control vs. puromycin-treated crabs indicates that puromycin totally blocks labeling of the new endocuticle with 3H glucosamine. These results are consistent with the notion that crustacean chitin is synthesized as a protein-polysaccharide complex. Analysis of the postmolt and intermolt blue crab cuticle indicates that the exoskeleton contains about 60% protein and 40% chitin. The predominant amino acids are arginine, glutamic acid, alanine, aspartic acid, and threonine

  14. Cytomatrix synthesis in MDCK epithelial cells

    International Nuclear Information System (INIS)

    Mitchell, J.J.; Low, R.B.; Woodcock-Mitchell, J.L.

    1990-01-01

    Detailed information regarding the synthesis rates of individual protein components is important in understanding the assembly and dynamics of the cytoskeletal matrix of eukaryotic cells. As an approach to this topic, the dual isotope technique of Clark and Zak, was employed to measure fractional synthesis rates (FSRs) in growing and quiescent cultures of MDCK epithelial cells. Cell protein was labeled to equilibrium with [14C]leucine over several days and then pulse-labeled for 4 hours with [3H]leucine. FSRs (as percent per hour) were calculated from the 3H/14C ratio of cell extracts or individual proteins separated by two-dimensional polyacrylamide gel electrophoresis and the 3H/14C ratio of free leucine in the medium. Synthesis of total cell protein rose from approximately 1.4%/hour in quiescent cells to 3.5%/hour in the growing cultures. The latter rate was sufficient to account for the rate of protein accumulation and a low level of turnover in the growing cultures. The FSR of the buffered-Triton soluble extract was higher and the cytoskeletal FSR significantly lower than that for total protein in quiescent monolayers. This difference, however, was not observed in growing cultures. A distinct pattern of differences was seen in the FSRs of individual cytoskeletal proteins in the quiescent cultures. Vimentin synthesis was significantly lower than that of the keratins and the keratin FSRs were not obviously matched in pairwise fashion. Unexpectedly, the FSRs of alpha- and beta-tubulin diverged in quiescent cells with alpha-tubulin turnover exceeding beta-tubulin. Likewise, components of the microfilament lattice showed unequal fractional synthesis rates, myosin and alpha-actinin being faster than actin. In addition, the FSR for globular actin exceeded that of the cytoskeletal associated form

  15. Gas Phase Nanoparticle Synthesis

    Science.gov (United States)

    Granqvist, Claes; Kish, Laszlo; Marlow, William

    This book deals with gas-phase nanoparticle synthesis and is intended for researchers and research students in nanomaterials science and engineering, condensed matter physics and chemistry, and aerosol science. Gas-phase nanoparticle synthesis is instrumental to nanotechnology - a field in current focus that raises hopes for environmentally benign, resource-lean manufacturing. Nanoparticles can be produced by many physical, chemical, and even biological routes. Gas-phase synthesis is particularly interesting since one can achieve accurate manufacturing control and hence industrial viability.

  16. Seed-mediated synthesis of silver nanocrystals with controlled sizes and shapes in droplet microreactors separated by air.

    Science.gov (United States)

    Zhang, Lei; Wang, Yi; Tong, Limin; Xia, Younan

    2013-12-17

    Silver nanocrystals with uniform sizes were synthesized in droplet microreactors through seed-mediated growth. The key to the success of this synthesis is the use of air as a carrier phase to generate the droplets. The air not only separates the reaction solution into droplets but also provides O2 for the generation of reducing agent (glycolaldehyde). It also serves as a buffer space for the diffusion of NO, which is formed in situ due to the oxidative etching of Ag nanocrystals with twin defects. For the first time, we were able to generate Ag nanocrystals with controlled sizes and shapes in continuous production by using droplet microreactors. For Ag nanocubes, their edge lengths could be readily controlled in the range of 30-100 nm by varying the reaction time, the amount of seeds, and the concentration of AgNO3 in the droplets. Furthermore, we demonstrated the synthesis of Ag octahedra in the droplet microreactors. We believe that the air-driven droplet generation device can be extended to other noble metals for the production of nanocrystals with controlled sizes and shapes.

  17. RBE comparison between rapid electrons of 20 MeV and 45 MeV with survival rate, DNA synthesis, DNA reparation and nucleoid sedimentation

    International Nuclear Information System (INIS)

    Alth, G.; Weniger, P.; Turtzer, K.; Klein, W.; Kocsis, F.; Krankenhaus der Stadt Wien-Lainz; Oesterreichisches Forschungszentrum Seibersdorf G.m.b.H. Inst. fuer Biologie)

    1982-01-01

    In order to find out possible differences of the biologic efficacy of rapid electrons of different energies, the authors examined the influence of rapid electrons of 20 MeV and 45 MeV upon the survival rate of Hela cells S3, their cell growth, DNA synthesis, DNA reparation, and sedimentation of nucleoids. The results show a difference only for the nucleoid sedimentation, i.e. there are more fractured DNA cords after 45 MeV irradiation. No significant differences could be demonstrated for the parameters of the survival curve, DNA synthesis and DNA reparation. Four double tests were carried out corresponding to the indicated types of examination. (orig.) [de

  18. Decentralized control of transmission rates in energy-critical wireless networks

    KAUST Repository

    Xia, Li

    2013-06-01

    In this paper, we discuss the decentralized optimization of delay and energy consumption in a multi-hop wireless network. The goal is to minimize the energy consumption of energy-critical nodes and the overall packet transmission delay of the network. The transmission rates of energy-critical nodes are adjustable according to the local information of nodes, i.e., the length of packets queued. The multi-hop network is modeled as a queueing network.We prove that the system performance is monotone w.r.t. (with respect to) the transmission rate, thus the “bang-bang” control is an optimal control. We also prove that there exists a threshold type control policy which is optimal. We propose a decentralized algorithm to control transmission rates of these energy-critical nodes. Some simulation experiments are conducted to demonstrate the effectiveness of our approach.

  19. Decentralized control of transmission rates in energy-critical wireless networks

    KAUST Repository

    Xia, Li; Shihada, Basem

    2013-01-01

    In this paper, we discuss the decentralized optimization of delay and energy consumption in a multi-hop wireless network. The goal is to minimize the energy consumption of energy-critical nodes and the overall packet transmission delay of the network. The transmission rates of energy-critical nodes are adjustable according to the local information of nodes, i.e., the length of packets queued. The multi-hop network is modeled as a queueing network.We prove that the system performance is monotone w.r.t. (with respect to) the transmission rate, thus the “bang-bang” control is an optimal control. We also prove that there exists a threshold type control policy which is optimal. We propose a decentralized algorithm to control transmission rates of these energy-critical nodes. Some simulation experiments are conducted to demonstrate the effectiveness of our approach.

  20. Chemical synthesis on SU-8

    DEFF Research Database (Denmark)

    Qvortrup, Katrine; Taveras, Kennedy; Thastrup, Ole

    2011-01-01

    In this paper we describe a highly effective surface modification of SU-8 microparticles, the attachment of appropriate linkers for solid-supported synthesis, and the successful chemical modification of these particles via controlled multi-step organic synthesis leading to molecules attached...

  1. DNA synthesis in vitro in human fibroblast preparations

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, W.K.

    1983-01-01

    When confluent cultures of human fibroblasts were ultraviolet irradiated and either permeabilized or lysed, three types of DNA synthesis were subsequently observed during incubation in vitro: (A) a low level of DNA replication, which ceased after 15-30 min incubation at 37/sup 0/C; (B) radiation-dependent reparative gap-filling, which also ceased after 15 min at 37/sup 0/C; and (C) radiation-independent DNA synthesis, which was not semiconservative and proceeded at a linear rate for 1 hr at 37/sup 0/C. Normal and xeroderma pigmentosum fibroblasts displayed different rates of radiation-dependent reparative gap-filling after lysis but similar rates of radiation-independent DNA synthesis. The rates of DNA replication and radiation-independent DNA synthesis were less in the permeable cell system than in the lysed cell system, whereas radiation-dependent reparative gap-filling was the same in both. Preparations of permeable and lysed cells activated radiation-dependent reparative gap-filling at about 15% of the rate estimated for intact cells. No radiation-dependent DNA strand breaks, as assayed by alkaline elution, were observed in the lysed cell preparation. Some radiation-dependent breaks were observed in the permeable cell preparation, but radiation-dependent DNA breakage was less than that seen in intact cells. This inability to incise DNA at damaged sites could account for the low rate of activation of reparative gap-filling in vitro. DNA strand breaks were produced in fibroblast preparations nonspecifically during lysis or permeabilization and incubation in vitro, and this breakage of DNA probably was responsible for the radiation-independent DNA synthesis.

  2. Money market rates and implied CCAPM rates: some international evidence

    OpenAIRE

    Yamin Ahmad

    2004-01-01

    New Neoclassical Synthesis models equate the instrument of monetary policy to the implied CCAPM rate arising from an Euler equation. This paper identifies monetary policy shocks within six of the G7 countries and examines the movement of money market and implied CCAPM rates. The key result is that an increase in the nominal interest rate leads to a fall in the implied CCAPM rate. Incorporating habit still yields the same result. The findings suggest that the movement of these two rates implie...

  3. Interfacing COTS Speech Recognition and Synthesis Software to a Lotus Notes Military Command and Control Database

    Science.gov (United States)

    Carr, Oliver

    2002-10-01

    Speech recognition and synthesis technologies have become commercially viable over recent years. Two current market leading products in speech recognition technology are Dragon NaturallySpeaking and IBM ViaVoice. This report describes the development of speech user interfaces incorporating these products with Lotus Notes and Java applications. These interfaces enable data entry using speech recognition and allow warnings and instructions to be issued via speech synthesis. The development of a military vocabulary to improve user interaction is discussed. The report also describes an evaluation in terms of speed of the various speech user interfaces developed using Dragon NaturallySpeaking and IBM ViaVoice with a Lotus Notes Command and Control Support System Log database.

  4. Silver nanostructures with well-controlled shapes: synthesis, characterization and growth mechanisms

    International Nuclear Information System (INIS)

    Kan Caixia; Zhu Jiejun; Zhu Xiaoguang

    2008-01-01

    This paper describes a poly(vinylpyrollidone)-directed polyol synthesis method for the fabrication of silver (Ag) nanostructures with well-controlled shapes (such as nanorods and nanocubes) by adjusting the synthesizing parameters. The structure characterizations suggest that the Ag nanorods grow from the five-fold twinned decahedral crystal nuclei. The nature of the {1 1 1} planes of Ag crystal and the highly selective poly(vinylpyrollidone) adsorption on the {100} planes of Ag crystal nuclei are favourable for the formation of Ag nanorods and Ag nanowires. The single crystalline Ag nanocubes obtained at optimum conditions are perfect in shape and are enclosed by the {1 0 0} facets. The optical properties of the Ag nanostructures show an attractive plasma resonance, displaying a considerable dependence on the shape and size. The formation of the Ag nanostructures with well-defined shapes is probably due to the fact that the nanostructures are controlled thermodynamically and kinetically. The ability to generate shape-controlled Ag nanostructures also provides an opportunity to experimentally and systematically study the relationship between their properties and geometric shapes

  5. Silver nanostructures with well-controlled shapes: synthesis, characterization and growth mechanisms

    Science.gov (United States)

    Kan, Cai-Xia; Zhu, Jie-Jun; Zhu, Xiao-Guang

    2008-08-01

    This paper describes a poly(vinylpyrollidone)-directed polyol synthesis method for the fabrication of silver (Ag) nanostructures with well-controlled shapes (such as nanorods and nanocubes) by adjusting the synthesizing parameters. The structure characterizations suggest that the Ag nanorods grow from the five-fold twinned decahedral crystal nuclei. The nature of the {1 1 1} planes of Ag crystal and the highly selective poly(vinylpyrollidone) adsorption on the {100} planes of Ag crystal nuclei are favourable for the formation of Ag nanorods and Ag nanowires. The single crystalline Ag nanocubes obtained at optimum conditions are perfect in shape and are enclosed by the {1 0 0} facets. The optical properties of the Ag nanostructures show an attractive plasma resonance, displaying a considerable dependence on the shape and size. The formation of the Ag nanostructures with well-defined shapes is probably due to the fact that the nanostructures are controlled thermodynamically and kinetically. The ability to generate shape-controlled Ag nanostructures also provides an opportunity to experimentally and systematically study the relationship between their properties and geometric shapes.

  6. Expression of cytoskeletal and matrix genes following exposure to ionizing radiation: Dose-rate effects and protein synthesis requirements

    International Nuclear Information System (INIS)

    Woloschak, G.E.

    1994-01-01

    Experiments were designed to examine the effects Of radiation dose-rate and of the protein synthesis inhibitor cycloheximide on expression of cytoskeletal elements (γ- and β-actin and α-tubulin) and matrix elements (fibronectin) in Syrian hamster embryo cells. Past work from our laboratory had already demonstrated optimum time points and doses for examination of radiation effects on accumulation of specific transcripts. Our results here demonstrated little effect of dose-rate for JANUS fission spectrum neutrons when comparing expression of either α-tubulin or fibronectin genes. Past work had already documented similar results for expression of actin transcripts. Effects of cycloheximide revealed that cycloheximide repressed accumulation of α-tubulin following exposure to high dose-rate neutrons or γ rays; this did not occur following similar low dose-rate exposure. (2) Cycloheximide did not affect accumulation of MRNA for actin genes; and that cycloheximide abrogated the moderate induction of fibronectin-mRNA which occurred following exposure to γ rays and high dose-rate neutrons. These results suggest a role for labile proteins in the maintenance of α-tubulin and fibronectin MRNA accumulation following exposure to ionizing radiation. in addition, they suggest that the cellular/molecular response to low dose-rate neutrons may be different from the response to high dose-rate neutrons

  7. Testing jumps via false discovery rate control.

    Science.gov (United States)

    Yen, Yu-Min

    2013-01-01

    Many recently developed nonparametric jump tests can be viewed as multiple hypothesis testing problems. For such multiple hypothesis tests, it is well known that controlling type I error often makes a large proportion of erroneous rejections, and such situation becomes even worse when the jump occurrence is a rare event. To obtain more reliable results, we aim to control the false discovery rate (FDR), an efficient compound error measure for erroneous rejections in multiple testing problems. We perform the test via the Barndorff-Nielsen and Shephard (BNS) test statistic, and control the FDR with the Benjamini and Hochberg (BH) procedure. We provide asymptotic results for the FDR control. From simulations, we examine relevant theoretical results and demonstrate the advantages of controlling the FDR. The hybrid approach is then applied to empirical analysis on two benchmark stock indices with high frequency data.

  8. Effects of Whey, Caseinate, or Milk Protein Ingestion on Muscle Protein Synthesis after Exercise.

    Science.gov (United States)

    Kanda, Atsushi; Nakayama, Kyosuke; Sanbongi, Chiaki; Nagata, Masashi; Ikegami, Shuji; Itoh, Hiroyuki

    2016-06-03

    Whey protein (WP) is characterized as a "fast" protein and caseinate (CA) as a "slow" protein according to their digestion and absorption rates. We hypothesized that co-ingestion of milk proteins (WP and CA) may be effective for prolonging the muscle protein synthesis response compared to either protein alone. We therefore compared the effect of ingesting milk protein (MP) to either WP or CA alone on muscle protein synthesis after exercise in rats. We also compared the effects of these milk-derived proteins to a control, soy protein (SP). Male Sprague-Dawley rats swam for two hours. Immediately after exercise, one of the following four solutions was administered: WP, CA, MP, or SP. Individual rats were euthanized at designated postprandial time points and triceps muscle samples collected for measurement of the protein fractional synthesis rate (FSR). FSR tended to increase in all groups post-ingestion, although the initial peaks of FSR occurred at different times (WP, peak time = 60 min, FSR = 7.76%/day; MP, peak time = 90 min, FSR = 8.34%/day; CA, peak time = 120 min, FSR = 7.85%/day). Milk-derived proteins caused significantly greater increases (p protein synthesis to occur at different times (WP, fast; MP, intermediate; CA, slow) and the dairy proteins have a superior effect on muscle protein synthesis after exercise compared with SP.

  9. Depression of DNA synthesis rate following hyperthermia, gamma irradiation, cyclotron neutrons and mixed modalities

    International Nuclear Information System (INIS)

    Weber, H.J.; Muehlensiepen, H.; Porschen, W.; Feinendegen, L.E.; Dietzel, F.

    1978-01-01

    The incorporation of the thymidine analogue I-UdR is proportional to the activity of DNA synthesis. The maximum depression of 125-I-UdR incorporation occurs approximately 4 hours after all kinds of treatment. The increase which follow reflects cell processes like reoxygeneration, recovery, recycling and recruitment (although a direct relation is not yet demonstrable). The degree of depression 4 hours after treatment and the time required needs to reach control level is dependent on dose and radiation quaility but no such dependence could be clearly seen for the times of hyperthermia treatment we used. Neutron irradiation and the combination gamma irradiation + hyperthermia show a higher depression and a slower return to normal than gamma irradiation at the same dose. (orig.) [de

  10. Albumin synthesis in protein energy malnutrition

    Energy Technology Data Exchange (ETDEWEB)

    Duggan, C; Hardy, S; Kleinman, R E [Harvard Medical School, Boston, MA (United States); Lembcke, J [Instituto de Investigacion Nutricional, La Molina, Lima (Peru); Young, V E [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Lab. of Human Nutrition

    1994-12-31

    The dietary treatment of protein-energy malnutrition (PEM) has been designed on an empirical basis, with outcomes for successful management including body weight gain and resolution of apathy. We propose using the measurements of protein synthesis as a more objective measure of renourishment. We will therefore randomize a group of malnourished children (weigh-for-height Z score <-2.0) to receive either a standard (10% of calories as protein) or increased (15%) amount of dietary protein early in their recovery phase. We will calculate albumin synthesis rates via the flooding dose technique, using {sup 13}C-leucine and serial measurements of {sup 13}C-enrichment of albumin. Isotope infusions will be performed on days one and three, following a standard three hour fast. Since albumin synthesis is reduced under the influence of cytokines which mediate the inflammatory response, results will be stratified according to the presence or absence of clinically apparent infections. We hypothesize that the provision of added dietary protein will optimize albumin synthesis rates in PEM as well as attenuate the reduction in albumin synthesis seen in the presence of infections. (author). 20 refs.

  11. RNA and protein synthesis of irradiated Ehrlich ascites tumour cells. Pt. 2

    International Nuclear Information System (INIS)

    Skog, S.; Tribukait, B.; Nygard, O.; Wenner-Gren-Center foer Vetenskaplig Forskning, Stockholm

    1985-01-01

    Poly(A)-containing RNA (m-RNA) was studied in in vivo growing Ehrlich ascites tumour cells following a roentgen irradiation dose of 5 Gy. m-RNA increased significantly during the first 12 hours after irradiation. Thus, the observed decrease in protein synthesis rate during this time seems not to be due to radiation induced changes at the transcriptional level. The protein synthesis rate of in vivo irradiated cells incubated in vitro in culture medium was unchanged. On the other hand, the protein synthesis rate of non-irradiated cells incubated in vitro in ascites fluid from irradiated animals was decreased. We concluded that factor(s) inhibiting protein synthesis or the lack of factor(s) promoting protein synthesis in the ascites fluid is(are) of significance for the reduced protein synthesis of tumour cells found in irradiated in vivo growing cells. (orig.)

  12. An Operational Event Announcer for the LHC Control Centre Using Speech Synthesis

    CERN Document Server

    Page, S

    2011-01-01

    The LHC Island of the CERN Control Centre is a busy working environment with many status displays and running software applications. An audible event announcer was developed in order to provide a simple and efficient method to notify the operations team of events occurring within the many subsystems of the accelerator. The LHC Announcer uses speech synthesis to report messages based upon data received from multiple sources. General accelerator information such as injections, beam energies and beam dumps are derived from data received from the LHC Timing System. Additionally, a software interface is provided that allows other surveillance processes to send messages to the Announcer using the standard control system middleware. Events are divided into categories which the user can enable or disable depending upon their interest. Use of the LHC Announcer is not limited to the Control Centre and is intended to be available to a wide audience, both inside and outside CERN. To accommodate this, it...

  13. Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium-sulfur batteries

    Science.gov (United States)

    Kim, Hoon; Lee, Joungphil; Ahn, Hyungmin; Kim, Onnuri; Park, Moon Jeong

    2015-06-01

    Elemental sulfur is one of the most attractive cathode active materials in lithium batteries because of its high theoretical specific capacity. Despite the positive aspect, lithium-sulfur batteries have suffered from severe capacity fading and limited rate capability. Here we report facile large-scale synthesis of a class of organosulfur compounds that could open a new chapter in designing cathode materials to advance lithium-sulfur battery technologies. Porous trithiocyanuric acid crystals are synthesized for use as a soft template, where the ring-opening polymerization of elemental sulfur takes place along the thiol surfaces to create three-dimensionally interconnected sulfur-rich phases. Our lithium-sulfur cells display discharge capacity of 945 mAh g-1 after 100 cycles at 0.2 C with high-capacity retention of 92%, as well as lifetimes of 450 cycles. Particularly, the organized amine groups in the crystals increase Li+-ion transfer rate, affording a rate performance of 1210, mAh g-1 at 0.1 C and 730 mAh g-1 at 5 C.

  14. Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium–sulfur batteries

    Science.gov (United States)

    Kim, Hoon; Lee, Joungphil; Ahn, Hyungmin; Kim, Onnuri; Park, Moon Jeong

    2015-01-01

    Elemental sulfur is one of the most attractive cathode active materials in lithium batteries because of its high theoretical specific capacity. Despite the positive aspect, lithium–sulfur batteries have suffered from severe capacity fading and limited rate capability. Here we report facile large-scale synthesis of a class of organosulfur compounds that could open a new chapter in designing cathode materials to advance lithium–sulfur battery technologies. Porous trithiocyanuric acid crystals are synthesized for use as a soft template, where the ring-opening polymerization of elemental sulfur takes place along the thiol surfaces to create three-dimensionally interconnected sulfur-rich phases. Our lithium–sulfur cells display discharge capacity of 945 mAh g−1 after 100 cycles at 0.2 C with high-capacity retention of 92%, as well as lifetimes of 450 cycles. Particularly, the organized amine groups in the crystals increase Li+-ion transfer rate, affording a rate performance of 1210, mAh g−1 at 0.1 C and 730 mAh g−1 at 5 C. PMID:26065407

  15. Role of Akt/PKB and PFKFB isoenzymes in the control of glycolysis, cell proliferation and protein synthesis in mitogen-stimulated thymocytes.

    Science.gov (United States)

    Houddane, Amina; Bultot, Laurent; Novellasdemunt, Laura; Johanns, Manuel; Gueuning, Marie-Agnès; Vertommen, Didier; Coulie, Pierre G; Bartrons, Ramon; Hue, Louis; Rider, Mark H

    2017-06-01

    Proliferating cells depend on glycolysis mainly to supply precursors for macromolecular synthesis. Fructose 2,6-bisphosphate (Fru-2,6-P 2 ) is the most potent positive allosteric effector of 6-phosphofructo-1-kinase (PFK-1), and hence of glycolysis. Mitogen stimulation of rat thymocytes with concanavalin A (ConA) led to time-dependent increases in lactate accumulation (6-fold), Fru-2,6-P 2 content (4-fold), 6-phosphofructo-2-kinase (PFK-2)/fructose-2,6-bisphosphatase isoenzyme 3 and 4 (PFKFB3 and PFKFB4) protein levels (~2-fold and ~15-fold, respectively) and rates of cell proliferation (~40-fold) and protein synthesis (10-fold) after 68h of incubation compared with resting cells. After 54h of ConA stimulation, PFKFB3 mRNA levels were 45-fold higher than those of PFKFB4 mRNA. Although PFKFB3 could be phosphorylated at Ser461 by protein kinase B (PKB) in vitro leading to PFK-2 activation, PFKFB3 Ser461 phosphorylation was barely detectable in resting cells and only increased slightly in ConA-stimulated cells. On the other hand, PFKFB3 and PFKFB4 mRNA levels were decreased (90% and 70%, respectively) by exposure of ConA-stimulated cells to low doses of PKB inhibitor (MK-2206), suggesting control of expression of the two PFKFB isoenzymes by PKB. Incubation of thymocytes with ConA resulted in increased expression and phosphorylation of the translation factors eukaryotic initiation factor-4E-binding protein-1 (4E-BP1) and ribosomal protein S6 (rpS6). Treatment of ConA-stimulated thymocytes with PFK-2 inhibitor (3PO) or MK-2206 led to significant decreases in Fru-2,6-P 2 content, medium lactate accumulation and rates of cell proliferation and protein synthesis. These data were confirmed by using siRNA knockdown of PFKFB3, PFKFB4 and PKB α/β in the more easily transfectable Jurkat E6-1 cell line. The findings suggest that increased PFKFB3 and PFKFB4 expression, but not increased PFKFB3 Ser461 phosphorylation, plays a role in increasing glycolysis in mitogen

  16. Control of protein synthesis in Escherichia coli: strain differences in control of translational initiation after energy source shift-down.

    Science.gov (United States)

    Jacobson, L A; Jen-Jacobson, L

    1980-06-01

    We have studied the parameters of protein synthesis in a number of Escherichia coli strains after a shift-down from glucose-minimal to succinate-minimal medium. One group of strains, including K-12(lambda) (ATCC 10798) and NF162, showed a postshift translational yield of 50 to 65% and a 2- to 2.5-fold increase in the functional lifetime of general messenger ribonucleic acid. There was no change in the lag time for beta-galactosidase induction in these strains after the shift-down. A second group, including W1 and W2, showed no reduction in translational yield, no change in the functional lifetime of messenger ribonucleic acid, and a 50% increase in the lag time for beta-galactosidase induction. Evidence is presented which indicates that this increased lag time is not the result of a decreased rate of polypeptide chain propagation. A third group of strains, including NF161, CP78, and NF859, showed an intermediate pattern: translational yield was reduced to about 75% of normal, and the messenger ribonucleic acid functional lifetime was increased by about 50%. Calculation of the relative postshift rates of translational initiation gave about 0.2, 1.0, and 0.5, respectively, for the three groups. There was no apparent correlation between the ability to control translation and the genotypes of these strains at the relA, relX, or spoT loci. Measurements of the induction lag for beta-galactosidase during short-term glucose starvation or after a down-shift induced by alpha-methylglucoside indicated that these regimens elicit responses that are physiologically distinct from those elicited by a glucose-to-succinate shift-down.

  17. Adaptive threshold control for auto-rate fallback algorithm in IEEE 802.11 multi-rate WLANs

    Science.gov (United States)

    Wu, Qilin; Lu, Yang; Zhu, Xiaolin; Ge, Fangzhen

    2012-03-01

    The IEEE 802.11 standard supports multiple rates for data transmission in the physical layer. Nowadays, to improve network performance, a rate adaptation scheme called auto-rate fallback (ARF) is widely adopted in practice. However, ARF scheme suffers performance degradation in multiple contending nodes environments. In this article, we propose a novel rate adaptation scheme called ARF with adaptive threshold control. In multiple contending nodes environment, the proposed scheme can effectively mitigate the frame collision effect on rate adaptation decision by adaptively adjusting rate-up and rate-down threshold according to the current collision level. Simulation results show that the proposed scheme can achieve significantly higher throughput than the other existing rate adaptation schemes. Furthermore, the simulation results also demonstrate that the proposed scheme can effectively respond to the varying channel condition.

  18. Testing jumps via false discovery rate control.

    Directory of Open Access Journals (Sweden)

    Yu-Min Yen

    Full Text Available Many recently developed nonparametric jump tests can be viewed as multiple hypothesis testing problems. For such multiple hypothesis tests, it is well known that controlling type I error often makes a large proportion of erroneous rejections, and such situation becomes even worse when the jump occurrence is a rare event. To obtain more reliable results, we aim to control the false discovery rate (FDR, an efficient compound error measure for erroneous rejections in multiple testing problems. We perform the test via the Barndorff-Nielsen and Shephard (BNS test statistic, and control the FDR with the Benjamini and Hochberg (BH procedure. We provide asymptotic results for the FDR control. From simulations, we examine relevant theoretical results and demonstrate the advantages of controlling the FDR. The hybrid approach is then applied to empirical analysis on two benchmark stock indices with high frequency data.

  19. Unscheduled synthesis of DNA and poly(ADP-ribose) in human fibroblasts following DNA damage

    International Nuclear Information System (INIS)

    McCurry, L.S.; Jacobson, M.K.

    1981-01-01

    Unscheduled DNA synthesis has been measured in human fibroblasts under conditions of reduced rates of conversion of NAD to poly)ADP-ribose). Cells heterozygous for the xeroderma pigmentosum genotype showed normal rates of uv induced unscheduled DNA synthesis under conditions in which the rate of poly(ADP-ribose) synthesis was one-half the rate of normal cells. The addition of theophylline, a potent inhibitor of poly(ADP-ribose) polymerase, to the culture medium of normal cells blocked over 90% of the conversion of NAD to poly(ADP-ribose) following treatment with uv or N-methyl-N'-nitro-N-nitro-soguanidine but did not affect the rate of unscheduled DNA synthesis

  20. SYNTHESIS OF AUTOMATIC CONTROL SYSTEM FOR STEPPING-UP CONVERTER OF DC VOLTAGE AT ACTIVE LOAD OPERATION

    Directory of Open Access Journals (Sweden)

    A. V. Мironovich

    2005-01-01

    Full Text Available Investigation of a nontransformer stepping-up converter of dc voltage has been carried out. A non-linear structural circuit of the converter has been developed with the help of the controlled current injection method. A linearization of an object and an automation control system synthesis have been conducted applying method of successive optimization of the circuits. The paper contains results of transient process simulation in the linear computer model and in the power electronics computer model. 

  1. μ-synthesis for the coupled mass benchmark problem

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, J.; Tøffner-Clausen, S.

    1997-01-01

    A robust controller design for the coupled mass benchmark problem is presented in this paper. The applied design method is based on a modified D-K iteration, i.e. μ-synthesis which take care of mixed real and complex perturbations sets. This μ-synthesis method for mixed perturbation sets is a str......A robust controller design for the coupled mass benchmark problem is presented in this paper. The applied design method is based on a modified D-K iteration, i.e. μ-synthesis which take care of mixed real and complex perturbations sets. This μ-synthesis method for mixed perturbation sets...

  2. Deducing the kinetics of protein synthesis in vivo from the transition rates measured in vitro.

    Directory of Open Access Journals (Sweden)

    Sophia Rudorf

    2014-10-01

    Full Text Available The molecular machinery of life relies on complex multistep processes that involve numerous individual transitions, such as molecular association and dissociation steps, chemical reactions, and mechanical movements. The corresponding transition rates can be typically measured in vitro but not in vivo. Here, we develop a general method to deduce the in-vivo rates from their in-vitro values. The method has two basic components. First, we introduce the kinetic distance, a new concept by which we can quantitatively compare the kinetics of a multistep process in different environments. The kinetic distance depends logarithmically on the transition rates and can be interpreted in terms of the underlying free energy barriers. Second, we minimize the kinetic distance between the in-vitro and the in-vivo process, imposing the constraint that the deduced rates reproduce a known global property such as the overall in-vivo speed. In order to demonstrate the predictive power of our method, we apply it to protein synthesis by ribosomes, a key process of gene expression. We describe the latter process by a codon-specific Markov model with three reaction pathways, corresponding to the initial binding of cognate, near-cognate, and non-cognate tRNA, for which we determine all individual transition rates in vitro. We then predict the in-vivo rates by the constrained minimization procedure and validate these rates by three independent sets of in-vivo data, obtained for codon-dependent translation speeds, codon-specific translation dynamics, and missense error frequencies. In all cases, we find good agreement between theory and experiment without adjusting any fit parameter. The deduced in-vivo rates lead to smaller error frequencies than the known in-vitro rates, primarily by an improved initial selection of tRNA. The method introduced here is relatively simple from a computational point of view and can be applied to any biomolecular process, for which we have

  3. Synthesis of acid-soluble spore proteins by Bacillus subtilis.

    Science.gov (United States)

    Leventhal, J M; Chambliss, G H

    1982-12-01

    The major acid-soluble spore proteins (ASSPs) of Bacillus subtilis were detected by immunoprecipitation of radioactively labeled in vitro- and in vivo-synthesized proteins. ASSP synthesis in vivo began 2 h after the initiation of sporulation (t2) and reached its maximum rate at t7. This corresponded to the time of synthesis of mRNA that stimulated the maximum rate of ASSP synthesis in vitro. Under the set of conditions used in these experiments, protease synthesis began near t0, alkaline phosphatase synthesis began at about t2, and refractile spores were first observed between t7 and t8. In vivo- and in vitro-synthesized ASSPs comigrated in sodium dodecyl sulfate-polyacrylamide gels. Their molecular weights were 4,600 (alpha and beta) and 11,000 (gamma). The average half-life of the ASSP messages was 11 min when either rifampin (10 micrograms/ml) or actinomycin D (1 microgram/ml) was used to inhibit RNA synthesis.

  4. Equivalence Checking between Pre-synthesis and Post-synthesis Programs by Using VIS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jonghoon; Yoo, Junbeom [Konkuk Univ., Seoul (Korea, Republic of); Choi, Jonggyun; Lee, Jangsoo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    PLC (Programmable Logic Controller)-based Software development, the design programs are translated into implementation programs, and behavioral equivalence between the design and implementation is demonstrated by formal method based technique. In FPGA-based software development, the design programs are also synthesized into implementation programs. However, in this process, testing and simulation based comparison techniques are mainly used. This paper proposes a formal method based technique to demonstrate behavioral equivalence between pre-synthesis and post-synthesis programs with VIS (Verification Interacting with Synthesis) verification system. We translated into BLIF-MV which is front-end of VIS, from Verlag and EDIF net list which synthesized from the same Verlag by an automatic synthesis tool. This paper proposes a formal method based technique to confirm correctness of synthesis by using equivalence checking of VIS verification system. In order to confirm the effectiveness of the proposed technique, we performed a case study with a part of prototype version of the RPS BP, and demonstrated a behavioral equivalence between Verlag HDL and EDIF post-synthesis net list.

  5. Equivalence Checking between Pre-synthesis and Post-synthesis Programs by Using VIS

    International Nuclear Information System (INIS)

    Lee, Jonghoon; Yoo, Junbeom; Choi, Jonggyun; Lee, Jangsoo

    2013-01-01

    PLC (Programmable Logic Controller)-based Software development, the design programs are translated into implementation programs, and behavioral equivalence between the design and implementation is demonstrated by formal method based technique. In FPGA-based software development, the design programs are also synthesized into implementation programs. However, in this process, testing and simulation based comparison techniques are mainly used. This paper proposes a formal method based technique to demonstrate behavioral equivalence between pre-synthesis and post-synthesis programs with VIS (Verification Interacting with Synthesis) verification system. We translated into BLIF-MV which is front-end of VIS, from Verlag and EDIF net list which synthesized from the same Verlag by an automatic synthesis tool. This paper proposes a formal method based technique to confirm correctness of synthesis by using equivalence checking of VIS verification system. In order to confirm the effectiveness of the proposed technique, we performed a case study with a part of prototype version of the RPS BP, and demonstrated a behavioral equivalence between Verlag HDL and EDIF post-synthesis net list

  6. Changes in collagen synthesis and degradation during skeletal muscle growth

    International Nuclear Information System (INIS)

    Laurent, G.J.; McAnulty, R.J.; Gibson, J.

    1985-01-01

    The changes in collagen metabolism during skeletal muscle growth were investigated by measuring rates of synthesis and degradation during stretch-induced hypertrophy of the anterior latissimus dorsi muscle of the adult chicken (Gallus domesticus). Synthesis rates were obtained from the uptake of tritiated proline injected intravenously with a flooding dose of unlabeled proline. Degradation of newly synthesized and ''mature'' collagen was estimated from the amount of hydroxyproline in the free pool as small molecular weight moieties. In normal muscle, the synthesis rate was 1.1 +/- 0.3%/day, with 49 +/- 7% of the newly produced collagen degraded rapidly after synthesis. During hypertrophy there was an increase of about fivefold in the rate of synthesis (P less than 0.01), a 60% decrease in the rate of degradation of newly synthesized collagen (P less than 0.02), and an increase of about fourfold in the amount of degradation of mature collagen (P less than 0.01). These results suggest an important role for degradative as well as synthetic processes in the regulation of collagen mass. They indicate that enhanced degradation of mature collagen is required for muscle growth and suggest a physiological role for the pathway whereby in normal muscle, a large proportion of newly produced collagen is rapidly degraded

  7. XXXII Zvenigorod conference on the plasma physics and controlled thermonuclear synthesis. Theses of reports

    International Nuclear Information System (INIS)

    2005-01-01

    Theses of the reports, presented at the XXXII International conference on the plasma physics and controlled thermonuclear synthesis (Zvenigorod, 14-18 February 2005) are published. The total number of reports is 322, including 16 summarizing ones. The other reports are distributed by the following sections: magnetic confinement of high-temperature plasma (88 reports), inertial thermonuclear fusion (65), physical processes in low-temperature plasma (99) and physical bases of the plasma and beam technologies (54) [ru

  8. Use of organic precursors and graphenes in the controlled synthesis of carbon-containing nanomaterials for energy storage and conversion.

    Science.gov (United States)

    Yang, Shubin; Bachman, Robert E; Feng, Xinliang; Müllen, Klaus

    2013-01-15

    The development of high-performance electrochemical energy storage and conversion devices, including supercapacitors, lithium-ion batteries, and fuel cells, is an important step on the road to alternative energy technologies. Carbon-containing nanomaterials (CCNMs), defined here as pure carbon materials and carbon/metal (oxide, hydroxide) hybrids with structural features on the nanometer scale, show potential application in such devices. Because of their pronounced electrochemical activity, high chemical and thermal stability and low cost, researchers are interested in CCNMs to serve as electrodes in energy-related devices. Various all-carbon materials are candidates for electrochemical energy storage and conversion devices. Furthermore, carbon-based hybrid materials, which consist of a carbon component with metal oxide- or metal hydroxide-based nanostructures, offer the opportunity to combine the attractive properties of these two components and tune the behavior of the resulting materials. As such, the design and synthesis of CCNMs provide an attractive route for the construction of high-performance electrode materials. Studies in these areas have revealed that both the composition and the fabrication protocol employed in preparing CCNMs influence the morphology and microstructure of the resulting material and its electrochemical performance. Consequently, researchers have developed several synthesis strategies, including hard-templated, soft-templated, and template-free synthesis of CCNMs. In this Account, we focus on recent advances in the controlled synthesis of such CCNMs and the potential of the resulting materials for energy storage or conversion applications. The Account is divided into four major categories based on the carbon precursor employed in the synthesis: low molecular weight organic or organometallic molecules, hyperbranched or cross-linked polymers consisting of aromatic subunits, self-assembling discotic molecules, and graphenes. In each case

  9. Controlled synthesis of poly(3-hexylthiophene in continuous flow

    Directory of Open Access Journals (Sweden)

    Helga Seyler

    2013-07-01

    Full Text Available There is an increasing demand for organic semiconducting materials with the emergence of organic electronic devices. In particular, large-area devices such as organic thin-film photovoltaics will require significant quantities of materials for device optimization, lifetime testing and commercialization. Sourcing large quantities of materials required for the optimization of large area devices is costly and often impossible to achieve. Continuous-flow synthesis enables straight-forward scale-up of materials compared to conventional batch reactions. In this study, poly(3-hexylthiophene, P3HT, was synthesized in a bench-top continuous-flow reactor. Precise control of the molecular weight was demonstrated for the first time in flow for conjugated polymers by accurate addition of catalyst to the monomer solution. The P3HT samples synthesized in flow showed comparable performance to commercial P3HT samples in bulk heterojunction solar cell devices.

  10. Green synthesis and structural control of metal and mineral nanostructures

    DEFF Research Database (Denmark)

    Engelbrekt, Christian

    of nanoparticle formation which, however, entails the development of new methods. Two approaches to the advancement of solution synthesis of gold nanomaterials for energy technology were exploited, namely the development of techniques to study nanoparticle formation and the synthesis of active, composite...... nanomaterials. In the first approach, time-resolved chronopotentiometry, pH, conductivity and turbidity, and ultraviolet-visible light spectroscopy were employed to follow the green synthesis of gold nanoparticles. Several distinct phases were observed with all techniques providing a broad picture...... of the complex processes. Strong indications of sequential reduction were found and details about ligands and surface immobilized molecules disclosed. This platform is a widely available alternative to traditionally used synchrotron techniques. In the second approach, systematic efforts toward size and shape...

  11. Hologlyphics: volumetric image synthesis performance system

    Science.gov (United States)

    Funk, Walter

    2008-02-01

    This paper describes a novel volumetric image synthesis system and artistic technique, which generate moving volumetric images in real-time, integrated with music. The system, called the Hologlyphic Funkalizer, is performance based, wherein the images and sound are controlled by a live performer, for the purposes of entertaining a live audience and creating a performance art form unique to volumetric and autostereoscopic images. While currently configured for a specific parallax barrier display, the Hologlyphic Funkalizer's architecture is completely adaptable to various volumetric and autostereoscopic display technologies. Sound is distributed through a multi-channel audio system; currently a quadraphonic speaker setup is implemented. The system controls volumetric image synthesis, production of music and spatial sound via acoustic analysis and human gestural control, using a dedicated control panel, motion sensors, and multiple musical keyboards. Music can be produced by external acoustic instruments, pre-recorded sounds or custom audio synthesis integrated with the volumetric image synthesis. Aspects of the sound can control the evolution of images and visa versa. Sounds can be associated and interact with images, for example voice synthesis can be combined with an animated volumetric mouth, where nuances of generated speech modulate the mouth's expressiveness. Different images can be sent to up to 4 separate displays. The system applies many novel volumetric special effects, and extends several film and video special effects into the volumetric realm. Extensive and various content has been developed and shown to live audiences by a live performer. Real world applications will be explored, with feedback on the human factors.

  12. 67Ga-citrate incorporation and DNA synthesis in tumors

    International Nuclear Information System (INIS)

    Hammersley, P.A.G.; Taylor, D.M.

    1975-01-01

    The results obtained in these studies suggest that in the tumors studied there is some form of relationship between 67 Ga uptake and the rate of DNA synthesis. However, the observations in the HP melanoma, in which small tumors showed a negative correlation between 67 Ga uptake and rate of DNA synthesis and larger tumors showed a positive correlation, coupled with the virtually constant uptake of 67 Ga over a wide range of rates of DNA synthesis in the drug- and radiation-treated tumors, suggest that the uptake of the radionuclide is not simply related to the rate of DNA synthesis per se. Studies in embryonic mouse tissues suggested that 67 Ga uptake was not related to the rate of DNA synthesis and regenerating liver does not show a greater 67 Ga uptake than normal liver. Phytohemagglutinin-treated human lymphocytes show increased 67 Ga uptake compared to unstimulated lymphocytes, and it has been suggested that this is related to the stimulus to divide rather than to events occurring in a specific phase of the cell cycle. This suggests that proliferating cells may exhibit membrane changes which either result in increased transport of 67 Ga into the cell or permit a greater degree of binding of the radionuclide to the cell membrane than can occur in resting cells. The membrane-binding hypothesis is supported by the observations on phytohemagglutinin-stimulated lymphocytes but not by observations of the subcellular distribution of 67 Ga in these tumors which confirm the suggestion that the radionuclide is concentrated in lysosomes. Thus it appears that although in tumor cells, at least, there is some correlation between 67 Ga uptake and the rate of DNA synthesis and hence by implication of cell proliferation, the nature of this link remains obscure, and more detailed studies are needed to increase our understanding of the relationship

  13. Synthesis and quality control of sup(99m)Tc-p-butyl IDA

    International Nuclear Information System (INIS)

    Zmbova, B.; Konstantinovska-Djokic, D.; Tadzer, I.

    1985-01-01

    A procedure is described for synthesis of p-butyl IDA and for identification of the product by i.r. and NMR spectroscopy and by chemical analysis. A method for preparing this compound by ''instant'' technique and for its labelling with sup(99m)Tc is also given, as well as a procedure for control of the chemical and biological properties of the radiopharmaceutical. Radiochemical study shows a high labelling yield of 95%. Investigation of the biodistribution proves that this preparation is a good hepatobiliary reagent, suitable for use in investigation of the liver functions and for quantitative visualization of the hepatobiliary system. (author)

  14. The order and volume fill rates in inventory control systems

    DEFF Research Database (Denmark)

    Thorstenson, Anders; Larsen, Christian

    2011-01-01

    This paper differentiates between an order (line) fill rate and a volume fill rate and specifies their performance for different inventory control systems. When the focus is on filling complete customer orders rather than total quantities the order fill rate would be the preferred service level m...

  15. Novel synthesis of silver nanoparticles using Bauhinia variegata: a recent eco-friendly approach for mosquito control.

    Science.gov (United States)

    Govindarajan, Marimuthu; Rajeswary, Mohan; Veerakumar, Kaliyan; Muthukumaran, Udaiyan; Hoti, S L; Mehlhorn, Heinz; Barnard, Donald R; Benelli, Giovanni

    2016-02-01

    Mosquito vectors are responsible for transmitting diseases such as malaria, dengue, chikungunya, Japanese encephalitis, dengue, and lymphatic filariasis. The use of synthetic insecticides to control mosquito vectors has caused physiological resistance and adverse environmental effects, in addition to high operational cost. Biosynthesis of silver nanoparticles has been proposed as an alternative to traditional control tools. In the present study, green synthesis of silver nanoparticles (AgNPs) using aqueous leaf extract of Bauhinia variegata by reduction of Ag(+) ions from silver nitrate solution has been investigated. The bioreduced silver nanoparticles were characterized by UV–visible spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), and X-ray diffraction analysis (XRD). Leaf extract and synthesized AgNPs were evaluated against the larvae of Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus. Compared to aqueous extract, synthesized AgNPs showed higher toxicity against An. subpictus, Ae. albopictus, and Cx. tritaeniorhynchus with LC50 and LC90 values of 41.96, 46.16, and 51.92 μg/mL and 82.93, 89.42, and 97.12 μg/mL, respectively. Overall, this study proves that B. variegata is a potential bioresource for stable, reproducible nanoparticle synthesis and may be proposed as an efficient mosquito control agent.

  16. Controlling the Rate of GWAS False Discoveries.

    Science.gov (United States)

    Brzyski, Damian; Peterson, Christine B; Sobczyk, Piotr; Candès, Emmanuel J; Bogdan, Malgorzata; Sabatti, Chiara

    2017-01-01

    With the rise of both the number and the complexity of traits of interest, control of the false discovery rate (FDR) in genetic association studies has become an increasingly appealing and accepted target for multiple comparison adjustment. While a number of robust FDR-controlling strategies exist, the nature of this error rate is intimately tied to the precise way in which discoveries are counted, and the performance of FDR-controlling procedures is satisfactory only if there is a one-to-one correspondence between what scientists describe as unique discoveries and the number of rejected hypotheses. The presence of linkage disequilibrium between markers in genome-wide association studies (GWAS) often leads researchers to consider the signal associated to multiple neighboring SNPs as indicating the existence of a single genomic locus with possible influence on the phenotype. This a posteriori aggregation of rejected hypotheses results in inflation of the relevant FDR. We propose a novel approach to FDR control that is based on prescreening to identify the level of resolution of distinct hypotheses. We show how FDR-controlling strategies can be adapted to account for this initial selection both with theoretical results and simulations that mimic the dependence structure to be expected in GWAS. We demonstrate that our approach is versatile and useful when the data are analyzed using both tests based on single markers and multiple regression. We provide an R package that allows practitioners to apply our procedure on standard GWAS format data, and illustrate its performance on lipid traits in the North Finland Birth Cohort 66 cohort study. Copyright © 2017 by the Genetics Society of America.

  17. Alcoholic Hepatitis Markedly Decreases the Capacity for Urea Synthesis.

    Directory of Open Access Journals (Sweden)

    Emilie Glavind

    Full Text Available Data on quantitative metabolic liver functions in the life-threatening disease alcoholic hepatitis are scarce. Urea synthesis is an essential metabolic liver function that plays a key regulatory role in nitrogen homeostasis. The urea synthesis capacity decreases in patients with compromised liver function, whereas it increases in patients with inflammation. Alcoholic hepatitis involves both mechanisms, but how these opposite effects are balanced remains unclear. Our aim was to investigate how alcoholic hepatitis affects the capacity for urea synthesis. We related these findings to another measure of metabolic liver function, the galactose elimination capacity (GEC, as well as to clinical disease severity.We included 20 patients with alcoholic hepatitis and 7 healthy controls. The urea synthesis capacity was quantified by the functional hepatic nitrogen clearance (FHNC, i.e., the slope of the linear relationship between the blood α-amino nitrogen concentration and urea nitrogen synthesis rate during alanine infusion. The GEC was determined using blood concentration decay curves after intravenous bolus injection of galactose. Clinical disease severity was assessed by the Glasgow Alcoholic Hepatitis Score and Model for End-Stage Liver Disease (MELD score.The FHNC was markedly decreased in the alcoholic hepatitis patients compared with the healthy controls (7.2±4.9 L/h vs. 37.4±6.8 L/h, P<0.01, and the largest decrease was observed in those with severe alcoholic hepatitis (4.9±3.6 L/h vs. 9.9±4.9 L/h, P<0.05. The GEC was less markedly reduced than the FHNC. A negative correlation was detected between the FHNC and MELD score (rho = -0.49, P<0.05.Alcoholic hepatitis markedly decreases the urea synthesis capacity. This decrease is associated with an increase in clinical disease severity. Thus, the metabolic failure in alcoholic hepatitis prevails such that the liver cannot adequately perform the metabolic up-regulation observed in other stressful

  18. Gaining Control over Radiolytic Synthesis of Uniform Sub-3-nanometer Palladium Nanoparticles: Use of Aromatic Liquids in the Electron Microscope.

    Science.gov (United States)

    Abellan, Patricia; Parent, Lucas R; Al Hasan, Naila; Park, Chiwoo; Arslan, Ilke; Karim, Ayman M; Evans, James E; Browning, Nigel D

    2016-02-16

    Synthesizing nanomaterials of uniform shape and size is of critical importance to access and manipulate the novel structure-property relationships arising at the nanoscale, such as catalytic activity. In this work, we synthesize Pd nanoparticles with well-controlled size in the sub-3 nm range using scanning transmission electron microscopy (STEM) in combination with an in situ liquid stage. We use an aromatic hydrocarbon (toluene) as a solvent that is very resistant to high-energy electron irradiation, which creates a net reducing environment without the need for additives to scavenge oxidizing radicals. The primary reducing species is molecular hydrogen, which is a widely used reductant in the synthesis of supported metal catalysts. We propose a mechanism of particle formation based on the effect of tri-n-octylphosphine (TOP) on size stabilization, relatively low production of radicals, and autocatalytic reduction of Pd(II) compounds. We combine in situ STEM results with insights from in situ small-angle X-ray scattering (SAXS) from alcohol-based synthesis, having similar reduction potential, in a customized microfluidic device as well as ex situ bulk experiments. This has allowed us to develop a fundamental growth model for the synthesis of size-stabilized Pd nanoparticles and demonstrate the utility of correlating different in situ and ex situ characterization techniques to understand, and ultimately control, metal nanostructure synthesis.

  19. Bypass flow rate control method

    International Nuclear Information System (INIS)

    Kiyama, Yoichi.

    1997-01-01

    In a PWR type reactor, bypass flow rate is controlled by exchanging existent jetting hole plugs of a plurality of nozzles disposed to the upper end of incore structures in order to flow a portion of primary coolants as a bypass flow to the upper portion of the pressure vessel. Two kinds of exchange plugs, namely, a first plug and a second plug each having a jetting out hole of different diameter are used as exchange plugs. The first plug has the diameter as that of an existent plug and the second plug has a jetting out hole having larger diameter than that of the existent plug. Remained extent plugs are exchanged to a combination of the first and the second plugs without exchanging existent plugs having seizing with the nozzles, in which the number and the diameter of the jetting out holes of the second plugs are previously determined based on predetermined total bypass flow rate to be jetted from the entire plugs after exchange of plugs. (N.H.)

  20. Thermomyces lanuginosus lipase-catalyzed synthesis of natural flavor esters in a continuous flow microreactor.

    Science.gov (United States)

    Gumel, Ahmad Mohammed; Annuar, M S M

    2016-06-01

    Enzymatic catalysis is considered to be among the most environmental friendly processes for the synthesis of fine chemicals. In this study, lipase from Thermomyces lanuginosus (Lecitase Ultra™) was used to catalyze the synthesis of flavor esters, i.e., methyl butanoate and methyl benzoate by esterification of the acids with methanol in a microfluidic system. Maximum reaction rates of 195 and 115 mM min -1 corresponding to catalytic efficiencies (k cat /K M ) of 0.30 and 0.24 min -1  mM -1 as well as yield conversion of 54 and 41 % were observed in methyl butanoate and methyl benzoate synthesis, respectively. Catalytic turnover (k cat ) was higher for methyl butanoate synthesis. Rate of synthesis and yield decreased with increasing flow rates. For both esters, increase in microfluidic flow rate resulted in increased advective transport over molecular diffusion and reaction rate, thus lower conversion. In microfluidic synthesis using T. lanuginosus lipase, the following reaction conditions were 40 °C, flow rate 0.1 mL min -1 , and 123 U g -1 enzyme loading found to be the optimum operating limits. The work demonstrated the application of enzyme(s) in a microreactor system for the synthesis of industrially important esters.

  1. On the control of ribosomal protein biosynthesis in Escherichia coli

    International Nuclear Information System (INIS)

    Pichon, J.; Marvaldi, J.; Coeroli, C.; Cozzone, A.; Marchis-Mouren, G.

    1977-01-01

    The rate of individual ribosomal protein synthesis relative to total protein synthesis has been determined in Escherichia coli rel + and rel - cells, under valyl-tRNA deprivation. These strains have a temperature-sensitive valyl-tRNA synthetase. Starvation was obtained following transfer of the cells to non-permissive temperature. Ribosomal proteins were obtained by treatment of either total lysates of freeze-thawed lysozyme spheroplasts or ammonium sulphate precipitate of ribosomes, with acetic acid. Differential labelling of the ribosomal proteins was observed in both strains: proteins from the rel + strain appear more labelled than those from the rel - strain, the rate of labelling of individual proteins being about the same in both strains. Moreover ribosomal proteins were found as stable during starvation as total protein. It is thus concluded that in starving cells individual ribosomal proteins are not synthesized at equal rates. This indicates that the synthesis of ribosomal proteins is not only under the control of the rel gene

  2. Speech rate in Parkinson's disease: A controlled study.

    Science.gov (United States)

    Martínez-Sánchez, F; Meilán, J J G; Carro, J; Gómez Íñiguez, C; Millian-Morell, L; Pujante Valverde, I M; López-Alburquerque, T; López, D E

    2016-09-01

    Speech disturbances will affect most patients with Parkinson's disease (PD) over the course of the disease. The origin and severity of these symptoms are of clinical and diagnostic interest. To evaluate the clinical pattern of speech impairment in PD patients and identify significant differences in speech rate and articulation compared to control subjects. Speech rate and articulation in a reading task were measured using an automatic analytical method. A total of 39 PD patients in the 'on' state and 45 age-and sex-matched asymptomatic controls participated in the study. None of the patients experienced dyskinesias or motor fluctuations during the test. The patients with PD displayed a significant reduction in speech and articulation rates; there were no significant correlations between the studied speech parameters and patient characteristics such as L-dopa dose, duration of the disorder, age, and UPDRS III scores and Hoehn & Yahr scales. Patients with PD show a characteristic pattern of declining speech rate. These results suggest that in PD, disfluencies are the result of the movement disorder affecting the physiology of speech production systems. Copyright © 2014 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Expression of cytoskeletal and matrix genes following exposure to ionizing radiation: Dose-rate effects and protein synthesis requirements

    International Nuclear Information System (INIS)

    Woloschak, G.E.; Felcher, P.; Chang-Liu, Chin-Mei

    1992-01-01

    Experiments were designed to examine the effects of radiation dose-rate and of the protein synthesis inhibitor cycloheximide on expression of cytoskeletal elements (γ- and β-actin and α-tubulin) and matrix elements (fibronectin) in Syrian hamster embryo cells. Past work from our laboratory had already demonstrated optimum time points and doses for examination of radiation effects on accumulation of specific transcripts. Our results here demonstrated little effect of dose-rate for JANUS fission spectrum neutrons when comparing expression of either α-tubulin or fibronectin genes. Past work had already documented similar results for expression of actin transcripts. Effects of cycloheximide, however, revealed several interesting and novel findings: (1) Cycloheximide repressed accumulation of α-tubulin following exposure to high dose-rate neutrons or γ rays; this did not occur following similar low dose-rate exposure (2) Cycloheximide did not affect accumulation of mRNA for actin genes. Cycloheximide abrogated the moderate induction of fibronectin-mRNA which occurred following exposure to γ rays and high dose-rate neutrons. These results suggest a role for labile proteins in the maintenance of α-tubulin and fibronectin mRNA accumulation following exposure to ionizing radiation. In addition, they suggest that the cellular/molecular response to low dose-rate neutrons may be different from the response to high dose-rate neutrons

  4. Total synthesis of (±)-antroquinonol d.

    Science.gov (United States)

    Sulake, Rohidas S; Jiang, Yan-Feng; Lin, Hsiao-Han; Chen, Chinpiao

    2014-11-21

    Total synthesis of (±)-antroquinonol D, which is isolated from very expensive and rarely found Antrodia camphorata and which has potential anticancer properties, was achieved from 4-methoxyphenol. In addition, a Michael addition to dimethoxy cyclohexadienones was studied. The main step involved chelation and substrate-controlled diastereoselective reduction of cyclohexenone and lactonization. Lactone synthesis facilitated the diastereoselective reduction of ketone, which help control the desired stereochemistry at the crucial stereogenic center in the natural product. Other key reactions in the synthesis involved a Michael addition of dimethyl malonate on cyclohexadienone, dihydroxylation, and Wittig olefination. A sesquiterpene side chain was synthesized through coupling with geranyl phenyl sulfide and Bouveault-Blanc reduction.

  5. Injury-induced inhibition of small intestinal protein and nucleic acid synthesis

    International Nuclear Information System (INIS)

    Carter, E.A.; Hatz, R.A.; Yarmush, M.L.; Tompkins, R.G.

    1990-01-01

    Small intestinal mucosal weight and nutrient absorption are significantly diminished early after cutaneous thermal injuries. Because these intestinal properties are highly dependent on rates of nucleic acid and protein synthesis, in vivo incorporation of thymidine, uridine, and leucine into small intestinal deoxyribonucleic acid, ribonucleic acid, and proteins were measured. Deoxyribonucleic acid synthesis was markedly decreased with the lowest thymidine incorporation in the jejunum (p less than 0.01); these findings were confirmed by autoradiographic identification of radiolabeled nuclei in the intestinal crypts. Protein synthesis was decreased by 6 h postinjury (p less than 0.01) but had returned to normal by 48 h. Consistent with a decreased rate of protein synthesis, ribonucleic acid synthesis was also decreased 18 h postinjury (p less than 0.01). These decreased deoxyribonucleic acid, ribonucleic acid, and protein synthesis rates are not likely a result of ischemia because in other studies of this injury model, intestinal blood flow was not significantly changed by the burn injury. Potentially, factors initiating the acute inflammatory reaction may directly inhibit nucleic acid and protein synthesis and lead to alterations in nutrient absorption and intestinal barrier function after injury

  6. Design, Synthesis, and Mechanistic Evaluation of Iron-Based Catalysis for Synthesis Gas Conversion to Fuels and Chemicals. Technical Progress Report

    International Nuclear Information System (INIS)

    Akio Ishikawa; Manuel Ojeda; Nan Yao; Enrique Iglesia

    2006-01-01

    This project extends previously discovered Fe-based catalysts to hydrogen-poor synthesis gas streams derived from coal and biomass sources. These catalysts have shown unprecedented Fischer-Tropsch synthesis rate, selectivity for feedstocks consisting of synthesis gas derived from methane. During the first reporting period, we certified a microreactor, installed required analytical equipment, and reproduced synthetic protocols and catalytic results previously reported. During the second reporting period, we prepared several Fe-based compositions for Fischer-Tropsch synthesis and tested the effects of product recycle under both subcritical and supercritical conditions. During the third and fourth reporting periods, we improved the catalysts preparation method, which led to Fe-based FT catalysts with the highest FTS reaction rates and selectivities so far reported, a finding that allowed their operation at lower temperatures and pressures with high selectivity to desired products (C 5+ , olefins). During this fifth reporting period, we have studied the effects of different promoters on catalytic performance, specifically how their sequence of addition dramatically influences the performance of these materials in the Fischer-Tropsch synthesis. The resulting procedures have been optimized to improve further upon the already unprecedented rates and C 5+ selectivities of the Fe-based catalysts that we have developed as part of this project. During this fifth reporting period, we have also continued our studies of optimal activation procedures, involving reduction and carburization of oxide precursors during the early stages of contact with synthesis gas. We have completed the analysis of the evolution of oxide, carbide, and metal phases of the active iron components during initial contact with synthesis gas using advanced synchrotron techniques based on X-ray absorption spectroscopy. We have confirmed that the Cu or Ru compensates for inhibitory effects of Zn, a surface

  7. De novo synthesis of adenine nucleotides in different skeletal muscle fiber types

    International Nuclear Information System (INIS)

    Tullson, P.C.; John-Alder, H.B.; Hood, D.A.; Terjung, R.L.

    1988-01-01

    Management of adenine nucleotide catabolism differs among skeletal muscle fiber types. This study evaluated whether there are corresponding differences in the rates of de novo synthesis of adenine nucleotide among fiber type sections of skeletal muscle using an isolated perfused rat hindquarter preparation. Label incorporation into adenine nucleotides from the [1-14C]glycine precursor was determined and used to calculate synthesis rates based on the intracellular glycine specific radioactivity. Results show that intracellular glycine is closely related to the direct precursor pool. Rates of de novo synthesis were highest in fast-twitch red muscle (57.0 +/- 4.0, 58.2 +/- 4.4 nmol.h-1.g-1; deep red gastrocnemius and vastus lateralis), relatively high in slow-twitch red muscle (47.0 +/- 3.1; soleus), and low in fast-twitch white muscle (26.1 +/- 2.0 and 21.6 +/- 2.3; superficial white gastrocnemius and vastus lateralis). Rates for four mixed muscles were intermediate, ranging between 32.3 and 37.3. Specific de novo synthesis rates exhibited a strong correlation (r = 0.986) with muscle section citrate synthase activity. Turnover rates (de novo synthesis rate/adenine nucleotide pool size) were highest in high oxidative muscle (0.82-1.06%/h), lowest in low oxidative muscle (0.30-0.35%/h), and intermediate in mixed muscle (0.44-0.55%/h). Our results demonstrate that differences in adenine nucleotide management among fiber types extends to the process of de novo adenine nucleotide synthesis

  8. Controlled rate cooling of fungi using a stirling cycle freezer.

    Science.gov (United States)

    Ryan, Matthew J; Kasulyte-Creasey, Daiva; Kermode, Anthony; San, Shwe Phue; Buddie, Alan G

    2014-01-01

    The use of a Stirling cycle freezer for cryopreservation is considered to have significant advantages over traditional methodologies including N2 free operation, application of low cooling rates, reduction of sample contamination risks and control of ice nucleation. The study assesses the suitability of an 'N2-free' Stirling Cycle controlled rate freezer for fungi cryopreservation. In total, 77 fungi representing a broad taxonomic coverage were cooled using the N2 free cooler following a cooling rate of -1 degrees C min(-1). Of these, 15 strains were also cryopreserved using a traditional 'N2 gas chamber' controlled rate cooler and a comparison of culture morphology and genomic stability against non-cryopreserved starter cultures was undertaken. In total of 75 fungi survived cryopreservation, only a recalcitrant Basidiomycete and filamentous Chromist failed to survive. No changes were detected in genomic profile after preservation, suggesting that genomic function is not adversely compromised as a result of using 'N2 free' cooling. The results demonstrate the potential of 'N2-free' cooling for the routine cryopreservation of fungi in Biological Resource Centres.

  9. Roles of Transcriptional and Translational Control Mechanisms in Regulation of Ribosomal Protein Synthesis in Escherichia coli.

    Science.gov (United States)

    Burgos, Hector L; O'Connor, Kevin; Sanchez-Vazquez, Patricia; Gourse, Richard L

    2017-11-01

    Bacterial ribosome biogenesis is tightly regulated to match nutritional conditions and to prevent formation of defective ribosomal particles. In Escherichia coli , most ribosomal protein (r-protein) synthesis is coordinated with rRNA synthesis by a translational feedback mechanism: when r-proteins exceed rRNAs, specific r-proteins bind to their own mRNAs and inhibit expression of the operon. It was recently discovered that the second messenger nucleotide guanosine tetra and pentaphosphate (ppGpp), which directly regulates rRNA promoters, is also capable of regulating many r-protein promoters. To examine the relative contributions of the translational and transcriptional control mechanisms to the regulation of r-protein synthesis, we devised a reporter system that enabled us to genetically separate the cis -acting sequences responsible for the two mechanisms and to quantify their relative contributions to regulation under the same conditions. We show that the synthesis of r-proteins from the S20 and S10 operons is regulated by ppGpp following shifts in nutritional conditions, but most of the effect of ppGpp required the 5' region of the r-protein mRNA containing the target site for translational feedback regulation and not the promoter. These results suggest that most regulation of the S20 and S10 operons by ppGpp following nutritional shifts is indirect and occurs in response to changes in rRNA synthesis. In contrast, we found that the promoters for the S20 operon were regulated during outgrowth, likely in response to increasing nucleoside triphosphate (NTP) levels. Thus, r-protein synthesis is dynamic, with different mechanisms acting at different times. IMPORTANCE Bacterial cells have evolved complex and seemingly redundant strategies to regulate many high-energy-consuming processes. In E. coli , synthesis of ribosomal components is tightly regulated with respect to nutritional conditions by mechanisms that act at both the transcription and translation steps. In

  10. Copper-assisted shape control in colloidal synthesis of indium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Selishcheva, Elena; Parisi, Juergen; Kolny-Olesiak, Joanna, E-mail: joanna.kolny@uni-oldenburg.de [University of Oldenburg, Energy and Semiconductor Research Laboratory, Institute of Physics (Germany)

    2012-02-15

    Indium oxide is an important n-type transparent semiconductor, finding application in solar cells, sensors, and optoelectronic devices. We present here a novel non-injection synthesis route for the preparation of colloidal indium oxide nanocrystals by using oleylamine (OLA) as ligand and as solvent. Indium oxide with cubic crystallographic structure is formed in a reaction between indium acetate and OLA, the latter is converted to oleylamide during the synthesis. The shape of the nanocrystals can be influenced by the addition of copper ions. When only indium (III) acetate is used as precursor flower-shaped indium oxide nanoparticles are obtained. Addition of copper salts such as copper (I) acetate, copper (II) acetate, copper (II) acetylacetonate, or copper (I) chloride, under otherwise identical reaction conditions changes the shape of nanoparticles to quasi-spherical or elongated. The anions, except for chloride, do not influence the shape of the resulting nanocrystals. This finding suggests that adsorption of copper ions on the In{sub 2}O{sub 3} surface during the nanoparticles growth is responsible for shape control, whereas changes in the reactivity of the In cations caused by the presence of different anions play a secondary role. X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance, energy dispersive X-ray analysis, and UV-Vis-absorption spectroscopy are used to characterize the samples.

  11. Copper-assisted shape control in colloidal synthesis of indium oxide nanoparticles

    International Nuclear Information System (INIS)

    Selishcheva, Elena; Parisi, Jürgen; Kolny-Olesiak, Joanna

    2012-01-01

    Indium oxide is an important n-type transparent semiconductor, finding application in solar cells, sensors, and optoelectronic devices. We present here a novel non-injection synthesis route for the preparation of colloidal indium oxide nanocrystals by using oleylamine (OLA) as ligand and as solvent. Indium oxide with cubic crystallographic structure is formed in a reaction between indium acetate and OLA, the latter is converted to oleylamide during the synthesis. The shape of the nanocrystals can be influenced by the addition of copper ions. When only indium (III) acetate is used as precursor flower-shaped indium oxide nanoparticles are obtained. Addition of copper salts such as copper (I) acetate, copper (II) acetate, copper (II) acetylacetonate, or copper (I) chloride, under otherwise identical reaction conditions changes the shape of nanoparticles to quasi-spherical or elongated. The anions, except for chloride, do not influence the shape of the resulting nanocrystals. This finding suggests that adsorption of copper ions on the In 2 O 3 surface during the nanoparticles growth is responsible for shape control, whereas changes in the reactivity of the In cations caused by the presence of different anions play a secondary role. X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance, energy dispersive X-ray analysis, and UV–Vis-absorption spectroscopy are used to characterize the samples.

  12. Silver nanostructures with well-controlled shapes: synthesis, characterization and growth mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Kan Caixia [College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211100 (China); Zhu Jiejun [Department of Physics, Nanjing University, Nanjing 210093 (China); Zhu Xiaoguang [Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)], E-mail: cxkan@nuaa.edu.cn

    2008-08-07

    This paper describes a poly(vinylpyrollidone)-directed polyol synthesis method for the fabrication of silver (Ag) nanostructures with well-controlled shapes (such as nanorods and nanocubes) by adjusting the synthesizing parameters. The structure characterizations suggest that the Ag nanorods grow from the five-fold twinned decahedral crystal nuclei. The nature of the {l_brace}1 1 1{r_brace} planes of Ag crystal and the highly selective poly(vinylpyrollidone) adsorption on the {l_brace}100{r_brace} planes of Ag crystal nuclei are favourable for the formation of Ag nanorods and Ag nanowires. The single crystalline Ag nanocubes obtained at optimum conditions are perfect in shape and are enclosed by the {l_brace}1 0 0{r_brace} facets. The optical properties of the Ag nanostructures show an attractive plasma resonance, displaying a considerable dependence on the shape and size. The formation of the Ag nanostructures with well-defined shapes is probably due to the fact that the nanostructures are controlled thermodynamically and kinetically. The ability to generate shape-controlled Ag nanostructures also provides an opportunity to experimentally and systematically study the relationship between their properties and geometric shapes.

  13. Controllable Electrochemical Synthesis of Copper Sulfides as Sodium-Ion Battery Anodes with Superior Rate Capability and Ultralong Cycle Life.

    Science.gov (United States)

    Li, Haomiao; Wang, Kangli; Cheng, Shijie; Jiang, Kai

    2018-03-07

    Sodium-ion batteries (SIBs) are prospective alternative to lithium-ion batteries for large-scale energy-storage applications, owing to the abundant resources of sodium. Metal sulfides are deemed to be promising anode materials for SIBs due to their low-cost and eco-friendliness. Herein, for the first time, series of copper sulfides (Cu 2 S, Cu 7 S 4 , and Cu 7 KS 4 ) are controllably synthesized via a facile electrochemical route in KCl-NaCl-Na 2 S molten salts. The as-prepared Cu 2 S with micron-sized flakes structure is first investigated as anode of SIBs, which delivers a capacity of 430 mAh g -1 with a high initial Coulombic efficiency of 84.9% at a current density of 100 mA g -1 . Moreover, the Cu 2 S anode demonstrates superior capability (337 mAh g -1 at 20 A g -1 , corresponding to 50 C) and ultralong cycle performance (88.2% of capacity retention after 5000 cycles at 5 A g -1 , corresponding to 0.0024% of fade rate per cycle). Meanwhile, the pseudocapacitance contribution and robust porous structure in situ formed during cycling endow the Cu 2 S anodes with outstanding rate capability and enhanced cyclic performance, which are revealed by kinetics analysis and ex situ characterization.

  14. On the design of multi-rate tracking controllers : application to rotorcraft guidance and control

    NARCIS (Netherlands)

    Guerreiro Tome Antunes, D.J.; Silvestre, C.J.; Cunha, R.

    2010-01-01

    This paper presents a new methodology for the design and implementation of gain-scheduled controllers for multi-rate systems. The proposed methodology provides a natural way to address the integrated guidance and control problem for autonomous vehicles when the outputs are sampled at different

  15. Biomimetic synthesis of noble metal nanocrystals

    Science.gov (United States)

    Chiu, Chin-Yi

    At the nanometer scale, the physical and chemical properties of materials heavily depend on their sizes and shapes. This fact has triggered considerable efforts in developing controllable nanomaterial synthesis. The controlled growth of colloidal nanocrystal is a kinetic process, in which high-energy facets grow faster and then vanish, leading to a nanocrystal enclosed by low-energy facets. Identifying a surfactant that can selectively bind to a particular crystal facet and thus lower its surface energy, is critical and challenging in shape controlled synthesis of nanocrystals. Biomolecules exhibiting exquisite molecular recognition properties can be exploited to precisely engineer nanostructured materials. In the first part of my thesis, we employed the phage display technique to select a specific multifunctional peptide sequence which can bind on Pd surface and mediate Pd crystal nucleation and growth, achieving size controlled synthesis of Pd nanocrystals in aqueous solution. We further demonstrated a rational biomimetic approach to the predictable synthesis of nanocrystals enclosed by a particular facet in the case of Pt. Specifically, Pt {100} and Pt {111} facet-specific peptides were identified and used to synthesize Pt nanocubes and Pt nano-tetrahedrons, respectively. The mechanistic studies of Pt {111} facet-specific peptide had led us to study the facet-selective adsorption of aromatic molecules on noble metal surfaces. The discoveries had achieved the development of design strategies to select facet-selective molecules which can synthesize nanocrystals with expected shapes in both Pt and Pd system. At last, we exploited Pt facet-specific peptides and controlled the molecular interaction to produce one- and three- dimensional nanostructures composed of anisotropic nanoparticles in synthetic conditions without supramolecular pre-organization, demonstrating the full potential of biomolecules in mediating material formation process. My research on biomimetic

  16. Leak-rate qualification of the FFTF control area

    International Nuclear Information System (INIS)

    Billings, M.P.; Swenson, L.D.

    1983-06-01

    Positive experience with the Fast Flux Test Facility (FFTF) Control Area boundary has demonstrated that strigent requirements for reactor control room leak-tightness can be met and maintained. Guidance contained in 10CFR50, Appendix A, Criteria 4 and 19, and Regulatory Guides 1.78 and 1.95 provided criteria for control room habitability, to provide safe, central control of the FFTF plant under normal and accident conditions. A leak rate criterion of 178 scfm for the approximate 53,000 cu. ft. Volume of the Control Area was established for the limiting condition of airborne sodium oxide aerosols from a postulated fire in one of the three secondary sodium loops. Numerous tests utilizing a variety of leak identification techniques were conducted

  17. Differential effects of methylmercury on the synthesis of protein species in dorsal root ganglia of the rat

    International Nuclear Information System (INIS)

    Kasama, Hidetaka; Itoh, Kazuo; Omata, Saburo; Sugano, Hiroshi

    1989-01-01

    Dorsal root ganglia from control and methylmercury(MeHg)-treated rats were incubated in vitro with 35 S-methionine and the proteins synthesized were analyzed by two-dimensional electrophoresis. The double labelling method, in which proteins of control dorsal root ganglia labelled in vitro with 3 H-leucine were added to each of the two samples as an internal standard, was used to minimize unavoidable errors arising from the resolving procedure itself. The results obtained showed that the effect of MeHg on the synthesis of proteins in dorsal root ganglia was not uniform for individual protein species in the latent period of MeHg intoxication. Among 200 protein species investigated, 157 showed inhibition of synthesis close to that of the total proteins in the tissue (68% of the control). Among the remaining protein species, 20 showed real stimulation of synthesis, whereas 7 were moderately inhibited and 16 were inhibited more strongly than the total proteins in the tissue. These results suggest that the effect of MeHg on the synthetic rates for protein species in dorsal root ganglia differs with the species, and that unusual elevation or reduction of the synthesis of some protein species caused by MeHg may lead to impairment of normal nerve functions. (orig.)

  18. A hydrogen fuel cell for rapid, enzyme-catalysed organic synthesis with continuous monitoring.

    Science.gov (United States)

    Wan, Lei; Megarity, Clare F; Siritanaratkul, Bhavin; Armstrong, Fraser A

    2018-01-23

    A one-pot fuel cell for specific, enzyme-catalysed organic synthesis, with continuous monitoring of rate and reaction progress, combines an electrode catalysing rapid, reversible and diffusion-controlled interconversion of NADP + and NADPH with a Pt electrode catalysing 2H + /H 2 interconversion. This Communication demonstrates its performance and characteristics using the reductive amination of 2-oxoglutarate as a test system.

  19. Synthesis of graphene using gamma radiations

    Indian Academy of Sciences (India)

    Considering the advantages of radiolytic synthesis such as the absence of toxic chemical as a reducing agent, uniform distribution of reducing agent and high purity of product, the synthesis of graphene (rGO) from graphene oxide (GO) by the gamma irradiation technique using a relatively low dose rate of 0.24 kGy h−1 has ...

  20. Increase in tendon protein synthesis in response to insulin-like growth factor-I is preserved in elderly men

    DEFF Research Database (Denmark)

    Nielsen, Rie Harboe; Holm, Lars; Malmgaard-Clausen, Nikolaj Mølkjær

    2014-01-01

    the in vivo IGF-I stimulation of tendon protein synthesis in elderly compared with young men. We injected IGF-I in the patellar tendons of young (n = 11, 20-30 yr of age) and old (n = 11, 66-75 yr of age) men, and the acute fractional synthesis rate (FSR) of tendon protein was measured with the stable isotope.......01). This increase in protein synthesis was seen in both young and old men, with no differences between age groups. The old group had markedly lower serum IGF-I levels compared with young (165 ± 17 vs. 281 ± 27 ng/ml, P protein synthesis in both young and old men...... technique and compared with the contralateral side (injected with saline as control). We found that tendons injected with IGF-I had significantly higher protein FSR compared with controls (old group: 0.018 ± 0.015 vs. 0.008 ± 0.008, young group: 0.016 ± 0.009 vs. 0.009 ± 0.006%/h, mean ± SE, P

  1. Novel pattern of post-γ ray de novo DNA synthesis in a radioresistant human strain

    International Nuclear Information System (INIS)

    Mirzayans, R.; Gentner, N.E.; Paterson, M.C.

    1985-01-01

    Enhanced resistance to radiation cytotoxicity in a fibroblast strain from an afflicted member of a Li-Fraumeni syndrome family may be largely ascribable to a change in the pattern of DNA replicative synthesis following γ ray exposure. That is, the extent of the initial radiogenic inhibition of replicative synthesis and the time interval before its subsequent recovery were both found to be greater in radioresistant (RR) compared to normal cells. In addition, the post-recovery replication rates in the RR cells were both higher and longer lasting than those in the control cells. A similar differential pattern was also seen following treatment with 4NQO, another DNA-damaging agent to which this RR strain displays enhanced resistance. Moreover, several conventional DNA repair assays indicated that the RR cells repair radiogenic damage at normal rates. The authors therefore suggest that the increased inhibition and prolonged lag in resumption of replicative synthesis seen in the RR strain upon exposure to certain genotoxic agents may enhance cellular recovery by ''buying additional time'' for processing of potentially lethal lesions

  2. Rapid continuous flow synthesis of high-quality silver nanocubes and nanospheres

    KAUST Repository

    Mehenni, Hakim

    2013-01-01

    We report a biphasic-liquid segmented continuous flow method for the synthesis of high-quality plasmonic single crystal silver nanocubes and nanospheres. The nanocubes were synthesized with controllable edge lengths from 20 to 48 nm. Single crystal nanospheres with a mean size of 29 nm were obtained by in-line continuous-flow etching of as-produced 39 nm nanocubes with an aqueous solution of FeNO3. In comparison to batch synthesis, the demonstrated processes represent highly scalable reactions, in terms of both production rate and endurance. The reactions were conducted in a commercially available flow-reactor system that is easily adaptable to industrial-scale production, facilitating widespread utilization of the procedure and the resulting nanoparticles. This journal is © The Royal Society of Chemistry 2013.

  3. Facile, one-step controlled synthesis of Se nanocrystals in the presence of L-tyrosine

    International Nuclear Information System (INIS)

    Wang Xiufang; Zhang Weiqiang; Shen Yuhua; Xie Anjian; Huang Lachun

    2011-01-01

    Highlights: → Se was synthesized via a novel and facile pathway. → The morphologies and the crystalline phases of Se can be easily controlled. → Tyrosine is excellent reducing agent and soft template for the synthesis of Se. → It is possible to provide an excellent route to obtain nanomaterials. - Abstract: Se with different morphologies was synthesized using L-tyrosine as reducing agent and soft template by means of hydrothermal method. The method was simple and convenient to handle. The reaction process was monitored using ultraviolet-visible spectroscopy (UV-vis) and Fourier-transform infrared spectroscopy (FTIR). The morphology and crystalline phase were determined by transmission electron microscopy (TEM), scanning electronic microscopy (SEM) and X-ray diffraction (XRD) pattern. The results show that the morphologies and the crystalline phases of Se can be easily controlled. By varying the concentration ratio of L-tyrosine to selenious acid, the morphologies and crystalline phases of Se were not changed, but the diameter of Se was different. Se nano-rods are obtained in the lower temperature, and there is a transformation of microspheres into nanorods of Se with the increase of reaction time or reaction temperature. In addition, we discuss the possible mechanism of the reduction of SeO 3 2- ions by L-tyrosine. The eco-friendly, biogenic synthesis strategy could be widely used for preparing inorganic/organic biocomposites.

  4. Microfibrous Matrices: Optimization of Synthesis Conditions

    Directory of Open Access Journals (Sweden)

    Amogh N. Karwa

    2012-01-01

    Full Text Available This study focuses on the process of optimization for carbon nanofiber synthesis at the exterior and the interior of 3-dimensional sintered nickel microfibrous networks. Synthesis of carbon nanofibers (CNF by catalytic decomposition of acetylene (ethyne was conducted at atmospheric pressure and short reaction times (10 min. Two factors evaluated during the study were (a CNF quality (observed by SEM and Raman spectroscopy and (b rate of reaction (gravimetrically measured carbon yield. Independent optimization variables included redox faceting pretreatment of nickel, synthesis temperature, and gas composition. Faceting resulted in an 8-fold increase in the carbon yield compared to an untreated substrate. Synthesis with varying levels of hydrogen maximized the carbon yield (9.31 mg C/cm2 catalyst. The quality of CNF was enhanced via a reduction in amorphous carbon that resulted from the addition of 20% ammonia. Optimized growth conditions that led to high rates of CNF deposition preferentially deposited this carbon at the exterior layer of the nickel microfibrous networks (570°C, 78% H2, 20% NH3, 2% C2H2, faceted Ni.. CNF growth within the 3-dimensional nickel networks was accomplished at the conditions selected to lower the gravimetric reaction rate (470°C, 10% H2, 88% N2, 2% C2H2, nonfaceted Ni.

  5. Low average blister-rust infection rates may mean high control costs

    Science.gov (United States)

    Robert Marty

    1965-01-01

    The Northeastern Forest Experiment Station, in cooperation with Federal and State forest-pest-control agencies, undertook a survey of blister-rust infection rates in the white pine region of the East during 1962 and 1963. Those engaged in blister-rust-control activities will not be surprised at the survey's results. We found that infection rates were significantly...

  6. Effect of administration of oral contraceptives on the synthesis and breakdown of myofibrillar proteins in young women

    DEFF Research Database (Denmark)

    Hansen, M; Langberg, Henning; Holm, L

    2011-01-01

    Oral contraceptive (OC) treatment has an inhibiting effect on protein synthesis in tendon and muscle connective tissue. We aimed to investigate whether OC influence myofibrillar protein turnover in young women. OC-users (24±2 years; Lindynette® n=7, Cilest® n=4) and non-OC-users (controls, 24......±4 years n=12) performed one-legged kicking exercise. The next day, the myofibrillar protein fractional synthesis rate (FSR) was measured using stable isotopic tracers ((13)C-proline) while the subjects were fed standardized nutrient drinks. Simultaneously, a marker for myofibrillar protein breakdown, 3...

  7. Stimulation of the synthesis of bacteriophage T4 gene 32 protein by ultraviolet light irradiation

    International Nuclear Information System (INIS)

    Krisch, H.M.; Van Houwe, G.

    1976-01-01

    The synthesis of bacteriophage T4 gene 32 product, P32, has been followed by gel electrophoresis of lysates of infected cells which have been irradiated with ultraviolet light. In wild-type infections irradiation after the commencement of late gene expression results in a rapid stimulation of the rate of P32 synthesis. Within four minutes after irradiation P32 is synthesized at 11 times the rate of the unirradiated control infection. P32 seems to be the only T4 protein which exhibits such u.v. inducibility. This inducibility is dependent on the function of genes 46 and 47 and to a lesser extent on several other T4 genes thought to be involved in repair (P43, w and y). An infection defective in both P43 and P46 shows essentially no stimulation of the rate of P32 synthesis after irradiation. In the absence of DNA replication the parental DNA is degraded after irradiation in a dose-dependent manner. The extent of P32 induction in such an infection is also proportional to the dose. It is suggested that the production of gaps during repair of u.v.-irradiated DNA is responsible for the stimulation of P32 synthesis. A model is proposed in which such regions of single-stranded DNA compete for P32 by binding it nonspecifically, thus reducing the amount of P32 free to block the expression of gene 32. Because the expression of gene 32 is self-regulatory this would result in increased P32 synthesis. The possible role of P32 in the repair of u.v.-damaged DNA is discussed. (author)

  8. God-Mediated Control and Change in Self-Rated Health.

    Science.gov (United States)

    Krause, Neal

    2010-10-01

    The purpose of this study was to see if feelings of God-mediated control are associated with change in self-rated health over time. In the process, an effort was made to see if a sense of meaning in life and optimism mediated the relationship between God-mediated control and change in health. The following hypothesized relationships were contained in the conceptual model that was developed to evaluate these issues: (1) people who go to church more often tend to have stronger God-mediated control beliefs than individuals who do not attend worship services as often; (2) people with a strong sense of God-mediated control are more likely to find a sense of meaning in life and be more optimistic than individuals who do not have a strong sense of God-mediated control; (3) people who are optimistic and who have a strong sense of meaning in life will rate their health more favorably over time than individuals who are not optimistic, as well as individuals who have not found a sense of meaning in life. Data from a longitudinal nationwide survey of older adults provided support for each of these hypotheses.

  9. Performance ratings and personality factors in radar controllers.

    Science.gov (United States)

    1970-09-01

    The purpose of the study was to determine whether primary or second-order personality questionnaire factors were related to job performance ratings on the Employee Appraisal Record in a sample of 264 radar controllers. A Pearson correlation matrix wa...

  10. The use of laser diodes for control of uranium vaporization rates

    International Nuclear Information System (INIS)

    Hagans, K.; Galkowski, J.

    1993-09-01

    Within the Atomic Vapor Laser Isotope Separation (AVLIS) program we have successfully used the laser absorption spectroscopy technique (LAS) to diagnose process physics performance and control vaporization rate. In the LAS technique, a narrow line-width laser is tuned to an absorption line of the species to be measured. The laser light that is propagated through the sample is and, from this data, the density of the species can be calculated. These laser systems have exclusively consisted of expensive, cumbersome, and difficult to maintain argon-ion-pumped ring dye lasers. While the wavelength flexibility of dye lasers is very useful in a laboratory environment, these laser systems are not well suited for the industrial process control system under development for an AVLIS plant. Diode-lasers offer lower system costs, reduced man power requirements, reduced space requirements, higher system availability, and improved operator safety. We report the. successful deployment and test of a prototype laser diode based uranium vapor rate control system. Diode-laser generated LAS data was used to control the uranium vaporization rate in a hands-off mode for greater than 50 hours. With one minor adjustment the system successfully controlled the vaporization rate for greater than 147 hours. We report excellent agreement with ring dye laser diagnostics and uranium weigh-back measurements

  11. Model for spatial synthesis of automated control system of the GCR type reactor; Model za prostornu sintezu sistema automatskog upravljanja reaktora GCR tipa

    Energy Technology Data Exchange (ETDEWEB)

    Lazarevic, B; Matausek, M [Institut za nuklearne nauke ' Boris Kidric' , Vinca, Belgrade (Yugoslavia)

    1966-07-01

    This paper describes the model which was developed for synthesis of spatial distribution of automated control elements in the reactor. It represents a general reliable mathematical model for analyzing transition states and synthesis of the automated control and regulation systems of GCR type reactors. One-dimensional system was defined under assumption that the time dependence of parameters of the neutron diffusion equation are identical in the total volume of the reactor and that spatial distribution of neutrons is time independent. It is shown that this assumption is satisfactory in case of short term variations which are relevant for safety analysis.

  12. Effects of ACTH on RNA synthesis and migration in the adrenal cortex cells of the young rat, as shown by radioautography

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, M.C.; Vitor, A.B.; Magalhaes, M.M.

    1986-01-01

    The effect of ACTH on the RNA synthesis in adrenal zona fasciculata cells of the young rat were studied by light and electron microscope radioautography. Two units of ACTH were administered sc to animals and immediately followed by an iv injection of (/sup 3/)uridine. ACTH-injected and control rats, which received the isotope alone, were sacrificed at various time intervals. Labelling over extranucleolar areas was higher in the ACTH-treated animals at 20 min, then becoming lower than in the controls at 60 min and 24 h. Nucleolar radioactivity, however, was consistently decreased by ACTH at all experimental times. Apart from these changes in the rate of synthesis, the over-all curves of labelling were similar to those in the control animals with a striking peak at 1 h. The short-term increase in extranucleolar RNA synthesis observed after ACTH injection was considered to be consistent with the hypothesis that an enhanced extranucleolar synthesis of mRNA takes place early in stimulated animals and is associated with the synthesis of steroidogenic proteins. On the other hand, the relatively decreased uridine uptake of the label by the nucleolus in ACTH-treated animals, suggests an inhibition of nucleolar transcription with diminished pre-rRNA formation in treated animals.

  13. Effects of ACTH on RNA synthesis and migration in the adrenal cortex cells of the young rat, as shown by radioautography

    International Nuclear Information System (INIS)

    Magalhaes, M.C.; Vitor, A.B.; Magalhaes, M.M.

    1986-01-01

    The effect of ACTH on the RNA synthesis in adrenal zona fasciculata cells of the young rat were studied by light and electron microscope radioautography. Two units of ACTH were administered sc to animals and immediately followed by an iv injection of [ 3 ]uridine. ACTH-injected and control rats, which received the isotope alone, were sacrificed at various time intervals. Labelling over extranucleolar areas was higher in the ACTH-treated animals at 20 min, then becoming lower than in the controls at 60 min and 24 h. Nucleolar radioactivity, however, was consistently decreased by ACTH at all experimental times. Apart from these changes in the rate of synthesis, the over-all curves of labelling were similar to those in the control animals with a striking peak at 1 h. The short-term increase in extranucleolar RNA synthesis observed after ACTH injection was considered to be consistent with the hypothesis that an enhanced extranucleolar synthesis of mRNA takes place early in stimulated animals and is associated with the synthesis of steroidogenic proteins. On the other hand, the relatively decreased uridine uptake of the label by the nucleolus in ACTH-treated animals, suggests an inhibition of nucleolar transcription with diminished pre-rRNA formation in treated animals. (author)

  14. Cell-specific differences in the requirements for translation quality control

    DEFF Research Database (Denmark)

    Reynolds, Noah M; Ling, Jiqiang; Roy, Hervé

    2010-01-01

    Protein synthesis has an overall error rate of approximately 10(-4) for each mRNA codon translated. The fidelity of translation is mainly determined by two events: synthesis of cognate amino acid:tRNA pairs by aminoacyl-tRNA synthetases (aaRSs) and accurate selection of aminoacyl-tRNAs (aa-tRNAs)...... divergent requirements for quality control in different cell compartments and suggest that the limits of translational accuracy may be largely determined by cellular physiology....

  15. Electrospray synthesis and properties of hierarchically structured PLGA TIPS microspheres for use as controlled release technologies.

    Science.gov (United States)

    Malik, Salman A; Ng, Wing H; Bowen, James; Tang, Justin; Gomez, Alessandro; Kenyon, Anthony J; Day, Richard M

    2016-04-01

    Microsphere-based controlled release technologies have been utilized for the long-term delivery of proteins, peptides and antibiotics, although their synthesis poses substantial challenges owing to formulation complexities, lack of scalability, and cost. To address these shortcomings, we used the electrospray process as a reproducible, synthesis technique to manufacture highly porous (>94%) microspheres while maintaining control over particle structure and size. Here we report a successful formulation recipe used to generate spherical poly(lactic-co-glycolic) acid (PLGA) microspheres using the electrospray (ES) coupled with a novel thermally induced phase separation (TIPS) process with a tailored Liquid Nitrogen (LN2) collection scheme. We show how size, shape and porosity of resulting microspheres can be controlled by judiciously varying electrospray processing parameters and we demonstrate examples in which the particle size (and porosity) affect release kinetics. The effect of electrospray treatment on the particles and their physicochemical properties are characterized by scanning electron microscopy, confocal Raman microscopy, thermogravimetric analysis and mercury intrusion porosimetry. The microspheres manufactured here have successfully demonstrated long-term delivery (i.e. 1week) of an active agent, enabling sustained release of a dye with minimal physical degradation and have verified the potential of scalable electrospray technologies for an innovative TIPS-based microsphere production protocol. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Size-controllable synthesis of hierarchical copper carbodiimide microcrystals and their pronounced photoelectric response under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qihui [School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); Liu, Yufeng, E-mail: yfliu@mail.sitp.ac.cn [School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); Dai, Guozhang [Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan 410083 (China); Tian, Li [College of Electrical and Information Engineering, Hunan Institute of Engineering, Xiangtan 411101 (China); Xu, Jiayue; Zhao, Guoying; Zhang, Na; Fang, Yongzheng [School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418 (China)

    2015-12-01

    Graphical abstract: - Highlights: • A controllably aqueous method was presented to synthesize two types of CuNCN microcrystals (MCs) at room temperature. • The size and nanostructure can be tuned via controlling the ratio of [NH{sub 3}]/[Cu{sup +}]. • Moreover, prounounced photoelectric response of the as-prepared CuNCN was observed for the first time under the irradiation of visible light at room temperature. • The aqueous synthetic route can provide an inspiration to acquire the other metal carbodiimides nano/microcrystals without the aid of reducing agents. - Abstract: Similar to cupric oxides and sulfides, the nitrogen-containing analogue copper carbodiimide (CuNCN) is considered as a potentially promising photoelectric material. However, there is lack of fundamental investigations on controllable synthesis and photoelectric properties of CuNCN nano/microcrystals. Herein, a facile method was developed to synthesize high-quality CuNCN semiconductor microcrystals with different sizes and hierarchical nanostructures at room temperature. This reaction was carried out in aqueous solutions, avoiding the involvement of non-aqueous solutions and high temperature solid phase reaction during the synthesis of CuNCN microcrystals. Photoelectric response of as-prepared CuNCN microcrystals was first observed under the irradiation of visible light at room temperature. The aqueous synthetic route can also provide an inspiration to acquire other metal carbodiimides nano/microcrystals.

  17. Kinetics of the ammonia synthesis at low temperatures. II. Sources of discrepancies

    International Nuclear Information System (INIS)

    Kuchaev, V.L.; Shapatina, E.N.; Temkin, M.I.

    1988-01-01

    A method is developed for calculating the degree of conversion during the synthesis of ammonia in a continuous flow, tubular reactor, taking longitudinal diffusion into account. Such a calculation shows that the available data in the literature on the rate of ammonia synthesis at low temperatures in a tubular reactor agree with the rate equation based on the idea that the predominant intermediate substance is adsorbed ammonia (and not imide). The seeming conflict between this idea and the ratio of the rates of synthesis of ammonia and deuteroammonia at low temperatures is explained

  18. Cholesterol synthesis by human fetal hepatocytes: effect of lipoproteins

    International Nuclear Information System (INIS)

    Carr, B.R.; Simpson, E.R.

    1984-01-01

    The purpose of the present investigation was to determine the effect of various lipoproteins on the rate of cholesterol synthesis of human fetal liver cells maintained in culture. This was accomplished by measuring the rate of incorporation of tritium from tritiated water or carbon 14-labeled acetate into cholesterol in human fetal liver cells. Optimal conditions for each assay were determined. When human fetal liver cells were maintained in the presence of low-density lipoprotein, cholesterol synthesis was inhibited in a concentration-dependent fashion. Intermediate--density lipoprotein and very-low-density lipoprotein also suppressed cholesterol synthesis in human fetal liver cells. In contrast, high-density lipoprotein stimulated cholesterol synthesis in human fetal liver cells. The results of the present as well as our previous investigations suggest that multiple interrelationships exist between fetal liver cholesterol synthesis and lipoprotein-cholesterol utilization by the human fetal adrenal gland and that these processes serve to regulate the lipoprotein-cholesterol levels in fetal plasma

  19. Gaining Control over Radiolytic Synthesis of Uniform Sub-3-nanometer Palladium Nanoparticles: Use of Aromatic Liquids in the Electron Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Abellan Baeza, Patricia; Parent, Lucas R.; Al Hasan, Naila M.; Park, Chiwoo; Arslan, Ilke; Karim, Ayman M.; Evans, James E.; Browning, Nigel D.

    2016-01-07

    Synthesizing nanomaterials of uniform shape and size is of critical importance to access and manipulate the novel structure-property relationships arising at the nanoscale. In this work we synthesize Pd nanoparticles with well-controlled size using in situ liquid-stage scanning transmission electron microscopy (STEM) and demonstrate a match between the reaction kinetics and products of the radiolytic and chemical syntheses of size-stabilized Pd nanoparticles. We quantify the effect of electron dose on the nucleation kinetics, and compare these results with in situ small angle X-ray scattering (SAXS) experiments investigating the effect of temperature during chemical synthesis. This work introduces methods for precise control of nanoparticle synthesis in the STEM and provides a means to uncover the fundamental processes behind the size and shape stabilization of nanoparticles.

  20. Growth rate correlates negatively with protein turnover in Arabidopsis accessions.

    Science.gov (United States)

    Ishihara, Hirofumi; Moraes, Thiago Alexandre; Pyl, Eva-Theresa; Schulze, Waltraud X; Obata, Toshihiro; Scheffel, André; Fernie, Alisdair R; Sulpice, Ronan; Stitt, Mark

    2017-08-01

    Previous studies with Arabidopsis accessions revealed that biomass correlates negatively to dusk starch content and total protein, and positively to the maximum activities of enzymes in photosynthesis. We hypothesized that large accessions have lower ribosome abundance and lower rates of protein synthesis, and that this is compensated by lower rates of protein degradation. This would increase growth efficiency and allow more investment in photosynthetic machinery. We analysed ribosome abundance and polysome loading in 19 accessions, modelled the rates of protein synthesis and compared them with the observed rate of growth. Large accessions contained less ribosomes than small accessions, due mainly to cytosolic ribosome abundance falling at night in large accessions. The modelled rates of protein synthesis resembled those required for growth in large accessions, but were up to 30% in excess in small accessions. We then employed 13 CO 2 pulse-chase labelling to measure the rates of protein synthesis and degradation in 13 accessions. Small accessions had a slightly higher rate of protein synthesis and much higher rates of protein degradation than large accessions. Protein turnover was negligible in large accessions but equivalent to up to 30% of synthesised protein day -1 in small accessions. We discuss to what extent the decrease in growth in small accessions can be quantitatively explained by known costs of protein turnover and what factors may lead to the altered diurnal dynamics and increase of ribosome abundance in small accessions, and propose that there is a trade-off between protein turnover and maximisation of growth rate. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  1. MU-SYNTHESIS BASED ACTIVE ROBUST VIBRATION CONTROL OF AN MRI INLET

    Directory of Open Access Journals (Sweden)

    Atta Oveisi

    2016-04-01

    Full Text Available In this paper, a robust control technique based on μ-synthesis is employed in order to investigate the vibration control of a funnel-shaped structure that is used as the inlet of a magnetic resonance imaging (MRI device. MRI devices are widely subjected to the vibration of the magnetic gradient coil which then propagates to acoustic noise and leads to a series of clinical and mechanical problems. In order to address this issue and as a part of noise cancellation study in MRI devices, distributed piezo-transducers are bounded on the top surface of the funnel as functional sensor/actuator modules. Then, a reduced order linear time-invariant (LTI model of the piezolaminated structure in the state-space representation is estimated by means of a predictive error minimization (PEM algorithm as a subspace identification method based on the trust-region-reflective technique. The reduced order model is expanded by the introduction of appropriate frequency-dependent weighting functions that address the unmodeled dynamics and the augmented multiplicative modeling uncertainties of the system. Then, the standard D-K iteration algorithm as an output-feedback control method is used based on the nominal model with the subordinate uncertainty elements from the previous step. Finally, the proposed control system implemented experimentally on the real structure is to evaluate the robust vibration attenuation performance of the closed-loop system.

  2. Phase-controlled synthesis of α-NiS nanoparticles confined in carbon nanorods for High Performance Supercapacitors

    Science.gov (United States)

    Sun, Chencheng; Ma, Mingze; Yang, Jun; Zhang, Yufei; Chen, Peng; Huang, Wei; Dong, Xiaochen

    2014-11-01

    A facile and phase-controlled synthesis of α-NiS nanoparticles (NPs) embedded in carbon nanorods (CRs) is reported by in-situ sulfurating the preformed Ni/CRs. The nanopore confinement by the carbon matrix is essential for the formation of α-NiS and preventing its transition to β-phase, which is in strong contrast to large aggregated β-NiS particles grown freely without the confinement of CRs. When used as electrochemical electrode, the hybrid electrochemical charge storage of the ultrasmall α-NiS nanoparticels dispersed in CRs is benefit for the high capacitor (1092, 946, 835, 740 F g-1 at current densities of 1, 2, 5, 10 A g-1, respectively.). While the high electrochemical stability (approximately 100% retention of specific capacitance after 2000 charge/discharge cycles) is attributed to the supercapacitor-battery electrode, which makes synergistic effect of capacitor (CRs) and battery (NiS NPs) components rather than a merely additive composite. This work not only suggests a general approach for phase-controlled synthesis of nickel sulfide but also opens the door to the rational design and fabrication of novel nickel-based/carbon hybrid supercapacitor-battery electrode materials.

  3. Methodology for Knowledge Synthesis of the Management of Vaccination Pain and Needle Fear.

    Science.gov (United States)

    Taddio, Anna; McMurtry, C Meghan; Shah, Vibhuti; Yoon, Eugene W; Uleryk, Elizabeth; Pillai Riddell, Rebecca; Lang, Eddy; Chambers, Christine T; Noel, Melanie; MacDonald, Noni E

    2015-10-01

    A knowledge synthesis was undertaken to inform the development of a revised and expanded clinical practice guideline about managing vaccination pain in children to include the management of pain across the lifespan and the management of fear in individuals with high levels of needle fear. This manuscript describes the methodological details of the knowledge synthesis and presents the list of included clinical questions, critical and important outcomes, search strategy, and search strategy results. The Grading of Assessments, Recommendations, Development and Evaluation (GRADE) and Cochrane methodologies provided the general framework. The project team voted on clinical questions for inclusion and critically important and important outcomes. A broad search strategy was used to identify relevant randomized-controlled trials and quasi-randomized-controlled trials. Quality of research evidence was assessed using the Cochrane risk of bias tool and quality across studies was assessed using GRADE. Multiple measures of the same construct within studies (eg, observer-rated and parent-rated infant distress) were combined before pooling. The standardized mean difference and 95% confidence intervals (CI) or relative risk and 95% CI was used to express the effects of an intervention. Altogether, 55 clinical questions were selected for inclusion in the knowledge synthesis; 49 pertained to pain management during vaccine injections and 6 pertained to fear management in individuals with high levels of needle fear. Pain, fear, and distress were typically prioritized as critically important outcomes across clinical questions. The search strategy identified 136 relevant studies. This manuscript describes the methodological details of a knowledge synthesis about pain management during vaccination and fear management in individuals with high levels of needle fear. Subsequent manuscripts in this series will present the results for the included questions.

  4. Rapid synthesis of acetylcholine receptors at neuromuscular junctions.

    Science.gov (United States)

    Ramsay, D A; Drachman, D B; Pestronk, A

    1988-10-11

    The rate of acetylcholine receptor (AChR) degradation in mature, innervated mammalian neuromuscular junctions has recently been shown to be biphasic; up to 20% are rapidly turned over (RTOs; half life less than 1 day) whereas the remainder are lost more slowly ('stable' AChRs; half life 10-12 days). In order to maintain normal junctional receptor density, synthesis and insertion of AChRs should presumably be sufficiently rapid to replace both the RTOs and the stable receptors. We have tested this prediction by blocking pre-existing AChRs in the mouse sternomastoid muscle with alpha-bungarotoxin (alpha-BuTx), and monitoring the subsequent appearance of 'new' junctional AChRs at intervals of 3 h to 20 days by labeling them with 125I-alpha-BuTx. The results show that new receptors were initially inserted rapidly (16% at 24 h and 28% at 48 h). The rate of increase of 'new' 125I-alpha-BuTx binding sites gradually slowed down during the remainder of the time period studied. Control observations excluded possible artifacts of the experimental procedure including incomplete blockade of AChRs, dissociation of toxin-receptor complexes, or experimentally induced alteration of receptor synthesis. The present demonstration of rapid synthesis and incorporation of AChRs at innervated neuromuscular junctions provides support for the concept of a subpopulation of rapidly turned over AChRs. The RTOs may serve as precursors for the larger population of stable receptors and have an important role in the metabolism of the neuromuscular synapse.

  5. Development of linear flow rate control system for eccentric butter-fly valve

    International Nuclear Information System (INIS)

    Kwak, K. K.; Cho, S. W.; Park, J. S.; Cho, J. H.; Song, I. T.; Kim, J. G.; Kwon, S. J.; Kim, I. J.; Park, W. K.

    1999-12-01

    Butter-fly valves are advantageous over gate, globe, plug, and ball valves in a variety of installations, particularly in the large sizes. The purpose of this project development of linear flow rate control system for eccentric butter-fly valve (intelligent butter-fly valve system). The intelligent butter-fly valve system consist of a valve body, micro controller. The micro controller consist of torque control system, pressure censor, worm and worm gear and communication line etc. The characteristics of intelligent butter-fly valve system as follows: Linear flow rate control function. Digital remote control function. guard function. Self-checking function. (author)

  6. Peptidoglycan synthesis drives an FtsZ-treadmilling-independent step of cytokinesis.

    Science.gov (United States)

    Monteiro, João M; Pereira, Ana R; Reichmann, Nathalie T; Saraiva, Bruno M; Fernandes, Pedro B; Veiga, Helena; Tavares, Andreia C; Santos, Margarida; Ferreira, Maria T; Macário, Vânia; VanNieuwenhze, Michael S; Filipe, Sérgio R; Pinho, Mariana G

    2018-02-22

    Peptidoglycan is the main component of the bacterial wall and protects cells from the mechanical stress that results from high intracellular turgor. Peptidoglycan biosynthesis is very similar in all bacteria; bacterial shapes are therefore mainly determined by the spatial and temporal regulation of peptidoglycan synthesis rather than by the chemical composition of peptidoglycan. The form of rod-shaped bacteria, such as Bacillus subtilis or Escherichia coli, is generated by the action of two peptidoglycan synthesis machineries that act at the septum and at the lateral wall in processes coordinated by the cytoskeletal proteins FtsZ and MreB, respectively. The tubulin homologue FtsZ is the first protein recruited to the division site, where it assembles in filaments-forming the Z ring-that undergo treadmilling and recruit later divisome proteins. The rate of treadmilling in B. subtilis controls the rates of both peptidoglycan synthesis and cell division. The actin homologue MreB forms discrete patches that move circumferentially around the cell in tracks perpendicular to the long axis of the cell, and organize the insertion of new cell wall during elongation. Cocci such as Staphylococcus aureus possess only one type of peptidoglycan synthesis machinery, which is diverted from the cell periphery to the septum in preparation for division. The molecular cue that coordinates this transition has remained elusive. Here we investigate the localization of S. aureus peptidoglycan biosynthesis proteins and show that the recruitment of the putative lipid II flippase MurJ to the septum, by the DivIB-DivIC-FtsL complex, drives peptidoglycan incorporation to the midcell. MurJ recruitment corresponds to a turning point in cytokinesis, which is slow and dependent on FtsZ treadmilling before MurJ arrival but becomes faster and independent of FtsZ treadmilling after peptidoglycan synthesis activity is directed to the septum, where it provides additional force for cell envelope

  7. Burn-induced stimulation of lysosomal enzyme synthesis in skeletal muscle

    International Nuclear Information System (INIS)

    Odessey, R.

    1986-01-01

    A localized burn injury to a rat hindlimb results in atrophy of soleus muscle (in the absence of cellular damage) which is attributable to an increase in muscle protein breakdown. Previous work has shown that lysosomal enzyme activities (cathepsins B, H, L, and D) are elevated in muscle from the burned leg by 50% to 100%. There is no change in endogenous neutral protease activity (+/- Ca ++ ). The increase in protease activity can not be attributed to changes in endogenous protease inhibitors. The latency [(Triton X100 treated - control)/triton treated] of lysosomal enzymes is approximately 50% and is not altered by burn injury. The rate of sucrose uptake is also not altered by burn. These experiments suggest that the rate of substrate supply to the lysosomal apparatus via endocytosis or autophagocytosis is not altered by burn. When muscles are preincubated with 3 H-phenylalanine or 3 H-mannose burn increased incorporation into protein of the fraction containing lysosomes by 100%. Preincubation in the presence of tunicamycin (an inhibitor of glycoprotein synthesis) inhibited incorporation of both labels into a microsomal fraction of the muscle from the burned leg, but has little effect on incorporation in the control muscle. These findings are consistent with the hypothesis that the burn-induced increase in protein breakdown is caused by an increase in lysosomal protease synthesis

  8. Size-controllable synthesis of nanosized-TiO2 anatase using porous Vycor glass as template

    International Nuclear Information System (INIS)

    Mazali, I.O.; Filho, A.G. Souza; Viana, B.C.; Filho, J. Mendes; Alves, O.L.

    2006-01-01

    In this paper we report the synthesis and characterization of TiO 2 nanocrystal dispersed into a porous Vycor glass. We have obtained very small TiO 2 nanocrystals in the anatase form. The nanocrystal size is controlled via the mass increment only thus preventing the growth through the coalescence process. The nanocrystal size was monitored through transmission electron microscope and Raman scattering. The coalescence control is attributed due to the obtention of nanocrystals dispersed into the host and to the terminal bonds present in the porous which act as an anchor thus resulting in a low diffusion of the nanocrystals through the porous network

  9. Controlled Synthesis of Sb 2 O 3 Nanoparticles, Nanowires, and Nanoribbons

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Sb 2 O 3 nanoparticles, nanowires, and nanoribbons have been selectively synthesized in a controlled manner under mild conditions by using CTAB as a soft template. By adopting Sb ( OH 4 − as an inorganic precursor and the concentration of CTAB as an adjusting parameter, morphologies of Sb 2 O 3 nanostructures can be selectively controlled. Typically, C CTAB <0.15 mmol favors the formation of nanoparticles (product one or short form P1; when the concentration of CATB is in the range 0.15–2.0 mmol, nanowires (P2 dominate the products; nanoribbons (P3 form above the concentration of 2.0 mmol, and when the concentration of CTAB goes further higher, treelike bundles of nanoribbons could be achieved. The method in the present study has potential advantages of easy handling, relatively low-cost, and large-scale production. The facile and large-scale synthesis of varied Sb 2 O 3 nanostructures is believed to be useful for the application of catalysis and flame retardance.

  10. Tomo-synthesis. Bibliographic study report

    International Nuclear Information System (INIS)

    2016-01-01

    Tomo-synthesis is a recent technique for breast imaging. This technique, qualified as 'pseudo-3D', draws the attention of health professionals. Indeed, this technique could offer a gain in sensibility and in specificity in the detection of breast cancers compared to 2D mammography, thanks to the reduction of the tissues' overlapping in particular. Although its place and its clinical indication are not still clearly defined, tomo-synthesis is already used in France. The introduction of this technique within the national breast cancer screening program, seems to be foreseen by the authorities in the coming years. IRSN, in the scope of its mission of evaluation of the dose impact of innovative techniques, is closely interested in this technique and has proceeded in 2015 to a bibliographical review of the state of the art in tomo-synthesis. This review paid specific attention to the following points: conception of the installations, dose, image quality and quality control. it has highlighted several points of attention, which incite IRSN to formulate certain recommendations to accompany the spreading of this new technique in France. Most of the clinical trials validating the use of tomo-synthesis were realized on systems of a single manufacturer. However, manufacturers' strategies of design are heterogeneous. There is no unique technique of tomo-synthesis but several, of which equivalence in terms of technical and clinical performances is not demonstrated. Due to the heterogeneity of the different models available on the French market, IRSN recommends not to extrapolate the results of clinical studies obtained on a specific system but to consolidate them for all the available systems. In many imaging departments, tomo-synthesis is already implemented in addition or in substitution of 2D mammography without any regulatory quality control and periodic technical checks. The European reference standard for quality control of these devices is not yet

  11. Virtual decoupling flight control via real-time trajectory synthesis and tracking

    Science.gov (United States)

    Zhang, Xuefu

    The production of the General Aviation industry has declined in the past 25 years. Ironically, however, the increasing demand for air travel as a fast, safe, and high-quality mode of transportation has been far from satisfied. Addressing this demand shortfall with personal air transportation necessitates advanced systems for navigation, guidance, control, flight management, and flight traffic control. Among them, an effective decoupling flight control system will not only improve flight quality, safety, and simplicity, and increase air space usage, but also reduce expenses on pilot initial and current training, and thus expand the current market and explore new markets. Because of the formidable difficulties encountered in the actual decoupling of non-linear, time-variant, and highly coupled flight control systems through traditional approaches, a new approach, which essentially converts the decoupling problem into a real-time trajectory synthesis and tracking problem, is employed. Then, the converted problem is solved and a virtual decoupling effect is achieved. In this approach, a trajectory in inertial space can be predefined and dynamically modified based on the flight mission and the pilot's commands. A feedforward-feedback control architecture is constructed to guide the airplane along the trajectory as precisely as possible. Through this approach, the pilot has much simpler, virtually decoupled control of the airplane in terms of speed, flight path angle and horizontal radius of curvature. To verify and evaluate this approach, extensive computer simulation is performed. A great deal of test cases are designed for the flight control under different flight conditions. The simulation results show that our decoupling strategy is satisfactory and promising, and therefore the research can serve as a consolidated foundation for future practical applications.

  12. Fluctuations and synchrony of RNA synthesis in nucleoli.

    Science.gov (United States)

    Pliss, Artem; Kuzmin, Andrey N; Kachynski, Aliaksandr V; Baev, Alexander; Berezney, Ronald; Prasad, Paras N

    2015-06-01

    Ribosomal RNA (rRNA) sequences are synthesized at exceptionally high rates and, together with ribosomal proteins (r-proteins), are utilized as building blocks for the assembly of pre-ribosomal particles. Although it is widely acknowledged that tight regulation and coordination of rRNA and r-protein production are fundamentally important for the maintenance of cellular homeostasis, still little is known about the real-time kinetics of the ribosome component synthesis in individual cells. In this communication we introduce a label-free MicroRaman spectrometric approach for monitoring rRNA synthesis in live cultured cells. Remarkably high and rapid fluctuations of rRNA production rates were revealed by this technique. Strikingly, the changes in the rRNA output were synchronous for ribosomal genes located in separate nucleoli of the same cell. Our findings call for the development of new concepts to elucidate the coordination of ribosomal components production. In this regard, numerical modeling further demonstrated that the production of rRNA and r-proteins can be coordinated, regardless of the fluctuations in rRNA synthesis. Overall, our quantitative data reveal a spectacular interplay of inherently stochastic rates of RNA synthesis and the coordination of gene expression.

  13. Size controlled hydroxyapatite and calcium carbonate particles: synthesis and their application as templates for SERS platform.

    Science.gov (United States)

    Parakhonskiy, B V; Svenskaya, Yu I; Yashchenok, A М; Fattah, H A; Inozemtseva, O A; Tessarolo, F; Antolini, R; Gorin, D A

    2014-06-01

    An elegant route for hydroxyapatite (HA) particle synthesis via ionic exchange reaction is reported. Calcium carbonate particles (CaCO3) were recrystallized into HA beads in water solution with phosphate ions. The size of initial CaCO3 particles was controlled upon the synthesis by varying the amount of ethylene glycol (EG) in aqueous solution. The average size of HA beads ranged from 0.6±0.1 to 4.3±1.1μm. Silver nanoparticles were deposited on the surface of HA and CaCO3 particles via silver mirror reaction. Surface enhanced Raman scattering of silver functionalized beads was demonstrated by detecting Rhodamine B. CaCO3 and HA particles have a great potential for design of carrier which can provide diagnostic and therapeutic functions. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Medicine and ionizing rays: a help sheet in analysing risks in high rate curietherapy

    International Nuclear Information System (INIS)

    Gauron, C.

    2009-01-01

    This document proposes a synthesis of useful knowledge for radioprotection in the case of high rate curietherapy. Several aspects are considered: the concerned personnel, the course of treatment procedures, the hazards, the identification of the risk associated with ionizing radiation, the risk assessment and the determination of exposure levels, the strategy to control the risks (reduction of risks, technical measures concerning the installation or the personnel, teaching and information, prevention and medical monitoring), and risk control assessment

  15. Medicine and ionizing rays: a help sheet in analysing risks in pulsed rate curietherapy

    International Nuclear Information System (INIS)

    Gauron, C.

    2009-01-01

    This document proposes a synthesis of useful knowledge for radioprotection in the case of pulsed rate curietherapy. Several aspects are considered: the concerned personnel, the course of treatment procedures, the hazards, the identification of the risk associated with ionizing radiation, the risk assessment and the determination of exposure levels, the strategy to control the risks (reduction of risks, technical measures concerning the installation or the personnel, teaching and information, prevention and medical monitoring), and risk control assessment

  16. Real-time LMR control parameter generation using advanced adaptive synthesis

    International Nuclear Information System (INIS)

    King, R.W.; Mott, J.E.

    1990-01-01

    The reactor ''delta T'', the difference between the average core inlet and outlet temperatures, for the liquid-sodium-cooled Experimental Breeder Reactor 2 is empirically synthesized in real time from, a multitude of examples of past reactor operation. The real-time empirical synthesis is based on reactor operation. The real-time empirical synthesis is based on system state analysis (SSA) technology embodied in software on the EBR 2 data acquisition computer. Before the real-time system is put into operation, a selection of reactor plant measurements is made which is predictable over long periods encompassing plant shutdowns, core reconfigurations, core load changes, and plant startups. A serial data link to a personal computer containing SSA software allows the rapid verification of the predictability of these plant measurements via graphical means. After the selection is made, the real-time synthesis provides a fault-tolerant estimate of the reactor delta T accurate to +/-1%. 5 refs., 7 figs

  17. Modeling and Model Predictive Power and Rate Control of Wireless Communication Networks

    Directory of Open Access Journals (Sweden)

    Cunwu Han

    2014-01-01

    Full Text Available A novel power and rate control system model for wireless communication networks is presented, which includes uncertainties, input constraints, and time-varying delays in both state and control input. A robust delay-dependent model predictive power and rate control method is proposed, and the state feedback control law is obtained by solving an optimization problem that is derived by using linear matrix inequality (LMI techniques. Simulation results are given to illustrate the effectiveness of the proposed method.

  18. Children's and Teachers' Perspectives on Children's Self-Control: The Development of Two Rating Scales.

    Science.gov (United States)

    Humphrey, Laura Lynn

    1982-01-01

    Compared parallel scales of children's self-control developed for teachers and children. Self-control ratings by teachers and children related to naturalistic observations and to teacher ratings of frustration tolerance and acting-out/aggressive problems. Teachers' ratings of self-control related to IQ and achievement. Supported the validity of…

  19. Choice and Outcomes of Rate Control versus Rhythm Control in Elderly Patients with Atrial Fibrillation

    DEFF Research Database (Denmark)

    Paciullo, Francesco; Proietti, Marco; Bianconi, Vanessa

    2018-01-01

    BACKGROUND: Among rate-control or rhythm-control strategies, there is conflicting evidence as to which is the best management approach for non-valvular atrial fibrillation (AF) in elderly patients. DESIGN: We performed an ancillary analysis from the 'Registro Politerapie SIMI' study, enrolling el...

  20. Synthesis Study on Transitions in Signal Infrastructure and Control Algorithms for Connected and Automated Transportation

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, H. M. Abdul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Young, Stan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sperling, Joshua [National Renewable Energy Lab. (NREL), Golden, CO (United States); Beck, John [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-01

    Documenting existing state of practice is an initial step in developing future control infrastructure to be co-deployed for heterogeneous mix of connected and automated vehicles with human drivers while leveraging benefits to safety, congestion, and energy. With advances in information technology and extensive deployment of connected and automated vehicle technology anticipated over the coming decades, cities globally are making efforts to plan and prepare for these transitions. CAVs not only offer opportunities to improve transportation systems through enhanced safety and efficient operations of vehicles. There are also significant needs in terms of exploring how best to leverage vehicle-to-vehicle (V2V) technology, vehicle-to-infrastructure (V2I) technology and vehicle-to-everything (V2X) technology. Both Connected Vehicle (CV) and Connected and Automated Vehicle (CAV) paradigms feature bi-directional connectivity and share similar applications in terms of signal control algorithm and infrastructure implementation. The discussion in our synthesis study assumes the CAV/CV context where connectivity exists with or without automated vehicles. Our synthesis study explores the current state of signal control algorithms and infrastructure, reports the completed and newly proposed CV/CAV deployment studies regarding signal control schemes, reviews the deployment costs for CAV/AV signal infrastructure, and concludes with a discussion on the opportunities such as detector free signal control schemes and dynamic performance management for intersections, and challenges such as dependency on market adaptation and the need to build a fault-tolerant signal system deployment in a CAV/CV environment. The study will serve as an initial critical assessment of existing signal control infrastructure (devices, control instruments, and firmware) and control schemes (actuated, adaptive, and coordinated-green wave). Also, the report will help to identify the future needs for the signal

  1. Independent control of metal cluster and ceramic particle characteristics during one-step synthesis of Pt/TiO2

    DEFF Research Database (Denmark)

    Schulz, H.; Madler, L.; Strobel, R.

    2005-01-01

    Rapid quenching during flame spray synthesis of Pt/TiO2 (0-10 Wt% Pt) is demonstrated as a versatile method for independent control of support (TiO2) and noble metal (Pt)cluster characteristics. Titania grain size, morphology, crystal phase structure, and crystal size were analyzed by nitrogen ad...

  2. Synthesis, structure characterization and catalytic activity of nickel tungstate nanoparticles

    International Nuclear Information System (INIS)

    Pourmortazavi, Seied Mahdi; Rahimi-Nasrabadi, Mehdi; Khalilian-Shalamzari, Morteza; Zahedi, Mir Mahdi; Hajimirsadeghi, Seiedeh Somayyeh; Omrani, Ismail

    2012-01-01

    Graphical abstract: NiWO 4 nanoparticles were prepared via precipitation technique. Experimental parameters of procedure were optimized statistically. Highlights: ► NiWO 4 spherical nanoparticles were synthesized via direct precipitation method. ► Taguchi robust design was used for optimization of synthesis reaction parameters. ► Composition and structural properties of NiWO 4 nanoparticles were characterized. ► EDAX, XRD, SEM, FT-IR, UV–vis and photoluminescence techniques were employed. ► Catalytic activity of the product in a cyclo-addition reaction was investigated. - Abstract: Taguchi robust design was applied to optimize experimental parameters for controllable, simple and fast synthesis of nickel tungstate nanoparticles. NiWO 4 nanoparticles were synthesized by precipitation reaction involving addition of nickel ion solution to the tungstate aqueous reagent and then formation of nickel tungstate nucleolus which are insoluble in aqueous media. Effects of various parameters such as nickel and tungstate concentrations, flow rate of reagent addition and reactor temperature on diameter of synthesized nickel tungstate nanoparticles were investigated experimentally by the aid of orthogonal array design. The results for analysis of variance (ANOVA) showed that particle size of nickel tungstate can be effectively tuned by controlling significant variables involving nickel and tungstate concentrations and flow rate; while, temperature of the reactor has a no considerable effect on the size of NiWO 4 particles. The ANOVA results proposed the optimum conditions for synthesis of nickel tungstate nanoparticles via this technique. Also, under optimum condition nanoparticles of NiWO 4 were prepared and their structure and chemical composition were characterized by means of EDAX, XRD, SEM, FT-IR spectroscopy, UV–vis spectroscopy, and photoluminescence. Finally, catalytic activity of the nanoparticles in a cycloaddition reaction was examined.

  3. Synthesis, structure characterization and catalytic activity of nickel tungstate nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pourmortazavi, Seied Mahdi, E-mail: pourmortazavi@yahoo.com [Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology, Tehran (Iran, Islamic Republic of); Rahimi-Nasrabadi, Mehdi, E-mail: rahiminasrabadi@gmail.com [Department of Chemistry, Imam Hossein University, Tehran (Iran, Islamic Republic of); Khalilian-Shalamzari, Morteza [Department of Chemistry, Imam Hossein University, Tehran (Iran, Islamic Republic of); Zahedi, Mir Mahdi; Hajimirsadeghi, Seiedeh Somayyeh [Islamic Azad University, Varamin Pishva Branch, Varamin (Iran, Islamic Republic of); Omrani, Ismail [Department of Chemistry, Imam Hossein University, Tehran (Iran, Islamic Republic of)

    2012-12-15

    Graphical abstract: NiWO{sub 4} nanoparticles were prepared via precipitation technique. Experimental parameters of procedure were optimized statistically. Highlights: Black-Right-Pointing-Pointer NiWO{sub 4} spherical nanoparticles were synthesized via direct precipitation method. Black-Right-Pointing-Pointer Taguchi robust design was used for optimization of synthesis reaction parameters. Black-Right-Pointing-Pointer Composition and structural properties of NiWO{sub 4} nanoparticles were characterized. Black-Right-Pointing-Pointer EDAX, XRD, SEM, FT-IR, UV-vis and photoluminescence techniques were employed. Black-Right-Pointing-Pointer Catalytic activity of the product in a cyclo-addition reaction was investigated. - Abstract: Taguchi robust design was applied to optimize experimental parameters for controllable, simple and fast synthesis of nickel tungstate nanoparticles. NiWO{sub 4} nanoparticles were synthesized by precipitation reaction involving addition of nickel ion solution to the tungstate aqueous reagent and then formation of nickel tungstate nucleolus which are insoluble in aqueous media. Effects of various parameters such as nickel and tungstate concentrations, flow rate of reagent addition and reactor temperature on diameter of synthesized nickel tungstate nanoparticles were investigated experimentally by the aid of orthogonal array design. The results for analysis of variance (ANOVA) showed that particle size of nickel tungstate can be effectively tuned by controlling significant variables involving nickel and tungstate concentrations and flow rate; while, temperature of the reactor has a no considerable effect on the size of NiWO{sub 4} particles. The ANOVA results proposed the optimum conditions for synthesis of nickel tungstate nanoparticles via this technique. Also, under optimum condition nanoparticles of NiWO{sub 4} were prepared and their structure and chemical composition were characterized by means of EDAX, XRD, SEM, FT-IR spectroscopy, UV

  4. Engineering analysis of mass flow rate for turbine system control and design

    International Nuclear Information System (INIS)

    Yoo, Yong H.; Suh, Kune Y.

    2011-01-01

    Highlights: → A computer code is written to predict the steam mass flow rate through valves. → A test device is built to study the steam flow characteristics in the control valve. → Mass flow based methodology eases the programming and experimental procedures. → The methodology helps express the characteristics of each device of a turbine system. → The results can commercially be used for design and operation of the turbine system. - Abstract: The mass flow rate is determined in the steam turbine system by the area formed between the stem disk and the seat of the control valve. For precise control the steam mass flow rate should be known given the stem lift. However, since the thermal hydraulic characteristics of steam coming from the generator or boiler are changed going through each device, it is hard to accurately predict the steam mass flow rate. Thus, to precisely determine the steam mass flow rate, a methodology and theory are developed in designing the turbine system manufactured for the nuclear and fossil power plants. From the steam generator or boiler to the first bunch of turbine blades, the steam passes by a stop valve, a control valve and the first nozzle, each of which is connected with piping. The corresponding steam mass flow rate can ultimately be computed if the thermal and hydraulic conditions are defined at the stop valve, control valve and pipes. The steam properties at the inlet of each device are changed at its outlet due to geometry. The Compressed Adiabatic Massflow Analysis (CAMA) computer code is written to predict the steam mass flow rate through valves. The Valve Engineered Layout Operation (VELO) test device is built to experimentally study the flow characteristics of steam flowing inside the control valve with the CAMA input data. The Widows' Creek type control valve was selected as reference. CAMA is expected to be commercially utilized to accurately design and operate the turbine system for fossil as well as nuclear power

  5. Polymer scaffold degradation control via chemical control

    Science.gov (United States)

    Hedberg-Dirk, Elizabeth L.; Dirk, Shawn; Cicotte, Kirsten

    2016-01-05

    A variety of polymers and copolymers suitable for use as biologically compatible constructs and, as a non-limiting specific example, in the formation of degradable tissue scaffolds as well methods for synthesizing these polymers and copolymers are described. The polymers and copolymers have degradation rates that are substantially faster than those of previously described polymers suitable for the same uses. Copolymers having a synthesis route which enables one to fine tune the degradation rate by selecting the specific stoichiometry of the monomers in the resulting copolymer are also described. The disclosure also provides a novel synthesis route for maleoyl chloride which yields monomers suitable for use in the copolymer synthesis methods described herein.

  6. Synthesis of pure iron magnetic nanoparticles in large quantity

    International Nuclear Information System (INIS)

    Tiwary, C S; Kashyap, S; Chattopadhyay, K; Biswas, K

    2013-01-01

    Free nanoparticles of iron (Fe) and their colloids with high saturation magnetization are in demand for medical and microfluidic applications. However, the oxide layer that forms during processing has made such synthesis a formidable challenge. Lowering the synthesis temperature decreases rate of oxidation and hence provides a new way of producing pure metallic nanoparticles prone to oxidation in bulk amount (large quantity). In this paper we have proposed a methodology that is designed with the knowledge of thermodynamic imperatives of oxidation to obtain almost oxygen-free iron nanoparticles, with or without any organic capping by controlled milling at low temperatures in a specially designed high-energy ball mill with the possibility of bulk production. The particles can be ultrasonicated to produce colloids and can be bio-capped to produce transparent solution. The magnetic properties of these nanoparticles confirm their superiority for possible biomedical and other applications. (paper)

  7. New Hybrid Route to Biomimetic Synthesis

    National Research Council Canada - National Science Library

    Morse, Daniel

    2003-01-01

    To develop economical low-temperature routes to biomimetic synthesis of high-performance composite materials, with control of composition and structure based on the molecular mechanisms controlling...

  8. Template-free synthesis of sub-micrometric cobalt fibers with controlled shape and structure. Characterization and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Lakhdar, Allagui [Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Bizerte (Tunisia); Borges, Joao P. [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Ben Haj Amara, Abdesslam [Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Bizerte (Tunisia); Dakhlaoui-Omrani, Amel, E-mail: dakhlaoui_amel@yahoo.fr [Department of Chemistry, Faculty of Sciences and Arts-Khulais, University of Jeddah, Khulais, P. O. Box 355, Postal Code 21921 (Saudi Arabia); Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National des Recherches en Sciences des Matériaux, Technopôle de Bordj Cedria, BP 73, 8027 Soliman (Tunisia)

    2017-03-01

    Sub-micrometric Co fibers were prepared via a modified polyol process at 90 °C under an external magnetic field of about 550 Oe, using ethelyne glycol as solvent and hydrazine as reducing agent. The structure, the size and the morphology of the as-elaborated products were highly controlled through properly monitoring the synthesis parameters (amount of NaOH added, the amount of the reducing agent, precursor’ concentration and precursors mixing protocol). The XRD characterization confirmed the formation of pure cobalt powders with either hexagonal compact (hcp) or face-centered-cubic (fcc) structure depending on the concentration of the metal precursor and sodium hydroxide. The scanning electron microscopy observations of the powders shows sub-micrometric fibers with about 0.4–0.6 µm in diameter and a length that could reach 15 µm. Fibers prepared at high reducing ratio were constituted of flower-like spheres that coalesce in the direction of the applied magnetic field. For their high contact surface, these fibers offer new opportunities for catalysis applications. The hysteresis loop measurements show an enhancement of the Hc of the as-obtained fibers compared to their bulk counterparts and permit to confirm the relationship between the structure and the magnetic properties of the materials. - Highlights: • Template free synthesis of cobalt sub-micrometric fibers. • High control of the structure the structure, the size and the morphology of the products through properly monitoring the synthesis parameters. • cobalt sub-micrometric fibers with enhanced magnetic properties compared to bulk cobalt.

  9. Size-controllable synthesis of bare gold nanoparticles by femtosecond laser fragmentation in water

    International Nuclear Information System (INIS)

    Maximova, Ksenia; Aristov, Andrei; Sentis, Marc; Kabashin, Andrei V

    2015-01-01

    We report a size-controllable synthesis of stable aqueous solutions of ultrapure low-size-dispersed Au nanoparticles by methods of femtosecond laser fragmentation from preliminary formed colloids. Such approach makes possible the tuning of mean nanoparticle size between a few nm and several tens of nm under the size dispersion lower than 70% by varying the fluence of pumping radiation during the fragmentation procedure. The efficient size control is explained by 3D geometry of laser fragmentation by femtosecond laser-induced white light super-continuum and plasma-related phenomena. Despite the absence of any protective ligands, the nanoparticle solutions demonstrate exceptional stability due to electric repulsion effect associated with strong negative charging of formed nanoparticles. Stable aqueous solutions of bare gold nanoparticles present a unique object with a variety of potential applications in catalysis, surface-enhanced Raman spectroscopy, photovoltaics, biosensing and biomedicine. (paper)

  10. The rate of synthesis and decomposition of tissue proteins in hypokinesia and increased muscular activity

    Science.gov (United States)

    Fedorov, I. V.; Chernyy, A. V.; Fedorov, A. I.

    1978-01-01

    During hypokinesia and physical loading (swimming) of rats, the radioactivity of skeletal muscle, liver, kidney, heart, and blood proteins was determined after administration of radioactive amino acids. Tissue protein synthesis decreased during hypokinesia, and decomposition increased. Both synthesis and decomposition increased during physical loading, but anabolic processes predominated in the total tissue balance. The weights of the animals decreased in hypokinesia and increased during increased muscle activity.

  11. Design of a heart rate controller for treadmill exercise using a recurrent fuzzy neural network.

    Science.gov (United States)

    Lu, Chun-Hao; Wang, Wei-Cheng; Tai, Cheng-Chi; Chen, Tien-Chi

    2016-05-01

    In this study, we developed a computer controlled treadmill system using a recurrent fuzzy neural network heart rate controller (RFNNHRC). Treadmill speeds and inclines were controlled by corresponding control servo motors. The RFNNHRC was used to generate the control signals to automatically control treadmill speed and incline to minimize the user heart rate deviations from a preset profile. The RFNNHRC combines a fuzzy reasoning capability to accommodate uncertain information and an artificial recurrent neural network learning process that corrects for treadmill system nonlinearities and uncertainties. Treadmill speeds and inclines are controlled by the RFNNHRC to achieve minimal heart rate deviation from a pre-set profile using adjustable parameters and an on-line learning algorithm that provides robust performance against parameter variations. The on-line learning algorithm of RFNNHRC was developed and implemented using a dsPIC 30F4011 DSP. Application of the proposed control scheme to heart rate responses of runners resulted in smaller fluctuations than those produced by using proportional integra control, and treadmill speeds and inclines were smoother. The present experiments demonstrate improved heart rate tracking performance with the proposed control scheme. The RFNNHRC scheme with adjustable parameters and an on-line learning algorithm was applied to a computer controlled treadmill system with heart rate control during treadmill exercise. Novel RFNNHRC structure and controller stability analyses were introduced. The RFNNHRC were tuned using a Lyapunov function to ensure system stability. The superior heart rate control with the proposed RFNNHRC scheme was demonstrated with various pre-set heart rates. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. How to determine control of growth rate in a chemostat. Using metabolic control analysis to resolve the paradox

    DEFF Research Database (Denmark)

    Snoep, Jacky L.; Jensen, Peter Ruhdal; Groeneveld, Philip

    1994-01-01

    how, paradoxically, one can determine control of growth rate, of growth yield and of other fluxes in a chemostat. We develop metabolic control analysis for the chemostat. this analysis does not depend on the particular way in which specific growth rate varies with the concentration of the growth...

  13. Shape-Controlled Synthesis of NiCo2 O4 Microstructures and Their Application in Supercapacitors.

    Science.gov (United States)

    Xiang, Nannan; Ni, Yonghong; Ma, Xiang

    2015-09-01

    The shape-controlled synthesis of NiCo2 O4 microstructures through a facile hydrothermal method and subsequent calcinations was explored. By employing CoSO4 , NiSO4 , and urea as the starting reactants, flower-like NiCo2 O4 microstructures were obtained at 100 °C after 5 h without the assistance of any additive and subsequent calcination at 300 °C for 2 h; dumbbell-like NiCo2 O4 microstructures were prepared at 150 °C after 5 h in the presence of trisodium citrate and subsequent calcination at 300 °C for 2 h. The as-prepared NiCo2 O4 microstructures were characterized by X-ray powder diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and (high-resolution) transmission electron microscopy. Both the flower-like and dumbbell-like NiCo2 O4 microstructures could be used as electrode materials for supercapacitors, and they exhibited excellent electrochemical performance, including high specific capacitance, good rate capability, and excellent long-term cycle stability. Simultaneously, the shape-dependent electrochemical properties of the product were investigated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Dental implant survival rate in well-controlled diabetic patients. A systematic review.

    Directory of Open Access Journals (Sweden)

    Heber Arbildo

    2015-12-01

    Full Text Available Background: Dental implants have now become one of the most popular options for replacing a missing tooth. On the other hand, diabetes mellitus is a systemic disease that affects a large part of the population and is generally considered an absolute or relative contraindication to implant therapy. Aim: To determine the survival rate of dental implants in controlled diabetic patients through a systematic review. Material and methods: A systematic search in Pubmed, SciELO and RedALyC databases was performed. The selection criteria were: studies published in the last 10 years, with at least 20 controlled diabetic patients, reporting survival rate and number of implants placed, with follow-up periods equal to or longer than 1 year, including a control group of healthy patients. Methodological quality was analyzed with the follwing scales: Jadad and Downs & Black’s CMQ. Results: Three articles with a follow-up period between 1 and 12 years were analyzed. The overall survival rate of dental implants in diabetic controlled patients was 97.43%. Conclusion: The reviewed literature suggests that survival rate of dental implants in well-controlled diabetic patients is similar to non-diabetic patients.

  15. Development of homotopy algorithms for fixed-order mixed H2/H(infinity) controller synthesis

    Science.gov (United States)

    Whorton, M.; Buschek, H.; Calise, A. J.

    1994-01-01

    A major difficulty associated with H-infinity and mu-synthesis methods is the order of the resulting compensator. Whereas model and/or controller reduction techniques are sometimes applied, performance and robustness properties are not preserved. By directly constraining compensator order during the optimization process, these properties are better preserved, albeit at the expense of computational complexity. This paper presents a novel homotopy algorithm to synthesize fixed-order mixed H2/H-infinity compensators. Numerical results are presented for a four-disk flexible structure to evaluate the efficiency of the algorithm.

  16. Alcohol impairs skeletal muscle protein synthesis and mTOR signaling in a time-dependent manner following electrically stimulated muscle contraction.

    Science.gov (United States)

    Steiner, Jennifer L; Lang, Charles H

    2014-11-15

    Alcohol (EtOH) decreases protein synthesis and mammalian target of rapamycin (mTOR)-mediated signaling and blunts the anabolic response to growth factors in skeletal muscle. The purpose of the current investigation was to determine whether acute EtOH intoxication antagonizes the contraction-induced increase in protein synthesis and mTOR signaling in skeletal muscle. Fasted male mice were injected intraperitoneally with 3 g/kg EtOH or saline (control), and the right hindlimb was electrically stimulated (10 sets of 6 contractions). The gastrocnemius muscle complex was collected 30 min, 4 h, or 12 h after stimulation. EtOH decreased in vivo basal protein synthesis (PS) in the nonstimulated muscle compared with time-matched Controls at 30 min, 4 h, and 12 h. In Control, but not EtOH, PS was decreased 15% after 30 min. In contrast, PS was increased in Control 4 h poststimulation but remained unchanged in EtOH. Last, stimulation increased PS 10% in Control and EtOH at 12 h, even though the absolute rate remained reduced by EtOH. The stimulation-induced increase in the phosphorylation of S6K1 Thr(421)/Ser(424) (20-52%), S6K1 Thr(389) (45-57%), and its substrate rpS6 Ser(240/244) (37-72%) was blunted by EtOH at 30 min, 4 h, and 12 h. Phosphorylation of 4E-BP1 Ser(65) was also attenuated by EtOH (61%) at 4 h. Conversely, phosphorylation of extracellular signal-regulated kinase Thr(202)/Tyr(204) was increased by stimulation in Control and EtOH mice at 30 min but only in Control at 4 h. Our data indicate that acute EtOH intoxication suppresses muscle protein synthesis for at least 12 h and greatly impairs contraction-induced changes in synthesis and mTOR signaling. Copyright © 2014 the American Physiological Society.

  17. Morphology control of brushite prepared by aqueous solution synthesis

    Directory of Open Access Journals (Sweden)

    T. Toshima

    2014-03-01

    Full Text Available Dicalcium phosphate dihydrate (DCPD, CaHPO4·2H2O, also known as brushite, is one of the important bioceramics due to not only diseases factors such as kidney stone and plaque formation but also purpose as fluoride insolubilization material. It is used medicinally to supply calcium, and is of interest for its unique properties in biological and pathological mineralization. It is important to control the crystal morphology of brushite since its chemical reactivity depends strongly on its surface properties; thus, its morphology is a key issue for its applications as a functional material or precursor for other bioceramics. Here, we report the effects of the initial pH and the Ca and phosphate ion concentrations on the morphology of DCPD particles during aqueous solution synthesis. Crystal morphologies were analyzed by scanning electron microscopy and X-ray diffraction. The morphology phase diagram of DCPD crystallization revealed that increasing the initial pH and/or ion concentration transformed DCPD morphology from petal-like into plate-like structures.

  18. Risk Management of Interest Rate Derivative Portfolios: A Stochastic Control Approach

    Directory of Open Access Journals (Sweden)

    Konstantinos Kiriakopoulos

    2014-10-01

    Full Text Available In this paper we formulate the Risk Management Control problem in the interest rate area as a constrained stochastic portfolio optimization problem. The utility that we use can be any continuous function and based on the viscosity theory, the unique solution of the problem is guaranteed. The numerical approximation scheme is presented and applied using a single factor interest rate model. It is shown how the whole methodology works in practice, with the implementation of the algorithm for a specific interest rate portfolio. The recent financial crisis showed that risk management of derivatives portfolios especially in the interest rate market is crucial for the stability of the financial system. Modern Value at Risk (VAR and Conditional Value at Risk (CVAR techniques, although very useful and easy to understand, fail to grasp the need for on-line controlling and monitoring of derivatives portfolio. The portfolios should be designed in a way that risk and return be quantified and controlled in every possible state of the world. We hope that this methodology contributes towards this direction.

  19. ANALYTICAL SYNTHESIS OF FORCED PULSE ELECTRONIC DRIVE CONTROL OF A TRACKING SYSTEM

    Directory of Open Access Journals (Sweden)

    A. S. Abufanas

    2017-01-01

    Full Text Available The problem of analytical synthesis of a control signal by a linear dynamical system is considered. As an optimization criterion, it is proposed to consider the transition time of the system from the initial state to a given final state. This type of control is called forced, providing the maximum system speed. The principle of solving this problem is considered on the basis of application of uncertain Lagrange multipliers and the Pontryagin maximum principle. Expressions are obtained for the matrix of transitions of the system and the control signal in a vector form.As an example, the electric drive described by the widespread second-order mathematical model is considered to evaluate the efficiency of the proposed method. Qualitative illustrations of the operability of the proposed approach, obtained by modeling in the Mathcad environment, and quantitative characteristics of the change in the input and output signals of the hypothetical control system are presented. It is shown that the use of forced control does not lead to the output of variables characterizing the state of the system, beyond the limits of admissible values.The use of forced control makes it possible to synthesize the control law in the form of a sequence of rectangular pulses of constant amplitude determined by the power source, variable duty cycle and polarity. This approach can be used for the control of DC-type DC motors used in various tracking systems used on unmanned aerial vehicles. Key words: forced control, target function, electric drive, pulse train. The use of forced control makes it possible to synthesize the control law in the form of a sequence of rectangular pulses of constant amplitude determined by the power source, variable duty cycle and polarity. This approach can be used for the control of DC-type DC motors used in various tracking systems used on unmanned aerial vehicles.

  20. An operational event announcer for the LHC control centre using speech synthesis

    International Nuclear Information System (INIS)

    Page, S.; Alemany Fernandez, R.

    2012-01-01

    The LHC Island of the CERN Control Centre is a busy working environment with many status displays and running software applications. An audible event announcer was developed in order to provide a simple and efficient method to notify the operations team of events occurring within the many subsystems of the accelerator. The LHC Announcer uses speech synthesis to report messages based upon data received from multiple sources. General accelerator information such as injections, beam energies and beam dumps are derived from data received from the LHC Timing System. Additionally, a software interface is provided that allows other surveillance processes to send messages to the Announcer using the standard control system middle-ware. Events are divided into categories which the user can enable or disable depending upon their interest. Use of the LHC Announcer is not limited to the Control Centre and is intended to be available to a wide audience, both inside and outside CERN. To accommodate this, it was designed to require no special software beyond a standard web browser. This paper describes the design of the LHC Announcer and how it is integrated into the LHC operational environment. (authors)

  1. Entry rates and recycling of glucose in buffalo calves fed on urea molasses liquid diet

    International Nuclear Information System (INIS)

    Varma, Arun; Singh, U.B.; Verma, D.N.; Ranjhan, S.K.

    1974-01-01

    Entry rates of glucose have been measured in buffalo calves by using a dual-isotope dilution method based on continuous infusion of (U- 14 C)D-glucose and (6- 3 H)D-glucose into the blood at a precise controlled rate for 540 min. After 5 h a plateau was obtained in the specific radioactivity of the plasma glucose from which glucose synthesis and entry rates were calculated. The average entry rates of glucose were 112 and 145 mg/min measured by 14 C and 3 H labelled glucose respectively. About 23 percent of the glucose carbon was recycled in the pool. The average recycling rate was 33 mg/min. (author)

  2. Packetized Predictive Control for Rate-Limited Networks via Sparse Representation

    DEFF Research Database (Denmark)

    Nagahara, Masaaki; Quevedo, Daniel; Østergaard, Jan

    2012-01-01

    controller and the plant input. To achieve robustness with respect to dropouts, the controller transmits data packets containing plant input predictions, which minimize a finite horizon cost function. In our formulation, we design sparse packets for rate-limited networks, by adopting an an ℓ0 optimization...

  3. Easily controlled dye doped phosphorescent OLEDs with evaporation rate in single furnace

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoudi, Malek; Janghouri, Mohammad; Mohajerani, Ezeddin, E-mail: e-mohajerani@sbu.ac.ir

    2015-04-15

    Electrical and optical characteristic, surface morphology and energy transfer of Ir(ppy){sub 3}:PtTPP were studied as a function of thermal evaporation rate. We have investigated the effect of various evaporation rates for mixture of dyes using single furnace method. When the deposition rate increased from 0.5 to 5 Ǻ/s, the luminescence efficiency, current density and energy transfer of OLED increased. AFM measurements showed that the surface roughness of the Ir(ppy){sub 3}:PtTPP films decreased with increasing deposition rates. These blends show excellent red emitting guest–host system with easier deposition rate control. - Highlights: • Thermal evaporation rate is used to control the doping by using single furnace. • The advantages of using single furnace are discussed. • It is shown that the evaporation rate also affects the surface roughness.

  4. Controlled fabrication of the strong emission YVO4:Eu3+ nanoparticles and nanowires by microwave assisted chemical synthesis

    International Nuclear Information System (INIS)

    Huong, Tran Thu; Vinh, Le Thi; Phuong, Ha Thi; Khuyen, Hoang Thi; Anh, Tran Kim; Tu, Vu Duc; Minh, Le Quoc

    2016-01-01

    In this report, we are presenting the controlled fabrication results of the strong emission YVO 4 : Eu 3+ nanoparticles and nanowires by microwave which is assisted chemical synthesis. The effects of incorporated synthesis conditions such as microwave irradiated powers, pH values and concentration of chemical composition on properties of nanomaterials are also investigated to obtain the controllable size and homogenous morphology. Morphological and optical properties of YVO 4 : Eu 3+ prepared products which have been characterized by X-ray diffraction (XRD), field emission micrcroscopy (FESEM) and photoluminescence spectroscopy. As based from result of synthesized samples, we found that the changing of pH values, microwave irradiated powers and chemical composition rise to change reform the size and shape of materials from nanoparticles (diameter about 20 nm) to wires shape (with about 500÷800 nm length and 10÷20 nm width). The photoluminescence (PL) spectroscopy measurements of YVO 4 : Eu 3+ nanostructure materials under UV excitation showed that: the strong luminescence in red region with narrow lines corresponding to the intra-4f transitions of 5 D 0 – 7 F j (j=1, 2, 3, and 4) of Eu 3+ ions with the highest luminescence intensity of 5 D 0 → 7 F 2 transition. - Highlights: • The strong emission YVO 4 :Eu 3+ nanostructure materials were successfully synthesized by microwave assisted chemical synthesis. • The size, morphology and luminescence of the YVO 4 :Eu 3+ nanostructure materials can be controlled by the solution pH, microwave irradiated powers and chemical composition. • These YVO 4 :Eu 3+ nanostructure materials above can potentially applied in various fields of application, especially in luminescent labeling and visualization in biomedical application.

  5. Using consumption rate to assess potential predators for biological control of white perch

    Directory of Open Access Journals (Sweden)

    Gosch N.J.C.

    2011-08-01

    Full Text Available Control of undesirable fishes is important in aquatic systems, and using predation as a tool for biological control is an attractive option to fishery biologists. However, determining the appropriate predators for biological control is critical for success. The objective of this study was to evaluate the utility of consumption rate as an index to determine the most effective predators for biological control of an invasive fish. Consumption rate values were calculated for nine potential predators that prey on white perch Morone americana in Branched Oak and Pawnee reservoirs, Nebraska. The consumption rate index provided a unique and insightful means of determining the potential effectiveness of each predator species in controlling white perch. Cumulative frequency distributions facilitated interpretation by providing a graphical presentation of consumption rates by all individuals within each predator species. Largemouth bass Micropterus salmoides, walleye Sander vitreus and sauger S. canadensis were the most efficient white perch predators in both reservoirs; however, previous attempts to increase biomass of these predators have failed suggesting that successful biological control is unlikely using existing predator species in these Nebraska reservoirs.

  6. Controlled Synthesis of CuS/TiO2 Heterostructured Nanocomposites for Enhanced Photocatalytic Hydrogen Generation through Water Splitting.

    Science.gov (United States)

    Chandra, Moumita; Bhunia, Kousik; Pradhan, Debabrata

    2018-04-16

    Photocatalytic hydrogen (H 2 ) generation through water splitting has attracted substantial attention as a clean and renewable energy generation process that has enormous potential in converting solar-to-chemical energy using suitable photocatalysts. The major bottleneck in the development of semiconductor-based photocatalysts lies in poor light absorption and fast recombination of photogenerated electron-hole pairs. Herein we report the synthesis of CuS/TiO 2 heterostructured nanocomposites with varied TiO 2 contents via simple hydrothermal and solution-based process. The morphology, crystal structure, composition, and optical properties of the as-synthesized CuS/TiO 2 hybrids are evaluated in detail. Controlling the CuS/TiO 2 ratio to an optimum value leads to the highest photocatalytic H 2 production rate of 1262 μmol h -1 g -1 , which is 9.7 and 9.3 times higher than that of pristine TiO 2 nanospindles and CuS nanoflakes under irradiation, respectively. The enhancement in the H 2 evolution rate is attributed to increased light absorption and efficient charge separation with an optimum CuS coverage on TiO 2 . The photoluminescence and photoelectrochemical measurements further confirm the efficient separation of charge carriers in the CuS/TiO 2 hybrid. The mechanism and synergistic role of CuS and TiO 2 semiconductors for enhanced photoactivity is further delineated.

  7. A Globally Stable Lyapunov Pointing and Rate Controller for the Magnetospheric MultiScale Mission (MMS)

    Science.gov (United States)

    Shah, Neerav

    2011-01-01

    The Magnetospheric MultiScale Mission (MMS) is scheduled to launch in late 2014. Its primary goal is to discover the fundamental plasma physics processes of reconnection in the Earth's magnetosphere. Each of the four MMS spacecraft is spin-stabilized at a nominal rate of 3 RPM. Traditional spin-stabilized spacecraft have used a number of separate modes to control nutation, spin rate, and precession. To reduce the number of modes and simplify operations, the Delta-H control mode is designed to accomplish nutation control, spin rate control, and precession control simultaneously. A nonlinear design technique, Lyapunov's method, is used to design the Delta-H control mode. A global spin rate controller selected as the baseline controller for MMS, proved to be insufficient due to an ambiguity in the attitude. Lyapunov's design method was used to solve this ambiguity, resulting in a controller that meets the design goals. Simulation results show the advantage of the pointing and rate controller for maneuvers larger than 90 deg and provide insight into the performance of this controller.

  8. Continuous and rapid synthesis of nanoclusters and nanocrystals using scalable microstructured reactors

    Science.gov (United States)

    Jin, Hyung Dae

    Recent advances in nanocrystalline materials production are expected to impact the development of next generation low-cost and/or high efficiency solar cells. For example, semiconductor nanocrystal inks are used to lower the fabrication cost of the absorber layers of the solar cells. In addition, some quantum confined nanocrystals display electron-hole pair generation phenomena with greater than 100% quantum yield, called multiple exciton generation (MEG). These quantum dots could potentially be used to fabricate solar cells that exceed the Schockley-Queisser limit. At present, continuous syntheses of nanoparticles using microreactors have been reported by several groups. Microreactors have several advantages over conventional batch synthesis. One advantage is their efficient heat transfer and mass transport. Another advantage is the drastic reduction in the reaction time, in many cases, down to minutes from hours. Shorter reaction time not only provides higher throughput but also provide better particle size control by avoiding aggregation and by reducing probability of oxidizing precursors. In this work, room temperature synthesis of Au11 nanoclusters and high temperature synthesis of chalcogenide nanocrystals were demonstrated using continuous flow microreactors with high throughputs. A high rate production of phosphine-stabilized Au11 nanoclusters was achieved using a layer-up strategy which involves the use of microlamination architectures; the patterning and bonding of thin layers of material (laminae) to create a multilayered micromixer in the range of 25-250 mum thick was used to step up the production of phosphine-stabilized Au11 nanoclusters. Continuous production of highly monodispersed phosphine-stabilized Au 11 nanoclusters at a rate of about 11.8 [mg/s] was achieved using a microreactor with a size of 1.687cm3. This result is about 30,000 times over conventional batch synthesis according to production rate/per reactor volume. We have elucidated the

  9. Increased cellular levels of spermidine or spermine are required for optimal DNA synthesis in lymphocytes activated by concanavalin A.

    Science.gov (United States)

    Fillingame, R H; Jorstad, C M; Morris, D R

    1975-01-01

    There are large increases in cellular levels of the polyamines spermidine and spermine in lymphocytes induced to transform by concanavalin A. The anti-leukemic agent methylglyoxal bis(guanylhydrazone) (MGBG) blocks synthesis of these polyamines by inhibiting S-adenosylmethionine decarboxylase. Previous results showed that when cells are activated in the presence of MGBG the synthesis and processing of RNA, as well as protein synthesis, proceed as in the absence of the drug. In contrast, the incorporation of [methyl-3H]thymidine into DNA and the rate of entry of the cells into mitosis are inhibited by 60% in the presence of MGBG. Several experiments suggest that MGBG inhibits cell proliferation by directly blocking polyamine synthesis and not by an unrelated pharmacological effect: (1) the inhibitory action of MGBG is reversed by exogenously added spermidine or spermine; (2) inhibition of DNA synthesis by MGBG shows the same dose-response curve as does inhibition of spermidine and spermine synthesis; and (3) if MGBG is added to cells which have been allowed to accumulate their maximum complement of polyamines, there is no inhibition of thymidine incorporation. MGBG-treated and control cultures initiate DNA synthesis at the same time and show the same percentage of labeled cells by autoradiography. Therefore, it appears that in the absence of increased cellular levels of polyamines, lymphocytes progress normally from G0 through G1 and into S-phase. Furthermore, these experiments suggest that the increased levels of spermidine and spermine generally seen in rapidly proliferating eukaryotic systems are necessary for enhanced rates of DNA replication. PMID:1060087

  10. Cellular mechanisms that control mistranslation

    DEFF Research Database (Denmark)

    Reynolds, Noah M; Lazazzera, Beth A; Ibba, Michael

    2010-01-01

    Mistranslation broadly encompasses the introduction of errors during any step of protein synthesis, leading to the incorporation of an amino acid that is different from the one encoded by the gene. Recent research has vastly enhanced our understanding of the mechanisms that control mistranslation...... at the molecular level and has led to the discovery that the rates of mistranslation in vivo are not fixed but instead are variable. In this Review we describe the different steps in translation quality control and their variations under different growth conditions and between species though a comparison...

  11. Size control of MnFe2O4 nanoparticles in electric double layered magnetic fluid synthesis

    International Nuclear Information System (INIS)

    Aquino, R.; Tourinho, F.A.; Itri, R.; E Lara, M.C.F.L.; Depeyrot, J.

    2002-01-01

    We propose a method based on the pH of the synthesis to control the nanoparticle size during the ferrofluid elaboration. The particle diameter is determined by means of X-ray diffraction experiments. The measured mean size depends on the type of buffer used during the coprecipitation process. The results therefore confirm that the nanoparticle size can be monitored by the hydroxide concentration and suggest to consider the induced interplay between nucleation and crystal growth

  12. Ammonia Synthesis at Low Pressure.

    Science.gov (United States)

    Cussler, Edward; McCormick, Alon; Reese, Michael; Malmali, Mahdi

    2017-08-23

    Ammonia can be synthesized at low pressure by the use of an ammonia selective absorbent. The process can be driven with wind energy, available locally in areas requiring ammonia for synthetic fertilizer. Such wind energy is often called "stranded," because it is only available far from population centers where it can be directly used. In the proposed low pressure process, nitrogen is made from air using pressure swing absorption, and hydrogen is produced by electrolysis of water. While these gases can react at approximately 400 °C in the presence of a promoted conventional catalyst, the conversion is often limited by the reverse reaction, which makes this reaction only feasible at high pressures. This limitation can be removed by absorption on an ammine-like calcium or magnesium chloride. Such alkaline metal halides can effectively remove ammonia, thus suppressing the equilibrium constraints of the reaction. In the proposed absorption-enhanced ammonia synthesis process, the rate of reaction may then be controlled not by the chemical kinetics nor the absorption rates, but by the rate of the recycle of unreacted gases. The results compare favorably with ammonia made from a conventional small scale Haber-Bosch process.

  13. Stable Control of Firing Rate Mean and Variance by Dual Homeostatic Mechanisms.

    Science.gov (United States)

    Cannon, Jonathan; Miller, Paul

    2017-12-01

    Homeostatic processes that provide negative feedback to regulate neuronal firing rates are essential for normal brain function. Indeed, multiple parameters of individual neurons, including the scale of afferent synapse strengths and the densities of specific ion channels, have been observed to change on homeostatic time scales to oppose the effects of chronic changes in synaptic input. This raises the question of whether these processes are controlled by a single slow feedback variable or multiple slow variables. A single homeostatic process providing negative feedback to a neuron's firing rate naturally maintains a stable homeostatic equilibrium with a characteristic mean firing rate; but the conditions under which multiple slow feedbacks produce a stable homeostatic equilibrium have not yet been explored. Here we study a highly general model of homeostatic firing rate control in which two slow variables provide negative feedback to drive a firing rate toward two different target rates. Using dynamical systems techniques, we show that such a control system can be used to stably maintain a neuron's characteristic firing rate mean and variance in the face of perturbations, and we derive conditions under which this happens. We also derive expressions that clarify the relationship between the homeostatic firing rate targets and the resulting stable firing rate mean and variance. We provide specific examples of neuronal systems that can be effectively regulated by dual homeostasis. One of these examples is a recurrent excitatory network, which a dual feedback system can robustly tune to serve as an integrator.

  14. Polymer degradation rate control of hybrid rocket combustion

    Science.gov (United States)

    Stickler, D. B.; Ramohalli, K. N. R.

    1970-01-01

    Polymer degradation to small fragments is treated as a rate controlling step in hybrid rocket combustion. Both numerical and approximate analytical solutions of the complete energy and polymer chain bond conservation equations for the condensed phase are obtained. Comparison with inert atmosphere data is very good. It is found that the intersect of curves of pyrolysis rate versus interface temperature for hybrid combustors, with the thermal degradation theory, falls at a pyrolysis rate very close to that for which a pressure dependence begins to be observable. Since simple thermal degradation cannot give sufficient depolymerization at higher pyrolysis rates, it is suggested that oxidative catalysis of the process occurs at the surface, giving a first order dependence on reactive species concentration at the wall. Estimates of the ratio of this activation energy and interface temperature are in agreement with best fit procedures for hybrid combustion data. Requisite active species concentrations and flux are shown to be compatible with turbulent transport. Pressure dependence of hybrid rocket fuel regression rate is thus shown to be describable in a consistent manner in terms of reactive species catalysis of polymer degradation.

  15. Controllable Micro-Particle Rotation and Transportation Using Sound Field Synthesis Technique

    Directory of Open Access Journals (Sweden)

    Shuang Deng

    2018-01-01

    Full Text Available Rotation and transportation of micro-particles using ultrasonically-driven devices shows promising applications in the fields of biological engineering, composite material manufacture, and micro-assembly. Current interest in mechanical effects of ultrasonic waves has been stimulated by the achievements in manipulations with phased array. Here, we propose a field synthesizing method using the fewest transducers to control the orientation of a single non-spherical micro-particle as well as its spatial location. A localized acoustic force potential well is established and rotated by using sound field synthesis technique. The resultant acoustic radiation torque on the trapped target determines its equilibrium angular position. A prototype device consisting of nine transducers with 2 MHz center frequency is designed and fabricated. Controllable rotation of a silica rod with 90 μm length and 15 μm diameter is then successfully achieved. There is a good agreement between the measured particle orientation and the theoretical prediction. Within the same device, spatial translation of the silica rod can also be realized conveniently. When compared with the existing acoustic rotation methods, the employed transducers of our method are strongly decreased, meanwhile, device functionality is improved.

  16. Modeling and Control for Giant Magnetostrictive Actuators with Rate-Dependent Hysteresis

    Directory of Open Access Journals (Sweden)

    Ping Liu

    2013-01-01

    Full Text Available The rate-dependent hysteresis in giant magnetostrictive materials is a major impediment to the application of such material in actuators. In this paper, a relevance vector machine (RVM model is proposed for describing the hysteresis nonlinearity under varying input current. It is possible to construct a unique dynamic model in a given rate range for a rate-dependent hysteresis system using the sinusoidal scanning signals as the training set input signal. Subsequently, a proportional integral derivative (PID control scheme combined with a feedforward compensation is implemented on a giant magnetostrictive actuator (GMA for real-time precise trajectory tracking. Simulations and experiments both verify the effectiveness and the practicality of the proposed modeling and control methods.

  17. Synthesis of Ag Nanocubes 18–32 nm in Edge Length: The Effects of Polyol on Reduction Kinetics, Size Control, and Reproducibility

    OpenAIRE

    Wang, Yi; Zheng, Yiqun; Huang, Cheng Zhi; Xia, Younan

    2013-01-01

    This article describes a robust method for the facile synthesis of small Ag nanocubes with edge lengths controlled in the range of 18–32 nm. The success of this new method relies on the substitution of ethylene glycol (EG) -- the solvent most commonly used in a polyol synthesis -- with diethylene glycol (DEG). Owing to the increase in hydrocarbon chain length, DEG possesses a higher viscosity and a lower reducing power relative to EG. As a result, we were able to achieve a nucleation burst in...

  18. Oxygen uptake rate (OUR) control strategy for improving avermectin B

    African Journals Online (AJOL)

    Glucose metabolism plays a crucial role in the process of avermectin B1a biosynthesis. Controlling glucose feeding based on oxygen uptake rate (OUR) was established to improve the efficiency of avermectin B1a production. The result showed that avermectin B1a production was greatly enhanced by OUR control strategy.

  19. Protein synthesis, growth and energetics in larval herring (Clupea harengus) at different feeding regimes

    DEFF Research Database (Denmark)

    Houlihan, D F; Pedersen, B H; Steffensen, J F

    1995-01-01

    Rates of growth, protein synthesis and oxygen consumption were measured in herring larvae, Clupea harengus, in order to estimate the contribution that protein synthesis makes to oxygen consumption during rapid growth at 8°C. Protein synthesis rates were determined in larvae 9 to 17 d after hatching....... Larvae were bathed in (3)H phenylalanine for several hours and the free pool and protein-bound phenylalanine specific radioactivities were determined.Fractional rates of protein synthesis increased 5 to 11 fold with feeding after a period of fasting. Efficiencies of retention of synthesized protein were...... approximately 50% during rapid growth. Rapid growth in herring larvae thus appears to be characterized by moderate levels of protein turnover similar to those obtained for larger fish. Increases in growth rate occurred without changes in RNA concentration, i.e., the larvae increased the efficiency of RNA...

  20. Differential chromosomal and mitochondrial DNA synthesis in temperature-sensitive mutants of Ustilago maydis

    Energy Technology Data Exchange (ETDEWEB)

    Unrau, P.

    1977-01-01

    The amount and type of residual DNA synthesis was determined in eight temperature-sensitive mutants of the smut fungus Ustilago maydis after incubation at the restrictive temperature (32/sup 0/C) for eight hours. Mutants ts-220, ts-207, ts-432 and ts-346 were found to have an overall reduction in the synthesis of both nuclear and mitochondrial DNA in comparison to the wild-type. In mutants ts-20, tsd 1-1, ts-84 and pol 1-1 nuclear DNA synthesis was depressed relative to mitochondrial synthesis. The DNA-polymerase mutant pol 1-1 had persistent nuclear synthesis at about 50% of the rate of synthesis of mitochondrial DNA and similar behavior was observed in a diploid homozygous strain. Mutant ts-84 had an initial burst of DNA synthesis which was reduced for nuclear but not mitochondrial synthesis after three hours preincubation at 32/sup 0/C. tsd 1-1 and ts-20 had nuclear residual synthesis amounting to about 25% of the relative rate of mitochondrial synthesis which correlates to increasing UV sensitivity of these strains on incubation at 32/sup 0/C. A pol 1-1 ts-84 double mutant had an additive loss of nuclear DNA synthesis which indicates that the steps of replication involved may be sequential.